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Abstract

In this paper, we study general linear systems of delay di�erential-algebraic equations
(DDAEs) of arbitrary order. We show that under some consistency conditions, every linear
high-order DAE can be reformulated as an underlying high-order ordinary di�erential equation
(ODE) and that every linear DDAE with single delay can be reformulated as a high-order delay
di�erential equation (DDE). We derive condensed forms for DDAEs based on the algebraic
structure of the system coe�cients, and use these forms to reformulate DDAEs as strangeness-
free systems, where all constraints are explicitly available. The condensed forms are also used
to investigate structural properties of the system like solvability, regularity, consistency and
smoothness requirements.

Keywords: Delay di�erential-algebraic equation, di�erential-algebraic equation, strangeness-
index, regularization, index reduction.
AMS Subject Classi�cation: 34A09, 34A12, 65L05, 65H10

1 Preliminary and notations

In this paper we study general linear delay di�erential-algebraic equations (DDAEs) of the form

Akx
(k)(t) + · · ·+A0x(t) +A−1x(t− τ) + · · ·+A−κx

(κ)(t− τ) = f(t), (1.1)

where the coe�cients satisfy Ai ∈ C`,n, i = −k, . . . , κ, Ak 6= 0, f : [0,∞)→ C`, and where τ > 0
is a single constant delay. We consider the time interval t ∈ [0,∞). Note that most of our analysis
also carries over to multiple and nonconstant delays but here we restrict ourselves to the constant
single delay case.

An important special case of (1.1) is the initial value problem for a �rst order linear delay
di�erential-algebraic equation with single delay

A1ẋ(t) +A0x(t) +A−1x(t− τ) = f(t), (1.2)

where A1, A0, A−1 ∈ C`,n, f : [0,∞)→ C`.
To achieve uniqueness of solutions, for DDAEs one typically has to prescribe initial functions,

which for the special case (1.2) take the form

x|[−τ,0] = φ : [−τ, 0]→ Cn, (1.3)

Ordinary delay di�erential equations (DDEs) of the form (1.2), with A1 being the identity
matrix, arise in various applications, see [1, 2, 6, 7] and the references therein. If the states of
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the physical system are constrained, e. g., by conservation laws or interface conditions, then alge-
braic equations have to be included and one has to analyze delay di�erential-algebraic equations
(DDAEs). DDAEs may be considered from two di�erent perspectives. On the one hand, they are
di�erential-algebraic equations (DAEs) that involve delayed terms. On the other hand, DDAEs
are ordinary delay di�erential equations (DDEs) subject to constraints that also may involve time-
delayed variables. Of course, DDAEs inherit all the di�culties that are associated with both DAEs
and DDEs. Their interaction, however, leads to new e�ects that do not arise in either DAEs or
DDEs, as has been pointed out in [1, 6].

Although DDEs are well studied analytically and numerically, see e. g. [2, 7], and a similar
maturity has been reached for the simulation and control of DAEs, see e. g. [3, 9, 10], the theoretical
understanding and the development of appropriate numerical methods for DDAEs, however, is far
from complete even for the case of linear systems with constant coe�cients. Only very few results
are available, see e. g., [1, 4, 5], and these are mainly for the special case of DAEs, where the delay
component is nothing else than an additional part of the inhomogeneity.

The main di�culty so far is the lack of a suitable regularity analysis (via the concept of
an index) and a canonical form which allows to investigate structural properties like existence,
uniqueness of solutions, consistency and smoothness requirements for the initial function.

In this paper, we derive such a canonical form for the linear constant coe�cient case by ex-
tending the algebraic approach introduced in [10, 14] and combining it with the behavior approach
[13]. Surprisingly, already in order to deal with (1.2), it is necessary to study linear high-order
di�erential-algebraic equations of the form

Akx
(k)(t) + · · ·+A1ẋ(t) +A0x(t) = f(t), (1.4)

with associated initial conditions of the form

x(k)(0) = xk0 , . . . , ẋ(0) = x1
0, x(0) = x0

0. (1.5)

We study the theoretical aspects of (1.4)-(1.5) in Section 3 and then use these to study the general
case of DDAEs in Section 4. The analysis is based on reformulation procedures which bring the
systems into a strangeness-free form and allows also to study theoretical aspects like existence
and uniqueness of solutions, as well as the consistency and smoothness requirements for the initial
functions.

2 Notation and Preliminaries

In the following, we denote by In ∈ Cn,n (or I) the identity matrix and by AT the transpose of
a matrix A. For an interval I ⊂ [0,∞), by Ck(I,Cn) we denote the space of k-times continuously
di�erentiable functions from I to Cn.

We use the following solution concept.

De�nition 2.1. A function x : [0,∞) → Cn is called (classical) solution to (1.2) (resp. (1.4))
if x ∈ C1([0,∞),Cn) and x satis�es (1.2) (resp., (1.4)) pointwise. An initial function φ is called
consistent with system (1.2) if the associated initial value problem (1.2)�(1.3) has at least one
classical solution. System (1.2) is called solvable if for every su�ciently smooth f and every
consistent initial function φ, the associated initial value problem (1.2)�(1.3) has a solution. It is
called regular if it is solvable and the solution is unique.

Introducing as X0 :=

x
(k)
0
...
x0

 the initial vector of the initial value problem consisting of (1.4)�

(1.5), De�nition 2.1 extends to higher order systems, i. e., an initial vector X0 ∈ C(k+1)` is called
consistent for system (1.4) if the initial value problem (1.4)�(1.5) has a solution, and system (1.4)
is called solvable if for every su�ciently smooth f and every consistent initial vector X0, the
associated initial value problem (1.4)�(1.5) has a solution.
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For matrices Q ∈ Cq,n, P ∈ Cp,n, the matrix pair (Q,P ) is said to have no hidden redundancy
if

rank

([
Q
P

])
= rank(Q) + rank(P).

Lemma 2.2. Suppose that for Q ∈ Cq,n, P ∈ Cp,n, the pair (Q,P ) has no hidden redundancy.
Then, for any matrix U ∈ Cq,q and any V ∈ Cp,p, the pair (UQ, V P ) has no hidden redundancy.

Proof. The proof follows from the observation that a matrix pair has no hidden redundancy if and
only if the intersection of the two vector spaces spanned by the rows of the two matrices contains
only the vector 0.

If

[
Q
P

]
is of full row rank for two matrices Q ∈ Cq,n, P ∈ Cp,n, then obviously, the pair

(Q,P ) has no hidden redundancy. However, the converse is not true as is obvious for Q =

[
1 0
0 0

]
,

P =

[
0 1
0 0

]
, since (Q,P ) has no hidden redundancy, but

[
Q
P

]
does not have full row rank.

Lemma 2.3. For Q ∈ Cq,n, P ∈ Cp,n, there exists[
S 0
Z1 Z2

]
∈ Cq,q+p,

where

[
S
Z1

]
∈ Cq,q is nonsingular and the rows of S ∈ Cp,q are the rows of a permutation matrix

such that [
S 0
Z1 Z2

] [
Q
P

]
=

[
SQ
0

]
,

and (SQ,P ) has no hidden redundancy.

Proof. The proof follows by taking [Z1, Z2] to be a full rank matrix spanning the left nullspace

of

[
Q
P

]
and completing it to a full rank matrix by rows of a permutation matrix so that

[
S
Z1

]
is

invertible and (SQ,P ) has no hidden redundancy.

Lemma 2.3 will be used later to recursively remove hidden redundancy in the coe�cients of
linear DAEs and DDAEs.

Lemma 2.4. Consider k + 1 full row rank matrices R0 ∈ Cr0,n, . . . , Rk ∈ Crk,n, such that none
of the matrix pairs Rj ,

Rj−1

...
R0


 , j = k, . . . , 1 (2.1)

has a hidden redundancy. Then,

Rk...
R0

 has full row rank.
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Proof. Since none of the matrix pairs in (2.1) has a hidden redundancy, it follows that

rank


Rk...
R0


 = rank(Rk) + rank


Rk−1

...
R0


 ,

= rank(Rk) + rank(Rk−1) + rank


Rk−2

...
R0


 ,

= · · ·
= rank(Rk) + rank(Rk−1) + · · ·+ rank(R0),

and since Rk, . . . , R0 have full row rank, also

Rk...
R0

 has full row rank.

3 Analysis and reformulations of high-order DAEs

In this section, we study the analysis of high-order DAEs of the form (1.4) and of the initial value
problem (1.4)�(1.5), see also [11, 12, 15] and the references therein for previous work on this topic.
We will extend these results by combining it with the regularization procedure for DAEs proposed
in [14] in a behavior setting [13]. Let

M := [Ak, . . . , A0] ∈ C`,(k+1)n and X(t) :=

x
(k)(t)
...

x(t)

 . (3.1)

Then M (resp., X(t)) is called the behavior matrix (resp., behavior vector) of system (1.4), which
can be written as

MX(t) = f(t). (3.2)

Scaling (1.4) with a nonsingular matrix P ∈ C`,`, we obtain

PMX(t) = P

k∑
i=0

Aix
(i)(t) = Pf(t). (3.3)

For notational convenience, in the following we omit the argument t inX, x, f and their derivatives.
Since the systems (1.4) and (3.3) have the same solution spaces, we introduce the following

de�nition.

De�nition 3.1. Two behavior matrices M = [Ak, . . . , A0] and M̃ = [Ãk, . . . , Ã0] in C`,(k+1)n are

called (strongly) left equivalent (denoted by
`∼) if there exists a nonsingular matrix P ∈ C`,` such

that M̃ = PM or equivalently,
Ãj = PAj , j = k, . . . , 0.

Lemma 3.2. Consider the behavior matrix M of system (1.4). Then, M is left equivalent to a
matrix

M̃ :=


Ak,1 Ak−1,1 . . . A0,1

Ak−1,2 . . . A0,2

. . .
...

A0,k+1

0 0 . . . 0

 ,
r1

r2

...
rk+1

v

(3.4)

where all the matrices Ak−j,j+1, j = k, . . . , 0 on the main diagonal have full row rank.
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Proof. We �rst compress the �rst block column of M via a QR-decomposition, see [8], to

M = [Ak, . . . , A0],

`∼
[
Ak,1 Ak−1,1 . . . A0,1

0 Ak−1,2 . . . A0,2

]
,

such that Ak,1 has full row rank. Continuing, by compressing the 2nd block column from the
second block row and then inductively the other columns of M , we �nally arrive at (3.4).

We call the number
ru := (k + 1)r1 + kr2 + · · ·+ 2rk + rk+1.

the upper rank of the behavior matrix M . Note, that some of the ri may vanish and obviously,
the upper rank is invariant under left equivalence transformations.

In the following, without loss of generality, we assume that the behavior matrix M is already
in the form M̃ . Rewriting system (3.2) block row-wise, we obtain the system

Ak,1x
(k) +Ak−1,1x

(k−1) + · · ·+A1,1ẋ+A0,1x = f1,

Ak−1,2x
(k−1) + · · ·+A1,2ẋ+A0,2x = f2,

. . . (3.5)

A0,k+1x = fk+1,

0 = fk+2.

Recall that the diagonal blocks Ak,1, Ak−1,2, . . . , A0,k+1 have full row rank, therefore in system
(3.5), for every J with k ≥ j ≥ 0, the (k + 1− j)-th block row

Aj,k+1−jx
(j) + · · ·+A0,k+1−jx = fk+1−j ,

represents a number of scalar di�erential equations of order j. The idea now is to use di�erential
equations of order smaller than j and their derivatives to reduce the number of scalar di�erential
equations of order j. Let us illustrate this idea for the case j = k.

If the pair

Ak,1,
Ak−1,2

...
A0,k+1


 has hidden redundancy, then Lemma 2.3 implies that there exist

a matrix [
Sk 0 . . . 0
Zk,k Zk,k−1 . . . Zk,0

]
such that

[
Sk
Zk,k

]
∈ Cr1,r1 is nonsingular,

Zk,kAk,1 + [Zk,k−1 . . . Zk,0]

Ak−1,2

...
A0,k+1

 = 0, (3.6)

and the matrix pair

SkAk,1,
Ak−1,2

...
A0,k+1


 has no hidden redundancy.

Scaling the �rst equation of (3.5) with

[
Sk
Zk,k

]
from the left we get

SkAk,1x
(k) + SkAk−1,1x

(k−1) + · · ·+ SkA1,1ẋ+ SkA0,1x = Skf1,

and
Zk,kAk,1x

(k) + Zk,k

(
Ak−1,1x

(k−1) + · · ·+A0,1x
)

= Zk,kf1.
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>From (3.6), we deduce

Zk,kAk,1x
(k) = −[Zk,k−1 . . . Zk,0]

Ak−1,2

...
A0,k+1

x(k)

= −
k−1∑
i=0

Zk,iAi,k+1−ix
(k)

= −
k−1∑
i=0

Zk,i

(
d

dt

)k−i
Ai,k+1−ix

(i),

= −
k−1∑
i=0

(
d

dt

)k−i
Zk,i

−i−1∑
j=0

Aj,j+1−ix
(j) + fi

 .

This leads to the systems

SkAk,1x
(k) + SkAk−1,1x

(k−1) + · · ·+ SkA1,1ẋ+ SkA0
1x+ Skf1 = 0,

and

k−1∑
i=0

Zk,i

(
d

dt

)k−ii−1∑
j=0

Aj,j+1−ix
(j) − fi


+Zk,k

(
Ak−1,1x

(k−1) + · · ·+A0,1x
)

= Zk,kf1. (3.7)

Note that (3.7) is a set of di�erential equations of degree at most k − 1. Hence, we have reduced
the number of scalar di�erential equations of order k from rank(Ak,1) to rank(SkAk,1).

Applying the same argument to the block rows numbered j = k − 1, . . . , 1, we obtain the
following two lemmas. For notational convenience, we denote by ∗ unspeci�ed matrices.

Lemma 3.3. Consider the DAE (1.4) in its behavior form (3.2). Moreover, assume that the
behavior matrix M is in the form (3.4). Then, there exist matrices Sj, Zj,i, j = m, . . . , 1, i =
j, . . . , 0 of appropriate size such that

i) the matrices

[
Sj
Zj,j

]
∈ Crj ,rj , k ≥ j ≥ 1 are nonsingular,

ii) for each j with k ≥ j ≥ 1,

Zj,jAj,k+1−j + [Zj,j−1 . . . Zj,0]

Aj−1,k+2−j
...

A0,k+1

 = 0,

iii) for each j with k ≥ j ≥ 1, the matrix pairSjAj,k+1−j ,

Aj−1,k+2−j
...

A0,k+1




has no hidden redundancy.

Proof. For each j with k ≥ j ≥ 1, by applying Lemma 2.3 to the matrix pairAj,k+1−j ,

Aj−1,k+2−j
...

A0,k+1




we obtain matrices Sj , Zj,i, i = j, . . . , 0 that satisfy conditions i)-iii).
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Setting

P̃ := diag

([
Sk
Zk,k

]
, . . . ,

[
S1

Z1,1

]
, Irk+1+v

)
∈ C`,`,

and scaling system (1.4) with P̃ from the left we obtain

SkAk,1 ∗ . . . ∗
Zk,kAk,1 ∗ . . . ∗

Sk−1Ak−1,2 . . . ∗
Zk−1,k−1Ak−1,2 . . . ∗

. . .
...

A0,k+1

0 0 . . . 0




x(k)

x(k−1)

...
x

 =



Skf1

Zk,kf1

Sk−1f2

Zk−1,k−1f2

...
fk+1

fk+2


(3.8)

For each j with k ≥ j ≥ 1, we then reduce the number of di�erential equations of order j by
eliminating the block Zj,jAj,k+1−j of (3.8), as in the following lemma.

Lemma 3.4. Let matrices Sj, Zj,i, j = k, . . . , 1, i = j, . . . , 0, be de�ned as in Lemma 3.3. Then,
the DAE (3.8) has the same solution set as the DAE

d1

s1

d2

s2

...
dk+1

v



SkAk,1 ∗ . . . ∗
0 ∗ . . . ∗

Sk−1Ak−1,2 . . . ∗
0 . . . ∗

. . .
...

A0,k+1

0 0 . . . 0




x(k)

x(k−1)

...
x

 =



Skf1

g2k

Sk−1f2

g2(k−1)

...
fk+1

fk+2


, (3.9)

where

g2j :=

j−1∑
i=0

Zj,i

(
d

dt

)j−i
fk+1−i + Zj,jfk+1−j , j = k, . . . , 1.

Proof. For each j with k ≥ j ≥ 1, by inserting

Zj,jAj,k+1−j = −
j−1∑
i=0

Zj,iAi,k+1−i,

into the equation

Zj,jAj,k+1−jx
(j) + Zj,j

j−1∑
i=0

Ai,k+1−jx
(i) = Zj,jfk+1−j ,

we have (
−
j−1∑
i=0

Zj,iAi,k+1−i

)
x(j) + Zj,j

j−1∑
i=0

Ai,k+1−jx
(i) = Zj,jfk+1−j

or equivalently

−
j−1∑
i=0

Zj,i

(
d

dt

)j−i
Ai,k+1−ix

(i) + Zj,j

j−1∑
i=0

Ai,k+1−jx
(i) = Zj,jfk+1−j .

The (k + 1− i)-th equation of (3.5) implies that

Ai,k+1−ix
(i) = −

i−1∑
`=0

Zi,`A`,k+1−ix
(`) + fk+1−i.
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Multiplying this equation from the left by Zj,j , this can be rewritten as

−
j−1∑
i=0

Zj,i

(
d

dt

)j−i(
−
i−1∑
`=0

Zi,`A`,k+1−ix
(`) − fk+1−i

)
+ Zj,j

j−1∑
i=0

Ai,k+1−jx
(i)

= Zj,jfk+1−j ,

or equivalently

j−1∑
i=0

Zj,i

(
d

dt

)j−i(i−1∑
`=0

Zi,`A`,k+1−ix
(`)

)
+ Zj,j

j−1∑
i=0

Ai,k+1−jx
(i)

=

j−1∑
i=0

Zj,i

(
d

dt

)j−i
fk+1−i + Zj,jfk+1−j =: g2j ,

which is a set of di�erential equations of order at most j − 1.
Continuing like this inductively, we obtain (3.9).

>From (3.9), we deduce that rj = dj + sj , j = 1, . . . , k + 1, sk+1 = 0 and therefore the upper
rank of the behavior matrix of system (3.9) can be estimated via

r̆u 6 (k + 1)d1 + k(s1 + d2) + · · ·+ (sk + dk+1),

= (k + 1)(d1 + s1) + k(d2 + s2) + · · ·+ (dk+1 + sk+1)−
k∑
i=0

si,

= (k + 1)r1 + kr2 + · · ·+ rk+1 −
k∑
i=0

si = ru −
k∑
i=0

si,

and thus this procedure of passing the system (3.4) to (3.9) has reduced the upper rank.
This reduction of the upper rank leads to the following procedure.

Procedure 3.5. Input: The DAE (1.4) and its behavior form (3.2).

Begin: Set α = 0 and let M0 = M , f0 = f ,

Step 1. Determine a nonsingular matrix P ∈ C`,` (as in Lemma 3.2) such that

PMα =


Ak,1 Ak−1,1 . . . A0,1

Ak−1,2 . . . A0,2

. . .
...

A0,k+1

0 0 . . . 0

 ,
r1

r2

...
rk+1

v

where all the matrices on the main diagonal have full row rank, and let

rαu := (k + 1)r1 +mr2 + · · ·+ 2rk + rk+1,

be the upper rank of the behavior matrix Mα in the α-th iteration.
Step 2. Determine matrices Sj , Zj,i, j = k, . . . , 1, i = j, . . . , 0 of appropriate size such that

i) matrices

[
Sj
Zj,j

]
∈ Crj ,rj , k ≥ j ≥ 1 are nonsingular,

ii) for each j with k ≥ j ≥ 1,

Zj,jAj,k+1−j + [Zj,j−1 . . . Zj,0]

Aj−1,k+2−j
...

A0,k+1

 = 0,
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iii) for each j with k ≥ j ≥ 1, the matrix pairSjAj,k+1−j ,

Aj−1,k+2−j
...

A0,k+1




has no hidden redundancy.

Step 3. Setting

P̃ := diag

([
Sk
Zk,k

]
, . . . ,

[
S1

Z1,1

]
, Irk+1+v

)
∈ C`,`,

and scaling system (1.4) with P̃ from the left we obtain

SkAk,1 ∗ . . . ∗
Zk,kAk,1 ∗ . . . ∗

Sk−1Ak−1,2 . . . ∗
Zk−1,k−1Ak−1,2 . . . ∗

. . .
...

A0,k+1

0 0 . . . 0




x(k)

x(k−1)

...
x

 =



Skf1

Zk,kf1

Sk−1f2

Zk−1,k−1f2

...
fk+1

fk+2


. (3.10)

Step 4. For each j with k ≥ j ≥ 1, we then reduce the number of di�erential equations of order
j by eliminating the block Zj,jAj,k+1−j of (3.10), as in Lemma 3.3. In this way, we obtain the
system

d1

s1

d2

s2

...
dk+1

v



SkAk,1 ∗ . . . ∗
0 ∗ . . . ∗

Sk−1Ak−1,2 . . . ∗
0 . . . ∗

. . .
...

A0,k+1

0 0 . . . 0


︸ ︷︷ ︸

M̆


x(k)

x(k−1)

...
x

 =



Skf1

g2k

Sk−1f2

g2(k−1)

...
fk+1

fk+2


︸ ︷︷ ︸

f̆

,

with

g2j :=

j−1∑
i=0

Zj,i

(
d

dt

)j−i
fk+1−i + Zjj fk+1−j , j = k, . . . , 1.

Let sα :=
k∑
i=0

si, we then increase α by 1, set Mα = M̆ , fα = f̆ , and repeat the process from Step

1.
End.

Since rα+1
u 6 rαu − sα, Procedure 3.5 terminates after a �nite number of iterations, and thus

we have the following theorem.

Theorem 3.6. The DAE (1.4) has the same solution set as the DAE
Âk,1 Âk−1,1 . . . Â0,1

Âk−1,2 . . . Â0,2

. . .
...

Â0,k+1

0 0 . . . 0



x(k)

x(k−1)

...
x

 =


f̂1

f̂2

...

f̂k+1

f̂k+2

 (3.11)
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where

 Âk,1
...

Â0,k+1

 has full row rank.

Proof. Clearly, after carrying out Procedure 3.5, we obtain a system of the form (3.11), where
Âk,1, . . . , Â0,k+1 have full row rank and none of the matrix pairsÂi,k+1−i,

Âi−1,k+2−i
...

Â0,k+1




i = k, . . . , 1 has a hidden redundancy.

Applying Lemma 2.4 to the matrices Âi,k+1−i, i = 0, . . . , k, it follows that

 Âk,1
...

Â0,k+1

 has full

row rank.

Following the notation in [10] we call (3.11) the strangeness-free reformulation of the DAE (1.4).
Obviously, if at t = 0 the consistency assumptions(

d

dt

)i (
Âk−1,2x

(k−1)(t) + · · ·+ Â1,2x
(1)(t) + Â0,2x(t)− f̂2(t)

)
= 0, i = 0, 1,

. . . (3.12)(
d

dt

)i (
Â0,k+1x(t)− f̂k+1(t)

)
= 0, i = 0, . . . , k,

f̂k+2(t) = 0,

hold, then we can di�erentiate all but the �rst equation of system (3.11) to obtain an underlying
ODE as in the following theorem.

Theorem 3.7. Consider the DAE (1.4) and assume that the consistency condition (3.12) is
satis�ed. Then, (1.4) has the same solution set as the underlying ODE

Âk,1 Âk−1,1 . . . Â1,1 Â0,1

Âk−1,2 Âk−1,3 . . . Â0,2

...
...

...
...

...

Â1,k Â0,k 0 0

Â0,k+1 0 . . . 0 0




x(k)

x(k−1)

...

x(1)

x

 =


f̂1

f̂
(1)
2
...

f̂
(k−1)
k

f̂
(k)
k+1

 , (3.13)

where the �rst column

 Âk,1
...

Â0,k+1

 has full row rank.

The following corollary is a direct consequence of Theorem 3.7.

Corollary 3.8. Consider the initial value-problem (1.4)�(1.5), and assume that the function f is
su�ciently smooth. Then

i) consistency conditions for f and the initial vector X0 :=

x
(k)
0
...
x0

 are given by system (3.12).
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ii) system (1.4) is uniquely solvable if and only if in addition, the matrix

 Âk,1
...

Â0,k+1

 is square.

Motivated by the strangeness-free reformulation (3.11) of the DAE (1.4), we introduce the
following de�nition.

De�nition 3.9. Consider the behavior matrix

M = [Ak, . . . , A0] ∈ C`,(k+1)n,

associated with the DAE
Akx

(k)(t) + · · ·+A0x(t) + h(t) = 0,

where Ai ∈ C`,n, i = k, . . . , 0, and h : [0,∞)→ C`.
The matrixM is called strangeness-free if there exists a nonsingular matrix P ∈ C`,` such that

PM =


Ak,1 Ak−1,1 . . . A0,1

Ak−1,2 . . . A0,2

. . .
...

A0,k+1

0 0 . . . 0

 ,

where

i) each block column contains exactly n columns.

ii) the matrix


Ak,1
Ak−1,2

...
A0,k+1

 has full row rank.

In this section we have derived a procedure to transform a linear DAE of arbitrary order to a
strangeness free form. In the following section we use this procedure to reformulate DDAEs.

4 Analysis and reformulation of DDAEs

This section is devoted to DDAEs with single delay of the form (1.2) and the initial value problem
(1.2)�(1.3). Analogous to Section 3, the behavior approach and the algebraic approach will be
combined. Consider a behavior formulation of (1.2) as

N0X0 = f0, (4.1)

with

N0 = [A1 A0 A−1] and X0(t) =

 ẋ(t)
x(t)

x(t− τ)

 , f0(t) := f(t).

A �rst remarkable di�erence between DAEs and DDAEs is that for the DAE (1.4) of order
k, after applying the strangeness-free reformulation (Procedure 3.5) the resulting system is still a
DAE of order at most k. However, when applying a similar procedure for the DDAE (1.2) then
the order may even increase, as is illustrated in the following example.

Example 4.1. Consider the system[
0 1
0 0

] [
ẋ(t)
ẏ(t)

]
=

[
1 0
0 1

] [
x(t)
y(t)

]
+

[
0 0
0 1

] [
x(t− τ)
y(t− τ)

]
+

[
f1

f2

]
.
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In behavior form, we have

N0 =

[
0 1 −1 0 0 0
0 0 0 −1 0 −1

]
, X0 =


ẋ(t)
ẏ(t)
x(t)
y(t)

x(t− τ)
y(t− τ)

 .

Di�erentiating the second equation and inserting it into the �rst, we get[
0 0
0 0

] [
ẋ(t)
ẏ(t)

]
=

[
1 0
0 1

] [
x(t)
y(t)

]
+

[
0 0
0 1

] [
x(t− τ)
y(t− τ)

]
+

[
0 1
0 0

] [
ẋ(t− τ)
ẏ(t− τ)

]
+

[
f1 + ḟ2

f2

]
.

In behavior form we have N1X1 =

[
f1 + ḟ2

f2

]
with

N1 =

[
0 0 −1 0 0 0 0 −1
0 0 0 −1 0 −1 0 0

]
, X1 =



ẋ(t)
ẏ(t)
x(t)
y(t)

x(t− τ)
y(t− τ)
ẋ(t− τ)
ẏ(t− τ)


.

Thus, the size of the behavior matrix is increased.

The second important di�erence between DAEs and DDAEs is the strangeness-free reformu-
lation procedure. Let us illustrate this by considering the following example.

Example 4.2. Consider the system[
0
1

]
ẋ(t) +

[
1
0

]
x(t) +

[
1
0

]
x(t− τ) =

[
f(t)
g(t)

]
. (4.2)

The associated non-delayed system is[
0
1

]
ẋ(t) +

[
1
0

]
x(t) =

[
f(t)
g(t)

]
.

Using the strangeness-free reformulation in [10] for the non-delayed system, we di�erentiate the
�rst equation and insert it into the second equation to obtain[

0
0

]
ẋ(t) +

[
1
0

]
x(t) =

[
f(t)

g(t)− ḟ(t)

]
.

Clearly, if g(t) + ḟ(t) = 0 holds, then we obtain a unique solution x(t) = f(t).
Performing the same steps for system (4.2), we obtain that[

0
0

]
ẋ(t) +

[
1
0

]
x(t) +

[
1
0

]
x(t− τ) +

[
0
−1

]
ẋ(t− τ) =

[
f(t)

g(t)− ḟ(t)

]
. (4.3)

The second equation of (4.3) not only gives the consistency condition

ẋ(t− τ) + g(t)− ḟ(t) = 0, t ∈ [0, τ ],
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but also the constraint
ẋ(t) + g(t+ τ)− ḟ(t+ τ) = 0, t ≥ 0.

Therefore, one obtains the system[
0
1

]
ẋ(t) +

[
1
0

]
x(t) +

[
1
0

]
x(t− τ) =

[
f(t)

−g(t+ τ) + ḟ(t+ τ)

]
. (4.4)

Thus, the step that passes system (4.3) to (4.4) changes nothing but the inhomogeneity and
we can proceed like this without ever terminating. Thus, DDAEs require another reformulation
procedure, which should terminate after a �nite number of steps.

Considering system (4.2) again, we can proceed as follows. Replacing the �rst equation of (4.2)
by its derivative gives[

1
1

]
ẋ(t) +

[
0
0

]
x(t) +

[
0
0

]
x(t− τ) +

[
1
0

]
ẋ(t− τ) =

[
ḟ(t)
g(t)

]
.

Subtracting the �rst equation from the second we get[
0
1

]
ẋ(t) +

[
0
0

]
x(t) +

[
0
0

]
x(t− τ) +

[
1
0

]
ẋ(t− τ) =

[
ḟ(t)− g(t)

g(t)

]
.

Shifting the time in the �rst equation by τ , we obtain[
1
1

]
ẋ(t) +

[
0
0

]
x(t) +

[
0
0

]
x(t− τ) =

[
ḟ(t+ τ)− g(t+ τ)

g(t)

]
,

and subtracting the second equation from the �rst yields[
0
1

]
ẋ(t) +

[
0
0

]
x(t) +

[
0
0

]
x(t− τ) =

[
ḟ(t+ τ)− g(t+ τ)− g(t)

g(t)

]
. (4.5)

If the consistency condition in the �rst equation is satis�ed, then we have a unique solution x(t).

Motivated by Example 4.2, we propose a new procedure to treat the system (1.2) in the behavior
form (4.1). The idea is to replace nontrivial scalar DDEs in system (1.2) by (appropriately chosen)
derivatives. Since in this way the order of the system may be increased, we study directly general
DDAEs of the form (1.1). Set

N :=
[
Ak . . . A0 A−κ . . . A−1

]
=: [N+ N−],

X+(t) :=

x
(k)(t)
...

x(t)

 , X−(t− τ) :=

x
(κ)(t− τ)

...
x(t− τ)

 ,
then we have the behavior form of (1.1)

[N+ N−]

[
X+(t)

X−(t− τ)

]
= f(t). (4.6)

Set r := rank(N−) and d := ` − r and perform a column compression of N− as in the following
lemma.

Lemma 4.3. Consider the DDAE (1.1) in its behavior form (4.6). Then there exists a nonsingular
matrix P ∈ C`,` such that by scaling system (4.6) with P from the left, we obtain the system[

F G
H 0

] [
X+(t)

X−(t− τ)

]
=

[
f1(t)
f2(t)

]
,

r
d

(4.7)

where G has full row rank.
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Proof. First we determine a matrix P2 ∈ Cd,` whose rows span the left nullspace of N−, i. e.,

P2N− = 0 and then we complement P2 as P :=

[
P1

P2

]
to a nonsingular matrix. Then

P [N+ N−] =

[
P1N+ P1N−
P2N+ 0

]
=:

[
F G
H 0

]
,

and G = P1N− has full row rank.

Since in (4.7) G has full row rank, we see that the behavior system (4.6) has r nontrivial scalar
delay di�erential equations, and d scalar di�erential equations.

Since typically the matrix

[
F
H

]
is not strangeness-free, then a �rst idea would be carry out the

strangeness-free formulation (Procedure 3.5) for the DAE[
F
H

]
X+(t) =

[
g1(t)
g2(t)

]
, (4.8)

where

g(t) :=

[
g1(t)
g2(t)

]
:= −

[
G
0

]
X−(t− τ) +

[
f1(t)
f2(t)

]
.

However, as pointed out in Example 4.2, this may not lead to a procedure that terminates in a
�nite number of steps.

In order to overcome this di�culty, we propose the following approach. Since the order of the
DAE HX+(t) = f2(t) is at most k, we replace the �rst equation of system (4.7) by its (k + 1)-st
derivative and obtain the system[

F 0
0 H

] [(
d
dt

)k+1
X+(t)

X+(t)

]
+

[
G
0

](
d

dt

)k+1

X−(t− τ) =

[(
d
dt

)k+1
f1(t)

f2(t)

]
. (4.9)

To guarantee that system (4.9) has the same solution set as (4.8), we must require that the
following consistency condition holds at t = 0(

d

dt

)j (
FX+(t) +GX−(t− τ)− f1(t)

)
= 0, j = 0, . . . , k + 1. (4.10)

Thus, we have shown the following lemma.

Lemma 4.4. Consider system (4.8) and assume that the consistency condition (4.10) is satis�ed
at t = 0. Then system (4.8) has the same solution set as the DDAE (4.9).

Setting [
f̆1(t)

f̆2(t)

]
:= −

[
G
0

](
d

dt

)k+1

X−(t− τ) +

[(
d
dt

)k+1
f1(t)

f2(t)

]
,

we can apply Procedure 3.5 to the DAE[
F 0
0 H

][(
d
dt

)k+1
X+(t)

X+(t)

]
=

[
f̆1(t)

f̆2(t)

]
and have shown the following lemma.

Lemma 4.5. Consider the DDAE (1.1) in its behavior form (4.6) and assume that the consistency
condition (4.10) is satis�ed at t = 0. Then, system (1.1) has the same solution set as the DDAE

r − s
s

d− v
v


F̃1 F̃2

0 0

0 H̃
0 0


[(

d
dt

)k+1
X+(t)

X+(t)

]
+


G̃1

G̃2

0
0

 X̃−(t− τ) =


f̃1(t)

f̃2(t)

f̃3(t)

f̃4(t)

 , (4.11)
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where X̃−(t− τ) =

x
(κ̃)(t− τ)

...
x(t− τ)

 for some κ̃ ∈ N and where the matrix

[
F̃1 F̃2

0 H̃

]
is strangeness-

free and of full row rank.

Since the second equation in system (4.11) is a DAE of the variable x(t− τ), we can shift it to
obtain a DAE for x(t). We summarize this and Lemmas 4.3, 4.4, 4.5, in the following theorem.

Theorem 4.6. Consider the DDAE (1.1) in its behavior form (4.6). Moreover, assume that the
consistency condition (4.10) is satis�ed at t = 0 and that(

G̃2X̃−(t− τ)− f̃2(t)
) ∣∣∣

t∈[0,τ ]
= 0, (4.12)

holds. Then, system (1.1) has the same solution set as the DDAE
F̃1 F̃2

0 H̃
0 0
0 0


[(

d
dt

)k+1
X+(t)

X+(t)

]
+


0
0

G̃2

0

 X̃+(t) +


G̃1

0
0
0

 X̃−(t− τ) +

=


f̃1(t)

f̃3(t)

f̃2(t+ τ)

f̃4(t)

 ,
r − s
d− v
s
v

(4.13)

where

X̃+(t) :=

x
(κ̃)(t)
...

x(t)

 .
In (4.13), the matrix

[
F̃1 F̃2

0 H̃

]
is strangeness-free and of full row rank.

Observe that by passing system (4.7) to (4.13), we reduced the number of scalar delay di�eren-
tial equations from r (in system (4.7)) to r− s (in system (4.13)). However, the number of system
equations (number of rows) is still `.

De�nition 4.7. The step that passes system (4.7) to (4.13) is called a reformulation step. The
natural numbers r, d, s, v are called characteristic invariants of system (1.1) and of its behavior
form (4.7).

Setting knew := max{2k + 1, κ̃}, κnew := κ̃, we can bring system (4.11) into behavior form
and perform a new reformulation step. Since the number of nontrivial DDEs decreases every time
that we perform a reformulation step, this process terminates after �nitely many steps.

We summarize the discussion above in the following procedure.

Procedure 4.8. Input: The DDAE (1.1).
Begin
Set

N0 :=
[
Ak . . . A0 A−κ . . . A−1

]
=: [N0

+ N0
−],

X0
+(t) :=

x
(k)(t)
...

x(t)

 , X0
−(t− τ) :=

x
(κ)(t− τ)

...
x(t− τ)

 ,
X0(t) =

[
X0

+(t)
X0
−(t− τ)

]
, f0(t) = f(t),
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and i = 0, k0 = k, κ0 = κ, r0 = rank(N0
−), d0 = `− r0.

Step 1. Determine a nonsingular matrix P ∈ C`,` such that by scaling P from the left of the
behavior system

N0X0(t) = f0(t),

we obtain [
F G
H 0

] [
X+(t)

X−(t− τ)

]
=

[
f1(t)
f2(t)

]
,

r0

d0 (4.14)

where G has full row rank.

If
[
F
H

]
is strangeness-free and has full row rank then STOP

else proceed to Step 2.
Step 2. Check the consistency conditions

dj

dtj

(
FX+(t) +GX−(t− τ)− f1(t)

)
= 0, j = 0, . . . , k + 1,

at t = 0. If it is satis�ed, then transform the behavior system (4.14) into[
F 0
0 H

][(
d
dt

)k+1
X+(t)

X+(t)

]
+

[
G
0

](
d

dt

)k+1

X−(t− τ) =

[(
d
dt

)k+1
f1(t)

f2(t)

]
. (4.15)

Step 3. Apply Procedure 3.5 to system (4.15) to obtain
F̃1 F̃2

0 0

0 H̃
0 0


[(

d
dt

)k+1
X+(t)

X+(t)

]
+


G̃1

G̃2

0
0

 X̃−(t− τ) =


f̃1(t)

f̃2(t)

f̃3(t)

f̃4(t)

 ,
r0 − s0

s0

d0 − v0

v0

(4.16)

where X̃−(t − τ) =

x
(κ̃)(t− τ)

...
x(t− τ)

, for some κ̃ ∈ N, and the matrix

[
F̃1 F̃2

0 H̃

]
is strangeness-free

and of full row rank.
Step 4. Check the consistency conditions(

G̃2X̃−(t− τ)− f̃2(t)
) ∣∣∣

t∈[0,τ ]
= 0.

If it is satis�ed, then shift the second equation of system (4.16) and permute the second and the
third block rows to get

F̃1 F̃2

0 H̃
0 0
0 0


[(

d
dt

)k+1
X+(t)

X+(t)

]
+


0
0

G̃2

0

 X̃+(t) +


G̃1

0
0
0

 X̃−(t− τ) +

=


f̃1(t)

f̃3(t)

f̃2(t+ τ)

f̃4(t)

 ,
r0 − s0

d0 − v0

s0

v0

(4.17)

where

X̃+(t) :=

x
(κ̃)(t)
...

x(t)

 , X̃−(t− τ) =

x
(κ̃)(t− τ)

...
x(t− τ)

 .

16



Step 5. Reorganize system (4.17) in the form

Ãk1x
(k1)(t) + · · ·+ Ã0x(t) + Ã−1x(t− τ) + · · ·+ Ã−κ1

x(κ1)(t− τ) = f̃1(t),

where Ãi ∈ C`,n, i = −κ1, . . . , k1, Ãk1 6= 0, Ã−κ1
6= 0, k1 6 max{2k + 1, κ̃}, κ1 6 κ̃.

Increase i by 1 and set

N i :=
[
Ãk1 . . . Ã0 Ã−κ1

. . . Ã−1

]
:= [N i

+ N i
−],

Xi
+(t) :=

x
(k1)(t)
...

x(t)

 , Xi
−(t− τ) :=

x
(κ1)(t− τ)

...
x(t− τ)

 ,
Xi(t) :=

[
Xi

+(t)
Xi
−(t− τ)

]
,

where
rank(N i

+) = rank(G̃i) 6 ri−1 − si−1.

Set
ri := rank(N i

+) 6 ri−1 − si−1, di−1 = `− ri−1 ≥ di + si,

and repeat the process from Step 1.
End

De�nition 4.9. Consider the DDAE (1.1) in its behavior form (4.7) and the sequence (ri, di, si, vi),
i ∈ N of characteristic invariants generated by Procedure 4.8. Then, we call

ω = min{i ∈ N0| si = 0}

the delay index of (1.1).

Theorem 4.10. Consider the DDAE (1.2) and let ω be the delay-index of (1.1). Moreover,
suppose that consistency conditions (4.10) at t = 0, and (4.12) of all reformulation steps 1, . . . , ω
are satis�ed. Then, (1.1) has the same solution set as the following DDAE

Nω
+X

ω
+(t) +Nω

−X
ω
−(t) = fω(t), (4.18)

with delay-index 0, where

Nω
+ =

Fω1 Fω2
0 Hω

0 0

 , Nω
− =

∗0
0

 , fω =

fω1fω2
fω3

 , rω

dω

vω
(4.19)

Xω = [x(kω)(t)T , . . . , x(t)T , x(κω)(t− τ)T , . . . , x(t− τ)T ]T =

[
Xω

+

Xω
−

]
.

In (4.19), the matrix

[
Fω1 Fω2
0 Hω

]
is strangeness-free and of full row rank.

Since (1.2) is a special case of system (1.1), we can apply Theorem 4.10 to study (1.2). Due

to De�nition 3.9, the fact that matrix

[
Fω1 Fω2
0 Hω

]
is strangeness-free and of full row rank implies

that there exist a nonsingular matrix P ∈ C`,` such that by scaling system (4.18) with P from the
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left, we obtain 
Âkω,1 Âkω−1,1 . . . Â0,1

Âkω−1,2 . . . Â0,2

. . .
...

Â0,kω+1

0 0 . . . 0



x(kω)(t)
x(kω−1)(t)

...
x(t)

+

+


∗ . . . ∗
∗ . . . ∗
...

...
∗ . . . ∗
0 0 0


x

(κω)(t− τ)
...

x(t− τ)

 =


f̂1(t)

f̂2(t)
...

f̂kω+1(t)

f̂kω+2(t)

 (4.20)

and

Ãkω :=


Âkω,1
Âkω−1,2

...

Â0,kω+1


has full row rank. Rewriting (4.20) block row-wise in behavior form as

Nω
1

Nω
2
...

Nω
kω+1

0

Xω =


f̂1(t)

f̂2(t)
...

f̂kω+1(t)

f̂kω+2(t)

 , (4.21)

we get the following consistency conditions at t = 0

Nω
1 X

ω − f1(t) = 0,

di

dti

(
Nω

2 X
ω − f2(t)

)
= 0, i = 0, 1,

· · · (4.22)

di

dti

(
Nω
kω+1X

ω − fkω+1(t)
)

= 0, i = 0, . . . , kω + 1,

fkω+2(t) = 0.

Therefore, similar to Theorem 3.7, we obtain the following theorem, which stresses that every
DDAE of the form (1.2) contains an underlying high-order DDE.

Theorem 4.11. Consider the DDAE (1.2). Let ω be its delay-index and assume that (4.20) is
the delay-index 0 formulation of (1.2). Moreover, assume that the consistency conditions (4.10)
at t = 0, and (4.12) of all reformulation steps 1, . . . , ω are satis�ed. Furthermore, suppose that
the consistency condition (4.22) is also satis�ed. Then, (1.2) has the same solution set as the
following DDE

Ãkωx
(kω)(t) + · · ·+ Ã0x(t) + Ã−1x(t− τ) + · · ·+ Ã−κω−kωx

(κω+kω)(t− τ) + f̃ω(t) = 0,

where Ãkω has full row rank.

Proof. The proof follows by di�erentiating the j-th equation of system (4.21) j − 1 times for each
2 6 j 6 kω.
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Corollary 4.12. Consider the DDAE (1.2). Moreover, assume that the function f is su�ciently
smooth.

i) The DDAE (1.2) is solvable if and only if the consistency conditions (4.10) at t = 0, and
(4.12) of all reformulation steps 1, . . . , ω are satis�ed and also the consistency condition
(4.22) is satis�ed.

ii) The initial value problem (1.2)-(1.3) is uniquely solvable if and only if in addition the matrix
Ãkω is square.

5 Conclusion

In this paper, we have investigated the theoretical and numerical analysis of a class of delay
di�erential-algebraic equations (DDAEs). We have proved that under some consistency conditions
every DDAE with single delay can be reformulated as a DDE. We also introduced an appropriate
delay-index for nontrivial DDAEs and constructed strangeness-free reformulations and used these
to investigate solvability, consistency and smoothness requirements. The key tool in the analysis
is a combination of the algebraic approach and the behavior approach.

In summary, we have shown that in order to deal with DDAEs in full generality, one needs to
handle not only the structure of the matrix coe�cients but also some hidden high-order DDE.
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