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Deutsche Zusammenfassung

Waveletsysteme sind heutzutage ein integraler Bestandteil der harmonischen Analysis und
dienen zum Beispiel als effizientes Werkzeug zur Darstellung und Approximation von Si-
gnalen. Ihr grofler Erfolg beruht dabei unter anderem auf der Fahigkeit, glatte Signale mit
lokalen Singularitédten besser zu approximieren als es traditionelle Fouriersysteme koénnen.
Bei isotropen Daten, welche insbesondere univariate Signale miteinschlielen, ist ihre Per-
formanz bei entsprechender Regularitit sogar quasi-optimal.

Fiir die Approximation multivariater Daten hingegen sind Wavelets im allgemeinen nicht
optimal geeignet. Der Grund hierfir liegt in ihrer isotropen Skalierung, die keine optima-
le Auflésung anisotroper Strukturen erlaubt. Da solche Strukturen fiir multivariate Daten
jedoch sehr typisch sind — man denke nur an Kanten in Bilddaten zum Beispiel — sind in
den letzten Jahre viele Anstrengungen unternommen worden, um diese Unzuldnglichkeit
zu {iberwinden. Insbesondere wurden viele neuartige sogenannte direktionale Représentati-
onssysteme eingefiihrt, von denen wir als einige der bekanntesten Ridgelets, Curvelets und
Shearlets nennen wollen.

Solche direktionalen Systeme lassen sich anhand der ihnen zugrundeliegenden Skalierung
kategorisieren. Wavelets zum Beispiel sind isotroper Natur, eine rein direktionale Skalierung
findet bei Ridgelets Verwendung, die Konstruktion klassischer Curvelets und Shearlets ba-
siert auf einer parabolischen Skalierung. Eine Vielzahl unterschiedlicher Skalierungstypen
wird durch das Konzept der a-Skalierung abgedeckt, wo mit Hilfe eines Parameters o € [0, 1]
zwischen dem isotropen und dem direktionalen Fall interpoliert wird. Die vorgenannten Sys-
teme zum Beispiel sind a-skaliert mit zugehorigen Parametern o =1, a =0 und o = %

Das Hauptziel dieser Dissertation besteht darin, eine einheitliche Theorie fir derartige
a-skalierte Reprisentationssysteme zu entwickeln. Den grundlegenden Begriff bilden dabei
sogenannte a-Molekiile, die eine Weiterentwicklung des Konzepts der parabolischen Mo-
lekiile darstellen. Letztere wurden eingefiithrt, um eine simultane Behandlung parabolisch
skalierter Systeme zu ermdglichen.

Per Definition entstehen sie durch parabolische Skalierung sowie durch Rotation und
Translation aus einer Menge generierender Funktionen, fiir die lediglich eine gemeinsame
Zeit-Frequenz-Lokalisierung gefordert wird. Die Bezeichnung ,Molekiil* rithrt dabei von
der moglichen Variabilitdt der Generatoren her. Zusammen mit der Verwendung sogenann-
ter Parametrisierungen, welche eine generische Indizierung ermdéglichen, bringt diese die
nétige Flexibilitdt in die Konstruktion, um verschiedenartige parabolisch skalierter Sys-
teme einheitlich zu beschreiben. Tatséchlich ist das Konzept allgemein genug, um sowohl
rotations-basierte als auch scherungs-basierte Systeme wie die klassischen Curvelets und die
klassischen Shearlets zu umfassen.

Nach dem Vorbild parabolischer Molekiilsysteme werden auch a-Molekiilsysteme mittels
Dilatation, Rotation und Translation aus einer zugrundeliegenden Generatormenge erzeugt,
wobei die Generatoren wieder einer gemeinsamen Zeit-Frequenz-Lokalisierung unterliegen
miissen. Statt einer parabolischen Skalierung wird jedoch eine allgemeinere a-Skalierung
verwendet. Aufgrund dieses Konstruktionsprinzips ist jedem a-Molekiil eine bestimmte Ska-



lierung, eine bestimmte Orientierung und ein bestimmter Ort zugeordnet, und damit ein
Punkt im sogenannten Parameterraum, welcher per Definition alle moglichen Tripel solcher
Parameter umfasst.

Ein zentraler Baustein der Theorie der a-Molekiile ist die Tatsache, dass dieser Para-
meterraum mit einem Distanzbegriff ausgestattet werden kann, so dass ein grofler Abstand
zwischen den Parametern einer kleinen Kreuzkorrelation entsprechender a-Molekiile ent-
spricht. Wie wir zeigen kénnen, induziert diese auch Indexabstand genannte Distanz sogar
eine quasi-metrische Struktur auf dem Parameterraum. Auf ihrer Grundlage kann bewiesen
werden, dass a-Molekiilsysteme fast orthogonal zueinander stehen, wenn gewisse Konsis-
tenzbedingungen erfiillt sind.

Dieses Resultat wiederum fiihrt zu einem anderen Stutzpfeiler der Theorie, dem soge-
nannten Transferprinzip, das besagt, dass a-Molekiilframes ein gleichartiges Approxima-
tionsverhalten haben, falls ihre Ordnung geniigend grofl ist und gewisse Konsistenzbedin-
gungen erfullt sind. Damit wird ein Transfer von Approximationsresultaten innerhalb des
Framework ermdglicht und damit eine systematische Untersuchung sparser Approximations-
eigenschaften von a-Molekiilen. Da dabei auch die Frameeigenschaft der Systeme eine Rolle
spielt, beweisen wir zudem ein Daubechies-artiges Framekriterium, das frithere Kriterien
fiir Shearlets und Wavelets verallgemeinert.

Als Anwendung des Transferprinzips interessieren wir uns fiir das Approximationsver-
halten von a-skalierten Systemen im Falle cartoon-artiger Daten. Als konkretes Datenmo-
dell verwenden wir dabei CP-Cartoons, also Funktionen welche mit Ausnahme von CP#-
Unstetigkeitskurven CP-glatt sind. Es ist bekannt, dass fiir solche Daten die maximal er-
reichbare N-Term Approximationsrate von der Ordnung N7 ist. Desweiteren ist bekannt,
dass C?-Cartoons von parabolisch skalierten Systemen, wie zum Beispiel den klassischen
Curvelets und Shearlets, mit einer Rate der Ordnung N ~2 quasi-optimal approximiert wer-
den koénnen.

Dieses Resultat wird in dieser Arbeit auf allgemeinere a-skalierte Systeme erweitert. Da-
flir untersuchen wir zuerst einen Parsevalframe aus a-Curvelets, der als prototypisches Refe-
renzsystem fungiert. Als negatives Resultat zeigen wir, dass eine Cartoonapproximationsrate
besser als N~1(1=2) yon diesem System nicht erreicht werden kann. Die durch einfaches
Thresholding der Curveletkoeffizienten erreichbare Rate ist sogar durch N—1/max{e,1-a}
begrenzt. Mit a-Curvelets ist eine optimale Approximation von CP-Cartoons also nicht
moglich, wenn 8 > 2 gilt. Demgegeniiber steht das positive Resultat, dass fiir die Wahl
a = B! im Bereich 8 € (1,2] quasi-optimale Approximation mit einer Rate der Ord-
nung N—? von a-Curvelets erreicht wird. Uber das Transferprinzip kénnen wir schlieSlich
schlussfolgern, dass diese fiir a-Curvelets erzielten Ergebnisse auch fiir eine groflere Klasse
von a-Molekiilframes Giiltigkeit besitzen.

Als weitere Anwendung verwenden wir das Konzept der a-Molekiile in der Theorie
der Funktionenrdume, wo es eine einheitliche Behandlung von Curvelet- und Shearletrau-
men ermoglicht. Dazu fithren wir mit Hilfe einer kontinuierlichen a-Molekiiltransformation
Besov-artige Coorbitrdume ein, die von gewissen gemischt-normierten Lebesguerdumen auf
dem Transformationsbereich erzeugt werden. Ein Hauptresultat, das als eine kontinuierliche
Variante des Transferprinzips gedeutet werden kann, zeigt, dass diese Coorbitrdume iiber-
einstimmen, falls die Molekiilordnung ausreichend hoch ist. Aus allgemeinen Prinzipien der
Coorbittheorie erhalten wir zudem diskrete Charakterisierungen fiir diese Rdume. Insbeson-
dere konnen wir sie so mit bereits bekannten Curvelet- und Shearletrdumen identifizieren.

ii



Am Ende der Arbeit wenden wir uns noch einer Erweiterung der Theorie auf héhere
Dimensionen zu. Dabei beschrianken wir uns auf einige ausgewéhlte Aspekte, insbesondere
werden die Definition der Indexdistanz und das Transferprinzip verallgemeinert. Als Anwen-
dung untersuchen wir die Approximation von Video-Daten, welche als 3D-cartoon-artige
Funktionen modelliert werden kénnen.
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Abstract

The theory of wavelets constitutes an integral part of modern harmonic analysis with many
theoretical and practical applications. In engineering for example, wavelets are nowadays a
popular tool for the efficient representation and approximation of functions. Much of their
success thereby relies on the fact that they are more suited to represent smooth signals
with singularities than traditional Fourier systems. In fact, for smooth signals with point
singularities wavelet systems perform quasi-optimally with respect to sparse approximation
purposes. This makes them particularly useful for the approximation of 1-dimensional data.

When approximating multivariate data, however, wavelets only show a suboptimal per-
formance if anisotropic features are involved. The reason for this is that wavelets are
inherently isotropic objects and thus not optimally suited for this task. Since in practice
such anisotropic structures are very common, think of images with edges for example, over
the recent years much effort has been invested to deal with this shortcoming. In particular,
this led to the invention of various novel so-called directional representation systems, some
of the most well-known of which are ridgelets, curvelets, and shearlets, to name just a few.

Such directional systems can conveniently be categorized according to the type of scaling
involved in their construction. Wavelets for example are isotropically scaled, the scaling of
ridgelets is purely directional, and the construction of the classic curvelets and shearlets is
based on parabolic scaling. A great variety of different scalings is covered by the concept
of a-scaling, where a parameter a € [0, 1] is used to interpolate between the isotropic case
and the purely directional case. The former systems, for example, are special instances of
a-scaled systems corresponding to the parameters a =1, a =0, and a = %

The main endeavour of this thesis is to develop a common framework for such a-scaled
representation systems. The basic notion are so-called a-molecules which generalize the
earlier concept of parabolic molecules. Those were introduced to enable a unified treatment
of parabolically scaled systems. By definition, they are obtained via parabolic dilations,
rotations, and translations from a set of generating functions, whereby the generators are
allowed to vary as long as they obey a certain time-frequency localization. This concept
of variable generators explains the terminology ‘molecules’ Together with the utilization
of so-called parametrizations to enable generic indexing, it provides the flexibility to cast
different parabolically scaled systems as instances of one unifying construction principle.

Indeed, the framework of parabolic molecules is general enough to unite rotation-based
and shear-based constructions such as the classic curvelets and the classic shearlets under
one common roof. Recently, this framework has been further generalized to also include
continuous systems. The limitation to parabolic scaling however still excludes systems like
ridgelets and wavelets, as well as hybrid constructions such as a-curvelets and a-shearlets.
This is the motivation behind the generalization to a-molecules.

Like parabolic molecules, systems of a-molecules consist of dilated, rotated, and trans-
lated versions of a set of generators which are merely required to fulfill a common time-
frequency localization. However, instead of parabolic scaling, more general a-scaling is
used. Due to this construction, each a-molecule is associated with a certain scale, a certain



location, and a certain orientation, and thus determines a point in the parameter space,
which is defined as the space comprising all possible triples of such parameters.

A central building block of the theory of a-molecules is the observation that this pa-
rameter space can be equipped with a notion of distance such that a high distance between
indices corresponds to a low cross-correlation of the respective a-molecules. This so-called
index distance even induces a quasi-metric structure on the parameter space. Based on this
distance, it can be proven that two systems of a-molecules are almost orthogonal, provided
that certain consistency and time-frequency localization conditions are satisfied.

This, in turn, leads to another central result of the theory, the so-called transfer principle,
which states that any two frames of a-molecules, which are consistent in a certain sense
and have sufficiently high order, exhibit the same approximation behavior. It enables the
transfer of approximation results within the framework and thus provides a systematic
way to prove results on sparse approximation for certain model data. Thereby, also the
frame property of the systems comes into play, wherefore we prove a Daubechies-type frame
criterion for a-molecules generalizing earlier criteria for shearlets and wavelets.

As an application of the transfer principle, we explore the approximation performance of
a-scaled representation systems with respect to cartoon-like data. More concretely, as data
classes we consider C-cartoons which are C#-smooth functions apart from C#-discontinuity
curves. It is known that the best N-term approximation rate achievable for such classes is
of order N=#. Tt is further known that for C2-cartoons parabolically scaled systems such
as the classic curvelets and shearlets achieve a quasi-optimal rate of order N 2.

In this thesis, we extend this result to more general a-scaled systems. For this, we first
analyze the approximation properties of a prototypical anchor system, where we choose
a discrete Parseval frame of a-curvelets. As a negative result, we will find that a cartoon
approximation rate exceeding N~/(1=®) ig not possible with this system. The maximal rate
obtainable by simply thresholding the curvelet coefficients is even limited to N~/ max{e;1—a}
Consequently, an optimal approximation of C?-cartoons cannot be achieved if § > 2. On
the positive side, however, we will see that in the range 5 € (1,2] and for the choice
a = B!, which in particular includes the parabolic case, the anchor frame of a-curvelets
indeed provides quasi-optimal approximation with a rate of order N=2. Via the transfer
principle, we finally conclude that these findings for a-curvelets apply to a larger class of
a-molecule frames.

As another application of the concept of a-molecules, we use it in the theory of function
spaces for a unified treatment of curvelet and shearlet smoothness spaces. To this end,
we introduce a continuous a-molecule transform and associated Besov-type coorbit spaces
corresponding to certain mixed-norm Lebesgue spaces on the transform domain. A main
result, which can be interpreted as another manifestation of the transfer principle, shows
that these a-molecule coorbit spaces coincide if the order of the a-molecules is sufficiently
high. Moreover, the abstract machinery of coorbit theory yields discrete characterizations
which allow to identify them with known scales of curvelet and shearlet smoothness spaces.

At the end of the thesis, we turn to an extension of the theory to higher dimensions.
Thereby we focus on some main aspects, in particular the index distance and the transfer
principle are generalized. As an application of the extension, we investigate the approxima-
tion of video data, which can be modelled as 3D-cartoon-like functions.
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Chapter 1

Introduction

Due to the great progress in sensor, computer, and network technology, one is nowadays able
to acquire, collect, store, and process more data than ever before. In many areas of science
and engineering the efficient handling of data and the question of how to extract useful
information from the acquired data have thus become central topics of major importance.

In principle, a larger data pool offers the prospect of capturing more relevant information
leading for example to a better understanding of observed phenomena or an improved
modelling of underlying processes. The collection of large amounts of data thus promises a
great potential for applications. However, in order to realize this potential, the ability to
adequately process the acquired data is essential. Over the recent decades, research in this
direction has therefore attracted much attention.

One area of mathematics which has greatly benefited from this development is the area
of applied harmonic analysis. Rooted in classical Fourier analysis, this field provides many
useful tools for the analysis and the processing of signals. In particular, its great variety of
different representation systems is a great resource.

1.1 Multiscale Analysis

Historically, the development of applied harmonic analysis and in particular the subfield
of multiscale analysis was triggered by the invention of the classic Fourier transform and
related Fourier systems. Those enable a decomposition of a signal into plane wave functions
and thus allow to represent a function in terms of its frequency information (see e.g. [51]).
From a modern viewpoint, this can already be considered as a multiscale approach since
information about higher frequencies can be interpreted as belonging to a higher scale.

A disadvantage of the Fourier transform is the fact that it only provides global informa-
tion on the frequencies occurring in a signal. In order to enable a more localized query of
frequency information, two other classic systems of applied harmonic analysis were devel-
oped, namely Gabor systems (see e.g. [56, 20]) and wavelet systems (see e.g. [31, 97, 114]).

Whereas Gabor systems use a fixed size window for the localization, wavelets use di-
lations across different scales. As a consequence, the spatial resolution of Gabor systems
remains fixed. Wavelets on the other hand have the ability to zoom in on points with rising
scale, at the cost of a deteriorating frequency resolution.

Both systems have had a tremendous impact on the further development of applied
harmonic analysis and are still active areas of research. Due to their distinct characteristics,
Gabor systems are more inclined for the use as a tool in applications where frequencies play
the primary role, as for example in audio analysis, whereas wavelets have had great success
in imaging science or the field of PDEs. Our focus will subsequently be on the wavelet side,
mainly motivated by applications in imaging science.
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1.1.1 Wavelets

Wavelet systems are nowadays one of the most widely used systems in applied harmonic
analysis. Some real-world applications are for example the task of image compression (e.g.
JPEG2000 [21]) or the restoration of corrupted image data [7]. In the field of PDEs they
play a central role in solving elliptic equations [22].

The construction of a system of wavelets {{y}aea in L2(R?) (see e.g. [31, 97, 114])
is based on isotropic dilations and translations of a set of generating functions {g. €
L2(R?)}ecp, where E is some finite index set. With the isotropic scaling matrix

t 0
Ay = <0 t> , t>0,

every wavelet 1y € Lo(IR?) can be written in the form

YA = trgey (A1,e, - —T2)

with associated parameters x) € R?, ty € Ry, and ey € E. Thereby, the prefactor ¢y merely
serves as an Lyo-normalization constant.

By carefully choosing the generators and the parameters, usually cast in the form of
appropriate admissibility and feasibility conditions, the resulting systems constitute frames
or even orthonormal bases. Depending on the desired application, it is further possible to
realize additional properties such as for example smoothness or compact support conditions.

A primary application of wavelets is the utilization as dictionaries for the representation
and approximation of functions. In fact, their great success — besides the elegant construc-
tion principle and available fast numerical implementations — rests upon their ability to
provide efficient multiscale representations for data that is subject to certain smoothness
assumptions.

For example, there exist wavelet frames in Ly(R?) with a quasi-optimal performance
concerning the sparse approximation of functions that are smooth apart from a finite num-
ber of point singularities. In concrete terms, this means that there exist wavelet-based
approximation schemes that deliver for each such signal f € Ly(R?) a sequence of N-term
approximants (fny)nyen such that the order of the decay of the Ls-approximation error
I|f — fn|Le| is quasi-optimal, in an asymptotic sense. Remarkably, these N-term approx-
imants can even be obtained by a simple nonadaptive thresholding scheme of the wavelet
coefficients.

1.1.2 Cartoon-like Functions

General image data usually do not fulfill as rigid smoothness conditions as assumed in the
previous example. Let us subsequently consider the continuum setting, where an image is
commonly represented as a function in Ls(R?) with compact support and values containing
pixel information for the respective positions. Using such a representation, every edge in
the image corresponds to a curvilinear discontinuity in the data. In contrast to point singu-
larities, the approximation performance of wavelets with respect to such line singularities is
not quasi-optimal any more. The isotropy of their scaling prohibits an optimal resolution,
an observation which motivated the search for more efficient ways to approximate image
data.
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For such an endeavour it is helpful to, beforehand, precisely specify the type of data un-
der consideration in the form of an appropriate model. With the desire to specifically model
the occurrence of edges in an image, the concept of cartoon-like functions emerged. These
are piecewise smooth functions featuring discontinuities along lower-dimensional manifolds.
Based on such functions, different model classes for image data have been defined, typically
characterized by the regularity of the smooth regions and the separating edges. As exam-
ples, let us mention the classic C2-cartoons [38, 15] featuring C?-regularity of the regions
and the discontinuity curves, or the horizon classes considered in [35, 18, 87].

1.1.3 Cartoon Approximation

With the model of cartoon-like functions at hand, the question of efficient image approx-
imation can be formulated as the task of sparsely approximating cartoon-like functions
f € Ly(R?). The aim are approximation schemes with a best possible speed of convergence
of the N-term approximants fy quantified by the asymptotic decay of the Lo-approximation
error || f — fn|La||.

The achievable approximation rate thereby depends on the regularity of the considered
cartoons. Typically, this regularity is determined by the smoothness of both the edge curves
and the regions in between. It was shown in [87, 86] that C#-regularity with 8 > 0 allows for
an asymptotic rate of order N—?. By information theoretic arguments, it is further known
that this rate cannot be surpassed [38], at least in a class-wise sense. Hence, the rate N5
provides an optimality benchmark for the approximation of C?-cartoons. Interestingly, this
benchmark remains the same for the subclass of binary cartoons, where the regions are
assumed to be constant, and it also does not change if one restricts to C®?-smooth functions
without any edges.

After the realization that wavelet-based approximation methods only provide a sub-
optimal performance for cartoon-like functions, a great amount of energy was devoted to
the effort of constructing dictionaries better-suited for this task. Thereby, the developed
methods can be divided into two categories: adaptive and nonadaptive methods.

Adaptive methods are inherently more flexible than nonadaptive methods and have
the advantage of being more adjustable to the given data. On the downside, their higher
flexibility typically comes at the cost of an increased computational complexity.

Some prominent examples of adaptive methods for cartoon approximation are based
on wedgelet dictionaries [35] and their higher-order relatives, so-called surflets [19, 18].
Those have been shown to reach an optimal rate of order N~—? for binary cartoons with
CP regularity [16, 17]. Other notable dictionaries used for adaptive approximation include
beamlets [39], platelets [113], and derivatives of wedgelets such as multiwedgelets [91] or
smoothlets [90]. More recently, new adaptive schemes have emerged that use bases, e.g.,
bandelets [87], grouplets [98], and tetrolets [77]. For bandelets, the quasi-optimal approx-
imation of general C®-cartoons has been proved in [86], showing that the benchmark rate
of order N=7 is achievable, at least when resorting to adaptive approximation schemes.

As already mentioned above, for images that are smooth apart from point singularities,
wavelets can reach a quasi-optimal approximation rate by a nonadaptive scheme, namely
by a simple thresholding of the frame coefficients.

This raises the question if there also exist nonadaptive approximation methods per-
forming quasi-optimally for certain cartoon classes, based on the thresholding of frame
coefficients for example. Since, from an algorithmic perspective, such nonadaptive methods
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tend to be much simpler than adaptive schemes, they promise advantages for the implemen-
tation and lower computational cost. And indeed, the discovery of ridgelets and curvelets
by Candés and Donoho showed that there exist frames with quasi-optimal approximation
performance for certain cartoon classes.

Triggered by the invention of these first so-called directional representation systems,
many novel constructions were introduced in the period that followed.

1.2 Directional Representation Systems

The key idea for the development of directional representation systems is to modify the
original wavelet construction by incorporating some form of anisotropic scaling. Depending
on the utilized type of scaling, this approach leads to many different systems. In the
following we present some of the most prominent examples, but by no means this shall be
a complete overview.

1.2.1 Ridgelets

Let us start with ridgelet systems which have been shown to yield quasi-optimal approxima-
tion [12, 64, 63| for cartoon-like functions if the edges of the cartoons are straight. Thereby
the term ‘ridgelet’ is used for different types of constructions in the literature.

Originally, it was introduced by Candes [8] in 1998 to refer to systems consisting of
translated, rotated, and dilated versions of some underlying ridge function whose profile is
a univariate wavelet. Nowadays, these kind of ridgelets are called ‘pure ridgelets’. They
have been shown to provide quasi-optimal approximation for functions with straight line
singularities in [12].

Since pure ridgelets are not square-integrable, the concept was slightly modified by
Donoho to obtain frames or even bases for Ly(IR?). In [36] he constructed an orthonormal
basis by allowing the ridgelets a slow decay along the ridge. These so-called ‘orthonormal
ridgelets’ have similar properties as the original pure ridgelets. In particular, they share
the same quasi-optimal approximation properties with respect to straight line singularities.
The close relationship between orthonormal and pure ridgelets has been analyzed in [37].
A good introductory survey on the subject is given in [9)].

Another ridgelet construction which coincides with the concept of ‘O-curvelets’ is due to
Grohs [57]. It is a special case of the a-curvelet construction presented in Subsection 3.2.3
which for o = 0 yields purely directionally scaled systems. In essence, those are obtained by
performing rotations, translations, and directional scaling on a generator g € La(R?) with

corresponding scaling matrix
t 0
Ayt = .
0,t <0 1) ; t>0

In [57, 60] tight ridgelet frames of this type were constructed that also provably provide
quasi-optimal approximation of data with straight line singularities [63, 64].

For general cartoons with curved edges, however, neither of the above ridgelet systems
provide a quasi-optimal performance.
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1.2.2 Curvelets

An important milestone concerning the approximation of cartoon-like functions with curved
edges was the introduction of curvelets by Candeés and Donoho [14, 15]. They were intro-
duced in 1999 representing the first frame to reach the optimal approximation order of N ~2
for general C?-cartoons [14]. In 2002, a modification of the original system, the so-called sec-
ond generation of curvelets [15], was introduced by the same authors. It is closely related to
the frame of %—Curvelets presented in Subsection 3.2.3 and features the same quasi-optimal
approximation properties as the first generation.

The crucial ingredient in both curvelet constructions, first and second generation, is the

use of parabolic scaling described by a matrix of the form

t 0
A;t'_(o \/i>’ t>0. (1.1)

This type of scaling can be considered as a compromise between directional scaling as used
for ridgelets and isotropic scaling as used for wavelets. As the following heuristic shows, it
is specifically adapted to the resolution of C?-discontinuity curves.

Locally, at each point p of the discontinuity, such a curve can be parametrized by
(E(x2),22) with E(0) = 0 = E’(0) using a Cartesian coordinate system (z1,x2) € R? which
is centered at p and whose xg-axis coincides with the tangent. A Taylor expansion of F
then yields approximately F(x2) ~ %E” (0)x3 for small z2 showing that parabolically scaled
functions can optimally align with the discontinuity curve since the size of their essential
support satisfies the relation ‘width ~ length?®".

It should be mentioned that in the actual construction of the second generation curvelets
the translations and rotations are applied to a set of generators related to each other by a
parabolic scaling law realised not by (1.1) but by dilations with respect to polar coordinates.
This deviation from a strict affine construction allows for a simple realization of the Parseval
frame property. Very similarly, as a special case of a more general a-curvelet construction,
the %—curvelets from Subsection 3.2.3 are obtained.

Meanwhile, many different variants of curvelet systems are available, among those even
curvelet-like systems with compact support [99]. They cover a wide range of applications,
for example in the field of image and seismic processing [93, 95, 34, 92], as PDE solvers [106],
or in the study of turbulent flows [94]. A more thorough overview is provided in [96].

1.2.3 Shearlets

After the introduction of curvelets, many other systems based on parabolic scaling were
developed. As examples, let us mention contourlets [33] by Do and Vetterli and shearlets
going back to Guo, Kutyniok, Labate, Lim, and Weiss [81, 66]. One motivation behind those
novel constructions was the desire to have systems with similar properties as curvelets but
better suited for digital implementation.

The first shearlet construction was presented in 2005 by Kutyniok, Labate, Lim, and
Weiss in [81]. It was an affine system obtained from a single band-limited generator using
parabolic scaling, shearings, and translations. The novel ingredient and main difference to
the construction of curvelets was that shearings, given by the matrices

. 1 0 T 1 v
SU_(U 1) and S“_<O 1), veER, (1.2)
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and not rotations were used for the change of direction. This modification bears advantages
in a discrete setting, since shearings leave the digital grid invariant, and allows for a unified
treatment of the continuum and digital realm.

A drawback of the use of shearings is that those have an inherent bias towards one distin-
guished coordinate direction. To avoid large shear parameters and thus enable an unbiased
treatment of all coordinate directions, the original shearlet construction was therefore later
modified and so-called cone-adapted shearlet systems were introduced. Those have several
generators with different orientations corresponding to different cones of the frequency do-
main. The first such construction was presented by Guo, Kutyniok, and Labate in [66]. For
more details on this topic we refer to Section 3.3.

Following the initial constructions, also more sophisticated shearlet systems were devel-
oped, such as for example the cone-adapted Parseval frame of well-localized band-limited
shearlets by Guo and Labate [70, 67] or systems of compactly supported shearlets by Kit-
tipoom, Kutyniok, and Lim [76]. Like curvelets, shearlet systems provide quasi-optimal
approximation for C%-cartoons. For the cone-adapted band-limited shearlets this was es-
tablished in [67], for those with compact support in [78].

It should be noted that, as for curvelets, many actual constructions of shearlet systems
are not entirely faithful to the original idea of applying shears and parabolic scalings, using
matrices (1.1) and (1.2), and translations to a finite set of generators. An example is
the above mentioned cone-adapted shearlet system by Guo and Labate [70], where certain
‘boundary’ elements, corresponding to the boundary of the frequency cones, need to be
modified to obtain good spatial localization.

Nowadays, shearlets are widely used directional representation systems with applications
ranging from imaging science [40], simulations of inverse scattering problems [84] to solvers
for transport equations [29]. More information can be found in the book [79].

1.2.4 «-Scaling

Comparing the approximation properties of wavelets, curvelets, shearlets, and ridgelets
reveals a distinct behavior with respect to their ability to resolve edges. Ridgelets are
optimally suited to resolve straight edges, curvelets and shearlets are optimal for C? line
singularities, and wavelets perform optimal with respect to point singularities. The origin
of this characteristic behavior lies in the different scaling laws underlying the respective
constructions: Isotropic scaling for wavelets, parabolic scaling for curvelets and shearlets,
and directional scaling for ridgelets.
Introducing a parameter o € R and associated a-scaling matrices

t 0
Agy = (o ta)’ t>0, (1.3)

it is possible to interpolate between these different types of scaling. In particular, one can
construct corresponding a-scaled representation systems, for instance a-curvelets by incor-
porating a-scaling in the classic curvelet construction. The scale of tight frames obtained
in [60] for the range « € [0, 1] constitutes a family of systems which encompass ridgelets
(in the sense of [57]) for a = 0, the classic curvelets for « = 3, and wavelets for a = 1.
Similarly, a-shearlet systems can be defined by modifying the original parabolic shearlet
constructions. They have been examined for example in [73, 83] (for the range a € [%, 1)).
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A natural question concerning such a-scaled representation systems is how their approx-
imation properties are affected by the choice of the parameter a. With regard to cartoon
approximation, this question has been pursued in [60, 102] for a-curvelet frames and in
[73, 83] for a-shearlet frames. In [60, 73, 83] it is shown that, if o € [%, 1) and 8 = a1,
simple thresholding of the coefficients yields N-term approximations with an optimal con-
vergence rate of order N~# for CP-cartoons. The findings of [102] further extend this
result. There it is shown that the best possible N-term approximation rate achievable for

1
CP-cartoons by a-curvelets with o € [0, 1) is limited to at most N~ ==, independent of the
smoothness 8 > 0. Moreover, if a simple thresholding scheme is used the achievable rate
1

cannot even exceed N max{al-a},

These results show that for CP-cartoons with § > 2 the classic parabolically scaled
curvelets provide the best possible approximation performance among all a-curvelet sys-
tems, at least when restricting to simple thresholding schemes, with an approximation rate
of order N~2. This confirms the special role of parabolic scaling for cartoon approximation.
On the other hand, it becomes clear that the classic curvelets do not take advantage of
cartoon regularity higher than C? since if 8 > 2 the obtainable approximation rate remains
below the optimality benchmark of N=#. For different choices of « the rate even deterio-
rates as « tends to 1 or 0. Consequently, a-curvelets cannot provide optimal approximation
for general C#-cartoons if > 2. In fact, up to now, no frame construction is known where
a nonadaptive approximation scheme yields rates better than N 2.

In [102] also the approximation of cartoons featuring only straight edges is considered.
It is shown that by a simple thresholding scheme a-curvelets can reach approximation rates
of order N—min{a™"5} Hence, here a smaller « is beneficial and even ensures quasi-optimal
approximation if o € [0, 37!]. This finding generalizes earlier results for ridgelets [63, 64].

1.3 A Common Framework

The directional systems described above are all constructed using the same idea: take a
set of generators and then perform scalings with some degree of anisotropy, changes of
direction using for example rotations or shearings, and finally translations. In addition, in
order to obtain systems with desirable properties, usually some regularity conditions on the
generators are posed. Having this in mind, it seems possible to regard all such systems as
certain instances of a common more general concept.

First developments in this direction were the concepts of curvelet molecules [13] and
shearlet molecules [68], conceived as a means to unify the analysis of curvelet-like and
shearlet-like constructions, respectively. However, those concepts do not bridge the gap
between rotation-based and shear-based constructions and are thus not able to unify those
under one common roof. This was first achieved by the concept of parabolic molecules [62]
using the idea of variable generators and parametrizations.

1.3.1 Parabolic Molecules

The concept of parabolic molecules was introduced in 2011 by Grohs and Kutyniok [62].
It has the ability to unify various parabolically scaled systems under one common roof.
In particular, it allows to derive the classic curvelets and shearlets as special instances of
the same general construction principle, although these specific constructions are rather
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different. Recall that for curvelets the scaling is done by a dilation with respect to polar
coordinates and the orientation is enforced by rotations, whereas shearlets are based on
affine scaling and the directionality is generated by the action of shear matrices.

The basic construction principle of a system of parabolic molecules thereby resembles
that of an ordinary affine construction. Starting from a set of generating functions, the
system elements are obtained by applying parabolic dilations, rotations, and translations.
The essential novelty is that the generators can be chosen freely, apart from a certain time-
frequency localization, and each molecule may thus have its own individual generator. This
‘variability’ of the generating set is the reason for the terminology ‘molecules’ (see also [47],
for instance). Together with the utilization of so-called parametrizations to allow a generic
indexing of the system elements, it provides the flexibility to cast rotation- and shear-based
systems as products of the same underlying construction process. Moreover, as a nice side-
effect, it becomes possible to relax the vanishing moment conditions usually imposed on
the generators to achieve favorable approximation properties. Rather to demand a rigid
condition as in most classic constructions, it suffices to require the moments to vanish
asymptotically at high scales, without changing the asymptotic approximation behavior of
the system.

In essence, the concept of parabolic molecules provides a high level description of
parabolically scaled representation systems based solely on the time-frequency localization
of the system elements. This has the advantage that the associated theory becomes indepen-
dent of the specific constructions, allowing simultaneous investigations for many different
systems. In particular, the theory is well-suited for applications in approximation theory
since it is foremost the time-frequency localization of a system that is responsible for its
approximation properties. As an example application, the theory of parabolic molecules was
used in [62] to show that the classic curvelets and shearlets feature a similar approximation
behavior.

Since nowadays higher dimensional data plays an ever increasing role a first step towards
a theory for higher dimensions was pursued in [44], with an extension of the parabolic
molecule framework from [62] to 3D. In the recent work [75, 61] another extension in a
different direction was pursued. Here the theory of parabolic molecules was generalized
to also include non-discrete systems. The resulting continuous theory is well-suited for
microlocal analysis with applications for example in the theory of function spaces.

1.3.2 «a-Molecules

As the name already suggests, the scope of parabolic molecules is limited to parabolically
scaled systems. In this thesis, we will put forward a more general framework which also
includes differently scaled systems such as wavelets and ridgelets, for instance. This becomes
possible by the utilization of a-scaling (1.3), which allows to realize scalings with different
degrees of anisotropy controlled by the parameter « € [0, 1].

The fundamental notion are systems of a-molecules which are obtained similarly as
systems of parabolic molecules. Like those, they consist of dilated, rotated, and translated
versions of a set of generators which are merely required to fulfill a common time-frequency
localization. However, instead of parabolic scaling, more general a-scaling is used. For the
choice a = % the concept coincides with that of parabolic molecules, choosing o = 0 or
a = 1, for example, ridgelet and wavelet systems can be obtained.

The concept of a-molecules was first introduced in [59] as an extension of the discrete
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theory of parabolic molecules from [62]. In [45] the framework was then further generalized
to arbitrary dimensions d € N with d > 2. In this thesis, we further extend it to a continuous
setting comprising then in particular the notion of continuous parabolic molecules from [75].
The theory presented in this thesis thus essentially builds upon the articles [59, 45, 75]. It is
intended as an abstract tool enabling a unified treatment of a variety of directional multiscale
systems, applicable for instance for the analysis of their approximation properties.

Some features of the theory are listed below.

e In Section 2.2 we prove in Theorem 2.2.2 that a-molecule systems are almost or-
thogonal to each other with respect to a certain distance function on their respective
indices. We further show in Theorem 2.2.12 that this so-called index distance induces
a quasi-metric structure on their common underlying parameter space.

e A Daubechies-type frame criterion for a particular subclass of discrete a-molecule
systems is proved in Section 2.4. As direct corollaries we deduce two concrete frame
criteria for a-curvelet molecules and a-shearlet molecules, in Theorem 3.2.5 and The-
orem 3.3.7, respectively.

e A transfer of approximation results between different c-molecule systems is enabled
by the transfer principle, Theorem 2.3.6 proved in Section 2.3. In Chapters 5 and 6
we apply this result to determine bounds and guarantees for the approximation rates
achievable by a-molecule frames for cartoon-like functions. A multi-dimensional ver-
sion of the transfer principle, Theorem 7.3.2, is proved in Chapter 7.

e The consistency of the a-curvelet and a-shearlet parametrizations, proved in The-
orem 3.4.3 and Corollary 3.4.4, gives an explanation for the similar approximation
properties of curvelet-like and shearlet-like constructions.

e The theory enables a unified structural treatment of coorbit spaces associated with
a-molecule systems. This is the topic of Chapter 4. More information on a-molecule
coorbit spaces and a short recollection of coorbit theory in general is provided in the
next paragraph, Section 1.4.

Other applications, not handled in this thesis, include for example the microlocal anal-
ysis of signals on a generic a-molecule level, as conducted with parabolic molecules in the
article [75]. We further remark that, apart from the analysis aspects of the framework, the
a-molecule concept also promises new design approaches for novel multiscale constructions.

1.4 «a-Molecule Coorbit Spaces

The theory of coorbit spaces represents a unifying approach for the abstract description
and investigation of function spaces. Starting in the 1980ies, the foundation of the theory
was laid mainly by Feichtinger and Grochenig [42, 54, 55]. The underlying idea is to use an
abstract transform, called the voice transform, for the characterization of functions. Given
some function class Y on the associated transform domain, the term coorbit thereby refers
to a retract of Y in some suitable reservoir of signals.

In the original formulation, the voice transform stems from an integrable irreducible
representation of a locally compact group on some Hilbert space H. The classic example of
such a transform is the continuous wavelet transform which is related to the ax + b-group.
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Associated coorbit spaces are for example the homogeneous scales of the classic Besov and
Triebel-Lizorkin spaces [107, 108, 109]. They correspond to certain mixed-norm Lebesgue
spaces on the wavelet domain and were identified rigorously as coorbits in Ullrich [110].
Further extensions of these spaces were investigated by Lieang et al. [88, 89].

More general wavelet-type coorbit spaces, associated with a semidirect product G =
RY x H, where the dilation group H is a suitable subgroup of GL(R?), have been studied in
[48, 49] and could recently be identified with certain decomposition spaces on the Fourier
domain [50]. Those in particular include shearlet coorbit spaces, first studied in [26], which
are associated to the classic shearlet transform and the shearlet group.

Other group-based coorbit spaces, with a voice transform different from the wavelet
transform, are for example modulation spaces [56, 41] related to the Weyl-Heisenberg group
and the short-time Fourier transform or Bergman spaces [42]. Furthermore, the irreducibil-
ity and integrability conditions of the considered group representations have recently been
relaxed [23], allowing for instance to treat Paley-Wiener spaces and spaces related to Shan-
non wavelets and Schrédingerlets as coorbits.

Whereas a group structure in the background is certainly a nice property, it also limits
the reach of the theory. For example, it is not possible to treat the inhomogeneous scales of
Besov-Triebel-Lizorkin spaces within the classic framework. Also shearlet spaces related to
the cone-adapted version of the shearlet transform [79] do not fall into the group setting.

Therefore, in the meantime, many generalizations of the original setup have been pur-
sued. With the aim to treat functions on manifolds, Dahlke, Steidl, and Teschke [27, 28, 24]
replaced the group by a homogeneous space, for example, i.e., a quotient of a group with
a subgroup. A frame-based approach, not relying on an underlying group structure at all,
was developed by Fornasier and Rauhut [46]. Instead of a group representation, the starting
point of this generalized theory is the notion of a continuous Hilbert frame, a notion which
first appeared in [1]. The voice transform is then defined as the associated analysis operator.
Intriguingly, many aspects of the original theory remain valid in this more general setup.
In particular, analoga of the classic discretization results hold true.

To make the frame-based theory more accessible for applications, it was later revised
and extended in [4]. Another expansion was conducted in [111], where the theory was used
to characterize the inhomogeneous versions of the Besov-Triebel-Lizorkin spaces as coorbits
with respect to an inhomogeneous continuous wavelet transform.

Other generalizations of the original theory due to Feichtinger and Gréchenig concern
the requirements imposed on the function class Y on the transform domain X. In the
classic setting, the class Y is required to be a Banach function space. The group-based
theory was then extended in [100] to a more general quasi-Banach setting, utilizing the idea
of Wiener amalgams. In particular, this extension allows for coorbit characterizations of
the homogeneous Besov-Triebel-Lizorkin spaces also in the quasi-Banach range.

Combining the approach in [111] with the idea from [100] leads to a group-less formu-
lation of coorbit theory as presented in [74] which also comprises the quasi-Banach case.
This generalized version of the theory is the foundation for our subsequent definition and
analysis of a-curvelet and a-molecule coorbit spaces in Chapter 4. These spaces are asso-
ciated with a continuous a-curvelet transform, defined as a generalization of the parabolic
curvelet transform from [11], and a more general continuous a-molecule transform, respec-
tively, whereby both of which are not naturally related to any group structure. A group-less
formulation of coorbit theory is therefore a prerequisite for their definition.
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Since the continuous a-molecule transform in particular generalizes the cone-adapted
version of the continuous a-shearlet transform, a-molecule coorbit spaces enable a unified
description of curvelet and shearlet smoothness spaces. Thereby the latter, building on the
concept of decomposition spaces [6], have been defined well before the coorbit descriptions
given in this thesis, see e.g. [85]. Representing an alternative approach for the definition and
investigation of function spaces, decomposition spaces have a close relationship to coorbit
spaces. In fact, many function spaces can be described in both ways, see e.g. [50]. In
particular, a-curvelet and a-shearlet decomposition spaces coincide with their respective
a-molecule coorbit counterparts.

1.5 Outline

The thesis is organized as follows.

After the introduction in Chapter 1, we begin with the development of the general
theory in Chapter 2. Here we first restrict to a bivariate setting and introduce the notion of
a system of a-molecules in Lo(R?). By definition, those are distinguished by their respective
orders and parametrizations, i.e., associated mappings from their index sets into a common
underlying parameter space. As the theory will show, for many investigations the knowledge
of these characteristic parameters is sufficient information.

The parameter space is then equipped with a quasi-metric structure induced by an
a-scaled index distance, which is closely related to the cross-correlations of a-molecules.
One of the main results, Theorem 2.2.2, states that systems of a-molecules are almost
orthogonal to each other in the sense that cross-correlations are small whenever the index
distance is large. We continue with some deeper investigation of certain subclasses of a-
molecule systems. In Theorem 2.3.6 we derive a sufficient condition for discrete a-molecule
systems to be sparsity equivalent. This condition, which is solely based on the order and
the parametrization of the involved systems, gives rise to the so-called transfer principle
since it enables the transfer of approximation properties within the framework. Finally, in
Theorem 2.4.1 at the end of Chapter 2, we prove a Daubechies-type frame criterion for a
specific subclass of discrete a-molecule systems.

Some concrete examples of a-molecule systems in Lz(R?) are presented in Chapter 3.
At first we construct a continuous frame of a-curvelets and verify its frame property and
that it is indeed a system of a-molecules. Then we turn to discrete a-molecule sys-
tems, whereby we distinguish two important subclasses, namely a-curvelet and a-shearlet
molecules. Those are characterized by corresponding classes of parametrizations, called
a-curvelet and a-shearlet parametrizations. As particular instances of these classes, dis-
crete a-curvelet frames and cone-adapted a-shearlets are considered. A main result of this
chapter is Theorem 3.4.3, a direct consequence of which is the fact that the a-curvelet and
a-shearlet parametrizations are consistent with each other. We further show that wavelets
and ridgelets, in the sense of 0-curvelets, fit into the framework.

Chapter 4 is devoted to an application of the concept of a-molecules in the theory of
function spaces. Based on the continuous a-curvelet frame from Chapter 3, we introduce an
associated continuous a-molecule transform and Besov-type coorbit spaces corresponding
to certain mixed-norm Lebesgue spaces on the transform domain. A main result, The-
orem 4.3.8, which can be interpreted as another manifestation of the transfer principle,
shows that these a-molecule coorbit spaces coincide if the order of the a-molecules is suf-
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ficiently high. The discrete characterization of Theorem 4.3.13 further allows to identify
them with known scales of curvelet and shearlet smoothness spaces. Finally, the abstract
machinery of coorbit theory yields two other discretization results, Theorem 4.4.19 and
Theorem 4.4.21.

In Chapters 5 and 6 we turn to another application of the theory. Here we investigate
the approximation performance of a-molecule systems for certain classes of cartoon-like
functions. Whereas Chapter 5 is concerned with bounds on the achievable approximation
rates, the main results being Theorem 5.4.2, Theorem 5.4.4, and Theorem 5.4.6, in Chapter 6
actual guarantees for these rates are established, in Theorem 6.0.1 and Theorem 6.0.2.

An extension of the theory to multi-dimensions d € N\{1} is conducted in the last part of
the thesis, Chapter 7. Both, the notion of a-molecules and the notion of a-shearlet molecules
are transferred to Lo (]Rd), which requires the parameter space as well as the index distance
to be adapted to d dimensions. As in the bivariate case, systems of such multivariate
a-molecules are almost orthogonal to each other, which is established in Theorem 7.2.2.
Consequently, also a d-dimensional version of the transfer principle, Theorem 7.3.2, holds
true. As an application, we finally investigate the approximation performance of parabolic
molecules in 3D with respect to video data, leading to Theorem 7.5.8.

1.6 Preliminaries: Notation and Conventions

For clarity, let us shortly explain the general notation used throughout the thesis. The
symbols N, Ny, Z, R, and C have the standard meaning, i.e., N stands for the natural
numbers, Ny for the natural numbers including 0, Z for the integers, and R and C are the
real numbers and complex numbers, respectively. The strictly positive real numbers are
denoted by R, i.e., Ry := (0,00), whereas R := [0, 00) stands for the ray including 0.

The complex conjugate of a number z € C is denoted by z. For z,y € R we put (z,y)4 :=
max{z,y} and (x)4 := (x,0); = max{x,0}. Further, the floor and ceiling functions are
defined by |z] := max{n € Z : n < z} and [z] := min{n € Z : n > x}, respectively. A
useful abbreviation is also the ubiquitous ‘analyst’s bracket’ given by (z) := /1 + 22.

For two entities z,y € R, dependent on a certain set of parameters, the notation = < y
shall mean that there exists a constant C' > 0 such that z < C'y, uniformly in the parameters.
If the converse inequality holds true, we write x 2 y and if both inequalities hold we shall
write z < y.

The vector space R? with d € N is equipped with the usual Euclidean scalar product
denoted by (-,-). The p-quasi-norm in the range 0 < p < oo of a vector € R? is denoted
by |z|p. In case of the Euclidean norm |z|s = /(z, z), we will usually omit the subindex.
For the unit sphere {x € R% : |z| = 1} in R? the symbol S! is used. The standard unit
vectors are denoted by e1, ..., eq, and for a vector = € R? we use the notation [z]; := (z, e;),
i € {1,...,d}, for the i:th component. In Chapter 7, also the short-hand notation |z|jg_) :=
|([z]1, .-, [*]d—1,0)]2 will be useful.

Besides Cartesian coordinates, we will often use polar coordinates for the representation
of a vector x € R?, i.e., a pair (r,¢) € [0,00) x [0,27), where r = || is the length of the ray
from the origin (0,0) to = and ¢ = ¢(x) measures the angle from the z1-axis to this ray, in
a counter-clockwise sense.

The usual Lebesgue spaces on a generic measure space (€2, 1) are denoted by L,(Q2) :=
Ly(2, 1), where 0 < p < oo, and the symbol || - |L,|| is used for the associated quasi-norms.
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The inner product on the Hilbert space Lo(2) is given by
(f.9)i= [ S@g@)duta),  f.g € La(®)

whereby the same symbol (-,-) is used as for the scalar product on R%. In case Q = RY,
we further introduce the space L;OC(Rd) consisting of all Lebesgue-measurable functions f
on R? which satisfy fXx € L,(R%) for every compact subset K C R%. Thereby X is the
characteristic function of K, i.e., Xx(z) =1 for x € K and Xk (z) = 0 otherwise.

For the Lebesgue sequence spaces, corresponding to a countable index set A, we write
P(A). The weak versions of these spaces are denoted by wfP(A) with associated quasi-norms
|| - ||wee. Their precise definition is recalled in Subsection 2.3.1.

Next, let us turn to the scale C’gc(Q), f € [0,00), of classic smoothness spaces on

some domain © C R? For a multi-index m = (my,...,mq) € N we first introduce
the notation 9™ := 97" --- 97!, where 9; is the partial derivative in the i-th coordinate
direction, ¢ € {1,...,d}. Then we can define C’lﬁc () as the space comprising all functions

on § which have continuous derivatives up to order |/3] such that Holx (0™ f,5— |B]) < oo
for every compact subset K C R? and every multi-index m € N& with |m|; = |3]. Hereby,

Holg (f,~y) := sup 11@) = F )]
eyekno T =yl

is the Holder constant of a function f : Q — C with respect to the exponent 7 € [0, 1] and
the domain K. We further introduce the Banach space

() = {1 € AL Il = ooy + S HOI@™f, 5~ [B]) < oo},
Iml1=|5]

where || fllcis1 () = Xpmli<(8) sug |0™ f(x)| and HOI(f,~y) := Hé6lga(f,7). For convenience,
xre

the space of continuous functions C°(€2) is often denoted by C(£2), a notation also used for
continuous functions on general topological spaces €. At last, we extend the definition of
Cio.(2) and CP(Q) to B = 0o and let C2 () := Mgz Cloe () and C=(2) := Nz CP(Q).

All functions f € C#(R?), 8 € [0, 0o], whose support supp f is a compact subset of € are
collected in the space C’g (©2) which can be considered as a subspace of C*(2) by identifying
every f € Cg (Q) with its restriction f|g. Note that the functions in C’g (©) necessarily
vanish on the boundary 9. In contrast, the notation C?(2) refers to the larger space of
all compactly supported functions in C#(€2). Thereby the notation C.(f2) is again also used
for general topological spaces €.

The Schwartz space of rapidly decreasing functions on R? is denoted by S(R%). Let us
put ™ = 2" -zl for x = (z1,...,2q) € R¢ and a multi-index m = (my, ..., mg) € N4.
Then we have

S(RY) = {f € C¥(R%,C) : |flxu < oo for all (x,v) € N§ x Ni}
with
| fl, := sup |§”8”f(§)|, K,V € Ng. (1.4)

zcRd
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INTRODUCTION

Furthermore, this space is topologized by the locally convex topology induced by the col-
lection of semi-norms in (1.4).
The Fourier transform Ff of a function f € S(R?) shall be given by

FIE) = [ fa)exp(=2ri(é.a)) do,

for which we will often use the short-hand notation ]? = Ff. We further remark that, as
usual, the transform F is extended to the space of tempered distributions &’(R%), i.e., the
topological dual of S(R?).

We finally mention another important transform which we will encounter in Chapter 6.
It is the Radon transform R f defined via the line integral

Rf(t,7) = /E fds, (1.5)

whereby (¢,1) € R x (—m/2,7/2] and £, = {(z1,22) € R?: sin(n)x1 + cos(n)ze = t}.
After these preliminaries, we are now ready to turn to the development of the basic
theory of a-molecules in Chapter 2.
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Chapter 2

Bivariate a-Molecules

In this chapter we lay the foundation for the theory of a-molecules in Ly(R?). As already
explained in the introduction, a-molecules are envisioned as a common framework for dif-
ferent directional multi-scale systems, encompassing in particular the classic constructions
of wavelets, ridgelets, curvelets, and shearlets. They are intended as an abstract tool for
the applied harmonic analyst, enabling a simultaneous treatment of such systems and thus
simplifying many considerations.

The subsequent exposition is mainly based on the article [59], some additional results
are presented in Section 2.2 and Section 2.4. Since we also want to investigate continuous a-
molecule systems, especially in Chapter 4, the discrete theory in [59] is further transferred
to a continuous setting. The presentation is then in line with the theory of continuous
parabolic molecules put forward in [75]. Technically, this transfer mainly just requires an
adaption of the formulation, whereas the underlying proofs of the results essentially remain
the same.

The structure of the exposition is as follows. The first section deals with the basic
notions of the theory. Here the general definition of an a-molecule system in Ly(R?) of a
certain order is given and the corresponding parameter space, also called the phase space,
together with the concept of parametrizations is introduced.

In the next section, the parameter space is equipped with a natural quasi-metric giving
rise to a notion of distance between a-molecules in phase space. According to Theorem 2.2.2,
whose proof is given at the end of the chapter, this so-called indezx distance is in correspon-
dence with the size of the cross-correlations of the respective a-molecules, i.e., their scalar
products. This is a central result and will play a pivotal role throughout the whole theory.
The remainder of the section is devoted to a thorough analysis of the induced quasi-metric
structure of the phase space, a notable result being Theorem 2.2.12.

We turn to approximation theoretic considerations in the third section. Based on the
index distance, a notion of consistency of parametrizations is introduced and we prove in
Theorem 2.3.6 that discrete a-molecule frames with consistent parametrizations are sparsity
equivalent if their orders are sufficiently high. In terms of approximation, this means that
the approximation rates can be transferred between such frames, wherefore this result is
also called the transfer principle.

In the fourth section we proceed with a short investigation of frame properties of dis-
crete a-molecule systems. The main result is Theorem 2.4.1, a sufficient frame criterion of
Daubechies-type applicable to a certain class of a-molecule systems.
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BIVARIATE o-MOLECULES

2.1 The Concept of a-Molecules in Ly(R?)

Modern directional multi-scale systems such as ridgelets, curvelets, and shearlets, have
evolved from classical wavelet systems whose multi-scale structure is solely based on trans-
lations and dilations. With scale and position being the only degrees of freedom of a wavelet,
a suitable wavelet parameter space — for the bivariate case — is given by R? x R,.

In contrast, directional multi-scale systems possess orientation as an additional parame-
ter. Every element not only corresponds to a certain scale and position, but also to a certain
orientation. This necessitates an appropriate extension of the parameter space. Adding a
new variable corresponding to orientation leads to the following definition.

Note that in contrast to [59, Def. 2.7] we use the full circle of orientations as in [45]. At
this stage, this seems to be the most natural choice.

Definition 2.1.1 (compare [59]). The parameter space P is defined by
P:=R?x T x Ry, (2.1)
where here and throughout the thesis Ry := (0,00) and T := [0, 27).

This parameter space will also be referred to as phase space. Its points x = (z,n,t) € P
carry information on the scale t € R, the orientation n € T, and the location x € R? of
the yet to be defined a-molecules. By convention, the orientation represented by a value
n € T is expressed explicitly by the vector

ey := (cos(n), —sin(n)) = R, 'ei, (2.2)

where ey := (1,0) € R? is the first unit vector in R? and R, denotes the rotation matriz

_ [cos(n) —sin(n)
R, = <sin(77) cos(n) ) , n € R. (2.3)

In the sequel, the interval T = [0, 27) will often be identified with the unit sphere S* C R?
via the correspondence 7 +— e,.

One problem that occurs, when aiming for a common framework able to unify different
directional multi-scale systems, is the fact that the index sets of the various systems usually
differ from each other. However, using IP as a common parameter space and the concept of
parametrizations, it is possible to include systems independent of their specific indexing.

Definition 2.1.2 ([59]). A parametrization is a pair (A, ®,) consisting of an index set A
and a mapping
CI)A:A—>]P’, )\HX,\Z(%‘)\,?])\,D\),

which associates to each index A € A a point x) = (zx,m,tx) € P, specifying a scale
ty € Ry, an orientation ny € T, and a location x) € R2.

The general construction of a system of a-molecules shall follow the same principles used
for the construction of a typical directional multi-scale system. Such a system is usually
obtained from a set of generating functions by applying a scaling operation in connection
with certain transformations to adjust the orientation and location of its elements.
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2.1 The Concept of a-Molecules in Lo(R?)

The first question that arises is which type of scaling should be used for a-molecules.
Whereas wavelets scale isotropically, curvelets and shearlets are based on parabolic scal-
ing, ridgelets only scale in one coordinate direction. Since the framework of a-molecules
is supposed to be general enough to comprise all these classic systems, different scaling
anisotropies need to be accounted for.

A convenient way to do this is to introduce a parameter « € [0,1] and associated «-
scaling matrices

t 0
Apy = (0 ta> , teR,. (2.4)

With these matrices different degrees of anisotropy of the scaling can be realized, ranging
from isotropic scaling for a = 1 to pure directional scaling for & = 0. The parameter o = %
corresponds to parabolic scaling.

The next question concerns the transformations which should be used for the adjustment
of the orientation and location of the a-molecules. Since the envisioned framework is mainly
a theoretical framework, rotations and translations seem to be the most natural choice. Note
however, that in practice — due to numerical and computational advantages — often other
means for the orientation change are used. A prominent example are shearlet systems where
shearings take the place of rotations. Intruigingly, the choice of rotations in the definition
of a-molecules does not confine this concept to rotation-based constructions. In Chapter 3
we will prove for example that shearlets are still included in the framework.

Finally, we come to the main conceptual ingredient for the construction of an a-molecule
system {my}rea. Since we want to ensure maximal flexibility, we allow the generators to
change with each index A € A, i.e., we employ an associated family {g)} e of variable
generators which are merely subject to a common time-frequency localization. This local-
ization condition is specified by a set of control parameters (L, M, N1, N3), where L describes
the spatial localization of the generators, M their number of directional almost vanishing
moments, and Ny, No their smoothness.

It is this construction principle which explains the use of the term ‘molecule’. In the
theory of atomic decompositions (see e.g. [42]), ‘atoms’ usually refer to bounded functions
with compact support and many vanishing moments. Replacing the compact support con-
dition by some weaker decay requirement leads to the notion of a ‘molecule’. Furthermore,
atomic decompositions are typically obtained by transforming a set of fixed generators, re-
sembling the construction of a system of a-molecules. There are also notable differences
however. Whereas the utilized transformations are typically obtained from an underlying
group action, there is no natural group structure related to the parameter space P.

After these explanations, we are ready for the formal definition of a system of a-molecules
{mx}xrea- The definition given below corresponds to [59, Def. 2.9], with the difference that
the scale variable t € R, is inverted, i.e., a small ¢ € Ry now corresponds to a high scale.
By this modification, our exposition is more in line with the continuous setting which has
not been considered before for c-molecules but was already the subject of investigation for
parabolic molecules [75].

As for the notation, we use the so-called analyst’s bracket (x) := (1 + $2)% defined for
x € R. Further, the notation a < b indicates that the entities a, b satisfy a < Cb for an
implicit constant C' > 0, independent of the intrinsic parameters.
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BIVARIATE o-MOLECULES

Definition 2.1.3 (compare [59, Def. 2.9]). Let o € [0, 1], and let L, M, N1, No € NoU{oo}.
Further, let (A, ®,) be a parametrization where

Py : A=P=REXT xRy, X (xr,70 1))

A family {m}rea of functions contained in Ly(R?) is called a system of a-molecules of order
(L, M, N1, No) with respect to the parametrization (A, ®,), if its elements can be written as

ma() = 65 Y200 (AL Ry (- — 20)

with generators gy € Lo(R?) satisfying for all p € N2 with [p|; < L

0°0a(&)] S min {113 + [&] + el ) ()™ (&) (25

The implicit constant is required to be uniform over all A € A and ¢ = (£1,&) € R2. If
a control parameter equals infinity, this means that the respective quantity can be chosen
arbitrarily large in (2.5).

Note that, as desired, the general building principles of a typical directional multi-scale
system are reflected by Definition 2.1.3. Each molecule m) is obtained from a corresponding
generator gy by a scaling operation and a subsequent adjustment of orientation and location.
A molecule my with phase space coordinates x) = (xx,nx,tx) € P corresponds to the scale
ty € R4 and is located at the point ) € R2. Its orientation, represented by 7 € T, is given
by the vector e,, = (cos(ny), —sin(n,)) € R? as in (2.2).

The uniform time-frequency localization of the generators g is specified in (2.5). As a
consequence of this condition, the frequency support of each a-molecule m) is essentially
contained in a pair of opposite wedges in the frequency domain, whereby the location of
these wedges is determined solely by the scale t) and the orientation 7, of the respective
a-molecule.

In order to see this, we use a representation of 72y in polar coordinates. Let £(r, ¢) :=
(rcos(¢), rsin(¢)) for r > 0 and ¢ € T. Then the function M) can be easily computed to
satisfy

[ (€(r, @) S % min {1,801+ )} - (min{es, 0 r) TN (5 sin(d4+mp)) 2. (2.6)

N
S
(a) (b) (c) (d)

a C

Figure 2.1: Frequency support of a-molecules (N7 = 2, No =1, M = 3, n = §) with (a):
t =1 and o arbitrary, (b): t =t and o =1, (¢): t = ¢ and a = £, (d): t = ¢ and a = 0.

As an illustration of (2.6), the essential frequency support of several a-molecules with
different phase space coordinates is depicted in Figure 2.1.
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2.2 Metrization of the Parameter Space

On the spatial side, the essential support of m) can be thought of as being contained in
the rectangle = + R,;SAWAQ of dimensions ¢, x t§, where Q := [—1, 1]

Finally, we remark that the normalization factor occurring in the a-molecule definition
ensures the equality ||[my|La|| = ||ga|L2|| for all A € A. In combination with condition (2.5),
we can deduce that an a-molecule system of order (L, M, Ny, Na) is La-bounded under the
mild assumption N; > 1.

Lemma 2.1.4. Let M, = {mp}rea be a system of a-molecules of order (L, M, Ny, No)
with respect to some arbitrary parametrization (A, ®y). If Ny > 1 its elements satisfy

sup ||ma|Le|| < 0.

AEA
Proof. Let Ny > 1. Then we have uniformly for all A € A

ImalLa||* = llgal Lal* = 9alL2]1* < /Rz(l +1¢11) M dé < 0.
O

Finally, with a viable notion of a-molecules at hand, we could verify the unifying qualities
of this notion by providing some concrete examples. However, we postpone this investigation
to Chapter 3 and instead proceed with the development of the general theory.

2.2 Metrization of the Parameter Space

Our next goal is to develop appropriate tools enabling the analysis of a-molecule systems on
a generic level. For instance, one might be interested in frame or approximation properties
of such systems, which we will in fact investigate later in Sections 2.3 and 2.4. Also the
properties of associated transforms might be of interest, which will be relevant for us in
Chapter 4.

A fundamental tool for the analysis of function systems in general is given by the so-
called cross-Gramian matrices GO, M) associated to any two systems 9 := {my}rea and
M := {My}uea in Lo(R?). Their entries are the scalar products (my,m,), also called the
cross-correlations, of the individual functions from 9t and M. Depending on the index sets
A and A, the cross-Gramian G2, 9] is thus the possibly infinite-dimensional matrix

GO, M) := {(my, 7, (2.7)

> }AGA,MGA :

In case of a single system, i.e., when 9t = 90, the notation is simplified G[I] := G[2N, 9]
and we call the matrix G[9] just the Gramian matriz of the system 9.

The cross-Gramian matrix (2.7) of two function systems contains essential information
about the mutual relationship of the system elements. A careful analysis enables a compar-
ison of the different systems and can also reveal many inherent properties of the systems
themselves. In particular, cross-Gramians play a pivotal role in frame theory and coorbit
theory for example.

Turning our attention to systems 2, and §JvTa of a-molecules, a fundamental result will
be the fact that the associated cross-Gramian G|, ?ﬁa] can be bounded based solely on the
order and the parametrization of the respective systems. This is shown in Theorem 2.2.2, the
main result of the next subsection. Moreover, it is possible to define a distance function wy, :
P x P — [1, 00) such that for a-molecules my € M and m,, € M a higher distance we (x», Xu)
of their respective phase-space coordinates corresponds to a lower cross-correlation.
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2.2.1 The Index Distance w,

The distance wq(x,y) between two points x = (z,n,t),y = (y,0,u) € P must certainly
take into account their spatial, scale, and orientational relations. Hence, we first introduce
a notion of distance on each single component of P = R? x T x R,. Later, we will use those
to assemble the desired distance w, on P.

A canonical choice for the distance between two points z,y € R? ist the Euclidean
distance |x — y| induced by the Euclidean norm | - |.

On T = [0, 27), we first define the distance function

ds(n,0) = arccos({ey, eg)) € [0,7], n,0 €T, (2.8)

which essentially measures the distance of the associated orientation vectors e, and eg given
as in (2.2) on the sphere S!. Due to the symmetries of (2.5), the distance dg(n, #) is then
further projected onto the interval T := [—7/2,7/2). For this we introduce the so-called
projective bracket. With respect to a given half-open interval I C R of finite length |I| < oo,
this is the function

{'}I R— 17 n— {77}17 (29)
which maps a number 7 € R to the unique element {n}; in the set {n +m|I| : m € Z} N 1.
Since we will use this bracket mainly for the interval T = [—7/2,7/2), we further introduce

the abbreviation {-} := {-}. A suitable measure for the orientational distance is then given

by [{n = 0} = [{ds(n, 0)}|-

Finally, due to the multiplicative structure of the ray R, the ratio max {t/u,u/t} is a
natural way to measure the distance between different scales t,u € R..

Now we are ready to define the a-scaled index distance w, on P analogous to [59]. It
can be viewed as a natural extension of Hart Smith’s pseudo-distance [104, Def. 2.1].

Definition 2.2.1 (compare [59, Def. 4.1]). Let a € [0,1]. The «a-scaled index distance
wq 1 PxP — [1,00) is defined for two points x = (x,n,t) e Pand y = (y,6,u) € P as

wa(X,y) == max{%,%}(l + do(x,Y)), (2.10)

with d,(x,y) being defined by

—2 2
—2a —2(1—a t |<e,m—y)|
da(xay) = 2‘:02 ‘x_y‘Q—f—tO ( )|{n_9}’2+ 0_2(1?,1) 9’ (211)
170 - 6}

where to := max{t,u} and e, = R, e, is the orientation vector from (2.2).

We now come to a core result of the theory of a-molecules, Theorem 2.2.2, which provides
a bound for the cross-Gramian G[M,, Ma] of two systems of a-molecules My = {myFrca
and M, = {mu}uea. It draws a connection between the size of the cross-correlations
(mx,my), the order of the respective a-molecules my and m,,, and their positions in phase
space.

Theorem 2.2.2 (compare [59, Thm. 4.2]). Let a € [0, 1], and let {my} e and {m,},cn be
two systems of a-molecules of order (L, M, N1, Na) with respective parametrizations (A, @)
and (A, ®p). Further assume that there exists some constant C > 0 such that

taty <C  forall e Ajpe A, where (xx,nx,t)) = PA(N), (T, Ny tu) = Pal(p).
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2.2 Metrization of the Parameter Space

Then, for every positive integer N € N satisfying

3 1
L > 2N, M>3N—Ta, N12N+$, Ny > 2N,

there exists a corresponding constant Cy > 0 such that
[(ma, Mu)| < Cnwa(@A(N), Pa ()" forall X € A, € A.

Proof. The proof requires some preparation and is therefore outsourced to the appendix,
Section 2.5. n

As a consequence of this theorem, under appropriate assumptions on the parametriza-
tions, the cross-Gramian G [y, M, of two systems of a-molecules M, = {my}rea and
Mo = {Mu}uen is well-localized in the sense of a fast off-diagonal decay with respect to
the index distance w,. Put different/l\;/f, gm,, iiﬁa] is then close to a diagonal matrix and
the corresponding systems 9, and 9, are almost orthogonal to each other, a fact which
is sometimes referred to as the ‘almost orthogonality of systems of a-molecules’.

This property has many implications, see for instance [62, 58, 65]. We will use it to
derive Theorem 2.3.6, and Theorems 4.5.5 and 4.5.7.

A simplified version of w,

The index distance w, given in Definition 2.2.1 is not the only possible way to introduce a
meaningful distance on P. Another simpler version was put forward in [65] for example. To
distinguish it from the distance w,, we will subsequently call it the simplified index distance.
Its definition is as follows.

Definition 2.2.3 ([65]). Let a € [0,1]. The simplified a-scaled index distance wi™ :
PxP — [1,00) is defined for two points x = (z,7,t) € Pand y = (y,0,u) € P as
. t u .
W™ (x,y) := max {E’ ;}(1 + 3" (x,y)),
with d$™(x,y) given by
. _2 1_ _ -
" y) =t = O} + 457w — o+t e ),

where to = max{t,u} and e, = (cos(n), —sin(n)) = R, 'e.

The simplified index distance wS™ shares many properties with the distance w,. In

particular, Theorem 2.2.2 still holds true, which is a consequence of the following lemma.

Lemma 2.2.4. We have uniformly for all x,y € P
&%, y) S da(x,y) and wi™(x,y) S wa(x,y).

«

Proof. Using the inequality of the arithmetic and geometric means, we obtain

—2 2 1/2
- —2(1-a t |<e,x—y)|
e =0l = (16" - 0F) )

g

—2(l-a to ey, x —y)?
< (1+t0 ( )]{n—ﬂ}\Q—i— 07|2<(1ia) ) )
2 L+t [{n — 0}

[y
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BIVARIATE o-MOLECULES

This establishes

sim

&M (x,y) < ;da(x,y) and in turn also W)™ (x,y) < gwa(x,y).

Due to the previous lemma, we have for arbitrary NV € N and every x,y € P

wa(x,y) Y S Wi (x,y) 7N

Hence, Theorem 2.2.2 still holds true for wS™. Let us record this observation.
Remark 2.2.5. Theorem 2.2.2 still holds true if w, is replaced by w™.

Clearly, a suitable index distance shall mirror the decay of the cross-Gramian as closely
as possible. Unfortunately, as a trade-off for its simplicity, the distance ws™ is weaker than
we since the opposite estimates dq(x,y) < d™(x,y) and wy (x,y) < wi™(x,y) do not hold
true. Therefore, we prefer w,. However, let us mention that in other publications wS™ has

been used, e.g. in [65].

2.2.2 Metric Properties of w,

Recalling Definition 2.2.1, we next observe that due to {n — 0} = {{n} — {0}} the distance
wq(X,y) between two points x = (z,7,t) and y = (y,0,u) € P only depends on the values
{n} and {#}. Hence it makes sense to define the reduced parameter space below.

Definition 2.2.6. The reduced parameter space P is defined by
P:=R?>xT xRy,
where here and throughout the thesis T := [—7/2,7/2).

The parameter space P is mapped onto the reduced space P via the canonical projection
p:P—=P, (2,11~ (z{n}1), (2.12)

where {-} = {-}1 : T — T denotes the projective bracket introduced in (2.9). This projec-
tion also induces an equivalence relation x ~, y on P. Each point x = (z,7,t) € IP belongs
to an equivalence class [x], := p~1(p(x)) consisting precisely of two points, namely

x], = {(m,n,t), (z, (7]+7T)27r,t)}, (2.13)

where here the short-hand notation (7 + m)2r := (7 4+ 7) mod 27 is used.

Since wq(X,y) = wa(X,y) for points x,y, X,y € P whenever x ~, X and y ~, ¥, the
index distance w, from Definition 2.2.1 gives rise to a distance on P, for which we will use
the same notation. It will always be clear from the context, which distance we refer to.
The main result of this subsection will be that the induced distance wq is a multiplicative
quasi-metric on P, a notion made precise by the following definition.

Definition 2.2.7. A multiplicative quasi-metric on P is a function w : P x P — [1,00)
which satisfies the following three axioms, where x,y,z € P are arbitrary:
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2.2 Metrization of the Parameter Space

Q) wxy)=1 & x=y,
(Q2) w(x,y) < (w(y,x))CS for some constant Cs > 1,

(Q3) w(x,y) < (w(x,z)w(z,y))CT for some constant Cr > 1.

The axioms (Q1)-(Q3) basically state that w is — in a multiplicative sense — positive
definite, quasi-symmetric, and satisfies a quasi-triangle inequality. An associated additive
quasi-metric is obtained by taking the logarithm of w, see Definition 2.2.13 in the next
subsection.

We call two multiplicative quasi-metrics w : P x P — [1,00) and @ : P x P — [1,00)
Lipschitz equivalent in multiplicative sense if there exists a constant C' > 1 such that

(w(x,y))l/c <a(x,y) < (w(x,y))c for all x,y € P.

They are called Lipschitz equivalent in additive sense if there exists a constant C' > 1 with

%w(x,y) <w(x,y) < Cw(x,y) forall x,y € P.

In the sequel, we will prove that the reduced distance w, on P satisfies the axioms
(Q1)-(Q3) of a multiplicative quasi-metric with constants C's = 3 and C = 6. This will be
stated in Theorem 2.2.12 whose proof requires some preparation.

Let us first look at the axiom (Ql) As follows directly from Definition 2.2.1, the index
distance w,, satisfies the relation

we(X,y) =1 & x~py. (2.14)

Property (Q1) of the induced distance w, on T is thus evident.
Concerning the axioms (Q2) and (()3), it is more convenient to investigate those prop-
erties of w, directly on P. Our investigation will show that wy : P x P — [1, 00) satisfies

Cs

wa(%,y) < (waly,x)) and  wq(x,y) < (wa(x,z)wa(z,y))CT (2.15)

with constants C's, Cr > 1 independent of x,y € P. As a consequence, (QQ) and (Q3) then
clearly also hold true for the induced distance wq : T x T — [1,00).
Our investigation will further establish that for all x,y € P

wa(X,y) < Cswa(y,x) and we(X,y) < Crwa (X, 2)wa(z,y), (2.16)

a property which has also been proved for the simplified distance wS™ in [65].

In our investigation of (2.15) and (2.16), let us first focus on the symmetry properties.
We note that the last term on the right-hand side of (2.11) prevents the index distance wq
from being symmetric. This is somewhat unsatisfactory since, in view of Theorem 2.2.2 and
the symmetry of the Gramian, a symmetric version of w, seems more appropriate.

It is possible however to symmetrize w, by adding a fourth term in (2.11). We define
for x = (x,n,t),y = (y,0,u) € P

t62‘<€0a$ - y>|2
—2(1—« )
1+, |y — 0} 2

d™(x,y) = da(x,y) +
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where ¢y := max{t,u} and ey = R;lel. The resulting symmetric distance

W™ (x,y) := max {%, %}(1 +dY™(x,y))
then still satisfies Theorem 2.2.2, which is due to the symmetry of the Gramian. Even more,
since wq < W™, the symmetric distance w™ is at least as strong as w, and thus even
seems to strengthen the statement of this theorem. However, as we will see below, w®™ is
in fact Lipschitz equivalent to w, and can thus be considered as just another version of w.
Due to its more complicated structure, we prefer the distance wy,.

Also other modifications of the index distance w, are possible. For example, the defini-
tion of w, is rather robust with respect to perturbations of e,. To see this, let us define the
subset V;,(6) of the sphere S' C R?, depending on n,6 € T, by

Vo(6) = {e €' ¢ I{ene)l = (en el },

where e, and ey denote the orientation vectors from (2.2). Further, let us assign unit vectors
e(x,y) € V,(0) to all pairs (x,y) € P x P and then modify the definition of the distance wq
by replacing the term d,(x,y) in (2.10) with the expression

-2 2
- _o(1— _ t e(x,y), r—y
da(oe.) 1= 1,207y = )2 1320 — 2 o S NCYL W )
L+, {n — 0}
This gives rise to a new index distance @, on P of the form
_ t u ~
Oa(X,y) = max{a,z}(l + da(x,y)). (2.18)

As a consequence of the following lemma, like w3¥™, the new distance @, is Lipschitz
equivalent to w,, both in additive and multiplicative sense. Hence, yet again, in essence the
distance @, is just another version of the original distance wg.

Lemma 2.2.8. With d, and w, given as in Definition 2.2.1 and Ja and Qg given as in
(2.17) and (2.18), it holds uniformly for all points x,y € P

2da(5Y) < dafx,y) < Bdalxy) and Swalxy) < Balxy) < Bunlxy)
Furthermore, for all x,y € P
(walx,¥)"? < @alx,y) < (walx¥))"
Proof. Assume first that e € V,(6) is such that (e, e,) > |(e;,eq)|. Then
le— egf? = 2= 2{e,e5) < 2 — 2|(egseq)| = min{ley — eol?, e, + eol*}

and hence
le — ey < min{le; —eq|,[en + eal} < [{n — O}
It follows

| 2

— —2(1—«
tolle —egr =) _ """ {0 — 6}

A < —— to 2w — y[? < t5%x — g2
14652 =032~ 14570y — 0} 2
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We conclude, now for arbitrary e € V;,(6),

0_2\(<1€_>j) vk 2( O_Lifi; d Wz, y|2>, (2.19)
1+, [{n — 6} 1+t [{n— 032

and analogously

92 . 2 —2 _ 2
t0_|2<(fi70§ y>‘ - < 2( t0_2|(<1e_,:) y>| ” + t72a|m _ y|2)
L4120 =032~ M 1520 gy — 6}

This proves

da(X,y) S 3d0&(x>Y) and da(XaY) S 3 CY(X7Y)7
and in turn also
©a(X,y) < 3wa(x,y) and  wa(x,y) < 30a(X,y).

Further, we deduce

wa(X,y) = max {%, %}(1 + do(x,y)) < max {5, %}(1 +3da(x,y))
t u ~ 3

< max {11 (14 da,v)’ = (@)’

The other direction @y (x,y) < (wa(x, y))3 follows analogously. O

As a direct corollary of Lemma 2.2.8, we can now deduce the additive and multiplicative
quasi-symmetry of wy,.

Corollary 2.2.9. The index distance w,, : Px P — [1,00) is quasi-symmetric, both in an
additive and multiplicative sense, with associated quasi-symmetry constant Cs = 3.

Proof. Let @q(x,y) be defined as in (2.18) and choose e(x,y) := ey in (2.17) for all
x = (z,n,t) € Pand y = (y,0,u) € P. Since eg € V;(0) holds true for all n,6 € T,
Lemma 2.2.8 can be applied, showing that @, is Lipschitz equivalent to w,, both in addi-
tive and multiplicative sense. The observation @, (x,y) = wa(y,x) finishes the proof. [

sym

With Lemma 2.2.8 as a tool, we can also show that the symmetric distance wi™ is

additively and multiplicatively Lipschitz equivalent to w,. Clearly, for all x,y € P
do(x,y) < d7™(x,y) < da(X,¥) + da(y, x) < 4da(x,y).

From this we get
wa(X,y) S wi™(x,¥) < wa(X,y) + wa(y, x) < dwa(x,y)

and

wa(x,y) < W™(x,y) < (walx,y))™.
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Finally, let us remark that Lemma 2.2.8 can also be used to obtain another symmetric
variant of w,. To this end, we define the unit vectors e, g € S! “in the middle’ of e, and ey
as follows

. {|€n+€0|_1(€n+69)  (enreq) >0,
M ey —eol Mew —es)  {enren) < 0.

In case e, # %eg, the vector e, g is the unique unit vector e € St characterized by (e, en) > 0,
(e,eg) > 0, and |(e,e,)| = [(e,eq)|. Since e,9 = Fep,, choosing e(x,y) := e, in (2.17)
for x = (z,m,t), y = (y,0,u) € P yields a symmetric index distance @, in (2.18) which is
equivalent to the original distance w,. Let us record this fact.

Remark 2.2.10. A symmetric version of @, is obtained by choosing e(x,y) = e, in (2.17).

Up to now, we have verified (Ql) and studied symmetry properties of w,, thereby
proving the symmetry relations in (2.15) and (2.16), and as a consequence also axiom (Q2).
It remains to prove the triangle inequalities in (2.15) and (2.16), which then also give (Q3).
For this we need the following elementary observation.

Lemma 2.2.11. Forn, 0,k € R the following triangle inequality holds true

{n— 0} < {n— s} + {r -0}

Proof. Let us first assume 0 = 0, n,x € T = [—7/2,7/2). Then indeed |n| < [{n— K} + |K|.
Next, for general n,x we plug 7 = n — kiym € T and K = kK — kem € T into the former
inequality, where k1, ko € Z are chosen appropriately. One obtains [{n}| < [{n—~r}| + |[{k}|
Finally, we substitute n — 6 for n and x — 6 for x, the proof is finished. O

Now we are in the position to prove the main result of this subsection.

Theorem 2.2.12. Let o € [0,1]. The index distance wy : P X P — [1,00) introduced in
Definition 2.2.1 satisfies (2.14), (2.15), and (2.16). The quasi-symmetry constant can be
chosen as C's = 3, the quasi-triangle constant as Cr = 6. In particular, the induced distance
wa : P X P — [1,00) is a multiplicative quasi-metric on P with the same constants.

Proof. Axiom (Ql) is clear, the quasi-symmetry with constant Cg = 3 was established in
Corollary 2.2.9. To prove the triangle inequalities in (2.15) and (2.16), we take arbitrary
x = (x,n,t),y = (y,0,u),z = (2,K,v) € P and abbreviate ty = max{t,u}, up = max{u,v},
vo = max{v,t}. Our first observation is that for ¢, u,v € Ry

max{%,%} Smax{%,%}max{%,%}. (2.20)
Further, it holds
2 _
M(t,u,v) = max{l,:—%} < max{%’ %} 1max{%, %}max{%,%}.

The quasi-triangle inequalities with Cp = 6 then follow if we can prove the validity of the
inequality

do(3,y) < 6M(t,1,0) (da(x,2) + da(2,¥) + da(X,2)da(2,)). (2.21)
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Indeed, altogether, (2.20) and (2.21) yield

Wa(X,y) = max {5, %}(1 + da(x,Y))

v u

< max {%, %} max {E’ ;}(1 +6(do(x,2) + do(z,y) + da(X,Z)da(ZJ)))-

From here, one directly obtains

Wa(X,¥) < (Wa(x,2)wa(2,y))° and wa(x,y) < 6(wa(X,z)wa(z,y)).

In order to verify (2.21) we treat the different components of d,(x,y) separately. Let
us first record that in the range a € [0, 1] always

520 < M(tu,v)g 2 and  tg 20T < M(tu,v)vg 2. (2.22)
Applying the triangle-inequality, M (¢, u,v) > 1, and (2.22), yields

ta2a|x — y|2 < 2t52a(|$ — Z|2 + |z — y\Q) < 2M(t,u,v)(t62a|x - z|2 + va%‘]z — y|2>
(2.23)

Invoking Lemma 2.2.11, we analogously get

t " ln — 0} < 265" (1 = kY + [ — 0} )

—2(1—a) 2 —2(1—a 2 (2.24)
< 2M (t,u,0) (6" n = £} 40 2 s — 03 ).

To bound the last term of dy(x,y), we choose the sign of é, := +e, in such a way that
(€, €x) > 0 and then expand

(ensz —y) = (en,® — 2) + (€, 2 —y) + (&) — €, 2 — Y).
This leads to the estimate
ez = 9)I? < 3(I{en, @ = 202 + [ew, 2 = 1)1 + (e — &, 2 — o))
With the triangle inequality from Lemma 2.2.11 we deduce

(L+ 6" = R L+ ™V k)P 1
Lt 2 — )2 B

\V)

We conclude, with the help of (2.22) and M(¢,u,v) > 1 in the second step,

Pl ~F__lep =210 620 )P
L+ 2207y — 02 L+ 220 — k)P
. 2(1—a)
o100y M =D+ " o))
L+ 820 — k)P
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Similarly, we first verify

— — 2(1—
to’l(en 2 =9 _ jto*l{enz =y M<r+%( k)

1+t =032 1+t {k — 0}

Assuming vy < to and using M (¢, u,v) > 1 in the second step, we then obtain

vy 2 {ew, 2 — )P+ 15 | — £}

to *{ens 2 = )|

<2

1+t — 032 1+ vy " |k — )2
—92 . —2(1—a) . 2
< o, Nz >u1+t {n—m}%)
1+ vo |{n — 6}]?

If vg > tg we argue differently, using ta2 < M(t,u, v)vo_2 in the first step,

—2 N2 -2 A2 72(1 a) 2

Ul S P VPN i St L | R
1+t [{n — 0} 1+t | {x —<9}|2

-2 A2 72(1 a) 2

< 2002 M7 = (L {n = s}?)

14 vy 207 HﬁfﬂP

Finally, we have

t72 - NI{ - 2 — -
o en =02 200 (4,01t 202 i — Y2z — w2
145207y — gy

because of

[len = en, 2 =) |* < leg — &Pl —yl* < {n — s}z =y,

where (e;, ) > 0 was used for the last estimate, and the inequality

ty” —2 —2(1-a) 2
<ty® < M(t,u,v)t vy ¢,
Lt — 032 ~ " v

where again (2.22) was used in the last step.
All in all, we arrive at
to ey, — y)?
1+ 150 {n — 032
_+%ﬂ@mz—>Pf21aHn—KH?+%%@mx—aP‘21“H ﬂP)
1+ 050 (s — 0} 1+ 65>y — k)2

This bound together with (2.23) and (2.24) establishes (2.21), and the proof is finished. [J

< 6 (t0,0) (1> (= )Pl = o+

In this subsection, we have proved that w, constitutes a multiplicative quasi-metric
on the reduced parameter space P. Further, we have seen that many different equivalent
versions of w, can be defined, even symmetric ones. For the subsequent theory it does
not matter which version we use, since only the constants would be affected. The reason,
why we stick to the original definition of w, from Definition 2.2.1 is its simpler structure
compared to the other versions.
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2.2.3 «-Balls

We will now discuss in more detail the quasi-metric structure of P induced by w,. In
particular, we will investigate the ‘balls’ obtained from w,. To shift this investigation into
more familiar territory, we first associate to w, a corresponding additive quasi-metric. The
axioms of this notion are recalled below.

Definition 2.2.13. An additive quasi-metric on P is a function w : P x P — [0, 00) which
satisfies the following three axioms, where x,y,z € P are arbitrary:

QL) wix,y)=0 & x=y,
(Q2) w(x,y) < Csw(y,x) for some constant Cg > 1,
(Q3) w(x,y) < Cr(w(x,z)+ w(z,y)) for some constant C > 1.

Since, according to Theorem 2.2.12; w, constitutes a multiplicative quasi-metric on P
satisfying the axioms (Q1)-(Q3) of Definition 2.2.7, clearly the function

Wt (x,y) = logy(wa(x,y)) = [logy(t/u)| + logy (1 + da(x,y))

defines an additive quasi-metric on P. We further note that due to (2.15) w!® also fulfills
the axioms ((Q2) and (Q3) as a function on P x P.

The quasi-metric w!°® gives rise to an associated family of balls in P. The a-balls of
radius T > 0 are defined by

Bl (x) := {y €EP : W(x,y) < 7'} = {y €P : wa(x,y) < 27}. (2.25)
Due to the non-symmetry of w'°8, there also exist the dual a-balls of radius T > 0 given by

Bl (x) == {y eP : wW%(y,x) < 7'} = {y €P : wy(y,x) < 27}.

In general, the dual a-balls B.%(x) do not coincide with the primal a-balls B%(x). The
relation between the two types of balls is expressed by the equivalence

y € B (x) & x € BL(y).

Subsequently, we will mostly be interested in the primal balls B (x), in particular in a
more explicit representation. Clearly, B§(x) = [x], for every x € P, where [x], = p~! (p(x))
is the equivalence class (2.13) induced by the canonical projection p : P — P from (2.12).
In case of radii 7 > 0, let us consider y = (y,0,u) € B%(x) at some fixed position x =
(z,m,t) € P. We then derive the following necessary conditions from the definition of wg.

First we see that, due to wy(x,y) < 27 and 1+ dn(x,y) > 1, we necessarily have

t
max {—, E} <27 or equivalently |log,(t/u)| < 7.
u't
Using a € [0, 1] and 1 < max{t/u,u/t} <27, we also get

7209 {n — 0} 2 < 2271 2V - 0} < 27(27 — 1) <2V - 1.
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Further, we deduce
t72{e1, Ry(x — y))|* < 2%ty % (e, Ry(x — y))|* < 257(27 — 1) <247 — 1,
where we applied
to*|(en = y)* < (27 = D+ 1"V —0}) <2727~ 1),
At last, we bound t72%|(e2, R, (z — y))|* by
2774520 (eg, Ry — ) < 22785 2w -y < 277(27 — 1) <27 — 1,

These estimates motivate the definition of another distance function on P, namely

Wa(x,y) = max {t*|(es, Ry(x = )|t~ (ex, Ry(x — )|, = {n — 0}, | logy(t/u)|}.

Further, we introduce corresponding subsets of P, for x = (x,7n,t) € P and 7 > 0 the sets
a - — -1 T l-a 77 T
VEx) = (24 By 40,Q7) x (n+ 171 )27r x (t7), (2.26)

where Q7 = [~7,7)%, I == [-7,7], J7 := [277,27], and (-)2r := (-)mod 27, and collect
these in
ve = v = {vex) - xep}.

Then, for every x = (z,n,t) € P and 7 > 0 we can write

V() = Vi (@,6) UV (@, -+ )2, ) = {y €P 5 walxy) <7},

where as above [x], denotes the equivalence class (2.13).

We will see below that the sets V*([x],) are good approximations of the a-balls B%(x)
as long as the scale parameter remains small. In Chapter 4, where we will only consider
the subspace X = R% x T x (0,1] C P, we can thus use them as convenient substitutes for
B&(x), which are easier to handle since they can be expressed explicitly by (2.26).

Again, there also exist dual sets which have a slightly more complicated structure. They
are given by

Viex)={yeP : xeVi(y)}

= {y =(y,0,u) €P : yew+ Ry A uQ",0 € (n + u1*a17)27r,u S tJT}.

In the following, we will investigate the relation of the sets V.*([x],) to the a-balls B (x).
As an immediate consequence of the definition of w,, we obtain the lemma below.

Lemma 2.2.14. Let o € [0,1]. Forallx € P and 7 >0

0< sup wu(x,y) < V247 —1.
yEB2(x)
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Proof. Let y € B®(x) for some fixed x € P and 7 > 0. Then, according to the estimates
above,

max {12 [{e2, By (= )|, {er, Bylw = )}, =0V {n = 03]} < V27 — 1.

Further, it also holds

|logy(t/u)] <7 < V247 — 1.

O]

Put differently, Lemma 2.2.14 yields the following inclusion, valid for all x € P and
T 20,

B (x) € Vs ([xlp)-
To obtain a reverse inclusion, we need the following lemma.

Lemma 2.2.15. Let o € [0,1]. For all x = (x,n,t) € P and 7 >0

1< sup wa(x,y) <27(1+47%k(x)?)
yeVe(x)

with a factor k(x) := max{1,t}'=% which is relevant only ift > 1 and o # 1.

Proof. Let y € V*(x) for some fixed x € P and 7 > 0. Then we can deduce from (2.26)
that max{t/u,u/t} <27 and, with dg(n,0) given as in (2.8),

ds(n,0) < T, [{er, Ry(x —y))| < 7t [{ez, Ry(x —y))| < 7t
Since [{n — 0}| < ds(n,0) and tg = max{t,u} > t, this implies
o™ — 0} < 72

Further, we get

t52’<6n7$—?/>|2 -9 2 2
e < 152 (er, Ry(z — y))[? < 72
1+t 27 {n — 032 !

Finally, we deduce
=yl = [{e1, Ry(z — y))* + [{e2, Ry(z —y))* < 72(8* +£27).
If t <1, whence t < t%, this leads to
to 2% e — y|? < 2t5 2272 < 272
In case t > 1, we have t > t* and obtain
to 2z —y|? < 2524372 < 272207,
Altogether, our estimates prove
Wal(x,y) < 27(1 + 272 + 27%k(x)%) < 27(1 4 47%k(x)?)

with k(x) = max{1,¢}!7. O
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Note that in the isotropic case, when o = 1, the estimate in Lemma 2.2.15 is uniform in
x € P since k(x) = 1 for all x € P. Unfortunately, in the anisotropic case, the factor k(x)
is relevant and it is not possible to get rid of the dependence on x. However, in Chapter 4,
where we will merely work on the subdomain X = R? x T x (0, 1] of P, the condition ¢ < 1
will always be satisfied and the factor becomes void.

Together, Lemma 2.2.14 and Lemma 2.2.15 yield the following proposition.

Proposition 2.2.16. Let a € [0,1]. For all x = (z,n,t) € P and for all 7 > 0 it holds

Bl%gQ(lJr‘r?)/zl(X) - VTa([X]P) - B$+log2(1+47'2k(x)2)(x)'
with k(x) = max{1,t}17*.
Proof. This follows from Lemma 2.2.14 and Lemma 2.2.15. O

As a consequence of Proposition 2.2.16, the sets V.*([x],) constitute suitable substitutes
for the corresponding a-balls B (x) if ¢ is small. They have the advantage that due to
their explicit form they are more easily accessible. A disadvantage of the sets V.*([x]p)

compared to BZ(x) is, however, that, unlike w};’g, the generating distance function wy,,

is not a quasi-metric in the sense of Definition 2.2.13. At least, we have the properties
listed in Lemma 2.2.17 below, where (i)-(iii) can be interpreted as relaxations of the axioms

(Q1)-(@3).

Lemma 2.2.17. Let a € [0,1] and x = (z,n,t) € P be fized. For T > 0 define the function
me(7) == 27(1 4+ 7max{1,t}20=). For 7,0 > 0 the following holds:

i) Vi (x) = Nrso V.4 (x) = {x} and VM (x) C VE(x) if T < 0.

i) y e Vi (x) =>xe V2 ( )(y).

Tme\T

iii) y € VH(x) and z € V3 (y) = z € Vi, ) (x) with fy(7,0) := T + omy(7).
w) y e V¥x) andz € V¥ (x) = z € Vo) () with gt(1,0) == (7 + o)my(T).
v) x e VE(y)N Vi (2z) = 2z €V o (¥) with huyy(T,0) =T + omy(T)my (o).

Proof. ad (i): Clear.
ad (ii): Ify € V*(x) we have

u/teJT, ds(0,n) <t'7%r, y—=xc R;lAa,tQT. (2.27)
This implies
tjueJT, ds(nf) <u'"*F, xz—yc Re_lAavuTQT,
where 7 := (t/u)!=%7 and T := T(0,u,n,t) is the ‘transfer matrix’ given by
T6,u,n,t):= A;’zRgRglAayt.

Since 7 < 277 < 7my(7) and ||T(0, 4,1, 1) |lcoso00 = [T (10,1, 0, 1) " |l sos0o < my(7) according
to Lemma 2.2.18 we obtain x € V< (y).

Tme(T)
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ad (iii): In addition to the assumptions (2.27), we now also have
v/iue J°, ds(k,0) <u'"%, z-—yc¢ RG_IAOWQ".
We deduce
v/t € JTT7, ds(k,n) ST, z—x € R M A0 (QT+TQ7)

with 7 = 7 + (u/t)! =% and the transfer matrix 7 := T'(n,t,0,u) = A;,};RnRglAa,u. Due
to Lemma 2.2.18 we have || T'(n,t,0,u)||cosco < mu(7). Further 7 < 74 270 < 7+ amy (7).
ad (iv): In addition to the assumptions (2.27), we now also have

v/t € J?, ds(k,n) <t %, z—xGR;IAathU.
Hence, we get with 7 :=7+ 0
vjue J, ds(k,0) <t'7F, z—yc RH_IAQ,HTQ%,

where T :=T'(6,u,n,t) = A;’}leR; LA, + is the same transfer matrix as in (ii). We already
know that ||7°(0,u,7,t)|co—sco < my(7) due to Lemma 2.2.18, further 7 < (7 + o)my (7).

ad (v):  Here, we now have the assumptions t/u € J7, t/v € J°, ds(n,0) < u'~%T,
ds(n,k) <vl=% and x —y € R;lAayuQT, x—2 € R;1A, Q. We deduce

v/ue J 7, ds(k,0) < WTF, z—ye R(,_lAa’u (QT + TQ"),
where 7 := 7 + (v/u)! "% and
T := A\ RoR Ay = (AL RoR, Aay) (AL iRy Ry Aaw) = T(0,u,m, )T (0, t, 5, v).

Due to Lemma 2.2.18, we have [|[T(60,u,n,t)|lcosco < mu(7) and ||T(n,t, 5, 0)|lccsco =

HT(F‘:?%?%t)il”oo—)oo < mv(U)- ]

In the proof of Lemma 2.2.17 matrices of the form 7" = T'(n,t,0,u) play an essential
role. Such matrices will also be important later in Subsection 4.3.4. The entries of such
matrices are investigated in the following lemma.

Lemma 2.2.18. Consider the matriz T := T(n,t,0,u) := A;}:RnR;lAa’u with n,0 € T,

t,u e Ry, and let
t11 ti2 1 tin tio
T =: and T " =" 7.
<t21 t22> (7521 t22>

Let us further assume that for some 7 > 0 we have
max{t/u,u/t} <27 | ds(n,0) <7
Then the entries of T and T~ are uniformly bounded as follows

[tin] <27
[t11] <27

: o] <277 | |to1] < 2771201 , lto| < 27,
) [t <277 ) lto1| < 27721 , |tae] < 27.

Further, writing my(7) := 27(1 + 7 max{1, t}20=%))  this leads to the estimates

17| co—s00 » HT_lHoo—mo, HTTHoo—>oo, HT_THoo—woSmt(T)-
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Proof. The matrix T has the form
_ (tin ti2) _ [ut lcos(n—0) —u*t"lsin(n—0)
~ \tor teo)  \ut™%sin(n—0) u* %cos(n—=0) )"

To estimate the entries, we use |sin(n — #)| < min{1,ds(n,0)} and |cos(n — 0)] < 1. We
obtain

[ta] = [(u/t) cos(n — 0)
[t22] = [(u/t)* cos(n — 0)

Jt < max{t/u,u/t},

| <u
| < (u/t)* < max{t/u,u/t}*.

<
<

Further,

[tr2] = [(u®/t) sin(n — 0)] < (u®/t)ds(n,0) < (u®/t) max{t,u}' =7
= (u®/t)t' " max{u/t, 1} 7% = (u/t)* max{u/t, 11171
< max{t/u,u/t}r.

We also get

[tor] = [(u/t") sin(n — 0)| < (u/t*)ds(n,0) < (u/t™ )t~
= (u/t)"u' o T = 27 (/)0 (/1) 7
< max{t/u, u/t t?*1 =1

To obtain the results for 77!, we use that T'(n,t,0,u)~! = T(6,u,n,t). The estimates
of the entries |t11], [fa2], and |f12] are then analogous to above. For |ta1] we get

ar] = [(/u) (0 — )| < (¢/u)ds(6, ) < (1/u)e 7
= (t/u)at2 (1—a) - < max{t/u, u/t}at2(1_o‘)7,

We obtain estimates for the row-sum and column-sum norms of 7 and 7! directly from
these estimates of the entries. This establishes the result. O

At last, we arrive at the following corollary which will be useful in the proof of Lemma 4.3.9.

Corollary 2.2.19. Consider the matriz T := T (n,t,0,u) := A;,%RnRe_lA%u with n,0 € T,
t,u € Ry. Assume that for some T > 0 we have

max{t/u,u/t} <27 | ds(n,0) <min{t,t7 1} T,
Then we have the estimates
IT]lsoso0 s N7 Mloomoos N7  loomsoes N7 loomse < 27(1+ 7).

Proof. If t < 1 the Statement is a direct consequence of Lemma 2.2.18. In case t > 1, we
define £ := ¢! and @ := w ! and apply Lemma 2.2.18 to the matrix T'(n,#,6,4). Since

T(n,t,0,u)=T(n,t,0 ) the assertion follows. O
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2.2.4 Stability of w,

An important property of the distance function w, is its stability with respect to small
perturbations of the indices x,y € P. This is a direct consequence of the triangle-inequality
in (2.16). Since we want to formulate the stability with respect to the sets V.%(x) from
(2.26), we first need another auxiliary result which complements Lemma 2.2.15.

Lemma 2.2.20. Let o € [0,1]. Forallx € P and 7 >0

1< sup waly,x) < 27(1+97%k(x)?),
yEVH(x)

where the factor k(x) = max{1,t}'~ is relevant only if t > 1 and a # 1.
Proof. For y € V¥(x), as in the proof of Lemma 2.2.15, we have max{t/u,u/t} <27 and
‘{77_0” STH?O[? ’<617R77($_y)>| <rt, ’<627R77(x_y)>| < 7t

Further, we observe that the terms we need to estimate coincide with those in the proof of
Lemma 2.2.15, with the exception of the following term, which is estimated as in (2.19),

=2 N2 2 a2
oilifﬁaj il < 2( 07|2<(fi;9)5 y)| F 1520w — y|2> < 272 4 47%k(x)>.
L+1 [{n — 63 1+1 {n — 0}

We obtain
wa(x,y) < 27(1 4 37% 4 67%k(x)?) < 27(1 + 97%k(x)?).
O

Now we can prove that w,(x,y) is stable with respect to perturbations in both argu-
ments.

Proposition 2.2.21. Let a € [0,1] and let Cr > 1 denote the constant from (2.16). For
72> 0 and x,y € P we have

Cr'27 T (14 97%k(y)H) wa(x,y) < inf  wa(x,2)
zeVA(y)

< sup wa(x,2z) < C727(1 + 47%k(y)*)wa (%, y),
zeVE(y)

07:12_7(1 —i—47’2k(x)2)_1wa(x,y) < %/nf( )Wa(Z7Y)
zeV X (x

< sup wa(z,y) < Cr27 (14 97°k(x)*)wa(x,y),
2EV2 (x)

where k(x) = max{1,t}17% and k(y) = max{1,u}! =%

Proof. Let x = (z,n,t) € X and z € (z,k,v) € X. As a consequence of the triangle
inequality in (2.16), for every y = (y,60,u) € X

Wa (X, Z) < Crwa (Xa Y)wa (Y7 Z)'
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Together with Lemma 2.2.15, this yields

SUp  Wa(%,2) < Crwa(x,y) sup wa(y,2z) < Cr27(1 + 47%k(y)*)wa(x,y)-
zeVe(y) zeVA(y)

The triangle inequality also yields wq(x,y) < Crwa (X, z)wa (2, y) which implies
Cflwa(z, Y)_lwa(x7 Y) < Wa(xv Z)'
We deduce with Lemma 2.2.20

inf  wa(x,2) > Cr' inf  (walz,y) wal(x,y)

ZGVTa(y) ZEVTa(y)
_ -1 e—r _
=C:H( sup wa(z,y)) walx,y) > Cr277 (14 97%k(y)?)  twa (X, y).
zeVe(y)
Similarly, the second inequality is shown. O

We can draw the following conclusion, which will be relevant in Chapter 4.

Corollary 2.2.22. Let C' > 0 and 7 > 0 be fized. Then we have

sup sup wa(a,b) Swa(x,y) < inf inf  wy(a,b
acVe(x) beVe(y) (a,b) ) acVe(x) beVe(y) (a,b)

uniformly for all x = (z,n,t) € P and y = (y,6,u) € P with t,u < C.

2.3 Transfer Principle for Discrete a-Molecule Frames

In this section, we take a first step towards the analysis of approximation properties of a-
molecule systems. Our main result, Theorem 2.3.6 ([59, Thm. 5.6]), will lay the foundation
for a systematic comparison of their approximation performance. It is referred to as the
transfer principle and will later be used in Chapters 5 and 6 to derive approximation rates
of a-molecules for cartoon-like data.

Our subsequent considerations are restricted to discrete systems of a-molecules {m} e,
i.e., systems with a countable index set A. Further, we require {my} cp to be a frame, a
notion recalled in the first subsection below. In the context of frame approximation, the
concept of sparsity equivalence from [62, Def. 4.2] is a useful tool. It allows to put the
approximation properties of different frame systems into relation to each other.

As we will see, for frames of a-molecules an analysis of their sparsity equivalence is possi-
ble based solely on the order and the parametrizations of the respective systems. According
to the transfer principle, a sufficiently high order already implies sparsity equivalence if the
parametrizations are consistent in a suitable sense.

2.3.1 Frame Approximation and Sparsity Equivalence

Before turning to a-molecules, let us briefly recall some aspects of approximation theory
in an abstract Hilbert space H with associated scalar product (-,-). Thereby we assume H
to be separable, which in view of our later application is no restriction. In this setting, we
now first discuss the question of suitable representations of signals f € H.
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A standard way is to use the so-called analysis coefficients {(f, mx)}rea with respect
to some fixed dictionary 9 := {my}xep, where the index set A can be assumed to be
countable due to the separability of H. In order to obtain a faithful representation for all
signals f € H, the analysis operator of the dictionary, i.e., the mapping f — {{f,mx)}ren,
needs to be injective. This is the case precisely if span{my}cp = H, which can therefore
be considered as a minimal assumption for a suitable dictionary 9.

A particular useful class of dictionaries are so-called frame systems (see e.g. [20]). These
are systems, where the analysis operator is an injective linear map from H to ¢2(A) and
where in addition it is bounded from above and below. Frames thus not only ensure faithful
representation of the signals but also a stable measurement of the coefficients and a stable
reconstruction. They are characterized by the property that there exist constants 0 < A <
B < o0, called the frame bounds, such that

AlIFIP < D21 ma)l? < B f|? for all f € H.
AEA

If A and B can be chosen equal, the frame is called tight. In case A = B = 1, one speaks
of a Parseval frame.

Frame systems also naturally lend themselves for the synthesis of signals, since for every
sequence {cy}x € £2(A) the sum

f=>" amn, (2.28)

AEA

converges unconditionally in H. The associated operator from ¢?(A) to H is surjective
and called the synthesis operator of the frame. It allows to alternatively use the so-called
synthesis coefficients {cy} in the expansion (2.28) for the representation of f. This sequence
however is usually not unique since in general the synthesis operator is not injective. Unlike
a basis, a frame allows for a certain redundancy of its elements.

The composition of the synthesis operator and the analysis operator is called the frame
operator. It is an isomorphism S : H — H and given explicitly by Sf = > \ca (f, ma)ma.
It can be used to compute the so-called canonical dual frame {1y} ep of {m)}ren defined
by 1y := S~'my. We then have the following decomposition and reconstruction formulas

F=Y_{fsmayma= > _(f,ma)ma.
AeA AeA

In general, any frame {7y} cp satisfying these formulas is called an associated dual frame
of {mx}xea- The synthesis coefficients {c)} given by

C)\:<f7571m>\>7 AeA

are called the canonical frame coefficients. They have the distinct property that they min-
imize the ¢?-norm among all possible synthesis coefficient sequences.

For practical applications, as important as the question of faithful representation of
a signal f € H is the question of good approximation. Thereby one usually restricts to
finite expansions in (2.28). This motivates the following definition. Given some arbitrary
dictionary 90t := {mj},, the associated, possibly non-linear, space of N-term expansions is
denoted by Xy := X [9] and consists of all linear combinations

Z cymy with Ay C A, #Ay < N. (2.29)
ANEAN
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The error of N-term approzimation of f with respect to 91 is defined by
on(f):= mf |[f—gl. (2.30)
geEXN

For an efficient approximation of f, it is desirable to find dictionaries which provide good
sparse approximations, in the sense that the error on(f) decays quickly for N — oo.

Sometimes there exist vectors fy € Xy which minimize the N-term approximation
error, i.e., for which ||f — fx|| = on(f) holds true. Such vectors fy are called best N-term
approximations of f with respect to 9. They are given by

fv= —argmin | f—g| st. AN CA, #Ay<N. (2.31)
972 neny AT

For general dictionaries, however, their existence is not guaranteed and usually hinges on ad-

ditional assumptions, such as for example a polynomial depth search constraint as discussed

in Section 5.1.

Even in the frame setting, best N-term approximations need not exist and, if they exist,
their computation is not yet well-understood. The delicacy of this problem can for instance
be seen in [52]. A typical approach to circumvent this problem is to consider not the best
N-term approximation of a frame but the N-term approximation fy obtained by keeping
the N largest coefficients. This type of approximation is better understood and, due to
on(f) < |If — fnll, also provides a bound for the best N-term approximation error.

The achievable N-term approximation rate can thus be estimated by the decay of || f —
fn|l as N — oo, which in turn depends on the decay of the corresponding frame coefficients.
We subsequently quantify the decay of a sequence {cy}) by its weak ¢P-quasi-norm. For
p > 0 this is the quantity

1/p
H{ex I allwer == (supep N en| > 5}) .
e>0

The associated sequence space is denoted by w/P(A) and consists of all sequences {c) } with
II{catallwer < 00. Note that, together with || - ||, this space is a quasi-normed space.

This space can also be characterized as the space of null sequences {c)}, which possess
a non-increasing rearrangement (c%)nen such that sup,.qn'/?|ci| < oo. For the sequences
in wlP(A), we even have the equality

sup /Pl | = [[{ex}allwer-
n>0

The result below, whose proof can be found e.g. in [83, Sec. 3.2] or [59, Lem. 5.1], relates
the decay of the synthesis coefficients of a frame to the N-term approximation rate.

Lemma 2.3.1. Let {my)}xea be a frame in H and f = > cymy an expansion of f € H
with respect to this frame. If {cx}x € wl?/ @D (A) for some p > 0, then the N-term

approzimation rate for f achieved by keeping the N largest coefficients is at least of order
NP2 je.

If = fwl3 S N7P.
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According to Lemma 2.3.1, a fast decay of the frame coefficients implies good N-term
approximation rates. Concretely, if the synthesis coefficients of {my}rca satisfy {cy}x €
wlP(A) for p < 2 an N-term approximation rate at least of order N~(1/P=1/2) ig achieved.
Conversely, if the sequence {(f,mx)},cp of analysis coefficients lies in wfP(A) , the best
approximation rate of any dual frame {my},_, is at least of this order. In terms of signal
compression this is exactly what one hopes for: From simply keeping the N largest frame
coefficients, which can be encoded by order N bits, we can reconstruct the original signal
f up to a precision of order N—1/pP=1/2),

Sparsity Equivalence

Let us now compare the approximation performance of different frame systems in H. In
view of Lemma 2.3.1, it makes sense to analyze the decay of the corresponding coefficient
sequences. For a signal f € H and two frames {my)}rca and {p,},.ea, let {ca}y be a
sequence of synthesis coefficients for f with respect to {my} ca. Then, formally, the analysis
coefficients with respect to {p,},ea can be calculated by

(Fop) = (0 exmasp) = D ex (ma, ) - (2:32)
AEA AEA

Hence, they are obtained by a multiplication of {cy}, with the cross-Gramian of the two
systems. This observation leads to the following result from [59].

Proposition 2.3.2 ([59, Prop. 5.2]). Let 0 < p < 2, and let {mx}ren and {p,}uca be two
discrete frames in a Hilbert space H such that

H { <m/\>p#>})\€A,u€A P —spp

Then for every signal f € H the membership {{f,mx)}x € P(A), where {m)}rca denotes a
dual frame of {mx}ren, implies {{f,pu)}, € CP(A). In particular, f can be encoded by the
N largest frame coefficients from {{f,pu)}, up to accuracy < N-1/p=1/2),

Proof. Define ¢y := (f,my) for A € A. Then {c\}, is a sequence of synthesis coef-
ficients for f and by assumption {cy}y € P(A) with 0 < p < 2. Due to (2.32) and
[{(mx, pu) by, llev—ev < 00, this implies {(f, pu)}n € (F(A). O

Proposition 2.3.2 motivates the following notion of sparsity equivalence ([59, Def. 5.3]),
initially introduced in [62, Def. 4.2] for parabolic molecules. The intuition behind this
concept is that sparsity equivalent frames should provide frame coefficients with a similar
decay. We remark however that, contrary to what the name suggests, this notion does not
provide an equivalence relation.

Definition 2.3.3 ([59, Def. 5.3]). Two discrete frames {my} ea and {p,},ea in a Hilbert
space H are called sparsity equivalent in /P, 0 < p < 2, if

H { <m)\7 Pu>})\eA,peA P —spp

A useful tool for the verification of sparsity equivalence is Schur’s test, which yields a
simple estimate for the operator norm of matrices acting on discrete /P spaces. The version
below can be found in [62].
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Lemma 2.3.4 ([62, Lem. 4.4]). Let A and A be countable index sets, and assume that
A= {A\u}hen N (possibly infinite-dimensional) matriz with entries Ay, € C such
that

sup Z |Ayul? < oo and sup Z | Ay 1| < o0,

ACA e HEA XeA
where p > 0 and q :== min{1,p}. Then A : (P(A) — (P(A) is a bounded linear operator with
the bound

[Aler(A)—er(a) < maX{SHP > 1Al Sup > Ay }
AEA en ANea

Proof. The proof for p < 1 follows easily from the fact that |z4y[P < |z|P +|y|? for z,y € R.
To show the case p > 1 one proves the assertion for p = 1 and p = co. The claim then
follows by interpolation. O

With this result, our excursion into abstract Hilbert space theory ends and we turn back
to the topic of a-molecules.

2.3.2 Transfer Principle and Consistency of Parametrizations

Let us now investigate the concept of sparsity equivalence in the realm of discrete a-molecule
frames in Lo(R?). Our main result, Theorem 2.3.6, will provide a sufficient condition en-
suring sparsity equivalence for such frames. The condition depends on the one hand on the
respective orders of the systems, on the other hand, the respective parametrizations play a
role.

In view of Schur’s test, i.e., Lemma 2.3.4 above, and the estimate of the cross-Gramian
in Theorem 2.2.2 the following notion of («, k)-consistency is reasonable.

Definition 2.3.5 ([59, Def. 5.5]). Let a € [0,1] and k£ > 0. Two parametrizations (A, ®,)
and (A, @A) with countable index sets A and A are called («, k)-consistent, if

sup > wa(Pp(A), Pa(p)” "<oo and sup D wal <I>A()\),<I>A(,u))_k < 00.

AEA /LGA MGA AEA

Note that (o, k)-consistency implies (a, k')-consistency for k' > k, due to w, > 1.
Using this notion, we can now formulate a convenient sufficient condition for the sparsity
equivalence of discrete a-molecule frames.

Theorem 2.3.6 ([59, Thm. 5.6]). Let o € [0,1], 0 <p <1, and k > 0. Let {my}rer and
{putuea be two discrete frames of a-molecules of order (L, M, N1, N3) with (o, k )-consistent
parametrizations (A, ®p) and (A, ®) satisfying

k E 33—« E 1+«

k
L>2—-, M>3-— , N1 > —+ , and Ny >2—.
D D 2 P 2 P

Then {mx}ren and {p,}uca are sparsity equivalent in £9 for all p < q < 2.
Proof. By Lemma 2.3.4, it suffices to prove that

1/p
max{sup Z [(mx, pu)|” Sllp Z [(mx, ) P } < o0.
)\EAMEA A xeA
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Since, by Theorem 2.2.2, we have

‘(m)\vaH 5 Wa ((I)A(A% (I)A(:U’))_p7

we can estimate

max{ sup Z |(mx, pu)|?, sup Z |<m/\7pu>|p}

AEA eA HEA NeA

< max { ig;z%wa(@jx(/\), Q)A(M))_k’zggg\wa(@/\()\)7 ‘I)A(N))_k}.

Due to the (o, k)-consistency of the parametrizations (A, ®,) and (A, ®a), the right-hand
side is finite and the proof is finished. ]

We see that, as long as the parametrizations are consistent, the sparsity equivalence
of two frames of a-molecules can be controlled by the order of the systems. Hereby, the
smaller p is, i.e., the more sparsity is promoted, and the less consistent the two frames
are, the higher the order of the molecules needs to be for sparsity equivalence, i.e., better
time-frequency localization and higher moments of the molecules are required.

Theorem 2.3.6 is called the transfer principle for discrete a-molecule frames, since in
conjunction with Proposition 2.3.2 it allows to transfer approximation properties from one
anchor frame to other frames, if the coefficient decay of the anchor frame is known. It will
be used in Chapters 5 and 6.

2.4 A Sufficient Condition for Discrete a-Molecule Frames

As we have already stated in the previous section, for many reasons representation systems
which constitute frames play an outstanding role in signal analysis. In practice, the frame
property is often verified directly for the concrete systems of interest at hand. Within the
framework of a-molecules, a more generic approach is possible, however.

In this subsection we want to find a sufficient condition for a-molecules to constitute a
frame for Ly(IR?). Clearly, the frame condition is not fulfilled for a-molecule systems per
se as for instance the zero function is a trivial example of an a-molecule system. Hence, to
achieve this goal, additional assumptions to ensure the frame property are necessary.

As in the previous section, we only focus on discrete systems of a-molecules {my}reca
which are indexed by some countable index set A. For such systems, a sufficient frame
condition similar to Daubechies’ criterion for wavelets [30] was derived in the Bachelor’s
thesis [53], under certain additional assumptions on the associated parametrization (A, @y ).
Our result below is mainly based on this result, but generalizes slightly on the utilized
parametrizations.

As in [53], we require the index set A to be of the form

A=A x7? (2.33)

for some countable index set A of generic indices. Further, the parametrization map o,
shall have the special structure

Py A=AXZ> =P, (u,k)— (T k0 M tu) With @, g = R;:AaytuTuMck:, (2.34)
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where T}, € R**? is a matrix with |det(7},)| = 1 for each u € A and

M, = (Col i) for some fixed parameter ¢ = (¢1,¢2) € Ri. (2.35)
This condition is slightly less restrictive than the condition imposed on the parametrization
map in [53], where T}, needs to be the identity matrix for every u € A. Finally, as in [53], we
assume that the corresponding generators gy = g, » do not vary with k € Z2. For simplicity
we write this as g\ = g,.

The corresponding a-molecules my = m,, ; then have the form

my k() = t/;(Ha)/qu (A;,}tuRm - =T, Mck) . (2.36)

Note that the indices p € A determine the scale and the orientation of the a-molecules,
whereas the indices k € Z? correspond to translations along the grid {7}, M.k : k € Z*}.

Parametrizations (A, ®,) of the form (2.33) and (2.34) might at first glance seem quite
restrictive, but we will see in Sections 3.2 and 3.3 of Chapter 3 that they in particular com-
prise discrete a-curvelet and a-shearlet parametrizations. Hence, in view of Theorems 3.2.5
and 3.3.7, the criterion developed below in particular applies to a-curvelet and a-shearlet
molecules, which constitute important subclasses of a-molecules. In particular, it general-
izes the frame criterion developed in [76] for a-shearlets. The criterion from [32, Thm. 3.3]
for systems of Gaussian wavepackets is also included, since those can be interpreted as
systems of a-curvelet molecules.

Before we formulate the statement of the theorem, let us observe that for a function
system to form a frame in Lo(R?), the spatial as well as the frequency support of its
elements needs to cover the whole plane. Furthermore, the energy of the functions may not
accumulate too much at any given point. Hence, intuitively, a certain ‘spreading’ of the
functions in phase space is necessary for the frame condition to hold.

In general, Daubechies-type frame criteria are based on the investigation of associated
(auto-)correlation functions ® : R? x R?> — R and I' : R? — R, which measure the extent of
the overlaps of the frequency support. For a-molecules of the form (2.36) with associated
generators {g,}.ea, these functions take the form

P& w) = 19u(Aat, B )19 (Aat, B, § + T )],
HEA
['(w) := esssup (&, w).
£€R?

The statement of the theorem now depends on the size of the following two quantities

Ling :=essinf ®(£,0) and Lgyp, :=I'(0) = esssup ®(&, 0),
£ER? £ER2

as well as the function R : R2 — [0,00) defined for ¢ € R? by

Re):= Y [D(M;'m)T(=M; 'm)] ">,
mez2\{0}
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Theorem 2.4.1. Let {my}ca be a system of a-molecules with respect to a parametrization
(A, ®p), where A = A x Z2 is an index set of the form (2.33) and @, is a map as in (2.34)
with ¢ = (c1,¢2) € Ri fized. Further, assume that the generators gy = g, 1 do not vary with
k € Z?. Under these assumptions, the condition

R(c) < Lint < Lgyp < 00 (2.37)
ensures that {my}rea constitutes a frame for La(R?) with frame bounds A, B > 0 satisfying

Lins — R(c) < A<B< Lgup, + R(c)
|det M| — = = |det M,

The technique used for the proof of this theorem goes back to [30], and has also been
used in [76], [32], and [53]. Our exposition follows the proof in the latter reference, with
marginal modifications.

Proof. For fixed pu € A we first consider the sum S, := Y pcze |[(f,mu )12 = Spezz [(fy ivn) %
Plugging in (2.36), we have

2
)

S = 30 | [ €10 Ay T €] exp(@mi{ (25 A, TyM) 6, )
kez?

and the substitution (R;ulAa7tuTuMc)T§ — £ yields

A —_— 2
Su= | /R 1 2 det (M) |7 (R TAZS T M €)3, (T M €) exp(2ri(€, k)) de|
kez?

With Q= [-1,1)2, we can write

Su= 3|3 [ R det (M) F B ALY, T T M )3, (1M )
kez? EEZ2€+Q

- exp(2mi(€, k) d{‘Q

= Z ‘/Q Z t;(1+a)/2|det(Mc)’_1f(R;u1A;,}5MTM_TMc_1(§+£))§,u(Tu_TMc_l(£+€))
kez? 172

exp(2milE, K)) exp(2it, k) de|

Using the Parseval identity in L2(€2), we deduce

A 2
Sy = /Q | Dt det (M) T (R A, Ty M€+ 0)0 (T M 0)| de.
LeZ
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We continue with

Su= /Qtﬁ””rdet(Mc)rQ > JRIASL T M E + )G (T "M (€ + K))

aty=p
k7>
R ALL TTTME €+ 0)3u (T, "M &+ 0) dE
- Z/ £ 050 et (M) 2 30 f( IAM#TMTMC (E+k—10))
LeZ?2 kez?

(T "M E + k= 0) f(Ry, A T " M1 €)3,, (T, M) de

_/RQ St det M| 2 F(Ry ALY T, T MI1€)g, (T T M €)

meZ?

R ALL T M€+ m)) g (T " MM E+ m)).

Finally, we substitute R, 1A 1,1 TM1e s € and arrive at

#_ |detM| 1/ Z f AatuRnug)

meZ>?

€+ Ryl AL T " M m) g (A, R, & + T, "M m).

Now we take the sum over u € A and split

Z SM =T +1T5

HEA
into a term 77, corresponding to m = 0,

= et M| [ 57 IF©) P19 (Ao, R, ) de.
HEA
and a term Tb, corresponding to m # 0,
T des Ml [ S 30 FOF(E+ Ryl AL TN m)
HEA mez2\{0}
’ gll (Aaiung)gu (AavtuRﬂuf + TJTMglm) dg.

Using the definition of Liys and Lgy,p, we directly obtain for T}

Llnf Lsup
[ det(M.)| _Idt( Bl

Further, for T5 we will prove

IF1I* < IF11%. (2.38)

R(c

)
LR T TWALL

|fI1%. (2.39)

For this, we first estimate
1/2
’T2’ < ’detM ‘ ' Z / Z ’f "gp, Aa tuRnuf)g}L(Aa tuRnué + T TM m)’
meZ2\{0} HEA
1 T . R g /2
AP+ By AL T M ) |90 (At Ry, ) G (Act B + T "M m) | de.

a,t;, " p
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Then we proceed with a double application of the Cauchy-Schwarz inequality, first to the
sum and then to the integral. We obtain

1/2
T3] < | det M, (L) X ORI (et R, 11N R+ T M)
meZ2\{0} HEA

1/2
(/ Z |f f—i-R lAa tMTu TM m)| |§u(Aa,tung)gu(Aa,tuRmf+T,ITMc_1m)|df> .
HEA

Finally, we substitute § + R, 1Aa tuT u TM:'n + ¢ in the second integral and arrive at
(2.39), namely

~ 1/2
| To| < [det M|~ > (/Rgf(ﬁ)PZ\@H(Aa,tuRmf)mAa,tuRmf+THTMC1m)1d§)

meZ2\{0} HEA
. 1/2
([LIFOP 5 100 (Aot R, 00 At, B — T M )
R HEA
12 _ B 2 R
< et MUAE S [P (- M )] HO_y gy
| det M|
mezZ*\{0}
Altogether, the estimates (2.38) and (2.39) imply
Ling — 2 Lsup + R(c) 2
\fH <D S < I
| det(M,)| t( v | det(M.)]
which finishes the proof. O

Concerning the application of this theorem, let us remark that, intuitively, when c
gets smaller also R(c) becomes smaller. A good strategy to fulfill the condition (2.37) in
Theorem 2.4.1 is thus to choose the parameter ¢ sufficiently small. This strategy was used
for example in [76] to confirm the frame property of the constructed compactly supported
shearlets.

In the next chapter, where we will investigate specific instances of a-molecule systems,
we will use this theorem to deduce sufficient frame criteria for a-curvelet and a-shearlet
molecules.

2.5 Appendix: Proof of Theorem 2.2.2

In the following, we reproduce the proof of Theorem 2.2.2 given in [59], whereby the no-
tation is adapted to our setting and some minor inaccuracies are corrected. We start by
collecting some useful lemmata in Subsections 2.5.1-2.5.3, followed by the actual proof in
Subsection 2.5.4.

2.5.1 General Estimates

Let us recall the projective bracket introduced in (2.9). An important property of this
bracket is given by the following lemma.
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Lemma 2.5.1. For 0 € R let {0} denote its ‘projection’ onto the interval T := [~5,F) as
introduced in (2.9). It then holds |{0}| =< |sin(0)].

Proof. Due to 7-periodicity it suffices to verify the relation for 6 € [~3,5). In this range
we have 2|0| < |sin(6)| < |6]. O

The following lemma can be found in [51, Appendix K.1].

Lemma 2.5.2. For N > 1 and a,a’ € Ry, we have the inequality
[ ale)™ (1 alle = o)™ do S max{a, @} 0+ minga, oY) .
R

The implicit constant is independent of a,a’ and y € R.
The following result can be regarded as a corollary of the previous lemma.

Lemma 2.5.3. Assume thatn € R and N > 1. Then we have for a,a’ € Ry the inequality

L+ alsinge)) ™ (1+ fsine +n)l) N di S maxda, o'} (1 + minfa, '} {nH) Y.
T

(2.40)
The implicit constant is independent of a,a’ and n € R.

Proof. Let T := [—7/2,m/2). Using the m-periodicity of the integrand and the equivalence
|sin(¢)| < [{¢}|, where ¢ € R and {-} = {-} is the projective bracket defined in (2.9), we
obtain

Nd(p

L+ alsin(e)) ™ (1+ lsin(e +m))
= [+ alsin(@)) ™ (1+lsin(o+m)])

= [ aleh ™ (L o+ ) de

Nd(p

The left-hand side of (2.40) can thus be estimated by a constant times

> [ arae)™ @+ dlo+ oy +0) N d,
0e{0,£7} R

where we used {¢o+n} = {{p}+{n}}. Further, by Lemma 2.5.2 and since |{n+60}| < |{n}+6],
this sum is bounded by a constant times

Z max{a, a'}_l(l + min{a, a'}|{n + 0}|)_N.
0e{0,£7}

It remains to note that for § € {0, £7} we have [{n+6}| = [{n}|. This proves the lemma. [
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2.5.2 Basic Estimates of Sy i/ v,

We now consider the function Sy s, N, : [0,00)%[0,271) = R for A € A and M, N1, N2 € Ny
which is defined in polar coordinates by

S/\,M,N1,N2 (7”, (p) := min {1, t)\(l + T)}M(l + t;(l_a)‘ sin(cp + UA)’)_NZ (1 —+ t)\T) -

The reader might want to compare this definition with (2.6).
The following lemma will be used in order to decouple the angular and the radial vari-
ables.

Lemma 2.5.4. For every 0 < K < No,

min {1, ta(1 + r)}M<1 + tAr) - (1 + 97| sin(p + m)\)_Nz S Sy m—k,NyL K (T ).

Proof. After choosing K, we can estimate the quantity on the left hand side by

min {1,6,(1 + 7))\~
1+ t§r|sin(e + )|

min {1, £ (1 4+ 7) 5 1+ tyr) ™M <

We need to show that

min {1,¢\(1+r)}
1+ t§r|sin(p + ny)

—(l-a . -1
S (1T st £ m)l) (241)

In order to prove (2.41), we distinguish three cases:

e r <1: For r <1 we have

min {1,¢y(1+ )}
L+ t5r] sin(p + 0y

Smin{1,6,} S (1+4,"7 sin(p + m)|)

° t;l <r: In this case we derive

min {1,£x(1+7)} 1 < 1
1+ t§r[sin(p + m)| L+ t§r|sin(e +na)| = 145t sin(p + my)|

= (1455 sin(o 4 ma)])

If t;l > 1 we have to examine a third case.

e l<r< t;\lz In this case we have

min {1, £, (1 +7)} < tx(1+7) 14 1
L tgrfsin(e+m)l = T+ &rsinfe )] 7 p 1 4+ 60 sin(p 4+ )|

Since r > 1, we have % < 2, and since r < t;\l, also 747175;1 > 1 holds.

This proves the statement. O
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The next lemma provides estimates for the inner product of two functions of the form
SX\M,Ny Ny

Lemma 2.5.5. We assume ty,t, < C < oo forall A€ A and pc€ A. For A,B>1 and

1
N12A+¥, Ny>B, M>N, -2,

we have if Ny > 1

lta
(taty) 2 /R /ES)\,M,Nl,Nz('raSD)S,u,M,Nl,NQ(Ta(P)TdSOdT
+
t)\ t —A 1 —B
< max {2 E T (1 max{t 670 - )
JTRDN

Proof. We assume without loss of generality that ¢\ > ¢, and start by proving the angular
decay. An application of Lemma 2.5.3 yields

—(1-a)| . N2 —(1—a)| ?
L 650 singo ) (14,0 sinte ) d

(-« —N2
S+ T =)

Taking into account Ny > B > 1, we thus obtain

1ta
(taty) 2 /R /T SAM,N1No (T3 9) S0, Ny N, (1 ) rdepdr
) tay 2 (1-a) -B
< 2 —U-a _
ss-(3) 7 (s Hm )

where
. M __ . M —N —N-
S;:ti/Rerm{l,t)\(l—l—r)} min {1, t,(1 + )} (1 + tar) ™ (1 + tr) N rdr

The remaining estimate

1+«

S S (ta/ty) ) (2.42)

is proved by splitting up the integral into the three parts S;, i = 1,2, 3, where the integration
ranges over 0 <r < 1,1 <r < max{l,t;l} and max{l,t;l} < 1, respectively.

Case 1 (0 < r < 1): For §; we integrate over 0 < r < 1. Here we use the moment property
and t;! > 1/C > 0 to estimate

S1

N

1
2 M M
tu/otAthr

2+M M
AR

AN

24+M ,—(M+2)
AR

= (tu/tA)M+2
(/)57

IN
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Case 2 (1 <r< max{l,t;l}): If t;' <1 then Sy = 0. For t;l > 1 we estimate

—1

¢
Sy ti/u (t“r)M (t,\r)_N1 rdr
1

N

tht
My / PMA1=Ni g
0

ti—i-Mt;\Nl t;(M-i—Q—Nl)

= (tu/tA)Nl
(b /1) A5

IN

N

IN

Case 3 (max{1,t,'} < r): For S3 we estimate

oo
2 —N- —N-
Sy S B /t ()N ()N

©w

(o)
— tit;Nlt;Nl/ ALy

th

2,—Ny,—Ni,2N;—2
< tut“ 'ty lt” 1
= (tu/tA)Nl

1ta
< (/)

Altogether, this establishes (2.42). O

2.5.3 Estimates with Differential Operator

Finally, we require some estimates involving the symmetric differential operator £y , (acting
on the frequency variable ¢ € R?) defined for A € A and p € A by

ty?

o (e, V)2, (2.43)
1+t 207 |} 2

Loy i=1—152"A¢ —

where 07 := 1) — n, and to := max{ty,t,}. The first lemma is an auxiliary result.

Lemma 2.5.6. Assume that the assumptions of Theorem 2.2.2 hold true for two systems of
a-molecules of order (L, M, Ny, N2) with respective generators {a™}y and {b"},,. Given
any two of those generators a™ bW the expression

£>\7M (&(A) (Aa,thmg) b (Aa,t#Rmf))

can be written as a finite linear combination of terms of the form

6()\) (Aa,thmg) dA('LL) (Aa,tuRmf)a
with ¢, dW satisfying (2.5) for L — 2, M, N1, No with an implicit constant independent of

A and p. Thereby, the number of terms in the linear combinations and the corresponding
coefficients are also uniformly bounded in A\ and p.
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Proof. To prove the claim we treat the three summands of the operator L) , separately.
The first part is the identity, and therefore the statement is trivial. To handle the second
part, the frequency Laplacian t; 22| we use the product rule

A(fg) =2 (900 fah0g 4 9O fal0Vg) + (Af)g + f(Ag).

Therefore we need to estimate the derivatives of degree 1 and the Laplacians of the two
factors in the product

0™ (Ao gy By, €) B0 (A, Ry, €) = A(€)B(E).
For this, we start with the first factor,
A(€) = a (tx cos(ma)€1 — tasin(m)Sa, £ sin(ma)€r + £5 cos(ma)é2) -
Let us set
A1) = (0198Y) (Aa Ryy€) and Ax(€) := (0VaV) (Aa g, Ry, 6).

By definition, the functions 0a™, 9ODaMN) satisfy (2.5) with L replaced by L — 1. An
application of the chain rule shows that

OO A(€) = ty cos(n) Av(€) + 5 sin() A2 (€).

Analogously, one can compute

OOV A(E) = —tasin() AL (€) + 15 cos(m) A2(€),
and the exact same expressions for B using the obvious definitions for By and By. We get

o049 B = taty cos(ny) cos(n,) A1 By + t{t, sin(ny) cos(n,) A2 By
+tzt)\ Siﬂ(ﬁu) COS(’I?)\)AlBQ + (t)\tu)a sin(m\) Sin(’l’]u)AgBQ.
It follows that t;2*9(19) A9(0) B can be written as a linear combination as claimed (recall

that ¢ = max{ty,,}). The same argument applies to the product thaa(OvUAa(Ovl)B.
It remains to consider the factor

(AA)B + A(AB),

where, for symmetry reasons, we only treat the summand (AA)B. In fact, it suffices to
only consider

(8(2’0)A)B = (ti cos(n,\)2A11 + 2t}\+°‘ sin(ny) cos(nx) A2 + tio‘ sin(n,\)zAgg) B (2.44)

with A;;, 4,5 € {1,2}, defined in the obvious way, and where 020N 9D - and
026N satisfy (2.5) with L replaced by L — 2. The term (9(®?) A)B, and hence (AA)B,
can be handled in the same way, as can A(AB). This takes care of the term 5 2*A in the
definition of L) ,,.
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Finally, we need to handle the last term in the definition of £, ,, namely

fo " L
1+t 27 {2 08F

for ny = 0 (otherwise the second order derivative would be in the direction of the unit vector
with angle 1, with obvious modifications in the proof). With our notation and using the
product rule we need to consider terms of the form

(@048, (@A) B), A@B),

and show that each of them, multiplied by the factor ty52/(1 + taQ(lfa)\{nﬂ}\Q), possesses
the desired representation.

Let us start with (929 A) B, which, using (2.44) and the fact that 17y = 0, can be written
as

(8PN A)B = t3 A1, B,

and which clearly satisfies the desired assertion.
Now consider the expression (9(:?) A)(9(19) B), which can be written as

(010 A) (0 B) = tyt,, cos(n,) A1 By + tAtS sin(ny,) A1 Ba.

The first summand in this expression clearly causes no problems. To handle the second
term we need to show that

t72
0
1+t 20 )2

taty|sin(n,)] S 1. (2.45)

Here we have to distinguish two cases. First, assume that [{n,}| < ¢;~® Then we can

estimate |sin(n,)| < t5~%, which readily yields the desired bound for (2.45). For the case
{nu}] > t5~* we estimate

ty?
_2 1_
1+t 20 g, )2

t5? ty?
totg{mu} < ——5——
to "

£t2] sin(n,)| < ——C
1+, )

which proves (2.45) also for this case.
We are left with estimating the term A (8(270)3), which, similar to (2.44), can be written

totg [{mu 3 =1

as
tz cos(n,)2ABy1 + 2t;+a sin(n,,) cos(n,)AB12 + tio‘ sin(1), )% ABas.

The first two terms are of a form already treated, and the last term can be handled using
the fact that |sin(n,)* < [{n.}*. O

Lemma 2.5.7. Assume that the assumptions of Theorem 2.2.2 hold for two systems of -
molecules of order (L, M, Ny, No) with respective generating functions {a™} and {b(“)}u-
Then we have

LY, (&(A) (A, Ry &) b (Aa,tuRnuf)) S SAM-Na N1 N (§) S0 —Na Ny N, (€)

forall k < L/2.
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Proof. We show that

125 (@Y (Aaty Ry ©) 509 (Aas, Ry, ) )|
< min {180 (1+ 7)Y (14 £ar) ™™ (1 + £37] sin(p + mp))
min {1, 6,14+ )P (U )™ (14 rfsin@e 4 n)]) 0 (2.46)

7N2

which, using Lemma 2.5.4 with K = Ny, implies the desired statement.
To prove (2.46), we use induction in k, namely we show that if we have two functions
a™ b satisfying (2.5) for L, M, N1, Ny, then the expression

L N ( ) (Aa t)\R"Df) br) (Aa,tuRmLfD

can be written as a finite linear combination of terms of the form

( ) (Aa t/\Rmf) (AOC t,uRn,ué)

with ¢, d® satisfying (2.5) and L replaced by L — 2, see Lemma 2.5.6. Iterating this
argument we can establish that for k < L/2

25, (6N (Ag i, Ry ) B9 (A g, Ry, 6)) (2.47)

can be expressed as a finite linear combination of terms of the form

eN (A ity Ry &) d®) (Ag s, Ry €) (2.48)

with
eM(©)] £ min {10+ fa] + lel} (e (&), (2.49)

and an analogous estimate for d®). Combining (2.48) and (2.49), we obtain that |(2.47)]
can — up to a constant — be upperbounded by the product of

M _ _
mln {1’ t)\ + HAavt)\Rn/\g]l‘ + ti\_a HAO‘7t/\R77>\§]2|} <’A0‘7t>\R77/\§|> M <[A04,t>\ RUA§]2> i

and
— Ny

min {17 t# + ‘ [AomtuRnud 1‘ + t};a ’ [AavtuRnug]2‘}M <|Aa,tuRW§|>_Nl <[AavtuR77u€]2>

Transforming this inequality into polar coordinates as in (2.6) yields (2.46). This finishes
the proof. 0

2.5.4 Actual Proof of Theorem 2.2.2

We now have all the ingredients to prove Theorem 2.2.2. By our assumptions on the order
(L, M, Ny, Ng) there exist N7 and Ny such that Ny > Ny > N+ 1te 1+°‘ and Ny > Ny > N+1ta 1+°‘
and M > N1 + Ny — 2. The systems {my}» and {p,}, are also a-molecules of order
(L, M, Nl,Ng) satisfying the assumptions of the theorem. Thus, we can without loss of
generality assume the additional condition M > N; + Ny — 2.
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To keep the notation simple, we assume that 7y, = 0 and define ¢y := max{ty,t,}.
Further, we set

0T :=x\ — Ty, 0N =0\ — Ny

By definition, we can write
_lta _lta
ma() =ty 2 a™ (A Ry —20) s pal) =t 2 b9 (AG) Ry, (=),
where both a® and b(#) satisfy (2.5). We have the equality

<m>\v pu> = <m)\7ﬁu>

= (tat,) = /R ] a™ (A ity Ry &) D) (Aqy, Ry, €) exp (—2mi€ - dx) d€ (2.50)

1+«

= (03t) 5 [ 5, (0% (Aais By 00 (A, Ry, €)) L35 (exp (<2 - 62) d,

where L) , is the symmetric differential operator (acting on the frequency variable) defined
in (2.43). Note that by assumption N; > 1 and thus the boundary terms vanish due to the
decay properties of a™ and b as well as their derivatives.

We have

to?

1+t 0 6]

—k
(ex, 5x>2> exp (—2mi - dx) ,

(2.51)
where ey = (cos(ny), —sin(ny)) denotes the unit vector pointing in the direction described
by the angle ). By Lemma 2.5.7 and for k£ < %, we have the inequality

ﬁ;l; (exp (—2mi§ - 0x)) = <1 + tg 2¥|6x)? +

EI)C\,# (d()\) (Aoz,tAng) B(M) (Aa,tuRmﬁ)) 5 SA,M—N2,N1,N2 (g)SM,M*NQ,Nl,Nz (5)

Then, by (2.50) and (2.51) it follows that

1ta
[(ma, o)l S (Eaty) 2 /R2SA,Msz,Nl,NQ(§)SN,M—N2,N1,N2(€)d§

—k
2 ty>
. (1 + 1y 2|6z |® + . tiz((]l*a)\ém (ex, (5a:>2>
0

for all £ < % Now we can use Lemma 2.5.5 and the fact that L > 2N to establish that

[(mx, pp)| S max {t—)‘ ti}_N (1 + ta2(1fa)|6n|2> -N

t, ta
_ —N
. (1 +ty 2 |ox)® + fo (ex 533)2)
1+ 1520 |
-N
ty tu -N —2(1—a) 2 —2a 2 tEQ 2
S maX{E,a} <1+t0 ‘(577‘ +t0 ‘61” + 1+t82(1ia)|5n‘<6)\75x>

= wa(Pa(N), Ba(p) .

This proves the desired statement. O
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Chapter 3

Examples of a-Molecules in Ly(R?)

In this chapter we will fill the abstract notion of a-molecules from Definition 2.1.3 with life
by presenting a few prominent examples of specific a-molecule systems. Undoubtedly, the
most natural examples are given by curvelet systems since the construction of those served
as a guiding principle for the a-molecule definition. But, as we will see in this chapter, also
wavelet systems, ridgelet systems and even shear-based constructions fit into the frame-
work. Two important subclasses of a-molecule systems, namely a-curvelet and a-shearlet
molecules, are distinguished, and we will show that their associated parametrizations are
consistent in a suitable sense.

3.1 Continuous a-Curvelets

We begin our exposition with a prototypical instance of a continuous a-molecule frame for
L2(R?). Guided by the construction of the parabolically scaled curvelets in [11], we will
construct a continuous Parseval frame of a-curvelets for every a € [0,1]. The obtained
systems, denoted by €,, are band-limited and based on a specific tiling of the frequency
domain.

To realize this tiling, let us first define two radial functions U, U; € C2°([0, 00)) which
shall be nonnegative and satisfy

suppU C (%,2) and suppU; C [0,2).
Further, they shall fulfill the continuous Calderén condition

1 dt
U2(r) +/ Urt)S =1 forallr>0. (3.1)
0

Next, let us take a non-negative angular function V' € C2°([—m,n]) with the property
1
suppV C (—1,1) and / V(n)?dn=1.
-1

Further, for convenience, let us also introduce the constant function V; : [—7, 7] — {\/%}

Now we are ready to define the functions W, ; € C°(R?), where n € T = [0,2m)
and t € (0,1], which correspond to the desired frequency tiling. Using polar coordinates
&(r, ) = (rcos(¢),rsin(¢)) € R? with r € R{ := [0,00) and ¢ € [0, 27), we put

Wi (£r0)) = DrWVi({0hr) = —=Ua(r) LmeT o1 o)

W, (E(r,0)) := Utr)V (* Mo + n}or) neT,0<t<]1.
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Here {-}, denotes the projective bracket (2.9) for the interval 2T = [—7, 7).

For t = 1 the functions W, ; are supported in a closed ball around the origin. If 0 <t <1
their support is a wedge-like tile whose position is determined by n and ¢. The induced tiling
resembles that of a dicrete a-curvelet frame depicted in Figure 3.1.

From W, ; we obtain the a-curvelets v, € Lo (R?) by defining on the Fourier side

V() = tUTVPW, () exp(=2mi(, ), (w,,t) € X,
with indices from the curvelet domain
X:=R?x T x (0,1].

Note that, due to the normalization factor, the a-curvelets ¢, ,: are Lo-normalized.
Further, they are Schwartz functions, i.e., 15 ,+ € S(R?). Due to the lack of symmetry of
W+, however, they are not real-valued as the discrete parabolic curvelets in [15].

On the spatial side, the a-curvelets can be represented in the form

Vo) = Vo0 (By(- — ) with toee =t 2Wo, . (2,n,1) €X, (3.3)
where R, is the rotation matrix (2.3) given by
_ (cos(n) —sin(n)
R, = <sin(n) cos(n) |’ n € R. (3.4)

Altogether, the constructed a-curvelets constitute a continuous multi-scale system in
L2(R?) for which we subsequently use the notation

Co = {¢X:X€X}.

This system is inhomogeneous, consisting of a high-scale and a low-scale part corresponding
to parameters 0 <t < 1 and t = 1, respectively. The index set X is split accordingly into a
homogeneous and an inhomogeneous component, namely

Xg:=R*xTx (0,1) and X;:=R*xTx {1}.

Each of the components Xy and X is equipped with the usual product topology, whereas
X is topologized as the disconnected union of the two. With this topology, X becomes a
locally compact Hausdorff space.

We next search for a Radon measure, i.e., a regular Borel measure, p on X such that
x +— 1), is weakly measurable, i.e., the assignment x +— (f,1,) is measurable for every
f € Ly(R?), and such that the continuous Parseval identity is true, i.e.,

I£1 L2 =/!<f, Ux)|?dpu(x)  for all f € Lo(R?). (3.5)
X

Note that the weak measurability is needed for the integral in (3.5) to be well-defined.
With respect to u, the system €, is then a continuous Parseval frame for Ly(R?) (see
[1]). In particular, the reconstruction formula

£ = [ A ) dul) (3.6)
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holds in a weak sense. For signal analysis this is relevant since it means that from the data
F(x) = (f,1x) we can reconstruct the signal f € Ly(R?) via (3.6).

To find pu, since the curvelet domain X does not carry a group structure, we cannot
resort to a Haar measure as the canonical choice. Instead, we introduce a measure p given
by the integration

/F ) du(x ///R2 x,m, da:dndt+// (x,n,1)dxdn (3.7)

for every F' € C.(X). Its restriction to the homogeneous and inhomogeneous component Xg
and X; shall be denoted by po and w1, respectively. For this choice of y the map x +— 15
is indeed weakly measurable and the system €, is a continuous Parseval frame for Lo(R?),
i.e., the Parseval identity (3.5) holds true.

This is proved by the following proposition.

Proposition 3.1.1. The continuous a-curvelet system €, is a continuous Parseval frame
for Lo(R?) with respect to the measure u given by (3.7).

Proof. Let f € Ly(R2). We have (f,¢x) = (f, ) = t0T9/2(fW, ;)" (z). Further,

L 10Wa) @ da= [ (W) (0 de.
We deduce
dnd
L1l aut = [ [ [ 10Wa0©P a5+ [ [ 17w, dedn
_ 2 o dn dt 2
= [FOP( [ [ WG + [ Wyale)?dn) de.

At this point, the Calderén condition (3.1) comes into play. For all ¢ € R?

! dnd
[ [ + [ Waaeran
! dnd
= [ [Ueh?vee o) + ma* g + [ 5-tale)?
= [ U g+ e t/U%H“+mmo

The proof is finished. ]

In the next subsection, we will see that €, is a special instance of an a-molecule system.

3.1.1 The Canonical Parametrization

Although the a-curvelet frame €, is not an affine construction, it is useful to consider an
affine-like representation utilizing the a-scaling matrix (2.4), namely

t 0
Agy = (0 ta> , t>0. (3.8)
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EXAMPLES OF a-MOLECULES IN Ly (RR?)

In view of (3.3), we can write
l/fz,n,t(') = t_(l—m)/?gt (A;,%Rn(' - 37))
with a scale-dependent generator g; € Lo(R?) whose Fourier transform is given by
i) = 7P 04 (AG L) = Wou(Agh)- (3.9)

For t = 1 we clearly have g1 = Wy 1. Further, for 0 < ¢ < 1, note that Wy is obtained
from the function Wo,l(g (r,¢)) == U(r)V({¢}er) by a-scaling in polar coordinates. Since
this polar operation is closely related to the affine a-scaling operator the generators g are
all close to each other, namely small deviations from Wy .

From this heuristic consideration, it is plausible that the continuous a-curvelet frame &€,
constitutes a system of a-molecules. This will indeed be shown in Proposition 3.1.3 below.
The associated parametrization takes a particularly simple form and is called the canonical
parametrization.

Definition 3.1.2. The canonical parametrization (X, ®,) is the pair consisting of the curvelet
domain X given by
X:=R%x T x (0,1]

and the canonical embedding ®, : X — P into the parameter space P = R2 x T x R, i.e.,
the map

o, : (x,n,t) — (x,n,t).

With this definition, we can now prove that the continuous a-curvelet frame €, is a
system of a-molecules.

Proposition 3.1.3. Let a € [0,1]. The continuous a-curvelet frame €, is a system of
a-molecules of order (0o, 00, 00,00) with respect to the canonical parametrization (X, ®,).

Proof. We need to show that the generators g; defined in (3.9) satisfy (2.5) for arbitrary
orders (L, M, N1, N3) € N§. From
supp o0 C [—2t71, 2671 x [—2t7%,2t%], t € (0,1],
it follows that
supp §¢ C [-2,2]> for all t € (0,1].

Next, if t € (0,1), we observe that the functions 1[1070,15 vanish on the squares [—%t‘l, %t_l]g,
which implies
ge(€) =0 for €€ [—q, 4] x [t 1],
The derivatives 9°g; are well-defined for all p = (p1, p2) € N3 since g € C*°(R?), and
they are subject to the same support conditions as the functions g;. Further, we have

gSup2 |0V 082 W 1 (€)] < ¢°1¢*P?  uniformly in ¢ € (0, 1].
€R

With the chain rule we deduce

sup |07(€)] = sup [97"95% (Wo,e(Ag ) (€)| = t77147%2 sup [(8)" 05> Wou) (AZi6)] S 1,
£ER? £€ER? £eR?

where the implicit constant is independent of ¢ € (0, 1]. Together with the support properties
of 0”§,, this uniform bound implies condition (2.5) for arbitrary orders (L, M, Ny, N3). O
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3.2 a-Curvelet Molecules

Note, that the canonical parametrization (X, ®,) does not depend on the parameter
a € [0,1] and is thus the same for all systems €,. Considering ®, : X — P as an embedding,
the curvelet domain X can further be viewed as a subset of the parameter space P. Since
the topology on X differs from the usual subspace topology imposed by PP, one has to be a
little careful though with this perspective.

Let us end this subsection with the remark that the domain X can be considered as
a natural parameter space for inhomogeneous a-molecule systems. Given such an inho-
mogeneous system 9, with a parametrization (A, ®) such that ®(\) = (xx,nn,tr) € P
and ty < C for all A € A and some constant C' > 0, it is always possible to reparame-
terize M, with a base scale not larger than 1 by using the modified parametrization map
O’ (X) := (zx,mr,tr/C). One can prove that 9, is then still a system of a-molecules with
respect to the new parametrization (A, ®’).

3.2 «a-Curvelet Molecules

As we have already seen, the idea for the construction of curvelets is inspired by wavelets
which are obtained by isotropically scaling and translating a set of generating functions. For
a curvelet system, this construction principle is slightly modified to improve the directional
adaptivity of the system elements at high scales. Instead of isotropic scaling, an anisotropic
form of scaling is used and, as a means to adjust the orientation, rotations come into play.

This basic idea is cast into a concrete form by the notion of «-curvelet molecules, a
concept which unites many different curvelet-like constructions under one common roof
and allows a unified treatment of such systems. The definition given below is a direct
generalization of the earlier introduced curvelet molecules from [13]. As the name suggests,
the anisotropic scaling is realized via the a-scaling matrix (3.8) and, as was the case for
a-molecules, the generators have the freedom to vary as long as they obey a certain time-
frequency localization.

We will only consider discrete systems which correspond to certain regular sampling
grids of the continuous curvelet domain X. Thereby the scales shall be numbered by j € Ny
and the distance between the different scales, specified by a real number ¢ > 1, shall be
fixed. Further, the translational grid is assumed to be a transformation of Z? via the
matrix (2.35) defined by

M, = (Col 002> for some fixed vector ¢ = (c1,cz) € R%. (3.10)
The resolution of the angular sampling is scale-dependent and determined at each scale
J € Ny by a positive real number w; € Ry, whereby we require the sequence (w;);en, to
fulfill w; =< o—I(1=),

For convenience, let us display the set of parameters associated to the resolution of the
sampling grid in the following box,

o>1, c=(c1,e0) €ERL,  (wj)jen, € RTO with w; = o117, (3.11)

A typical index set of a system of a-curvelet molecules is of the form

A= {(j,t.k) = j €Ny, LELy, ke 22}, (3.12)
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where the index j corresponds to the scale, £ to the orientation, and k to the spatial position
of the molecules. The number of different orientations at each scale j is determined by the
set IL; # () which is of the form

L; CZ suchthat max{|([:¢cL;} <L (3.13)
for a sequence (L;);en, of nonnegative integers satisfying L; < gi(1=a),

The definition of a system of a-curvelet molecules is then as follows, whereby we need
the matrices (3.4), (3.8), and (3.10).

Definition 3.2.1. Let o € [0,1] and let L, M, N1, Ny € NyU{oo}. Further let the sampling
parameters (3.11) be fixed. A family of functions

M = {my € Ly(R?) : X € A},

indexed by a set A€ of the form (3.12), is called a system of a-curvelet molecules of order
(L, M, Ny, No) if all functions my = m, ¢ are obtained via

mM’k(.) = U(1+a)j/2gj,f,k (Aap'jRéwj . _Mck;)

from corresponding generators g; ¢ € Lo(R?) which satisfy for every p € N, |p| < L,

. . M
0°300(61,6) S min {1,077 + & + o TG} ()™ (@) (3.14)
The implicit constant is required to be uniform over all A € A€ and & = (£1,&) € R2. If

a control parameter equals oo, the respective quantity can be chosen arbitrarily large in
(3.14).

As for a-molecules, the quantities M, L, N1, No specify almost vanishing moment, local-
ization, and frequency decay properties of the respective functions. The following proposi-
tion shows that Definition 3.2.1 is compatible with an earlier notion of curvelet molecules
considered in [13].

Proposition 3.2.2 ([62]). Curvelet molecules of regularity R € No, as defined in [13], are
5-curvelet molecules of order (00,00, R/2, R/2).

Proof. For the proof we refer to [62]. O

The concept of a-curvelet molecules comprises many curvelet-like constructions. In
particular, the classic curvelets are included, as we will see in Subsection 3.2.3. Before we
turn to concrete examples though, let us show that a-curvelet molecules are a special class
of a-molecules.

3.2.1 The a-Curvelet Parametrization

Systems of a-curvelet molecules constitute a special class of discrete a-molecule systems.
They are characterized by a corresponding class of parametrizations, called «-curvelet
parametrizations.
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3.2 a-Curvelet Molecules

Definition 3.2.3 (compare [59, Def. 3.2]). An a-curvelet parametrization (A€, ®¢) consists
of an a-curvelet index set A° of the form (3.12), i.e.,

A= {(j,z,k;) . jEeNy, L €Ly, k:eZQ},
and a mapping ®¢: A® — P given by
O : (j, 4, k) (R[wle” Mk, (bw;)or,07)

a,o’
with fixed sampling parameters o > 1, ¢ = (c1, c2) € R, (w;)jen, C Ry as in (3.11).

Comparing the definition of a-molecules and the definition of a-curvelet molecules, the
following proposition is self-evident.

Proposition 3.2.4. Every system of a-curvelet molecules of order (L, M, Ny, Na) consti-
tutes a system of a-molecules of the same order with respect to a corresponding a-curvelet
parametrization, and vice versa.

Proof. This is obvious from the definitions. O

Whereas Proposition 3.2.4 may not come as a surprise, we will see later in Section 3.3
that the concept of a-molecules also comprises shear-based constructions. In particular,
a-shearlet systems and their more general siblings «-shearlet molecules are included, as
proved in Proposition 3.3.6.

3.2.2 A Sufficient Frame Condition for a-Curvelet Molecules

Observe that the frame criterion from Theorem 2.4.1 can be applied to systems of a-curvelet
molecules, provided that the corresponding generators do not vary with the translation
index. Indeed, the a-curvelet index set A¢ has the required structure

A= A°x Z? with A := {(j,ﬁ) . jENg, L€ Lj}.
Further, the parametrization map

O AP, (6 k) o (R AL Mok, (), o)

a,o7

is of the required form (2.34) with the matrix 7}, chosen as the identity for each p € A°.

Let us now assume that {my} epc is a system of a-curvelet molecules whose generators
{9r}rene satisfy gy = g, for all A = (u, k) € A°. Then we can define associated correlation
functions ®¢: R?2 x R? — R and I'“ : R? — R as

(&, w) := Z |§u(Aa,tuRnu§)||§u(Aa,tuRnM§""W)‘v

pEAC
IM(w) := esssup (&, w).
£eR?
For c € R%r, we further define
Re(e)i= Y [0 )= )] 2.
mez2\{0}

Now we can formulate the following spin-off of Theorem 2.4.1 in the curvelet setting.
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Theorem 3.2.5. Let {m)} cac be a system of a-curvelet molecules with generators {gx}aeae
such that gy = gux do not vary with k € Z?. Further, let

Ly = essinf @°(¢,0)  and L, := I'°(0) = ess sup ®(¢, 0)
£eR §ER2

and assume that
R(c) < Ly < LS, < o0,

inf = Hsup

where ¢ € R% denotes the parameter in (3.11) associated with the density of the translation
grid. Then {my}xene constitutes a frame for Ly(R?) with frame bounds A, B > 0 satisfying

icnf — RC(C) <A< B< Lgu]? + RC(C)
|det M| — = = |det M,
Proof. This is a direct corollary of Theorem 2.4.1. O

Finally, after all these considerations concerning a-curvelet molecules on a general level,
let us now provide a concrete a-curvelet construction.

3.2.3 Discrete a-Curvelet Systems

Similar to the construction of the continuous a-curvelet frame €, in Section 3.1, we now
construct a prototypical example of a discrete a-curvelet frame, subsequently denoted by
¢?,. The easiest path towards €2, seems to be to just sample the continuous frame €,. This
approach has the disadvantage, however, that it is not clear how dense the sampling must
be for the resulting subsystem to still form a frame. Therefore we choose a direct approach
which offers more control over the construction and even allows to obtain a Parseval frame.

The subsequent construction of €2, is a slight modification of the construction of €. As
for €,, it is band-limited and again it starts by defining radial and angular components of a
suitable partition of the frequency domain. To obtain the Parseval property in the discrete
setting the Calderén condition (3.1) needs to be adapted, however (see (3.16) below).

For the construction of the radial functions, we use two C*°-functions Uy : R — [0, 1]
and U : Rf — [0, 1] on the ray R := [0, 00) with the properties

supp Up CC-[0,72], Up=1onC-[0,7],

1 1 (3.15)
supp U CC-[2711,m2], U=1onC-[27 1,1,

where 1 < 71 < 7 < 2 and C > 0 are fixed parameters. We then generate functions U;
j > 1, from U via
Us() = U277,

Altogether, we thus obtain a family {U;}en, of radial functions U; € C*(R{,[0,1]). By
suitably choosing Uy and U we can further ensure the discrete Calderén condition

ZUJZ(T) =1 forallreRy. (3.16)
Jj=0

The details of such a construction have been carried out for example in [103, Lem. 2.2].
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3.2 a-Curvelet Molecules

Next, we define angular functions V; : S' — [0,1] on the unit circle S ¢ R?, where
J € Ny and the index ¢ runs through 0,...,L; — 1 with

L; =20 5 e N.
The corresponding index set is denoted by
J.= {j: (j,0) + jENg,L€{0,...,L; — 1}}.

Its elements (j,¢) € J can be interpreted as scale-angle pairs, with the index j standing
for a scale and ¢ for an orientation. To simplify the notation, we will often use the capital
letter J for a pair (j,¢) € J. In this context, |J| shall then denote the corresponding scale
variable j, i.e., |J| = j for J = (3,¢).

To construct the family {V;} ey, we begin with a single function V € C*°(R, [0,1])
satisfying

By rescaling, we then obtain functions f/J() = ‘N/(Lj-) € C®(R,[0,1]) for every j €
Ng which in turn, via the bijection ¢t — e, give rise to corresponding functions ‘7j,0 €
C*>(S',[0,1]) on the unit circle. After a symmetrization, we arrive at the functions Vo €
C>=(S',[0,1]) given by

Vio(€) == Vjo(&) + Vio(=€), €es.
At last, we rotate the functions Vj by integer multiples of the angle
wj = 7TL;1 = g2~ b-a)] 7 € Np.
Using the rotation matrix R, := Ry,,, this yields functions Vj, € C>(S1,[0,1]) given by
V(€)= Vjo(Rje€), €S
The constructed family {V;} ey then clearly satisfies

Y Vi) =1 forall¢eS"andall j € No.
|J|=j

In conjunction with (3.16), this property yields

Y wi=1 (3.17)
Jel

for the bivariate functions Wy = W;, € C*> (R2,[0, 1]), which are defined as the polar tensor
products

Wie(©) = Uj([€l2)Vie(/Il2), € € R (3.18)
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These functions are symmetric, i.e., Wj (&) = W, (=£) for £ € R?, and they are supported
in corresponding wedges Wﬂ[C], depending on the constant C' in (3.15). We have

WiolC) = {e € B2« [gla < C27*} and for (j,£) € I\{(0,0)}

' ' (3.19)
W] = {e e R+ 0271 < ¢, < OPFL, [(€, Rypen)| > cos(3w;/4)[€]2 },
where e; = (1,0) € R? denotes the first unit vector of R2.
Now we fix C' := & in (3.15) such that W;AC} is contained in the rectangle
Eyi=R;1Ej0 with 0= [-2771 297 x [—2et gjerl], (3.20)

The rectangles Z; are of size 2/ x 2/% and hence the Fourier system {u; o }rezz with

wjok(€) = 2770 2 oxp (2mi (277 k161 + 277%katn)), € = (£1,&) € R2,

constitutes an orthonormal basis for Ly(Z;0) . Consequently, also the rotated system
{u;j e }reze consisting of the functions

wjon(€) = ujon(Rjek), &€R? (3.21)

is an orthonormal basis for Lo(Z ;).
After this preparation, we are now ready to define the a-curvelet system €2,.

Definition 3.2.6. Let o € [0,1], and let {W;} ey be the family of wedge functions con-
structed in (3.18). Further, let w;,, be the functions defined in (3.21). The discrete
a-curvelet system €9, := {1, },enm with associated index set M := J x 7?2 shall consist of
the functions v, = v, ¢ given by

Diek(€) = W€ ujor(€), €€R (3.22)

Note that € depends on the utilized family {W;} ey, which is not accounted for in the
notation.

In contrast to the continuous a-curvelets in €., the a-curvelets 1), € €3, are real-valued
due to the symmetry of W;,. They are not strictly Lo-normalized, however. Their Lo-norms
may vary slightly with the scale, but there exist fixed constants 0 < 'y < Cy < oo such
that Cy < ||1,]|2 < C5 holds true for all 4 € M.

Concerning the frame property, we have the following result.

Lemma 3.2.7. Let a € [0,1]. The system €2 given by (3.22) is a Parseval frame for
La(R?).
Proof. The functions W satisfy condition (3.17) wherefore

113 = 1715 = Y- 1F Wyl for every f € La(R?).
JeJ

Since supp (fW;) C E; and since {u Jk }keze is an orthonormal basis of La(Z ) we have the
orthogonal expansion fW; =3, (fWy,usr)usrX=z,. The proof is finished by the following
equality,

W3 = > FWru)? = Y [ Wouse)? = S [ dam P = D ()

keZ? keZ? kez? keZ?
]
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3.2 a-Curvelet Molecules

Lemma 3.2.7 shows that €% constitutes a Parseval frame for Lo(R?) for every a € [0, 1].
Hence, we now have a whole scale of discrete Parseval frames of a-curvelets available for
L>(R?) which interpolates between wavelet systems for o = 1 and ridgelet systems for o = 0.
The induced frequency tiling for different o € [0, 1] is schematically depicted in Figure 3.1.

Note that for a = % one obtains a variation of the classic second generation curvelet
frame introduced by Candés and Donoho in [15]. Historically, this frame can be considered
as the first true curvelet construction. Introduced in 2002, it provably provides quasi-optimal
approximation for a model class of cartoon-like functions. Its invention triggered the devel-
opment of many other directional representation system, in particular the generalization to
a-curvelets.

(a) (b) (c)

Figure 3.1: Partition of the Fourier domain induced by a-curvelets for (a): a = 1, (b):
a=1/2,and (¢): a=0.

Whereas the frame of second generation curvelets slightly differs from the frame €7 /20
they are both instances of %—curvelet molecules. We have the following proposition.
Proposition 3.2.8 (compare [59, Prop. 3.3]). The following statements hold.

(i) Second generation curvelets are %-curvelet molecules of order (0o, 00, 00, 00) with pa-
rameters 0 =4 and ¢ = (1,1), w; = 747/ and L; = 2.

(it) For each a € [0, 1], the discrete a-curvelet frame €2, is a system of a-curvelet molecules

of order (00,00,00,00) with parameters o = 2, ¢ = (1,1), w; = 72~ A=)l gnd
L; =2l0-a)l,
Proof. (i) was proved in [62].
(ii) In spatial domain, the a-curvelets 1, = 1, 1 € €%, have the representation
¢j7g7k(x) = ¢j,0,0 (Rjj (:L' — xjyg,k)) with Tjok = R;gA;lk, (3.23)

where R, := Ry, and 4; := A, 5; is a dyadic a-scaling matrix, i.e.,

R, = <cos(€wj) —sin(ﬁ%)) and A, — <2j 0 ) . (3.24)

sin(fw;)  cos(fwy) 0 2/«
Further, introducing the functions

aj = 2_j(1+a)/2¢j7070(z4;1') , 7 € Np, (325)
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we can write ;¢ in the form

bion(@) = 205 2a; (AR (2 — wj) = 205 205 (A Rjex — k). (3.26)

On the Fourier side the functions (3.25) have the form
dj =22 0500(4;7) = Wio(Aj).
Since supp Wy C WIO[1/67T] (see (3.19)) and
Wil1/67] C [2771, 2771 x [0, 2707 = 5,
this implies
suppd; C [-271, 27 x [-271, 271 = Eq0. (3.27)

Further, if j > 0 the function %7070 vanishes on the square [—2/~7,2/-7]2. Consequently,
the associated function @; vanishes on [-277,277] x (27(=) . [—277 277]).

Next, we analyze the derivatives of @;. First observe that for fixed p = (p1, p2) € N the
mixed derivatives 9" 95°W, o obey uniformly in j € Ny

1071 05> Wi o|oo S 2777127902,
With the chain rule we deduce

10785100 = 1107 05> Wjo(Aj) oo = 27712702 (97" 05> W) (Aj) o S 1.
Due to supp 0”a; C suppaj, this estimate together with the support properties of @; im-
plies (2.5). O

As a consequence of this proposition, the a-curvelet frame €2, is in particular a system of
a-molecules of order (oo, 00,00,00). Its parametrization (M, ®,/) consists of the a-curvelet
index set M = J x Z? and the parametrization map ®,; from M into the phase-space
P = R? x T x R, which is given as follows

O M =P, (G4 k) = (2ak, w;j,277) = (R A7, lwj, 277). (3.28)

The frame €9, is a suitable anchor system for the application of the transfer principle for-
mulated in Theorem 2.3.6. It will be used in Chapters 5 and 6 to study cartoon approxima-
tion properties of a-molecules. Via the transfer principle, the results obtained for € have
consequences for many other a-molecule systems. Among these are a-curvelet construc-
tions [15, 60], but also band-limited [81, 66, 70] as well as compactly supported [76, 73, 83]
a-shearlet systems. A general framework for discrete a-shearlet systems is the topic of the
next section.
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3.3 «-Shearlet Molecules

The concept of a-shearlet molecules can be viewed as the analogue of the concept of a-
curvelet molecules in the shearlet setting. To motivate this concept, let us first recall the
basic construction principles of a cone-adapted shearlet system.

The idea for the construction of a shearlet system in general is to apply anisotropic
scalings, shearings, and translations to a set of generating functions [81]. This is similar
to curvelet constructions, the essential difference is the utilization of shearings instead of
rotations as a means to adjust the orientation. On the one hand, this provides advantages
in the discrete setting and for numerical implementations, on the other hand, the shearing
operation leads to a directional bias with respect to the vertical or the horizontal coordinate
axis. This bias is a disadvantage when one requires a uniform treatment of all spatial
directions.

To compensate for this drawback, the concept of cone-adapted shearlet systems [66]
emerged. Those are systems assembled from different shearlet subsystems, each taking care
of a different coordinate direction. In the frequency domain, each subsystem correlates with
a double cone aligned with one of the coordinate axes. In case of an inhomogeneous system,
there is in addition a distinguished subsystem of base-scale functions corresponding to a
low-frequency box.

A typical tiling of the frequency domain induced by a cone-adapted shearlet system is
depicted in Figure 3.2. The cones associated with the e-direction, e € {1,2}, are denoted
by C., and the symbol R is used for the low-frequency box.

\://
\

Figure 3.2: (a): The Fourier domain is partitioned into a horizontal and vertical double cone
and a low-frequency box. (b): Partition of the Fourier domain induced by a cone-adapted
shearlet system.

In the classic case [66], each shearlet subsystem is generated via affine transformations
from a single generator. For many constructions, however, this building principle is relaxed
to obtain more flexibility in the design, see for instance [70, 67]. A shearlet framework
which also comprises such more general constructions is provided by the concept of shearlet
molecules.

The notion first appeared in [68] and was later generalized in [62]. Like curvelet
molecules, shearlet molecules incorporate the molecule idea, i.e., to allow variable gen-
erators for each function as long as those satisfy a uniform time-frequency localization. The
definition of a-shearlet molecules given here generalizes both earlier definitions.

As for a-curvelet molecules, we only consider the discrete setting. For flexibility, we
allow different samplings of the shearlet domain, however restricted to regular sampling
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grids. Those are specified by a set of parameters, similar to (3.11), namely

o>1, c=(c1,e2) €ERE,  (vj)jen, € RT_O with v = o/179), (3.29)

The parameters ¢ and ¢ determine the scale and translational resolution of the sampling.
The numbers v; determine the resolution of the shear sampling.

The subsystems associated to the e-direction, € € {1, 2}, are indexed by a set A? of the
form

AL i={(e,4,6,k) : j €Ny, LELE, keZ?}, (3.30)

where j € Ny corresponds to the scale, £ € L] to the orientation, and k € 72 to the spatial
position of the elements. The possible shears at each scale j are restricted by a nonempty
set

L5 CZ such that max {|¢| : £€ L5} < I3,

where (L5)jen, is a sequence of nonnegative integers with L5 < gi(1=a),

For the subsequent definitions we need the following matrices, where the different ver-
sions correspond to different regions of the frequency domain, i.e., either the cones C,
e € {1, 2}, or the low-frequency box Ry. For the scaling we utilize the a-scaling matrices

0 1 t 0 2 t* 0
Aa% = Aa% = (0 to‘> and Aa} = (0 t) , t>0,

for the shearing we utilize the shear matrices

SO = g .— <(1) l{) and S = (1 O) , veR

v 1

Further, the translational grid is obtained from Z? using matrices of the form

© ._ a0 ._ [c1 O @ _ [c2 O _ 2
M = M. <0 02>’ M, (0 C1>’ c=(c1,c2) € RY.

S

o, corresponding to the frequency

Now we are ready to introduce the subsystems 901
cones C; in e-direction, € € {1, 2}.

Definition 3.3.1. Let o € [0,1], ¢ € {1,2}, and L, M, N1, N3 € NgU {oc}. Further, let the
sampling parameters (3.29) be fixed, and let A? be an index set of the form (3.30). We call
a system

My, . = {m,\ € Ly(R?*): N e Af:}

a system of a-shearlet molecules of order (L, M, N1, N2) associated with the e-direction if
the functions my = mg ;¢ can be represented in the form

me i) = 0/ 2 (A(E) S

a,o7

M)

with generators 7. jsx € Lo(R?) which satisfy for every p € N3 with [p| < L,

074 (60, €)| S min {1,079 4 || + 00 g [} ()N {gs )N (330)
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3.3 a-Shearlet Molecules

Hereby the implicit constant shall be independent of the indices (g,j,¢,k) € A and £ =
(£1,&) € R2. The value oo of a control parameter indicates that the respective quantity
can be chosen arbitrarily large.

Next, we introduce the system 97  corresponding to the low-frequency box Ro. As
index set we use

AS = {(o,o,o,k) ke 22}. (3.32)

Definition 3.3.2. Let a € [0,1] and L, N1, N2 € No U {oo}. The system 90, ; of base-scale
functions of order (L, Ny, N2) is given by

00 = {mA TN E AS}
with functions my € Ly(R?) of the form
ma(-) == (- — MO%k) for A= (0,0,0,k) € A3,
The generators vy € La(R?) are assumed to satisfy

0P340 (61, &) SHIEN™ (&) ™2, €= (&,&) € R,

for every p € N2 with |p| < L and with an implicit constant independent of the index A € A
and £ = (£1,&) € R2.

A full system of a-shearlet molecules for Ly(R?) is obtained by combining the systems

ms, ., e €{0,1,2}.

e’
Definition 3.3.3. An «a-shearlet index set A® is defined as the union

A= A2 (3.33)

e€{0,1,2}

of sets AS of the form (3.30) and (3.32). A system IS = {my € Lo(R?) : X\ € A%},
indexed by an a-shearlet index set A®, constitutes a system of a-shearlet molecules of order
(L, M, Ny, N2) if the subsystems 90, . := {m) : A € AZ}, ¢ € {1,2}, are systems of a-
shearlet molecules of order (L, M, Ny, N2) in the sense of Definition 3.3.1 and if Me 0 =

my : A € A3} is a system of base-scale functions of order (L, N1, N2) as in Definition 3.3.2.
0
For convenience, we write this as

m = J M.
e€{0,1,2}

The definition of a-shearlet molecules is compatible with other notions of shearlet
molecules, in particular those defined in [68, Def. 4.1].

Proposition 3.3.4 (compare [62, Prop. 3.14]). Shearlet molecules of reqularity R € Ny, as
defined in [68], are %-shearlet molecules of order (00,00, R/2, R/2).

Proof. An argument can be found right before [62, Prop. 3.14]. O

Next we will prove that, like a-curvelet molecules, systems of a-shearlet molecules con-
stitute their own subclass of discrete a-molecule systems.
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3.3.1 The a-Shearlet Parametrization

Since the construction of a-shearlet molecules is based on shearings instead of rotations, the
associated parametrizations need to adequately translate the shearing parameters to corre-
sponding orientation angles. This complicates their definition compared to the definition of
the a-curvelet parametrizations in Definition 3.2.3.

Definition 3.3.5. With parameters given as in (3.29), an a-shearlet parametrization (A%, %)
consists of an index set A® of the form (3.33) and a map ®° : A* — P from A® into
P=R? x T x R, defined by

O° 1 (g,5,0,k) — (S(fg)vinL,ch(e)k, (max{0, e — 1}7/2 + arctan(—Lvy)), a_j>.

Now we are ready to prove the essential result that a-shearlet molecules are instances
of a-molecules. In fact, they can even be characterized as precisely those systems of a-
molecules which correspond to an a-shearlet parametrization.

Proposition 3.3.6 (compare [59, Prop. 3.9]). FEvery system of a-shearlet molecules of
order (L, M, N1, N2) constitutes a system of a-molecules of the same order with respect to
a corresponding a-shearlet parametrization, and vice versa.

Proof. The main ingredients of the proof can be found in [59, Subsec. 6.1.1], where [59,
Prop. 3.9] is proved.

Let 92, := {m)}reas be a function system in Lo(R?) indexed by a set A* = AJUAUAS
of the form (3.33). Further, let ®° : A — (z, 7, %)) denote an a-shearlet parametrization
subject to parameters o, ¢ = (c1,¢2), (vj)jen, as in (3.29).

Clearly, for each A\ € A® there exist unique functions gy, yx € Lo(R?) such that

I (A8 ) —MOR) = my = 50 (AT Ry (-~ ),

where vy := fv;. We need to show that the Fourier transform gy of gy satisfies (2.5) if and
only if 4y satisfies (3.31). For this investigation we decompose

f))’tz - U mtsx,a
e€{0,1,2}

and handle the subsystems 90, . := {mx}xeas, € € {0, 1,2}, separately.

Let us begin with the case € = 0. Then gy = v, and the assertion is obvious.
Of the cases € € {1,2}, we only handle ¢ = 1 since the arguments for the case ¢ = 2 are
essentially the same. For 97 ; the relation between gy and 7y can be expressed by

) = (Tje-) and  gr() =n(T;, -) (3.34)
with a matrix
Ty = A, Ry S At (3.35)

which describes the transfer from the rotation-based to the shear-based generators. Let us
investigate the properties of this ‘transfer matrix’ T} ,.
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3.3 a-Shearlet Molecules

For this purpose, it is useful to first examine the matrix TM = Ry, S[Ui. Since 7y =

(arctan(—{fv;))ar, we have
1 tvj 1 —tan(ny)
SZ'U]' = ( O 1] > — (O 1 .

0 = tan(ny) cos(ny) —sin(ny) and  cos(ny) " = tan(ny) sin(ny) + cos(ny),

Using

we calculate

1

- (Cos(m) 0 >: /I (00;)? (('g) 0 )
sin(ny) cos(my) ! \/% v/ 1+ (Cv;)? c(j.l) )"

1

Taking into account a(j,?) = ¢(j,¢)"", we obtain for the inverse

. <c(j,€) 0 ) ( 1+ (fv;)? 0 )
i =\ Zpes j B L; - '
b(j,0) a(j,0) Jir o)y Vi)

By assumption |[¢| < o/ (1-2) and vj < o~91=9) which implies the existence of a bound
B > 0 such that

[fvj| < B for all j € Ng, £ € Lj.
Hence, uniformly for all j € Ny and £ € ILJI-
1/V1+B?<a(j,0) <1<c(jl) <V1+B?, |b(j,0)|<B/V1+ B2 (3.36)

Turning to the matrix T} ¢, we calculate

o a(j,?) 0 1 c(4, ) 0
Lt = ( o100 o) ) T T o0 e )
Since |0=7/(1=%)| < 1 for every j € Ny, we obtain for the Frobenius norm

IT5 e = 1 Tjellr < V2+ B2 and T [ ||lr = |75/ |r < V2 + B2

As a consequence, we have uniformly in j € Ny, £ € ]le-,

\/_B2|g| < Tl < V2 + B2[¢] for all € € R?, (3.37)

and the respective relation for \Tj_sz |. Since det T}, = det Tj_g1 = 1, we obtain from (3.34)

() = §7A(T]}T ) and ga()) = ’%(7}7} ).
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Now we are ready to show that the assumption (3.31) on 4, implies property (2.5) for gy,
and vice versa. Using |0=7(1=®| < 1, the uniform boundedness of |a (], )], [b(4, )|, |c(, €)|,
and the chain rule, we can estimate for any p € N3 with |p| < L,

575, (( a(jdg) U*j(l—a)b(j,é) >§>’ (3.38)

LNGIE Y

lv|<L

Utilizing the moment estimate in (3.31) for 4, gives the moment property required in (2.5),
namely

93] S (077 + la(. D& + 090G, 0&] + o7 e(i,08]) "
M
S (bt lal+6el)

It remains to show the decay of 97§y for large frequencies & = (£1,&2) € R2. We obtain
from (3.38) and the decay estimate in (3.31),

ali o—i=a)p(; -N B
I8”§A(€)\§<|< G0 )sD (e 06) ™ 5 (€)™ (),

where the last estimate is a consequence of |TjTe§] = €| due to (3.37) and ¢(j, £)&2 =< &.
We finish the proof by noting that an analogous argumentation, with the matrix TjTZT
taking the role of Tﬁ, yields (3.31) for 4, under the assumption (2.5) on §y. O

3.3.2 A Sufficient Frame Condition for a-Shearlet Molecules

We will now use Theorem 2.4.1 to derive a sufficient frame criterion for a-shearlet molecules
similar to Theorem 3.2.5. First, recall that an a-shearlet parametrization (A®, ®°) is deter-
mined by an a-shearlet index set, which can be decomposed in the form

A= A® x 72 with AS .= {(0,0,0)}U{(5,j,£) : 56{1,2},jeN0,£eL§},

and a corresponding parametrization map

—K’U]' a,a’*] C

PN =P (,5,0,k) — (S(s) A® Mk, (max{0,e — 1}% + arctan(—ﬁvj))%,a_j).

Hence, a-shearlet parametrizations have the structure (2.34) if for each u = (g,7,¢) € A®
we choose T}, := Tj(? Mc(a)M —1 with the matrix

Cc

T\7) = A7} R, 8%, AL . (3.39)

7 A

Note that indeed | det(7},)| = 1, as required. Note further that the matrices Tj(;) are transfer
matrices of the type (3.35) which were analyzed in the proof of Proposition 3.3.6.

Now let {my}rcas be a system of a-shearlet molecules with associated shear-based
generators {yx}xeas and assume that the functions v\ = 7, do not depend on k € 72.
In this situation the frame criterion for a-molecules, Theorem 2.4.1, can be applied to

positively decide whether this system forms a frame for L (R?).

72



3.3 a-Shearlet Molecules

In the case of a-shearlet molecules, it is more convenient to formulate the correlation
functions in terms of the shear-based generators vy = v,, A = (i, k) € A®. Hence, we
introduce the functions ®*: R? x R? - R and I'* : R? - R as

O*(&,w) = Y [5u(AS), (SEDTEA(AL), (S5 7Te + (M) Mw)),
HEA® (3.40)
I'*(w) := esssup ®*(&, w).
{eR?
For ¢ = (c1,c2) € RZ, we further define
R(e)= 3 [ m)E (=M m)]
meZ2\{0}

Then we have the following result.

Theorem 3.3.7. Let {m)}rcas be a system of a-shearlet molecules with a corresponding
family of generators {yx}reas, and assume that the generators vy = v, do not vary with
k € Z2. Further, let c = (c1,c2) € R% be the parameter in (3.29) associated with the density
of the translation grid. Then the condition

Ré(c) < Li; < L, < o0

inf sup

for the quantities

Ly = essinf @°(£,0)  and  Lg,, :=I'*(0) = esssup ®°(¢,0)
EER? ¢cR?

ensures that {my}xcas constitutes a frame for Lo(R?) with frame bounds A, B > 0 satisfying

s RS L R?
LlnfiR(C)gAngL(c)
| det M| | det M|

Proof. The system {mj} cas is a system of a-molecules with respect to an a-shearlet
parametrization. The associated rotation-based generators are given by g, = ’y“((Tj({z))*l-),

where Tj(;) is the transfer matrix (3.39). It follows

A= (T 7 = 0(As, R, (ST (AL, )7L).
Plugging this into (3.40) yields for the correlation function

@S(f,w) = Z |§M<Aa7tuRm§)|’gu(Aa,tuRmf + TJTW)L
HEAS

where T, T = (Tj(sg))_T(Mc(E))_lMc. Hence we can apply Theorem 2.4.1 and the assertion
follows. =

Finally note that SyA, ,i = Ay 49 S, if vj = o712 Hence for a strict a-shearlet
system as in Definition 3.3.8 this is precisely the criterion proved in [76, Thm. 3.4].
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3.3.3 Discrete a-Shearlet Systems

The concept of a-shearlet molecules comprises many common cone-adapted shearlet con-
structions. These include band-limited as well as compactly supported systems, as we will
see below.

The general structure of a regular cone-adapted discrete a-shearlet system is recalled in
Definition 3.3.8. It is a generalization of [80, Def. 11] to a-scaling. Note, that sometimes
the parameter 8 = o' is used in the definition instead, as for example in [59, Def. 3.10].

Definition 3.3.8 (compare [59, Def. 3.10]). For ¢ = (c1,¢2) € Ri and a € (0,1), the
cone-adapted a-shearlet system SH(¢,,1;c, a) generated by ¢,1,1 € La(R?) is defined
by

SH(¢,,1;¢,a) = ®(¢;c,a) UT(¢h;c,a) U T (e, a),

where, with 8 = a1,

D(¢;c, ) i= {p, = ¢(- — MVk) : k € 2%},
U(Yic,a) = {pen = DEVAYSP AT L ~MDE) : j e No, |4 <[22,k € 22},

U(ic,0) = {Pyen = PEVYSPAL ), - —MPk) 2 j € No, €] < [P0k € 22},

In the following, we present some examples of cone-adapted a-shearlet systems as in
Definition 3.3.8. Thereby the generators ¢,,1) € La(R?) are assumed to be either band-
limited or compactly supported.

In the band-limited case, we require q@,i/;,z; € C§°(R?) and a frequency support of the
form

supp$ C Q,  suppd CW,  suppd C W,
with Q@ C R? being a cube centered at the origin and W, W C R? being sets of the form
W= [—CL, CL] X ([—C, _b] U [b7 C])? W = ([_C7 _b] U [b7 C]) x [_av a’}

with 0 < b < cand 0 < a.
In the compact case, the coarse-scale generator ¢ shall satisfy

¢ € CN T2 (R2),

Furthermore, we assume the separability of ¢ € Lo(R?), ie. (a1, m2) = 1(x1)a(x2), and
let ¢ be its rotation by 7/2. Finally, the functions 1, 19 shall satisfy

Y1 € CYYR) and  thy € CYT2(R),

and for ¢ we assume M € Ny vanishing moments. B
The following proposition shows that under these assumptions the systems SH (¢, 1, ¢; ¢, &)
are instances of a-shearlet molecules.

Proposition 3.3.9 ([59, Prop. 3.11]). Let a € (0,1), B = o™ !, and ¢ € R be fized
parameters. The following statements hold.

(i) For band-limited generators ¢,1, and Y subject to the conditions above, the cone-
adapted a-shearlet system SH ($,1,1; ¢, a) is a system of a-shearlet molecules of order
(00, 00, 00, 00) with o = 2°/2, v; = o~I0=9) " gnd L;= [oi (1=,
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3.3 a-Shearlet Molecules

(i) For compactly supported generators ¢,, and ¥ subject to the conditions above, the
cone-adapted a-shearlet system SH(¢p,,v;c, ) is a system of a-shearlet molecules
of order (L, M — L, Ny, Ny), where L € {0,..., M} is arbitrary, with o = 2°/2, vj =
o107 and L; = [¢70=)].

Proof. For the proof we also refer to [59, Subsec. 6.1.2].
Let us first rename the functions of the system SH (¢, ¢, 1; ¢, «). For j € Ny, £ € Z with
|| < [2765=1D/2] and k € Z? we put

Yoo0k = ¢k = d(- — MOk),

Uik =Yk = 2j(5+1)/4¢(5(1)148)2m/2 :

Yok = ik = 2j(ﬁ+1)/4¢(‘9(2)‘4(2)2]ﬁ/2 - —=MP)k).
With ¢ = 2%/2 we can rewrite Ag,)zjﬂﬂ = AS’)].

'U] — O.—j(l—Oé)

and A )QJB/Q = ASL‘. Further, using
, we obtain

SHAW _ 40 M) 40 g

a,07 a,03 o —i(1—a) T “q 07 "l

and
Slg?)Ag) —A® @ la)_A()S()

a,09 " =i o, ot

Finally, due to 2/(6+1/4 = 5i(1+0)/2 e arrive at the representation

V0,00 = O(- — Mc(o)k)
(

o 2
Yok = o2 (A agyséuj)

Hence, the system SH (¢, 1,); ¢, o) = {1hx}reas has the structure of a system of a-shearlet
molecules generated by v1 j ok := ¥, y2,50k = ¥, and 70,0,0,k = ¢-

It remains to prove that these generators satisfy (3.31). In case of band-limited functions
the proof is analogous to the proof of Proposition 3.2.8(ii). The only interesting part is thus
the case of generators with compact support. Here we restrict our considerations to the
functions v j o r = .

The inverse Fourier transform of 8"’&, where p € N3, is up to a constant given by
x — zP(x). By smoothness and compact support of ¥1, 12, we find that for any |p| < L
the functions

SN 8(N17N1+N2)(3}p¢(1')) and  x — 2”P(x)

belong to Li(R?). Hence, on the Fourier side

€ s NN (e)  and € DPY(€)

are continuous and contained in L., (R?). It follows that

(€)M (&) NN 0Py ()
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is bounded in modulus. Using (x)(y) > (v/22 + y?) we get the decay estimate for large
frequencies

10°9(€)| < (&))" N(g2) 2.

Let us turn to the moment conditions. Let p = (p1, p2) € N3 with |p1| < L for some
L=0,...,M. Then
af1p(x) = 27"y (1) 25 Po(2)

restricted to the variable x; possesses at least M — L vanishing moments, since ; is assumed
to possess M vanishing moments. This yields a decay of order min{1,|¢;|™~%} for the
derivatives up to order L of ¥ by the following lemma, whose proof can be found, e.g., in
[62].

Lemma 3.3.10 ([62]). Suppose that g : R — C is continuous, compactly supported and
possesses M vanishing moments. Then

9(€)] < min{1, [}
The proof is finished. O

Proposition 3.3.9 shows that various versions of cone-adapted shearlet systems are united
under the roof of a-shearlet molecules. Furthermore, also non-affine constructions such as
the smooth Parseval frame of shearlets by Guo and Labate [70, 67] fall into this general
framework.

Since, by Proposition 3.3.6, a-shearlet molecules are particular instances of a-molecules,
these examples further show that the concept of a-molecules is general enough to include
both shear-based and rotation-based constructions.

3.4 Consistency of a-Curvelet and a-Shearlet Parametriza-
tions

Despite their different constructions, shearlet and curvelet systems are closely related and
in many respects exhibit a similar behavior. For example, the same approximation rates
with respect to cartoon-like data have been observed for various systems [15, 60, 67, 78, 73].
An explanation for this similar behavior can be given by the framework of a-molecules.

Both, a-curvelets and a-shearlets are instances of discrete a-molecule systems and, as
we will prove in this section, the corresponding parametrizations are consistent in the sense
of Definition 2.3.5. Hence, the same approximation rates are a direct consequence of the
transfer principle for a-molecules, Theorem 2.3.6.

In the main result of this section, Theorem 3.4.3, we first compare the a-curvelet and
a-shearlet parametrizations with the canonical parametrization from Definition 3.1.2. As a
corollary, we can then easily deduce the consistency of the different a-curvelet and a-shearlet
parametrizations among themselves, stated in Corollary 3.4.4.

For the proof of Theorem 3.4.3, we need two auxiliary lemmas. The first one is given
below.

Lemma 3.4.1. Let 0 <6 < 5 be fized. Then uniformly for |n| <6 and |0| <

{n =0} = [n— 0.

jus
2
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Proof. Since |n — 0| < § +6 <, there exists « € {—1,0,1} with

{n—0} =In—0—unl.

In case ¢ = 0 it even holds [{n — 0}| = |n — 0|. In case || = 1 we estimate

71'
=6} =ln—0—ux|>|m—In—6]| > 5 - 5.

Further, |n — ] < § + ¢ and hence [{n — 0}| > ;;gg]n — 0|. The other direction, i.e., the

estimate [{n — 0} < |n — 0], is always true. O
The second auxiliary lemma is as follows.

Lemma 3.4.2 ([59, Lem. 6.8]). For all z, y € R, absolutely bounded by some fized bound
B >0, i.e., |z|,|y| < B, we have

|arctan x — arctany| < |z — y|.

Proof. For x # y we have for some £ between z and y by the mean value theorem

tan z — arct ;
|arctan  — arctan y| = arctan’(§) = 2"
F— 1+¢
This yields
1
Wh —y| < |arctanx — arctany| < |z — y|.

The case r = y is trivial. O
Note, that, as a consequence of this lemma, if 6,60’ € ¢[—7/2,7/2] with 0 < ¢ < 1 then
|0 — ¢'| < |tan(6) — tan(0')|.

Now we are ready to prove Theorem 3.4.3. The proof is analogous to the proof of [59,
Lem. 5.8] in [59, Subsec. 6.3.2].

Theorem 3.4.3 (compare [59, Lem. 5.8]). Let o € [0,1], and let (A, Py) be either an
a-curvelet or an a-shearlet parametrization. Then we have for all N > 2

sup > wa(®A(N),y) N < 0.
YEP Nea

Proof. Let us write x\ = (zx, M, tr) := Pp(A) for A € A. By the definition of w,, we need

to consider ; N
u - —
Sy = Z Z max{f,a} (1+da(x)\7y)) N

j€ENg AeA ]
ta=c"7

for every y = (y,0,u) € P. We will prove below that

_ 2
Siyi= > (T+da(xny) " Smax {1}, (3.41)
(5
XeA
ty=0"J
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where the implicit constant is independent of y = (y,6,u) € P and j € Ng. Now let j/ € R
denote the unique real number with © = 6~7". Then we can deduce

w4 2—-N o, .
< - li=3"1(2—=N) Jj(@2-N) _.
Sy Zmax{ U]} ZO’ §2Za 1 C < o0,
j€No Jj€Ng Jj€No
with a positive constant C' independent of y € P. The assertion of the theorem follows.
It remains to establish (3.41) for the a-curvelet as well as the a-shearlet parametrization.
In view of Lemma 2.2.4, it suffices to estimate the sum

Siy= > (1+da(@r(V).y) ", (3.42)
AEA
t)\:0'7j

where d, = d¥™ is the simplified version of d, from Definition 2.2.3 given by

da(®A(N),y) = 1o 2 {n = 03} + 52 n. — y2 + t5 | {en, 2a — 1)

Here ey := e, and tg := max{ty,u} for y = (y,0,u) € P.

We subsequently handle the cases of (A, @) being either a-curvelet or a-shearlet parametriza-
tion separately.

Part (i): Let us first assume that (A, ®5) = (A, @) is an a-curvelet parametrization
with parameters o > 1, ¢ = (c1,¢2) € R2, (wj);, and (L;); as in (3.11).

For the subsequent arguments, let us denote the first component of a vector z € R? by
[2]1 and the second by [z]o. Further, let e; denote the first unit vector of R2,

We obtain the estimates

[{exsax = y)| = [(Ry e, Ry Aoy Mck — )| = [taerkr — [Ry,ylal, (3.43)
and
lwx — yl = |Ry N A, Mck — y| > [tScaka — [Ry,ylal. (3.44)
To deal with the term |[{n) — 0}|, note that {n\ — 6} = {fw; — 0} and define
ng) = {EGZ:ij—Q—mWE [—7r/2,7r/2)}, m € Z.

Since L; < 071=%) and wj < o~7(1=9) we have |tw;| <1 for £ € ;. Hence, there is a bound
B > 0 such that

[tw;| < B for all j € Ny, £ € L. (3.45)
Hence, there exists M € Ny, independent of j, such that ]Lg« m . =1L; ﬂZ = () for all j and
|m| > M. We can thus decompose
- (m)
SJ’y - Z SJyy
m=—M
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into a sum consisting of the terms

B I o (T L e T
]_ a) t(2)a to .

ZeL(”") kez? tO

Using (3.43), (3.44), and w; < 070179 = ¢]7* we obtain

5 53 (1) wonf < Jl2) e 4 () -te])

EEL;-m) kez2
(3.46)

with the quantities

ay(m) := ta(lfa)(e +mm), az(l) = tao‘cgl[Rmy]g, az(0) == talcfl[Rmy]l.

All these quantities vary with j € Ny and y = (y,0,u) € P. Furthermore, as indicated by
the notation, a; is also dependent on m, whereas as and ag also depend on /.

To proceed, we interpret the sum on the right as a Riemann sum, which is bounded up
to a multiplicative constant by the corresponding integral. We obtain

l1-a « 11— 2
( ) Jy) S Z (t)\) 1222 (Z)\) ngEZ (Z\) (1 + V(ig) B al(m)‘
+%%£Y“%MOV+M%2)—%@W_N
S [ dy [ do(ir P+ faol + foa) ™,

where the integral is finite precisely if N > 2 (see Lemma 4.5.11 applied with r = 1, v = 0).
Hence, we arrive at

~(m) t)\ _ ﬂ 2

Siy N(to) —max{b\,l} ,
and due to ty/tg < 1 the implicit constant is independent of j € Ny and y = (y,6,u) € P.
Since the number of summands Svj(n;) does not exceed 2M +1 the proof of part (i) is finished.

Part (ii): Let us now turn to the case when (A, ®,) = (A% ®°) is an a-shearlet
parametrization, specified by a set of parameters o > 1, ¢ = (c1,¢2) € R2, (vj;);, and
(L5); as in (3.29). In this case, the sum Sy from (3.42) can be split into three parts

_ o N
S9:= 3 (1+da(@(\),y) ", ce{0,1,2},
AEAS
ty=0 7

corresponding to the respective regions of the frequency domain. In the following, we handle
these sums separately.
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EXAMPLES OF a-MOLECULES IN Ly (RR?)

Af: We first treat € = 0 and see that .5; g0 ) , due to the definition of A{, is an empty sum if
7> 0. In case 7 = 0 we need to look at the partial sum

S0 T -N _2a _ -N
%;=;;u+%@«mw> =§zu+%ﬂMw—W+%w%Mw—wD,
€A kez

where here ¢y = max{1,u}. Since a < 1 we obtain the bound

0 B B N
S((J; < Y (L+t5%eake =yl + tg Herks — )
keZ2

The sum on the right-hand side can be interpreted as a Riemann sum. This enables the
estimate

0 -N
Sy S 18 [, (1 leaws = o +fess =) dw 5 63
Since ty = 1 and t3 = max{1,u}? we are finished.
AZ, e € {1,2}: For symmetry reasons, both partial sums for £ € {1,2} can be treated in

the same fashion. It therefore suffices to present the proof for the case € = 1.
Since le- < 09072 and v; < ¢77(17%) " analogous to (3.45), there is a bound B > 0 with

[¢v;| < B for all j € No,/ € L. (3.47)
Putting ¢ := arctan(B), we thus have 0 < § < 7 and
[{ma} = larctan(—fv;)| <

for ny = (arctan(— 611]))27r Recall the proof of Proposition 3.3.6, where we have shown that
the transfer matrix 1) = TJ 0= RmS’ has the form

o= (i) L0

sin(ny) cos(nx

We know from (3.36) that the diagonal entries of T are bounded by positive constants from
above and below. Furthermore, the off-diagonal entry is bounded from above in modulus.
This leads to

exs o — )l = [(Byler, Spot Aapy Mck — y)| = [{e1, Ta Ayt Mck — Ry, )|
= |taciki cos(nn) — [Ryyyh| = [txki — cos(m) ™' ey " Ry, yhl- (3.48)

Next, we estimate the term |zy — y|. We have [Sp,, x| < || uniformly for z € R? and
j€Np, L€ ]le., and therefore it holds

|2x =yl = 1S5, Aa,ty Mck — y| = [MeAa,i,k — Sty
= |Aau b — M eyl > [tSka — [M; " Sp, 2l

At last, we deal with the term [{ny — 0}|. First, recall that [{n\}| < = arctan(B) < 5
for all A € Af, where B > 0 is the bound from (3.47). Further, [{#}| < § for every
0 € T =[0,27). Applying Lemma 3.4.1, we hence obtain uniformly for all A € A; and 0 € T

{na = 03 = [{{m} = {03} = o} — {6},
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3.5 Wavelet Systems

Next, we distinguish between those 6 € T with [{#}| < arctan(B + 1) and those with
|{0}| > arctan(B + 1).
For [{0}| < arctan(B + 1), we use Lemma 3.4.2 and tan(f) = tan({0}) to obtain

{nx = 03 =< [{na} = {0}] = [arctan(—Lv;) — {0}] = [fv; + tan(6)].
In case [{#}| > arctan(B + 1) we estimate directly, using |[{nx}| < arctan(B),
[ — 0} = [} — 10} = [[{m}] — {8} > axctan(B + 1) — axctan(B) > 0.

Since |fv;| < B according to (3.47) this implies [{ny — 0}| 2 [¢v;].
We now introduce the quantity

0) := tan(6) ,[{0}] < arctan(B + 1)
o 0 ,|{6}| > arctan(B + 1).

Then we can summarize
[ — 0} 2 [v; + q(9)]- (3.49)

In view of the estimates (3.48)-(3.49) and v; =< 0717 < ;7% we obtain

-1 _
5(1) < Z Z 14 |£Uj +Q(9)’2 I ’tgk? - [02 Sévjy]2|2 4 [txk1 — [01 lRmy]l/COS(nA)|)_N

5y o~ 5 t2(1—o¢) t%a to
j kEZ 0
<3 )" a0 ¢ () ] () -]
LeL keZ?

with the quantities

ai(0) := *ta(lfa)qw), az(€) ==ty %[y " Sev,yla,  as(l) =ty e Ry, yli/ cos(my),

depending on j, ¢, # and y. This expression is similar to (3.46). Therefore, from here we
can proceed as in part (i) of the proof. O

As a corollary of Theorem 3.4.3 we obtain the desired consistency of a-curvelet and
a-shearlet parametrizations.

Corollary 3.4.4 ([59, Thm. 5.7]). Let o € [0,1], and let (A, D) be either an a-curvelet
or an a-shearlet parametrization. Then, any other a-curvelet or a-shearlet parametrization
(A, Pp), with possibly different parameters, is (o, k)-consistent to (A, ®p) for k > 2.

Proof. This is a direct consequence of Theorem 3.4.3 and the quasi-symmetry of wg. ]
The consistency plays an important role for the application of the transfer principle. In

particular, Corollary 3.4.4 will be used in Chapters 5 and 6, where we analyze the cartoon
approximation capabilities of discrete a-molecule frames.
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(a) (b)
Figure 3.3: (a): Partition of the Fourier domain induced by radial wavelets. (b): Partition
of the Fourier domain induced by tensor wavelets.

3.5 Wavelet Systems

In a strict sense, wavelet systems do not belong to the class of directional representation
systems since they are isotropically scaled. Nevertheless, the framework of a-molecules
also covers such isotropic systems for the case @« = 1. It turns out that many wavelet
constructions can be subsumed under the notion of 1-curvelet molecules.

This justifies the following definition.

Definition 3.5.1. A system of 1-curvelet molecules shall also be referred to as a system of
wawvelet molecules. The associated 1-curvelet parametrization is then simply called a wavelet
parametrization.

We will subsequently consider two different types of wavelet systems in Lo(R?), namely
radial wavelet systems and tensor wavelet systems.

3.5.1 Radial Wavelets

A typical radial wavelet system in Lo(R?) is given as follows.

Definition 3.5.2. Let v, 1 be radial functions in Ly(R?). Further, let ¢ > 1, ¢ =
(c1,00) € Ri be fixed parameters. The associated radial wavelet system Wyad (vo,¥; 0, ¢) is
then defined by

Wiad (o, i 0v¢) i= {0+ j € No, k € 2%},
where
You(t) == to(- — Mck) and () == 07yp(07 - —Mck) for j > 1.
Here M, stands for the matrix (3.10).

The index set associated to such a radial wavelet system Wiaq (10, %; 0, ¢) shall be de-
noted by
A%y = {(j,k) = j€No, k€Z?}.

We subsequently analyze those systems in more detail where the generators g, v €
L>(R?) are bandlimited and where ¢ has infinitely many vanishing moments. Concretely,
we assume that the functions g, ¥ satisfy

Yo, 1 € CE(R?) for some L € Ny U {oo},

82



3.5 Wavelet Systems

and that there exist 0 < ¢ and 0 < b < ¢ such that
supptho C By = {6 €R?: [¢] <a} and suppt) C Cpe = {E €R? b < [¢] < c}.

According to the following proposition, under these assumptions Wi,q (v, ¥; 0, ¢) is a system
of 1-molecules of order (L, 00,00,00). The corresponding tiling of the frequency plane is
illustrated in Figure 3.3 (a).

Proposition 3.5.3. Suppose that the generators of the radial wavelet system Wiaq (1o, ¥; 0, ¢)
fulfill the conditions specified above. Then this system is a system of 1-molecules of order
(L, 00, 00, 00) with respect to the radial wavelet parametrization (AY ;, @) with parametriza-
tion map

P AL, =P, (G k) = (077 Mk, 0,077).

Proof. The proof is analogous to the proof of Proposition 3.2.8 (ii). O

We next observe that the system Wi.q(vo,;0,¢) can even be interpreted as a system
of 1-curvelet molecules of order (L, 00, 00, 00), with associated parametrization (A¢, ®¢) and
parameters o, ¢ = (c1,¢2), as well as L;j := 0 and w; := 2 for every j € Ny (see (3.11) and
(3.13)). For this, we just need to relabel the elements of Wi,q(10,¥; 0, ¢) via the bijection

Lrad:A;gd%Ac7 (],k)H(j,O,k)
The relation between the radial wavelet parametrization (AY ;, ® ;) and the corresponding
1-curvelet parametrization (A€, @) is then given by

%d = @0 Lpaq.
As an immediate consequence, we can derive the following consistency result from The-
orem 3.4.3.

Proposition 3.5.4. Let N > 2. Then, with (A4, ®Y ) being the radial wavelet parametriza-
tion, we have

sup Z wa(fbgd(A),y)_N < o0.

YEF xeaw,
In particular, the parametrization (AY 4, ®w ) is (1, k)-consistent with other 1-curvelet
and 1-shearlet parametrizations for & > 2 (compare Corollary 3.4.4).

3.5.2 Tensor Wavelets

Another important class of wavelets in Lo(R?) is obtained via tensoring of univariate
wavelets. We subsequently recall the tensor product construction from [114]. It builds
upon a given multi-resolution analysis for Ls(R) whose scaling function and associated
wavelet shall be denoted by ¢° € Ly(R) and ¢! € La(R), respectively. For every index
e = (e1,e2) € E, where E = {0,1}2, one then defines the functions 1 € Ly(R?) as the
tensor products

P =9 @ 7. (3.50)

These serve as the generators for the tensor wavelet system Wiey (qﬁo, oL o, ¢) defined below.
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EXAMPLES OF a-MOLECULES IN Ly (RR?)

Definition 3.5.5. Let ¢°, ¢! € La(R) and ¢¢ € Ly(R?), e € E, be defined as above.
Further, let 0 > 1, ¢ = (c1,¢2) € Ri be fixed parameters. The associated tensor wavelet
system Wien (6", ¢'; 0, ¢) is then defined by

Wten(qbo,qbl;a, c) == {@ZJ(O’O)(- — M) : ke ZQ}
U{o7ye(07 - =Mck) = e € B\{(0,0)}, j € No, k € Z2}.
Let us now assume that the generating functions ¢°, ¢! € Lo(R) satisfy
#°, o' € CE(R) for some L € Ng U {0}, (3.51)
and that there exist 0 < a¢ and 0 < b < ¢ such that
supp @° C [—a,a] = J© and suppd' C [—c, ]\[-b,b] =: JV. (3.52)

Then Wien(¢Y, ¢';0,¢) induces a frequency tiling as in Figure 3.3 (b) and, as shown by
the following proposition, this tensor wavelet system is a special instance of a 1-molecule
system.

Proposition 3.5.6. Let 0 > 1, ¢ = (c1,¢2) € Ri be fized, and assume that the functions
#°, ¢! satisfy (3.51) and (3.52). Then the tensor wavelet system Wien(¢°, ¢';0,¢) con-
stitutes a system of 1-molecules of order (L, o0, 00,00) with respect to the tensor wavelet

parametrization (AY,, P{,) where

A2 = 1{((0,0),0,k) : k€ Z*}U{(e,j, k) : e€ E\{(0,0)}, 5 € No, k € Z*}

and ' '
oY ALY, =P (e, k)~ (07 MkE,0,077).

ten ten

Proof. For (e, j,k) € Af), we define the generators g j := ¥°, with 1) being the functions
from (3.50). We then have g, j; = 1¢ € C¥(R?) by (3.51). Further, (3.52) implies that

supp ¢p© C J¢ := J) x J(2)  for all e = (1, e5) € E.

Hence supp (0°ge jx) C J¢ for every p € N2 with |p[y < L and for all (e,j, k) € AY,.
Further, the expression supgege 0°Gejk(§)] = Supgcpe |8p1ﬁe(£)| is bounded uniformly in
(e,j,k) € A,. Altogether, this proves that the functions g, satisfy condition (2.5).

ten-
Since the wavelets can be written in the form

ik() = ajwe(aj - —M.k) = Ujge,j,k(aj(- — a_chk)),
the proof is finished. O

We remark that conditions as in (3.51) and (3.52) are fulfilled, for instance, if ¢°, ¢! €
Ls(R) are the generators of a Lemarié-Meyer wavelet system. Moreover, results similar to
Proposition 3.5.6 can be proven for other wavelet systems of the form Wien(¢°, ¢';0,¢),
including systems generated by compactly supported functions ¢° and ¢'.

Finally, let us again interpret Wien(¢°, ¢'; 0, ¢) as an instance of a 1-curvelet molecule
system with parametrization (A¢, ®¢). To this end, we choose L; := 2 and w; := 27 for all
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3.6 Ridgelet Systems

J € Ng. Further, we use Ly := {—1,0,1,2} and L; := {—1,0,1} for j > 1 in the definition
(3.12) of the 1-curvelet index set A°. Then

€1 — ez, k E\{(0,0
Lten : A}clén — A°, (G,j, ]{Z) N (]761 €2, )a e c \{( , )}7
(07 27 k), e = (07 0)’
is a bijection and
@’LU

c
ten — D 0 tgen.

Analogous to Proposition 3.5.4, we can derive the canonical consistency of the tensor
wavelet parametrization.

Proposition 3.5.7. Let N > 2. Then, with (A{,, ®,) being the tensor wavelet parametriza-
tion, we have

sup Z wa(®2 (N, y) N < .

ten
YEP Neaw,
Hence, like the radial wavelet parametrization, the tensor wavelet parametrization is
(1, k)-consistent for k£ > 2 with other 1-curvelet and 1-shearlet parametrizations. Moreover,
this result shows that both wavelet parametrizations are (1, k)-consistent, k£ > 2, with each
other.

3.6 Ridgelet Systems

The last section of this chapter is devoted to ridgelet systems. Whereas there does not
exist a common definition of a ridgelet, the different variants of this notion that occur in
the literature are all related to the concept of a so-called ridge function. In the bivariate
setting, this is a function ® : R? — C which only varies in one coordinate direction and
can thus be represented in the form ® = ¢({v,-)) using a suitable univariate profile ¢ and
a direction vector v € R2,

The term ‘ridgelet’ was first used by Candés in [8] to refer to such bivariate ridge
functions forming a system of the type

Vio((tey, ) —x), e, eSSt zeR:teRy, 3.53
Y n

where the profile ¢ is a univariate wavelet. Systems of this kind can be used for example
to analyze functions and give rise to the so-called ridgelet transform. A viable theory for
this transform has been developed in [8]. One difficulty, however, when dealing with these
‘pure ridgelets’ is their lack of integrability.

In order to obtain system in Ls(R?), Donoho slightly relaxed the original definition,
allowing the ridgelets a slow decay along the ridge. Using this idea, he constructed an
orthonormal basis for La(R?) whose elements he called ‘orthonormal ridgelets’ [36]. Their
relationship to the original ‘pure ridgelets’ in the sense of Candeés has been analyzed in [37].

An alternative approach to define ridgelet systems in Lo(R?) goes back to Grohs [57].
He considers function systems of the form

Y \/Zw(Ao’tRny —x), (3.54)
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obtained by applying dilations Ag; = diag(t,1) € R?*? with ¢t € R, rotations R,, n € T,
and translations to some generator ¢ € Lo(R?), which is assumed to be oscillatory in one
coordinate direction. The construction principle is thus the same as for 0-curvelets and
closely resembles (3.53). In fact, the ridgelet construction in [57] more or less coincides with
the O-curvelet frame €f from Subsection 3.2.3.

To ensure the frame property, the scaling is not carried out in Cartesian coordinates,
but in polar coordinates. This causes the ridgelet generators to vary with the scale as was
the case for € (see (3.25)). By relaxing the rigid construction principle (3.54) and allowing
variable generators, one then again arrives at the notion of 0-curvelet molecules.

For convenience, we thus make the following definition.

Definition 3.6.1. A system of O-curvelet molecules is also called a system of ridgelet
molecules. The associated 0-curvelet parametrization is then accordingly referred to as a
ridgelet parametrization.

Due to Proposition 3.2.4, ridgelet molecules in the above sense are special instances of
0-molecules. Further, due to Proposition 3.2.8, the O-curvelet frame €§ from Definition 3.2.6
is a special case of a ridgelet molecule system.

Proposition 3.6.2 ([59, Prop. 3.5]). The O-curvelet frame € is a system of ridgelet
molecules of order (0o, 00,00, 00).

Summarizing, we can record that ridgelet-type systems in the sense of (3.54) conve-
niently fit into the already existing theory. They are covered by the notion of a-curvelet
molecules for a = 0.
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Chapter 4

a-Molecule Coorbit Spaces

In this chapter, we build upon the continuous Parseval frame of a-curvelets €, = {1 }xex
from Section 3.1 to introduce an associated transform which is a direct generalization of the
continuous curvelet transform from [10, Sec. 2]. Subsequently it will be called the continuous
a-curvelet transform.

Utilizing the coorbit theory put forward in [74], which does not require an underlying
group structure of the voice transform, we then define associated a-curvelet coorbit spaces.
Further, based on the more general concept of a continuous a-molecule transform, which in
particular comprises the cone-adapted a-shearlet transform, we will also introduce so-called
a-molecule coorbit spaces.

In Theorem 4.3.8 it is shown that those are equivalent to the a-curvelet coorbits. In
Theorem 4.3.13 we further give a discrete characterization which identifies them with known
smoothness spaces, for example from [85]. As an application of the abstract machinery
available for coorbit spaces, we deduce two further discretization results, Theorem 4.4.19
and Theorem 4.4.21, yielding atomic decompositions as well as quasi-Banach frames.

4.1 The Continuous a-Curvelet Transform

In Section 3.1 of Chapter 3 we have constructed the continuous Parseval frame of a-curvelets
Co = {¥x }xex, whose index set

X =R2?x T x (0,1]

can be viewed as a subspace of the parameter domain P defined in (2.1). However, recall
that the topology on X shall not be the subspace topology induced by P. Instead, we will
think of X as being assembled as a disconnected union X = Xg U X; of two components,
namely the homogeneous component Xg and the inhomogeneous component X1 given by

Xg:=R*xTx (0,1) and X;:=R*xTx {1}.

Each of these components shall thereby carry the subspace topology inherited from P. As
noted in Section 3.1, X is then a locally compact Hausdorff space.

Further, X is equipped with the Radon measure p defined by (3.7) satisfying supp p = X.
Its restrictions to the components Xy and X; are denoted by po and p1. They are given by

dx dndt
dpo(z,n,t) = —5— and du(z,7,1) = dndt.

We have already shown in Section 3.1 that with respect to this measure €, is a continuous
Parseval frame satisfying the Parseval identity (3.5) and the reconstruction formula (3.6).
These are important relations, since in the following we want to use the frame €, as a tool
for signal analysis.
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4.1.1 Basic Transform on L,(R?)

In the context of coorbit theory, the analysis operator of a frame is usually called the voice
transform. For the frame €, = {1k }xex it takes the form

Ve, : La(R?) — Ly(X), Ve [(x) := (f,0x), xeX. (4.1)

Subsequently it will be called the continuous a-curvelet transform. Since €, is a Parseval
frame it defines an isometry from Ls(R?) to Ly(X).
The corresponding synthesis operator Vi’ is the Hilbert-adjoint of V¢, given by

Vi Lo(X) = Ly(RY), Vi F= /X F(x) i dp(x).

Hereby the integral is in general only defined in a weak sense.

Due to the Parseval property, the associated frame operator, which by definition is the
composition of the analysis and the synthesis operator, is the identity. In other words, for
all f € La(R?) we have the reconstruction formula

F=ViVe f = /X Ve £(x)thx dpa(x), (4.2)

where again the integral is usually only a weak integral in Lo(R?).
Let us finally take a look at the associated Gramian matrix G[€,] introduced in (2.7).
It has the entries

g[QOC](XJ y) = <1/}y7 ¢X> 9 va € X7
and gives rise to the so-called Gramian operator G|€,] : La(X) — Lo(X) with

GlelF(x) = [ GlE)(x VF(y) du(y). x X

Taking the role of an integral kernel, the Gramian matrix is often referred to as the Gramian
kernel. Also note that, for simplicity, we do not distinguish between the Gramian kernel
and the Gramian operator in the notation.

From (4.2) we can derive the following reproducing formula, valid for all f € Lo(R?),

Ve, () = [ Glea)(x3)Ve, f(3) du(y) . x € X (13)

We next turn to an extension of Vi, to the space of tempered distributions S’(R?).

4.1.2 Extension to S§'(R?)

As it stands, the a-curvelet transform (4.1) is only defined for square-integrable functions
f € Ly(R?). For applications in signal analysis, this is a severe limitation since many signals
of interest are not square-integrable. Therefore, in order to enhance the applicability of V¢,
we need to find a way to extend its definition beyond Lo(R?).

A larger reservoir of signals is given by the space of tempered distributions S'(R?),
the topological dual of the Schwartz space S(R?). Its elements, the so-called tempered
distributions, are the continuous linear functionals on S(R?) which is the space of functions

S(R?) := {f € C°(R?) : |f|s, < oo for all (k,v) € Nj x Ng},
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4.1 The Continuous a-Curvelet Transform

topologized by the family of semi-norms

|flip == sup |270" f(z)|, k,ve Ng. (4.4)
z€ER2

Equipped with the topology induced by the collection {| |, : k,v € N3}, the space S(R?)
becomes a locally convex Hausdorff space.

An alternative way to define the topology of S(R?) is to use the collection of norms
{Il - Iz : N € No} given by

IFllx == sup (1 + [z D 07 f(2)]. (4.5)

2
veR <N

This collection constitutes a complete filtrating family of norms (see e.g. [72]) generating
the topology of S(R?). Using these norms, we can easily derive a metric for S(R?) which is
consistent with this topology. It is given by

d(f,q) := o-v_IF—gllx ,g € S(R?).
(f.9) N%O T g e (R%)

The relation of the spaces S(R?) and &'(R?) to the Hilbert space Lo(R?) is illustrated
by the following chain of embeddings

S(R?) <& Ly(R?) &% Ly(R?Y & S'(R?), (4.6)

where ¢ : S(R?) — Lo(R?) is the canonical injection, t* : Ly(R?) — S'(R?) its adjoint, and
R : L3(R?) — Ly(R?)" denotes the Riesz map between Lo(R?) and its dual Ly(R?)', i.e., the
canonical conjugate-linear isomorphism given by f — (-, f).

The duality product (-, -)s/xs on the pair §’(R?)x S(R?) provides a natural way to extend
Ve, to 8'(R?). Crucial for this is the observation that €, is contained in S(R?). In fact,
the a-curvelets v, ; € €, are band-limited functions which even satisfy ﬁxm’t € C(R?).
This implies 1, € S(R?) for all (x,7,t) € X and allows to define the extended transform
Ve, for f € S'(R?) as

V@af(X) = <fa ¢X>$/><$ , X € X. (47)

This transform Vi “extends” the La-version from (4.1) in the sense depicted in the following
commutative diagram: Ve
Ly(R?) ——— Ly(X)

R| |0 (4.8)
Lo (R?Y L Ly(X)

However, even with this extended definition of Vi at hand, it is not yet clear how
useful this transform actually is for the analysis of signals in &'(R?). In particular, it is
not a-priori self-evident that Vg _ is still injective, a prerequisite if we want to be able to
uniquely reconstruct signals from their transforms.

Fortunately, it turns out that even in its extended form the injectivity of the transform
Ve, is guaranteed. This is a consequence of the fact that €, is total in S(R?), i.e., that the
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linear span of €, is dense in S(R?). This will be the statement of Lemma 4.1.3, but before
we can give a proof of this we need some preparation.
For every N € Ny, let us introduce the auxiliary spaces

By(R?) = {f € CV®) : |[fllv < oo}

where || - || & is given as in (4.5). These spaces are Banach spaces as the following lemma
shows. They are useful since they “approximate” S(R?) in the following sense:

By+1(R?) C By(R?*) for NeNy  and S(R?*) = () By(R?).
NeNy

Moreover, the family of nested spaces {By(R?)} yen, captures the topology of S(R?).

Lemma 4.1.1. For each N € Ny the space By (R?) equipped with the norm || - ||n is a
Banach space. Moreover, if N > 2 it is continuously and densely embedded into Lo(R?).

Proof. The vector space properties of By are obvious. Further, ||- ||y clearly defines a norm
on By. To prove the completeness of By, note that By — C. Hence, every Cauchy
sequence (f)nen C By has at least a CV-limit f € CN with ||f, — fllox — 0 for n — oo.
It remains to show f € By and f, — f in By.

For this, let € > 0 be arbitrary. Then there exists M € N such that || f,, — fm||n < € for
all n,m > M. From || f, — f]lox — 0 we deduce 97 f,,(z) — 97 f(x) pointwise for all x € R?
and |y| < N. By continuity, we deduce for n > M

(1+ |z Z 07(f — fo)(z)| <e forall x € R2
<N

It follows ||f — ful|ln < € for all n > M, which implies f € By since in particular || f||y <
| farlln +11f — fallv < oo. In addition, we can conclude f,, — f in By since € was arbitrary.

For f € By we have f(z) < (1+|z|)™". Hence, if N > 2, we clearly have f € L.
Further, By is dense in Lo due to the density of the subspace C¢°. Finally, to see that the
embedding By < Lo is continuous, we estimate

IF L2 < IFQ+ T DYool 1 D7V L2l < N1l n

Next, we establish a strong form of the reconstruction formula (4.2) for Schwartz func-
tions ¢ € S(R?).

Lemma 4.1.2. Let ¢ € S(R?). Then, for every N € Ny the reconstruction formula
o= /X Ve, 0 (x)thx dp(x)

holds in strong Bochner sense in By (R?).

Proof. Let N € Ny. We first prove that the integral converges in Bochner sense in By. For
this we verify the Bochner criterion

[ Weup)llelv dio) < oo
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4.1 The Continuous a-Curvelet Transform

The integrand of this integral is clearly measurable. It thus only remains to prove the
boundedness. To this end, we first show that there is a constant Cn > 0 such that

x||v < COnt= 0T /26=N (1 4 |2|5)N  uniformly for all x = (z,7,t) € X. (4.9)
Recall that with g; given as in (3.9)
¢x,n,t = t7(1+a)/2gt (A;,%SRW( - .T)),

which implies
¢x,n,t = t(1+a)/2gt (Aa,tRn : ) eXp(-QT['i(l‘, >)

Let us now estimate the Schwartz semi-norms ||, from (4.4) for the a-curvelets 1, ¢+ € €.
For k = (k1, ko) € N3 and v = (v1,15) € N3, with |s|1, [v|1 < N, we have

W)ac,n,t

ks = SUD €500 4(6)| < 07 (€ D)L .
£ER?

Further

€ = € Dt HLa|| S 20" = €1 An s RyS) exp(—2mil, )} L

S 02 up 014 > € Gu(Aa Ry HEn a1 a2
<k

<tV 4 fala) sup [9146 o €0 (Ao Ry} L
1>

Y

where we used |z1| < |z|2 and |z2| < |z|2 to obtain
et [ a2 < (L ) TR (L fa) T < (1 fa]2) T < (1 f2f2) Y

Finally, for I = (I1,15) € N with |I|; < N we deduce

Hal{fygt(AavtRn‘)HLlHS sup

m<min{l,v}

€m0 g (Aa R L |

Taking into account ¢ € (0, 1], we can estimate

0 "G (AasRe)| S Y [(0750) (Aa By,

[n[1<N

Using [€/7™| < (1+£]2)", we then obtain for each m = (m1,mz) € N2 with m < min{l,v}

& AaiR)IL | £ 30 (0416 0"90) (as R L |

In[1<N
— 0 S (14 Ry AN (073) Ol
In[1<N
<Y sup (1 )Y (0% Q1L |
In[1<N
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Putting everything together, this yields

‘waﬁ,n,t|n,u 5 Haﬁ(gyi%,n,tﬂ[/l“ 5 t_(1+a)/2t_N(1 + ‘$|2)N| THEN H(l + |§|2)N(6”§t)()|L1H
niis

Now we use the a-molecule estimate (2.5) with N; > N + 2 and obtain the desired result,
[oatlew S 2L+ [2l2)VEV{E = (14 1€l A+ €)M L.

Finally, we note that uniformly in (z,7,t) € X

”wJJJLtHN ,S sup ’wz,n,t‘fi,w
k|1, v <N
This proves (4.9).
Next, we interpret ¢ € S(R?) as a system of a-molecules of order (0o, 00,00, 00) con-
sisting of just one element with the phase space coordinates (0,0,1) € P. Then we obtain
from Theorem 2.2.2 for arbitrary but fixed N > 0 the estimate

Ve (@, m,0)| = @ ani)| < Cy -tV (14 [a) N (4.10)

with a constant Cy , > 0 independent of (z,n,t).

5

Altogether, (4.9) and (4.10) prove the Bochner criterion. Hence the integral

QN = /X Ve, (%) x dpu(x) (4.11)

converges in Bochner sense to a function ¢y in By. It remains to prove ¢ = py.

Let us first assume N > 2. Then By < Lo and the function ¢y is also the (strong
and weak) Lo-limit of this integral. This implies ¢ = ¢ almost everywhere since the
reconstruction formula (4.2) holds weakly in Lg. Moreover, since both, pn € By and
¢ € S, are continuous, we even have pointwise equality. For the case N € {0,1}, let us note
that Byy1 — By for all N € Ny. Altogether, this establishes the reconstruction formula in
strong sense in By for all N € Np. O

With the previous result, we are now ready to give a proof of Lemma 4.1.3.
Lemma 4.1.3. The continuous a-curvelet frame €, is total in S(R?).

Proof. We have seen that the reconstruction formula (4.11) holds in a strong Bochner sense
in By for functions in S. Let U C S be an open neighborhood in § of some ¢ € S. Then
U is open in By for sufficiently large N. Since the formula (4.11) holds strongly in By, we
can deduce that U Nspan €, # 0. O

As a consequence of Lemma 4.1.3, the extension of Vi defined in (4.7) is injective on
S’(R?). Hence, it is an invertible transform and the reconstruction of signals is possible. In
fact, we have the following reconstruction formula for signals in S’(R?).

Proposition 4.1.4. For signals f € S'(R?) the reconstruction formula (4.2) holds x-weakly
in S'(R?), i.e., for all p € S(R?)

(o @) srxs = /X Ve F() (9, 1) dpa(x). (4.12)
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4.2 QBF-Spaces on the Curvelet Domain

Proof. We have already observed that {|| - ||n}w~en, is a filtrating family of semi-norms,
which generates the topology of S. Hence, according to a fundamental result on continuous
functionals on locally convex spaces (see e.g. [105, page 96]), for fixed f € S’(R?) there exist
corresponding Ny € Ng and Cy > 0 such that

[(f, @)sixs| < Crllgln, = Cpsup (14 [z)NF Y [07¢(x)| forall p € S.
z€R? |v|<Ny

Since S(R?) — By, (R?), we can thus extend f to a functional f € B;Vf (R?) by the

Hahn-Banach extension theorem (see e.g. [112, Satz VIIL.2.8]). Moreover, if N > 2, we
have the embeddings

S(R?) — Bn(R?) < Ly(R?) and Ly(R?*) < By (R?) — S'(R?).
Hence, using Lemma 4.1.2, we can argue as follows with N = Ny,
(f. o)sixs = (f, o) By xBy = /Vca X)x dp(x )>B/ By
= / Ve, () F, ) By, xy dpp(x / Ve, p(X)(f, ¥x)sxs dp(x) -
This establishes the reconstruction formula (4.12). O

Finally, we also extend the reproducing formula (4.3) to all tempered distributions.

Proposition 4.1.5. The reproducing formula (4.3) holds for tempered distributions, i.e.,
for all f € S'(R?)

Ve, () = [ ORI ¥)Ve (¥ duly), x € X
Proof. By plugging in ¢ for ¢ in (4.12) we directly obtain

Ve, f(x) = (f,¥x) 5/><$—/V¢a NV, y) dp(y)

= Q (%, ¥)Ve, f(¥) du(y) = Gl€a] Ve, f(x),

pointwise for all x € X. ]

Note that in contrast to (4.3) we need to use the conjugate reproducing kernel G[&,].
This is a consequence of the relation between the extended version of the a-curvelet trans-
form (4.7) and the Ly-version (4.1), as depicted in (4.8).

4.2 QBF-Spaces on the Curvelet Domain

The continuous a-curvelet transform Vg defined in Section 4.1 is a powerful tool for signal
analysis. In the sequel, we will use its extended version (4.7) for the characterization of
signals f € §'(R?) on the transform domain X.
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a-MOLECULE COORBIT SPACES

Concretely, our objects of interest will be so-called a-curvelet coorbit spaces
Co(€,,Y) = {f € SR : Ve, f eV}, (4.13)

where Y is some suitable function space on X. Our investigation of such spaces will be
based on the theory presented in [74]. One required assumption there is that Y constitutes
a rich solid quasi-Banach function space, a notion recalled below.

A quasi-Banach function space, for which we subsequently use the abbreviation (QBF-
space, with associated domain X is by definition a subset of the p-measurable functions
from X to C, which is linearly closed and complete with respect to some given quasi-norm.
Functions which coincide apart from a null-set are thereby identified. In the Banach case,
we speak of a Banach function space, or BF-space for short. Note, that QBF-spaces in
our sense need not be continuously embedded into L{¢(X) as sometimes required in the
literature, for example in [43].

As a reminder, a quasi-norm on a linear space Y is defined in the same way as a norm,
with the only difference that the triangle inequality need not hold in a strict sense. It suffices
if it is satisfied up to a multiplicative constant Cy > 1 called the quasi-norm constant, i.e.,
if

If+gll < Cy (£l +llgll) forall f, g €Y.

Another concept, closely related to a quasi-norm, is the notion of an r-norm, where
0 < r <1 and the usual triangle inequality is replaced by the r-triangle inequality

IF+gll" <A+ llgll” forall f, g €Y.

It is straightforward to show that every r-norm on Y constitutes a quasi-norm with asso-
ciated quasi-norm constant Cy = 2Y/7~1. Vice versa, while a quasi-norm need not be an
r-norm itself, there at least always exists an equivalent r-norm generating the same topology
with r satisfying Cy = 21/7~1. This is the statement of the Aoki-Rolewicz theorem [3, 101].
As a consequence, every quasi-normed space Y with quasi-norm constant Cy can be re-
garded as an r-normed space, with r = (logy(Cy) + 1)~! being the so-called exponent of
Y.

A QBF-space Y on X is called solid if for every py-measurable function f : X — C we
have

fl <gforsomegeY = f eV and |[f[Y] < |glY].

It is called rich if it contains all characteristic functions Xy corresponding to compact
subsets U C X.

The following lemma draws a connection between the convergence of a sequence of func-
tions in a solid quasi-normed function space Y to the pointwise convergence of subsequences.

Lemma 4.2.1 ([74, Lem. 2.2]). Let Y be a solid quasi-normed function space on X, and
assume that f, — f in'Y for a sequence of functions (fn)nen. Then for almost all x € X
there is a subsequence (fy, )ken, whose choice may depend on the particular x € X, such

that fr, (x) = f(x).

Proof. Let us assume that f, — f in Y. Then g, := f, — f — 0 in Y or equivalently
llgn|Y'|| — 0. Since inf,,>, |gm| is a measurable function with inf,,>, |gm| < |gk| for all
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4.2 QBF-Spaces on the Curvelet Domain

k > n the solidity of Y yields inf,;,;>y, |gm| € Y and || inf,>p [gm ||V || < ||gk|Y || for all & > n.
We deduce
0 < inf |gm|[Y[| < inf [lgm|Y] =0,
m>n m>n

and as a consequence inf,,>, [gm|(x) = 0 for almost every x € X. For each of these x, we
can hence find a subsequence (gn, )xen such that g, (x) — 0. This implies f,, (x) = f(x)
and yields the result. ]

We will subsequently restrict our attention to a special scale of function spaces on X
corresponding to Besov-type characterizations of the signals f € S’(R?). These spaces can
be viewed as straight-forward generalizations of the mixed-norm Lebesgue spaces used in
[111] for the coorbit description of the classic inhomogeneous Besov spaces.

We remark, that also other scales of function spaces on X could be considered, for exam-
ple spaces leading to Triebel-Lizorkin type characterizations. The bulk of the subsequent
exposition remains the same, significant adaptions are only needed in Subsection 4.5.5.

4.2.1 The Mixed-norm Lebesgue Spaces L;  (X)

We now define a scale L;  (X) of function spaces on X which is inspired by the mixed-norm
Lebesgue spaces on the inhomogeneous wavelet domain R? x [(0,1) U {co}], considered
in [111].

Definition 4.2.2. Let 0 < p,q < 0o and s € R. We then define the function space
Ly (X) := {F : X — C p-measurable : [|[F|L; | < oo}

with respective quasi-norm

= (7 re i ) ([T

As we will see in Proposition 4.2.4, this space constitutes a rich solid QBF-space on X
with associated exponent r := min{1,p,q}. For the proof of the completeness, we will use
the fact that Fatou’s lemma is valid in L; ,(X).

qdndt)l/q.

1L q e

F(eom, t)|Ly

Lemma 4.2.3. Let (Fy)nen be a sequence of functions F,, : X — [0,00) in Ly (X) such
that liminf,, o [|Fu|Ly || < co. Then F' = liminf, ., F, € L; ,(X) with |[F|L; || <
lim infy, o0 || FnlLy |-

Proof. The assertion is a direct consequence of the classic lemma of Fatou for Lebesgue
spaces [2, Lem. A1.20]. For the inhomogeneous part, we obtain

(/027r Hhmiann(.,n,1)\Lqudn)l/q < (/%limianFn(-,n, 1)]Lqudn)1/q

n—o0 0 n—oo

n—oo

o 2m q 1/q
< lim inf (/ HFn(-,n, 1)|LpH dn) :
0
The calculation for the homogeneous part is similar. O

Now we are ready to prove the following result.
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Proposition 4.2.4. The spaces L;q(X) are rich solid QQBF-spaces on X with associated
exponent r ;= min{1,p, q}.

Proof. 1t is straightforward to verify that L, is a quasi-normed space on X. A direct
calculation with p := p/r, ¢ := q/r, § := sr, namely

1+ glLy gI" = WILf + g™ L5 all < T LG50 + lllgl" L5 g

further shows for r := min{1,p, ¢} and arbitrary f,g € L; ,

1+ glLp o[I" < (1 fILpq

As a consequence, || -|L; || is also an r-norm. The solidity of L; , is obvious. For the proof
of the richness, we refer to Lemma 4.2.11.

At last, we prove the completeness of Lj , and consider a Cauchy sequence (Fy)nen-
Without loss of generality, we may assume the property

= 1AL 1" + gl Ly qlI"

"t llgl Lyl

Fo,i1—F,|L° || <27™" forallneN.
+ P,q

We then define the p-measurable functions
m
Gm =Y |Fny1— Ful, meN,
n=1

which are elements of L;q due to the estimate
m [o@) oo
Gl Ly gl < D0 I Fnir = Fal Ly I < D 1Bt = FulLp " < 327" = 1.
n=1 n=1 n=1

Further, since the sequence (G, )men is monotonically increasing, we obtain with Lemma 4.2.3

G := lim G,, =liminf G, € qu,
m—00 m—0o0 ’

and further

1GILY ol < tim inf |G|, < 1.

7q| ,q|

In particular, the function G is finite almost everywhere and the sum > 02 ; |F11(x) —
F,(x)| converges for almost every x € X. At those points, the sequence (F},(X))nen is a
Cauchy sequence in C and the limit

F(x):= Jim F,(x)
is well-defined, giving rise to a u-measurable function F' on X.
Using Lemma 4.2.3 and the fact that (F),)nen is a Cauchy sequence in L

S

g We deduce
b

1B — Ful Ly oIl = |l ﬂ}gnoo B — Fol|Lp |l < linILIl)ioréf [ Fm — FulLp 4l = 0 (n — o0).
This implies F' € Ly , and the convergence F,, — F in L; . O

In the next subsection, we introduce another scale of function spaces on X closely related
to szq(X). Those spaces, denoted by L+ (X), feature more regularity. For instance, in
contrast to L .(X), they are continuously embedded into L'*¢(X), even in the quasi-Banach
case.

96



4.2 QBF-Spaces on the Curvelet Domain

4.2.2 The Associated Wiener Spaces LL;:(X)

The Wiener spaces L5/ (X) are obtained by a Wiener-type amalgamization (see [43, Def. 3.1])
of L; ,(X) with the local component Lo, (X). This means that we utilize a suitable family of
window functions {Wx }xex to take the Lo-norm locally around points x € X. Afterwards,
for a measurable function F': X — C the so-called control function

X = HXWxF|LooH7 (4'14)

is measured globally in the L} -quasi-norm. The outcome of this procedure clearly depends
on the utilized windows and we need to carefully choose those.

On the wavelet domain, which naturally carries a group structure, a canonical way to
generate suitable windows is by the action of the group on some fixed prototype window.
Since we do not have a group structure on X, we need to take a different route and resort
to the quasi-metric structure of X instead. Hence, we use the a-balls B%(x), or — to the
same effect — their more practical relatives V. (x), defined in (2.25) and (2.26), to localize
the functions around points x € X.

By appropriately restricting the sets in the collection V*[X] := {V%(x) : x € X}, we
obtain for each o € [0,1] and 7 > 0 the family

VTa(X) N Xp , X € Xp,

U[X] = {U2(x) :x € X} with UP(x) = {va(x)mX1 e

For convenience, let us state the explicit form of these sets,

(z+ Ry M A0Q) x (n+t17217), x (tJ7N(0,1)) ,xeXo,
(@ +R,1Q7) x (n+17),, x ({1}) , X €Xy.

where Q7 := [—7,7]?, I" := [~7,7], and J7 := [277,27]. Utilizing

U2 (x) = {

tJ7N(0,1) ,0<t <1,

Qe =T+ By AasQT o L= (n87007), 0 J7 = {{1} t=1

we can also write
UR(x) = Qune x Iy < J]. (4.15)
The corresponding dual sets U/%(x) are given by
/s

-ty o) -(E7 25

with
Uz (x) = {{y €Xo :yeat szlAa,uQT, Oem+u=I), uctl’} ,xeXo,
{.YGX1:y€x+R91Q770€(n+Ir)2ﬂ} xeX,,

or alternatively

Ul*(x) = {y eX :ye QZ‘:@T’“, QelIv” ue J[} (4.16)

nu )

Some elementary but essential properties of the sets U (x) carry over from Lemma 2.2.17.
It is worth noting that the results are now uniform for all x € X. Moreover, they are inde-
pendent of « € [0, 1].
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Lemma 4.2.5. Let a € [0,1] and x = (z,n,t) € X be fizred. For T > 0 define the function
m(7) :=27(1+ 7). For 7,0 > 0 the following holds true:

i) If T < o then U2(x) C U}(x), and U§(x) = ;-0 U (x) = {x}.
i) ye U%(x) = x € Ufm(T)(y).
i) y e U¥(x) and z € U (y) = z € J‘}(T’U)(x) with f(1,0) := 7+ om(7).

w)yeUdx) andz e U%(x) = z € U;(T’a)(y) with g(1,0) := (1 + o)m(T1).

v) x e Ut(y)NUZz) = z € U, )(y) with h(1,0) =T+ om(17)m(o).

(1,0

Proof. We distinguish two cases, either x € X or x € X;. If x € X then U%(x) = V.*(x) N
Xp and consequently y,z € Xy. Analogously, x € X; implies U%(x) = V,*(x) N X; and thus
v,z € X;. Since my(7) = m(7) for ¢t < 1, the assertions follow then from Lemma 2.2.17. [

Now we are ready to define the a-anisotropic Wiener maximal operator W< depending
on a € [0,1] and 7 > 0. For a function F : X — C we put

WEF(x) := [|FXyex)| Looll = csssup [F(y)|, xeX (4.17)
yeUgs(x

Further, if 7 = 1 we use the simplified notation W := W¥{.
The term mazimal operator is justified, since W< has the following majorizing property,

|F(x)] < W2F(x) forae. xe€X. (4.18)
But an even stronger result holds true, stated in the following lemma.

Lemma 4.2.6. Let a € [0,1] and let 7 > o > 0. Then for any function F : X — C we have
for almost every x € X

[F(3)|Xyg(y) (%) = [F(X)[Xypen(y) < WEF(y)  forally € X.

Proof. In a first step we prove (4.18). For this choose p := min{l,7/8} > 0 such that
g(p, p) < 7, where ¢ is the function from Lemma 4.2.5(iv). According to Lemma 4.2.5(iv),
we then have
(| Uly) 2Ug(x) forallxeX.
yeUg(x)

It follows that for each x € X the following relation holds true, for almost all y € Ug'(x),

|F(y)| < esssup |[F(z)| < esssup |F(z)| = W2F(y).
z2eUS (x) zeU2 (y)

The relation (4.18) is a direct consequence, since we can find a sequence (X, )nen such that
{UZ(%n) }nen is a countable covering of X.

Secondly, we now turn to the proof of the more general assertion of the lemma. According
to (4.18), for each n € N there exists a null-set N,, C X such that |F(x)| < W‘f/nF(x) for
all x € X\IN,,. Putting N := |J,, Nj,, which is again a null-set, we then have |F(x)| <

WQF(x) for all x € X\N and all 7 > 0. Since by assumption ¢ < 7, we can choose
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p = (1 —0o)/m(c) > 0 such that f(o,p) = 7 for the function f from Lemma 4.2.5(iii).
Then for every x € X\N

[F(x)] < WOF(x) < WeF(y) for all y € U%(x),

where Uy“(x) denotes the dual ball of Ug(x). Since Xya(y)(x) = XU(;,a(x)(y), the proof is
finished. 0

Utilizing the maximal operator W = W¢, we can now define the spaces L}/ (X). Note
that in contrast to the original scale L;  (X) the new scale g7 (X) also depends on the
parameter « € [0, 1].

Definition 4.2.7. Let a € [0,1], 0 < p,q < oo, and s € R. We define the a-anisotropic
Wiener space associated to L;  (X) as

Lo (X) = {F : X = C  p-measurable : [[WF[L] || < oo}

with quasi-norm || - [Ly7]| == [W*(-)|L; |-

The spaces Lﬁ’;(X) inherit many properties from the scale L;q(X). In particular, like
those, they are rich solid QBF-spaces on X with the same exponent » = min{1, p, q}. For
the proof of this fact we need the following commutation property of W¢.

Lemma 4.2.8. Let a € [0,1] and 7 > 0. Assume that F,, — F converges pointwise almost
everywhere for n — 0o, in a uniform way on compacta. Then

WI2F(x) = nh_{rgo W2F,(x) for every x € X.
Proof. First, we show that for any two functions F,G : X — C and all x € X
WeG(x) - WEF(x)| < W2 (G — F)(x). (4.19)

Without loss of generality, we can assume that W2G(x) > W2 F(x). Further, there exists
anull-set N C X such that |F(y)| < esssup,cpex) [F'(2)] for all y € Uf(x)\N. Then (4.19)
follows from the estimate

esssup |G(y)| — esssup |F(z)| = esssup (|G(y)| — esssup |F(z)|)

yeUz (%) zcUR (%) yeUz (x)\N zeU? (%)
< esssup (|G(y)| ~ [F(y)]) < esssup [G(y) ~ F(y)].
yeU2(x)\N yEUX(x)

The assertion of the lemma is now a direct consequence of the validity of

W2 () = WEFG)| < W3 (F, = F)() = esssup [Ea(y) - F(y)
yeUz(x

for every x € X and the fact that

esssup |F,(y) — F(y)| =0 (n— o). O
yEUZ(x)

Now we formulate the companion result to Proposition 4.2.4.

99



a-MOLECULE COORBIT SPACES

Proposition 4.2.9. The spaces Lgy’qs(X) are rich solid QQBF-spaces on X with associated
exponent r ;= min{1,p, q}.

Proof. 1t is clear that Lyj»' is a quasi-normed space on X with the same exponent r =
min{1,p,q} as L, ,. Further, the solidity of L7’ directly follows from the solidity of L; ,
and the monotonicity of the Wiener maximal operator. To verify the richness, we use

Lemma 4.2.5(v) to estimate
W*Xpa(x) < XU}?(M)(X) for every x € X and all o > 0. (4.20)

Taking into account the richness and the solidity of L, ., this implies W*Xya(x) € Ly , and
thus XUg‘(x) S Lz"’;.

It remains to show the completeness of ;7. For this, we use an embedding which will
be established in the next subsection. According to (4.26), we have L7 < L. Due to
this result, every Cauchy sequence (Fy)nen in Lo yields Cauchy sequences (F},(x))nen in
C for almost every x € X.

Hence, (F,)nen converges pointwise almost everywhere to a p-measurable function F' on
X. In addition, the convergence is uniform on compacta. Hence, we can apply Lemma 4.2.8
which yields for fixed m € N the pointwise convergence

W2(F,, — F) = lim W2(F,, - F,).

Since (F)nen is a Cauchy sequence in Ly, we can further verify for every m € N

lim inf [ W (Fy, — Fo) |5, || = liminf | F — Fo|Lgs | < oo.

Hence, using the Fatou property of L , proved in Lemma 4.2.3, we get W2 (F, — F) € Ly |
and thus Fy,, — F' € L/ for all m € N. In particular, since Fy, € Lj7, this implies F' € L.

q P
Further, we have F;, — F in L7 since

[P — FILG] < limint [WE(Fy, — B)|L, | = liminf || B, — Fu[LE

4l —0 (m— 00).

O

We end this subsection with an important embedding, relating the spaces g (X) and
L; (X). Tt is a direct consequence of (4.18).

Proposition 4.2.10. We have the continuous embedding
Liia(0) < L, (%)

Proof. As a consequence of (4.18) and the solidity of Lj ., we obtain

IEILp gl < IWEF[LG [l = | F[Lyg |

for every measurable function F': X — C. This yields the result. O

Another important embedding of L77(X) is derived in the next subsection. Proposi-
tion 4.2.13 will show that these Wiener spaces are naturally embedded into certain weighted
Lo-spaces.
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4.2 QBF-Spaces on the Curvelet Domain

4.2.3 The Associated Canonical Weights V;’;

We have already mentioned at the end of Subsection 4.2.1 that the spaces L{77(X) are
continuously embedded into L{¢(X). We will see that this is a consequence of the local
boundedness of the functions contained in L7 (X), a property which we will study in more
detail in this subsection. As it turns out, to each space L5 (X) there belongs an associated
canonical weight vi7: X — Ry such that

L5 (X) — LI (X),

To determine the weight v7, let us introduce the characteristic functions

X2T(y) = Ao (y) and E2T(y) i= Xy (9) (421)
where U%(x) is as in (4.15) and U*(x) denotes the dual ball from (4.16). Note that

XT(y) = sup Xg(z) and ALT(y)= sup Xpq(a),
zeUr " (y) z€U2(y)

where X[y, is the unit-height spike at x € X.
According to (4.15), the characteristic function X" = X7, of the set U (x) can be
decomposed in the form

X (0, 0,0) = xoon 1 (y) - X0 (0) - X7 (u),

where (y,0,u) € X and
) = Xger (), XGT(0) = Xper(6), XG(w) = Xpp(w). (4:22)

Due to the tent-like structure (4.16) of U-%(x), the decomposition of the characteristic

functions X" = Xm .t has a slightly different form, namely

Xx 7, t(y7 0 U) Xz:;u(y) : X?;:;(e) ’ X;(U) for (y7 9, U) e X.

We now calculate the L -quasi-norms of these characteristic functions, since they play an
important role, as we will see below.

Lemma 4.2.11. Let o € [0,1] and let 7 > 0 be fized. We then have

| et Lpgll < ||anTt|L;7qH = ¢~ t(Ha)/pH(=a)/a yniformly in (x,n,t) € X.

Proof. For (z,n,t) € Xp, we first calculate

1
d
i dy =t [xer@ae =i, [umnge = @23)
0

R2 T

Using (4.23) and ||x5/p | Lpll = IIxz7 |L1||Y/?, we obtain

Myt
1 27 1/q
ar . 6 du
u%mwﬂw(// RHONHOINS ML u)

L 1/q
= (/u_sqxz(u)tl_at(l"'a)‘I/pChL) = t—s5¢(I+a)/pp(1-a)/q.
u
0
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a-MOLECULE COORBIT SPACES

Further, we also have

1 27 d0d 1/q
a,T U
|2 H—(//u PHONHO NI )
00

du 1/q
— </u % (u)ul a,, (1+a)q/p u) — —sp(1+e)/pp(1—a)/q_
0

An analogous calculation yields

1l Ly gl = X 1 gl < 1

7777 X n?

for (z,n,1) € X;. O

As a byproduct of the previous lemma, we obtain the quasi-invariance of the py-measure
of the sets U%(x) and their duals U-%(x) from their positions x € X.

Corollary 4.2.12. Let « € [0,1], and 7 > 0 be fized. Then we have
p(U2(x)) < p(U2(x)) <1 uniformly in x € X.

Proof. Using Lemma 4.2.11, we obtain

pU2() = [ X27(y) duly) = [ X271, < 1,

X

and similarly p(U2%(x)) = 1. O
Lemma 4.2.11 paves the way for the definition of the weight functions v5»% : X — R.
Recall that our aim are embeddings of the form (4.25). Following mtultlon we need to
caleulate || Xye(x)[Losll = WXy (x| Ly || for small 7 > 0 to approximate vy (x). This
motivates to use HX e |qu|| = || Sup Xix3(2)|L, || for the definition. In view of

eu)

Lemma 4.2.11, it thus makes sense to deﬁne
Vg (%) = gstta)/pr(-a)fa -y — (z n.t) € X. (4.24)

Indeed, we then have the following result.

Proposition 4.2.13. We have the continuous embedding
1 a,s
L&s(X) < Lot (X). (4.25)

Proof. Take F' € L. Then F € Ly . and, due to Lemma 4.2.6 and the solidity of L; ., it
holds for almost every x € X

Sa L
IFILp gl = IWEFILy | = [F [ Xy 0| Ly oll = [F G L 4l
2

Using Lemma 4.2.11, this implies F' € Loc> Vo and the embedding L7 — LOO Vi is contin-
uous. O
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4.3 a-Molecule Coorbit Spaces

Since the weights vy 77 are locally bounded, i.e., they constitute bounded functions on

every compact subset of X, we finally arrive at the following chain of continuous embeddings
1/ves
Lia (%) = Lt (X) < LES(X) < LP°(X). (4.26)

In particular, these embeddings show that the convergence in L7 (X) is locally uniform
almost everywhere, a fact which was used in the proof of Proposition 4.2.9.

We are now well-prepared for the definition and analysis of the coorbit spaces Co(&q, Ly7)
associated to the a-curvelet transform Vg, and the spaces Lo (X). This will be the topic
of the remaining two sections.

4.3 «a-Molecule Coorbit Spaces

In the previous section, we have introduced two scales of function spaces on the curvelet
domain X, namely L, ,(X) (Definition 4.2.2) and L77/(X) (Definition 4.2.7). Plugging the
spaces Lo (X) into the general definition (4.13) of an a-curvelet coorbit space, we obtain
the special scale of coorbits Co(€&,, ]L,g;;) which we will subsequently analyze in more detail.
In the end, our analysis will reveal, via Theorem 4.3.13, that these spaces can be identified
with other Besov-type function spaces, for example those considered in [85].

An important tool in our investigation will be the continuous a-molecule transform
which is a natural generalization of the continuous a-curvelet transform Vg, from Sec-
tion 4.1. It is introduced in Subsection 4.3.2 and enables a much broader approach to the
analysis of the coorbits Co(&,,L577). In particular, it leads to the more general notion of
an a-molecule coorbit space introduced and analyzed in Subsection 4.3.3.

4.3.1 a-Curvelet Coorbit Spaces associated to L9+ (X)

Let us begin with the definition of the a-curvelet coorbit spaces associated to the scale
57 (X). They are obtained for the special choice Y := L7(X) in (4.13).

Definition 4.3.1. The a-curvelet coorbit space with respect to Ly:/(X) is defined as
Co(€a, i) = {f € S'(R?) : Ve f € Loz (%)}

and equipped with the quasi-norm || - |Co(€q, Lo7) | == || Ve, (1) Lo I

To analyze these spaces, we will utilize the abstract machinery provided by the theory
of coorbit spaces — here especially the exposition from [74] — combined with the theory of a-
molecules from Chapter 2. In particular, in Theorem 4.3.8, we will see that they constitute
quasi-Banach spaces.

For the subsequent investigation, it is advantageous to view a-curvelets as special in-
stances of a-molecules. It turns out that without much effort we can then take a broader
approach and base our entire investigation on the more general concept of a-molecule coorbit
spaces.
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a-MOLECULE COORBIT SPACES

4.3.2 The Continuous a-Molecule Transform

In this subsection, M, = {mx }xex shall always denote a system of a-molecules with respect
to the canonical parametrization. If such a system constitutes a tight frame for Lo(R?) it
gives rise to an associated transform Vi, : L2(R?) — La(X) defined by

Vor, f(x) == (f,mx), xeX (4.27)

Let us subsequently call it the continuous a-molecule transform associated to M.

In analogy to the definition of the a-curvelet coorbit spaces in Definition 4.3.1, we now
aim to define coorbits of L7(X) with respect to this more general transform Voy,. Before
we can do this, however, we need to suitably enlarge the reservoir of Vg, similar to the
extension of the a-curvelet transform Vg, to the space of tempered distributions S’(R?) in
Subsection 4.1.2.

Here some more care is required, though. Whereas the inclusion €, C S(R?) allowed to
use the whole space S’(R?) as a reservoir for Vg, , we may not be so lucky with the transform
Van,, since in general M, ¢ S(R?). To obtain a suitable reservoir for Von, , we thus need to
slightly modify the procedure used for the extension of Vg, .

The basic idea for the subsequent exposition stems from abstract coorbit theory and
goes back to [42, 43]. Instead of S(R?), we consider a subspace HY of Ly(IR?) of the form

Vi={f € Ly(R?) : Vi, f € L{(X)}, (4.28)

where v : X — [1,00) is some suitable weight function. With || - |HY|| := ||[Van, ()| LY|| as a
norm, this space is topologized differently than by the usual subspace topology induced by
L2(R?). Provided that the canonical injection HY < Lo(R?) is continuous and dense, we
then obtain a Gelfand triple resembling (4.6), namely

HY < Ly(R?) < (HY) . (4.29)

Here, one usually uses the anti-dual (HY )", ie., the space of bounded conjugate-linear
functionals on HY. This has the advantage that the duality product (-, -) (HY) X HY canonically
extends the scalar product (-,-) on Lo(R?), which by convention is conjugate-linear in the
second component.

In view of (4.29), if the weight v is chosen such that 9, C HY, the transform Voy, can
be extended via the duality product

Vo, f(x) == (f, mx) gy seny , x €X (4.30)

The difficulty of this approach is to find a suitable weight v : X — [1, 00) such that the
above conditions are fulfilled, i.e., that HY < Ly(R?) is a continuous and dense embedding
and that 9, C HY.

A helpful criterion can be found in [74, Lem. 2.14]. Let m, denote the bivariate weight
associated to v : X — R given by

my,(x,y) = max{ }, x,y € X.
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4.3 a-Molecule Coorbit Spaces

Then, according to [74, Lem. 2.14], the desired conditions essentially hold true if the frame
elements of M, satisfy ||mx|La| < v(x) for every x € X and if the associated Gramian
kernel

GIM.J(x,y) == (my,mx), x,y€X,

is contained in the kernel algebra A,,, defined below (see also [74, eq. (2.8)]). Under these
assumptions, we then have a Gelfand triple as in (4.29) and mx € HY holds true at least
for almost all elements my € IM,.

In our setting, the algebra A,,, takes the form

A, = {K : X x X — C measurable : [|[K|An,, || < oo},

with ||K|Ap,, || being the expression

max{es:es;glp / ]K(x,y)my(x,y)\du(y),es;esslglp / ]K(x,y)my(x,y)\du(x)}.

yeX xeX
A closer inspection of A,,, reveals that A,,, is a Banach space with ||-|.A;,, | as a norm.
Further, with the multiplication given by (4.51), A,,, even is a Banach algebra. However,
since these details are not essential for the main exposition, they are outsourced to the
appendix, Section 4.5.
It remains to find a suitable weight for the analyzing frame 91,. A plausible ansatz are
weights of the form

V’Y(x7777t) = t_’ya Y 2 07 (431)

which promote decay of the transform |Von, f(z,n,t)| along the scale variable ¢ in the direc-
tion ¢t N\, 0. In view of Paley-Wiener, such weights are associated to the smoothness of the
functions f € HY.

Next, we utilize Theorem 4.5.5 from the appendix. It gives a condition when a Gramian
kernel G[9,] belongs to A,,, for weights of type v = v,. Even more, the condition in
Theorem 4.5.5 ensures that the so-called cross-Gramian mazimal kernels, associated to two
possibly different systems of a-molecules 9, and 9M,,, belong to A,,,.

For 7 > 0, those are given as follows,

MEMe, M) (x,y) := sup  |(mx, mz)|, x,y€X, (4.32)
z€U2(y)

where U2 (y) C X are the subsets from (4.15). This definition should be compared with the
so-called cross-Gramian kernels (see also (2.7)) defined by

G[Ma, Ma)(x,y) := (mx,1ity), %,y €X.
Note, in particular, that for 7 = 0 we have
G190, Ma]| = MG [, Ma]. (4.33)
To simplify the notation in case My = My, we put ME[M,] := M2 [y, M,] in line with

g[gﬁa] = g[gﬁaama]-
Applying Theorem 4.5.5 in combination with [74, Lem. 2.14] yields the following result.
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a-MOLECULE COORBIT SPACES

Lemma 4.3.2. Let o € [0,1], and let M, = {mx}xex be a tight frame of a-molecules
of order (L, M, N1, No) with respect to the canonical parametrization. Further assume that
v = vy is a weight of the form (4.31) with v > 0 such that

33—« 14+«
L>20v+2), M>3(y+2)———, NM>7+2+——, No>2(y+2). (4.34)

Then the space HY defined as in (4.28) is a Banach space with associated norm || - |HY|| :=
|Van, (-)|L¥||. Moreover, it is continuously and densely embedded in Ly(R?) and M, is a
total subset of HY.

Proof. 1f condition (4.34) is fulfilled, we have N7 > 1 and thus, by Lemma 2.1.4, ||mx|La|| <
1 < v(x) uniformly in x € X. Further, due to Theorem 4.5.5, condition (4.34) also ensures
that M2 [9,] € A,,, for arbitrary 7 > 0. As a consequence of (4.33) and the solidity of
A, , then also G[M,] € A,,,. Hence, the prerequisites of [74, Lem. 2.14] are fulfilled, and
thus HY is a Banach space, continuously and densely embedded in Ly(R?). Furthermore,
almost all frame elements my € 9, are contained in H7.

Using M2[0M,] € A,,, for 7 > 0, we can even show the full inclusion 9, C HY. To this
end, let x € X be arbitrary but fixed. Then there exists x € X such that x € U¢(x) and

[ MR y)m (. ) dily) < .
X

Now we can deduce my € HY since Vi, (mx) € LY(X) due to the estimate
[V, (ma) [ L[| = I91Ma] (%, ) ()| La || < v(R)[MT[Ma] (X, ) (X, ) [ La || < oo
This proves M, C HY, and in view of [74, Cor. 2.20] the system 9, is even total in HYy. O

As a consequence of Lemma 4.3.2, if the order (L, M, N1, N3) of the system 9, satis-
fies (4.34), the transform Viy, extends naturally to (HY)' with v = v,. In the following
proposition, we collect some properties of the extended transform Voy, .

Proposition 4.3.3. Under the assumptions of Lemma 4.3.2 the transform Von, defined in
(4.27) possesses a natural extension to (HY) ' given by (4.30). The extended transform is an
injective bounded linear operator

Vo, © (HY)" = LYY (X),

mapping signals f € ('H‘l’)1 to functions Von,, f € L%V(X) given by
meaf(x) = <f7 mx>(’;—[¥)jxylf , xXeX.

Proof. This follows from [74, Lem. 2.15] and [74, Cor. 2.19] since the prerequisites of [74,
Lem. 2.14] are fulfilled, as shown in the proof of Lemma 4.3.2. U

Finally, we clarify the relation of the auxiliary space H{ with v = v, to the Schwartz
space S(R?).

Lemma 4.3.4. Assume that the assumptions of Lemma 4.53.2 are fulfilled. Then we have
the continuous embedding S(R?) — HY for v = v,
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4.3 a-Molecule Coorbit Spaces

Proof. Let f € S(R?) and F(x) := Vin, f(x) = (f,mx) with myx € 9M,. We interpret f as
a single a-molecule with phase space coordinates (0,0,1). According to the assumptions,
there is N > 2 + ~ such that Theorem 2.2.2 yields for all (z,7n,t) € X

Vo, f (@, 0, 6)| = |(f,ma)| < Onp -tV (14 Jaf) N

with a constant Cn,y > 0 depending on N and f. Since N > 2 and N — (2 +7) > 0, we

obtain, with dyuy = 9= fgi 4 and dpy = dx dn,

1

dx dndt

1Pl () dpolx) < ooy [ [ [ ED 1+ fal) ¥ FLZ < o,
Xo 0 T R2
/|F(x)\1/,y(x) dpnn (x) < CN,f//a +lz) N dadn < .
X1 T R2

This shows F' € LY(X, u) for v = v, and thus f € HY.

To show the continuity of the embedding S < HY, let (f,)nen be a sequence in S such

that f, — 0in S. Then there exists a sequence of constants C,, > 0 with C}, —» 0asn — oo
such that for all p € Ng with |p|; < L

107 Fu(€)] < Cr - (€)™ (&)™ for all € = (&,&) € R%

In particular, the system {C;; 1 f, : n € N} is a system of a-molecules of order (M, L, N1, No)
with respect to the parametrization n — (zp, 7, t,) := (0,0,1). Invoking Theorem 2.2.2
thus yields a constant C'y > 0 such that

|E(x)] = [Van, fa(X)] = [(fr, mx)| < CuCx -tV (14 |z])™Y  for all x € X and n € N.

As a consequence, ||Fy,|LY| < Cy, for n € N. This proves || F,|LY|| — 0 and verifies S — HY
since f, — 0 in HY. O]

4.3.3 a-Molecule Coorbit Spaces associated to L;;(X)

With a suitable reservoir for the continuous c-molecule transform Vo, at hand, we can now
proceed to define coorbits of LL;:/(X) with respect to Van, .

Definition 4.3.5. Let 91, be a tight frame of a-molecules of order (L, M, Ni, No) with
respect to the canonical parametrization. Assume that v > 0 satisfies condition (4.34) and

let v, denote the weight from (4.31). Then the a-molecule coorbit space with respect to v,
and L77(X) is defined as

Colvy, Ma, L) = {f € (") + Vim,f € Lis(X)}

and equipped with the quasi-norm || - |Co(v, Ma, Lol == [[Van, () L5757 |l-

Due to Proposition 4.3.3, these spaces are well-defined. In contrast to the a-curvelet
coorbits Co(€q,L5:) from Definition 4.3.1, they also depend on the utilized weight v.,.

Let us investigate some properties of these spaces, where we again resort to the abstract
theory from [74]. We know from [74, Def. 2.25] and [74, Thm. 2.31] that they constitute
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quasi-Banach spaces if the analyzing frame 9%, has PROPERTY F'(v,Y') with respect to the
weight v = v, and the space Y = Lg+7(X).

Before we recall this notion from [74, Def. 2.24], it is convenient to introduce a subalgebra
of A,,, as follows. Let Y be a rich solid QBF-space on X, and let v : X — [1,00) be a
measurable weight. Then we define

B,y = {K:XXX—MC : K e Ay, andK:Y—>Yisb0unded}.

More details on these spaces are provided in the appendix, Section 4.5. In particular, it is
shown that B,,, y is a solid quasi-Banach algebra endowed with the quasi-norm

K| B,y || := max{[| K| Am, ||, | K]Y — Y]}

Now we are ready to give the definition of PROPERTY F'(v,Y’) in the concrete situation of
an a-molecule frame 9,,.

Definition 4.3.6 (compare [74, Def. 2.24]). Let v > 1 be a weight on X and let Y be a
rich solid QBF-space on X. A tight frame of a-molecules M, = {mx}xex is said to have
PROPERTY F(1,Y) if

(i) |lmx|Lz2|| < Cpr(x) for all x € X and some fixed constant Cpg > 0,
(ii) gpﬁa] € Bml,,Ya
(iii) GM,] Y — L}X/f/(X) is a continuous operator from Y to L%V(X).

We now derive a sufficient condition on the order of an a-molecule frame 2, such

that conditions (i)-(iii) are fulfillable for ¥ = L5+7(X). Recall vy, the weight from (4.24)

associated to LLp:/(X). Subsequently, we use the modified weight v}’ : X — [1,00) given by

v (%) = max{1, vy (x)} =1~ max{05} - x = (x,1,t) € X, (4.35)

where 5 := s — (1 +a)/p— (1 —a)/q. Note that this weight is a weight of the form v, as
in (4.31) with v = max{0,5} > 0.
Finally, we are ready to prove the first result concerning a-molecule coorbits of Lg‘;;(X).

Theorem 4.3.7. Let o € [0, 1], and let M, = {mx}xex be a tight frame of a-molecules of
order (L, M, N1, N2) with respect to the canonical parametrization. Further, let ;) (X) be
the space from Definition 4.2.7 with fived parameters 0 < p,q < oo and s € R. If

3 1
L>2p+2), M>3(p+2)-"3°, N1>p+2+$, Ny>2(p+2) (4.36)

holds true for p := max{|s| + 2(1/r — 1),|5|}, where r := min{l,p,q} and § == s — (1 +
a)/p— (1 —a)/q, then the a-molecule coorbit space

Covgs, Ma, L) = {f € ()" = Van f € Lga(X)}

P>
is a quasi-Banach space with quasi-norm || - [Co(vyy, Mo, L)l = [[Van, ()Ll The
quasi-norm, constant of Co(vy', My, ILe7) is thereby inherited from Lo+ (X).
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Proof. Let us assume that the order of the a-molecule frame 9, fulfills condition (4.36).
We will show that under this assumption 9, has PROPERTY F(v,Y) as introduced in
Definition 4.3.6 for the choice v := vy’ and Y := Lg77. An application of [74, Thm. 2.31]
thus finishes the proof.

It remains to verify conditions (i)-(iii) in Definition 4.3.6. Since N; > 1 we have
|lmx|Le|| < v(x) for all x € X by Lemma 2.1.4, proving (i). Further, as a consequence
of Theorem 4.5.5, condition (ii) holds true, namely G[9M,] € B,y which entails that

GIM,] : Y — Y is a bounded linear operator. As a consequence of the embedding Y — Léé”,

this also implies that the operation G[9M,] : Y — Léc/f/ is well-defined and continuous. Hence,
also condition (iii) is true. O

An important feature of the theory of a-molecules is the transfer principle, already
encountered in Theorem 2.3.6 of Section 2.3 in a discrete setup. It allows to transfer certain
properties between a-molecule systems via the concept of sparsity equivalence.

The next result, Theorem 4.3.8, can be interpreted as another occurrence of the trans-
fer principle, this time in a continuous setting. It relates the a-molecule coorbit spaces
Co(vyyy s Ma, Ly7) to the a-curvelet coorbits from Definition 4.3.1. Its proof is based on

Pa’
Theorem 4.5.5(ii) and the abstract result [74, Lem. 2.28].

Theorem 4.3.8. For cvery tight frame of a-molecules M, subject to the assumptions of
Theorem 4.3.7 we have the identification
Co(vpys Ma, Ly7) < Co(€y, L)

p,q?

in the sense of equivalent quasi-norms.

Proof. First of all note that the a-curvelet frame €, is a concrete instance of an a-molecule
frame satisfying the assumptions of Theorem 4.3.7. Hence, the coorbit Co(vy'’, €q, Ly, is
a well-defined quasi-Banach space. Further, we have shown in Lemma 4.3.4 that S — HY
for v := v/ and, according to Proposition 4.1.5, the reproducing formula of Vg, extends to
S’. Hence, all prerequisites to apply [74, Lem. 2.28] in our concrete situation are fulfilled.
We obtain

Co(€a, L3) = Co(vls, €ay 1O,

Let us now turn to a general a-molecule frame 90, subject to the assumptions of
Theorem 4.3.7. It follows from Theorem 4.5.5 that the cross-Gramian maximal kernels
ME[Cq, M,y] and M2y, €] (see (4.32) for definition) both belong to By, y with ¥ :=
Lo, and v := v, As a consequence of the solidity of B,y (see Proposition 4.5.4), in
particular G[€o,My] € By, y and G[M,, ] € By, v hold true. With [74, Lem. 2.29] we
can therefore deduce

Co(vyy, Ca, Lyyy) < Co(vp, Ma, L) O

Theorem 4.3.8 is a powerful tool for the analysis of Co(@a,Lg‘:;). As an immediate
consequence, for example, we obtain in conjunction with Theorem 4.3.7 that Co(€,, L) is
a quasi-Banach space with the same quasi-norm constant as L7 (X). In the next subsection,
we will further use this theorem to deduce a discrete characterization of Co(€q,1Ls ). The
obtained discrete description in Theorem 4.3.13 will then allow us to identify Co(&q,L37)

with the shearlet smoothness spaces from [85].
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4.3.4 Characterization via Discrete a-Curvelets

In this subsection, we will apply Theorem 4.3.8 for a special choice of 9, leading to a
discrete characterization of Co(€,, Lg‘;;). This will in particular relate these coorbit spaces
to familiar scales of smoothness spaces considered for example in [85].

Let us first recall the discrete Parseval frame of a-curvelets €, from Definition 3.2.6
indexed by the discrete a-curvelet index set

M =] x7% (4.37)

Hereby J = {J = (4,¢) : j € No,Z € L;} is a collection of scale-angle pairs with L; :=
{0,1,...,L; —1} and L; := 2li(1=a)] for j € Ny. The system €2, has the form

@ = {Vutuen = {%Z)j,z,k :j €Ny, lelj ke ZQ}

and consists of band-limited a-curvelets ¢, = ;¢ € L2(R?). It is useful to distinguish the
coarse-scale elements from the high-scale functions, corresponding to respective index sets

M, =], xZ*> with J;:={(0,0)},
and My :=JoxZ* with Jo:={J=(j¢):jeNLcL;}.

It was shown in Lemma 3.2.7 that €% constitutes a Parseval frame for Ly(R?). Moreover,
according to Proposition 3.2.8, it is a system of a-molecules of order (oo, 00, 00, 00) with
respect to the specific a-curvelet parametrization (3.28), namely (M, ®r) with

Dyr: M =P (G, 0,k) > ()05, 0wj,277) = (R@A;;jk,ewj, 277),

where w; = 2-li(=a)] 7z For convenience, we will subsequently use the abbreviations
Rjg:= Ry, and Aj:= A, 5 asin (3.24).

Recall the subsets U2 (x) of X defined in (4.15) in Section 4.2. For u = (j,¢,k) € M
and 7 > 0, let us now define the sets

Uprm = Ujojgk =UX(xj0k) With X0 =%, 1= Ppr(p).
More concretely, those sets can be written in the form
Uit = Q5 x I} x J7, (4.38)

where, with Q7 := [~7,7])%, I" := [~7,7], and JT := [277,27],

279J7N(0,1) ,j€N,

Qi = e + RigATIQT, I o= (bwy + 277079T7) T o= {{1} =0

For the choice 7 = % the collection {U}""} e consists of pairwise disjoint subsets of X.

1
We now put U, := Uﬁ "3 and introduce the positive weights

wy, = /XUH (x) du(x) > 0. (4.39)
X
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4.3 a-Molecule Coorbit Spaces

Then we define

~ _1
J— - — 3
Qt;é = {¢x}xex where {1%%77,75 ’ w“wy‘ ) (I7n7t) € U}La

Vet =0, else.

We call €% the continuization of the discrete a-curvelet frame €2,.

Lemma 4.3.9. The system €2, = {Q;X}XEX is a continuous Parseval frame of a-molecules
of order (00, 00, 00, 00) with respect to the canonical parametrization.

Proof. The system €8 = {tx}xex inherits the Parseval property from €% = {t,}.en-
Indeed, for every f € La(R?) we have

/\fwdeu Z/ o) P dp(x) = 3 [(f ) 2 = (1 £ Lol

pneM pneM
For the verification of the a-molecule property of €%, we define for (z,7,t) € X

hag =t 2, 0 (R Ay - +1)
such that Vo =t~ T 2, (A;;RWQ —x)).

To finish the proof, it remains to show condition (2.5) for the functions hy .
We first recall that, according to (3.26), every a-curvelet 1; . € €3, has the form

iok = 2j(1+04)/2aj (AjRj,é . _k)

with a generator a; € Lo(R?) given by (3.25).
Hence, in case (z,n,t) € U, for some pu = (j,¢,k) € M, we can deduce

hz,r] t = (H_a)/z&x,n,t (R;IAa,t : —|—l’>
%(tQJ)(l—i_a)ﬂaj (AjRij;lAa,t : +(AjRjyg.CU — k))

Altogether, since @me,t =0 if (x,n,t) &€ U, for every u € M, we obtain the spatial repre-
sentation

B — w;%(At)(HO‘)/Qaj (T{tT - +AEk), if (z,n,t) € Uy,
& 0, else,

where we abbreviate At := t27, Ak := AjR;x —k, and

Ty

.

_ 14— t11 ti2
= A7'RjRyVALL = :
i T art to1  too

On the Fourier side, we get

. _ {wu%(At)_(l"‘o‘)/Q&j (Tt - ) exp (27ri<Ak:,T,7,t->> , if (z,n,t) € Uy,
’n7 -
0, else.
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a-MOLECULE COORBIT SPACES

Our first goal is now to show that for every fixed p = (p1, p2) € N2

sup 0PNz ()] <1 uniformly in (z,7,t) € X. (4.40)
£eR

Note that since fzxm,t € O°(R?) the derivatives 8pﬁx,n,t are well-defined. With the chain
rule, we calculate for ¢ € R?

01(a;(Ty,)) (&) = t11(0185) (T &) + to1(928;) (T,18),
D210 (Ty )] (&) = t12(010;) (T &) + taz(Baa;) (T 4€).

By iteration, we obtain for p = (p1, p2) € N3 the expansion

p1 P2

o 05 [a( =3 napSap(&n,t)

a=0b=0

with combinatorial coefficients n,;, € N and terms S, ,(§;7,t) of the form

Sap(&m.8) == (1) (t21)” " (t12)" (ta2) 20 (BF 005727704, (T, 6.

To estimate these terms, note that 7}, ; is a matrix of the type investigated in Lemma 2.2.18
and Corollary 2.2.19. With the notation there, we have

T, 5 = AjRj Ry Ay = T(fw;, 277, ).

In the relevant case (z,7,t) € Uy, it holds max{At, (At)~1} < 27 and ds(fw;,n) < 7-2 j(l_o‘)
for 7 = % Hence, we can apply Lemma 2.2.18 and obtain that the entries of T + and T,
are uniformly bounded. As a consequence, also the entries t11, t12, t21, and tgg of Ty are
uniformly bounded. This yields [So4(&;7, )] < (9500872~ 24,)(T;, 1€)|.

Further, we recall from the proof of Proposition 3.2.8 that, for any given p = (p1, p2) €
N2, we have uniformly in j € Ny

sup |01 05%a;(§)] S 1.
£€R?

Hence, we obtain

gsup2 [(89+P a8 2=l ) (T, ,16)| < 1 uniformly in (z,7,t) € X.
€R

All in all, this proves [S,(&;n,t)| < 1 and we can deduce

ésuﬂg |07 052 [a; (T )] (€)] S 1 uniformly in (z,7,t) € X.
€

For the exponential term, we note

exp (2mi(Ak, Ty ) = exp (2mi(T;) ,(Ak), -)).
1
Whenever (z,n,t) € U, = Uj ¢ we have x € Q?fk and thus

Ak = A;Rjw—k = AjRjo(x — xj04) € Q3.
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4.3 a-Molecule Coorbit Spaces

In other words |[Ak|jo < 2. We now invoke Corollary 2.2.19 which yields HngtHOOHOO <
25(1+ 1) < 2. Hence, we get T/, (Ak) € Q% = [-2,2]%.
For every p = (p1, p2) € N2 with |p|; < L and every (z,7,t) € X we thus obtain

1071052 exp (2mi(Ak, Ty 1)) | Loo|| < (4m)F < 1.

Finally, we take care of the prefactor w;%(At)_(Ha)/Q. Clearly, 273 < At < 25 due to
(x,n,t) € U,. We further have w,, =< 1 by Corollary 4.2.12.

Taken all together, our estimates prove (4.40).

Next, we analyze the support properties of the functions 8pltbx,,7,t. From the support
of the generators a; (see (3.27) and the following discussion) one can directly deduce that
there exist constants C' > ¢ > 0 such that supp ag C [~C, C]? and for j > 1

supp dj C [—C, C]2\([—¢, ] x [-2/07¥¢, 201 ¢]),
Furthermore, we clearly have
supp 0 fiz s+ C supp hy = supp a;(Ty s - )-

An application of Corollary 2.2.19 yields ||+ oco—so0o < 2%(1—1— 3) <2and HTTZtlHOO_,OO <

2%(1 + %) < 2. Hence, in case (z,n,t) € U, for p = (4,4, k) € My with j > 1, we obtain
supp 8 hy i C [~2C, 2012\ ([ 5, §] x [-27(1-) ¢ 2i(1=a)¢]), (4.41)
If (x,n,t) € U, for p = (0,€,k) € M; with j = 0, we necessarily have ¢t = 1 and
supp 9°hy 1 C [-2C, 207> (4.42)

The uniform boundedness of the functions 8pﬁx7n,t shown in (4.40) together with the
support properties (4.41) and (4.42) imply condition (2.5) for 8'”%57777,5 for arbitrary or-
ders (L, M, Ny, N2). This is the same argument already encountered in Propositions 3.1.3
and 3.2.8. The proof is finished. O

Let us remark that the utilized continuization procedure does not work in a generic a-
molecule setting. In the proof of Lemma 4.3.9 we have based our arguments on the fact that
the a-curvelets are bandlimited, a specific property stronger than the generic a-molecule
decay conditions. In a general setting, the proof would thus not go through as above.

Since €2 is a continuous Parseval frame of a-molecules with respect to the canonical
parametrization, we can now apply Theorem 4.3.8 to obtain the following result.

Lemma 4.3.10. We have the equivalence

Co(€a, L) = Co(@, L) = {f € S(R?) : Vizf € Los(X)},

where Co(C8, L7 is equipped with the quasi-norm || - |Co(C8, Ly9)|| := [|[Vaa(-) Lo
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a-MOLECULE COORBIT SPACES

Proof. For the proof, we show

Co(€q,Lyy) = Co(yg‘j,@, Lyy) = Co(€?, L)
Since €, and € are both Parseval frames of a-molecules with respect to the canonical
parametrization, and since for both the respective order is arbitrarily large (see Proposi-
tions 3.1.1 and 3.1.3 and Lemma 4.3.9), an application of Theorem 4.3.8 yields the first
equivalence

Co(€a, L) = Colvyy, €5, Lovs).

It remains to prove the second equivalence

Co(vpy s [N Lo) = Co(C?, Lo
Subsequently, we argue similarly as in the proof of Theorem 4.3.8, with €, replaced by
€3 First of all notice that € = {tx}xex C S, and hence the associated transform Vi
extends naturally to &’. The identification of the spaces is then proved by applying the
abstract result [74, Lem. 2.28]. For this, we need to show that the reproducing formula of
Vg extends to S’, which works analogously as for €,. In essence, we need to imitate the
arguments of Subsection 4.1.2 and in particular transfer Lemma 4.1.2.

The proof of this key lemma is based on (4.9) and (4.10). Hence we need to adapt these
estimates to €%. Concerning (4.10), we obtain analogously for ¢ € S and arbitrary but

fixed N > 0
Vezo(a,n, 1) = [, Yune)l < Oy -tV (1 [a)

with a constant CNW > 0 independent of (z,7,t) € X. In view of Lemma 4.3.9, this is a
direct consequence of Theorem 2.2.2.

Concerning (4.9), we first observe that an analogous estimate holds true for the discrete
a-curvelets ;o1 € €F,. There exists a constant Cy > 0 such that

[ 0nlln < Cn2IAF/22IN (1 (250 1)) uniformly for all (5,4, k) € M. (4.43)

This follows analogously as in the proof of Lemma 4.1.2. The only difference is that, instead
of the generators g; of the continuous a-curvelet frame given by (3.9), we need to use the
functions a; as in (3.25).

Now we can also show that, with a constant Cy > 0,

[x||v < Cnt=OF9 26N (1 4 1z|)N  for all x = (z,7,t) € X.

Indeed, let x = (z,n,t) € U]a;k Then there exist At € J5 = [2_%,2%] and Ak € Qé =
[—%, %]2 such that = = R;ZIAJ-_I(k + Ak) and 2/t = At. Now we use (4.43) and
Lot |zjenle = 1+ [A7 k]2 < (14 A7 (B + Ak)[2)(1+ [A7 Akl2) < (14 |z]2)(1 + |AK]2)
to get with Cy := Cn20+/6+N/3(1 1 /2/3)N as desired
1Bl = Ibsplly < C2I0F2008 (14 | 4115 Y < Gt WH/2N (1 4 |g]y),

The rest of the proof is analogous to Subsection 4.1.2. O
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4.3 a-Molecule Coorbit Spaces

Next, we introduce a scale of sequence spaces on the discrete a-curvelet index set M.

Definition 4.3.11. Let a € [0,1], s € R, 0 < p,q < oo. Further, M = J x Z? shall be the
a-curvelet index set as defined in (4.37). We then define the sequence space

03,o(M) = {(cuuem € C & (el qll < oo},

with associated quasi-norm defined for (c,), = (¢j.ex)jek by

1(€iu)ulpql _( Z 238(]( Z ’Cym\p>q/p)l/q.

4,0 el kez2
The following lemma is the final discretization step on our way to Theorem 4.3.13.
Lemma 4.3.12. Define §:=s— (1+a)/p— (1 —«)/q. Then

Co(T3, L) = Co(€8, £5,) :

a’ Tp,q

{FeS®) : Vesfety,},

where Co(€,, €5 ) is equipped with the quasi-norm || - |Co(€%, £5 )| := [[Ves (1)I65,

Proof. Let f € S', and let €, = {9, },cm be the discrete a-curvelet frame defined in
Definition 3.2.6. We have, with ¢, := (f,¥,)s xs being the curvelet coefficients,

V@Tf (X

@

ol
)= cuw, A (x), x€X,
1

where w, = wjg are the weights defined in (4.39). Further, the short-hand notation
XoT = A = XUa - for 7 > 0 is used. Recalling (4.38), namely Uit = Qi < Iy < JT,
it is useful to decompose

Xﬁéj—k(wv n, t) - X;(t) ' X;X,Z—(T/) ' X;X,Zk(x) ) ((L’, n, t) € Xa
with xj = XJT Xj Xlaf and X;ék XQ

Since, as a consequence of Corollary 4.2.127 we have w, =< 1 uniformly for all © € M, we
can deduce for x € X

| _Z’CM|W_1/2X%3 Z|CM|XO@3
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For arbitrary 7 > 0, we then calculate for the homogeneous component,

qdndt> La

N2 cantiitm ol
Jibk

/pdndt\
/ (ZXJ )X (n meHx]m 1||)qpn )
T

. afpdn dt\
[ GOS0 (S e bl )
T

(
( I k
(] [ F ™ (Slengzetil)”)
0T
(

= q/p ~
259( S lejanl’)"") = el (Mo,

with § =s— (14 «)/p — (1 — «)/q and implicit constants depending on .

Hence we deduce, with 7 > 0 sufficiently large,

1

. o adndt\ )
et = [ [ et ol S52) < Ve 0
0
; dndt
a,T aan S
< WegfLg ool s ( / S 7| ) )l

0

Here we used [[V5 f|L J(Xo)|l = [[WVgmfIL; (Xo)|, where W = WY is the a-

anisotropic Wiener maxnnal operator from (4.17), and that we can estimate for sufficiently
large 7 > 0,

WV f(x) < Z leplw, AWEXE (x) S Z e X7 (x), x€X

Similarly, we argue for the inhomogeneous part. Here, for 7 > 0 sufficiently large,

I(euultd (/Hzcm?’ DL dn) = Vg 1L (K0

< IVegf L0l 5 / | et nlm| dn) = (el (M)
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4.4 Discretization Theory

since for arbitrary 7 > 0

1/q
(15 cwerzitonfs] o)
T gtk
— (Z T(1)yv&T Pl T a/p Y
= ([ (60570 S el Isiilzal)™ dn
T g k
. a/p\ /4
Pgzzl) ")

/a
= ( Z (Z |CO,€,k|p)q/p)1 = H(cu)uwi,q(Ml)H‘
k

lellg

= (X [xaronan( s

Lelo T

Altogether, this proves Co(€3,, L) < Co(€P, 45 ). O

Finally, we can formulate the main result of this subsection, Theorem 4.3.13, giving a
discrete characterization of Co(&a, Ly7).

Theorem 4.3.13. It holds with 5§ := s — (1 4+ «)/p — (1 — a)/q and equivalent quasi-norms
Co(€q, Ly7) =< Co(€, 05 ).

a’ Tp,q

Proof. For the proof, we just need to combine Lemma 4.3.10 and Lemma 4.3.12,

Co(€a, L27) = Co(T3, L) = Co(€3, £5). O

a? p,q

We are now able to draw a connection between the coorbits Co(&,, Lj);7) and other known
scales of function spaces. The discrete characterization of Theorem 4.3.13 allows to identify
them with shearlet and curvelet smoothness spaces or more general decomposition spaces
(see e.g. [6]), for which equivalent discretizations have been derived. For example, they
coincide, up to equivalence of quasi-norms, with the shearlet smoothness spaces considered
in [85].

The discretization procedure presented in this subsection, based on the continuization
of a discrete frame, is more or less a hands-on technique to obtain discrete descriptions. A
more systematic approach to discretizations is developed in the next section.

4.4 Discretization Theory

As we have seen in the previous section, the coorbit spaces Co((’,‘a,Lg‘:; ) coincide with the
smoothness spaces defined and analyzed in [85]. In particular, they can also be characterized
as decomposition spaces (see [6]). Both, the coorbit approach as well as the decomposition
approach, offer their own advantages. One feature of coorbit theory is the rich and powerful
discretization machinery it comes along with. In the following, it allows us to derive very
general discrete descriptions of Co(&q,Ly7) (see our main Theorems 4.4.19 and 4.4.21).

Let us first recall the collection U = U2 [X] = {U%(x) : x € X} consisting of the sets
U¢(x) defined in (4.15) as

(2 + R, 1 A0Q7) x (n+t172I7), x (tJ7N(0,1)) ,xe Xy,

(o4 BAQ7) x (1417, x ({1}) xex,, 4

U(x) = {

117



a-MOLECULE COORBIT SPACES

where Q7 = [-7,7]?, I” = [-7,7], and J7 = [277,27]. This collection U constitutes a
continuous covering of X depending on « € [0,1] and a density parameter 7 > 0. Later, by
suitably sampling the transform domain X, we will extract from U2 discrete coverings of X.
Thereby even certain types of irregular samplings will be allowed.

By a sampling P, of the curvelet domain X we thereby mean a pair Py = (A, P) of
some countable index set A and a map P : A — X. For convenience, this notation will also
be used for the point family Py = {xx}rea where x) := P(A). A sampling of X at the
points Pj naturally leads to the family

U Py = {Uf‘(xk) L A€ A}

of subsets of X, whereby « € [0, 1] and 7 > 0 are fixed parameters.

An important concept for the discretization theory is the notion of an admissible covering
of the transform domain. Let us recall this notion [74, Def. 2.4] and extend it to admissible
collections of subsets of X.

Definition 4.4.1. Let A be a countable index set. A collection U = {Ux}rep of subsets
of X is called admissible if it is non-empty, locally finite and if it further has the following
properties:

i) The sets Uy are measurable, relatively compact, and have non-void interior;

ii) The intersection number s(U) of the collection U is finite, i.e.,

s(U) ==supt{p e A:UNU, # 0} < . (4.45)
AEA

Note that for a partition U the intersection number s(if) is 1.

If additionally X = (Jycp Uy is fulfilled we call ¢ an admissible covering.

We call a collection U of subsets of X relatively separated if we can partition U into
a finite number of subcollections, each of which only contains pairwise disjoint sets. The
order of the separation is the smallest possible number of such subcollections.

Note, that admissible collections of subsets of X, due to their local finiteness, are nec-
essarily countable since X is o-compact. Further, we will see in the next lemma that a
collection of sets with finite intersection number N is also relatively separated of order at
most N. The other direction of this statement is not always true. However, for collec-
tions of the type U [Py] the reverse implication also holds, which will be proved below in
Corollary 4.4.7.

Lemma 4.4.2. Let U = {Ux} ep be a collection of subsets of X. If the intersection number
s(U) defined in (4.45) is finite, then U is relatively separated.

Proof. By Zorn’s lemma we can find a maximal subcollection U; consisting of pairwise
disjoint sets. Taking out this subfamily decreases the intersection number of the remaining
family by at least 1. Iterating this process, we end up with a partition U = |J;_; U; into at
most s(U) subcollections of pairwise disjoint sets. O

Next, we are going to characterize those samplings Py = (A,P) of X which lead to
admissible coverings of the form U2 [Py].
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4.4.1 Well-spread Families of Points in X

We make the following definition in analogy to [43, Def. 3.2], where similar notions were
introduced on locally compact groups.

Definition 4.4.3. Let a € [0,1] and let 7 > 0. A family of points Py = {x)}xea in X is
called (o, 7)-dense if Jyep U2 (x2) = X. It is called (o, 7)-separated if U (xx) NU%(x,) =0
for A # p € A. Tt is called relatively a-separated if there exists 7 > 0 such that Py is a finite
union of (o, 7)-separated subfamilies. It is called a-well-spread if it is relatively a-separated
and if it is (o, 7)-dense for some 7 > 0.

The finite union of relatively a-separated families of points is again relatively a-separated.

Remark 4.4.4. Note that every subset of X can be interpreted as a family by indexing each
element with itself. This perspective allows to apply the notions defined for point families
in Definition 4.4.3 to subsets of X in a canonical way.

We will later need the following intuitive fact for which we nevertheless provide a short
proof for reasons of mathematical rigor.

Lemma 4.4.5. Let Py be an (o, T )-separated family of points in X, a € [0,1] and 7 > 0
be fized. Then there exists an extension of Py to an a-well-spread family of points in X,
which is still (o, T)-separated.

Proof. The proof is based upon Zorn’s lemma. Let P(A) denote the sampling points of Py
interpreted as a subset of X. Then consider the class & of all («, 7)-separated extensions of
P(A), partially ordered by inclusion, whereby («, 7)-separation shall be understood in the
light of Remark 4.4.4. The union of the points in each chain in € is again an element of the
class €, i.e., an («, 7)-separated point set. Moreover, it majorizes the chain and hence, by
Zorn’s lemma, there exists a maximal element in &, which we denote by P(A)®.

This subset of X is («,7)-separated and extends P(A). Moreover, P(A)** is (a,0)-
dense for o > h(r,7), since otherwise there would be x ¢ Uycpa)es Us(y), and thus
U2 (x) N Uyep(nyex Us(y) = 0 by Lemma 4.2.5(v). This would be a contradiction to the
maximality of P(A)®**. Finally note that the set P(A)®*' is countable since, due to the
o-compactness of X, all elements of & are countable. In particular, the index set A of Py
can be extended to some countable index set A and P(A)®!, suitably indexed by A®Xt,
becomes an extension of the family P, with the desired properties. ]

The following result establishes a connection between the relative a-separation of points
and the intersection number of associated a-patches. Note that the finite union of set collec-
tions with finite intersection numbers need not have a finite intersection number any more.
Even the union of two collections of pairwise disjoint sets can have an infinite intersection
number in general.

Lemma 4.4.6. Assume that Py is a relatively a-separated family of points in X. Then for
each 7 > 0 the family UX[Pa] has a finite intersection number, dependent on .

Proof. Let 7 > 0 be fixed, and take an arbitrary x € P(A), where P(A) — as in the proof
of the previous lemma — denotes the subset of X consisting of the points contained in the

family Py . For the proof we will subsequently count the number of non-trivial intersections
the set U%(x) has with other sets in U2 [Py].
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Since P, is relatively a-separated there exist ¢ > 0, N € N, and a partition A = U/]gV:1 AP
such that the subfamilies Py are (o, o)-separated. For all y € P(A) with y € X\U, hr) (x)
we have U%(x) N U2(y) = 0 due to Lemma 4.2.5(v). Hence, it only remains to count the
number of points in P(A*) N Ukr.r) (x) for each k € {1,..., N}. For this, we note that all
the sets in U [Pax] with centers in U,S‘(TJ)(X) are contained in the larger set U, 1 ) (x),
which is true due to Lemma 4.2.5(iii). The volume of this set is upper-bounded by some
constant C' > 0, independent of x € X, according to Corollary 4.2.12. Further, also by
Corollary 4.2.12, the volumes of the sets US(y), y € P(A), are uniformly lower-bounded

by some D > 0. Since P,k is (o, o)-separated, we conclude that the number of points in
P(A*) N U}?(TT)(X) is bounded by C/D for each k € {1,...,N}. O

As a consequence of Lemma 4.4.2 and Lemma 4.4.6, we can formulate the following result
establishing relations between the notions of relatively a-separated points, corresponding
set collections, and finite intersection numbers.

Corollary 4.4.7. Let Py be a family of points in X. For arbitrary = > 0 we have the
equivalence:

i) Py is relatively a-separated,
i) UX[Py] is relatively separated,
iti) UX[PA] has a finite intersection number.

Proof. We use a circle argument. Assume P, is relatively a-separated. Then by Lemma 4.4.6
the collection U2 [Py] has a finite intersection number. By Lemma 4.4.2 this in turn implies
that U2 [Py] is relatively separated. Finally, if U2 [P,] is relatively separated, then there
exist N € N and a partition A = [JY_; A¥ such that U*[P,«] consists of pairwise disjoint
sets for every k € {1,..., N}. As a consequence, the families P,x are (a, 7)-separated, and
in turn P, is relatively a-separated. ]

As a consequence, with « € [0,1] and 7 > 0 fixed and P, being a family of points in X
we have the following equivalence:

Py is relatively a-separated. = U [P,] is an admissible collection.

Now we are ready to prove the close relationship between admissible coverings of the form
UL[Py] and a-well-spread point families. One should compare this result to [43, Lem. 3.3],
for example.

Proposition 4.4.8. Let Py be a family of points in X. The collection UX[PA] is an ad-
missible covering of X if and only if Py is a-well-spread and (o, 7)-dense in X. Moreover,
if we have an admissible covering of the form UL[Py] for some family Py in X and 7 > 0,
then by choosing one point in each set one obtains an a-well-spread family of points.

Proof. Assume that Py is a-well-spread. Then P, is relatively a-separated and, according
to Lemma 4.4.6, the intersection number of U< [P,] remains finite for all 7 > 0. Assuming,
in addition, (o, 7)-density, the properties of an admissible covering are easy to establish.
Conversely, if U¥[Py] is an admissible covering, then P, is in particular («,7)-dense.
Moreover, also U, {[P,] is an admissible covering, whose intersection number N is finite.

120



4.4 Discretization Theory

By Lemma 4.4.2 we can decompose U7, ;[P,] into (at most) N subfamilies U2 4 [Pyk],
ke {1,...,N}, consisting of pairwise disjoint sets. A sampling Py subordinate to U [P]
is then (a,o)-separated for small enough ¢ > 0. Hence, Py := U, Py is relatively a-
separated. Moreover, for large enough p > 0, the sampling P, is also (cr, p)-dense. This
proves that it is a-well-spread, and thus, as a special case, also P, is a-well-spread. O

4.4.2 Associated Sequence Spaces

Let Py = (A,P) be an a-well-spread sampling of X. Then we can use Pj as a means
to associate sequence spaces to Ly ,(X) and L;;/(X). The definition and analysis of these
spaces is the topic of this subsection.

Let us first introduce the abstract concept of a sequence space Yb<Z/{> associated to a
rich solid QBF-space Y on X and an admissible collection U = {Uy}xep of subsets of X.
Hereby we do not require U to be a covering as in [74, Def. 2.6].

Definition 4.4.9 (compare [74, Def. 2.6]). Let Y be a rich solid QBF-space on X and let
U = {U\}rea be an admissible collection of subsets of X. The sequence space Y” := Y*({)
is defined as the space

Y (U) = {{cA}AeA cC: Y ey, € y},
AEA

equipped with the quasi-norm

HexhV @l = || 3 leales v
AEA

Note that, since X is o-compact and U is admissible, the indices A necessarily constitute
a countable set. Further, since the collection U is locally finite, the sum Y 5oy |ex|Xy, is
always well-defined in a point-wise sense.

A sequence {c)}xen can be viewed as a function on the index set A. Taking this per-
spective, the spaces Yb<l/l> are function spaces on A. Moreover, we can think of A as
being equipped with the discrete topology and the counting measure. Then the notion of
a QBF-space on A and the corresponding terminology are available (see [74]). For better
distinction, we refer to the latter as quasi-Banach sequence spaces, abbreviated QBS-spaces.

The space Y (U) inherits many properties from Y. It was shown in [74] that it constitutes
a rich solid QBS-space with the same quasi-norm constant Cy as Y.

Proposition 4.4.10 ([74, Prop. 2.7]). The sequence space Y’ (U) is a rich solid QBS-space
with the same quasi-norm constant Cy as'Y .

Proof. We refer to [74, Prop. 2.7]. O

Depending on « € [0,1] and 7 > 0, we now partition X as follows. We put 7 := 27 /27 /7],
which is an integer fraction of 27, and define for every J = (j,£) € N3

X537 = {x= (@) €X : t€27771,27),p e 277 1 [0, 7)) }.
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a-MOLECULE COORBIT SPACES

Then X = J JENZ X7 is a partition of X, whereby many of the sets X5 are empty. Given
a sampling P : A — X with A — x,, the above partition further induces a corresponding
partition of the index set A, namely A = U eng AS7T with

AT = AGT[P] = {)\ eEN : x)€ X?'T}.

Now we are ready for the next definition.

Definition 4.4.11. Let aw € [0,1], s € R, 0 < p,q < co. Let Py = {X»}rea be a relatively
a-separated family of points in X. We then define the sequence space

(021Py] = {{cA}AeA tehgsma| = (2 (2 |Vg7,qs(XA)CA|p>q/p)1/q <Oo},

JEN  AeAS' [P

where v&5

o is the weight from (4.24) given by

Vs (x) = /ey — (2 1) € X

As a consequence of Proposition 4.4.10 and the characterization established below by
Theorem 4.4.12, these spaces are rich solid QBS-spaces.

Theorem 4.4.12. Let o € [0,1] and let Py = {xx}rea be a family of points in X which is
relatively a-separated. Assume further that s € R and 0 < p,q < co. For every fized 7 > 0
we then have the equivalence

L3 (X" UL [PA]) < €52 [Pa).

Proof. Recall the definition of the sets U¢(x) from (4.44), namely

U () = {(x + RMAQT) x (n+t7IT), x (tJ7N(0,1)) , x € Xy,

’ (x4 R1Q7) x (n+17),, x ({1}) X €Xy,
where x = (z,7,t) € X and Q7 = [-7,7)%, I" = [-7,7], JT = [277,27]. For the associated
characteristic functions, we will subsequently use the short-hand notation Xyx'™ := Xyo(x)

as introduced in (4.21). Further, recall that one can decompose these functions in the form
X (Y, 0,u) = Xam () - Xot (0) - X7 (u) with characteristic functions as in (4.22).

We will handle the proof for the homogeneous and the inhomogeneous parts of the
sequence spaces separately. Accordingly, we decompose A = Ag U A1 into

A:={ el : x€Xo} and Aj:={ e A : x)\eXy}.
We further introduce the convenient notation

{eatalliom 1= IHex}reno| (L) (UL [PA,])

| Hahliy = Heben

(L) U2 [P,
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4.4 Discretization Theory

Since the intersection number of U2 [Py, ] is finite, we can rewrite the homogeneous part
of the quasi-norm in the form

qd&du)l/q

> leal (0wl | =
AEAo

a/p df du)l/q

St (X el T O 211
0 )\EAO
2

a/p df du)l/q

u

<([ Juro( 2 Sl @il 6)
0

JeNxNg AeAf]“"’

(+)
(4.46)

where we used that for every fixed 7 > 0
el Dt = 140 Q7| = t17®  holds uniformly in (z,7,t) € X.

We next estimate (x) from above and below.
First, we note that for A € A77 and J = (j,£) € N3 we have by definition

ty €279901,29) and ny € 27770945 + [0, 5)),
where ¢ := 27 /[27/0]. We deduce
tJT C 2—j0[2—7’ 2T+0’) and t%\_aIT C 2—ja(1—o¢)20(1—a)17”

which yields '
tAJ7 N (0,1] € J5T7 = 27971277, 278 0 (0, 1].

Further, since 2~ [17(0-a)1 < 9-70(1-a) 4nq 5 < ¢, it holds
na € 27 170=9 (05 4 [0, 5)) € 277 0=Dyg 4 9=io(1=)[g 4],
This implies
m 4 eI € 27 lel=a)lyg 4 9=ioll=a) (ge(l=a)[_7 7] 1[0, 0])
c 2~ lie(=e)lpg 4 gmio(=a)goll=a)[_; &+ 4 5]
and hence

(43T )ar C L7 1= (271005 4 2700007 7 4 6]),

Altogether, this proves for every J € N2 and (0,u) € T x (0, 1] the inequality

> lealPxG @l ) < D lalPx; (0, w), (4.47)
AeAT? AeAT?

3T

where x ;"7 is the characteristic function of the set I;rf’” X J;r e
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a-MOLECULE COORBIT SPACES

Similarly, we obtain an estimate from below, this time with ¢ = 7 however. It holds

Y lelPx @ 0) = Y lealPx; 7 (0. w) (4.48)

@, @,
XEAS XEAG

with the characteristic function x;? of the set

L7 x J;7 = (2717005 4 27770-9[0,6)), ) x (2797[1,27) N (0,1]).

Indeed, we see that for A € AT7 and J = (j,¢) € N3,
tAJ7 D 279901,2°) and t[7 D 27iol-a)fe,
Further, as above,
m € 2770=I (05 4 [0,5)) € 2705 4 9=io(=)[ 4],
Hence
ma 4 17017 D 27le=a)lyg 4 9=io(l=a)[g 4]

and the estimate (4.48) follows.

In the sequel, it is essential that the functions x "7 and x; are merely dependent on

the indices J € N x Ny, and not on the particular A € A J’T any more. We calculate
2 2w

1 1
/\/Xi’o- dﬁdu //X d@du 2—ja(1—a)
J ’ U
0 0 00

for fixed 7,0 > 0.
Using (4.47) and (4.48), we can then prove

a/p\ /4 .
so0al)") S el (4.49)

Mol s ( X (2 W

JeNXxNg )\eA“ i

whereby the implicit constants are dependent on 7 and o.
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4.4 Discretization Theory

For the first inequality, we plug (4.47) into (4.46) and obtain

1
T . ) s a/pdf du\ '/
Heshllon < ([ [ue( 3 290, 3 jer) " E)
00 JeNXNg AeA?’U
P 4 a/pd6 du\ /4
- //ufsq Z 2*]0(1+a)(1/1’x}‘7770(97u>< Z ’c)\’p> - )
00 JeNxNg )\GAL&]’J

1 27

9dosqo—jo(l+a)q/p //X ,770 deudU}( Z |c)\|p)Q/p)1/q
0 0

9J0sq9 ja(1+a)q/p2 jo(l1— a)( Z |C>\|p)€1/p)

(
(
(
(

1/q
( S il (te)/p=(1=a)/q) p‘c)\‘py/p)
JENXNo ~ AeAS”

(X <xA>cA|p)q/p)1/q.

JENXNy ~A€A%?

Plugging (4.48) into (4.46), we obtain the second inequality

1
4 s —jo(14+a). -0 a/pdf du
Heshlignz ([ o £ 2005700 ¥ jap) )
00 JENXNp AEA?’J
T —sq —jo(l4a)g/p,,—0 P a/p df du 1/a
= ([ [ 2 g 3 ar)" )
00 JENXNp )\EA?’U
1 27
d9d / 1/q
(5 el B 5 )
JeNxNg 00 )\61\?’0

(T (5w

JENxNo  XeAT”

For arbitrary 7,0 > 0 we can finally deduce, using the symmetry of (4.49),

el = e,

with implicit constants depending on those parameters. A similar estimate as (4.49) holds
true for the inhomogeneous parts, as well as H{C>\}>\”1n = ||{c,\},\||l(g)

This shows that for every 7 > 0 the spaces (L; ) (UX[Py]) contain the same sequences.
Furthermore, the quasi-norms of these spaces are all equivalent. Finally, choosing 7 =0 =1
in (4.49) and the analogue for the inhomogeneous part yields the assertion. O
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a-MOLECULE COORBIT SPACES

For the Wiener spaces Lj7(X) we can derive the same associated sequence spaces.

Corollary 4.4.13. Under the same assumptions as in Theorem 4.4.12, we have
Lo (X) (UL [Pa)) = €35 [Pa)-
Proof. In view of Lemma 4.2.5(v) (see also (4.20)), we have with o := h(7,1)
WX (x) = Az (x)
for all x) € P,. Hence we can estimate

Hex (L, o) U IPADI < e} (L) U [PADI = HZICAIXUa () g |

(Ly o) USTPADI

<| Z ‘CA‘XUg(XA)‘prq

A
Since the quasi-norms on the left- and right-hand side are equivalent, according to Theo-
rem 4.4.12, the assertion follows. ]

As the last result of this subsection, we prove that the definition of the spaces £}, S[PA]
is rather robust with respect to the utilized sampling Pj.

Corollary 4.4.14. Let Py = {x)}aea be an a-well-spread family of points in X, and assume
that S : A — X is a sampling subject to the condition S(N\) € U%(xy) for all X\ € A, where
7 > 0 is arbitrary but fived. Then £5:7[Pa] < £5:7[Sa]-

Proof. Using Lemma 4.2.5(iii) and (iv), we obtain
U7 (xx) CUF(S(N) € UR(xx)

with ¢ := g(7,7) and 7' := f(7,0). With the help of Theorem 4.4.12, we then deduce

QLS b (o3 S b (03 QLS

o [Pal = (L o (X)) (U [PAl) S (L o (X)) (U [Sal) =< £5757[SAl,
and the opposite direction

a, b b7 0 «Q

U [SA] = (L o (X)) (UG SA]) S (Ly (X)) (UL [Pl) = 6575 [Pal.
The proof is finished. O
4.4.3 Discrete Characterizations: Atomic Decompositions and

Quasi-Banach Frames

In this subsection we will finally apply the abstract discretization results [74, Thm. 2.48] and
[74, Thm. 2.50] to our specific coorbit space setting, leading to Theorems 4.4.19 and 4.4.21
below. In order to do this we need some preparation. Let us start with some definitions.

Definition 4.4.15 (compare [110, Def. 3.9]). Suppose Y is a quasi-Banach space. A family
{hx}xea of bounded linear functionals on Y is called a quasi-Banach frame for Y, if there
exists a QBS-space Y” = Y?(A) and a bounded linear reconstruction operator Q: Y? — Y
such that the following holds true,
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4.4 Discretization Theory

i) The associated analysis operator H : f — {hy(f)}rea is bounded from Y to Y?,
ii) It holds Q(H(f)) = f for all f €Y.

Note that if {hy}xea is a quasi-Banach frame for Y, then there exist frame bounds
0 < C7 < (9 < oo such that

b
CLfIYI < IHY| < Col fIY]]-
A somewhat dual notion to a frame is the notion of an atomic decomposition.

Definition 4.4.16 (compare [110, Def. 3.8]). A family {gx}ea in a quasi-Banach space Y
is called an atomic decomposition for Y, if there exists a quasi-Banach frame {h)} ea for
Y with associated QBS-space Y” such that:

i) The associated synthesis operator € : {cx}rea — 3. caga is bounded from Y? to Y,
AEA

ii) The reconstruction formula f = >~ hy(f)gx holds true for all f € Y.
AEA

Frame Sampling

Our first discretization result, Theorem 4.4.19, yields atomic decompositions and discrete
quasi-Banach frames for the coorbit space Co(€,, Lg‘;;) by suitably sampling the continuous
a-curvelet frame €,. Its proof is based on the analysis of the so-called oscillation kernel
associated to €.

Definition 4.4.17 ([74]). Let U = {Ux}rea be an admissible covering of X and let I" :
X x X — S! be a phase function. We define the oscillation kernel associated to U and the
a-curvelet frame €, = {1k }xex from Section 3.1 by

oscyr(x,y) i= sup [G[€a](x,y) = T(y, 2)G€a)(x,2)] = sup [(¥x, Yy = Ty, 2)0%0)l,

where x,y € X and Uy := U,.yep, Ux. Further, we put OSCZlI(X, y) = oscy r(y,x).

We next want to apply [74, Thm. 2.48]. For this, we need to verify PROPERTY D(4,v,Y)
for €,. The following definition is in line with [74, Def. 2.43].

Definition 4.4.18 (compare [74, Def. 2.43]). Let Y be a rich solid QBF-space on X and
let €, be the Parseval frame of a-curvelets from Section 3.1. We say that €, possesses
PROPERTY D(6,v,Y) for a weight v > 1 and some 6 > 0 if it has PROPERTY F'(v,Y)(see
Definition 4.3.6) and if there exists an admissible covering U and a phase function T :
X x X — S! so that

(i) 1G[€a]], oscy.r, oscz,’r € B,y

(ii) [loscy,r|Bm, v || < é and [loscy p|Bpm, vl <.

Now we are ready to apply [74, Thm. 2.48]. We obtain the theorem below.
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Theorem 4.4.19. Let a € [0,1] and let €, = {¢¥x}xex be the continuous Parseval frame
of a-curvelets constructed in Section 3.1. Further, let s € R and 0 < p,q < oo be fized.
Then there exists 1o = To[ev, $,p,q] > 0 such that for every a-well-spread sampling Py of X
of density T < 19 the sampled system {1\ = x, : A € A} is a discrete a-curvelet frame for
Co(€q,Ly:;) which possesses a corresponding dual frame {¥x : X € A} such that:

i) (Analysis) For f € (HY) with v = vy as in (4.35) we have

feCo(@ulyy) & {((vdhefiPal <  {{(fd)h € 5[Pal.

In case f € Co(@a,]La’s) the quasi-norms are equivalent, i.e.,

1F1Co(€a, Ly = [{{f, o) al6pg [PAll = (A da) Il €pia [Pl

ii) (Synthesis) For each sequence {cx}x € £5:7[Pa] the sums
doexa and Y eady
AEA AEA

converge unconditionally in Co(C,, LY; 5) Moreover, the assigned synthesis operators

are bounded from £37[Pa] to Co(&q, ]Lo‘ )
iii) (Reconstruction) For all f € Co(&q,Ly))) we have

f Zfﬂ/)/\ 72;)\_2<fa1123>\>¢>\-

AEA AEA

Proof. We have shown in Proposition 4.2.9 that Y := L7 is a rich solid QBF-space on
X. Let Cy denote the associated quasi-norm constant and v = v, the associated weight
defined in (4.35). We know from Proposition 3.1.3 and Theorem 4.5.5 that G[€,] € By, v
Hence, we can choose a number § = J[«, s,p, q] > 0 which satisfies

S((1+ CV)[IG[Call|Bm, v || +dCy)Cy <1,

the condition required in [74, Thm. 2.48].

Now assume that Py : A — X defines an a-well-spread and (o, 7)-dense point family
{xa}aea in X. According to Proposition 4.4.8, the collection U := U2[P,] is then an
admissible covering. Further, due to Lemma 4.2.5(iv), if o > ¢(7,7) we have

Uy = U Uf(xy) CUSy) forally e X.
Ay €eUg(x)
It follows, with I' = 1, that oscy,r(x,y) < oscs(x,y) and oscj, p(x,y) < osci(x,y), where
osc, is the oscillation kernel from Definition 4.5.6.
According to Theorem 4.5.7, there further exists og > 0 such that
losce|Bm, vl <é and |osc,|Bm, y| <d forall o < oy.

We now choose 19 > 0 such that og > g(79,70). Then for all 7 < 79 and U = UX[P,]

loscu,p[Bm, vl <0 and [Joscy p[Bm, v <.

This shows that €, possesses PROPERTY D (0, v, Y') with respect told = U2 [Py] if 7 < 79.
Hence we can apply [74, Thm. 2.48] with sampling points x) € Uy = U%(x,). Finally, note
that it holds £57[Ps] =< L7 (X)*(U[P,]) due to Corollary 4.4.13. Taking into account
Corollary 4.2.12 and the fact that the finite sequences are dense in £5:7[Ps], since p, ¢ < oo,
the assertions follow. O
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Frame Expansion

Another useful discretization result of the abstract coorbit theory is [74, Thm. 2.50]. Sub-
sequently, we consider a discrete frame 92 = {my}ren of a-molecules, indexed by some
countable index set A, such that the associated parametrization ® : A — X yields an a-well-
spread family ®, of points in X. In Theorem 4.4.21, we will derive a sufficient condition,
using the abstract result [74, Thm. 2.50], when such a frame constitutes a quasi-Banach
frame as well as an atomic decomposition for the coorbit Co(&a, Ly7).

The proof is based on the analysis of so-called cross-Gramian maximal kernels defined
as follows.

Definition 4.4.20 (compare [74, eq. (2.13)]). Let 9Mq = {mx }xex and My = {1y }xex be
two systems of a-molecules of order (L, M, N1, No) with respect to the canonical parametriza-
tion. Let U = {Ux},ea be an admissible covering of X. The associated cross-Gramian
mazximal kernel is defined by

My, M](x,y) := sup |G[Ma, Ma](x,2)| = sup |(my, mz)|, x,ye€X.
z€Uy zc€Uy

where Uy := Uy.yep, U Further, we put My, Ma]* (%, y) := My [Ma, Ma](y, x).

Now we can formulate the next theorem and prove it with [74, Thm. 2.50] (see also
[111, Thm. 3.14]). Recall that €, = {¢x}xex denotes the continuous Parseval frame of
a-curvelets from Section 3.1.

Theorem 4.4.21. Let o € [0,1] and let M, = {my}ren and IS = {m}ren be two discrete
a-molecule frames in Lo(R?) of order (L, M, Ny, No) and with respective parametrizations
®:A—Xand ®: A — X. Further, assume that IMM?, and M?, are dual to each other, i.e.,

F=Y 2 maymy = > (fma)my  for all f € Ly(R?). (4.50)

A€A AEA
Provided that the following conditions are fulfilled:

i) There exist T > 0 and an a-well-spread point family Py = {xx}rea in X such that

B(N) € U%(xy) and ®(\) € U%(xy) for all X € A,
ii) The order (L, M, Ny, Ny) of M®, and M, satisfies condition (4.36) with respect to
seR and 0 < p,q < o0,

then both frames 9?3, and 97?& are contained in HY, where v :=vp7 as in (4.35), and the ex-

pansion (4.50) is valid for all f € Co(&q,1L577) with quasi-norm convergence in Co(€q, Ly7).
Here (-,-) must be interpreted as the duality product of the pairing (HY)' x HY.
Furthermore, for every f € (HY)' we have

f € CO(Q:CH Lg:;) < {<f7 mA)})\ € gg’,; [p/\] ~ {<f7 m)\>})\ € Kgi’; [PA] ;
and — in case f € Co(&y, Ly7) — it holds

1£1Co(€a, L)l = I{(F5 ma) §\ 165 [Palll = I{(F5 mx) 3y 1655 [Pl -
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Proof. We want to apply [74, Thm. 2.50]. To this end, note that according to Lemma 4.4.6
the intersection number N of UZ[P,] is finite, where 7 > 0 stems from condition (i).
By Lemma 4.4.2 we can thus split the family P, into at most N subfamilies Pyx, where
E e {l,...,r} and r < N, which are each («,7)-separated. The associated splitting of
the index set A shall be denoted by A*. We obtain corresponding collections U*[Py«],
ke {1,...,r}, consisting of pairwise disjoint sets.
Next, we build r continuous families of a-molecules. We define for k € {1,...,r}:
mE) = (P x e X} with md = {m,\ if x = &(1), A € A%,

0 else,
) — () xeX) with @l = {m if x = ®(N), X € AF,
0 else.
By definition, these families are nonzero merely on a discrete subset of X, namely the
sampling points determined by ® and ®. Further, they are systems of a-molecules with
respect to the canonical parametrization of the same order (L, M, N1, Na) as 92, and 971;

We proceed by extending each point family Pyx to an a-well-spread family PPX* that is
still (v, 7)-separated. This is possible by Lemma 4.4.5. More concretely, looking into the
proof of this lemma, we can assume P to be (a, o)-dense for some o > h(7,7), where h
is the function from Lemma 4.2.5(v).

Let us denote the extended index sets by A$**, and for the extended point families Pg**
let us write Pt = {x¥ : A € AP} with x§ := x, for A € A*. By Proposition 4.4.8, we
obtain associated admissible coverings Uy, = US[PXY] = {U¥ : X € AP} where UY =
U2(x%). Furthermore, these coverings are moderate (see [46, page 260] for a definition)
since p(U¥) < 1 by Corollary 4.2.12. In particular, [74, eq. 2.25] is satisfied.

In view of Lemma 4.2.5(iv), if p > g(o, o) we have

U;f = U Ut Uj(y) forallyeX.
)x:yEU;\c
Hence, we can define and estimate the kernel functions Ky, and Ky, k € {1,...,r}, as follows,
K:k(Xa y) = Muk [m&k)v Q:Oé](xv Y) S M?[m&k% Q:CY](X7 y) ?
¢ (

Kr(x, Y) = Muk [anoak)v Q:Oé](xv y) < M?[iﬁt k)7 Q:CY](X7 y) )
with M2, €] and MY, €,] being defined as in (4.54).

According to Theorem 4.5.5 and due to condition (ii), these kernel functions as well as
their involutions M| &k), ¢.]* and Mg‘[ﬂjl&k), ¢, ]*, are elements of the algebra B,,, y for
v:=vpy and Y := L}7. By solidity, the kernels K, K, Ky, and l@}’; thus also belong to

my,Y -

We now choose for each k € {1,...,r} and each A € A§*" sampling points xj, \ € U/]\’C and
Xk € U/’\C as follows:

xi i= ®(\) and %Xp \ = B(N) for A € AF,

Xp = Xpn € U%(x}) arbitrary for A € APN\AF,
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Then we get from (4.50) the validity of

=3 Y (Fond) yml), = Y Fom& ) for all f € Ly(R?).

k= 1)\6Aext k= 1)\6Aext

Hence, the prerequisites to apply [74, Thm. 2.50] are (almost) fulfilled, albeit not pre-
cisely since we have used possibly different coverings U, for each pair of kernels K, and K.
Moreover, the primal and dual sampling points x; \ € U f and X, € U )’f might not coincide
and may also differ for different k.

Hence, we need to apply the original theorem [74, Thm. 2.50] in a slightly generalized
form. This is possible, since revisiting the proof of [74, Thm. 2.50] (see [111, Thm. 3.14]), it
becomes clear that the statement of [74, Thm. 2.50] still holds true under these generalized
assumptions. An application thus yields the assertion. To see this, we remark that as a
consequence of Corollary 4.4.13

S I mE ) haear LSS () WU || = (S, ma) baea 8 Pl
k=1

Also observe that the finite sequences are dense in £57[Py]. O

Note that the frames 91?, and f/Dv?& in Theorem 4.4.21 need not coincide, which extends the
range of applicability of the result significantly. For example, frames of compactly supported
shearlets, where no tight frame constructions are known, might be possible choices for 91?,.
A drawback for the application however is the required knowledge on the dual frame, which
is not available for many concrete constructions.

4.5 Appendix: Kernel Analysis

In this appendix the technical details are provided needed for the application of the abstract
theory of coorbit spaces from [74] to our concrete setting of a-molecule coorbits. The
abstract theory relies heavily on the analysis of certain kernel functions and their mapping
properties. In the following exposition we pursue the required analysis for the specific
kernels associated with the continuous a-molecule transform.

Thereby, in our concrete setting, a kernel function, or a kernel for short, refers to a
measurable function K : X x X — C. For convenience, we collect all such kernels in the set

K:= {K XxX—-C: K (pu® ,u)—measurable}

and identify those which coincide apart from a null set. Clearly, equipped with point-wise
addition and scalar multiplication, IC is a C-linear space. Moreover, this space is closed
under involution, i.e., the operation given by

K +— K* where K*(x,y):=K(y,x), x,y€X.

The significance of the kernel space IC stems from the fact that its elements naturally
act on functions with domain X. This shall be understood in the following sense: A kernel
K € K maps a measurable function F': X — C to a function KF := K[F] via

/ny y)duly), xeX,

131



a-MOLECULE COORBIT SPACES

whenever the integral on the right-hand side is well-defined for almost every x € X. Note
however, that for a given kernel K € IC this may not be the case for all measurable functions
F:X—C.

The operator associated with a kernel K will sometimes be denoted by K°P, for better
distinction, but whenever the meaning is clear we will use the same notation K. The com-
position K o L°P of two kernel operators leads to a corresponding multiplication operation
on the kernel space IC given by

(K o L)(x,y) = / K(x,2)L(z,y)du(z), xyeX. (4.51)
X

But one has to be careful since again this multiplication is not a well-defined operation for
all kernel pairs (K, L) in IC x IC.

The algebra A,,, A natural subset of IC, where the multiplication is well-defined for all
kernel pairs, is the space (see [46, page 249])

A={KeK : |K|A| <o},

where for K € K the symbol || K|.A|| denotes the norm

|| KAl ::max{esssup / |K(x,y)| du(y), ess sup / ]K(X,y)|d,u(x)}.
xeX yex yeX xeX

The space A is even a Banach algebra as we will see in Proposition 4.5.1 below. Moreover,
it is solid and closed under involution. The solidity of a kernel space is thereby defined
analogously to the notion on a QBF-space, i.e., a subspace £ C K with quasi-norm || - |L]|
is said to be solid if for every kernel K € IC we have the implication

|K| <|L| for some L € L = K € L and |K|L| < ||L|L].

Before we come to Proposition 4.5.1, let us introduce a more general weighted version of A
which plays an essential role in coorbit theory.

Given a weight function v : X — R, on X, which is without saying always assumed to
be measurable, we can associate a bivariate weight m, : X x X — [1, 00) via

v(x) v(y)
v(y) v(x)
The weighted kernel algebra A,,, (see [46, page 250] and [74, eq. (2.8)]) is then defined by

my(X,y) = max{ }, X,y € X.

A, = {K €IC : |K|An,| < oo} withnorm [K|Ap,| = |[Km,|A].

For a constant weight v we get m, = 1 and thus retrieve the unweighted algebra A = A,,, .
In general, we have m, > 1 wherefore A,,, is always continuously embedded into A.
An important structural result for A,,, is stated in the following proposition.

Proposition 4.5.1. For each weight v : X — R the kernel space A, is a Banach algebra,
solid, and closed under involution.
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Since a proof of this fact is not contained in [46, 111, 74] we decided to include one in
this thesis.

Proof. We first prove that A,,, is a Banach space with norm || - |A,,,||. Apart from the
completeness, everything is straightforward to verify. Hence let us just concentrate on the
completeness and consider a Cauchy sequence (K, )nen in A, .

Without loss of generality we can assume ||K,41 — Kp|Ap, || < 27" for every n € N.
We then define the auxiliary kernels L,,, m € N, given by

m
Lin(x,y) == Y [(Knt1(x,y) = Kn(x,y))mu(x,¥)|, xy€X.
n=1
Using monotone convergence, we obtain
[e.@]
| lim Lon(, ) Lall = T [ L)Lt € 3 1Kt — KA, [ <1 for ae. x € X.

n=1

Hence, at every position x € X apart from a null set, the sequence > o2 [(Kp41(x,y) —
K, (x,y))m,(x,y)| converges for almost all y € X. Since everywhere m,(x,y) # 0, also
Yoo (Kny1(x,y) — Kn(x,y))| converges for almost all x,y € X. This allows to define a
kernel K as the pointwise limit

K(xy) = lim Ku(x,y), xy€X,
since those limits exist almost everywhere. This kernel is also characterized by the property
K(x, )my(x,-) = L1-lim, , Kp(x,-)m,(x,-) for a.e. x € X,
K(,y)my(,y) = L1-lim,, o K, (-, y)m,(-,y) fora.e yeX

This follows from the fact that (K, (x,)m, (X, ))nen and (K, (-, ¥)my (-, ¥))nen are Cauchy
sequences in L for almost every x € X and y € X, respectively.
The validity of K € A,,, and K,, — K in A,,, is now a consequence of the observation

esssup [|(Kn(x, ) = K(x,-))my (x,)|[La]| = esssup lim |[[(Kn(X, ) = Km(X,-))mu(x, )| L]
xeX xex Mm—oo

< lminfess sup (3¢, ) — Ko, ))mu (. )|a|

< l,i}lgio%f |Kp — K| Am, || =0 (n— o0)

and the analogous result

esssup (K () = K(.y))my () Lal) < limin [ = Kool | 0 (0= o0).
ye

This proves the completeness of A,,, and establishes A,,, as a Banach space. The solidity
of A,,, and the closedness under involution are clear.
Let us finally turn to the multiplicative structure. First observe that

my(X,y) < my(x,z)m,(z,y) forall x,y,z € X.
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Hence, we can estimate for almost every x € X

[ 156 2) Lz ) (x.3) dia(z) diay)

X X

< [ 1K G lm, (e 2) ([ 126 y)m(2.y) duy)) diz)
X X

< HLIAmUII/IK(X,Z)Imu(X, z) dp(z) < [ K[ A, [I[|L]Am, ||-
X

As a consequence of this estimate and the corresponding dual result

[ [ 1K 2Ly x,y) du(z) du(x) < 1] A, 1L A, .
X

X

we obtain the point-wise well-definedness of the product kernel (Ko L)(x,y) at almost every
(x,¥) € X x X and the estimate

1K o L|Am, || < [ K| Am, [[[ L] Am, ||
The proof is finished. O

Next, we are interested in mapping properties of kernels belonging to A,,,. Using Schur’s
test and the Riesz-Thorin theorem, it can be shown that kernels in A operate continuously
on the Lebesgue spaces L,(X) if 1 < p < co. More general, as observed in [46], kernels in

the weighted algebra A, operate continuously on the weighted spaces Ly (X) and L;l,/ Y (X).

Lemma 4.5.2 (see [46, page 250]). Letp € [1,00] and v : X — Ry be a weight on X. Then

all kernels K € Ay, operate continuously on Ly(X) and L;,/V(X) with [|[KP|Ly — Ly|| <

o 1/v 1/v
1K | A, || and | KP|Ly" = Ly || < || K| Am, |-

Proof. Let K := | K|m,,. Then, by Schur’s test and complex interpolation, K operates con-
tinuously on L,, 1 < p < oo, with ||[K°P|L, — L,| < | K|A| = |K|Am,||. Further, the ker-
nels K; and K> defined by K1 (x,y) := v(x)K(x,y)/v(y) and Ka(x,y) := v(y)K(x,y)/v(x)
for x,y € X are majorized by K, i.c., |Ki| < K and |K| < K. In view of Lemma 4.5.3
and the solidity of L,, these kernels hence also induce continuous operations on L, with
| K : L, = Ly|| < ||K| Ay, || for i = 1,2. This translates to the assertion of the lemma. [J

The algebra B,,,y Another way to define meaningful subspaces of the kernel space K
is to distinguish those kernels which operate continuously on some given function space
Y. To be more concrete, let us assume that Y is a QBF-space on X. The space L(Y) of
all bounded linear operators on Y is then a quasi-Banach space with the same quasi-norm
constant Cy as Y. Moreover, equipped with the operator-quasi-norm and the composition
operation as multiplication, this space becomes a quasi-Banach algebra since in particular

IK o LIY = Y| < ||K]Y = Y|||L]Y - Y| for every K, L € L(Y).
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Also observe that, if 7,, — T in L(Y), we have lim,,_,« |7 — T,,|Y — Y| = 0 and thus the
estimate
CHTIY = V|| <liminf (/T = T,|Y = Y| + |[To]Y = Y|) = liminf |T,]Y — Y.
n—oo n—oo
(4.52)
In case of kernel operations, things are a bit more complicated, since in general not all
elements of L(Y') stem from associated kernel functions.

A useful auxiliary result concerning the operations of kernels on solid QBF-spaces is the
following lemma.

Lemma 4.5.3 ([74, Lem. 2.45]). Let Y be a solid QBF-space on X, and let K : X x X — C
be a kernel such that | K| operates continuously on'Y . Further, let L : XxX — C be a kernel

satisfying |L| < |K| almost everywhere. Then L acts continuously on Y with the estimate
[LP)Y = Y| < [[|K[P]Y — Y.

Proof. Let F € Y. Then by the solidity of Y we have |F| € Y with ||F|Y|| = |||F||Y]|. Tt
follows |K|°P[|F|] € Y, and since

[ L) F) daly) < [ 1K 3)F )| duty) = K17 F][()

for almost every x € X, the operator

LP[F](x) = /X L(x,y)F(y) du(y)

is well-defined since the integral converges absolutely at these x € X. Moreover, by solidity
of Y, we have L°P[F| € Y and finally, we conclude

ILPLENY A < IEPPIENY < TEPPIENY < TP = YIEY .

Hence L defines a continuous operator L : Y — Y with |[LP|Y — Y| < |||K|P|]Y —
Y. O

For the choice L = K in Lemma 4.5.3 we can deduce that especially K acts on Y with
|KP)Y — Y| < |||K|P]Y — Y. Notice however that |[KP|Y — Y| = |||K|?|]Y — Y|
need not be true.

Now we can give the definition of the algebra B,,, y which plays an important role in
coorbit theory. It is the space

B,y = {K e : |K|Ap,| < oo, |K|??:Y — Y operates continuously}
equipped with the quasi-norm

KB,y

| .= max{||K|Amu||a |HK|OP‘Y - Y”}

Note that, motivated by Lemma 4.5.3, we pursued a small modification in the definition
of B,y compared to [74] or [111, eq. (3.4)]. We require |K|°’ to be a continuous operator
on Y, which is a slightly stricter condition than just requiring this for K°. The algebra
B,y is then always a solid space in the sense defined above. Moreover, this modification
leads to a straight-forward proof that B,,, y is a quasi-Banach algebra.
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Proposition 4.5.4. Let Y be a rich solid QBF-space on X and let v : X — R be a weight
function. Then B,y is a solid quasi-Banach algebra.

Proof. 1t is clear that By, y is an algebra. Further, || - |B,,, v| is a quasi-norm on B,,, vy
with quasi-norm constant Cy inherited from Y. The solidity of B,,, y follows directly from
Lemma 4.5.3 and the solidity of A,,,. Further |K o L|By,, v < [|K|Bm, v ||| L|Bm, vl

It remains to prove the completeness. First note that a Cauchy sequence (K;)nen in
B, v is also Cauchy sequences in A,,,. By Proposition 4.5.1 we hence obtain a unique
kernel K € A,,, as the A, -limit. Moreover, by possibly taking a suitable subsequence,
we can without loss of generality assume that K,, — K pointwise almost everywhere (see
proof of Proposition 4.5.1). In the sequel we will use this assumption.

Using the notation Ky := 0 for the zero kernel, we will subsequently show that |K — K|
is a well-defined element of L(Y) for all n € Ny and that |K — K,|°” — 0 in L(Y'). With
this we then directly obtain K € B,,, y and K,, — K in B,,, y, finishing the proof.

Let us turn to the operator side. For each fixed n € Ny, the operator sequence (|K,, —
K, |P)men is a Cauchy sequence in L(Y') due to the estimate ||K,, — K| — |Km — Kp|| <
| K5 — K|, the solidity of Y and Lemma 4.5.3. Let K, € L(Y) denote the respective limits
and take an arbitrary F' € Y. Using Fatou’s lemma, we can estimate for almost every x € X

/X (K = K)o, y) P(y)l dp(y) = | Tim (K = Kn)(%,y)F(y)| du(y)
< 1;7%ioréf/§g |(Km — Kn)(x,y)F(y)| du(y)

= liminf | Ky — Ku| [ Fl(x) < Ka[| FI]().

Here the last inequality is due to Lemma 4.2.1.

Since K,[|F|] € Y, we deduce that |K — K,|PF is well-defined pointwise almost ev-
erywhere for every F' € Y. Further, by solidity, |K — K,|°PF € Y since ||K — K, |PF| <
|K — K,,|P[|F|] < K,[|F|]. Moreover, the operators |K — K, | are contained in L(Y") since

K — K| PFIY || < | KallF[Y] < [ KnlY = YIIFY]. (4.53)

For the particular choice n = 0, this shows |K|” € L(Y') and hence K € B,,, y. Further,
using (4.52), we get for n > 1

CyYIK,Y — Y| <liminf |||K,, — K,|P|Y — Y| < liminf | Ky, — Ku|Bo,y ),
m— oo m—r00
which with (4.53) finally implies
[|K — K, |PlY = Y|| < ||K,|]Y = Y| <Cy lim inf | K — Kn|Bm, y|| =0 (n— o00).

Together with ||K — K| Ay, | — 0, this establishes K, — K in B, y, finishing the
proof. O

With this structural result on B,,, y our general introduction to kernel functions ends.
In the remainder, we are interested in the concrete kernels occurring in the context of coorbit
theory. Thereby our main aim are simple criteria to decide whether these kernels belong to
A, or B,y
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4.5.1 The (cross-)Gramian Kernels

Let o € [0,1], and let My = {my txex and My = {7y }xex be two systems of a-molecules
in Ly(R?) with respect to the canonical parametrization. The associated cross-Gramian
kernel is given by

g[ma,ﬁa](x»}’) = <mXamy> = <T7Ly,mx>, x,y € X.

If both systems 91, and i’tha coincide, we simply speak of the Gramian kernel associated
to M, and denote it by G[IM,].

Properties of such kernels play an essential role in the theory of a-molecule coorbit
spaces. Their respective maximal versions (compare with [74, eq. (2.13)]) are given as
follows,

MM, Mo (x,y) := sup |G[Ma, Mo](x,2)| = sup [(mx,mz)|, x,y€X, (4.54)
zeU2(y) zeU2(y)
where 7 > 0 is a parameter and UZ(y) are subsets of X of the form (4.15). They are
referred to as the cross-Gramian maximal kernels associated to M, and M. If M, = M,
we use the notation M2[IM,] := MM, M,]. Note that in the definition of M the strict
supremum and not the essential supremum is taken.
One of the main results of this appendix is Theorem 4.5.5 below. It states that, if
the order of the a-molecule systems 901, and IM,, is sufficiently high, the associated cross-
Gramian maximal kernels belong to A,,, or even B, y.

Theorem 4.5.5. Let o € [0,1], and let M, and 5)70[ be two systems of a-molecules of order
(L, M, N1, No) with respect to the canonical parametrization. Assume that for some p >0

3— 1
L>2p+2), M>3(p+2)-"% N1>p+2+%, Ny>2(p+2). (4.55)

Then, for arbitrary T > 0, the following statements on the associated cross-Gramian mazi-
mal kernels MMy, M| from (4.54) and their involutions MMy, Ma|* hold true:

i) If p > |v|, v € R, we have with the weight v = v, from (4.31)
MEMe, Mol € A, and — ME[Mg, Mal* € A, .

it) Let 0 < p,q < oo, r := min{l,p,q}, and s € R. If p > max{|s| + 2(1/r — 1), ]3|},
where § := s — (1+a)/p— (1 —a)/q, then, for Y = L37(X) and associated weight
vi=yp7 as in (4.35), it holds
M Mo, My] € Bryy  and  ME[ Mo, Ma]* € By, v
Proof. Condition (4.55) allows to choose N > p + 2 such that condition (4.57) in Proposi-
tion 4.5.8 is fulfilled. For such NN, according to Proposition 4.5.8, it then holds

M0, Ma](x,y) S G (x,y) and MM, Mal*(x,¥) S GN(x,Y)-

If p > |y| we have N > 2+ |y| and thus Gy € A, with v = v, by Proposition 4.5.13. Since
Ay, is solid, this proves (i).
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If p > max{|s| + 2(1/r — 1), 5|}, we obtain, since now N > 2+ p > 2+ 3],
Gy € A, with v =vs;.
Further, since N > 24 p > 2/r + |s|, according to Proposition 4.5.16
gy : IL;‘;; — }Lg"’; operates continuously.
Hence, Gy € B,y and by solidity of B,,, y statement (ii) follows. O
Due to the solidity of A,,, and B, v, NTheorem 4.5.5 also has implications for the
corresponding cross-Gramian kernels G|, M, ], since

M%[Sﬁavma} = ‘g[gﬁa,fﬁaﬂ.

4.5.2 The Oscillation Kernels

Another important class of kernels occurring in the proof of Theorem 4.4.19 are the oscil-
lation kernels from Definition 4.4.17 associated to the continuous a-curvelet frame ¢, and
admissible coverings of X. In the following definition, we introduce a continuous variant.

Definition 4.5.6. Let « € [0, 1]. For 7 > 0 we define the oscillation kernel osc, associated
to the continuous a-curvelet frame €, = {1k }xex by

OSCT(X7Y) ‘= Ssup |g[¢a](X,Y) - g[Qa](XaZ)} = sup |<¢X7¢y - ¢z>|a x,y € X.
zeU2(y) zeUx(y)

Further, we put osci(x,y) := osc,(y, X).

Let v := yp77 and Y = L7(X). As a direct consequence of Theorem 4.5.5, Proposi-
tion 3.1.3, and the solidity of B,,, y, the estimates

joser| < [G[€a][ + [MZ[Ca][  and  [oscr| < [G[€a]"| + [MT[Ca]"| (4.56)
yield
0scr € By, y and osc; € By, y forall 7>0.
However, we can even prove a more sophisticated result.

Theorem 4.5.7. Let o € [0,1]. Let Y := Ly 7(X) and v := vy be the associated weight
defined in (4.35). Then, for T > 0, the kernels osc; and osci defined in Definition 4.5.6
belong to By, v, and they satisfy

lloscr : B, v < Cr-(27 —1) and |loscy : By, v| < C-(27 - 1)
with a value Cr > 0 that increases monotonically with 7.

Proof. Choose N € Nsuch that N > max{|s|4+2/r,2+|s—(14+a)/p—(1—a)/q|}. Then Gy €
B, v due to Proposition 4.5.13 and Proposition 4.5.16. According to Proposition 4.5.9, we
further have

oscr(x,y) < Cn-(2" —1)Gn(x,y) and osci(x,y) < Cn-(2" — 1)Gn(X,Y).
Since B,,, v is solid by Proposition 4.5.4, we deduce
foscr : B, | < Cxr(27 = DIIGn : Bun, | S O (27 = 1),
loscZ : B,y | < Cnr (27 = D[IGN : B, vl S Cnr(27 = 1). O

The proof of Theorem 4.5.5 and Theorem 4.5.7 rests on two bounding results, namely
Proposition 4.5.8 and Proposition 4.5.9, which will be proved in the next subsection.
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4.5.3 The Bounding Kernels

Motivated by Theorem 2.2.2, for each N > 0 we now introduce a non-negative kernel
function Gy by
Gn X xX—=[0,00), Gn(X,¥):=wa(xy) .

Clearly, due to 1 < w, < 00, these functions satisfy 0 < Gy < 1 for all N > 0. More
precisely, they equal 1 on the diagonal and decay away from it, with a rate controlled by
the parameter V.

Recalling Theorem 2.2.2, the kernels Gy are naturally suited for bounding the cross-
Gramian kernels associated to canonically parameterized a-molecule systems. A precise
statement is formulated in the following proposition.

Proposition 4.5.8. Let o € [0,1]. Let M, and 97?04 be two systems of a-molecules of

order (L, M, N1, N3) with respect to the canonical parametrization. Further assume that for
N >0

3 - 1
L>2N, M>3N- 20‘, Ny >N+ ;a, Ny > 2N. (4.57)

Then, for each T > 0, the cross-Gramian mazimal kernel MM, fﬁa] and its involution
M Mo, Mo ]* satisfy

MEDMa, Mo(x,y) < Cn,Gn(x,y) and MM, M) (x,y) < Cn-Gn(X,Y),
with a constant Cy . > 0 independent of x,y € X which grows with larger 7.

Proof. An application of Theorem 2.2.2 yields for every x,y € X

MM, M) (x,y) = sup  |[(mx, M) < Cn sup  wa(x,2) 7,
zeU2(y) z€U2(y)

with a constant C > 0 depending only on N. Further, by Corollary 2.2.22 we have the
estimate

sup  we (X, z)_N < CTwa(x,y)_N =C;Gn(%x,y),
zeU2(y)

where C; > 1 increases with 7 > 0. For the involution, we argue as follows,
MM, Ma]* (x,y) = MM, Mal(y, %) S In(y, %) S Gn(x,y),
where the last estimate is due to the quasi-symmetry of w, (see Theorem 2.2.12). O

The kernels Gy can also be used to bound the oscillation kernels osc, defined for 7 > 0
in Definition 4.5.6. In view of (4.56), we directly obtain

osc; S Gy and oscr < Gn,

which is true for arbitrary N > 0 due to the regularity of the a-curvelet frame &,.
However, we can prove the much stronger result given below.

139



a-MOLECULE COORBIT SPACES

Proposition 4.5.9. For every N > 0 and every T > 0, there exists a constant Cn . > 0
such that

oscr(x,y) < Cnr (27 = 1)Gn(x,y) and osci(x,y) < Cn (2" — 1)Gn(x,y)
holds for all x,y € X, whereby Cy  increases monotonically with .

Proof. By definition, the oscillation kernel osc,, where 7 > 0, has the form

OSCT(X7 y) = Sup ‘<¢X7 wy - ¢z>\ , X,y € Xa
zeUg(y)

whereby 1y € €, are the a-curvelets defined in Section 3.1. If 7 = 0, we have osc; = 0 and
the statement of the proposition is obviously true.

Let us turn to the case 7 > 0. For y = (y,0,u) € X and z = (z,k,v) € U%(y), we first
split

¢y - 1/1z = (¢y - wzﬂ,u) + (¢z,9,u - ¢z,m,u) + (Q;Z)z,fﬁ,U - wz) = Il (Ya Z) + I2 (y: Z) + IS(Ya Z)7

leading to the estimate

[(thx, by = ¥a)| < [, [1(y, 2)) | + [(Ux; Ta(y, 2)) | + [(Ux, I3(y, 2)).

For the proof of the assertion, it then suffices to verify

sup [(¢x, Ij(y,2))| S (27 = 1)Gn(x,y) forje{1,2,3} (4.58)
z€U2(y)
with an implicit constant depending on N.
To obtain these estimates, the regularity of the continuous a-curvelet frame €, =
{tx}xex needs to be taken into account. Recall that, on the Fourier side, for every
x = (z,7,t) € X the curvelets ¢x = 15, € €, have the form

P e(€) = 12 exp(—2mifa, €)) Wy ()
with the wedge functions W, ; € C°(R?) from (3.2) given by

)V NHo+ntox)  x=(2,1,t) € Xo,

Wﬁ,t(ﬁ(ﬁ (Z))) = { ( )Vl({¢}2T) , X = (l’,77, 1) €Xy.

Hereby, the points &(r, ¢) = (1 cos(¢), rsin(¢)) € R? are determined by their polar coordi-
nates r € [0,00) and ¢ € [0,27). For the definition of the functions U, Uj, V, and V; we
refer to Section 3.1.

Step 1: In a first step, we differentiate 1[1“7,75 with respect to the parameters (x,n,t) € X.
This is possible due to the regularity of the system €, = {1 }xex.

In the sequel, the differentiation operators d;, and 0., shall act on the respective lo-
cation parameters x = (x1,72) € R?. The symbol V, = (0,,,0s,) will be used for the
corresponding nabla operator. For a fixed orientation n € T, with associated orientation
vector e, = (cos(n), —sin(n)) € R?, we further introduce the rotated versions

O = [Ry(0uy+ 0py) 11 = (€, Vi) = cosn - Oy — sing - Oy,

o5, = [Rn(aamaxQ)T]Z = <R§€77? Vi) =sinmn - Oy, + cosn - Ou,.

2
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Here, the brackets [-]; and [-]o evaluate the first and second component, respectively.
At a fixed position x = (z,7,t) € X, we obtain for ¢ € R?

O, by () = O, (1027 () exp(—2miz, €)) )
= —2mi[Ry€] 1t /2,4 (€) exp(—2mi(x, )

= 17 (102 L (€) exp(~2rif, €))) = 0, (€)
with W) = —2mit[ Ryl W, (€).

Similarly, we calculate
OBy () = O, (1027 (€) exp(—2miz, €)) )
= _27”[Rnﬂﬁ(Ha)/QWmt(f) exp(—2mi(z, §))

= 70 (L 2w () exp(—2rilw, €))) = 70, (€)
with WEI() = —2mit® (R, €la Wiy (€).

We proceed with the differentiation 8,, with respect to the parameter n € T. Here we
obtain for x = (z,7,t) € Xq

Onant(€) = 0y ((FO2U () V (1) {6 + m}yr) exp(—2mi(a, €)))
= ¢~ (20 () V(0 + ) exp(2mifa, €)) )

For x = (x,n,1) € X; the derivative vanishes,

Oythan1(€) = Oy (U1 (M) Vi ({8} o7) exp(—27i(w, €)) ) = 0,
These results motivate the definition

Ur)V' (== No+nlyp)  , x = (,7,t) € Xq,
y X = (3577771) € le

and further
O (&) =t 2w €) exp(2ria, €)).
Then we can write
Dyaa(€) = 70T (&),

For the differentiation operator with respect to the scale variable ¢t € (0,1) we shall
subsequently use the symbol d;. We calculate for x = (z,7,t) € X,

Orthant(€) = O (K20 (tr)V (170 {6+ m}yp) exp(2mi(z, ©)) )

41 <t<1+a)/2wqgf]t(§) exp(2m’<x,§>)) =: fli/)a[ﬂn,t(f) )
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where W[tl (&) is the sum

wi©) =wi©) +wil©. + wie).
With Ul € ¢2(]0,00)) and VI € C°([—,7]) given by

Ull(r) :=+U'(r) and VI(g):= ¢V'(¢),
the summands of this sum are the functions

W€, 6)) = T LW (e(r,0))

W (E(r, ¢)) = U V(=096 + n}yp),
W (e(r,0)) = (a — DUE)VIE {6 + n}yn).

Finally, for x = (x,n,1) € X1, we introduce the functions 1/);[;,]”71 = 0.
By parameter differentiation we have thus derived new function systems from €,, namely

1
e im e = (b W= (0 ell= (0

Step 2: Next, we verify that these systems are instances of continuous a-molecules of order
(00, 00, 00, 00) with respect to the canonical parametrization, as €, = {1x }xex itself.

The reason for this is that the modified wedge functions wltl Wl gl gyt gl

it Timty Thmito PRt o PRt o
and W[ 2 are all built in the same way as the original functions W, ;. Indeed, for Wgnt],
W,[]tto], W,[]ttl], and W[ 2 this is already clear from the above representations. Concerning

ngt}, and W[ g, in polar representation &(r, ¢) = (1 cos(¢), rsin(¢)), we have with UM (r) :=

rU(r) and V[H(qzs) =V (o)

Wy (€(r, 6)) == —2micos({e + n}op) UM () VI (706 + o).
Further, with U (r) = rU(r) and VIZ(¢) = ¢V (¢), it holds

W (E(r.¢)) = —2 WU (VB ({6 4 n)y)

The remaining arguments are then analogous to those used in the proof of Proposi-
tion 3.1.3. They are based on the smoothness and support properties of the functions U,
v pl vyl vt and v/, which are similar to the properties of U and V.

Step 3: In the final step, we provide the desired estimates in (4.58) for j € {1,2,3}.

Let us first assume y = (y,60,u) € Xg and z = (z,k,v) € U%(y). In this case, z € Xg

and it holds (see definition of U%(y) in (4.15))

fézzz—yER@*lAa,uQT, K= {/@—G}QTEUI_QIT, v:=v/ueJ.

Using the fundamental theorem of calculus, we obtain for ¢ € R?
A A A 1 A
11€) = Dyl = Dyr20u(®) = = [ (Vydyria-nz0a(6).2) da

= _1/ wg[/lj-azGu Rezhda—u_“/ wy+a29u(f)[R92]2da.
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4.5 APPENDIX: Kernel Analysis

Similarly, with & = {x — 0}y, we get for fixed ¢ € R?
1(6) = B20a(8) = o 019000(8) = [ Oz 0rarss @ da =) [F410, - (€) da
Hereby (6 + a)2x is the value of 6 4+ a modulo 27. Further, it holds for & = v/u and ¢ € R?

j3(€) = I/A)z,n,u(g) - r&z,n,vu / 8t¢z K a da =y ! / th]/{ a da = / 1/},[;]& au

Using the Plancherel theorem and the theorem of Fubini-Tonelli, we deduce for arbitrary
x € X,y € Xp, and z € U(y)
1
/ y+az 0, u
0

\<wx,h<y,z>>\—|[R“] (i / B g da) +

1 1

S / wxﬂ/}[+azou> 7/‘ wxv¢[+az9u>‘ a
0 0

< ”Rf’gh'wmgﬂ,@a]<x,y> 2l oo e y).

u

From % € Ry' Ay Q" we deduce Ry? € A,,Q7 and hence |[Ry2]1| < Tu and |[RgZ]2| <
Tu®. Invoking Proposition 4.5.8, we arrive at the estimate

(Y Ty, 2))| < On 70N (%),

from which the desired estimate for j = 1 in (4.58) follows due to 7 <27 — 1.
Similarly, we estimate the two other terms corresponding to j € {2,3} in (4.58). Since
& € ul=I7, we have |&| < 7u!™® and thus

(Vs Ba(y,2))| = (8, oy, 2))| = w0 (i, / By (€) da)|

|&| .
< u_(l_a)/o <wX7¢,[:](9+a)2w,u>
< Cn,u" Y E|Gn(x,y) < Cr-TON (X, Y).

Finally, due to v € J™ = [277,27] we have |1 — 0| < 27 — 1. This yields

||
da < u=1- O‘)/ Melel e )(x,y) da

(Vs Iy, 2)) Iy(y, z>>\ = (s, / B, (€ da)|

[ 94| ] < | /M‘* el €a)(x. ) daf

< Cn+1 =9GN (x,y) < CN,T(QT - 1)Gn(x,y).

It remains to handle the case y € X;. Here the estimates are trivial for j € {2,3} since
I)(y,z) = I3(y,z) = 0. For j = 1 the arguments are the same as before.
Concerning the estimate of the involuted kernel oscl, we can argue with the quasi-

symmetry of G which directly follows from the quasi-symmetry of w,, (see Theorem 2.2.12).
O
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In the following, we will deduce sufficient conditions for Gy to belong to A,,, and
B, v Together with solidity arguments based on Propositions 4.5.8 and 4.5.9, those are
the foundation for the proof of Theorem 4.5.5 and Theorem 4.5.7.

4.5.4 The Convolution-Type Auxiliary Kernels
For the subsequent investigation, it is useful to introduce another scale of kernels with a
convolution-type structure. For N > 0, let us introduce

t -N _
Hy : X x X = [0,00), Hn(x,¥) ::max{a,%} (1+d;(x,y)) N,

where, with e; and ep denoting the respective unit vectors of R?,

[{n — 6} (R, ez, z —y)l* (R, er,x —y)]
max{t, u}2(1-a) max{t, u}2 max{t,u}

d,(x,y) ==

Hereby, the bracket {-} = {-} denotes the projective bracket defined in (2.9). For conve-
nience, we will often use the short-hand notation (t,u); := max{t,u} for t,u € R in the
sequel.

The kernels H can also be written in the form

HN(X7 y) = HN (A;,}tR'f](y - 1‘), t_(l_a) {9 - 77}7 ’U,/t)

with non-negative functions Hy : R?2 x R x Ry — [0, 00) given by

-N

Hy(a,b,c) :== max {c, cil}_N (1 + [b[? n |[a]a|? n |[a]1] >

max{1,c}2(1-a)  max{1,c}?*  max{l,c}

(4.59)

Clearly, from the definition, 0 < Hy(a,b,c) < 1 for all (a,b,c) € R? x R x R.
An important relation of Hy to the kernels Gy and G}, are the following estimates.

Lemma 4.5.10. For every N > 0 we have
gN(X7 Y) S HN(Xa y) and g]*;/' (Xv y) 5 HN(Xv Y) , X,y € X.
Proof. Recall the simplified index distance wS™ from Definition 2.2.3 given by
W(Sllm(X, Y) = Imax {Ea ;} (1 + dzlm(xv y))
with

[{n — 0} lz—yl* | KRy'en,z— )]
max{t,u}21-%) = max{t,u}?® max{t, u}

dim(x,y) =

It was proved in Lemma 2.2.4 that w,(x,y) = wii™(x,y) and do(x,y) = 5™ (x,y). Since
[(R;tea, x — y)| < |z —y| we can deduce
da(x,¥) 2 3™ (x,¥) 2 dy(x,¥).

The assertion follows. O
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4.5 APPENDIX: Kernel Analysis

As a consequence of these estimates, a sufficient condition for Hy to belong to A,,,
and B,,, y allows to deduce such conditions for Gy and Gj. The advantage of the kernels
Hy is their convolution-type structure. Due to this structure, the analysis of Hy can be
reduced to an analysis of the corresponding function Hy given by (4.59), which is a great
simplification.

One could pose the question, why the kernels Gy are defined after all, if we could directly
use H as bounding kernels. The reason for this is that the kernels H do not possess the
same symmetry and stability properties as Gy (see Corollary 2.2.9 and Corollary 2.2.22).

In the sequel, the integrability properties of Hy stated in the next lemma are essential.

Lemma 4.5.11. Let 0 <r <1,y € R, and N > 2/r + max{y,0}. Then

///HN y,0,u)" max{u,u '} (u+ )dydzdu < 00,

Ry R R2
//HN(y,e, 1) dy df < oo.
R R2
Proof. For fixed u € Ry, let us first consider the inner integral
I(u) := //HN(y, 0,u)" dydf.
R R2

Generally, we have for quantities R > 0, ¢ > 0, v > 0, and N > % the formula

/R+c 7aY) NdaV/Rl/V—i-c a)Nda=c- / a "™ da

0 Rl/v
_ & [Nt € pe(N-1/7) o . p(N=1/9)
_1_7N{a }Rl/‘Y—’yN—lR ~c- R .

Applying this formula iteratively, we can calculate I(u). For N > 2/r and u € Ry we
obtain

I(u) :maX{u,uil}iNr//(l—i— |(9|2 n Hy]2|2 n [y >—N7~dyd9

max{1,u}21=9)  max{1l,u}?*  max{l,u}
R R2

= max{u,u "} V" max{1, u}?.

Specifically for u = 1, this implies I(1) < 1 < oo proving the second assertion.
To obtain the first assertion, we evaluate the outer integral over the scales, namely

I(w) max{u, v} (u+1)*— A/ max{u, "} V" max{1, u}?(u + 1)2 du

— /1 uN'r—yr—2(u 4+ 1)2 7“ +/ U—Nr+yr+2 (’LL + 1) dﬁ
0 U 1 U

Ry

w2

1 du o0 du
X/ uNT—'yT—Q we +/ u—(Nr—w“—Q) 20
0 U 1 u

Precisely if Nr —~yr —2 > 0, or equivalently N > 2/r + v, the last two integrals converge.
Since the assumption N > 2/r 4+ max{~v,0} ensures both N > 2/r as well as N > 2/r + ~,
the proof is finished. O
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Another important auxiliary result concerning Hy is the following lemma.

Lemma 4.5.12. It holds, uniformly in (z,n,t) € R? x R x Ry,

inf  Hy(z,n+t"7 %, tv) < Hy(z,n,t) < sup Hy(z,n 4+t tv),
(kyw)eIXJ (kw)eIxJ

where I :=[—1,1] and J := [3,2].

Proof. Let us define Hy(z,n,t) := SUP(,0)erxg Hn(T,m + t1=k, tv) and Hy(z,n,t) =
inf(, yerxs Hn (@, n + t1=k, tv). Clearly, Hy(x,n,t) < Hy(x,n,t) < Hy(x,n,t). For the
opposite estimates, we first note that for ¢ € R,

inf max{v,v"'} < sup max{v,v"'} and inf max{1,v} =< sup max{1,v}.
veed veceJ vee] vec]

Further, the estimate | + t'~%k[? < 2|5|? + 2max{1,t}20-|x|? yields

|2 2ln|2
sup 1R n| ey
wer max{l,t}2(-2) = max{1,¢}2(1-a)

Similarly, |7]? < 2| — t'=%k[? + 2max{1,t}20=) || leads to

o+t k[ [nl?
inf > -1
rel max{1,t}2(1=2) = 2max{1,¢}2(1-a)

Altogether, all these ingredients yield Hy (z,n,t) < Hy(z,1,t) < Hy (z,n,t). O

After this preparation, we are now ready to prove conditions on N ensuring the mem-
bership of Hy, and in turn Gy and G%, in the algebras A,,, and B,,, y.

4.5.5 Kernel Criteria for Gy € A,,, and Gy € B,,,, v

In this last subsection of the appendix we aim for an easily applicable criterion to be able
to decide whether a kernel Gy belongs to the algebra By, y, where either Y := L}  (X) or
Y := L7 (X) and v is the respective associated weight.

As a first step, we prove a simple criterion which ensures that Gy belongs to the algebra
A, with a weight v = v, of the form (4.31) with v € R. The following proposition shows
that there exists a threshold for N above which Gy € A,,, is guaranteed. This is not
surprising since a large IV promotes a fast off-diagonal decay of Gy.

Proposition 4.5.13. Lety € R and let v = v., be the weight defined in (4.31). If N > 2+|~|
then G is an element of A, .

Proof. According to Lemma 4.5.10 we have
gn(x,y) SHN(xY) = HyN (A;,}SRW(Z/ — ), t_(l_a){e —n}, u/t)7

where Hp is the function from (4.59). An application of Lemma 4.5.15, which is proved
below, then yields the assertion. We only need to verify that the quantities A;, i € {1, 2,3},
associated to Hy are finite if N > 2+ |v|.
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For the quantities A; and Ag this follows directly from Lemma 4.5.11 which asserts

Ay = ///HN y, 0, w) max{u, v} (u + )Qdydﬁdu <00,

R; R R2
A= [ [ B0, dydo < [ [ Hn(p,0,1)dyds < .
T R2 R R2

Using Lemma 4.5.14 and Lemma 4.5.12, we can further show that As < A;. Indeed, noting
that dt/t is the Haar measure of the multiplicative group R, we have with the window
J:=3,2] CRy

Ay < esssup esssup// |Hn (y,0,v)| max{v, v (1 +v)~ dyd@)

ueR 4 veuJ
d
< // esssup |[Hy (y, 0, v)| max{v, v 1}|7|dyd9> Y
Ry R2

veuJ

dy df d
S L ey, 0w maxfu, w0 S <y,
R, JR JR2

u

As a consequence, also Ay < oo holds true if N > 2+ |v]|. O
In the proof of the previous proposition, we have implicitly used an embedding result

for Wiener amalgam spaces. It can be termed as an estimate of the corresponding quasi-

norms. Given an arbitrary measure space (X, ) and 0 < p < oo, let L,(X) denote the usual

Lebesgue space on X with quasi-norm || - |L,||. Further, assume that {Wy}xex is a family

of measurable windows Wy C X such that the associated dual windows Wx C X defined by
the relation X5, (y) = Xw, (x) are also measurable. Then we have the following estimate.

Lemma 4.5.14. If there is m > 0 such that M(Wx) > m holds independently of x € X,

then we have for 0 < p < q < oo and every measurable function f: X — C the estimate
1K fILgll < m" TP K fIL, |,

where K f(x) 1= esssupyex | f(¥)|Xw, (y) is a Wiener control function as in (4.14).

Proof. We restrict the proof to the case ¢ < oo, with obvious modifications if ¢ = oo
First, we observe that ||K f|Leo| = || f|Lool|- Second, we see that

1AL = [ esssup | (v)Xiv, ()] dutx)
X yeX

> esssup [ |F(y)/70w(y) dp(x) > m| K| Lo
yeX %

Since |K f|/||K f|Lso|| < 1 almost everywhere, we can deduce for p < ¢
q p
< WAL R
I f [ Loo | [ f| Lo 1P
Since 1/q < 1/p, this further implies
VAL KSIL]

I f | Lo lm /4 = || K ] Log [[m!/P

and therefore || K f|L,|| < mY9=V/P|| K f|L,|. O
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Note that the proven estimate ||K f|L,| < || f|Lp| for 0 < p < g < oo resembles the
relation || - ||ga < ||-||lr of the discrete Lebesgue quasi-norms. Hence, we can record that the
embedding properties of the Wiener amalgams are analogous to those of the corresponding
sequence spaces.

Another essential ingredient in the proof of Proposition 4.5.13 is the following technical
lemma.

Lemma 4.5.15. Let a € [0,1], and assume that K : X x X — C is a kernel function and
H:R?xR xRy — [0,00) a measurable function such that

K (x,y)| < H(AZ Ry (y — o), ¢~ 170 =}, u/t).

Further let v € R be fized and let us put T := [—7/2,7/2) and (u,1)4 := max{u,1}. Then
the finiteness of the quantities

dydod
Avi= [ [ ] (0.0 max(u a1 022
Ry JR JR2 u

Ag 1= ess sup/ / H(y, 0, u) max{u,u ' }(1 + u)~2 dy do,
(u,1)}*T JR?

ueR

As ::// H(y,0,1) dy db,
T JR2

implies

K e Amy with HK‘AmVH < 2(A1 + max{4A2,A3}),

with m,, denoting the bivariate weight associated to the weight v = v, defined in (4.31).

Proof. For fixed x = (z,n,t) € X we have

[ 15 Gy, G, ) dily) < 2(To(x) + 1(x)

with the integrals

1
1 C(l-a dy df du
o) = 5 [ [ [ HA Ry = @), 40 = nhu/o) e u0)) L
0 T R2
1
N(x) = 5//1{ — 1), =09 — g}, 1/ dy o
T R2
Eliminating the brackets {-} in these integrals, they simplify to
/ [ [ AR~ )70 0, wjr) 0w T
u
T R2
= //H(A;;Rn(y —x),t7 1799, 1/t)t7 " dy ag.
T R2
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Substituting y — RglAa,ty + 2 and 0 — t'7%f, we obtain

Iyl dy d@ du

To(x) :t2/1 / /H v, 0, u/) (¢, uft))]
0

N(x) = 2 / /H(y, 0,1/8)t~1" dy do.
t—(1—a)T R2

The substitution u + tu further yields

1/t

Io(x):/ / /Hy,@u (u, 1/u)y

0 t—(1—a)T R2

™ dy do du
u3d

Now we observe

esssup 1 (x) = max { esssup I1(x), esssup [; (x)}
xeX x€Xo xeXy

with the terms

esssup [ (x //H y,0,1) dydf = As,
xeXy T p2

dy df

esssule(x):es.ssuptlﬁy| / /H(y,@,t) y2 <

xeXp t>1 t
tl-aT R2

Further, we have

esssup Ip(x) = max { esssup Ip(x), ess sup [p(x) }
xeX xeXp xeXy

< [ [ [ Aoy BB <y,
u

0 R R2

Analogously, for fixed y = (y,0,u) € X we get

1Kyl (x,y) du(x) < 2((y) + 11(3)

with the integrals

ly| dx dn dt
37

H (AL Ry(y — )t~ 070 — 0} u/t) (¢ /u,u/D)]

T
/H(Rn(?/ —2),{0 —n},u)u"" dz dn.
R?
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We now first use the substitution n — 6 — n. Then, as before, we eliminate the brackets,

1

:;///Hmﬁmﬂ@—m ~m iy u/t) (/u,u/) ]

0 T R2

ly| dx d77 dt

_ o dx dndt
H(AGyRo-g(y — ), 6™ u/t) (tfu, /)] =55,

I
e
'%\ H\

=
N

— T

H(Rg_,(y — z),{n}, u)u*M dx dn

~
_
—
<
S—

Il

(y —x),n, u)u_h| dx dn.

(

&
3

I
H—
S

)
%)

The substitutions = +— y — R;_lnAa,tx and 7 — tl_o‘n yield

1
(2,7, " | |dxdr]dt7
J [ [ e

t—(1—a)T R2
://H(:L‘,n,u)u_M dx dn.

Finally, the substitution ¢ — u/t gives

~ dx dndt
W)= [ [ [HE@AEEEIE
U (t/u)lf"‘T R2
We obtain

esssup I (y) = max { esssup I (y), esssup I (y) }
yeX yeXo yeXy

with

esssup I (y )://H(x n,1) dx dn = As,

yeXy
esssuph = esssup//H T,n,u w1 drdn < 4A,.
yveXo O<u<1

For esssup Ip(y) = max { esssup Io(y), esssup fo(y)} we get
yeX yeXo yeXy

dx dndt
esssup Io(y ///Hac n,t)(t, 1/75)|A’| < 77 < A;.
yeX
Rt R R2

This finishes the proof.
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We next formulate a sufficient criterion ensuring that the kernel Gy operates contin-
uously on the function spaces L ,(X) and Lg7(X). As in Proposition 4.5.13, it can be
expected that a sufficiently large N provides such a guarantee, since, intuitively, the larger
N the closer Gy is to the identity operator.

Proposition 4.5.16. Let o € [0,1], 0 < p,q < oo, r = min{l,p,q}, and s € R. If
N > %—i— |s| then Gy operates continuously on L2 (X). In the Banach case, i.e., when
r =1, the kernel Gn also operates continuously on Lj ,(X).

Proof. For every N > 0 and all x,y € X we have by Corollary 2.2.22 and Lemma 4.5.10

sup gN (a7 b) S gN (X7 y) SJ HN (X7 Y)a
(a,b)eUf(x)xU(y)

and Hy(x,y) = Hn((z,n,t), (y,0,u)) has the representation
HN(X7 Y) = HN (A;,%Rn(y - $), t—(l—a){g - 77}7 u/t)

with the function Hy from (4.59). Hence Gy is of the required form to apply Lemma 4.5.17
or Lemma 4.5.18.

It only remains to show that the quantities B;, or B; respectively, are finite for each
i € {1,...,4}. This task is simplified by the following observation. If ¢ > 1 we have ¢! < (4

and thus — as a consequence of Lemma 4.5.14 and Lemma 4.5.12 — using J := [%, 2] as a
window
e}
dy do\* du
s < </<esssup / /USHN(y,G,v) y2 ) u)
veuJ v u
1 pl—aT R2
dy df d
5///esssupv5HN(y,«9,v) y2 —ugBl.
veuJ (% u
R, R R2

Similarly, one can prove Bs < Bj, and analogously also By < By and B’g < By.
Finally, since N > 2/r + |s|, according to Lemma 4.5.11, we have

d d@d
By, By < ///HN v, 0, )" max{u, v " (u + 1)2=2—— v < 00,
R: R R2
B47B4§//HN(y,9,1)Tdyd9<OO
R R2

As a consequence, all quantities By, Ba, B1, By are finite if N > 2/r+|s|, and the statement
is proven. O

The proof of the previous proposition builds upon the following two lemmas.

Lemma 4.5.17. Let o € [0,1], 1 < p,q < o0, and s € R be fizred. Further, put T :=
[—7/2,7/2) and assume that K : X x X — C is a kernel with the property

K (x,y)| < H(Ag Ry (y — x),t= 1790 — 0}, u/t)
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for some measurable function H : R x R x Ry — [0,00). Then K is a well-defined bounded
operator

KL (X) = L3,(X) with ||K|LS, — L5l < Bi + B2+ Bs + B,

7q|

provided that, with ¢’ :== q/(q — 1) denoting the dual exponent of q,

7 dy df d
B, ::///usH(y,H,u)%<oo,
0 R

R2

3 q 1/q
By = (/( / /usH(y,H,u)dygw> du) < 00,

u u

1 ul—aTR2

1 . dy O\ dun1/d
Bg.-(/o (//uH(y,Q,u) 2 ) ;) < 00,

T R2

By :://H(y,e,l)dyd9<oo.

T R2

Proof. Due to Lemma 4.5.3 and the solidity of L ;, we can without loss of generality assume
that the kernel K is non-negative. In this special case, for any measurable non-negative

function F' : X — [0, 00), the integral

KP() = [ Kxy)F()duly). x€X,
X

has a well-defined value in the extended range [0, 00| at almost all points x € X. One thus
obtains a measurable function K F on X with the target set [0, oo]. The investigation below
will further show that the additional assumption F' € L , ensures KF € L; . with the
estimate ||[KF|L; || S (B1+ Ba + Bs + By)||F|L; |-

For an arbitrary, not necessarily non-negative, function F' € L; , we can then argue as
follows. Since |F| € L; , is non-negative, by the above, we have K|F| € L; ,, which in
particular entails K|F'|(x) < oo for almost all x € X. At those points, K F(x) is contained
in C, giving rise to a measurable function K F' : X — C. Further, since |K F| < K|F| almost
everywhere, K'I' € Ly  holds true by solidity and

IKF|Ly |l < |KIFILp ol < (Bi+ B2+ Bs+ By)|||F|| Ly, 4| = (Bi+ B2+ B3+ By)||F|L;,

’q| ,qH

This proves the assertion of the lemma. All, that remains to be shown, is that KF € L},
with |[KF|L; || < (B1+ B2+ Bs + By)||F|L; ,|| holds true for every non-negative function
F € Lj ,. The proof of this claim is split into several steps.

Step 1: First we estimate the functions K[FXx,]. Thereby we transfer the integration
domain from P to P via the canonical projection p : P — P defined in (2.12). For this, it is
useful to associate to F': P — [0, 00) the auxiliary function F': P — [0, 00) by

F(y,{0},u) == F(y,0,u) + F(y,0 + m,u), 0€][0,7),

where {-} = {-} denotes the projective bracket from (2.9).
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Let now x = (z,n,t) € X be fixed. We then have

K[FXXD /K z,1, ) (y70 U’)) (y70 U) d:U’O(y79 u)

< /H(A&}:Rn(y — ), t71790 — n}, u/t) Fy, 0, u) duo(y, 0, u)

1
///H(A;}sRn(y—:c),t‘(l“"){t?—n},U/t)F(va’“) dyizdu'
0 T R2

Note {{a + b} + ¢} = {a + b+ ¢}. With the substitutions y — R;lAa,ty +z, 0 —
{t1799 + n}, u > tu, we hence arrive at

1/t
K[FXx,](x) _/ / /H y,0,u) R YAwy + 2, {t77%0 + 0}, tu)
0 t—-(1—a)T R2

dy df du
ud

Analogously, one shows with the substitutions y — R, Yy + 2, 00— {0 +n},

K[FXX1 /K z,1, ) (yae 1))F(y767 1) dul(yaevl)
< /H(A;,%Rn(y_x)7t_(1_a){0_n}’l/t)F(yvgy 1) d#l(yaev 1)

= [ [HAER =), 600 =0}, 1/0)F(y,0,1) dy do

T R2
= [ [H(A D01/ PRy + 2,40 +0),1) dy do.
T R2

Step 2: For each fixed ¢ € (0,1], we now decompose

1/q
([1EFCn L))
T
1/q

1/q
= (1K) 0IL 7)o+ ([ IKER 0L ) =T + T
T T

Then we estimate Tp(t) and T4 (t), using Step 1 and the continuous Minkowski inequality,
W dy df d 1/
o . o U
S (/H/ / /H(yveau)F(RnlAa,ty“"a{tl 0+77}7t )yi)L H dn)
T 0 ¢—(1-a)TR2
1/t
< / / /H(yﬁU)(
0 t—(1-e)T R2 T
1/t

[ [ Jrwon( [1FCnum, )
T

0 ¢t—(1-a)T R2

Y4 gy 4o du

u3

V.RnlAa¢y4—n{ﬂa@%—nhtuﬂ[Tqun>
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and analogously

} 1/q
1) < ([ [ [ #0000 E Ry 10 b1 dy o], |
T T R2

< [ [rg 0 ( [ HF<R;1y+-,{e+n},1>]Lqudn)l/q dy df

T R2 T
. 1/q
= [ [y ayas( [1FCn i)
T R2 T

Step 3: Finally, we decompose the kernel K = E}:O Zjl'zo K; ;j with
Ki,j(X7 Y) = K(X7 Y)XXiXX]' (Xa y) for (Za.]) S {03 1}2
To finish the proof, it then suffices to check that for every (i,5) € {0,1}>

Sig = [1KiiF| Ly gl S 11X L gl

We start with Sp; and 51,1 and observe

1 1

— AN

S1i=Ti(1) and Sp; = (/t—qul(t)q : ) ‘
0

Plugging in the estimates from Step 2, we get

1/q
sws [ [awonayao( [1FC L)
T

T R2

Further, taking into account
y 1/q
P2, Ll = ([ IFCn DL dn) (1.60)
T

a relation proved in Step 4 below, this yields

Sl,l 5 B4 . ”FXX1|L;(]|| with B4 = //H(y,@, 1) dy do.
T R2

For Sp,1 we derive from Step 2

/ o 1/(1 th l/q
s < ([ [ [rtagn e 00,0 dyao( [IFCnvILITan) ) T
0 T R2 T

We deduce, again with (4.60),

Soa S Ba - ||FXx, | Ly, |l
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with

1
sq —(1—«) th fa
t~ H (Aq iyt 0,1/t) dy do n
Rz

([ [ruwe

tl—aT R2

dyd@)th)l/q

Next, we turn to Sy and Sp given by

1 1/
dt\ 1
Sl,O = T()(l) and SO,O = (/tqu()(t)q . ) .

0

To estimate Sj o, we use the results of Step 2 and Hélder’s inequality, where ¢’ shall
denote the dual exponent of ¢ satisfying 1/q + 1/¢' = 1. We obtain

adydfd
slo<///Hy,0u /HF )|y | )

T R2
1
dyd@ o /q du
= [ ([ [ 0.0 E) ([ 1ECHwiL)an) "
0 TR? T
1
dy df\ 4 du 1/fI’ dndu
<(fur ([ [rwon )" ([ = [IFCn I )"
0 T R2

Using the relation

dndt\ "7
1P Ll = ([ [P Cniz e ) (1.61)
0

T

whose proof is outsourced to Step 4, we arrive at

u2 u

1 /
- dy do~ du Y9
S0 S By [FXg Ly, with BzZ( [(] [wreo.n™F) ) -
0 T R2

Last but not least, we estimate Sp . Note that X 1/ (u) = Xo,1/u)(t) for t,u € R,
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1
Vady do du\?di\ /9
S0,0 S (/t—sq</ / /H y,0 U /HF natu |Lp||q ) yu3 u> t)

0 0 t—(1—a)T R2

1 ')

. § 1ady df du\? dt\ /7
< (e[ [ [ Horptmon( [ 1 m|r ) 28y E)

0 0 R R2 T

oo 1
. dt\ /9 dy d du
< [ [ [rwew( [ [ oxom@lEcm i) 2
0 R R2 0
0 A dn di~1/ady df d
s t q U
/ /Hy,ﬂu // U, ) | Ly || 77 ) yu
0 R R2 0T
0o 1
dndiy Yady df du.
= [ [ o ([ [ronpicn o SE)
u
0 R R2 0

With (4.61), this leads to

dy db du

o0
So0 S Bi-||FXg L3, || with By = / / wSH (y,0,4)
0 R R2

Step 4: It remains to show (4.60) and (4.61). First, observe that due to the non-negativity
of F for every n € [0,7) and ¢ € (0, 1],

1EC, An}s 1Lyl = 1ECom | Lpll + 1 FCon 4w, 6)| Lyl

As a consequence, for every fixed ¢ € (0, 1]

3 /e . 1/q
<T/||F(~,77725)Lp| dn) = <0/||F(‘,{77},t)Lp| dn)
<
= ([1rCaoizan) " =10
/
0

Plugging in ¢ = 1 yields (4.60) since I(1) = ||FXx, |L; | For ¢t € (0,1) we get (4.61),
since

1/q
IEC, )| Lt + [ F (- + w,t>|Lp||an)

v O~

L dt 1/q
| F X, | LS, || = ( / (1) t) ~ ths(4.61).
0

O]

Under slightly stronger assumptions on the kernel K, we can formulate the following
companion result to Lemma 4.5.17 which is also valid in the quasi-Banach range.
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4.5 APPENDIX: Kernel Analysis

Lemma 4.5.18. Let o € [0,1], and assume that K : X x X — C is a kernel with the
property

ess sup |K(a,b)| < H(A;Ry(y — ), =170 — ) u/t)
(a,b)eUs (x)x U (y)

for some measurable function H : R? x R x Ry — [0,00). Assuming s € R, 0 < p,q < oo,
the kernel K is a well-defined bounded operator

K LES(X) - LeS(X) with |K[LSS — Les| < By + Be + Bs + Ba,

provided that

o0
B ::///USTH(y,H,u)TW<oo,
u
0 R

R2
~ T »dy do\ T du /7
bim (J(J [ty <
1 ulfaT]RQ
N 1 r dy dON\T du\ VT
Bs = (/ (//u”H(y,H,u) 5 ) ) < 00,
0 u u
T R2

By :://H(y,ﬂ,l)rdyd0< 00,
T R2

where r := min{1,p,q}, T :=[-7/2,7/2), G :=q/r, and ¢ :=G/(G—1).

Proof. Recall the Wiener maximal operator W = W¢ defined in (4;1 7) for any measurable
function F : X — C. We subsequently use the abbreviation F := W*F. For convenience,
we also introduce the kernel

K(x,y) = ess sup |K(a,b)], (x,y)eXxX
(a,b)eUp (x)xU (y)

We want to show that for each F' € L)°7 the function K'F' is well-defined, an element of

L7, and satisfies

IKFLyz | = [WOKF]| Ly o|l S (By + Be + Bs + Ba)||[FILy |l
With a trick, we can utilize the previous lemma for the proof, even in the quasi-Banach
range. For this, in a first step which is only relevant in the quasi-Banach setting, we ‘elevate’
the parameters of L+ into the Banach range: We introduce p := =p/r, ¢ :=q/r, § = sr,

where r = min{1, p, g } and observe that for any measurable function F' : X — C we have
the equivalence

1/q ! d Lgqr
s ndt
—( f1Fe DiLlan) o+ ( [ [reiEen i T e
0
1/q ! —d 1/q
r q —35q T 77dt rITS
=< (f0FCavrizian) o+ ([ [EECaOrLITEE ) = ET L),
T 0T

1F1 Ly q
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As a consequence, for F' € L7/ we have F € L) , and thus F" € L]ga,q- Note that, with p > 1
and ¢ > 1, the space L j 1s a Banach space.

As in Lemma 4.5. 17 we now assume that K and F' are non-negative, such that KF is
a well-defined measurable function. From the previous considerations, we obtain

I FILG S = WK F]| Ly || = WK )7L 4] (4.63)

Next, using Lemma 4.5.14 with a Wiener amalgam embedding of the type £ < ¢!, we
obtain for almost every x € X

WK F](x)|" < esssup < esssup |K(a,b)F(b )\du(y))
acU2(x) \J beUn(y)

< esssup/ esssup |K(a,b)F (b)])rdu(y)

acU (x) X beUX(y
< [ (Kxy)F() duly) = K'[F](0).
X

Hereby, the implicit constant is independent of x € X, since (U (x)) =< u(U;*(x)) < 1 for
all x € X according to Corollary 4.2.12.
Together with (4.63), the last estimate yields

IEFILy " S K ETL 4ll-
Since L g 1s a Banach space and
KT(Xa y) < H" (A;,%Rﬁ(y - l‘), t—(l—a){e - n}a u/t)

we can now apply Lemma 4.5.17. Indeed, we see that the kernel K" is bounded by H”"

as required. Further, the function H" satisfies the prerequisites of Lemma 4.5.17 for the

parameters 3, p, and §. Note in particular the equality B; = B; for i € {1,. 4} in case

r = 1. We can thus conclude that K" is a bounded linear operator from L~ g to LS
Altogether, this yields for F' € Ly

IEFILySI" < 1K [E]| L5l < (B + Bz + Bs + Ba)|[F7| L 4ll,
and by (4.62) we have |[F"|L5|| < ||F|L; || = [[F|Ly:#[|". This settles the proof for
non-negative K and F.

Finally, with an argument as in the proof of Lemma 4.5.17, the assertion can be shown
to be valid for general K and F'. O
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Chapter 5

Cartoon Approximation with
a-Molecules: Bounds

Many applications require efficient encoding of multivariate data in the sense of optimal
sparse approximation. This is typically phrased as a problem of best N-term approximation
with respect to a suitable representation system as explained in Subsection 2.3.1.

In the following two chapters we are concretely interested in the performance of a-
molecule systems for the sparse approximation of image data. As a model for the data,
we will use the model of cartoon-like functions which very well captures the occurrence of
discontinuities such as edges in an image. Some guarantees for actually achievable N-term
approximation rates will be derived in the next chapter. In this chapter the focus is on
theoretical bounds limiting the maximally achievable approximation rates by a-molecules.

The presented research was conducted in [60] and [102]. At first, we study the approx-
imability of cartoon-like data by arbitrary dictionaries under the assumption of a polyno-
mial search depth. The main result, Theorem 5.3.3 ([60, Thm. 2.8]), will provide an upper
bound for the achievable rates in this general setup. In Theorems 5.4.2 and 5.4.4 ([102,
Thm. 3.9 & 3.11]), we then prove more specific bounds for the a-curvelet frame from Sub-
section 3.2.3. Those also have implications for more general a-molecule frames, as derived
in Theorem 5.4.6 ([102, Thm. 5.3]).

5.1 Sparse Approximation Bounds

As in Subsection 2.3.1, we again begin with some abstract considerations in a separable
Hilbert space H. Assume that ® = {@x}rca is a dictionary in H and let Xy := Xy |[P]
be the associated space of N-term expansions introduced in (2.29). Further recall that the
N-term approximation error (2.30) for a signal f € ‘H with respect to ® is given by

on(f) = giergN 1f =gl

To measure the approximation performance of ® with respect of f, we will subsequently
use the asymptotic approximation rate, i.e., the decay of the approximation error oy(f)
as N — oo. For a subclass § C H, the approximation performance shall be judged by
the worst-case approximations, i.e., the worst decay rate of on(f) for f € F. In this
sense, a dictionary @ is considered optimal for sparse approximation of §, if its worst-case
approximation rates for signals f € § are the best among all systems.

Without reasonable restrictions, however, the investigation of the best N-term approxi-
mation error with respect to a given dictionary can be meaningless for practical applications.
For example, if ® is chosen as a countable dense subset of H one would obtain arbitrarily
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good 1-term approximations for every signal f € H. This would translate to arbitrarily
good approximation rates, which clearly cannot be realized in practice.

For a proper assessment of the approximation performance of a dictionary, the actual
approzimation scheme needs to be taken into account, i.e., the utilized process of selecting
suitable dictionary elements. A realistic assumption for such a selection procedure is a
so-called polynomial depth search constraint, which requires that the terms of the N-term
approximations have to be selected from the first 7(/V) elements of the dictionary, where 7
is some fixed polynomial [38].

5.1.1 Polynomial Depth Search in a Dictionary

For the subsequent investigation, let us concretize our considered scenario. Assume that we
have a countable dictionary ® = (¢p,)nen which without loss of generality is indexed by the
natural numbers. A non-linear N-term approximation scheme can then be described by a
set-valued selection function &, which determines for given f € H and N € N the selected
dictionary elements, i.e., S(f, N) C ® with #S(f, N) = N. Note that, due to the allowed
dependence of & on f, by this general procedure even adaptive approximation schemes
can be implemented. The obtained approximants are the elements fy € spanS(f,N)
minimizing the error || f — fn||-

A polynomial depth search constraint for the selection rule S is described by a fixed
polynomial 7 and the condition S(f, N) C {¢1,..., ¢} forall f € H and N € N. Under
this condition, an optimal selection S thus yields best N-term approximations fx € Xy in
the following modified sense,

fv= argmin ||f—g|| st. AnvC{l,...,7(N)}, #An <N. (5.1)

972 neny CAPA

This definition of fy should be compared with (2.31). Whereas fx in the sense of (2.31)
might not exist, the existence of fxy asin (5.1) is always guaranteed.

We now recall a benchmark derived in [38] concerning the optimal approximation rate
of a dictionary when polynomial depth search is used. Beforehand, we have to recall what
it means for a subclass § C H to contain a copy of £ (see also [38, Def. 1&2]).

Definition 5.1.1 ([60, Def. 2.2]). (i) A subclass § C H is said to contain an embedded
orthogonal hypercube of dimension m and sidelength § if there exist fy € § and or-
thogonal elements ; € H for i = 1,...,m with ||¢;|| = 0 such that the collection of
hypercube vertices

H(m; fo, (Vi)i) = {h =fo+ in:*fz‘l/% : & €10, 1}}
i—1

is contained in §. It should be noted that $) just consists of its vertices.

(ii) A subclass § C H is said to contain a copy of £5, p > 0, if there exists a sequence
of orthogonal hypercubes (9)ren, embedded in §, which have dimensions my and
sidelengths 0y, such that d; — 0 and for some constant C > 0

my, > C6,. " for all k € N. (5.2)
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Note, that if § contains a copy of 5, then it also contains a copy of ¢} for all 0 < ¢ < p.
It was shown in [38, Thm. 2] that if a subclass § contains a copy of £ there exists an
upper bound on the maximal achievable approximation rate via reconstruction in a fixed
dictionary.

We state a reformulation of this landmark result, which in its original form [38, Thm. 2]
is stated in terms of the coefficient decay. The original proof can be adapted to lead
to the following formulation from [60, Thm. 2.2], which is in terms of the best N-term
approximation and more appropriate for our needs.

Theorem 5.1.2 ([60, Thm. 2.2]). Suppose, that a class § C H is uniformly bounded and
contains a copy of &8 for p € (0,2]. Then, allowing only polynomial depth search in a given

dictionary, there is a constant C > 0 such that for every Ng € N there is a vector f € §
and an N € N, N > Ny such that

I1f = full? > C(Nlogy(N))~Z7P/%,

where fn denotes the best N-term approximation under the polynomial depth search con-
straint.

Proof. Let ® = (n)nen be a given dictionary and 7 the polynomial specifying the search
depth. The best N-term approximation of f € H obtained in this setting, i.e., (5.1), shall
be denoted by fy, the corresponding optimal selection rule, as described above, by S.

Each system S(f, N) can be orthonormalized by the Gram-Schmidt procedure (starting
from lower indices to higher indices), giving rise to an orthonormal basis of span S(f, N)
(with the exception of some possible zero vectors). Therefore we can represent each fx by
the unique set of coefficients obtained from an expansion in this basis. (If a basis element
is zero, the corresponding coefficient is chosen to be zero.)

In order to apply information theoretic arguments, we consider the following coding
procedure. For f € § we select the dictionary elements S(f, V) and quantize the coefficients
of fy obtained as above by rounding to multiples of the quantity q = N—2/7.

We need N log,(m(N)) bits of information to encode the locations of the selected ele-
ments S(f, N) and N logy(27"/q) bits for the coefficients themselves, where T is the uniform
norm bound for the elements of §. Hence, in this procedure we are encoding with at most

R(N):N(Cl—i-CQlOgQ(N))v C,Cy > 0,

bits, and for N > 2 we have R(N) < C3N logy(N) for some constant C3 > 0. To decode,
we simply reconstruct the rounded values of the coefficients and then synthesize using the
selected dictionary elements.

Let $ be a hypercube in § of dimension m and sidelength §. Starting with a vertex
h € $ the coding-decoding procedure (for some fixed N € N) yields some h € H. By passing
to the closest vertex h, we again obtain an element of the hypercube £.

Every vertex h € §) can be represented as a word of m bits, each bit corresponding to one
side of the cube. Thus the above coding procedure gives a map of the m bits, which specify
the vertex h € $), to R = R(N) bits. The decoding then reconstructs the m bits specifying
the vertex h € §. Since at the intermediate step we just have R bits of information we
unavoidably loose information if R < m.

Now we can apply an information theoretic argument. By rate-distortion theory [38, 5]
there must be at least one vertex h € §), where the number of false reconstructed bits is
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larger than D,,(R). Here D,,(R) is the so-called m-letter distortion-rate function. Since
each bit determines a side of the cube, the error we make for this vertex h obeys

Ih = h|]*> > 6* - Dn(R).
Since by construction || — h|| > || — k|| we have || — h| > L[|h — h]|. It follows

Ih = h||* > 262 Din(R).

=

By assumption, § contains a copy of #5. Therefore we can find a sequence of hypercubes
. with sidelengths dx — 0 as k — oo and dimensions my = my(dx) > Cdk_p. For large k
we then pick N € N such that N logy(Ny) < my subject to the condition Cs Ny logy(Ng) <
%mk. This ensures that Ny obeys the inequality R(Ny) < %mk

Here we can apply another result from rate-distortion theory. If % < p for some p < %
it holds D,,(R)/m > D1(p), where Dy is the so-called single-letter distortion-rate function.
Hence, if % < %, we have ,
Dy (=)8*m.

1(3)

Let hy denote the vertices with maximal reconstruction error ||hy—hg|| at each hypercube

9. Taking into account Ny logy(Ny) =< my 2 6, ” we can then conclude for large k

1 —nl* >

PN

5 1 o
[y, — ha||* = Dl(g)@%mk > 6my 2 (Ni logy(Ny))~P)/P,

-

Finally we have to take care of the rounding errors. The best Nj-term approximation hy,
differs from hy by at most q/ Vg, i.e.,

1Ak = il < av/ Ny,
since the coefficients belong to an orthonormal basis. It follows, with some constant C' > 0,
- - 11 _
Vg = Bl = W, = hll = [, = i) = C(N logs(Ni))2 ™7 — Ni/272/7
2 (N logy(Ny,)) ~r)/G),
This finishes the proof. ]

We will apply Theorem 5.1.2 to obtain an upper bound on the achievable approximation
rates for cartoon-like functions. This model class for natural images is introduced in the
next section.

5.2 Cartoon-like Functions

In order to theoretically analyse the approximability of images, a suitable data model for the
images under consideration is required. For bivariate data in general, a standard continuum
model is given by the Hilbert space Lo(R?). Our concrete objects of interest are natural
images, however, such as pictures or photographs of real-world motives. Due to their specific
structure, the model space Lo(R?) can be significantly reduced.
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Suitable models for natural images are provided for example by subclasses of Lg(R?),
consisting of so-called cartoon-like functions. These are functions which consist of smooth
regions separated from one another by piecewise-smooth discontinuity curves. Their struc-
ture imitates the fact that edges, a typical feature of natural images, are characterized by
abrupt changes of color and brightness, whereas changes in the regions in between occur
smoothly.

Mathematically, models of cartoon-like functions can be concretised in different ways.
The classic model [15] postulates a compact image domain separated into two C? regions
by a closed C? discontinuity curve. This model was generalized in various directions, e.g.,
to take into account piecewise-smooth edges or to allow more general C? regularity with
B € [0,00). Cartoon classes of this kind have been studied extensively, especially in the
range 3 € (1,2], e.g., in [83, 73, 60]. Another variant are the closely related horizon classes,
where the discontinuity is not a closed curve in the image domain but a (possibly curved)
horizontal or vertical line stretching across. Such classes have been investigated e.g. in
[35, 18, 87]. Let us also mention that there exist extensions to multi-dimensions, see e.g.
[83]. In particular, the corresponding 3D models have been applied in the investigation of
video data. We will have a closer look at the 3D setting in Section 7.5 of Chapter 7. In this
chapter, our attention is restricted to 2 dimensions.

The following definition is a template for different classes of bivariate cartoons, compris-
ing many of those mentioned above. It provides the flexibility to taylor the model to the
particular needs of specific applications.

Definition 5.2.1 ([102, Def. 3.1]). Let 8 € [0,00) and v > 0. Given a domain © C R? and
a set A of admissible subsets of R, the class £°(Q; A, v) consists of all functions f € Lo(IR?)
of the form

f=fi+ f2Ap,

where D € A and fi, fo € CP(R?) with supp f1, fo € Q and || f1llce, || f2llcs < v. The class
Egin(Q; A) shall be the collection of all ‘binary functions’ Xp, where D € A and D C Q.

For particular choices of A many of the classes appearing in the literature can be re-
trieved, including classes of horizon-type. In this section we focus on the class £%(Q; A, v)
with fixed image domain = [—1,1]? and certain C” domains as admissible sets A. Similar
to [38, 15, 78, 83], we restrict our investigation to star-shaped domains, since those allow a
simple parametrization of the boundary curve. The results obtained however also hold true
for more general domains.

Let us introduce the collection of admissible sets STAR? (), v > 0, as all translates of
sets B C R?, whose boundary 0B possesses a parametrization b : T — R? of the form

b(e) = i) (‘;?j((jj))) . peT=[,2n],

where the radius function p : T — R is a C% function with
0 p(0) = 0L p()| < vpolp — 1PV forall ¢ €T, (5.3)

where we set pp := minger p(¢) > v~ 1. The condition (5.3) implies that with C = C(3) =
(27)% > 1 we have ||p(k)||c'0(j1‘) < Cpov for every k € {1,...,|B]} if B > 1, and |p(p) —
()] < Cpov for p, ¢’ € T. In particular py < p(¢) < po(1+ Cv) for all p € T.
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Note, that the set STAR?(v) differs from the set of star-shaped domains used in [38, 15,
78, 83]. The domains in STAR? (1) are not restricted to subsets of [—1,1]2. In fact, every
star-shaped C# domain with center 0 and py > 0 is contained in STAR®(v) for suitably large
v. Moreover, the collection STAR® (1) is scaling invariant in the sense that for B € STAR?(v)
and A > 0 also AB € STAR? (1), provided \py > v~!. In addition, with B € STAR®(v) also
the complement B¢ = R?\B is contained in STAR®(v).

Building upon Definition 5.2.1, we now define the class of functions which we want to
study.

Definition 5.2.2 (see (28) in [102]). Assume (3 € [0,00) and v > 0. We define
EP([-1,11%v) := P([-1,1]%, STaR® (v), 1)

as the class of cartoon-like functions obtained from Definition 5.2.1 by choosing Q = [—1, 1]?
and A = STAR’(v). The associated binary class shall be denoted by éfin([—l, 11%v) =
(=1, 1)% STAR? (1)),

In the sequel, we will be interested in the approximation performance of a-molecule
systems with respect to the class £7([—1,1]%;v). Let us at first assume, however, that we
can freely choose the utilized dictionary, and let us aim for a benchmark for the best possible
N-term approximation rate achievable under a polynomial depth search constraint.

5.3 Entropy Bounds for Cartoon-like Functions

In this section we establish an upper bound on the maximal achievable approximation rate
for £°([~1,1]%;v) when polynomial depth search in an arbitrary dictionary is used. A
result like this was first derived by Donoho [38, Thm. 1] for binary C” cartoons in the range
B € (1,2]. Later similar results were proved for more general cartoon classes [83, 73, 60].

In principle, our statement, Theorem 5.3.3, is a known result (see e.g. [83]). However,
for reasons of completeness, we outline a short proof based on the technique used in [38].
It relies on Theorem 5.1.2 and the fact that the class £°([—1,1]%; ) contains a copy of /5
for p=2/(f+1). To show this, let us introduce the following subclass of smooth functions
for 8 € [0,00) and v > 0,

Co(-1,1%0) == {f € CH([~1,1>) : [|fllcs < v}

Note, that the choice = [~1,1]? and A = {()} in Definition 5.2.1 yields this class. As a
consequence, we have

Cy([~1,1%v) € E([-1, 1% v). (5.4)

Before turning to £°([—1,1]%v), we now first analyze for which p > 0 the classes
CH([~1,1)%;v) and €] ([—1,1]% v) contain a copy of £,

Lemma 5.3.1. Let v >0, f € [0,00), and p=2/(8+ 1). Then the following holds true.
(i) The function class Cg([—l, 1)%;v) contains a copy of 5.

(i) The class of binary cartoons Efin([—l, 11%;v) contains a copy of £ if v > 1, otherwise
it only contains the zero-function.
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Proof. The proof is a 2D-adaption of the proof of [83, Thm. 3.2].

Part (i): Let ¢ € C3°(R) with supp¢ C [0,1] and ¢ > 0 and put ¥(t) = ¢(t1)p(t2) for
t = (t1,t2) € R%. Then ¢ € C*(R?) with suppt C [0,1]2. We choose ¢ # 0 such that
[¥llcs 2y < v. Next, we define for £ € N and £ = ({1,£2) € {0,....,k — 1}2 the functions

Vi o(t) = k= Pp(kty — €1)p(kty — L2).

These functions ¥, € C*(R?) are dilated and translated versions of 1 with supp ., C
[, 555 5 [, %5 and [[ellosrey < [¢llosey < v. In particular, ¢y, and ¢y are

orthogonal in Lo(R?) if £ # ¢. The functions in the set

Ny = { Z erhre ¢ € € {0,1} for every £ € {0,...,k — 1}2}

2e{0,...,k—1}2

constitute the vertices of an orthogonal hypercube of dimension m; = k2 and side-length
Sk = |[kell2 = k~P7Y|9||2, which is embedded in the class Cg([—l, 1]%;v). The sequence
(0 )ken obeys 0 — 0 as k — oo. Further (5.2) is fulfilled with p = 2/(5 + 1) since

M, = B/l = [T - (50)

Part (ii): We start with a function ¢9 € C*°(R) and assume supp ¢g C [0, 7/4], 0 < ¢ <
cos(m/8)~1 — 1, and [¢ollcs@y = 1. Then we define for k € N and £ € {0,...,k — 1} the

functions

Pre(t) = kP o (kt — b /4),
< |[¢ollcsm) = 1. Moreover, they have the property

[¢kellcom) < k™ B(COS(W/8) - 1) and H¢k,zlh = k=77 boll1-
Next, we define the functions pp, € C°°(T) on the torus T = [0,27) via pp(t) =
1+ ¢ o(t — 7/8). They satisfy 1 < pg o < cos(m/8)~1, such that Dy, C [—1, 1] for the sets

Dy = {af €R? : x = (r,¢) in polar coordinates with 1 < r < pre(©), ¢ € T}.

For fixed k, the characteristic functions ¢y := Xp, , are mutually orthogonal in Lo(R?)
due to their disjoint support. Let Bs(0,1) denote the unit ball in R? and consider the
orthogonal hypercubes §);, of dimension my, = k and side-length 5, = [[1y ¢||2 given by

Ny = {XBQ(O,I) + > ethe oe=(e1,...,e6-1) €10, 1}k_1}-

Lef{0,....,k—1}

If v > 1 those are contained in Efin([—l, 1% v).
holds

21 plddp ey
eneld = [ [t olrarao= [ [T rarap =

This implies 6 = k~B+1/2 5 0 for k — oo and (5.2) with p = 2/(3 + 1) since my, = k =
2
() 741, O

2 < \orell, it

*||¢k o3 = el
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As a consequence of (5.4), we can deduce from Lemma 5.3.1(i) that also £%([—1,1]%;v)
: 2/(B+1)
contains a copy of ¢ .

Corollary 5.3.2. The function class £ ([—1,1]%;v) contains a copy of € forp =2/(B+1).
An application of Theorem 5.1.2 thus yields Theorem 5.3.3 below.

Theorem 5.3.3 (compare [83]). Let 8,7 € [0,00) and v > 0. Assume that there is a
constant C > 0 such that

sup  ||f—fnl3<CONTY  forall N €N,
feeR([-1,12w)

where fn denotes the best N-term approximation of f obtained by polynomial depth search
in a fired dictionary. Then necessarily v < [3.

The optimality benchmark N~ is also valid for Cg([—l, 1]%v) and Egin([—l, 1)%;v) with
v > 1. We end this section with this observation.

Remark 5.3.4. According to Lemma 5.3.1(i), the bound of Theorem 5.3.3 even holds true
for the class C’g ([-1,1]%v). This is a stronger statement due to the inclusion (5.4). Further,
due to Lemma 5.3.1(ii), a statement analogous to Theorem 5.3.3 holds true for the binary
class éfin([—l, 1%v) if v > 1.

5.4 Approximation Bounds for a-Molecule Systems

Whereas the subject of the previous section was the approximability of the set £8 ([-1,1)%v)
by general dictionaries, we are now more specifically interested in the approximation a-
molecule systems can provide. In the subsequent investigation, which was first conducted
in [102], we will analyze the approximation performance of the discrete Parseval frame of
a-curvelets € from Subsection 3.2.3. As shown by Proposition 3.2.8, this frame is a system
of a-molecules of order (oo, 00,00,00), which makes it a suitable anchor system for the
application of the transfer principle, Theorem 2.3.6. Hence, the bounds we will obtain in
Theorem 5.4.2 ([102, Thm. 3.9]) and Theorem 5.4.4 ([102, Thm. 3.11]) for the achievable
rates of €, also have consequences for other a-molecule systems. These will be stated in
Theorem 5.4.6 ([102, Thm. 5.3]).

5.4.1 The Anchor System: a-Curvelets
Before our investigation of approximation properties, let us shortly revisit the construction
of the frame €% = {¢,}, e from Subsection 3.2.3. First, recall that its index set M is of
the form M = J x Z? with

J:= {J: (j,0) + jENy, (€ {o,...,Lj—1}}

and

L; =2U00=9] 5 e N (5.5)
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Next, recall that the functions ;) € €3, are simply rotations and translations of the
a-curvelets 1 00. Let R, denote the rotation matrix (2.3) and A, the a-scaling matrix
(2.4), i.e.,

_ (cos(n) —sin(n) (t 0
Rn_<sin(n) cos(n) and  Aa = 0 o) neR, teR,.

Then, according to (3.23), for every (j,¢,k) € M we have the relation
Viek(-) = V500(Rew,; - —A;le ),
where w; is the angle
wj=nL;t =x27b07el e N
Finally, recall that the Fourier representation of 1 € €, is given by

Djer(€) = Wie(€ujer(€), € €R?,

where Wj, : R? — [0,1] is a wedge function as in (3.18) and u;x = w0,k (Re,-) is obtained
by rotating the exponential

wj0,(€) = 27909 2 exp (2mi(277 k16 + 279%260)) . € = (£1,&) € RA.

We will now elaborate a bit on the geometric aspects of the frequency tiling induced
by €2. Clearly, it is determined by the support of the functions W; € C§°(R?) which,
according to their definition (3.18), are polar tensor products of respective radial and angular
components. For each J = (j,¢) € J we have

Wie(€) = Uj([€l2)Ve(€/I€l2), € € R?, (5.6)

with a radial function U; € C*°(R{, [0,1]) and an angular function V;, € C*°(S!, [0, 1)).
The functions U; € C"O(RSr ), J € Ny, satisfy the support condition suppU; C Zj,
whereby

1 1 1 )
Toi= ¢ 0,2] and Z;:= o (2971 20F g > 1. (5.7)
Further, due to (3.15) and (3.16), they equal 1 on the respective intervals

1 1 .
Ty ::67.[0,71] and T ::67.[23*172,2371], j>1. (5.8)

As a consequence, all functions W; belonging to a fixed scale j € Ny have support in a
corona C; defined by Cp := {£ € R? : 67|¢|a < 2} for j =0 and

Cji={eeR? : 97 <6rlely <2, forj> 1.
More concretely, taking into account the support of the functions Vj 4, the approximate

support of W; ¢ corresponds to a pair of opposite wedges W := szlj Wi 0, which is obtained
as a rotation of the set

Wioi={€ = (&1.&) € ¢ €] = cos(p;/2)[¢]}.
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To analyze the support of Wj, in more detail, note that the angular function f/j,o
covers an angle range of %wj on S'. Moreover, V;o = 1 on a range of size %wj. Hence,
supp V¢ € Ajoand V;, =1 on -Aj_z for the angular intervals

Ajo = Rj_’gl.Aj,o with  Ajo := {f = (&1,&) € st |&1] > COS(30.)j/4)},
Ay = RPA, with Ajg = {€=(&,6) €'« [&] > cos(w;/49)}.

Introducing the wedge pairs

Wi={6cR : [gheTp©) c A} and Wy:={€cR : |eh eI}, p(€) € A7},
(5.9)

we can thus formulate the following support properties, which will be of essential importance
later,

supp Wy C W and Wjy;=1on Wj. (5.10)

A geometric illustration is displayed in Figure 5.1.

(a) (b)

Figure 5.1: (a): Tiling of Fourier domain into coronae C; and wedges W, . (b): Schematic
display of the frequency support of a wedge function Wj .

We finally note that the sets Wj are contained in respective rectangles = ; of size 27 x 27%,
Those were defined in (3.20) and are given by

=7 =R;'E50, where Z;o=[-2/"1 2171 x [-2ia71 gia—l),

5.4.2 Approximation Bounds for a-Curvelets

The main results of this subsection, Theorems 5.4.2 and 5.4.4, will establish bounds on
the achievable N-term approximation rate for the class £5([—1,1]%;v), § € [0,00), when
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using the a-curvelet frame €}, for approximation. Unlike the more general bounds in The-
orem 5.3.3, these bounds are tied to the particular approximation system €?. They are
established by studying the approximability of certain example cartoons.

We choose the characteristic function of the ball Bs(0, %) C R? of radius %, for which
we subsequently use the symbol

O(x) := XBQ((),%)(a:l,xg), r € R2 (5.11)

This function embodies an exceptionally regular binary cartoon. Its boundary is a closed
C°-curve. It is radial symmetric and contained in €§m( [—1,1]2,v) for arbitrary § € [0, 00)
and v > 2. Furthermore, for every 8 € [0,00) and v > 2 there is 7 > 0 such that 7O €
E8([-1,1)%; v), wherefore the approximability of © has implications for the approximability
of these cartoon classes.

The Fourier transform of © is explicitly computable. Let J; denote the Bessel function
of order 1, then according to (5.21)

o) = M, ¢ e R (5.12)
2[¢]

Some properties of J; and Bessel functions in general are collected in the appendix, Sec-
tion 5.5.

At the center of the following investigation is the lemma below, which estimates the
energy of © contained in the wedges Wy, J € J. Let {Wj;}jer be a family of wedge
functions of the kind (3.18) with property (3.17). Further, let

W, = XW; and Wj' = ij

be the characteristic functions of the sets W; and W} defined in (5.9).

Lemma 5.4.1 ([102, Lem. 3.8]). There are constants 0 < C; < Cy < o0, independent of
scale j > jo, where jo € Ny is a suitable base scale, such that for all J € J with |J| > jo

C127707) < [lOW |3 < [|OWy]3 < O |5 < C2777),
whereby |J| = j for J = (4,¢) € J.

Proof. Let us recall the Bessel function 77 of order 1 and its asymptotic behavior. According
to (5.23) there is a constant C' > 0 and a function Ry on [1, 00) satisfying | Ry (r)| < Cr—3/2
such that

Ji(r) = \/%COS(T’ - %T) + Ri(r) forr>1.

This allows to separate terms of higher order from J2. We decompose

) = [Zeost(r = Sy + [\/f cos(r — 2 R () 4 Ra(r)?] = Ti(r) + Tor).

For the following argumentation we need the square wave function M: R — {0,1} defined
by

M(r) == {1 1€ Upez b+ =5, 0,

0 7T€Uk€Zkﬂ-+(07%)'
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For all 7 € R it has the property 2cos?(r — 37/4) > M(r). Therefore we can deduce for
1<a<b

1 b 1
/ Ty (ryr—tdr == / 2 cos?( ) “2dr > = / A(r)r—2dr > - Z (km)~2
T Ja 2 Keles

with I, :={k €Z : kr € [a+m,b]}. To proceed, we use the relation

n (n+1)m
> (km) P> 1 / k=2 dk,

Y
k=m mm

which is valid for all m,n € N and m < n. We obtain

b 1
- Z (k)™ _7/ / k2 dle — / F2dk) > ot b —a
at+2m 271' 21

k‘EIa b

Next, we see that with a constant C' > 0 independent of 1 < a <b
b b 00
/ [ To(r)|r~ " dr < C/ r=3dr < C’/ r3dr < Ca™2
a a a

Altogether, we conclude that

r ™

b 72
/ Jir) dr > %(1 —ab Ha -1+ C)a?

If c = ab~! < 1 is fixed, we can deduce for a > 47t H‘C the estimate
afe JE(r) 1 1
dr 1-— . 5.13
[ = o (513

After this preparation, we can now turn to the actual proof of the assertion. The relation
oWy |3 < [lew |3 < oW i3

is a direct consequence of (5.10) and ||Wy||o < 1. Let Z; be the intervals defined in (5.7).
Further, recall the intervals Z;” C Z; defined in (5.8). Using (5.12) and the definition (5.9)

of W} we calculate

2
ow;g= [ LD e / Jiar) der—ﬂl—a)/ I 4,
wy Ay A

4!6\2 "I T

The intervals Z;" scale like ~ 2J. Hence, if j € N is chosen large enough by (5.13)

Owy3 =271 [ g2(ryr~tdr 2 279072270 = 973(270),
J 112 I- 1
™5

The estimate from above is much easier to establish. If j € N such that 7Z; C [1,00) we
have

2
jewrig= [, I g / T gty s rsti=er [ T g,
Wj 4|£’ Ayg 4r TrIj r
§2*J(1*“)/ 2 dr < 2790270, O
I

J
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Based on Lemma 5.4.1 we can prove the first main result of this subsection.

Theorem 5.4.2 ([102, Thm. 3.9]). Let € be the a-curvelet frame constructed in Subsec-
tion 3.2.3 for fivzed a € [0,1). There exists a constant C > 0 such that for any given N € N
every N-term approzimation fn of © with respect to €2 (not even subject to a polynomial
depth search constraint) satisfies

|© - fvl} = N T
Proof. Let N € N be fixed and assume that

N
IN =05 00k,
r=1

is a linear combination of a-curvelets v, . with coefficients 07 . € R. The curvelets
Yy k. € € satisfy supp @/Z}\Jm]%, C W; as recorded in (5.10). It follows supp fv C Wy
where Wy := U e, Wi for In :={J1,...,Jn} C J. Using the notation J% := J\Jy and
W% == R*\Wy we get with Lemma 5.4.1

10— fall3 =110 — fnl3 = H@H%z(chv) > N lewsaz Y 27,
Jels, JETs,

We want to bound the right-hand side from below. By (5.5), the number of tiles in each

corona Cj, j € Ny, is given by L;, where L; = 2li(1=)] for j € Ny. Let j(N) € N denote
the unique number such that

(V)1 i(N)
Y Li<N< > L
=0 j=0

Since 277(2=®) decreases with rising scale we obtain

-j(2-a) > 9—j(2—a) 5 = —j > 9—i(N)
E 2 Z g L;2 Z35 E A .
JeIy j=j(N)+1 j=3(N)+1

Here we used L; > 27(1=®)~1 Since N > Z?Lj\é)_l 2i(1=0) > 9j(N)(1-2) we can finally deduce

1
1 = Sl 2 277N = (FN0-0) T > N7, =

This result can be strengthened if we restrict to greedy IN-term approximations obtained
by thresholding the coefficients. Essential is the following observation, which has also been
used in [60]. Due to its importance we give a rigorous proof here.

Lemma 5.4.3 ([102, Lem. 3.10]). There is a constant C' > 0 such that all curvelets ¢, € €3,
€ M, satisfy
Il < C2790F2,
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Proof. Let a; be the functions from (3.25) and recall that according to (3.27) the support of
a; is contained in the unit square Zg o for every j € Ng. Let Id denote the identity operator.
We have the estimate

|7 ((1d+ 0%y (1d + 33)a; )| < (1 + 97)(1d + B3yl < [|(1d + O7 ) (Id + 05 ) | .

According to Proposition 3.2.8(ii) the right-hand side is bounded uniformly over all scales.
We conclude that there is a constant C' > 0, independent of j € Ny, such that

sup |(1+27)(1 + 23)a;(z)| < C.
rER2

In other words |a;(z)| < C(1 +2%)~1(1 +23)~!. Using the representation (3.26) we obtain

[W500(2)| = 2007920 (Ajz)| < C200FT9/2(1 4 2223) 71 (1 4 22°23) !

and hence
L, soo(@) de S 200402 [ (14 2%a3)71 (1 4 2003~ do
= 2042 [ (14 o) (1L ad) da g 290
R
Since ||¢jekll1 = ||%j,0,0]l1 the proof is finished. O

Lemma 5.4.3 allows to deduce a simple a-priori estimate of the curvelet coefficient size,
namely

10 = 1{f, ) < I flloolltllt < Cllf o027 70H92 for = (5.4, k) € M. (5.14)

Note, that the constant C' > 0 is fully determined by €2. Using (5.14) we now prove a
stronger statement than Theorem 5.4.2 for greedy approximations.

Theorem 5.4.4 ([102, Thm. 3.11]). Let o € [0,1] be fized. Further, let fn denote the N-
term approximation of © with respect to the a-curvelet frame €%, obtained by thresholding
the coefficients. There is a constant C' > 0 such that for every N € N

1
|© — fn|3 > ON ™ maxtat=ar,

Proof. If a < % the assertion is true by Theorem 5.4.2. It remains to handle the range 1 >
o> % Let 0, 1, = (©,%, k), 7 € {1,...,N}, be the N largest curvelet coefficients which
determine the approximant fy := SN 1 0 . 17 1.. On the Fourier side the curvelet ¢, €
€2, is the product of the functions W; and wjy defined in (3.18) and (3.21), respectively.
Using condition (3.17) we first estimate

1O = fxll3 =18 = fvll3 = D 10Ws — fnWill3 = > 10W) — fx Wi 3,
JeJ JeJ

where W is the characteristic function of the set W) defined in (5.9). The triangle
inequality yields

1, ~ ~ o~ _ ~ _
5o 13 <1OW; — fnWi 5+ |fnW5 |3 for every J € J. (5.15)
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Observe the relation W; = W, W; and W; W = 0 for J # J'. Therefore, it holds

N N

INWE =305 6,056 Ws =D 00 ks Wi, Wy = > Opu Wy
r=1 r=1 keKy

with K; = {k, € Z*> : r € {1,...,N}, J, = J}. Next, we use that {uj}rez2 is an
orthonormal basis for Ly(=Zy), where =7 D W] is the set defined in (3.20). We estimate

2
o= 10k
L2(:J) k‘EKJ

2
H Z 07wy W5 H2 < H Z QJ,kUJ,k'
keK keK

The frame coefficients satisfy the a-priori estimate |07%|? < 2777 according to (5.14).
Thus we obtain

_ ) |
1PV =] 3 oy | < 2305,
keK;

By Lemma 5.4.1 we have H@W]H% > 271(2=2) We deduce from (5.15)

1OW; — InWT 3> Z|OWF |13 — [ FnWi |13 2 2773 — (K )27+,

N |

Altogether, we conclude

10 — fnl3 = Y 1leW; — x5 132 Y max {0,273~ — (K )27+,
Je] Jel

Note that Y~ ;(#K ;) < N. To derive a lower bound let us consider the following minimiza-
tion problem:

MiNiMizE Y max{0,277@7) — N2t g5 NUN; <N, Ny €[0,00) (J € D).
{Ns}ses Jel Jel

The condition N; € [0, 00), which simplifies the subsequent argumentation, is possible since
we are only interested in a bound. For the optimal choice {N;} s, it necessarily holds
>y Ny=N and

N < 279@-a)9i(1+a) _ 9j(2a—1)

Hence, the minimization problem can be reformulated as minimizing the term

Z (2—j(2—a) _ NJQ—j(1+Oé))
JeJ

under the constraints > ; Ny = N and N < 2 (20-1) "~ Assume that the family {N;}j fulfills
these constraints. Further, let j(N) € N denote the number determined by the property

i1 iy
S 2@ o N < Y 2l (5.16)
=0 =0
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CARTOON APPROXIMATION WITH o-MOLECULES: BOUNDS

where L; from (5.5) counts the wedges in the corona C;. Then the following estimate holds
true

o0 o0

S (2—1(2—a) _ NJQ—J'(Ha)) > ¥ ( 3 2—3’(2—&)) > 3 277 27,

Jel J=i(N)+1 |J|=j J=j(N)+1

To see this, note that 2777 i decreasing with rising scale and that L; > 2i(1=0)=1 " Gince
N = 27N which follows from (5.16), we have proven

16 — fal3 2 max {0,277~ (K j)2790+)} > 9=iN) = N—o
Jel

and the proof is finished. O

The approximation results for © have direct implications for the class-wise approxima-
tion of cartoon-like functions. If v > 2, then © € Egm([—l, 1)%;v) for arbitrary 3 € [0,00).
Moreover, we can always find v > 0 such that v© € £°([—1,1]%;v). This allows to draw
the following conclusion.

Corollary 5.4.5 ([102, Cor. 3.12]). Let § € [0,00) and v > 2. The uniform decay of

the N-term approzimation error for Sgin([—l, 1%;v) and E°([—1,1]2;v) provided by €%, can-

not exceed N_ﬁ. Futhermore, thresholding of coefficients cannot yield rates better than
1

= crea

If 8 > 2 it is thus impossible for €?, to reach the theoretically possible approximation order
of N77 for the class £7([—1,1]%v). In this case, the best performance is still achieved for
the classic choice o = %, with an associated approximation rate of order N=2. A smaller o
leads to a deterioration of the rate.

To be more precise, this behavior applies to cartoons with curved edges exemplified by
the function © = X, 1 from (5.11). For such cartoons the rate inevitably deteriorates
as « tends to 0. This can be explained by the distribution of the Fourier energy of such
functions which is spread more or less uniformly across all directions of the Fourier plane.

For cartoons with straight edges, on the other hand, a smaller o improves the approxi-
mation rate [102]. In a certain sense, such cartoons are the opposite extreme of the isotropic
function ©. They are highly anisotropic and their Fourier energy is concentrated in only
one distinguished direction.

5.4.3 Limitations for a-Molecule Systems

As shown by Proposition 3.2.8(ii), the Parseval frame €2, is a system of a-molecules of order
(00, 00, 00, 00) with respect to the a-curvelet parametrization (M, ®,s) where

Qur: M =P, (.6 k) = (2jek, w;j, 277) = (R A7, bw;, 277). (5.17)

By the transfer principle, Theorem 2.3.6, we can deduce the following result from Theo-
rem 5.4.4.
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Theorem 5.4.6 ([102, Thm. 5.3]). Let a € [0,1] and let M?, := {mr}rea be a discrete
frame of a-molecules whose parametrization, for some k > 0, is (a, k)-consistent with the

a-curvelet parametrization (5.17). Further, assume that for some v > 7 := max{a, 1—a} ™!
the order (L, M, N1, Na) of I, satisfies

_3 k 1+
0‘2 , SA+7)+ 20‘, No > k(1 4 7).

(5.18)

3k
L2k(1+y), M2z->0+7)+

Then the coefficients {ca}rep of each representation © = Y \cp cxmy of the function ©
from (5.11) with respect to MY, satisfy {cataen ¢ P(A) for p < %

Proof. Let p < % and assume that {cy}x € ¢P(A). According to Theorem 2.3.6 con-
dition (5.18) ensures that the systems 9t and € are sparsity equivalent in ¢P, which
means |[{(mx,¥u) rpuller—er < 00. (see [59, Def. 5.3]). Hence, by sparsity equivalence,
{(©,9u)}, € P(M). Using © = 3° (0,4,)1, and Lemma 2.3.1, this then implies an
N-term approximation rate of order N~7, in contradiction to Theorem 5.4.4. O

5.5 Appendix: Bessel Functions

In this appendix we collect some useful facts about Bessel functions mainly taken from [71]
and [51]. We are only interested in Bessel functions J,, of integer and half-integer order in
the range v € {—%, 0, %, 1,...}. Bessel functions of this kind occur naturally in the Fourier
analysis of radial functions. For ¢ € Ry the value J,(t) is conveniently defined by either of
the two series (see [71] and [51, Appendix B.3])

Y e (—1)* t\2k 1 v & (DT (R +§) 2
Ju(t) = (§> l;)l“(k+1)l“(k+u+1)<2) *ﬁ(g) l;) P(k+y+12) oIk (5.19)

where the Gamma function I' extends the factorial z! to the complex numbers with I'(z) =
(z—1)!. To verify the equivalence of both representations, it is useful to note that I'(k+1)

(]3!]2:\/77 for k € Nyg. We explicitly remark, that definition (5.19) is also valid for v = —
although this case is not included in the exposition of [51]. As is obvious from the second
representation, the functions J, of half-integer order can be expressed in closed form in
terms of trigonometric functions. For integer orders such closed form representations do
not exist.

If f(z) = fo(|z|) is a radial function on RY, d € N, with a suitable function fy defined

on Rg = [0, 00), the Fourier transform of f is given by the formula

D[+ ||

~

F6) = taays |, oo Carieln®2ar, ¢ R

Applying this formula to the characteristic function Xp, (o 1) of the d-dimensional unit ball
B4(0,1) centered at the origin of R? yields

2 ! Jay2(2
(Xp,0) N (E) = ]’§|(d7r2)/2/0 Jaja—1 (27 |E|r)r?? dr = d/|2§(d;"2|5’) ¢eR: (5.20)
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Here, for the integration, we used the second of the following recurrence relations [51,
Appendix B.2|, which are valid for v € %N and all t € Ry,

d
t—”“Jy(t):—a(t—”“Jy_l(t)) and  t¥.J,_1(t)

d v
= %(t Ju(t)) .

The case v = % is not treated in [51], yet it can be easily confirmed by a direct calculation.
By scaling, we can further deduce from (5.20) the following Fourier representation of

the bivariate function ©(z) = X, (0,1y(22), = € R?, from (5.11),

Ji(m|€])
2(¢]

Important for our investigation in Section 5.4 is the asymptotic behavior of J,(r) as r — oo.
We cite the following result from [51, Appendix B.8], which states for v € %NO the identity

~ 1

6(6) = 7 (Xp01)"(€/2) =

, &R (5.21)

unz ™

Ju(r) = \/Zcos(r -5 Z) +R,(r), reRy, (5.22)

with a function R, given on Ry by

_@m) A i(r—mv/2—7/4) /OO rtt1)2 L Jo\w—1/2 dt
R,(r) = T+ 1/2)6 ; e "t [(1+41dt/2) 1] ;
(2m) 12 —i(r—mv/2—m/4) /OO —rt+1/2 , ~1/2 dt
wW\r—mv ™ T tl/ 1 _ t 2 14 _ 1 —
L [~ (= it/2) )2

Further, for each v € %NO there is a constant ', > 0 such that R, satisfies the estimate
IR, (r)] < C,r~3/?  whenever r > 1. (5.23)

The representation (5.22) and the estimate (5.23) play an important role in the proof of

Lemma 5.4.1. For completeness, let us finally note that the identity (5.22) especially holds

true in case v = —%, with vanishing R_1 = 0. This is a direct consequence of the defini-
2

tion (5.19) and the Taylor series of the cosine.
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Chapter 6

Cartoon Approximation with
a-Molecules: Guarantees

In this chapter, which is a follow-up of Chapter 5, we continue with the investigation of
the approximation performance of a-molecule systems with respect to cartoon-like data.
The model setting is the same, i.e., we still consider the cartoon classes Sfin([—l, 1)%;v) and
EB([—1,1]%; v) specified in Definition 5.2.2. The main results, Theorem 6.0.1 ([60, Thm. 4.1])
and Theorem 6.0.2 ([59, Thm. 5.12]) which will be proved below, are approximation guar-
antees which nicely complement the bounds established in the previous chapter.

Recall that the order of the N-term approximation rate achievable for the classes
S{fin([—l,l]Q;V), v > 1, and £°([-1,1]%v), v > 0, cannot exceed N~—?. This bound, es-
tablished in Theorem 5.3.3 (see also Remark 5.3.4), is valid for arbitrary dictionaries and
independent of the approximation scheme employed, as long as a polynomial depth search
condition is fulfilled. Even adaptive approximation schemes cannot perform better.

Schemes, where these rates are provably achieved, at least up to order, have been de-
veloped for binary cartoons based on wedgelets [35] and surflets [19], for general cartoons
utilizing bandelets [86, 87|, to give a few examples. These results show that the optimality
benchmark N~# can indeed be realized in practice, at least up to order. However, the
utilized schemes are mostly adaptive, only for certain cartoon classes nonadaptive methods
with quasi-optimal performance are known.

A breakthrough concerning the nonadaptive approximation of cartoon-like functions was
the introduction of the classic curvelets by Candés and Donoho [14, 15]. By a simple thresh-
olding scheme, they achieve an approximation rate for the class £2([—1,1]?; v) matching the
class bound N2 up to a log-factor. The reason for this quasi-optimal performance is the
parabolic scaling law employed. The following argument shall heuristically explain, why
parabolic scaling is ideal for the representation of C? edges.

In local Cartesian coordinates, a C? curve can be represented as the graph (E(z), ) of a
function £ € C?(R) and one can choose a coordinate system such that E’(0) = F(0) = 0. A
Taylor expansion then yields approximately E(x) ~ %E” (0)2?%, which matches the essential
support width ~ length? of parabolically scaled functions. Hence, those can provide optimal
resolution of the curve across all scales.

The quasi-optimal performance of curvelets for the class £°([—1, 1]%;v) with 8 = 2 raised
the question if similar quasi-optimal results can be obtained for other cartoon classes with
a regularity § # 2. At least in the range 5 € (1,2), a heuristic, similar to the one given
above for C? curves, applies to C? curves. Generally, if § € (1,2], a Taylor expansion of
E € CP(R) yields |E(x)| < #”, and thus the boundary curve is contained in a rectangle of
size width =~ lengthP®. This suggests a-scaling with a = 8~ for optimal approximation.

And indeed, quasi-optimal approximation could be shown in [73, 83] for a-shearlet
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frames if = 87! and B € (1,2]. For a-curvelets, the classic approximation result by
Candeés and Donoho was extended in [60, Thm. 4.1]. This extension is stated below, slightly
modified to fit into our model setting, since the class £°([—1,1]%;v) used here is not fully
identical to the class used in [60].

Theorem 6.0.1 ([60, Thm. 4.1]). Let 3 € (1,2], v > 0. For the choice a = B, the
Parseval frame of a-curvelets €, constructed in Subsection 3.2.3 provides almost optimal
sparse approximations for the class of cartoon-like functions £°([—1,1]%;v). More precisely,
there exists a constant C > 0 such that for every f € £°([-1,1]%v) and N € N

1f = fxll3 < CN~Flogy(1+ N)'7,

where fn denotes the N-term approximation of f obtained by choosing the N largest coef-
ficients.

When we compare this theorem with the benchmark Theorem 5.3.3, we see that the
frame €%, = {4, } uem attains the maximal achievable approximation rate up to a log-factor.
Moreover, as for the classical curvelets, this rate is achieved by simply thresholding the
frame coefficients, leading to an intrinsically non-adaptive approximation scheme.

Unfortunately, Theorem 5.4.2 proved in the previous chapter shows that a-curvelets are
not able to provide approximation rates beyond N2, which is suboptimal for £8 ([-1,1)%v)
if 8 > 2. This is due to the fact that a-scaling is not able to take advantage of smoothness
beyond C?. Further, Theorem 5.4.6 is an indicator that also more general a-molecule
systems are not able to overcome this N2 barrier. In fact, up to now no frame construction
is known where a nonadaptive thresholding scheme yields approximation rates better than
N2 for £8(]-1,1]%;v). Therefore further research is required and new ideas need to be
considered.

Let us now turn to the proof of Theorem 6.0.1. It is based on an analysis of the decay
of the curvelet coefficients {0,,},cn given by 0, = (f,v,) for a signal f € £°([-1,1]%v).
This analysis will be conducted below, beginning in Section 6.1, with the main result being
Theorem 6.1.1. It shows that {6,}, € wl’(M) with p=2/(1+ )+ ¢ and € > 0 arbitrarily
small. This decay rate is in fact sufficient for a proof of Theorem 6.0.1 via Lemma 2.3.1.

Before turning to Section 6.1, let us state another consequence of Theorem 6.1.1. By
applying the transfer principle, Theorem 2.3.6, it is possible to deduce approximation rates
for more general a-molecule systems. Let (M, ®js) denote the parametrization (3.28) of
the Parseval frame of a-curvelets €?,. Then we can formulate the following theorem, which
is the other main result of this chapter.

Theorem 6.0.2 ([59, Thm. 5.12]). Let 8 € (1,2], v > 0, and a = 371. Assume that, for
some k > 0, a discrete frame {my} cp of a-molecules satisfies the following two conditions:

(1) its parametrization (A, ®p) and (M, ®yr) are (o, k)-consistent,

(ii) its order (L, M, Ny, Na) satisfies

- 1
a=3 g TO and Ny > k(148).

3k
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6.1 Sparsity of Curvelet Coefficients

Then each dual frame {m)} e possesses an almost optimal N -term approzimation rate for
the class of cartoon-like functions E°([—1,1)%;v), i.e., for all f € E4([-1,1]%v),

If — fnl3 S NPT & >0 arbitrary,
where fn denotes the N-term approximation obtained from the N largest frame coefficients.

Note that, by Corollary 3.4.4, the required condition (i) holds in particular for the «-
curvelet and a-shearlet parametrizations, for k > 2. Thus, this result allows a simple and
systematic derivation of approximation results for a-curvelets and a-shearlets. For example,
we obtain the statement of [59, Thm. 5.13] on cartoon approximation with band-limited
a-shearlet systems, where the optimal approximation rate is reached up to an arbitrarily
small deviation £ > 0.

6.1 Sparsity of Curvelet Coefficients

The main statements of this chapter, Theorem 6.0.1 and Theorem 6.0.2, are both conse-
quences of the following result on the coefficient decay of curvelet coefficients.

Theorem 6.1.1 ([60, Thm. 4.2]). Let 6% denote the (in modulus) Nth largest curvelet
coefficient. Then there exists some universal constant C such that

sup 0% < C - N~(HA)/2 . (10g, N)IHA/2
feef([-1,1]%w)

This theorem is the centerpiece for proving both Theorem 6.0.1 and Theorem 6.0.2. In
fact, Theorem 6.1.1 together with Lemma 2.3.1 directly leads to Theorem 6.0.1.

Proof of Theorem 6.0.1. Applying Lemma 2.3.1 and Theorem 6.1.1 we can estimate

1= fnlP S D2 165 S 30 m™ D (logym) 1Y) 5/ =040 (logy )1+ dt.
m>N m>N N

Using partial integration we obtain
/N T8 L (logy )1 dt < (=178 (logy 1) 1O + /N T8 L (logy 1) dt
< N2 (logy N)HA) +/NOO =00 - (log, t)IP1 at
< ... <N (log, N)IP) 4 / T4 gy
N
< N7 (logy N)HP).

O

Using the transfer principle, Theorem 2.3.6, it is further possible to deduce Theo-
rem 6.0.2.
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Proof of Theorem 6.0.2. Let €8, = {¢,} ,em be the a-curvelet frame from Definition 3.2.6,
and let f € £°([~1,1)%v). By Theorem 6.1.1, the sequence of curvelet coefficients {6,,},,
given by 0, = (f,1,) belongs to wl?(M) for every p > ﬁ Since wfP — (P for arbitrary
e > 0, this further implies {6,}, € #(M) for every p > ﬁ

By Theorem 2.3.6, conditions (i) and (ii) guarantee that the frame {my} ca is sparsity
equivalent to {¢,},cp in P for every p > ﬁ This implies that the cross-Gramian
{(¥usmx)}ux is a bounded operator P(M) — (P(A). It maps {6,}, to the sequence {cy}x
given by

ex =Y (u,ma)0, = (f,my).

I

As a consequence, {c\}x € P(A) for every p > ﬁ The embedding P < wfP further
_2

proves {cx}x € wlP(A) for every p > 75.
Finally observe that we can expand f with respect to the dual frame {7}, in the

following way,
f= Z CAT) -
AEA

Hence, for arbitrary € > 0, an application of Lemma 2.3.1 yields
Hf - fNH% S N75+€7

where fy denotes the N-term approximation with respect to the dual frame {7} obtained
by choosing the N largest coefficients. O

It remains to prove Theorem 6.1.1. For this, we first recall the a-priori estimate (5.14)
for the size of the curvelet coefficients 6, = (f,,) at scale j, namely

10 = 10F 9] < I flloslllt < Bl flloc2™H/2 (6.1)

with a constant B > 0 independent of the index p € M.
Using this estimate together with Theorem 6.1.2, which is stated and proved below, we
can give a proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. Let M; C M denote the indices corresponding to curvelets at scale
j, and for € > 0 put

Mje = {p € Mj, 10, > ¢}.
By Theorem 6.1.2, which is stated and proved below, we have for ¢ > 0
#M; . = #{,u € M;,10,| > E} < g7 0+H), (6.2)
On the other hand, (6.1) shows that there is a constant B, independent of scale, such that
104l < B flloc2” /2.

It follows that for each € > 0 there is j. such that at scales j > j. the coefficients satisfy
6, < e. Hence, for j > j.

#M;o = #{p € My, |0, > ¢} = 0.
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The number of scales at which Mj . is nonempty is therefore bounded by

2

= (1083(B) + loga((1 1) + oga(e ™)) < loga(e ™). (63)

It follows from (6.2) and (6.3) that there is a constant C' > 1 such that

#{ne M 10, >} =3 #{ne M, 10, > e} < Ce™/ 0D 10gy(e7).
J

Let 0% be the Nth largest coefficient. Then for ey > dn, where dy satisfies N =
65;,2/(“'5) log,(05'), we have |0%| < ey. If N > 2 it holds CN*(+5) Jog,(N?) > N,
because 1 < g <2 and C > 1. For N > 2 therefore

N 10g,(N2) > 670 log, (631).

This implies d5 > N2, and we can conclude that ex > dy if we choose ey as the solution
of
N = 5’5]}2/(1+ﬁ) logy (N?).

This choice leads to
ex = (26) 1D/ L N—(H)/2(10g N)A+H)/2.
which proves our claim with constant C' = (2C)1+5)/2, O

The last missing piece is now Theorem 6.1.2.

Theorem 6.1.2 ([60, Thm. 4.3]). Let M; denote the curvelet indices at scale j. The
sequence {0, }uen; obeys
140, } e st |l ez sy < C,

for some constant C' > 0 independent of scale j.

The proof of this theorem is rather involved. In fact, the remainder of this whole chapter
is solely devoted to this task. Thereby, we follow the exposition in [60]. The techniques
used are very similar to those in [15, Sec. 5]. Due to the presence of fractional smoothness,
however, some new tools involving divided differences have to be applied.

In a first step, we smoothly decompose f € £°([—1,1]%v) into so-called fragments,
which can then be analyzed separately. For that we cover R? at each scale j € Ny with
cubes

Q= [(ky —1)2779% (ky 4+ 1)2779 x [(kg — 1)277%, (ky + 1)2779%], (K1, ko) € Z2,

which we collect in the sets Q;. Fuljther, we put Q := UjeNo Q. Note how the size of thg
squares depends upon the scale 277: The ‘width’ of the curvelets at scale j obeys ~ 277
and the ‘length’ of the curvelets is approximately ~ 27/, Thus, the size of the squares is
about the length of the curvelets.

Next, we take a smooth partition of unity {wQ}Qer, where these squares are used
as the index set and the functions wg are supported in the corresponding squares @ :=
(2799, 2799, + [-277%,2772]2. More precisely, for some fixed nonnegative C°°-function
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w vanishing outside the square [—1,1]?, we put wg = w(2/%; — ki, 27%9 — kz) and assume
that >~pco, wo(x) = 1. The cartoon f = O+ flag € £5([-1,1]%;v) can then at each scale
j € Ny be smoothly localized into the fragments

fQ = wa, Q S Qj.

For Q € Q; let g denote the curvelet coefficient sequence of fg at scale j, i.e.,

oo = {fa v} . (6.4)

neM;

The strategy laid out in [15] is to analyze the sparsity of the sequences 6 and combine
these results to obtain Theorem 6.1.2. In this investigation we have to distinguish between
two cases: Either the square ) € Q; meets the edge curve I' = 9B of the cartoon or not.
Accordingly, we let Ql be the subset of Q; containing those cubes, which intersect the edge
curve I'. Among the remaining cubes of Q; we collect those, which intersect supp f, in QO
The others can be neglected, because they lead to trivial sequences 0.

The following two propositions ([60, Thm. 4.4] and [60, Thm. 4.5]) directly lead to
Theorem 6.1.2.

Theorem 6.1.3 (Analysis of a Smooth Fragment). Let Q be a square such that Q € Q?.
The curvelet coefficient sequence O defined in (6.4) obeys

110G pezr+) < C - 9~ (1+ae)j,
for some constant C > 0 independent of Q and j.

Theorem 6.1.4 (Analysis of an Edge Fragment). Let Q be a square such that @ € le-.
The curvelet coefficient sequence O defined in (6.4) obeys

[0l < €27 0F72,
for some constant C' > 0 independent of QQ and j.

Theorem 6.1.2 is an easy consequence of these two results and the observation, that
there are constants Ag and A1, independent of scale, such that

#Q7 < A92°%  and #Qj < A2%. (6.5)
The estimates (6.5) hold true since f is supported in [—1,1]2.
Proof of Theorem 6.1.2. For 0 < p < 1 we have the p-triangle inequality
la+ b2 < llally + 1blEe,  acbe wer.

Since {0, }uem; = ZQer ¢, we can conclude

2/(148) 2/(1+8
M0 uenr, 1775500 < 37 101175550,

QeQ;
2/(1+8) 2/(1+8)
< (#Q)) - sup ][5 ) + (#QD) - sup 100 52
QJ QJ
The claim follows now from the above two theorems together with observation (6.5). O
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It remains to prove Theorems 6.1.3 and 6.1.4. For that let Q € Q; be a fixed cube at
a fixed scale j € Ny, which nontrivially intersects supp f. We need to analyze the decay
of the sequence g = {(fq,¥u)}uenm;. Since the frame elements ¢, are bandlimited, it is
advantageous to turn to the Fourier side. The Plancherel identity yields

<fQ7 ¢M> = (J?Qv{p\u>'

These scalar products can be estimated, if we have knowledge about the localization of the
functions fgp. This investigation is carried out separately in Sections 6.2 and 6.3 for the
cases ) € Q? and @ € Q]l, respectively.

6.2 Analysis of a Smooth Fragment

The goal of this section ([60, Sec. 5]) is a proof of Theorem 6.1.3. Broadly, we follow the
arguments in [15, Sec. 8] for § = 2, but with the important difference that our signal class
EP([~1,1)%;v) generally involves functions with smoothness of fractional order. This forces
us to translate several estimates in [15] for derivatives of various functions into estimates
for corresponding moduli of smoothness. The same remark applies to the next Section 6.3.

An important tool is the forward difference operator Ay, p,), where hy, hy € R, which
acts on a bivariate function f :R? — R as follows,

A(hl,hz)f(xlvgc?) = f(xl + hi, 29 + h2) - f(SUlva)‘ (66)

Its one-dimensional analogon takes the simple form A f(t) := f(t + h) — f(t) for h € R.
When applied to a bivariate function f : R? — R, to simplify notation, the operator Ay
shall exclusively act on variables denoted ¢ or 7 € R, e.g., the symbol Ay f(¢,u) denotes the
function (t,u) — f(t+ h,u) — f(t,u). Note that the symbol A without a subscript denotes
the standard Laplacian.

Let us now come back to the proof of Theorem 6.1.3 and recall the notation introduced
at the end of the previous section. We treat the case @) € Q?, where the cube ) does not
intersect the edge curve I' = 0B. In this case we call fo = fwg a smooth fragment.

Before we begin, we briefly recall our setting. The parameters o € [%, HandB=a"te
(1,2] are fixed, as is f € £(]—1,1]%; ). Since Q does not intersect the edge curve, there is
a function g € C?(R?) such that fo = gwg. By smoothly cutting g off outside the square
[—1,1]2, we can even assume g € Cg(RQ).

We want to analyze fQ and for simplicity we look at the following model situation.
Without loss of generality we assume that the cube @ is centered at the origin, by possibly
translating the coordinate system. In this case the smooth fragment takes the simple form

fi(e) = folz) = g(x)w(2Vz), = €R?

where g € CO'B (R?) and w € C§°(R?) with suppw C [~1,1]? is the fixed window generating
the partition of unity (wg)g (note that by our simplifications the fragment fg only depends
on the scale j and therefore the notation f; is justified).

By rescaling f; we obtain for each scale j the functions

Fj(z) = g(27%2)w(z), =R (6.7)

with supp F; C [—1,1]2. We put g;(x) := g(27%x), so that we can write Fj(x) = g;(z)w(z).
It is important to note, that g; and F; depend on the scale, whereas w remains fixed.
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6.2.1 Fourier Analysis of a Smooth Fragment

We first analyze the localization of }AWj, where F} is given as in (6.7). The key result in this
direction will be Proposition 6.2.2. Its proof relies on Lemma 6.2.1 below. Here we use the
forward difference operator (6.6) defined above.

Lemma 6.2.1. Let a € [%, 1) and = a~' € (1,2]. Assume that h = C2-1=%7 for some
fized constant C >0, and put N := 2+ [12-]. We then have

1A 001 F31I3 S #2720,

where the implicit constant is independent of the scale j. Notice that h is not independent
and depends on the scale j.

Proof. Since supp Fj C [—1,1]? it suffices to prove
1AT 001 Fjllee S BP277% (6.8)
By the product rule we have 01 F; = 01g; - w + g; - O1w and it holds

N

A0 (919j-w) = > Al 00195 - Al gyw(- + kb, ),

k=0

N (6.9)
Ao (95 - 01w) = 3 Ay )95 - Afyg) (- + kh, ).

k=0

Clearly, we have [|019;lc <27 and for every k € Ny the estimates HA](‘/’,L O)(,u||oo < h* and
||Al(“h 0)61w\|oo < hF. According to Lemma 6.4.3, it further holds

~

~

as well as ||A'(“h’0)algj|\oo < RhP27Y for k > 1.

~

1AG0sllee S h27% and  [[Af, ) 9illc S B2 for k> 2,

Since N > 3, these estimates suffice to bound the summands in (6.9) for £ # 0. In case
k =0, we observe that A"V < h8277% due to N > 5+ 7%= The assertion (6.8) follows. [

The previous lemma is key to the proof of the following proposition. Here we use the
notation |¢] ~ 20797 to indicate |£] € [C12017) C52(1=2)J] for some arbitrary but fixed
constants 0 < C7 < Cy < 00. A typical choice would be C; =1 and Cy = 217,

Proposition 6.2.2 ([60, Prop. 5.2]). It holds independently of the scale j
Fj(€))2de <2724,
Ly O a5

Proof. Let 0 < (7 < Cy < o0 be fixed and choose C' > 0 such that CoC < 27w. Putting
h := C2-(1=%)J  there then exists ¢ > 0 such that " — 1|2 > ¢ for every & with
&1 € [C120-)7 Cy2(1=®)J], Using Lemma 6.2.1 with N := 2+ [+%-] we then estimate the

et
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6.2 Analysis of a Smooth Fragment

integrals on the vertical strips:

22(1—04)3‘/ '_ |}7‘j(§1,§2)’2d§2d§1 x/
&11~20-2i Jgy |

a6 &2) 2 dés dey
§1|N2(17a)3 &

5 / —a)j |ei£1h | N|€1‘ ’/\](5176 )Pd 51
|€1|~2(1=)i Jggy 1 2 §ad
]V/\ ' ’ oy

= /Rz |A%70)61Fj(5)|2 d¢ = | Al 001 Fill3 S p2Bo—2ja

Interchanging &; and & yields analogous estimates for the horizontal strips. Altogether, we
obtain

/lfl 2(-a)) |Fj(€)|? dg < 2720 p2Pg=2ie < 9720,

O]

As an immediate conclusion, we deduce a corresponding estimate for the original smooth
fragment f;.

Theorem 6.2.3 ([60, Thm. 5.3]). We have independently of scale j
[ 1B d s 2720,
|€]~27

Proof. The statement follows from the relation j/;(g) = 2_20‘jﬁj(2_0‘j£). O
Finally, we state a refinement of Theorem 6.2.3.

Corollary 6.2.4 ([60, Cor. 5.4]). Let m = (mq,ma) € N§ and 0™ = 97" 05"*. We have

/ ‘6m]?j(§)|2 d¢ 5 2—2ja|m|12—2(6+a)j.
|€]~27

|N21

Proof. Recall that f; = gw(29.). Let us define the window @(z) := 2™w(z) and the
function f;(z) := g(2)@(2%x) for x € R%. Then because of &(2%x) = 27°Imh g™y, (2992) for
every = € R?

2™ fi(z) = g(z)r"w(2%x) = 9=delmh (1) H(2% z) = 2*j°‘|m|1fj(x).
We conclude with Theorem 6.2.3

[ omi©Pds= [ e de
€]~

|§|~27

— 9—2jalmf / ’]:JEJ(@F d¢ < 9—2jalml19—2(8+a)j
|€]~27

\NQJ
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6.2.2 Curvelet Analysis of a Smooth Fragment

Let J = (j,¢) be a scale-angle pair and W the wedge function from (5.6), used in the
construction of the a-curvelet frame €?,. Then W} is a non-negative real-valued function,
supported in the wedge pair W} given in (5.9) and satisfying |W| < 1.

Theorem 6.2.3 directly leads to a central result, namely that it holds

L S IEWa©F de 270, (6.10)
[J]=4

Recall the notation |J| = j. Our next goal, is to refine this result. Let us first record a
basic fact.

Lemma 6.2.5 ([60, Lem. 5.5]). Let m € NZ. It holds for all £ € R?

Yo 1w S 2 el
171=5

Proof. From the definition it follows that W scales with 2%/ in one direction and with
277 in the orthogonal direction. No matter what direction, we always do better than
|0 W (€)> < 2729mli For fixed € only a fixed number of summands are not zero, uni-
formly for all £. The claim follows. O

Next we prove an auxiliary lemma. Here A = 97 + 935 denotes the standard Laplacian.

Lemma 6.2.6 ([60, Lem. 5.6]). Let A = 02 + 035 denote the standard Laplacian. It holds
for m € Ny

/RQ S AW (EP de S 27t gmamed,
|/1=j

Proof. For m = 0 this is just (6.10), a direct consequence of Theorem 6.2.3. Now let m > 0.
It holds with a,b € Ng and certain coefficients ¢, € Ny

A™MEWNE) = D capd F(£)PW(E).

lal-+[bl=2m

Let a,b € N3 such that |a|; + |b|]; = 2m. Then with Lemma 6.2.5 and Corollary 6.2.4

L, S e f@porwa ) ds g2t [ jonfio) de

|71=5 €1~
< 9—2jalblig—2jalali9—2(8+a)j

— 9—2ja(lali+[bl1)9—2(6+a)j _ 9g—4jamo—2(5+a)j ]

Now we come to the refinement of (6.10). For that, we need the differential operator
L=1T-2%A, (6.11)
where 7 is the identity and A the standard Laplacian. The theorem below shows that

ﬁz(fjWJ) obeys the same estimate (6.10) as fjWJ.
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6.2 Analysis of a Smooth Fragment

Theorem 6.2.7 ([60, Thm. 5.7]). Let L be the differential operator defined in (6.11). It
holds

L, S e Gwa )P g s 270+,
RQ

|J|=4

Proof. Tt holds
L2=T—2 22\ 4 21 A2,

Applying (6.10) and Lemma 6.2.6 yields the desired result. O
Finally we can give the proof of Theorem 6.1.3.

6.2.3 Proof of Theorem 6.1.3

Proof. Recall the curvelet frame €3, = {1, },err. On the Fourier side

Viek = Woujn(Ry),
with rotation matrix Ry given as in (3.24) and functions
(€) 1= 27IIF22MA T2 ha)€ ¢ R,

Ujk

We have to study the decay of the sequence 0y defined in (6.4). Its elements éj,g’k =
(fj»¥jek) are given by the formula

Oj0k = /RQ FiWs(€)us (R sE) de.
We observe
Lujp = (1+272070k2 4 [y,
which also holds for the rotated versions u; (R ;j-). Partial integration thus yields
B0k = / W (©uj (R dE = (1+ 2750k 4 k3) / LW ua(RSE) de.
For j € Nand K = (Kj, K3) € Z? we define the set
3K = {(k‘l,kg) e7? : k2790 ¢ [Ky, Ky + 1), ky = Kg}.

Further, we put
Mj,K = {,Uf = (juga k) € MJ t ke Sj»K}’

where M denotes the curvelet indices at scale j. It follows from the orthogonality properties
of the Fourier system {u;}rez2 that

S Bieal? < QKR [ FWa©Rde

k€3; K
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where |K|3 = K? + K2. We further conclude
DEUAED DD SR UL (R B ST TAUAIGIS
pEM; K |J|=5 k€35, K |J|=j

Now we apply Theorem 6.2.7 and obtain

S 6.2 £ 271 4 K3
MEMjJ{

which directly implies
10} nent; i lle S 279PF0 1+ K2 (6.12)

It holds #3;x < 1+ 27(1=2) and therefore, since L; = 2= “the estimate #M; k <
2-22/1=2) Now we recall the interpolation inequality ||{ex}alle, < n'/P712|[{ca}ale, for a
finite sequence {cy}, with n nonzero entries. Applying this inequality with p = 2/(1 + )
and n = 2 - 227079 the maximal size of M; x, we get from (6.12)

||{9u}u€MJK||g2/(1+B> 27 7(6-1) H{ON}ILGM]KHZ? <2 ilte) (1 + |K| )
It follows

Z ‘§#|2/(1+ﬁ) < 2730+ @2/(48) L () 4 | g |2~V O+B) = 9205 (1 4 |K|3)~Y/(+8),
neM; K

Finally, we have

Z ’0 |2/ (1+5) Z Z ’0 |2/ (1+8) < 920 Z 1+|K‘ 4/(1+ﬁ) §272aj.
neEM,; Kez? peM; g Kez?

The desired estimate for the sequence g = {éu} uen; follows, i.e.,

HQQHZQ/(I-HB) < 9—jla+l)

The following section is devoted to the proof of Theorem 6.1.4.

6.3 Analysis of an Edge Fragment

Let us turn to the more complicated case @) € le. and the proof of Theorem 6.1.4. In this
case the cube (@) intersects the edge curve I' and fo = fwg is accordingly called an edge
fragment. The subsequent exposition is taken from [60, Sec. 6].

Again we follow the broad outline for the case 8 = 2 which has been established in [15],
and again we will need to adapt the estimates of [15, Sec. 6] to functions of fractional order
smoothness via the use of moduli of smoothness. This turns out to cause serious difficulties
and forces us to turn to techniques based on the forward difference operator (6.6).

In order to prove Theorem 6.1.4 we need to analyze the decay of the sequence 0g =

{<fQ7¢u>}u€Mj = {<fQ71Zu)}ueM].. To estimate these scalar products, we again study the
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6.3 Analysis of an Edge Fragment

localization of the function fQ. As in the treatment of the smooth fragments, our investi-
gation starts with some simplifying reductions.

First, we note that it suffices to prove Theorem 6.1.4 for an edge fragment fo = fwq,
where f € £°([~1,1]%v) is a cartoon of the simple form f = gXx with g € C’g(RQ). In
fact, the curvelet coefficient sequence of a general edge fragment fg = waQ + f 1XBwQ =:

fg + fé? can be decomposed into 98) = {<fggv¢u>}u€Mj and 98) = {<fé27¢ﬂ>}ﬂeMj‘ From
Theorem 6.1.3 we already know

168 hurass 2707 < 9= (hdi/2,

Therefore it only remains to show HG(QI)HMQ/(H&) < 2-(4)i/2 " Since B € [~1,1]?, we can

further smoothly cut off f! € C#(R?) outside of [—1,1]? to obtain a function g € Cg(R2)
such that fé = gXpwq.

Second, without loss of generality we restrict ourselves to the following model situation.
The cube @ is centered at the origin and the edge curve I' is the graph of a function
E : [-279% 279%] — [-277% 279 belonging to C?(R), with z; = E(x3). Further, it shall
hold E(0) = E’(0) = 0, so that I" approximates a vertical line through the origin. If the
scale j is big enough, say bigger than some fixed base scale jy € Ny, it is always possible to
arrive at this setting by possibly translating or rotating the coordinate axes. Henceforth,
we assume j € N and j > jo which clearly poses no loss of generality.

In this simplified model situation the edge fragment fg can be written in the form

fi(e) = fo(2) = w(2¥2)g(2) X iz, >B(z)y,  * = (21,22) € R?, (6.13)

where g € Cg(RQ), and w € CS°(R?) is the nonnegative window with suppw C [~1,1]2,
generating the partition of unity {wg}g.

As in the discussion of the smooth fragments in the previous section, we introduce the
notation f; := fqg for the standard edge fragment (6.13) to indicate the sole dependence on
the scale j. In addition, it is again more convenient to work with rescaled versions F} of
the edge fragments f;. Therefore, we put g; := g(27%/-) and define

Fy(x) := w(2)gj(2) X2, 5By (@a)}> T = (1,22) € R?, (6.14)
with the rescaled edge functions
E;:[-1,1] = [-1,1], Ej(22) := 2% E(2"%xy).
It holds E; € C#([—1,1]) with E} = E'(27%") and HGI(E}, 3 — 1) < §;, where
§; =270 "HGI(E', § —1).

Observe that HOI(E', 5 —1) is a constant independent of the scale j. Together with E;(0) =
E’(0) = 0 this implies for all u € [~1,1] that

|Ej(u)] <6; and |Ej(u)| < d;. (6.15)

For convenience, we continuously extend the function E; to the whole of R by attaching
straight lines on the left and on the right, with constant slopes E;(l) and E;-(—l) respec-
tively. Since this extension occurs outside of the square [—1,1]?, it does not change the
representation (6.14) of the edge fragment. Furthermore, it also does not alter the regular-
ity and the Holder constant.
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. (E;(u).u)

(t,a(t))

Edge curve
1 = B(wy) —F—+

Figure 6.1: Illustration of standard edge fragment.

6.3.1 Fourier Analysis of an Edge Fragment

Our first goal is to analyze the Fourier transform F j (and thus also fj) along radial lines,
whose orientations are specified by angles n € [—m/2,7/2] with respect to the zj-axis.
If the angle n satisfies |sinn| > ¢;, it is possible because of (6.15) to define a function
uw=u;(-,n) : R — R implicitly by

E;(u(t)) cosn + u(t)sinn = t. (6.16)

The value u(t) is the zo-coordinate of the intersection point of the (extended) edge curve I'
and the line £, defined by

Loy = {:L’ = (r1,22) € R? : zycosn+ zasing = t}. (6.17)
Further, we can define the function a = a;(-,n) : R — R by
a(t) == —Ej(u(t))sinn + u(t) cos . (6.18)

The value a(t) is the z2-coordinate of the point (E;(u),u)’ € T in the coordinate system
rotated by the angle 7. For an illustration we refer to Figure 6.1.

The functions u and a are strictly monotone, increasing if > 0 and decreasing if n < 0.
Note, that we suppressed the dependence of v and a on j and 7 in the notation. The
following lemma studies the regularity of u under the assumption |sinn| > 24;.

Lemma 6.3.1 ([60, Lem. 6.1]). Assume |sinn| > 26;. Then the function u: R — R defined
implicitly by (6.16) belongs to CP?(R). Moreover, we have ||u||so < |sinn|~! and
1A o < 8587 sinn| =7,

~

where the implicit constants are independent of the scale j, the angle n, and h > 0.
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6.3 Analysis of an Edge Fragment

Proof. First of all it is not difficult to show that u = u;(-,n) € C*(R) with

u'(t) = (sinn + E(u(t)) cosn)

Under the assumption |sinn| > 24; it follows ||u/[|e < |sinn|™! because of |E(u)] < 05 <
3|sinp| for all u € [-1,1]. Finally, we examine Apu’. For t € R

Apd () =/ (t + h) — /' (t) = ' (t + R () (W' (1) "F =/ (t + h) ™)
= u'(t + h)u'(t) cosn(E}(u(t)) — Ej(u(t + h))).

Using HOI(E%, 3 — 1) < §; and the mean value theorem leads to
7 J
180t lloo < 1 1Po | AullSs™ < 1o/ 15185050 S 6,15 | sin] =7,
O

The following lemma collects some properties of the function a : R — R defined in
(6.18).

Lemma 6.3.2 ([60, Lem. 6.2]). Assume |sinn| > 25;. It holds a € CP(R) with

o'l S Isinnl ™', [[Analleo S hlsing| ™", [[Andlloo S 8;p7 [sing| ™',
with implicit constants independent of j, n, and h > 0.

Proof. This is an easy consequence of the properties of u proved in the previous lemma. [

Next, we introduce the scale-dependent interval

I(n) == L;(n) := [az(n), b;(n)],

where a;(n) = Ej(—1)cosn —sinn and bj(n) = E;j(1) cosn + sinn. The restrictions of u
and a to I(n) correspond precisely to that part of the edge curve I" lying inside the square
[~1,1]2. In particular, we have a bijection u : I(n) — [~1,1]. In the sequel it is more
convenient to work with an extension of I(n), given by

I(n) :==Ij(n) = [a;j(n) — Cd;,b;(n) + Cd;], (6.19)
for some suitable fixed constant C' > 0.

Lemma 6.3.3 ([60, Lem. 6.3]). For |sinn| > d; we have

[I(n)| S |sing| and [I(n)] < |sing].
Proof. In view of |sinn| > d; and (6.15) we can estimate
[1(n)] < |E;(1) = Ej(=1)[cosn| + 2| siny] < 25; + 2[sing| S [sing].

The estimate for I(n) then follows directly from |sinn| > d;. O
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We want to analyze F' ; along lines through the origin with orientation n € [—m/2,7/2].
The central tool in this investigation is the Fourier slice theorem. In view of this theorem it
makes sense to first study the Radon transform RFj (see (1.5) for a definition), in particular
its regularity. By Paley-Wiener type arguments we can then later extract information
about the decay of F . Basically, this is the same approach taken in [15]. Due to the lack of
regularity in our case, however, we have to use a more refined technique in this investigation.
The main idea is to use finite differences instead of derivatives.

The value RFj;(t,n) of the Radon transform is obtained by integrating F; along the line
£y defined in (6.17). Rotating F; by the angle 7 yields the function F;7 and we can write

(RE(tn) = [ Fl(tu)du

The rescaled edge fragment F)j can be rewritten as the product Fj = G; X, > Ej(x2)} With
the function

Gj:=wg(2™¥") = wg;. (6.20)
Then we have
a(t,n)
RE)E) = [ Gltu)du, (6:21)

where G7 is the function obtained by rotating G by the angle 7. Using the notation g7
and w" for the rotated versions of g; and w, the integrand of (6.21) takes the form

G = gluw. (6.22)

We see, that the component g7 = g1(27%.) € Cg (R?) of G is scaled and the window
w" € C§°(R?) remains fixed.

The central lemma of this subsection is given below. Its proof relies on estimates of the
functions g;’ and w" and is outsourced to Section 6.4.

Lemma 6.3.4 ([60, Lem. 6.4]). Assume that |sinn| > 26;. For h = 21~ where
C > 0 is some fized constant, we then have

ApO1REF;(t,n) = S1,5(t,n) + S2,(t,n)
with functions Sy, 52, such that

1915 Com) 13 S 6320 sing| 1727,
1A (h0yS2,5 (I3 S h*P | sinn| =727,
where the implicit constants are independent of the scale j and the angle 7.
The previous lemma is the key to the following proposition. The notation |A| ~ o(1—a)j

indicates that |A| € [C12(1=)7, C,20-9)J] for fixed constants 0 < Cy < Cy < co. A typical
choice would be C; =1 and Cy = 217,
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Proposition 6.3.5 ([60, Prop. 6.5]). It holds

- . : —1-28
/ o |Fj(Acosn, Asinn)|* d\ < 9~ (1=a); (1 + 20177 in 77|)
[A[~201 =)

with an implicit constant independent of j and n.

Proof. First we assume |sinn| > 2§;. The integration domain is [C1207%)7 Cy2(1=2)] for
fixed constants 0 < O < Oy < oo. Let us fix h = 27901~ O‘), where C' > 0 is chosen
such that CoC < 2. For this choice of h there is ¢ > 0 such that |¢ — 1|2 > ¢ for
all |\ € [012(1*0‘)3',022(1*@]'] at all scales. We conclude, where S; ; and Sy ; denote the
entities from Lemma 6.3.4:

/ |/\|2\13j()\cos n, Asinn)[? dA < / |eiMh 1|2|)\\2]ﬁj(/\ cosn, Asinn)|? dX

[A|~2i(1=a) [A|~2i(1=a)
= [ IFIM0RE I A
[A|~27(1=a)
< [ sutworas [ ISt
[A|~20(1—e) [A|~2i(1—a)
SR B T [CN - S BN e g CTOr TV
[A|~27 (1=a) [A|~2i(1=a)
< [ISEmEIEaA+ [ e = 1721820 m 0 dr

= (1S5 ()3 + 1| 2S5 () I5 < 1P| sinp| =12
It follows

/)\|~2J<1 . |Fj(Acosm, Asing)|? dA < 27707) (29(0=)) sinn])flfw.
Next, we handle the case |sinn| < 26;. We want to show
/ o |}A7j()\ cosn, Asinn)|? dx < 2771, (6.23)
|A[~20(1 e

Altogether we then obtain the desired estimate
1-28

/ e |Fj(Acosn, Asing)|? dX < 27 (1= (1—i—21 a)j]smn])
[Al~2(t=e)d

since 217V | sinn| > 1 if [sinny| > 26; and 20| siny| < 1 if |sing| < 24;.
It remains to show (6.23). For this we write the edge fragment as a sum Fj; = FJQ + Fjl,
where

F(z) = g7 0)w(z) X[y, 55y, < €R?, (6.24)

is a fragment with a straight edge and F} (z) = Fj(x) — F}(x) is the deviation.
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The function F j1 is supported in a vertical strip around the xs-axis of width 24;. For 7
satisfying |sinn| < 2J; the Radon transform RFjl(-, n) is Leo-bounded and supported in an
interval of length

2(6jcosn +sinn) < §;.

It follows |[RE} (-, n)lI3 < 65 < 2-7(1=%) "and therefore

2~V o~
/|A o |}/7;1()\ cosn, Asinn)[2d\ < /R \72Fj1(-,77)()\)|2 dx < 2791=2),
Finally, the estimate

/ o \13]\0()\ cosn, Asing)|? dx < 27701-)
[AJ~2i (e

follows from the fact, that we have decay |I/7J\Q()\, 0)| ~ |A|~%/2 normal to the straight singu-
larity curve, and that the second argument (Asin7) remains bounded due to the condition
|sinn| < 2§;. This finishes the proof. O

A direct consequence is the following theorem.

Theorem 6.3.6 ([60, Thm. 6.6]). We have

. . : —1-28
/ |j(Acosn, Asing)|? d\ < 9~ (1420); (1 + 20127 sin n|) .
|A[~27

Proof. The statement follows directly from the relation f;(ﬁ) =272 1/5’; (2799¢). O

A refinement of the discussion in this subsection, which can be found in Section 6.5,
yields the following theorem.

Theorem 6.3.7 ([60, Thm. 6.7]). We have for m = (my, ms) € N the estimate
/|8mfj()\cosn,)\sinn)\2d)\
A2

< 9—j2almfy (27j2(17a)m127(1+2a)j (1 + 2(1-| gip n!) o1 + 2(7172@1)_

6.3.2 Curvelet Analysis of an Edge Fragment

In the following J = (j, /) shall denote a scale-angle pair with j € No, £ € {0,...,L; — 1},
and W shall be the wedge functions from (5.6). Recall also the characteristic angle w; =
72-LI(=)] 4t scale j and the corresponding orientations wy := fwj, ranging between 0 and
m. From Theorem 6.3.6 we can directly conclude the following result.

Theorem 6.3.8 ([60, Thm. 6.8]). We have

)_1_25. (6.25)

[ VB de < 2053 (14 200 sincoy
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Proof. Tt holds ||Wy|leo < 1 and supp W, C W7, where W7 is the wedge defined in (5.9).
Let us define the intervals K; = ¢=[2/71,27%!] and A; = [wy — 3w;/4,wy + 3w;/4]. Using
Theorem 6.3.6 we calculate

[BwseRas < [ 15 d:
_/ / A J)|J?J'()‘ﬂ7)|2>\d77d)\

S (/AJ +/7r+AJ )27(1+2a)j (1 + 2(17a)j|sinn|)—1—252j dn

. . —1-28
< 270 (14 20 sin o, )

For a scale-angle pair J = (j,¢) let us define the quantity
ly=1+207%sinwy| (6.26)
and the differential operator
L= (T~ (2/0;)*D})(T — 22°%9D3) =T — 2%(;°D} — 229D} 4 221+iyp2p2p2 - (6.27)
with identity Z and partial derivatives
D1 =coswy- -0 +sinwy-0y and Dy = —sinwy -0 +coswy - Os. (6.28)
We will show that L’(fjWJ) obeys the same estimate (6.25) as fjWJ. The key result for
this statement is Theorem 6.3.7
Theorem 6.3.9 ([60, Thm. 6.9]). Let L be the differential operator defined in (6.27). We
have
. 9 . , -1-28
LEEWa©R g 2705 (14 20D sinyl)
R
Proof. First, observe that for each pair m = (mj,mg) € N02 the mixed derivative of W
obeys
1D DY 2 Wl = O(277 - 27902), (6.29)

This follows from the fact, that the functions W from (5.6) scale with their support wedges
W:}', which are of length ~ 27 and width ~ 2%/,
Next, from the definition (6.28) of the operators D; and Dy we deduce for m; € Ny

D{”lfj = Z Cap(cOswy)?(sin wJ)ba(a’b)fj
a+b=mq

with binomial coefficients ¢, € N. A similar formula holds for Démfj and my € Ny. Using
|sinwy| < 2-(1=9)i¢; with the quantity £; from (6.26) we obtain the estimate

b ,b)
||Dm1f]||L (W+ 5 Z ‘SIDWJ|2 ||all fJHLg W+)
a+b=m1

< 3 @O O F e

a+b=m1
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Analogously, we obtain

1D 5 oy S X0 NPT

a+b=ms

Taking into account the width ~ 2%/ of the wedges W}, Theorem 6.3.7 gives for (a,b) €
NZ the bound

Ha a,b) fj ||2 < C, b2OéJ 9~ j2a(a+b) (2—2j(1—a)02—(1+2a)jg;1*25 + 2(—1—25)j)’

with some constant C,; > 0 independent of scale. Therefore we can estimate for m; € Ny

DT 12, ) S 27920 (2200 =l gama 123 | ip(1-20%)
2 J ~

If my < 2 this further simplifies to

D™ f; < 2 2mig=(haliZma—1=25 (6.30)

12,00t S
since for every m; < (1 + «)/a we have
90dn(~1-26)j < 9=2j(1—a)mig—(1+a)jj2m—1-25
Similar calculations lead to

IDS2F5117, g < 2720022 ()i 1720, (6:31)

Indeed, if a + b = mo we have
1050851y < Cap - 207+ 27200 (2710170 4 91200,

Since 1 < £; < 2201797 it holds

9i(14a)9=28j _ 9—(1—a)(1+2p)j < 531—25'
Therefore, taking into account 1 < 200=97 we can conclude

2(~1-20)] < 9i(1+a)g=2Bjg=(1+20)j < 9= (142)jy-1-25

Altogether we obtain the desired estimate (6.31).
After this preliminary work we can finally prove the statement of Theorem 6.3.9. We
have

L(;Wg) = [iWs = 290D (fWy) = 229D3(f;Wy) + 22002 DED3(f; W),

which allows us to show the desired estimate for each term separately. For ]?JW 7 the estimate
holds true by Theorem 6.3.8.
Let us turn to the second term. The product rule yields

DI(f;Wy) = (DIf))Wy + 2(D1f;) (D1 W) + f(DIW,).
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The previous estimates together with the Holder inequality then lead to
ID(F W) |3 < 27 Yeha-(bedig, =28,

Here (6.30) was used, and that | D" W2, < 2721 < 2-2m142™ Ly (6.29). This settles
the claim for the second term.
Analogously, we can deduce

ID3(f;W)|3 S 27 dedg=(1+edig 1226,

using (6.31) and that ||Dy2W;||%, < 272¢9™2 by (6.29). This gives the estimate for the
third term.
Finally, it also holds

IDID3(f;W)||3 < 274+l pho-(1ta)jp 1-28
which establishes the result for the fourth term. 0

At last we are ready to give the proof of Theorem 6.1.4. The essential tool is Theo-
rem 6.3.9.

6.3.3 Proof of Theorem 6.1.4

Proof. Recall the curvelet frame €9, = {1, },en. On the Fourier side we have
bjen = Woujr(Ry),
with rotation matrix R; given as in (3.24) and functions
uj,k({) — 2—j(1+a)/2e27ri(2*jk:1,2“”%2)-{7 ¢ R2.

The elements éj,&k := (fj,¥j.ek) of the sequence 0 are therefore given by the formula

e = [ BWo€m(RoE) de.
Since

L(ujr) = (1+ €2k (1 + k3w,
integration by parts yields

Gpan = (L+ 2D U+ kD)™ [ LW Omr(RE) de.
Let J = (j,¢) be a scale-angle pair, K = (K1, K2) € Z? and define
3K = {(kzl,kg) €7 i 07k € [K1, Ky +1), ky = Kz}.

For fixed J = (3, €) the Fourier system {u;x(R;)}, . is an orthonormal basis for La(Z),
where Z; is the rectangle defined in (3.20) containing the support of W;. Therefore,

S enl S 1+ K20+ K372 [ L(EWa)©)P de.
k€3 Kk R
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The integral on the right-hand side is bounded by Theorem 6.3.9, and we thus arrive at

S 1l S (Li) 22 el 72 (6.32)
k€3 Kk
with L = (1+ K?)(1 + K3).
Let M ; denote the subset of curvelet coefficients associated with a fixed scale-angle pair
J = (j,¢). Further, let Nj(e) be the number of indices u € M; such that k € 3, and
10, > e.
Since #37x < £y and because of (6.32) we can conclude

Njk(e) < min {ej, (eLg) 22~ (Fig 1726 } (6.33)

For wy = m(2-U01=)] ¢ [0,7) let (w;) denote the equivalent angle modulo 7 in the
interval (—m/2,7/2]. The corresponding indices in the range {|—L;/2+ 1],...,|L;/2|}
shall be denoted by (¢). Since it holds |sinn| =< |n| for n € [-7/2,7/2], it follows

l;=1+20"% sinwy| =1+ 2079 sin(w;)| < 1+ [(£)]. (6.34)

Let £, be the solution of the equation £, = (ELK)*22*(1+0‘)7€;1_25 and put L* = [£,].
Utilizing (6.33) and (6.34) yields

YNk Y A+loh+ Y (L) P2 g

|J|=j ZG{O,...,Ljfl} ZG{O,A..,Ljfl}
KOI<L*—1 [(&y|>L*
L*-1 00 )
S+ + D (eLi) 227 MFI (1 4 )20
/=0 {=L*

S (L*>2 + (ELK>_22_(1+a)j(L*)_2ﬁ.
This translates to

3 Nyk(e) S e /0P . [ 21040 9= (14a)i/(1+5),
|71=j

Since 8 < 3 we have ) xcz2 L;(Q/(H_B) < 00. Hence

#{ue M0 > b= 3 3 Nile) S 2 (sl (149 =2/05),
Kez? |J|=j

This finishes the proof. O

6.4 Appendix A: Proof of Lemma 6.3.4

This section corresponds to [60, Appendix A]. Let us start with a simple result, that shows
how scaling affects the Holder constant.

Lemma 6.4.1 ([60, Lem. 6.10]). Let f € C*(R) and 0 < aw < 1. Then fort,s >0
Hol(sf(t),a) = st - HOI(f, ).

We proceed with some technical estimates of the functions g;7 and w", which occur as
components of the functions G? defined in (6.22). These estimates will provide the basis
for the more complex estimates needed in the actual proof of Lemma 6.3.4.
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6.4 APPENDIX A: Proof of Lemma 6.3.4

6.4.1 Estimates for g;7

The functions 9;7 are given for j € Ny by g;~7 = ¢"(27%.), where ¢" is a rotated version
of the fixed function g € Cg (R?) with 8 € (1,2]. Thus clearly, g7 € C’g (R?) and also

g? € Cg (R?). However, the parameters of the regularity change. Applying Lemma 6.4.1
yields the following result.

Lemma 6.4.2 (60, Lem. 6.11)). Let 8 € (1,2] and g" € Cy (R?). Then for g = g"(27")
Hol(dvg], B — 1) = 277 Hél(D1g", B — 1).
Proof. In view of Lemma 6.4.1 we have

Hol(01g], 8 — 1) = Hol(2=% 914" (27+), 8 — 1) = 277 H6l(D19", B — 1).

< 1. Further, the chain rule yields

~

It is obvious that ||g} [lo

10197 lloo S 277 and  [|02g] o0 £ 27

~ ~

Some more estimates for g? are collected in the following two lemmas. Here A, q) is a
forward difference operator as in (6.6).

Lemma 6.4.3 ([60, Lem. 6.12]). The following estimates hold true for gg
1A (1,0)9] loo S 27,
1A (,0)0197 loos 18(1,0)0297 oo S 27 7RO~ = 279917,
1A%, 097 loo < 277R7,
with implicit constants, that do not depend on j € Ny and h > 0.

Proof. Applying the mean value theorem yields

180,097 lloo < Rl019]llsc S 27

Considering Lemma 6.4.2 we obtain

Noting the commutativity 914, 0) = A(p,,0)01, we obtain
180097 oo S PUAR0 1G] oo S 277RP.
O

The next lemma gives estimates for g? along the edge curve. Here the function a € C#(R)
comes into play, which was defined in (6.18). The following estimates also depend on the
properties of a, which are summarized in Lemma 6.3.2. Recall that by convention Ay only
acts on the variables ¢ or 7.

199



@ CARTOON APPROXIMATION WITH o-MOLECULES: GUARANTEES

Lemma 6.4.4 ([60, Lem. 6.13]). Assume |sinn| > 26;. The following estimates hold true
for g
sup [ Mg (¢, a(t))] < hsing| 12799,
teR
o [ 8414 a(1), sup 8402t a(0)] S O s 927,
€

teR
sup | A% (1. a(1))| B[ sinn| =727,
S

where the implicit constants are independent of 7 € Ny and h > 0.

Proof. In view of Lemma 6.3.2 it holds
Apgl(t <h- t
sup |49 a(0)] 5 h-sup | ]t alt)
S h- (sup|0rg](t, a(t))| + sup |9ag] (¢, a(t))a' (1))
teR teR
< h-|sinn|t27,
Considering the transformation behavior of the Hélder constant we obtain with Lemma, 6.3.2
sup [Apdig! (¢, a(t))] < 277 sup|(h,a(t + h) — a(t)|;
teR teR
<279 (hPY fsup |a(t + ) —a(t)P1)
teR
< 279h Y singt A,

Applying Lemma 6.3.2, the mean value theorem and %Ah = Ah% yields

sup [Afg] (.a(1)] < h-sup|A, g, ale)
= h-sup |Ah<6lgj (t,a(t)) + Dag] (1, a())a' (1)
= B up | 8,016 a(t)) + Andag] (,a(6)a/(t + 1) + Bag] (1. (1) Ar (1)

< WP sing| P27 + BB sing| P27 4 5P| sing| 1P,

6.4.2 Estimates for "

Similarly, we obtain estimates for the window function w” € C§°(R?), which in contrast to
the functions g;? remains fixed at all scales. This fact and the smoothness of w” result in
different estimates.

First, we state the trivial estimates |[|w"||c < 1, [|0107]|oo S 1, and ||02w™||eo < 1. Next,
we apply the forward difference operator A gy to w".

Lemma 6.4.5 ([60, Lem. 6.14]). Let k € Ny. It holds with implicit constants independent
of h>0

~ ~

HAI(‘;h?O)w"HOO <h* and HA 81(.¢1’7||oO < pk.
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6.4 APPENDIX A: Proof of Lemma 6.3.4

Analogous to Lemma 6.4.4 we establish estimates along the edge curve.

Lemma 6.4.6 ([60, Lem. 6.15]). Assume |sinn| > 20;. It holds

sup [ A (¢, a(t))] < Al sing| ",
teR

sup A 01w (¢, a(t))], sup |Apdaw (¢, a(t))] S lsing| ™!,
teR teR

sup |A2w"(t, a(t))| < h?|sinn| =2 + §;h° | singy| 7177
teR
Proof. This proof is analogous to the proof of Lemma 6.4.4. O

Now we are in the position to give the proof of Lemma 6.3.4.

6.4.3 Proof of Lemma 6.3.4
Proof. First we differentiate RF}j(t,n) with respect to t and obtain from (6.21)

81(RFj)(t,n) == a/(t)Gj(t, a(t)) + ‘/_a:) 81Gj(t, u) du =: T(t),

where on the right-hand side the dependence on 7 is omitted in the notation. In the
remainder of the proof, we will also suppress the index j as far as possible. Applying Aj
then yields for ¢t € R

ART(t) = Apd (H)G(t + h,a(t + h)) + d' (t) ARG(t, a(t))
a(t)

a(t+h)
+/ NGt + h,u)du+ A(h 0)61G(t u) du

= T(t )+T2( )+ T5(t) + Tu(t).

Next, we estimate the Lo-norms of the functions T; for i € {1,2,3,4}. Let us begin with
T1. Applying Lemma 6.3.2 we obtain

ITillse < AR ool Glloo S ARG loo S 8;R7H[sinn| ™7 < B[ sing| 7.

The estimate of T takes some more effort. The product rule yields for t € R

To(t) = d' () ARG(t, a(t)) = a' (t)Ang;(t, a(t))w(t + h,a(t + h))
+d'(t)gj(t,a(t)) Apw(t, a(t)) =: Tor(t) + Toa(t).

Using the mean value theorem and Lemmas 6.3.2 and 6.4.4 yields

To1lo0 < IIG'HooSUHg | Ang(t a(t)|wlloo < hlsing| 227 < A7 sing| =17,
te

We take another forward difference of the component 755 and obtain
ApTaa(t) = Apd(t)gj(t + h,a(t +h))Apw(t + h,a(t + h))

+a' (1) Ang; (t, a(t)) Apw(t + b, a(t + h)) + a' (t)g(t, a(t) Ajw(t, a(t)
Tpo(t) + T35 (t) + T55(t).
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These terms allow the following estimates, where we use Lemmas 6.3.2, 6.4.6 and 6.4.4.
Also note h < |sinn|.

1 Toalloe < W7H sing =277 < 17| sing| =17,
T8 llo0 < [ sing| =277 < 1P| sing| =17,
TS5 ll00 < [ sing =2 + 1P+ sing| 7277 < BP|sing| =177

By substitution, the term T3 transforms to
t+h
i) = [ %G+ ha(w)d(w) du
t
t+h
= / 019;(t + hya(u))w(t + h,a(u))ad’ (u) du
t

t+h
+ /t g;(t + h,a(u)o1w(t + h,a(u))a' (u) du
=: Tgl(t) —+ ng(t).

We apply Ay to T31. Here Ay acts exclusively on ¢ and 7. We obtain

t+h
AnTs(t) = / An[01g;(t + hya(7))w(t + b, a(r))a' (7)) dr
t+h

= ARO1g;(t+ hya(T))w(t + 2h, a(T + h))d' (T + h) dr
t

t+h
+ / D19, (t + h,a(r) Ape(t + h,a(7))d (v + h) dr

t+h
+ /t B1g;(t + hya(T))w(t + h, a(r)) Apd!(7) dr
= Tgy(t) + T5,(t) + T3 (2).

Analogously, we decompose

Ay T3o(t) = tt+h Aplgi(t + h,a(T))w(t + h,a(r))d (1)] dr =: Tay(t) + T (t) + Ti(t).

Then we estimate with the results from the appendix

< hfsing| 7277 (W7 4 BP7 Y sing |t F) < AP sing| TP,
T3 lloo < hlsing| 27 (h+ h|sing| ™) < BP|sing| 177,
173 loo S h27||ARd||oo S AP |sing| ™7,

~

151/l <

and

T2l <

~

h|sinn| =127 (h + h|singy|~t) < hP|sinn| 174,
1Tl oe S hlsing| ™ (b + hlsing| ™) < h7|sing| =17,
1T )l0 S hllARa oo S BP|sing =17,
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Finally, we treat the term Ty,

a(t) a(t)
Tu(t) = / AndVG(t,u) du = / An(91;(t, w)wlt, u) + g;(t, w)drew(t, u)) du
a(t)

a(t)
= ARG (t, uw)w(t + h,u) du + / (019 (t, u) Apw(t, u)

+Apg;(t, u)01w(t + h,u)) du

a(t)
+ / 05 (t, ) Apdreo(t, w) du =: Tyr (1) + Tua(t) + Tus (1),

The terms Ty; and Tys can be estimated directly,

[ Talloe S 771279 < AP,
1 Tu2lloo Sh-27% <279 < 9=i(B=1) — 1,5

The term Ty3 again needs some further preparation,

a(t+h)
ApTus(t) = / \ i (t + hyu) Apdrw(t + h, ) du
a(t

a(t)
n / An (g5t u) Andio(t, w)) du =: Th(t) + T2(8).

In the end we arrive at

ITislle S [ sinn| ™ < B7[sing| ™,

T3 ]l0 < 1* < 17,
Now we collect the appropriate terms and add them up to obtain S7 and Ss. In a last step,
we use our Loo-estimates to obtain the desired Lo-estimates. Here we use that |supp T;| <
|I(n)] S |sinn| according to Lemma 6.3.3 for ¢ € {1,2,3} and |supp 74| < 1. This finishes

the proof. O

6.5 Appendix B: Refinement of Theorem 6.3.6

In this final section ([60, Appendix B]) we prove Theorem 6.3.7, which is a refinement of
Theorem 6.3.6. For that we need to analyze the modified edge fragment F}, given for fixed
m € Ny by

Fj(x) = r(2)™Fj(z), =z €R? (6.35)

where Fj is the function (6.14) and r : R? — R shall map a vector z = (z1,22) € R? to
its first component z; € R. Alternatively, (6.35) can be written as the product Fj(z) =
Gj (x>X{x12Ej(x2)} with the function

Gj(x) == r(x)"Gj(z) = r(z)"w(z)gj(z), z<€R? (6.36)

which is a modified version of G(x) = g;(z)w(x) from (6.20).
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Rotating by the angle 7 yields é?(x) = (r"(:v))mGy(:v) = (r"(x))mg?(x)w"(m), where
G? and 7" are the functions obtained by rotating G; and r, respectively. The function
r": R? — R has the form

r(t,a) :=tcosn — asiny, (t,a) € R (6.37)

Some important properties of "7 and C:’;] are collected below.

6.5.1 Estimates for "

First we analyze the function 77 : R? — R given by (6.37). Clearly 77 € C°°(R?). Also note
that r" is not compactly supported. Since 7" only occurs as a factor in products with the
window w" this does not cause any problems however.

Thanks to the smoothness of r"7 we have the following result.

Lemma 6.5.1 ([60, Lem. 6.16]). Let k,m € Ny and K C R? a compact set. Then we have

|’A’fh,o) (r)™ |y S B*

Along the edge curve the following estimates hold. Here I(n) denotes the interval defined
in (6.19).

Lemma 6.5.2 ([60, Lem. 6.17]). Let |sinn| > 20;. Then we have SUD, 7 [r(t, a(t))] < 0.
Moreover, for h > 0 it holds

sup [Apr(t,a(t))] S h  and  sup |A%r7’(t,a(t))| < h65j|sin 77|_6.
teR teR

Proof. For every t € R the point (t,a(t)) € R? in rotated coordinates lies on the (ex-

tended) edge curve I'. We know that the function E; deviates little from zero and obeys

SUP|g, (<1 [Ej(22)] <65 S 279(1=2) according to (6.15). Furthermore, the slope of E; outside

of [-1,1] is constant and bounded by d;. This yields the estimate SUD, 7 [r(t,a(t))| < 6.
The other estimates follow from Lemma 6.3.2. In view of this lemma we conclude

sup |Apr(t,a(t))] < h-sup|cosn — d'(t) sing| < h|sing| Y| sing| = A,
teR teR

and

sup |ARr(t a(t)] < hlsingl[|Apa’|lo S B8] sinn| 7.
S

6.5.2 Estimates for CNT‘Z

The function CN}? is the rotated version of the function C:'j given in (6.36) as the composition
of the ‘elementary functions’ g;, w, and r. Hence we can apply the previous estimates to
obtain estimates for G7.
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Lemma 6.5.3 ([60, Lem. 6.18]). Let |sinn| > 20;. Let C?;?(t,a) = (r”(t,a))mG;?(t, a) for
(t,a) € R%2, m € N, m # 0. Then there are the estimates

sup |G, a(1))| S 67, sup |ARGT(t, a(t))] S 67 h,

teR teR
sup [01G (¢, a(t))| S 67, sup [02G7(t, a(t))] < 67 sing|.
teR teR

Proof. We omit the dependence on j and 7 and calculate for (¢,a) € R?

81G(t,a) = 0y (r(t,a)™G(t,a)) = (cosn)mr(t,a)™ LG(t,a) + r(t,a)"81G(t, a),

and  hG(t,a) = d(r(t,a)"G(t,a)) = —(sinn)mr(t,a)™ *G(t,a) + r(t,a)"0:G(t,a).

The assertion is then a consequence of the following facts. It holds |Gl < 1 and

~

Ir(t,a(t))] <9, for all t € I(n). Further, for t ¢ I(n) the expressions G(t, a(t)), 01G(t,a(t)),
and 02G(t,a(t)) vanish. O

6.5.3 Refinement of Lemma 6.3.4

In this subsection we prove the following generalization of Lemma 6.3.4.

Lemma 6.5.4 ([60, Lem. 6.19]). For m € Ny let F; be the modified edge fragment (6.35).

Further, assume that |sinn| > 28; and h < 2=(1=)7 . Then the function S := Ap01RF;(-,n)
admits a decomposition

S =594 59,
such that ARSY = ST+ S5,
ApSy = St + 53,

ApSy = 87"+ 57,
ApST = St

with the estimates
|SF)12 < 27 2m=) 2B g | 1728 4 97 I(1=)@BHD) - =01, m+ 1.
For convenience we set 572”“ =0.

We introduce the following language and say, that the function S admits a decomposition
(8%, S5y of the form (%) of length m + 1 with the estimates

I1SE113 < 2720 OR2 sing| 71720 4 27/ O@HD g = 0,1, m 1L

Before we come to the proof of Lemma 6.5.4 we need to establish three important
technical results.
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Lemma 6.5.5 ([60, Lem. 6.20]). Let G7(z) = (r"(z))"G"(x) for x € R? and m € No.
Further, let h =< 2770=% " The function T : R — R defined by T(t) = a’(t)Ahé?(t,a(t))
then admits a decomposition (TF,T¥)y of the form (x) of length (m + 1) with the estimates

ITE oo S AR sing| ™18, k=0,...,m+1,
TS| < A™[sing| ™Y, k=0,...,m,

and subject to the condition supp TF C I(n), where I(n) is the interval from (6.19).

Proof. We prove this by induction on m. If m = 0 we put TY = Ty, T9 = Tas, T} = ApTho,
and T21 = 0, with entities T»; and T59 as defined in the proof of Lemma 6.3.4. The estimates
for To; and ApThe have been carried out there. In view of h < sinn we can further estimate

1T loo = | T2lloe S R|sing| ™2 < AP sing| .

This proves the case m = 0.

We proceed with the induction and assume that the lemma is true for 7', where m €
Np is fixed but arbitrary. The associated decomposition of length m 4+ 1 shall be de-
noted by (TF,T5);. We will show that under this hypothesis also the function T(t) :=
o/ () ARG (t,a(t)), where G () = (r"(:):))mHG?(x) for x € R?, admits a decomposition
(TF, TF), of the form (x) of length (m 4 2) with the desired properties.

Subsequently, we simplify the notation by omitting the indices  and j. First we de-
compose as follows,

In view of the properties of T{ and Lemma 6.5.2 we see that the function TV satisfies the
assertion. The estimate

17300 S 1@ ||oo§up|AhT(t a(t))\igglé(t,a(t))l < |sing[ - - 57,

where Lemmas 6.3.2, 6.5.2 and 6.5.3 were used, shows the claim also for TZO .
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We take another forward difference of the component T3 and obtain

AR = Apd (O)ARr(t+ hya(t + B))G(t + 2h, at + 2h))
o/ () A2r(t,a(t))G(t + 2h, a(t + 2h))
+Ar(t a(t))d ) ARGt + hya(t + h)) + Apr(t, a(t)T(t + h)
+r(t, a(t) AT (t)
= Apd (t)Apr(t+h, a(t + h))G(t + 2h,a(t + 2h))
a' () A2r(t,a(t))G(t + 2h, a(t + 2h))
F ALt a(®))(TO(t + k) + Tt + h))
—Apr(t, a(t)) Apd () ARG(t + hya(t + h))
+ARr(t, a(t)T(t + h) + r(t, a(t))TE(t) +r(t, at) Ty (t)
= [And () Apr(t + hya(t + h))G(t + 2h, a(t + 2h))
a' () A2r(t,a(t))G(t + 2h, a(t + 2h))
—Apr(t,a(t)Apd (ARG (t + hya(t + h)) + r(t, a(t)Ti(t)
+ARr(t, a()TY(t+ h)]
+[2Anr(t, a(t)T(t + h) + r(t, a(t))Ts (1)]
= Ti(t) + T3 (t).

For T} we check directly

sup |Apa’ () Apr(t, a(t))G(t + h,a(t + h))| < BO716;| sinn| P hh™
teR

= BB sing| 718,

sup |a' (1) AZr(t, a(t)G(t + 2h, a(t + 2h))| < |sing| " hP8,| siny|Pr™
teR

= ™ BB sing| 718,

sup | Apr(t, a(t)) Apd' (1) ARG(t + hya(t + h))| < 67 hPh|sing| 71
teR

< B RA sing| 718,

The estimates for the remaining two terms are obvious. Hence Tll fulfills the desired prop-
erties.
For T3 we use the induction hypothesis and Lemma 6.5.2 to obtain

15 lloo < sup [r(t, a(t) Ty (£)] +sup [Apr(t, a(t)) T2 (¢ + )| < A" sing| 7.
teR teR

Moving forward, this procedure yields terms for k =1,...,m+ 1,

TE ) = r(t,a®)TE () + (k + 1)Apr(t + hya(t + h)TE(t + h)
+(k 4+ DAZr(t, a()TE 1t 4 h) + (k + 1)AZr(t, a(t))T5(t + h),
(t)

T5(t) = r(t,a(®)TF() + (k+ 1)Apr(t,a(t) Ty (¢ + h),

which satisfy the desired estimates. Here we put T’ 1m+2 = T2m+2 = 0 for convenience.
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Indeed, using the induction assumptions, we obtain

ITF oo S suplr(t, a())TE (0] + sup [Apr(t + by a(t + h)TT (¢ + )|
teR teR

+sup |AZr(t, a(t)TE 1t + h)| + sup |AZr(t, a(t)) T (t + h)|
teR teR

R HLRP | sing| 717,

<
< suplr(t,a(®)) T3 ()] +sup | Apr(t a(t)) Ty~ (¢ + h)| S A" sing|
teR teR

Tk
175 |

Note, that 73" = T/""? = T5"*2 = 0. Hence, for k = m + 1 these expressions read

T P2(t) = (m + 2)Apr(t + hya(t + BT+ R) + (m 4+ 2)AZr(t, a(t) T (t + h),
Tyt () = (m + 2)Apr(t, a() T3 (t + h).
Since A,Ty" ™ = T7"*2 we have T5""? = 0 and the proof is finished. O
The following Lemma 6.5.6 is in the same spirit as Lemma 6.5.5.
Lemma 6.5.6 ([60, Lem. 6.21]). Let CNJ?(QU) = (r"(x))mGg(x) for z € R?, m € Ny, and
h = 279=9) " Then the function S : R — R defined by S(t) = a’(t)Ahﬁlé;’(t, a(t)) admits
a decomposition (ST, S5)i of the form () of length m + 1 with estimates

HSfHOO < hm_lhﬁl sin77|_1_’3, k=0,...,m+1,

1S%]|oo < K™ Y sing|™t, k=0,...,m.

Moreover, these functions can be chosen such that supp S¥ C f(n) with f(n) from (6.19).

Proof. The proof is by induction on m. To enhance readability we again omit the indices 7
and j. The assertions are clearly true for m = 0.
For the induction we let m € Ny be fixed and let S be the function defined in the

setting. Further, let us assume that we have a decomposition (SF,S5); of length m + 1

with the desired properties for S. We put S;"H = 0 and for convenience we also define

St — Sl2m+2 = 0. We will show that under these assumptions the function S:R—R
given by S(t) := d'(t)An01G+(t, a(t)), where G (7) = r(z)™ TG (z) for z € R?, admits a
decomposition (S¥,S%)x of length m + 2 of the same form. First we calculate
S(t) = d' (1) Apd Gy (t,a(t)) = d () Ap(cosnG(t, a(t)) + r(t, a(t)d1G(t, a(t)))
= d/(t) cosnARG(t, a(t)) + a' () Apr(t, a(t) D1 G(t, a(t))
T r(t + hyalt + h)d () A Gl a(t)).

Using the induction hypothesis we can proceed,

S(t) = [r(t+h,a(t+h)SY(t)]
+[r(t + h,a(t + h))SS(t) + d(t) cos nARG(t, a(t))
+d (1) Apr(t, a(t) D1 G(t, a(t))]

= SV(t)+ S9(t).
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The terms 5? and 5’8 have the desired properties, which follows from the estimates

sup |r(t + h, a(t + h))SY(t)] < hA™ 1P| sinn| 1P,

teR
sup 7 (t + h,a(t + h))S5(t)] S hh™ ! sinn| ™",
teR
sup |a(t) cos nARG(t, a(t))| < | sing| =67 h,
teR

sup ]a’(t)Ahr(t,a(t))alC:’(t,a(t))] < |sin77\_1h(5;”_1.

teR

Taking another forward difference of S yields

ARSY(t) = Apr(t+ h,a(t +h)SS(t) +r(t + 2k, a(t + 2h))ApSS(t)
+Apd () cosnARG(t, a(t))
+d'(t + h) cosnAZG(t, a(t)) + Apd' (£)Apr(t, a(t)O1G(t, a(t))
+d'(t + h)A}r(t, a(t))OG(t, a(t))
+d'(t + ) Apr(t + hya(t + h) AR G(t, a(t)).

Let T denote the function from Lemma 6.5.5. We observe,

' (t+R)AZG(t,a(t)) = d'(t + h) (ARG (t + h,a(t + h)) — ARG(t, a(t)))
= a(t+ h)ARG(t + hya(t + h)) — d' () ALG(t, a(t))
+(d'(t) = d(t+ 1) AnG(t, (1))
=d/ (t+h)ARG(t+ h,a(t + R)) — d' () ARG(t, a(t))
— Apa! () ARG(L, a(t))
=T(t+h) —T(t) — Apa' () ALG(t, a(t))

= AT (t) — Apd () ARGt a(t)).

Now we know by Lemma 6.5.5 that there is a decomposition (T, T§), of T of length m + 1
with the specific properties given there. This allows to decompose AT = A,TY + T + T3
and we obtain

d'(t+h)ARG(t, alt)) = ApT (1) + T{(8) + T3 () — And () ARGt a(t)).
Using this observation we obtain

ARSY(t) = Apr(t+ hya(t +h)SS(t) +r(t + 2k, a(t + 2h))S| (1)
+r(t 4 2h, a(t + 2h))S3(t)
+And (t) cosnALG(t, a(t))
— cos nApd' (t) AR G(t, a(t))
+Aha’( VART(t, a(t)O1G (L, a(t)) + d' (t + h)AZr(t, a(t)D1G(t, a(t))
+d () Apr(t + hya(t + h) AR G(t, a(t))
+(d'(t +h) — d' (#)) Apr(t + h,a(t + h) AR G(t, a(t))

+ cos nARTY(t) + cosn(TE () + Ty (t))
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and further

ARSY(t) = [r(t+2h,a(t + 2h))SL(t) + Apd(t) cosnALG(t, a(t))
+ cos pARTY () — cos nApd (1) ARG(t, a(t)) + cos nT} ()
+ARd (1) Apr(t, a(t)O1G(t, a(t)) + d' (t + h)A2r(t, a(t)d1G(t, a(t))
FARA () Apr(t + by a(t + h) AR G(t, a(t)) + Apr(t + hya(t + h))SY(1)]
+[r(t + 2h, a(t + 21))Sa(t) + cosnTy (t) + 205 (t + b, a(t + h))SI(t)]
= Sl(t) + Sa(t).

Now we can split A,S9 = ST + S3 with

Sit) = r(t+2h,a(t+2h))SL(t) + cosnApd () ARG(L, a(t))
+ARd () Apr(t, a(t)01G(t, al(t))
+d' (t + h)A2r(t,a(t))01G(t, a(t)) + Apr(t + b, a(t + h))S(t) + cos nARTY (1)
+Apd () Apr(t + hya(t + h) AR G(t, a(t)) — cosnApa’ () ARG(t, a(t))
+cos Ty (t),
Sy(t) = 2Apr(t+ hya(t + h)SI(t) +r(t + 2h, a(t + 2h))S5(t) + cos nTy ().

These terms have the desired properties. To see this, we calculate

sup |7(t 4 2h, a(t + 2h))St(t)] < hh™ 1P| singy| =14,

teR
sup [Apd’ () ApG(t,a(t))| S 6;5° | sing|[ 17 - 67 h,
teR
sup |Apa’ () Apr(t, a(t))@lé(t, a(t))| < 5jh5_1| sin 77|_1_/3 -h- 5;-”_1,
teR
sup [a(t + h)Ajr(t, a(t))01G(t, a(t)| S [sing| ™" - hP6;]sing| =7 - 6771,
teR
sup [Apr(t + h,a(t + h))SY(t)| S hh™ P |siny| =177,
teR
sup \Atho(t)] < hmh’5| sinn\*lfﬁ,
teR
sup |Apa’ (D ARG (t, a(t))| < 6P~ sing| 717 57 h,
teR
sup | Apa’ () Apr(t+ b, a(t + b)) Apd G (L, a(t)| S 6;h7 Y sing[ 170 67,

teR
sup [T (t)| < 07"hP|sinn| =177,
teR

and

sup [2Ap7(t + h,a(t + h))Sg(t)| < hhm_1| sin 77|_1,
teER

sup |r(t + 2h, a(t + 2h)) S5 (t)| < hh™ | singy| ™,
teR

sup [Ty (t)] < hh™ | sing| ",
teR
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We proceed with

ARS3(t) = [cosnTE(t) +r(t + 3h,a(t + 3h))SF(t) + 28,7 (t + 2h, a(t + 2h)) ST (t)
+2A%r(t + hya(t + R))SS ()] + [cosnT3(t) + r(t + 3h,a(t + 3h))S3(t)
+3AL7(t + 2h, a(t + 2h)) S ()] =: SZ(t) + S3 ().

Inductively, we put for k = 1,...,m + 1, where for convenience 7T 1m+2 =0,
SEFLt) = cosnTFF(E) + 7t + (k + 2)h, a(t + (k +2)h))SFL(1)
+(k+ 1)Apr(t 4 (k + D)k, a(t + (k +1)h))S¥(t)
+(k + 1)AZr(t 4 kh, a(t + kh))S51(1),
SE@) = cosnTh(t) +r(t+ (k+ Dh,a(t+ (k+1)h)S5()
+(k 4+ 1) Apr(t 4 kh, a(t + kh))S571(t).

These terms clearly satisfy Ah§§ = S’fH + 5’5“. They also have the desired properties
since

sup [T (1)] S A™h7|sing| =177,
teR

sup |r(t + (k + 2)h,a(t + (k + 2)h))Sf+1(t)] <h- hmflhﬁ\ sin n\fl*ﬁ,
teR

sup [Apr(t+ (kK + 1)h,a(t + (K + 1)h))5’f(t)| <h- hm_1h5| sin n\_l_ﬂ,
teR

sup |A2r(t + kh, a(t + kh)) S5 (t)| < hP6;]sinn|=? - k™~ siny| 7L,
teR

and
sup |T5 (t)] S k™| sinn| ™",
teR

sup [r(t + (k4 1)h,a(t + (k + 1)h))5’§(t)\ <h- hm_1| sinn|_1,
teR

sup |Apr(t + kh, a(t + kR)S5 ()| < h - B sing| ™t
teR

Since Syt = g2 — g2 — untl — TmE2 — (0 for k = m + 1 these expressions read
SPTA(t) = (mA+2)Apr(t+ (m+2)h,a(t+ (m+ 2)h))S7(t)
+(m+2)A%r(t+ (m+ Dh,a(t + (m+ 1)h)) S5 (¢),
SPHL) = (m+2)Apr(t+ (m+ Dh,a(t + (m+ 1)h))S5(t).
We see that A Sy = S +2 Therefore S5 = 0 and the proof is finished. O

A slight modification of the previous proof leads to the following lemma.
Lemma 6.5.7 ([60, Lem. 6.22]). Let é;](ac) = (1"(2))"G}(x) for = € R* and m € Ny
and h =< 2790-9) " The function S : R? — R given by S(t,7) = a’(T)Ahalé?(t,a(T)) for
(t,7) € R? admits a decomposition (SF, SK);. of the form (x) of length m + 1 with estimates

sup  sup  |[SF(t, )| S AR sing| TV, k=0,...,m+1,
tER T€[t—h,t+h]

sup  sup  [SE(t,7)| <A™ Y sing|TY, k=0,...,m.
teER T€[t—h,t+h]|
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Proof. A small adaption of the previous proof is required to account for the little deviation
of 7 from t. We just make the following remark. For ¢, 7 € R we have r"(t,a(7)) =
r'(t,a(t)) + (a(t) — a(7)) sinn. It follows for h € R

sup [r"(t,a(7))| < |r7(t; a(®))| + [hsinnl[la’eo S [P(E, a(t)] + |R].
TE[t—h,t+h]

Since h = 279(1=) this additional term poses no problem in the estimations. ]
Finally, we have all the tools available to give the proof of Lemma 6.5.4.

Proof of Lemma 6.5.4. We have C:’?(a:) = (r"(;r))mG?(;v) for z € R? and analogous to (6.21)

~ a(tm) -
RE;(t,1) = / (¢, u) du,

—00

For simplicity we omit the superindex 7 subsequently, and also j wherever possible. Similar
to the proof of Lemma 6.3.4 we obtain

- - a(t+h) _
S(6) = Apd ()G(t + hya(t + h)) + d (1) MG, alt)) + / L G

a(t) _
[ BnonGitu) du
= T1(t) + To(t) + Ta(t) + Tu(t).

We will show the assertion for each of these terms separately. Moreover, it suffices to prove
Lo-estimates, which can be transformed to the desired Ls-estimates via the corresponding
support properties. Note that |suppT;| < [I(n)| < |sing| according to Lemma 6.3.3 for
i €{1,2,3} and that |suppTy| < 1.

For T 1 the estimate

Tt < [ARd oo sup |G(t,a())] S [ ARa'lloc sup [r(t, alt)™
teR tel(n)

S RS sing TP < W AP | sing P

~

is sufficient. Next, we show that f b and T3 admit decompositions (7%, T4); of the form (x)
of length m + 1 with supp T C I(n), i € {1,2}, and the estimates

ITf oo S R™RP|sing| ™78, k=0,...,m+1,
IT5loe S B™|sinn| ™', k=0,...,m.

The decomposition of the component Ty is provided by Lemma 6.5.5. Let us turn to Tg.
By substitution this term transforms to

- t+h
T3(t) = /75 OG(t + h,a(u))d (u) du.
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We put flo =0 and TZ(,) — Ty. These terms clearly satisfy the assertions. Next we take the
forward difference of T%. Here Ay acts on both ¢ and 7. We obtain

- - t+h .
ANTO() = AW Ta(1) = /t An(01G(t + h, a(r))d (7)) dr
t+h

= | ARGt + h,a(r))d (1) dr

+ /t N 0\Git + 2 alr + h) Al (7) dr
= T31(t) + Tsa(t).
Lemma 6.5.7 then yields a decomposition (§f ) §§ )k, such that we can write
AROLG(t+ h,a(r))d (1) = S(t, ) + S9(t, 7).

This leads to

" t+h _ t+h _ t+h _
T31(t) = | AROLG(t+ hya(T))d (1) dr = /t S?(t, T)dT + t Sg(t,T) dr.

We put 71 (t) := Tsa(t) +ftt+h S(t,7)dr and T) (t) := ftt+h S9(t,7) dr. These terms T} and
T) then satisfy the requirements, i.e.,

1T oo S [ Ts2lloc + B -sup sup [SY(t,7) S ho- 677" B4y  sing| 7,
teR r€(t,t+h)
1T lloo S hsup sup [S9(t,7)] S A"™|sing| ="
teR T€(t,t+h]

Taking another forward difference of Ty yields

~ t+h 0
ARTy (t) = ) ARS;(t, ) dr.

Proceeding inductively from here with Lemma 6.5.7 settles the claim for the component Ts.
Finally, we turn to the function Ty(t) = f“(t) Ap,0)01G(t, u) du. First, we calculate

—00

_ a(t-+h) _ a(t) _ y 3

AhT4(t) = /(l(t) A(h,o)ﬁlG(t + h, u) du + /_OO A%hvo)alG(t, u) du=: Ty (t) + T42(t),
§ atth) 0 - y 5

ApTio(t) = / y AhohG ) du /_ A Gt u) du = Tia(t) + T 1)

Next, we show ||Tasleo < hP+3 because then, in view of |supp Tha| = 1,

T3 < A2PHT < 23 (1=0)(25+1)
The L.-estimate of the term T44 relies on the fact, that for h =< 9—j(l—a)

1A%, 001G o0 < 1P277 S AP
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This estimate is a consequence of Lemmas 6.4.3, 6.4.5, and 6.5.1 and is analogous to (6.8).
Essential is the observation that since a > % Lemma 6.4.3 yields

1A 1.0)0195 ]l S 277 < RPHL.

N Finally, we take care of the remaining terms T41 and f43. First we note that |supp T41| <
[1(n)| < |sinn| and also [supp Tus| S [I(n)| S |sinp| according to Lemma 6.3.3. Hence, it
suffices to prove ||Ty1|loo < AR |sinn| ™2 and ||Ty1]|ee < A™RP|sing| =18, Tt holds

HiuHoo < sup

a(t+h) -
/ M G(t + 2h,u) du| + sup
teR ' Ja

a(t+h) -
/ 01t + h.w) dul.
) teR a

(t)

Analogously, we have

ITuslloc < sup

a(t+h)  _
/ 01 G(t + 3h,u) du| + 2 sup
teR ' Ja

a(t+h)  _
/ I G(t+ 2h,u) du'
() teR ' Ja

®)

+sup

a(t+h)
/ hG(t+ h,u) du‘.
teR ' Ja

(®)

All these terms on the right-hand side can be estimated in the same way as
~ t+h  _
Ts(t) = / O1G(t + h,a(u))d (u) du.
t
This finishes the proof. O

6.5.4 Proof of Theorem 6.3.7

Lemma 6.5.4 enables us to prove a generalization of Proposition 6.3.5.

Proposition 6.5.8 ([60, Prop. 6.23]). We have for m = (m1, ma) € N3 the estimate

/IAI . |3mf?;()\ cosn, Asinn) |2 d\

< 9—2(1—a)jmig—(1—-a)j (1+ o(1=a)j ¢in 77)*1*25 4 93ai9(=1-25)j

Proof. Observe that O™F; = (z™F;)". Putting F; := 2] Fj, the function Fj(z) :=
™ F;(z) takes the form of a modified edge fragment as defined in (6.35), i.e., F'j = 2" F;.
Analogous to Proposition 6.3.5 we distinguish between the cases |sinn| < 2J; and |sinn| >
26;.

In case |sinn| < 2§; we show

/ |8mf7;()\ cosn, Asing)|? dX < 27 @mi-alg=i(l=a),
[A|~27(1=a)
For this let F; = F ]Q +F jl be a decomposition similar to (6.24), where

F]Q(ac) = x§”29(2_jo‘:n)w(x)é’({x125j}.
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Further, we write ﬁ'j = ﬁ']Q + F‘l with

F}(2) = 2{" F} (2) = 2™g(277"2)w(2) Xz, >4,
and }NW} (z) == Fj(z) — f’jo (x) the deviation. Note that f’jo is a fragment with a straight edge
of height about 5;”1 and that the function F jl is supported in a vertical strip of width 24;.

For 7 satisfying [sinn| < 2§; the Radon transform Rﬁ’l( n) is Loo-bounded with

||R}7’j1(-,n)|]oo R ||RF1( Ml < 67" and it is supported in an interval of length

2(0jcosn +sinn) S §;.
It follows ||7?,15J1(,77)|| K FUER B 52m12 7(1=) " Therefore

E my)fdr< [ FLm(W2dx S g2migiti-o),
/A|~2J(1 " |.7-"FJ (Acosn, Asinn)|“dX < R|RFJ(,77)(>\)| d)\NcSJ 2

It remains to show

70 . 2 < §2m1 —j(1—a)
/A|N2](1 ) | FE}(Acosn, Asinn)|dA S 0712 .

This follows from the fact, that we have decay |]-"I5]Q()\,O)] S 5§n1|)\|_1/2 normal to the
straight singularity curve, since the height of the jump is (5;”1. Further, the second argument
(Asinn) remains bounded due to the condition |sinn| < 20;.

In case |sinn| > 20; we conclude as follows. Let C1, Ca > 0 be the constants specifying
the integration domain [Cl2j(1_°‘), CQQj(l_O‘)]. We choose C' > 0 such that CoC' < 27 and fix
h:= C279(1=%) Then thereis ¢ > 0 such that [¢A"—1|™ > ¢ for |\| € [C12/(17) 021 (1=
at all scales. We obtain

/|,\ 9 (1—a) |)\‘2|6mﬁ‘;()‘ cos 1), Asin 77)|2 d\
S /)\| 0i(1—a) e — 1’2|A|2‘$/ij(Acosn,Asinn)|2d)\
< ‘ei)\h—1’2’A|2‘ (Rﬁ,( ))/\(A)Pd)\
~ JA~2i-) AR,
= A
s /)\| 9i(1—a) [[AROLRE; (-, m)] " (V)[? dA.

From Lemma 6.5.4 we know that S = AhﬁlRFj(-,n) admits a decomposition (S¥, S5)x of
length m; + 1 with estimates

1SEI13 < 272 m 0@ n sin | 1727 4 27D = 0,1, my 4+ 1

Using the same trick as in Proposition 6.3.5, we can then conclude

/ ODRIOPEcosn s PdAS [ |[ARRE ()] (V)2 dA
|A[~27 (1 =) |A|~2d (1=
mi+1
< 2 4\
Z /NQJ(I a)
m1—|—1

k
< D0 ISl
k=0

5 2—2jm1(1—o¢)h26‘ Sinn’—l—zﬁ 4 2—]'(1—04)(2,3-%1).
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It follows
/)\|~2j(1—@) \8’”1/7;()\ cosn, Asinn)[2d\ < 2_2j(1_°‘)(m1+1)h2ﬂ\ sin 77\_1_25 + 271 (1=a)(26+3)
< 27 201-e)jmig=(1=a)j (9(1=e)j gip ) 7120 | 93eig(~1-20)j
This finishes the proof. O

By rescaling F; to the original edge fragment f; we obtain Theorem 6.3.7, because of
the relation f;(§) = 2724 F;(27%9¢).
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Chapter 7

Multivariate a-Molecules

The framework of a-molecules presented so far is confined to a bivariate setting. Its appli-
cability is thus limited and, since nowadays one often has to deal with higher dimensional
data, an extension to higher dimensions is desirable. Such an extension was pursued in [45].
As a main result, a d-dimensional version of Theorem 2.2.2 ([45, Thm. 2.5]) could be proved.
Subsequently, we will present the results of [45], whereby we adapt the exposition to the
continuous setting. As an exemplary application, we investigate the sparse approximation
of video signals, which are instances of 3D data. The multivariate theory allows to derive
almost optimal approximation rates for a large class of 3-variate %—molecule systems.

7.1 The Concept of a-Molecules in L,(R?)

Recalling Definition 2.1.3, a system of bivariate a-molecules consists of functions in Lo(R?)
obtained by applying a-scaling, rotations, and translations to a set of generating functions
which need to be sufficiently localized in time and frequency. As a consequence, every
a-molecule is associated with a certain scale, orientation and spatial position, which — in
the bivariate case — is conveniently represented by a point in the parameter space P =
R2 x T x Ry.

Aiming for a multivariate generalization, we first need to introduce a d-dimensional
version of P. Let S~ ! denote the unit sphere in R%. Then we put

Py =R x ST x R,

Since S! can be identified with T via (2.2), we have Py = P and P, can be regarded as a
canonical extension of P to d dimensions.

As in the bivariate case, each function my € Lo(R?) of a system of d-variate a-molecules
{m}rea shall be associated with a point x) := (x, e, t)) € Py, where the variable ¢ty € Ry
represents the scale, the vector ey € S ! the orientation, and z) € R the spatial position
of my. The relation between the index A of a molecule m) and its phase space coordinates
x) € Py is again described by a so-called parametrization.

Definition 7.1.1 (compare [45, Def. 2.1]). A parametrization is a pair (A, ®,), where A is
an index set and ®, a mapping

(I)A:A—>]P>d, )\0—>X)\=(J})\,€)\,t)\),
which associates to each A € A a scale ty € R, an orientation ey € S~ !, and a location

Ty € R,
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For practical purposes it is more convenient to represent an orientation 7 € Sd-1 by a

set of angles. Therefore we define the rotation matrix Ry for 6§ = (61,...,04_2) € R?2 by
cos(61) —sin(6,) cos(fa—2) —sin(04-2)
Ry := I o in(0a ) 1 ot |
sin(61) cos(61) -

where I for d € N denotes the d-dimensional identity matrix. Furthermore, we introduce
for ¢ € R the matrix

cos(p)  sin(yp)
R, := | —sin(p) cos(yp) . (7.1)
I o

Note that these definitions pose an inconsistency in the notation, since they depend on the
particular naming of the index. However, since we always use these particular indices, this
will not lead to any problems while improving the readability significantly.

We now observe that each orientation 7 € S¥~! can be uniquely represented by a set of

angles (61,...,04_2,¢) € [0,7] x [-Z,Z]973 x [0, 27] via the relation
n= RgRged, (7.2)

where ey is the dth unit vector of R¢. This representation is similar to a representation by
Eulerian angles. Explicitly, 7 is given by

cos(p) cos(Og—g) -+ cos(f2) sin(6)
sin(¢) cos(0g—2) -+ - cos(62) sin(6)
(0, ) —sin(fy_2) cos(04—3) - - - cos(fz) sin(61)

na(0, ) — sin() cos(6) sin(61)
— sin(fy) sin(6;)
cos(6)

We also need to adapt the a-scaling matrix (2.4) to the multivariate setting. For a €
[0, 1], we set

Aaﬂg = (t Id_l t) s t e R+. (73)

In case @ = 1 this matrix scales isotropically, in the range o € [0,1) it scales uniformly in
all directions except for the e4-direction. Hence, in contrast to the matrix (2.4), where e;
was chosen as the distinguished direction in which the scaling is stronger, here we choose
€d .

After this preparation we are ready to give the definition of a system of d-variate a-
molecules, d € N\{1}, which essentially reduces to Definition 2.1.3 for d = 2, except for
the interchanged roles of the directions e; and e; and an inversion of the utilized rotation
matrix since, if d = 2, the matrix (7.1) is the inverse of the matrix (2.3).

Recall that we use the notation [z]; := (z,e;), i € {1,...,d}, for the i:th component of
a vector z € R Further, we define |2|j_yj := [([z]1, .. ., [£]4-1,0)|2.
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Definition 7.1.2 (compare [45, Def. 2.2]). Let a € [0,1], d € N\{1}, and L, M, Ny, Ns €
NoU{oo}. Further let (A, @) be a parametrization with ®5(A) = (xy, ex, ty) € Pgfor A € A.
The corresponding angles (7.2) for ey shall be denoted by (6, p)). A family of functions
{matrea € Lo(RY) is called a system of d-variate a-molecules of order (L, M, Ny, Na) with
respect to the parametrization (A, ®y), if each m) is of the form

my = t; : g (A;,%ARQ\R@A(' - xk)) (7'4)

with generators gy € Lo(RY) satisfying for every multi-index p € N¢ with |p|; < L the
condition

9°3(&)] < min {1, e+ [1€lal + 15 lelga—y )} (1D (elan) ™. (7.5)

The implicit constant in (7.5) is required to be uniform in A. In case that a control parameter
takes the value oo, this shall mean that the condition (7.5) is fulfilled with the respective
quantity arbitrarily large.

A system of d-variate a-molecules {my} ca is thus obtained in the same way as a
system of bivariate a-molecules. Omne applies rotations, translations, and a-scaling to a
set of generating functions {gy}, which are required to obey a prescribed time-frequency
localization. This localization is specified by (7.5), where the number L describes the
spatial localization, M the number of directional almost vanishing moments, and Ny, Ny
the smoothness of g,.

Applying A;ﬁ with o < 1 and ¢ < 1 to the unit ball B := {z € R?: || < 1} stretches B
in the eg-direction. For small ¢ € R this results in a plate-like support of the characteristic
function X'p (A;%) At high scales, d-variate a-molecules thus resemble plate-like objects in
the spatial domain with the ‘plate’ lying in the plane spanned by the vectors {e1,...,eq_1}.
The approximate frequency support on the other hand is concentrated in a pair of opposite
wedges in the direction of the respective orientation.

Also note that the weighting function on the right-hand side of (7.5) is symmetric with
respect to rotations around the eg4-axis, as well as reflections along this axis.

Remark 7.1.3. It may seem more natural to choose a rotation R, from eq to n € S%1in
the (eq,n)-plane to adjust the orientation in (7.4). Due to the symmetries of the weighting
function of the generators in (7.5), this choice is however not necessary. Since it is easier to
use fixed rotation planes, we stick to this more pragmatic choice of rotation parameters.

7.2 The Index Distance

A central ingredient of the theory of bivariate a-molecules is the fact that the parameter
space P can be equipped with a natural phase-space metric w, such that the distance
between two points in P ‘anti-correlates’ with the size of the cross-correlations of a-molecules
associated with those points: The greater the distance between two points x,,x, € P, the
smaller the modulus of the scalar product of corresponding a-molecules my,m,, € Lo (R2).

Our next aim is to find a suitable analogon of this phase-space metric for the parameter
space P;. Thereby, for simplicity, we do not generalize w, from Definition 2.2.1 but the
simplified version w&™ from Definition 2.2.3.
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For orientations ey, e, € S¥71, we define the angle ds(ey,e,) := arccos((ey, e,)) with
ds(ex,ey) € [0, 7). Again, the angle ds(ey, e,,) is projected onto the interval T := [—7/2,7/2),
with {ds(ex, e,)} being the unique element of the set {ds(ex,e,) +nm | n € Z} in T. Anal-
ogous to the bivariate case, a suitable measure for the distance on S?! is then given by the
quantity |{ds(ex,e,)}|. Note that in two dimensions we have [{ds(ex,eu)}| = [{or — @u}-

We arrive at the following definition which directly generalizes the simplified metric from
Definition 2.2.3.

Definition 7.2.1 ([45, Def. 2.4]). Let a € [0,1], d € N\{1}. The index distance wq :
Py x Py — [1,00) is defined by

tr t
wa (X, X,) 1= max {t—A, i}(l + da(x1,%,)),
I

where x) := (2, €ex, 1)), X, = (Ty, €y, t,) € Py and with ¢g := max{ty,t,}

_ —2(1— _
do (%0, %) 1= 152 wx — wl? + £ 27 {ds (e, )} P + 15 {en, 2 — 2.

As in the bivariate case, this index distance w, on Py is quasi-symmetric and satisfies
a quasi-triangle inequality. These properties, shown for the simplified version wf™ in the
2-dimensional setting, can be found in [65]. Their proofs translate very well to higher
dimensions. Other properties analogous to those proved in Section 2.2 can certainly be
shown, but this has not been carried out explicitly.

Let us now state the analogon of Theorem 2.2.2 in the multivariate setting. It relates
the index distance to the size of the cross-correlations of a-molecules.

Theorem 7.2.2 ([45, Thm. 2.5]). Let o € [0, 1], d € N\{1}, and let {mx}rea and {7} cn
be two systems of d-variate a-molecules of order (L, M, N1, Na) with respect to parametriza-
tions (A, ®p) and (A, ®p), respectively. Further, assume that there exists some constant
C > 0 such that

tr,ty <C  forall X € A p € A with (zy,ex,ty) == PA(N), (Tp, eps tu) := Pa(p).

If Ny > % and if there exists some positive integer N € N such that
1+(d-1 1+(d-1
L>2N, M>3N—d++(2)a, N12N++(2)a, Ny > 2N +d — 2,

then we have
[(ms D] S wa(@A(N), ®a(u) ™ for all A€ A, p € A.

Proof. The proof is analogous to the proof of Theorem 2.2.2. It is outsourced to Section 7.6.
O

Based on Theorem 7.2.2, the same methodology as in the bivariate setting to categorize
a-molecule frames according to their sparse approximation behavior can be developed. For
this we next formulate a d-dimensional version of the transfer principle, Theorem 2.3.6.
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7.3 Transfer Principle and Consistency of Parametrizations

In this section we derive a d-dimensional version of Theorem 2.3.6. Beforehand, we need to
adapt the notion of («, k)-consistency of parametrizations to d dimensions. The definition
is analogue to Definition 2.3.5.

Definition 7.3.1 ([45, Def. 3.5]). Let a € [0,1], d € N\{1}, and k£ > 0. Two parametriza-
tions (A, ®,) and (A, Pa) with &y : A — Py, Pa : A — Py, are called (a, k)-consistent,
if
—k —k
sup > wa(Pa(A), @a(p) " <oo and  sup ¥ wa(Pa(N), Pa(p)) " < oo.
A€A HEA HEA ACA

Using Theorem 7.2.2 and Schur’s test (Lemma 2.3.4), we obtain the following general-
ization of Theorem 2.3.6 in d dimensions.

Theorem 7.3.2 ([45, Thm. 3.7]). Let o € [0,1], d € N\{1}, £ > 0, and 0 < p < 1. Let
{ma}ren and {m,}en be two frames of d-variate a-molecules of order (L, M, Ny, Na) with
(o, k )-consistent parametrizations (A, ®p) and (A, Pa) satisfying

taty < C, forall X e Ape A

and

k k 1 d—1 d E o1 d—1 k
Lok arsskogplreld=l o d Sk IFald=l) ok o)
p p 2 2 p P

Then {mx}ren and {m,}uen are sparsity equivalent in £ for all p < q < 2.

Proof. By Lemma 2.3.4, it suffices to prove that

) B 1/p
masc {sup 3 () 7 sup 37 (i) 7} < o
SN HEA HEA NeA

Since, by Theorem 7.2.2, we have |(my,m,)| < wa(®A(N),®a(1))"*/?, we can conclude
that

max { sup Z | (mx, 1) [P, sup Z |<m/\’m“>|p}

ACA e HEA XeA
S max {sup 3~ wa(@a(N), Pa (), sup D wal(®@a(A), @ (1) F ],
AEA pEA HEA AEA

with the expression on the right-hand side being finite due to the («, k)-consistency of the
parametrizations (A, ®5) and (A, Pa). The proof is completed. O

This theorem allows to categorize frames of d-variate a-molecules according to their
sparse approximation behavior, similar to Theorem 2.3.6 in the bivariate case. In the
sequel, we will apply this methodology with respect to video data, which is modelled as 3D
cartoon functions. Before that, however, we introduce multivariate a-shearlet molecules, a
large subclass of multivariate a-molecule systems.
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7.4 Multivariate a-Shearlet Molecules

In this section, we introduce a very general class of shear-based systems in d dimensions,
namely systems of d-variate a-shearlet molecules. The definition is analogous to the bi-
variate case [59]. Roughly speaking, they are shear-based systems obtained from variable
generators, where similar to a-molecules the conditions on the generators have been relaxed
to a mere time-frequency localization requirement. The notion of a-shearlet molecules com-
prises many specific shear-based constructions and simplifies the treatment of such systems
within the general framework of a-molecules.

Remark 7.4.1. One might wonder if there also exists a natural generalization of the concept
of (discrete) a-curvelet molecules to dimensions d > 2. Up to now, no such generalization
has been put forward. A major difficulty is the question of how to suitably discretize the
sphere S~ to obtain the discrete rotation parameters. This problem is avoided when using
the shearlet approach.

As explained in Section 3.3, shearlet-like constructions are based on anisotropic scaling,
shearings, and translations. For the change of scale, we utilize a-scaling as defined by (7.3).
The change of orientation is provided by shearings, in d dimensions given by the shearing

matrices
_(Is1 O v_ (a1 h a-1
Sh_(hT 1) and Sh—<0 NE h e R

which are the natural generalizations of (1.2). The matrix S} shears parallel to the
(e1,...,eq—1)-plane and the shear vector h € R4~! determines the direction of the shear-
ing in this plane. Note that the transformations associated with shearings and «-scalings
naturally form a group [25].

To avoid directional bias, the frequency domain is divided into cone-like regions along
the coordinate axes and a coarse-scale box for the low frequencies. Note that this comes
at the cost of the loss of the group properties mentioned above. This division procedure
is however crucial for applications, and also, as the subsequent arguments will show, for
including a-shearlets in the concept of a-molecules. The pyramids are defined as

Pz—::{(gla7£d)€Rd|VZ:17d‘gl|§|§e|}7

where ¢ € {1,...,d}. € = 0 shall refer to the coarse-scale box R. In the sequel we will
always stay in this so-called cone-adapted setting. For an illustration of this specific setting
in 3D, we refer to Subsection 7.5.2.

In each cone we require different versions of the scaling and shearing operators. The

cyclic permutation matrix
0 1
() o

allows to elegantly define these operators associated with the respective cones by Z¢S5,2~¢
and Z°A,Z7°.

Before we come to the definition of a-shearlet molecules, we need to introduce a set of
characteristic parameters, associated with these systems. The resolution of the underlying
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sampling grid is determined by the parameters ¢ > 1, 71,...,7¢4 > 0, and a sequence
© = (nj)jen, € Rﬁo. The parameter o specifies the fineness of the scale sampling. The
parameters 7., € € {1,...,d}, determine the spatial resolution in the e.-direction. For
convenience they are summarized in the diagonal matrix 7 := diag(r,...,74) € R4*9,
The angular resolution at each scale j € Ny is given by the value 7; of the sequence ©. Last
but not least, in each cone € € {1,...,d} and at each scale j € Ny the shearing parameter ¢
is restricted to a set .2 j. These sets are collected in .2 :={.Z j : e € {1,...,d}, j € No}.

After the introduction of this sampling data D := {0,0,.%,T} we can now give the
definition of a system of a-shearlet molecules in d dimensions, depending on ID. The scale-
dependent step size n; of the directional sampling is assumed to satisfy 7; < o—11-9) for
J € No. Further, we require the upper bounds L; := max {|{|« : £ € % j,e € {1,...,d}},
J € Ny, to fulfill the complementary condition L; < 07(1=9) We remark, that the translation
parameters 7. may also vary with the indices (g, j, £), as long as their values are restricted to
some fixed interval [Timin, Tmaz) With 0 < Timin < Timee < 0o. However, this is not indicated
in the notation.

Definition 7.4.2 ([45, Def. 5.1]). Let a € [0,1], d € N\{1}, and L, M, N1, Ny € Ny U {oo}.
Further the sampling data D shall be given as above. For ¢ € {1,...,d}, a system of
functions

S = {ms g € La(RY) + (j,4,k) € AL},

indexed by the set AS := {(j,6,k) : j € No, 0 € % ; CZ¥L k€ Z}, is called a system
of d-variate a-shearlet molecules of order (L, M, Ny, N2) associated with the orientation e,
if it is of the form

Gta(d-1)); : _
mi (@) =0 2 (27 AL oS, 2w — Tk)
with generating functions 75, , € Ly(R?) satisfying for every p € Nd with |p|; < L

min{1,077 + 0_(1_O‘)j|Z_Ef|[d—1] + |[Z272€)a|}M
(€N (| Z =€ jg—1) > '

1074501 (O)] (7.7)

The implicit constant is required to be uniform over AZ. If one of the parameters L, M, N1, Ny
takes the value oo, this shall mean that condition (7.7) is fulfilled with the respective quan-
tity arbitrarily large.

Combining systems of a-shearlet molecules of order (L, M, Ny, N») for each orientation
e € {l,...,d} with a system of coarse-scale elements

Yo = {m o = Wor(- — Tk) : k ez}, (78)
where the generators 78’07k € Ly(RY) fulfill |8"’f3/8707k(§)| < <|£\>_N1<|§|[d_1]>_N2 for every

p € N¢ with |p|; < L, yields a system of a-shearlet molecules of order (L, M, N1, N3). The
associated index set is

5:={(0,0,k) 1k ez} CNox 24 x Z°.
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Definition 7.4.3 ([45, Def. 5.2]). For each ¢ € {1,...,d}, let ¥ be a system of a-shearlet
molecules of order (L, M, N1, N2) associated with the respective orientation. Further, let
Yo be a system of coarse-scale elements defined as in (7.8). Then the union

=%

e=0

is called a system of d-variate a-shearlet molecules of order (L, M, Ny, Na2). The associated
a-shearlet index set is given by

AN ={(e,j,0,k): e €{0,...,d}, (5,0,k) € Al}.

In the next subsection, we will show that the concept of d-variate a-shearlet molecules fits
into the general theory of multivariate a-molecules.

7.4.1 The a-Shearlet Parametrization

As the following theorem shows, d-variate a-shearlet molecules constitute a subclass of d-
variate a-molecule systems. The respective parametrizations are referred to as «-shearlet
parametrizations and generalize the bivariate notion.

Theorem 7.4.4 ([45, Thm. 5.3]). Let a € [0,1], d € N\{1}, and X = {my}recas be a system
of d-variate a-shearlet molecules of order (L, M, N1, No). Then ¥ constitutes a system of d-
variate c-molecules of the same order. The associated a-shearlet parametrization (A®, @)
is given by the map ®5(\) = (zy, ex, tx) € Py, where for X\ = (g,j,4,k) € A®

iy = U_j, ex=mny-2° (ni€> , Ty = Zaszj;A;fUZ_eTk (7.9)

with normalization constant ny = (1 + 17j2-|€|§)*1/2.
In particular, for e = 0 we have ty = 1, ey = eq, and x\ = Tk for every A = (0,0,0,k) €
As.

Proof. Since a finite union of systems of a-molecules is itself a system of a-molecules, we
can prove this theorem separately for each system X, € € {0,...,d}. For ¥y the statement
is obvious. For the other systems it suffices to give the proof for € = d, since they are all
related by a mere permutation of indices. We subsequently drop the index € to simplify the
notation and note Z¢ = [ for € = d.

For A = (d, 4,4, k) € A let my be an a-shearlet molecule with corresponding generating
function ,. As usual we denote the angles representing the orientation ey by (6, ¢)), i.e.
e\ = ng RQTA eq. The molecule m)y can clearly be written in the form (7.4) with respect to
the generator

gr(x) == ’}/Jd’g,k(Aé’USgn.RZ;)\R(%;A(;?Ul'), r € R%.

7

It remains to check condition (7.5) for these functions. On the Fourier side we have

(&) = ’A)/?,Z,k‘(A;?;SZ:]?RZARg;AgJ‘E>7 ¢ eRe
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For A = (d, j, £, k) € A} let us first examine the matrix
My = S, R, Rg, . (7.10)

A simple calculation shows Myey; = SZ,JTRQRQTA% = S[nTe)\ = Szgn,\(njﬁ,l)T = n)eq.

Hence, the entries of the last column of M) vanish except for the last one. Next, we prove
the uniform boundedness of the set of operators { M)} ¢ As- It holds uniformly for A € A}

|Mallasz = 1S5, llamz < \Jd+ 2103 < \Jd+ 212 S 1.

Note that this implies that each entry in M) is bounded in modulus. Since similar con-
siderations hold for the inverse M, L= RQAR%SZU, we can conclude that both M) :=

A;’J;,M AAé,U and its inverse M N ! have the form

* ... % 0
* .. % ’
g ... Od

where the entries * are the same as in My (or M; ') and the entries O are of the form
oI 0=[Myelq (or o709 [M; te;)y) for @ € {1,...,d — 1}. In particular, the entries

of My and M 5 are uniformly bounded in modulus. This implies |My|l2—2 < 1 and
|M; |22 S 1. Altogether, we obtain

| M| = |€| uniformly for & € R? and X € A3, (7.11)
Due to the structure of the last column of ]\7,\ we further have for & = (&1,...,&)7T € R
|MaElg—1) = |Ma(&, -+ €&a-1,0) a1y < | Mall22l(61 -+ Sam1,0)"| = Myl 2208l a—1y-
For the inverse M~ it holds analogously |M;1§|[d_1] < ]\M)\*lﬂgﬁﬂﬂ[d_”. We conclude
|M)&jg—1] < |€|a—1) uniformly for & € R? and X € AJ. (7.12)

Finally, the following estimate holds uniformly for & = (¢1,...,&7)T € R? and A € A3,

d—1

Ml < |[Maedlall€al + Y 07107 [Myelall&] S o~V ||y + 1€al. (7.13)
=1

Finally, we can prove (7.5) for every p € Nd with |p|; < L,

min{1,07 4+ o~ M|y + |[Ma&la] }M

10°9:(6)| < sup |(8°4% 1) (M6)| <

BL<L (| MAEN) N (| MAE 1)) V2
_ min{l,077 + o~ =0 |¢| oy + 1€l }M
~ €D (€ ja—17) > .

The first estimate holds true, since §)(§) = ﬁf(ﬂ 2&) and the entries of M, are uniformly
bounded in A. The second estimate is due to (7.7). For the last estimate we used (7.11),
(7.12), and (7.13). The observation ¢y = o~/ finishes the proof. O
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7.4.2 Consistency of a-Shearlet Parametrizations

In view of Theorem 7.3.2 the consistency of parametrizations is of particular interest when
comparing the approximation properties of different a-molecule systems. In this paragraph
we shall prove, in Proposition 7.4.7, that — as in the bivariate setting — the a-shearlet
parametrizations in d dimensions are all consistent with each other. This allows to establish
approximation rates for various shearlet-like constructions simultaneously, as long as they
fall under the umbrella of the shearlet-molecule concept.

We start with an auxiliary lemma.

Lemma 7.4.5 ([45, Lem. 5.4]). Let 1 > ¢ > 0 be fized, and consider the gnomonic projection
¢ : R\ {a: eERY | [x]q = O} — Rz @x. Forv,w € Sdilﬂ{x eRY: [z]y > c} we then
have [¢p(v) — p(w)| < [v —w| and [v — w1 < [v — w].

Proof. First note that [v — w|z_] = |7(v) — m(w)|, where 7 is the orthogonal projection
of R onto the (ey,...,eq—1)-plane. On the set S¥~1 N {ZE cRe: [z]g > c}, the mappings ¢

and 7 are diffeomorphisms with bounded derivatives in both directions. This implies the
statement. O

We also need the following observation.

Lemma 7.4.6 ([45, Lem. 6.3]). Let ¢ > 0 be a constant. Then we have for all v,w € S!
with [v]g > ¢ and [w]qg > 0

{ds (v, w)}[ = |v —wl,

Proof. Under the assumptions there exists € > 0 dependent on ¢, such that 0 < dg(v,w) <
m—e. It follows —=|ds(v, w)| < |{ds(v,w)}| < |ds(v,w)|. The observation ds(v,w) = |v—w|

T—E&

finishes the proof. O

After this preparation we are in the position to prove the consistency. Note that the
proof is a slightly modified version of the proof given for [45, Prop. 5.6]. In particular, we
do not need [45, Lem. 5.5].

Proposition 7.4.7 ([45, Prop. 5.6]). Let o € [0,1], d € N\{1}, and let (A, ®p) and (A, Pa)
be two «a-shearlet parametrizations, possibly with different parameters. Then (A, ®y) and
(A, ®A) are (o, k)-consistent for every k > d.

Proof. Due to symmetry, it suffices to prove that for N > d it holds

sup > wa(®p(N), @A(M))_N < 0.
HEA NeA

For this task it is convenient to decompose the shearlet index set A = Ag U --- U Ay into
the sets A. associated with the respective pyramidal regions P. for ¢ € {1,...,d} and the
low-frequency box R for € = 0. The sum then splits accordingly into d + 1 parts, which we
handle separately below.
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Ag: Let € Aand A = (0,0,0,k) € Ag with k € Z%. The shearlet parametrization (7.9)
yields ty =1, ey = €4, and x\ = Tk. Furthermore, ¢, <1 for all © € A. Hence we have

wa(PA(N), @a () =t (1 + Tk — x> + [ {ds(eq, e0) } 1> + [ea, Th — 2)|)
>t 1+ [Tk —zu).

We conclude

3 wa(@a(N), Pa(i) N < S N A+ [Th— 2,2V S 3 (1 + k),
AEAQ keZd keZd

where for N > d/2 the sum on the right converges.

Aoy e€{l,...,d}: We only deal with the special case ¢ = d, since the other cases can be

transformed to this case via rotations. Let p € A and write ¢, = o7 with j/ € R. In view
of ty = o7 for A = (d, j, £, k) € Ay we then have

> wa (@) @a(n) ™ = X oM 3T (14 da(@a(V), 25 (W)

AEA4 j€Np xerg
t)\ =og—J

If we can prove that

Si= 3 (14 da(®s(N), @a(p) " S o7, (7.14)

Xehy
ty=0"7

independently of j € Ngand € A, we are done, since o > 1, ¢, = o', max{ty/t,, t./tr\} =
ol7=7'l and thus if N > d
2

> wal(@a(V), @a(w) " £ S oI <2 37 N = S < oo
AEA, J€No Jj€No 9

Putting in the definition of d, and abbreviating jo := min{j, j'}, the sum S becomes

. . . -N
S= 3 (1+0™Puy -zl + 0217 {ds(en, eu)} 2 + 0| (ex, 2x — 1))
NEA,
tA:a'—j
(7.15)

In order to prove the estimate (7.14) for S, we first study the different terms of the
summand independently. Let A = (d, j,¢,k) € A4 and recall the matrix M) from (7.10). It
holds

MY = R, Ry, S;,)

and — according to the discussion of M) in the proof of Theorem 7.4.4 — its last row is given
by (0,...,0,ny) with ny = (1 +77]2~|€]%)_%. Since 7; < 07179 and |f]; S L; < 0717 this
implies ny =< 1 uniformly for all A € A,.

As a direct consequence [M{z]y = ny[z]q < [2]q uniformly for A € Ay and = € R%
In addition, we have |M{ x| < |z| uniformly for A\ € Ay and z € R? since |[M{ |22 =
IMall22 £ 1 and also [| My [z = My [2m2 S 1.
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These observations allow the following estimate,
x| =[S AL TE — 2| = |ALL T = Suyyw| < 1ALk = T Sy
2 ALk =T ' Semyaulia—y = o7k = T Sey, wuljg-y- (7.16)

In view of ey = ng RQTA eq and Sy, = M;TRQA R,, we also have the estimate

[(exs 2x = zu)| = [(ex, S Al Th — xu)| = (ea, Roy Ry iy A, T — Roy R, 1)
[(ea, MY (T ALk — My " R, Ry, )| < [{ea, Atk — T~ Seg, )|
{

ed,0 Tk — T_ISgnle'“H. (7.17)

According to the a-shearlet parametrization (7.9) we have ey = ny(¢n;,1)T, where
n) = 1 as shown above. Hence, there is a constant ¢ > 0 such that ny > cfor all A € Ay. It
follows [ex]q > ¢ > 0 for all A € A;. Without loss of generality we can further assume that

leula > 0 since |{ds(ex, —eu)}| = [{ds(ex, ey)}]. In this situation Lemma 7.4.6 applies and
tells us that | {ds(ex,eu)}| =< |ex —eul.

Moreover, if |[e,]q| > ¢/2 we obtain with Lemma 7.4.5

lex — eul = [é(exn) — dlew) = |(fn;, )T — dlen)l,

where ¢ denotes the gnomonic projection. In this case, we define v, € R~1 by Pley) =:
(vu, 1)T. Then

lex — el = (0, )T = (v DT = ()" = ().
If |[eula| < ¢/2 we put v, := 0. Then, since [ex]q > ¢,
lex — el = [leala — lelal > ¢/2 2 |(tny)" | = ()" — (v)"].
Altogether, we arrive at
[ {ds(ex, e} | 2 10nj — vl (7.18)

We now use (7.16), (7.17) and (7.18) to estimate the sum S in (7.15). Introducing the
quantities ¢q;(¢) := ajO‘T_ngnjxu, q2(0) == ajT_lsgnjwu, and g3 := n;lz/u, and taking into

account 7; =< o~ (1= we obtain with p :=jo—j <0

—N
S>> (1 + 02|k — qu(O)},_y) + 0P {ea, k — qa(0))| + > 7P| — q3\2)
kezZd te Ly, ;

The term oP?S is thus — up to a multiplicative constant — bounded by

Z gP(1—a)(d-1) Z oPe(d=1) ;p

Lezd-1 kezd
(140> Plk — @Oy + 0P [(eas k — q2(£))] + o> 7P| — as?) .

The last sum can be interpreted as a Riemann sum, which is bounded — up to a multi-
plicative constant independent of p < 0 — by the corresponding integral

—-N
Lo [ (1 o= o0y +ewa = o) + g — o af?) " dady.
Y —lJx
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All in all we end up with

o -N
S < Jd(]_”)/ / 1+ |22+ eaq, 2)| + |y|? dzx dy.
S i S e (Ll leasad] + %) y
To see that the integral converges for N > d, we carry out the integration over x4, which
yields up to a fixed constant

1+ |52 2=(N-1) 4z d :/ 1 2)—(N-1)
/yeRd1 /jeRdl( + |x\[d—1] + [yl7) Z dy ZG]R?(dfl)( +12%)

The integral on the right converges precisely for N > d. This observation concludes the
proof. ]

7.5 Application: Sparse Approximation of Video Data

In this section, we will demonstrate with a specific example how the machinery of d-variate
a-molecules can be applied in practice. In our exemplary application, we are interested in
the sparse approximation of video signals modelled by the class of cartoon-like functions
£%([0,1)3, v) introduced below.

Following the general methodology of the transfer principle, we just need to find a
suitable anchor system for which a sparse approximation result with respect to £2([0, 1], v)
is known. Utilizing Theorem 7.3.2, the framework can then transfer the approximation rate
from this anchor system to other systems. In this way, we will identify a large class of
representation systems providing almost optimal sparse approximation for £2([0, 1]3,v).

7.5.1 Cartoon-like Functions in 3D

A suitable model for video data is provided by a 3-dimensional version of the original class
of cartoon-like functions introduced by Donoho in [38], namely the following model defined
in [83].

Definition 7.5.1 ([38],[83, Def 2.1]). For fixed v > 0, the class £2([0,1]3,v) of cartoon-like
functions consists of functions f : R3 — C of the form

f=fo+ fiXB,

where B C [0,1]3 and f; € C%(R3) with supp f; C [0,1]3 and ||fi||c2 < v for each i = 0, 1.
Further, the discontinuity 0B shall be a closed C?-surface with principal curvatures bounded
by v.

This model is justified by the observation that real-life video data, just like real-life image
data, typically consists of smooth regions, separated by piecewise smooth boundaries. Note
however that for simplicity we restrict to cartoon-like functions with smooth boundaries in
Definition 7.5.1.
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7.5.2 Pyramid-adapted Shearlet Systems in 3D

In the sequel, we will present some concrete shearlet systems in 3 dimensions which are
already on the market. Thereby we restrict our attention to parabolically scaled systems.

In the classic sense [79], a shearlet system in Lo(R3) refers to a collection of functions
of the form

{Wren =PU(SA, k) : jeL LD ke, (7.19)

where 1) € Ly(R3) is some suitable generator. The classic choice for 1 is furthermore a
function defined on the frequency domain by

P(&) = w(&)v(E)o(8), €= (6,% &) RS,

where v € C2°(R) is a bump function and w € C2°(R) is the Fourier transform of a suitable
univariate discrete wavelet. It was shown in [79] that it is possible to choose v and w so
that (7.19) becomes a Parseval frame for Ly(IR?).

Unfortunately, the shearlet system (7.19) is directionally biased due to the fact that for
large shearings the frequency support of the shearlets becomes more and more elongated
along the (ej,ez)-plane. This bias has a negative effect on the approximation properties
and makes the system (7.19) impractical for most applications.

To avoid this problem, the Fourier domain is partitioned into three pyramidal regions
similar to the two cones in 2 dimensions,

P = {(517§Q7§3> S R3 : ‘%
Po={(61,6.6) € R : [&] <1
Py ={(€1,6,&) R : |&

Then, for each pyramid a separate shearlet system can be used and, since each system now
only has to cover one pyramid, large shears are avoided. To take care of low frequencies,
as in the 2-dimensional case, it is common to use distinguished coarse-scale elements with
frequencies in a centered box around the origin. Subsequently, it will be the cube

R={¢eR® : |¢lw < }}.

Note that this cube together with the truncated pyramids P; := P, \R, Py = P2\R, and
Pg = Ps\R partitions the Fourier domain into 4 distinct regions.

With each of these regions, different operators are associated. The coarse-scale functions
are only translated, in the other regions we also scale and shear. The scaling and shearing

operators associated with the respective regions e € {1,2, 3} are given by A(f)t =7A, Z7F
9 27

and S,(f) = Z°5,Z7¢, and take the concrete form

t 00 70 0 tZ 0 0
AV =10 ez o, AP=[0o ¢t o], AP =4Ass=0 # of.
? 0 0 ¢t ? 0 0 tz ? 0 0 ¢t
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for t > 0, and for h € R?

1 hy hy 1 0 0 1 0 0
sV=1lo 1 o], SPW=|h 1 m|, s¥=8,=|0 1 0
00 1 0 0 1 hi hy 1

Now we are ready to define a modified shearlet system, which is adapted to our partition
of the Fourier domain and therefore called pyramid-adapted. This system does not exhibit
the directional bias as (7.19) and can be considered as a 3D-version of the cone-adapted
shearlet system from Definition 3.3.8.

Definition 7.5.2 ([83, 82]). For fixed 71,72 > 0 let 7 = diag(1, 72, ™) € R3*3. The
(affine) pyramid-adapted 3D shearlet system generated by the functions ¢ € Lo(R3) and
Y° € Lo(R3), e € {1,2,3}, is defined as the union

SH(p, %, 0% 11, 72) o= ®(d5 1) U (WY 71, 72) U Wa (271, 72) U W3 (9% 11, 12) (7.20)

of the coarse-scale functions ®(¢; 1) := {¢p = ¢(- — 71k) : k € Z3} and the functions
U, (Y571, 70) 1= {w;w . j €N, 0 €Z% |l < [29/2],k € 23},

associated with the pyramids P, for € € {1,2, 3}, which are given by

Vs ok = 2J¢5(Z554AJ%722_‘s - —=Z°TZ °k).

These pyramid-adapted affine systems are the prime examples of %—shearlet—molecules.
In practice, one usually wants them to be frames, or even Parseval or tight frames. However,
ensuring the frame property of pyramid-adapted shearlets is not trivial.

Frames of Pyramid-adapted Shearlets

The simplest way to obtain a Parseval frame of pyramid-adapted shearlets builds upon a
Parseval shearlet frame of the type (7.19), which is easier to construct. A shearlet system
associated with the pyramid Ps is then obtained by removing all elements, whose frequency
support does not intersect Ps. Truncating the remaining functions in the frequency domain
outside of Ps, one obtains a Parseval frame for the space

Ly(Ps)" :={f € La(R?) : supp f C Ps}.

A similar procedure yields Parseval frames associated with the the other parts of the Fourier
domain, namely for Lo(P.)V, € € {1,2}, and Ly(R)". The union of these frames then is a
Parseval frame for the whole space Lo(R3).

This approach has the drawback that it leads to bad spatial localization of the shearlets
due to their lack of smoothness in the frequency domain, which is a consequence of the
truncation. A different approach was taken by Candés, Demanet, and Ying in [115]. They
gave up on the affine structure of the system and could then find a shearlet-type construction
with the Parseval property. Guo and Labate later modified this approach [69, 70] and found
another shearlet-type construction, which is even close to affine.

We will subsequently denote this system by SH. It is a Parseval frame of band-limited
shearlets for Lo(R3). Moreover, it is a system of %—molecules.
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Proposition 7.5.3 ([45, Prop. 5.9]). Appropriately re-indexed, the smooth Parseval frame
of band-limited 3D-shearlets SH constructed in [69] constitutes a system of 3-dimensional
3 -shearlet molecules of order (co, 00, 00, 00).

In particular, SH is a system of 3-dimensional %—molecules of order (00, 00, 00,00). The
associated parametrization (Agm, Pspr) is given explicitly in [45, Cor. 5.10]. It is related to
a %—shearlet parametrization by a mere relabelling of the shearlets.

Remark 7.5.4 ([45, Rem. 5.11]). Although (Agm,®sm) is not a shearlet parametriza-
tion, it is (%, k)-consistent with every %—shearlet parametrization for k£ > 3. This follows
from Proposition 7.4.7 and the observation that relabelling of elements does not make any

difference.

There also exist shearlet frames for Lo (IR?) consisting of compactly supported functions.
Such frames have been constructed for example in [83]. As the following proposition shows,
they are also instances of %—shearlet molecules and their order can be controlled by the
regularity of the generators.

Proposition 7.5.5 ([45, Prop. 5.12]). Let ¢, 1% ¢ € Ly(R3) be compactly supported
and L, M, N1, Ny € Ng U {oo}. If p € CMFTN2(R3) and if, for every e € {1,2,3},

(i) the derivatives OV exist and are continuous for every v € N§ with [Z°4]1,[Z%7]2 <
Ny + Ny and [Z%~]3 < N1, where Z is the cyclic permutation matriz (7.6),

(ii) the generator )° has M + L directional vanishing moments in e.-direction, i.e.

V(21,29) € R?: / Ve (Zex)al des =0 for every N € {0,...,M + L — 1},
R

then the system (7.20) obtained from these generators is a system of %—shearlet molecules
of order (L, M, Ny, N3).

Proof. Due to the assumptions, the generators are functions in C.(R3) and hence in par-
ticular contained in L;(R3). As a consequence, their Fourier transforms &,1&1,1/;2,1[13 are
bounded. Hence, rightly indexed, the induced system of the form (7.20) constitutes a sys-
tem of %—shearlet molecules. It remains to verify the order of the system. For this, little
more is needed than utilizing the facts that spatial decay implies smoothness in Fourier
domain (and vice versa), and that vanishing moments in spatial domain implies estimates
of the form [§(¢)| < min(1, |¢])™ in Fourier domain. We refer to [62, Prop. 3.11] for details,
where a similar two-dimensional version of the theorem is proven. ]

7.5.3 Quasi-Optimal Approximation with 3D Parabolic Molecules

In [83] the optimal approximation rate under a polynomial depth search constraint for
£%(]0,1]3,v) was derived. Recall that a dictionary-based algorithm for sparse approxima-
tion is said to satisfy a polynomial depth search constraint if there exists a polynomial 7
such that the algorithm only chooses from the first 7(V) dictionary elements when forming
the N:th sparse approximation [38]. If such a constraint is not assumed, one could for
instance use the whole of £2(]0,1]3,v) as a dictionary yielding 1-sparse representations for
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any element of £2(]0,1]3,v). But clearly, those have no practical relevance for real-world
approximation schemes.

The following benchmark for £2(]0,1]3,v) was proved in [83] with the same techniques
used in Section 5.3.

Theorem 7.5.6 ([38, Thm 7.2],[83, Thm 3.2]). The best N-term approzimation rate for
£%(]0,1]3,v), achieved by an arbitrary dictionary under the restriction of polynomial depth
search, cannot exceed

If = fnlE S N
where fx is the best N-term approzimation of f € £2([0,1]3,v).

There are several examples of frames which almost provide these optimal rates [69, 83],
typically up to log-terms. In particular, it was proven by Guo and Labate [69] that the
smooth Parseval frame of 3D-shearlets SH sparsely approximates this class. The obtained
approximation result is stated below in (7.21). It is based on the following estimate for the
size of the shearlet coefficients.

Theorem 7.5.7 ([69, Thm 3.1)). Let SH = {{r}rcas be the smooth Parseval frame of
3D-shearlets defined in [70]. Then the sequence of shearlet coefficients Ox(f) := (f, V),
A € A%, associated with f € E2([0,1]3,v) satisfies

sup  [OA(f)In S N - log(N),
fee2(0,13,)

where |0x(f)|n denotes the N :th largest shearlet coefficient.

Theorem 7.5.7 shows that the shearlet coefficients belong to wP(A*) for every p > 1. In
view of Lemma 2.3.1, for every f € £2([0,1]3,v), the frame SH therefore provides at least
the approximation rate

= fNH% < N7 e > 0 arbitrary, (7.21)

where fy denotes the N-term approximation obtained from the NN largest coefficients. Ac-
cording to Theorem 7.5.6, this is almost the optimal approximation rate achievable for
cartoon-like functions £2([0,1]3,v). For small € > 0, we get arbitrarily close to the optimal
rate.

Transfer of the Approximation Rate

We now come to our final goal of identifying a large class of representation systems which

achieve the almost optimal rate (7.21) for the class £2([0,1]3,v). For this, we put the

machinery of a-molecules to work. Concretely, we use Theorem 7.3.2 to transfer the ap-

proximation rate (7.21) of the smooth Parseval frame of 3D-shearlets SH to other systems
1

of 3-dimensional 3-molecules. This leads to the following result, whereby (Asz, ®s) shall

denote the parametrization of SH.

Theorem 7.5.8 ([45, Thm. 4.4]). Assume that a frame {m}ren of 3-dimensional parabolic
molecules satisfies, for some k > 0, the following two conditions:

(i) its parametrization (A, ®y) is (3, k)-consistent with (Asm, ®su),
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(ii) its order (L, M, Ny, Na) satisfies

L>2, M>3k—2 Ny >k+1, N;>3/2, Ny>2k+1.

Then each dual frame {my} cp possesses an almost optimal N-term approzimation rate for
the class of cartoon-like functions £2([0,1])3,v), i.e., for all f € £2([0,1]3,v)

If = fnll3 SN &> 0 arbitrary,
where fn denotes the N-term approximation obtained from the N largest frame coefficients.

Proof. The proof is analogous to the proof of Theorem 6.0.2. Due to Proposition 7.5.3, the
frame SH is a system of 3-dimensional %—molecules of order (00, 00,00,00). It is thus a
suitable reference system for the application of the transfer principle, Theorem 7.3.2. The
assertion then follows from Theorem 7.5.7. ]

Theorem 7.5.8 specifies a large class of multiscale systems with almost optimal approx-
imation performance for video data in the class £2([0,1]3,v). According to Remark 7.5.4,
condition (i) is in particular fulfilled by every %—shearlet parametrization (see Section 7.4)
for k > 3. Hence, due to condition (ii), all systems of 3-dimensional %—shearlet molecules of
order

L27a M287 N1257 N2287

provide almost optimal approximation for £2(]0,1]3,v).
Taking into account Proposition 7.5.5, the statement of Theorem 7.5.8 in particular
includes the following result for compactly supported shearlet frames.

Corollary 7.5.9 ([45, Cor. 4.5]). Any dual frame of a shearlet frame of the form (7.20)
generated by compactly supported functions ¢, 1% > € Lo(R3), so that ¢ € C'3(R?) and
for each permutation (i,j,k) of (1,2,3), we have

(i) 07 exists and is continuous for every v € N3 with v; < 5 and Vi ke <13,
(ii) 1" has at least 15 vanishing directional moments in direction e;,
provides the almost optimal approzimation rate (7.21) for the cartoon class £2([0,1]3,v).

A result similar to this corollary was proved in [83]. In comparison, the most intriguing
fact about this corollary is the simplicity of its deduction. The framework of a-molecules
enables a simple transfer of the decay rates.

7.6 Appendix: Proof of Theorem 7.2.2

This section is devoted to the proof of Theorem 7.2.2. The exposition is essentially the
same as in [45, Sec. 6]. It is split into several parts and has the same general structure as
the proof of Theorem 2.2.2 in Section 2.5. Let us first collect some simple elementary facts,
which turn out to be useful.
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7.6.1 Auxiliary Lemmas

Subsequently O(d, R) shall denote the orthogonal group of RY. Further, recall the ‘projec-

tion’ {0} of & € R onto the interval T := [~7, §) defined in (2.9). Recall also the notation

ds(v, w) for the angle arccos({v,w)) € [0, 7] between two vectors v,w € S¢1,
An immediate corollary of Lemma 2.5.1 is the following result.

Lemma 7.6.1 ([45, Lem. 6.2]). Let eq € R be the d:th unit vector. For n € S%~! we have
[{ds(n, ea) } | = [nlja-y-

Proof. Using a suitable rotation R € O(d, R) of the form

~(Ray 0

where Ry € O(d—1,R), we can achieve Rn = (sin(6),0,...,0,cos(6))T with 6 = ds(, eq).
Since [n[jg—1) = |1 — eala—1) = |R(0 — ea)|a—1 = [Bn — eala—1y = |sin(0)], it just remains to
prove |sin(f)| < | {0} |, which is true by Lemma 2.5.1. O

We will further need the lemma below.

Lemma 7.6.2 ([45, Lem. 6.4]). Let R € O(d,R) be a rotation and 0y = ds(eq, Req) € [0, 7]
the angle between the d:th unit vector eq € R% and its image Req under R. Then it holds
for all n € S*1

| Rn{a—1) = sin(ds(Rn, eq)) > min{|sin(ds(n, eq) + 0o)|, | sin(ds(n, ea) — 0o)|}-
Note ds(n, eq) = ds(Rn, Req).

Proof. Let n = (n1,...,n4)7 € S¥! and put 0; := ds(n, eq) = arccos((n, eq)) € [0,7]. The

rotation R € O(d,R) can be decomposed in the form R = RRy, with R, Ry, € O(d,R) such
that
) Ry, cos(fp) —sin(fp)
R = ( 1) and Rgo = Id,Q y
sin(6p) cos(6p)

where Ry_1 € O(d — 1,R) is some (d — 1)-dimensional rotation matrix and Iz is the
(d — 2)-dimensional identity matrix. The rotation R leaves |- |4y} invariant, whence

|Rnlj4—1] = |RRgynlja—1] = |Raynl[a—1)-
Using 7y = cos(#;) and |7]|[2d71} =ni+n+...4+n3_, =1-n3 it further follows
| Roonlty_1) = (cos(bo)m — sin(Bo)na)® + 15 + - -+ ng_y

= cos?(Ao)n? + sin®(6) cos®(#1) — 2 cos(By) sin(fy)ny cos(f1) + (1 — 7 — cos?(6y))
=1 — (1 sin(fg) + cos(61) cos(6p))?%.

The last expression is a second-degree polynomial in the variable 7; with a negative leading
coefficient. Since nf <1—n% =1 —cos?(#1) = sin?(6;), the variable 1; can take values only
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in [—sin(61),sin(61)]. The polynomial attains its minimum on this interval at the endpoints.
Hence, we can conclude

\Rgon\%d_l] > min {1 — (esin(6)sin(6p) + cos(#1) cos(6o))?}

ee{-1,1}
= min {1 —cos?(0) —efp)} = mi in®(61 — o) },
i {1 = cos™ (01 —eo)} = min  {sin®(01 —efl)}
which proves the claim. O

7.6.2 Integral Estimates

We start with an estimate which can be used for the generators in (7.4) and allows us to
work in polar coordinates.

Lemma 7.6.3 ([45, Lem. 6.5]). Let the family of functions {gx}rea satisfy

929(©)] < min {1, e+ [1€lal + 15 lelga ) (DN eln) ™ (722)

uniformly for a multi-index p € Ng, and assume that there is a constant C > 0 such that
ty < C for all A € A. Then the following estimate holds true uniformly for A € A and
£ € R?

min {1, £(1 + [¢)}"
(L+0eD™ (1 + 151 Roy Ryl

Note that (7.22) is just the condition (7.5) imposed on the Fourier side on the generating
set of a system of a-molecules.

1(0792) (Ao iy Roy Bipy )| S (7.23)

No*

Proof. We have |Aq 1, &| > min{ty, t§}¢] 2> t5|¢| uniformly for ¢ € R? and A € A, since
5t > 1/C > 0 for every A € A. Tt follows |Aq ¢, Ro, R, &| 2 ta|Ro, Ry, &| = t|€]. Further,
we observe | A, &lg—1) = t1€ljg—1] and [[Aai, Elal = tAl[€]al. Finally, it holds (|£]) =< 1+ €]
and [[¢]a] + |€]jg—1) < [€]- Collecting all of these estimates, one obtains

M
min {1, 5 + |[Aag, Ro, Roy€lal + 17| Aoty Ry R €lla—y |
<|Aa,t/\R9,\R<PA£|>N1<|Aa,tAR9,\Rtp>\£|[d—1]>N2
< min{lvt)\(l + |€|)}M
~ N ey Ne*
(1+tale)™ (1 + £31 Roy R €lia-v))

’ (8pg>\) (Aa,tx RG,\ R@\f) | S;

]
The expression on the right-hand side of (7.23) can further be estimated by the function
min {1, (1 + [¢)}"
(L4 AleDM (1 4+ 67 | Ry Ry (6/1€D)] 1))

As already discussed in Lemma 2.5.4 of Subsection 2.5.2, this function can be separated
into angular and radial components, which allows to treat these parts independently in the
integration later.

eRL (7.24)

SAM NN, () =
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Lemma 7.6.4 ([45, Lem. 6.6]). Assume that ty < C holds for all A\ € A. For every
M, Ny, Ny, K € Ny such that 0 < K < Ny we have with respect to A € A and ¢ € R? the
uniform estimate

min {1, £(1 + ¢)}
(1 +1aeD™ (1 + 181 Ro, Ry €l a1

Proof. The proof is analogous to the proof of Lemma 2.5.4. O

N S OAM-KN K (§)-

Next, we want to estimate the scalar product of two functions of the form (7.24). Before
the actual result, Lemma 7.6.8, we need some preparation. This is the part of the proof of
Theorem 7.2.2 which differs the most from the situation in two dimensions.

As a direct corollary of Lemma 2.5.2, we get the following result.

Lemma 7.6.5 ([45, Lem. 6.7]). Let a > a’ > 0, d € N\{1}, and N > 1. Then we have
uniformly for y € R

/ ol e <a VA +dy)N
R (]_ + a|x‘)N+d72(1 + CL/|£C _ y|>N+d72 ~

Proof. Utilizing Lemma 2.5.2 the result from Grafakos [51][Appendix K.1],

/ dx
R (1 +alz))N (1 +d/|lz — yl)

we can estimate

v < max{a, a'} (1 + min{a,a’}y|) N

/ 2|9 2dx _ a_(d_Q)/ laz|?2dx
R (1 + alz[)N+472(1 + a'|z — y|)N+d-2 R (1 +alz)NHTI=2(1 + o/|z — y[)NH+d=2
< af(de)/ (1 + |az])* 2dx
= & (1 + alz)V+H2(1 + ']z — y[)N -2
dx
< —(d—2)/
=0 k()Y e =y
< a4 max{a, '} (1 + minfa, a'}y) N = o=@V + )N,

We can immediately deduce the following generalization of Lemma 2.5.3.

Corollary 7.6.6 ([45, Cor. 6.8]). Let a > a’ > 0, d € N\{1}, and N > 1. Then we have
uniformly for 6y € R

u |sin?=2(0)| do -N
<a @D+ d|{6 .
/0 (1+ a| sin(0))NH42(1 + /| sin(6 — fo) )N +d-2 ~ (1+aH{oo} )
Proof. Let us call the integral to be estimated S. Since the integrand on the left hand side is
m-periodic, we may change the domain of integration to [—7/2,7/2]. Applying Lemma 2.5.1,
we can further conclude

w/2
10]%-2do

o // (T ) V=2 (1 + o (6 — o) PV
2

—T
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Since [{fo}| < § we can estimate

/ 10]9-2d6
R (1+alf)N+i=2(1 + a0 — ({60} + 0)[)N T2

S <
~ ve{—m,0,7}
We now use Lemma 7.6.5 to estimate this by
SS Y a4} +9) N Sa Y+ d {60} )N,
de{—m,0,7}
O

This result is used to estimate the integral of the angular parts of (7.24) over the sphere
St

Lemma 7.6.7 ([45, Lem. 6.9]). Let a,a’ >0, d € N, d > 2, 65,6, € [0,7] x [-F,Z]973,
©x, o € [0,27] and N > 1. Further, let do denote the standard surface measure on the

sphere S¥=1. We then have the estimate

/ do(n)
si-1 (14 a|Rg, Ry, nlg—11)N t972(1 + a’| Rgy Ry, 1jg—1)) NV T2

< max{a,a'} V(1 + min{a,a'}|[{ds(er, ) }) 7,

_ pT pT _ pT pT
where ey = R% Reked and e, = RWRGMed.

Proof. Note the symmetry of the statement with respect to interchanging the entities a, a’
and A, u. Without loss of generality we can therefore restrict to the case a > a’ > 0.
Since the mapping Ry, R, is an isometry, the integral is equal to

S = / do(n)
si-t (14 alnlig-1)NT42(1 + a'| Rg, Ry, RE R l(g-1)V+972

For the integration we parameterize the sphere S¥~! by standard spherical coordinates, i.e.
coordinates (01,...04_2,¢) € [0,7]972 x [0,27) such that for n € S~!

sin(@q) - sin(fg—2) cos(p)
sin(f1)------ sin(f4-2) sin(y)
(0, ) = sin(fy) - - - sin(04—3) cos(fy—2)

cos(61)

Observe that (n,eq) = cos(61) and thus 0; = ds(n,eq). Also note [n|q_1) = |sin(61)].
Letting 6y := ds(ex,e,) € [0, 7] denote the angle between ey and e, we have the equality
0o = ds(eq, R(;ARWRZ‘LRQTNed). Since RGAR‘P)\RZHRZL € O(d,R) we can apply Lemma 7.6.2
to estimate | Ry, RnguRgthd_”. We obtain

S < /27" /7" /7" Sind72(01) Sindi?’(eg) e sin(&d,g)dﬁldﬁg co.dBg_odp
—Jo 0 o 0 (1 + a\ Sin(91>‘)N+d_2(l +a’ min{] sin(91 + 90)‘, ‘ sin(91 — 90)‘})N+d_2

< /7r sind_2(91) dfq

~ Jo (1+al|sin(6y)])N*+4=2(1 + o’ min{|sin(6; + 6p)|, | sin(6; — 6y)|})N+d—2
™ \sin(&l)\d” doq

/0 (1 + a|sin(01)])N+9=2(1 + o/| sin(f; — €bp)|)N+d—2"

<
ec{—1,1}
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Using Corollary 7.6.6 we finally arrive at S < max{a, a’} =@ (1+min{a,a'}| {60} \)_N. O

With this estimate for the angular components in our toolbox, we proceed to prove the
main result concerning the correlation of functions of the form (7.24). It corresponds to
Lemma 2.5.5.

Lemma 7.6.8 ([45, Lem. 6.10]). Let o € [0,1], d € N\{1}, and M, N1, No € Ny. Further,
let (A, ®y) and (A, ®a) be parametrizations with (xx,ex,ty) = ®Pa(N) and (x,,eu,t,) =
Da(p) for X e A, p e A, such that ty < C and t, < C for a fizred constant C > 0. Then
for A >0 and B > 1 satisfying

d 1+ (d—-1)a

M+d>N > A+

Ny > —, LR S A
L= 2

and Ny > B+d—2

the following estimate holds true with an implicit constant independent of X € A and p € A,

1+(d—1a
(tatu) 2 / SxM,Ny Ny (T) Sy na Ny N, () de

]Rd
oty " -B
< max {tA, M} (1 + max{ty, t,.} " {ds(en, €u)}\) .

Proof. Without loss of generality we subsequently assume ¢) > t,. The strategy is to
separate the integration into an angular and a radial part and estimate these independently.
For the estimate of the angular part we can use Lemma 7.6.7, which yields

(+a(d=1) [ d—1
() 5[ [ Shan s (0.7) Syt 1, do ()i

Sd—1
1+a(d—1)

Sltaty) 2 0@ a1 4 Y dg (e e ) ) S

with a remaining radial integral
o min {1,5(1 4+ )} min {1,¢,(1 + )}
0 (14 tyr)M (1+t,r)M

Note that for the estimate we used the assumptions ty > ¢,, B> 1and No > B+d—2. It
remains to verify the relation (tut,\)(Ha(d*l))ﬁt&l_a)(d_1)t;d -8 < (tu/tr)4, or equivalently

ré=1 dr.

. 4d
S =t

1+a(d—1)
S < (tﬂ At ———
~ t)\

To prove this, we split the integration of § into three parts S1, Sa, S3 corresponding to the
integration ranges 0 <r <1, 1 <r <s,, and s, < r respectively.

0 <r<1: Here we estimate min {1,#5(1 + )} <M1 +r)™ < 2MtM and (14tyr)M >
1, and similarly for the index p. Hence, the integral over this part can be estimated by

Sy < tddiM Lyt gy et < (e e
1 fptx by 0 ~ Uty AN ty )

where the last inequality holds because of the uniform upper bound ¢ty < C for A € A.
Finally observe that the assumed inequalities imply M +d > A + %.
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1<r< t;l We estimate the terms involving u as follows: (1—{—tMT)N1 >land (r+1) <2r.
Hence

min {1,¢,(1+ )} <71 +r)M < (r+ )M < 2M2M

For the terms with \’s, we have (1 + tyr)™ > YN and min {1,£,(1 + )} < 1. The
integral S2 hence satisfies

82<tdt)\N1tM/ P M—Ni+d— ldr<tM+dt Nlt_M Ny _ (ti)M’
15Y

where it was used that M +d > Ny, which implies M +d— N1 —1 > —1, for the integration.
By assumption N1 > A + w, giving the desired result.

t/jl <r We estimate both terms like the M\-terms above to obtain

Sy <t Nlt—Nl/ pA-1=2N g < N NaN —d (t )Nl'
— (5

W

The integral converges since Ny > g. Since N1 > A+ % the proof is finished. [

7.6.3 Cancellation Estimates

Theorem 7.2.2 provides estimates for the scalar products of a-molecules. To derive them
we evaluate these scalar products on the Fourier side, where we can take advantage of
cancellation phenomena. Technically, the method is based on a clever integration by parts
involving the following differential operator, depending on A € A, p € A,

ty?

1+ 5707 {ds(ex, )} 12

Prp =T —t52 A — (ex, V)2, (7.25)

where 1y = max{ty,t,}, Z is the identity operator, V the gradient and A the standard
Laplacian.

Lemma 7.6.9 shows how .%) , acts on products of functions ay, b, which satisfy (7.5).
It corresponds to Lemma 2.5.6.

Lemma 7.6.9 ([45, Lem. 6.11]). Let ay and b, satisfy (7.22) for every multi-index p € N&
with |p|1 < L and assume ty,t, < C. Then we can write the expression

Dy (a)\(Aa,t,\RO)\Rw;f)bu(Aa,tuRG#chug)>
as a finite linear combination of terms of the form

p)\(Aoz,t)\ RGA R(pxg)q”(Acx,tu RQM Rwug)

with functions px, qu, which satisfy (7.22) for all multi-indices p € Nd with |pl; < L — 2.
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Proof. For convenience we introduce the operator Oy := A,;, Ry, Ry, and the operator
O, = Aay, Ry, Ry, Further, we define the functions ax(§) = ax(0x§) and Bﬂ(ﬁ) =
b,(04€). We also abbreviate & := O,¢ and ¢, := O,¢. Taking into account t) < 1,
we observe ||O)|l2w2 = [|Aay, ll2—2 = max{t$, 1y} < t§. Analogously, it holds ||Oyll2—2 =
|Aat, ll2—2 < t;. Finally, we introduce the ‘transfer’ matrix

Ty = Ry, Ry, RL Ry € O(d,R). (7.26)

After these remarks we turn to the proof, where we treat the components of 2 ,
separately.

Z This term causes no pain.

t52*A By the product rule we have

A(axb,) = 2(Vay, Vb,) 4+ ayAb, + b,Aay .
A B

In the following we first treat part A and then part B.

A The chain rule yields Vay(¢) = OI Vay (&) for every ¢ € R? and an analogous formula
for b,. Thus we obtain

(Vax(€), Vbu(€)) = (03 Vax(€r), 0L Vbu(€4)) = (0,05 Vax(€r), Vbu(€)).

The expression (0,01 Vay, Vb,) is a linear combination of the products 9;ad;b,, where
i,j € {1,...,d}, with the entries of the matrix O#Of as coefficients. The functions 0;ay
and 0;b,, clearly satisfy (7.5) for every p € N4 with |p|; < L—1. Moreover, the entries of the
matrix 0,07 are bounded in modulus by [|O,0%|2—,2, which in turn obeys the estimate

10,05 252 = |Aa, TauAaiy 22 < [[Aag, 22/l Aai, 22 S (Euta)® < 3%,

where ¢ty = max{ty,¢,}. This shows that the function ¢, 20 A can be written as claimed.

B Due to symmetry it suffices to treat the term %A&A. Since gu(f) = b, (&) for £ € R?
and since b, fulfills condition (7.5) for every p € Nd with |p|; < L, the function b, is a
suitable first factor with the required properties. Let us investigate the second factor Aay.

The second derivative of @y is at each ¢ € R? a bilinear mapping R? x R? — R, which
by the chain rule satisfies for v, w € R?

ay (&)[v, w] = aX(&x)[Orv, Orw).

Thus, we have the expansion
d

d
Aax(€) =Y aX(&)es e = Z: a5 (€x)[Oxei, Oxe).

i=1
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Let p € Nd be a multi-index with |p|; < L — 2. Then the partial derivative with respect
to p of the function & — ¢, t52%a(£)[Oxes, Oxe;] clearly exists. It remains to prove the
frequency localization (7.5).

In view of 9°(a}) = (8Pay)" we can estimate for every i € {1,...,d} and every ¢ € R?

to 2107 aX (€)[Oxes, Oxeil| < to **[|0°aX (O IOAl5=2 S [[]07aX (©)]]-

The norm of the bilinear mapping is given by [[|07a ()| = supj, jw|=1 [07aX(§)[v, w]|. This
is equal to the spectral norm of the corresponding Hesse matrix. Therefore we can deduce
llora (Il < supjg|, =2 10%9Pay(¢)|. The functions 9°0Pay satisfy (7.5) for every 3 € Nd
with |5]1 = 2 due to the assumption on ay. The required frequency localization follows.

to2(1+ taz(lfa)\ {ds(ex,en)} [2)"Hea, V)2 First we define the numbers wy := t52, wy :=

to 2 {ds(ex, en)} |72, and ws := t5(1+a)] {ds(ex,eu)} | 7! and notice that the pre-factor sat-
isfies

t52(1 + 5 21 {ds (e, e,) } 7)1 < min{wy, wy, ws)}. (7.27)

The first two estimates are obvious. For the third, recall that 1 + ¢> > 2t for all t € R.
Hence,

to2(1+ 152 {ds(en, )} )7 < $t52 (0 T H{ds (e, )} ) 7!
<t {ds(e, e} 71
We begin with the product rule, which yields
(ex, V)2 (@xbu) = byulex, V)%ax + 2({ex, V)an) ({ex, V)by) + aafex, V)2b,.. (7.28)

Recall that ey = REA Rg; eq- We calculate with the chain rule for & € R4

(ex, Var(§)) = (Oxrex, Var(€r)) = (Ao, ed, Var(€r)) = tadaar(6r),
where we used Oxey = Aq 1, eq4. We similarly obtain, with T) , as in (7.26),

<€/\= V%(f)) = <OM6>\7 Vbu(gu» = <A0¢,tuT>\,uedv Vbu(fu»-

Next, we note that (ey, V)2ax(&) = a¥(€)[er,ex]. Together with the chain rule, this
implies

(ex, V)2ax(£) = a5(&0)[Oxer, Oxea] = ai(€x)[Aaty€d: Ay ed) = 1305ax(E)).
We also obtain
(ex, V)2bu (&) = 01(€4)[Open, Oper] = (A, T pea, V)2b,) (€4)-

Let us henceforth use the abbreviation n :=T) ,eq € S%-1. Plugging the above calcula-
tions into (7.28) leads to the following expression for (ey, V)?(axb,)(€) at & € RY

300 (&) - 07ax(Ex) + 2t20aax(€x) - (Aat,, Vbu(En)) + ax(€x) - ((Aat,n, V>2bu)(€u()- |
7.29
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For the first summand of (7.29) we consider the product of the functions t303ay and
b,. Since t%\ < #3 and in view of (7.27) the pre-factor w; is compensated. Due to the
assumptions on ay and b, the product is thus of the desired form.
Let us put nyg_q; = (01, . - ,Ma-1,0)T € R? and nia = (0, .. .,0,174)T € R? and observe
that
A, = Ao, (Ma—1) + May) = tuna—1) + tunq-

The second summand of (7.29) then becomes — up to the factor 2 —

Aaax(éx) - (Exty (ma—11> VOu(§u)) + tatumadabu(Eu))-

We choose the function dja)y as the first factor, which clearly has the required properties,
and the function

§ = ity (Ma—1) V(&) + tatumalaby(§)-

as the second factor. The second component of this function causes no problems because
|ng] < 1 and the pre-factor wy is compensated due to taty < t%. To deal with the other
term, notice that by Lemma 7.6.1 |ny_yj| = |n]ja—1) < |{ds(ex,ey)} |. Thus

taty | (Ma—1), Vou)| S taty] {ds(ex, eu)} [[Vby].

The fact that 9;b,, 7 € {1,...,d}, satisfy (7.5) by assumption, and that txt§|{ds(ex,eu)} |
compensates ws, implies that also the first component satisfies the required properties.

Let us turn to the last summand of (7.29). The first factor ay is of the desired form.
For the second factor we expand the function (Aq,7, V)2b, in the form

tia <77[d—1]7 V>2bu + Qt}ﬁ_and@][d—l]a V>8dbﬂ + tznfl(ﬁb“.

Its partial derivatives of order p € Ng with |pl1 < L—2 clearly exist, and we get the estimate

d-1
(Ao, V)20%bu| S 15 {ds(ex, eu)}* Y 10:0;0°0,
ij=1
+ 25 {ds(ex, €,) IV 0a0°b,| + 120307,
We again used Lemma 7.6.1. This estimate completes the proof, taking into account the

estimate (7.27) of the pre-factor and the fact that the partial derivatives of b, up to order
L satisfy (7.5). O

7.6.4 Actual Proof of Theorem 7.2.2

At last we have all the tools available to prove Theorem 7.2.2. Write Az = z) — z,. An
application of the Plancherel identity yields

<m)\7 p/.t> = <m)\7 ﬁ,u>
1+(d—1)a

= (03T [ a(Auts Roy Ry OB (A, Ro, B, €) exp(~2rilg, Ax) d

for two a-molecules my and p,, with respective generators a) and b,. According to Lemma 7.6.3,
the functions 0ay and 9°b,, satisfy (7.23) for every p € Nd with [p|; < L
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Next, we want to exploit cancellation. For this we utilize the differential operator .2} ,
from (7.25). First, we observe that partial integration yields

<$){Yu exp(—27r1 <€? Ax>)7 a)\(AOé,t)\ RQARQD)\ g)BM(AOz,tH RGH R@u£)>

= < exp(—?m’ <€7 A‘T>)7 g)ﬁ{u (&A (Aaytk RGA R‘ng)BH(A%tu RQM R<Pu€)) >’

since the boundary terms vanish due to the decay properties of the generators and their
derivatives. Note that we assume N; > d/2 and L > 2N. Second, we calculate for £ € R4

—2(1—a)

2,—2 2 N
L0, (exp(=2mi(¢, Ax))) = (1 +An?ty 2| Axf? + Amty “(ex, Az) )
L+t | {ds(ex,en)} |2

-exp(—2mi(€, Ax)).

Consequently, we have

_N
Am?ts 2 (ey, Ax)?
2,-2 2 0 \ex
(mx,pu) = <l—|—47r to “*|Az|® + o - S

1+t 20 {ds(en, e,
with

1+(d—Da R = .
Sap = (taty) T / L (as(Aa gy Roy Ry €)bp(Aay, Rg, By, ) exp(—2mi(€, Ax)) d.
Rd

Since L > 2N by assumption, Lemma 7.6.9 can iteratively be applied N times, and we
conclude that

g){?[u (dA(Aa,tAR9AR@AOB#(A&@R%R%L{))
can be written as a finite linear combination of terms of the form
pA(Aa,tARG/\chAE)qH(Aa,tuRGuchué%

where py and g, satisfy (7.22) (for the multi-index p € N¢ just containing zeros).
Using Lemma 7.6.3 and putting K = 2N +d — 2 < Nj in Lemma 7.6.4 then yields

‘gz\]j[u (&)\ (Aa,t)\ Ry, Ry, £) B# (Aa7tll Rgu R@u 5)) |

S SaM—@N+d=2),Ny 2N +d—2(§) Sy M—(2N+d—2), Ny 2N +d—2(§)-

Due to the assumptions, we can further choose a number N < Nj which satisfies

14+ (d—1)a

(M —(@2N+d—-2)+d>N>N+ 5

(7.30)

Since N < N; we have the estimate S, rr—(aN4d—2),N; 2N4+d—2 < Sn7M7(2N+d72)ﬁ’2N+d72

for n = A, p. Hence, we obtain

1+(d—1)a
’S)\,/J’ S.J (t)\tu) 2 ‘/Rd SA,M*(2N+d72),N1,2N+d*2) (g)Sy,M7(2N+d72),N1,2N+d72(£) d§

1+(d—1)a
S ()™ 2 /Rd MM —(@N-+d—2) N 2n+d—2 ()5 v e pa—2) ¥ anra—o(8) 4€

t t -N —(1l—a —
Smax{—/\ *l;} (1+t0(1 )|{dS(€)\7€M)}|) 2N'
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Here we used (7.30) and Lemma 7.6.8 in the last line (using this S and setting M =
M—-(2N+d—-2),A=Nand B=2N (B>1, A>0since N > 1)).
Altogether, we arrive at the desired estimate

—N
t t -N t*2 e ,Al’ 2
[{(mx, pu)| Smax{ti,ti} <1+t62a!A$I2+ _23 Df x Az) 2)
noA L+t )| {ds(ex, )} ]

(Lt Y {ds(en e )TN

tyn t, N
Smax{—)‘,—“}
£,

—2(1-a) 2 —2a 2 t62<6)\7 A.I>2 -
|1+ tO ‘ {dS<e/\7 6“)} ’ + tO ’AJ)‘ + —2(1—« 9
L+t [{ds(ex, en)} |
-N
S wa(®a(A), @alp) -
For the last estimate observe that the inequality between the arithmetic and the geometric
mean

—2 2
to <€A’Ax> > 2151 |(ex, Az)]

(1415~ {ds(en, e} ) + ——50 >
’ g 14152079 {ds(er, e)} |2

implies
ty2(ex, Ax)?
1+ - 20-a) g 2
+ 15 | {ds(ex,eu)} |
2 2a 2
7<1+t0 |{dS(6)\aeu)}| + iy | Azl )

1+t 207 {ds(en, eu)} 2+t 20| Az +

2
1 “9(1-a t-2(ey, Ax)?
t3 (1 + 150 | {ds(en, eu)} P + _Q(f_of) 2 A7) 2)
1+t [ {ds(ex,en)} |
2 1+ 4570 {ds(en, e0)} P+ 15| Axf? + 15 (e, Az)| = 1+ da (@4 (A), Da(p).
This concludes the proof. ]
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