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Introduction

Alice:  Would you tell me, please, which way I ought
to go from here?
Cat:  That depends a good deal on where you want
to get to.

Alice in Wonderland by Lewis Carroll [Car65]

Alice’s question, innocently asked as it is, is not as trivial as it seems. Choosing
which way to go can have a variety of consequences beyond just where one ends
up. For instance, when caught in slow moving congested traffic, one might wonder
whether one ought to have gone another way or even used another mode of trans-
port. Such a situation is often negative for personal reasons. One could be late to an
appointment, have stressful interactions with other traffic participants, suffer a gen-
eral reduction of quality of life, or simply waste of time and energy. Such situations
are also bad for society as a whole, since they negatively impact economic growth,
cultural development and can have devastating effects on environment.

In fact, transport has contributed about 15% of carbon dioxide (CO,) and 31% of
ozone (O3) of the total man-made addition of Greenhouse Gas (GHG) since prein-
dustrial times [FBM "08]. And even now, transport is responsible for a quarter of
Greenhouse Gas emissions in the European Union. Even more alarming, it is the
only major economic sector in Europe where GHG emissions are not lower than 1990
levels, but are an alarming 20% higher [Eur16]. The European Commission for Mo-
bility and Transport therefore envisions a 60% cut in transport emissions by the
middle of the century [Eurll] in order to keep further devastating effects in con-
trol. GHG are a main reason for the long term effects of global warming, which
include, among many others, worldwide reduction of biodiversity, harmful changes
in ecosystems, and danger to subsistence of people (see, e. g., Root et al. [RTPH 03],
Cox et al. [CBJ"00]).

In sharp contrast to the goal of reducing GHG emissions, the German Federal
Transport Infrastructure Plan expects an increase of 30% in total transport until 2030
in Germany. Amongst this, there is an expected increase in passenger transport
by 12.2% and of freight transport by 38%. Interestingly, out of the 264.5 billion bud-
get, 69% are used for maintenance [Fed16]. It is therefore indispensable to make
sound transport planning decisions not only for environmental, but also for financial
reasons. This thesis aims at providing some approaches for planning and managing
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such infrastructures.

In order to reduce GHG emissions created by transport, the following measures
come to mind: to use alternative fuels, to improve vehicle standards, to reduce over-
all demand and to improve operations management, which means better vehicle
routing. There already is a lot of engineering work to build vehicles which work
with a different energy supply or utilize available supplies more efficiently as GHG
emissions are proportional to fuel consumption [Dep15].

In this work, we want to tackle two other main possibilities to reduce GHG emis-
sions: reduce overall amount of transportation actors and provide better vehicle
routing management. Both will result in less congested traffic and thus quicker com-
pletion time for transport and less overall use of fuel.

In addition, dealing with those questions provides a framework to identify im-
proving possibilities for a wide range of infrastructure systems and networks which
are influenced by congestion. With growing urban areas, deliberate infrastructure
planning is now more important than ever. This includes the electric grid, telecom-
munication networks, but also of course public roads, and public transport and lo-
gistic networks. Reducing demand and providing intelligent routing leads to a de-
crease in financial, personal, and environmental burden. A better structured electric
grid works more efficiently, thus losing less energy on the way to the network user.
Faster telecommunications networks are increasingly important in todays multime-
dia society. A well thought-out public transport can lead to less private transporta-
tion and thus a decline in GHG emissions as well as less wastage of material. Effi-
cient working logistic networks are important for economic growth and ultimately
globalization.

One problem that we identify on our way is that those infrastructure systems
are used by a large number of independent units. Indeed, they may even prefer
to reach their personal goals instead of optimizing the overall network flow. Nash
in 1950 [Nas50] and Wardrop in 1952 [War52] have laid groundwork for analyz-
ing such systems of independent decision makers. Nash and Wardrop equilibria
emerged from their works. In a nutshell, an equilibrium is a state in which no user
can reach a better outcome for herself, e. g. a shorter travel time, when only she is
changing her strategy or usage pattern, but all other users stay as they are and con-
tinue their strategy. This type of competition is studied within the field of noncoop-
erative game theory. Unfortunately, equilibria, especially in complex network struc-
tures, are in general neither easy nor fast to determine and implement. But in order
to create good infrastructure networks, it is important to understand the conditions
under which good equilibria emerge.

In this context, we are particularly interested in the concept of congestion games.
A network congestion game consists of a network with cost functions on the edges
and (weighted) users with start and destination points within that network. A strat-
egy of a user is to choose a path which connects these points. The goal is to reduce
the cost of the strategy which is the sum of the costs of the edges it contains. The cost
of each edge depends on the amount of users choosing it. An important quantity in
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this context is the Price of Anarchy, which describes the ratio between a best possible
and a worst possible equilibrium. This structure can be adapted to analyze how to
route users in a sensible way such that the overall network usage is optimized. It
can in some sense be considered as a congestion game for environmentally friendly,
or altruistic, users. As it may take a lot of computational power and time to find
an optimal solution, it is sensible to look for good enough solutions. That means we
want to design algorithms which have a provable performance guarantee and which
can thus be shown to give results within a certain range of an optimal solution even
in the worst case. The first chapter of this thesis considers this setting.

Another easily identifiable problem in infrastructure systems is that users might
want to manipulate data which they hand to an algorithm that then determines how
a network is used. This happens if users try to influence the algorithm in order
to achieve their personal goals, e. g. their preferred route or their favorite carpool.
As such selfish behavior ignores the overall network usage, it might result in poor
outcome. We are interested in incentive compatibility concepts where no user gains
an advantage for herself by not acting according to her true preferences. The goal is
thus to design a mechanism where strategic users can interact such that the resulting
outcome reaches a certain goal. These types of problems have been studied in the
field of mechanism design. This relatively new field has gained a lot of interest in
the past decades. In fact, in 2007, Leonid Hurwicz, Roger B. Myerson and Eric S.
Maskin won the highly prestigious Nobel prize in economics, “for having laid the
foundations of mechanism design theory” [Nob14].

In particular, we are interested in strategyproof direct-revelation mechanisms. In
a direct-revelation mechanism, each agent is asked to report their private informa-
tion exactly once. Based on this, and possibly some randomization, the mechanism
chooses an outcome. Strategyproofness ensures that the optimal strategy for each
agent is to reveal her true private information and hence prevents her from manip-
ulating her input. In chapter two, we thus deal with strategically thinking users in
networks.

Finally, when looking at congested networks, we realize that the problems which
we encounter are not static, but that we are working in a constantly changing envi-
ronment. Users join in, leave, or change destinations without reporting a long time
beforehand. We do not know all of this information before the algorithm runs and
have thus to be able to produce output without complete information and react to
new input along the way. The study of such algorithms has been formalized in the
field of online algorithms, whose systematic study started with Sleator and Tarjan
in 1985 [ST85].

Particular interesting for us is competitive analysis, named as such by Karlin,
Manasse, Rudolph and Sleator in 1988 [KMRS88]. Broadly speaking, an online al-
gorithm who receives information over time is compared to its offline counterpart,
which has access to all information when it starts. The competitiveness of an on-
line algorithm rises the closer its output is to the offline output of its corresponding
offline algorithm. The third chapter of this thesis considers routing problems in an
online setting.
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To recapitulate, with this work we are tackling the problem of high congestion
in networks from a mathematical point of view using methods from Operations
Research and Algorithmic Game Theory. Congestion leads to a large number of
problems, e. g.social, economical, and environmental. By providing approaches to
reduce high congestion, we expect to improve the planning and maintaining of ur-
ban infrastructures, e.g.lower GHG emissions, have more efficient electric grids,
provide faster telecommunications networks and more smoothly running logistic
networks.

We identify two main possibilities to achieve those goals. First, we have to route
users in a sensible way. This means on the one hand routing them in such a way
that it is good for the overall network flow, and on the other hand also such that
deviation from a proposed route will not benefit any user. Second, we reduce the
overall demand for transportation by having users cooperate in an efficient and just
way.

The problems that we encounter determine the methods and specific fields that
we use. We expect independent users. They are likely to manipulate the algorithm.
Also, they may appear over time. Out of the large field of intersection between
mathematics, computer science, and economics, we thus decided to concentrate on
approximation algorithms, mechanism design and online algorithms.

Thesis Outline

This thesis begins by giving some specific definitions and mathematical back-
ground for easier understanding of each of the main chapters. The preliminaries
cover basic concepts of approximation algorithms, direct revelation mechanisms,
strategyproofness, request answer games and competitive analysis.

The main part of the thesis consists of three chapters, each devoted to explore
one possibility to reduce congestion in networks. The following paragraphs give an
overview of content and highlights of our respective contribution. In order to make
each chapter as self-contained and convenient for the reader as possible, the formal
problem definition, related work and result summary for each problem can be found
in the introductory section of each part. Also, in each chapter a technical discussion
is provided and open problems laid out.

We close the thesis with a short conclusion with a focus on the practical applica-
tions of our results and outlook.

Chapter 1: Rerouting in Congested Networks

In the first main chapter of this thesis, Chapter 1, we provide a possibility to
reroute users and thus reduce congestion by means of a local search algorithm in a
network. In this network model, congestion grows as more users are using one path.
Using the local search algorithm, users are routed such that the global network cost
is reduced.
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The mathematical framework for this problem is provided by general resource
allocation problems where a set of commodities jointly uses a set of resources with
a diseconomy of scale. The set of feasible allocations for each commodity is a com-
modity specific set of subsets of resources. Each commodity can have a different
weight, or all weights are one which is then called unweighted. The cost of each
resource is determined by a polynomial function with maximum degree d that maps
the total weight put on a resource to its cost. We are interested in reducing the over-
all cost. For this model, we can imagine commodities to be users in a network and
resources to be paths.

Main Contributions (Chapter 1) We propose a local search algorithm that switches
one commodity to another set of resources if the total cost of the solution is de-
creased and continues until such switch is no longer possible. The algorithm is then
analyzed. For this purpose, we are interested in the locality gap, which is the dif-
ference between local optimal soluation calculated by the algorithm and a global
optimal solution.

Analyzing the local search algorithm, we show that the locality gap for unweigh-
ted resource allocation problems is of order [O(d/ logd)]?*!, for which we provide
a corresponding lower bound. In addition, we give concrete values for the locality
gap for small d. The linear case d = 1, which corresponds to at most quadratic total
costs, can be evaluated to have a locality gap of at most three, which is tight. We also
evaluate the general approximation guarantee for this case and give a lower bound
of 1.02 which rises to 1.04 if the Unique Games Conjecture holds true.

Chapter 2: Non-Monetary Access Control Mechanisms

In Chapter 2, we provide a framework to reduce the total number of active par-
ticipants in a network. This is achieved by letting possible users choose who may
use the network or certain paths by giving nominations between them. As users
are liable to influence the outcome by nominating strategically, we are interested in
mechanisms where such a behavior does not grant an advantage to the individual
user.

From a mathematical point of view, the problem we are looking at can be formu-
lated in terms of a direct revelation mechanism without payment which is strate-
gyproof, or dominant-strategies incentive-compatible (DSIC). This specific problem
is known as impartial selection. We are given a set of agents. Each agent may nom-
inate a number of other agents of her choosing. Our goal is to select k agents out
of our set of agents with a high number of nominations. Each selection mechanism
shall maintain impartiality, that means that the nominations which a user gives do
not have any influence on her probability of being selected.

Main Contributions (Chapter 2) We consider the case of selecting two agents for
which we investigate deterministic and randomized mechanisms and give upper
and lower bounds. Both the case that exactly two agents have to be selected as
well as the case that sometimes less than two agents can be selected are consid-
ered. Interestingly, the latter one leads to an improvement on the expected number
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of nominations. We introduce the bidirectional permutation mechanism. It gives a
best possible result of achieving at least 1/2 of the total maximum number of nomi-
nations for deterministic selecting up to two agents. On the other side, it has been
shown [AFPT11] that no deterministic exact mechanism can guarantee any positive
approximation factor. The bidirectional permutation mechanism in the randomized
variant achieves 2/3 of the total maximum number of nominations for up to two
agents in expectation. For this case, we can further show that no mechanism can do
better than 3/4 and give a best possible mechanism for the case of selecting two out
of three agents. On the other hand, randomly selecting exactly two agents, we intro-
duce the 2-partition mechanism with permutation, which achieves 7/12 of maximum
total number of nominations, while we establish an upper bound of 2/3.

Further, we consider the case of selecting a general number of k agents. We gen-
eralize our algorithms to the k-partition mechanism with permutation for selecting
exactly k agents and to the bidirectional k-permutation mechanism for selecting up
to k agents. In addition, we introduce the exact dollar partition with permutation
mechanism. As well as providing upper bounds for randomized and deterministic
mechanism for exactly and up to k agents, by introducing our mechanisms we give
lower bounds for these problems. Further, the exact dollar partition with permuta-
tion mechanism builds upon a general allocation subroutine, which gives a quick,
simple solution to the problem of apportionment. This is the problem of fairly al-
locating representatives in proportion to group sizes and is interesting in its own
right.

Chapter 3: Online Planning for Carpools

In the third main chapter, Chapter 3, we pick up the idea of reducing the total
number of participants in the network. In addition, we integrate the approach to
route users in a sensible way. We present an algorithm to plan online carpooling.
Carpooling or ride-sharing is the practice of two or more people sharing journeys in
the same, usually private, vehicle.

Mathematically, we are looking at the online dial-a-ride problem in a metric set-
ting. As a special case, we first consider dial-a-ride on the line. Users arrive in an
online manner in some place on the real line. They request to be transported to an-
other place on the line. A server of given capacity picks the users up and delivers
them, with or without temporary interruption, to their destination. The server starts
at the origin and the problem can be closed, meaning the server has to return to the
origin, or open. Our goal is to minimize the makespan, i. e. the time which the server
needs until the last request is fulfilled.

Main Contributions (Chapter 3) We provide an algorithm for open and closed pre-
emptive online dial-a-ride on the line. To analyze this algorithm, we compare it
against its offline counterpart, which knows from the beginning which requests will
appear at what point in time. We show that our algorithm is 2.41-competitive. Fur-
ther, we provide a lower bound of 1.75 for the non-preemptive closed case. In ad-
dition, we show that a slightly modified version of the algorithm holds the 2.41-
competitiveness in metric space for uncapacitated servers.
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To understand the structure of optimal solutions better, we also consider the of-
fline problem for dial-a-ride instances which have the same start and destination
and thus only have to be visited. We prove that even in this case, we can construct
instances such that the server has to make direction changes on the line arbitrarily
often and give a dynamic program which computes the minimum completion time
for this problem in quadratic time. Further, we show that in contrast to that the
non-preemptive closed and open offline dial-a-ride on the line with capacity one is
NP-complete.



Preliminaries

In this chapter, we review the main concepts which we need in this work and
lay the foundation for the thesis. Though we assume that the reader is familiar
with basic concepts and notions of mathematical optimization and algorithmic game
theory, we recapitulate important definitions and explain major terms for ease of
reading and understanding this thesis. We also point out important textbooks and
standard literature introducing the corresponding topics.

Each of the following sections is devoted to one of the three main chapters of this
thesis. First, we discuss approximation algorithms. In the second part, we cover
direct-revelation mechanisms and talk about strategyproofness. Finally, the third
section will deal with online algorithms in the sense of request-answer games and
explain competitive analysis.

Rerouting in Congested Networks

We solve the problems that are considered in this thesis with algorithms and
mechanisms. Our ideal algorithm solves a problem optimally, for every instance,
and in a timely manner. The latter one is often compromised, e. g. due to NP-hardness.
If we want to keep the premise of being able to solve every instance and also want
to do it in a quick and efficient way, more precisely in polynomial time, then we
restrain on our objective of optimality. This means we trade solution quality for a
speed up of the algorithm. The study of approximation algorithms is based on this
premise. In order to have a handle on how bad a solution can turn out, we introduce
the notion of an approximation algorithm.

Definition (a-Approximation Algorithm)  An a-approximation algorithm with & > 1
for a minimization problem and 0 < « < 1 for a maximization problem is an algorithm whose
running time R(I) is upper bounded by a polynomial function of the size of the input |I| of
the algorithm, i.e. R(I) € O(|I|¥) for fixed k € N, and which for all instances of the
problem outputs a solution whose value S(I) is gquaranteed to be within a factor of a of
the value of the optimal solution O(I), that means S(I) < w - O(I) for a minimization
problem and S(I) > w - O(I) for a maximization problem. The value « is referred to as
approximation ratio.

For a more thorough introduction, please refer for instance to the books by Will-
iamson and Shmoys [WS11], Hochbaum [Hoc97] or Vazirani [Vaz01].
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While the first chapter does not explicitly deal with congestion games, they are
nonetheless a basic concept related to the problem definition. They were first intro-
duced by Rosenthal in 1973 [Ros73] and are thoroughly covered in the book Algo-
rithmic Game Theory in the chapter Routing Games by Roughgarden [Rou07].

Non-Monetary Access Control Mechanisms

When trying to design a way to restrict access to a finite good where different
users have to choose among themselves who will gain access, it is important to take
into account possible manipulative user behavior. The restriction or selection mech-
anism should function well even when we assume strategic selfish behavior of each
participant. To be more specific, we want each participant to reveal their true private
information who should be granted access and not lie in order to gain an advantage.
The field of mechanism design deals with this engineering approach to game theory.
Because it starts with defining the rules of the game rather then looking at strategies
for users, it is sometimes called reverse game theory. Here, a mechanism denotes a
type of game in which users send a message based on which an outcome is chosen.

We are given a set of agents I = {1,...,n}. Each of the agents i has private
information 6;, which we also call the type of agent 7, and which may, e. g., determine
the preferences of an agent over different outcomes of the game. Denote the space
of all possible types of agent i by ®;. The space of all possible outcomes is denoted
by . The outcome may be, for example, that a certain agent receives a valued item.
Further, each agent has a utility function u;: ®; x QO — R, where u;(6;, w) is the
agent’s utility given outcome w when she has type 6;.

As a simple example, imagine a group of people that has to select one representa-
tive amongst them, e. g. a political party that chooses someone to work in a national
committee, or a group of authors which decides who should give the talk at a con-
ference. The type of a person can be, for example: “I nominate Mx. Fisher and Mx.
Smith.”, “I think everyone, but my neighbor, would be a good representative.”, or
“I do not want to nominate anyone.”. The outcome is that one person is selected. A
utility function is now defined for each possible outcome by the revealed type of the
person. For example, a utility could be high if a person is selected herself, and there
could be a negative impact if a person is selected which was nominated but does not
match the persons true preferences.

The goal of mechanism design in this thesis is to chose a smart outcome selection
function. It gives the outcome for a given set of revealed private information in such
a way that the agents have a strong incentive, meaning they expect high utility, to
reveal their true preferences in the decision making process.

In general, a direct revelation mechanism m is a function which maps a space of
types © to a set of outcomes (), thus m: ® — (). We use the utility function in
order to model that one agent does not need to reveal her true private information.
Instead, an agent may choose to misreport her type to the algorithm. However,
while reporting a manipulated type may pose an advantage for some outcomes, it
may also negatively impact an agents utility for other outcomes.
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Definition (Deterministic Direct Revelation Mechanism)  We are given a set of a-
gents I = {1,...,n} with a set of types ©; for each agent i, a set of outcomes Q) and utility
functions for each agent u;: ®; x (3 — R. A deterministic direct revelation mechanism
is defined by an outcome selection function m: @1 X - - - X @, — (.

In other words, each agent reports her type to the mechanism exactly once, which
then deterministically reveals the outcome.

As an example, consider a group of three people {a, b, c} who want to select a rep-
resentative amongst them. Each person chooses between the two others, e. g.a has
possible types b or ¢, or ©, = {b,c}. An outcome selection function could now be,
described plainly: if one person is chosen by both others, e. g. (64,6,,6.) = (b,c,b),
this person is selected, so m(b, ¢, b) = b; in every other case, e. g. (0,,6;,0.) = (c,a,b),
person 4 is selected, so m(c,a,b) = a.

If the outcome is not defined deterministically, but by a probability distribution
over a set of outcomes, we call this a randomized direct revelation mechanism.

Definition (Randomized Direct Revelation Mechanism)  We are given a set of a-
gents I = {1,...,n} with a set of types ©; for each agent i, a set of outcomes Q) and utility
functions u;: ®; x Q = R. A randomized direct revelation mechanism is defined by a
probability distribution over outcome selection functions m: @1 X - -+ X @, — X, where
the set of probability distributions over () is denoted by Xq.

For the example above with agents {a, b, c} who select one of the other agents as
their type, an outcome selection function could be to select an agent who is chosen
by both other agents, and if that is not the case, each 4, b or ¢ is selected with proba-
bility 1/3.

In broader terms, in a direct revelation mechanism holds that the set of strategies
of an agent is equivalent to her set of types. A strategy, informally speaking, is a
set of decision rules which describes for every possible situation which action an
agent will select. Here, an agent only provides input to the mechanism once, i. e. by
revealing a type.

For this work it is useful to understand the notion of strategyproofness. In a
nutshell, a mechanism is strategyproof if no agent has any incentive to manipulate,
i.e.not reveal her true preferences, but instead misreports her type.

Definition (Strategyproofness) A direct revelation mechanism is strategyproof (or domi-
nant strategies incentive compatible) if for each agent holds that for all possible reported sets
of types of the other agents, her utility of revealing her true type is at least as good as for
disreporting her type. Formally,

ui(Gi,s(Qi,G,i)) > u,-(@i,s(ef,e,i)) V 0_,€0_; and 91/ € 0O;
where@_; =01 X -+ - X O;_1 X Oj41 X -+ X O.

That means, the utility function for an agents true private information is at least
as high as for any other possible information she can reveal given any set of infor-
mations reported by the other agents. Thus, revealing her private information or
preferences truthfully is a weakly dominant strategy for each agent.

10
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Looking at the example above, consider a mechanism which has an outcome se-
lection function that always choses agent 4, no matter which types are reported by
the agents. This mechanism is strategyproof, as the utility of each agent does not
change if they report a different type; in fact, their reported types do not influence
their utility at all as it does not have any impact on the outcome.

In contrast, a typical example for a non strategyproof mechanism for cases where
an agents utility only depends on whether she is selected herself is plurality vot-
ing, where each voter votes exactly once and the candidate with most received votes
is selected. Here, e.g.voting for the strongest opponent may influence one’s own
chance of being selected.

For a further introduction to mechanisms and strategyproofness, please refer for
example to Parkes’ text [Par04] and the book by editors Nisan, Roughgarden, Tardos
and Vazirani [NRTV07].

Online Planning for Carpools

In real world applications, detailed data is often not known from the beginning,
but is revealed sequentially. An algorithm that deals with this type of problems,
possibly adjusting its behavior as time passes, is called an online algorithm.

A framework to model most online algorithm problems was given in 1994 by Ben-
David et al. [BBK " 94] by introducing the notion of request-answer games. Here, an
adversial player makes a series of requests which are subsequently answered by the
online algorithm. A function then determines the cost for any sequence of requests
and answers. Formally, it can be described as follows.

Definition (Request Answer Game) A request-answer game is a triple (R, A,C) con-
sisting of a set of requests R, a sequence of answer sets A = A1, Ay, ... and a sequence of
cost functions C = Cy,Cy, ... with

Ci: RUx Ay x --- x Aj = R U {0}
forie IN.

For many problems, it is natural to assume that the answer sets A1, Ay, ... are all
equal.

An online algorithm gets a sequence of requests (4,...,7,) for n € N as input
and is required to choose a sequence of answers (ajy, ..., a,) as output. The goal is to
select the sequence of answers in such a way that the cost C,(r1,...,7n,a1,...,a,) is
minimized. It is important to note that even if the requests are revealed sequentially,
the cost depends not only on the current answer but on all previous answers. Thus,
the decision at each point influences our cost in the future. Formally, we define a
deterministic online algorithm in the following way.

Definition (Deterministic Online Algorithm) A deterministic online algorithm ALG
for a request answer game (R, A, C) is a sequence of functions fi, f, ... with fi: R — A;
for i € IN. For a given sequence of requests t = (r1, 1o, ...,tn), the output of the algorithm
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is given by
ALG(r) = (fi(r1), fo(r1,72), o fu(r1, ..o 1))
and the cost incurred by the algorithm is given by
|ALG(r)| = Cu(r, ALG(r)).

Clearly, while the cost depends upon all requests and answers, our answers at
each point only depend on the requests issued until this point. We have to make
decisions based on partial information.

How do we assess the quality of an online algorithm? One answer for this ques-
tion lies within the field of competitive analysis. Here, we compare the performance
of an online algorithm against its “offline” counterpart which knows all requests
from the beginning.

Definition (Optimal Offline Cost) An optimal offline cost for a given request answer
game (R, A,C) and request sequence r of length n is the cost |OPT(r)| for a best possible
selection of answers for this request sequence, that is
OPT(r)| = min Culr,a).
| ( )| acAyx--xAp n( )
The optimal offline cost, which translates into a best possible answer that an algo-
rithm which has complete information can give, provides us with a way to measure

how well the online algorithm performs. The quotient between this best possible
answer and the output of an online algorithm is called competitive ratio.

Definition (Competitive Ratio) A deterministic online algorithm ALG for a request-
answer game (R, A, C) is called deterministic y-competitive if for any request sequence r
we have that

|ALG(r)| < - |OPT(r)|.
The factor vy is called the (deterministic) competitive ratio of ALG.

Note that the competitive ratio of an online algorithm can be viewed as the ap-
proximation ratio achieved by that algorithm.

For a more thorough introduction to online algorithms, please refer for example
to the seminal article by Sleator and Tarjan [ST85], the books by Borodin and El-
Yaniv [BEY98] or by editors Fiat and Woeginger [FW98].
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Chapter 1

Rerouting in Congested Networks

We study general resource allocation problems with a diseconomy of scale. In such prob-
lems, we are given a finite set of commodities that request certain resources. The cost of
each resource grows superlinearly with the demand for it, and our goal is to minimize
the total cost of the resources. In large systems with limited coordination it is desirable
to solve such problems in a distributed manner. To this end it is natural to consider local
dynamics where in each step a single commodity switches its allocated resources when-
ever the new solution after the switch has smaller total cost over all commodities. These
dynamics converge to a local optimal solution and we are interested in quantifying the
locality gap, i.e., the worst case ratio of the cost of a local optimal solution and a global
optimal solution.

In this chapter we derive tight bounds on the locality gap for unweighted commodi-
ties with cost functions that are polynomials with non-negative coefficients and maximal
degree d. Our performance guarantee asymptotically matches the approximation guar-
antee of the currently best known centralized algorithm due to Makarychev and Srivi-
denko [MS14]. In contrast to their algorithm which is based on the randomized rounding
of the solution of a convex programming relaxation, our algorithm is deterministic, com-
binatorial, and requires only local knowledge of the commodities.

Bibliographic Information: The results in this chapter are based on joint work with Max
Klimm and Daniel Schmand, published at the 29th Symposium on Parallelism in Algo-
rithms and Architectures (SPAA) 2017 [BKS17].

The last decade has seen a growth in the prevalence and use of personal naviga-
tion devices. They provide a quick and easy to use solution for finding one’s way in
unknown areas but also the possibly quickest way home in congested traffic. In fact,
with them being widespread and employed by a large number of people, they open
up a whole new way of traffic regulation. For instance, rather than having clashing
shortest paths, one can target reduction of overall traffic jams by coordinating the
routes of different people by means of personal navigation devices. In this chapter
we aim to provide insights into simple procedures which help to reduce congestion
in networks using individual rerouting.

In the first section 1.1 we give an introduction into the practical roots of our prob-
lem and explain how to get from the application to the formal mathematical prob-
lem. We also describe related work and put our results into the context of former
findings. In Section 1.2 we then present the local search approach and introduce
smoothness which is used to analyze the approximation guarantees of local optimal
solutions. Building on that, in Section 1.3 we provide bounds on the locality gap for
the case of unweighted resource allocation problems with polynomial cost functions
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with positive coefficients and maximum degree d. We further show that even for
linear costs, unweighted resource allocation problems cannot be approximated by a
factor better than 1.02 unless P = NP. Our approximation algorithm can also be con-
sidered for the case of weighted resource allocation problems which will be covered
in Section 1.4. To close this chapter we discuss our findings and open problems in
Section 1.5.

1.1 Background

Take for example different people wanting to cross a busy city with different start
and end points. Each of them might have a navigation system which, based on
current predictions for traffic, proposes a best possible route. Now, it is widely as-
sumed that congestion in streets can be modeled using a delay function which is a
polynomial of degree four, this dates back to 1964. The US Bureau of Public Roads
assumes in their “traffic assignment manual for application with a large, high speed
computer” for the relationship between traveltime and volume that

. 4
T=Ty(1+015 Asmgned Volu@e ’
Practical capacity

where T is the traveltime in the congested network and Tj is traveltime in an empty
network [US 64]. Here, assigned volume is the amount of traffic which is routed via
a certain road and practical capacity is its maximal capacity. It is thus reasonable to
consider polynomial delay functions.

The computing of which route to take happens locally for each driver now, which
is why we are interested in a local search algorithm. In addition, instead of trying
to optimize the route for each individual driver, it is reasonable to assume that the
navigation systems actually communicate locally at times and try to keep the overall
flow in the city as smooth as possible. Further, to find out how good our result is,
we are interested in the ratio between this local optimum and network best possible
global solution, as we want to keep it small to route as environmentally friendly
and sustainable as possible. Keeping these requirements in mind, we formulate the
following mathematical problem.

1.1.1 Formulating the Mathematical Problem

We study general resource allocation problems where a set of commodities jointly
uses a set of resources with a diseconomy of scale. The set of feasible allocations
for each commodity is a commodity-specific set of subsets of resources that is either
listed explicitly or given implicitly by a certain combinatorial structure. The goal is
to find a single allocation for each commodity such that the total cost is minimized.
We assume that costs are separable among resources and that the cost of a resource is
given by a non-decreasing and convex resource-specific cost function. We consider
mostly the unweighted resource allocation problem, but some of our results extend
to the weighted version. In the unweighted case, the cost of a resource is a function
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1.1 Background

of the total number of commodities using the resource. In this case, the weight of
each commodity is simply assumed to be one, while in the weighted case the weight
of each commodity can differ and the cost of a resource is a function of the total
weight.

Minimization problems of this kind appear in different contexts. In the area of
energy efficient algorithms, resources model computing devices that can run at dif-
ferent speeds. As the speed is increased, the energy consumption increases super-
linearly. Frequently, it is assumed that energy consumption can be modeled by a
function

Cr(x) = kyxT = xk,xr—1

of speed x where k, > 0 and g, € (1,3] are device-specific parameters, see, e.g.,
Albers [Alb10] for a reference. In the area of traffic networks, resources correspond
to roads in a street network. The time needed to traverse a road increases with the
total traffic on the road. Popular models are the previously mentioned travel time
functions put forward by the US Bureau of Public Roads (BPR) which are of the form

cr(x) = k(14 0.15(x/z,)%)

where k, > 0 and z, > 0 are road-specific parameters and x is the load of the re-
source, see the report by the BPR [US 64]. When minimizing the total congestion
cost, we are interested in minimizing the average travel time of a unit of demand
which is given by C,(x) = xc,(x).

As a running example, let us consider the special case where the resources cor-
respond to the edges of a graph G = (V,E) and each commodity is specified by a
triple (u;,v;, w;) € V x V x Rsg. The goal is to route w; units of demand of com-
modity i along a single (and simple) path from u; to v; in the network. Thus, a
feasible solution to the problem corresponds to an unsplittable flow without capac-
ity constraints, and we want to minimize a convex cost function of the flow. This
fundamental problem appears under different names in the literature such as the
Minimum Power Routing problem (e.g., Andrews et al. [AAZZ12]) and Welfare
Maximization in Congestion Games (e. g., Meyers and Schulz [M512]).

Currently, the approximation algorithm with the best performance guarantee for
this problem is due to Makarychev and Sviridenko [MS14]. They propose a convex
programming relaxation of the problem and show that for monomials with degree d,
the integrality gap is equal to the (d + 1)-st Bell number B, ;. Using a randomized
rounding technique, this yields a randomized algorithm with approximation guar-
antee By, + ¢ for any € > 0 which can be shown to be of order [O(d/ logd))]?*!,
see [BT10]. However, the convex programming approach of Makarychev and Sviri-
denko has the disadvantage that it requires a large amount of central coordination
as the convex program has to be solved by a single central authority and the routing
decisions of the commodities are based on the solution of the linear programming
relaxation. This may be infeasible to implement in large systems without a central
authority that is able to collect the data and solve the program. In fact, when opti-
mizing large decentralized networks such as the Internet with respect to the energy
consumption or the total delay, such a central authority is usually absent.

For the optimization of such decentralized systems, it is natural to consider im-
provement dynamics where the system starts in an arbitrary state s and at each step
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one commodity chooses another path if it decreases her share of the cost, i.e., com-
modity i switches from path P to path Q if

Yo oo(x(s) > Y cr(xe(s) +wy),
reP\Q reQ\P

where x,(s) denotes the load of resource r in state s. The stable points of these
dynamics are the Nash equilibria of the underlying congestion game. There is a
vast amount of literature quantifying the price of anarchy of congestion games, i.e.,
determining the worst case ratio of the total cost in a Nash equilibrium and the to-
tal cost of an optimal solution. Most relevant to our work, Aland et al. [ADG " 11]
showed that the price of anarchy for both weighted and unweighted congestion
games with polynomial travel time functions ¢; with maximal degree d (that cor-
respond to polynomial total cost functions C, with maximum degree d + 1) is of
order [O(d/logd)]?*l. Unfortunately, this result does not yield an efficient dis-
tributed approximation algorithm since for weighted commodities, the improve-
ment dynamics may cycle (cf. Harks et al. [[{KM11]) and Nash equilibria may even
be fully absent (cf. Harks and Klimm [[K12]). For unweighted commodities, the im-
provement dynamics are guaranteed to converge by a potential function argument
due to Rosenthal [Ros73], but the convergence may take a number of steps that is
exponential in the size of the underlying network, see Ackermann et al. [ARV08].
These issues make these dynamics unfavorable in practice.

In order to obtain polynomial convergence for the unweighted case, Awerbuch et
al. [AAET08] studied an approximate version of the improvement dynamics where
each commodity only switches if the potential function drops by a factor of 1 + 4.
They showed that after a polynomial sequence of J-best replies, a solution is reached
which is an (5/2 4+ O(6))-approximation to the minimal congestion cost in the case
of linear cost functions. For polynomial cost functions with maximum degree d and
positive coefficients their approach yields a (d%—°(1) + O(¢))-approximation.

The technique of Awerbuch et al. however, relies on the existence of a potential
function and thus cannot be applied to resource allocation problems with weighted
commodities and non-linear cost functions.

To overcome this issue and give an alternative approach also for unweighted com-
modities, we study a different improvement dynamics where the system again starts
in an arbitrary state s, but all commodities take the impact of their path choices on
the other commodities into account. More formally, we require that commodity i
switches from path P to path Q if this switch decreases the overall cost of the solu-
tion, i.e.,

Y xe(s)er(xe(s)) — (xr(s) — w;)er (x(s) — wy)
reP\Q
> 2 (xr(s) + wi)cr (xr(s) + wi) - x,(S)Cr (xr(s>)'
reQ\P
This approach has the advantage that the total cost of the current solution is mono-
tonically decreasing in each step, which implies that the dynamics reach a local op-
timum after a finite number of steps. In contrast to the long history of papers quan-
tifying the efficiency of Nash equilibria, much less is known regarding the efficiency
of local optimal solutions. This is the main issue addressed in this chapter.
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1.1 Background

Notation and Formal Problem Definition We study local improvement dynamics for
general resource allocation problems with convex costs. In particular, we are inter-
ested in quantifying the locality gap, i.e., the worst-case ratio between the cost of
a local optimal solution and the cost of a global optimal solution. We assume that
costs are of the form C(x) = xp(x) where p(x) is a polynomial with non-negative
coefficients and maximal degree d € N, i.e. p(x) = ¥j¢; a]-xf with ] C [0,d], a; > 0
for all j € J. Note that this is the standard form for the total cost in the congestion
game literature and will be used throughout this chapter. The speed scaling liter-
ature usually writes costs as C(x) = x7 for some q > 1. Clearly, both forms are
equivalent up to a shift in the exponent.

We consider a finite set of commodities N = {1,...,n} and a finite set of re-
sources R. For each commodity i € N, we are given (explicitly or implicitly) a
set S; C 2R of feasible solutions. Further, we are given a weight x; € R for each
commodity. The cost of each resource r € R is determined by a non-negative func-
tion ¢, : R>9 — R>( that maps the total weight put on a resource to its cost. Given a
solution s = (s1,...,s,) with s; € S;, the cost for commodity i is defined as

Ci(s) = x; ) cr(x:(s)),

res;

where

xe(s):= ) Xj

JEN: r€s;
is the total weight put on resource r under solution s. We are interested in finding
solutions s that minimize the total cost of the commodities, i. e., that minimize

n

C(s):=Y_Ci(s) = Y_ xr(s)cr(x,(s)).

i=1 reR

We denote the space of all feasible solutions by S = S; x - - - X §,, and an instance
of a resource allocation problem by I = (S, (x;)ien, (¢r)rer)- A resource allocation
problem is called unweighted if x; = 1 for all i € N and weighted, otherwise. For a
solution s € S and a commodity i € N, we write s = (s;,s_;) implying thats; € S;
ands_; € 51 X -+ X 5j_1 X Sj41 X --- x S§;. We also introduce the notation

C_i(s):= ) Ci(s).

JEN\{i}

We call a solution local optimal, if its cost cannot be decreased by reallocating a
single commodity while keeping all other commodities at their current allocations.

Definition 1.1 (Local Optimum) A solution s is called a local optimum, if
C(s) < C(sl,s_;)
foralli € N and s € S;.

We are interested in the cost guarantees achieved by local optimal solutions. These
guarantees are captured by the following notion of a locality gap.
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Definition 1.2 (Locality Gap) For an instance I = (S, (x;)ien, (¢+)rer) Of a resource
allocation problem, the locality gap is defined as

{C(S/) ce o > ; }
max :s,8" € Sand s’ is a local optimum ;.
C(s)

As a running example, it is useful to consider the natural case where the set of
resources R corresponds to the set of edges E of a graph G = (V,E). Each com-
modity is specified by a source node #; and a node target v;. The set S; of feasible
solutions of commodity i corresponds to the set of simple (u;,v;)-paths in G. We
note, however, that all our results continue to hold in a more general setting where
the set of feasible solutions S; C 2R is arbitrary. We only need to make the minimal
assumption that each commodity can efficiently optimize over its set S; as long as
the vector of feasible solution s_; of the other commodities is fixed. In fact, we only
need to require that this optimization over S; can be done efficiently within arbitrary
precision.

Assumption 1.3

1. For every constant &« > 1 and for every commodity i € N, there is a polynomial
algorithm (oracle) O; ,: S_; — S; that, given a partial solution s_; € S_; as input,
computes a feasible solution s} € S; with

C(Sg, s ;) <aminC(s;,s_;).
5;€S;

2. A feasible solution s € S can be computed in polynomial time.

Clearly, when the sets S; corresponds to the set of paths in a network, this as-
sumption is satisfied as shortest paths can be computed efficiently (see, i.e., [DP84]
for an overview).

1.1.2 Related Work and Previous Results

In addition to the works mentioned in the last section which are especially rele-
vant to establish our approach, there are some other important results in this area
and additional related previous work. Meyers and Schulz [MS512] study the prob-
lem of minimizing the total cost for general cost functions. They establish inapprox-
imability results both for convex non-decreasing and non-increasing cost functions.
As a contrast, they prove that for single-commodity networks, the problem can be
solved in polynomial time by a reduction to minimum cost flows. More recently,
Roughgarden [Roul4] studied the approximability of minimizing the total cost for
unweighted resource allocation problems with polynomial cost functions and non-
negative coefficients and maximal degree d. He showed that this problem cannot be
approximated by a factor of (8d)*/? for some B > 0. He also observed that this non-
approximability result gives an alternative proof for the fact that the price of anarchy
is at least of order d/2 unless NP = coNP as otherwise an equilibrium could serve
as a certificate for the absence of a solution with a certain congestion cost.

Centralized approximation algorithms for the class of problems studied in this
chapter were first presented by Andrews et al. [AAZZ12]. They observed that the
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standard relaxation of the problem (where each commodity may split its demands)
has an integrality gap of Q(n). For the case of unweighted commodities, they use
a clever transformation of the cost functions to obtain a constant integrality gap.
Makarychev and Srividenko [MS14] gave a different convex programming relax-
ation similar to a configuration LP. They show that their relaxation achieves an inte-
grality gap equal to the (d + 1)-st Bell number. By applying a randomized rounding
technique, for any 6 > 0, this integrality gap yields a randomized approximation
algorithm with approximation guarantee By 1 + 6.

The local search approach pursued in this chapter has its roots in the work of John-
son et al. [JPY88] who introduced the complexity class PLS and showed that many
natural local search problems such as finding a local optimal TSP tour are complete
for this class. Fabrikant et al. [FPT04] showed that computing an equilibrium of a
congestion game is PLS-complete. This result was strengthened by Ackermann et
al. [ARV08] who showed the same result for games with linear costs, and by Skopa-
lik and Vocking [SV08] who showed that even the computation of an approximate
equilibrium (for arbitrary costs) is PLS-complete. These negative results give addi-
tional justification for our local search paradigm that takes into account the global
cost function instead on the private cost shares of the commodities.

The problem of computing an equilibrium is related to the minimization of the to-
tal congestion as equilibria typically are good approximations on the total congestion
cost. Awerbuch et al. [AAE13] and Christodoulou and Koutsoupias [CK05] showed
that the price of anarchy, i. e., the worst case ratio of the cost of an equilibrium and
the optimal cost, is 5/2 for unweighted congestion games with linear costs. The latter
authors also showed that for games with polynomial costs with maximum degree d
the price of anarchy is of order d4~°(1). Aland et al. [ADG " 11] provided tight re-
sults for the price of anarchy of both unweighted and weighted congestion games
by solving for a given set of cost functions C an optimization problem of the form

, A

AERr’rEEr}O,l){ — | c(x+vy) < Ayc(y) + pxc(x) forallx,y € N, c € C}.
When C is the set of polynomials with non-negative coefficients and maximal de-
gree d this gives a price of anarchy of order (d/ logd)?*!. For the suboptimal choice
of u = 1/2, the non-tight bound on the price of anarchy of @*~°(1) due to Christodou-
lou and Koutsoupias is obtained. Awerbuch et al. [AAE"08] showed that a poly-
nomial sequence of approximate best replies reaches a solution with almost price of
anarchy guarantees. Their approach requires u < 1/2 so that only the suboptimal
guarantee of order d—°(1) is obtained.

The approximation guarantees for local optima of the cost function are strongly
related to altruistic versions of congestion games where players care not only for
their own private costs but also for the total cost of a solution. Caragiannis et
al. [CKK™10] consider unweighted congestion games with linear costs where for
a ¢ € [0,1] players strive to minimize 1 — ¢ times the cost of their own commod-
ity plus ¢ times the total cost of all other commodities. They obtain bounds on the
price of anarchy for the resulting games depending on ¢ which evaluate to three
for ¢ = 1/2. Chen et al. [CDKKS11] prove the same result using the smoothness
framework due to Roughgarden [Rou(09] thus establishing that this bound also holds
for mixed and coarse correlated equilibria. The results in this chapter generalize
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Unweighted Weighted
Max. Degree d This Work [AAET08] [BKS17] [AAE™T08]
1 25 2.618
2 10 56.948
3 47 780.279
4 269 13,755.3
5 2,154 296,477
6 15,187 7.55-10°
7 154,725 2.22-108
8 1,451,906 7.40 - 10°
9 16,880,931 2.76 - 10"
10 139,627,951 1.13- 1013
d O((lggd)wrl) O((lzf)iglz)zﬂl)

Table 1.1: Approximation guarantees for unweighted and weighted resource allocation prob-
lems with polynomial costs and maximum degree d. All approximation guarantees can be
obtained up to an additive term € for any € > 0. Blue values are best known results, others
are grey. The previous algorithm by Awerbuch et al. [AAE"08] does not apply to weighted
problems with non-linear costs.

these results for the special case ¢ = 1/2 to general polynomial cost functions and in
our work [BKS17] also to weighted players.

The problem of computing global optima has been considered for further variants
of congestion games. In a paper of Blumrosen and Dobzinski [BD07] the maximiza-
tion versions of singleton congestion games with player-specific utilities introduced
by Milchtaich [Mil96] have been analysed. They give a 18-approximation for the
special case of linear utilities. De Keijzer and Schéfer [d512] considered a class of
maximization games where players prefer to share resources with other players and
study the computation of social optima. Most recently, Harks et al. [HOV16] study
polymatroid congestion games introduced by Harks et al. [HKP14] and give a H,-
approximation for the problem of minimizing the total congestion cost where H; is
the r-th harmonic number and 7 is the sum of the ranks of the player’s polymatroids.

Finally, we note that the resource allocation problems considered in this chapter
can be seen as the unsplittable counterpart of fractional resource sharing problems
studied, e. g., by Grigoriadis and Khachiyan [GK94], Jansen and Zhang []Z08], Garg
and Konemann [GK07] and Miiller et al. [MRV11].

1.1.3 An Overview of Our Results

An overview of our results in comparison to the previous known work can be
found in Table 1.1. We present a local search algorithm for general resource alloca-
tion problems with diseconomies of scale.

By analyzing the locality gap of the local optimal solutions, we provide the first
non-trivial analysis of a local search algorithm that is guaranteed to converge for the
unweighted and also the weighted case of the problem. By considering approximate
improvement dynamics where commodities switch to another path only when the
total cost is decreased by at least a factor of 1 + 4, where 5 > 0 is arbitrary, the
dynamics are guaranteed to converge to an approximate local optimal solution in a
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polynomial number of steps.

For unweighted resource allocation problems, we show that the locality gap is of
order [O(d/logd)]*1. We also give a corresponding lower bound on the locality
gap of [((d/logd)]**!. For concrete values of d we can evaluate the locality gap
explicitly. For the case d = 1, which corresponds to (at most) linear costs or to-
tal quadratic costs, the locality gap is three and this is tight. We further prove for
this case a general inapproximability result of factor 1.02 which raises to 1.04 if the
Unique Games Conjecture holds true. For the case d = 2, the locality gap is at most
thirteen.

For unweighted problems with polynomial cost, our asymptotic approximation
guarantee of [O(d/ logd)]“*! poses a slight improvement over the asymptotic be-
havior of the algorithm by Awerbuch et al. [AAE"08] whose asymptotic behavior is
of order d*~°(1), Our calculation of the concrete approximation guarantees for maxi-
mum degree up to ten suggests that our approximation is in fact better than the one
by Awerbuch et al. for all d > 9. The approximation guarantee of [O(d/ logd)]4*!
asymptotically matches the currently best known guarantee of Makarychech and
Srividenko [MS14]. In contrast to them, we show that by sacrificing the additional
factor of (1 + J) our algorithm is deterministic, can be implemented in a distributed
fashion, and does not rely on the centralized solution of a linear program and the
randomized rounding of its solution.

In our work [BKS17], we further found that for weighted resource allocation prob-
lems the locality gap is 1/( “v/2 — 1)1 € [O((d + 1)/ log2)]?*! which is tight for
all values of d. More specifically, for d = 1 the locality gap is 3 + 2v/2 ~ 5.829 and
for d = 2 the locality gap is 15v/2 + 12v/4 + 19 =~ 56.948. For weighted resource
allocation problems this yields the first deterministic algorithm, the first combina-
torial algorithm, and the first distributed algorithm with non-trivial approximation
guarantee.

1.2 A Local Search Based Approximation Algorithm

In this section, we develop a general approximation algorithm that is based on
local search. Further, we provide a technique for the analysis of approximatively
socially optimal strategy profiles for the general class of (A, p, 1)-smooth games. Us-
ing that, we analyze the approximation guarantees of local optima computed by our
local search algorithm for unweighted resource allocation problems.

1.2.1 Description of the Algorithm

Our approximation algorithm works as follows. The local search starts in an arbi-
trary solution s € S. In each iteration, the oracles ©; , are called to find a commodity
which has an alternative solution s} € S; such that the total cost is improved by a
factor of at least 1+, i.e.

(1+6)C(si,s—) < C(s)
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Algorithm 1.1: Local Search Algorithm for Approximating Resource Allocation Problems

Input: An arbitrary solution s € S for the resource allocation problem
Output: A local optimal solutions € S
1 repeat
call oracle O; , to find i, t; € S; with (1+6)C(t;,5_;) < C(s)
if such t; exist then
‘ S {tl‘,S,,‘}
else
L return s

N Ul e W N

for some sufficiently small 6 > 0. When no such commodity is found, the algorithm
stops and returns the solution.

For a more formal definition, please refer to the pseudocode provided in Algo-
rithm 1.1.

1.2.2 Introducing Smoothness for a General Framework

Orlin et al. [OPS04] showed in 2004 that every local search problem admits a
polynomial-time approximation scheme (PTAS) in the sense that a (1 + J)-approxi-
mate local optimal solution can be computed in polynomial time via approximate
local improvements steps. We will be interested in determining how well local op-
timal solutions approximate the global minimum. To this end, we use the following
notion of smoothness that was introduced by Chen et al. [CDKKS11] and used to
analyze the price of anarchy of altruistic versions of unweighted congestion games
with linear costs. It builds upon a similar notion of (A, u)-smoothness due to Rough-
garden [Rou09].

Definition 1.4 (Smoothness) The resource allocation problem I = (S, (x;)ien, (¢+)reRr)
is (A, p, 1)-smooth if for any two solutions s, s’ € S we have

(c<sg,s_i) - C_l-(s)> < AC(s) + uC(s).

n
i=1

We proceed to show that for every (A, jt, 1)-smooth resource allocation problem
the locality gap is bounded by A /(1 — u). Moreover, by applying a general frame-
work by Orlin et al. [OPS04], it admits a polynomial, distributed, and determinis-
tic (A/(1 — u) + €)-approximation algorithm for any € > 0.

Lemma 1.5 Let I=(S, (x;)ien, (¢r)rer) be a resource allocation problem that is (A, u,1)-
smooth for some A > 0 and y € [0,1). Then, the following holds.

1. The locality gap of 1 is at most 1?—#

2. Forany € > 0, there is a (ﬁ + €)-approximation algorithm based on local search
that needs only a polynomial number of iterations.
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1.2 A Local Search Based Approximation Algorithm

Proof. We start by proving 2. By Orlin et al. [OPS04, Theorem 2.3], for any 6 > 0,
local search computes an approximate local optimal solution s € S with

C(s) — C(s},s;) <
C(s},s_;) -

for all commodities i and s; € S; in time polynomial in the problem size and 1/s. We
calculate

AC(s') +1C(s) 2 Y- (Clslys) — () + Ci(s))

" C(s) onC(s)
> _ . - _
_g¥1+5 Cls) +Ci(s)) = =5 +Cs)
on
- (1_ 1+5>C(S)’
which implies
on
- < .
(1 i 1_‘_(S>C(s)/\C(s)
For é < % we have that
on
1oy — =
=135 Y
and we obtain
C(s) < A
C(s') ~1—u— 91
=155
N A n on A
“1—u 1496 (1fyf%)2’

where we used that the function x — A/(1 — u — x) is convex on its domain with
derivative A/ (1 — u — x)2. Finally, let

_oe(l-p)? 1y
0 1= min{ 8An  "2(n— 1—0—;1)’1}’

We have
onA B S(1+0)nA
Q+0)(1—p— 252 A—p—06n—1+p))?
onA 5nA
T a—p—on—1+m)?  A—p—o(n—1+p)
26nA

ST p— o1t w2’

where we used that § < 1.
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1 Rerouting in Congested Networks

. 1—pu
Since § < i) We further have

Zl_J

1—pu—6(n—1+n) 5

and, thus,
onA 8onA
on \2 < 1 2 — €
+0)(1—p—5)2~ A-p)

where for the final inequality, we used § < e%}fj iy

We conclude that

for all feasible solutions s’ € S, as claimed.
The claim for 1 follows from the above calculations for 6 = 0. O

1.2.3 Analyzing the Locality Gap

In this section, we analyze the approximation guarantees of local optima com-
puted by local search using Algorithm 1.1 for unweighted resource allocation prob-
lems.

We start by showing some result for unweighted resource allocation problems
with linear cost functions. The following proposition has been proven before by
Chen et al. [CDKKS11]. In this work we show an alternative proof using the notion
of (A, i, 1)-smoothness to get familiar with the concept.

Proposition 1.6  For every unweighted resource allocation problem with linear cost func-
tions, i.e. polynomial cost functions with maximal degree d = 1, and with non-negative
coefficients the following hold:

1. The locality gap is three.

2. For any € > 0 there is a polynomial time 3 4 e-approximation algorithm for the mini-
mization of the total costs.

Proof. By using Lemma 1.5, it suffices to show that an unweighted resource alloca-
tion problem with linear cost functions is (3,0, 1)-smooth, i. e. we have to show that

AC(S) + HC(s) = Y- Ci(shs i) + Cilshs i) — C_i(s)
i=1

which means

=

3C(s") > Y Ci(sl,s_;) + C_i(s},s_;) — C_i(s).
i—1

We show that this inequality holds for all resources. Fix a resource r. Without
loss of generality we can assume that all cost functions are of the form f,(x) = a,x
or fy(x) = by, as resources can be split in a linear and a constant part.
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1.2 A Local Search Based Approximation Algorithm

First, focus on the case that the cost function is equal to f,(x) = b,. In this case, the
sum ) ! ; G (sg, s_i) is upper bounded by y, where y is the number of commodities
using resource r in s’, and the rest is equal to zero.

Now, focus on the case that f,(x) = a,x. The first part of the sum is upper
bounded by y(x + 1), where x is the number of commodities requesting resource r
in s and y is the number of commodities using r in s’. The other parts of the sum
calculates the difference of cost for all other commodities, given that commodity i
changes from s; to s!. This is upper bounded by xy — x(x — 1). So we need to show
that

yx+1) +xy—x(x—1) < 3]/2,

for all x and y that are integral and non-negative. We show this in the following
Lemma 1.7, which completes the proof. O

Lemma 1.7 For all x and y that are integral and non-negative holds that
y(x4+1) +xy — x(x —1) <342
Proof. First, assume that y = 1. We calculate

y(x+1)+xy—x(x—1) = —x*+3x+1=—((x — 1.5)%) +3.25
<3.

Second, assume that y > x and y # 1. For this case, it suffices to show that
27 +y+y <3y

which is equivalent to 2y < y?, which is clearly fulfilled.
Third, assume that y < x. We show this case by induction over x. For x = 0 we
have y < 3y?, which is clearly true. Now, suppose that

2xy +y+x < 3y* + x?
holds true. We conclude that
2x+ 1y +y+(x+1)=2xy+y+x+2y+1< 3> + x> +2y +1
<3y 4 (x+1)%,
which finishes the proof. O

We now continue with resource allocation problems with more general cost func-
tions. In order to do so, we first prove the following lemma which gives a sufficient
condition for an unweighted resource allocation problem to be (A, i, 1)-smooth.

Lemma 1.8 Let C be a set of convex cost functions, A > 0 and y € [0,1) such that

ye(x+1) +xy[c(x +1) —c(x)] +x(x — 1) [e(x — 1) —c(x)]
< Ac(y)y + pe(x)x (L1)

forall x,y € N and c € C. Then, any unweighted resource allocation problem with cost
functions in C is (A, u, 1)-smooth.
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1 Rerouting in Congested Networks

Proof. Let I be an unweighted resource allocation problem as in the statement of the
lemma and let s, s’ be two arbitrary solutions of I. Using the fact that ¢, is monoton-
ically increasing and convex and the notation

xr=cr(s), yr =cr(s'),and z, = |[{i € N: r € 5;N s},
we have

) (C(ngsﬂ') - Cfi(s)) =) (Ci(SQSﬂ‘) +Ci(si,8-i) — Cfi(s))

iEN iEN

<Y (o +1)+ ) (C—i(s;f s_i) — C—i(5)>

reR iEN
= L+ )+ L (= z)xler(or+ 1) = ()

+ (= 27) (3 = Dler( = 1) = er(x,)])

< X (wrere +1) +yxe [e(xr +1) = er(,)]
reR

—xr(xr — 1) [er () — cr(2r — 1)]),
which completes the proof. O

Given some unweighted resource allocation problem with cost functions in some
class C, it remains to find appropriate A and u such that inequality (1.1) holds for
all c € C. In order to do so, we set # = 0 and define

8ey) 1= s (vele-+ 1)+ 2 elx-+ 1) = (o)
+(x—Dxfe(x—1) — c(x)]). 1.2)
Setting

A= sup {g(xy)}
x,yeN,ceC
yields a A + € approximation algorithm for any € > 0 for any unweighted resource
allocation problem with cost functions in C. However, determining max, e ¢ (X, y)
even for a single cost function c is very challenging. Instead, we will work toward
solving the relaxation max,>1,>1 &¢(x,y). For this as a first step, we show that when
cost function ¢ is a monomial of type c(x) = x4 for some d > 0, then the maxi-
mum max,>1,>18c(X,¥) is attained when either x = 1, or y = 1, or both.

Lemma 1.9 Let c(x) = x? for some d > 0. Then, the maximum maxy>1,>18c(x,y) is
attained at the boundary when either x = 1 or y = 1 (or both).

Proof. For c(x) = x?, we have

ely) = o (v + D+ xyl(oe 1) = 2] = (x = D! — (e~ 1))
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1.2 A Local Search Based Approximation Algorithm

Elementary calculus shows that

agc(ax,ay) 1 o d
G ) (xd(ax 1) — yd(ax +1)

— axy[(ax)? — (ax +1)%] — ax?[(ax)? — (ax — 1)"1]).
We obtain in particular that

0gc(ax,ay)

5 = L(xd(x—l)d —yd(x +1)4

yd+l

a=1

_ xd+2 _ yxd-i-l + xy(x + 1)d + x2(x _ 1)d)‘
To prove the claimed result, it suffices to show that

9gc(ax,ay) i1
= . <
A > Y <0

forall x > 0,y > 0. We calculate
A=d(x—1)%% —d(x+1)% — 2*[x) — (x — 1)9] + xy[(x + 1)7 — x).
Using that the derivative of the function z — z is dz%~1, we can further obtain that

x? — (x — 1)d >d(x — 1)‘17l

as well as
(x+1)7 —x? <d(x+1)"L
This gives
A d A, _ .2 d-1 -1
Eg(x—l)x—(x—i—l)y—x(x—l) +xy(x+1)
= (-1 x(x—1) =) + (x + 1) (xy — (x + 1)y)
= —x(x -1 —y(x+1) L
Using that x > 1 and y > 0, this is negative and the claim follows. O

Building upon this lemma, we are now ready to state our main theorem for un-
weighted resource allocation problems.

Theorem 1.10 For every unweighted resource allocation problem with polynomial cost
functions with non-negative coefficients and maximal degree d the following hold for
some a € O((2d/ logd)*+1):

1. The locality gap is «.

2. For any € > 0 there is a polynomial time « + e-approximation algorithm for the
minimization of the total costs.
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Proof. We start by showing the statement for monomials of the form c(x) = x for
some k < d. We are interested in determining

X;riayél sy (y(x + )% xy[(x +1)F — 2] — (x = D)x[aF — (x - 1)k}).

Using Lemma 1.9, the maximum is attained for either x =1, ory = 1.
For x = 1, we obtain

2k+1 -1
yk

which is obviously maximized for y = 1. We then have

2+ -1e0((5)")

finishing the proof for the case x = 1.
For y = 1, we have

gc(lfy) =

7

gc(x,1) = (x+ 1)F — (x — 1)x[xk —(x— 1)k] +x[(x+ 1)k — xk]
= [(x + 1D — 21 — (x — 1)x[xF — (x — 1)F].

Using
(x+ 1) = o < (k4 1) (x + D
and
K= (x=1)F > k(x—1)F T,
we obtain

ge(x,1) < (k+1)(x + 1)F — xk(x — 1)F < (k+1)(x +1)% — k(x — 1)<+,
Let
h(x) = (k+1)(x 4+ 1)F — k(x — 1)1,

In the following, we will be interested in determining max,>1 h1(x). For x = 1, we
have

h(1) = (k+1)2F
and
W (1) = k(k+1)2F L
Since the negative term has higher order, we get that

lim h(x) = —oo0.

X—0Q
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1.2 A Local Search Based Approximation Algorithm

Thus, the maximum is attained for some x € (1,00). This implies that for the opti-
mal x the following first-order conditions are satisfied:

(x+ 11 = (x =1k
Let
B:=max {(k+1)(x +1)" —k(x — 1)F 1 x > 1}.
We obtain the following equivalences:

B =max{(k+1)(x +1)f —k(x = 1)"! | x > Tand (x +1)* ! = (x - 1)*}
=max{(x +1)* [(k+1)(x +1) —k(x = 1)] | x > Tand (x + 1) = (x — 1)F}
=max{(x+1)" (x+2k+1) | x > 1and (x + 1)1 = (x — 1)"}.

The equality constraint
(x+ 1)1 = (x = 1)k (1.3)
can be reformulated using logarithmization as
(k—1)log(x+1) = klog(x —1)
or, equivalently,
k(log(x +1) —log(x —1)) = log(x +1).
By the mean value theorem, we have
log(x+1) —log(x — 1) =2/¢

for some ¢ € (x —1,x + 1) implying that any x solving equation (1.3) satisfies the
inequalities
2 <log(x—|—1)< 2 '
x+17~ k “x—1

This implies

_ 2 log(x +1) 2
< k=1 ‘ > < %% <
B_max{(x—i—l) (x+2k+1) x_landx+1_ - _x—l}'
since we made the domain of feasible x for the maximization only larger. The func-
tions x — 2/(x +1) and x — 2/(x — 1) are strictly decreasing and hence
2 2

x+1 < x—1

for all x > 0. Moreover, x — log(x + 1)/k is strictly increasing for all k > 0. This
implies that

>0:
*20 x+1— k —x-1

{ 2 <log(x+1)< 2
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1 Rerouting in Congested Networks

where & > 0 is the unique number with

2 log(a+1)
a+1 k

and w > 0 is the unique number with

2 log(w+1)
w—-1 k

Rearranging terms, we obtain
2k = (a+1)log(a+1)
2k = (w—1)log(w +1).

Recall that the inverse of the function z +— zlog(z) is z — z/W(z) where W is
the Lambert W-function, which is also referred to as product logarithm or omega
function. This implies

o =2k/W(2k) - 1.
Using that

log(x +1) S log(x —1)
k k

for all x > 0 and both functions are strictly increasing, we derive that w is bounded
from above by the unique number '’ satisfying

2k = (0’ — 1) log(w' — 1)
which implies
w' = 2k/W(2k) + 1.
We have established

B < max{(x—l— D1 (x+2k+1) | x € [max{1,a},«'] }

Using that (x + 1)¥~1(x + 2k + 1) is increasing in x, this gives
B < (' +1)" (o +2k+1)

k—
= (Wzék) +2) 1(W§§k> +2k+2).

Finally, we use the asymptotics of the Lambert W-function which are due to Corless
et al. [CGH " 96] who showed

2
W(z) = log(z) — loglogz + loglog z n O((lOglogz) )

log z logz
and obtain

B < ( 2k n 2) kfl( 2k
~ \log(2k) — loglog(2k) log(2k) — loglog(2k)

+2k+2).
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1.2 A Local Search Based Approximation Algorithm

Since the right hand side is increasing in k, we conclude that there is an a-approxi-
mation algorithm for the unweighted resource allocation problem with monomials
of type c(x) = x* for some k < d, where

2d 2d

d—1
‘= (10g(2d) —loglog(24) +2) (log(Zd) —loglog(2d)

+2d+2).

Clearly,

2d
log(2d) — loglog(24)

2d )2
log(2d) — loglog(2d)

12d42< (

for d large enough. This implies

2d d+1
nE O((log(Zd) floglog(Zd)> > C O((2d/logd)*™).

To show the result for arbitrary polynomials with non-negative coefficients, note
that (1.1) is invariant under multiplication of ¢ by a positive scalar 2 > 0. This
implies that any resource allocation problem with monomials of the type c(x) = axk
with k < d and a > 0 yields the desired approximation factor. Finally, note that
any resource allocation problem with polynomial costs can be transformed into an
equivalent resource allocation problem with scaled monomial costs by splitting up
resources. This concludes the proof. O

For given concrete values of d, we can also directly solve the optimization prob-
lem max, yen ge(¥, y) for c(x) = x?. However, handling the integrality constraints
in a satisfactory way turns out to be somewhat intricate as the following theorem
provides.

Theorem 1.11  For any € > 0 there is a polynomial time (x4 + €)-approximation for ev-
ery unweighted resource allocation problem with polynomial cost functions with maximal
degree d and non-negative coefficients, where a1 = 3, ap = 13, a3 = 61, ag = 391,
and a5 = 2,157.

Proof. The approximation factor for d = 1 has been established in Proposition 1.6.
In the following we show how to optimize g.(x, y) (1.2) for small d providing bet-
ter bounds on «. By the argumentation above from Theorem 1.10, we can assume
that c(x) = x?. We want to maximize gc(x,y) for x,y € N and given d € N. Using
Lemma 1.8 with y = 0, the maximal value of g.(x,y) upper bounds the approxima-
tion factor, denoted by «;.
In a maximum of g.(x,y) we have the inequalities

ge(x+1Ly) —ge(x,y) <0, (1.4)
ge(x—Ly) —g(xy) <0, (1.5)
ge(x,y+1) —ge(x,y) <0,
ge(x,y—1) —ge(x,y) <0

For monomial costs with degree d, inequality (1.4) simplifies to

s (y(x +2) 1 — 2y 4 x)(x + 1)+ (2x — )T+ x(x — 1)d+1) < 0.
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Solving this, we get

(x + 1)d+1 o zxd-‘rl 4 (x o 1)d+1
(x4 2)4+1 — 2(x 4+ 1)4+1 4 yd+1°

y<ux (1.6)

Inequality (1.5) simplifies to

]/;H <y(x + 1)d+1 _ (x _ 1)xd+1
—(y+2x—3)(x — 1) 4 (x — 1)(x—2)d+1) <0.
Solving this, we get

(x — 1) —2(x — 1)™2 4 (x — 1) (x — 2)4*1

1.7
v = (x4 1)d+1 — 2xd+1 4 (x — 1)1 (1.7)

Thus, y is the unique number in IN for which (1.6) and (1.7) hold.
Let d = 2. Then, by the calculation above,

x2—2x+1 x2 1 1
=lx—2+—x—1+—"]|.
ye x ’x~|—1] [x T +x+1

For x € N, this is equal to y = x — 1, as the latter summands in both ends of the
interval are smaller than 1. Putting ¥ = x — 1 into (1.2), we get

—4x2 +5x —1
X3 —3x2+3x—1

glx,x—1)=1+

and using first order conditions, this is maximal for x = 2. Then, g.(2,1) = 13 which
establishes the approximation factor for d = 2.
Letd = 3. Then,

. [6x3—18x2+19x—7 6x3 + x }

6x2+1 "6x2+12x+7

18x — 4 18x + 14
= _3 i\ .
[x T 6x2+12x+7]

For x > 3, y is equal to x — 2 as the latter summands are smaller than one for x > 3.
For x = 1 and x = 2, no natural number lies in these bounds. Putting y = x —2
into gc(x,y) (1.2), we get that the maximum is attained for x = 3. Then g.(3,1) = 61
which establishes the approximation factor for d = 3.

Letd = 4. Then,

12x2—6x+3x_ 12x2 +18x+9
2x3+x 2x3 +6x24+7x+3

VRS lx—4+

For x > 4, y is equal to x — 3. For x = 1 and x = 2, no natural number lies within
these bounds. For x = 3, i is equal to one. Putting these results into g.(x, ) (1.2), we
get that the maximum is attained for x = 3. Then g.(3,1) = 391 which establishes
the approximation factor for d = 4.
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d x y ay d x y oy d x y ag
1 2 1 3 6 4 1 21337 11 6 1 2245436935
2 2 1 13 7 4 1 154725 12 6 1 25849065061
3 3 1 61 8 5 1 1622791 13 6 1 244659182023
4 3 1 391 9 5 1 16880931 14 7 1 5242736411263
5 4 1 2157 10 5 1 139627951 15 7 1 68592232075641

Table 1.2: Calculating approximation factors for unweighted resource allocation problem with
polynomial cost functions with maximal degree d and non-negative coefficients.

Letd = 5. Then,

e [x_ 5y 1900° —120x% +120x —26 1203 + 330x” + 330x — 124
Y ’ 152 + 6023 + 105x2 + 90x + 31

15x4 4+ 15x2 + 1

For x > 10, y is equal to x — 4. For x € {1,2,3,7,8,9}, no natural number lies
within these bounds. For x € {4,5,6}, y is equal to x — 3. Putting these results
into g.(x,y)(1.2), we get that (1.2) reaches its maximum at x = 4 and y = 1. Then we
get gc(4,1) = 2157 which establishes the approximation factor for d = 5.

With similar calculations for the values d = 6,...,10, we derived the values in
the second column of Table 1.2. Intriguingly, for d > 3, we attain maximal values

in gc(x,y) for
=457

as suggested by Table 1.2. O

1.3 Lower Bounds

We provide and analyze a local search approximation algorithm in the last section
and therewith give an upper bound on the locality gap and on the approximation
factor of unweighted resource allocation problems. We will complement this work
in this section and give a lower bound on the locality gap and on possible approxi-
mation guarantees.

1.3.1 Lower Bound on the Locality Gap

For the case of linear cost functions, it was shown by Chen et al. [CDKKS11] that
the bound on the locality gap of three is tight. In this section, we provide a lower

bound of hog(#z) - 1Jd+1 on the locality gap for general polynomials with maxi-

mum degree d.

Theorem 1.12  There is an unweighted resource allocation problem with monomial costs

with degree d and locality gap Llog(% —1| dH
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Figure 1.1: Example for an unweighted resource allocation problem. Each commodity is
represented by one color. The cost for each resource, which are represented by grey squares,
is x2; depending on how many commodities are using the resources, the rectangles change
accordingly in size to represent their change in cost. In the left picture, an optimal solution
where each commodity i uses resource r; is displayed, its cost is 1% - 1 - 3 = 3. In the picture in
the middle, a local optimal solution is displayed: each commodity uses the resources R \ 7;. The
cost incurred in this solution is the cost of the resource times the number of commodities using

that resource times the number of resources, thus 22 - 2 - 3 = 24. This evaluates to a locality gap

of 24/3 = 8 = hog% - 1J3, In the picture on the right, it is shown why this is indeed a local

optimal solution: if only one commodity changes resources, the total cost is not reduced, as we
can calculate: 32-3-1+12-1-2 =29 > 24.

Proof. For any given d > 0 and any x € Z-(, we design the following resource
allocation problem with x commodities and x resources. We are given a set of re-
sources R = {r,...,7y}, where ¢,;(y) = y* for r € R. We define the resource alloca-
tion problem in such a way that every commodity i can only be assigned to either r;
or its complement R \ {r;}. Please refer also to Figure 1.1.

Clearly,

s'={n}t ... {re})
is a global optimal solution with
C(s') = x.
We proceed by showing that

s = (R\{r1} x ... x R\ {ry})

is also a local optimal solution with
C(s) = x(x — 1)4*L.

In order to do so, we show that assigning a commodity i to resource r; instead of
to R\ {r;} does not decrease the total cost. We have

C({rit,s—i) —C(s) = x4 4 (x = 1) (x — 2)T — x(x — 1)".

We show that this difference is larger or equal to zero for all x < Log(%J We
obtain

1 2 1

% < po <log(x) —log(x — 1)



1.3 Lower Bounds
which means
log(d+2) +dlog(x — 1) < dlogx
and thus
(x —1)4(d +2) < %

Note that

(x =)™ = (x=2)*1 < (d+1)(x— 1)
as the function y + y**! is convex with derivative (d + 1)y?. By using further
that (x —2)/x < 1, this implies

[(x — 1) — (x— 2)d+1} + %(x ) < (x =DM d+1) + (x —1)4
= (x —1)4d +2).

Putting both inequalities together and multiplying by x we get

x(x _ 1>d+1 _ (x _ 1)(x _ 2)d+l < xd+1‘

We can conclude that s is a local optimal solution, as no change of strategy by a
single commodity leads to a smaller total cost.
Then we calculate the locality gap as

cc((:/)> - _xl)dﬂ < (x-1tt

< (lorea] 1)

which finishes the proof. O

1.3.2 APX-hardness for Linear Costs

Roughgarden [Roul4] showed the existence of a constant f > 0 such that there
is no (Bd)%/? approximation algorithm for unweighted resource allocation problems
with cost functions from C? unless P = NP. Since this result does not give a con-
crete value for a small 4, we complement it by providing an inapproximability result
ford = 1.

We show by a reduction from MAXCUT that there is no approximation algorithm
with a factor better than 1.02 for computing an optimal solution for unweighted
resource allocation problems with linear cost functions, unless P = NP. This implies
APX-hardness, meaning that there is no polynomial time approximation scheme or
in other words, optimal solutions for this problem cannot be approximated up to a
factor of 1 4 € for every € > 0.

We start by stating the maximum cut problem, stylised as MAXCUT.
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1 Rerouting in Congested Networks

Definition 1.13 (MaxCut) We are given an undirected graph G = (V,E). Each sub-
set X C V of the vertices defines a cut, that is the division of the vertex set in two subsets X
and V \ X. The size of a cut §(X) is defined as the number of edges in that cut, that
is 6(X) = |[{e = {u,v} € E:u € X,v € V\ X}|. The maximum cut problem, also
stylised as MAXCUT-problem, is the problem to find a cut X* of maximum size, that is, for
each cut X C V of G holds 6(X) < 6(X*).

Trevisan et al. [TSSWO00] showed that it is NP-hard to approximate MAXCUT
within factor % + €. Hastad [Has01] was able to show that this result is in fact
tight. We use this inapproximability factor to derive APX-hardness for unweighted
resource allocation problems with linear costs. For the proof, we need a structural
result about the size of maximum cuts.

Lemma 1.14 Let X* be a maximum cut of a graph G = (V,E), and §(X*) be the number
of edges in that cut. Then §(X*) > 1/2|E|.

Proof. We prove this statement by a probabilistic argument. Let X be an arbitrary
cut of G, defined by placing each vertex v € V with probability 1/2 in X, and proba-
bility 1/2 in V'\ X. Each edge is then with probability 1/2 in the cut set defined by X,
as the two incident vertices of an edge have probability 1/4 of being both in X, 1/4 of
being both in V' \ X, and with probability 1/2 both vertices are in different sets und
thus in the cut. We thus obtain

E(5(X)) = 5[E|.

Using the probabilistic method as introduced by Erdés [Erd47], we conclude: as X
was chosen arbitrarily, there exists at least one cut X* with size at least the expected
value, that is 1/2|E|. In particular, for a maximum cut X* holds that

1
}:* > = .

We are now able to state the main theorem of this section.

Theorem 1.15  There is no polynomial time a-approximation algorithm for unweighted re-
source allocation problems with linear cost functions for any « < 52/51, unless P = NP.

Proof. Consider the following reduction of MAXCUT. Given an instance G = (V,E)
of MAXCUT, construct the following resource allocation problem. For each v € V
we introduce a commodity. For each edge {v, w} we introduce two resources r(, ;11
and 7, ,1». Remark that ¢, ;= 7y, o1 fori € {1,2}. The commodity correspon-
ding to a node v has exactly two feasible solutions. She can choose between a solu-
tion S, consisting of resources

{rmln e N()}

and solution S, consisting of resources

{r{m}z|n € /\/'(v)}
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T{v,wi

(o)1 T{vw}2

Figure 1.2: Schematic for constructing a resource allocation problem for every instance of MAX-
CUT. The graph from the MAXCUT-instance is underlying light grey. Each edge corresponds
to two resources. Each commodity has two possible strategies: choosing all resources on their
incident edges with index one (purple on the left, blue on the right) or choosing all resources
on their incident edges with index two (light blue and blue on the left, purple and light blue on
the right). The incurred costis 4-1 = 4 on the leftand 2-1 42 -2 = 6 on the right.

Let the cost of each resource correspond to the number of commodities using that
resource, i. e., ¢, = x. Please refer also to Figure 1.2.

The idea is that the overall solution gets expensive, if two neighbors v and w
pick solutions S,; and S;; or solutions S;» and Syp. In this case, they both use
TeSOUICES 7'(y 11 = T{wo}1 OF '{u,w}2 = '{wo}2- The overall solution becomes cheap if
they pick different solutions and thus do not share a resource. For a given cut X C V
in G, let §(X) be the number of edges in the cut, i.e.

(X)) =|{(u,v)|u e X,v¢& X}

Note that each cut X € V has a one to one correspondence to all commodities cor-
responding to vertices v € X picking S, and all other commodities corresponding
tow € V\ X picking Syp. So, for a given cut X we can calculate the cost of the
corresponding solution to the resource allocation problem as follows:

C(S) = )_ b +2(|E| = 6(X)) = 4|E| — 26(X),

veV

since each edge is responsible for a cost of at least two if it is in the cut, and each
non-cut edge is responsible for an additional cost of two, paying 2 - 2 instead of 2 - 1.

Now suppose there is a polynomial time a-approximation algorithm for the re-
source allocation problem. We can conclude that we can calculate a solution S (and
corresponding cut X) with the following cost:

C(S) <aC(5Y),
and plugging the cost in we get
4|E| — 26(X) < a (4|E| —26(X™))
which can be transformed to

2E|(1 — &) < 8(X) — ad(X*)
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1 Rerouting in Congested Networks

and finally
2|E|(1 —a) + ad(X*) < 6(X).

It is worth noting that (1 — &) is negative as the resource allocation problem is a
minimization problem. Now we use the fact from Lemma 1.14 that

1

— < *

SIE < 6(x7)
to get

5(X*) (4 —3a) < 6(X)

which is equivalent to

Now suppose that a < 52/51. We obtain

52 4(X)

4735 <500

and finally

16 §(X)
17 S 5(x)

But this is a contradiction, as it was shown by Hastad [Has01] that MAXCUT is not
polynomial-time-approximable beyond a factor of 16/17, unless P = NP. We con-
clude that there is no a-approximation with & < 52/51 ~ 1.02 for the unweighted
resource allocation problem with linear costs. O

In 2002, Khot made an interesting conjecture in his seminal paper “On the power
of unique 2-prover 1-round games”, labeled the Unique Games Conjecture [Kho02],
which gives some insights into approximability of a number of problems. Using this
result, we can formulate an even better lower bound for our problem. We start by
citing the conjecture.

Conjecture 1.16 (Unique Games Conjecture UGC [Kho02]) Given a constant k € IN, a
directed graph G = (V, E), and a collection of permutations 7. : [k| — [k|. Each 1, imposes
a constraint on a map L: V — [k] in the following sense. The constraint for edge (u,v) is
fulfilled, if and only if t,(L(v)) = L(u).

Given sufficiently small € > 0 and 6 > 0, there is a constant k such that it is NP-hard to
decide whether there is a map L that fulfills a (1 — &) fraction of all constraints or all maps
do not fulfill more than an € fraction of the constraints.

Assuming the unique games conjecture [Kho02], there is no approximation algo-
rithm for MAXCUT with a factor better than 0.878 as shown by Khot et al. [KIKMOO07].
We can thus derive an even tighter bound for unweighted resource allocation prob-
lems with linear costs.
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Theorem 1.17  Assuming the unique games conjecture [Kho02], there is no polynomial
time a-approximation algorithm for unweighted resource allocation problems with linear cost
functions for any « < 1.04, unless P = NP.

Proof. As proven by Khot et al. [KKMOO07], we know that, if the unique games con-
jecture holds true, MAXCUT is not polynomial-time-approximable beyond a factor
of 0.878. Suppose there is a polynomial time a-approximation algorithm for the re-
source allocation problem. Now suppose that « < 1.04. Using the proof to Theo-
rem 1.15, we obtain from

that

which is equivalent to

5(X)
5(X*)"

0.88 <

But this is a contradiction, as it was shown by Khot et al. [KKMOO07] that, suppos-
ing the Unique Games Conjecture, MAXCUT is not polynomial-time-approximable
beyond a factor of 0.878, unless P = NP. We conclude that, if the UGC holds true,
there is no a-approximation with & < 1.04 for the unweighted resource allocation
problem with linear costs. O

1.4 Further Results for Weighted Problems

Using the same algorithm and techniques as presented before, we can also obtain
results for the weighted variant of the problem, which we want to state here.

Analyzing the local search algorithm presented in Algorithm 1.1 for resource allo-
cation problems with weighted commodities, we arrive at the following conclusion.

Theorem 1.18 ( [BKS17])  For every weighted resource allocation problem with polynomial
costs with non-negative coefficients and maximal degree d, the following hold for

B 1 d+ 1331\
a_(d+\15_1)d+160<<10g2) )

1. The locality gap is at most a.

2. For any € > 0, there is a polynomial time a + e-approximation algorithm for the
minimization of the total costs.

Further, we can design a resource allocation problem that gives a lower bound on
the locality gap.
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1 Rerouting in Congested Networks

Theorem 1.19 ( [BKS17]) There is a resource allocation problem with monomial costs with
degree d and locality gap arbitrarily close to

1 d+1 d+1
(d+\1&_1)d+1 eo((logZ) )

Thus, our algorithm yields the first deterministic, the first combinatorial, and the
first distributed algorithm with non-trivial approximation guarantee.

1.5 Discussion and Open Problems

In this chapter, we have dealt with the problem of rerouting users through a con-
gested network with the goal to reduce the overall network transportation cost. We
formulated it in more general terms as a resource allocation problem with disec-
onomies of scale. This approach provides background to improve routing strate-
gies and can therefore help to reduce congestion, which subsequently leads, e. g., to
shorter traversing times in networks such as streets in a city, thus reducing environ-
mental impact and personal stress.

Our idea was to present and analyse a simple algorithm which can be imple-
mented in a distributed manner and works for general resource allocation problems.
It computes a local optimum in the sense that no change of strategy of a single player
improves the overall network cost by a factor of at least (1 + ). Its strength thus lays
in its simplicity, which makes it easy to explain and versatile. The algorithm is also
deterministic and combinatorial and can be implemented in a distributed manner.

In addition to presenting this local search algorithm, we provided a framework
to analyse the locality gap of resource allocation problems using (A, j)-smoothness.
Using the framework, this leads to an (« + €)-approximation and locality gap of «
with a € O((2d/logd)?*1) for the case of unweighted commodities and general
polynoms with maximum degree d and also to specific values for small d. This seems
particularly interesting, as popular models for travel time functions in travel net-
works are of degree four [US 64]. However, calculating concrete values for smaller d
turns out to be rather involved, so there may be a different approach which leads
to further results in this case. This appears especially interesting with regard to the
work of Awerbuch et al. [AAET08], as our results suggest that our algorithm per-
forms better for values of d > 9.

Additionally, our general framework using smoothness can be applied to resource
allocation problems with different and possibly more intricate cost functions. This
leaves space for further work on this direction.

Moreover, the question remains open whether a more refined smoothness argu-
ment may lead to new approximation guarantees.

To complement the upper bound on the locality gap, we constructed an instance

le‘l’l

which leads to a lower bound on the locality gap of | . Clearly, closing

d
log(d+2) —
the gap remains a main goal of further work. With regards to the problems that
appear in practice, this seems desirable even just for the special cases of small d.

In this context, we gave a lower bound on a-approximation algorithms for the
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case of linear costs, or d = 1, showing that none such exists for « < 1.02. This
complements Roughgarden [Rou(09], who did not give concrete values for small d.
Intriguingly, if the Unique Games Conjecture by Khot [Kho02] holds true, our lower
bound can even be tightened up to « < 1.04. As many other recent results do, this
points to the importance of settling the open conjecture.

Keeping the question of rerouting in traffic networks in mind, also the question
of how to solve the task in a distributed or more parallel manner warrants atten-
tion. Our local search algorithm relies on an oracle which names commodities which
should switch to a different set of resources. It can be modified to work in a more
parallel way. For instance, consider the following algorithm: each commodity cal-
culates whether there is a different set of resources for itself which will lead to a
lower total cost if switched to. If there is, a switch is executed with a certain proba-
bility p and all other commodities are updated to the new situation. Clearly, if two
commodities switch at the same time, this might lead, in fact, to higher total costs.
Therefore, as the switching occurs over time, the probability that two or more com-
modities switch resources at the same time should be reasonably low. Preliminary
work suggests that the switching probability may lie between 1/ and 1/#2, where n
is the total number of commodities.
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Chapter 2

Non-monetary Access Control
Mechanisms

We study mechanisms that select members of a set of agents based on nominations by
other members, and that are impartial in the sense that agents cannot influence their own
chance of selection. Prior work has shown that deterministic mechanisms for selecting
any fixed number k of agents are severely limited and cannot extract a constant fraction
of the nominations of the k most highly nominated agents. We prove here that this im-
possibility result can be circumvented by allowing the mechanism to sometimes, but not
always select fewer than k agents. This added flexibility also improves the performance
of randomized mechanisms, for which we show a separation between mechanisms that
make exactly two or up to two choices, and give upper and lower bounds for mechanisms
allowed more than two choices.

Bibliographic Information: The results in this chapter are based on joint work with Felix
Fischer and Max Klimm, published at the 11th Conference on Web and Internet Eco-
nomics (WINE) 2015 [BFK15] and in the ACM Transactions on Economics and Computa-
tion [BFK17].

Since the early 2000s, the concept of smart cities has gained momentum and pub-
lic interest in it has grown. The words Smart City in this context are used to address
technology based changes and innovations in urban areas. Giffinger et al. [GFK™07]
name as characteristics of a smart city in 2007 smart economy, people, governance,
mobility, environment and living. As evident by that, reducing congestion and in-
creasing mobility are almost universal issues for cities to address (see, e. g., [Sor16])
and are, e.g., tackled in the Horizon 2020 work programme 2018-2020 [Eur17] by
the European Commission as well as in the Smart City Challenge by the U.S. Depart-
ment of Transportation [US 16]. A smart city needs effective transport management
to reduce congestion. It can build on new technologies like algorithms for big data,
but also on other quick and more effective tools than hitherto used to coordinate
efforts.

While rerouting users reduces the amount of traffic that happens on particular
roads, we can achieve a similar effect by reducing the total number of users in a
network. In order to still transport what is needed, this means that users have to
work together, which is, as established above, also key for a smart city. Indeed, it has
been shown that co-operating between transport companies leads to a decrease in
transport emissions of 30% [POP13]. Providing frameworks for cooperation is thus
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2.1 Background

a promising path to take towards reducing the environmental and societal impact
of transport networks. This chapter aims at providing tools to make fair decisions,
e. g.in such coordination processes.

We start with the real world roots of our problem in Section 2.1. They lead us to
a formal problem definition, for which we present related work. In the main part of
this chapter, we first give deterministic and randomized mechanisms for choosing
two agents out of a group in Section 2.2, one based on partition and one on permuta-
tion. We then adapt those mechanisms to choose more than two agents in Section 2.3
and analyze them consecutively. In addition, we present another approach based
on dollar partition. To complement the lower bounds that all of those algorithms
provide, we calculate some upper bounds in Section 2.4. Finally, in Section 2.5 we
discuss our findings and point out open problems.

2.1 Background

As an example, consider a telecommunication channel with fixed capacity that a
number of users plans to access. An access mechanism asks nominations from the
users about which of the other users should be given access to the channel. It is
natural to assume that the main interest of each user is to be given access, so a se-
lection mechanism must take into account that users may misreport their opinion
about who they think is eligible for access as long as they can increase their own
chances of being given access. It is a natural question what percentage of the nomi-
nations a mechanism must lose in order to be strategyproof , i.e., in order to prevent
misreporting of that kind. Clearly, this problem also appears in other network con-
texts, for instance, in choosing which person shall drive a carpool. Looking at the
requirements, we can formulate the following mathematical problem.

2.1.1 Formulating the Mathematical Problem

We consider the setting of impartial selection which was first studied by Alon et
al. [AFPT11] and by Holzman and Moulin [HIM13]. The goal in this setting is to se-
lect members of a set of agents based on nominations cast by other members of the
set, under the assumption that any agent will reveal her true opinion about other
agents as long as she cannot influence her own chance of selection. The assump-
tion of impartiality seems justified, and is routinely made, in many situations where
a strong correlation exists between expertise and self-interest, like the selection of
representatives from within a group and the use of peer review in the allocation of
funding and scientific or academic credit.

Formally, the impartial selection problem can be modeled by a directed graph
with n vertices, one for each agent, in which edges correspond to nominations. A
selection mechanism then chooses, possibly using randomization, a set of vertices
for any given graph, and it is impartial if the chances of a particular vertex to be
chosen do not depend on its outgoing edges. As impartiality may prevent us from
simply selecting the vertices with maximum indegree corresponding to the most
highly nominated agents, it is natural to instead approximate this objective. For
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2 Non-monetary Access Control Mechanisms

an integer k, a selection mechanism is called a k-selection mechanism if it selects at
most k vertices of any input graph. We call a k-selection mechanism exact if it always
selects exactly k agents. A k-selection mechanism is called a-optimal, for « < 1, if for
any input graph the sum of indegrees of the selected vertices is at least « times the
sum of the k largest indegrees.

In prior work, a striking separation was shown between mechanisms that do not
use randomness and those that do. On one hand, no deterministic exact a-optimal
mechanism exists for selecting any fixed number of agents and any « > 0 [AFPT11].
On the other, a mechanism that aligns the agents along a random permutation from
left to right and selects a single agent with a maximum number of nominations from
its left achieves a bound of « = 1/2 [FK15]. This bound is in fact best possible subject
to impartiality [AFPT11].

Notation and Formal Problem Definition Forn € IN, let
G, = {(N,E) :N={1,...,n},EC{(i,j) e N x N:i;éj}}

be the set of simple directed graphs with n vertices. Further, let G = U,,en Gn-
ForG=(N,E) € Gand S,X C N let

55 (X,G) = |{(j,i) €E: G = (N,E),j € S,i € X}|

denote the sum of indegrees of vertices in X from vertices in S. We use 6 (X, G)
as a shorthand for 6,;(X, G) and denote the maximal sum of indegrees of a set of k
vertices by
A (G) = Xgr}{},‘a;l:ké (X,G).

When X = {i} for a single vertex i, we write . (i, G) instead of é5 ({i}, G). Most
of the time, the graph G will be clear from context. We then write ¢ (X) instead
of 5 (X, G), 0™ (X) instead of 6~ (X, G), and Ay instead of Ar(G).

For n,k € N, let X, = {X : X C {1,...,n}} be the set of subsets of the first n
natural numbers and let X, , = {X € &}, : |X| = k} be the subset of these sets with
cardinality k. A k-selection mechanism for G is then given by a family of functions

£ Gy — [0,1]Yi-0 Xt

that maps each graph to a probability distribution on subsets of at most k of its ver-
tices. In a slight abuse of notation, we use f to refer to both the mechanism and
individual functions from the family.

We call mechanism f deterministic if f(G) € {0,1}U1§:0 Ant, i e.if f(G) puts all
probability mass on a single set for all G € G; and we call it exact if (f(G)), = 0 for
everyn € N, G € G,, and X € &, with |X| < k, i. e.if the mechanism never selects
a set X of vertices with strictly less than k vertices.

Mechanism f is impartial on G’ C G if on this set of graphs the probability of
selecting vertex i does not depend on its outgoing edges, i.e.if for every pair of
graphs G = (N,E) and G’ = (N, E’) in G’ and every i € N,

Y., (fG)x= ). (f(G)x

XeX,,ieX XeX,,ieX
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whenever E\ ({i} x N) = E’'\ ({i} x N). It is universally impartial if it is a convex
combination of deterministic impartial mechanisms, i. e.if there exist deterministic
impartial mechanisms f, ..., fi and a3,...,4,; > 0 such that }./" ; 4; = 1 and for
allG € ¢/, f(G) = Y aifi(G). Note that while impartiality requires the outgoing
edges of a vertex i to have no influence at all on whether i is selected or not, they
may influence both the number and the identities of other vertices selected. All
mechanisms we consider are impartial or even universally impartial on G, and we
simply refer to such mechanisms as impartial or universally impartial mechanisms.

Finally, a k-selection mechanism f is a-optimal on G’ C G, for « < 1, if for every
graph in G’ the expected sum of indegrees of the vertices selected by f differs from
the maximum sum of indegrees for any k-subset of the vertices by a factor of at
most «, i. e.if

Ey. (X, G
- Exso)0(X,6)]

Geg’ A (G)
Ak(G)>O

> .

We call a mechanism a-optimal if it is x-optimal on G.

For randomized mechanisms, and as far as impartiality and a-optimality are con-
cerned, we can restrict attention to mechanisms that are symmetric, i. e. invariant with
respect to renaming of the vertices (see [FFK15]). It may further be convenient to view
a k-selection mechanism as assigning probabilities to vertices rather than sets of ver-
tices, with the former summing to at most k or exactly k for each graph. By the
Birkhoff-von Neumann theorem [Bir46], the two views are equivalent in the follow-
ing way.

Lemma 2.1 Letn € N, p € [0,1]", and m = Y} p;. Then there exists a random
variable Y with values in [0,1] n Y such that for all i € {1,...,n} holds
Y, PY=X]=p.
X€XieX

Proof. First consider the case where m is an integer, and let M = {1,...,m} and
let M ={m+1,...,n}.Since Y ; p; = m, there exists Q € [0,1]"*" such that

Y, gi=1land ) q;=p;
JEMUM jeM

foralli € {1,...,n}. Further, for all j € MU M, we have Y./ ; g;; = 1. Thus Q
is doubly stochastic, and by the Birkhoff-von Neumann theorem can be written as
a convex combination of permutation matrices. For each individual permutation
matrix R there then exists a set X € &), , such that r;; = 1 for some j € M if and only
if i € X, which shows the claim.

When m is an arbitrary number, we can write p as a convex combination of two
vectors p’ and p” such that Y ; p} = |m| and ¥/ ; p/ = [m]. The claim then
follows by applying the above reasoning independently to p’ and p”. O

2.1.2 Related Work and Previous Results

The theory of impartial decision making was first considered by de Clippel et
al. [dCMTO8], for the case of a divisible resource to be shared among a set of agents.
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The difference between divisible and indivisible resources disappears for random-
ized mechanisms, but the mechanisms of de Clippel et al. [dCMT08] allow for frac-
tional nominations and do not have any obvious consequences for our setting. Im-
partial selection is a rather fundamental problem in social choice theory, with ap-
plications ranging from the selection of committees to academic peer review. The
problem we consider here was first studied by Holzman and Moulin [HM13] and
Alon et al. [AFPT11]. Even the case of selecting one agent was considered to be
very challenging. It was conjectured by Alon et al. [AFPT11] that there is a mech-
anism that selects in expectation an agent that receives half the maximum number
of nominations any user receives. This conjecture was answered to the positive by
Fischer and Klimm [FK15]. They were also able to show that when the most popular
agent receives many nominations, even a fraction of 3/4 of the maximum number
of nominations to an agent can be extracted by a mechanism. Further, the articles
of Holzman and Moulin [HHM13] and of Fischer and Klimm [FK15] provide a good
introduction to the history of the problem and early literature.

When agents are interested purely in their own selection, the problem can be
viewed as an example of mechanism design without money, an agenda put forward
by Procaccia and Tennenholtz [PT13]. In peer review the need for impartiality is only
one of a number of issues along with information elicitation and incentivization of
effort, and a natural approach would be to combine our mechanisms with mecha-
nisms seeking to achieve the other goals (see, e. g., [WDP12, WBKP13]). Other authors
have taken a more holistic view of peer review and peer selection and have aimed
for more practical and more heuristic mechanisms (see, e.g., [KLMP15, ALM " 16]).
Tamura and Ohseto [TO14] were the first to consider impartial mechanisms selecting
more than one agent and showed that these can circumvent some of the impossibility
results of Holzman and Moulin [HIM13]. Later, Tamura [Tam16] gave an axiomatic
characterization of the mechanisms. A characterization of symmetric randomized
selection mechanisms for the special case where each agent nominates exactly one
other agent was given by Mackenzie [Mac15]. Inspiration for relaxing the require-
ment to always select the same number of agents comes from the power of multiple
choices in load balancing, where even two choices can lead to dramatically lower
average load, as shown by Mitzenmacher et al. [MRSO1]. The related concept of
resource augmentation, first used by Sleator and Tarjan [ST85], is a common tech-
nique in the analysis of online algorithms and has also been applied to a problem
in mechanism design, e. g.by Caragiannis et al. [CFRFT16]. Mackenzie [Mac17] re-
cently studied the relationship between impartiality, exactness, and randomization
for various mechanisms used over the centuries in electing the pope.

2.1.3 An Overview of Our Results

We show in this chapter that a relaxation of exactness is, in addition to randomiza-
tion, another remedy to the strong impossibility result concerning exact determin-
istic k-selection mechanisms in that it enables the design of a-optimal mechanisms
for constant a. Specifically, for k = 2, we introduce the bidirectional permutation
mechanism. Running it on a fixed permutation and selecting an agent for each di-
rection of that permutation is 1/2-optimal, which is best possible. Flexibility in the
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k Randomized Exact Randomized At Most
1 1
1 2 2
7 2 2 3
2 kS k]
k k=1\k+1) k+1 k k=1\k+1\ k+1
k [ (1 - (), ] [y (1= (), ]
‘ k k=1\k+1) 7K3+5k2—6k+12 k k=1 \k+1) k+1
n—2 {m(l—(Tw)ryk?Tszk] [m(l_(T)+)'HL2]

n-1 [ (1 - (D), o

Table 2.1: [Lower, Upper| Bounds on & for a-optimal randomized impartial selection of at
most or exactly k agents out of 7.

k Deterministic Exact Deterministic At Most
1 0

2 0

k

> N= O

’

G
»‘

0 b7
Table 2.2: [Lower, Upper| Bounds on a for a-optimal deterministic impartial selection of at
most or exactly k agents. Deterministic exact mechanisms cannot be a-optimal for any « > 0.

exact number of selected agents is beneficial also in the realm of randomized impar-
tial mechanisms: given a set of three agents, for example, a 3/4-optimal mechanism
exists selecting two agents or fewer, whereas the best mechanism selecting exactly
two agents is only 2/3-optimal. For 2-selection from an arbitrary number of agents,
we give a randomized exact 7/12-optimal mechanism and a randomized 2/3-optimal
mechanism that is not exact. Finally we provide upper and lower bounds on the
performance of mechanisms allowed to make more than two choices. A summary of
our current state of knowledge about randomized mechanisms is shown in Table 2.1
and about deterministic mechanisms in Table 2.2.

2.2 Mechanisms for Selecting Two Agents

In this section, we want to explore impartial mechanisms that select up to two
agents. Both deterministic and randomized mechanism are studied and we prove
how lessening the requirement to select exactly two agents proves to be beneficial in
both cases.

2.2.1 Deterministic Mechanisms for Two Agents

Focusing on the exact case, Alon et al. [AFPT11] showed that deterministic k-
selection mechanisms cannot be a-optimal for any k € {1,...,n —1} and « > 0.
This result is a rather simple observation for k = 1, but quite surprising when k > 1.
For (n — 1)-selection in particular, any deterministic mechanism that is both exact
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Algorithm 2.1: The Bidirectional Permutation Mechanism, using Extraction Mecha-
nism &

Input: Graph G = (N, E)

Output: Set {i1, i} C N of at most two vertices

1 Letm=(1,...,n)

2 Setiy := E,(G) > select vertex based on forward edges
3 Setip :=Ez(G) > select vertex based on backward edges
4

return {ilr iz}

Algorithm 2.2: The Extraction Mechanism

Input: Graph G = (N, E), permutation (711, ..., 7,) of N

Output: Vertexi € N

Seti:=rm,d:=0 > candidate vertex and its indegree from its left
forj=2,...,ndo

@ N =

if 5; \{1}(7[]) > d then > compare current considered vertex and candidate
<7
]

4 L Seti:=rt;, d =6

T (7‘[) > current vertex becomes new candidate
<mj ]

return {

wul

and impartial must sometimes exclude precisely the unique vertex with positive
indegree. While it is not difficult to convince ourselves that a relaxation of exactness
is not helpful in the case of 1-selection, we will exhibit momentarily a deterministic
impartial mechanism that for any graph selects either one or two vertices whose
overall indegree is at least the largest indegree of any vertex in the graph.

To explain our mechanism we need some additional notation. Let N = {1,...,n}.
For a graph G = (N, E) and a permutation 7t = (714, ...,7,) of N, denote by

Er={(uv) eE:ni:u,n]-:vforsomei,jwithl§i<]'§n}

the set of forward edges of G with respect to /1. Denote by 77 the permutation ob-
tained by reading 7t backwards, such that &; = 71,;1_; fori = 1,...,n. Finally, for a
permutation tand j € {1,...,n}, let

7T<j = {nerZr-“lj}\{j}

denote the set of vertices in the prefix of 7t up to but not including j.

The first mechanism we consider, which we call the bidirectional permutation
mechanism, considers the vertices one by one according to a fixed permutation 7
and in each step compares the current vertex 7; to a single candidate vertex 7y
with £ < j. In determining the indegree of the candidate vertex 7, it takes into
account the outgoing edges of vertices 71y, ..., 71y_1. For the indegree of the current
vertex 71; it takes into account the outgoing edges of vertices 7y, ..., 7rj_1, with the
exception of 77, If the latter is greater than or equal to the former, 77; becomes the
new candidate, and the candidate after the final step is the first vertex selected by
the mechanism. The same procedure is then applied with permutation 7 to find
a second vertex. A formal description of the bidirectional permutation mechanism
is given as Algorithm 2.1. It is formulated in terms of Algorithm 2.2, which we
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Figure 2.1: Example for the bidirectional permutation mechanism 2.1, first going forward di-
rection selecting vertex 71, as shown in the first four graphs, then backward direction selecting
vertex 71;. The mechanism considers the vertices one by one, comparing the currently con-
sidered vertex, depicted in red, to the current candidate, depicted in blue. Edges that are in
that stage considered by the mechanism are black, others grey; current indegrees, given the
considered edges, are written below the vertices.

call the extraction mechanism and which is identical to a mechanism of Fischer and
Klimm [FK15] except for its use of a given permutation rather than a random one.
For an example, please refer to Figure 2.1.

It is worth noting that the bidirectional permutation mechanism may select only
one vertex, namely if the same vertex is chosen for both directions of the permuta-
tion. This happens for example later in the graph of Figure 2.2.

To see that the bidirectional permutation mechanism is impartial, we first note
that this is true for a single run of the extraction mechanism. Indeed, the outcome
of the latter is influenced by the outgoing edges of any given vertex only when that
vertex can no longer be selected.

Lemma 2.2 The extraction mechanism is impartial.

Proof. For a contradiction, assume that the algorithm is not impartial, i. e., there are a
set N of agents, a distinguished agent i* € N and two nomination graphs G = (N, E)
and G’ = (N, E') with

ENCU @) =ENC U @)

JEN\{i} JEN\{i}

such that i* is selected for G but not for G'. In the following, we denote by (i)
and 7, (i) the number of incoming forward edges of agent i in G and G/, respectively.
Let j € argmax;cy 0, (i) be arbitrary. The values 6,(i) and 6/, (i) are equal for all
agents that appear in the permutation not after i*. Thus, if i* is a candidate in G,
it is also candidate in G’. For the agents that appear after i* in 7, the values (i)
and ¢/, (i) differ by at most one; but as i* is candidate in G and in G/, the values are
in fact equal. This contradicts the existence of an agent becoming candidate after i*
in G, but not in G’. Thus i* is selected in G’, which is a contradiction. O
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2 Non-monetary Access Control Mechanisms

We now note that the composition of impartial selection mechanisms stays im-
partial.

Lemma 2.3 Let f1,..., fx be impartial 1-selection mechanisms. Then the mechanism which
selects all the vertices selected by at least one of the mechanisms f1, ..., fi is an impartial k-
selection mechanism.

Proof. By impartiality of f;, for £ = 1,...,k, the outgoing edges of a vertex do not
influence whether this vertex is selected by f,. This holds for any ¢ and any vertex,
so it also holds for the mechanism that selects the vertices selected by at least one of
the mechanisms. O

Impartiality of the bidirectional permutation mechanism, which is the union of
two impartial 1-selection mechanisms, now follows with Lemma 2.2 and Lemma 2.3
because the union of the results of two impartial 1-selection mechanisms yields an
impartial 2-selection mechanism.

Corollary 2.4 The bidirectional permutation mechanism is impartial.

We proceed to show that the bidirectional permutation mechanism is 1/2-optimal,
starting from the observation that the vertex selected by &, has a maximum number
of incoming forward edges with respect to 7.

Lemma 2.5 Ifi = Ex(G), then

O (1, G) = max {07 ;(j, G)}-

Proof. Let

4" = jgf_i_ffn{ﬁq (7}
and i* an arbitrary vertex with 6, (i*) = d*. When i* is considered by the mech-
anism, so are at least d* — 1 of its incoming forward edges, as one of the incoming
forward edges may originate from the current candidate , i. e.
(5;<l_*\{i}(i*) e{d" —1,d"}.
If
5;<i*\{l.}(z ) = d*, or both (57;<i*\{i}
then i* becomes the new candidate. Since the indegree d of the current candidate
will be updated to d*, any other vertex that possibly becomes a candidate after i*

has d* incoming forward edges as well, establishing the claim for this case.
If, on the other hand, both

(") =d*—1land é,_ (i) <d* -1,

57;<i*\{l'} (Z*) =d" —1land 57;<i(i) = d*’
then i remains the candidate. As d = d* any further candidate has 4* incoming
forward edges as in the first case. O
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m 7 73 ys| T 73

Figure 2.2: Graphs for which the bidirectional permutation mechanism returns only one vertex
(left side, 71, is selected twice) and is only 1/2-optimal (right side, 711 and 77, are selected).

Theorem 2.6  The bidirectional permutation mechanism is impartial and 1/2-optimal.

Proof. Impartiality follows directly from Corollary 2.4.
Now consider a graph G = (N, E), a vertex i* with 6~ (i*) = Ay, let iy = Ex(G)
and i; = E7(G). By Lemma 2.5,

b, (1) 2 67, (") and b7 (i) > 67 ("),
regardless of whether i; # iy or ij = ip. Thus
6~ (i, i2}) 2 67, (ia) + 07, (i2)

> 57 (i) + 05

T

(") =6 (") = M1 = 5 Ay,

as claimed. O

To see that the analysis is tight, consider the graph on the right side in Figure 2.2.
For this graph, the mechanism selects vertices 7, and 7r; with an overall indegree
of one, while the maximum overall indegree of a set of two vertices is two. We see
later, in Theorem 2.26, that the bound of 1/2 is in fact best possible.

There are two ways to interpret the result in this section. Since the largest inde-
gree is at least half of the sum of the two largest indegrees, relaxing exactness allows
us to circumvent the strong lower bound of Alon et al. [AFPT11] when k = 2. Al-
ternatively, for k = 1, the tradeoff between impartiality and quality of the outcome
disappears if one is allowed to sometimes but not always select an additional vertex.
This kind of resource augmentation result, comparing an optimal algorithm to one
from a restricted class that is given additional resources, is commonly used in the
analysis of online algorithms and has recently also been applied to truthful mecha-
nisms for facility assignment [CFRF " 16]. Curiously, the bound of 1/2 is best possible
for exact randomized mechanisms selecting a single vertex as we will see in the next
section, thus, randomization can be perfectly substituted by the ability to sometimes
select an additional vertex.

2.2.2 Randomized Mechanisms for Two Agents

In light of the results of the previous section, it is natural to ask whether a re-
laxation of exactness enables better bounds also for randomized mechanisms. We
answer this question in the affirmative and give the first nontrivial bounds for both
exact and inexact 2-selection mechanisms, as well as an example that shows a strict
separation between the two classes.

We begin by considering an exact mechanism, which we call the 2-partition mech-
anism with permutation. The mechanism randomly partitions the set of vertices into
two sets A1 and Ap such thatP[i € A1) = P[i € Ap] =1/2foralli € N,AJUA; =N,
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Algorithm 2.3: The 2-Partition Mechanism with Permutation
Input: Graph G = (N, E) withn > 2
Output: Vertices i1,ip € N

1 Assign eachi € N to A; or Ay independently and uniformly at random

2 Choose a permutation (714, ..., ;) of N uniformly at random

3 forj=1,2do

4 L Seti; := EH,A].(G) > select one vertex from each of the two sets

> if one set is empty, select 2nd vertex from other set
5 if Ay = @ then choose i, uniformly at random from A; \ {i1}
if A; = @ then choose i uniformly at random from A \ {i»}
return {iy, iy}

N o

Algorithm 2.4: The Extraction Mechanism Z,; 4 Restricted toa Set A C N

Input: Graph G = (N, E), permutation (7ty,...,7,) of N,set AC N
Output: Vertexi € N

1 Seti:=rm,d:=0 > candidate vertex and indegree from its left
2 forj=2,...,ndo

3 Set S := (N \ A) U (7T<7'[]' \ {Z}) > vertices whose nominations are considered
4 if 1; € Aand 05 (71j) > d then > compare current vertex and candidate
5 L Seti:= 71']', d:.= 55U{i}(nj) > current vertex becomes new candidate
6 returni

and A1 N Ay = @. It then selects one vertex from each of the sets by applying the
extraction mechanism with a random permutation, while also taking into account
incoming edges from the respective other set. Algorithm 2.3 is a formal descrip-
tion of the mechanism. It builds on the restricted extraction mechanism Z, 4 of
Algorithm 2.4, which works similar to the extraction mechanism considered earlier,
except that only vertices i € A may ever become a candidate. Thus, at any time the
number of incoming forward edges of a vertex in A is determined, with all edges
originating in vertices in N C A being counted as forward edges. Note that for the
special case that A = N, we obtain E, y = Ex. Using the same line of reasoning as
for the original unrestricted extraction mechanism, it is straightforward to show the
following.

Lemma 2.7 The restricted extraction mechanism is impartial.

Proof. When A is empty, the mechanism selects the same vertex for any graph and
therefore is impartial. Otherwise the first vertex in A to appear in 7r becomes a
candidate and only vertices from A are considered thereafter, so the mechanisms
selects a vertex from A. Moreover, the mechanism only takes into account outgoing
edges of vertices that can no longer be selected, either because they are not in A or
because they have already been considered and are not currently the candidate. This
directly implies impartiality. O

Taking Lemma 2.3 and Lemma 2.7 together, impartiality of the 2-partition mech-
anism with permutation is immediately implied.
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2.2 Mechanisms for Selecting Two Agents

Corollary 2.8  The 2-partition mechanism with permutation is impartial.

To prove how well the algorithm works and what approximation ratio it achieves,
we further need the following lemma.

Lemma 2.9 Ifi =5, 4(G), then

Sy (i G) 2 maxd S gy, (1 G-
Proof. The statement is trivial in the case that A is empty. Otherwise, when there is
at least one vertex in A, consider

d* = r];’éax{é(N\A)Un<j (j,G)}

and i* such that 5(_1\]\ AU
7T<i>k

consider the iteration in which the mechanism decides whether i* should become

the new candidate. Let i be the candidate at the begin of that iteration. If we have

(i*) = d*. Analogously to the proof of Lemma 2.5, we

5=

A ) =4

or both

5(N\A)Un<i*\{i}(i*) =d*—1and 5(3\1\A)Un<i(i) <d -1,

then i* becomes the new candidate and consequently d is updated to d*.
If, on the other hand, both

d*—1and 6,

A, D =d"

Sonam i 7) =

then i stays the candidate and d remains equal to d*.
In both cases we have d = d*, which implies that any future candidate j has at
least d* incoming edges from (N \ A) U ;. O

Using these observations, we obtain our result for the 2-partition mechanism with
permutation.

Theorem 2.10  The 2-partition mechanism with permutation is impartial and 7/12-optimal.

Proof. Impartiality follows immediately by using Corollary 2.8. Now consider a
graph G = (N, E), two distinct vertices i}, i; € N with

67 (i7) + 07 (i) = g,

and let i; and i, be the two vertices selected by the mechanism from sets A; and Aj,
respectively. We distinguish two cases, depending on whether ij and i3 are in the
same set or different sets of the partition (A;, Ay).

First assume that 7] and i; are in different sets, and without loss of generality
let i € Ay andi; € Aj. In the permutation 7 used by the mechanism and chosen
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uniformly at random, an arbitrary vertexi € N\ {i], 73 } appears before or after each
of ij or iy with equal probability, so

]P[l € AN 7'[<iif] = ]P[l € AN 77[<iif]
1

:]P[IE A2|’77‘[<i;] :]P[IE A20ﬁ<i;] = Zl

When i} is considered by the mechanism, so are any incoming edges from vertices
in A and any incoming edges from vertices in A; that appear in 7r before ij. Thus,
by Lemma 2.9,

E[07(1)] 2 B[, (7))

=Y enPli € AU (A1 N7)] - x((i, 1)) € E],

where x denotes the indicator function on Boolean expressions, i.e. x[¢] = 1 if ex-
pression ¢ holds and x[¢] = O otherwise. By taking i; out of the sum and using
that ij and 7} are in different sets of the partition and thus IP[i5 € A,] = 1, we obtain

E[07 ()] = Lion iy (Pl € 42U (A1 N 7)) -l i) € E])
+Pli; € AU (ArN7)] - x[(i2,17) € E]
= Yiengiy (1Pl € (Avn 7)) - x1Gi7) € E]) + xl(i3, 7)€ E]
= Yenigy (1= 3 )l i) € B+ xl(3, i) € B
> 3 L adliid) € B
=25 (@),

As the same line of reasoning applies to i5, we have

E[07(i2)] >

=~ W

6~ (i3)
and conclude for this case that

E fs-(il,z’z)] L 307G + 307 ()

Ay

Now assume that i] and i3 are in the same set of the partition, and without loss
of generality that 7,75 € Ay and 67 (i]) > 67 (i3). In the permutation 77 used by
the mechanism and chosen uniformly at random, an arbitrary vertexi € N \ {i}, i} }
appears before, between, or after i] and i; with probability 1/3 each, so

P[i € Ar] and

1
2
]P[i e AN T N 7T<i§] = ]P[i € AN ((7‘[<1’T N ﬁ<i§) U (ﬁ<iT N 7T<i§))}
P

[i e AN = N ﬁ<i;] =

N =
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If if € 7_j;, a possible edge from i; to i} would be considered by the mechanism,
and by Lemma 2.9,

E[6™ ()] 2 E[07,0,_, (i)
> Vo) (Pl € 420 (Ar N )] 2G 7)€ E)
+Pli; € AbU (A Nm)] - x[(i3,17) € E]
= Yion (A= Pli € (41072 - X1 ) € EY)
+Pli3 € (A1N )] - xl(i3, ) € )
We have

. _ , _ _ 1
Plie (A ﬂn<q)] =Plie (4 N7 ﬂ7T<i§)} =%

since we assumed that ij € i3 and obtain

B[6~ ()] = ¥ Alli}) € Bl = 267 (i),
ieN

Analogously, if i; € 7_j,

E[6™(1))] > E[%uﬂdz (i3)] = 6~ (i2).

As each of the two events takes places with probability 1/2, we conclude for this case
that

E

0 (Ui | o 2B+ (B) 5
Ay - +6-(3) 12

Averaging over both cases we finally obtain

S L(3,5)_7
—2\4 12/ 127

as claimed. O

The 2-partition mechanism with permutation improves on the best determinis-
tic mechanism for 2-selection, and it is natural to ask whether it can be improved
upon further by a randomized 2-selection mechanism that is not exact. The answer
to this question is not obvious: while the ability to select fewer vertices may make
impartiality easier to achieve, actually selecting fewer vertices runs counter to the
objective of selecting vertices with a large sum of indegrees. Indeed, in the case
of 1-selection, no separation exists between exact and inexact mechanisms. In con-
trast, for 2-selection, an obvious approach turns out to be effective: taking the best
deterministic mechanism, which uses both directions of a fixed permutation, and
invoking it for a random permutation. The resulting mechanism, which we call the
randomized bidirectional permutation mechanism, is shown as Algorithm 2.5.
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Algorithm 2.5: The Randomized Bidirectional Permutation Mechanism
Input: Graph G = (N, E)
Output: Set {i1,i} C N of at most two vertices

1 Choose a permutation (714, ..., 77,) of N uniformly at random

2 Invoke Algorithm 2.1, the bidirectional permutation mechanism, for G and 7

Theorem 2.11  The randomized bidirectional permutation mechanism is impartial and 2/3-
optimal.

Proof. The proof of Theorem 2.6 shows impartiality for any permutation that does
not depend on the input to the mechanism, including one that is chosen uniformly
at random.

Now consider a graph G = (N, E), two distinct vertices ij,i; € N with

07 (1) +07(i2) = Ao,
and let iy = £;(G) and iy = E7(G) for the permutation 7r used by the mechanism.
As the mechanism is invariant under reversing the permutation, assume without
loss of generality that i} appears before i3 in 77, i.e. that if € 7r_;;. As 71 was chosen

uniformly at random, an arbitrary vertex i € N \ {i}, i3 } appears before, between, or
after i and i; with probability 1/3 each. By applying Lemma 2.5 to both i; and i,

E

(5_({11’12})] >E 57;<"1 (i) + 5;T<i2 (i2)
Ny -

max {57;<i* (IT)/ §;<i* (l;)} + max {57;<i* (IT)’ 57?[ ok (lé)}
1 2 1 2
>E 5
2

@2.1)

Recall that possibly iy = i, and note that the bound is correct in this case as well
since we account in the first call of the extraction mechanism only for the forward
edges of i, and in the second call of the extraction mechanism only for the backward
edges of i. To bound the right-hand side of equation (2.1), we use the assumption
that ij € 7_;; and observe that

E [max {0 7)., )} 2 B [0, 65)] = L Plie mag) -xl(iip) < B

ieEN
_ 'ZN(l ~Pliea]) x[(ii) € E]
2 -
_ §igvx[(l,zz) € E|
= 257G3).

Note that this bound only gets better when (i},i3) € E, as P[ij € m;] = 1by
assumption . An analogous argument for the other direction yields

E [max {or, ().07_, () }] = 2o~

TT_ %
<12
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Figure 2.3: Schematic for the proof to Theorem 2.12. The two pictures on the left are for the 2-
partition mechanism with permutation. The case that both vertices which receive a nomination
are in the same partition is depicted on the left, the case that both vertices are in different par-
titions is depicted in the middle, each appearing with probability 1/2. The picture in the right
is for the randomized bidirectional permutation mechanism. Different positions for the vertex
casting nominations are marked with colored ellipses which contain the probability that the
nominating vertex is in that position. A position that leads to no nominated vertex being se-
lected is colored light grey, one nominated vertex being selected dark blue, and both nominated
vertices being selected is colored light blue.

and by plugging both bounds into equation (2.1) we obtain

67 (in) +8 (i) | L 30°(i}) + 307 () _ 2
A - oy T

as claimed. O

E

It is not hard to see that our analysis of the 2-partition mechanism with permuta-
tion and the bidirectional permutation mechanism is tight.

Theorem 2.12  The 2-partition mechanism with permutation is at most 7/12-optimal. The
randomized bidirectional permutation mechanism is at most 2/3-optimal.

Proof. Consider a graph with a large number of vertices and only two edges (i, i})
and (i,i3), and observe that the maximum overall indegree of any set of two vertices
is two. Please refer also to Figure 2.3.

The 2-partition mechanism with permutation independently and wuni-
formly at random assigns each of ij, 5, and i to one of two sets, such that in par-
ticular 7§ and i; are in the same set with probability 1/2 and in different sets with
probability 1/2.

If if and 75 are in the same set, the mechanism selects at most one of them. If i is in
the respective other set, i. e. with probability 1/2, this happens with probability one.
If i is in the same set, it happens only with probability 2/3, namely when i appears
before either i] and i3 in a permutation 77 chosen uniformly at random.

If i7 and 73 are in different sets, one of them is selected with probability one, the
other only when i appears before it in 77, which happens with probability 1/2. In
summary we thus expect

< (301 94304 D) -2
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Figure 2.4: A 3/4-optimal impartial mechanism for n = 3 and k = 2 which is given explicitly
by the selection probabilities for all sixteen voting graphs. The bound of 3/4 is best possible by
Theorem 2.28.

The randomized bidirectional permutation mechanism selects one of ij and i3
with probability one, the other only when i appears between ij and i3 in a permu-
tation 7 chosen uniformly at random, which happens with probability 1/3. Thus we
conclude that

O

As special cases of Theorem 2.28 and Theorem 2.29 in Section 2.4, we will re-
spectively obtain upper bounds of 3/4 and 2/3 for 2-selection mechanisms without
and with exactness. These bounds suggest that neither the randomized bidirectional
permutation mechanism nor the 2-partition mechanism with permutation is the best
mechanism within its class. Indeed, Figure 2.4 shows a 3/4-optimal impartial mech-
anism selecting at most two of three vertices, which certifies that the randomized
bidirectional permutation mechanism is not the best and that relaxing exactness is
strictly beneficial.

The mechanism of Figure 2.4 can be obtained as the solution of an optimization
problem to maximize the expected overall indegree of the vertices selected, subject
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° ° o————o < *e
° ° °
0 0 0
° ° -~ ® < e
°

1 3 1 1

1 2 1
4
1 1 1
2

Figure 2.5: A 3/4-optimal impartial mechanism for n = 3 and k = 2. The graphs give the selec-
tion probability of the respective agent at the bottom, regardless of her outgoing nominations.

Algorithm 2.6: The 3/4-optimal Impartial Mechanism for Selecting Up to Two out of
Three Agents as depicted in Figure 2.5

Input: Graph G = (N, E) with |[N| =3

Output: Set {i1,i2} C N of at most two vertices
1 fori € N do > calculate selection probability for each vertex
2 pi = 56 (1) > indegree
3 pi < pi — I1l/4 for | := {] €N: (], i) S E,(Sér(]') = 2} > set of agents which casts
nominations to i and a third agent
4 bi < pi — |H|/2 for H := {h €EN: (h, i) S E,ég\i(j) = 1} > set of agents which
casts nominations to i and receives nominations from a third agent

5 if p; > 1thenp; <1

6 return up to two vertices C N according to selection probabilities p;

to impartiality. This still leaves some degrees of freedom. Here, we have chosen the
probabilities in such a way that two agents have different probabilities to be selected
iff the nominations that the respective other agents give are different.

Given impartiality, the probability of a given agent to be selected can not change
if her own nominations change. Thus, instead of giving the selection probabilities
for all voting graphs, it is sufficient to look at all nomination graphs an agent can
be part of without her casting nominations. For three agents, there are eleven such
nomination graphs. Figure 2.5 gives another impartial mechanism for chosing two
out of three candidates. It also is 3/4-optimal.

Interestingly, the mechanism of Figure 2.5 can also be described in a relatively
compact form as given in Algorithm 2.6. Remark that the final step, returning up
to two vertices given selection probabilities which sum up to less than two, is pos-
sible due to Lemma 2.1. Indeed, it can easily be achieved with, i.e., the Allocation
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Algorithm 2.7: The k-Partition Mechanism with Permutation
Input: Graph G = (N, E) withn > 2
Output: Vertices iy,...,iy € N
1 Assign each i € N independently and uniformly at random to one of k sets Ay, ..., Ag
2 Choose a permutation (71, ..., 71;) of N uniformly at random
3 forj=1,...,kdo
4 if Aj # @ then

5 L ij = Eﬂ’A].(G) > select one vertex from each set using extraction mechanism

6 forj=1,...,kdo
7 if Aj = @ then
8 L Choose i; uniformly at random from N\ {iy, ..., i}

9 return {iy,..., i} return {i1,..., i}

Subroutine, which we will later describe in Algorithm 2.11.

The mechanism of Figure 2.4s and Algorithm 2.6s lack of universal impartiality
illustrates one of the main obstacles that prevent us from obtaining tighter bounds
and generalize our results to the selection of more than two vertices. Here, a mech-
anism is called universally impartial if it is a convex combination of deterministic
impartial mechanisms. Mechanisms that are impartial but not universally impartial
are notoriously difficult to analyze and sometimes exhibit rather peculiar behavior.
The last two rows of the rightmost column of Figure 2.4 for example show a decrease
in the probability of selecting two of the vertices as their indegrees go up, and this is
both necessary for 3/4-optimality and difficult to justify.

2.3 Selecting More Than Two Agents

The central component of our best inexact mechanisms, its use of one or both of
the directions of a random permutation, does not generalize in any obvious way
to the selection of additional vertices. It seems to be harder in general to main-
tain impartiality when choosing more agents. In the following chapter, we give an
overview over generalizations of the partition and permutation mechanism as well
as introduce the exact dollar partition with permutation mechanism and analyze
their quality.

2.3.1 Partition Mechanisms for k Agents

In this section, we give a natural generalization of the 2-partition mechanism with
permutation. The algorithm uses a partition into k sets and then selects a vertex
from each set using the extraction mechanism restricted to a subset. This algorithm
achieves a lower bound for randomized algorithms. As it selects exactly k agents,
the lower bounds holds for both the exact case as well as the relaxed condition of
selecting up to k agents. The general mechanism is described in Algorithm 2.7. Its
impartiality is easy to see, and we use an argument similar to that in the proof of
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Lemma 2.9 to obtain a performance guarantee that approaches 1 — 1/e as k grows.

Theorem 2.13 The k-partition mechanism with permutation is impartial and
w-optimal for w = £55 (1 — (]“Tl)kH).

Proof. Impartiality follows directly from Lemma 2.3 and Lemma 2.7 as it is a compo-
sition of impartial mechanisms.

Now consider a graph G = (N, E), and a set I* of vertices with |I*| = k and
also Y e+ 6~ (i) = A, and denote the vertex selected by the mechanism from Aj
by ij, for j = 1,...,k. For a fixed set A; with A; N I* # @, leti* € A;jNI* be such
thati € m_;« foralli € A;NT*\ {i*}. Then,

o (i) = (5&\/‘]_(1-*) + (5/;jm<i* (i*)
- 51?’\(A/UI*) (l*) T 5(_A/ﬂ71<i*)\1* (l*) + 51_* (Z*)’
where the inequality holds by a similar argument as in the proof of Lemma 2.9 and
the equality because we have chosen i* to be the vertex in A; N I* that appears last
in 7.

In the permutation 7r used by the mechanism and chosen uniformly at random, a
given vertex appears with probability |A; N I*[/(]A; N I*| + 1) after i*, so

B30 o ()| 1470 1] = 1]
iEN\I*

e G GREAG))

401 =1 k[, ") € B

where we have used that

Plic Aj||AjNT* | =1] =P[i € A :%

fori € N\ I*. Similarly,

AT :z} zz\lp[ie N\ A;[|An I =1] - x[(i,i*) € E]
ieN\IT*

=B (B @) - 5:60)):

E [d a0 ()

Thus, for a vertex chosen by the algorithm we expect indegree

E [(sw‘j) ‘ AN T = 1} > (kzl n k(ll+1)) E[67 (%) — 672 ()] + E[67: (i")]

k=1 1\ A
> (272 2k
—( K +k(l+1)> K
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and by linearity of expectation and using the law of total expectiation,

E Z}(ﬂ 5(@')1

k Kk
L LERG) (104 =1]- P naj =1

B () B O (-8

We can further calculate

Lo () (1)

- )
1 1 k1 k1) /1) 1\ 1
—k‘+11_1< ! )(k) (1‘k)

and simplify the equation (2.2) to conclude that

Z}c:l 6~ (i)

E
Ak

as claimed. O

62



2.3 Selecting More Than Two Agents

It is again not hard to see that this analysis is tight.

Theorem 2.14  If the k-partition mechanism with permutation is x-optimal, then we have

k k—1\k
H’lﬂtlx S m(l — (T) +1).

Proof. Consider a graph with a large number of vertices and k edges (i, i}),..., (i,i;)
only. Let I* = {if,..., i }. When partitioning the vertices into the sets Ay,...,Ay, it
is without loss of generality to assume thati € A;. Foreachj € {2,...,k}, a vertex
with indegree one is selected from A; if and only if I* N A; # @. This happens with

probability 1 — (k%l)k, so by linearity of expectation the expected sum of indegrees
of the vertices selected from A, U - -- U Ay is

lEp;&TW]_(k—D<1—<1—i>v.

From A, a vertex with indegree one is selected if A1 N 7T_; NI* # @, and this
condition is in fact necessary with probability going to one as the number of vertices
with indegree zero goes to infinity.

Forany! € {0,...,k} we have

PllANT| =1] = C)

and

)
P[AINT NA; #D||ANT =] -0

The probability of selecting a vertex with indegree one from A; N I* thus goes to

L)) (-3)
(- )
=1 +1\1) \k k
as the number of vertices goes to infinity.
The maximum overall indegree of any set of k vertices in the graph is k, so

k-1 AT VA A A A
<—(1-(1-= - ) (1-2) .
"=k ( < k>>+1_20k<1+1><1><k)( k)
This expression is equal to the lower bound in equation (2.2), and we conclude that
the analysis in the proof of Theorem 2.13 is tight. O

2.3.2 Permutation Mechanisms for k Agents

Our understanding of deterministic mechanisms for the selection of more than
two vertices is particularly limited. However, using techniques which we estab-
lished beforehand, we can obtain a bound of an expected fraction of 1/k of the total
best possible number of nominations using a permutation mechanism, as stated in
the following theorem.
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m\. .4.\‘. °
m s 73 Tty m s 73 Tty
2 1 2 1

Figure 2.6: An example which proves that repeating the permutation mechanism destroys
impartiality. On the left graph, 714 is selected in the first round and 73 in the second; if 7,
changes her nomination to 774 however, as shown in the right graph, then 713 is selected in the
first round and 715 in the second, which means that 77, can influence her own probability to win
by nominating strategically, a contradiction to impartiality.

Theorem 2.15  The bidirectional permutation mechanism for selecting up to two agents
is 1/k-optimal for deterministic non exact selection of k agents.

Proof. We observe that the selection of only two instead of k vertices reduces the
guarantee by a factor of at most 2/k. Using the bound provided by Theorem 2.6, we
calculate 2/k - 1/2 = 1/k, which proofs the desired bound. O

Unfortunately, there is no natural generalization of the bidirectional permuta-
tion mechanism to select up to k agents. Many possible approaches that come to
mind turn out to not be impartial. This seems particularly true for mechanisms that
choose k agents by applying k times a selection of one agent while taking into ac-
count previous selections. For instance, applying the permutation algorithm two
times in the same direction and not allowing the agent chosen in the first round to
be candidate again is not impartial, as the simple example in Figure 2.6 shows.

We can, however, modify the bidirectional permutation algorithm such that each
direction produces not one, but k/2 agents. Here again, we only look at nominations
from agents that cannot be selected anymore, but instead keep k/2 agents as can-
didates. New agents enter the set of candidates if the number of nominations we
see is at least as high as the number of nominations of our current worst candidate,
which then leaves the set. If two or more candidates have the same lowest number
of nominations, the one earlier in the permutation is considered worse. This still
reduces the number of nominations that can be seen, as we can not see the nomina-
tions that the candidates cast each other. As k grows, our approximation guarantee
gets worse. A formal description of the Algorithm, which we call bidirectional per-
mutation algorithm for k agents, can be found in Algorithm 2.8. It uses as subroutine
the h-extraction mechanism, described in Algorithm 2.9.

Similarly to the bidirectional permutation mechanism, we note the following.

Lemma 2.16  The bidirectional k-permutation mechanism is impartial.

Proof. We divide for each vertex her outgoing edges into two subsets: those going
forward in the permutation and those going backward. First, we consider the [%1
vertices selected by forward direction. Only the edges going forward in the permu-
tation can be considered in that case. The outgoing edges of a vertex are only taken
into account once this vertex has been considered by the algorithm and is not a can-
didate anymore, thus can not be selected. While a vertex has not been considered
or is still a candidate, her edges are not considered by the algorithm. Hence, for
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2.3 Selecting More Than Two Agents

Algorithm 2.8: The Bidirectional Permutation Mechanism for k Agents, using h-

Extraction Mechanism & Th

Input: Graph G = (N, E), integer k < |N|
Output: Set {i1,i3,...,ix} C N of at most two vertices
Lett=(1,...,n)

[y

2 Seth := [k/2]
3 Set {il,- o ih} = E?[(G) > select vertices based on forward edges
4 Set {ipy1, - i} = WI;T h( G) > select vertices based on backward edges

[$)]

return {7, ip,..., 0}

Algorithm 2.9: The h-Extraction Mechanism Z/.

Input: Graph G = (N, E), permutation (7ty, ..., ;) of N
Output: Set of vertices {i,..., i} € N

1 Setiy :=71,...,0 =Ty > candidate vertices
2 Set dl =0,.. ‘dh = 0, 7'[(11) = 1,. cey n(ih) =h > candidate indegrees and positions
3 Setl:=1 > current worst candidate
4 forj=h+1,...,ndo

5 if 57r< \{11, 171}(7'[]) > dy then > compare worst candidate and current vertex
6 dg =0 Ter, \ it i) ( ) ig = =7, T ( ):] > current vertex is candidate
7 Set W := {we{l,...,h}|dw§d, Vre{l,...,h}},

8 let £ € Wst m(iy) < m(ip) Yoe W\ YL > update current worst candidate

©

return {i,..., i}

each vertex, her outgoing edges do not influence whether this vertex is selected. The
same holds for backward direction. O

We now proceed to show an approximation guarantee for the bidirectional k-
permutation mechanism, starting from the observation that the vertices selected by
algorithm Z”. have a high number of incoming forward edges with respect to 7.

Lemma 217 If {iy,..., iy} = EL(G), then
Y. 67.(i,G) > max {Z(Sﬂ .(j,G)}—h2+h.
i) JENYI=h Ujgg ™
Proof. Let

D* = max {25n<j(j,G)},

JEN|TI=h Uiy

and let i* be an arbitrary vertex with mdegree d* = 6, _.(i") in such a set of ver-
tices D* with maximum degrees. When i* is considered by the algorithm, so are at
least d* — h of its incoming forward edges, / of which may originate from the current
candidates (iy,...,i),i.e

O iy 0 €{d" b, d"}.
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If

O iy () < 8 (0) foralli € {in, ... iy}

then i* is not selected for the pool of candidates in the algorithm, but also the smallest
indegree d at the moment when i* is considered by the algorithm is atleast d* — h + 1.
If, on the other hand, both

5 (") =d* —h+Cand 3i € (if,...,iy) s.t. 05_ (i) < d* —h+,

i \{i1,eesdn }

for some ¢ € {1, ..., h}, then i* becomes a new candidate. For the special case that

57_[<i*\{i1/~-~/ih}(i*) =d*—hand 3i € (iy,...,i) s.t. (5;<i(i) <d*—h,
also i* enters the pool of candidates and makes a vertex, say i; forsomed € {1,...,h},
leave the pool of candidates. But as 6 \ {i}(i*) = d* — h, each of the vertices
<i*

in {i1,...,1;} nominates i*, and thus

— -k *
57T<i*\<{i1,~-~/ih}\id) (7)=d"=h+1.
In both cases when i* enters the candidate pool, any vertex that possibly becomes
a candidate after i* is considered by the algorithm and makes possibly i* leave the
candidate pool has at least d* — I 4- 1 incoming forward edges as well. In all cases, at
any point in the mechanism after i* is considered, there is always at least one vertex
in the candidate pool with at least * — h + 1 incoming vertices and thus loosing at
most i — 1 incoming nominations for vertex i*. As this argument can be made for
each of the I candidate vertices, we reach a total indegree of

max 5__',G}h-h1,
max {]2] .6 b= -
establishing the claim for this case. O

Theorem 2.18 The bidirectional k-permutation mechanism is impartial and achieves in
expectation at least

%—%—i—k if k even

_ 2 .
i oy — B ipkodd
nominations.

Proof. Impartiality follows directly from Lemma 2.16.
Let k be even. Now consider a graph G = (N, E), a set of vertices I* with

Y (") = b

*el*
and let I; = Z¥%(G) and I, = EY*(G). By Lemma 2.17,
L N L
Z 57‘[<,‘Z (ZZ) > Z 57t<,~* (1 ) - Z + E

i€l *el*

66
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for z € {1,2}, regardless of whether any elements are both in I; and I,. Thus, by
linearity of expectation,

B| £ o0|>E| Lo, Do)
iehUl helh irelp

Kk K2k
> N — ] Kk
= .*Z*E [5”«'* (i )} s a7 .*Z*IE [‘5”«'* (@ )} 12

i*el *el

k2 k2 1 k2
= El6({") ——=4+k=Ayy— —+k>=-A, — —+k
LB ] =g rk=dp-grkzgMhog ok
as claimed.

Let k be odd. Now consider a graph G = (N, E), a set of vertices I* with

Z (57(1*) = Ay,

*el* 2

a set of vertices I** with

ki1 k-1
and I* C I'*,andlet} = E;* (G)and I, = E;? (G). By Lemma 2.17, we have

T
. . k+1)2 k+1
Z 57T<,'1 (11) Z Z 57I<i* (l )_ ( 4 ) + 2
1€l el
and similarly we get
. e (k=1)?2 k-1
Z ‘57’r<i2 (i2) > Z O s (i*) — 1 + >

irelp i*el*

regardless of whether any elements are both in I; and I,. Using further linearity of
expectation, we get

E| Y @()|=E| Y O, (i) + Y 5,.t<i2(i2)]
ieUL ihely ir€ly
i (k+1)* k+1
> — ATl
L E 5. () i T2
i*el
] (k=17 k-1
+ DB, O] -
K2 —k+1 K —k+1
=Y E[5 (] - =Apq —
i*el* 2 2 2
k—1 K—k+1
= ok Ak_ 2 s
as claimed. O
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Algorithm 2.10: The Exact Dollar Partition with Permutation Mechanism, using Alloca-

tion Subroutine &y, . 1, and Extraction Mechanism 31711 A

Input: Graph G = (N, E), integer k < |N|
Output: Set {i1, iy, ...,ir} C N of up to k vertices

1 Assign each i € N independently and uniformly at random to one of k sets Ay, ..., Ak

2 Choose a permutation (77y, ..., 71;) of N uniformly at random

3 SetR:=0Q

4 fori=1,...,kdo

5 if 6, (N'\ 4;) =0 then

6 L LetR <+ RUi > sets that do not give outside nominations

7 forj=1,...,kdo
51 (A
8 Set tj= Y A’])> + % > received dollar shares

9 if j € R then

10 L Let tj — tj — ﬁ > corrective term for sets without outside nominations

11 Set (sl,...,sk) = ‘:h,---,tk > improved subroutine to get a discrete allocation
according to a probability distribution with expected value (fi,...,f)

12 Set] :=Q@ > set of selected agents

1B forj=1,...,kdo

14 L Let I « IUEZ,Aj(G) > select s; agents from A; using extraction mechanism

15 return {il, in,... /ik}

2.3.3 Exact Dollar Partition with Permutation

In addition to generalizations of the permutation and partition mechanism, we
present a new mechanism to chose k agents. It is strongly based on Exact Dollar
Partition by Aziz et al. [ALM " 16]. They were themselves inspired by a strategyproof
mechanism for dividing a continuous resource called Dividing a Dollar by de Clippel
etal. [dCMTO8].

One of the main weaknesses of the k-partition Algorithm 2.7 is that even if many
agents with a high number of nominations are in one partition, only one of them
can be selected. Disadvantageous cases for large k and only k agents with nomina-
tions can easily be constructed as the probability of two or more agents who receive
nominations being in one partition and thus losing nominations grows with larger k.
Exact Dollar Partition with Permutation attempts to solve this problem by first using
the nominations to decide how many agents shall be selected from each partition.

The mechanism of Aziz et al. [ALM ' 16] uses a randomized apportionment sub-
routine that they state is interesting in its own right. Apportionment is the allocation
of representatives or resources in proportion to group sizes or demands. It can be
considered as a rather fundamental problem as it appears in a variety of contexts.
The goal of the subroutine is to round fractional group sizes to integers in a fair way.
However, the subroutine proposed by Aziz et al. [ALM "16] is fairly intricate. One
of our main contributions is to propose a routine which we believe to be simpler to
achieve apportionment.

Exact Dollar Partition with Permutation, described in Algorithm 2.10, works as
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Algorithm 2.11: Allocation Subroutine §y,, .1, to Map a Rational Allocation to Probability
Distribution Over Discrete Allocations
Input: Rational allocation (#, ..., )
Output: Discrete allocation (sy, ..., si) selected according to a distribution that has as
expected value (t1,..., t)

1 Sets! :=(0,...,0) > s: discrete allocation

2 Seta:=1 > a: current position in list of discrete allocations

3 Setz! := 0, z2 = > z7: probability starting point of allocation s” respectively
probability end point of allocation s°t1 to calculate allocation probability

4 Setl:=1 > {: total number of discrete allocations

5 fori=1,...,kdo > distribute rational allocation parts f; one by one

6 if t; > 1 then > distribute integral amount of f; to each discrete allocation

7 forj=1,...,¢do

8 L Let sg — sg + ]

9 Lett; < t; — LtiJ

10 while t; > 0 do > distribute non-integral amount of f;

11 ifa = /41 then > if end of list is reached, continue again from start

12 ‘ Leta <1

13 elseif t; > 2741 — 2% then > enough f; left to continue

14 ‘ Letsf «—sf +1,t; < t; — 22 428 g a+1 > distribute part of f;

15 else > t; ends before next probability starting point

16 Set S(gle = Se, Z‘ﬂ‘+1 — ZZ, ZZJr2 =1 > add new discrete allocation

17 form=2/{,...,a+1do

18 Let s « Sm*l,zm ¢ zm-1 > s? and s*'! are equal,

L the discrete allocations afterwards move one index up
19 Let 0 < £ +1,s% <57 +1, 22741 28 4+, 0 < a+1, break > update values

x ~ unif[0,1), let f such that zf < x and z/*1 > x

21 return (s{,...,s{)

[
=)

follows. The mechanism randomly partitions the set of vertices into k sets Ay, ..., Ay
such that each partition size differs by at most one. It is then decided how many
agents are selected from each individual partition. In order to do that, each partition
“divides a dollar” proportionally to the number of nominations they give to the
other partitions. That is, each partition B has a number of nominations vg(A) that
they give to another partition A and these numbers are normalized such that

UB (A) =1
AG{Al,...,Ak}\B

If one partition B does not contain vertices which give any nominations to vertices
outside of B, their dollar is shared uniformly amongst the other partitions such that
we have vg(A) = 1/k-1forall A € {A4,..., Ax} \ B. This leads to each partition A
having a total share allocated to them by the other partitions of

tA = Z Z)B(A).

BE{Al,...,Ak}\A

If all t4 are integer, then we already have a discrete allocation s of how many agents

69



2 Non-monetary Access Control Mechanisms

Algorithm 2.12: The h-Extraction Mechanism E?T 4 RestrictedtoaSet A C N

Input: Graph G = (N, E), permutation (7ty,...,7,) of N,set AC N
Output: Set of vertices {iy,..., i} €N
1 if |A| < h then

2 L return A > A is smaller than the set of agents to be selected from it
3Setm:=1,0:=1,j:=1 > m: worst candidate, ¢: number of candidates
4 while ¢ < h do > find first h candidates in A
5 if 7; € A then

6 Setiy := 7T]‘,dg = 5;1\14(7'[]‘) > new candidate and her indegree
7 if d) < d,, then

8 L m </ > update current worst candidate
9 Letl{+ (+1

10 | Letj<j+1
11 while j < |N|do

12 if TTj € A and (5(7N\A)U7T<ﬂ].\{i1,---,ih}(nj) > d,, then > compare indegree
of current worst candidate and current vertex
13 Letd,, < 5(N\A)Un<nj\({il,m,i;,}\i,,,)(T[f)’ Im us > current vertex becomes
new candidate

14 SetW:={we{l,...,h} |do <d, Vre{l,... h}},
15 meWstip<i, YVoeW \ m > find new worst candidate

16 | Letj<j+1

17 return {iy,..., i}

will be selected from each partition, namely s4 := t4. Otherwise, we use the im-
proved allocation subroutine to compute a probability distribution over discrete al-
locations such that the expected value of this distribution is ¢4 for each partition A
and receive a discrete allocation (s4,,...,s4,) according to that distribution. We
proceed to select s 4 agents from each partition A using the h-extraction mechanism
restricted to set A. It basically works the same as the k-partition algorithm if only
one agent shall be selected from a partition. If more than one agent shall be selected
from a partition, then the mechanism uses the k-permutation algorithm within that
partition while also taking into consideration nominations from outside.

Algorithm 2.10 gives a formal description of the mechanism. It builds upon Al-
location Subroutine ¢4, .. 4,(G) which is described in Algorithm 2.11 and the h-
Extraction Mechanism restricted to set A which is described in Algorithm 2.12.

In order to prove impartiality, first we must show that the allocation subroutine
indeed achieves to return a discrete allocation according to a probability distribution
that has as expected value the rational allocations that each partition receives. The
idea behind the allocation subroutine is explained in Figure 2.7. The rational alloca-
tions are looked at one by one. Each t4 corresponds to a line piece with length ¢4
which we can imagine of drawing one following another. While drawing, we start
at position zero and each new piece starts where the last ended. When a line piece
crosses position one, we stop, and continue drawing at position zero next to the for-
mer line. Each discrete allocation corresponds to an interval somewhere between
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\ () . (175,,7)

0.25: (1,-,°)

1: (0,0,0,0)
0.75: (2,-,+,)

(1.75,0.55,-,") (1.75,0.55,1,")

0.25: (1,1,-,") 0.25: (1,1,1,")
0.45: (2,0,,°) 0.45: (2,0,1,")
0.3: (2,1,-,7) 0.3: (2,1,1,7)

(1.75,0.55,1,0.7)

0.25: (1,1,1,1)

0.45: (2,0,1,1)

0.3: (2,1,1,0)

Figure 2.7: Example for the Allocation Subroutine in Algorithm 2.11. Given a rational allo-
cation (1.75,0.55,1,0.7), the subroutine calculates a probability distribution over discrete alloca-
tions. We start with one discrete allocation s' =(0,0,0,0) on interval [0, 1). After adding t; =1.75,
we have two discrete allocations: s* =(2,0,0,0) with z! = 0 on interval [0,0.75) and sz =(1 ,0,0,0)
with z2 = 0.75 on interval [0.75,1); I = 2 here and z3 = 1. After adding t, =0.55, we get
three discrete allocations: s' =(2,1,0,0) on [0,0.3), s =(2,0,0,0) on [0.3,0.75) and s® =(1,1,0,0)
on [0.75,1). Similarly, adding 3 =1, we continue to have three discrete allocations: st =(2,1,1,0)
on [0,0.3), s> =(2,0,1,0) on [0.3,0.75) and s*> =(1,1,1,0) on [0.75,1). After adding t; =0.7, we
have our final three discrete allocations: s! =(2,1,1,0) with z! = 0 on interval [0,0.3) and thus
with probability 0.3, s> =(2,0,1,1) with z2 = 0.3 on interval [0.3,0.75) and hence probability 0.45,
and s =(1,1,1,1) with z> = 0.75 on interval [0.75,1) with probability 0.25.
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2 Non-monetary Access Control Mechanisms

zero and one. We start the process with an empty single discrete allocation which
corresponds to the complete interval between zero and one. When a new rational
allocation part 4 is added, each existing discrete allocation s’ adds the integral part
of t4 to place s/, and we continue with the rational part of t4. Now, either the end
point of the line corresponding to t 4 lies on the start- or endpoint of an existing dis-
crete allocation; then, each allocation s which the line £ 4 spans adds one to si‘. Oth-
erwise, the discrete allocation s/ which corresponds to the interval where t4 ends, is
split in two discrete allocations,both with the same entries as s/, but new intervals.
The first one starts where s/ started and its interval ends at the point where ¢4 ends,
the second one starts at the endpoint of t4 and ends where s/ ended. Now again,
all allocations s; which t4 spans up to that point add one to s’;. When the process is
finished, the probability of each discrete allocation to be selected corresponds to the
length of their interval.

Theorem 2.19  The allocation subroutine .., returns one integer allocation (sy, .. ., sk)
of at most k + 1 different integer allocations with

S; € {U’iJ, [ti]} Vie {1,...,k}.

The expected allocation of each partition i is its share t; foreachi =1, ...k, that is

]E[(S1,...,Sk)] = (i’l,...,tk).

Further,

i:1z,.;.,k8i © {L t Rlzk 4 } 2.3)

which is, in particular, equal to k when the subroutine is evoked by the exact dollar partition
with permutation mechanism.

=1,...k

Proof. The allocation subroutine, which runs in polynomial time to the size of the
input (t1,...,t), computes up to ¢ < k+ 1 different discrete allocations s, as it
starts with one discrete allocation and in each of the k iterations at most one new
allocation is introduced.

We now proof by induction that at any time after ¢; was considered by the algo-
rithm, we have

4
Yo (2" —2)s? =t (2.4)
a=1

We consider time i when f; is processed by the algorithm. At the begin of the itera-
tion, we have s = 0 which changes to s{ = |t;] foralla = 1,...,/ after line six in
the algorithm, thus

i (Za+1 7211):;? — i (Zu+l _ Za) LtiJ — (Z€+1 _ Zl)LtiJ _ LtiJ-
a=1 a=1

Remark that t; — |#;| < 1 and thus after the first step only the non integer amount
of t; has to be distributed. In the while loop starting at line seven in the algorithm,
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each time that one sf with discrete allocation start point z* and discrete allocation
end point 29t for some a = 1,...,¢ is considered and thus increased by one, we
decrease t; by (z**1 —z7) - 1. As the while loop considers the discrete allocations one
after another, t; — [#;| < 1,and z/*! — z! = 1, this also means that each s is at most
once increased by one during that stage, thus

st e {|t], 6]} Yae{1,...0). (2.5)

Let A be the set of discrete allocations where this increase happens. Then at the end
of iteration i we have

4
Z ( a+1 _ a ? _ Z (Za+1 —Za)S? + Z (ZaJrl —ZH)S?

a=1 acA ae{l,.. L}\A
=Y @' - +D+ Y (=28
acA ae{l,..L}\A
_ ZA (Zu+1 _ Zu) 14 {Z ., (Zqul _ Za) LtiJ
ac acd{1,...,

=(t—[t])+1-[t] =t

as claimed. Now consider time i + 1. If no new allocation is added, the statement
stays true as s/ is not altered by the algorithm for any 2 = 1,..., /. Otherwise, at
most one new allocation enters the list of discrete allocation, suppose by splitting
allocation s* . Then we have s“ 1= s?*, and for the new number of discrete alloca-
tions /(i + 1) after iteration i + 1 we get

(i+1) a*—1 0(i+1)
Z ( a+l a)s? — Z (Za—H )S + Z ( a+1l a S;z
a=1 a=1 a=a*+2

+ (Za*+1 _ z“*)s?* + (Za*+2 _ Za*+l)s?*+1

= 1 ) * sy 1
=Y (@ —2)st+ (2" P —2") )st + Z 20— 2%t
=1 a=a*+2

a
=1,

as there is a one to one correspondence of equal summands from this iteration and
the iteration before.

As each discrete allocation s? is given as output by the algorithm with a probabil-
ity of zt1 — 27, we can now calculate

IP(s” is selected) - (s, ...,s})
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2 Non-monetary Access Control Mechanisms

where the last step holds due to equation (2.4).

Further, as each time that a new discrete allocation a* is added after t; was con-
sidered by the algorithm we have that the new value s?* is equal to s? for some other
allocation 4, and using term (2.5), we get

si € {[t:], [til}-

It remains to show that expression (2.3) is true. We prove this by showing the stron-
ger statement

] ]
ti—‘ ifz? < Y t; — \‘ tiJ
i=1 i=1

= 1

- 1

j
a __
i=1

It1- Lo

—

tiJ otherwise

forallj =1,...,kand a = 1,..., ¢ by induction over the length of the sum j. The
statement is clear for j = 1, as s{ = [t;] for all a with z* > t; — |t;|, and s] = [t;]
otherwise, as the discrete allocations corresponding to the latter ones are considered
after line seven in the algorithm. Now suppose the statement is true for j and con-
sider j + 1. Let a* be such that

<~ g |2

i=1 =1

and observe that this is the value which a has in the beginning of the iteration con-
sidering ;1 in the allocation subroutine. We distinguish two cases. If

2+t — |l <1

then

j+1

[ X = [étj + tj11]

and the statement follows as the value of 4 after the iteration considering ;1 in the
allocation subroutine has finished is some a** such that

20 =2+t — [t
and thus we have

[ti1] if 2% <2t <2

[tir1] otherwise,

which leads to the desired result. In the second case, we have

5] = [ %] Lyt +1
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2.3 Selecting More Than Two Agents

and, similarly, the statement follows as the value of a after the iteration considering
the rational share ¢;, 1 in the allocation subroutine has finished is a** such that

Zﬂ** = Za* + tj+1 — Ltj+1J -1
and we have
[ti1] if 2% <zorz® <z¥
[tir1] otherwise,

which finishes the proof. O

Remark 2.20 Remark that this proof, and indeed the allocation subroutine, also
works in the case that

Y ti#k
i=1,..k

Similarly to Aziz et al. [ALM " 16], we remark that the allocation subroutine {y,, ... +,
is simple with an intuitive graphical explanation, can be computed in linear time, is
in expectation equal to the rational allocation shares, returns shares s; for each parti-
tion that are either | t; | or [t;]|, computes only at most k discrete allocations and relies
on a single round of randomization, i. e. one random number. We therefore believe
it is an improvement to the allocation subroutine proposed by Aziz et al. [ALM " 16]
and, as they state, of further interest. In order to see further interest outside of this
work, consider the problem where we are given a number of jobs and a larger num-
ber of people, such that a subset of the people shall be selected which will be as-
signed to the jobs. Further, the people are divided into groups and the assignment
of the jobs should happen in a fair way concerning the representation of groups, that
means proportional to group size. This problem appears amongst others in the Ger-
man Bundestag with its multi party system, the European Parliament with its many
different member countries of different size as well as the US congress with different
states, and in many other cases where committees are selected. It is not only stud-
ied in fields immediately related to this thesis such as operations research, computer
science and economics, but also in political science (see, e. g., [Bir76, You94, Puk14]).

Further, it is of relevance to the impartial mechanisms presented in this work
which are described explicitly by giving selection probabilities for all voting graphs.

Remark 2.21 Given a set of agents with selection probabilities, the allocation sub-
routine returns a set of agents which meet in expectation these selection probabilites.

Having established that the subroutines deliver the desired result, we now ob-
serve the following for Exact Dollar Partition with Permutation (EDPP).

Lemma 2.22  Exact Dollar Partition with Permutation is impartial.

Proof. As Exact Dollar Partition is strategyproof (impartial) by Aziz etal. [ALM "16],
impartiality of Exact Dollar Partition with Permutation follows directly with Theo-
rem 2.19, Lemma 2.16 and Theorem 2.13. To see that, observe that no agent can influ-
ence how many agents are chosen from her partition, as this part of the mechanism
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2 Non-monetary Access Control Mechanisms

works the same way as Exact Dollar Partition [ALM ™ 16] and our different allocation
subroutine does not change the expected number of agents chosen from each parti-
tion by Theorem 2.19. For each agent, her nominations count either only for agents
in other partitions or after she can not be selected in her partition anymore, parallel
to Lemma 2.16 and Theorem 2.13. O

EDPP is designed in order to avoid a particular problem for k-partition when
many agents with a high number of nominations end up being in the same partition.
In contrast to that, in the case of one agent with a very high number of nominations,
several agents without nominations in the same partition and several agents with a
medium high number of nominations in other partition, EDPP might end up having
to select most agents from the partition with only one agent with a very high number
of nominations and thus missing all agents with medium number of nominations.
It is therefore difficult to establish an approximation factor. However, the following
theorem serves to establish how well Exact Dollar Partition with Permutation works
in comparison with other mechanisms.

Theorem 2.23  Exact Dollar Partition with Permutation is impartial and in expectation at
least as good as Exact Dollar Partition by Aziz et al. [ALM " 16].

and divide the agents in k partitions according to Exact Dollar Partition. In expec-
tation, Exact Dollar Partition (EDP) and Exact Dollar Partition with Permutation
(EDPP) choose the same number of agents in each partition. It suffices to show that
for any number ¢ of agents selected in any one partition the number of nominations
they receive is as least as high in EDPP as in EDP. Let {iy,...,i;} be the agents
selected in partition A; by EDP with

APV = YT (0

l‘G{il,..‘,l‘[}

By Theorem 2.19, we can assume that the number of agents selected in partition A;
in EDP and in EDPP is equal. We now consider the vertices selected by EDPP.
When a vertex iy, € {iy,...,iy} is considered by the algorithm, its indegree is at least

. > 5= X
5(V\A1)U(n<lh\{l§h),,lgh)}) (lh) - (SV\AJ(lh)/

where {iy’) P iéh) } are the candidate vertices when ij, is considered. Similarly to
the proof of Theorem 2.18, any vertex that enters the set of candidates after iy, is
considered and makes i leave the set of candidates has at least as many incoming
nominations. Thus,

dEDPP > 5~ i
= hz;qf (V\Aj)u(n<ih\{i§h)n--i2h) }) ( h)
> S p. (i) = d"PF,
h=1,....0 VA4,
which finishes the proof. O
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2.3 Selecting More Than Two Agents

We can therefore extrapolate that conclusions drawn for EDP by comparing it to
other mechanisms hold for EDPP as well.

Aziz et al. [ALM " 16] compare EDP in computational experiments with Vanilla,
Partition, Dollar Raffle, Dollar Partition Raffle and Credible Subset. Vanilla selects
the k agents that receive the highest number of nominations. It is not impartial.
Partition divides agents in k partitions and choses in each partition one agent that
receives most nominations from outside that partition. Dollar Raffle works by having
each agent divide a dollar amongst all other agents. The results are scaled to define a
probability distribution over the agents. Repeatedly, one agent is selected according
to that distribution, until k agents are selected. Dollar Partition Raffle divides agents
in partitions and uses dollar shares to define a probability distribution over the parti-
tions. Using this distribution, it draws repeatedly partitions and selects the best not
yet selected agent from that partition according to nominations from outside that
partition until k agents are selected. Both Dollar Raffle and Dollar Partition Raffle
are not impartial. Credible Subset first defines two groups: T is the set of agents who
receive the k highest nominations, and P is the set of agents who would be in the
set T if they did not give any nominations. Then with probability kk%‘mp', the mecha-
nism selects k agents uniformly at random from T U P, and otherwise it selects none.
Credible Subset is impartial.

They implemented these mechanisms with Python and PREFLIB [MW13] and
tested them using data similar to the data put forward in a pilot by the National
Science Foundation [Nat15], which was used to experiment on new peer review pro-
cesses. It has 131 proposals, each reviewer giving m = 7 reviews, and has a global
acceptance rate of roughly 20 per cent. Creating the data, they assumed that there is
a reference order amongst all proposals. Agents are acting according to that ranking
with a certain error which is described by a dispersion parameter. Each agent ranks
exactly m other agents from the other clusters and assigns Borda scores, that is m
minus rank of that agent, to them. This model corresponds to weighted or multiple
nominations and as each agent casts mzz_ " nominations, it is very regular. The ex-
perimental results for each mechanism are then compared to Vanilla and the Ground
Truth, which is the unchanged reference order.

Aziz et al. [ALM ™ 16] draw the following conclusions. First, as Credible Subset
often returns no agents, it is difficult to compare. When the number of reviews goes
up, the number of times that Credible Subset returns zero agents goes up as well.
When it returns agents though, it performs about as well as Vanilla. EDP strictly
outperforms the other dollar based mechanisms and thus we expect that also EDPP
outperforms those. Further, EDP even outperforms partition, selecting on average
between 0.5% and 5% more top agents. It also has between 3% and 25% lower stan-
dard deviation and selects at least as many top performing agents. In addition, in-
creasing the number of selected agents k increases the advantage that EDP has over
Partition, which may be attributed to the higher probability of having more than
one top agent per partition. Compared to Vanilla, we expect a loss in performance
of about 7% when using the impartial mechanism EDP. This is about the same dif-
ference as EDP shows to Partition, the next best impartial mechanism. Those results
are, by Theorem 2.23, transferable to EDPP.

To conclude, we expect EDPP to select more often top agents, with better worst
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2 Non-monetary Access Control Mechanisms

case performance and lower variance than the so far best known impartial mecha-
nisms, if given a broadly regular input graph. This is a reasonable assumption as
many voting schemes are based on every voter giving a predetermined number of
votes and may make EDPP favorable in practice.

2.4 Upper Bounds on Approximation Factors

We conclude this chapter by giving upper bounds on the performance of impartial
k-selection mechanisms for any value of k, and for both deterministic mechanisms
and randomized mechanisms with and without exactness.

2.4.1 Upper Bounds for Deterministic Mechanisms

By giving in the following a complete characterization of deterministic mecha-
nisms for a total of three agents, we achieve an upper bound for this special case. The
characterization is also interesting in its own right. Holzman and Moulin [HM13]
proved that each deterministic impartial mechanism which selects exactly one agent
out of a set of three agents is either constant, i. e., it selects the same agent for each
input graph, or it is such that the nominations of one fixed agent decide whom of
the other two agents is selected. It is straightforward to derive a similar result for
any deterministic impartial mechanism that selects k € {0,...,3} agents out of a set
of three agents.

Theorem 2.24  For three agents, all deterministic impartial mechanisms which select ex-
actly k € {0,...,3} agents are either constant or of one of the following forms:

1. k = 1 and there is an agent i whose nominations decide whom of the other two agents
is selected.

2. k = 2 and there is an agent i who is selected and whose nominations decide whom of
the other two agents is selected as well.

Proof. Clearly, every mechanism that selects zero agents and every mechanism that
selects three agents is constant. The first non-trivial case, k = 1, is proven by Holz-
man and Moulin [[HM13] in a more general setting. For k = 2, note that exactly one of
the three agents is not selected. Reversing the roles of “being selected” and “not be-
ing selected” does not alter the definition of impartiality. Thus, the characterization
of Holzman an Moulin [FHIM13] applies for this case which implies the result. O

Using this characterization, we proceed to derive the following upper bounds for
impartial selection amongst three agents.

Theorem 2.25  There is no deterministic 1-selection mechanism that is a-optimal on G3 for
any « > 0. Further, for any deterministic 2-selection mechanism which is a-optimal on Gs,
we have o < %

Proof. Consider an arbitrary 1-selection mechanism. By using Theorem 2.24, we see
that there is an agent i who is not selected, but who decides whom of the other agents
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2.4 Upper Bounds on Approximation Factors

are selected. There are always instances where only agent i gets nominations and on
these instances, zero of a possible positive number of nominations are selected.
Further, consider an arbitrary 2-selection mechanism. Again, by Theorem 2.24,
we see that there is an agent i who is always selected and who decides which other
agentis selected. As there are always instances where i does not get any nominations
and the other agents get an equal number of nominations possibly larger than zero,
at most 1/2 of the total nominations in those cases are guaranteed to be achieved,
namely by selecting only one of the remaining two agents. O

The proof technique used here can, in a certain sense, be generalized and lead to
the following bounds. Most interestingly, they imply that the bidirectional permuta-
tion mechanism is the best deterministic mechanism for k = 2.

Theorem 2.26 Consider a deterministic k-selection mechanism that is a-optimal on G,
where k < n. Then a < k%l

Proof. We construct the following instance of the k-selection problem. We consider
a graph G = (V, E) with n vertices, where k + 1 vertices are arranged in a directed
cycle and the remaining vertices do not have any outgoing edges, that is

V={1,...,nfand E={(i,i+1):i=1,... k}U{(k+1,1)}.

Denote by F the set of vertices selected from G by an arbitrary deterministic k-
selection mechanism. Observe that there exists a vertex i € {1,...,k+ 1} \ F in
the directed cycle which is not selected. Let

G'=(V,E\({i} xV))

be the graph where i does not cast any nominations, which means that there are
only k nominations in total on a directed path. Observe that by impartiality, the
mechanism does not select i from G/, as only i changed its nominations and was
not selected earlier. The mechanism thus selects at most k — 1 out of the k vertices
with positive indegree in G’ and, consequently, it cannot be more than (k — 1) /k-
optimal. O

Using the fact that (2 —1)/2 = 1/2 and Theorem 2.6, we obtain the following
corollary.

Corollary 2.27  The bidirectional permutation mechanism is the best deterministic mecha-
nism for k = 2.

2.4.2 Upper Bounds for Randomized Mechanisms

The next result applies to randomized mechanisms without the requirement of
exactness and shows that the mechanism of Figure 2.4 or Algorithm 2.6 for the case
when k = 2 and n = 3 is best possible.
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P1 P1

p2 P2

[ ]
p2

Figure 2.8: Impartial probability assignment for two graphs with n vertices

Theorem 2.28 Consider a k-selection mechanism that is impartial and a-optimal on G,
where k < n. Then

3 ifk=1
3 .
2 ifk=2
X< 1 if
s if3<k=n—1
% otherwise.

Proof. First assume that k < n — 2, and consider for this case the two graphs on n
vertices where k + 2 of the vertices have edges as in Figure 2.8 on the left and the
remaining vertices do not have any incoming or outgoing edges. It is without loss
of generality to assume that randomized k-selection mechanisms are symmetric in
the sense that they assign equal probabilities to vertices that are indistinguishable
up to their index. Further, it is easily verified that any symmetric impartial mecha-
nism must assign probabilities as shown in Figure 2.8. In the graph on the left, the
mechanism chooses a set of vertices with expected overall indegree (k + 1)p1, while
the maximum overall indegree for a set of k vertices is k, so

0 < (k +k1)P1.

In the graph on the right, the mechanism chooses a set of vertices with expected
overall indegree 2p; + 2kp,, while the maximum overall indegree for a set of k ver-
tices is 2k. Thus

2p1 +2kpa 1 p1 2p p1
<Pt Pl <P _hy oA
TS P TPrsg T k K’

where the second inequality holds because
2p1 +kpr <k
by the graph on the right. In summary,

< -~ /f- — V<< —
o mm{ X ,1 X Y

where the second inequality holds because the minimum takes its maximum value
when the two terms are equal.
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P1 p1 P1 P2 P2

°
P1 P2 P2

Figure 2.9: Impartial probability assignment for three graphs with n = 3

Now assume that k = n — 1 and consider the two graphs on n vertices and edges
as shown in Figure 2.8. Any symmetric impartial mechanism must again assign
probabilities as shown. In the graph on the left, the mechanism chooses a set of
vertices with expected overall indegree kp;, while the maximum overall indegree
for a set of k vertices is k, so

IXSpl.

In the graph on the right, the mechanism chooses a set of vertices with expected
overall indegree 2p; + 2(k — 1) p2, while the maximum overall indegree for a set of k
vertices is 2(k — 1) + 1. Thus

2p1+2(k—1)py _ 27 +2(k—1)(hy — %) 2k —2py
= 2k-D)+1 - 2k —1 2%—1 "

where the second inequality holds because
2p1 + (k— 1)}?2 < k
by the graph on the right. In summary,

2k—2p1\ _ 2k
2%—1 [ = 2k+1’

a < min {pl,

where the second inequality holds because the minimum takes its maximum value
when the two terms are equal.

In the special case where k = 2, an additional graph can be used to obtain a
stronger bound. For this, consider situations where three vertices have outgoing
edges as in Figure 2.9 and the remaining n — 3 vertices do not have any outgoing
edges. Note that the first two graphs are the same as those in Figure 2.8 when k = 2.
It is again easily verified that any impartial mechanism must assign probabilities as
shown. Thus

a < min{zgl,zm} <A{p1,3-3p1} < Z,
where the first inequality holds by the first and third graph, the second inequality
because

2pr+p2 <2
by the second graph, and the third inequality because the minimum takes its maxi-

mum value when the two terms are equal.
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P P P1 P2

Figure 2.10: Impartial probability assignment for two graphs with 7 vertices

The bound for k = 1 is easily obtained by considering the special case of the
graphs in Figure 2.8 where two vertices have outgoing edges as shown and the oth-
ers do not have any outgoing edges. Then

o < <1
_P1_2,

where the inequalities hold respectively by the first and second graph. O

2.4.3 Upper Bounds for Exact Randomized Mechanisms

Our last result concerns randomized mechanisms which are exact. Together with
the mechanism of Figure 2.4, it shows a strict separation between randomized mech-
anisms with and without exactness. Our result does not preclude improvements
over the 2-partition mechanism with permutation when n > 3. A comparison with
Theorem 2.28 further suggests that the influence of the exactness constraint may be
limited to cases where almost all vertices are selected.

Theorem 2.29  Consider a k-selection mechanism that is exact, impartial, and a-optimal on
Gy, where k < n. Then

.
" if2<k=n-1
a < 2 if2=k=n-2

7K345k2—6k+12 - o
ek Y3sk=n-2
k+1
k2

otherwise.

Proof. First assume 2 < k = n — 1, and consider the two graphs with n = k + 1 ver-
tices shown in Figure 2.10. By impartiality, the probability of selecting the vertex at
the top left must be equal for both graphs. Any symmetric mechanism assigns equal
probabilities to all vertices in the left graph and equal probabilities to all vertices
with indegree one in the right graph. Denoting the former probability by p; and the
latter by py, exactness implies that

(k+1D)p1=p1+kp2 =k,

SO

k—k/(k+1) &
k Ck+17

and pp =

_ k
PL=1
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P1 P1

[}
p1 p1 / P2
[ ] [ [ J [ ]
[ ] [ ] [ J o
P1 P1 p2 P2
P3 p3
P4 / p2 Ps p3
% .
P . . “ee . e
Ps Ps p7 p7

Figure 2.11: Impartial probability assignment for five graphs with n vertices

and thus
a < kﬂ = —k .
~ k k+1
Now assume that 3 < k = n — 2, and consider the five graphs with five vertices
shown in Figure 2.11. Using similar arguments as above it is easily established that

any symmetric impartial mechanism must assign probabilities as shown. By the first
and second graph,

pr=k/(k+2)and p1 +kp, > k—1,

and thus
k=1 p1 k-1 1 (k—=1)(k+2)—k
PR oo S _ — .
P27 "% T Tk k+2 k(k+2) (2.6)
By the third graph,
po+ps+pst(k—1)ps=k
and thus
Lokt 1
PP TP = P2~ P3 .
_ =N+ -k 1 R+Rt2 1 @7)
= K2(k +2) PT Rekr2) kP
where the inequality holds by equation (2.6). By the fourth and fifth graph,
2p3+ pe > 1and 3pg + (k—1)p7 =k,
and thus
k 3 k 3 1
== < ———01- =— -3). .
e e VLR R | s
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Finally, by the third and fifth graph,

a < min 1 —i—k;l
< kP4 X Ps, p7

B+k2+2 1 1
< 1 - —_— — .
mm{ 2k12) kp3,k_1(6p3+k 3)}, (2.9)

where the second inequality holds by (2.7) and (2.8). The minimum takes its maxi-
mum value when the two terms are equal, i. e. when

3 2
6 1 KB+k>+2 k-3
1P T Rk kot
7k—=1 (K +k+2)(k—1) =k (k+2)(k-3)
k-1~ Kk+2)(k—1) '

Thus
(B +k2+2)(k—1) — kK2 (k+2)(k—3)
s = k(k+2)(7k — 1)
K42k — K — k2 — 2 — kK + k3 + 6k
k(k+2)(7k — 1)
K +5k2+2k—2
k(k+2)(7k — 1)’

and by plugging this into (2.9),

. B+k+2 KB+5k%+2k-2
~ K(k+2)  K(k+2)(7k—1)
7K+ 7K 4+ 14k — k3 — K2 — 2 — k3 — 5k — 2k +2
N K2(k +2)(7k — 1)
_7k®+ 5k — 6k +12
~ k(k+2)(7k—1)

In the special case where 2 = k = n — 2, only a single vertex is chosen with
probability ps in the third graph of Figure 2.11, so by symmetry p, = p3 and py = ps.
Thus

p7=273p6§273(172p3):6p3*1:(6*6774)*1:5*6}94,
and
. . 5
a < min{py, pr} <min{py,5—6ps} < 7

where the last inequality holds because the minimum again takes its maximum
value when the two terms are equal.

The bounds for the remaining two cases, of 1/2 if k = 1 and for all not yet dis-
cussed cases of (k+1)/(k +2), follow directly from Theorem 2.28. O
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2.5 Discussion and Open Problems

This chapter was dedicated to the introduction, description and subsequent anal-
ysis of mechanisms designed to fairly select representatives of a group. By doing
so, we propose a framework to reduce the total number of actors on streets as, e. g.,
impartial mechanisms facilitate collaboration between companies. It also serves as
a tool to settle disagreements when the number of actors wanting to use, e.g., a
certain pathway is higher than its capacity.

The mechanisms we designed are impartial in the sense that the probability of
an agent to be selected does not depend on her outgoing nominations. With the
exception of mechanisms that are asymptotically optimal, when many agents are
selected (see [AFPT11]) or when agents receive many nominations (see [BNV14]),
only very little was previously known about the impartial selection of more than
one agent. Our understanding of 2-selection is now much better, with some room
for improvement in the case of randomized mechanisms. We provide the bidirec-
tional permutation mechanism to select up to two agents, which is 1/2-optimal in the
deterministic case and 2/3-optimal in the randomized case, as well as the random-
ized 2-partition mechanism with permutation to select exactly two agents, which
is 7/12-optimal. The analysis for these mechanisms is tight. As no deterministic ex-
act mechanism can obtain any positive optimization factor, this illustrates that the
relaxation of exactness can benefit both deterministic and randomized mechanisms,
and that randomization can be beneficial independently of exactness.

About k-selection for k > 2, in particular about deterministic mechanisms for
this task, we still know relatively little. This lack of understanding is witnessed by
the fact that the optimal deterministic mechanism selecting up to two agents, one
for each direction of a permutation, does not generalize in any obvious way to the
selection of more than two agents. Nevertheless, we propose a variant of the ran-
domized bidirectional permutation mechanism to select up to k agents for which we
can give a lower bound on the number of nominations of the selected agents which
is dependent on k and Ay. More importantly, we propose a generalized variant of the

. . . . L. 1\ k+1 .
partition mechanism with permutation which is ¢ (1 — (&) - )—opnmal and se-

lects exactly k agents. Our analysis is tight. We further got insights into mechanisms
for mostly regular nomination graphs by introducing the Exact Dollar Partition with
Permutation mechanism, which also provides a simple subroutine to solve the prob-
lem of apportionment.

Looking at the upper bounds which we established, it is apparent that while sub-
stantial progress has been made, there is still space for improvement. We may hope
for stronger techniques to bound the power of randomized mechanism that are uni-
versally impartial in the sense that they can be obtained as a convex combination
of deterministic impartial mechanisms, and to design mechanisms that are impar-
tial but not universally impartial. We saw in Section 2.2.2 by looking at optimal
mechanisms to select two out of three agents that optimal mechanisms in the latter
category may exhibit rather unintuitive nonmonotonicity properties, which in turn
complicates their analysis. Meanwhile, the existence of a near-optimal mechanism
in the limit of many selected agents suggests that the upper rather than the lower
bounds may be correct. However, it is not clear whether the relaxation of exact-
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ness and usage of randomization independently of exactness can be beneficial for all
values of n and k.

Further lines of research might focus on new techniques to improve the k-partition
mechanism and decide how many agents shall be selected from each partition. Also
further generalizations of the bidirectional permutation mechanism could lead to
new insights. Another technique to consider in order to gain insights to find new
impartial mechanisms can be extracted from Figure 2.5 and Algorithm 2.6, where
structural results for the selection probabilities for each agent, regardless of their
outgoing nominations and only considering the structure of the remaining graph
(possibly only of agents which nominate the agent for which we are currently cal-
culating the selection probability), are given. An additional direction to investigate
is as follows. Only those agents My, who receive a maximum number of nomina-
tions m, and those agents Mj, who receive m — 1 nominations and nominate every
agent in M, and iteratively all agents who receive m — z nominations and nominate
every agentin |J M, get assigned positive probability to be selected. Here, no

i=1,..,z—1
agent can change with their nominations whether they are part of this set or not.
However, it is not evident how the probability to be selected amongst those agents

shall be distributed while also maintaining impartiality.
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Chapter 3

Online Planning for Carpools

We consider the online DIAL-A-RIDE problem on the line. Requests appear online over
time on the real line or in Euclidean space and need to be transported by a server to a
specified destination. The server is originally located at the origin.

Both the uncapacitated and the capacitated version, where only a certain number c € IN
of requests can be transported at the same time, as well as the preemptive, where drop-
ping a request if while serving it and finishing it later, and the non-preemptive variant
are considered.

We introduce an preemptive algorithm with improved competitive ratio for the capaci-
tated setting which can also be adapted to work in Euclidean space, if no capacity restric-
tions are given. We improve the lower bound for non-preemptive online DIAL-A-RIDE
on the line and generalize known and give new complexity results for the underlying
offline problem.

Bibliographic Information: The results in this chapter are based on joint work with Yann
Disser, Jan Hackfeld, Christoph Hansknecht, Marten Lipmann, Julie Meifiner, Kevin
Schewior, Miriam Schléter and Leen Stougie which have been published in the Proceed-
ings of the Symposium on Discrete Algorithms (SODA) 2017 [BDH"17].

In the 1970s, carpooling became prominent in the USA, partly due to raised gas
and energy prices. This enthusiasm, however, did not last. After a steady decline
during the 1980 and 1990s, we have recently seen a renewed hope and growth in
carpooling. This is attributed to the positive effect of widely spread internet and
mobile phones, which enable users to easily search for riders or passengers. The
positive effects of carpooling, both personal such as reduction of stress and cost,
as well as the environmental and societal effects, such as reduction of greenhouse
gas emissions and higher sustainability, are undeniable. An increase in the use of
carpools is thus an important step for nowadays societies. For many travellers, easy
access, time sensitive travel and especially flexibility are key. In this chapter, we take
those needs into account and work towards designing carpooling solutions that help
reducing congestion.

First, we give an introduction to the problem in Section 3.1 and explain how
researching it can help to reduce congestion in networks. We continue with an
overview of related work and known results, then we clarify the notation and give
a formal problem definition. In Section 3.2, we provide a competitive online algo-
rithm for the preemptive open online DIAL-A-RIDE on the line and analyze it. The
algorithm as well as the analysis generalizes with the same competitive ratio to the
Euclidean space. We also give a lower bound on the competitive ratio for the non-
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"

preemptive closed case. Further, in Section 3.3 we consider the offline version of the
problem and provide some lower bounds for approximability of DIAL-A-RIDE and
give an upper bound by way of a simple approximation algorithm. In addition, in
Section 3.4 we take a look at the closely related problem TSP on the line, the travel-
ing salesperson problem, which can be interpreted as DIAL-A-RIDE with High Five
requests, that is requests which only have to be visited, but not transported. We
achieve lower bound results for this which also hold for the more general DIAL-A-
RIDE. To sum it up, we discuss our results in Section 3.5.

3.1 Background

Delivery problems and vehicle routing are widely studied problems in Opera-
tions Research and also Computer Science. This type of problems may occur in a
large number of different settings, e.g., robotics and the transportation of goods
and passengers.

In order to reduce congestion in networks, one viable approach is to reduce the
number of agents in that network, for example the number of cars on the streets.
If we want, at the same time, to keep transporting the same amount of people, we
might have to reassign people to different vehicles. This is also known as carpool-
ing or ride sharing. Obviously, picking up, transporting and dropping off a larger
amount of people may result on more complicated driving patterns for the remain-
ing vehicles. In order to reduce the strain on the environment, we should thus find
smart ways for driving those vehicles.

As an example, consider workers in Silicon Valley, many of whom living in San
Francisco and commuting to work in Mountain View. Organizing a carpool, they
need to request a ride to Mountain View, be picked up from home and as the last step
transported down to Mountain View. The picking up may also happen from desig-
nated pick-up places with simple structure, for instance on Market Street, which is
central, a straight line through the center, and easy to reach. As the trip out of San
Francisco to Mountain View can be assumed to always start from the same place,
the question is how to smartly organize the pick up. Doing that, we have to keep
in mind that people give their requests in an online fashion, meaning they are not
always known by the start of the day due to changes in daily routines. The total
time for picking up all workers should be as short as possible, so that the final trip
to Mountain View, the longest leg of the daily commute, can be started as early as
possible.

In this scenario, it thus makes sense to reduce the makespan, i. e. the total time
a vehicle is driving as this correlates with the smallest environmental impact. At
the same time, people wanting to take a vehicle to be transported to different places
might not be known from the start, but might appear over time which largely com-
plicates matters. In positive contrast, we may assume this problem to happen in a
metric environment. There might be special cases where every passenger has to go
to the same place such as their working place, and thus the main problem is just to
find a smart way to pick everyone up, or people have to be transported to different
places. Or one might want to look at the offline setting, and all people tell us their
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pick-up times before as they happen at the same time each day, because daily rou-
tines do not change as much. Taking all these requirements into consideration, we
can formulate the following mathematical problem.

3.1.1 Formulating the Mathematical Problem

In the online dial-a-ride problem (referred to as DIAL-A-RIDE) on the line, we
consider a server initially located at the origin of the real line that has to serve re-
quests that appear over time. The server has unit speed and serves requests (in any
order) by moving to the position of the corresponding request at some time after its
release. Each request specifies a source and destination that need to be visited by
the server in this order. If the capacity of the server is finite, it limits the number of
requests that can be transported simultaneously. Our objective in online DIAL-A-
RIDE on the line is to minimize the makespan, i. e., the time until all requests have
been served.

As we see, the requests arrive over time and an online algorithms has to decide
about the movement of the server while only knowing the requests that are available
already. In particular, the number of requests n can be arbitrary and is unknown in
advance. A standard performance measure for an online algorithm in this setting is
the competitive ratio, i. e. the best bound on the ratio of the makespan of the online
algorithm to the makespan of the optimal offline solution that holds for any instance.

In the closed variant of the problem, the server needs to return to the origin af-
ter serving all requests, while the open variant has no such requirement. Moreover,
we distinguish servers with a bounded capacity ¢ > 1, i.e.a server that can only
transport at most ¢ objects at the same time, and servers with unbounded capacity.
For bounded capacity, we distinguish between the preemptive version, where a server
can drop unfinished requests off at any time at the server’s current position and pick
them up again later to finish the request, and the non-preemptive version, where a re-
quest that has been started to be served has to be finished before the server can pick
up new requests.

The online DIAL-A-RIDE problem on the line arises, e. g., when controlling indus-
trial or personal elevators, vertical or horizontal delivery systems or robotic arms for
depositing material.

A special case of online DIAL-A-RIDE is the online Traveling Salesperson Prob-
lem (referred to as TSP), where source and destination of each request are equal. The
main application we see is for collecting people from one area to later go to the same
working place. Other examples include the collection of objects from mass storage
shelves or robotic arms with restricted degrees of freedom for welding and screwing.

In order to get a better grasp on this problem, it is helpful to clarify differences
to related problems. Online DIAL-A-RIDE is a natural online problem similar to
the classical k-server problem (see [MMS90]). In the latter, source and destination
are equal and the order in which requests need to be served is prescribed, and the
problem thus becomes trivial on the line for k = 1 server. In contrast, online DIAL-
A-RIDE on the line is a non-trivial problem that arises in 1-dimensional collection
and delivery problems.
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Related are also the online DIAL-A-RIDE and online TSP where the objectives are
different. For example, instead of minimizing the makespan, i. e. the time until all
requests are served, one can minimize the average flow time, i. e. the average time
after each request is served. Further, one could minimize the maximum flow time,
i.e. the maximum time after a request is served or minimize the weighted sum of
completion times. In contrast, we believe that minimizing the makespan is a good
objective for measuring the system efficiency.

While both online DIAL-A-RIDE and online TSP on the line are among the most
natural online problems and have been studied extensively over the last two decades
[AKRO00, AFL ™94, AFL 95, AFL " 01,BKdPS01,FS01,JW08,Kru01,KdPPS03,KLL*02],
no satisfactory (tight) analysis was known for either problem in terms of competitive
ratios. We narrow the gaps for online DIAL-A-RIDE on the line by giving improved
bounds. In addition to online results, we study the computational complexity of the
underlying offline problems. Though we will call them the offline DIAL-A-RIDE, we
actually mean the version with release times.

For ease of reference, we summarize notation and problem definition in the fol-
lowing paragraph.

Notation and Formal Problem Definition We consider a server that moves along the
real line with (at most) unit speed. We let p; denote the position of the server at
time t > 0 and assume (without loss of generality) that pg = 0. With this notation,
the speed limitation of the server can equivalently be expressed as |p; — py| < [t — ']
forallt, > 0. A series of requests 07, ..., 0y arrives over time with o; = (a;,b;; t;),
where t; > 0 denotes the release time of the request and 4;, b; € R denote its source
and target position, respectively. For TSP, we have a; = b; and write 0; = (a;;t;). If
not stated otherwise, we assume t; < t, < ... < t,. Moreover, we assume without
loss of generality that t; > |a;| holds, as the server can not reach o; before time |a;|
and it only helps the algorithm to know a request earlier. We further use the nota-
tion pY 1= max;_1 . ,{a;, b;, 0} to denote the upmost point that needs to be visited
by the server, and similarly pD :=min;—y__,{a;, b;, 0} for the downmost point. Here
and throughout we refer to the negative direction of the real line as down and the
positive direction as up.

In both DIAL-A-RIDE and TSP on the line, all requests need to be served. For
DIAL-A-RIDE, the server may collect request o; at time t > f; if p; = a;. In the
preemptive DIAL-A-RIDE problem, the server can drop off any request it is carrying
at its current location at any time. If request o; is dropped off at point p at time ¢, we
consider it to be modified to the new request (p, b;;t). In the non-preemptive DIAL-
A-RIDE problem, the server may only drop off a request at its target location. We
consider a request served if it is ever dropped off at its target location. For TSP, we
consider a request served if p; = a; for some time ¢ > ;.

If the server has finite capacity ¢ > 1, it can carry at most c requests at any time.
We assume that no time is needed for picking up and dropping off requests, so that
the server can pick up and drop off any number of requests at the same time, as long
as its capacity is not exceeded.

We refer to a valid trajectory of the server together with the description of when
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it picks up and drops requests as a tour T. If the tour ends at pg = 0, we call it closed,
otherwise it is open. We denote the makespan, which is the time when all requests
are served, of the tour T by |T|. The objective in the open (closed) version of both
DIAL-A-RIDE and TSP is to find an open (closed) tour T that serves all requests and
minimizes |T|.

In the offline setting, we assume all requests to be known from the start. We
let TOPT denote an optimal offline tour. In the online setting, we assume that re-
quest 0; is revealed at its release time ¢;, at which point the tour of the server until
time ¢; must already have been fixed irrevocably. We measure the quality of an online
algorithm via its competitive ratio, i. e., the maximum over all sequences of requests
of the ratio between the makespan of the tour it produces and the makespan of the
optimal tour | TO"|. Tt is worth mentioning that if the total number of requests were
known from the beginning, the server could just wait in the origin until the last re-
quest arrives and then start to follow an optimal tour. As an optimal tour is at least
as long as the time which passes until the last request appears, this approach would
result in a tour at most twice as long as any optimal offline tour. We thus assume the
total number of requests n to be unknown.

In order to describe the trajectory of the server, we use the notation “move(a)” for
the tour that moves the server from its current position to the point 2 € R with unit
speed and the notation “waituntil(s)” for the tour that keeps the server stationary
until time s. We use the operator @ to concatenate tours. For example, if Ty is a tour
of the server that ends at time t( at position py,, then Ty @ move(a) describes the
tour that ends at time ty + |a — py,|, is identical to the tour Tj until time ¢y and in
addition satisfies p; = py, + (a — py, ) (t — to) for tg < t < to+ |a — py,|. Similarly,
the tour Ty @ waituntil(s) ends at time max{tg, s}, is identical to the tour T until
time t and that satisfies p;, = p; for all s € [to,s]. For TSP on the line, we do not
explicitly specify when a request is served, but we assume that the server serves a
request whenever possible, i. e., whenever the server passes the location of a request
that is already released and not yet served.

Note that any instance on the real line can be approximated with arbitrary pre-
cision (e.g., in terms of makespan, competitive ratio) by an instance with a finite
integral number of points. This can be done by scaling and rounding the requests to
make them integral and assuming that the server never moves above pU or below pP
and thus not outside of so called extreme requests, meaning those who have start or
destination equal to pY or pP.

3.1.2 Related Work and Previous Results

There is a multitude of variants of the problem. In the general single server DIAL-
A-RIDE problem, a single server moves in a metric space with at most unit speed
and has to transport objects from different sources to different destinations. Further,
the requests for the objects to be transported can have release dates or deadlines, the
server may be allowed to drop objects at intermediate locations (preemption) and
the server can have a limited capacity, i.e.a bound on the number of objects that
can be transported at the same time. Moreover, one can require the server to return
to the starting position after serving all requests (closed variant) or make no such
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requirement (open variant).

For the the closed online DIAL-A-RIDE problem without preemption, Feuerstein
and Stougie [FS01] show a lower bound of two for the competitive ratio in metric
spaces, and present an algorithm with a best-possible competitive ratio of two for the
case that the server has infinite capacity. Ascheuer et al. [AKR00] analyze different
algorithms for the same setting and present a 2-competitive algorithm for any finite
capacity ¢ > 1. Krumke [Kru01] gives an upper bound of 3.41 for the open non-
preemptive variant.

For minimizing the sum of completion times instead of the makespan, Feuerstein
and Stougie [FS01] further show a lower bound of three for a server with unit capac-
ity and a lower bound of 2.41 independent of the capacity. Moreover, they provide
a 15-competitive algorithm for the real line and unlimited capacity. For the same ob-
jective function, Krumke et al. [KdPPS03] present an algorithm with a competitive
ratio of 5.83 for a server with unit capacity in an arbitrary metric space.

A single server dial-a-ride problem with coinciding source and destination and
makespan objective is the (metric) traveling salesperson problem. For the online TSP
problem in general metric spaces, Ausiello et al. [AFL"01] show a lower bound of
two on the competitive ratio for the open version and a 1.64 lower bound for the
closed version, both bounds being achieved on the real line. For the open online
TSP, they present a 2.5-competitive algorithm, and for the closed version they give
a 2-competitive algorithm. Jaillet and Wagner [JW08] give 2-competitive algorithms
for the closed version that can additionally deal with precedence constraints or mul-
tiple servers. Blom et al. [BKdPS01] consider the closed online TSP problem on the
non-negative part of the real line and present a best possible algorithm with compet-
itive ratio 1.5. They also study a “fair” setting where the optimum does not travel
outside the convex hull of the known requests, and they derive an algorithm for
the real half-line with a better competitive ratio of 1.28 for this setting. Krumke et
al. [KLL"02] show that there cannot be a competitive algorithm for open online TSP
with the objective of minimizing the maximum flow time instead of minimizing the
makespan. For the real line they define a fair setting and give a competitive algo-
rithm for this setting.

Ausiello et al. [AFL"01] give a competitive ratio of (9 + v/17) /8 = 1.64 for closed
variant of online TSP on the line and provide a 1.75-competitive algorithm. Further,
for the open variant of online TSP on the line, they [AFL " 01] provide a lower bound
on the competitive ratio of two and give a 2.33-competitive algorithm.

If we replace the objective function in the traveling salesperson problem with the
weighted sum of completion times, then the problem is known as the traveling re-
pairperson problem. Feuerstein and Stougie [FS01] show a lower bound of 5.83 on the
best-possible competitive ratio for this problem and provide a 9-competitive algo-
rithm for the real line. Krumke et al. [KdPPS03] give a best-possible online algorithm
with competitive ratio 5.83 for general metric spaces.

The offline version of the TSP and DIAL-A-RIDE problem is a well-studied NP-
hard problem (e. g., see [LLRKSSE5]).

For DIAL-A-RIDE with capacity ¢ = 2 without preemption, Guan [Gua98] proves
NP-hardness by a reduction to a special variant of the 3SAT problem. Interestingly
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this proof does not employ any release dates. In the reduction this satisfiability prob-
lem is transformed to an instance of the closed offline DIAL-A-RIDE problem on the
line with capacity ¢ = 2. We derive that the open offline DIAL-A-RIDE problem on
the line with capacity ¢ = 2 is also NP-hard.

Proposition 3.1  The open DIAL-A-RIDE problem on the line with capacity 2 is NP-hard.

Proof. Guan [Gua98] shows in his reduction to a variant 3SAT that the clause set is
satisfiable if and only if there is a closed schedule to the DIAL-A-RIDE problem on
the line, in which the server is loaded to full capacity at any time and each request
is transported on the direct path from their source to their destination. This tour is
a lower bound on the length of any feasible DIAL-A-RIDE schedule independent of
its final destination. Hence, the clause set is satisfiable if and only if there is an open
schedule to the DIAL-A-RIDE problem, which the server is loaded to full capacity at
any time and each request is transported on the direct path from their source to their
destination. O

As this is a special case of metric DIAL-A-RIDE, this of course generalizes to the
open offline DIAL-A-RIDE problem in metric spaces.

In [KLL702] Krumke presents a 3-approximation algorithm for the DIAL-A-RIDE
problem on the line with capacity ¢ > 1, without release dates, and with the starting
point on one of the end points of the line. The offline DIAL-A-RIDE problem on the
line with unbounded capacity is open. It is known that the problem is easy without
release dates [dPLST04]. It becomes hard if each request comes with a deadline in
addition to its release time [15192].

There are many offline variants of the DIAL-A-RIDE problem, differing in capac-
ities, the underlying metric space, release times and deadlines, open versus closed
tours, and in whether preemption is allowed (e. g., see [dPLS " 04]). The special case
without release times and unit capacity is known as the stacker crane problem. Attalah
and Kosaraju [AK88] present a polynomial algorithm for the closed, non-preemptive
stacker crane problem on the real line. Frederickson and Guan [FG93] show that this
problem is NP-complete on trees.

Guan [Gua98] shows that the DIAL-A-RIDE problem without release times re-
mains easy on the line with capacities larger than one if preemption is allowed,
and that it remains hard on trees. Finally, Charikar and Raghavachari [CR98] give
a O(y/clog nloglog n)-approximation for the closed DIAL-A-RIDE problem in met-
ric spaces with n points and without preemption. In the same paper they claim a 2-
approximation for the problem on the line, however this result seems to be incorrect
(personal communication).

Afrati et al. [ACP " 86] show that the offline traveling repairperson problem is NP-
hard in general, but can be solved in time O(n?) for the real line and unweighted
sum of completion times objective.

Further, the version where more than one server is used to serve requests has been
studied. Optimizing the makespan, Gortz, Nagarajan and Ravi [GNR15] present
an O(log*n)-approximation algorithm for preemptive multi-vehilce DIAL-A-RIDE
and an O(logt)-approximation for the case without capacity constraints. Here, ¢ is
the number of distinct servers.
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3.1.3 An Overview of Our Results

In the following, we outline our results and put them in context of former work.

We provide a simple preemptive 2.41-competitive algorithm for the online DIAL-
A-RIDE problem on the line and in Euclidean space, which improves a (non-preemp-
tive) 2 + V2 ~ 3.41-competitive algorithm by Krumke [Kru0l]. For the closed
DIAL-A-RIDE variant, the lower bound of 1.64 by Ausiello et al. [AFL"01] was im-
proved for one server with unit capacity without preemption to 1.71 by Ascheuer et
al. [AKROO]. We improve this bound further to 1.75 for any finite capacity ¢ > 1. In
addition, we give lower bounds for preemptive and non-preemptive online DIAL-
A-RIDE on the line, in particular a lower bound of 2.04 which is the first bound
greater than two for the open variant of the problem.

Regarding offline TSP on the line with release times, Psaraftis et al. [PSMK90]
showed a dynamic program that solves the open variant in quadratic time. We re-
fute their claim that all optimal closed tours have a very simple structure with a
counterexample which generalizes to DIAL-A-RIDE, and we adapt their algorithm to
find an optimal closed tour in quadratic time. For the non-preemptive offline DIAL-
A-RIDE problem on the line, results have previously been obtained for the closed
variant without release times. For capacity ¢ = 1, Gilmore and Gomory [GG64] and
Atallah and Kosaraju [AK88] gave polynomial time algorithms, and Guan [Gua98]
proved hardness for the case c = 2. We show that both the open and closed variant
of the problem are NP-hard for any capacity ¢ > 2, even without release times. Ad-
ditionally, we show that the case with release times and any restricted capacity ¢ > 1
is NP-hard.

3.2 Algorithms for Online Dial-A-Ride

In this section we give a (1 + v/2)-competitive algorithm for preemptive online
DIAL-A-RIDE on the line. The algorithm works in both the capacitated and the
uncapacitated case and also in both closed and open version. The analysis of the
algorithm can also be adapted to work for the uncapacitated case not only on the line,
but in a metric space with Euclidean distance. To complement this upper bound,
we provide a lower bound of 1.75 on any competitive ratio for the non-preemptive
closed DIAL-A-RIDE on the line.

3.2.1 Online Dial-A-Ride on the Line

Let TSOPT denote the optimal tour over a set of requests S, where the server starts
at position pg = 0 in the origin, and let R; denote the set of released but not yet
delivered requests at a time .

Our algorithm works as follows: The server stays at position pg until the first re-
quest arrives. With every new arriving request, the server stops its current tour and
returns to po, or stays at py if it is already at the origin. The server starts following
the tour TI%PT attime v/2- |T1% "T|. By “unload” we denote the operation of unloading
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Algorithm 3.1: Online Algorithm for the Preemptive DIAL-A-RIDE Problem with Fixed
Capacity c > 0

1 This function is called upon receiving a new request

Input: New request o, current position p;, unserved requests Ry

Output: Tour starting at p; and serving all requests in R;
2 return unload @ move(py) > drop requests off and move to origin
3 @ waituntil(v/2 - |T19[PTD b Tlgm > serve unserved requests

all the requests which the server is currently carrying at the current position. That
means, each such request (4, b; ') is changed to (p¢, b; ). A formal description of the
algorithm can be found in Algorithm 3.1.

In order to prove that the algorithm returns the desired result, we most impor-
tantly confirm that the server can return to the origin in time whenever a new re-
quest is released. To show that, we first need a few useful properties which are
summarized in the following lemma.

Lemma 3.2 Without loss of generality, the following holds:

1. If TOP visits position p # po, then there is a request with source or destination q
such that

q9—Po >1.
p—Po

2. Let RY be the requests in R; with their original sources and destinations (before being
moved). Then,

ITRFT| < |TI??PT\. (3.1)

Proof. Let pP and pY be the minimum and maximum values, respectively, among
all source and destinations of requests and py. We can replace all subtours of TO"T
beyond [pP, pV] by waiting at pP or pY, without increasing the overall length of the
tour as no requests will be picked up or dropped off during such a subtour. Hence,
the first property holds.

For the second property, it is sufficient to show that our algorithm never moves
requests away from their destination, since then TI%P T is a valid tour also for R;,

and hence inequality (3.1) holds. To see this, consider TSOPT for an arbitrary set of
requests S. Consider the path that a request o = (a,b;t) € S is taking in T$"" and
replace all subpaths that increase ¢’s distance to b by unloading the request o and
leaving it at its current position, and having it picked up again at the next pass of
the server which moves in direction of ¢’s destination. This does not increase the
length of the tour, and we obtain that, without loss of generality as this argument
holds for every request in S, we can assume that TO'T never moves requests away
from their destination. Since our algorithm consists of repeated application of tours
of the form Tg T, the same holds for our algorithm. O

In the following, we denote the i-th request by 0; = (a;, b;; t;) and slightly abuse
notation to let R; := Ry,.
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Figure 3.1: Sketch of the contradiction for the proof of Theorem 3.3

Theorem 3.3 Algorithm 3.1 is (14 +/2) = 2.41-competitive for the preemptive open and
closed online DIAL-A-RIDE problem on the line with capacity ¢ > 1.

Proof. Let |TOF"| be the length of an optimal tour and |TA'¢| be the length of the
tour produced by our Algorithm 3.1. Assume that the server can always return
to po before time /2 - |TI%PT| upon receiving a new request ;. Then, after the last

request 0y, is received, the server stays in py until time V2. |T1%PT\ and then finishes
all requests within time |TI%PT |. Thus we have in total

ALG OrT OPT
TAY] < V2 TR + TR, .
Using the second property of Lemma 3.2, we have
TR < TG < 7O,
and the algorithm is (1 + v/2)-competitive, as claimed.

It remains to show that the server can always return to pg before time /2 - |T1%PT|
when receiving a new request ¢; at time t;. We prove this by induction over the
number i of released requests. Clearly, the statement is true if ; = O ori = 1, as the
server does not leave pg before time ;. Now consider the request o; withi > 1,¢; > 0.

Please refer also to Figure 3.1. As an optimal tour TEPT over the set of requests R;
cannot finish before all requests are released, we have

ITR™| > t;.
For the sake of contradiction, suppose that the server cannot return to py before time
V2| TR > V2 - 1.
This implies that the distance from p; to py is at least
lpi — pol > V2t — t;. (3.2)
In order to reach position p; at time t;, the server cannot have been at py after time

ti— (V21— ;) =2t = V2 1,
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Algorithm 3.2: Online Algorithm for Preemptive Uncapacitated Open or Closed DIAL-
A-RIDE.
1 This function is called upon receiving a new request

Input: New request o, current position p;, unserved requests R;

Output: Tour starting at p; and serving all requests in R;
2 return move(pg) @ waituntil(v/2 - \TEPTU ® Tg”

Consider the last request ;_; that was released before o; at time ¢;_;. The tour that
the server was following until time f; was thus the tour serving R;_1. By induction,
the server was at py at time v/2 - |T1?Ij |, and from before we know that it cannot have

been at py after time 2¢; — V2 - t;. We thus have
V2ITRM| < 2t — V2tj, or TR < V2 £ — 1. (3.3)

Using the first property of Lemma 3.2, there must have been a request in R;_1 with
source or destination at distance at least |p; — po| from pg. This means the optimal
tour TR ", which starts at po, must have length at least |p; — po| to serve this request.

With in’equality (3.2), we thus have
TR > [pi —pol > V2-ti—t;, (3.4)
a contradiction to inequality (3.3). O

Note that Algorithm 3.1 and its analysis in Theorem 3.3 does not rely on the re-
stricted capacity of the server. Thus, the same result holds for the uncapacitated
version of the problem. Note that for this case we do not need to specify whether the
problem is preemptive or non-preemptive, as the server has no capacity constraints
and thus dropping a request off before having finished to serve it does not pose an
advantage.

Corollary 3.4 Algorithm 3.1 is (14 /2) ~ 2.41-competitive for the open and closed online
DIAL-A-RIDE problem on the line without capacity constraints.

3.2.2 Online Dial-A-Ride in the Euclidean Space

In this subsection, we prove that a slightly modified version of Algorithm 3.1
works in the uncapacitated case, even if the server does not move on a line, but in
the Euclidean space M with Euclidean metric, that means

lp—all=+(p—a)-(p—a),

where - denotes the dot product between two vectors. The server moves again with
unit speed, thatis ||p; — py|| < ||t —t'|| forallt, ' > 0. A series of requests 07, . . ., 0y
arrives over time with 0; = (a;,b;;t;), where t; > 0 denotes the release time of the
request and a;,b; € M denote its source and destination position, respectively. The
other preconditions remain the same.

The algorithm differs from Algorithm 3.1 in that currently loaded requests are
not unloaded when a new request appears. A formal description can be found in
Algorithm 3.2.

97



3 Online Planning for Carpools

We denote by o (t) = (aF(t), bE(t);t£(t)) the most extreme request at time t, that
is the unserved request which has either start or destination position farthest from
the origin pg. In particular, that means

lla= )11 = [la (B[], [la®(B)]] = |16 ()] ox |[B5()]| = [la'B)]] 165 (B)]] = [1B'(8)]]
for all unserved requests ¢’ at time t.

The following lemma is analogous to Lemma 3.2.
Lemma 3.5 Without loss of generality, the following holds for Algorithm 3.2:

1. If TO visits position p # po at time t, then

max { ||a®(t) — pol|, [[b5(t) — pol|}
[P = poll

> 1.

2. Let R? be the requests in R; with their original sources and destinations (before being
moved). Then,

|TI€PT‘ < |TI%PT .
1

Proof. As TOT is optimal, we can assume that the server always moves along a
shortest trajectory between two endpoints, i. e., sources or destinations, of unserved
requests. This is without loss of generality as all other parts of the tour can be re-
placed, without increase of the overall length of the tour, by waiting at an endpoint
before taking the direct connection between endpoints. Let p* and p? be those end-
points at time ¢ and let without loss of generality

1P = poll = [1p¥ = poll.
Consider the server’s position p; at time ¢. Since we are operating in the Euclidean
spance, we can express p; as a linear combination of p¥ and p¢. We obtain
[1pe = poll = llxpi + (1 = x)p — poll = |lxpi —xpo + (1 = x)pf — (1= x)pol|
< x|lpt = poll + (1 = 0)llpf — pol|
< x[[pf = poll + (1 = 2)llpf = pol| = [Ipf = poll
< max {[a®(t) — poll, 15 (£) = poll},
which concludes the first part of the proof.
For the second property, observe that, as the capacity of the server is unbounded,
each request that has been picked up at their source but not delivered to their des-

tination, may be carried by the server until its destination is reached. Thus, the
tour TI%PT is also valid for R;, and hence the second property is fulfilled. O

Theorem 3.6 Algorithm 3.2 is (1 + +/2) ~ 2.41-competitive for the uncapacitated open or
closed online DIAL-A-RIDE problem in the Euclidean space with Euclidean metric.

Proof. This proof is identical to the proof of Theorem 3.3 if we replace Lemma 3.2 by
Lemma 3.5 and | - | by || - || throughout. Note that non-preemptiveness is not needed
in this case, as the server has infinite capacity and hence can keep all requests which
it has started to serve until it finishes serving them. O
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[
T

2

Figure 3.2: Sketch of an instance for Remark 3.7, which proves that it is important for Algo-
rithm 3.2 to have a server without capacity constraints. Requests are in blue and optimal tours
in red. On the right, even though one request is actually shorter, the optimal tour is longer.

We conclude this section with three remarks concerning the prerequisites for Al-
gorithm 3.2 to work and its generalizations.

Remark 3.7 Note that Algorithm 3.1 relies on the observation in Lemma 3.2 that we
can drop off requests anywhere closer to their destinations without increasing the
length of an optimum tour. For Euclidean space this is no longer true, as illustrated
by the following example in IR2. Please refer also to Figure 3.2. Let

o1 = ((1,2),(1,0);0), o= ((0,0),(1,2);t), o3=((1,2),(21);t),
o1 = ((2,1),(1,0);t), 05 =((1,0),(0,0);¢)

for some t > 0. Clearly, waiting until time f and then following the trajectory
(0,0) = (1,2) = (2,1) = (1,0) — (0,0)

yields an optimum (open or closed) tour of length ¢ + /5 +2v/2 + 1 ~ t + 6.06 for
the original set of requests. Now assume that we started to serve o7 at some point
before t and dropped it of at (1,1), i. e., along the shortest connection between (1,2)
and (1,0), thus modifying oy to

o1 = ((11),(1,0);0).
This increases the length of an optimum tour starting at time ¢, e. g.,
(0,0) = (1,2) = (2,1) = (1,1) — (1,0) — (0,0)
to t+v5+v2+3 ~ t + 6.65. Algorithm 3.2 avoids this issue by never dropping

off requests before reaching their destinations.

Remark 3.8 Algorithm 3.2 does indeed work in general metric spaces. To see this,
remark that when we run Algorithm 3.2, the server always runs an optimal tour
for a given set of requests. Thus, when the server is at a point p;, the optimal tour
for this given set of requests which the server is following currently is at least of
length ||p; — po|| and hence the first part of inequality (3.4) holds in all metric spaces.
This also serves as alternative proof for Theorem 3.6.
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Remark 3.9 It is possible to adapt Algorithm 3.2 also for the capacitated case or
the non-preemptive case, for both the open and the closed version, both on the line
and in metric spaces. In these cases, the server finishes its loaded requests when
it receives a new request before returning to the origin; this costs at most a time of
|T1%PT\. The server then starts a new tour at time (14 v/2) - |T1%PT|. In total, this
approach reaches a competitive ratio of 2 + v/2 & 3.41 which matches the previous
upper bound of Krumke [Kru01].

3.2.3 A Lower Bound on the Competitive Ratio

In this subsection, we provide a lower bound for non-preemptive closed DIAL-A-
RIDE on the line that improves the lower bound of 1.70 by Ascheuer et al. [AKROO].

Theorem 3.10  No algorithm for the non-preemptive closed DIAL-A-RIDE problem on the
line with fixed capacity ¢ > 1 has competitive ratio lower than p = 1.75.

Proof. Consider any p-competitive online algorithm ALG. We define an instance
with three types of requests. There is one simple request oy = (0,0;1), ¢ requests of
type (f{ = (t,0;t) and c requests of type cré = (—t,0;t), wherei=1,...,cand t > 1
is the time when ALG serves 0. Clearly, an optimal tour which knows all requests
from the beginning can first serve requests o, then immediately oy and last . This
tour takes a time of 4. Now look at an online algorithm ALG. First, assume that
ALG serves the c requests 0'11,. .., 07 not together in one tour from ¢ to 0. Then ALG
can pick up any o7 at the earliest at time 2t and have them delivered at 3t. But ALG
has to return to t to pick up the remaining requests o it did not bring to 0 in the
first trip which takes another 2f of time and also has to get requests o5. In total, we
have |TOPT| = 4t and | TAC| > 7t in this case and hence obtain

|TALG| - 7

o 2 1 (3.5)

An analogous argument shows that ALG has to take the c requests 03, ...,05 to-
gether to the origin or we have again inequality (3.5) fulfilled.

Thus, from now on we assume that ALG picks up all c requests (T]-l, e, tTj” together
before going to the origin forj = 1,2. Lett/ > 2t be the first time when ALG picks up
all c requests ¢ or all ¢ requests . We then have |TO""| = 4t and |TAG| > ¢/ + 3t.

If t > 4t, then

as claimed.

Otherwise, without loss of generality, we assume that the ¢ requests ¢! are picked
up before the ¢ requests ¢}. Furthermore, we introduce the additionally high five
request 03 = (t,t;t' +1/7). This new request appears while ALG is serving the ¢
requests that have to be transported from ¢ to the origin. As we have capacity con-
straint ¢ and do not allow preemption, those c requests have to be finished serving.
Only after they are finished and the server is at the origin, the new high five request
and requests ¢} can be served which takes time 2t each, thus |TAY¢| > ' 4 5¢. Please
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Figure 3.3: Construction of a DIAL-A-RIDE instance for Theorem 3.10. Note that the bold
arrows with a double tip represents the c identical requests ¢7 and ¢;. A possible tour for the
algorithm is depicted in red, the respective optimal tour for those requests in blue.

refer also to Figure 3.3. We now differentiate between two cases. If ' < 3t —1/7,
we have |TO"T| = 4t as the new request appears at time 3f and can immediately be
served by TO"T. By using t' > 2t, we get

ALG /
[TAS] ¥ +5t
‘TOPT| 4+

v

7
P 2 Z/
as claimed. Now if ' > 3t —1/7, then |TOFT| = ' +1/7 + t as, after first serving o}
and the new request, TO'T still has to return to the origin and by doing so finish
serving the c requests c7. But then

t' + 5t
p*t’+l/7+t'

This is monotonically decreasing in t' for t, ' > 1. Since we have ' < 4t from above,
we get

9

p= 5+1/7:

1.75,

which concludes the proof. O

3.3 Some Results for the Offline Setting

As a number of online algorithms do, our Algorithm 3.1 relies on an offline al-
gorithm to run. It is thus important consider the computational difficulty of this
subproblem.

In the following chapter, we look at some results for the hardness of the offline
problems. Remark that though we do call them offline, we indeed consider the ver-
sion with release times. Those release times are known from the beginning.

We will first look at hardness results for DIAL-A-RIDE on the line. Further, we
add results for TSP on the line which generalize to DIAL-A-RIDE, as TSP is a special
case of this. We finish this chapter by giving a simple approximation algorithm for
offline DIAL-A-RIDE on the line.
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Figure 3.4: Construction of a DIAL-A-RIDE instance for Theorem 3.12. Note that each dis-
played request actually stands for ¢ identical requests. The bold arrow with a double tip even
represents the c - k identical requests ¢;.

3.3.1 Hardness of Offline Dial-a-Ride

For the non-preemptive offline DIAL-A-RIDE problem on the line we show that the
open and closed variant with release times are NP-hard. We reduce from the Cir-
cular Arc Coloring problem (see, e. g., [G]79]), which is also used in a reduction for
minimizing the sum of completion times of DIAL-A-RIDE on the line with capac-
ity ¢ =1 (see [dPLS ™ 04]).

We start by stating the Circular Arc Coloring decision problem.

Definition 3.11 (Circular Arc Coloring) Let Z be a family of intervals on a circle, and
let k € Z~ be a fixed parameter. The decision problem Circular Arc Coloring is to decide
if a coloring of all intervals I € I with k colors exists, such that no two intervals of the same
color overlap.

Using this, we can now prove a hardness result for offline DIAL-A-RIDE.

Theorem 3.12  The non-preemptive closed offline DIAL-A-RIDE problem on the line with
fixed capacity ¢ > 1is NP-complete.

Proof. The problem is in NP, as we can decide whether or not a server tour completes
before a fixed deadline in polynomial time. To proof NP-completeness, we give a
reduction from an NP-complete problem. Let an instance of the circular arc coloring
problem be given by a circle with circumference X, a set Z of intervals I = [/,r) on
the circle with 4,7 € [0,X), and coloring number k. Without loss of generality we
can assume that there are exactly k intervals IY, ..., I} overlapping zero. If there are
fewer, we can add intervals [0, ¢) to the instance for sufficiently small e. If there are
more, the instance is trivial as each coloring with only k colors will color at least two
of the intervals which overlap zero with the same color by pigeonhole principle. We
define a set of requests to construct a DIAL-A-RIDE problem. The construction of
requests with their start and end position is also displayed in Figure 3.4. For each
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interval I]Q = [¢j,rj),1 < j < k, we create 2 - ¢ requests in the following way. We
introduce c requests

oj = (a;, b;;t;) = (0,7;;2(j — 1)X)
and ¢ requests
Hj= (Ej, X;2(j —1)X).
For any other interval I = [, r) define c requests
p=(£10)
and furthermore define c - k requests
¢i = (0,X;0)

fori = {1,..., k}. The intuition is that we cut the circle open at point zero and hang
it up, such that each interval not crossing zero is equal to c requests appearing at
time zero, requests which are going from their lower part of their interval to their
upper part. Moreover, intervals crossing zero which are “cut open” appear later and
as two times ¢ requests, the first ¢ covering the intervals before, the others the one
after zero.

Any feasible server tour for this instance with start position in the origin travels at
least k times from the origin at zero to X and back to serve the ¢ - k requests ¢;. Hence,
any feasible tour has length at least 2kX. A tour of exactly that length is closed and
partitions the requests into k sets, each served during one trip from the origin to X
and back. Observe that requests 0 and y; must be served on the last trip because
they are released at time 2(k — 1)X. Then requests 0;_1 and pj_1 must be served
on the previous trip. They cannot be served before because of their release time
and they cannot be served on the last trip as the server has capacity ¢ and serves
requests 0; whose interval overlaps with that of o;_1, and also serves requests py
whose interval overlaps with that of ;. Iteratively we deduce that requests o;
and p;, for j < k, must be served on the same trip.

This shows, that if we use the k-partitioning induced by the tour to color the
intervals on the circle, meaning each server trip between zero and k corresponds to
one color, we get a feasible circular arc coloring.

Conversely, we can transform any circular arc coloring into a feasible server tour
of length 2kX by scheduling the requests corresponding to one color on the same
trip from the origin to X. O

This result, apart from the case c = 1, is also subsumed in the next theorem, which
can be achieved using similar techniques.

Theorem 3.13 ( [BDHT17])  The non-preemptive closed offline DIAL-A-RIDE problem on
the line with capacity ¢ > 2 is NP-complete, even when all release times are zero.

Putting these two theorems together, we achieve the following NP-completeness
result.
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Theorem 3.14  The non-preemptive open and closed offline DIAL-A-RIDE problem on the
line are NP-complete. For capacity ¢ > 2 fixed this even holds when all release times are
zero.

Proof. Theorems 3.12 and 3.13 show the statement for the closed problem variant. It
remains to show the open case. In the proof of Theorem 3.12, we give a problem for
which we show that deciding whether there is a closed tour of length 2kX is hard.
Consider this problem again and suppose that the server does not have to return
to the origin after having served the last request. But also for this open problem
variant, any feasible tour has at least length 2kX as a feasible server tour starts at
position zero and travels at least k times from X to zero to serve the k requests ¢;.
This shows that any tour attaining this bound is a closed tour.

The second part of the theorem can be shown using the proof of Theorem 3.13
where closed tours of full capacity are considered (refer to [BDH " 17]). Again, as all
tours are using their full capacity to and from the origin, there cannot be a smaller
open tour and thus all minimal open tours finish at the origin, hence are in fact
closed. O

Remark 3.15 It is particularly interesting that in the hardness reduction the server’s
start position is at one of the two extreme positions occurring in the tour. For the
same problem but allowing preemption, Karp showed that it is solvable in polyno-
mial time [Kar72], while the hardness of the problem with an arbitrary start position
is not known.

Remark 3.16 Non-preemptive offline DIAL-A-RIDE on the line with capacity re-
straints is known to be easy without release dates (see [dPLS"04]) and becomes hard
if each request comes with a deadline in addition to its release time (see [1si92]).
Thus the only complexity question remaining open is the case with unbounded ca-

pacity.

3.3.2 Hardness of Offline TSP on the Line

In this subscetion, we give some results for the Traveling Salesperson Problem on
the line with release times. As those can be viewed as “high five” requests, each
request 0; is given by release time t; and target position a;.

Psaraftis et al. [PSMK90] show that open offline TSP on the line with release dates
can be solved in quadratic time. For the closed variant they claim that the optimal
tour has the following structure [PSMK90, pp. 215-216], first moving to one extreme
end, then to the other and back to the origin:
Y) P) & move(po)

waituntil() @ move(p~) @ move(p

°) Y) @ move(po)-

or  waituntil() @ move(p“) @ move(p

Here the waiting time at the origin is chosen maximally such that all requests are
still served. We contradict this claim by showing that an optimal server tour may
need to turn around arbitrarily many times.
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Figure 3.5: Sketch of an instance for Theorem 3.17

Theorem 3.17  For every k € IN, there is an instance of closed TSP on the line such that
any optimal solution turns around at least 2k times.

Proof. We analyze the following instance consisting of 2k + 1 requests

0 = (Lll','ti) witha; =0,1,-1,2,-2,3,-3,...,k,—k
andt; =M M—-1,M—-3,M—-6M—10,M —15,...,k,

for M := 2k(k + 1). An instance for k = 3 is depicted in Figure 3.5.

We show this instance has a unique optimal server tour with 2k turnarounds.
Observe first, that the difference between two consecutive release times ¢; — t;_1 is
exactly the travel time of the server between the two requested positions |a; — a;_1].
Now consider the server tour T serving each of the requests exactly at its release
time. It is obviously feasible and also optimal, as it ends at time M = 2k(k + 1),
which is the release time of the request at position zero. By construction, the server
alternatively serves requests down and up of position zero and thus turns around 2k
times.

Now assume that there is another optimal server tour T'. Then T’ must serve the
request at position zero at time M, as this is its release time as well as the makespan
of T'. As we observed

ti—tiq = |a; — a1,

the tour T’ also serves the previous request exactly at its release time. Iteratively the
same must hold for all other positions. This shows any request is served exactly at
its release time and hence, the tour is exactly the one described as T above. O

As TSP on the line is a special case of DIAL-A-RIDE on the line, this result of
course generalizes.

In the following, we show a dynamic program that solves closed offline TSP on
the line in quadratic time. It is inspired by the one of Psaraftis et al. [PSMK90] for
the open variant and a dynamic program of Tsitsiklis [15i192] for the same problem
with deadlines instead of release times.

To describe the dynamic for the closed offline TSP problem on the line, we make
the following non-restrictive assumptions on the requests:
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Algorithm 3.3: Dynamic Program for Closed Offline TSP on the Line

Input: Set of requests 0; = (a;;t;) with t; > |a;| forall —d <i < wu and g; < a;,1 for
all -d <i<u
Output: Minimum completion time Cpmax of a tour

1 Let Ctd*lu — 1y > minimum time needed to serve upmost request
2 Let C—d,u-H —t g > minimum time needed to serve downmost request
3 fori= —d,..,udo

4 Let Ci,u-H + max{t;, Ci—l,u+1 +a;—a;_1} > serving requests starting

at the lowest one, one after another

5 forj=1u,.,d do

6 Let Ci—dfl,j — max{t]-, C;;L].+1 +aj41 — aj} > serving requests starting
at the upmost one, one after another
7 for f =u+d,.. 0do

8 fori=—d,..,u— fdo

9 Letj<«i+f
10 Let C;; < max{t;, min{CitLj +aj—a;, C_y;+a;—aj1}}
+ . + —_ . .
1 Let C\; max{t;, mm{C,.,jJrl + a1 —a;,C i +aj— a;}} b starting with

outmost requests, find the points where the server has to turn

to another direction to get the decreasing zig zag shape

12 return Cpax = Car 0

e Each position is requested at most once, as several requests to the same posi-
tion can all be fulfilled when the one with the largest release time is served.

o There is a request oy = (0;0).

o The requests 0; = (a;;t;) are labeled by increasing position, i.e.a; > a;_1, and
we choose the indices such that all requests for a position above the start po-
sition, a; > 0, have an index i > 0 and symmetrically all requests to serve a
position a; < 0 have an index i < 0. Then we have a sequence of requested
positions of the form:

a_g<---<a_1<ag=0<a1 < <ay.

Our dynamic program, depicted in Algorithm 3.3 relies on the fact that an optimal
server tour has a zig-zag shape with decreasing amplitude; we thus need to find the
points when the server turns around to another direction. We compute for each
index pair —d — 1 < i < j < u 4 1 the completion time of two tours. We use CZJ; for
the best tour serving all requests o with k < i or k > j and ending at position a;.
This means the tour serves all requests to position 4; and larger positions as well
as all requests to position 4; and smaller positions. After that, all requests that still
have to be served are between positions a; and aj, thus the server will not have to
be outside of those bounds again. This yields the zig-zag shape with decreasing
amplitude. The time C;,is the completion time of the best tour that serves the same
set of requests and ends at position g;. Starting with the largest difference j — i and

iteratively decreasing it, we recursively compute C;; and C i
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We start by considering the two request sets {c_;} and {0, }. By assumption, the
release time t; exceeds the travel time between start position zero and requested po-
sition 4; for each request, as any earlier release time would only help the algorithm.
Thus the initial values are

+ _ - _
C—d—l,u = t, and Cid,qul =t_4

We then compute by recursion the completion time of the tours Cl.*]- by comput-

ing C*, , and C_
. +
i,j
decreasing it. We output C;, as the minimum completion time of a feasible server

tour.

To prove the correctness of Algorithm 3.3 we use two lemmas. We first prove a
structural result about feasible server tours and then show that the recursion we use
in the dynamic program is correct. We assume without loss of generality that each
request is served when its requested position is visited for the last time in the tour.

ius1 for the two request sets {0y} and {c_;}. Then we recur-

sively compute C;". and C;j’ starting with large difference f = j — i and iteratively

Lemma 3.18 At any time in a feasible server tour ending at position p, the set of served
requests is the union of two disjoint sets Sy = {0y, ..., 0} for a; < p, and Sy = {07, ..., 0u }
for p < aj, both of which are contiguous.

Proof. Assume there is a time ¢, at which the set of requests does not have the claimed
structure. Then there is a request 0 served until time f and a request 0y served after ¢
with either

p<ay<ayora <a; <p.

Without loss of generality assume the first to be true. At time t' > t, when request o,
is served, the server is at position a,. The server tour ends at position p and thus
passes position a; at some time after t. This contradicts that request o7 has been
served until time ¢, which was our assumption. O

Lemma 3.19 We are given an instance of TSP on the line with requests oy, ..., 0y, to posi-
tions ag < ag11 < ... < ay and completion times Ci,+j+1/ Cijj+1/ Cz‘tl,j and Ciil,j for some
indices d < i < j < u; then the minimal completion times Cz‘+j and C;j are given by the
following recursion:
*
i,j

Ci= max{ti,min{Citllj +aj—a;, Cy ;+a; — a1} ).

= max{tj,min{Ci‘,';-Jrl a1 —a;, Gy aj— ait},

Proof. The completion time C;r]- we give is feasible, as it can be achieved by executing
the tour attaining CZJ; 41 or the tour attaining Cl_] +1 and then moving to position a;,
waiting there until the release time t; has passed.

By Lemma 3.18, the tour serving requests oy, ..., 0; and j, ..., Ou, SEIVES request o;
last and request 0}, 1 or 0; immediately before. Thus, the completion time exceeds
the minimum of C;Hl +aj41 —ajand C17j+1 +a; —a; and hence

+ i + i —a. Co _a
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Furthermore, we cannot serve request 0 before its release time t, thus

+ .
C > t;.

Symmetrically the recursion for Cijis constructed. O

These two lemmas allow us to prove the correctness of Algorithm 3.3.

Theorem 3.20 Algorithm 3.3 computes the minimum completion time of a server tour for
offline TSP on the line in time O(n?).

Proof. By Lemma 3.18, the optimal server tour has the structural property that at any
fixed point in time, it has served the union of two disjoint contiguous sets. We start
computing the best completion time of a tour for pairs of request sets containing one
request each. Iteratively, we increase the number of contained requests u —d — f by
decreasing the parameter f. We end with f = 0 and compute the earliest completion
time of tours serving the complete request set in this iteration. The recursion we
use is correct by Lemma 3.19 and the computation order is feasible, as the recursion
formula only contains request set pairs of strictly smaller size.

The algorithm uses quadratic time for the two nested loops and all other steps
take linear or constant time. Hence the algorithm runs in time O(n?). O

We finish this subsection by a simple observation which explains the connection
between our Algorithm 3.3 and the algorithm proposed by Psaraftis et al. [PSMK90].

Remark 3.21 The algorithm by Psaraftis et al. [PSMK90] for open TSP on the line
can be obtained from Algorithm 3.3 by changing the computation order of the com-
pletion times and returning the minimum completion time of all possible end posi-
tions min_ ;<< Cfl

3.3.3 Approximating Offline Dial-A-Ride

This section is dedicated to the approximation of the offline problem. In the clas-
sification of closed dial-a-ride problems by Paepe et al. [dPLS" 04], offline TSP on
the line is the problem 1|s = t,d[line|Cmax. De Paepe et al. [dPLS" 04] claim Tsit-
siklis [T5192] shows a polynomial algorithm, but this is for the open version. We
solve the closed variant by giving a polynomial algorithm (Theorem 3.20) as well as
a counterexample in Theorem 3.17 to the algorithm of Psaraftis et al. [PSMK90]. Our
Theorem 3.14 shows that the problem 1, capl |dj [line|Cimax in the same classification
scheme describing DIAL-A-RIDE on the line with capacity one is NP-hard. While
this is implicitly claimed by De Paepe et al. [dPLS™04], no proof is given. For the
generalization to arbitrary capacity but without release dates, described as 1||Cmax,
Guan [Gua98] showed hardness for capacity ¢ = 2 and our new hardness proof in
Theorem 3.12 handles any capacity c > 2.

We complement these hardness results by describing a simple approximation al-
gorithm for the closed offline non-preemptive DIAL-A-RIDE problem. We make
use of an algorithm by Atallah and Kosaraju [AK88] for the offline non-preemptive
DIAL-A-RIDE problem when all release time are zero. Our algorithm first executes
their algorithm. This yields a server tour which visits all requests, but may visit
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3.4 Further Results

Algorithm 3.4: Approximation Algorithm for the Closed Non-Preemptive Offline DIAL-
A-RIDE Problem
Input: Set of requests 0; = (t;,a;,b;) fori =1,...,n, server capacity ¢ > 1
Output: Feasible server tour T with |T| < (¢4 1) - |TO™7|
1 Run the algorithm of Atallah and Kosaraju to compute the optimal tour S without
release times
2 Let t™# be the largest release time
3 return the tour T which waits at the origin until time t™® and then executes the tour S

some before their release time. A new start time for this tour is then computed, such
that no request is visited before its release time. Our algorithm is formally described
in Algorithm 3.4.

Theorem 3.22  Algorithm 3.4 computes a tour of length at most (c + 1) - |TOF| for the
closed non-preemptive DIAL-A-RIDE problem.

Proof. The tour S is the optimal tour for a server of capacity one, when no request
has a release time. Its length is at most ¢ - [TO"T| as repeating the optimal tour ¢ times
is a feasible tour with capacity one. The largest release time t™® is a lower bound
on the length of the optimal tour, as it cannot finish before all requests are released.
This means that the tour computed by Algorithm 3.4 has length

TAC| < (e+1) - [TO7T),

which finishes the proof. O

3.4 Further Results

In addition to the findings presented in this work, our joint work [BDH " 17] has
resulted in some further intriguing outcome for the Travelling Salesperson Problem.

Comparing our conclusions to previous work, for online TSP in the line, our re-
sults as presented in [BDH " 17] are best-possible online algorithms for both the open
and closed variant of online TSP on the line, as well as a new (tight) lower bound for
the open variant. The new algorithm for the closed variant has a competitive ratio
of C = (9+/17)/8 =~ 1.64, where C is the nonnegative root of the polynomi-
al 4x% — 9x + 4, matching a lower bound of Ausiello et al. [AFL."01] and improv-
ing on their 1.75-competitive algorithm. Further, for the open version of the prob-
lem, we give a lower bound of (p — €) on the best-possible competitive ratio for
any ¢ > 0, where p ~ 2.04 is the second-largest root (out of the four real roots)
of 90* — 1803 — 78p? + 210p — 107. This is the first bound strictly greater than two.
We provide an optimal online algorithm matching this bound and improving on
the 2.33-competitive algorithm by Ausiello et al. [AFL701]. Note that for this prob-
lem, a lower bound of two is obvious: At time one, we present a request either at
minus one or at one, whichever is further away from the online server. The online
tour has length at least two while the optimum tour has length one.
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3 Online Planning for Carpools

Closed Open
ONLINE Lower Bound Upper Bound Lower Bound Upper Bound
Online TSP on the Line
new 1.64 [BDH " 17] 2.04 [BDH " 17] 2.04 [BDH " 17]
old 1.64 1.75 2 2.33
[AFL*95,AFL+01] [AFL*95,AFL*01] [AFL+94,AFL*01] [AFL*94, AFL*01]
DIAL-A-RIDE on the Line
preemp. 1.64 AKR 393 33
[AFL+95, AFL+01] 2 [AKRO0] 2.04 (Th. 3.23) 241 (Th.33
non-preemp. 1.75 (Th. 3.10) 2.04 (Th. 3.23) 3.41 [Kru01]
Table 3.1: Overview of our results for online TSP on the line and online DIAL-A-RIDE on the
line.
OFFLINE Closed Open
TSP on the Line O(n?) (Th. 3.20) O(n?) [PSMK90]

DIAL-A-RIDE on the Line
non-preemptive NP-hard (Th. 3.14) NP-hard (Th. 3.14)

Table 3.2: Overview of our results for offline TSP and DIAL-A-RIDE on the line with release
times.

The current state of the art for DIAL-A-RIDE and TSP is depicted in Table 3.1 for
the online and in Table 3.2 for the offline version of the problem. Those results settle
online TSP on the line from the perspective of competitive analysis and enable us to
state a lower bound for open online DIAL-A-RIDE.

Theorem 3.23  Let p ~ 2.04 be the second-largest root (out of the four real roots) of
9p* — 180> — 78p% + 210p — 107.

There is no (p — €)-competitive algorithm for open preemptive and non-preemptive DIAL-
A-RIDE on the line for any € > 0.

Proof. As DIAL-A-RIDE is a more general version of TSP, this follows immediately
from Theorem 4.1 in [BDH "17]. O

3.5 Discussion and Open Problems

In this chapter, we studied the mathematical formulation and analysis of some
carpooling problems. By doing so, we are hoping to present an approach to reduce
the total number of actors on streets while at the same time provide sensible routing,
thus reducing congestion and the overall drain on material, time and environment.

Our main focus was on online DIAL-A-RIDE-problems. We presented a simple al-
gorithm which is (1 + /2)-competitive for a number of cases: in the capacitated and
uncapacitated, preemptive, open and closed DIAL-A-RIDE on the line. However, it
does not immediately apply to any non-preemptive version of the problem. They
seem to be much harder to handle as simple manipulations of an already started
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3.5 Discussion and Open Problems

server tour are not as easy. If a request that is started to being served has to be fin-
ished instead of just being shortened because of a readjustment of the tour, it seems
more common to be led astray. This reflects in the best-known algorithm for non-
preemptive online DIAL-A-RIDE being 3.41-competitive [Kru01], which is seconded
by our results.

Understanding how good algorithms on the line work is important, as it can give
us insight which we need for a more general metric setting. The latter is harder, as,
e.g., we can not expect the server to always stay within certain clear bounds and
even within a convex structure. Thus the distances between two points can lead to
problems. While it is conceivable that a situation where requests have to be served
on a line arises, it is not in general the case. We thus modified the algorithm to also
work in a general metric setting. For uncapacitated, open and closed, preemptive
DIAL-A-RIDE, we present an algorithm which works in the Euclidean space. It relies
on the fact that the server never moves too far away from the origin. As many
problems tend to be able to be modelled within Euclidean space, this is a significant
step. Further, it seems likely that the algorithm also works in additional spaces.

Trying to get more insight into how good online algorithms on the line work in
general, we proved that no algorithm for non-preemptive closed DIAL-A-RIDE on
the line with fixed capacity ¢ > 1 can achieve competitive ratio of less than 1.75.

Closing the gap between lower and upper bound on the competitive ratio for each
problem is an interesting research topic that remains open. Further directions to ex-
plore include expanding our knowledge on online DIAL-A-RIDE in metric spaces in
general as well as investigating algorithms which work in a non-preemptive setting.

Our second focus was on understanding the structure of optimal algorithms for
the underlying offline DIAL-A-RIDE problems where all requests with their release
times are known from the beginning. We could show that the non-preemptive closed
DIAL-A-RIDE on the line with capacity > 1 is NP-complete and give a simple ¢ + 1-
approximation algorithm. This again points to why the non-preemptive case seems
harder to tackle also in the online setting. The complexity of offline DIAL-A-RIDE
on the line with unbounded capacity remains open.

In this context, it is intriguing to investigate the special case of DIAL-A-RIDE
where the capacity does not play any role, that means, if all requests have a source
equal to their destination and thus do not have to be transported, but only visited.
This is known as TSP on the line with release times and we could prove that there
is always an optimal tour which has a certain zig zag structure. Further, we gave an
algorithm which computes the minimum completion time for this case in O(n?). It
remains open to find a similar structural result for the more general DIAL-A-RIDE
which may give us insight into the design of good competitive algorithms. As TSP
is a widely studied and important model for a variety of fields, the result is also
interesting in its own right.

An additional question to investigate is, to which other DIAL-A-RIDE instances
the simple 2.41-competitive algorithm can be adapted. Clearly, it can be adapted to
work in the general metric as well as, with some loss in the competitive ratio, in the
capacitated and the non-preemptive version of the problem, see Remark 3.9. As the
algorithm has a simple and versatile structure, we may find additional special cases
for which it can be used.
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Conclusion

Alice: I don’t much care where [I get to]...
Cat:  Then it doesn’t matter which way you go.

Alice:  ...s0 long as I get somewhere.
Cat:  Oh, you're sure to do that, if you only walk
long enough.

Alice in Wonderland by Lewis Carroll [Car65]

While the truth in the Cheshire Cat’s statement is undeniable, it can hardly be con-
sidered good advice about how to choose directions sensibly. Indeed, not only the
final destination is important, but also the path and mode of transport one decides
on to get there. Nowadays more than ever this also includes taking into considera-
tion the decisions and behavior of other people.

One of the main goals of this thesis was to identify ways to reduce congestion
in networks. An increasingly large number of actors in local and global networks
and the use of new technology poses new challenges for network design and man-
agement, but also offers new possibilities, e. g.in terms of communication and col-
laboration between users. We hope to decrease the financial, personal, and envi-
ronmental burden that congestion carries. More specifically, improved flow leads to
reduced Greenhouse Gas emissions, higher sustainability, more efficient, faster, and
well thought-out networks, as well as to less wastage of material and personal stress.
Ultimately, this results in economic growth and improves globalization prospects.

We identified two main starting points to improve network flow. First, to pro-
vide better routing management, and second, to reduce the number of actors which
are using the network. We encountered three problems which we concentrated on:
users act independently in possibly huge and complex networks, they might manip-
ulate data which they send to a regulation agency, and neither networks nor user
decisions are static. As optimal solutions are therefore not always easy to find, we
attacked these problems using different approximation methods.

Taking into consideration the complexity of large network structures in which
many users act independently, it is reasonable to assume that not all instances of
a problem can be improved in polynomial time in an optimal way. Therefore, we
decided to use approximation algorithms to approach good routing solutions which
reduce the overall network congestion, thus approximating the optimal solution due
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to time sensitivity constraints. Further, we observed that the growth in prevalence
and increasing use of personal navigation devices, which are able to communicate
with another, leads to new ways of traffic regulation, for example when guiding
drivers through cities. Considering this, we introduced a local search algorithm for
a general resource allocation problem with diseconomies of scale, which can for ex-
ample model rerouting users in networks. With urban population growing and an
estimated 60% of humans living in urban areas by 2030 and every third person living
in a city with at least half a million inhabitants [Unil6], this is a prevailing problem
to consider regarding traffic and public transport, but also, e.g., electric grids and
telecommunication networks. The local search algorithm was analyzed for the case
that the diseconomies of scale follow a polynomial pattern. As traffic congestion is
widely assumed to follow a polynomial of degree four, this is a reasonable assump-
tion and delivers practice oriented results. Our bound on the locality gap, which
describes the difference between a global and local optimum, was of the same order
as a previous result by Makarychev and Sviridenko [MS14], but, in contrast to theirs,
our algorithm works in a distributed manner and is deterministic. This seems desir-
able considering the complexity of the network and fast changes within, and also the
amount of personal navigation devices which may be used to calculate local optima.
In contrast, while we gave both upper and lower bounds on the locality gap, the
bounds did not match up. Considering that traffic congestion is often modelled by
a polynomial of degree four, closing the gap appears important even just for small
maximum degrees. Indeed however, it is possible that the local search algorithm
works much better in practice for many problems, as the calculated locality gap de-
scribes a worst case scenario. Test runs on real world data are therefore a prospect
of further work.

Some simplifications were made in order to describe this practical problem in a
mathematical way. For instance, while we took capacity restraints into considera-
tion, they have only been given implicitly by making routes prohibitively expensive
for commodities in the resource allocation model. Another simplification was that
we assumed users to act in a way which is optimal for the global network flow, or
at least follow the guidance of their personal navigation devices without derivation.
Concerning our results, ideally, we would want the task at hand to be solved in an
even more distributed way to take advantage of these devices, as algorithms that
run in a parallel manner on all devices while keeping communication up remain im-
portant.

In everyday life, users may not have the best overall network flow in mind, and
thus may be susceptible to hand skewed data to a decision maker in order to gain an
advantage. This problem is urgent when it comes to, e. g., reducing the total number
of actors in a network. In smart cities, collaboration is thus a key factor in order to
reach main goals of creating effective transport management and increased mobility.
Further, for many collaborative projects, it is important to choose a representative of
a group for specific tasks. An example here could be choosing a representative to go
to supraregional meetings, or selecting someone for usage of a telecommunication
channel with a fixed capacity which many users want to access. In such a setting,
users can give nominations between themselves. If we want to select a given number
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of users in an impartial way, which means that no user can nominate strategically
instead of truthfully to influence her own chance of being selected, previous work
has shown that always selecting the users with the highest number of nominations
is no option. We thus again want to approximate an optimal solution, here by sac-
rificing optimality in order to gain impartiality. We gained two major insights: first,
relaxing exactness is beneficial. This means that sometimes but not always being
able to select less than the desired number of users can actually pose an advantage
for the mechanism and lead to better approximation factors. In fact, relaxing exact-
ness is the only way to achieve any positive result with deterministic mechanisms.
And second, using randomized instead of deterministic mechanisms additionally
improves the approximation factor which we were able to gain. This might in prac-
tice also be of relevance as randomized mechanisms in a group of people tend to
be perceived as more fair, irrelevant of actual fairness. Our results also suggest that
our algorithms may well work better on real world data with roughly regular nom-
ination structures, as observed by Aziz et al. [ALM " 16]. Further, we developed as
part of one of our mechanisms a subroutine which solves the problem of apportion-
ment. Apportionment is the problem of distributing a number of objects, e. g. often
seats in politics, in proportion to shares of a number of groups, e. g. political parties.
This problem arises, e. g., when assembling committees in the German Bundestag.
Many apportionment rules rely on rounding and we introduce a mechanism which
similarly always allocates shares that could be achieved by rounding proper shares
up or down. But in addition, our algorithm picks one discrete distribution in such a
way that the expected allocated number of seats for each group correspond to their
(rational) proportion of total seats. We believe that this result can lead to fair solu-
tions in many practical contexts where apportionment arises, whether, e. g., political
parties, or university committees are concerned.

One of the main issues when comparing our model to practice is that coalitions
are not considered. While a user can not change her own probability of winning, she
could form a treaty with another user and thus influence both their winning chances.
This is studied within the field of cooperative game theory and leads to possibly
completely different mechanisms. Moreover, looking at our results, it seems desir-
able, especially for large k, to find mechanisms with a better approximation ratio
as this will make arguing for the more widespread usage of impartial mechanisms
easier. Further work seems necessary for discovering more universally impartial
mechanisms, as our results suggest that they may deliver higher outcomes, even
though they seem to exhibit some unintuitive characteristics.

As becomes apparent when looking at traffic networks which are used by differ-
ent and always new users at different times of the day, some problems in networks
are not static, but have a lot of flexibility, with possibly sudden changes happening
to the input, e. g. destinations. This makes finding optimal solutions very difficult.
Thus, we once more decided to concentrate on approximating the optimal, here due
to not knowing the future, and hence by means of online algorithms. We investi-
gated online problems for carpools, as they are used by a number of different people
which have different schedules and daily routines, e. g. commuters from San Fran-
cisco to Mountain View. Ideally, carpools provide flexibility, time sensitive travel
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and easy access to users and are positive for personal reasons such as cost and stress
factors, as well as societal and environmental reasons, especially concerning GHG
emissions and sustainability. We formulated this problem in mathematical terms as
online dial-a-ride where a server has to pick up requests and deliver them to their
destination. Here, we try to reduce the total time until the server is finished. We
developed a competitive algorithm which works on the line and in euclidean space
and can thus be used for a variety of real world applications, as they often tend to
be able to be modelled within (two- or three-dimensional) Euclidean space. Further,
one main focus was dial-a-ride on the line, as this translates, e.g., to the elevator
problem, many other problems especially in industrial settings such as transport in
fabrics, and carpools with designated pick up areas such as Market Street in San
Francisco which is central and easy to reach from most places, to pick up people
working in Mountain View. Our insights suggest that having to finish one request
once it is picked up lead to online algorithms which give worse results than those
for the case where instead, requests can be dropped off and picked up again at a
later date. In an industrial setting, the second option, preemptiveness, is already a
reasonable assumption. Due to better results, it seems desirable to favor it even for
transporting people. Further, we could show that one can construct instances where
a server has to turn around an arbitrary number of times for an optimal solution,
even on the line, even if requests only have to be visited instead of being delivered.
This leads to questions whether it might be better sometimes to not go for an op-
timal solution, which may finish earlier but uses a lot of electricity and resources
doing that, or instead to go for a solution which is slightly slower but much more
sustainable and economical. Using our insights, we constructed a dynamical pro-
gram which solves offline dial-a-ride with high-five requests on the line in quadratic
time. As such problems, known as travelling salesperson problems, appear often
in applications, e.g.to deliver packages or pizza or pick up people with the same
destination, the result is also interesting in its own right.

Our model does not take into consideration pick up or drop off times, which may
lead to different results in practice. Also, while it is conceivable that a situation
where requests have to be served on a line arises, it is not in general the case. Further,
one of the limitations, as is often the case, lies in that one has to choose which goal
one wants to concentrate on reaching. Here, we decided on reducing the makespan,
i.e. the total time until all jobs are completed. Maybe, for the sake of reducing GHG
emissions, one might choose to reduce the distance traveled. Another reasonable
assumption would be that people actually give more information to the algorithm.
Especially if it is for commuting purposes, people tend to arrive within a specified
timeframe which may lead to stronger results.

To sum the results up, we have selected three problems to concentrate on reducing
congestion in networks, each of them a different flavor of creating approximations to
optimal solutions. One with better routing management, provided by a local search
algorithm. One by reducing the total number of actors in the network, introducing
impartial selection mechanisms. And one combining better routing management
and reducing the number of actors by providing a framework for carpools with the
online dial-a-ride problem.
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One of the main issues we encountered was that the simplification and concen-
tration on important points in the mathematical model does not always provide an
adequate picture of reality. In practice, there are often many more requirements to
consider. Another problem is the extent and magnitude of the problem. It is not
evident which subproblems should be chosen that have significant influence on the
overall network flow.

Especially considering the complexity of the task, it seems reasonable to look for
solutions which approach optimality, as we do in this work, rather than looking
for optimal solutions for a limited model. For our approach offers solutions which
are less vulnerable to changes, which are foreseeable when transferring theoretical
results into applications. Also, as our proved approximation guarantees are due to
worst case scenarios, the simple and straightforward algorithms and mechanisms
may perform better on real world data.

All three models suggested in the chapters of this thesis present a valid approach
to reduce congestion in networks. The problems have been chosen such that the
overall network flow will be reduced. Both better routing management by the local
search algorithm in chapter one, and reducing the total number of actors with the
impartial mechanism in chapter two, as well as a combination of those with the on-
line dial-a-ride in chapter three have been addressed and thus main vantage points
explored. Due to the complexity of the problem, concentration on selected subprob-
lems was necessary, trying to keep problems simple, yet close to reality. Looking
at more concrete problemes, i. e.a certain city with fixed streets, telecommunications
networks in one area, electric grid for one country, it seems probable that more spe-
cific tasks can be addressed as our approach was very general. While specific tasks
may demand solutions that go beyond the general approach offered here, these re-
sults provide good starting points for further research in a wide area.
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