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Abstract. The aim of this article is to present a convergence theory of the SQP-method applied
to optimal control problems for the instationary Navier-Stokes equations. We will employ a second-
order sufficient optimality condition, which requires that the second derivative of the Lagrangian is
positive definit on a subspace of inactive constraints. Therefore, we have to use Lp-theory of optimal
controls of the instationary Navier-Stokes equations rather than Hilbert space methods. We prove
local convergence of the SQP-method. This behaviour is confirmed by numerical tests.
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1. Introduction. We are considering optimal control of the instationary Navier-
Stokes equations. The minimization of the following quadratic objective functional
serves as model problem:

minJ(y, u) =
αT

2

∫
Ω

|y(x, T )− yT (x)|2dx +
αQ

2

∫
Q

|y(x, t)− yQ(x, t)|2dxdt

+
αR

2

∫
Q

| curl y(x, t)|2dxdt +
γ

2

∫
Q

|u(x, t)|2dxdt (1.1)

subject to the instationary Navier-Stokes equations

yt − ν∆y + (y · ∇)y +∇p = u in Q,

div y = 0 in Q,

y(0) = y0 in Ω,

(1.2)

and the control constraints u ∈ Uad with set of admissible controls defined by

Uad = {u ∈ L2(Q)2 : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1..2}.

Here, Ω is an open bounded subset of R2 with C3-boundary Γ such that Ω is locally
on one side of Γ, and Q is defined by Q = Ω× (0, T ). Further, functions yT ∈ L2(Ω)2,
yQ ∈ L2(Q)2, and y0 ∈ H ⊂ L2(Ω)2 are given. The parameters γ and ν are positive
real numbers. The bounds ua, ub are required to be in L2(Q)2 with ua,i(x, t) ≤
ub,i(x, t) a.e. on Q, i = 1, 2.

The aim of this article is the presentation of a convergence theory of the SQP-method
to solve the optimization problem (1.1). This method is widely applied to solve finite
dimensional as well as function space optimization problems. The first convergence
result in the context of optimal control was given in [24]. We will prove quadratic
convergence of the SQP-method in a neighborhood of a reference control, which has to

1This work was supported by DFG SFB 557 ”Control of complex turbulent shear flows” at TU
Berlin.

2Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, D-10623 Berlin,
Germany.
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fulfill a second-order sufficient optimality condition. We require positive definiteness
of the second derivative of the Lagrangian on a subspace of inactive constraints.

The control of instationary Navier-Stokes flow has been studied very intensively since
the pioneering work [1]. Necessary as well as sufficient optimality conditions were
established, cf. [7, 8, 13, 14, 25]. The optimality system can be used to derive regularity
properties of optimal controls. In [27], it was proven under certain assumptions that a
locally optimal control of the problem (1.1) is a continuous function in space and time.
Once a sufficient optimality condition holds true, one can prove stability of optimal
controls under perturbations of the reference configuration. Here, one is interested in
getting maximal stability of the controls, say stability with respect to the strongest
possible norm. Using Hilbert space methods, one obtain stability of optimal controls
in Lq with q < ∞. Since under some regularity assumptions an locally optimal control
is continuous, one wants to get stability in the associated L∞-norm. To this aim, a
solution theory of the Navier-Stokes equations in Lp rather than Hilbert spaces is
needed. If a stability result is available, one can prove local convergence of the SQP-
method using the concept of generalized equations, [12, 18, 24]. In contrast to the
approaches in the literature, we require that the second derivative of the Lagrangian
is positive definite only on a subspace associated with strongly active constraints.

The outline of the paper is as follows. In Section 2, we will introduce some notation
and state common results concerning solvability of the instationary Navier-Stokes
system (1.2). Section 3 contains a brief overview of known facts about optimality
conditions including first-order necessary and second-order sufficient conditions. In
Section 4, the SQP-method is considered and its local convergence is proven. Nu-
merical results confirming the convergence theory are presented in Section 5. Some
regularity results for the linearized Navier-Stokes equation and the adjoint equation
are summarized in Section 6. Throughout the article, we investigate the theory of
optimal controls of the instationary Navier-Stokes equations in the Lp-space context.

2. Notations and preliminary results. Here, we will restrict ourselves to the
two-dimensional case, n = 2. First, we introduce some notations and provide some
results that we need later on.

To begin with, we define the solenoidal spaces

Hp := {v ∈ Lp(Ω)2 : div v = 0}, Vp := {v ∈ W 1,p
0 (Ω)2 : div v = 0}.

Here, p denotes an arbitrary exponent p ≥ 2. These spaces are Banach spaces with
their norms denoted by | · |p respectively | · |1,p. For p = 2, we get the frequently
used solenoidal spaces H := H2 and V := V2, which are Hilbert spaces with scalar
products (·, ·)H respectively (·, ·)V . The dual of V with respect to the scalar product
of H we denote by V ′ with the duality pairing 〈·, ·〉V ′,V .

We shall work in the standard space of abstract functions from [0, T ] to a real Banach
space X, Lp(0, T ;X), endowed with its natural norm,

‖y‖Lp(X) := ‖y‖Lp(0,T ;X) =

(∫ T

0

|y(t)|pXdt

)1/p

1 ≤ p < ∞,

‖y‖L∞(X) := vraimax
t∈(0,T )

|y(t)|X .

In the sequel, we will identify the spaces Lp(0, T ;Lp(Ω)2) and Lp(Q)2 for 1 < p < ∞,
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and denote their norm by ‖u‖p := |u|Lp(Q)2 . The usual L2(Q)2-scalar product we
denote by (·, ·)Q to avoid ambiguity.

In all what follows, ‖ · ‖ stands for norms of abstract functions, while | · | denotes
norms of ”stationary” spaces like H and V .

To deal with the time derivative in (1.2), we introduce the common spaces of functions
y whose time derivatives yt exist as abstract functions,

Wα(0, T ;V ) := {y ∈ L2(0, T ;V ) : yt ∈ Lα(0, T ;V ′)}, W (0, T ) := W 2(0, T ;V ),

where 1 ≤ α ≤ 2. Endowed with the norm

‖y‖W α := ‖y‖W α(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lα(V ′),

these spaces are Banach spaces, respectively Hilbert spaces in the case of W (0, T ).
Every function of W (0, T ) is, up to changes on sets of zero measure, equivalent to a
function of C([0, T ],H), and the imbedding W (0, T ) ↪→ C([0, T ],H) is continuous, cf.
[2, 17].

Furthermore, we introduce the following space of abstract functions in the Lp-context:

W 2,1
p := {y ∈ Lp(0, T ;W 2,p(Ω)2 ∩ Vp) : yt ∈ Lp(0, T ;Lp(Ω)2)},

which is continuously imbedded in C([0, T ],W 2−2/p, p
0 (Ω)2), [16]. Here, W

2−2/p, p
0 (Ω)2

denotes the space of solenoidal W 2−2/p, p-functions where zero boundary values are
prescribed if p ≥ 4/3. We abbreviate H2,1 = W 2,1

2 for p = 2. Note, that in this case
we have W

2−2/2, 2
0 (Ω)2 = V . In this article, we will use exponents p ≥ 2.

We define the trilinear form b : V × V × V 7→ R by

b(u, v, w) = ((u · ∇)v, w)2 =
∫

Ω

2∑
i,j=1

ui
∂vj

∂xi
wj dx.

To specify the problem setting, we introduce a linear operator A : L2(0, T ;V ) 7→
L2(0, T ;V ′) by ∫ T

0

〈(Ay)(t), v(t)〉V ′,V dt :=
∫ T

0

(y(t), v(t))V dt,

and a nonlinear operator B by∫ T

0

〈(
B(y)

)
(t), v(t)

〉
V ′,V

dt :=
∫ T

0

b(y(t), y(t), v(t))dt.

B is continuous for instance as operator from W (0, T ) to L2(0, T ;V ′). For conve-
nience, we will use the notation

bQ(y, v, w) =
∫ T

0

b(y(t), v(t), w(t))dt.
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2.1. The state equation. We begin with the notation of weak solutions for the
instationary Navier-Stokes equations (1.2) in the Hilbert space setting.

Definition 2.1 (Weak solution). Let f ∈ L2(0, T ;V ′) and y0 ∈ H be given. A
function y ∈ L2(0, T ;V ) with yt ∈ L2(0, T ;V ′) is called weak solution of (1.2) if

yt + νAy + B(y) = f,

y(0) = y0.
(2.1)

Results concerning the solvability of (2.1) are standard, cf. [22] for proofs and further
details.

Theorem 2.2 (Existence and uniqueness of solutions). For every f ∈ L2(0, T ;V ′)
and y0 ∈ H, the equation (2.1) has a unique solution y ∈ W (0, T ). Moreover, the
mapping (y0, u) 7→ y is locally Lipschitz continuous from H×L2(0, T ;V ′) to W (0, T ).

For more regular data, one expects more regular solutions. The next theorem states
some well-known facts, see for instance [22] for the details and further regularity
results.

Theorem 2.3 (Regularity). For the higher regularity of the weak solutions of (2.1)
the following holds. Let y0 ∈ V and f ∈ L2(Q)2 be given. Then the weak solution
of (2.1) fulfills y ∈ H2,1. The solution mapping (f, y0) 7→ y is locally Lipschitz
continuous between L2(Q)2 × V and H2,1.

For the proof we refer again to Temam [22].

Now, we want to specify the notation of a solution of (2.1) in the Lp-context.

Definition 2.4 (Strong solution in Lp). Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be

given. A function y ∈ W 2,1
p is called strong solution to the exponent p > 2 of (1.2) if

there holds

−
∫ T

0

(y, φ′)dt + ν

∫ T

0

(∇y,∇φ)dt +
∫ T

0

b(y, y, φ) =
∫ T

0

(f, φ)dt + (y0, φ(0)) (2.2)

for all test functions φ ∈ Lq(0, T ;Vq) with φt ∈ Lq(0, T ;Lq(Ω)2) and φ(T ) = 0, where
q is the dual exponent to p, 1/q + 1/p = 1.

Here the space W
2−2/p, p
0 (Ω)2 is the natural trace space. Every abstract function of

Lp(0, T ;W 2,p(Ω)2) with time derivative in Lp(0, T ;Lp(Ω)2) is - after changes on a
zero measure set - continuous with values in this space, [16]. Obviously, every strong
Lp-solution is a weak solution. For existence of Lp-solutions we have the following
theorem.

Theorem 2.5 (Lp-solutions). Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be given with

p ≥ 2. Then the weak solution y of (2.1) in the sense of Definition 2.1 is a strong
solution and satisfies y ∈ W 2,1

p There exists a constant c > 0 such that

‖y‖W 2,1
p

≤ c {|y0|W 2−2/p, p + ‖f‖p}

Moreover, the mapping (f, y0) 7→ y is locally Lipschitz continuous, hence the strong
solution y is unique.

If p = 2 this result reduces to Theorem 2.3. For the non-Hilbert space case p > 2, it
is proven in [28].
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2.2. Differentiablity of the solution mapping. So far, we provided results
concerning the properties of the state equation. We denote by G(u) = y the solution
operator (f, y0) 7→ y of the instationary Navier-Stokes equations (2.1).

Lemma 2.6. The solution operator G : Lp(Q)2 ×W
2−2/p, p
0 (Ω)2 7→ W 2,1

p is Fréchet-
differentiable. The derivative G′ is given by G′(f, y0)(hf , h0) = z, where z is the
solution of

zt + νAz + B′(ȳ)z = hf ,

z(0) = h0.
(2.3)

with ȳ = G(f, y0), (hf , h0) ∈ Lp(Q)2 ×W
2−2/p, p
0 (Ω)2.

Proof. Denote by ȳ the state associated with (f, y0) and by yh the one associated
with (f + fh, y0 + h0), i.e. ȳ = G(f, y0) and yh = G(f + fh, y0 + h0). Since

B(ȳ)−B(yh) = B′(ȳ)(ȳ − yh)−B(ȳ − yh),

the difference d := ȳ − yh solves

dt + νAd + B′(ȳ)d = hf + B(ȳ − yh),
d(0) = h0.

Next we split this difference into functions z and r, d = z + r, that solve the two
linear equations

zt + νAz + B′(ȳ)z = hf ,

z(0) = h0,

rt + νAr + B′(ȳ)r = B(ȳ − yh),
r(0) = 0.

(2.4)

Existence and uniqueness of z and r follow from Lemma 6.5. Let us denote the
solution operator of these linear equations by G̃(ȳ), then z = G̃(ȳ)(hf , h0). Clearly,
this operator is linear. Its boundedness is a consequence of Lemma 6.5. We arrive at

ȳ − yh − z = G(f, y0)−G(f + fh, y0 + h0)− G̃(ȳ)(hf , h0) = r.

To prove Fréchet-differentiability of G, we have to estimate the norm of r. We begin
with the estimation of the right-hand side of the system determining r, (2.4). Since
ȳ, yh are in W 2,1

p we obtain

‖B(ȳ − yh)‖p = ‖(ȳ − yh) · ∇(ȳ − yh)‖p ≤ ‖ȳ − yh‖∞‖ȳ − yh‖Lp(W 1,p(Ω)2)

≤ c ‖ȳ − yh‖2
W 2,1

p
.

By subsequent application of Lemma 6.5, the previous estimate of the Navier-Stokes
nonlinearity B, and the Lipschitz continuity of the solution mapping G we obtain

‖r‖W 2,1
p

≤ c ‖B(ȳ − yh)‖p ≤ c ‖ȳ − yh‖2
W 2,1

p
≤ c (‖hf‖2

p + |h0|2W 2−2/p, p).

Then it follows

|r|W 2,1
p

‖hf‖p + |h0|W 2−2/p, p

→ 0

as ‖hf‖p + |h0|W 2−2/p, p → 0. In this way, the Fréchet-differentiability of G is proven,
and we can identify G′(f, y0) := G̃(ȳ) = G̃(G(f, y0)).
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3. Optimality conditions. Now we return to our optimal control problem. In
this section, we discuss both necessary and sufficient optimality conditions connected
with the optimal control problem (1.1).

3.1. First order necessary optimality conditions. We briefly recall the
necessary conditions for local optimality. For the proofs and further discussion see
[1, 5, 8, 13, 25] and the references cited therein.

Definition 3.1 (Locally optimal control). A control ū ∈ Uad is said to be locally
optimal in L2(Q)2, if there exists a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yρ, uρ)

holds for all uρ ∈ Uad with ‖ū−uρ‖2 ≤ ρ. Here, ȳ and yρ denote the states associated
with ū and uρ, respectively.

In the following, we denote by B′(ȳ)∗ the formal adjoint of B′(ȳ), given by

[B′(ȳ)∗λ]v =
∫

Q

b(ȳ, v, λ) + b(v, ȳ, λ)dt.

Theorem 3.2 (Necessary condition). Let ū be a locally optimal control with asso-
ciated state ȳ = y(ū). Then there exists a unique solution λ̄ ∈ W 4/3(0, T ;V ) of the
adjoint equation

−λ̄t + νAλ̄ + B′(ȳ)∗λ̄ = αQ(ȳ − yQ) + αR
~curl curl ȳ

λ̄(T ) = αT (ȳ(T )− yT ).
(3.1)

Moreover, the variational inequality

(γū + λ̄, u− ū)L2(Q)2 ≥ 0 ∀u ∈ Uad (3.2)

is satisfied.

Proofs can be found in [8, 9, 25]. The regularity of λ̄ is proven in [14].

The variational inequality (3.2) can be reformulated equivalently in different forms.
At first, a pointwise discussion yields the projection representation of the optimal
control

ui(x, t) = Proj[ua,i(x,t),ub,i(x,t)]

(
− 1

γ
λ̄i(x, t)

)
a.e. on Q, i = 1, 2. (3.3)

With this formula, we can see that the optimal control inherits some regularity from
the adjoint state. This form is also used in connection with Lipschitz stability of
optimal controls, cf. [27].

Secondly, we introduce the normal cone NUad
(ū) of the set of admissible controls given

by

NUad
(ū) =

{{
z ∈ L2(Q)2 : (z, u− ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad

∅ otherwise.
(3.4)

Then the variational inequality (3.2) can be written equivalently as the inclusion

νū + λ̄ + NUad
(ū) 3 0. (3.5)
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This representation fits in the context of generalized equations, see for instance [12,
27].

The adjoint state λ is the solution of a linearized adjoint equation backward in time.
So it is natural, to look for its dependence of the given data. For convenience, we
denote by f the right-hand side of (3.1), and by λT the initial value αT (ȳ(T )− yT ).

Theorem 3.3 (Regularity of the adjoint state).

(i) Let λT ∈ H, f ∈ L2(0, T ;V ′), and ȳ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) be given.
Then there exists a unique weak solution λ of (3.1) satisfying λ ∈ W 4/3(0, T ).

(ii) Let λT ∈ V , f ∈ L2(Q)2, and ȳ ∈ L2(0, T ;H2(Ω)2) ∩ L∞(0, T ;V ) be given.
Then the unique weak solution λ of (3.1) is of class H2,1.

The mapping (f, λT ) 7→ λ is continuous in the mentioned spaces.

It can be proven following the lines of Temam [22], see also [14].

If the state y is a weak solution of (1.2) associated to a control u ∈ L2(Q)2, then
Theorem 2.3 yields y ∈ H2,1, and the pre-requisites are met, thus we get λ ∈ H2,1.

The existence of Lp-solutions of the adjoint equation is topic of the next Theorem.

Theorem 3.4. Let f ∈ Lp(Q)2 and λT ∈ W
2−2/p, p
0 (Ω)2 be given with p ≥ 2. If

ȳ ∈ Lp(0, T ;W 2,p(Ω)2 ∩ Vp), then the weak solution λ of (3.1) is a strong solution
and satisfies λ ∈ W 2,1

p . Moreover, the mapping (f, λT ) 7→ λ is continuous, hence the
weak solution λ is unique.

The result in the case p = 2 is equivalent to Theorem 3.3(ii). The proof for the case
p > 2 is sketched in Section 6.3.

Let us introduce the Lagrange function L : W (0, T ) × L2(Q)2 ×W 4/3(0, T ) 7→ R for
the optimal control problem as follows:

L(y, u, λ) = J(u, y)−
{
〈yt, λ〉L2(V ′),L2(V ) + ν(y, λ)L2(V ) + bQ(y, y, λ)− (u, λ)Q

}
.

This function is twice Fréchet-differentiable with respect to (y, u) ∈ W (0, T )×L2(Q)2,
cf. [25]. The reader can readily verify that the necessary conditions can be expressed
equivalently by

Ly(ȳ, ū, λ̄) h = 0 ∀h ∈ W (0, T ) with h(0) = 0,

Lu(ȳ, ū, λ̄)(u− ū) ≥ 0 ∀u ∈ Uad.

Here, Ly, Lu denote the partial Fréchet-derivative of L with respect to y and u.

In the sequel we denote the pair of state and control (y, u) by v for convenience. The
second derivative of the Lagrangian L at y ∈ W (0, T ) with associated adjoint state λ
in the directions v1 = (w1, h1), v2 = (w2, h2) ∈ W (0, T )× L2(Q)2 is given by

Lvv(y, u, λ)[v1, v2] = Lyy(y, u, λ)[w1, w2] + Luu(y, u, λ)[h1, h2] (3.6)

with

Lyy(y, u, λ)[w1, w2] = αT (w1(T ), w2(T ))H + αQ(w1, w2)Q + αR(curl w1, curlw2)Q

− bQ(w1, w2, λ)− bQ(w2, w1, λ)

and

Luu(y, u, λ)[h1, h2] = γ(h1, h2)2.
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It satisfies the estimate

|Lyy(y, u, λ)[w1, w2]| ≤ c
(
1 + ‖λ‖L2(V )

)
‖w1‖W (0,T )‖w2‖W (0,T ) (3.7)

for all w1, w2 ∈ W (0, T ), confer [25].

To shorten notations, we abbreviate [v, v] by [v]2, i.e.

Lvv(v̄, λ̄)[(w, h)]2 := Lvv(v̄, λ̄)[(w, h), (w, h)].

3.2. Regularity of extremal controls. In the sequel, we will denote controls
which satisfy the first-order necessary conditions as extremal controls. We will show
that under the following assumptions every extremal control is a continuous function
in space and time. More precisely, we assume for a p, 2 < p < ∞, that the following
pre-requisite holds

(REG)


ua, ub ∈ C(Q̄)2,
y0 ∈ W

2−2/p, p
0 (Ω)2,

Either αT = 0 or yT ∈ W
2−2/p, p
0 (Ω)2,

Either αQ = 0 or yQ ∈ Lp(Q)2.

Theorem 3.5. Let (REG) be satisfied. Every control u which fulfills the first-order
necessary conditions is continuous, i.e. u ∈ C(Q̄)2.

Proof. For a detailed discussion, we refer to [27]. We only sketch the proof. For
every control u ∈ L2(Ω)2, we get that the associated state y as well as the adjoint
state λ belong to H2,1. The space H2,1 is imbedded in every Lp(Q)2 for p < ∞,
so the projection formula (3.3) gives u ∈ Lp(Q)2. Now, we can apply the strong
solvability result to conclude y, λ ∈ W 2,1

p , for p > 2. With imbedding arguments we
find λ ∈ C(Q̄)2. A second application of (3.3) finally yields u ∈ C(Q̄)2.

3.3. Second-order sufficient optimality condition. Let v̄ := (ȳ, ū) be an
admissible reference pair satisfying the first-order necessary optimality conditions.

Definition 3.6 (Strongly active sets). Let ε > 0 and i ∈ {1, 2} be given. Define sets
Qε,i ⊆ Q = Ω× [0, T ] by

Qε,i = {(x, t) ∈ Q : |γūi(x, t) + λ̄i(x, t)| > ε}.

We assume further that the reference pair v̄ = (ȳ, ū) satisfies the following coercivity
assumption on L′′(v̄, λ̄), in the sequel called second-order sufficient condition:

(SSC)



There exist ε > 0 and δ > 0 such that

Lvv(v̄, λ̄)[(w, h)]2 ≥ δ ‖h‖2
2

holds for all pairs (w, h) ∈ W (0, T )× L2(Q)2 with

h = u− ū, u ∈ Uad, hi = 0 on Qε,i for i = 1, 2,

and w ∈ W (0, T ) being the weak solution of the linearized equation

wt + Az + B′(ȳ)w = h

w(0) = 0.
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Theorem 3.7. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and
suppose that v̄ fulfills the first-order necessary optimality condition with associated
adjoint state λ̄. Assume further that (SSC) is satisfied at v̄. Then there exist α > 0
and ρ > 0 such that

J(v) ≥ J(v̄) + α ‖u− ū‖2
2

holds for all admissible pairs v = (y, u) with ‖u− ū‖∞ ≤ ρ.

For a proof we refer to [25]. There, Theorem 3.7 was proven in a slightly general form:
Sufficiency was achieved in a Ls-neighborhood of the reference control, whereas the
quadratic growth takes place in the Lq-norm with 4/3 ≤ q ≤ 2 ≤ s ≤ ∞, s = q/(2−q).

We will show that any pair satisfying (SSC) is stable under perturbations of the
system equations.

4. SQP-method. in this section, we consider the SQP-method to compute a
local optimum of the control problem (1.2). It is a well-known method, applied very
often to optimal control problems of partial differential equations. For the analysis of
other local methods in connection with instationary Navier-Stokes equations we refer
to [14, 26].

The SQP-method solves in every step a linear-quadratic optimal control problem.
Given starting values yn, un, λn, it computes the next iterates yn+1, un+1, λn+1 as the
solution of

min Jn(y, u) = ∇J(yn, un)(y−yn, u−un)+
1
2
Lvv(yn, un, λn)[(y−yn, u−un)]2 (Pn)

subject to the linearized state equation

yt + νAy + B′(yn)(y − yn) = u−B(yn),
y(0) = y0,

and the control constraint u ∈ Uad. The functional to be minimized we write for
convenience

Jn(y, u) =
αT

2

∫
Ω

|y(x, T )− yT (x)|2dx +
αQ

2

∫
Q

|y(x, t)− yQ(x, t)|2dxdt

+
αR

2

∫
Q

| curl y(x, t)|2dxdt +
γ

2

∫
Q

|u(x, t)|2dxdt− bQ(y − yn, y − yn, λn).

In the sequel, we investigate local convergence of this method. Here, the sufficient
condition (SSC) plays an essential role. As one expects, we get quadratic convergence
as soon as the iterates lies in neighborhood of a local solution.

4.1. Generalized Newtons method. We want to show, that the SQP-method
can be interpreted as a Newton-method for a generalized equation of the form

0 ∈ F (x) + N(x), (4.1)

where F is a C1,1-mapping between to Banach spaces X and Z, while N : X 7→ 2Z is
a set-valued mapping with closed graph.
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One can write down the Newton-method formally as follows: given iterate xn, compute
the next iterate xn+1 by solving

0 ∈ F (xn) + F ′(xn)(x− xn) + N(x).

Before we state an abstract result concerning the convergence of the generalized
Newton-method, we will introduce the notation of strong regularity in the sense of
Robinson [18].

Let x̄ be a solution of (4.1). The generalized equation is said to be strongly regular
at the point x̄, if there are open balls BX(x̄, ρx) and BZ(0, ρz) such that for all
z ∈ BZ(0, ρz) the linearized and perturbed equation

z ∈ F (x̄) + F ′(x̄)(x− x̄) + N(x)

admits a unique solution x = x(z) in BX(x̄, ρx), and the mapping z 7→ x is Lipschitz
continuous BZ(0, ρz) from to BX(x̄, ρx).

Then the following theorem holds, which generalizes results from the finite-dimensional
case.

Theorem 4.1. Let x̄ be a solution of (4.1) and assume that (4.1) is strongly regular
at x̄. Then there exist an open ball BX(x̄, ρ′x) such that for every starting element
x1 ∈ BX(x̄, ρ′x) the generalized Newton method generates a unique sequence {xn}∞n=1.
The iterates xn remain in BX(x̄, ρ′x), and it holds

‖xn+1 − x̄‖X ≤ cN ‖xn − x̄‖2
X ∀n ∈ N, (4.2)

where cN is independent of n.

For the proof, we refer to [3, 6].

In order to prove local convergence of the SQP-method,we have to verify the conditions
of the previous theorem.

4.2. Strong regularity - L∞-Stability of optimal controls. Let (ȳ, ū, λ̄)
satisfy the first-order necessary optimality conditions, see Theorem 3.2, together with
the second-order sufficient optimality conditions (SSC). The optimality system con-
sisting of state equation (1.2), adjoint equation (3.1) and the inclusion (3.5), can be
written in the condensed form

F (ȳ, ū, λ̄) +
(
0, 0, 0, 0, NUad

(ū)
)T 3 0, (4.3)

where the function F ,

F : W 2,1
p × L∞(Q)2 ×W 2,1

p →

Lp(Q)2 ×W
2−2/p, p
0 (Ω)2 × Lp(Q)2 ×W

2−2/p, p
0 (Ω)2 × L∞(Q)2, (4.4)

is given by

F (y, u, λ) =


yt + νAy + B(y)

y(0)
−λt + νAλ + B′(y)∗λ

λ(T )
γu + λ

−



u

y0

αQ(y − yQ) + αR
~curl curl y

αT (y(T )− yT )
0

 . (4.5)
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Further, we have to re-define the normal cone NUad
to be a subset of L∞(Q)2,

NUad
=

{{
z ∈ L∞(Q)2 : (z, u− ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad

∅ otherwise.

We will apply Theorem 4.1 to the generalized equation (4.3). To do so, we have to
show strong regularity of this equation at the reference tripel (ȳ, ū, λ̄). At first, we
investigate the mapping F .

Corollary 4.2. The function F defined by (4.5) is continuously differentiable in
the setting (4.4).

The proof can be found in [27].

The next and largest step is the investigation of the linearized and perturbed equation

z ∈ F (ȳ, ū, λ̄) + F ′(ȳ, ū, λ̄)(y − ȳ, u− ū, λ− λ̄) +
(
0, 0, 0, 0, NUad

(ū)
)T

. (4.6)

Here, the perturbation vector z = (zy, z0, zQ, zT , zu) is restricted to be in the space Z
given by

Z := Lp(Q)2 ×W
2−2/p, p
0 (Ω)2 × Lp(Q)2 ×W

2−2/p, p
0 (Ω)2 × L∞(Q)2. (4.7)

We equip Z with the natural norm

‖z‖Z = ‖(zy, z0, zQ, zT , zu)‖Z := ‖zy‖p + |z0|W 2−2/p, p +‖zQ‖p + |zT |W 2−2/p, p +‖zu‖∞.

To prove strong regularity of (4.3), we have to consider the linearized and perturbed
generalized equation (4.6). It represents a system, which can be written in a more
convenient way. The first and second component form the state equations

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy

y(0) = y0 + z0,

the third and fourth component are equivalent to the adjoint equations

−λt + νAλ + B′(ȳ)∗λ = −B′(y − ȳ)∗λ̄ + αQ(y − yQ) + αR
~curl curl y + zQ (4.8)

λ(T ) = αT (y(T )− yT ) + zT ,

whereas the last component contains the inclusion

γu + λ + NUad
(u) 3 zu.

It builds up the optimality system of the following perturbed linear-quadratic opti-
mization problem:

min J (z)(y, u) =
αT

2
|y(T )− yd|2H +

αQ

2
‖y − yQ‖2

2 +
αR

2
‖ curl y‖2

2 +
γ

2
‖u‖2

2

+ (zQ, y)Q + (zT , y(T ))Ω − (zu, u)Q − bQ(y − ȳ, y − ȳ, λ̄) (Pz)

subject to the linearized state equation

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy (4.9)
y(0) = y0 + z0
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and the control constraint

u ∈ Uad.

The existence of a unique optimal control of the problem (Pz) can not guaranteed by
the coercivity assumption (SSC). There, positivity of Lvv was assumed only for the
subspace of directions where the control ū is not strong active. Hence this optimization
problem can be non-convex in general.

We will circumvent this difficulty in the following way: At first, we show the existence
of a unique solution if we substitute the control constraint by

u ∈ Ũad = {v ∈ Uad : vi(x, t) = ūi(x, t) iff (x, t) ∈ Qε,i}. (P̃z)

In the sequel, we will denote by (P̃z) the linear-quadratic optimization problem (Pz)
with changed set of admissible controls Ũad. This problem admits a unique solution,
which we will denote by (yz, uz, λz). Moreover, the mapping z 7→ (yz, uz, λz) is
Lipschitz from Z to [L∞(Q)2]3. Thus, for sufficient small perturbations the control
uz is strong active on Qε,i as well as ū. This allows us to prove that it might fulfill
a second-order sufficient optimality condition. Consequently, uz is a locally optimal
solution of (4.3). At this point, we refer to [24], where similar arguments were used.

For the solvability of (P̃z), we have the following

Theorem 4.3. Let (SSC) be satisfied for the reference solution v̄ = (ȳ, ū) with
adjoint state λ̄. Moreover, assume that y0, yT ∈ W

2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2 for

some p satisfying 2 < p < ∞, and ua, ub ∈ L∞(Q)2.

Then problem (P̃z) admits a unique solution (yz, uz, λz). Moreover, the solution map-
ping z → (yz, uz, λz) is Lipschitz continuous from Z to W 2,1

p × L∞(Q)2 ×W 2,1
p .

Proof. The claim was proven in [27] for a modified problem. There the second-order
sufficient condition was used in a stronger form. Coercivity of Lvv was required for
the space of all directions - not only for the inactive ones.

However, we are encountering a similar situation. Let us denote the Lagrangian
associated to (Pz) by L(z). Then it holds for all y, u, λ

L(z)
vv (y, u, λ) = Lvv(ȳ, ū, λ̄). (4.10)

Hence, for u ∈ Ũad with associated y we find using (SSC)

L(z)
vv (y, u, λ)[(y − ȳ, u− ū)]2 = Lvv(ȳ, ū, λ̄)[(y − ȳ, u− ū)]2 ≥ δ‖u− ū‖2

2.

Thus, the problem (P̃z) is convex on the space of admissible controls Ũad, which yields
the existence of a unique optimal control uz. For a more detailed discussion of those
aspects we refer to [19], where the stability analysis is done for constrained optimal
control of the stationary Navier-Stokes system. Following [27], we can prove also the
claimed Lipschitz continuity of the solution mapping z 7→ (yz, uz, λz).

Now, we study the behaviour of uz on the active set Qε. To this aim, we have to rely
on the L∞-stability result of the previous theorem. One should remark, that using
Hilbert-space methods it is not possible to derive such a result for the constrained
optimal control problem of instationary Navier-Stokes equations, cf. [27] where this
issue is addressed.
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Corollary 4.4. Let the assumptions of Theorem 4.3 be fulfilled. Then there exist
ρz > 0 such that for all z ∈ Z with ‖z‖Z < ρz the optimal control of (P̃z), uz, is
strongly active a.e. on Qε,i, i.e. it holds

|γuz,i(x, t) + λz,i(x, t)− zu,i(x, t)| > ε

2
,

and the signs of (γūi(x, t) + λ̄i(x, t)) and (γuz,i(x, t) + λz,i(x, t)− zu,i(x, t)) coincide
a.e. on Qε,i for i = 1, 2.

Proof. By Theorem 4.3, the mapping z 7→ (yz, uz, λz) is Lipschitz continuous from Z
to W 2,1

p ×L∞(Q)2×W 2,1
p . By imbedding arguments, we find that z 7→ γuz + λz − zu

is Lipschitz as mapping to L∞(Q)2.

Let (x, t) ∈ Qε,i such that γūi(x, t) + λ̄i(x, t) > ε. Using this, we derive

ε < γūi(x, t) + λ̄i(x, t)
= γūi(x, t) + λ̄i(x, t)− (γuz,i(x, t) + λz,i(x, t)− zu,i(x, t))

+ (γuz,i(x, t) + λz,i(x, t)− zu,i(x, t))
≤ c‖z‖Z + γuz,i(x, t) + λz,i(x, t)− zu,i(x, t).

Therefore, the choice ρz := c−1ε/2 yields γuz,i(x, t) + λz,i(x, t)− zu,i(x, t) > ε/2.

Analogously, if for (x, t) ∈ Qε,i we have γūi(x, t) + λ̄i(x, t) < −ε, then the same value
of ρz gives γuz,i(x, t) + λz,i(x, t)− zu,i(x, t) < −ε/2.

Corollary 4.5. Let the assumptions of Theorem 4.3 be fulfilled. Then the control
uz associated to a perturbation z ∈ Z with ‖z‖Z < ρz, ρz given by the Corollary 4.4,
fulfills the variational inequality

(γuz + λz − zu, u− uz) ≥ 0 ∀u ∈ Uad, (4.11)

i.e. it satisfies the first-order necessary optimality condition of (Pz).

Proof. Let u ∈ Uad be given. We begin with∫
Q

(γuz,i + λz,i − zu,i)(ui − uz,i) =
∫

Q\Qε,i

(γuz,i + λz,i − zu,i)(ui − uz,i)

+
∫

Qε,i

(γuz,i + λz,i − zu,i)(ui − ūi),
(4.12)

since uz ∈ Ũad means uz,i(x, t) = ūi(x, t) a.e. on Qε,i. The first integral is part of the
first-order necessary optimality conditions of (P̃z). Therefore, it is nonnegative.

By Corollary 4.4, (γūi(x, t)+ λ̄i(x, t)) and (γuz,i(x, t)+λz,i(x, t)− zu,i(x, t)) have the
same sign a.e. on Qε,i. Furthermore, ūi(x, t) is active on this set, so that ui(x, t) −
ūi(x, t) has always the same sign for all possible choices of ui(x, t). Since γū + λ̄
satisfies

∫
Qε,i

(γūi + λ̄i)(ui − ūi) ≥ 0, the same is true for γuz + λz − zu, i.e.∫
Qε,i

(γuz,i + λz,i − zu,i)(ui − ūi) ≥ 0

is satisfied. So, we proved that both integrals in (4.12) are nonnegative. Adding them,
we derived the claim (4.11).
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So far, we showed that (yz, uz, λz) fulfills the optimality system of the perturbed prob-
lem (Pz) or equivalently the linearized and perturbed generalized equation (4.6). We
have to ask whether it might be a local minimizer of (Pz). With the previous corol-
lary and the identity (4.10) we have all ingredients at hand to prove that (yz, uz, λz)
satisfies a second-order sufficient optimality condition for the problem (Pz), i.e. it is
indeed a locally optimal solution.

Theorem 4.6. Let the assumptions of Theorem 4.3 be fulfilled. Then, there are
ρz, ρu > 0 such that the control uz associated to a perturbation z ∈ Z with ‖z‖Z < ρz

is a locally optimal solution of (Pz), and it satisfies

J (z)(yz, uz) ≤ J (z)(y, u)

for all u ∈ Uad with ‖u − uz‖∞ ≤ ρu. Here yz and y are the solutions of (4.9)
associated to the controls uz and u.

Proof. We denote by yz and λz the solutions of the state respectively adjoint equations
(4.9) and (4.8). By Corollary 4.5, the triple (yz, uz, λz) satisfies not only the first-order
necessary optimality conditions of (P̃z) but also the necessary optimality conditions
of (Pz) if the norm of the perturbation z is smaller than ρz, ‖z‖Z ≤ ρz. This amounts
in the fact that the control constraints are strongly active in uz at Qε.

As already mentioned above, cf. (4.10), the second derivative of the Lagrangians L(z)

and L associated to (Pz) and (1.1) with respect to (y, u) coincide,

L(z)
vv (y, u, λ) = Lvv(ȳ, ū, λ̄).

Let u ∈ Uad with ui = ūi a.e. on Qε,i be given. Denote by y the associated solution of
(4.9). Set h = u−uz and w = y−yz. This implies h = 0 a.e. on Qε,i. Therefore, h fits
in the assumptions of (SSC). The triple (ȳ, ū, λ̄) satisfies the second-order sufficient
optimality condition (SSC), which means

L(z)
vv (y, u, λ)[(w, h)]2 = Lvv(ȳ, ū, λ̄)[(w, h)]2 ≥ δ‖h‖2

2. (4.13)

Both, Corollary 4.4 and the coercivity relation (4.13) build up the second-order suffi-
cient optimality condition connected with (P̃z). Following the lines of [25], we conclude
that uz is locally optimal: there exists a constant ρu > 0 such J (z)(yz, uz) ≤ J (z)(y, u)
for all u ∈ Uad with ‖u− uz‖∞ ≤ ρu.

Corollary 4.7. Let the assumptions of Theorem 4.3 be fulfilled. Then the general-
ized equation (4.3) is strongly regular at (ȳ, ū, λ̄).

Proof. By Corollary 4.2, the function F is a C1,1-mapping. Theorem 4.6 states that
the perturbed linearized optimization Problem (Pz) has a unique optimal solution
in the ball BL∞(ū, ρu) for perturbations from BZ(0, ρz). By Theorem 4.3, the as-
sociated state y lies in the ball BW 2,1

p
(ȳ, cyρz), whereas the adjoint state λz is in

BW 2,1
p

(λ̄, cλ ρz). Here, cy and cλ are the Lipschitz constants given by Theorem 4.3.
This altogether yields the unique solvability of the perturbed linearized generalized
equation (4.6) in BW 2,1

p
(ȳ, cy ρz)×BL∞(ū, ρu)×BW 2,1

p
(λ̄, cλ ρz) for perturbations from

BZ(0, ρz). As already mentioned, the solution mapping z 7→ (yz, uz, λz) is Lipschitz.
Therefore, all requirements for strong regularity are fulfilled.

4.3. Local convergence of the SQP-type algorithm. With the help of the
previous section, we are in the situation to apply the abstract convergence result



sqp-method for navier-stokes optimal control 15

Theorem 4.1. However, we are not allowed to carry it over one-to-one. The strong
regularity of the generalized equation (4.1) requires that the solution mapping of the
linerized perturbed problem (Pz) is Lipschitz continuous for small perturbations z,
where the solutions (yz, uz, λz) are searched in a neighborhood of the reference triple
(ȳ, ū, λ̄).

Consequently, the SQP-method has to reflect this behaviour. Although the SQP-
subproblems (Pn) are uniquely solvable in a neighborhood of the reference solution
ū, they need not to be uniquely solvable on the whole set of admissible controls. In
other words, the global solution of (Pn) may not coincide with the locally optimal
solution. See also [24], where those aspects are discussed more detailed.

Hence, we have to modify the SQP-method in the following way: Given iterates
yn, un, λn, compute the next iterates yn+1, un+1, λn+1 as the solution of (Pn) subject
to the control constraint

u ∈ Uρ
ad := Uad ∩ {v ∈ L∞(Q)2 : ‖v − ū‖∞ ≤ ρ}. (4.14)

Then Theorem 4.1 yields quadratic convergence in a neighborhood of the solution.

Theorem 4.8. Let the asssumptions of Theorem 4.3 be satisfied. Then there is a
constant ρs > 0, such that for every starting value (y1, u1, λ1) with u1 ∈ Uρs

ad the
SQP-method with control constraint (4.14) generates a uniquely determined sequence
(yn, un, λn) with un ∈ Uρs

ad , and it holds

‖un+1 − ū‖∞ ≤ cs ‖un − ū‖2
∞

with a constant cs independently of n. Here, yn and λn are the states and adjoints
associated to the control un.

The a-priori unknown solution ū appears in the definition of Uρ
ad, which is neces-

sary to establish the convergence theory. To overcome this difficulty, one has to use
globalization techniques. For an application of a globalized SQP-method to compute
optimal controls of instationary Navier-Stokes equations, we refer to [11].

5. Numerical results. Here, we provide a computational example which con-
firms the convergence analysis of the SQP-method.

The following control problem is given: We want to reduce the recirculation bubble
after the backward-facing step. We try this by minimization of the objective functional

J(y, u) =
1
2

∫
Qc

|y(x, t)− yQ(x, t)|2dxdt +
γ

2

∫
Qc

|u(x, t)|2dxdt,

where the time horizon T and the parameter γ will be varied in several examples. The
computational domain Ω is the backward-facing step. Here, observation and control
take place in the same part of the domain Qc = Ωc × (0, T ), compare Figure 5.1.

We chose as desired flow yQ the Stokes flow, see Figure 5.2, which is the solution of
the stationary Stokes equation with the same boundary conditions as used for the
instationary simulation.

At the inflow boundary Γin a parabolic velocity profile is prescribed, whereas at the
boundary Γout we use the ‘do-nothing’ boundary condition, cf. [10]:

ν
∂y

∂n
− pn = 0 a.e. on Γout.
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Fig. 5.1. Flow configuration
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Fig. 5.2. Desired profile is the Stokes flow

At the rest of the boundary we use homogeneous Dirichlet conditions. All computa-
tions were done with Reynolds number Re = 400 which yields a viscosity parameter
ν = 1/400. The initial velocity profile were chosen as the stationary limit of the
uncontrolled Navier-Stokes equations, cf. Figure 5.3.
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Fig. 5.3. Initial flow profile y0

The continuous problem was discretized using Taylor-Hood finite elements on a grid
of 1664 triangles with 3473 velocity and 905 pressure nodes. Further, we use a semi-
implicit Euler scheme for time integration with a equidistant time discretization with
step length τ = 0.005. The computations are based on a finite element code of Michael
Hinze, Dresden, see [13].

The arising discrete control problem is solved by the SQP-method without any global-
ization. The constraint SQP-subproblems (Pn) were solved by a primal-dual method,
see for instance [15], using the CG method for the inner loop.

In all examples, the stopping criteria of the nested methods are balanced in the
following way as proposed in [12]:

The outer SQP-loop was terminated if two successive iterates are close enough,

‖un − un−1‖∞ + ‖yn − yn−1‖∞ ≤ εSQP .

The primal-dual active set method was stopped if either the active sets of two suc-
cessive control iterates coincide or the error in the variational inequality given by

φ(u) =
∥∥∥∥u− ProjUad

(
− 1

γ
λ

)∥∥∥∥
2

is reduced by a factor of 0.1. The innermost iteration procedure — the CG method
— was stopped if the norm of the residual was reduced by a factor of 0.01.
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Example 1. In this first numerical example, we consider a situation which is
nice from the optimization point of view: The parameter γ is set large enough so
that the coercivity assumption (SSC) should be satisfied: γ = 0.5. And, we do not
constrain the control, i.e. Uad = L∞(Q)2. Further, the time horizon was chosen to be
T = 0.25. The starting values of the SQP-method for state and control, y0 and u0,
were set to zero. The computed optimal objective was J(ȳ, ū) = 0.02302.

In Table 5.1, we present the results. We observe quadratical convergence of the SQP-
algorithm in the iterations 1–3. In the third column, we give an estimation of the
convergence speed of the SQP-algorithm by

qn =
‖un − un−1‖∞
‖un−1 − un−2‖2

∞
.

The iteration was stopped after iteration 3, since an adequate accuracy was achieved.

Iteration ‖un − un−1‖∞ qn ‖yn − yn−1‖∞
1 1.31 · 10−1 1.63 · 10−2

2 1.91 · 10−2 1.10 1.00 · 10−3

3 6.28 · 10−5 0.17 3.16 · 10−6

Table 5.1. Results of Example 1, unconstrained case

We got similar results, if we require the control to fulfill box constraints

|ui(x, t)| ≤ 0.05 a.e. on Q, i = 1, 2.

In Table 5.2, the convergence history is presented. It turns out it that is independent
of the additional constraints, although 16% of the constraints are active at the final
solution.

Iteration ‖un − un−1‖∞ qn ‖yn − yn−1‖∞
1 0.05 1.63 · 10−2

2 1.90 · 10−2 7.64 9.64 · 10−4

3 6.36 · 10−5 0.17 2.87 · 10−6

Table 5.2. Results of Example 1, constrained case

Example 2. Here, we extented the time horizon to T = 1.3. The regularization
parameter γ was set to 0.1. Again, the controls has to fulfill box constraints

|ui(x, t)| ≤ 0.3 a.e. on Q, i = 1, 2.

We computed an optimal objective of J(ȳ, ū) = 0.088234. Some snapshots of the
control can be seen in Figure 5.4. The streamlines of the terminal velocity ȳ(T ) field
are depicted in Figure 5.5.

It seems that the behaviour of the SQP-method depends not only on γ but also on
the time T . For this particular setting we encounter the situation that a larger value
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Fig. 5.4. Control at time instances t1 = 0.05, t2 = 0.5, t3 = T = 1.3
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Fig. 5.5. Flow profile ȳ(T )

Iteration ‖un − un−1‖∞ qn ‖yn − yn−1‖∞
1 2.12 · 10−1 1.92 · 10−1

2 4.24 · 10−1 9.42 6.62 · 10−2

3 1.68 · 10−1 0.93 3.66 · 10−2

4 1.98 · 10−2 0.70 2.93 · 10−3

5 2.04 · 10−3 5.21 3.11 · 10−4

6 4.82 · 10−5 11.5 1.09 · 10−5

Table 5.3. Results of Example 2

of T yields a worse convergence of the SQP-method. In Table 5.3, we listed the norm
of the differences of the successive iterates.

We can explain the discrepancy between theory and numerical results in two different
ways. First of all, we do not know whether the sufficient second-order optimality
condition holds for the infinite-dimensional problem.

Secondly, the theory requires that the SQP-subproblems has to be solved to arbitray
accuracy. However, in numerical computations this is limited by the discretization
of the problem. So one can think of the situation that the discrete problem was
solved to the possible accuracy before the SQP-method enters the region of quadratic
convergence. This effect is reported by many authors who are dealing with optimal
control of semilinear partial differential equations.

6. Proofs. In this very last section, we give an overview concerning the Lp-
solution theory of the instationary Navier-Stokes equations together with its linearized
and adjoint counterparts. At first, we state the fixed point theorem due to Schaefer. It
is often used to prove existence of solutions of nonlinear partial differential equations.

Theorem 6.1 (Schaefer [20]). Let X be a normed space, H a continuous mapping of
X into X which is compact on each bounded subset of X. Then either

(i) the equation x = λHx has a solution for λ = 1, or
(ii) the set of all such solutions x for 0 < λ < 1 is unbounded.
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Secondly, consider the linear instationary Stokes system

yt − ν∆y +∇p = f in Q,

div y = 0 in Q,

y(0) = y0 in Ω.

(6.1)

Concerning Lp-solutions, the following result is due to Solonnikov [21] for the two-
and three-dimensional case, in [28] it was generalized to arbitrary spatial dimensions.
We rely in our analysis heavily on this fact.

Theorem 6.2. Let p > 1, p 6= 3/2, y0 ∈ W
2−2/p, p
0 (Ω)2, f ∈ Lp(Q)2. Then there

exists a unique weak solution y of (6.1) satisfying y ∈ W 2,1
p . Furthermore, there exists

a constant c > 0 such that the estimate

‖yt‖p + ‖y‖Lp(W 2,p) ≤ c {‖f‖p + |y0|W 2−2/p, p}

is satisfied. Before proving the main result, we give some auxiliary lemmata which
we will use in the sequel.

Lemma 6.3. Let for p = 2, y0 ∈ W
2−2/p, p
0 (Ω)2 = V and f ∈ Lp(Q)2 = L2(Q)2 be

given. Consider the system

yt − ν∆y + (y · ∇)y +∇p = σf in Q,

div y = 0 in Q,

y(0) = σy0 in Ω.

(6.2)

with σ ∈ [0, 1]. Denote yσ be the associated L2-solution of (6.2). Then it holds

‖yσ1 − yσ2‖L∞(L2) ≤ c|σ1 − σ2| {‖f‖2 + |y0|V } ∀σ1, σ2 ∈ [0, 1].

Proof. The claim follows directly from the Lipschitz continuity of the solution mapping
of the instationary Navier-Stokes equations, cf. Theorems 2.2 and 2.3.

We need the following Lp-estimate of the nonlinearity.

Lemma 6.4. Let p > 1, u ∈ W 2,p. Then (u · ∇)u ∈ Lp and

|(u · ∇)u|p ≤ c
{
‖ |u|3 ‖p + ‖ |∇u|3/2 ‖p

}
≤ c|u|W 2,p

{
|u|22 + |u|1/2

2

}
.

For a proof, we refer to v.Wahl [28].

6.1. Proof of Theorem 2.5. We will give the proof in three steps. Although
the method of proof is the same as in [28], we present it in a slightly modified form.

6.1.1. Mapping T . For given σ ∈ [0, 1], we define a mapping T = T : W 2,1
p →

W 2,1
p as T w = y, where y is the strong solution of

yt − ν∆y + (w · ∇)w +∇p = σf in Q,

div y = 0 in Q,

y(0) = σy0 in Ω.

(6.3)
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The imbedding W 2,1
p ↪→ C([0, T ], C(Ω))2 is compact for p > 2, cf. [4]. Following [28],

we find that w → (w ·∇)w is compact from W 2,1
p to Lp(Ω)2. Now, Theorem 6.2 yields

the compactness of T .

Obviously, every fixed point of T for σ = 1 is a strong solution of (1.2). To apply
Schaefers fixed point theorem, we have to show that the fixed points of τT for 0 <
τ < 1 remain bounded in W 2,1

p .

6.1.2. Boundedness of fixed points. Define the set Σ as the set of all σ ∈ [0, 1]
for which a fixed point of T exists. Since T is a mapping on W 2,1

p , the associated
state yσ is a member of that space, yσ ∈ W 2,1

p .

Define further a set Σ∗ as the set of all σ ∈ [0, 1] such that

[0, σ] ⊂ Σ,

and there exists a constant Cσ, so that the set {ys}s∈[0,σ] is uniformly bounded in the
following sense

‖ys,t‖p + ‖ys‖Lp(W 2,p) + ‖ |ys|3 ‖p + ‖ |∇ys|3/2 ‖p ≤ Cσ {‖f‖p + |y0|W 2−2/p, p} (6.4)

for all s ∈ [0, σ]. Therefore, the set Σ∗ contains all those σ whose associated fixed
points of T exists and are bounded in W 2,1

p . Clearly 0 ∈ Σ∗.

We will show that for every σ1 ∈ Σ∗ there exists δ > 0 independently of σ1 such that
the whole interval [σ1, σ1 + δ] belongs also to Σ∗.

To this aim, let σ1 ∈ Σ∗, σ2 ∈ Σ with associated states yσi
. Their difference yσ1 − yσ2

is the solution of an instationary Stokes equation with suitable right-hand side. By
Theorem 6.2 we have

‖yσ1,t− yσ2,t‖p + ‖yσ2 − yσ1‖Lp(W 2,p) ≤ C1

{
|σ1−σ2| · ‖f‖p + |σ1−σ2| · |y0|W 2−2/p, p

+ ‖(yσ2 · ∇)yσ2 − (yσ1 · ∇)yσ1‖p

}
. (6.5)

Furthermore, Lemma 6.3 gives

‖yσ1 − yσ2‖L∞(L2) ≤ c|σ1 − σ2| {‖f‖2 + |y0|V } .

The nonlinear term is treated as in Lemma 6.4

‖(yσ2 · ∇)yσ2 − (yσ1 · ∇)yσ1‖p ≤ ‖(yσ2 · ∇)yσ2‖p + ‖(yσ1 · ∇)yσ1‖p

≤ c
{
‖ |yσ2 |3 ‖p + ‖ |∇yσ2 |3/2 ‖p + ‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
≤ c

{
‖ |yσ2 − yσ1 |3 ‖p + ‖ |∇(yσ2 − yσ1)|3/2 ‖p + ‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
≤ C2

(
‖yσ2 − yσ1‖2

2 + ‖yσ2 − yσ1‖
1/2
2

)
‖yσ2 − yσ1‖Lp(W 2,p)

+ C3

{
‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
(6.6)

For |σ1 − σ2| ≤ δ the term C2

(
‖yσ2 − yσ1‖2

2 + ‖yσ2 − yσ1‖
1/2
2

)
is less than 1/(2C1).

Note, C1, C2, and δ are independent of σ1 and σ2. We thus found combining (6.5)



sqp-method for navier-stokes optimal control 21

and (6.6),

‖yσ1,t − yσ2,t‖p + ‖yσ2 − yσ1‖Lp(W 2,p)

≤ 2C1δ
{
‖f‖p + |y0|W 2,p

}
+ 2C1C3

{
‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
≤ 2C1(δ + C3Cσ1)

{
‖f‖p + |y0|W 2−2/p, p

}
.

Additionally, we derive

‖yσ2,t‖p + ‖yσ2‖Lp(W 2,p)

≤ ‖yσ1,t‖p + ‖yσ1‖Lp(W 2,p) + ‖yσ1,t − yσ2,t‖p + ‖yσ2 − yσ1‖Lp(W 2,p)

≤ (Cσ1 + 2C1(δ + C3Cσ1))
{
‖f‖p + |y0|W 2−2/p, p

}
.

Estimate (6.6) implies

‖ |yσ2 |3 ‖p + ‖ |∇yσ2 |3/2 ‖p

≤ C2

(
‖yσ2 − yσ1‖2

2 + ‖yσ2 − yσ1‖
1/2
2

)
‖yσ2 − yσ1‖Lp(W 2,p)

+ C3

{
‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
≤ 1

2C1
‖yσ2 − yσ1‖Lp(W 2,p) + C3

{
‖ |yσ1 |3 ‖p + ‖ |∇yσ1 |3/2 ‖p

}
≤ (δ + 2C3Cσ1)

{
‖f‖p + |y0|W 2−2/p, p

}
.

Setting Cσ1+δ = max {Cσ1 + 2C1(δ + C3Cσ1), δ + 2C3Cσ1}, we find that for all s ∈
[σ1, σ1 + δ] ∩ Σ

‖ys,t‖p +‖ys‖Lp(W 2,p) +‖ |ys|3 ‖p +‖ |∇ys|3/2 ‖p ≤ Cσ1+δ {‖f‖p + |y0|W 2−2/p, p} (6.7)

is satisfied. Hence, if for σ ∈ [σ1, σ1 + δ] a fixed point of τT , 0 < τ < 1, exists then it
is necessarily bounded. Thus, Schaefers fixed point Theorem 6.1 yields the existence
of an fixed point of T for every σ ∈ [σ1, σ1 +δ], which means actually [σ1, σ1 +δ] ⊂ Σ.
And, [σ1, σ1 + δ] ⊂ Σ∗ is proven.

Since δ was independent of σ1, we obtain after finite many steps Σ = Σ∗ = [0, 1],
which proves existence of strong solutions of (1.2).

6.1.3. Conclusion. The fact that the solution mapping (f, y0) 7→ y is bounded
from Lp(Q)2 ×W

2−2/p, p
0 (Ω)2 7→ W 2,1

p is a consequence of (6.7). The local Lipschitz
continuity is a further implication of that Lemma, see Remark 6.6 below.

6.2. Linearized equation. Let a function ȳ ∈ W 2,1
p be given. Consider the

system

yt + νAy + B′(ȳ)y = f,

y(0) = y0.
(6.8)

We will show, that this system is uniquely solvable.

Lemma 6.5. Let ȳ ∈ W 2,1
p , f ∈ Lp(Q)2 and y0 ∈ W

2−2/p, p
0 (Ω)2 be given with

2 ≤ p < ∞. Then the system (6.8) has a unique solution y ∈ W 2,1
p . Moreover, there

is a constant c > 0 independently of f and y0 such that the following estimate is true

‖y‖W 2,1
p

≤ c {‖f‖p + |y0|W 2−2/p, p} . (6.9)
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Proof. The proof is carried out using bootstrapping arguments.

Step 1: p = 2. At first, notice that this result for p = 2 was proven for instance in
[14]. It yields the regularity y ∈ W 2,1

2 = H2,1 and the existence of a constant c > 0
such that

‖y‖H2,1 ≤ c {‖f‖2 + |y0|V }

is fulfilled.

We consider equation (6.8) as an instationary Stokes equation,

yt + νAy = f −B′(ȳ)y,

y(0) = y0.
(6.10)

to invoke Solonnikovs Theorem 6.2. To this aim, we have to investigate the p−norm
auf B′(ȳ)y = (y · ∇)ȳ + (ȳ · ∇)y.

Step 2: 2 < p < 4. We assume ȳ ∈ W 2,1
p . Then it follows that ȳ is a function of class

L∞(0, T ;W 2−2/p, p
0 (Ω)2). Further, let y ∈ W 2,1

2 be the (weak) L2-solution of (6.10).

At first, observe that W
2−2/p, p
0 (Ω)2 is continuously imbedded in W 1,q for q = 2p

4−p ,
cf. [2, 23]. By 1

p = 1
q + 1

q′ , applying Hölders inequality and the imbedding V ↪→ Lq′

for q′ < ∞, we obtain

‖(y · ∇)ȳ‖p ≤ c‖ȳ‖L∞(W 1,q)‖y‖L∞(Lq′ ) ≤ c‖ȳ‖L∞(W 2−2/p, p)|y|L∞(V ). (6.11)

Secondly, if y ∈ Lp(W 1,p) holds, we can derive

‖(ȳ · ∇)y‖p ≤ c‖ȳ‖∞‖y‖Lp(W 1,p). (6.12)

Using the imbedding W 2−2/p, 2 ↪→ W 1,p and the interpolation identity [W 2,2,W 1,2]θ =
W 2−2/p, 2 with θ = 1− 2/p, we obtain

|y|pW 1,p ≤ c|y|p
W 2−2/p, 2 ≤ c|y|p−2

W 2,2 |y|2W 1,2 .

Integrating with respect to the time variable yields

‖y‖p
Lp(W 1,p) ≤ c‖y‖p−2

Lp−2(W 2,2)‖y‖
2
L∞(V ) ≤ c‖y‖p−2

L2(W 2,2)‖y‖
2
L∞(V ) ≤ c‖y‖p

W 2,1
2

(6.13)

provided p ≤ 4. Collecting (6.11)–(6.13),

‖B′(ȳ)‖p ≤ c‖ȳ‖W 2,1
p
‖y‖W 2,1

2
≤ c‖ȳ‖W 2,1

p
{‖f‖2 + |y0|V }

is found. Now, we can utilize Solonnikovs result to obtain the existence of a strong
solution ỹ of (6.10). Thus, ỹ is also a weak solution. Since the weak solution is unique
it follows ỹ = y, remember y was by definition the weak solution of (6.10). Moreover,
the solution estimate

‖y‖W 2,1
p

≤ c {‖f‖p + |y0|W 2−2/p, p + ‖B′(ȳ)‖p}

≤ c {‖f‖p + |y0|W 2−2/p, p}+ c‖ȳ‖W 2,1
p

{‖f‖2 + |y0|V }

≤ c(1 + ‖ȳ‖W 2,1
p

) {‖f‖p + |y0|W 2−2/p, p}
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is satisfied.

Step 3: 4 ≤ p < ∞. Let ȳ ∈ W 2,1
p . By Step 2, we find the strong solution y in W 2,1

4−ε,
0 < ε ≤ 2. It is - after changes on a zero measure set - continuous with values in
W

2−2/(4−ε),4−ε
0 (Ω)2. Further, we the space W 2,1

4−ε is continuously imbedded L∞(Q)2.

Again, we have to estimate the p-norm of B′(ȳ)y. We begin with

‖(y · ∇)ȳ‖p ≤ c‖y‖∞‖∇ȳ‖p ≤ c‖y‖W 2,1
4−ε

‖ȳ‖W 2,1
p

. (6.14)

To estimate the second addend of B′(ȳ)y, we observe that for p = 8
ε − 2 respectively

ε = 8
p+2 the imbedding

W
2− 2

4−ε ,4−ε

0 (Ω)2 = W
3
2−

1
p , 4p

p+2
0 (Ω)2 ↪→ W 1,p

0 (Ω)2

is continuous. Moreover, for this choice of p respectively ε we obtain

y ∈ W 2,1
4−ε ↪→ L∞(0, T ;W 1,p

0 (Ω)2).

Hence, we arrive at

‖(ȳ · ∇)y‖p ≤ c‖ȳ‖∞‖y‖L∞(W 1,p) ≤ c‖ȳ‖W 2,1
p
‖y‖W 2,1

4−ε
, (6.15)

which allows as to conclude by Solonnikovs Theorem

‖y‖W 2,1
p

≤ c(1 + ‖ȳ‖W 2,1
p

) {‖f‖p + |y0|W 2−2/p, p} ,

and the claim is proven for all p in [2,∞).

Remark 6.6. The Lipschitz continuity of the solution mapping of the instationary
Navier-Stokes equations can be proven using the previous Lemma. Let data fi ∈
Lp(Q)2 and y0,i ∈ W

2−2/p, p
0 (Ω)2 be given, i = 1, 2. Denote the associated strong

solutions by yi, i = 1, 2. Then the difference d := y1 − y2 satisfies

dt + νAd + (y1 · ∇)d + (d · ∇)y2 = f1 − f2,

d(0) = y0,1 − y0,2.

With analogous arguments as above, we arrive at

‖y1 − y2‖W 2,1
p

≤ c(1 + ‖y1‖W 2,1
p

+ ‖y2‖W 2,1
p

) {‖f1 − f2‖p + |y0,1 − y0,2|W 2−2/p, p} ,

which is the claimed Lipschitz continuity.

6.3. Adjoint equation - Proof of Theorem 3.4. At last, we are going to
prove the existence of a strong solution of the adjoint equation

−λt + νAλ + B′(ȳ)∗λ = f

λ(T ) = λT .
(6.16)

Via the transformations w(t) = λ(T − t), ŷ(t) = ȳ(T − t), g(t) = f(T − t), w0 = λT ,
this system is carried over in the forward-in-time equation

wt + νAw + B′(ŷ)∗w = g

w(0) = w0.
(6.17)
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It is obvious that ŷ, g, w0 inherited their regularity from ȳ, f, λT . Hence, the adjoint
state λ has the same regularity as w.

Lemma 6.7. Let ŷ ∈ W 2,1
p , g ∈ Lp(Q)2 and w0 ∈ W

2−2/p, p
0 (Ω)2 be given with

2 ≤ p < ∞. Then the system (6.16) has a unique solution w ∈ W 2,1
p . Moreover, there

is a constant c > 0 independently of g and w0 such that the following estimate is true

‖w‖W 2,1
p

≤ c {‖g‖p + |w0|W 2−2/p, p} .

Proof. The proof is very similar to the proof of Lemma 6.5. Therefore, we will briefly
repeat its steps. At first, we observe

[B′(ŷ)w]v =
∫ T

0

b(ŷ, v, w) + b(v, ŷ, w)dt =
∫ T

0

−b(ŷ, w, v) + b(v, ŷ, w)dt

=
∫ T

0

[−(ŷ · ∇)w + (∇ŷ)T w] · v dt,

since ŷ is divergence-free.

Step 1: p = 2. The result for p = 2 was proven for instance in [14]. It yields the
regularity w ∈ W 2,1

2 = H2,1 and the existence of a constant c > 0 such that

‖w‖H2,1 ≤ c {‖g‖2 + |w0|V }

is satisfied.

Step 2: 2 < p < 4. With the help of (6.11)-(6.13), we conclude

‖B′(ŷ)‖p = ‖−(ŷ·∇)w+(∇ŷ)T w‖p ≤ c
{
‖ŷ‖∞‖w‖W 2,1

2
+ ‖ŷ‖L∞(W 2−2/p, p)|w|L∞(V )

}
.

Then Solonnikovs Theorem gives us the existence of a bounded strong solution in
W 2,1

p .

Step 3: 4 ≤ p < ∞. Let w ∈ W 2,1
4−ε be the strong solution of Step 2, 0 < ε < 2.

Analogously as in (6.14) and (6.15) we find

‖B′(ŷ)‖p = ‖ − (ŷ · ∇)w + (∇ŷ)T w‖p ≤ c‖ŷ‖W 2,1
p
‖w‖W 2,1

4−ε
,

and the claim follows immediately.
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