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Deutsche Zusammenfassung

Waveletsysteme sind heutzutage ein integraler Bestandteil der harmonischen Analysis und
dienen zum Beispiel als effizientes Werkzeug zur Darstellung und Approximation von Si-
gnalen. Ihr großer Erfolg beruht dabei unter anderem auf der Fähigkeit, glatte Signale mit
lokalen Singularitäten besser zu approximieren als es traditionelle Fouriersysteme können.
Bei isotropen Daten, welche insbesondere univariate Signale miteinschließen, ist ihre Per-
formanz bei entsprechender Regularität sogar quasi-optimal.

Für die Approximation multivariater Daten hingegen sind Wavelets im allgemeinen nicht
optimal geeignet. Der Grund hierfür liegt in ihrer isotropen Skalierung, die keine optima-
le Auflösung anisotroper Strukturen erlaubt. Da solche Strukturen für multivariate Daten
jedoch sehr typisch sind – man denke nur an Kanten in Bilddaten zum Beispiel – sind in
den letzten Jahre viele Anstrengungen unternommen worden, um diese Unzulänglichkeit
zu überwinden. Insbesondere wurden viele neuartige sogenannte direktionale Repräsentati-
onssysteme eingeführt, von denen wir als einige der bekanntesten Ridgelets, Curvelets und
Shearlets nennen wollen.

Solche direktionalen Systeme lassen sich anhand der ihnen zugrundeliegenden Skalierung
kategorisieren. Wavelets zum Beispiel sind isotroper Natur, eine rein direktionale Skalierung
findet bei Ridgelets Verwendung, die Konstruktion klassischer Curvelets und Shearlets ba-
siert auf einer parabolischen Skalierung. Eine Vielzahl unterschiedlicher Skalierungstypen
wird durch das Konzept der α-Skalierung abgedeckt, wo mit Hilfe eines Parameters α ∈ [0, 1]
zwischen dem isotropen und dem direktionalen Fall interpoliert wird. Die vorgenannten Sys-
teme zum Beispiel sind α-skaliert mit zugehörigen Parametern α = 1, α = 0 und α = 1

2 .
Das Hauptziel dieser Dissertation besteht darin, eine einheitliche Theorie für derartige

α-skalierte Repräsentationssysteme zu entwickeln. Den grundlegenden Begriff bilden dabei
sogenannte α-Moleküle, die eine Weiterentwicklung des Konzepts der parabolischen Mo-
leküle darstellen. Letztere wurden eingeführt, um eine simultane Behandlung parabolisch
skalierter Systeme zu ermöglichen.

Per Definition entstehen sie durch parabolische Skalierung sowie durch Rotation und
Translation aus einer Menge generierender Funktionen, für die lediglich eine gemeinsame
Zeit-Frequenz-Lokalisierung gefordert wird. Die Bezeichnung „Molekül“ rührt dabei von
der möglichen Variabilität der Generatoren her. Zusammen mit der Verwendung sogenann-
ter Parametrisierungen, welche eine generische Indizierung ermöglichen, bringt diese die
nötige Flexibilität in die Konstruktion, um verschiedenartige parabolisch skalierter Sys-
teme einheitlich zu beschreiben. Tatsächlich ist das Konzept allgemein genug, um sowohl
rotations-basierte als auch scherungs-basierte Systeme wie die klassischen Curvelets und die
klassischen Shearlets zu umfassen.

Nach dem Vorbild parabolischer Molekülsysteme werden auch α-Molekülsysteme mittels
Dilatation, Rotation und Translation aus einer zugrundeliegenden Generatormenge erzeugt,
wobei die Generatoren wieder einer gemeinsamen Zeit-Frequenz-Lokalisierung unterliegen
müssen. Statt einer parabolischen Skalierung wird jedoch eine allgemeinere α-Skalierung
verwendet. Aufgrund dieses Konstruktionsprinzips ist jedem α-Molekül eine bestimmte Ska-
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lierung, eine bestimmte Orientierung und ein bestimmter Ort zugeordnet, und damit ein
Punkt im sogenannten Parameterraum, welcher per Definition alle möglichen Tripel solcher
Parameter umfasst.

Ein zentraler Baustein der Theorie der α-Moleküle ist die Tatsache, dass dieser Para-
meterraum mit einem Distanzbegriff ausgestattet werden kann, so dass ein großer Abstand
zwischen den Parametern einer kleinen Kreuzkorrelation entsprechender α-Moleküle ent-
spricht. Wie wir zeigen können, induziert diese auch Indexabstand genannte Distanz sogar
eine quasi-metrische Struktur auf dem Parameterraum. Auf ihrer Grundlage kann bewiesen
werden, dass α-Molekülsysteme fast orthogonal zueinander stehen, wenn gewisse Konsis-
tenzbedingungen erfüllt sind.

Dieses Resultat wiederum führt zu einem anderen Stützpfeiler der Theorie, dem soge-
nannten Transferprinzip, das besagt, dass α-Molekülframes ein gleichartiges Approxima-
tionsverhalten haben, falls ihre Ordnung genügend groß ist und gewisse Konsistenzbedin-
gungen erfüllt sind. Damit wird ein Transfer von Approximationsresultaten innerhalb des
Framework ermöglicht und damit eine systematische Untersuchung sparser Approximations-
eigenschaften von α-Molekülen. Da dabei auch die Frameeigenschaft der Systeme eine Rolle
spielt, beweisen wir zudem ein Daubechies-artiges Framekriterium, das frühere Kriterien
für Shearlets und Wavelets verallgemeinert.

Als Anwendung des Transferprinzips interessieren wir uns für das Approximationsver-
halten von α-skalierten Systemen im Falle cartoon-artiger Daten. Als konkretes Datenmo-
dell verwenden wir dabei Cβ-Cartoons, also Funktionen welche mit Ausnahme von Cβ-
Unstetigkeitskurven Cβ-glatt sind. Es ist bekannt, dass für solche Daten die maximal er-
reichbare N -Term Approximationsrate von der Ordnung N−β ist. Desweiteren ist bekannt,
dass C2-Cartoons von parabolisch skalierten Systemen, wie zum Beispiel den klassischen
Curvelets und Shearlets, mit einer Rate der Ordnung N−2 quasi-optimal approximiert wer-
den können.

Dieses Resultat wird in dieser Arbeit auf allgemeinere α-skalierte Systeme erweitert. Da-
für untersuchen wir zuerst einen Parsevalframe aus α-Curvelets, der als prototypisches Refe-
renzsystem fungiert. Als negatives Resultat zeigen wir, dass eine Cartoonapproximationsrate
besser als N−1/(1−α) von diesem System nicht erreicht werden kann. Die durch einfaches
Thresholding der Curveletkoeffizienten erreichbare Rate ist sogar durch N−1/ max{α,1−α}

begrenzt. Mit α-Curvelets ist eine optimale Approximation von Cβ-Cartoons also nicht
möglich, wenn β > 2 gilt. Demgegenüber steht das positive Resultat, dass für die Wahl
α = β−1 im Bereich β ∈ (1, 2] quasi-optimale Approximation mit einer Rate der Ord-
nung N−β von α-Curvelets erreicht wird. Über das Transferprinzip können wir schließlich
schlussfolgern, dass diese für α-Curvelets erzielten Ergebnisse auch für eine größere Klasse
von α-Molekülframes Gültigkeit besitzen.

Als weitere Anwendung verwenden wir das Konzept der α-Moleküle in der Theorie
der Funktionenräume, wo es eine einheitliche Behandlung von Curvelet- und Shearleträu-
men ermöglicht. Dazu führen wir mit Hilfe einer kontinuierlichen α-Molekültransformation
Besov-artige Coorbiträume ein, die von gewissen gemischt-normierten Lebesgueräumen auf
dem Transformationsbereich erzeugt werden. Ein Hauptresultat, das als eine kontinuierliche
Variante des Transferprinzips gedeutet werden kann, zeigt, dass diese Coorbiträume über-
einstimmen, falls die Molekülordnung ausreichend hoch ist. Aus allgemeinen Prinzipien der
Coorbittheorie erhalten wir zudem diskrete Charakterisierungen für diese Räume. Insbeson-
dere können wir sie so mit bereits bekannten Curvelet- und Shearleträumen identifizieren.
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Am Ende der Arbeit wenden wir uns noch einer Erweiterung der Theorie auf höhere
Dimensionen zu. Dabei beschränken wir uns auf einige ausgewählte Aspekte, insbesondere
werden die Definition der Indexdistanz und das Transferprinzip verallgemeinert. Als Anwen-
dung untersuchen wir die Approximation von Video-Daten, welche als 3D-cartoon-artige
Funktionen modelliert werden können.
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Abstract

The theory of wavelets constitutes an integral part of modern harmonic analysis with many
theoretical and practical applications. In engineering for example, wavelets are nowadays a
popular tool for the efficient representation and approximation of functions. Much of their
success thereby relies on the fact that they are more suited to represent smooth signals
with singularities than traditional Fourier systems. In fact, for smooth signals with point
singularities wavelet systems perform quasi-optimally with respect to sparse approximation
purposes. This makes them particularly useful for the approximation of 1-dimensional data.

When approximating multivariate data, however, wavelets only show a suboptimal per-
formance if anisotropic features are involved. The reason for this is that wavelets are
inherently isotropic objects and thus not optimally suited for this task. Since in practice
such anisotropic structures are very common, think of images with edges for example, over
the recent years much effort has been invested to deal with this shortcoming. In particular,
this led to the invention of various novel so-called directional representation systems, some
of the most well-known of which are ridgelets, curvelets, and shearlets, to name just a few.

Such directional systems can conveniently be categorized according to the type of scaling
involved in their construction. Wavelets for example are isotropically scaled, the scaling of
ridgelets is purely directional, and the construction of the classic curvelets and shearlets is
based on parabolic scaling. A great variety of different scalings is covered by the concept
of α-scaling, where a parameter α ∈ [0, 1] is used to interpolate between the isotropic case
and the purely directional case. The former systems, for example, are special instances of
α-scaled systems corresponding to the parameters α = 1, α = 0, and α = 1

2 .
The main endeavour of this thesis is to develop a common framework for such α-scaled

representation systems. The basic notion are so-called α-molecules which generalize the
earlier concept of parabolic molecules. Those were introduced to enable a unified treatment
of parabolically scaled systems. By definition, they are obtained via parabolic dilations,
rotations, and translations from a set of generating functions, whereby the generators are
allowed to vary as long as they obey a certain time-frequency localization. This concept
of variable generators explains the terminology ‘molecules’. Together with the utilization
of so-called parametrizations to enable generic indexing, it provides the flexibility to cast
different parabolically scaled systems as instances of one unifying construction principle.

Indeed, the framework of parabolic molecules is general enough to unite rotation-based
and shear-based constructions such as the classic curvelets and the classic shearlets under
one common roof. Recently, this framework has been further generalized to also include
continuous systems. The limitation to parabolic scaling however still excludes systems like
ridgelets and wavelets, as well as hybrid constructions such as α-curvelets and α-shearlets.
This is the motivation behind the generalization to α-molecules.

Like parabolic molecules, systems of α-molecules consist of dilated, rotated, and trans-
lated versions of a set of generators which are merely required to fulfill a common time-
frequency localization. However, instead of parabolic scaling, more general α-scaling is
used. Due to this construction, each α-molecule is associated with a certain scale, a certain
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location, and a certain orientation, and thus determines a point in the parameter space,
which is defined as the space comprising all possible triples of such parameters.

A central building block of the theory of α-molecules is the observation that this pa-
rameter space can be equipped with a notion of distance such that a high distance between
indices corresponds to a low cross-correlation of the respective α-molecules. This so-called
index distance even induces a quasi-metric structure on the parameter space. Based on this
distance, it can be proven that two systems of α-molecules are almost orthogonal, provided
that certain consistency and time-frequency localization conditions are satisfied.

This, in turn, leads to another central result of the theory, the so-called transfer principle,
which states that any two frames of α-molecules, which are consistent in a certain sense
and have sufficiently high order, exhibit the same approximation behavior. It enables the
transfer of approximation results within the framework and thus provides a systematic
way to prove results on sparse approximation for certain model data. Thereby, also the
frame property of the systems comes into play, wherefore we prove a Daubechies-type frame
criterion for α-molecules generalizing earlier criteria for shearlets and wavelets.

As an application of the transfer principle, we explore the approximation performance of
α-scaled representation systems with respect to cartoon-like data. More concretely, as data
classes we consider Cβ-cartoons which are Cβ-smooth functions apart from Cβ-discontinuity
curves. It is known that the best N -term approximation rate achievable for such classes is
of order N−β . It is further known that for C2-cartoons parabolically scaled systems such
as the classic curvelets and shearlets achieve a quasi-optimal rate of order N−2.

In this thesis, we extend this result to more general α-scaled systems. For this, we first
analyze the approximation properties of a prototypical anchor system, where we choose
a discrete Parseval frame of α-curvelets. As a negative result, we will find that a cartoon
approximation rate exceeding N−1/(1−α) is not possible with this system. The maximal rate
obtainable by simply thresholding the curvelet coefficients is even limited to N−1/ max{α,1−α}.
Consequently, an optimal approximation of Cβ-cartoons cannot be achieved if β > 2. On
the positive side, however, we will see that in the range β ∈ (1, 2] and for the choice
α = β−1, which in particular includes the parabolic case, the anchor frame of α-curvelets
indeed provides quasi-optimal approximation with a rate of order N−β . Via the transfer
principle, we finally conclude that these findings for α-curvelets apply to a larger class of
α-molecule frames.

As another application of the concept of α-molecules, we use it in the theory of function
spaces for a unified treatment of curvelet and shearlet smoothness spaces. To this end,
we introduce a continuous α-molecule transform and associated Besov-type coorbit spaces
corresponding to certain mixed-norm Lebesgue spaces on the transform domain. A main
result, which can be interpreted as another manifestation of the transfer principle, shows
that these α-molecule coorbit spaces coincide if the order of the α-molecules is sufficiently
high. Moreover, the abstract machinery of coorbit theory yields discrete characterizations
which allow to identify them with known scales of curvelet and shearlet smoothness spaces.

At the end of the thesis, we turn to an extension of the theory to higher dimensions.
Thereby we focus on some main aspects, in particular the index distance and the transfer
principle are generalized. As an application of the extension, we investigate the approxima-
tion of video data, which can be modelled as 3D-cartoon-like functions.
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Chapter 1

Introduction

Due to the great progress in sensor, computer, and network technology, one is nowadays able
to acquire, collect, store, and process more data than ever before. In many areas of science
and engineering the efficient handling of data and the question of how to extract useful
information from the acquired data have thus become central topics of major importance.

In principle, a larger data pool offers the prospect of capturing more relevant information
leading for example to a better understanding of observed phenomena or an improved
modelling of underlying processes. The collection of large amounts of data thus promises a
great potential for applications. However, in order to realize this potential, the ability to
adequately process the acquired data is essential. Over the recent decades, research in this
direction has therefore attracted much attention.

One area of mathematics which has greatly benefited from this development is the area
of applied harmonic analysis. Rooted in classical Fourier analysis, this field provides many
useful tools for the analysis and the processing of signals. In particular, its great variety of
different representation systems is a great resource.

1.1 Multiscale Analysis

Historically, the development of applied harmonic analysis and in particular the subfield
of multiscale analysis was triggered by the invention of the classic Fourier transform and
related Fourier systems. Those enable a decomposition of a signal into plane wave functions
and thus allow to represent a function in terms of its frequency information (see e.g. [51]).
From a modern viewpoint, this can already be considered as a multiscale approach since
information about higher frequencies can be interpreted as belonging to a higher scale.

A disadvantage of the Fourier transform is the fact that it only provides global informa-
tion on the frequencies occurring in a signal. In order to enable a more localized query of
frequency information, two other classic systems of applied harmonic analysis were devel-
oped, namely Gabor systems (see e.g. [56, 20]) and wavelet systems (see e.g. [31, 97, 114]).

Whereas Gabor systems use a fixed size window for the localization, wavelets use di-
lations across different scales. As a consequence, the spatial resolution of Gabor systems
remains fixed. Wavelets on the other hand have the ability to zoom in on points with rising
scale, at the cost of a deteriorating frequency resolution.

Both systems have had a tremendous impact on the further development of applied
harmonic analysis and are still active areas of research. Due to their distinct characteristics,
Gabor systems are more inclined for the use as a tool in applications where frequencies play
the primary role, as for example in audio analysis, whereas wavelets have had great success
in imaging science or the field of PDEs. Our focus will subsequently be on the wavelet side,
mainly motivated by applications in imaging science.
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1 INTRODUCTION

1.1.1 Wavelets

Wavelet systems are nowadays one of the most widely used systems in applied harmonic
analysis. Some real-world applications are for example the task of image compression (e.g.
JPEG2000 [21]) or the restoration of corrupted image data [7]. In the field of PDEs they
play a central role in solving elliptic equations [22].

The construction of a system of wavelets {ψλ}λ∈Λ in L2(R2) (see e.g. [31, 97, 114])
is based on isotropic dilations and translations of a set of generating functions {ge ∈
L2(R2)}e∈E , where E is some finite index set. With the isotropic scaling matrix

A1,t :=

t 0
0 t


, t > 0,

every wavelet ψλ ∈ L2(R2) can be written in the form

ψλ = tλgeλ
(A1,tλ

· −xλ)

with associated parameters xλ ∈ R2, tλ ∈ R+, and eλ ∈ E. Thereby, the prefactor tλ merely
serves as an L2-normalization constant.

By carefully choosing the generators and the parameters, usually cast in the form of
appropriate admissibility and feasibility conditions, the resulting systems constitute frames
or even orthonormal bases. Depending on the desired application, it is further possible to
realize additional properties such as for example smoothness or compact support conditions.

A primary application of wavelets is the utilization as dictionaries for the representation
and approximation of functions. In fact, their great success – besides the elegant construc-
tion principle and available fast numerical implementations – rests upon their ability to
provide efficient multiscale representations for data that is subject to certain smoothness
assumptions.

For example, there exist wavelet frames in L2(R2) with a quasi-optimal performance
concerning the sparse approximation of functions that are smooth apart from a finite num-
ber of point singularities. In concrete terms, this means that there exist wavelet-based
approximation schemes that deliver for each such signal f ∈ L2(R2) a sequence of N -term
approximants (fN )N∈N such that the order of the decay of the L2-approximation error
∥f − fN |L2∥ is quasi-optimal, in an asymptotic sense. Remarkably, these N -term approx-
imants can even be obtained by a simple nonadaptive thresholding scheme of the wavelet
coefficients.

1.1.2 Cartoon-like Functions

General image data usually do not fulfill as rigid smoothness conditions as assumed in the
previous example. Let us subsequently consider the continuum setting, where an image is
commonly represented as a function in L2(R2) with compact support and values containing
pixel information for the respective positions. Using such a representation, every edge in
the image corresponds to a curvilinear discontinuity in the data. In contrast to point singu-
larities, the approximation performance of wavelets with respect to such line singularities is
not quasi-optimal any more. The isotropy of their scaling prohibits an optimal resolution,
an observation which motivated the search for more efficient ways to approximate image
data.
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1.1 Multiscale Analysis

For such an endeavour it is helpful to, beforehand, precisely specify the type of data un-
der consideration in the form of an appropriate model. With the desire to specifically model
the occurrence of edges in an image, the concept of cartoon-like functions emerged. These
are piecewise smooth functions featuring discontinuities along lower-dimensional manifolds.
Based on such functions, different model classes for image data have been defined, typically
characterized by the regularity of the smooth regions and the separating edges. As exam-
ples, let us mention the classic C2-cartoons [38, 15] featuring C2-regularity of the regions
and the discontinuity curves, or the horizon classes considered in [35, 18, 87].

1.1.3 Cartoon Approximation

With the model of cartoon-like functions at hand, the question of efficient image approx-
imation can be formulated as the task of sparsely approximating cartoon-like functions
f ∈ L2(R2). The aim are approximation schemes with a best possible speed of convergence
of the N -term approximants fN quantified by the asymptotic decay of the L2-approximation
error ∥f − fN |L2∥.

The achievable approximation rate thereby depends on the regularity of the considered
cartoons. Typically, this regularity is determined by the smoothness of both the edge curves
and the regions in between. It was shown in [87, 86] that Cβ-regularity with β > 0 allows for
an asymptotic rate of order N−β . By information theoretic arguments, it is further known
that this rate cannot be surpassed [38], at least in a class-wise sense. Hence, the rate N−β

provides an optimality benchmark for the approximation of Cβ-cartoons. Interestingly, this
benchmark remains the same for the subclass of binary cartoons, where the regions are
assumed to be constant, and it also does not change if one restricts to Cβ-smooth functions
without any edges.

After the realization that wavelet-based approximation methods only provide a sub-
optimal performance for cartoon-like functions, a great amount of energy was devoted to
the effort of constructing dictionaries better-suited for this task. Thereby, the developed
methods can be divided into two categories: adaptive and nonadaptive methods.

Adaptive methods are inherently more flexible than nonadaptive methods and have
the advantage of being more adjustable to the given data. On the downside, their higher
flexibility typically comes at the cost of an increased computational complexity.

Some prominent examples of adaptive methods for cartoon approximation are based
on wedgelet dictionaries [35] and their higher-order relatives, so-called surflets [19, 18].
Those have been shown to reach an optimal rate of order N−β for binary cartoons with
Cβ regularity [16, 17]. Other notable dictionaries used for adaptive approximation include
beamlets [39], platelets [113], and derivatives of wedgelets such as multiwedgelets [91] or
smoothlets [90]. More recently, new adaptive schemes have emerged that use bases, e.g.,
bandelets [87], grouplets [98], and tetrolets [77]. For bandelets, the quasi-optimal approx-
imation of general Cβ-cartoons has been proved in [86], showing that the benchmark rate
of order N−β is achievable, at least when resorting to adaptive approximation schemes.

As already mentioned above, for images that are smooth apart from point singularities,
wavelets can reach a quasi-optimal approximation rate by a nonadaptive scheme, namely
by a simple thresholding of the frame coefficients.

This raises the question if there also exist nonadaptive approximation methods per-
forming quasi-optimally for certain cartoon classes, based on the thresholding of frame
coefficients for example. Since, from an algorithmic perspective, such nonadaptive methods
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tend to be much simpler than adaptive schemes, they promise advantages for the implemen-
tation and lower computational cost. And indeed, the discovery of ridgelets and curvelets
by Candès and Donoho showed that there exist frames with quasi-optimal approximation
performance for certain cartoon classes.

Triggered by the invention of these first so-called directional representation systems,
many novel constructions were introduced in the period that followed.

1.2 Directional Representation Systems

The key idea for the development of directional representation systems is to modify the
original wavelet construction by incorporating some form of anisotropic scaling. Depending
on the utilized type of scaling, this approach leads to many different systems. In the
following we present some of the most prominent examples, but by no means this shall be
a complete overview.

1.2.1 Ridgelets

Let us start with ridgelet systems which have been shown to yield quasi-optimal approxima-
tion [12, 64, 63] for cartoon-like functions if the edges of the cartoons are straight. Thereby
the term ‘ridgelet’ is used for different types of constructions in the literature.

Originally, it was introduced by Candès [8] in 1998 to refer to systems consisting of
translated, rotated, and dilated versions of some underlying ridge function whose profile is
a univariate wavelet. Nowadays, these kind of ridgelets are called ‘pure ridgelets’. They
have been shown to provide quasi-optimal approximation for functions with straight line
singularities in [12].

Since pure ridgelets are not square-integrable, the concept was slightly modified by
Donoho to obtain frames or even bases for L2(R2). In [36] he constructed an orthonormal
basis by allowing the ridgelets a slow decay along the ridge. These so-called ‘orthonormal
ridgelets’ have similar properties as the original pure ridgelets. In particular, they share
the same quasi-optimal approximation properties with respect to straight line singularities.
The close relationship between orthonormal and pure ridgelets has been analyzed in [37].
A good introductory survey on the subject is given in [9].

Another ridgelet construction which coincides with the concept of ‘0-curvelets’ is due to
Grohs [57]. It is a special case of the α-curvelet construction presented in Subsection 3.2.3
which for α = 0 yields purely directionally scaled systems. In essence, those are obtained by
performing rotations, translations, and directional scaling on a generator g ∈ L2(R2) with
corresponding scaling matrix

A0,t :=

t 0
0 1


, t > 0.

In [57, 60] tight ridgelet frames of this type were constructed that also provably provide
quasi-optimal approximation of data with straight line singularities [63, 64].

For general cartoons with curved edges, however, neither of the above ridgelet systems
provide a quasi-optimal performance.
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1.2.2 Curvelets

An important milestone concerning the approximation of cartoon-like functions with curved
edges was the introduction of curvelets by Candès and Donoho [14, 15]. They were intro-
duced in 1999 representing the first frame to reach the optimal approximation order of N−2

for general C2-cartoons [14]. In 2002, a modification of the original system, the so-called sec-
ond generation of curvelets [15], was introduced by the same authors. It is closely related to
the frame of 1

2 -curvelets presented in Subsection 3.2.3 and features the same quasi-optimal
approximation properties as the first generation.

The crucial ingredient in both curvelet constructions, first and second generation, is the
use of parabolic scaling described by a matrix of the form

A 1
2 ,t :=


t 0
0

√
t


, t > 0. (1.1)

This type of scaling can be considered as a compromise between directional scaling as used
for ridgelets and isotropic scaling as used for wavelets. As the following heuristic shows, it
is specifically adapted to the resolution of C2-discontinuity curves.

Locally, at each point p of the discontinuity, such a curve can be parametrized by
(E(x2), x2) with E(0) = 0 = E′(0) using a Cartesian coordinate system (x1, x2) ∈ R2 which
is centered at p and whose x2-axis coincides with the tangent. A Taylor expansion of E
then yields approximately E(x2) ≈ 1

2E
′′(0)x2

2 for small x2 showing that parabolically scaled
functions can optimally align with the discontinuity curve since the size of their essential
support satisfies the relation ‘width ≈ length2’.

It should be mentioned that in the actual construction of the second generation curvelets
the translations and rotations are applied to a set of generators related to each other by a
parabolic scaling law realised not by (1.1) but by dilations with respect to polar coordinates.
This deviation from a strict affine construction allows for a simple realization of the Parseval
frame property. Very similarly, as a special case of a more general α-curvelet construction,
the 1

2 -curvelets from Subsection 3.2.3 are obtained.
Meanwhile, many different variants of curvelet systems are available, among those even

curvelet-like systems with compact support [99]. They cover a wide range of applications,
for example in the field of image and seismic processing [93, 95, 34, 92], as PDE solvers [106],
or in the study of turbulent flows [94]. A more thorough overview is provided in [96].

1.2.3 Shearlets

After the introduction of curvelets, many other systems based on parabolic scaling were
developed. As examples, let us mention contourlets [33] by Do and Vetterli and shearlets
going back to Guo, Kutyniok, Labate, Lim, and Weiss [81, 66]. One motivation behind those
novel constructions was the desire to have systems with similar properties as curvelets but
better suited for digital implementation.

The first shearlet construction was presented in 2005 by Kutyniok, Labate, Lim, and
Weiss in [81]. It was an affine system obtained from a single band-limited generator using
parabolic scaling, shearings, and translations. The novel ingredient and main difference to
the construction of curvelets was that shearings, given by the matrices

Sυ =


1 0
υ 1


and ST

υ =


1 υ
0 1


, υ ∈ R, (1.2)
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and not rotations were used for the change of direction. This modification bears advantages
in a discrete setting, since shearings leave the digital grid invariant, and allows for a unified
treatment of the continuum and digital realm.

A drawback of the use of shearings is that those have an inherent bias towards one distin-
guished coordinate direction. To avoid large shear parameters and thus enable an unbiased
treatment of all coordinate directions, the original shearlet construction was therefore later
modified and so-called cone-adapted shearlet systems were introduced. Those have several
generators with different orientations corresponding to different cones of the frequency do-
main. The first such construction was presented by Guo, Kutyniok, and Labate in [66]. For
more details on this topic we refer to Section 3.3.

Following the initial constructions, also more sophisticated shearlet systems were devel-
oped, such as for example the cone-adapted Parseval frame of well-localized band-limited
shearlets by Guo and Labate [70, 67] or systems of compactly supported shearlets by Kit-
tipoom, Kutyniok, and Lim [76]. Like curvelets, shearlet systems provide quasi-optimal
approximation for C2-cartoons. For the cone-adapted band-limited shearlets this was es-
tablished in [67], for those with compact support in [78].

It should be noted that, as for curvelets, many actual constructions of shearlet systems
are not entirely faithful to the original idea of applying shears and parabolic scalings, using
matrices (1.1) and (1.2), and translations to a finite set of generators. An example is
the above mentioned cone-adapted shearlet system by Guo and Labate [70], where certain
‘boundary’ elements, corresponding to the boundary of the frequency cones, need to be
modified to obtain good spatial localization.

Nowadays, shearlets are widely used directional representation systems with applications
ranging from imaging science [40], simulations of inverse scattering problems [84] to solvers
for transport equations [29]. More information can be found in the book [79].

1.2.4 α-Scaling

Comparing the approximation properties of wavelets, curvelets, shearlets, and ridgelets
reveals a distinct behavior with respect to their ability to resolve edges. Ridgelets are
optimally suited to resolve straight edges, curvelets and shearlets are optimal for C2 line
singularities, and wavelets perform optimal with respect to point singularities. The origin
of this characteristic behavior lies in the different scaling laws underlying the respective
constructions: Isotropic scaling for wavelets, parabolic scaling for curvelets and shearlets,
and directional scaling for ridgelets.

Introducing a parameter α ∈ R and associated α-scaling matrices

Aα,t :=

t 0
0 tα


, t > 0, (1.3)

it is possible to interpolate between these different types of scaling. In particular, one can
construct corresponding α-scaled representation systems, for instance α-curvelets by incor-
porating α-scaling in the classic curvelet construction. The scale of tight frames obtained
in [60] for the range α ∈ [0, 1] constitutes a family of systems which encompass ridgelets
(in the sense of [57]) for α = 0, the classic curvelets for α = 1

2 , and wavelets for α = 1.
Similarly, α-shearlet systems can be defined by modifying the original parabolic shearlet
constructions. They have been examined for example in [73, 83] (for the range α ∈ [1

2 , 1)).
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A natural question concerning such α-scaled representation systems is how their approx-
imation properties are affected by the choice of the parameter α. With regard to cartoon
approximation, this question has been pursued in [60, 102] for α-curvelet frames and in
[73, 83] for α-shearlet frames. In [60, 73, 83] it is shown that, if α ∈ [1

2 , 1) and β = α−1,
simple thresholding of the coefficients yields N -term approximations with an optimal con-
vergence rate of order N−β for Cβ-cartoons. The findings of [102] further extend this
result. There it is shown that the best possible N -term approximation rate achievable for
Cβ-cartoons by α-curvelets with α ∈ [0, 1) is limited to at most N− 1

1−α , independent of the
smoothness β > 0. Moreover, if a simple thresholding scheme is used the achievable rate
cannot even exceed N

− 1
max{α,1−α} .

These results show that for Cβ-cartoons with β ≥ 2 the classic parabolically scaled
curvelets provide the best possible approximation performance among all α-curvelet sys-
tems, at least when restricting to simple thresholding schemes, with an approximation rate
of order N−2. This confirms the special role of parabolic scaling for cartoon approximation.
On the other hand, it becomes clear that the classic curvelets do not take advantage of
cartoon regularity higher than C2 since if β > 2 the obtainable approximation rate remains
below the optimality benchmark of N−β . For different choices of α the rate even deterio-
rates as α tends to 1 or 0. Consequently, α-curvelets cannot provide optimal approximation
for general Cβ-cartoons if β > 2. In fact, up to now, no frame construction is known where
a nonadaptive approximation scheme yields rates better than N−2.

In [102] also the approximation of cartoons featuring only straight edges is considered.
It is shown that by a simple thresholding scheme α-curvelets can reach approximation rates
of order N− min{α−1,β}. Hence, here a smaller α is beneficial and even ensures quasi-optimal
approximation if α ∈ [0, β−1]. This finding generalizes earlier results for ridgelets [63, 64].

1.3 A Common Framework

The directional systems described above are all constructed using the same idea: take a
set of generators and then perform scalings with some degree of anisotropy, changes of
direction using for example rotations or shearings, and finally translations. In addition, in
order to obtain systems with desirable properties, usually some regularity conditions on the
generators are posed. Having this in mind, it seems possible to regard all such systems as
certain instances of a common more general concept.

First developments in this direction were the concepts of curvelet molecules [13] and
shearlet molecules [68], conceived as a means to unify the analysis of curvelet-like and
shearlet-like constructions, respectively. However, those concepts do not bridge the gap
between rotation-based and shear-based constructions and are thus not able to unify those
under one common roof. This was first achieved by the concept of parabolic molecules [62]
using the idea of variable generators and parametrizations.

1.3.1 Parabolic Molecules

The concept of parabolic molecules was introduced in 2011 by Grohs and Kutyniok [62].
It has the ability to unify various parabolically scaled systems under one common roof.
In particular, it allows to derive the classic curvelets and shearlets as special instances of
the same general construction principle, although these specific constructions are rather
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different. Recall that for curvelets the scaling is done by a dilation with respect to polar
coordinates and the orientation is enforced by rotations, whereas shearlets are based on
affine scaling and the directionality is generated by the action of shear matrices.

The basic construction principle of a system of parabolic molecules thereby resembles
that of an ordinary affine construction. Starting from a set of generating functions, the
system elements are obtained by applying parabolic dilations, rotations, and translations.
The essential novelty is that the generators can be chosen freely, apart from a certain time-
frequency localization, and each molecule may thus have its own individual generator. This
‘variability’ of the generating set is the reason for the terminology ‘molecules’ (see also [47],
for instance). Together with the utilization of so-called parametrizations to allow a generic
indexing of the system elements, it provides the flexibility to cast rotation- and shear-based
systems as products of the same underlying construction process. Moreover, as a nice side-
effect, it becomes possible to relax the vanishing moment conditions usually imposed on
the generators to achieve favorable approximation properties. Rather to demand a rigid
condition as in most classic constructions, it suffices to require the moments to vanish
asymptotically at high scales, without changing the asymptotic approximation behavior of
the system.

In essence, the concept of parabolic molecules provides a high level description of
parabolically scaled representation systems based solely on the time-frequency localization
of the system elements. This has the advantage that the associated theory becomes indepen-
dent of the specific constructions, allowing simultaneous investigations for many different
systems. In particular, the theory is well-suited for applications in approximation theory
since it is foremost the time-frequency localization of a system that is responsible for its
approximation properties. As an example application, the theory of parabolic molecules was
used in [62] to show that the classic curvelets and shearlets feature a similar approximation
behavior.

Since nowadays higher dimensional data plays an ever increasing role a first step towards
a theory for higher dimensions was pursued in [44], with an extension of the parabolic
molecule framework from [62] to 3D. In the recent work [75, 61] another extension in a
different direction was pursued. Here the theory of parabolic molecules was generalized
to also include non-discrete systems. The resulting continuous theory is well-suited for
microlocal analysis with applications for example in the theory of function spaces.

1.3.2 α-Molecules

As the name already suggests, the scope of parabolic molecules is limited to parabolically
scaled systems. In this thesis, we will put forward a more general framework which also
includes differently scaled systems such as wavelets and ridgelets, for instance. This becomes
possible by the utilization of α-scaling (1.3), which allows to realize scalings with different
degrees of anisotropy controlled by the parameter α ∈ [0, 1].

The fundamental notion are systems of α-molecules which are obtained similarly as
systems of parabolic molecules. Like those, they consist of dilated, rotated, and translated
versions of a set of generators which are merely required to fulfill a common time-frequency
localization. However, instead of parabolic scaling, more general α-scaling is used. For the
choice α = 1

2 the concept coincides with that of parabolic molecules, choosing α = 0 or
α = 1, for example, ridgelet and wavelet systems can be obtained.

The concept of α-molecules was first introduced in [59] as an extension of the discrete
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theory of parabolic molecules from [62]. In [45] the framework was then further generalized
to arbitrary dimensions d ∈ N with d ≥ 2. In this thesis, we further extend it to a continuous
setting comprising then in particular the notion of continuous parabolic molecules from [75].
The theory presented in this thesis thus essentially builds upon the articles [59, 45, 75]. It is
intended as an abstract tool enabling a unified treatment of a variety of directional multiscale
systems, applicable for instance for the analysis of their approximation properties.

Some features of the theory are listed below.

• In Section 2.2 we prove in Theorem 2.2.2 that α-molecule systems are almost or-
thogonal to each other with respect to a certain distance function on their respective
indices. We further show in Theorem 2.2.12 that this so-called index distance induces
a quasi-metric structure on their common underlying parameter space.

• A Daubechies-type frame criterion for a particular subclass of discrete α-molecule
systems is proved in Section 2.4. As direct corollaries we deduce two concrete frame
criteria for α-curvelet molecules and α-shearlet molecules, in Theorem 3.2.5 and The-
orem 3.3.7, respectively.

• A transfer of approximation results between different α-molecule systems is enabled
by the transfer principle, Theorem 2.3.6 proved in Section 2.3. In Chapters 5 and 6
we apply this result to determine bounds and guarantees for the approximation rates
achievable by α-molecule frames for cartoon-like functions. A multi-dimensional ver-
sion of the transfer principle, Theorem 7.3.2, is proved in Chapter 7.

• The consistency of the α-curvelet and α-shearlet parametrizations, proved in The-
orem 3.4.3 and Corollary 3.4.4, gives an explanation for the similar approximation
properties of curvelet-like and shearlet-like constructions.

• The theory enables a unified structural treatment of coorbit spaces associated with
α-molecule systems. This is the topic of Chapter 4. More information on α-molecule
coorbit spaces and a short recollection of coorbit theory in general is provided in the
next paragraph, Section 1.4.

Other applications, not handled in this thesis, include for example the microlocal anal-
ysis of signals on a generic α-molecule level, as conducted with parabolic molecules in the
article [75]. We further remark that, apart from the analysis aspects of the framework, the
α-molecule concept also promises new design approaches for novel multiscale constructions.

1.4 α-Molecule Coorbit Spaces

The theory of coorbit spaces represents a unifying approach for the abstract description
and investigation of function spaces. Starting in the 1980ies, the foundation of the theory
was laid mainly by Feichtinger and Gröchenig [42, 54, 55]. The underlying idea is to use an
abstract transform, called the voice transform, for the characterization of functions. Given
some function class Y on the associated transform domain, the term coorbit thereby refers
to a retract of Y in some suitable reservoir of signals.

In the original formulation, the voice transform stems from an integrable irreducible
representation of a locally compact group on some Hilbert space H. The classic example of
such a transform is the continuous wavelet transform which is related to the ax+ b-group.
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Associated coorbit spaces are for example the homogeneous scales of the classic Besov and
Triebel-Lizorkin spaces [107, 108, 109]. They correspond to certain mixed-norm Lebesgue
spaces on the wavelet domain and were identified rigorously as coorbits in Ullrich [110].
Further extensions of these spaces were investigated by Lieang et al. [88, 89].

More general wavelet-type coorbit spaces, associated with a semidirect product G =
Rd oH, where the dilation group H is a suitable subgroup of GL(Rd), have been studied in
[48, 49] and could recently be identified with certain decomposition spaces on the Fourier
domain [50]. Those in particular include shearlet coorbit spaces, first studied in [26], which
are associated to the classic shearlet transform and the shearlet group.

Other group-based coorbit spaces, with a voice transform different from the wavelet
transform, are for example modulation spaces [56, 41] related to the Weyl-Heisenberg group
and the short-time Fourier transform or Bergman spaces [42]. Furthermore, the irreducibil-
ity and integrability conditions of the considered group representations have recently been
relaxed [23], allowing for instance to treat Paley-Wiener spaces and spaces related to Shan-
non wavelets and Schrödingerlets as coorbits.

Whereas a group structure in the background is certainly a nice property, it also limits
the reach of the theory. For example, it is not possible to treat the inhomogeneous scales of
Besov-Triebel-Lizorkin spaces within the classic framework. Also shearlet spaces related to
the cone-adapted version of the shearlet transform [79] do not fall into the group setting.

Therefore, in the meantime, many generalizations of the original setup have been pur-
sued. With the aim to treat functions on manifolds, Dahlke, Steidl, and Teschke [27, 28, 24]
replaced the group by a homogeneous space, for example, i.e., a quotient of a group with
a subgroup. A frame-based approach, not relying on an underlying group structure at all,
was developed by Fornasier and Rauhut [46]. Instead of a group representation, the starting
point of this generalized theory is the notion of a continuous Hilbert frame, a notion which
first appeared in [1]. The voice transform is then defined as the associated analysis operator.
Intriguingly, many aspects of the original theory remain valid in this more general setup.
In particular, analoga of the classic discretization results hold true.

To make the frame-based theory more accessible for applications, it was later revised
and extended in [4]. Another expansion was conducted in [111], where the theory was used
to characterize the inhomogeneous versions of the Besov-Triebel-Lizorkin spaces as coorbits
with respect to an inhomogeneous continuous wavelet transform.

Other generalizations of the original theory due to Feichtinger and Gröchenig concern
the requirements imposed on the function class Y on the transform domain X. In the
classic setting, the class Y is required to be a Banach function space. The group-based
theory was then extended in [100] to a more general quasi-Banach setting, utilizing the idea
of Wiener amalgams. In particular, this extension allows for coorbit characterizations of
the homogeneous Besov-Triebel-Lizorkin spaces also in the quasi-Banach range.

Combining the approach in [111] with the idea from [100] leads to a group-less formu-
lation of coorbit theory as presented in [74] which also comprises the quasi-Banach case.
This generalized version of the theory is the foundation for our subsequent definition and
analysis of α-curvelet and α-molecule coorbit spaces in Chapter 4. These spaces are asso-
ciated with a continuous α-curvelet transform, defined as a generalization of the parabolic
curvelet transform from [11], and a more general continuous α-molecule transform, respec-
tively, whereby both of which are not naturally related to any group structure. A group-less
formulation of coorbit theory is therefore a prerequisite for their definition.
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1.5 Outline

Since the continuous α-molecule transform in particular generalizes the cone-adapted
version of the continuous α-shearlet transform, α-molecule coorbit spaces enable a unified
description of curvelet and shearlet smoothness spaces. Thereby the latter, building on the
concept of decomposition spaces [6], have been defined well before the coorbit descriptions
given in this thesis, see e.g. [85]. Representing an alternative approach for the definition and
investigation of function spaces, decomposition spaces have a close relationship to coorbit
spaces. In fact, many function spaces can be described in both ways, see e.g. [50]. In
particular, α-curvelet and α-shearlet decomposition spaces coincide with their respective
α-molecule coorbit counterparts.

1.5 Outline

The thesis is organized as follows.
After the introduction in Chapter 1, we begin with the development of the general

theory in Chapter 2. Here we first restrict to a bivariate setting and introduce the notion of
a system of α-molecules in L2(R2). By definition, those are distinguished by their respective
orders and parametrizations, i.e., associated mappings from their index sets into a common
underlying parameter space. As the theory will show, for many investigations the knowledge
of these characteristic parameters is sufficient information.

The parameter space is then equipped with a quasi-metric structure induced by an
α-scaled index distance, which is closely related to the cross-correlations of α-molecules.
One of the main results, Theorem 2.2.2, states that systems of α-molecules are almost
orthogonal to each other in the sense that cross-correlations are small whenever the index
distance is large. We continue with some deeper investigation of certain subclasses of α-
molecule systems. In Theorem 2.3.6 we derive a sufficient condition for discrete α-molecule
systems to be sparsity equivalent. This condition, which is solely based on the order and
the parametrization of the involved systems, gives rise to the so-called transfer principle
since it enables the transfer of approximation properties within the framework. Finally, in
Theorem 2.4.1 at the end of Chapter 2, we prove a Daubechies-type frame criterion for a
specific subclass of discrete α-molecule systems.

Some concrete examples of α-molecule systems in L2(R2) are presented in Chapter 3.
At first we construct a continuous frame of α-curvelets and verify its frame property and
that it is indeed a system of α-molecules. Then we turn to discrete α-molecule sys-
tems, whereby we distinguish two important subclasses, namely α-curvelet and α-shearlet
molecules. Those are characterized by corresponding classes of parametrizations, called
α-curvelet and α-shearlet parametrizations. As particular instances of these classes, dis-
crete α-curvelet frames and cone-adapted α-shearlets are considered. A main result of this
chapter is Theorem 3.4.3, a direct consequence of which is the fact that the α-curvelet and
α-shearlet parametrizations are consistent with each other. We further show that wavelets
and ridgelets, in the sense of 0-curvelets, fit into the framework.

Chapter 4 is devoted to an application of the concept of α-molecules in the theory of
function spaces. Based on the continuous α-curvelet frame from Chapter 3, we introduce an
associated continuous α-molecule transform and Besov-type coorbit spaces corresponding
to certain mixed-norm Lebesgue spaces on the transform domain. A main result, The-
orem 4.3.8, which can be interpreted as another manifestation of the transfer principle,
shows that these α-molecule coorbit spaces coincide if the order of the α-molecules is suf-
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ficiently high. The discrete characterization of Theorem 4.3.13 further allows to identify
them with known scales of curvelet and shearlet smoothness spaces. Finally, the abstract
machinery of coorbit theory yields two other discretization results, Theorem 4.4.19 and
Theorem 4.4.21.

In Chapters 5 and 6 we turn to another application of the theory. Here we investigate
the approximation performance of α-molecule systems for certain classes of cartoon-like
functions. Whereas Chapter 5 is concerned with bounds on the achievable approximation
rates, the main results being Theorem 5.4.2, Theorem 5.4.4, and Theorem 5.4.6, in Chapter 6
actual guarantees for these rates are established, in Theorem 6.0.1 and Theorem 6.0.2.

An extension of the theory to multi-dimensions d ∈ N\{1} is conducted in the last part of
the thesis, Chapter 7. Both, the notion of α-molecules and the notion of α-shearlet molecules
are transferred to L2(Rd), which requires the parameter space as well as the index distance
to be adapted to d dimensions. As in the bivariate case, systems of such multivariate
α-molecules are almost orthogonal to each other, which is established in Theorem 7.2.2.
Consequently, also a d-dimensional version of the transfer principle, Theorem 7.3.2, holds
true. As an application, we finally investigate the approximation performance of parabolic
molecules in 3D with respect to video data, leading to Theorem 7.5.8.

1.6 Preliminaries: Notation and Conventions

For clarity, let us shortly explain the general notation used throughout the thesis. The
symbols N, N0, Z, R, and C have the standard meaning, i.e., N stands for the natural
numbers, N0 for the natural numbers including 0, Z for the integers, and R and C are the
real numbers and complex numbers, respectively. The strictly positive real numbers are
denoted by R+, i.e., R+ := (0,∞), whereas R+

0 := [0,∞) stands for the ray including 0.
The complex conjugate of a number z ∈ C is denoted by z. For x, y ∈ R we put (x, y)+ :=

max{x, y} and (x)+ := (x, 0)+ = max{x, 0}. Further, the floor and ceiling functions are
defined by ⌊x⌋ := max{n ∈ Z : n ≤ x} and ⌈x⌉ := min{n ∈ Z : n ≥ x}, respectively. A
useful abbreviation is also the ubiquitous ‘analyst’s bracket’ given by ⟨x⟩ :=

√
1 + x2.

For two entities x, y ∈ R, dependent on a certain set of parameters, the notation x . y
shall mean that there exists a constant C > 0 such that x ≤ Cy, uniformly in the parameters.
If the converse inequality holds true, we write x & y and if both inequalities hold we shall
write x ≍ y.

The vector space Rd with d ∈ N is equipped with the usual Euclidean scalar product
denoted by ⟨·, ·⟩. The p-quasi-norm in the range 0 < p ≤ ∞ of a vector x ∈ Rd is denoted
by |x|p. In case of the Euclidean norm |x|2 =


⟨x, x⟩, we will usually omit the subindex.

For the unit sphere {x ∈ Rd : |x| = 1} in Rd the symbol Sd−1 is used. The standard unit
vectors are denoted by e1, . . . , ed, and for a vector x ∈ Rd we use the notation [x]i := ⟨x, ei⟩,
i ∈ {1, . . . , d}, for the i:th component. In Chapter 7, also the short-hand notation |x|[d−1] :=
|([x]1, . . . , [x]d−1, 0)|2 will be useful.

Besides Cartesian coordinates, we will often use polar coordinates for the representation
of a vector x ∈ R2, i.e., a pair (r, φ) ∈ [0,∞) × [0, 2π), where r = |x| is the length of the ray
from the origin (0, 0) to x and φ = φ(x) measures the angle from the x1-axis to this ray, in
a counter-clockwise sense.

The usual Lebesgue spaces on a generic measure space (Ω, µ) are denoted by Lp(Ω) :=
Lp(Ω, µ), where 0 < p ≤ ∞, and the symbol ∥ · |Lp∥ is used for the associated quasi-norms.
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1.6 Preliminaries: Notation and Conventions

The inner product on the Hilbert space L2(Ω) is given by

⟨f, g⟩ :=


Ω
f(x)g(x) dµ(x), f, g ∈ L2(Ω),

whereby the same symbol ⟨·, ·⟩ is used as for the scalar product on Rd. In case Ω = Rd,
we further introduce the space Lloc

p (Rd) consisting of all Lebesgue-measurable functions f
on Rd which satisfy fXK ∈ Lp(Rd) for every compact subset K ⊂ Rd. Thereby XK is the
characteristic function of K, i.e., XK(x) = 1 for x ∈ K and XK(x) = 0 otherwise.

For the Lebesgue sequence spaces, corresponding to a countable index set Λ, we write
ℓp(Λ). The weak versions of these spaces are denoted by ωℓp(Λ) with associated quasi-norms
∥ · ∥ωℓp . Their precise definition is recalled in Subsection 2.3.1.

Next, let us turn to the scale Cβ
loc(Ω), β ∈ [0,∞), of classic smoothness spaces on

some domain Ω ⊆ Rd. For a multi-index m = (m1, . . . ,md) ∈ Nd
0 we first introduce

the notation ∂m := ∂m1
1 · · · ∂md

d , where ∂i is the partial derivative in the i-th coordinate
direction, i ∈ {1, . . . , d}. Then we can define Cβ

loc(Ω) as the space comprising all functions
on Ω which have continuous derivatives up to order ⌊β⌋ such that HölK(∂mf, β− ⌊β⌋) < ∞
for every compact subset K ⊂ Rd and every multi-index m ∈ Nd

0 with |m|1 = ⌊β⌋. Hereby,

HölK(f, γ) := sup
x,y∈K∩Ω

|f(x) − f(y)|
|x− y|γ

is the Hölder constant of a function f : Ω → C with respect to the exponent γ ∈ [0, 1] and
the domain K. We further introduce the Banach space

Cβ(Ω) :=

f ∈ C

⌊β⌋
loc (Ω) : ∥f∥Cβ(Ω) := ∥f∥C⌊β⌋(Ω) +


|m|1=⌊β⌋

Höl(∂mf, β − ⌊β⌋) < ∞

,

where ∥f∥C⌊β⌋(Ω) :=


|m|1≤⌊β⌋ sup
x∈Ω

|∂mf(x)| and Höl(f, γ) := HölRd(f, γ). For convenience,

the space of continuous functions C0(Ω) is often denoted by C(Ω), a notation also used for
continuous functions on general topological spaces Ω. At last, we extend the definition of
Cβ

loc(Ω) and Cβ(Ω) to β = ∞ and let C∞
loc(Ω) :=


β≥0C

β
loc(Ω) and C∞(Ω) :=


β≥0C

β(Ω).
All functions f ∈ Cβ(Rd), β ∈ [0,∞], whose support supp f is a compact subset of Ω are

collected in the space Cβ
0 (Ω) which can be considered as a subspace of Cβ(Ω) by identifying

every f ∈ Cβ
0 (Ω) with its restriction f |Ω. Note that the functions in Cβ

0 (Ω) necessarily
vanish on the boundary ∂Ω. In contrast, the notation Cβ

c (Ω) refers to the larger space of
all compactly supported functions in Cβ(Ω). Thereby the notation Cc(Ω) is again also used
for general topological spaces Ω.

The Schwartz space of rapidly decreasing functions on Rd is denoted by S(Rd). Let us
put xm := xm1

1 · · ·xmd
d for x = (x1, . . . , xd) ∈ Rd and a multi-index m = (m1, . . . ,md) ∈ Nd

0.
Then we have

S(Rd) :=

f ∈ C∞(Rd,C) : |f |κ,ν < ∞ for all (κ, ν) ∈ Nd

0 × Nd
0


with

|f |κ,ν := sup
x∈Rd

ξκ∂νf(ξ)
 , κ, ν ∈ Nd

0. (1.4)
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1 INTRODUCTION

Furthermore, this space is topologized by the locally convex topology induced by the col-
lection of semi-norms in (1.4).

The Fourier transform Ff of a function f ∈ S(Rd) shall be given by

Ff(ξ) :=

Rd
f(x) exp(−2πi⟨ξ, x⟩) dx,

for which we will often use the short-hand notation f = Ff . We further remark that, as
usual, the transform F is extended to the space of tempered distributions S ′(Rd), i.e., the
topological dual of S(Rd).

We finally mention another important transform which we will encounter in Chapter 6.
It is the Radon transform Rf defined via the line integral

Rf(t, η) :=

Lt,η

f ds, (1.5)

whereby (t, η) ∈ R × (−π/2, π/2] and Lt,η :=

(x1, x2) ∈ R2 : sin(η)x1 + cos(η)x2 = t


.

After these preliminaries, we are now ready to turn to the development of the basic
theory of α-molecules in Chapter 2.

14



Chapter 2

Bivariate α-Molecules

In this chapter we lay the foundation for the theory of α-molecules in L2(R2). As already
explained in the introduction, α-molecules are envisioned as a common framework for dif-
ferent directional multi-scale systems, encompassing in particular the classic constructions
of wavelets, ridgelets, curvelets, and shearlets. They are intended as an abstract tool for
the applied harmonic analyst, enabling a simultaneous treatment of such systems and thus
simplifying many considerations.

The subsequent exposition is mainly based on the article [59], some additional results
are presented in Section 2.2 and Section 2.4. Since we also want to investigate continuous α-
molecule systems, especially in Chapter 4, the discrete theory in [59] is further transferred
to a continuous setting. The presentation is then in line with the theory of continuous
parabolic molecules put forward in [75]. Technically, this transfer mainly just requires an
adaption of the formulation, whereas the underlying proofs of the results essentially remain
the same.

The structure of the exposition is as follows. The first section deals with the basic
notions of the theory. Here the general definition of an α-molecule system in L2(R2) of a
certain order is given and the corresponding parameter space, also called the phase space,
together with the concept of parametrizations is introduced.

In the next section, the parameter space is equipped with a natural quasi-metric giving
rise to a notion of distance between α-molecules in phase space. According to Theorem 2.2.2,
whose proof is given at the end of the chapter, this so-called index distance is in correspon-
dence with the size of the cross-correlations of the respective α-molecules, i.e., their scalar
products. This is a central result and will play a pivotal role throughout the whole theory.
The remainder of the section is devoted to a thorough analysis of the induced quasi-metric
structure of the phase space, a notable result being Theorem 2.2.12.

We turn to approximation theoretic considerations in the third section. Based on the
index distance, a notion of consistency of parametrizations is introduced and we prove in
Theorem 2.3.6 that discrete α-molecule frames with consistent parametrizations are sparsity
equivalent if their orders are sufficiently high. In terms of approximation, this means that
the approximation rates can be transferred between such frames, wherefore this result is
also called the transfer principle.

In the fourth section we proceed with a short investigation of frame properties of dis-
crete α-molecule systems. The main result is Theorem 2.4.1, a sufficient frame criterion of
Daubechies-type applicable to a certain class of α-molecule systems.
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2 BIVARIATE α-MOLECULES

2.1 The Concept of α-Molecules in L2(R2)
Modern directional multi-scale systems such as ridgelets, curvelets, and shearlets, have
evolved from classical wavelet systems whose multi-scale structure is solely based on trans-
lations and dilations. With scale and position being the only degrees of freedom of a wavelet,
a suitable wavelet parameter space – for the bivariate case – is given by R2 × R+.

In contrast, directional multi-scale systems possess orientation as an additional parame-
ter. Every element not only corresponds to a certain scale and position, but also to a certain
orientation. This necessitates an appropriate extension of the parameter space. Adding a
new variable corresponding to orientation leads to the following definition.

Note that in contrast to [59, Def. 2.7] we use the full circle of orientations as in [45]. At
this stage, this seems to be the most natural choice.

Definition 2.1.1 (compare [59]). The parameter space P is defined by

P := R2 × T × R+, (2.1)

where here and throughout the thesis R+ := (0,∞) and T := [0, 2π).

This parameter space will also be referred to as phase space. Its points x = (x, η, t) ∈ P
carry information on the scale t ∈ R+, the orientation η ∈ T, and the location x ∈ R2 of
the yet to be defined α-molecules. By convention, the orientation represented by a value
η ∈ T is expressed explicitly by the vector

eη := (cos(η),− sin(η)) = R−1
η e1, (2.2)

where e1 := (1, 0) ∈ R2 is the first unit vector in R2 and Rη denotes the rotation matrix

Rη :=


cos(η) − sin(η)
sin(η) cos(η)


, η ∈ R. (2.3)

In the sequel, the interval T = [0, 2π) will often be identified with the unit sphere S1 ⊂ R2

via the correspondence η →→ eη.
One problem that occurs, when aiming for a common framework able to unify different

directional multi-scale systems, is the fact that the index sets of the various systems usually
differ from each other. However, using P as a common parameter space and the concept of
parametrizations, it is possible to include systems independent of their specific indexing.

Definition 2.1.2 ([59]). A parametrization is a pair (Λ,ΦΛ) consisting of an index set Λ
and a mapping

ΦΛ : Λ → P , λ →→ xλ = (xλ, ηλ, tλ),

which associates to each index λ ∈ Λ a point xλ = (xλ, ηλ, tλ) ∈ P, specifying a scale
tλ ∈ R+, an orientation ηλ ∈ T, and a location xλ ∈ R2.

The general construction of a system of α-molecules shall follow the same principles used
for the construction of a typical directional multi-scale system. Such a system is usually
obtained from a set of generating functions by applying a scaling operation in connection
with certain transformations to adjust the orientation and location of its elements.
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2.1 The Concept of α-Molecules in L2(R2)

The first question that arises is which type of scaling should be used for α-molecules.
Whereas wavelets scale isotropically, curvelets and shearlets are based on parabolic scal-
ing, ridgelets only scale in one coordinate direction. Since the framework of α-molecules
is supposed to be general enough to comprise all these classic systems, different scaling
anisotropies need to be accounted for.

A convenient way to do this is to introduce a parameter α ∈ [0, 1] and associated α-
scaling matrices

Aα,t :=

t 0
0 tα


, t ∈ R+. (2.4)

With these matrices different degrees of anisotropy of the scaling can be realized, ranging
from isotropic scaling for α = 1 to pure directional scaling for α = 0. The parameter α = 1

2
corresponds to parabolic scaling.

The next question concerns the transformations which should be used for the adjustment
of the orientation and location of the α-molecules. Since the envisioned framework is mainly
a theoretical framework, rotations and translations seem to be the most natural choice. Note
however, that in practice – due to numerical and computational advantages – often other
means for the orientation change are used. A prominent example are shearlet systems where
shearings take the place of rotations. Intruigingly, the choice of rotations in the definition
of α-molecules does not confine this concept to rotation-based constructions. In Chapter 3
we will prove for example that shearlets are still included in the framework.

Finally, we come to the main conceptual ingredient for the construction of an α-molecule
system {mλ}λ∈Λ. Since we want to ensure maximal flexibility, we allow the generators to
change with each index λ ∈ Λ, i.e., we employ an associated family {gλ}λ∈Λ of variable
generators which are merely subject to a common time-frequency localization. This local-
ization condition is specified by a set of control parameters (L,M,N1, N2), where L describes
the spatial localization of the generators, M their number of directional almost vanishing
moments, and N1, N2 their smoothness.

It is this construction principle which explains the use of the term ‘molecule’. In the
theory of atomic decompositions (see e.g. [42]), ‘atoms’ usually refer to bounded functions
with compact support and many vanishing moments. Replacing the compact support con-
dition by some weaker decay requirement leads to the notion of a ‘molecule’. Furthermore,
atomic decompositions are typically obtained by transforming a set of fixed generators, re-
sembling the construction of a system of α-molecules. There are also notable differences
however. Whereas the utilized transformations are typically obtained from an underlying
group action, there is no natural group structure related to the parameter space P.

After these explanations, we are ready for the formal definition of a system of α-molecules
{mλ}λ∈Λ. The definition given below corresponds to [59, Def. 2.9], with the difference that
the scale variable t ∈ R+ is inverted, i.e., a small t ∈ R+ now corresponds to a high scale.
By this modification, our exposition is more in line with the continuous setting which has
not been considered before for α-molecules but was already the subject of investigation for
parabolic molecules [75].

As for the notation, we use the so-called analyst’s bracket ⟨x⟩ := (1 + x2)
1
2 defined for

x ∈ R. Further, the notation a . b indicates that the entities a, b satisfy a ≤ Cb for an
implicit constant C > 0, independent of the intrinsic parameters.
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2 BIVARIATE α-MOLECULES

Definition 2.1.3 (compare [59, Def. 2.9]). Let α ∈ [0, 1], and let L,M,N1, N2 ∈ N0 ∪ {∞}.
Further, let (Λ,ΦΛ) be a parametrization where

ΦΛ : Λ → P = R2 × T × R+ , λ →→ (xλ, ηλ, tλ).

A family {mλ}λ∈Λ of functions contained in L2(R2) is called a system of α-molecules of order
(L,M,N1, N2) with respect to the parametrization (Λ,ΦΛ), if its elements can be written as

mλ(·) = t
−(1+α)/2
λ gλ


A−1

α,tλ
Rηλ

(· − xλ)


with generators gλ ∈ L2(R2) satisfying for all ρ ∈ N2
0 with |ρ|1 ≤ L

|∂ρĝλ(ξ)| . min


1, tλ + |ξ1| + t1−α
λ |ξ2|

M
⟨|ξ|⟩−N1 ⟨ξ2⟩−N2 . (2.5)

The implicit constant is required to be uniform over all λ ∈ Λ and ξ = (ξ1, ξ2) ∈ R2. If
a control parameter equals infinity, this means that the respective quantity can be chosen
arbitrarily large in (2.5).

Note that, as desired, the general building principles of a typical directional multi-scale
system are reflected by Definition 2.1.3. Each molecule mλ is obtained from a corresponding
generator gλ by a scaling operation and a subsequent adjustment of orientation and location.
A molecule mλ with phase space coordinates xλ = (xλ, ηλ, tλ) ∈ P corresponds to the scale
tλ ∈ R+ and is located at the point xλ ∈ R2. Its orientation, represented by ηλ ∈ T, is given
by the vector eηλ

= (cos(ηλ),− sin(ηλ)) ∈ R2 as in (2.2).
The uniform time-frequency localization of the generators gλ is specified in (2.5). As a

consequence of this condition, the frequency support of each α-molecule mλ is essentially
contained in a pair of opposite wedges in the frequency domain, whereby the location of
these wedges is determined solely by the scale tλ and the orientation ηλ of the respective
α-molecule.

In order to see this, we use a representation of m̂λ in polar coordinates. Let ξ(r, φ) :=
(r cos(φ), r sin(φ)) for r ≥ 0 and φ ∈ T. Then the function m̂λ can be easily computed to
satisfy

|m̂λ(ξ(r, φ))| . t
(1+α)/2
λ ·min {1, tλ(1 + r)}M ·⟨min{tαλ , tλ}r⟩−N1 ·⟨tαλr sin(φ+ηλ)⟩−N2 . (2.6)

(a) (b) (c) (d)

Figure 2.1: Frequency support of α-molecules (N1 = 2, N2 = 1, M = 3, η = π
4 ) with (a):

t = 1 and α arbitrary, (b): t = 1
6 and α = 1, (c): t = 1

6 and α = 1
2 , (d): t = 1

6 and α = 0.

As an illustration of (2.6), the essential frequency support of several α-molecules with
different phase space coordinates is depicted in Figure 2.1.
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2.2 Metrization of the Parameter Space

On the spatial side, the essential support of mλ can be thought of as being contained in
the rectangle xλ +R−1

ηλ
Aα,tλ

Q of dimensions tλ × tαλ , where Q := [−1, 1]2.
Finally, we remark that the normalization factor occurring in the α-molecule definition

ensures the equality ∥mλ|L2∥ = ∥gλ|L2∥ for all λ ∈ Λ. In combination with condition (2.5),
we can deduce that an α-molecule system of order (L,M,N1, N2) is L2-bounded under the
mild assumption N1 > 1.
Lemma 2.1.4. Let Mα = {mλ}λ∈Λ be a system of α-molecules of order (L,M,N1, N2)
with respect to some arbitrary parametrization (Λ,ΦΛ). If N1 > 1 its elements satisfy

sup
λ∈Λ

∥mλ|L2∥ < ∞.

Proof. Let N1 > 1. Then we have uniformly for all λ ∈ Λ

∥mλ|L2∥2 = ∥gλ|L2∥2 = ∥ĝλ|L2∥2 .

R2

(1 + |ξ|2)−N1 dξ < ∞.

Finally, with a viable notion of α-molecules at hand, we could verify the unifying qualities
of this notion by providing some concrete examples. However, we postpone this investigation
to Chapter 3 and instead proceed with the development of the general theory.

2.2 Metrization of the Parameter Space

Our next goal is to develop appropriate tools enabling the analysis of α-molecule systems on
a generic level. For instance, one might be interested in frame or approximation properties
of such systems, which we will in fact investigate later in Sections 2.3 and 2.4. Also the
properties of associated transforms might be of interest, which will be relevant for us in
Chapter 4.

A fundamental tool for the analysis of function systems in general is given by the so-
called cross-Gramian matrices G[M,M] associated to any two systems M := {mλ}λ∈Λ andM := {m̃µ}µ∈∆ in L2(R2). Their entries are the scalar products ⟨mλ, m̃µ⟩, also called the
cross-correlations, of the individual functions from M and M. Depending on the index sets
Λ and ∆, the cross-Gramian G[M,M] is thus the possibly infinite-dimensional matrix

G[M,M] :=

⟨mλ, m̃µ⟩


λ∈Λ,µ∈∆. (2.7)

In case of a single system, i.e., when M = M, the notation is simplified G[M] := G[M,M]
and we call the matrix G[M] just the Gramian matrix of the system M.

The cross-Gramian matrix (2.7) of two function systems contains essential information
about the mutual relationship of the system elements. A careful analysis enables a compar-
ison of the different systems and can also reveal many inherent properties of the systems
themselves. In particular, cross-Gramians play a pivotal role in frame theory and coorbit
theory for example.

Turning our attention to systems Mα and Mα of α-molecules, a fundamental result will
be the fact that the associated cross-Gramian G[Mα,Mα] can be bounded based solely on the
order and the parametrization of the respective systems. This is shown in Theorem 2.2.2, the
main result of the next subsection. Moreover, it is possible to define a distance function ωα :
P×P → [1,∞) such that for α-molecules mλ ∈ M and m̃µ ∈ M a higher distance ωα(xλ,xµ)
of their respective phase-space coordinates corresponds to a lower cross-correlation.
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2 BIVARIATE α-MOLECULES

2.2.1 The Index Distance ωα

The distance ωα(x,y) between two points x = (x, η, t), y = (y, θ, u) ∈ P must certainly
take into account their spatial, scale, and orientational relations. Hence, we first introduce
a notion of distance on each single component of P = R2 ×T×R+. Later, we will use those
to assemble the desired distance ωα on P.

A canonical choice for the distance between two points x, y ∈ R2 ist the Euclidean
distance |x− y| induced by the Euclidean norm | · |.

On T = [0, 2π), we first define the distance function

dS(η, θ) := arccos(⟨eη, eθ⟩) ∈ [0, π] , η, θ ∈ T, (2.8)

which essentially measures the distance of the associated orientation vectors eη and eθ given
as in (2.2) on the sphere S1. Due to the symmetries of (2.5), the distance dS(η, θ) is then
further projected onto the interval T := [−π/2, π/2). For this we introduce the so-called
projective bracket. With respect to a given half-open interval I ⊂ R of finite length |I| < ∞,
this is the function

{·}I : R → I , η →→ {η}I, (2.9)

which maps a number η ∈ R to the unique element {η}I in the set {η +m|I| : m ∈ Z} ∩ I.
Since we will use this bracket mainly for the interval T = [−π/2, π/2), we further introduce
the abbreviation {·} := {·}T. A suitable measure for the orientational distance is then given
by |{η − θ}| = |{dS(η, θ)}|.

Finally, due to the multiplicative structure of the ray R+, the ratio max {t/u, u/t} is a
natural way to measure the distance between different scales t, u ∈ R+.

Now we are ready to define the α-scaled index distance ωα on P analogous to [59]. It
can be viewed as a natural extension of Hart Smith’s pseudo-distance [104, Def. 2.1].

Definition 2.2.1 (compare [59, Def. 4.1]). Let α ∈ [0, 1]. The α-scaled index distance
ωα : P×P → [1,∞) is defined for two points x = (x, η, t) ∈ P and y = (y, θ, u) ∈ P as

ωα(x,y) := max
 t
u
,
u

t


1 + dα(x,y)


, (2.10)

with dα(x,y) being defined by

dα(x,y) := t−2α
0 |x− y|2 + t

−2(1−α)
0 |{η − θ}|2 + t−2

0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

, (2.11)

where t0 := max{t, u} and eη = R−1
η e1 is the orientation vector from (2.2).

We now come to a core result of the theory of α-molecules, Theorem 2.2.2, which provides
a bound for the cross-Gramian G[Mα,Mα] of two systems of α-molecules Mα = {mλ}λ∈Λ
and Mα = {m̃µ}µ∈∆. It draws a connection between the size of the cross-correlations
⟨mλ, m̃µ⟩, the order of the respective α-molecules mλ and m̃µ, and their positions in phase
space.

Theorem 2.2.2 (compare [59, Thm. 4.2]). Let α ∈ [0, 1], and let {mλ}λ∈Λ and {m̃µ}µ∈∆ be
two systems of α-molecules of order (L,M,N1, N2) with respective parametrizations (Λ,ΦΛ)
and (∆,Φ∆). Further assume that there exists some constant C > 0 such that

tλ, tµ ≤ C for all λ ∈ Λ, µ ∈ ∆, where (xλ, ηλ, tλ) := ΦΛ(λ), (xµ, ηµ, tµ) := Φ∆(µ).
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2.2 Metrization of the Parameter Space

Then, for every positive integer N ∈ N satisfying

L ≥ 2N, M > 3N − 3 − α

2 , N1 ≥ N + 1 + α

2 , N2 ≥ 2N,

there exists a corresponding constant CN > 0 such that

|⟨mλ, m̃µ⟩| ≤ CNωα

ΦΛ(λ),Φ∆(µ)

−N for all λ ∈ Λ, µ ∈ ∆.

Proof. The proof requires some preparation and is therefore outsourced to the appendix,
Section 2.5.

As a consequence of this theorem, under appropriate assumptions on the parametriza-
tions, the cross-Gramian G[Mα,Mα] of two systems of α-molecules Mα = {mλ}λ∈Λ andMα = {m̃µ}µ∈∆ is well-localized in the sense of a fast off-diagonal decay with respect to
the index distance ωα. Put differently, G[Mα,Mα] is then close to a diagonal matrix and
the corresponding systems Mα and Mα are almost orthogonal to each other, a fact which
is sometimes referred to as the ‘almost orthogonality of systems of α-molecules’.

This property has many implications, see for instance [62, 58, 65]. We will use it to
derive Theorem 2.3.6, and Theorems 4.5.5 and 4.5.7.

A simplified version of ωα

The index distance ωα given in Definition 2.2.1 is not the only possible way to introduce a
meaningful distance on P. Another simpler version was put forward in [65] for example. To
distinguish it from the distance ωα, we will subsequently call it the simplified index distance.
Its definition is as follows.

Definition 2.2.3 ([65]). Let α ∈ [0, 1]. The simplified α-scaled index distance ωsim
α :

P×P → [1,∞) is defined for two points x = (x, η, t) ∈ P and y = (y, θ, u) ∈ P as

ωsim
α (x,y) := max

 t
u
,
u

t


1 + dsim

α (x,y)

,

with dsim
α (x,y) given by

dsim
α (x,y) := t

−2(1−α)
0 |{η − θ}|2 + t−2α

0 |x− y|2 + t−1
0 |⟨eη, x− y⟩|,

where t0 = max{t, u} and eη = (cos(η),− sin(η)) = R−1
η e1.

The simplified index distance ωsim
α shares many properties with the distance ωα. In

particular, Theorem 2.2.2 still holds true, which is a consequence of the following lemma.

Lemma 2.2.4. We have uniformly for all x,y ∈ P

dsim
α (x,y) . dα(x,y) and ωsim

α (x,y) . ωα(x,y).

Proof. Using the inequality of the arithmetic and geometric means, we obtain

t−1
0 |⟨eη, x− y⟩| =


1 + t

−2(1−α)
0 |{η − θ}|2

 t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

1/2

≤ 1
2


1 + t

−2(1−α)
0 |{η − θ}|2 + t−2

0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2


.
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This establishes

dsim
α (x,y) ≤ 3

2dα(x,y) and in turn also ωsim
α (x,y) ≤ 3

2ωα(x,y).

Due to the previous lemma, we have for arbitrary N ∈ N and every x,y ∈ P

ωα(x,y)−N . ωsim
α (x,y)−N .

Hence, Theorem 2.2.2 still holds true for ωsim
α . Let us record this observation.

Remark 2.2.5. Theorem 2.2.2 still holds true if ωα is replaced by ωsim
α .

Clearly, a suitable index distance shall mirror the decay of the cross-Gramian as closely
as possible. Unfortunately, as a trade-off for its simplicity, the distance ωsim

α is weaker than
ωα since the opposite estimates dα(x,y) . dsim

α (x,y) and ωα(x,y) . ωsim
α (x,y) do not hold

true. Therefore, we prefer ωα. However, let us mention that in other publications ωsim
α has

been used, e.g. in [65].

2.2.2 Metric Properties of ωα

Recalling Definition 2.2.1, we next observe that due to {η − θ} = {{η} − {θ}} the distance
ωα(x,y) between two points x = (x, η, t) and y = (y, θ, u) ∈ P only depends on the values
{η} and {θ}. Hence it makes sense to define the reduced parameter space below.

Definition 2.2.6. The reduced parameter space P is defined by

P := R2 × T × R+,

where here and throughout the thesis T := [−π/2, π/2).

The parameter space P is mapped onto the reduced space P via the canonical projection

p : P → P , (x, η, t) →→ (x.{η}, t), (2.12)

where {·} = {·}T : T → T denotes the projective bracket introduced in (2.9). This projec-
tion also induces an equivalence relation x ∼p y on P. Each point x = (x, η, t) ∈ P belongs
to an equivalence class [x]p := p−1(p(x)) consisting precisely of two points, namely

[x]p =

x, η, t


,

x, (η + π)2π, t


, (2.13)

where here the short-hand notation (η + π)2π := (η + π) mod 2π is used.
Since ωα(x,y) = ωα(x̃, ỹ) for points x,y, x̃, ỹ ∈ P whenever x ∼p x̃ and y ∼p ỹ, the

index distance ωα from Definition 2.2.1 gives rise to a distance on P, for which we will use
the same notation. It will always be clear from the context, which distance we refer to.
The main result of this subsection will be that the induced distance ωα is a multiplicative
quasi-metric on P, a notion made precise by the following definition.

Definition 2.2.7. A multiplicative quasi-metric on P is a function ω : P × P → [1,∞)
which satisfies the following three axioms, where x,y, z ∈ P are arbitrary:
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(Q̃1) ω(x,y) = 1 ⇔ x = y,

(Q̃2) ω(x,y) ≤

ω(y,x)

CS for some constant CS ≥ 1,

(Q̃3) ω(x,y) ≤

ω(x, z)ω(z,y)

CT for some constant CT ≥ 1.

The axioms (Q̃1)-(Q̃3) basically state that ω is – in a multiplicative sense – positive
definite, quasi-symmetric, and satisfies a quasi-triangle inequality. An associated additive
quasi-metric is obtained by taking the logarithm of ω, see Definition 2.2.13 in the next
subsection.

We call two multiplicative quasi-metrics ω : P × P → [1,∞) and ω̃ : P × P → [1,∞)
Lipschitz equivalent in multiplicative sense if there exists a constant C ≥ 1 such that

ω(x,y)
1/C ≤ ω̃(x,y) ≤


ω(x,y)

C for all x,y ∈ P.

They are called Lipschitz equivalent in additive sense if there exists a constant C ≥ 1 with

1
C
ω(x,y) ≤ ω̃(x,y) ≤ Cω(x,y) for all x,y ∈ P.

In the sequel, we will prove that the reduced distance ωα on P satisfies the axioms
(Q̃1)-(Q̃3) of a multiplicative quasi-metric with constants CS = 3 and CT = 6. This will be
stated in Theorem 2.2.12 whose proof requires some preparation.

Let us first look at the axiom (Q̃1). As follows directly from Definition 2.2.1, the index
distance ωα satisfies the relation

ωα(x,y) = 1 ⇔ x ∼p y. (2.14)

Property (Q̃1) of the induced distance ωα on T is thus evident.
Concerning the axioms (Q̃2) and (Q̃3), it is more convenient to investigate those prop-

erties of ωα directly on P. Our investigation will show that ωα : P×P → [1,∞) satisfies

ωα(x,y) ≤

ωα(y,x)

CS and ωα(x,y) ≤

ωα(x, z)ωα(z,y)

CT (2.15)

with constants CS , CT ≥ 1 independent of x,y ∈ P. As a consequence, (Q̃2) and (Q̃3) then
clearly also hold true for the induced distance ωα : T × T → [1,∞).

Our investigation will further establish that for all x,y ∈ P

ωα(x,y) ≤ CSωα(y,x) and ωα(x,y) ≤ CTωα(x, z)ωα(z,y), (2.16)

a property which has also been proved for the simplified distance ωsim
α in [65].

In our investigation of (2.15) and (2.16), let us first focus on the symmetry properties.
We note that the last term on the right-hand side of (2.11) prevents the index distance ωα

from being symmetric. This is somewhat unsatisfactory since, in view of Theorem 2.2.2 and
the symmetry of the Gramian, a symmetric version of ωα seems more appropriate.

It is possible however to symmetrize ωα by adding a fourth term in (2.11). We define
for x = (x, η, t),y = (y, θ, u) ∈ P

dsym
α (x,y) := dα(x,y) + t−2

0 |⟨eθ, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

,
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where t0 := max{t, u} and eθ = R−1
θ e1. The resulting symmetric distance

ωsym
α (x,y) := max

 t
u
,
u

t


1 + dsym

α (x,y)


then still satisfies Theorem 2.2.2, which is due to the symmetry of the Gramian. Even more,
since ωα ≤ ωsym

α , the symmetric distance ωsym
α is at least as strong as ωα and thus even

seems to strengthen the statement of this theorem. However, as we will see below, ωsym
α is

in fact Lipschitz equivalent to ωα and can thus be considered as just another version of ωα.
Due to its more complicated structure, we prefer the distance ωα.

Also other modifications of the index distance ωα are possible. For example, the defini-
tion of ωα is rather robust with respect to perturbations of eη. To see this, let us define the
subset Vη(θ) of the sphere S1 ⊂ R2, depending on η, θ ∈ T, by

Vη(θ) :=

e ∈ S1 : |⟨eη, e⟩| ≥ |⟨eη, eθ⟩|


,

where eη and eθ denote the orientation vectors from (2.2). Further, let us assign unit vectors
e(x,y) ∈ Vη(θ) to all pairs (x,y) ∈ P×P and then modify the definition of the distance ωα

by replacing the term dα(x,y) in (2.10) with the expression

d̃α(x,y) := t
−2(1−α)
0 |{η − θ}|2 + t−2α

0 |x− y|2 + t−2
0 |⟨e(x,y), x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

. (2.17)

This gives rise to a new index distance ω̃α on P of the form

ω̃α(x,y) := max
 t
u
,
u

t


1 + d̃α(x,y)


. (2.18)

As a consequence of the following lemma, like ωsym
α , the new distance ω̃α is Lipschitz

equivalent to ωα, both in additive and multiplicative sense. Hence, yet again, in essence the
distance ω̃α is just another version of the original distance ωα.

Lemma 2.2.8. With dα and ωα given as in Definition 2.2.1 and d̃α and ω̃α given as in
(2.17) and (2.18), it holds uniformly for all points x,y ∈ P

1
3dα(x,y) ≤ d̃α(x,y) ≤ 3dα(x,y) and 1

3ωα(x,y) ≤ ω̃α(x,y) ≤ 3ωα(x,y).

Furthermore, for all x,y ∈ P
ωα(x,y)

1/3 ≤ ω̃α(x,y) ≤

ωα(x,y)

3
.

Proof. Assume first that e ∈ Vη(θ) is such that ⟨e, eη⟩ ≥ |⟨eη, eθ⟩|. Then

|e− eη|2 = 2 − 2⟨e, eη⟩ ≤ 2 − 2|⟨eη, eθ⟩| = min{|eη − eθ|2, |eη + eθ|2},

and hence
|e− eη| ≤ min{|eη − eθ|, |eη + eθ|} ≤ |{η − θ}|.

It follows

t−2
0 |⟨e− eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ t
−2(1−α)
0 |{η − θ}|2

1 + t
−2(1−α)
0 |{η − θ}|2

t−2α
0 |x− y|2 ≤ t−2α

0 |x− y|2.
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2.2 Metrization of the Parameter Space

We conclude, now for arbitrary e ∈ Vη(θ),

t−2
0 |⟨e, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2


t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

+ t−2α
0 |x− y|2


, (2.19)

and analogously

t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2
 t−2

0 |⟨e, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

+ t−2α
0 |x− y|2


.

This proves

d̃α(x,y) ≤ 3dα(x,y) and dα(x,y) ≤ 3d̃α(x,y),

and in turn also

ω̃α(x,y) ≤ 3ωα(x,y) and ωα(x,y) ≤ 3ω̃α(x,y).

Further, we deduce

ωα(x,y) = max
 t
u
,
u

t


1 + dα(x,y)


≤ max

 t
u
,
u

t


1 + 3d̃α(x,y)


≤ max

 t
u
,
u

t

3
1 + d̃α(x,y)

3 =

ω̃α(x,y)

3
.

The other direction ω̃α(x,y) ≤

ωα(x,y)

3 follows analogously.

As a direct corollary of Lemma 2.2.8, we can now deduce the additive and multiplicative
quasi-symmetry of ωα.

Corollary 2.2.9. The index distance ωα : P×P → [1,∞) is quasi-symmetric, both in an
additive and multiplicative sense, with associated quasi-symmetry constant CS = 3.

Proof. Let ω̃α(x,y) be defined as in (2.18) and choose e(x,y) := eθ in (2.17) for all
x = (x, η, t) ∈ P and y = (y, θ, u) ∈ P. Since eθ ∈ Vη(θ) holds true for all η, θ ∈ T,
Lemma 2.2.8 can be applied, showing that ω̃α is Lipschitz equivalent to ωα, both in addi-
tive and multiplicative sense. The observation ω̃α(x,y) = ωα(y,x) finishes the proof.

With Lemma 2.2.8 as a tool, we can also show that the symmetric distance ωsym
α is

additively and multiplicatively Lipschitz equivalent to ωα. Clearly, for all x,y ∈ P

dα(x,y) ≤ dsym
α (x,y) ≤ dα(x,y) + dα(y,x) ≤ 4dα(x,y).

From this we get

ωα(x,y) ≤ ωsym
α (x,y) ≤ ωα(x,y) + ωα(y,x) ≤ 4ωα(x,y)

and
ωα(x,y) ≤ ωsym

α (x,y) ≤

ωα(x,y)

4
.
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Finally, let us remark that Lemma 2.2.8 can also be used to obtain another symmetric
variant of ωα. To this end, we define the unit vectors eη,θ ∈ S1 ‘in the middle’ of eη and eθ

as follows

eη,θ :=


|eη + eθ|−1(eη + eθ) , ⟨eη, eθ⟩ ≥ 0 ,
|eη − eθ|−1(eη − eθ) , ⟨eη, eθ⟩ < 0 .

In case eη ̸= ±eθ, the vector eη,θ is the unique unit vector e ∈ S1 characterized by ⟨e, eη⟩ > 0,
⟨e, eθ⟩ > 0, and |⟨e, eη⟩| = |⟨e, eθ⟩|. Since eη,θ = ±eθ,η, choosing e(x,y) := eη,θ in (2.17)
for x = (x, η, t), y = (y, θ, u) ∈ P yields a symmetric index distance ω̃α in (2.18) which is
equivalent to the original distance ωα. Let us record this fact.

Remark 2.2.10. A symmetric version of ω̃α is obtained by choosing e(x,y) = eη,θ in (2.17).

Up to now, we have verified (Q̃1) and studied symmetry properties of ωα, thereby
proving the symmetry relations in (2.15) and (2.16), and as a consequence also axiom (Q̃2).
It remains to prove the triangle inequalities in (2.15) and (2.16), which then also give (Q̃3).
For this we need the following elementary observation.

Lemma 2.2.11. For η, θ, κ ∈ R the following triangle inequality holds true

|{η − θ}| ≤ |{η − κ}| + |{κ− θ}|.

Proof. Let us first assume θ = 0, η, κ ∈ T = [−π/2, π/2). Then indeed |η| ≤ |{η−κ}| + |κ|.
Next, for general η, κ we plug η̃ = η − k1π ∈ T and κ̃ = κ − k2π ∈ T into the former
inequality, where k1, k2 ∈ Z are chosen appropriately. One obtains |{η}| ≤ |{η−κ}| + |{κ}|.
Finally, we substitute η − θ for η and κ− θ for κ, the proof is finished.

Now we are in the position to prove the main result of this subsection.

Theorem 2.2.12. Let α ∈ [0, 1]. The index distance ωα : P×P → [1,∞) introduced in
Definition 2.2.1 satisfies (2.14), (2.15), and (2.16). The quasi-symmetry constant can be
chosen as CS = 3, the quasi-triangle constant as CT = 6. In particular, the induced distance
ωα : P × P → [1,∞) is a multiplicative quasi-metric on P with the same constants.

Proof. Axiom (Q̃1) is clear, the quasi-symmetry with constant CS = 3 was established in
Corollary 2.2.9. To prove the triangle inequalities in (2.15) and (2.16), we take arbitrary
x = (x, η, t),y = (y, θ, u), z = (z, κ, v) ∈ P and abbreviate t0 = max{t, u}, u0 = max{u, v},
v0 = max{v, t}. Our first observation is that for t, u, v ∈ R+

max
 t
u
,
u

t


≤ max

 t
v
,
v

t


max

v
u
,
u

v


. (2.20)

Further, it holds

M(t, u, v) := max


1, v
2

t20


≤ max

 t
u
,
u

t

−1
max

u
v
,
v

u


max

v
t
,
t

v


.

The quasi-triangle inequalities with CT = 6 then follow if we can prove the validity of the
inequality

dα(x,y) ≤ 6M(t, u, v)

dα(x, z) + dα(z,y) + dα(x, z)dα(z,y)


. (2.21)

26



2.2 Metrization of the Parameter Space

Indeed, altogether, (2.20) and (2.21) yield

ωα(x,y) = max
 t
u
,
u

t


1 + dα(x,y)


≤ max

 t
v
,
v

t


max

v
u
,
u

v


1 + 6


dα(x, z) + dα(z,y) + dα(x, z)dα(z,y)


.

From here, one directly obtains

ωα(x,y) ≤

ωα(x, z)ωα(z,y)

6 and ωα(x,y) ≤ 6

ωα(x, z)ωα(z,y)


.

In order to verify (2.21) we treat the different components of dα(x,y) separately. Let
us first record that in the range α ∈ [0, 1] always

t−2α
0 ≤ M(t, u, v)v−2α

0 and t
−2(1−α)
0 ≤ M(t, u, v)v−2(1−α)

0 . (2.22)

Applying the triangle-inequality, M(t, u, v) ≥ 1, and (2.22), yields

t−2α
0 |x− y|2 ≤ 2t−2α

0


|x− z|2 + |z − y|2


≤ 2M(t, u, v)


t−2α
0 |x− z|2 + v−2α

0 |z − y|2

.

(2.23)

Invoking Lemma 2.2.11, we analogously get

t
−2(1−α)
0 |{η − θ}|2 ≤ 2t−2(1−α)

0


|{η − κ}|2 + |{κ− θ}|2


≤ 2M(t, u, v)


t
−2(1−α)
0 |{η − κ}|2 + v

−2(1−α)
0 |{κ− θ}|2


.

(2.24)

To bound the last term of dα(x,y), we choose the sign of ẽκ := ±eκ in such a way that
⟨eη, ẽκ⟩ ≥ 0 and then expand

⟨eη, x− y⟩ = ⟨eη, x− z⟩ + ⟨ẽκ, z − y⟩ + ⟨eη − ẽκ, z − y⟩.

This leads to the estimate

|⟨eη, x− y⟩|2 ≤ 3

|⟨eη, x− z⟩|2 + |⟨eκ, z − y⟩|2 + |⟨eη − ẽκ, z − y⟩|2


.

With the triangle inequality from Lemma 2.2.11 we deduce
1 + t

−2(1−α)
0 |{η − θ}|2


1 + t

−2(1−α)
0 |{θ − κ}|2


1 + t

−2(1−α)
0 |{η − κ}|2

≥ 1
2 .

We conclude, with the help of (2.22) and M(t, u, v) ≥ 1 in the second step,

t−2
0 |⟨eη, x− z⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2 t
−2
0 |⟨eη, x− z⟩|2(1 + t

−2(1−α)
0 |{θ − κ}|2)

1 + t
−2(1−α)
0 |{η − κ}|2

≤ 2M(t, u, v) t
−2
0 |⟨eη, x− z⟩|2(1 + v

−2(1−α)
0 |{κ− θ}|2)

1 + t
−2(1−α)
0 |{η − κ}|2

.
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Similarly, we first verify

t−2
0 |⟨eκ, z − y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2 t
−2
0 |⟨eκ, z − y⟩|2(1 + t

−2(1−α)
0 |{κ− η}|2)

1 + t
−2(1−α)
0 |{κ− θ}|2

.

Assuming v0 ≤ t0 and using M(t, u, v) ≥ 1 in the second step, we then obtain

t−2
0 |⟨eκ, z − y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2v
−2
0 |⟨eκ, z − y⟩|2(1 + t

−2(1−α)
0 |{η − κ}|2)

1 + v
−2(1−α)
0 |{κ− θ}|2

≤ 2M(t, u, v)v
−2
0 |⟨eκ, z − y⟩|2(1 + t

−2(1−α)
0 |{η − κ}|2)

1 + v
−2(1−α)
0 |{κ− θ}|2

.

If v0 > t0 we argue differently, using t−2
0 ≤ M(t, u, v)v−2

0 in the first step,

t−2
0 |⟨eκ, z − y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2M(t, u, v)v
−2
0 |⟨eκ, z − y⟩|2(1 + t

−2(1−α)
0 |{η − κ}|2)

1 + t
−2(1−α)
0 |{κ− θ}|2

≤ 2M(t, u, v)v
−2
0 |⟨eκ, z − y⟩|2(1 + t

−2(1−α)
0 |{η − κ}|2)

1 + v
−2(1−α)
0 |{κ− θ}|2

.

Finally, we have

t−2
0 |⟨eη − ẽκ, z − y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ M(t, u, v)t−2(1−α)
0 v−2α

0 |{η − κ}|2|z − y|2,

because of

|⟨eη − ẽκ, z − y⟩|2 ≤ |eη − ẽκ|2|z − y|2 ≤ |{η − κ}|2|z − y|2,

where ⟨eη, ẽκ⟩ ≥ 0 was used for the last estimate, and the inequality

t−2
0

1 + t
−2(1−α)
0 |{η − θ}|2

≤ t−2
0 ≤ M(t, u, v)t−2(1−α)

0 v−2α
0 ,

where again (2.22) was used in the last step.
All in all, we arrive at

t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 6M(t, u, v)

t
−2(1−α)
0 v−2α

0 |{η − κ}|2|z − y|2+

+ v−2
0 |⟨eκ, z − y⟩|2t−2(1−α)

0 |{η − κ}|2

1 + v
−2(1−α)
0 |{κ− θ}|2

+ t−2
0 |⟨eη, x− z⟩|2v−2(1−α)

0 |{κ− θ}|2

1 + t
−2(1−α)
0 |{η − κ}|2


.

This bound together with (2.23) and (2.24) establishes (2.21), and the proof is finished.

In this subsection, we have proved that ωα constitutes a multiplicative quasi-metric
on the reduced parameter space P. Further, we have seen that many different equivalent
versions of ωα can be defined, even symmetric ones. For the subsequent theory it does
not matter which version we use, since only the constants would be affected. The reason,
why we stick to the original definition of ωα from Definition 2.2.1 is its simpler structure
compared to the other versions.
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2.2.3 α-Balls

We will now discuss in more detail the quasi-metric structure of P induced by ωα. In
particular, we will investigate the ‘balls’ obtained from ωα. To shift this investigation into
more familiar territory, we first associate to ωα a corresponding additive quasi-metric. The
axioms of this notion are recalled below.

Definition 2.2.13. An additive quasi-metric on P is a function ω : P × P → [0,∞) which
satisfies the following three axioms, where x,y, z ∈ P are arbitrary:

(Q1) ω(x,y) = 0 ⇔ x = y,

(Q2) ω(x,y) ≤ CSω(y,x) for some constant CS ≥ 1,

(Q3) ω(x,y) ≤ CT


ω(x, z) + ω(z,y)


for some constant CT ≥ 1.

Since, according to Theorem 2.2.12, ωα constitutes a multiplicative quasi-metric on P
satisfying the axioms (Q̃1)-(Q̃3) of Definition 2.2.7, clearly the function

ωlog
α (x,y) := log2(ωα(x,y)) = | log2(t/u)| + log2


1 + dα(x,y)


defines an additive quasi-metric on P. We further note that due to (2.15) ωlog

α also fulfills
the axioms (Q2) and (Q3) as a function on P×P.

The quasi-metric ωlog
α gives rise to an associated family of balls in P. The α-balls of

radius τ ≥ 0 are defined by

Bα
τ (x) :=


y ∈ P : ωlog

α (x,y) ≤ τ


=


y ∈ P : ωα(x,y) ≤ 2τ

. (2.25)

Due to the non-symmetry of ωlog
α , there also exist the dual α-balls of radius τ ≥ 0 given by

B′,α
τ (x) :=


y ∈ P : ωlog

α (y,x) ≤ τ


=


y ∈ P : ωα(y,x) ≤ 2τ

.

In general, the dual α-balls B′,α
τ (x) do not coincide with the primal α-balls Bα

τ (x). The
relation between the two types of balls is expressed by the equivalence

y ∈ Bα
τ (x) ⇔ x ∈ B′,α

τ (y).

Subsequently, we will mostly be interested in the primal balls Bα
τ (x), in particular in a

more explicit representation. Clearly, Bα
0 (x) = [x]p for every x ∈ P, where [x]p = p−1p(x)


is the equivalence class (2.13) induced by the canonical projection p : P → P from (2.12).
In case of radii τ > 0, let us consider y = (y, θ, u) ∈ Bα

τ (x) at some fixed position x =
(x, η, t) ∈ P. We then derive the following necessary conditions from the definition of ωα.

First we see that, due to ωα(x,y) ≤ 2τ and 1 + dα(x,y) ≥ 1, we necessarily have

max
 t
u
,
u

t


≤ 2τ or equivalently | log2(t/u)| ≤ τ.

Using α ∈ [0, 1] and 1 ≤ max{t/u, u/t} ≤ 2τ , we also get

t−2(1−α)|{η − θ}|2 ≤ 22τ t
−2(1−α)
0 |{η − θ}|2 ≤ 22τ (2τ − 1) ≤ 24τ − 1.
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2 BIVARIATE α-MOLECULES

Further, we deduce

t−2|⟨e1, Rη(x− y)⟩|2 ≤ 22τ t−2
0 |⟨e1, Rη(x− y)⟩|2 ≤ 23τ (2τ − 1) ≤ 24τ − 1,

where we applied

t−2
0 |⟨eη, x− y⟩|2 ≤ (2τ − 1)(1 + t

−2(1−α)
0 |{η − θ}|2) ≤ 2τ (2τ − 1).

At last, we bound t−2α|⟨e2, Rη(x− y)⟩|2 by

22τ t−2α
0 |⟨e2, Rη(x− y)⟩|2 ≤ 22τ t−2α

0 |x− y|2 ≤ 22τ (2τ − 1) ≤ 24τ − 1.

These estimates motivate the definition of another distance function on P, namely

wα(x,y) := max

t−α|⟨e2, Rη(x− y)⟩|, t−1|⟨e1, Rη(x− y)⟩|, t−(1−α)|{η − θ}|, | log2(t/u)|


.

Further, we introduce corresponding subsets of P, for x = (x, η, t) ∈ P and τ ≥ 0 the sets

V α
τ (x) :=


x+R−1

η Aα,tQ
τ


×

η + t1−αIτ


2π

×

tJτ


, (2.26)

where Qτ := [−τ, τ ]2, Iτ := [−τ, τ ], Jτ := [2−τ , 2τ ], and (·)2π := (·)mod 2π, and collect
these in

Vα
τ := Vα

τ [P] :=

V α

τ (x) : x ∈ P

.

Then, for every x = (x, η, t) ∈ P and τ ≥ 0 we can write

V α
τ


[x]p


:= V α

τ


(x, η, t)


∪ V α

τ


(x, (η + π)2π, t)


=


y ∈ P : wα(x,y) ≤ τ

,

where as above [x]p denotes the equivalence class (2.13).
We will see below that the sets V α

τ


[x]p


are good approximations of the α-balls Bα

τ (x)
as long as the scale parameter remains small. In Chapter 4, where we will only consider
the subspace X = R2 × T × (0, 1] ⊂ P, we can thus use them as convenient substitutes for
Bα

τ (x), which are easier to handle since they can be expressed explicitly by (2.26).
Again, there also exist dual sets which have a slightly more complicated structure. They

are given by

V ′,α
τ (x) :=


y ∈ P : x ∈ V α

τ (y)


=


y = (y, θ, u) ∈ P : y ∈ x+R−1
θ Aα,uQ

τ , θ ∈

η + u1−αIτ


2π
, u ∈ tJτ


.

In the following, we will investigate the relation of the sets V α
τ ([x]p) to the α-balls Bα

τ (x).
As an immediate consequence of the definition of wα, we obtain the lemma below.

Lemma 2.2.14. Let α ∈ [0, 1]. For all x ∈ P and τ ≥ 0

0 ≤ sup
y∈Bα

τ (x)
wα(x,y) ≤


24τ − 1.
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Proof. Let y ∈ Bα
τ (x) for some fixed x ∈ P and τ ≥ 0. Then, according to the estimates

above,

max

t−α|⟨e2, Rη(x− y)⟩|, t−1|⟨e1, Rη(x− y)⟩|, t−(1−α)|{η − θ}|


≤


24τ − 1.

Further, it also holds
| log2(t/u)| ≤ τ ≤


24τ − 1.

Put differently, Lemma 2.2.14 yields the following inclusion, valid for all x ∈ P and
τ ≥ 0,

Bα
τ (x) ⊆ V α√

24τ −1

[x]p


.

To obtain a reverse inclusion, we need the following lemma.

Lemma 2.2.15. Let α ∈ [0, 1]. For all x = (x, η, t) ∈ P and τ ≥ 0

1 ≤ sup
y∈V α

τ (x)
ωα(x,y) ≤ 2τ 1 + 4τ2k(x)2

with a factor k(x) := max{1, t}1−α which is relevant only if t > 1 and α ̸= 1.

Proof. Let y ∈ V α
τ (x) for some fixed x ∈ P and τ ≥ 0. Then we can deduce from (2.26)

that max{t/u, u/t} ≤ 2τ and, with dS(η, θ) given as in (2.8),

dS(η, θ) ≤ τt1−α , |⟨e1, Rη(x− y)⟩| ≤ τt , |⟨e2, Rη(x− y)⟩| ≤ τtα.

Since |{η − θ}| ≤ dS(η, θ) and t0 = max{t, u} ≥ t, this implies

t
−2(1−α)
0 |{η − θ}|2 ≤ τ2.

Further, we get

t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ t−2
0 |⟨e1, Rη(x− y)⟩|2 ≤ τ2.

Finally, we deduce

|x− y|2 = |⟨e1, Rη(x− y)⟩|2 + |⟨e2, Rη(x− y)⟩|2 ≤ τ2(t2 + t2α).

If t ≤ 1, whence t ≤ tα, this leads to

t−2α
0 |x− y|2 ≤ 2t−2α

0 t2ατ2 ≤ 2τ2.

In case t > 1, we have t ≥ tα and obtain

t−2α
0 |x− y|2 ≤ 2t−2α

0 t2τ2 ≤ 2τ2t2(1−α).

Altogether, our estimates prove

ωα(x,y) ≤ 2τ (1 + 2τ2 + 2τ2k(x)2) ≤ 2τ (1 + 4τ2k(x)2)

with k(x) = max{1, t}1−α.
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2 BIVARIATE α-MOLECULES

Note that in the isotropic case, when α = 1, the estimate in Lemma 2.2.15 is uniform in
x ∈ P since k(x) = 1 for all x ∈ P. Unfortunately, in the anisotropic case, the factor k(x)
is relevant and it is not possible to get rid of the dependence on x. However, in Chapter 4,
where we will merely work on the subdomain X = R2 × T × (0, 1] of P, the condition t ≤ 1
will always be satisfied and the factor becomes void.

Together, Lemma 2.2.14 and Lemma 2.2.15 yield the following proposition.

Proposition 2.2.16. Let α ∈ [0, 1]. For all x = (x, η, t) ∈ P and for all τ ≥ 0 it holds

Bα
log2(1+τ2)/4(x) ⊆ V α

τ ([x]p) ⊆ Bα
τ+log2(1+4τ2k(x)2)(x).

with k(x) = max{1, t}1−α.

Proof. This follows from Lemma 2.2.14 and Lemma 2.2.15.

As a consequence of Proposition 2.2.16, the sets V α
τ ([x]p) constitute suitable substitutes

for the corresponding α-balls Bα
τ (x) if t is small. They have the advantage that due to

their explicit form they are more easily accessible. A disadvantage of the sets V α
τ ([x]p)

compared to Bα
τ (x) is, however, that, unlike ωlog

α , the generating distance function wα

is not a quasi-metric in the sense of Definition 2.2.13. At least, we have the properties
listed in Lemma 2.2.17 below, where (i)-(iii) can be interpreted as relaxations of the axioms
(Q1)-(Q3).

Lemma 2.2.17. Let α ∈ [0, 1] and x = (x, η, t) ∈ P be fixed. For τ ≥ 0 define the function
mt(τ) := 2τ (1 + τ max{1, t}2(1−α)). For τ, σ ≥ 0 the following holds:

i) V α
0 (x) =


τ>0 V

α
τ (x) = {x} and V α

τ (x) ⊂ V α
σ (x) if τ < σ.

ii) y ∈ V α
τ (x) ⇒ x ∈ V α

τmt(τ)(y).

iii) y ∈ V α
τ (x) and z ∈ V α

σ (y) ⇒ z ∈ V α
ft(τ,σ)(x) with ft(τ, σ) := τ + σmt(τ).

iv) y ∈ V α
τ (x) and z ∈ V α

σ (x) ⇒ z ∈ V α
gt(τ,σ)(y) with gt(τ, σ) := (τ + σ)mt(τ).

v) x ∈ V α
τ (y) ∩ V α

σ (z) ⇒ z ∈ V α
hu,v(τ,σ)(y) with hu,v(τ, σ) = τ + σmu(τ)mv(σ).

Proof. ad (i): Clear.
ad (ii): If y ∈ V α

τ (x) we have

u/t ∈ Jτ , dS(θ, η) ≤ t1−ατ , y − x ∈ R−1
η Aα,tQ

τ . (2.27)

This implies

t/u ∈ Jτ , dS(η, θ) ≤ u1−ατ̃ , x− y ∈ R−1
θ Aα,uTQ

τ ,

where τ̃ := (t/u)1−ατ and T := T (θ, u, η, t) is the ‘transfer matrix’ given by

T (θ, u, η, t) := A−1
α,uRθR

−1
η Aα,t.

Since τ̃ ≤ 2ττ ≤ τmt(τ) and ∥T (θ, u, η, t)∥∞→∞ = ∥T (η, t, θ, u)−1∥∞→∞ ≤ mt(τ) according
to Lemma 2.2.18 we obtain x ∈ V α

τmt(τ)(y).
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ad (iii): In addition to the assumptions (2.27), we now also have

v/u ∈ Jσ , dS(κ, θ) ≤ u1−ασ , z − y ∈ R−1
θ Aα,uQ

σ.

We deduce

v/t ∈ Jτ+σ , dS(κ, η) ≤ t1−ατ̃ , z − x ∈ R−1
η Aα,t


Qτ + TQσ

with τ̃ = τ + (u/t)1−ασ and the transfer matrix T := T (η, t, θ, u) = A−1
α,tRηR

−1
θ Aα,u. Due

to Lemma 2.2.18 we have ∥T (η, t, θ, u)∥∞→∞ ≤ mt(τ). Further τ̃ ≤ τ + 2τσ ≤ τ + σmt(τ).
ad (iv): In addition to the assumptions (2.27), we now also have

v/t ∈ Jσ , dS(κ, η) ≤ t1−ασ , z − x ∈ R−1
η Aα,tQ

σ.

Hence, we get with τ̃ := τ + σ

v/u ∈ J τ̃ , dS(κ, θ) ≤ t1−ατ̃ , z − y ∈ R−1
θ Aα,uTQ

τ̃ ,

where T := T (θ, u, η, t) = A−1
α,uRθR

−1
η Aα,t is the same transfer matrix as in (ii). We already

know that ∥T (θ, u, η, t)∥∞→∞ ≤ mt(τ) due to Lemma 2.2.18, further τ̃ ≤ (τ + σ)mt(τ).
ad (v): Here, we now have the assumptions t/u ∈ Jτ , t/v ∈ Jσ, dS(η, θ) ≤ u1−ατ ,
dS(η, κ) ≤ v1−ασ, and x− y ∈ R−1

θ Aα,uQ
τ , x− z ∈ R−1

κ Aα,vQ
σ. We deduce

v/u ∈ Jτ+σ , dS(κ, θ) ≤ u1−ατ̃ , z − y ∈ R−1
θ Aα,u


Qτ + TQσ


,

where τ̃ := τ + (v/u)1−ασ and

T := A−1
α,uRθR

−1
κ Aα,v =


A−1

α,uRθR
−1
η Aα,t


A−1

α,tRηR
−1
κ Aα,v


= T (θ, u, η, t)T (η, t, κ, v).

Due to Lemma 2.2.18, we have ∥T (θ, u, η, t)∥∞→∞ ≤ mu(τ) and ∥T (η, t, κ, v)∥∞→∞ =
∥T (κ, v, η, t)−1∥∞→∞ ≤ mv(σ).

In the proof of Lemma 2.2.17 matrices of the form T = T (η, t, θ, u) play an essential
role. Such matrices will also be important later in Subsection 4.3.4. The entries of such
matrices are investigated in the following lemma.

Lemma 2.2.18. Consider the matrix T := T (η, t, θ, u) := A−1
α,tRηR

−1
θ Aα,u with η, θ ∈ T,

t, u ∈ R+, and let

T =:

t11 t12
t21 t22


and T−1 =:


t̃11 t̃12
t̃21 t̃22


.

Let us further assume that for some τ ≥ 0 we have

max{t/u, u/t} ≤ 2τ , dS(η, θ) ≤ t1−ατ.

Then the entries of T and T−1 are uniformly bounded as follows

|t11| ≤ 2τ , |t12| ≤ 2ττ , |t21| ≤ 2ττt2(1−α) , |t22| ≤ 2τ ,

|t̃11| ≤ 2τ , |t̃12| ≤ 2ττ , |t̃21| ≤ 2ττt2(1−α) , |t̃22| ≤ 2τ .

Further, writing mt(τ) := 2τ (1 + τ max{1, t}2(1−α)), this leads to the estimates

∥T∥∞→∞ , ∥T−1∥∞→∞ , ∥T T ∥∞→∞ , ∥T−T ∥∞→∞ ≤ mt(τ).
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Proof. The matrix T has the form

T =

t11 t12
t21 t22


=

ut−1 cos(η − θ) −uαt−1 sin(η − θ)
ut−α sin(η − θ) uαt−α cos(η − θ)


.

To estimate the entries, we use | sin(η − θ)| ≤ min{1, dS(η, θ)} and | cos(η − θ)| ≤ 1. We
obtain

|t11| = |(u/t) cos(η − θ)| ≤ u/t ≤ max{t/u, u/t},
|t22| = |(u/t)α cos(η − θ)| ≤ (u/t)α ≤ max{t/u, u/t}α.

Further,

|t12| = |(uα/t) sin(η − θ)| ≤ (uα/t)dS(η, θ) ≤ (uα/t) max{t, u}1−ατ

= (uα/t)t1−α max{u/t, 1}1−ατ = (u/t)α max{u/t, 1}1−ατ

≤ max{t/u, u/t}τ.

We also get

|t21| = |(u/tα) sin(η − θ)| ≤ (u/tα)dS(η, θ) ≤ (u/tα)t1−ατ

= (u/t)αu1−αt1−ατ = t2(1−α)(u/t)1−α(u/t)ατ

≤ max{t/u, u/t}t2(1−α)τ.

To obtain the results for T−1, we use that T (η, t, θ, u)−1 = T (θ, u, η, t). The estimates
of the entries |t̃11|, |t̃22|, and |t̃12| are then analogous to above. For |t̃21| we get

|t̃21| = |(t/uα) sin(θ − η)| ≤ (t/uα)dS(θ, η) ≤ (t/uα)t1−ατ

= (t/u)αt2(1−α)τ ≤ max{t/u, u/t}αt2(1−α)τ.

We obtain estimates for the row-sum and column-sum norms of T and T−1 directly from
these estimates of the entries. This establishes the result.

At last, we arrive at the following corollary which will be useful in the proof of Lemma 4.3.9.

Corollary 2.2.19. Consider the matrix T := T (η, t, θ, u) := A−1
α,tRηR

−1
θ Aα,u with η, θ ∈ T,

t, u ∈ R+. Assume that for some τ ≥ 0 we have

max{t/u, u/t} ≤ 2τ , dS(η, θ) ≤ min{t, t−1}1−ατ.

Then we have the estimates

∥T∥∞→∞ , ∥T−1∥∞→∞ , ∥T T ∥∞→∞ , ∥T−T ∥∞→∞ ≤ 2τ (1 + τ).

Proof. If t ≤ 1 the statement is a direct consequence of Lemma 2.2.18. In case t > 1, we
define t̃ := t−1 and ũ := u−1 and apply Lemma 2.2.18 to the matrix T (η, t̃, θ, ũ). Since
T (η, t, θ, u) = T (η, t̃, θ, ũ)−T the assertion follows.
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2.2.4 Stability of ωα

An important property of the distance function ωα is its stability with respect to small
perturbations of the indices x,y ∈ P. This is a direct consequence of the triangle-inequality
in (2.16). Since we want to formulate the stability with respect to the sets V α

τ (x) from
(2.26), we first need another auxiliary result which complements Lemma 2.2.15.

Lemma 2.2.20. Let α ∈ [0, 1]. For all x ∈ P and τ ≥ 0

1 ≤ sup
y∈V α

τ (x)
ωα(y,x) ≤ 2τ (1 + 9τ2k(x)2),

where the factor k(x) = max{1, t}1−α is relevant only if t > 1 and α ̸= 1.

Proof. For y ∈ V α
τ (x), as in the proof of Lemma 2.2.15, we have max{t/u, u/t} ≤ 2τ and

|{η − θ}| ≤ τt1−α , |⟨e1, Rη(x− y)⟩| ≤ τt , |⟨e2, Rη(x− y)⟩| ≤ τtα.

Further, we observe that the terms we need to estimate coincide with those in the proof of
Lemma 2.2.15, with the exception of the following term, which is estimated as in (2.19),

t−2
0 |⟨eθ, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

≤ 2


t−2
0 |⟨eη, x− y⟩|2

1 + t
−2(1−α)
0 |{η − θ}|2

+ t−2α
0 |x− y|2


≤ 2τ2 + 4τ2k(x)2.

We obtain

ωα(x,y) ≤ 2τ (1 + 3τ2 + 6τ2k(x)2) ≤ 2τ (1 + 9τ2k(x)2).

Now we can prove that ωα(x,y) is stable with respect to perturbations in both argu-
ments.

Proposition 2.2.21. Let α ∈ [0, 1] and let CT ≥ 1 denote the constant from (2.16). For
τ ≥ 0 and x,y ∈ P we have

C−1
T 2−τ (1 + 9τ2k(y)2)−1ωα(x,y) ≤ inf

z∈V α
τ (y)

ωα(x, z)

≤ sup
z∈V α

τ (y)
ωα(x, z) ≤ CT 2τ (1 + 4τ2k(y)2)ωα(x,y),

C−1
T 2−τ (1 + 4τ2k(x)2)−1ωα(x,y) ≤ inf

z∈V α
τ (x)

ωα(z,y)

≤ sup
z∈V α

τ (x)
ωα(z,y) ≤ CT 2τ (1 + 9τ2k(x)2)ωα(x,y),

where k(x) = max{1, t}1−α and k(y) = max{1, u}1−α.

Proof. Let x = (x, η, t) ∈ X and z ∈ (z, κ, v) ∈ X. As a consequence of the triangle
inequality in (2.16), for every y = (y, θ, u) ∈ X

ωα(x, z) ≤ CTωα(x,y)ωα(y, z).
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Together with Lemma 2.2.15, this yields

sup
z∈V α

τ (y)
ωα(x, z) ≤ CTωα(x,y) sup

z∈V α
τ (y)

ωα(y, z) ≤ CT 2τ (1 + 4τ2k(y)2)ωα(x,y).

The triangle inequality also yields ωα(x,y) ≤ CTωα(x, z)ωα(z,y) which implies

C−1
T ωα(z,y)−1ωα(x,y) ≤ ωα(x, z).

We deduce with Lemma 2.2.20

inf
z∈V α

τ (y)
ωα(x, z) ≥ C−1

T inf
z∈V α

τ (y)


ωα(z,y)−1ωα(x,y)

= C−1
T


sup

z∈V α
τ (y)

ωα(z,y)
−1

ωα(x,y) ≥ C−1
T 2−τ (1 + 9τ2k(y)2)−1ωα(x,y).

Similarly, the second inequality is shown.

We can draw the following conclusion, which will be relevant in Chapter 4.

Corollary 2.2.22. Let C > 0 and τ ≥ 0 be fixed. Then we have

sup
a∈V α

τ (x)
sup

b∈V α
τ (y)

ωα(a,b) . ωα(x,y) . inf
a∈V α

τ (x)
inf

b∈V α
τ (y)

ωα(a,b)

uniformly for all x = (x, η, t) ∈ P and y = (y, θ, u) ∈ P with t, u ≤ C.

2.3 Transfer Principle for Discrete α-Molecule Frames

In this section, we take a first step towards the analysis of approximation properties of α-
molecule systems. Our main result, Theorem 2.3.6 ([59, Thm. 5.6]), will lay the foundation
for a systematic comparison of their approximation performance. It is referred to as the
transfer principle and will later be used in Chapters 5 and 6 to derive approximation rates
of α-molecules for cartoon-like data.

Our subsequent considerations are restricted to discrete systems of α-molecules {mλ}λ∈Λ,
i.e., systems with a countable index set Λ. Further, we require {mλ}λ∈Λ to be a frame, a
notion recalled in the first subsection below. In the context of frame approximation, the
concept of sparsity equivalence from [62, Def. 4.2] is a useful tool. It allows to put the
approximation properties of different frame systems into relation to each other.

As we will see, for frames of α-molecules an analysis of their sparsity equivalence is possi-
ble based solely on the order and the parametrizations of the respective systems. According
to the transfer principle, a sufficiently high order already implies sparsity equivalence if the
parametrizations are consistent in a suitable sense.

2.3.1 Frame Approximation and Sparsity Equivalence

Before turning to α-molecules, let us briefly recall some aspects of approximation theory
in an abstract Hilbert space H with associated scalar product ⟨·, ·⟩. Thereby we assume H
to be separable, which in view of our later application is no restriction. In this setting, we
now first discuss the question of suitable representations of signals f ∈ H.
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2.3 Transfer Principle for Discrete α-Molecule Frames

A standard way is to use the so-called analysis coefficients {⟨f,mλ⟩}λ∈Λ with respect
to some fixed dictionary M := {mλ}λ∈Λ, where the index set Λ can be assumed to be
countable due to the separability of H. In order to obtain a faithful representation for all
signals f ∈ H, the analysis operator of the dictionary, i.e., the mapping f →→ {⟨f,mλ⟩}λ∈Λ,
needs to be injective. This is the case precisely if span{mλ}λ∈Λ = H, which can therefore
be considered as a minimal assumption for a suitable dictionary M.

A particular useful class of dictionaries are so-called frame systems (see e.g. [20]). These
are systems, where the analysis operator is an injective linear map from H to ℓ2(Λ) and
where in addition it is bounded from above and below. Frames thus not only ensure faithful
representation of the signals but also a stable measurement of the coefficients and a stable
reconstruction. They are characterized by the property that there exist constants 0 < A ≤
B < ∞, called the frame bounds, such that

A∥f∥2 ≤

λ∈Λ

|⟨f,mλ⟩|2 ≤ B∥f∥2 for all f ∈ H.

If A and B can be chosen equal, the frame is called tight. In case A = B = 1, one speaks
of a Parseval frame.

Frame systems also naturally lend themselves for the synthesis of signals, since for every
sequence {cλ}λ ∈ ℓ2(Λ) the sum

f =

λ∈Λ

cλmλ, (2.28)

converges unconditionally in H. The associated operator from ℓ2(Λ) to H is surjective
and called the synthesis operator of the frame. It allows to alternatively use the so-called
synthesis coefficients {cλ}λ in the expansion (2.28) for the representation of f . This sequence
however is usually not unique since in general the synthesis operator is not injective. Unlike
a basis, a frame allows for a certain redundancy of its elements.

The composition of the synthesis operator and the analysis operator is called the frame
operator. It is an isomorphism S : H → H and given explicitly by Sf =


λ∈Λ⟨f,mλ⟩mλ.

It can be used to compute the so-called canonical dual frame {m̃λ}λ∈Λ of {mλ}λ∈Λ defined
by m̃λ := S−1mλ. We then have the following decomposition and reconstruction formulas

f =

λ∈Λ

⟨f, m̃λ⟩mλ =

λ∈Λ

⟨f,mλ⟩m̃λ.

In general, any frame {m̃λ}λ∈Λ satisfying these formulas is called an associated dual frame
of {mλ}λ∈Λ. The synthesis coefficients {cλ}λ given by

cλ = ⟨f, S−1mλ⟩, λ ∈ Λ.

are called the canonical frame coefficients. They have the distinct property that they min-
imize the ℓ2-norm among all possible synthesis coefficient sequences.

For practical applications, as important as the question of faithful representation of
a signal f ∈ H is the question of good approximation. Thereby one usually restricts to
finite expansions in (2.28). This motivates the following definition. Given some arbitrary
dictionary M := {mλ}λ, the associated, possibly non-linear, space of N -term expansions is
denoted by ΣN := ΣN [M] and consists of all linear combinations

λ∈ΛN

cλmλ with ΛN ⊆ Λ, #ΛN ≤ N. (2.29)
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2 BIVARIATE α-MOLECULES

The error of N -term approximation of f with respect to M is defined by

σN (f) := inf
g∈ΣN

∥f − g∥. (2.30)

For an efficient approximation of f , it is desirable to find dictionaries which provide good
sparse approximations, in the sense that the error σN (f) decays quickly for N → ∞.

Sometimes there exist vectors fN ∈ ΣN which minimize the N -term approximation
error, i.e., for which ∥f − fN ∥ = σN (f) holds true. Such vectors fN are called best N -term
approximations of f with respect to M. They are given by

fN = arg min
g=


λ∈ΛN
cλmλ

∥f − g∥ s.t. ΛN ⊆ Λ, #ΛN ≤ N. (2.31)

For general dictionaries, however, their existence is not guaranteed and usually hinges on ad-
ditional assumptions, such as for example a polynomial depth search constraint as discussed
in Section 5.1.

Even in the frame setting, best N -term approximations need not exist and, if they exist,
their computation is not yet well-understood. The delicacy of this problem can for instance
be seen in [52]. A typical approach to circumvent this problem is to consider not the best
N -term approximation of a frame but the N -term approximation fN obtained by keeping
the N largest coefficients. This type of approximation is better understood and, due to
σN (f) ≤ ∥f − fN ∥, also provides a bound for the best N -term approximation error.

The achievable N -term approximation rate can thus be estimated by the decay of ∥f −
fN ∥ as N → ∞, which in turn depends on the decay of the corresponding frame coefficients.
We subsequently quantify the decay of a sequence {cλ}λ by its weak ℓp-quasi-norm. For
p > 0 this is the quantity

∥{cλ}λ∥ωℓp :=


sup
ε>0

εp · #{λ : |cλ| > ε}
1/p

.

The associated sequence space is denoted by ωℓp(Λ) and consists of all sequences {cλ}λ with
∥{cλ}λ∥ωℓp < ∞. Note that, together with ∥ · ∥ωℓp , this space is a quasi-normed space.

This space can also be characterized as the space of null sequences {cλ}λ which possess
a non-increasing rearrangement (c∗

n)n∈N such that supn>0 n
1/p|c∗

n| < ∞. For the sequences
in ωℓp(Λ), we even have the equality

sup
n>0

n1/p|c∗
n| = ∥{cλ}λ∥ωℓp .

The result below, whose proof can be found e.g. in [83, Sec. 3.2] or [59, Lem. 5.1], relates
the decay of the synthesis coefficients of a frame to the N -term approximation rate.

Lemma 2.3.1. Let {mλ}λ∈Λ be a frame in H and f =

cλmλ an expansion of f ∈ H

with respect to this frame. If {cλ}λ ∈ ωℓ2/(p+1)(Λ) for some p > 0, then the N -term
approximation rate for f achieved by keeping the N largest coefficients is at least of order
N−p/2, i.e.

∥f − fN ∥2
2 . N−p.
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According to Lemma 2.3.1, a fast decay of the frame coefficients implies good N -term
approximation rates. Concretely, if the synthesis coefficients of {mλ}λ∈Λ satisfy {cλ}λ ∈
ωℓp(Λ) for p < 2 an N -term approximation rate at least of order N−(1/p−1/2) is achieved.
Conversely, if the sequence {⟨f,mλ⟩}λ∈Λ of analysis coefficients lies in ωℓp(Λ) , the best
approximation rate of any dual frame {m̃λ}λ∈Λ is at least of this order. In terms of signal
compression this is exactly what one hopes for: From simply keeping the N largest frame
coefficients, which can be encoded by order N bits, we can reconstruct the original signal
f up to a precision of order N−(1/p−1/2).

Sparsity Equivalence

Let us now compare the approximation performance of different frame systems in H. In
view of Lemma 2.3.1, it makes sense to analyze the decay of the corresponding coefficient
sequences. For a signal f ∈ H and two frames {mλ}λ∈Λ and {pµ}µ∈∆, let {cλ}λ be a
sequence of synthesis coefficients for f with respect to {mλ}λ∈Λ. Then, formally, the analysis
coefficients with respect to {pµ}µ∈∆ can be calculated by

⟨f, pµ⟩ =


λ∈Λ
cλmλ, pµ


=

λ∈Λ

cλ ⟨mλ, pµ⟩ . (2.32)

Hence, they are obtained by a multiplication of {cλ}λ with the cross-Gramian of the two
systems. This observation leads to the following result from [59].

Proposition 2.3.2 ([59, Prop. 5.2]). Let 0 < p < 2, and let {mλ}λ∈Λ and {pµ}µ∈∆ be two
discrete frames in a Hilbert space H such that{⟨mλ, pµ⟩}λ∈Λ,µ∈∆


ℓp→ℓp

< ∞.

Then for every signal f ∈ H the membership {⟨f, m̃λ⟩}λ ∈ ℓp(Λ), where {m̃λ}λ∈Λ denotes a
dual frame of {mλ}λ∈Λ, implies {⟨f, pµ⟩}µ ∈ ℓp(∆). In particular, f can be encoded by the
N largest frame coefficients from {⟨f, pµ⟩}µ up to accuracy . N−(1/p−1/2).

Proof. Define cλ := ⟨f, m̃λ⟩ for λ ∈ Λ. Then {cλ}λ is a sequence of synthesis coef-
ficients for f and by assumption {cλ}λ ∈ ℓp(Λ) with 0 < p < 2. Due to (2.32) and
∥ {⟨mλ, pµ⟩}λ,µ ∥ℓp→ℓp < ∞, this implies {⟨f, pµ⟩}µ ∈ ℓp(∆).

Proposition 2.3.2 motivates the following notion of sparsity equivalence ([59, Def. 5.3]),
initially introduced in [62, Def. 4.2] for parabolic molecules. The intuition behind this
concept is that sparsity equivalent frames should provide frame coefficients with a similar
decay. We remark however that, contrary to what the name suggests, this notion does not
provide an equivalence relation.

Definition 2.3.3 ([59, Def. 5.3]). Two discrete frames {mλ}λ∈Λ and {pµ}µ∈∆ in a Hilbert
space H are called sparsity equivalent in ℓp, 0 < p < 2, if{⟨mλ, pµ⟩}λ∈Λ,µ∈∆


ℓp→ℓp

< ∞.

A useful tool for the verification of sparsity equivalence is Schur’s test, which yields a
simple estimate for the operator norm of matrices acting on discrete ℓp spaces. The version
below can be found in [62].
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Lemma 2.3.4 ([62, Lem. 4.4]). Let Λ and ∆ be countable index sets, and assume that
A := {Aλ,µ}λ∈Λ, µ∈∆ is a (possibly infinite-dimensional) matrix with entries Aλ,µ ∈ C such
that

sup
λ∈Λ


µ∈∆

|Aλ,µ|q < ∞ and sup
µ∈∆


λ∈Λ

|Aλ,µ|q < ∞,

where p > 0 and q := min{1, p}. Then A : ℓp(Λ) → ℓp(∆) is a bounded linear operator with
the bound

∥A∥ℓp(Λ)→ℓp(∆) ≤ max


sup
λ∈Λ


µ∈∆

|Aλ,µ|q, sup
µ∈∆


λ∈Λ

|Aλ,µ|q
1/q

.

Proof. The proof for p < 1 follows easily from the fact that |x+y|p ≤ |x|p + |y|p for x, y ∈ R.
To show the case p ≥ 1 one proves the assertion for p = 1 and p = ∞. The claim then
follows by interpolation.

With this result, our excursion into abstract Hilbert space theory ends and we turn back
to the topic of α-molecules.

2.3.2 Transfer Principle and Consistency of Parametrizations

Let us now investigate the concept of sparsity equivalence in the realm of discrete α-molecule
frames in L2(R2). Our main result, Theorem 2.3.6, will provide a sufficient condition en-
suring sparsity equivalence for such frames. The condition depends on the one hand on the
respective orders of the systems, on the other hand, the respective parametrizations play a
role.

In view of Schur’s test, i.e., Lemma 2.3.4 above, and the estimate of the cross-Gramian
in Theorem 2.2.2 the following notion of (α, k)-consistency is reasonable.

Definition 2.3.5 ([59, Def. 5.5]). Let α ∈ [0, 1] and k > 0. Two parametrizations (Λ,ΦΛ)
and (∆,Φ∆) with countable index sets Λ and ∆ are called (α, k)-consistent, if

sup
λ∈Λ


µ∈∆

ωα

ΦΛ(λ),Φ∆(µ)

−k
< ∞ and sup

µ∈∆


λ∈Λ

ωα

ΦΛ(λ),Φ∆(µ)

−k
< ∞.

Note that (α, k)-consistency implies (α, k′)-consistency for k′ ≥ k, due to ωα ≥ 1.
Using this notion, we can now formulate a convenient sufficient condition for the sparsity
equivalence of discrete α-molecule frames.

Theorem 2.3.6 ([59, Thm. 5.6]). Let α ∈ [0, 1], 0 < p ≤ 1, and k > 0. Let {mλ}λ∈Λ and
{pµ}µ∈∆ be two discrete frames of α-molecules of order (L,M,N1, N2) with (α, k)-consistent
parametrizations (Λ,ΦΛ) and (∆,Φ∆) satisfying

L ≥ 2k
p
, M > 3k

p
− 3 − α

2 , N1 ≥ k

p
+ 1 + α

2 , and N2 ≥ 2k
p
.

Then {mλ}λ∈Λ and {pµ}µ∈∆ are sparsity equivalent in ℓq for all p ≤ q < 2.

Proof. By Lemma 2.3.4, it suffices to prove that

max


sup
λ∈Λ


µ∈∆

|⟨mλ, pµ⟩|p, sup
µ∈∆


λ∈Λ

|⟨mλ, pµ⟩|p
1/p

< ∞.
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Since, by Theorem 2.2.2, we have

|⟨mλ, pµ⟩| . ωα

ΦΛ(λ),Φ∆(µ)

− k
p ,

we can estimate

max


sup
λ∈Λ


µ∈∆

|⟨mλ, pµ⟩|p, sup
µ∈∆


λ∈Λ

|⟨mλ, pµ⟩|p


. max


sup
λ∈Λ


µ∈∆

ωα

ΦΛ(λ),Φ∆(µ)

−k
, sup

µ∈∆


λ∈Λ

ωα

ΦΛ(λ),Φ∆(µ)

−k

.

Due to the (α, k)-consistency of the parametrizations (Λ,ΦΛ) and (∆,Φ∆), the right-hand
side is finite and the proof is finished.

We see that, as long as the parametrizations are consistent, the sparsity equivalence
of two frames of α-molecules can be controlled by the order of the systems. Hereby, the
smaller p is, i.e., the more sparsity is promoted, and the less consistent the two frames
are, the higher the order of the molecules needs to be for sparsity equivalence, i.e., better
time-frequency localization and higher moments of the molecules are required.

Theorem 2.3.6 is called the transfer principle for discrete α-molecule frames, since in
conjunction with Proposition 2.3.2 it allows to transfer approximation properties from one
anchor frame to other frames, if the coefficient decay of the anchor frame is known. It will
be used in Chapters 5 and 6.

2.4 A Sufficient Condition for Discrete α-Molecule Frames

As we have already stated in the previous section, for many reasons representation systems
which constitute frames play an outstanding role in signal analysis. In practice, the frame
property is often verified directly for the concrete systems of interest at hand. Within the
framework of α-molecules, a more generic approach is possible, however.

In this subsection we want to find a sufficient condition for α-molecules to constitute a
frame for L2(R2). Clearly, the frame condition is not fulfilled for α-molecule systems per
se as for instance the zero function is a trivial example of an α-molecule system. Hence, to
achieve this goal, additional assumptions to ensure the frame property are necessary.

As in the previous section, we only focus on discrete systems of α-molecules {mλ}λ∈Λ
which are indexed by some countable index set Λ. For such systems, a sufficient frame
condition similar to Daubechies’ criterion for wavelets [30] was derived in the Bachelor’s
thesis [53], under certain additional assumptions on the associated parametrization (Λ,ΦΛ).
Our result below is mainly based on this result, but generalizes slightly on the utilized
parametrizations.

As in [53], we require the index set Λ to be of the form

Λ = ∆ × Z2 (2.33)

for some countable index set ∆ of generic indices. Further, the parametrization map ΦΛ
shall have the special structure

ΦΛ : Λ = ∆ × Z2 → P, (µ, k) →→

xµ,k, ηµ, tµ


with xµ,k := R−1

ηµ
Aα,tµTµMck, (2.34)
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where Tµ ∈ R2×2 is a matrix with | det(Tµ)| = 1 for each µ ∈ ∆ and

Mc :=

c1 0
0 c2


for some fixed parameter c = (c1, c2) ∈ R2

+. (2.35)

This condition is slightly less restrictive than the condition imposed on the parametrization
map in [53], where Tµ needs to be the identity matrix for every µ ∈ ∆. Finally, as in [53], we
assume that the corresponding generators gλ = gµ,k do not vary with k ∈ Z2. For simplicity
we write this as gλ = gµ.

The corresponding α-molecules mλ = mµ,k then have the form

mµ,k(·) = t−(1+α)/2
µ gµ


A−1

α,tµ
Rηµ · −TµMck


. (2.36)

Note that the indices µ ∈ ∆ determine the scale and the orientation of the α-molecules,
whereas the indices k ∈ Z2 correspond to translations along the grid {TµMck : k ∈ Z2}.

Parametrizations (Λ,ΦΛ) of the form (2.33) and (2.34) might at first glance seem quite
restrictive, but we will see in Sections 3.2 and 3.3 of Chapter 3 that they in particular com-
prise discrete α-curvelet and α-shearlet parametrizations. Hence, in view of Theorems 3.2.5
and 3.3.7, the criterion developed below in particular applies to α-curvelet and α-shearlet
molecules, which constitute important subclasses of α-molecules. In particular, it general-
izes the frame criterion developed in [76] for α-shearlets. The criterion from [32, Thm. 3.3]
for systems of Gaussian wavepackets is also included, since those can be interpreted as
systems of α-curvelet molecules.

Before we formulate the statement of the theorem, let us observe that for a function
system to form a frame in L2(R2), the spatial as well as the frequency support of its
elements needs to cover the whole plane. Furthermore, the energy of the functions may not
accumulate too much at any given point. Hence, intuitively, a certain ‘spreading’ of the
functions in phase space is necessary for the frame condition to hold.

In general, Daubechies-type frame criteria are based on the investigation of associated
(auto-)correlation functions Φ : R2 ×R2 → R and Γ : R2 → R, which measure the extent of
the overlaps of the frequency support. For α-molecules of the form (2.36) with associated
generators {gµ}µ∈∆, these functions take the form

Φ(ξ, ω) :=

µ∈∆

|ĝµ(Aα,tµRηµξ)||ĝµ(Aα,tµRηµξ + T−T
µ ω)|,

Γ(ω) := ess sup
ξ∈R2

Φ(ξ, ω).

The statement of the theorem now depends on the size of the following two quantities

Linf := ess inf
ξ∈R2

Φ(ξ, 0) and Lsup := Γ(0) = ess sup
ξ∈R2

Φ(ξ, 0),

as well as the function R : R2
+ → [0,∞) defined for c ∈ R2

+ by

R(c) :=


m∈Z2\{0}


Γ(M−1

c m)Γ(−M−1
c m)

1/2
.
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Theorem 2.4.1. Let {mλ}λ∈Λ be a system of α-molecules with respect to a parametrization
(Λ,ΦΛ), where Λ = ∆ ×Z2 is an index set of the form (2.33) and ΦΛ is a map as in (2.34)
with c = (c1, c2) ∈ R2

+ fixed. Further, assume that the generators gλ = gµ,k do not vary with
k ∈ Z2. Under these assumptions, the condition

R(c) < Linf ≤ Lsup < ∞ (2.37)

ensures that {mλ}λ∈Λ constitutes a frame for L2(R2) with frame bounds A,B > 0 satisfying

Linf −R(c)
| detMc|

≤ A ≤ B ≤ Lsup +R(c)
| detMc|

.

The technique used for the proof of this theorem goes back to [30], and has also been
used in [76], [32], and [53]. Our exposition follows the proof in the latter reference, with
marginal modifications.

Proof. For fixed µ ∈ ∆ we first consider the sum Sµ :=


k∈Z2 |⟨f,mµ,k⟩|2 =


k∈Z2 |⟨f̂ , m̂µ,k⟩|2.
Plugging in (2.36), we have

Sµ =


k∈Z2

 
R2
t(1+α)/2
µ f̂(ξ)ĝµ


Aα,tµRηµξ


exp(2πi⟨(R−1

ηµ
Aα,tµTµMc)T ξ, k⟩) dξ

2,
and the substitution (R−1

ηµ
Aα,tµTµMc)T ξ →→ ξ yields

Sµ =


k∈Z2

 
R2
t−(1+α)/2
µ | det(Mc)|−1f̂(R−1

ηµ
A−1

α,tµ
T−T

µ M−1
c ξ)ĝµ


T−T

µ M−1
c ξ


exp(2πi⟨ξ, k⟩) dξ

2.
With Ω := [−1

2 ,
1
2)2, we can write

Sµ =


k∈Z2

 
ℓ∈Z2


ℓ+Ω

t−(1+α)/2
µ | det(Mc)|−1f̂(R−1

ηµ
A−1

α,tµ
T−T

µ M−1
c ξ)ĝµ


T−T

µ M−1
c ξ


· exp(2πi⟨ξ, k⟩) dξ

2
=


k∈Z2

 
Ω


ℓ∈Z2

t−(1+α)/2
µ | det(Mc)|−1f̂(R−1

ηµ
A−1

α,tµ
T−T

µ M−1
c (ξ + ℓ))ĝµ


T−T

µ M−1
c (ξ + ℓ)


· exp(2πi⟨ξ, k⟩) exp(2πi⟨ℓ, k⟩) dξ

2.
Using the Parseval identity in L2(Ω), we deduce

Sµ =


Ω

 
ℓ∈Z2

t−(1+α)/2
µ | det(Mc)|−1f̂(R−1

ηµ
A−1

α,tµ
T−T

µ M−1
c (ξ + ℓ))ĝµ


T−T

µ M−1
c (ξ + ℓ)

2 dξ.
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We continue with

Sµ =


Ω
t−(1+α)
µ | det(Mc)|−2 

k,ℓ∈Z2

f̂(R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c (ξ + k))ĝµ


T−T

µ M−1
c (ξ + k)


· f̂(R−1

ηµ A
−1
α,tµ

T−T
µ M−1

c (ξ + ℓ))ĝµ

T−T

µ M−1
c (ξ + ℓ)


dξ

=

ℓ∈Z2


ℓ+Ω

t−(1+α)
µ | det(Mc)|−2 

k∈Z2

f̂(R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c (ξ + k − ℓ))

· ĝµ

T−T

µ M−1
c (ξ + k − ℓ)


f̂(R−1

ηµ A
−1
α,tµ

T−T
µ M−1

c ξ)ĝµ

T−T

µ M−1
c ξ


dξ

=

R2


m∈Z2

t−(1+α)
µ | detMc|−2f̂(R−1

ηµ
A−1

α,tµ
T−T

µ M−1
c ξ)ĝµ


T−T

µ M−1
c ξ


· f̂(R−1

ηµ A
−1
α,tµ

T−T
µ M−1

c (ξ +m))ĝµ

T−T

µ M−1
c (ξ +m)


.

Finally, we substitute R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c ξ →→ ξ and arrive at

Sµ = | detMc|−1

R2


m∈Z2

f̂(ξ)ĝµ

Aα,tµRηµξ


· f̂(ξ +R−1

ηµ A
−1
α,tµ

T−T
µ M−1

c m)ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m


.

Now we take the sum over µ ∈ ∆ and split
µ∈∆

Sµ = T1 + T2

into a term T1, corresponding to m = 0,

T1 := | detMc|−1

R2


µ∈∆

|f̂(ξ)|2|ĝµ

Aα,tµRηµξ


|2 dξ,

and a term T2, corresponding to m ̸= 0,

T2 := | detMc|−1

R2


µ∈∆


m∈Z2\{0}

f̂(ξ)f̂(ξ +R−1
ηµ A

−1
α,tµ

T−T
µ M−1

c m)

· ĝµ

Aα,tµRηµξ


ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m


dξ.

Using the definition of Linf and Lsup, we directly obtain for T1

Linf
| det(Mc)|

∥f∥2 ≤ T1 ≤ Lsup
| det(Mc)|

∥f∥2. (2.38)

Further, for T2 we will prove

|T2| ≤ R(c)
| det(Mc)|

∥f∥2. (2.39)

For this, we first estimate

|T2| ≤ | detMc|−1 
m∈Z2\{0}


R2


µ∈∆

|f̂(ξ)|
ĝµ

Aα,tµRηµξ


ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m

1/2

· |f̂(ξ +R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c m)|

ĝµ

Aα,tµRηµξ


ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m

1/2
dξ.

44
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Then we proceed with a double application of the Cauchy-Schwarz inequality, first to the
sum and then to the integral. We obtain

|T2| ≤ | detMc|−1 
m∈Z2\{0}


R2


µ∈∆

|f̂(ξ)|2|ĝµ

Aα,tµRηµξ


||ĝµ


Aα,tµRηµξ + T−T

µ M−1
c m


| dξ

1/2

·


R2


µ∈∆

|f̂(ξ +R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c m)|2|ĝµ


Aα,tµRηµξ


ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m


| dξ

1/2
.

Finally, we substitute ξ + R−1
ηµ
A−1

α,tµ
T−T

µ M−1
c n →→ ξ in the second integral and arrive at

(2.39), namely

|T2| ≤ | detMc|−1 
m∈Z2\{0}


R2

|f̂(ξ)|2

µ∈∆

|ĝµ

Aα,tµRηµξ


ĝµ

Aα,tµRηµξ + T−T

µ M−1
c m


| dξ

1/2

·


R2
|f̂(ξ)|2


µ∈∆

|ĝµ

Aα,tµRηµξ


ĝµ

Aα,tµRηµξ − T−T

µ M−1
c m


| dξ

1/2

≤ | detMc|−1∥f̂∥2 
m∈Z2\{0}


Γ(M−1

c m)Γ(−M−1
c m)

1/2
= R(c)

| detMc|
∥f∥2.

Altogether, the estimates (2.38) and (2.39) imply

Linf −R(c)
| det(Mc)|

∥f∥2 ≤

µ∈∆

Sµ ≤ Lsup +R(c)
| det(Mc)|

∥f∥2,

which finishes the proof.

Concerning the application of this theorem, let us remark that, intuitively, when c
gets smaller also R(c) becomes smaller. A good strategy to fulfill the condition (2.37) in
Theorem 2.4.1 is thus to choose the parameter c sufficiently small. This strategy was used
for example in [76] to confirm the frame property of the constructed compactly supported
shearlets.

In the next chapter, where we will investigate specific instances of α-molecule systems,
we will use this theorem to deduce sufficient frame criteria for α-curvelet and α-shearlet
molecules.

2.5 Appendix: Proof of Theorem 2.2.2
In the following, we reproduce the proof of Theorem 2.2.2 given in [59], whereby the no-
tation is adapted to our setting and some minor inaccuracies are corrected. We start by
collecting some useful lemmata in Subsections 2.5.1–2.5.3, followed by the actual proof in
Subsection 2.5.4.

2.5.1 General Estimates

Let us recall the projective bracket introduced in (2.9). An important property of this
bracket is given by the following lemma.
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Lemma 2.5.1. For θ ∈ R let {θ} denote its ‘projection’ onto the interval T := [−π
2 ,

π
2 ) as

introduced in (2.9). It then holds |{θ}| ≍ | sin(θ)|.

Proof. Due to π-periodicity it suffices to verify the relation for θ ∈ [−π
2 ,

π
2 ). In this range

we have 2
π |θ| ≤ | sin(θ)| ≤ |θ|.

The following lemma can be found in [51, Appendix K.1].

Lemma 2.5.2. For N > 1 and a, a′ ∈ R+, we have the inequality
R

(1 + a|x|)−N 1 + a′|x− y|
−N

dx . max{a, a′}−1(1 + min{a, a′}|y|)−N .

The implicit constant is independent of a, a′ and y ∈ R.

The following result can be regarded as a corollary of the previous lemma.

Lemma 2.5.3. Assume that η ∈ R and N > 1. Then we have for a, a′ ∈ R+ the inequality
T

(1 + a| sin(ϕ)|)−N 1 + a′| sin(ϕ+ η)|
−N

dϕ . max{a, a′}−1(1 + min{a, a′}|{η}|)−N .

(2.40)
The implicit constant is independent of a, a′ and η ∈ R.

Proof. Let T := [−π/2, π/2). Using the π-periodicity of the integrand and the equivalence
| sin(ϕ)| ≍ |{ϕ}|, where ϕ ∈ R and {·} = {·}T is the projective bracket defined in (2.9), we
obtain 

T
(1 + a| sin(ϕ)|)−N 1 + a′| sin(ϕ+ η)|

−N
dϕ

≍


T
(1 + a| sin(ϕ)|)−N 1 + a′| sin(ϕ+ η)|

−N
dϕ

≍


T
(1 + a|ϕ|)−N 1 + a′|{ϕ+ η}|

−N
dϕ.

The left-hand side of (2.40) can thus be estimated by a constant times


θ∈{0,±π}


R

(1 + a|ϕ|)−N 1 + a′|ϕ+ {η} + θ|
−N

dϕ,

where we used {ϕ+η} = {{ϕ}+{η}}. Further, by Lemma 2.5.2 and since |{η+θ}| ≤ |{η}+θ|,
this sum is bounded by a constant times

θ∈{0,±π}
max{a, a′}−1(1 + min{a, a′}|{η + θ}|)−N .

It remains to note that for θ ∈ {0,±π} we have |{η+θ}| = |{η}|. This proves the lemma.
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2.5.2 Basic Estimates of Sλ,M,N1,N2

We now consider the function Sλ,M,N1,N2 : [0,∞)×[0, 2π) → R for λ ∈ Λ andM,N1, N2 ∈ N0
which is defined in polar coordinates by

Sλ,M,N1,N2(r, ϕ) := min


1, tλ(1 + r)
M

1 + t
−(1−α)
λ | sin(ϕ+ ηλ)|

−N2
1 + tλr

−N1
.

The reader might want to compare this definition with (2.6).
The following lemma will be used in order to decouple the angular and the radial vari-

ables.

Lemma 2.5.4. For every 0 ≤ K ≤ N2,

min


1, tλ(1 + r)
M

1 + tλr
−N1

1 + tαλr| sin(ϕ+ ηλ)|
−N2

. Sλ,M−K,N1,K(r, ϕ).

Proof. After choosing K, we can estimate the quantity on the left hand side by

min {1, tλ(1 + r)}M−K (1 + tλr)−N1


min {1, tλ(1 + r)}

1 + tαλr| sin(ϕ+ ηλ)|

K

.

We need to show that

min {1, tλ(1 + r)}
1 + tαλr| sin(ϕ+ ηλ)| .


1 + t

−(1−α)
λ | sin(ϕ+ ηλ)|

−1
. (2.41)

In order to prove (2.41), we distinguish three cases:

• r ≤ 1: For r ≤ 1 we have

min {1, tλ(1 + r)}
1 + tαλr| sin(ϕ+ ηλ)| . min {1, tλ} .


1 + t

−(1−α)
λ | sin(ϕ+ ηλ)|

−1
.

• t−1
λ ≤ r: In this case we derive

min {1, tλ(1 + r)}
1 + tαλr| sin(ϕ+ ηλ)| = 1

1 + tαλr| sin(ϕ+ ηλ)| ≤ 1
1 + tαλt

−1
λ | sin(ϕ+ ηλ)|

=

1 + t

−(1−α)
λ | sin(ϕ+ ηλ)|

−1
.

If t−1
λ > 1 we have to examine a third case.

• 1 < r < t−1
λ : In this case we have

min {1, tλ(1 + r)}
1 + tαλr| sin(ϕ+ ηλ)| ≤ tλ(1 + r)

1 + tαλr| sin(ϕ+ ηλ)| = 1 + r

r

1
r−1t−1

λ + t
−(1−α)
λ | sin(ϕ+ ηλ)|

.

Since r > 1, we have 1+r
r < 2, and since r < t−1

λ , also r−1t−1
λ > 1 holds.

This proves the statement.
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2 BIVARIATE α-MOLECULES

The next lemma provides estimates for the inner product of two functions of the form
Sλ,M,N1,N2 .

Lemma 2.5.5. We assume tλ, tµ ≤ C < ∞ for all λ ∈ Λ and µ ∈ ∆. For A,B ≥ 1 and

N1 ≥ A+ 1 + α

2 , N2 ≥ B, M > N1 − 2,

we have if N1 > 1

(tλtµ)
1+α

2


R+


T
Sλ,M,N1,N2(r, ϕ)Sµ,M,N1,N2(r, ϕ)rdϕdr

. max
 tλ
tµ
,
tµ
tλ

−A 
1 + max{tλ, tµ}−(1−α)|{ηλ − ηµ}|

−B
.

Proof. We assume without loss of generality that tλ ≥ tµ and start by proving the angular
decay. An application of Lemma 2.5.3 yields

T


1 + t

−(1−α)
λ | sin(ϕ+ ηλ)|

−N2
1 + t−(1−α)

µ | sin(ϕ+ ηµ)|
−N2

dϕ

. t1−α
µ


1 + t

−(1−α)
λ |{ηλ − ηµ}|

−N2
.

Taking into account N2 ≥ B ≥ 1, we thus obtain

(tλtµ)
1+α

2


R+


T
Sλ,M,N1,N2(r, ϕ)Sµ,M,N1,N2(r, ϕ)rdϕdr

. S ·
 tλ
tµ

 1+α
2

1 + t

−(1−α)
λ |{ηλ − ηµ}|

−B
,

where

S := t2µ


R+

min {1, tλ(1 + r)}M min {1, tµ(1 + r)}M (1 + tλr)−N1 (1 + tµr)−N1 rdr.

The remaining estimate

S . (tλ/tµ)−(A+ 1+α
2 ) (2.42)

is proved by splitting up the integral into the three parts Si, i = 1, 2, 3, where the integration
ranges over 0 < r < 1, 1 ≤ r ≤ max{1, t−1

µ } and max{1, t−1
µ } < r, respectively.

Case 1 (0 < r < 1): For S1 we integrate over 0 < r < 1. Here we use the moment property
and t−1

λ ≥ 1/C > 0 to estimate

S1 . t2µ

 1

0
tMλ tMµ dr

= t2+M
µ tMλ

. t2+M
µ t

−(M+2)
λ

= (tµ/tλ)M+2

≤ (tµ/tλ)A+ 1+α
2 .
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Case 2 (1 ≤ r ≤ max{1, t−1
µ }): If t−1

µ ≤ 1 then S2 = 0. For t−1
µ > 1 we estimate

S2 . t2µ

 t−1
µ

1
(tµr)M (tλr)−N1 rdr

≤ t2+M
µ t−N1

λ

 t−1
µ

0
rM+1−N1dr

. t2+M
µ t−N1

λ t−(M+2−N1)
µ

= (tµ/tλ)N1

≤ (tµ/tλ)A+ 1+α
2 .

Case 3 (max{1, t−1
µ } < r): For S3 we estimate

S3 . t2µ

 ∞

t−1
µ

(tλr)−N1 (tµr)−N1 rdr

= t2µt
−N1
µ t−N1

λ

 ∞

t−1
µ

r−2N1+1dr

. t2µt
−N1
µ t−N1

λ t2N1−2
µ

= (tµ/tλ)N1

≤ (tµ/tλ)A+ 1+α
2 .

Altogether, this establishes (2.42).

2.5.3 Estimates with Differential Operator

Finally, we require some estimates involving the symmetric differential operator Lλ,µ (acting
on the frequency variable ξ ∈ R2) defined for λ ∈ Λ and µ ∈ ∆ by

Lλ,µ := I − t−2α
0 ∆ξ − t−2

0

1 + t
−2(1−α)
0 |{δη}|2

⟨eλ,∇⟩2, (2.43)

where δη := ηλ − ηµ and t0 := max{tλ, tµ}. The first lemma is an auxiliary result.

Lemma 2.5.6. Assume that the assumptions of Theorem 2.2.2 hold true for two systems of
α-molecules of order (L,M,N1, N2) with respective generators {a(λ)}λ and {b(µ)}µ. Given
any two of those generators a(λ), b(µ), the expression

Lλ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


can be written as a finite linear combination of terms of the form

ĉ(λ) (Aα,tλ
Rηλ

ξ) d̂(µ) Aα,tµRηµξ

,

with c(λ), d(µ) satisfying (2.5) for L− 2,M,N1, N2 with an implicit constant independent of
λ and µ. Thereby, the number of terms in the linear combinations and the corresponding
coefficients are also uniformly bounded in λ and µ.
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2 BIVARIATE α-MOLECULES

Proof. To prove the claim we treat the three summands of the operator Lλ,µ separately.
The first part is the identity, and therefore the statement is trivial. To handle the second
part, the frequency Laplacian t−2α

0 ∆, we use the product rule

∆(fg) = 2

∂(1,0)f∂(1,0)g + ∂(0,1)f∂(0,1)g


+ (∆f)g + f(∆g).

Therefore we need to estimate the derivatives of degree 1 and the Laplacians of the two
factors in the product

â(λ) (Aα,tλ
Rηλ

ξ) b̂(µ) Aα,tµRηµξ


=: A(ξ)B(ξ).

For this, we start with the first factor,

A(ξ) = â(λ) (tλ cos(ηλ)ξ1 − tλ sin(ηλ)ξ2, t
α
λ sin(ηλ)ξ1 + tαλ cos(ηλ)ξ2) .

Let us set

A1(ξ) :=

∂(1,0)â(λ) (Aα,tλ

Rηλ
ξ) and A2(ξ) :=


∂(0,1)â(λ) (Aα,tλ

Rηλ
ξ) .

By definition, the functions ∂(1,0)â(λ), ∂(0,1)â(λ) satisfy (2.5) with L replaced by L− 1. An
application of the chain rule shows that

∂(1,0)A(ξ) = tλ cos(ηλ)A1(ξ) + tαλ sin(ηλ)A2(ξ).

Analogously, one can compute

∂(0,1)A(ξ) = −tλ sin(ηλ)A1(ξ) + tαλ cos(ηλ)A2(ξ),

and the exact same expressions for B using the obvious definitions for B1 and B2. We get

∂(1,0)A∂(1,0)B = tλtµ cos(ηλ) cos(ηµ)A1B1 + tαλtµ sin(ηλ) cos(ηµ)A2B1

+tαµtλ sin(ηµ) cos(ηλ)A1B2 + (tλtµ)α sin(ηλ) sin(ηµ)A2B2.

It follows that t−2α
0 ∂(1,0)A∂(1,0)B can be written as a linear combination as claimed (recall

that t0 = max{tλ, tµ}). The same argument applies to the product t−2α
0 ∂(0,1)A∂(0,1)B.

It remains to consider the factor

(∆A)B +A(∆B),

where, for symmetry reasons, we only treat the summand (∆A)B. In fact, it suffices to
only consider

(∂(2,0)A)B =

t2λ cos(ηλ)2A11 + 2t1+α

λ sin(ηλ) cos(ηλ)A12 + t2α
λ sin(ηλ)2A22


B (2.44)

with Aij , i, j ∈ {1, 2}, defined in the obvious way, and where ∂(2,0)â(λ), ∂(1,1)â(λ), and
∂(0,2)â(λ) satisfy (2.5) with L replaced by L − 2. The term (∂(0,2)A)B, and hence (∆A)B,
can be handled in the same way, as can A(∆B). This takes care of the term t−2α

0 ∆ in the
definition of Lλ,µ.
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Finally, we need to handle the last term in the definition of Lλ,µ, namely

t−2
0

1 + t
−2(1−α)
0 |{ηµ}|2

∂2

∂ξ2
1

for ηλ = 0 (otherwise the second order derivative would be in the direction of the unit vector
with angle ηλ with obvious modifications in the proof). With our notation and using the
product rule we need to consider terms of the form

(∂(2,0)A)B, (∂(1,0)A)(∂(1,0)B), A(∂(2,0)B),

and show that each of them, multiplied by the factor t−2
0 /(1 + t

−2(1−α)
0 |{ηµ}|2), possesses

the desired representation.
Let us start with (∂(2,0)A)B, which, using (2.44) and the fact that ηλ = 0, can be written

as
(∂(2,0)A)B = t2λA11B,

and which clearly satisfies the desired assertion.
Now consider the expression (∂(1,0)A)(∂(1,0)B), which can be written as

(∂(1,0)A)(∂(1,0)B) = tλtµ cos(ηµ)A1B1 + tλt
α
µ sin(ηµ)A1B2.

The first summand in this expression clearly causes no problems. To handle the second
term we need to show that

t−2
0

1 + t
−2(1−α)
0 |{ηµ}|2

tλt
α
µ| sin(ηµ)| . 1. (2.45)

Here we have to distinguish two cases. First, assume that |{ηµ}| ≤ t1−α
0 . Then we can

estimate | sin(ηµ)| ≤ t1−α
0 , which readily yields the desired bound for (2.45). For the case

|{ηµ}| ≥ t1−α
0 we estimate

t−2
0

1 + t
−2(1−α)
0 |{ηµ}|2

tλt
α
µ| sin(ηµ)| ≤ t−2

0

1 + t
−(1−α)
0 |{ηµ}|

t0t
α
0 |{ηµ}| ≤ t−2

0

t
−(1−α)
0 |{ηµ}|

t0t
α
0 |{ηµ}| = 1

which proves (2.45) also for this case.
We are left with estimating the term A


∂(2,0)B


, which, similar to (2.44), can be written

as
t2µ cos(ηµ)2AB11 + 2t1+α

µ sin(ηµ) cos(ηµ)AB12 + t2α
µ sin(ηµ)2AB22.

The first two terms are of a form already treated, and the last term can be handled using
the fact that | sin(ηµ)|2 ≤ |{ηµ}|2.

Lemma 2.5.7. Assume that the assumptions of Theorem 2.2.2 hold for two systems of α-
molecules of order (L,M,N1, N2) with respective generating functions {a(λ)}λ and {b(µ)}µ.
Then we have

Lk
λ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


. Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)

for all k ≤ L/2.
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Proof. We show thatLk
λ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


. min {1, tλ(1 + r)}M (1 + tλr)−N1 (1 + tαλr| sin(ϕ+ ηλ)|)−N2

· min {1, tµ(1 + r)}M (1 + tµr)−N1

1 + tαµr| sin(ϕ+ ηµ)|

−N2 (2.46)

which, using Lemma 2.5.4 with K = N2, implies the desired statement.
To prove (2.46), we use induction in k, namely we show that if we have two functions

a(λ), b(µ) satisfying (2.5) for L,M,N1, N2, then the expression

Lλ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


can be written as a finite linear combination of terms of the form

ĉ(λ) (Aα,tλ
Rηλ

ξ) d̂(µ) Aα,tµRηµξ


with c(λ), d(µ) satisfying (2.5) and L replaced by L − 2, see Lemma 2.5.6. Iterating this
argument we can establish that for k ≤ L/2

Lk
λ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


(2.47)

can be expressed as a finite linear combination of terms of the form

ĉ(λ) (Aα,tλ
Rηλ

ξ) d̂(µ) Aα,tµRηµξ


(2.48)

with ĉ(λ)(ξ)
 . min


1, tλ + |ξ1| + t1−α

λ |ξ2|
M

⟨|ξ|⟩−N1 ⟨ξ2⟩−N2 , (2.49)

and an analogous estimate for d̂(µ). Combining (2.48) and (2.49), we obtain that |(2.47)|
can – up to a constant – be upperbounded by the product of

min


1, tλ +
[Aα,tλ

Rηλ
ξ]1
+ t1−α

λ

[Aα,tλ
Rηλ

ξ]2
M

⟨|Aα,tλ
Rηλ

ξ|⟩−N1

[Aα,tλ

Rηλ
ξ]2
−N2

and

min


1, tµ +
Aα,tµRηµξ


1

+ t1−α
µ

Aα,tµRηµξ

2

M Aα,tµRηµξ
−N1


Aα,tµRηµξ


2

−N2
.

Transforming this inequality into polar coordinates as in (2.6) yields (2.46). This finishes
the proof.

2.5.4 Actual Proof of Theorem 2.2.2

We now have all the ingredients to prove Theorem 2.2.2. By our assumptions on the order
(L,M,N1, N2), there exist N1 and N2 such thatN1 ≥ N1 ≥ N+1+α

2 andN2 ≥ N2 ≥ N+1+α
2

and M > N1 + N2 − 2. The systems {mλ}λ and {pµ}µ are also α-molecules of order
(L,M, N1, N2), satisfying the assumptions of the theorem. Thus, we can without loss of
generality assume the additional condition M > N1 +N2 − 2.
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2.5 Appendix: Proof of Theorem 2.2.2

To keep the notation simple, we assume that ηλ = 0 and define t0 := max{tλ, tµ}.
Further, we set

δx := xλ − xµ, δη := ηλ − ηµ.

By definition, we can write

mλ(·) = t
− 1+α

2
λ a(λ)


A−1

α,tλ
Rηλ

(· − xλ)

, pµ(·) = t

− 1+α
2

µ b(µ)

A−1

α,tµ
Rηµ(· − xµ)


,

where both a(λ) and b(µ) satisfy (2.5). We have the equality

⟨mλ, pµ⟩ = ⟨m̂λ, p̂µ⟩

= (tλtµ)
1+α

2


R2
â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


exp (−2πiξ · δx) dξ (2.50)

= (tλtµ)
1+α

2


R2

Lk
λ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


L−k

λ,µ (exp (−2πiξ · δx)) dξ,

where Lλ,µ is the symmetric differential operator (acting on the frequency variable) defined
in (2.43). Note that by assumption N1 > 1 and thus the boundary terms vanish due to the
decay properties of â(λ) and b̂(µ) as well as their derivatives.

We have

L−k
λ,µ (exp (−2πiξ · δx)) =


1 + t−2α

0 |δx|2 + t−2
0

1 + t
−2(1−α)
0 |δη|

⟨eλ, δx⟩2
−k

exp (−2πiξ · δx) ,

(2.51)
where eλ = (cos(ηλ),− sin(ηλ)) denotes the unit vector pointing in the direction described
by the angle ηλ. By Lemma 2.5.7 and for k ≤ L

2 , we have the inequality

Lk
λ,µ


â(λ) (Aα,tλ

Rηλ
ξ) b̂(µ) Aα,tµRηµξ


. Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ).

Then, by (2.50) and (2.51) it follows that

|⟨mλ, pµ⟩| . (tλtµ)
1+α

2


R2
Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)dξ

·


1 + t−2α
0 |δx|2 + t−2

0

1 + t
−2(1−α)
0 |δη|

⟨eλ, δx⟩2
−k

for all k ≤ L
2 . Now we can use Lemma 2.5.5 and the fact that L ≥ 2N to establish that

|⟨mλ, pµ⟩| . max
 tλ
tµ
,
tµ
tλ

−N 
1 + t

−2(1−α)
0 |δη|2

−N

·


1 + t−2α
0 |δx|2 + t−2

0

1 + t
−2(1−α)
0 |δη|

⟨eλ, δx⟩2
−N

≤ max
 tλ
tµ
,
tµ
tλ

−N


1 + t
−2(1−α)
0 |δη|2 + t−2α

0 |δx|2 + t−2
0

1 + t
−2(1−α)
0 |δη|

⟨eλ, δx⟩2
−N

= ωα

ΦΛ(λ),Φ∆(µ)

−N
.

This proves the desired statement.
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Chapter 3

Examples of α-Molecules in L2(R2)

In this chapter we will fill the abstract notion of α-molecules from Definition 2.1.3 with life
by presenting a few prominent examples of specific α-molecule systems. Undoubtedly, the
most natural examples are given by curvelet systems since the construction of those served
as a guiding principle for the α-molecule definition. But, as we will see in this chapter, also
wavelet systems, ridgelet systems and even shear-based constructions fit into the frame-
work. Two important subclasses of α-molecule systems, namely α-curvelet and α-shearlet
molecules, are distinguished, and we will show that their associated parametrizations are
consistent in a suitable sense.

3.1 Continuous α-Curvelets

We begin our exposition with a prototypical instance of a continuous α-molecule frame for
L2(R2). Guided by the construction of the parabolically scaled curvelets in [11], we will
construct a continuous Parseval frame of α-curvelets for every α ∈ [0, 1]. The obtained
systems, denoted by Cα, are band-limited and based on a specific tiling of the frequency
domain.

To realize this tiling, let us first define two radial functions U,U1 ∈ C∞
c ([0,∞)) which

shall be nonnegative and satisfy

suppU ⊂ (1
2 , 2) and suppU1 ⊂ [0, 2) .

Further, they shall fulfill the continuous Calderón condition

U2
1 (r) +

 1

0
U(rt)2dt

t
= 1 for all r ≥ 0 . (3.1)

Next, let us take a non-negative angular function V ∈ C∞
c ([−π, π]) with the property

suppV ⊂ (−1, 1) and
 1

−1
V (η)2 dη = 1 .

Further, for convenience, let us also introduce the constant function V1 : [−π, π] → { 1√
2π

}.
Now we are ready to define the functions Wη,t ∈ C∞

c (R2), where η ∈ T = [0, 2π)
and t ∈ (0, 1], which correspond to the desired frequency tiling. Using polar coordinates
ξ(r, φ) = (r cos(φ), r sin(φ)) ∈ R2 with r ∈ R+

0 := [0,∞) and φ ∈ [0, 2π), we put

Wη,1

ξ(r, φ)


:= U1(r)V1({φ}2T) = 1√

2π
U1(r) , η ∈ T, t = 1,

Wη,t

ξ(r, φ)


:= U(tr)V


tα−1{φ+ η}2T


, η ∈ T, 0 < t < 1.

(3.2)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

Here {·}2T denotes the projective bracket (2.9) for the interval 2T = [−π, π).
For t = 1 the functions Wη,t are supported in a closed ball around the origin. If 0 < t < 1

their support is a wedge-like tile whose position is determined by η and t. The induced tiling
resembles that of a dicrete α-curvelet frame depicted in Figure 3.1.

From Wη,t we obtain the α-curvelets ψx,η,t ∈ L2(R2) by defining on the Fourier side

ψx,η,t(·) := t(1+α)/2Wη,t(·) exp(−2πi⟨x, ·⟩) , (x, η, t) ∈ X ,

with indices from the curvelet domain

X := R2 × T × (0, 1].

Note that, due to the normalization factor, the α-curvelets ψx,η,t are L2-normalized.
Further, they are Schwartz functions, i.e., ψx,η,t ∈ S(R2). Due to the lack of symmetry of
Wη,t, however, they are not real-valued as the discrete parabolic curvelets in [15].

On the spatial side, the α-curvelets can be represented in the form

ψx,η,t(·) = ψ0,0,t

Rη(· − x)


with ψ0,0,t = t(1+α)/2W0,t , (x, η, t) ∈ X, (3.3)

where Rη is the rotation matrix (2.3) given by

Rη =


cos(η) − sin(η)
sin(η) cos(η)


, η ∈ R. (3.4)

Altogether, the constructed α-curvelets constitute a continuous multi-scale system in
L2(R2) for which we subsequently use the notation

Cα :=

ψx : x ∈ X


.

This system is inhomogeneous, consisting of a high-scale and a low-scale part corresponding
to parameters 0 < t < 1 and t = 1, respectively. The index set X is split accordingly into a
homogeneous and an inhomogeneous component, namely

X0 := R2 × T × (0, 1) and X1 := R2 × T × {1}.

Each of the components X0 and X1 is equipped with the usual product topology, whereas
X is topologized as the disconnected union of the two. With this topology, X becomes a
locally compact Hausdorff space.

We next search for a Radon measure, i.e., a regular Borel measure, µ on X such that
x →→ ψx is weakly measurable, i.e., the assignment x →→ ⟨f, ψx⟩ is measurable for every
f ∈ L2(R2), and such that the continuous Parseval identity is true, i.e.,

∥f |L2∥2 =

X

|⟨f, ψx⟩|2 dµ(x) for all f ∈ L2(R2) . (3.5)

Note that the weak measurability is needed for the integral in (3.5) to be well-defined.
With respect to µ, the system Cα is then a continuous Parseval frame for L2(R2) (see

[1]). In particular, the reconstruction formula

f =

X

⟨f, ψx⟩ψx dµ(x) (3.6)
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3.1 Continuous α-Curvelets

holds in a weak sense. For signal analysis this is relevant since it means that from the data
F (x) = ⟨f, ψx⟩ we can reconstruct the signal f ∈ L2(R2) via (3.6).

To find µ, since the curvelet domain X does not carry a group structure, we cannot
resort to a Haar measure as the canonical choice. Instead, we introduce a measure µ given
by the integration

X
F (x) dµ(x) =

 1

0


T


R2
F (x, η, t)dx dη dt

t3
+

T


R2
F (x, η, 1) dx dη (3.7)

for every F ∈ Cc(X). Its restriction to the homogeneous and inhomogeneous component X0
and X1 shall be denoted by µ0 and µ1, respectively. For this choice of µ the map x →→ ψx
is indeed weakly measurable and the system Cα is a continuous Parseval frame for L2(R2),
i.e., the Parseval identity (3.5) holds true.

This is proved by the following proposition.

Proposition 3.1.1. The continuous α-curvelet system Cα is a continuous Parseval frame
for L2(R2) with respect to the measure µ given by (3.7).

Proof. Let f ∈ L2(R2). We have ⟨f, ψx⟩ = ⟨f̂ , ψ̂x⟩ = t(1+α)/2f̂Wη,t
∨(x). Further,

R2
|

f̂Wη,t

∨(x)|2 dx =

R2

|

f̂Wη,t


(ξ)|2 dξ.

We deduce
X

|⟨f, ψx⟩|2 dµ(x) =
 1

0


T


R2

|

f̂Wη,t


(ξ)|2 dξ dη dt

t2−α
+

T


R2

|

f̂Wη,1


(ξ)|2 dξ dη

=

R2

|f̂(ξ)|2
  1

0


T
Wη,t(ξ)2dη dt

t2−α
+

T
Wη,1(ξ)2 dη


dξ .

At this point, the Calderón condition (3.1) comes into play. For all ξ ∈ R2

 1

0


T
Wη,t(ξ)2dη dt

t2−α
+

T
Wη,1(ξ)2 dη

=
 1

0


T
U(t|ξ|)2V (tα−1{φ(ξ) + η}2T)2dη dt

t2−α
+

T

1
2πU1(|ξ|)2 dη

=
 1

0
t−(α−1)U(t|ξ|)2 dt

t2−α
+ U1(|ξ|)2 =

 1

0
U(t|ξ|)2dt

t
+ U1(|ξ|)2 = 1 .

The proof is finished.

In the next subsection, we will see that Cα is a special instance of an α-molecule system.

3.1.1 The Canonical Parametrization

Although the α-curvelet frame Cα is not an affine construction, it is useful to consider an
affine-like representation utilizing the α-scaling matrix (2.4), namely

Aα,t :=

t 0
0 tα


, t > 0. (3.8)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

In view of (3.3), we can write

ψx,η,t(·) = t−(1+α)/2gt

A−1

α,tRη(· − x)


with a scale-dependent generator gt ∈ L2(R2) whose Fourier transform is given by

ĝt(·) = t−(1+α)/2 ψ0,0,t(A−1
α,t·) = W0,t(A−1

α,t·). (3.9)

For t = 1 we clearly have ĝ1 = W0,1. Further, for 0 < t < 1, note that W0,t is obtained
from the function W0,1(ξ(r, φ)) := U(r)V ({φ}2T) by α-scaling in polar coordinates. Since
this polar operation is closely related to the affine α-scaling operator the generators ĝt are
all close to each other, namely small deviations from W0,1.

From this heuristic consideration, it is plausible that the continuous α-curvelet frame Cα

constitutes a system of α-molecules. This will indeed be shown in Proposition 3.1.3 below.
The associated parametrization takes a particularly simple form and is called the canonical
parametrization.

Definition 3.1.2. The canonical parametrization (X,Φι) is the pair consisting of the curvelet
domain X given by

X := R2 × T × (0, 1]
and the canonical embedding Φι : X → P into the parameter space P = R2 × T × R+, i.e.,
the map

Φι : (x, η, t) →→ (x, η, t).

With this definition, we can now prove that the continuous α-curvelet frame Cα is a
system of α-molecules.

Proposition 3.1.3. Let α ∈ [0, 1]. The continuous α-curvelet frame Cα is a system of
α-molecules of order (∞,∞,∞,∞) with respect to the canonical parametrization (X,Φι).

Proof. We need to show that the generators gt defined in (3.9) satisfy (2.5) for arbitrary
orders (L,M,N1, N2) ∈ N4

0. From

supp ψ̂0,0,t ⊂ [−2t−1, 2t−1] × [−2t−α, 2tα], t ∈ (0, 1],

it follows that
supp ĝt ⊂ [−2, 2]2 for all t ∈ (0, 1].

Next, if t ∈ (0, 1), we observe that the functions ψ̂0,0,t vanish on the squares [−1
4 t

−1, 1
4 t

−1]2,
which implies

ĝt(ξ) = 0 for ξ ∈ [−1
4 ,

1
4 ] × [−1

4 t
α−1, 1

4 t
α−1].

The derivatives ∂ρĝt are well-defined for all ρ = (ρ1, ρ2) ∈ N2
0 since ĝt ∈ C∞(R2), and

they are subject to the same support conditions as the functions ĝt. Further, we have

sup
ξ∈R2

|∂ρ1
1 ∂ρ2

2 W0,t(ξ)| . tρ1tαρ2 uniformly in t ∈ (0, 1].

With the chain rule we deduce

sup
ξ∈R2

|∂ρĝt(ξ)| = sup
ξ∈R2

|∂ρ1
1 ∂ρ2

2

W0,t(A−1

α,t·)

(ξ)| = t−ρ1t−αρ2 sup

ξ∈R2
|

∂ρ1

1 ∂ρ2
2 W0,t


(A−1

α,tξ)| . 1,

where the implicit constant is independent of t ∈ (0, 1]. Together with the support properties
of ∂ρĝt, this uniform bound implies condition (2.5) for arbitrary orders (L,M,N1, N2).

58



3.2 α-Curvelet Molecules

Note, that the canonical parametrization (X,Φι) does not depend on the parameter
α ∈ [0, 1] and is thus the same for all systems Cα. Considering Φι : X → P as an embedding,
the curvelet domain X can further be viewed as a subset of the parameter space P. Since
the topology on X differs from the usual subspace topology imposed by P, one has to be a
little careful though with this perspective.

Let us end this subsection with the remark that the domain X can be considered as
a natural parameter space for inhomogeneous α-molecule systems. Given such an inho-
mogeneous system Mα with a parametrization (Λ,Φ) such that Φ(λ) = (xλ, ηλ, tλ) ∈ P
and tλ ≤ C for all λ ∈ Λ and some constant C > 0, it is always possible to reparame-
terize Mα with a base scale not larger than 1 by using the modified parametrization map
Φ′(λ) := (xλ, ηλ, tλ/C). One can prove that Mα is then still a system of α-molecules with
respect to the new parametrization (Λ,Φ′).

3.2 α-Curvelet Molecules

As we have already seen, the idea for the construction of curvelets is inspired by wavelets
which are obtained by isotropically scaling and translating a set of generating functions. For
a curvelet system, this construction principle is slightly modified to improve the directional
adaptivity of the system elements at high scales. Instead of isotropic scaling, an anisotropic
form of scaling is used and, as a means to adjust the orientation, rotations come into play.

This basic idea is cast into a concrete form by the notion of α-curvelet molecules, a
concept which unites many different curvelet-like constructions under one common roof
and allows a unified treatment of such systems. The definition given below is a direct
generalization of the earlier introduced curvelet molecules from [13]. As the name suggests,
the anisotropic scaling is realized via the α-scaling matrix (3.8) and, as was the case for
α-molecules, the generators have the freedom to vary as long as they obey a certain time-
frequency localization.

We will only consider discrete systems which correspond to certain regular sampling
grids of the continuous curvelet domain X. Thereby the scales shall be numbered by j ∈ N0
and the distance between the different scales, specified by a real number σ > 1, shall be
fixed. Further, the translational grid is assumed to be a transformation of Z2 via the
matrix (2.35) defined by

Mc =

c1 0
0 c2


for some fixed vector c = (c1, c2) ∈ R2

+. (3.10)

The resolution of the angular sampling is scale-dependent and determined at each scale
j ∈ N0 by a positive real number ωj ∈ R+, whereby we require the sequence (ωj)j∈N0 to
fulfill ωj ≍ σ−j(1−α).

For convenience, let us display the set of parameters associated to the resolution of the
sampling grid in the following box,

σ > 1 , c = (c1, c2) ∈ R2
+ , (ωj)j∈N0 ∈ RN0

+ with ωj ≍ σ−j(1−α). (3.11)

A typical index set of a system of α-curvelet molecules is of the form

Λc :=


(j, ℓ, k) : j ∈ N0, ℓ ∈ Lj , k ∈ Z2

, (3.12)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

where the index j corresponds to the scale, ℓ to the orientation, and k to the spatial position
of the molecules. The number of different orientations at each scale j is determined by the
set Lj ̸= ∅ which is of the form

Lj ⊂ Z such that max


|ℓ| : ℓ ∈ Lj


≤ Lj (3.13)

for a sequence (Lj)j∈N0 of nonnegative integers satisfying Lj . σj(1−α).
The definition of a system of α-curvelet molecules is then as follows, whereby we need

the matrices (3.4), (3.8), and (3.10).

Definition 3.2.1. Let α ∈ [0, 1] and let L,M,N1, N2 ∈ N0 ∪{∞}. Further let the sampling
parameters (3.11) be fixed. A family of functions

Mc
α := {mλ ∈ L2(R2) : λ ∈ Λc},

indexed by a set Λc of the form (3.12), is called a system of α-curvelet molecules of order
(L,M,N1, N2) if all functions mλ = mj,ℓ,k are obtained via

mj,ℓ,k(·) := σ(1+α)j/2gj,ℓ,k


Aα,σjRℓωj

· −Mck


from corresponding generators gj,ℓ,k ∈ L2(R2) which satisfy for every ρ ∈ N2
0, |ρ| ≤ L,

|∂ρĝj,ℓ,k(ξ1, ξ2)| . min


1, σ−j + |ξ1| + σ−j(1−α)|ξ2|
M

· ⟨|ξ|⟩−N1 · ⟨ξ2⟩−N2 . (3.14)

The implicit constant is required to be uniform over all λ ∈ Λc and ξ = (ξ1, ξ2) ∈ R2. If
a control parameter equals ∞, the respective quantity can be chosen arbitrarily large in
(3.14).

As for α-molecules, the quantities M,L,N1, N2 specify almost vanishing moment, local-
ization, and frequency decay properties of the respective functions. The following proposi-
tion shows that Definition 3.2.1 is compatible with an earlier notion of curvelet molecules
considered in [13].

Proposition 3.2.2 ([62]). Curvelet molecules of regularity R ∈ N0, as defined in [13], are
1
2 -curvelet molecules of order (∞,∞, R/2, R/2).

Proof. For the proof we refer to [62].

The concept of α-curvelet molecules comprises many curvelet-like constructions. In
particular, the classic curvelets are included, as we will see in Subsection 3.2.3. Before we
turn to concrete examples though, let us show that α-curvelet molecules are a special class
of α-molecules.

3.2.1 The α-Curvelet Parametrization

Systems of α-curvelet molecules constitute a special class of discrete α-molecule systems.
They are characterized by a corresponding class of parametrizations, called α-curvelet
parametrizations.
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3.2 α-Curvelet Molecules

Definition 3.2.3 (compare [59, Def. 3.2]). An α-curvelet parametrization (Λc,Φc) consists
of an α-curvelet index set Λc of the form (3.12), i.e.,

Λc :=


(j, ℓ, k) : j ∈ N0, ℓ ∈ Lj , k ∈ Z2

,

and a mapping Φc : Λc → P given by

Φc : (j, ℓ, k) →→

R−1

ℓωj
A−1

α,σjMck, (ℓωj)2π, σ
−j

with fixed sampling parameters σ > 1, c = (c1, c2) ∈ R2
+, (ωj)j∈N0 ⊂ R+ as in (3.11).

Comparing the definition of α-molecules and the definition of α-curvelet molecules, the
following proposition is self-evident.

Proposition 3.2.4. Every system of α-curvelet molecules of order (L,M,N1, N2) consti-
tutes a system of α-molecules of the same order with respect to a corresponding α-curvelet
parametrization, and vice versa.

Proof. This is obvious from the definitions.

Whereas Proposition 3.2.4 may not come as a surprise, we will see later in Section 3.3
that the concept of α-molecules also comprises shear-based constructions. In particular,
α-shearlet systems and their more general siblings α-shearlet molecules are included, as
proved in Proposition 3.3.6.

3.2.2 A Sufficient Frame Condition for α-Curvelet Molecules

Observe that the frame criterion from Theorem 2.4.1 can be applied to systems of α-curvelet
molecules, provided that the corresponding generators do not vary with the translation
index. Indeed, the α-curvelet index set Λc has the required structure

Λc = ∆c × Z2 with ∆c :=


(j, ℓ) : j ∈ N0, ℓ ∈ Lj


.

Further, the parametrization map

Φc : Λc → P , (j, ℓ, k) →→

R−1

ℓωj
A−1

α,σjMck, (ℓωj)2π, σ
−j

is of the required form (2.34) with the matrix Tµ chosen as the identity for each µ ∈ ∆c.
Let us now assume that {mλ}λ∈Λc is a system of α-curvelet molecules whose generators

{gλ}λ∈Λc satisfy gλ = gµ for all λ = (µ, k) ∈ Λc. Then we can define associated correlation
functions Φc : R2 × R2 → R and Γc : R2 → R as

Φc(ξ, ω) :=


µ∈∆c

|ĝµ(Aα,tµRηµξ)||ĝµ(Aα,tµRηµξ + ω)|,

Γc(ω) := ess sup
ξ∈R2

Φc(ξ, ω).

For c ∈ R2
+, we further define

Rc(c) :=


m∈Z2\{0}


Γc(M−1

c m)Γc(−M−1
c m)

1/2
.

Now we can formulate the following spin-off of Theorem 2.4.1 in the curvelet setting.
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

Theorem 3.2.5. Let {mλ}λ∈Λc be a system of α-curvelet molecules with generators {gλ}λ∈Λc

such that gλ = gµ,k do not vary with k ∈ Z2. Further, let

Lc
inf := ess inf

ξ∈R2
Φc(ξ, 0) and Lc

sup := Γc(0) = ess sup
ξ∈R2

Φc(ξ, 0)

and assume that
Rc(c) < Lc

inf ≤ Lc
sup < ∞,

where c ∈ R2
+ denotes the parameter in (3.11) associated with the density of the translation

grid. Then {mλ}λ∈Λc constitutes a frame for L2(R2) with frame bounds A,B > 0 satisfying

Lc
inf −Rc(c)
| detMc|

≤ A ≤ B ≤
Lc

sup +Rc(c)
| detMc|

.

Proof. This is a direct corollary of Theorem 2.4.1.

Finally, after all these considerations concerning α-curvelet molecules on a general level,
let us now provide a concrete α-curvelet construction.

3.2.3 Discrete α-Curvelet Systems

Similar to the construction of the continuous α-curvelet frame Cα in Section 3.1, we now
construct a prototypical example of a discrete α-curvelet frame, subsequently denoted by
C•

α. The easiest path towards C•
α seems to be to just sample the continuous frame Cα. This

approach has the disadvantage, however, that it is not clear how dense the sampling must
be for the resulting subsystem to still form a frame. Therefore we choose a direct approach
which offers more control over the construction and even allows to obtain a Parseval frame.

The subsequent construction of C•
α is a slight modification of the construction of Cα. As

for Cα, it is band-limited and again it starts by defining radial and angular components of a
suitable partition of the frequency domain. To obtain the Parseval property in the discrete
setting the Calderón condition (3.1) needs to be adapted, however (see (3.16) below).

For the construction of the radial functions, we use two C∞-functions U0 : R+
0 → [0, 1]

and U : R+
0 → [0, 1] on the ray R+

0 := [0,∞) with the properties

supp U0 ⊆ C · [0, τ2], U0 ≡ 1 on C · [0, τ1],
supp U ⊆ C · [2−1τ1, τ2], U ≡ 1 on C · [2−1τ2, τ1],

(3.15)

where 1 < τ1 < τ2 < 2 and C > 0 are fixed parameters. We then generate functions Uj ,
j ≥ 1, from U via

Uj(·) := U(2−j ·).

Altogether, we thus obtain a family {Uj}j∈N0 of radial functions Uj ∈ C∞(R+
0 , [0, 1]). By

suitably choosing U0 and U we can further ensure the discrete Calderón condition
j≥0

U2
j (r) = 1 for all r ∈ R+

0 . (3.16)

The details of such a construction have been carried out for example in [103, Lem. 2.2].
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Next, we define angular functions Vj,ℓ : S1 → [0, 1] on the unit circle S1 ⊂ R2, where
j ∈ N0 and the index ℓ runs through 0, . . . , Lj − 1 with

Lj := 2⌊j(1−α)⌋, j ∈ N0.

The corresponding index set is denoted by

J :=

J = (j, ℓ) : j ∈ N0, ℓ ∈ {0, . . . , Lj − 1}


.

Its elements (j, ℓ) ∈ J can be interpreted as scale-angle pairs, with the index j standing
for a scale and ℓ for an orientation. To simplify the notation, we will often use the capital
letter J for a pair (j, ℓ) ∈ J. In this context, |J | shall then denote the corresponding scale
variable j, i.e., |J | = j for J = (j, ℓ).

To construct the family {VJ}J∈J, we begin with a single function V ∈ C∞(R, [0, 1])
satisfying

supp V ⊆ [−3
4π,

3
4π], V ≡ 1 on [−π

4 ,
π
4 ],


k∈Z

V 2(· − kπ) ≡ 1.

By rescaling, we then obtain functions Vj(·) := V (Lj ·) ∈ C∞(R, [0, 1]) for every j ∈
N0 which in turn, via the bijection t →→ eit, give rise to corresponding functions Vj,0 ∈
C∞(S1, [0, 1]) on the unit circle. After a symmetrization, we arrive at the functions Vj,0 ∈
C∞(S1, [0, 1]) given by

Vj,0(ξ) := Vj,0(ξ) + Vj,0(−ξ), ξ ∈ S1.

At last, we rotate the functions Vj,0 by integer multiples of the angle

ωj := πL−1
j = π2−⌊j(1−α)⌋ , j ∈ N0.

Using the rotation matrix Rj,ℓ := Rℓωj
, this yields functions Vj,ℓ ∈ C∞(S1, [0, 1]) given by

Vj,ℓ(ξ) := Vj,0(Rj,ℓξ) , ξ ∈ S1.

The constructed family {VJ}J∈J then clearly satisfies
|J |=j

V 2
J (ξ) = 1 for all ξ ∈ S1 and all j ∈ N0.

In conjunction with (3.16), this property yields
J∈J

W 2
J ≡ 1 (3.17)

for the bivariate functions WJ = Wj,ℓ ∈ C∞(R2, [0, 1]), which are defined as the polar tensor
products

Wj,ℓ(ξ) := Uj(|ξ|2)Vj,ℓ(ξ/|ξ|2), ξ ∈ R2. (3.18)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

These functions are symmetric, i.e., Wj,ℓ(ξ) = Wj,ℓ(−ξ) for ξ ∈ R2, and they are supported
in corresponding wedges W+

j,ℓ[C], depending on the constant C in (3.15). We have

W+
0,0[C] :=


ξ ∈ R2 : |ξ|2 ≤ C2j+1


and for (j, ℓ) ∈ J\{(0, 0)}

W+
j,ℓ[C] :=


ξ ∈ R2 : C2j−1 ≤ |ξ|2 ≤ C2j+1, |⟨ξ,Rj,ℓe1⟩| ≥ cos(3ωj/4)|ξ|2


,

(3.19)

where e1 = (1, 0) ∈ R2 denotes the first unit vector of R2.
Now we fix C := 1

6π in (3.15) such that W+
j,ℓ[C] is contained in the rectangle

ΞJ := R−1
J Ξj,0 with Ξj,0 := [−2j−1, 2j−1] × [−2jα−1, 2jα−1]. (3.20)

The rectangles Ξj,0 are of size 2j × 2jα and hence the Fourier system {uj,0,k}k∈Z2 with

uj,0,k(ξ) := 2−j(1+α)/2 exp

2πi(2−jk1ξ1 + 2−jαk2ξ2)


, ξ = (ξ1, ξ2) ∈ R2,

constitutes an orthonormal basis for L2(Ξj,0) . Consequently, also the rotated system
{uj,ℓ,k}k∈Z2 consisting of the functions

uj,ℓ,k(ξ) := uj,0,k(Rj,ℓξ), ξ ∈ R2, (3.21)

is an orthonormal basis for L2(ΞJ).
After this preparation, we are now ready to define the α-curvelet system C•

α.

Definition 3.2.6. Let α ∈ [0, 1], and let {WJ}J∈J be the family of wedge functions con-
structed in (3.18). Further, let uj,ℓ,k be the functions defined in (3.21). The discrete
α-curvelet system C•

α := {ψµ}µ∈M with associated index set M := J × Z2 shall consist of
the functions ψµ = ψj,ℓ,k given byψj,ℓ,k(ξ) := Wj,ℓ(ξ)uj,ℓ,k(ξ) , ξ ∈ R2. (3.22)

Note that C•
α depends on the utilized family {WJ}J∈J, which is not accounted for in the

notation.

In contrast to the continuous α-curvelets in Cα, the α-curvelets ψµ ∈ C•
α are real-valued

due to the symmetry of Wj,ℓ. They are not strictly L2-normalized, however. Their L2-norms
may vary slightly with the scale, but there exist fixed constants 0 < C1 ≤ C2 < ∞ such
that C1 ≤ ∥ψµ∥2 ≤ C2 holds true for all µ ∈ M .

Concerning the frame property, we have the following result.

Lemma 3.2.7. Let α ∈ [0, 1]. The system C•
α given by (3.22) is a Parseval frame for

L2(R2).

Proof. The functions WJ satisfy condition (3.17) wherefore

∥f∥2
2 = ∥ f∥2

2 =

J∈J

∥ fWJ∥2
2 for every f ∈ L2(R2).

Since supp ( fWJ) ⊆ ΞJ and since {uJ,k}k∈Z2 is an orthonormal basis of L2(ΞJ) we have the
orthogonal expansion fWJ =


k⟨ fWJ , uJ,k⟩uJ,kXΞJ

. The proof is finished by the following
equality,

∥ fWJ∥2
2 =


k∈Z2

|⟨ fWJ , uJ,k⟩|2 =


k∈Z2

|⟨ f,WJuJ,k⟩|2 =


k∈Z2

|⟨ f, ψJ,k⟩|2 =


k∈Z2

|⟨f, ψJ,k⟩|2.
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3.2 α-Curvelet Molecules

Lemma 3.2.7 shows that C•
α constitutes a Parseval frame for L2(R2) for every α ∈ [0, 1].

Hence, we now have a whole scale of discrete Parseval frames of α-curvelets available for
L2(R2) which interpolates between wavelet systems for α = 1 and ridgelet systems for α = 0.
The induced frequency tiling for different α ∈ [0, 1] is schematically depicted in Figure 3.1.

Note that for α = 1
2 one obtains a variation of the classic second generation curvelet

frame introduced by Candès and Donoho in [15]. Historically, this frame can be considered
as the first true curvelet construction. Introduced in 2002, it provably provides quasi-optimal
approximation for a model class of cartoon-like functions. Its invention triggered the devel-
opment of many other directional representation system, in particular the generalization to
α-curvelets.

(a) (b) (c)

Figure 3.1: Partition of the Fourier domain induced by α-curvelets for (a): α = 1, (b):
α = 1/2, and (c): α = 0.

Whereas the frame of second generation curvelets slightly differs from the frame C•
1/2,

they are both instances of 1
2 -curvelet molecules. We have the following proposition.

Proposition 3.2.8 (compare [59, Prop. 3.3]). The following statements hold.

(i) Second generation curvelets are 1
2 -curvelet molecules of order (∞,∞,∞,∞) with pa-

rameters σ = 4 and c = (1, 1), ωj = π4−j/2, and Lj = 2j.

(ii) For each α ∈ [0, 1], the discrete α-curvelet frame C•
α is a system of α-curvelet molecules

of order (∞,∞,∞,∞) with parameters σ = 2, c = (1, 1), ωj = π2−⌊j(1−α)⌋, and
Lj = 2⌊j(1−α)⌋.

Proof. (i) was proved in [62].
(ii) In spatial domain, the α-curvelets ψµ = ψj,ℓ,k ∈ C•

α have the representation

ψj,ℓ,k(x) = ψj,0,0 (Rj,ℓ (x− xj,ℓ,k)) with xj,ℓ,k := R−1
j,ℓA

−1
j k, (3.23)

where Rj,ℓ := Rℓωj
and Aj := Aα,2j is a dyadic α-scaling matrix, i.e.,

Rj,ℓ =


cos(ℓωj) − sin(ℓωj)
sin(ℓωj) cos(ℓωj)


and Aj =


2j 0
0 2jα


. (3.24)

Further, introducing the functions

aj := 2−j(1+α)/2ψj,0,0(A−1
j ·) , j ∈ N0, (3.25)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

we can write ψj,ℓ,k in the form

ψj,ℓ,k(x) = 2j(1+α)/2aj (AjRj,ℓ (x− xj,ℓ,k)) = 2j(1+α)/2aj (AjRj,ℓx− k) . (3.26)

On the Fourier side the functions (3.25) have the form

aj = 2j(1+α)/2 ψj,0,0(Aj ·) = Wj,0(Aj ·).

Since suppWj,0 ⊆ W+
j,0[1/6π] (see (3.19)) and

W+
j,0[1/6π] ⊆ [−2j−1, 2j−1] × [−2jα−1, 2jα−1] = Ξj,0,

this implies

supp aj ⊆ [−2−1, 2−1] × [−2−1, 2−1] = Ξ0,0. (3.27)

Further, if j > 0 the function ψj,0,0 vanishes on the square [−2j−7, 2j−7]2. Consequently,
the associated function aj vanishes on [−2−7, 2−7] ×


2j(1−α) · [−2−7, 2−7]


.

Next, we analyze the derivatives of aj . First observe that for fixed ρ = (ρ1, ρ2) ∈ N2
0 the

mixed derivatives ∂ρ1
1 ∂ρ2

2 Wj,0 obey uniformly in j ∈ N0

∥∂ρ1
1 ∂ρ2

2 Wj,0∥∞ . 2−jρ12−jαρ2 .

With the chain rule we deduce

∥∂ρaj∥∞ = ∥∂ρ1
1 ∂ρ2

2 Wj,0(Aj ·)∥∞ = 2jρ12jαρ2∥

∂ρ1

1 ∂ρ2
2 Wj,0


(Aj ·)∥∞ . 1.

Due to supp ∂ρaj ⊆ supp aj , this estimate together with the support properties of aj im-
plies (2.5).

As a consequence of this proposition, the α-curvelet frame C•
α is in particular a system of

α-molecules of order (∞,∞,∞,∞). Its parametrization (M,ΦM ) consists of the α-curvelet
index set M = J × Z2 and the parametrization map ΦM from M into the phase-space
P = R2 × T × R+ which is given as follows

ΦM : M → P , (j, ℓ, k) →→ (xj,ℓ,k, ℓωj , 2−j) = (R−1
ℓωj
A−1

j k, ℓωj , 2−j). (3.28)

The frame C•
α is a suitable anchor system for the application of the transfer principle for-

mulated in Theorem 2.3.6. It will be used in Chapters 5 and 6 to study cartoon approxima-
tion properties of α-molecules. Via the transfer principle, the results obtained for C•

α have
consequences for many other α-molecule systems. Among these are α-curvelet construc-
tions [15, 60], but also band-limited [81, 66, 70] as well as compactly supported [76, 73, 83]
α-shearlet systems. A general framework for discrete α-shearlet systems is the topic of the
next section.
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3.3 α-Shearlet Molecules

3.3 α-Shearlet Molecules

The concept of α-shearlet molecules can be viewed as the analogue of the concept of α-
curvelet molecules in the shearlet setting. To motivate this concept, let us first recall the
basic construction principles of a cone-adapted shearlet system.

The idea for the construction of a shearlet system in general is to apply anisotropic
scalings, shearings, and translations to a set of generating functions [81]. This is similar
to curvelet constructions, the essential difference is the utilization of shearings instead of
rotations as a means to adjust the orientation. On the one hand, this provides advantages
in the discrete setting and for numerical implementations, on the other hand, the shearing
operation leads to a directional bias with respect to the vertical or the horizontal coordinate
axis. This bias is a disadvantage when one requires a uniform treatment of all spatial
directions.

To compensate for this drawback, the concept of cone-adapted shearlet systems [66]
emerged. Those are systems assembled from different shearlet subsystems, each taking care
of a different coordinate direction. In the frequency domain, each subsystem correlates with
a double cone aligned with one of the coordinate axes. In case of an inhomogeneous system,
there is in addition a distinguished subsystem of base-scale functions corresponding to a
low-frequency box.

A typical tiling of the frequency domain induced by a cone-adapted shearlet system is
depicted in Figure 3.2. The cones associated with the ε-direction, ε ∈ {1, 2}, are denoted
by Cε, and the symbol R0 is used for the low-frequency box.

(a) (b)

Figure 3.2: (a): The Fourier domain is partitioned into a horizontal and vertical double cone
and a low-frequency box. (b): Partition of the Fourier domain induced by a cone-adapted
shearlet system.

In the classic case [66], each shearlet subsystem is generated via affine transformations
from a single generator. For many constructions, however, this building principle is relaxed
to obtain more flexibility in the design, see for instance [70, 67]. A shearlet framework
which also comprises such more general constructions is provided by the concept of shearlet
molecules.

The notion first appeared in [68] and was later generalized in [62]. Like curvelet
molecules, shearlet molecules incorporate the molecule idea, i.e., to allow variable gen-
erators for each function as long as those satisfy a uniform time-frequency localization. The
definition of α-shearlet molecules given here generalizes both earlier definitions.

As for α-curvelet molecules, we only consider the discrete setting. For flexibility, we
allow different samplings of the shearlet domain, however restricted to regular sampling

67
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grids. Those are specified by a set of parameters, similar to (3.11), namely

σ > 1 , c = (c1, c2) ∈ R2
+ , (υj)j∈N0 ∈ RN0

+ with υj ≍ σ−j(1−α). (3.29)

The parameters σ and c determine the scale and translational resolution of the sampling.
The numbers υj determine the resolution of the shear sampling.

The subsystems associated to the ε-direction, ε ∈ {1, 2}, are indexed by a set Λs
ε of the

form

Λs
ε :=


(ε, j, ℓ, k) : j ∈ N0, ℓ ∈ Lε

j , k ∈ Z2

, (3.30)

where j ∈ N0 corresponds to the scale, ℓ ∈ Lε
j to the orientation, and k ∈ Z2 to the spatial

position of the elements. The possible shears at each scale j are restricted by a nonempty
set

Lε
j ⊂ Z such that max


|ℓ| : ℓ ∈ Lε

j


≤ Lε

j ,

where (Lε
j)j∈N0 is a sequence of nonnegative integers with Lε

j . σj(1−α).
For the subsequent definitions we need the following matrices, where the different ver-

sions correspond to different regions of the frequency domain, i.e., either the cones Cε,
ε ∈ {1, 2}, or the low-frequency box R0. For the scaling we utilize the α-scaling matrices

A
(0)
α,t := A

(1)
α,t :=


t 0
0 tα


and A

(2)
α,t =


tα 0
0 t


, t > 0,

for the shearing we utilize the shear matrices

S(0)
υ := S(1)

υ :=


1 υ
0 1


and S(2)

υ =


1 0
υ 1


, υ ∈ R.

Further, the translational grid is obtained from Z2 using matrices of the form

M (0)
c := M (1)

c :=

c1 0
0 c2


, M (2)

c =

c2 0
0 c1


, c = (c1, c2) ∈ R2

+.

Now we are ready to introduce the subsystems Ms
α,ε corresponding to the frequency

cones Cε in ε-direction, ε ∈ {1, 2}.

Definition 3.3.1. Let α ∈ [0, 1], ε ∈ {1, 2}, and L,M,N1, N2 ∈ N0 ∪ {∞}. Further, let the
sampling parameters (3.29) be fixed, and let Λs

ε be an index set of the form (3.30). We call
a system

Ms
α,ε :=


mλ ∈ L2(R2) : λ ∈ Λs

ε


a system of α-shearlet molecules of order (L,M,N1, N2) associated with the ε-direction if
the functions mλ = mε,j,ℓ,k can be represented in the form

mε,j,ℓ,k(·) := σj(1+α)/2γε,j,ℓ,k


A

(ε)
α,σjS

(ε)
ℓυj

· −M (ε)
c k


with generators γε,j,ℓ,k ∈ L2(R2) which satisfy for every ρ ∈ N2

0 with |ρ| ≤ L,

|∂ργ̂ε,j,ℓ,k(ξ1, ξ2)| . min


1, σ−j + |ξε| + σ−j(1−α)|ξ3−ε|
M

· ⟨|ξ|⟩−N1 · ⟨ξ3−ε⟩−N2 . (3.31)
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Hereby the implicit constant shall be independent of the indices (ε, j, ℓ, k) ∈ Λs
ε and ξ =

(ξ1, ξ2) ∈ R2. The value ∞ of a control parameter indicates that the respective quantity
can be chosen arbitrarily large.

Next, we introduce the system Ms
α,0 corresponding to the low-frequency box R0. As

index set we use

Λs
0 :=


(0, 0, 0, k) : k ∈ Z2


. (3.32)

Definition 3.3.2. Let α ∈ [0, 1] and L,N1, N2 ∈ N0 ∪ {∞}. The system Ms
α,0 of base-scale

functions of order (L,N1, N2) is given by

Ms
α,0 :=


mλ : λ ∈ Λs

0


with functions mλ ∈ L2(R2) of the form

mλ(·) := γλ(· −M (0)
c k) for λ = (0, 0, 0, k) ∈ Λs

0.

The generators γλ ∈ L2(R2) are assumed to satisfy

|∂ργ̂λ(ξ1, ξ2)| . ⟨|ξ|⟩−N1 · ⟨ξ2⟩−N2 , ξ = (ξ1, ξ2) ∈ R2,

for every ρ ∈ N2
0 with |ρ| ≤ L and with an implicit constant independent of the index λ ∈ Λs

0
and ξ = (ξ1, ξ2) ∈ R2.

A full system of α-shearlet molecules for L2(R2) is obtained by combining the systems
Ms

α,ε, ε ∈ {0, 1, 2}.

Definition 3.3.3. An α-shearlet index set Λs is defined as the union

Λs :=


ε∈{0,1,2}
Λs

ε (3.33)

of sets Λs
ε of the form (3.30) and (3.32). A system Ms

α := {mλ ∈ L2(R2) : λ ∈ Λs},
indexed by an α-shearlet index set Λs, constitutes a system of α-shearlet molecules of order
(L,M,N1, N2) if the subsystems Ms

α,ε := {mλ : λ ∈ Λs
ε}, ε ∈ {1, 2}, are systems of α-

shearlet molecules of order (L,M,N1, N2) in the sense of Definition 3.3.1 and if Ms
α,0 :=

{mλ : λ ∈ Λs
0} is a system of base-scale functions of order (L,N1, N2) as in Definition 3.3.2.

For convenience, we write this as

Ms
α =


ε∈{0,1,2}

Ms
α,ε.

The definition of α-shearlet molecules is compatible with other notions of shearlet
molecules, in particular those defined in [68, Def. 4.1].

Proposition 3.3.4 (compare [62, Prop. 3.14]). Shearlet molecules of regularity R ∈ N0, as
defined in [68], are 1

2 -shearlet molecules of order (∞,∞, R/2, R/2).

Proof. An argument can be found right before [62, Prop. 3.14].

Next we will prove that, like α-curvelet molecules, systems of α-shearlet molecules con-
stitute their own subclass of discrete α-molecule systems.
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3.3.1 The α-Shearlet Parametrization

Since the construction of α-shearlet molecules is based on shearings instead of rotations, the
associated parametrizations need to adequately translate the shearing parameters to corre-
sponding orientation angles. This complicates their definition compared to the definition of
the α-curvelet parametrizations in Definition 3.2.3.

Definition 3.3.5. With parameters given as in (3.29), an α-shearlet parametrization (Λs,Φs)
consists of an index set Λs of the form (3.33) and a map Φs : Λs → P from Λs into
P = R2 × T × R+ defined by

Φs : (ε, j, ℓ, k) →→

S

(ε)
−ℓυj

A
(ε)
α,σ−jM

(ε)
c k,


max{0, ε− 1}π/2 + arctan(−ℓυj)


2π
, σ−j


.

Now we are ready to prove the essential result that α-shearlet molecules are instances
of α-molecules. In fact, they can even be characterized as precisely those systems of α-
molecules which correspond to an α-shearlet parametrization.

Proposition 3.3.6 (compare [59, Prop. 3.9]). Every system of α-shearlet molecules of
order (L,M,N1, N2) constitutes a system of α-molecules of the same order with respect to
a corresponding α-shearlet parametrization, and vice versa.

Proof. The main ingredients of the proof can be found in [59, Subsec. 6.1.1], where [59,
Prop. 3.9] is proved.

Let Ms
α := {mλ}λ∈Λs be a function system in L2(R2) indexed by a set Λs = Λs

0 ∪Λs
1 ∪Λs

2
of the form (3.33). Further, let Φs : λ →→ (xλ, ηλ, tλ) denote an α-shearlet parametrization
subject to parameters σ, c = (c1, c2), (υj)j∈N0 as in (3.29).

Clearly, for each λ ∈ Λs there exist unique functions gλ, γλ ∈ L2(R2) such that

t
−(1+α)/2
λ γλ


A

(ε)
α,t−1

λ

S(ε)
υλ

· −M (ε)
c k


= mλ = t

−(1+α)/2
λ gλ


A−1

α,tλ
Rηλ

(· − xλ)

,

where υλ := ℓυj . We need to show that the Fourier transform ĝλ of gλ satisfies (2.5) if and
only if γ̂λ satisfies (3.31). For this investigation we decompose

Ms
α =


ε∈{0,1,2}

Ms
α,ε

and handle the subsystems Ms
α,ε := {mλ}λ∈Λs

ε
, ε ∈ {0, 1, 2}, separately.

Let us begin with the case ε = 0. Then gλ = γλ and the assertion is obvious.
Of the cases ε ∈ {1, 2}, we only handle ε = 1 since the arguments for the case ε = 2 are
essentially the same. For Ms

α,1 the relation between gλ and γλ can be expressed by

γλ(·) = gλ


Tj,ℓ ·


and gλ(·) = γλ


T−1

j,ℓ ·


(3.34)

with a matrix

Tj,ℓ := A−1
α,tλ

Rηλ
S−1

ℓυj
Aα,tλ

, (3.35)

which describes the transfer from the rotation-based to the shear-based generators. Let us
investigate the properties of this ‘transfer matrix’ Tj,ℓ.
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For this purpose, it is useful to first examine the matrix Tj,ℓ := Rηλ
S−1

ℓυj
. Since ηλ =

(arctan(−ℓυj))2π, we have

Sℓυj
=


1 ℓυj

0 1


=


1 − tan(ηλ)
0 1


.

Using

0 = tan(ηλ) cos(ηλ) − sin(ηλ) and cos(ηλ)−1 = tan(ηλ) sin(ηλ) + cos(ηλ),

we calculate

Tj,ℓ =


cos(ηλ) 0
sin(ηλ) cos(ηλ)−1


=

 1√
1+(ℓυj)2 0
−ℓυj√

1+(ℓυj)2


1 + (ℓυj)2

 =:

a(j, ℓ) 0
b(j, ℓ) c(j, ℓ)


.

Taking into account a(j, ℓ) = c(j, ℓ)−1, we obtain for the inverse

T−1
j,ℓ =


c(j, ℓ) 0

−b(j, ℓ) a(j, ℓ)


=




1 + (ℓυj)2 0
ℓυj√

1+(ℓυj)2
1√

1+(ℓυj)2

 .
By assumption |ℓ| . σj(1−α) and υj ≍ σ−j(1−α), which implies the existence of a bound

B > 0 such that

|ℓυj | ≤ B for all j ∈ N0, ℓ ∈ L1
j .

Hence, uniformly for all j ∈ N0 and ℓ ∈ L1
j

1/


1 +B2 ≤ a(j, ℓ) ≤ 1 ≤ c(j, ℓ) ≤


1 +B2 , |b(j, ℓ)| ≤ B/


1 +B2. (3.36)

Turning to the matrix Tj,ℓ, we calculate

Tj,ℓ =


a(j, ℓ) 0
σ−j(1−α)b(j, ℓ) c(j, ℓ)


and T−1

j,ℓ =


c(j, ℓ) 0
−σ−j(1−α)b(j, ℓ) a(j, ℓ)


.

Since |σ−j(1−α)| ≤ 1 for every j ∈ N0, we obtain for the Frobenius norm

∥T T
j,ℓ∥F = ∥Tj,ℓ∥F ≤


2 +B2 and ∥T−T

j,ℓ ∥F = ∥T−1
j,ℓ ∥F ≤


2 +B2.

As a consequence, we have uniformly in j ∈ N0, ℓ ∈ L1
j ,

1√
2 +B2

|ξ| ≤ |T T
j,ℓξ| ≤


2 +B2|ξ| for all ξ ∈ R2 , (3.37)

and the respective relation for |T−T
j,ℓ ξ|. Since detTj,ℓ = detT−1

j,ℓ = 1, we obtain from (3.34)

γ̂λ(·) = ĝλ


T−T

j,ℓ ·


and ĝλ(·) = γ̂λ


T T

j,ℓ ·

.
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Now we are ready to show that the assumption (3.31) on γ̂λ implies property (2.5) for ĝλ,
and vice versa. Using |σ−j(1−α)| ≤ 1, the uniform boundedness of |a(j, ℓ)|, |b(j, ℓ)|, |c(j, ℓ)|,
and the chain rule, we can estimate for any ρ ∈ N2

0 with |ρ| ≤ L,

|∂ρĝλ(ξ)| . sup
|ν|≤L

∂ν γ̂λ


a(j, ℓ) σ−j(1−α)b(j, ℓ)

0 c(j, ℓ)


ξ

 . (3.38)

Utilizing the moment estimate in (3.31) for γ̂λ gives the moment property required in (2.5),
namely

|∂ρĝλ(ξ)| .

σ−j + |a(j, ℓ)ξ1 + σ−j(1−α)b(j, ℓ)ξ2| + σ−j(1−α)|c(j, ℓ)ξ2|

M

.

tλ + |ξ1| + t1−α

λ |ξ2|
M

.

It remains to show the decay of ∂ρĝλ for large frequencies ξ = (ξ1, ξ2) ∈ R2. We obtain
from (3.38) and the decay estimate in (3.31),

|∂ρĝλ(ξ)| .


a(j, ℓ) σ−j(1−α)b(j, ℓ)

0 c(j, ℓ)


ξ


−N1

⟨c(j, ℓ)ξ2⟩−N2 . ⟨|ξ|⟩−N1 ⟨ξ2⟩−N2 ,

where the last estimate is a consequence of |T T
j,ℓξ| ≍ |ξ| due to (3.37) and c(j, ℓ)ξ2 ≍ ξ2.

We finish the proof by noting that an analogous argumentation, with the matrix T−T
j,ℓ

taking the role of T T
j,ℓ, yields (3.31) for γ̂λ under the assumption (2.5) on ĝλ.

3.3.2 A Sufficient Frame Condition for α-Shearlet Molecules

We will now use Theorem 2.4.1 to derive a sufficient frame criterion for α-shearlet molecules
similar to Theorem 3.2.5. First, recall that an α-shearlet parametrization (Λs,Φs) is deter-
mined by an α-shearlet index set, which can be decomposed in the form

Λs = ∆s × Z2 with ∆s :=


(0, 0, 0)


∪


(ε, j, ℓ) : ε ∈ {1, 2}, j ∈ N0, ℓ ∈ Lε
j


,

and a corresponding parametrization map

Φs : Λs → P : (ε, j, ℓ, k) →→

S

(ε)
−ℓυj

A
(ε)
α,σ−jM

(ε)
c k,


max{0, ε− 1}π2 + arctan(−ℓυj)


2π
, σ−j


.

Hence, α-shearlet parametrizations have the structure (2.34) if for each µ = (ε, j, ℓ) ∈ ∆s

we choose Tµ := T
(ε)
j,ℓ M

(ε)
c M−1

c with the matrix

T
(ε)
j,ℓ := A−1

α,tµ
RηµS

(ε)
−ℓυj

A
(ε)
α,tµ

. (3.39)

Note that indeed | det(Tµ)| = 1, as required. Note further that the matrices T (ε)
j,ℓ are transfer

matrices of the type (3.35) which were analyzed in the proof of Proposition 3.3.6.
Now let {mλ}λ∈Λs be a system of α-shearlet molecules with associated shear-based

generators {γλ}λ∈Λs and assume that the functions γλ = γµ,k do not depend on k ∈ Z2.
In this situation the frame criterion for α-molecules, Theorem 2.4.1, can be applied to
positively decide whether this system forms a frame for L2(R2).

72
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In the case of α-shearlet molecules, it is more convenient to formulate the correlation
functions in terms of the shear-based generators γλ = γµ, λ = (µ, k) ∈ Λs. Hence, we
introduce the functions Φs : R2 × R2 → R and Γs : R2 → R as

Φs(ξ, ω) :=


µ∈∆s

|γ̂µ(A(ε)
α,tµ

(S(ε)
ℓυj

)−T ξ)||γ̂µ(A(ε)
α,tµ

(S(ε)
ℓυj

)−T ξ + (M (ε)
c )−1Mcω)|,

Γs(ω) := ess sup
ξ∈R2

Φs(ξ, ω).
(3.40)

For c = (c1, c2) ∈ R2
+, we further define

Rs(c) :=


m∈Z2\{0}


Γs(M−1

c m)Γs(−M−1
c m)

1/2
.

Then we have the following result.

Theorem 3.3.7. Let {mλ}λ∈Λs be a system of α-shearlet molecules with a corresponding
family of generators {γλ}λ∈Λs, and assume that the generators γλ = γµ,k do not vary with
k ∈ Z2. Further, let c = (c1, c2) ∈ R2

+ be the parameter in (3.29) associated with the density
of the translation grid. Then the condition

Rs(c) < Ls
inf ≤ Ls

sup < ∞

for the quantities

Ls
inf := ess inf

ξ∈R2
Φs(ξ, 0) and Ls

sup := Γs(0) = ess sup
ξ∈R2

Φs(ξ, 0)

ensures that {mλ}λ∈Λs constitutes a frame for L2(R2) with frame bounds A,B > 0 satisfying

Ls
inf −Rs(c)
| detMc|

≤ A ≤ B ≤
Ls

sup +Rs(c)
| detMc|

.

Proof. The system {mλ}λ∈Λs is a system of α-molecules with respect to an α-shearlet
parametrization. The associated rotation-based generators are given by gµ = γµ((T (ε)

j,ℓ )−1·),
where T (ε)

j,ℓ is the transfer matrix (3.39). It follows

γ̂µ = ĝµ((T (ε)
j,ℓ )−T ·) = ĝµ(Aα,tµRηµ(S(ε)

ℓυj
)T (A(ε)

α,tµ
)−1·).

Plugging this into (3.40) yields for the correlation function

Φs(ξ, ω) =


µ∈∆s

|ĝµ(Aα,tµRηµξ)||ĝµ(Aα,tµRηµξ + T−T
µ ω)|,

where T−T
µ = (T (ε)

j,ℓ )−T (M (ε)
c )−1Mc. Hence we can apply Theorem 2.4.1 and the assertion

follows.

Finally note that SℓAα,σj = Aα,σjSℓυj
if υj = σ−j(1−α). Hence for a strict α-shearlet

system as in Definition 3.3.8 this is precisely the criterion proved in [76, Thm. 3.4].

73
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3.3.3 Discrete α-Shearlet Systems

The concept of α-shearlet molecules comprises many common cone-adapted shearlet con-
structions. These include band-limited as well as compactly supported systems, as we will
see below.

The general structure of a regular cone-adapted discrete α-shearlet system is recalled in
Definition 3.3.8. It is a generalization of [80, Def. 11] to α-scaling. Note, that sometimes
the parameter β = α−1 is used in the definition instead, as for example in [59, Def. 3.10].

Definition 3.3.8 (compare [59, Def. 3.10]). For c = (c1, c2) ∈ R2
+ and α ∈ (0, 1), the

cone-adapted α-shearlet system SH

φ, ψ, ψ̃; c, α


generated by φ, ψ, ψ̃ ∈ L2(R2) is defined

by
SH


φ, ψ, ψ̃; c, α


:= Φ(φ; c, α) ∪ Ψ(ψ; c, α) ∪ Ψ̃(ψ̃; c, α),

where, with β = α−1,

Φ(φ; c, α) := {φk = φ(· −M (0)
c k) : k ∈ Z2},

Ψ(ψ; c, α) :=

ψj,ℓ,k = 2j(β+1)/4ψ(S(1)

ℓ A
(1)
α,2jβ/2 · −M (1)

c k) : j ∈ N0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ Z2,
Ψ̃(ψ̃; c, α) :=


ψ̃j,ℓ,k = 2j(β+1)/4ψ̃(S(2)

ℓ A
(2)
α,2jβ/2 · −M (2)

c k) : j ∈ N0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ Z2.
In the following, we present some examples of cone-adapted α-shearlet systems as in

Definition 3.3.8. Thereby the generators φ, ψ, ψ̃ ∈ L2(R2) are assumed to be either band-
limited or compactly supported.

In the band-limited case, we require φ̂, ψ̂, ˆ̃ψ ∈ C∞
0 (R2) and a frequency support of the

form
supp φ̂ ⊆ Q, supp ψ̂ ⊆ W, supp ˆ̃ψ ⊆ W̃ ,

with Q ⊂ R2 being a cube centered at the origin and W, W̃ ⊂ R2 being sets of the form

W = [−a, a] × ([−c,−b] ∪ [b, c]), W̃ = ([−c,−b] ∪ [b, c]) × [−a, a]

with 0 < b < c and 0 < a.
In the compact case, the coarse-scale generator φ shall satisfy

φ ∈ CN1+N2
0 (R2).

Furthermore, we assume the separability of ψ ∈ L2(R2), i.e. ψ(x1, x2) = ψ1(x1)ψ2(x2), and
let ψ̃ be its rotation by π/2. Finally, the functions ψ1, ψ2 shall satisfy

ψ1 ∈ CN1
0 (R) and ψ2 ∈ CN1+N2

0 (R),

and for ψ1 we assume M ∈ N0 vanishing moments.
The following proposition shows that under these assumptions the systems SH


φ, ψ, ψ̃; c, α


are instances of α-shearlet molecules.

Proposition 3.3.9 ([59, Prop. 3.11]). Let α ∈ (0, 1), β = α−1, and c ∈ R2
+ be fixed

parameters. The following statements hold.

(i) For band-limited generators φ, ψ, and ψ̃ subject to the conditions above, the cone-
adapted α-shearlet system SH


φ, ψ, ψ̃; c, α


is a system of α-shearlet molecules of order

(∞,∞,∞,∞) with σ = 2β/2, υj = σ−j(1−α), and Lj = ⌈σj(1−α)⌉.
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(ii) For compactly supported generators φ, ψ, and ψ̃ subject to the conditions above, the
cone-adapted α-shearlet system SH


φ, ψ, ψ̃; c, α


is a system of α-shearlet molecules

of order (L,M − L,N1, N2), where L ∈ {0, . . . ,M} is arbitrary, with σ = 2β/2, υj =
σ−j(1−α), and Lj = ⌈σj(1−α)⌉.

Proof. For the proof we also refer to [59, Subsec. 6.1.2].
Let us first rename the functions of the system SH(φ, ψ, ψ̃; c, α). For j ∈ N0, ℓ ∈ Z with

|ℓ| ≤ ⌈2j(β−1)/2⌉, and k ∈ Z2 we put

ψ0,0,0,k := φk = φ(· −M (0)
c k),

ψ1,j,ℓ,k := ψj,ℓ,k = 2j(β+1)/4ψ(S(1)
ℓ A

(1)
α,2jβ/2 · −M (1)

c k),

ψ2,j,ℓ,k := ψ̃j,ℓ,k = 2j(β+1)/4ψ̃(S(2)
ℓ A

(2)
α,2jβ/2 · −M (2)

c k).

With σ = 2β/2 we can rewrite A(1)
α,2jβ/2 = A

(1)
α,σj and A

(2)
α,2jβ/2 = A

(2)
α,σj . Further, using

υj = σ−j(1−α), we obtain

S
(1)
ℓ A

(1)
α,σj = A

(1)
α,σjS

(1)
ℓσ−j(1−α) = A

(1)
α,σjS

(1)
ℓυj

and
S

(2)
ℓ A

(2)
α,σj = A

(2)
α,σjS

(2)
ℓσ−j(1−α) = A

(2)
α,σjS

(2)
ℓυj
.

Finally, due to 2j(β+1)/4 = σj(1+α)/2, we arrive at the representation

ψ0,0,0,k = φ(· −M (0)
c k),

ψ1,j,ℓ,k = σj(1+α)/2ψ(A(1)
α,σjS

(1)
ℓυj

· −M (1)
c k),

ψ2,j,ℓ,k = σj(1+α)/2ψ̃(A(2)
α,σjS

(2)
ℓυj

· −M (2)
c k).

Hence, the system SH(φ, ψ, ψ̃; c, α) = {ψλ}λ∈Λs has the structure of a system of α-shearlet
molecules generated by γ1,j,ℓ,k := ψ, γ2,j,ℓ,k := ψ̃, and γ0,0,0,k := φ.

It remains to prove that these generators satisfy (3.31). In case of band-limited functions
the proof is analogous to the proof of Proposition 3.2.8(ii). The only interesting part is thus
the case of generators with compact support. Here we restrict our considerations to the
functions γ1,j,ℓ,k = ψ.

The inverse Fourier transform of ∂ρψ̂, where ρ ∈ N2
0, is up to a constant given by

x →→ xρψ(x). By smoothness and compact support of ψ1, ψ2, we find that for any |ρ| ≤ L
the functions

x →→ ∂(N1,N1+N2)xρψ(x)


and x →→ xρψ(x)

belong to L1(R2). Hence, on the Fourier side

ξ →→ ξN1
1 ξN1+N2

2 ∂ρψ̂(ξ) and ξ →→ ∂ρψ̂(ξ)

are continuous and contained in L∞(R2). It follows that

⟨ξ1⟩N1⟨ξ2⟩N1+N2∂ρψ̂(ξ)
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is bounded in modulus. Using ⟨x⟩⟨y⟩ ≥ ⟨

x2 + y2⟩ we get the decay estimate for large

frequencies
|∂ρψ̂(ξ)| . ⟨|ξ|⟩−N1⟨ξ2⟩−N2 .

Let us turn to the moment conditions. Let ρ = (ρ1, ρ2) ∈ N2
0 with |ρ1| ≤ L for some

L = 0, . . . ,M . Then
xρψ(x) = xρ1

1 ψ1(x1)xρ2
2 ψ2(x2)

restricted to the variable x1 possesses at least M−L vanishing moments, since ψ1 is assumed
to possess M vanishing moments. This yields a decay of order min{1, |ξ1|M−L} for the
derivatives up to order L of ψ̂ by the following lemma, whose proof can be found, e.g., in
[62].

Lemma 3.3.10 ([62]). Suppose that g : R → C is continuous, compactly supported and
possesses M vanishing moments. Then

|ĝ(ξ)| . min{1, |ξ|}M .

The proof is finished.

Proposition 3.3.9 shows that various versions of cone-adapted shearlet systems are united
under the roof of α-shearlet molecules. Furthermore, also non-affine constructions such as
the smooth Parseval frame of shearlets by Guo and Labate [70, 67] fall into this general
framework.

Since, by Proposition 3.3.6, α-shearlet molecules are particular instances of α-molecules,
these examples further show that the concept of α-molecules is general enough to include
both shear-based and rotation-based constructions.

3.4 Consistency of α-Curvelet and α-Shearlet Parametriza-
tions

Despite their different constructions, shearlet and curvelet systems are closely related and
in many respects exhibit a similar behavior. For example, the same approximation rates
with respect to cartoon-like data have been observed for various systems [15, 60, 67, 78, 73].
An explanation for this similar behavior can be given by the framework of α-molecules.

Both, α-curvelets and α-shearlets are instances of discrete α-molecule systems and, as
we will prove in this section, the corresponding parametrizations are consistent in the sense
of Definition 2.3.5. Hence, the same approximation rates are a direct consequence of the
transfer principle for α-molecules, Theorem 2.3.6.

In the main result of this section, Theorem 3.4.3, we first compare the α-curvelet and
α-shearlet parametrizations with the canonical parametrization from Definition 3.1.2. As a
corollary, we can then easily deduce the consistency of the different α-curvelet and α-shearlet
parametrizations among themselves, stated in Corollary 3.4.4.

For the proof of Theorem 3.4.3, we need two auxiliary lemmas. The first one is given
below.

Lemma 3.4.1. Let 0 ≤ δ < π
2 be fixed. Then uniformly for |η| ≤ δ and |θ| ≤ π

2

|{η − θ}| ≍ |η − θ|.
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Proof. Since |η − θ| ≤ π
2 + δ < π, there exists ι ∈ {−1, 0, 1} with

|{η − θ}| = |η − θ − ιπ|.

In case ι = 0 it even holds |{η − θ}| = |η − θ|. In case |ι| = 1 we estimate

|{η − θ}| = |η − θ − ιπ| ≥ |π − |η − θ|| ≥ π

2 − δ.

Further, |η − θ| ≤ π
2 + δ and hence |{η − θ}| ≥ π−2δ

π+2δ |η − θ|. The other direction, i.e., the
estimate |{η − θ}| ≤ |η − θ|, is always true.

The second auxiliary lemma is as follows.

Lemma 3.4.2 ([59, Lem. 6.8]). For all x, y ∈ R, absolutely bounded by some fixed bound
B ≥ 0, i.e., |x|, |y| ≤ B, we have

| arctan x− arctan y| ≍ |x− y|.

Proof. For x ̸= y we have for some ξ between x and y by the mean value theorem

| arctan x− arctan y|
|x− y|

= arctan′(ξ) = 1
1 + ξ2 .

This yields
1

1 +B2 |x− y| ≤ | arctan x− arctan y| ≤ |x− y|.

The case x = y is trivial.

Note, that, as a consequence of this lemma, if θ, θ′ ∈ c[−π/2, π/2] with 0 < c < 1 then

|θ − θ′| ≍ | tan(θ) − tan(θ′)|.

Now we are ready to prove Theorem 3.4.3. The proof is analogous to the proof of [59,
Lem. 5.8] in [59, Subsec. 6.3.2].

Theorem 3.4.3 (compare [59, Lem. 5.8]). Let α ∈ [0, 1], and let (Λ,ΦΛ) be either an
α-curvelet or an α-shearlet parametrization. Then we have for all N > 2

sup
y∈P


λ∈Λ

ωα

ΦΛ(λ),y

−N
< ∞.

Proof. Let us write xλ = (xλ, ηλ, tλ) := ΦΛ(λ) for λ ∈ Λ. By the definition of ωα, we need
to consider

Sy :=


j∈N0


λ∈Λ

tλ=σ−j

max
 tλ
u
,
u

tλ

−N
1 + dα(xλ,y)

−N

for every y = (y, θ, u) ∈ P. We will prove below that

Sj,y :=

λ∈Λ

tλ=σ−j


1 + dα(xλ,y)

−N
. max

 u
tλ
, 1
2
, (3.41)
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where the implicit constant is independent of y = (y, θ, u) ∈ P and j ∈ N0. Now let j′ ∈ R
denote the unique real number with u = σ−j′ . Then we can deduce

Sy .


j∈N0

max
σ−j

u
,
u

σ−j

2−N
=


j∈N0

σ|j−j′|(2−N) ≤ 2


j∈N0

σj(2−N) =: C < ∞,

with a positive constant C independent of y ∈ P. The assertion of the theorem follows.
It remains to establish (3.41) for the α-curvelet as well as the α-shearlet parametrization.

In view of Lemma 2.2.4, it suffices to estimate the sum

Sj,y :=

λ∈Λ

tλ=σ−j


1 + dα(ΦΛ(λ),y)

−N
, (3.42)

where dα := dsim
α is the simplified version of dα from Definition 2.2.3 given by

dα(ΦΛ(λ),y) := t
−2(1−α)
0 |{ηλ − θ}|2 + t−2α

0 |xλ.− y|2 + t−1
0 |⟨eλ, xλ − y⟩|.

Here eλ := eηλ
and t0 := max{tλ, u} for y = (y, θ, u) ∈ P.

We subsequently handle the cases of (Λ,ΦΛ) being either α-curvelet or α-shearlet parametriza-
tion separately.

Part (i): Let us first assume that (Λ,ΦΛ) = (Λc,Φc) is an α-curvelet parametrization
with parameters σ > 1, c = (c1, c2) ∈ R2

+, (ωj)j , and (Lj)j as in (3.11).
For the subsequent arguments, let us denote the first component of a vector z ∈ R2 by

[z]1 and the second by [z]2. Further, let e1 denote the first unit vector of R2.
We obtain the estimates

|⟨eλ, xλ − y⟩| = |⟨R−1
ηλ
e1, R

−1
ηλ
Aα,tλ

Mck − y⟩| = |tλc1k1 − [Rηλ
y]1|, (3.43)

and

|xλ − y| = |R−1
ηλ
Aα,tλ

Mck − y| ≥ |tαλc2k2 − [Rηλ
y]2|. (3.44)

To deal with the term |{ηλ − θ}|, note that {ηλ − θ} = {ℓωj − θ} and define

Z(m)
j :=


ℓ ∈ Z : ℓωj − θ −mπ ∈ [−π/2, π/2)


, m ∈ Z.

Since Lj . σj(1−α) and ωj ≍ σ−j(1−α) we have |ℓωj | . 1 for ℓ ∈ Lj . Hence, there is a bound
B > 0 such that

|ℓωj | ≤ B for all j ∈ N0, ℓ ∈ Lj . (3.45)

Hence, there exists M ∈ N0, independent of j, such that L(m)
j := Lj ∩Z(m)

j = ∅ for all j and
|m| > M . We can thus decompose

Sj,y =
M

m=−M

S(m)
j,y
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into a sum consisting of the terms

S(m)
j,y :=


ℓ∈L(m)

j


k∈Z2


1 + |ℓωj − θ −mπ|2

t
2(1−α)
0

+ |xλ − y|2

t2α
0

+ |⟨eλ, xλ − y⟩|
t0

−N

.

Using (3.43), (3.44), and ωj ≍ σ−j(1−α) = t1−α
λ , we obtain

S(m)
j,y .


ℓ∈L(m)

j


k∈Z2


1 +

ℓ tλ
t0

1−α
− a1(m)

2 +
k2
 tλ
t0

α
− a2(ℓ)

2 +
k1
 tλ
t0


− a3(ℓ)

−N

(3.46)

with the quantities

a1(m) := t
−(1−α)
0 (θ +mπ), a2(ℓ) := t−α

0 c−1
2 [Rηλ

y]2, a3(ℓ) := t−1
0 c−1

1 [Rηλ
y]1.

All these quantities vary with j ∈ N0 and y = (y, θ, u) ∈ P. Furthermore, as indicated by
the notation, a1 is also dependent on m, whereas a2 and a3 also depend on ℓ.

To proceed, we interpret the sum on the right as a Riemann sum, which is bounded up
to a multiplicative constant by the corresponding integral. We obtain

 tλ
t0

2 S(m)
j,y .


ℓ∈Z

 tλ
t0

1−α 
k1∈Z

 tλ
t0

 
k2∈Z

 tλ
t0

α
1 +

ℓ tλ
t0

1−α
− a1(m)

2
+
k2
 tλ
t0

α
− a2(ℓ)

2 +
k1
 tλ
t0


− a3(ℓ)

−N

.

R
dy


R2
dx

1 + |y|2 + |x2|2 + |x1|

−N
,

where the integral is finite precisely if N > 2 (see Lemma 4.5.11 applied with r = 1, γ = 0).
Hence, we arrive at

S(m)
j,y .

 tλ
t0

−2
= max

 u
tλ
, 1
2
,

and due to tλ/t0 ≤ 1 the implicit constant is independent of j ∈ N0 and y = (y, θ, u) ∈ P.
Since the number of summands S(m)

j,y does not exceed 2M+1 the proof of part (i) is finished.

Part (ii): Let us now turn to the case when (Λ,ΦΛ) = (Λs,Φs) is an α-shearlet
parametrization, specified by a set of parameters σ > 1, c = (c1, c2) ∈ R2

+, (υj)j , and
(Lε

j)j as in (3.29). In this case, the sum Sj,y from (3.42) can be split into three parts

S(ε)
j,y :=


λ∈Λs

ε

tλ=σ−j


1 + dα(Φs(λ),y)

−N
, ε ∈ {0, 1, 2},

corresponding to the respective regions of the frequency domain. In the following, we handle
these sums separately.
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Λs
0: We first treat ε = 0 and see that S(0)

j,y , due to the definition of Λs
0, is an empty sum if

j > 0. In case j = 0 we need to look at the partial sum

S(0)
0,y =


λ∈Λs

0


1 + dα(Φs(λ),y)

−N =


k∈Z2


1 + t−2α

0 |Mck − y|2 + t−1
0 |⟨e1,Mck − y⟩|

−N
,

where here t0 = max{1, u}. Since α ≤ 1 we obtain the bound

S(0)
0,y ≤


k∈Z2


1 + t−2

0 |c2k2 − y2|2 + t−1
0 |c1k1 − y1|

−N
.

The sum on the right-hand side can be interpreted as a Riemann sum. This enables the
estimate S(0)

0,y . t20


R2


1 + |c2x2 − y2|2 + |c1x1 − y1|

−N
dx . t20.

Since tλ = 1 and t20 = max{1, u}2 we are finished.

Λs
ε, ε ∈ {1, 2}: For symmetry reasons, both partial sums for ε ∈ {1, 2} can be treated in

the same fashion. It therefore suffices to present the proof for the case ε = 1.
Since L1

j . σj(1−α) and υj ≍ σ−j(1−α), analogous to (3.45), there is a bound B > 0 with

|ℓυj | ≤ B for all j ∈ N0, ℓ ∈ L1
j . (3.47)

Putting δ := arctan(B), we thus have 0 < δ < π
2 and

|{ηλ}| = | arctan(−ℓυj)| ≤ δ

for ηλ = (arctan(−ℓυj))2π. Recall the proof of Proposition 3.3.6, where we have shown that
the transfer matrix Tλ = Tj,ℓ = Rηλ

S−1
ℓυj

has the form

Tλ = Tj,ℓ =


cos(ηλ) 0
sin(ηλ) cos(ηλ)−1


.

We know from (3.36) that the diagonal entries of Tλ are bounded by positive constants from
above and below. Furthermore, the off-diagonal entry is bounded from above in modulus.
This leads to

|⟨eλ, xλ − y⟩| = |⟨R−1
ηλ
e1, S

−1
ℓυj
Aα,tλ

Mck − y⟩| = |⟨e1, TλAα,tλ
Mck −Rηλ

y⟩|

= |tλc1k1 cos(ηλ) − [Rηλ
y]1| ≍ |tλk1 − cos(ηλ)−1[c−1

1 Rηλ
y]1|. (3.48)

Next, we estimate the term |xλ − y|. We have |Sℓυj
x| ≍ |x| uniformly for x ∈ R2 and

j ∈ N0, ℓ ∈ L1
j , and therefore it holds

|xλ − y| = |S−1
ℓυj
Aα,tλ

Mck − y| ≍ |McAα,tλ
k − Sℓυj

y|

≍ |Aα,tλ
k −M−1

c Sℓυj
y| ≥ |tαλk2 − [M−1

c Sℓυj
y]2|.

At last, we deal with the term |{ηλ − θ}|. First, recall that |{ηλ}| ≤ δ = arctan(B) < π
2

for all λ ∈ Λs
1, where B > 0 is the bound from (3.47). Further, |{θ}| ≤ π

2 for every
θ ∈ T = [0, 2π). Applying Lemma 3.4.1, we hence obtain uniformly for all λ ∈ Λs

1 and θ ∈ T

|{ηλ − θ}| = |{{ηλ} − {θ}}| ≍ |{ηλ} − {θ}|.
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Next, we distinguish between those θ ∈ T with |{θ}| ≤ arctan(B + 1) and those with
|{θ}| > arctan(B + 1).

For |{θ}| ≤ arctan(B + 1), we use Lemma 3.4.2 and tan(θ) = tan({θ}) to obtain

|{ηλ − θ}| ≍ |{ηλ} − {θ}| = | arctan(−ℓυj) − {θ}| ≍ |ℓυj + tan(θ)|.

In case |{θ}| > arctan(B + 1) we estimate directly, using |{ηλ}| ≤ arctan(B),

|{ηλ − θ}| ≍ |{ηλ} − {θ}| ≥
|{ηλ}| − |{θ}|

 > arctan(B + 1) − arctan(B) > 0.

Since |ℓυj | ≤ B according to (3.47) this implies |{ηλ − θ}| & |ℓυj |.
We now introduce the quantity

q(θ) :=


tan(θ) , |{θ}| ≤ arctan(B + 1),
0 , |{θ}| > arctan(B + 1).

Then we can summarize

|{ηλ − θ}| & |ℓυj + q(θ)|. (3.49)

In view of the estimates (3.48)-(3.49) and υj ≍ σ−j(1−α) ≍ t1−α
λ , we obtain

S(1)
j,y .


ℓ∈Lj


k∈Z2


1 + |ℓυj + q(θ)|2

t
2(1−α)
0

+
|tαλk2 − [c−1

2 Sℓυj
y]2|2

t2α
0

+ |tλk1 − [c−1
1 Rηλ

y]1/ cos(ηλ)|
t0

−N

.

ℓ∈Z


k∈Z2


1 +

ℓ tλ
t0

(1−α)
− a1(θ)

2 +
k2
 tλ
t0

α
− a2(ℓ)

2 +
k1
 tλ
t0


− a3(ℓ)

−N

with the quantities

a1(θ) := −t−(1−α)
0 q(θ), a2(ℓ) := t−α

0 [c−1
2 Sℓυj

y]2, a3(ℓ) := t−1
0 [c−1

1 Rηλ
y]1/ cos(ηλ),

depending on j, ℓ, θ and y. This expression is similar to (3.46). Therefore, from here we
can proceed as in part (i) of the proof.

As a corollary of Theorem 3.4.3 we obtain the desired consistency of α-curvelet and
α-shearlet parametrizations.

Corollary 3.4.4 ([59, Thm. 5.7]). Let α ∈ [0, 1], and let (Λ,ΦΛ) be either an α-curvelet
or an α-shearlet parametrization. Then, any other α-curvelet or α-shearlet parametrization
(∆,Φ∆), with possibly different parameters, is (α, k)-consistent to (Λ,ΦΛ) for k > 2.

Proof. This is a direct consequence of Theorem 3.4.3 and the quasi-symmetry of ωα.

The consistency plays an important role for the application of the transfer principle. In
particular, Corollary 3.4.4 will be used in Chapters 5 and 6, where we analyze the cartoon
approximation capabilities of discrete α-molecule frames.
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(a) (b)

Figure 3.3: (a): Partition of the Fourier domain induced by radial wavelets. (b): Partition
of the Fourier domain induced by tensor wavelets.

3.5 Wavelet Systems

In a strict sense, wavelet systems do not belong to the class of directional representation
systems since they are isotropically scaled. Nevertheless, the framework of α-molecules
also covers such isotropic systems for the case α = 1. It turns out that many wavelet
constructions can be subsumed under the notion of 1-curvelet molecules.

This justifies the following definition.

Definition 3.5.1. A system of 1-curvelet molecules shall also be referred to as a system of
wavelet molecules. The associated 1-curvelet parametrization is then simply called a wavelet
parametrization.

We will subsequently consider two different types of wavelet systems in L2(R2), namely
radial wavelet systems and tensor wavelet systems.

3.5.1 Radial Wavelets

A typical radial wavelet system in L2(R2) is given as follows.

Definition 3.5.2. Let ψ0, ψ be radial functions in L2(R2). Further, let σ > 1, c =
(c1, c2) ∈ R2

+ be fixed parameters. The associated radial wavelet system Wrad

ψ0, ψ;σ, c


is

then defined by

Wrad

ψ0, ψ;σ, c


:=

ψj,k : j ∈ N0, k ∈ Z2


,

where

ψ0,k(·) := ψ0(· −Mck) and ψj,k(·) := σjψ(σj · −Mck) for j ≥ 1.

Here Mc stands for the matrix (3.10).

The index set associated to such a radial wavelet system Wrad

ψ0, ψ;σ, c


shall be de-

noted by
Λw

rad :=

(j, k) : j ∈ N0, k ∈ Z2.

We subsequently analyze those systems in more detail where the generators ψ0, ψ ∈
L2(R2) are bandlimited and where ψ has infinitely many vanishing moments. Concretely,
we assume that the functions ψ0, ψ satisfy

ψ̂0, ψ̂ ∈ CL(R2) for some L ∈ N0 ∪ {∞},
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and that there exist 0 < a and 0 < b < c such that

supp ψ̂0 ⊆ Ba := {ξ ∈ R2 : |ξ| ≤ a} and supp ψ̂ ⊆ Cb,c := {ξ ∈ R2 : b ≤ |ξ| ≤ c}.

According to the following proposition, under these assumptions Wrad(ψ0, ψ;σ, c) is a system
of 1-molecules of order (L,∞,∞,∞). The corresponding tiling of the frequency plane is
illustrated in Figure 3.3 (a).

Proposition 3.5.3. Suppose that the generators of the radial wavelet system Wrad(ψ0, ψ;σ, c)
fulfill the conditions specified above. Then this system is a system of 1-molecules of order
(L,∞,∞,∞) with respect to the radial wavelet parametrization (Λw

rad,Φw
rad) with parametriza-

tion map
Φw

rad : Λw
rad → P, (j, k) →→ (σ−jMck, 0, σ−j).

Proof. The proof is analogous to the proof of Proposition 3.2.8 (ii).

We next observe that the system Wrad(ψ0, ψ;σ, c) can even be interpreted as a system
of 1-curvelet molecules of order (L,∞,∞,∞), with associated parametrization (Λc,Φc) and
parameters σ, c = (c1, c2), as well as Lj := 0 and ωj := 2π for every j ∈ N0 (see (3.11) and
(3.13)). For this, we just need to relabel the elements of Wrad(ψ0, ψ;σ, c) via the bijection

ιrad : Λw
rad → Λc , (j, k) →→ (j, 0, k).

The relation between the radial wavelet parametrization (Λw
rad,Φw

rad) and the corresponding
1-curvelet parametrization (Λc,Φc) is then given by

Φw
rad = Φc ◦ ιrad.

As an immediate consequence, we can derive the following consistency result from The-
orem 3.4.3.

Proposition 3.5.4. Let N > 2. Then, with (Λw
rad,Φw

rad) being the radial wavelet parametriza-
tion, we have

sup
y∈P


λ∈Λw

rad

ωα(Φw
rad(λ),y)−N < ∞.

In particular, the parametrization (Λw
rad,Φw

rad) is (1, k)-consistent with other 1-curvelet
and 1-shearlet parametrizations for k > 2 (compare Corollary 3.4.4).

3.5.2 Tensor Wavelets

Another important class of wavelets in L2(R2) is obtained via tensoring of univariate
wavelets. We subsequently recall the tensor product construction from [114]. It builds
upon a given multi-resolution analysis for L2(R) whose scaling function and associated
wavelet shall be denoted by φ0 ∈ L2(R) and φ1 ∈ L2(R), respectively. For every index
e = (e1, e2) ∈ E, where E = {0, 1}2, one then defines the functions ψe ∈ L2(R2) as the
tensor products

ψe = φe1 ⊗ φe2 . (3.50)

These serve as the generators for the tensor wavelet system Wten

φ0, φ1;σ, c


defined below.
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Definition 3.5.5. Let φ0, φ1 ∈ L2(R) and ψe ∈ L2(R2), e ∈ E, be defined as above.
Further, let σ > 1, c = (c1, c2) ∈ R2

+ be fixed parameters. The associated tensor wavelet
system Wten


φ0, φ1;σ, c


is then defined by

Wten

φ0, φ1;σ, c


:=

ψ(0,0)(· −Mck) : k ∈ Z2


∪

σjψe(σj · −Mck) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z2


.

Let us now assume that the generating functions φ0, φ1 ∈ L2(R) satisfy

φ̂0, φ̂1 ∈ CL(R) for some L ∈ N0 ∪ {∞}, (3.51)

and that there exist 0 < a and 0 < b < c such that

supp φ̂0 ⊂ [−a, a] =: J (0) and supp φ̂1 ⊂ [−c, c]\[−b, b] =: J (1). (3.52)

Then Wten(φ0, φ1;σ, c) induces a frequency tiling as in Figure 3.3 (b) and, as shown by
the following proposition, this tensor wavelet system is a special instance of a 1-molecule
system.

Proposition 3.5.6. Let σ > 1, c = (c1, c2) ∈ R2
+ be fixed, and assume that the functions

φ0, φ1 satisfy (3.51) and (3.52). Then the tensor wavelet system Wten(φ0, φ1;σ, c) con-
stitutes a system of 1-molecules of order (L,∞,∞,∞) with respect to the tensor wavelet
parametrization (Λw

ten,Φw
ten) where

Λw
ten :=


((0, 0), 0, k) : k ∈ Z2 ∪


(e, j, k) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z2

and
Φw

ten : Λw
ten → P, (e, j, k) →→ (σ−jMck, 0, σ−j).

Proof. For (e, j, k) ∈ Λw
ten we define the generators ge,j,k := ψe, with ψe being the functions

from (3.50). We then have ĝe,j,k = ψ̂e ∈ CL(R2) by (3.51). Further, (3.52) implies that

supp ψe ⊆ Je := J (e1) × J (e2) for all e = (e1, e2) ∈ E.

Hence supp (∂ρĝe,j,k) ⊆ Je for every ρ ∈ N2
0 with |ρ|1 ≤ L and for all (e, j, k) ∈ Λw

ten.
Further, the expression supξ∈R2 |∂ρĝe,j,k(ξ)| = supξ∈R2 |∂ρψ̂e(ξ)| is bounded uniformly in
(e, j, k) ∈ Λw

ten. Altogether, this proves that the functions ge,j,k satisfy condition (2.5).
Since the wavelets can be written in the form

ψe
j,k(·) := σjψe(σj · −Mck) = σjge,j,k(σj(· − σ−jMck)),

the proof is finished.

We remark that conditions as in (3.51) and (3.52) are fulfilled, for instance, if φ0, φ1 ∈
L2(R) are the generators of a Lemarié-Meyer wavelet system. Moreover, results similar to
Proposition 3.5.6 can be proven for other wavelet systems of the form Wten(φ0, φ1;σ, c),
including systems generated by compactly supported functions φ0 and φ1.

Finally, let us again interpret Wten(φ0, φ1;σ, c) as an instance of a 1-curvelet molecule
system with parametrization (Λc,Φc). To this end, we choose Lj := 2 and ωj := 2π for all
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j ∈ N0. Further, we use L0 := {−1, 0, 1, 2} and Lj := {−1, 0, 1} for j ≥ 1 in the definition
(3.12) of the 1-curvelet index set Λc. Then

ιten : Λw
ten → Λc , (e, j, k) →→


(j, e1 − e2, k), e ∈ E\{(0, 0)},
(0, 2, k), e = (0, 0),

is a bijection and
Φw

ten = Φc ◦ ιten.

Analogous to Proposition 3.5.4, we can derive the canonical consistency of the tensor
wavelet parametrization.

Proposition 3.5.7. Let N > 2. Then, with (Λw
ten,Φw

ten) being the tensor wavelet parametriza-
tion, we have

sup
y∈P


λ∈Λw

ten

ωα(Φw
ten(λ),y)−N < ∞.

Hence, like the radial wavelet parametrization, the tensor wavelet parametrization is
(1, k)-consistent for k > 2 with other 1-curvelet and 1-shearlet parametrizations. Moreover,
this result shows that both wavelet parametrizations are (1, k)-consistent, k > 2, with each
other.

3.6 Ridgelet Systems

The last section of this chapter is devoted to ridgelet systems. Whereas there does not
exist a common definition of a ridgelet, the different variants of this notion that occur in
the literature are all related to the concept of a so-called ridge function. In the bivariate
setting, this is a function Φ : R2 → C which only varies in one coordinate direction and
can thus be represented in the form Φ = φ(⟨ν, ·⟩) using a suitable univariate profile φ and
a direction vector ν ∈ R2.

The term ‘ridgelet’ was first used by Candès in [8] to refer to such bivariate ridge
functions forming a system of the type

√
tφ(⟨teη, ·⟩ − x), eη ∈ S1, x ∈ R2, t ∈ R+, (3.53)

where the profile φ is a univariate wavelet. Systems of this kind can be used for example
to analyze functions and give rise to the so-called ridgelet transform. A viable theory for
this transform has been developed in [8]. One difficulty, however, when dealing with these
‘pure ridgelets’ is their lack of integrability.

In order to obtain system in L2(R2), Donoho slightly relaxed the original definition,
allowing the ridgelets a slow decay along the ridge. Using this idea, he constructed an
orthonormal basis for L2(R2) whose elements he called ‘orthonormal ridgelets’ [36]. Their
relationship to the original ‘pure ridgelets’ in the sense of Candès has been analyzed in [37].

An alternative approach to define ridgelet systems in L2(R2) goes back to Grohs [57].
He considers function systems of the form

y →→
√
tψ(A0,tRηy − x), (3.54)
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3 EXAMPLES OF α-MOLECULES IN L2(R2)

obtained by applying dilations A0,t = diag(t, 1) ∈ R2×2 with t ∈ R+, rotations Rη, η ∈ T,
and translations to some generator ψ ∈ L2(R2), which is assumed to be oscillatory in one
coordinate direction. The construction principle is thus the same as for 0-curvelets and
closely resembles (3.53). In fact, the ridgelet construction in [57] more or less coincides with
the 0-curvelet frame C•

0 from Subsection 3.2.3.
To ensure the frame property, the scaling is not carried out in Cartesian coordinates,

but in polar coordinates. This causes the ridgelet generators to vary with the scale as was
the case for C•

0 (see (3.25)). By relaxing the rigid construction principle (3.54) and allowing
variable generators, one then again arrives at the notion of 0-curvelet molecules.

For convenience, we thus make the following definition.

Definition 3.6.1. A system of 0-curvelet molecules is also called a system of ridgelet
molecules. The associated 0-curvelet parametrization is then accordingly referred to as a
ridgelet parametrization.

Due to Proposition 3.2.4, ridgelet molecules in the above sense are special instances of
0-molecules. Further, due to Proposition 3.2.8, the 0-curvelet frame C•

0 from Definition 3.2.6
is a special case of a ridgelet molecule system.

Proposition 3.6.2 ([59, Prop. 3.5]). The 0-curvelet frame C•
0 is a system of ridgelet

molecules of order (∞,∞,∞,∞).

Summarizing, we can record that ridgelet-type systems in the sense of (3.54) conve-
niently fit into the already existing theory. They are covered by the notion of α-curvelet
molecules for α = 0.
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Chapter 4

α-Molecule Coorbit Spaces

In this chapter, we build upon the continuous Parseval frame of α-curvelets Cα = {ψx}x∈X
from Section 3.1 to introduce an associated transform which is a direct generalization of the
continuous curvelet transform from [10, Sec. 2]. Subsequently it will be called the continuous
α-curvelet transform.

Utilizing the coorbit theory put forward in [74], which does not require an underlying
group structure of the voice transform, we then define associated α-curvelet coorbit spaces.
Further, based on the more general concept of a continuous α-molecule transform, which in
particular comprises the cone-adapted α-shearlet transform, we will also introduce so-called
α-molecule coorbit spaces.

In Theorem 4.3.8 it is shown that those are equivalent to the α-curvelet coorbits. In
Theorem 4.3.13 we further give a discrete characterization which identifies them with known
smoothness spaces, for example from [85]. As an application of the abstract machinery
available for coorbit spaces, we deduce two further discretization results, Theorem 4.4.19
and Theorem 4.4.21, yielding atomic decompositions as well as quasi-Banach frames.

4.1 The Continuous α-Curvelet Transform

In Section 3.1 of Chapter 3 we have constructed the continuous Parseval frame of α-curvelets
Cα = {ψx}x∈X, whose index set

X = R2 × T × (0, 1]

can be viewed as a subspace of the parameter domain P defined in (2.1). However, recall
that the topology on X shall not be the subspace topology induced by P. Instead, we will
think of X as being assembled as a disconnected union X = X0 ∪ X1 of two components,
namely the homogeneous component X0 and the inhomogeneous component X1 given by

X0 := R2 × T × (0, 1) and X1 := R2 × T × {1}.

Each of these components shall thereby carry the subspace topology inherited from P. As
noted in Section 3.1, X is then a locally compact Hausdorff space.

Further, X is equipped with the Radon measure µ defined by (3.7) satisfying suppµ = X.
Its restrictions to the components X0 and X1 are denoted by µ0 and µ1. They are given by

dµ0(x, η, t) = dx dη dt

t3
and dµ1(x, η, 1) = dη dt.

We have already shown in Section 3.1 that with respect to this measure Cα is a continuous
Parseval frame satisfying the Parseval identity (3.5) and the reconstruction formula (3.6).
These are important relations, since in the following we want to use the frame Cα as a tool
for signal analysis.
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4 α-MOLECULE COORBIT SPACES

4.1.1 Basic Transform on L2(R2)
In the context of coorbit theory, the analysis operator of a frame is usually called the voice
transform. For the frame Cα = {ψx}x∈X it takes the form

VCα : L2(R2) → L2(X) , VCαf(x) := ⟨f, ψx⟩, x ∈ X. (4.1)

Subsequently it will be called the continuous α-curvelet transform. Since Cα is a Parseval
frame it defines an isometry from L2(R2) to L2(X).

The corresponding synthesis operator V ∗
Cα

is the Hilbert-adjoint of VCα given by

V ∗
Cα

: L2(X) → L2(R2) , V ∗
Cα
F =


X
F (x)ψx dµ(x).

Hereby the integral is in general only defined in a weak sense.
Due to the Parseval property, the associated frame operator, which by definition is the

composition of the analysis and the synthesis operator, is the identity. In other words, for
all f ∈ L2(R2) we have the reconstruction formula

f = V ∗
Cα
VCαf =


X
VCαf(x)ψx dµ(x), (4.2)

where again the integral is usually only a weak integral in L2(R2).
Let us finally take a look at the associated Gramian matrix G[Cα] introduced in (2.7).

It has the entries
G[Cα](x,y) = ⟨ψy, ψx⟩ , x,y ∈ X,

and gives rise to the so-called Gramian operator G[Cα] : L2(X) → L2(X) with

G[Cα]F (x) =

X

G[Cα](x,y)F (y) dµ(y) , x ∈ X.

Taking the role of an integral kernel, the Gramian matrix is often referred to as the Gramian
kernel. Also note that, for simplicity, we do not distinguish between the Gramian kernel
and the Gramian operator in the notation.

From (4.2) we can derive the following reproducing formula, valid for all f ∈ L2(R2),

VCαf(x) =

X

G[Cα](x,y)VCαf(y) dµ(y) , x ∈ X. (4.3)

We next turn to an extension of VCα to the space of tempered distributions S ′(R2).

4.1.2 Extension to S ′(R2)
As it stands, the α-curvelet transform (4.1) is only defined for square-integrable functions
f ∈ L2(R2). For applications in signal analysis, this is a severe limitation since many signals
of interest are not square-integrable. Therefore, in order to enhance the applicability of VCα ,
we need to find a way to extend its definition beyond L2(R2).

A larger reservoir of signals is given by the space of tempered distributions S ′(R2),
the topological dual of the Schwartz space S(R2). Its elements, the so-called tempered
distributions, are the continuous linear functionals on S(R2) which is the space of functions

S(R2) :=

f ∈ C∞(R2) : |f |κ,ν < ∞ for all (κ, ν) ∈ N2

0 × N2
0


,
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4.1 The Continuous α-Curvelet Transform

topologized by the family of semi-norms

|f |κ,ν := sup
x∈R2

xκ∂νf(x)
 , κ, ν ∈ N2

0. (4.4)

Equipped with the topology induced by the collection {| · |κ,ν : κ, ν ∈ N2
0}, the space S(R2)

becomes a locally convex Hausdorff space.
An alternative way to define the topology of S(R2) is to use the collection of norms

{∥ · ∥N : N ∈ N0} given by

∥f∥N := sup
x∈R2

(1 + |x|)N


|γ|≤N

|∂γf(x)|. (4.5)

This collection constitutes a complete filtrating family of norms (see e.g. [72]) generating
the topology of S(R2). Using these norms, we can easily derive a metric for S(R2) which is
consistent with this topology. It is given by

d(f, g) :=


N∈N0

2−N ∥f − g∥N

1 + ∥f − g∥N
for f, g ∈ S(R2).

The relation of the spaces S(R2) and S ′(R2) to the Hilbert space L2(R2) is illustrated
by the following chain of embeddings

S(R2) ι
↩→ L2(R2) R

↩→ L2(R2)′ ι∗
↩→ S ′(R2), (4.6)

where ι : S(R2) → L2(R2) is the canonical injection, ι∗ : L2(R2)′ → S ′(R2) its adjoint, and
R : L2(R2) → L2(R2)′ denotes the Riesz map between L2(R2) and its dual L2(R2)′, i.e., the
canonical conjugate-linear isomorphism given by f →→ ⟨·, f⟩.

The duality product ⟨·, ·⟩S′×S on the pair S ′(R2)×S(R2) provides a natural way to extend
VCα to S ′(R2). Crucial for this is the observation that Cα is contained in S(R2). In fact,
the α-curvelets ψx,η,t ∈ Cα are band-limited functions which even satisfy ψ̂x,η,t ∈ C∞

c (R2).
This implies ψx,η,t ∈ S(R2) for all (x, η, t) ∈ X and allows to define the extended transform
VCα for f ∈ S ′(R2) as

VCαf(x) := ⟨f, ψx⟩S′×S , x ∈ X. (4.7)

This transform VCα “extends” the L2-version from (4.1) in the sense depicted in the following
commutative diagram:

L2(R2)
VCα

−−−−→ L2(X)

R
  (·)

L2(R2)′
VCα

−−−−→ L2(X) .

(4.8)

However, even with this extended definition of VCα at hand, it is not yet clear how
useful this transform actually is for the analysis of signals in S ′(R2). In particular, it is
not a-priori self-evident that VCα is still injective, a prerequisite if we want to be able to
uniquely reconstruct signals from their transforms.

Fortunately, it turns out that even in its extended form the injectivity of the transform
VCα is guaranteed. This is a consequence of the fact that Cα is total in S(R2), i.e., that the
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4 α-MOLECULE COORBIT SPACES

linear span of Cα is dense in S(R2). This will be the statement of Lemma 4.1.3, but before
we can give a proof of this we need some preparation.

For every N ∈ N0, let us introduce the auxiliary spaces

BN (R2) :=

f ∈ CN (R2) : ∥f∥N < ∞


where ∥ · ∥N is given as in (4.5). These spaces are Banach spaces as the following lemma
shows. They are useful since they “approximate” S(R2) in the following sense:

BN+1(R2) ⊂ BN (R2) for N ∈ N0 and S(R2) =


N∈N0

BN (R2).

Moreover, the family of nested spaces {BN (R2)}N∈N0 captures the topology of S(R2).

Lemma 4.1.1. For each N ∈ N0 the space BN (R2) equipped with the norm ∥ · ∥N is a
Banach space. Moreover, if N ≥ 2 it is continuously and densely embedded into L2(R2).

Proof. The vector space properties of BN are obvious. Further, ∥ ·∥N clearly defines a norm
on BN . To prove the completeness of BN , note that BN ↩→ CN . Hence, every Cauchy
sequence (fn)n∈N ⊂ BN has at least a CN -limit f ∈ CN with ∥fn − f∥CN → 0 for n → ∞.
It remains to show f ∈ BN and fn → f in BN .

For this, let ε > 0 be arbitrary. Then there exists M ∈ N such that ∥fn − fm∥N ≤ ε for
all n,m ≥ M . From ∥fn − f∥CN → 0 we deduce ∂γfn(x) → ∂γf(x) pointwise for all x ∈ R2

and |γ| ≤ N . By continuity, we deduce for n ≥ M

(1 + |x|)N


|γ|≤N

|∂γ(f − fn)(x)| ≤ ε for all x ∈ R2.

It follows ∥f − fn∥N ≤ ε for all n ≥ M , which implies f ∈ BN since in particular ∥f∥N ≤
∥fM ∥N +∥f−fM ∥N < ∞. In addition, we can conclude fn → f in BN since ε was arbitrary.

For f ∈ BN we have f(x) . (1 + |x|)−N . Hence, if N ≥ 2, we clearly have f ∈ L2.
Further, BN is dense in L2 due to the density of the subspace C∞

c . Finally, to see that the
embedding BN ↩→ L2 is continuous, we estimate

∥f |L2∥ ≤ ∥f(1 + | · |)N |L∞∥∥(1 + | · |)−N |L2∥ . ∥f∥N .

Next, we establish a strong form of the reconstruction formula (4.2) for Schwartz func-
tions ϕ ∈ S(R2).

Lemma 4.1.2. Let ϕ ∈ S(R2). Then, for every N ∈ N0 the reconstruction formula

ϕ =

X
VCαϕ(x)ψx dµ(x)

holds in strong Bochner sense in BN (R2).

Proof. Let N ∈ N0. We first prove that the integral converges in Bochner sense in BN . For
this we verify the Bochner criterion

X
|VCαϕ(x)|∥ψx∥N dµ(x) < ∞.
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4.1 The Continuous α-Curvelet Transform

The integrand of this integral is clearly measurable. It thus only remains to prove the
boundedness. To this end, we first show that there is a constant CN > 0 such that

∥ψx∥N ≤ CN t
−(1+α)/2t−N (1 + |x|2)N uniformly for all x = (x, η, t) ∈ X. (4.9)

Recall that with gt given as in (3.9)

ψx,η,t = t−(1+α)/2gt

A−1

α,tRη(· − x)

,

which implies
ψ̂x,η,t = t(1+α)/2ĝt


Aα,tRη ·


exp(−2πi⟨x, ·⟩).

Let us now estimate the Schwartz semi-norms |·|κ,ν from (4.4) for the α-curvelets ψx,η,t ∈ Cα.
For κ = (κ1, κ2) ∈ N2

0 and ν = (ν1, ν2) ∈ N2
0, with |κ|1, |ν|1 ≤ N , we have

|ψx,η,t|κ,ν = sup
ξ∈R2

|ξκ∂νψx,η,t(ξ)| .
∂κ(ξνψ̂x,η,t)|L1

.
Further∂κ{ξ →→ ξνψ̂x,η,t(ξ)}|L1

 . t(1+α)/2
∂κξ →→ ξν ĝt(Aα,tRηξ) exp(−2πi⟨x, ξ⟩)


|L1


. t(1+α)/2 sup
l≤κ

∂l{ξ →→ ξν ĝt(Aα,tRηξ)}|L1
|x1|κ1−l1 |x2|κ2−l2

≤ t(1+α)/2(1 + |x|2)N sup
|l|1≤N

∂l{ξ →→ ξν ĝt(Aα,tRηξ)}|L1
,

where we used |x1| ≤ |x|2 and |x2| ≤ |x|2 to obtain

|x1|κ1−l1 |x2|κ2−l2 ≤ (1 + |x1|)κ1−l1(1 + |x2|)κ2−l2 ≤ (1 + |x|2)κ1+κ2 ≤ (1 + |x|2)N .

Finally, for l = (l1, l2) ∈ N2
0 with |l|1 ≤ N we deduce∂lξν ĝt(Aα,tRη·)


|L1
 . sup

m≤min{l,ν}

ξν−m∂l−mĝt(Aα,tRη·)|L1
.

Taking into account t ∈ (0, 1], we can estimate∂l−mĝt(Aα,tRη·)
 . 

|n|1≤N

∂nĝt

(Aα,tRη·)

.
Using |ξν−m| ≤ (1+ |ξ|2)N , we then obtain for each m = (m1,m2) ∈ N2

0 with m ≤ min{l, ν}ξν−m∂l−mĝt(Aα,tRη·)|L1
 . 

|n|1≤N

(1 + |ξ|2)N∂nĝt

(Aα,tRη·)|L1


= t−(1+α) 

|n|1≤N

(1 + |R−1
η A−1

α,tξ|2)N∂nĝt

(·)|L1


. t−(1+α)t−N sup

|n|1≤N

(1 + |ξ|2)N∂nĝt

(·)|L1

.
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Putting everything together, this yields

|ψx,η,t|κ,ν .
∂κ(ξνψ̂x,η,t)|L1

 . t−(1+α)/2t−N (1 + |x|2)N sup
|n|1≤N

(1 + |ξ|2)N∂nĝt

(·)|L1

.
Now we use the α-molecule estimate (2.5) with N1 > N + 2 and obtain the desired result,

|ψx,η,t|κ,ν . t−(1+α)/2(1 + |x|2)N t−N
{ξ →→ (1 + |ξ|2)N (1 + |ξ|22)−N1/2}|L1

.
Finally, we note that uniformly in (x, η, t) ∈ X

∥ψx,η,t∥N . sup
|κ|1,|ν|1≤N

|ψx,η,t|κ,ν .

This proves (4.9).
Next, we interpret ϕ ∈ S(R2) as a system of α-molecules of order (∞,∞,∞,∞) con-

sisting of just one element with the phase space coordinates (0, 0, 1) ∈ P. Then we obtain
from Theorem 2.2.2 for arbitrary but fixed Ñ > 0 the estimate

|VCαϕ(x, η, t)| = |⟨ϕ,ψx,η,t⟩| ≤ CÑ,ϕ · tÑ (1 + |x|2)−Ñ (4.10)

with a constant CÑ,ϕ > 0 independent of (x, η, t).
Altogether, (4.9) and (4.10) prove the Bochner criterion. Hence the integral

ϕN :=

X
VCαϕ(x)ψx dµ(x) (4.11)

converges in Bochner sense to a function ϕN in BN . It remains to prove ϕ = ϕN .
Let us first assume N ≥ 2. Then BN ↩→ L2 and the function ϕN is also the (strong

and weak) L2-limit of this integral. This implies ϕN = ϕ almost everywhere since the
reconstruction formula (4.2) holds weakly in L2. Moreover, since both, ϕN ∈ BN and
ϕ ∈ S, are continuous, we even have pointwise equality. For the case N ∈ {0, 1}, let us note
that BN+1 ↩→ BN for all N ∈ N0. Altogether, this establishes the reconstruction formula in
strong sense in BN for all N ∈ N0.

With the previous result, we are now ready to give a proof of Lemma 4.1.3.

Lemma 4.1.3. The continuous α-curvelet frame Cα is total in S(R2).

Proof. We have seen that the reconstruction formula (4.11) holds in a strong Bochner sense
in BN for functions in S. Let U ⊂ S be an open neighborhood in S of some ϕ ∈ S. Then
U is open in BN for sufficiently large N . Since the formula (4.11) holds strongly in BN , we
can deduce that U ∩ spanCα ̸= ∅.

As a consequence of Lemma 4.1.3, the extension of VCα defined in (4.7) is injective on
S ′(R2). Hence, it is an invertible transform and the reconstruction of signals is possible. In
fact, we have the following reconstruction formula for signals in S ′(R2).

Proposition 4.1.4. For signals f ∈ S ′(R2) the reconstruction formula (4.2) holds ∗-weakly
in S ′(R2), i.e., for all ϕ ∈ S(R2)

⟨f, ϕ⟩S′×S =

X
VCαf(x)⟨ϕ,ψx⟩ dµ(x). (4.12)
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Proof. We have already observed that {∥ · ∥N }N∈N0 is a filtrating family of semi-norms,
which generates the topology of S. Hence, according to a fundamental result on continuous
functionals on locally convex spaces (see e.g. [105, page 96]), for fixed f ∈ S ′(R2) there exist
corresponding Nf ∈ N0 and Cf > 0 such that

|⟨f, ϕ⟩S′×S | ≤ Cf ∥ϕ∥Nf
= Cf sup

x∈R2
(1 + |x|)Nf


|γ|≤Nf

|∂γϕ(x)| for all ϕ ∈ S.

Since S(R2) ↩→ BNf
(R2), we can thus extend f to a functional f̃ ∈ B′

Nf
(R2) by the

Hahn-Banach extension theorem (see e.g. [112, Satz VIII.2.8]). Moreover, if N ≥ 2, we
have the embeddings

S(R2) ↩→ BN (R2) ↩→ L2(R2) and L2(R2)′ ↩→ B′
N (R2) ↩→ S ′(R2).

Hence, using Lemma 4.1.2, we can argue as follows with N = Nf ,

⟨f, ϕ⟩S′×S = ⟨f̃ , ϕ⟩B′
N ×BN

=

f̃ ,


X
VCαϕ(x)ψx dµ(x)


B′

N ×BN

=

X
VCαϕ(x)⟨f̃ , ψx⟩B′

N ×BN
dµ(x) =


X
VCαϕ(x)⟨f, ψx⟩S′×S dµ(x) .

This establishes the reconstruction formula (4.12).

Finally, we also extend the reproducing formula (4.3) to all tempered distributions.

Proposition 4.1.5. The reproducing formula (4.3) holds for tempered distributions, i.e.,
for all f ∈ S ′(R2)

VCαf(x) =

X

G[Cα](x,y)VCαf(y) dµ(y) , x ∈ X.

Proof. By plugging in ψx for ϕ in (4.12) we directly obtain

VCαf(x) = ⟨f, ψx⟩S′×S =

X
VCαf(y)⟨ψx, ψy⟩ dµ(y)

=

X

G[Cα](x,y)VCαf(y) dµ(y) = G[Cα]VCαf(x),

pointwise for all x ∈ X.

Note that in contrast to (4.3) we need to use the conjugate reproducing kernel G[Cα].
This is a consequence of the relation between the extended version of the α-curvelet trans-
form (4.7) and the L2-version (4.1), as depicted in (4.8).

4.2 QBF-Spaces on the Curvelet Domain

The continuous α-curvelet transform VCα defined in Section 4.1 is a powerful tool for signal
analysis. In the sequel, we will use its extended version (4.7) for the characterization of
signals f ∈ S ′(R2) on the transform domain X.
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Concretely, our objects of interest will be so-called α-curvelet coorbit spaces

Co(Cα, Y ) :=

f ∈ S ′(R2) : VCαf ∈ Y


, (4.13)

where Y is some suitable function space on X. Our investigation of such spaces will be
based on the theory presented in [74]. One required assumption there is that Y constitutes
a rich solid quasi-Banach function space, a notion recalled below.

A quasi-Banach function space, for which we subsequently use the abbreviation QBF-
space, with associated domain X is by definition a subset of the µ-measurable functions
from X to C, which is linearly closed and complete with respect to some given quasi-norm.
Functions which coincide apart from a null-set are thereby identified. In the Banach case,
we speak of a Banach function space, or BF-space for short. Note, that QBF-spaces in
our sense need not be continuously embedded into Lloc

1 (X) as sometimes required in the
literature, for example in [43].

As a reminder, a quasi-norm on a linear space Y is defined in the same way as a norm,
with the only difference that the triangle inequality need not hold in a strict sense. It suffices
if it is satisfied up to a multiplicative constant CY ≥ 1 called the quasi-norm constant, i.e.,
if

∥f + g∥ ≤ CY


∥f∥ + ∥g∥


for all f, g ∈ Y.

Another concept, closely related to a quasi-norm, is the notion of an r-norm, where
0 < r ≤ 1 and the usual triangle inequality is replaced by the r-triangle inequality

∥f + g∥r ≤ ∥f∥r + ∥g∥r for all f, g ∈ Y.

It is straightforward to show that every r-norm on Y constitutes a quasi-norm with asso-
ciated quasi-norm constant CY = 21/r−1. Vice versa, while a quasi-norm need not be an
r-norm itself, there at least always exists an equivalent r-norm generating the same topology
with r satisfying CY = 21/r−1. This is the statement of the Aoki-Rolewicz theorem [3, 101].
As a consequence, every quasi-normed space Y with quasi-norm constant CY can be re-
garded as an r-normed space, with r = (log2(CY ) + 1)−1 being the so-called exponent of
Y .

A QBF-space Y on X is called solid if for every µ-measurable function f : X → C we
have

|f | ≤ g for some g ∈ Y ⇒ f ∈ Y and ∥f |Y ∥ ≤ ∥g|Y ∥ .

It is called rich if it contains all characteristic functions XU corresponding to compact
subsets U ⊂ X.

The following lemma draws a connection between the convergence of a sequence of func-
tions in a solid quasi-normed function space Y to the pointwise convergence of subsequences.

Lemma 4.2.1 ([74, Lem. 2.2]). Let Y be a solid quasi-normed function space on X, and
assume that fn → f in Y for a sequence of functions (fn)n∈N. Then for almost all x ∈ X
there is a subsequence (fnk

)k∈N, whose choice may depend on the particular x ∈ X, such
that fnk

(x) → f(x).

Proof. Let us assume that fn → f in Y . Then gn := fn − f → 0 in Y or equivalently
∥gn|Y ∥ → 0. Since infm≥n |gm| is a measurable function with infm≥n |gm| ≤ |gk| for all
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4.2 QBF-Spaces on the Curvelet Domain

k ≥ n the solidity of Y yields infm≥n |gm| ∈ Y and ∥ infm≥n |gm||Y ∥ ≤ ∥gk|Y ∥ for all k ≥ n.
We deduce

0 ≤ ∥ inf
m≥n

|gm||Y ∥ ≤ inf
m≥n

∥gm|Y ∥ = 0,

and as a consequence infm≥n |gm|(x) = 0 for almost every x ∈ X. For each of these x, we
can hence find a subsequence (gnk

)k∈N such that gnk
(x) → 0. This implies fnk

(x) → f(x)
and yields the result.

We will subsequently restrict our attention to a special scale of function spaces on X
corresponding to Besov-type characterizations of the signals f ∈ S ′(R2). These spaces can
be viewed as straight-forward generalizations of the mixed-norm Lebesgue spaces used in
[111] for the coorbit description of the classic inhomogeneous Besov spaces.

We remark, that also other scales of function spaces on X could be considered, for exam-
ple spaces leading to Triebel-Lizorkin type characterizations. The bulk of the subsequent
exposition remains the same, significant adaptions are only needed in Subsection 4.5.5.

4.2.1 The Mixed-norm Lebesgue Spaces Ls
p,q(X)

We now define a scale Ls
p,q(X) of function spaces on X which is inspired by the mixed-norm

Lebesgue spaces on the inhomogeneous wavelet domain R2 × [(0, 1) ∪ {∞}], considered
in [111].

Definition 4.2.2. Let 0 < p, q < ∞ and s ∈ R. We then define the function space

Ls
p,q(X) :=


F : X → C µ-measurable : ∥F |Ls

p,q∥ < ∞


with respective quasi-norm

∥F |Ls
p,q∥ :=

  2π

0

F (·, η, 1)
Lp

q
dη
1/q

+
  1

0

 2π

0
t−sq

F (·, η, t)
Lp

q dη dt

t

1/q
.

As we will see in Proposition 4.2.4, this space constitutes a rich solid QBF-space on X
with associated exponent r := min{1, p, q}. For the proof of the completeness, we will use
the fact that Fatou’s lemma is valid in Ls

p,q(X).

Lemma 4.2.3. Let (Fn)n∈N be a sequence of functions Fn : X → [0,∞) in Ls
p,q(X) such

that lim infn→∞ ∥Fn|Ls
p,q∥ < ∞. Then F := lim infn→∞ Fn ∈ Ls

p,q(X) with ∥F |Ls
p,q∥ ≤

lim infn→∞ ∥Fn|Ls
p,q∥.

Proof. The assertion is a direct consequence of the classic lemma of Fatou for Lebesgue
spaces [2, Lem. A1.20]. For the inhomogeneous part, we obtain

  2π

0

 lim inf
n→∞

Fn(·, η, 1)
Lp

q
dη
1/q

≤
  2π

0
lim inf
n→∞

Fn(·, η, 1)
Lp

q
dη
1/q

≤ lim inf
n→∞

  2π

0

Fn(·, η, 1)
Lp

q
dη
1/q

.

The calculation for the homogeneous part is similar.

Now we are ready to prove the following result.
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4 α-MOLECULE COORBIT SPACES

Proposition 4.2.4. The spaces Ls
p,q(X) are rich solid QBF-spaces on X with associated

exponent r := min{1, p, q}.

Proof. It is straightforward to verify that Ls
p,q is a quasi-normed space on X. A direct

calculation with p̃ := p/r, q̃ := q/r, s̃ := sr, namely

∥f + g|Ls
p,q∥r = ∥|f + g|r|Ls̃

p̃,q̃∥ ≤ ∥|f |r|Ls̃
p̃,q̃∥ + ∥|g|r|Ls̃

p̃,q̃∥ = ∥f |Ls
p,q∥r + ∥g|Ls

p,q∥r,

further shows for r := min{1, p, q} and arbitrary f, g ∈ Ls
p,q

∥f + g|Ls
p,q∥r ≤ ∥f |Ls

p,q∥r + ∥g|Ls
p,q∥r.

As a consequence, ∥ · |Ls
p,q∥ is also an r-norm. The solidity of Ls

p,q is obvious. For the proof
of the richness, we refer to Lemma 4.2.11.

At last, we prove the completeness of Ls
p,q and consider a Cauchy sequence (Fn)n∈N.

Without loss of generality, we may assume the property

∥Fn+1 − Fn|Ls
p,q∥ ≤ 2−n/r for all n ∈ N.

We then define the µ-measurable functions

Gm :=
m

n=1
|Fn+1 − Fn| , m ∈ N,

which are elements of Ls
p,q due to the estimate

∥Gm|Ls
p,q∥r ≤

m
n=1

∥Fn+1 − Fn|Ls
p,q∥r ≤

∞
n=1

∥Fn+1 − Fn|Ls
p,q∥r ≤

∞
n=1

2−n = 1.

Further, since the sequence (Gm)m∈N is monotonically increasing, we obtain with Lemma 4.2.3

G := lim
m→∞

Gm = lim inf
m→∞

Gm ∈ Ls
p,q,

and further
∥G|Ls

p,q∥ ≤ lim inf
m→∞

∥Gm|Ls
p,q∥ ≤ 1.

In particular, the function G is finite almost everywhere and the sum
∞

n=1 |Fn+1(x) −
Fn(x)| converges for almost every x ∈ X. At those points, the sequence (Fn(x))n∈N is a
Cauchy sequence in C and the limit

F (x) := lim
n→∞

Fn(x)

is well-defined, giving rise to a µ-measurable function F on X.
Using Lemma 4.2.3 and the fact that (Fn)n∈N is a Cauchy sequence in Ls

p,q, we deduce

∥F − Fn|Ls
p,q∥ = ∥ lim

m→∞
|Fm − Fn||Ls

p,q∥ ≤ lim inf
m→∞

∥Fm − Fn|Ls
p,q∥ → 0 (n → ∞).

This implies F ∈ Ls
p,q and the convergence Fn → F in Ls

p,q.

In the next subsection, we introduce another scale of function spaces on X closely related
to Ls

p,q(X). Those spaces, denoted by Lα,s
p,q (X), feature more regularity. For instance, in

contrast to Ls
p,q(X), they are continuously embedded into Lloc

1 (X), even in the quasi-Banach
case.
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4.2 QBF-Spaces on the Curvelet Domain

4.2.2 The Associated Wiener Spaces Lα,s
p,q (X)

The Wiener spaces Lα,s
p,q (X) are obtained by a Wiener-type amalgamization (see [43, Def. 3.1])

of Ls
p,q(X) with the local component L∞(X). This means that we utilize a suitable family of

window functions {Wx}x∈X to take the L∞-norm locally around points x ∈ X. Afterwards,
for a measurable function F : X → C the so-called control function

x →→ ∥XWxF |L∞∥, (4.14)

is measured globally in the Ls
p,q-quasi-norm. The outcome of this procedure clearly depends

on the utilized windows and we need to carefully choose those.
On the wavelet domain, which naturally carries a group structure, a canonical way to

generate suitable windows is by the action of the group on some fixed prototype window.
Since we do not have a group structure on X, we need to take a different route and resort
to the quasi-metric structure of X instead. Hence, we use the α-balls Bα

τ (x), or – to the
same effect – their more practical relatives V α

τ (x), defined in (2.25) and (2.26), to localize
the functions around points x ∈ X.

By appropriately restricting the sets in the collection Vα
τ [X] := {V α

τ (x) : x ∈ X}, we
obtain for each α ∈ [0, 1] and τ ≥ 0 the family

Uα
τ [X] :=


Uα

τ (x) : x ∈ X


with Uα
τ (x) :=


V α

τ (x) ∩ X0 , x ∈ X0,

V α
τ (x) ∩ X1 , x ∈ X1.

For convenience, let us state the explicit form of these sets,

Uα
τ (x) =


x+R−1

η Aα,tQ
τ


×

η + t1−αIτ


2π

×

tJτ ∩ (0, 1)


, x ∈ X0 ,

x+R−1
η Qτ


×

η + Iτ


2π

×

{1}


, x ∈ X1 .

where Qτ := [−τ, τ ]2, Iτ := [−τ, τ ], and Jτ := [2−τ , 2τ ]. Utilizing

Qα,τ
x,η,t := x+R−1

η Aα,tQ
τ , Iα,τ

η,t :=

η + t1−αIτ 

2π
, Jτ

t :=

tJτ ∩ (0, 1) , 0 < t < 1,
{1} , t = 1,

we can also write

Uα
τ (x) = Qα,τ

x,η,t × Iα,τ
η,t × Jτ

t . (4.15)

The corresponding dual sets U ′,α
τ (x) are given by

U ′,α
τ (x) :=


y ∈ X : x ∈ Uα

τ (y)


=

V ′,α

τ (x) ∩ X0 , x ∈ X0,

V ′,α
τ (x) ∩ X1 , x ∈ X1,

with

U ′,α
τ (x) =


y ∈ X0 : y ∈ x+R−1

θ Aα,uQ
τ , θ ∈


η + u1−αIτ


2π
, u ∈ tJτ


, x ∈ X0 ,

y ∈ X1 : y ∈ x+R−1
θ Qτ , θ ∈


η + Iτ


2π


, x ∈ X1 ,

or alternatively

U ′,α
τ (x) =


y ∈ X : y ∈ Qα,τ

x,θ,u, θ ∈ Iα,τ
η,u , u ∈ Jτ

t


. (4.16)

Some elementary but essential properties of the sets Uα
τ (x) carry over from Lemma 2.2.17.

It is worth noting that the results are now uniform for all x ∈ X. Moreover, they are inde-
pendent of α ∈ [0, 1].
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Lemma 4.2.5. Let α ∈ [0, 1] and x = (x, η, t) ∈ X be fixed. For τ ≥ 0 define the function
m(τ) := 2τ (1 + τ). For τ, σ ≥ 0 the following holds true:

i) If τ < σ then Uα
τ (x) ⊂ Uα

σ (x), and Uα
0 (x) =


τ>0 U

α
τ (x) = {x}.

ii) y ∈ Uα
τ (x) ⇒ x ∈ Uα

τm(τ)(y).

iii) y ∈ Uα
τ (x) and z ∈ Uα

σ (y) ⇒ z ∈ Uα
f(τ,σ)(x) with f(τ, σ) := τ + σm(τ).

iv) y ∈ Uα
τ (x) and z ∈ Uα

σ (x) ⇒ z ∈ Uα
g(τ,σ)(y) with g(τ, σ) := (τ + σ)m(τ).

v) x ∈ Uα
τ (y) ∩ Uα

σ (z) ⇒ z ∈ Uα
h(τ,σ)(y) with h(τ, σ) = τ + σm(τ)m(σ).

Proof. We distinguish two cases, either x ∈ X0 or x ∈ X1. If x ∈ X0 then Uα
τ (x) = V α

τ (x) ∩
X0 and consequently y, z ∈ X0. Analogously, x ∈ X1 implies Uα

τ (x) = V α
τ (x) ∩X1 and thus

y, z ∈ X1. Since mt(τ) = m(τ) for t ≤ 1, the assertions follow then from Lemma 2.2.17.

Now we are ready to define the α-anisotropic Wiener maximal operator Wα
τ depending

on α ∈ [0, 1] and τ > 0. For a function F : X → C we put

Wα
τ F (x) := ∥FXUα

τ (x)|L∞∥ = ess sup
y∈Uα

τ (x)
|F (y)| , x ∈ X. (4.17)

Further, if τ = 1 we use the simplified notation Wα := Wα
1 .

The term maximal operator is justified, since Wα
τ has the following majorizing property,

|F (x)| ≤ Wα
τ F (x) for a.e. x ∈ X. (4.18)

But an even stronger result holds true, stated in the following lemma.

Lemma 4.2.6. Let α ∈ [0, 1] and let τ > σ > 0. Then for any function F : X → C we have
for almost every x ∈ X

|F (x)|XUα
σ (y)(x) = |F (x)|XU ′,α

σ (x)(y) ≤ Wα
τ F (y) for all y ∈ X.

Proof. In a first step we prove (4.18). For this choose ρ := min{1, τ/8} > 0 such that
g(ρ, ρ) ≤ τ , where g is the function from Lemma 4.2.5(iv). According to Lemma 4.2.5(iv),
we then have 

y∈Uα
ρ (x)

Uα
τ (y) ⊇ Uα

ρ (x) for all x ∈ X.

It follows that for each x ∈ X the following relation holds true, for almost all y ∈ Uα
ρ (x),

|F (y)| ≤ ess sup
z∈Uα

ρ (x)
|F (z)| ≤ ess sup

z∈Uα
τ (y)

|F (z)| = Wα
τ F (y).

The relation (4.18) is a direct consequence, since we can find a sequence (xn)n∈N such that
{Uα

ρ (xn)}n∈N is a countable covering of X.
Secondly, we now turn to the proof of the more general assertion of the lemma. According

to (4.18), for each n ∈ N there exists a null-set Nn ⊂ X such that |F (x)| ≤ Wα
1/nF (x) for

all x ∈ X\Nn. Putting N :=


n Nn, which is again a null-set, we then have |F (x)| ≤
Wα

τ F (x) for all x ∈ X\N and all τ > 0. Since by assumption σ < τ , we can choose
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ρ := (τ − σ)/m(σ) > 0 such that f(σ, ρ) = τ for the function f from Lemma 4.2.5(iii).
Then for every x ∈ X\N

|F (x)| ≤ Wα
ρF (x) ≤ Wα

τ F (y) for all y ∈ U ′,α
σ (x),

where U ′,α
σ (x) denotes the dual ball of Uα

σ (x). Since XUα
σ (y)(x) = XU ′,α

σ (x)(y), the proof is
finished.

Utilizing the maximal operator Wα = Wα
1 , we can now define the spaces Lα,s

p,q (X). Note
that in contrast to the original scale Ls

p,q(X) the new scale Lα,s
p,q (X) also depends on the

parameter α ∈ [0, 1].

Definition 4.2.7. Let α ∈ [0, 1], 0 < p, q < ∞, and s ∈ R. We define the α-anisotropic
Wiener space associated to Ls

p,q(X) as

Lα,s
p,q (X) :=


F : X → C µ-measurable : ∥WαF |Ls

p,q∥ < ∞


with quasi-norm ∥ · |Lα,s
p,q ∥ := ∥Wα(·)|Ls

p,q∥.

The spaces Lα,s
p,q (X) inherit many properties from the scale Ls

p,q(X). In particular, like
those, they are rich solid QBF-spaces on X with the same exponent r = min{1, p, q}. For
the proof of this fact we need the following commutation property of Wα

τ .

Lemma 4.2.8. Let α ∈ [0, 1] and τ > 0. Assume that Fn → F converges pointwise almost
everywhere for n → ∞, in a uniform way on compacta. Then

Wα
τ F (x) = lim

n→∞
Wα

τ Fn(x) for every x ∈ X.

Proof. First, we show that for any two functions F,G : X → C and all x ∈ X

|Wα
τG(x) − Wα

τ F (x)| ≤ Wα
τ (G− F )(x). (4.19)

Without loss of generality, we can assume that Wα
τG(x) ≥ Wα

τ F (x). Further, there exists
a null-set N ⊂ X such that |F (y)| ≤ ess supz∈Uα

τ (x) |F (z)| for all y ∈ Uα
τ (x)\N. Then (4.19)

follows from the estimate

ess sup
y∈Uα

τ (x)
|G(y)| − ess sup

z∈Uα
τ (x)

|F (z)| = ess sup
y∈Uα

τ (x)\N


|G(y)| − ess sup

z∈Uα
τ (x)

|F (z)|


≤ ess sup
y∈Uα

τ (x)\N


|G(y)| − |F (y)|


≤ ess sup

y∈Uα
τ (x)

|G(y) − F (y)|.

The assertion of the lemma is now a direct consequence of the validity of

|Wα
τ Fn(x) − Wα

τ F (x)| ≤ Wα
τ (Fn − F )(x) = ess sup

y∈Uα
τ (x)

|Fn(y) − F (y)|

for every x ∈ X and the fact that

ess sup
y∈Uα

τ (x)
|Fn(y) − F (y)| → 0 (n → ∞).

Now we formulate the companion result to Proposition 4.2.4.
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4 α-MOLECULE COORBIT SPACES

Proposition 4.2.9. The spaces Lα,s
p,q (X) are rich solid QBF-spaces on X with associated

exponent r := min{1, p, q}.

Proof. It is clear that Lα,s
p,q is a quasi-normed space on X with the same exponent r =

min{1, p, q} as Ls
p,q. Further, the solidity of Lα,s

p,q directly follows from the solidity of Ls
p,q

and the monotonicity of the Wiener maximal operator. To verify the richness, we use
Lemma 4.2.5(v) to estimate

WαXUα
σ (x) ≤ XUα

h(σ,1)(x) for every x ∈ X and all σ > 0. (4.20)

Taking into account the richness and the solidity of Ls
p,q, this implies WαXUα

σ (x) ∈ Ls
p,q and

thus XUα
σ (x) ∈ Lα,s

p,q .
It remains to show the completeness of Lα,s

p,q . For this, we use an embedding which will
be established in the next subsection. According to (4.26), we have Lα,s

p,q ↩→ Lloc
∞ . Due to

this result, every Cauchy sequence (Fn)n∈N in Lα,s
p,q yields Cauchy sequences (Fn(x))n∈N in

C for almost every x ∈ X.
Hence, (Fn)n∈N converges pointwise almost everywhere to a µ-measurable function F on

X. In addition, the convergence is uniform on compacta. Hence, we can apply Lemma 4.2.8
which yields for fixed m ∈ N the pointwise convergence

Wα
τ


Fm − F


= lim

n→∞
Wα

τ (Fm − Fn).

Since (Fn)n∈N is a Cauchy sequence in Lα,s
p,q , we can further verify for every m ∈ N

lim inf
n→∞

∥Wα
τ (Fm − Fn)|Ls

p,q∥ = lim inf
n→∞

∥Fm − Fn|Lα,s
p,q ∥ < ∞.

Hence, using the Fatou property of Ls
p,q proved in Lemma 4.2.3, we get Wα

τ (Fm −F ) ∈ Ls
p,q

and thus Fm −F ∈ Lα,s
p,q for all m ∈ N. In particular, since Fm ∈ Lα,s

p,q , this implies F ∈ Lα,s
p,q .

Further, we have Fm → F in Lα,s
p,q since

∥Fm − F |Lα,s
p,q ∥ ≤ lim inf

n→∞
∥Wα

τ (Fm − Fn)|Ls
p,q∥ = lim inf

n→∞
∥Fm − Fn|Lα,s

p,q ∥ → 0 (m → ∞).

We end this subsection with an important embedding, relating the spaces Lα,s
p,q (X) and

Ls
p,q(X). It is a direct consequence of (4.18).

Proposition 4.2.10. We have the continuous embedding

Lα,s
p,q (X) ↩→ Ls

p,q(X).

Proof. As a consequence of (4.18) and the solidity of Ls
p,q, we obtain

∥F |Ls
p,q∥ ≤ ∥WαF |Ls

p,q∥ = ∥F |Lα,s
p,q ∥

for every measurable function F : X → C. This yields the result.

Another important embedding of Lα,s
p,q (X) is derived in the next subsection. Proposi-

tion 4.2.13 will show that these Wiener spaces are naturally embedded into certain weighted
L∞-spaces.
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4.2.3 The Associated Canonical Weights vα,s
p,q

We have already mentioned at the end of Subsection 4.2.1 that the spaces Lα,s
p,q (X) are

continuously embedded into Lloc
1 (X). We will see that this is a consequence of the local

boundedness of the functions contained in Lα,s
p,q (X), a property which we will study in more

detail in this subsection. As it turns out, to each space Lα,s
p,q (X) there belongs an associated

canonical weight vα,s
p,q : X → R+ such that

Lα,s
p,q (X) ↩→ L

1/vα,s
p,q

∞ (X).

To determine the weight vα,s
p,q , let us introduce the characteristic functions

X α,τ
x (y) := XUα

τ (x)(y) and X̃ α,τ
x (y) := XU ′,α

τ (x)(y), (4.21)

where Uα
τ (x) is as in (4.15) and U ′,α

τ (x) denotes the dual ball from (4.16). Note that

X α,τ
x (y) = sup

z∈U ′,α
τ (y)

X{x}(z) and X̃ α,τ
x (y) = sup

z∈Uα
τ (y)

X{x}(z),

where X{x} is the unit-height spike at x ∈ X.
According to (4.15), the characteristic function X α,τ

x = X α,τ
x,η,t of the set Uα

τ (x) can be
decomposed in the form

X α,τ
x,η,t(y, θ, u) = χα,τ

x,η,t(y) · χα,τ
η,t (θ) · χτ

t (u),

where (y, θ, u) ∈ X and

χα,τ
x,η,t(y) := XQα,τ

x,η,t
(y) , χα,τ

η,t (θ) := XIα,τ
η,t

(θ) , χτ
t (u) := XJτ

t
(u). (4.22)

Due to the tent-like structure (4.16) of U ′,α
τ (x), the decomposition of the characteristic

functions X̃ α,τ
x = X̃ α,τ

x,η,t has a slightly different form, namely

X̃ α,τ
x,η,t(y, θ, u) = χα,τ

x,θ,u(y) · χα,τ
η,u(θ) · χτ

t (u) for (y, θ, u) ∈ X.

We now calculate the Ls
p,q-quasi-norms of these characteristic functions, since they play an

important role, as we will see below.

Lemma 4.2.11. Let α ∈ [0, 1] and let τ > 0 be fixed. We then have

∥X α,τ
x,η,t|Ls

p,q∥ ≍ ∥X̃ α,τ
x,η,t|Ls

p,q∥ ≍ t−s+(1+α)/p+(1−α)/q uniformly in (x, η, t) ∈ X.

Proof. For (x, η, t) ∈ X0, we first calculate


R2

χα,τ
x,η,t(y) dy ≍ t1+α ,


T

χα,τ
η,t (θ) dθ ≍ t1−α ,

1
0

u−sqχτ
t (u) du

u
≍ t−sq. (4.23)

Using (4.23) and ∥χα,τ
x,η,t|Lp∥ = ∥χα,τ

x,η,t|L1∥1/p, we obtain

∥X α,τ
x,η,t|Ls

p,q∥ =
 1

0

2π
0

u−sqχτ
t (u)χα,τ

η,t (θ)∥χα,τ
x,η,t|Lp∥q dθ du

u

1/q

≍
 1

0

u−sqχτ
t (u)t1−αt(1+α)q/p du

u

1/q

≍ t−st(1+α)/pt(1−α)/q.
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4 α-MOLECULE COORBIT SPACES

Further, we also have

∥X̃ α,τ
x,η,t|Ls

p,q∥ =
 1

0

2π
0

u−sqχτ
t (u)χα,τ

η,u(θ)∥χα,τ
x,θ,u|Lp∥q dθ du

u

1/q

≍
 1

0

u−sqχτ
t (u)u1−αu(1+α)q/p du

u

1/q

≍ t−st(1+α)/pt(1−α)/q.

An analogous calculation yields

∥X α,τ
x,η,1|Ls

p,q∥ ≍ ∥X̃ α,τ
x,η,1|Ls

p,q∥ ≍ 1

for (x, η, 1) ∈ X1.

As a byproduct of the previous lemma, we obtain the quasi-invariance of the µ-measure
of the sets Uα

τ (x) and their duals U ′,α
τ (x) from their positions x ∈ X.

Corollary 4.2.12. Let α ∈ [0, 1], and τ > 0 be fixed. Then we have

µ

Uα

τ (x)


≍ µ

U ′,α

τ (x)


≍ 1 uniformly in x ∈ X.

Proof. Using Lemma 4.2.11, we obtain

µ

Uα

τ (x)


=

X

X α,τ
x (y) dµ(y) = ∥X α,τ

x |L2
1,1∥ ≍ 1 ,

and similarly µ

U ′,α

τ (x)


≍ 1.

Lemma 4.2.11 paves the way for the definition of the weight functions vα,s
p,q : X → R+.

Recall that our aim are embeddings of the form (4.25). Following intuition, we need to
calculate ∥XUα

τ (x)|Lα,s
p,q ∥ = ∥WαXUα

τ (x)|Ls
p,q∥ for small τ > 0 to approximate vα,s

p,q (x). This
motivates to use ∥XU ′,α

1 (x)|Ls
p,q∥ = ∥ sup

z∈Uα
1 (·)

X{x}(z)|Ls
p,q∥ for the definition. In view of

Lemma 4.2.11, it thus makes sense to define

vα,s
p,q (x) := t−s+(1+α)/p+(1−α)/q , x = (x, η, t) ∈ X . (4.24)

Indeed, we then have the following result.

Proposition 4.2.13. We have the continuous embedding

Lα,s
p,q (X) ↩→ L

1/vα,s
p,q

∞ (X). (4.25)

Proof. Take F ∈ Lα,s
p,q . Then F ∈ Ls

p,q and, due to Lemma 4.2.6 and the solidity of Ls
p,q, it

holds for almost every x ∈ X

∥F |Lα,s
p,q ∥ = ∥WαF |Ls

p,q∥ ≥ |F (x)|∥XU ′,α
1
2

(x)|L
s
p,q∥ = |F (x)|∥X̃ α, 1

2x |Ls
p,q∥.

Using Lemma 4.2.11, this implies F ∈ L
1/vα,s

p,q
∞ and the embedding Lα,s

p,q ↩→ L
1/vα,s

p,q
∞ is contin-

uous.
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4.3 α-Molecule Coorbit Spaces

Since the weights vα,s
p,q are locally bounded, i.e., they constitute bounded functions on

every compact subset of X, we finally arrive at the following chain of continuous embeddings

Lα,s
p,q (X) ↩→ L

1/vα,s
p,q

∞ (X) ↩→ Lloc
∞ (X) ↩→ Lloc

1 (X). (4.26)

In particular, these embeddings show that the convergence in Lα,s
p,q (X) is locally uniform

almost everywhere, a fact which was used in the proof of Proposition 4.2.9.
We are now well-prepared for the definition and analysis of the coorbit spaces Co(Cα,Lα,s

p,q )
associated to the α-curvelet transform VCα and the spaces Lα,s

p,q (X). This will be the topic
of the remaining two sections.

4.3 α-Molecule Coorbit Spaces

In the previous section, we have introduced two scales of function spaces on the curvelet
domain X, namely Ls

p,q(X) (Definition 4.2.2) and Lα,s
p,q (X) (Definition 4.2.7). Plugging the

spaces Lα,s
p,q (X) into the general definition (4.13) of an α-curvelet coorbit space, we obtain

the special scale of coorbits Co(Cα,Lα,s
p,q ) which we will subsequently analyze in more detail.

In the end, our analysis will reveal, via Theorem 4.3.13, that these spaces can be identified
with other Besov-type function spaces, for example those considered in [85].

An important tool in our investigation will be the continuous α-molecule transform
which is a natural generalization of the continuous α-curvelet transform VCα from Sec-
tion 4.1. It is introduced in Subsection 4.3.2 and enables a much broader approach to the
analysis of the coorbits Co(Cα,Lα,s

p,q ). In particular, it leads to the more general notion of
an α-molecule coorbit space introduced and analyzed in Subsection 4.3.3.

4.3.1 α-Curvelet Coorbit Spaces associated to Lα,s
p,q (X)

Let us begin with the definition of the α-curvelet coorbit spaces associated to the scale
Lα,s

p,q (X). They are obtained for the special choice Y := Lα,s
p,q (X) in (4.13).

Definition 4.3.1. The α-curvelet coorbit space with respect to Lα,s
p,q (X) is defined as

Co(Cα,Lα,s
p,q ) :=


f ∈ S ′(R2) : VCαf ∈ Lα,s

p,q (X)


and equipped with the quasi-norm ∥ · |Co(Cα,Lα,s
p,q )∥ := ∥VCα(·)|Lα,s

p,q ∥.

To analyze these spaces, we will utilize the abstract machinery provided by the theory
of coorbit spaces – here especially the exposition from [74] – combined with the theory of α-
molecules from Chapter 2. In particular, in Theorem 4.3.8, we will see that they constitute
quasi-Banach spaces.

For the subsequent investigation, it is advantageous to view α-curvelets as special in-
stances of α-molecules. It turns out that without much effort we can then take a broader
approach and base our entire investigation on the more general concept of α-molecule coorbit
spaces.
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4 α-MOLECULE COORBIT SPACES

4.3.2 The Continuous α-Molecule Transform

In this subsection, Mα = {mx}x∈X shall always denote a system of α-molecules with respect
to the canonical parametrization. If such a system constitutes a tight frame for L2(R2) it
gives rise to an associated transform VMα : L2(R2) → L2(X) defined by

VMαf(x) := ⟨f,mx⟩ , x ∈ X. (4.27)

Let us subsequently call it the continuous α-molecule transform associated to Mα.
In analogy to the definition of the α-curvelet coorbit spaces in Definition 4.3.1, we now

aim to define coorbits of Lα,s
p,q (X) with respect to this more general transform VMα . Before

we can do this, however, we need to suitably enlarge the reservoir of VMα similar to the
extension of the α-curvelet transform VCα to the space of tempered distributions S ′(R2) in
Subsection 4.1.2.

Here some more care is required, though. Whereas the inclusion Cα ⊂ S(R2) allowed to
use the whole space S ′(R2) as a reservoir for VCα , we may not be so lucky with the transform
VMα since in general Mα ̸⊂ S(R2). To obtain a suitable reservoir for VMα , we thus need to
slightly modify the procedure used for the extension of VCα .

The basic idea for the subsequent exposition stems from abstract coorbit theory and
goes back to [42, 43]. Instead of S(R2), we consider a subspace Hν

1 of L2(R2) of the form

Hν
1 :=


f ∈ L2(R2) : VMαf ∈ Lν

1(X)

, (4.28)

where ν : X → [1,∞) is some suitable weight function. With ∥ · |Hν
1∥ := ∥VMα(·)|Lν

1∥ as a
norm, this space is topologized differently than by the usual subspace topology induced by
L2(R2). Provided that the canonical injection Hν

1 ↩→ L2(R2) is continuous and dense, we
then obtain a Gelfand triple resembling (4.6), namely

Hν
1 ↩→ L2(R2) ↩→


Hν

1
q
. (4.29)

Here, one usually uses the anti-dual (Hν
1)q, i.e., the space of bounded conjugate-linear

functionals on Hν
1 . This has the advantage that the duality product ⟨·, ·⟩(Hν

1 )q×Hν
1

canonically
extends the scalar product ⟨·, ·⟩ on L2(R2), which by convention is conjugate-linear in the
second component.

In view of (4.29), if the weight ν is chosen such that Mα ⊂ Hν
1 , the transform VMα can

be extended via the duality product

VMαf(x) := ⟨f,mx⟩(Hν
1 )q×Hν

1
, x ∈ X. (4.30)

The difficulty of this approach is to find a suitable weight ν : X → [1,∞) such that the
above conditions are fulfilled, i.e., that Hν

1 ↩→ L2(R2) is a continuous and dense embedding
and that Mα ⊂ Hν

1 .
A helpful criterion can be found in [74, Lem. 2.14]. Let mν denote the bivariate weight

associated to ν : X → R+ given by

mν(x,y) := max
ν(x)
ν(y) ,

ν(y)
ν(x)


, x,y ∈ X.
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4.3 α-Molecule Coorbit Spaces

Then, according to [74, Lem. 2.14], the desired conditions essentially hold true if the frame
elements of Mα satisfy ∥mx|L2∥ . ν(x) for every x ∈ X and if the associated Gramian
kernel

G[Mα](x,y) := ⟨my,mx⟩ , x,y ∈ X,

is contained in the kernel algebra Amν defined below (see also [74, eq. (2.8)]). Under these
assumptions, we then have a Gelfand triple as in (4.29) and mx ∈ Hν

1 holds true at least
for almost all elements mx ∈ Mα.

In our setting, the algebra Amν takes the form

Amν :=

K : X × X → C measurable : ∥K|Amν ∥ < ∞


,

with ∥K|Amν ∥ being the expression

max


ess sup
x∈X


y∈X

|K

x,y


mν(x,y)| dµ(y) , ess sup

y∈X


x∈X

|K

x,y


mν(x,y)| dµ(x)


.

A closer inspection of Amν reveals that Amν is a Banach space with ∥ · |Amν ∥ as a norm.
Further, with the multiplication given by (4.51), Amν even is a Banach algebra. However,
since these details are not essential for the main exposition, they are outsourced to the
appendix, Section 4.5.

It remains to find a suitable weight for the analyzing frame Mα. A plausible ansatz are
weights of the form

νγ(x, η, t) := t−γ , γ ≥ 0, (4.31)

which promote decay of the transform |VMαf(x, η, t)| along the scale variable t in the direc-
tion t ↘ 0. In view of Paley-Wiener, such weights are associated to the smoothness of the
functions f ∈ Hν

1 .
Next, we utilize Theorem 4.5.5 from the appendix. It gives a condition when a Gramian

kernel G[Mα] belongs to Amν for weights of type ν = νγ . Even more, the condition in
Theorem 4.5.5 ensures that the so-called cross-Gramian maximal kernels, associated to two
possibly different systems of α-molecules Mα and Mα, belong to Amν .

For τ ≥ 0, those are given as follows,

Mα
τ [Mα,Mα](x,y) := sup

z∈Uα
τ (y)

|⟨mx, m̃z⟩| , x,y ∈ X, (4.32)

where Uα
τ (y) ⊂ X are the subsets from (4.15). This definition should be compared with the

so-called cross-Gramian kernels (see also (2.7)) defined by

G[Mα,Mα](x,y) := ⟨mx, m̃y⟩ , x,y ∈ X.

Note, in particular, that for τ = 0 we haveG[Mα,Mα]
 = Mα

0 [Mα,Mα]. (4.33)

To simplify the notation in case Mα = Mα, we put Mα
τ [Mα] := Mα

τ [Mα,Mα] in line with
G[Mα] := G[Mα,Mα].

Applying Theorem 4.5.5 in combination with [74, Lem. 2.14] yields the following result.
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Lemma 4.3.2. Let α ∈ [0, 1], and let Mα = {mx}x∈X be a tight frame of α-molecules
of order (L,M,N1, N2) with respect to the canonical parametrization. Further assume that
ν = νγ is a weight of the form (4.31) with γ ≥ 0 such that

L > 2(γ + 2) , M > 3(γ + 2) − 3 − α

2 , N1 > γ + 2 + 1 + α

2 , N2 > 2(γ + 2) . (4.34)

Then the space Hν
1 defined as in (4.28) is a Banach space with associated norm ∥ · |Hν

1∥ :=
∥VMα(·)|Lν

1∥. Moreover, it is continuously and densely embedded in L2(R2) and Mα is a
total subset of Hν

1 .

Proof. If condition (4.34) is fulfilled, we have N1 > 1 and thus, by Lemma 2.1.4, ∥mx|L2∥ .
1 ≤ ν(x) uniformly in x ∈ X. Further, due to Theorem 4.5.5, condition (4.34) also ensures
that Mα

τ [Mα] ∈ Amν for arbitrary τ ≥ 0. As a consequence of (4.33) and the solidity of
Amν , then also G[Mα] ∈ Amν . Hence, the prerequisites of [74, Lem. 2.14] are fulfilled, and
thus Hν

1 is a Banach space, continuously and densely embedded in L2(R2). Furthermore,
almost all frame elements mx ∈ Mα are contained in Hν

1 .
Using Mα

τ [Mα] ∈ Amν for τ > 0, we can even show the full inclusion Mα ⊂ Hν
1 . To this

end, let x ∈ X be arbitrary but fixed. Then there exists x̃ ∈ X such that x ∈ Uα
τ (x̃) and

X

Mα
τ [Mα](x̃,y)mν(x̃,y) dµ(y) < ∞.

Now we can deduce mx ∈ Hν
1 since VMα(mx) ∈ Lν

1(X) due to the estimate

∥VMα(mx)|Lν
1∥ = ∥G[Mα](x, ·)ν(·)|L1∥ ≤ ν(x̃)∥Mα

τ [Mα](x̃, ·)mν(x̃, ·)|L1∥ < ∞.

This proves Mα ⊂ Hν
1 , and in view of [74, Cor. 2.20] the system Mα is even total in Hν

1 .

As a consequence of Lemma 4.3.2, if the order (L,M,N1, N2) of the system Mα satis-
fies (4.34), the transform VMα extends naturally to (Hν

1)q with ν = νγ . In the following
proposition, we collect some properties of the extended transform VMα .

Proposition 4.3.3. Under the assumptions of Lemma 4.3.2 the transform VMα defined in
(4.27) possesses a natural extension to (Hν

1)q given by (4.30). The extended transform is an
injective bounded linear operator

VMα : (Hν
1)q → L1/ν

∞ (X),

mapping signals f ∈

Hν

1
q to functions VMαf ∈ L

1/ν
∞ (X) given by

VMαf(x) = ⟨f,mx⟩(Hν
1 )q×Hν

1
, x ∈ X.

Proof. This follows from [74, Lem. 2.15] and [74, Cor. 2.19] since the prerequisites of [74,
Lem. 2.14] are fulfilled, as shown in the proof of Lemma 4.3.2.

Finally, we clarify the relation of the auxiliary space Hν
1 with ν = νγ to the Schwartz

space S(R2).

Lemma 4.3.4. Assume that the assumptions of Lemma 4.3.2 are fulfilled. Then we have
the continuous embedding S(R2) ↩→ Hν

1 for ν = νγ.
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4.3 α-Molecule Coorbit Spaces

Proof. Let f ∈ S(R2) and F (x) := VMαf(x) = ⟨f,mx⟩ with mx ∈ Mα. We interpret f as
a single α-molecule with phase space coordinates (0, 0, 1). According to the assumptions,
there is N > 2 + γ such that Theorem 2.2.2 yields for all (x, η, t) ∈ X

|VMαf(x, η, t)| = |⟨f,mx⟩| ≤ CN,f · tN (1 + |x|)−N

with a constant CN,f > 0 depending on N and f . Since N > 2 and N − (2 + γ) > 0, we
obtain, with dµ0 = dx dη dt

t3 and dµ1 = dx dη,


X0

|F (x)|νγ(x) dµ0(x) ≤ CN,f

1
0


T


R2

tN−(2+γ)(1 + |x|)−N dx dη dt

t
< ∞,


X1

|F (x)|νγ(x) dµ1(x) ≤ CN,f


T


R2

(1 + |x|)−N dx dη < ∞.

This shows F ∈ Lν
1(X, µ) for ν = νγ and thus f ∈ Hν

1 .
To show the continuity of the embedding S ↩→ Hν

1 , let (fn)n∈N be a sequence in S such
that fn → 0 in S. Then there exists a sequence of constants Cn > 0 with Cn → 0 as n → ∞
such that for all ρ ∈ N2

0 with |ρ|1 ≤ L

|∂ρf̂n(ξ)| ≤ Cn · ⟨|ξ|⟩−N1⟨ξ2⟩−N2 for all ξ = (ξ1, ξ2) ∈ R2.

In particular, the system {C−1
n fn : n ∈ N} is a system of α-molecules of order (M,L,N1, N2)

with respect to the parametrization n →→ (xn, ηn, tn) := (0, 0, 1). Invoking Theorem 2.2.2
thus yields a constant CN ≥ 0 such that

|Fn(x)| := |VMαfn(x)| = |⟨fn,mx⟩| ≤ CnCN · tN (1 + |x|)−N for all x ∈ X and n ∈ N.

As a consequence, ∥Fn|Lν
1∥ . Cn for n ∈ N. This proves ∥Fn|Lν

1∥ → 0 and verifies S ↩→ Hν
1

since fn → 0 in Hν
1 .

4.3.3 α-Molecule Coorbit Spaces associated to Lα,s
p,q (X)

With a suitable reservoir for the continuous α-molecule transform VMα at hand, we can now
proceed to define coorbits of Lα,s

p,q (X) with respect to VMα .

Definition 4.3.5. Let Mα be a tight frame of α-molecules of order (L,M,N1, N2) with
respect to the canonical parametrization. Assume that γ ≥ 0 satisfies condition (4.34) and
let νγ denote the weight from (4.31). Then the α-molecule coorbit space with respect to νγ

and Lα,s
p,q (X) is defined as

Co(νγ ,Mα,Lα,s
p,q ) :=


f ∈ (Hνγ

1 )q : VMαf ∈ Lα,s
p,q (X)


and equipped with the quasi-norm ∥ · |Co(νγ ,Mα,Lα,s

p,q )∥ := ∥VMα(·)|Lα,s
p,q ∥.

Due to Proposition 4.3.3, these spaces are well-defined. In contrast to the α-curvelet
coorbits Co(Cα,Lα,s

p,q ) from Definition 4.3.1, they also depend on the utilized weight νγ .
Let us investigate some properties of these spaces, where we again resort to the abstract

theory from [74]. We know from [74, Def. 2.25] and [74, Thm. 2.31] that they constitute
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quasi-Banach spaces if the analyzing frame Mα has property F (ν, Y ) with respect to the
weight ν = νγ and the space Y = Lα,s

p,q (X).
Before we recall this notion from [74, Def. 2.24], it is convenient to introduce a subalgebra

of Amν as follows. Let Y be a rich solid QBF-space on X, and let ν : X → [1,∞) be a
measurable weight. Then we define

Bmν ,Y :=

K : X × X → C : K ∈ Amν and K : Y → Y is bounded


.

More details on these spaces are provided in the appendix, Section 4.5. In particular, it is
shown that Bmν ,Y is a solid quasi-Banach algebra endowed with the quasi-norm

∥K|Bmν ,Y ∥ := max{∥K|Amν ∥, ∥K|Y → Y ∥}.

Now we are ready to give the definition of property F (ν, Y ) in the concrete situation of
an α-molecule frame Mα.

Definition 4.3.6 (compare [74, Def. 2.24]). Let ν ≥ 1 be a weight on X and let Y be a
rich solid QBF-space on X. A tight frame of α-molecules Mα = {mx}x∈X is said to have
Property F (ν, Y ) if

(i) ∥mx|L2∥ ≤ CBν(x) for all x ∈ X and some fixed constant CB > 0,

(ii) G[Mα] ∈ Bmν ,Y ,

(iii) G[Mα] : Y → L
1/ν
∞ (X) is a continuous operator from Y to L1/ν

∞ (X).

We now derive a sufficient condition on the order of an α-molecule frame Mα such
that conditions (i)-(iii) are fulfillable for Y = Lα,s

p,q (X). Recall vα,s
p,q , the weight from (4.24)

associated to Lα,s
p,q (X). Subsequently, we use the modified weight να,s

p,q : X → [1,∞) given by

να,s
p,q (x) := max{1,vα,s

p,q (x)} = t− max{0,s̃} , x = (x, η, t) ∈ X, (4.35)

where s̃ := s − (1 + α)/p − (1 − α)/q. Note that this weight is a weight of the form νγ as
in (4.31) with γ = max{0, s̃} ≥ 0.

Finally, we are ready to prove the first result concerning α-molecule coorbits of Lα,s
p,q (X).

Theorem 4.3.7. Let α ∈ [0, 1], and let Mα = {mx}x∈X be a tight frame of α-molecules of
order (L,M,N1, N2) with respect to the canonical parametrization. Further, let Lα,s

p,q (X) be
the space from Definition 4.2.7 with fixed parameters 0 < p, q < ∞ and s ∈ R. If

L > 2(ρ+ 2) , M > 3(ρ+ 2) − 3 − α

2 , N1 > ρ+ 2 + 1 + α

2 , N2 > 2(ρ+ 2) (4.36)

holds true for ρ := max{|s| + 2(1/r − 1), |s̃|}, where r := min{1, p, q} and s̃ := s − (1 +
α)/p− (1 − α)/q, then the α-molecule coorbit space

Co

να,s

p,q ,Mα,Lα,s
p,q


=

f ∈ (Hνα,s

p,q

1 )q : VMαf ∈ Lα,s
p,q (X)


is a quasi-Banach space with quasi-norm ∥ · |Co(να,s

p,q ,Mα,Lα,s
p,q )∥ := ∥VMα(·)|Lα,s

p,q ∥. The
quasi-norm constant of Co(να,s

p,q ,Mα,Lα,s
p,q ) is thereby inherited from Lα,s

p,q (X).
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Proof. Let us assume that the order of the α-molecule frame Mα fulfills condition (4.36).
We will show that under this assumption Mα has Property F (ν, Y ) as introduced in
Definition 4.3.6 for the choice ν := να,s

p,q and Y := Lα,s
p,q . An application of [74, Thm. 2.31]

thus finishes the proof.
It remains to verify conditions (i)-(iii) in Definition 4.3.6. Since N1 > 1 we have

∥mx|L2∥ . ν(x) for all x ∈ X by Lemma 2.1.4, proving (i). Further, as a consequence
of Theorem 4.5.5, condition (ii) holds true, namely G[Mα] ∈ Bmν ,Y which entails that
G[Mα] : Y → Y is a bounded linear operator. As a consequence of the embedding Y ↩→ L

1/ν
∞ ,

this also implies that the operation G[Mα] : Y → L
1/ν
∞ is well-defined and continuous. Hence,

also condition (iii) is true.

An important feature of the theory of α-molecules is the transfer principle, already
encountered in Theorem 2.3.6 of Section 2.3 in a discrete setup. It allows to transfer certain
properties between α-molecule systems via the concept of sparsity equivalence.

The next result, Theorem 4.3.8, can be interpreted as another occurrence of the trans-
fer principle, this time in a continuous setting. It relates the α-molecule coorbit spaces
Co(να,s

p,q ,Mα,Lα,s
p,q ) to the α-curvelet coorbits from Definition 4.3.1. Its proof is based on

Theorem 4.5.5(ii) and the abstract result [74, Lem. 2.28].

Theorem 4.3.8. For every tight frame of α-molecules Mα subject to the assumptions of
Theorem 4.3.7 we have the identification

Co(να,s
p,q ,Mα,Lα,s

p,q ) ≍ Co(Cα,Lα,s
p,q )

in the sense of equivalent quasi-norms.

Proof. First of all note that the α-curvelet frame Cα is a concrete instance of an α-molecule
frame satisfying the assumptions of Theorem 4.3.7. Hence, the coorbit Co(να,s

p,q ,Cα,Lα,s
p,q ) is

a well-defined quasi-Banach space. Further, we have shown in Lemma 4.3.4 that S ↩→ Hν
1

for ν := να,s
p,q and, according to Proposition 4.1.5, the reproducing formula of VCα extends to

S ′. Hence, all prerequisites to apply [74, Lem. 2.28] in our concrete situation are fulfilled.
We obtain

Co(Cα,Lα,s
p,q ) ≍ Co(να,s

p,q ,Cα,Lα,s
p,q ).

Let us now turn to a general α-molecule frame Mα subject to the assumptions of
Theorem 4.3.7. It follows from Theorem 4.5.5 that the cross-Gramian maximal kernels
Mα

τ [Cα,Mα] and Mα
τ [Mα,Cα] (see (4.32) for definition) both belong to Bmν ,Y with Y :=

Lα,s
p,q and ν := να,s

p,q . As a consequence of the solidity of Bmν ,Y (see Proposition 4.5.4), in
particular G[Cα,Mα] ∈ Bmν ,Y and G[Mα,Cα] ∈ Bmν ,Y hold true. With [74, Lem. 2.29] we
can therefore deduce

Co(να,s
p,q ,Cα,Lα,s

p,q ) ≍ Co(να,s
p,q ,Mα,Lα,s

p,q ).

Theorem 4.3.8 is a powerful tool for the analysis of Co(Cα,Lα,s
p,q ). As an immediate

consequence, for example, we obtain in conjunction with Theorem 4.3.7 that Co(Cα,Lα,s
p,q ) is

a quasi-Banach space with the same quasi-norm constant as Lα,s
p,q (X). In the next subsection,

we will further use this theorem to deduce a discrete characterization of Co(Cα,Lα,s
p,q ). The

obtained discrete description in Theorem 4.3.13 will then allow us to identify Co(Cα,Lα,s
p,q )

with the shearlet smoothness spaces from [85].
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4 α-MOLECULE COORBIT SPACES

4.3.4 Characterization via Discrete α-Curvelets

In this subsection, we will apply Theorem 4.3.8 for a special choice of Mα leading to a
discrete characterization of Co(Cα,Lα,s

p,q ). This will in particular relate these coorbit spaces
to familiar scales of smoothness spaces considered for example in [85].

Let us first recall the discrete Parseval frame of α-curvelets C•
α from Definition 3.2.6

indexed by the discrete α-curvelet index set

M = J × Z2. (4.37)

Hereby J = {J = (j, ℓ) : j ∈ N0, ℓ ∈ Lj} is a collection of scale-angle pairs with Lj :=
{0, 1, . . . , Lj − 1} and Lj := 2⌊j(1−α)⌋ for j ∈ N0. The system C•

α has the form

C•
α = {ψµ}µ∈M =


ψj,ℓ,k : j ∈ N0, ℓ ∈ Lj , k ∈ Z2


and consists of band-limited α-curvelets ψµ = ψj,ℓ,k ∈ L2(R2). It is useful to distinguish the
coarse-scale elements from the high-scale functions, corresponding to respective index sets

M1 := J1 × Z2 with J1 := {(0, 0)},
and M0 := J0 × Z2 with J0 := {J = (j, ℓ) : j ∈ N, ℓ ∈ Lj}.

It was shown in Lemma 3.2.7 that C•
α constitutes a Parseval frame for L2(R2). Moreover,

according to Proposition 3.2.8, it is a system of α-molecules of order (∞,∞,∞,∞) with
respect to the specific α-curvelet parametrization (3.28), namely (M,ΦM ) with

ΦM : M → P : (j, ℓ, k) →→ (xj,ℓ,k, ℓωj , 2−j) =

R−1

ℓωj
A−1

α,2jk, ℓωj , 2−j,
where ωj := 2−⌊j(1−α)⌋π. For convenience, we will subsequently use the abbreviations
Rj,ℓ := Rℓωj

and Aj := Aα,2j as in (3.24).
Recall the subsets Uα

τ (x) of X defined in (4.15) in Section 4.2. For µ = (j, ℓ, k) ∈ M
and τ > 0, let us now define the sets

Uα,τ
µ := Uα,τ

j,ℓ,k := Uα
τ (xj,ℓ,k) with xj,ℓ,k := xµ := ΦM (µ).

More concretely, those sets can be written in the form

Uα,τ
j,ℓ,k = Qα,τ

j,ℓ,k × Iα,τ
j,ℓ × Jτ

j , (4.38)

where, with Qτ := [−τ, τ ]2, Iτ := [−τ, τ ], and Jτ := [2−τ , 2τ ],

Qα,τ
j,ℓ,k := xj,ℓ,k +R−1

j,ℓA
−1
j Qτ , Iα,τ

j,ℓ :=

ℓωj + 2−j(1−α)Iτ 

2π
, Jτ

j :=


2−jJτ ∩ (0, 1) , j ∈ N,
{1} , j = 0.

For the choice τ = 1
3 the collection {Uα,τ

µ }µ∈M consists of pairwise disjoint subsets of X.

We now put Uµ := U
α, 1

3
µ and introduce the positive weights

wµ :=

X

XUµ(x) dµ(x) > 0. (4.39)
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4.3 α-Molecule Coorbit Spaces

Then we define

C•
α :=


ψ̃x


x∈X where

ψ̃x,η,t := ψµω
− 1

2
µ , (x, η, t) ∈ Uµ,

ψ̃x,η,t := 0 , else.

We call C•
α the continuization of the discrete α-curvelet frame C•

α.

Lemma 4.3.9. The system C•
α = {ψ̃x}x∈X is a continuous Parseval frame of α-molecules

of order (∞,∞,∞,∞) with respect to the canonical parametrization.

Proof. The system C•
α = {ψ̃x}x∈X inherits the Parseval property from C•

α = {ψµ}µ∈M .
Indeed, for every f ∈ L2(R2) we have

X

|⟨f, ψ̃x⟩|2 dµ(x) =


µ∈M


Uµ

|⟨f, ψµ⟩|2w−1
µ dµ(x) =


µ∈M

|⟨f, ψµ⟩|2 = ∥f |L2∥2.

For the verification of the α-molecule property of C•
α, we define for (x, η, t) ∈ X

hx,η,t := t(1+α)/2ψ̃x,η,t

R−1

η Aα,t · +x


such that ψ̃x,η,t = t−(1+α)/2hx,η,t

A−1

α,tRη(· − x)

.

To finish the proof, it remains to show condition (2.5) for the functions hx,η,t.
We first recall that, according to (3.26), every α-curvelet ψj,ℓ,k ∈ C•

α has the form

ψj,ℓ,k = 2j(1+α)/2aj

AjRj,ℓ · −k


with a generator aj ∈ L2(R2) given by (3.25).

Hence, in case (x, η, t) ∈ Uµ for some µ = (j, ℓ, k) ∈ M , we can deduce

hx,η,t = t(1+α)/2ψ̃x,η,t

R−1

η Aα,t · +x


= ω
− 1

2
µ (t2j)(1+α)/2aj


AjRj,ℓR

−1
η Aα,t · +(AjRj,ℓx− k)


.

Altogether, since ψ̃x,η,t = 0 if (x, η, t) /∈ Uµ for every µ ∈ M , we obtain the spatial repre-
sentation

hx,η,t =

ω
− 1

2
µ (∆t)(1+α)/2aj


T−T

η,t · +∆k

, if (x, η, t) ∈ Uµ,

0 , else,

where we abbreviate ∆t := t2j , ∆k := AjRj,ℓx− k, and

Tη,t := A−1
j Rj,ℓR

−1
η A−1

α,t =:

t11 t12
t21 t22


.

On the Fourier side, we get

ĥx,η,t =

ω
− 1

2
µ (∆t)−(1+α)/2âj


Tη,t ·


exp


2πi⟨∆k, Tη,t·⟩


, if (x, η, t) ∈ Uµ,

0 , else.
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4 α-MOLECULE COORBIT SPACES

Our first goal is now to show that for every fixed ρ = (ρ1, ρ2) ∈ N2
0

sup
ξ∈R2

|∂ρĥx,η,t(ξ)| . 1 uniformly in (x, η, t) ∈ X. (4.40)

Note that since ĥx,η,t ∈ C∞(R2) the derivatives ∂ρĥx,η,t are well-defined. With the chain
rule, we calculate for ξ ∈ R2

∂1

âj(Tη,t·)


(ξ) = t11


∂1âj


(Tη,tξ) + t21


∂2âj


(Tη,tξ),

∂2

âj(Tη,t·)


(ξ) = t12


∂1âj


(Tη,tξ) + t22


∂2âj


(Tη,tξ).

By iteration, we obtain for ρ = (ρ1, ρ2) ∈ N2
0 the expansion

∂ρ1
1 ∂ρ2

2

âj(Tη,t·)


(ξ) =

ρ1
a=0

ρ2
b=0

na,bSa,b(ξ; η, t)

with combinatorial coefficients na,b ∈ N and terms Sa,b(ξ; η, t) of the form

Sa,b(ξ; η, t) :=

t11
a
t21
ρ1−a

t12
b
t22
ρ2−b

∂a+b
1 ∂ρ1+ρ2−a−b

2 âj

(Tη,tξ).

To estimate these terms, note that Tη,t is a matrix of the type investigated in Lemma 2.2.18
and Corollary 2.2.19. With the notation there, we have

T−T
η,t = AjRj,ℓR

−1
η Aα,t = T (ℓωj , 2−j , η, t).

In the relevant case (x, η, t) ∈ Uµ, it holds max{∆t, (∆t)−1} ≤ 2τ and dS(ℓωj , η) ≤ τ2−j(1−α)

for τ = 1
3 . Hence, we can apply Lemma 2.2.18 and obtain that the entries of T−T

η,t and T T
η,t

are uniformly bounded. As a consequence, also the entries t11, t12, t21, and t22 of Tη,t are
uniformly bounded. This yields |Sa,b(ξ; η, t)| . |(∂a+b

1 ∂ρ1+ρ2−a−b
2 âj)(Tη,tξ)|.

Further, we recall from the proof of Proposition 3.2.8 that, for any given ρ = (ρ1, ρ2) ∈
N2

0, we have uniformly in j ∈ N0

sup
ξ∈R2

|∂ρ1
1 ∂ρ2

2 âj(ξ)| . 1.

Hence, we obtain

sup
ξ∈R2

|

∂a+b

1 ∂ρ1+ρ2−a−b
2 âj


(Tη,tξ)| . 1 uniformly in (x, η, t) ∈ X.

All in all, this proves |Sa,b(ξ; η, t)| . 1 and we can deduce

sup
ξ∈R2

|∂ρ1
1 ∂ρ2

2

âj(Tη,t·)


(ξ)| . 1 uniformly in (x, η, t) ∈ X.

For the exponential term, we note

exp

2πi⟨∆k, Tη,t·⟩


= exp


2πi⟨T T

η,t(∆k), ·⟩

.

Whenever (x, η, t) ∈ Uµ = Uj,ℓ,k we have x ∈ Q
α, 1

3
j,ℓ,k and thus

∆k = AjRj,ℓx− k = AjRj,ℓ(x− xj,ℓ,k) ∈ Q
1
3 .
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4.3 α-Molecule Coorbit Spaces

In other words ∥∆k∥∞ ≤ 1
3 . We now invoke Corollary 2.2.19 which yields ∥T T

η,t∥∞→∞ ≤
2

1
3 (1 + 1

3) ≤ 2. Hence, we get T T
η,t(∆k) ∈ Q2 = [−2, 2]2.

For every ρ = (ρ1, ρ2) ∈ N2
0 with |ρ|1 ≤ L and every (x, η, t) ∈ X we thus obtain

∥∂ρ1
1 ∂ρ2

2 exp

2πi⟨∆k, Tη,t·⟩


|L∞∥ ≤ (4π)L . 1.

Finally, we take care of the prefactor ω− 1
2

µ (∆t)−(1+α)/2. Clearly, 2− 1
3 ≤ ∆t ≤ 2

1
3 due to

(x, η, t) ∈ Uµ. We further have wµ ≍ 1 by Corollary 4.2.12.
Taken all together, our estimates prove (4.40).
Next, we analyze the support properties of the functions ∂ρĥx,η,t. From the support

of the generators âj (see (3.27) and the following discussion) one can directly deduce that
there exist constants C ≥ c > 0 such that supp â0 ⊂ [−C,C]2 and for j ≥ 1

supp âj ⊂ [−C,C]2\

[−c, c] × [−2j(1−α)c, 2j(1−α)c]


.

Furthermore, we clearly have

supp ∂ρĥx,η,t ⊆ supp ĥx,η,t = supp âj

Tη,t ·


.

An application of Corollary 2.2.19 yields ∥Tη,t∥∞→∞ ≤ 2
1
3 (1+ 1

3) ≤ 2 and ∥T−1
η,t ∥∞→∞ ≤

2
1
3 (1 + 1

3) ≤ 2. Hence, in case (x, η, t) ∈ Uµ for µ = (j, ℓ, k) ∈ M0 with j ≥ 1, we obtain

supp ∂ρĥx,η,t ⊆ [−2C, 2C]2\

[− c

2 ,
c
2 ] × [−2j(1−α) c

2 , 2
j(1−α) c

2 ]

. (4.41)

If (x, η, t) ∈ Uµ for µ = (0, ℓ, k) ∈ M1 with j = 0, we necessarily have t = 1 and

supp ∂ρĥx,η,1 ⊆ [−2C, 2C]2. (4.42)

The uniform boundedness of the functions ∂ρĥx,η,t shown in (4.40) together with the
support properties (4.41) and (4.42) imply condition (2.5) for ∂ρĥx,η,t for arbitrary or-
ders (L,M,N1, N2). This is the same argument already encountered in Propositions 3.1.3
and 3.2.8. The proof is finished.

Let us remark that the utilized continuization procedure does not work in a generic α-
molecule setting. In the proof of Lemma 4.3.9 we have based our arguments on the fact that
the α-curvelets are bandlimited, a specific property stronger than the generic α-molecule
decay conditions. In a general setting, the proof would thus not go through as above.

Since C•
α is a continuous Parseval frame of α-molecules with respect to the canonical

parametrization, we can now apply Theorem 4.3.8 to obtain the following result.

Lemma 4.3.10. We have the equivalence

Co(Cα,Lα,s
p,q ) ≍ Co(C•

α,Lα,s
p,q ) :=


f ∈ S ′(R2) : VC•

α
f ∈ Lα,s

p,q (X)

,

where Co(C•
α,Lα,s

p,q ) is equipped with the quasi-norm ∥ · |Co(C•
α,Lα,s

p,q )∥ := ∥VC•
α
(·)|Lα,s

p,q ∥.
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Proof. For the proof, we show

Co(Cα,Lα,s
p,q ) ≍ Co(να,s

p,q ,C
•
α,Lα,s

p,q ) ≍ Co(C•
α,Lα,s

p,q ).

Since Cα and C•
α are both Parseval frames of α-molecules with respect to the canonical

parametrization, and since for both the respective order is arbitrarily large (see Proposi-
tions 3.1.1 and 3.1.3 and Lemma 4.3.9), an application of Theorem 4.3.8 yields the first
equivalence

Co(Cα,Lα,s
p,q ) ≍ Co(να,s

p,q ,C
•
α,Lα,s

p,q ).

It remains to prove the second equivalence

Co(να,s
p,q ,C

•
α,Lα,s

p,q ) ≍ Co(C•
α,Lα,s

p,q ).

Subsequently, we argue similarly as in the proof of Theorem 4.3.8, with Cα replaced by
C•

α. First of all notice that C•
α = {ψ̃x}x∈X ⊂ S, and hence the associated transform VC•

α

extends naturally to S ′. The identification of the spaces is then proved by applying the
abstract result [74, Lem. 2.28]. For this, we need to show that the reproducing formula of
VC•

α
extends to S ′, which works analogously as for Cα. In essence, we need to imitate the

arguments of Subsection 4.1.2 and in particular transfer Lemma 4.1.2.
The proof of this key lemma is based on (4.9) and (4.10). Hence we need to adapt these

estimates to C•
α. Concerning (4.10), we obtain analogously for ϕ ∈ S and arbitrary but

fixed Ñ > 0

|VC•
α
ϕ(x, η, t)| = |⟨ϕ, ψ̃x,η,t⟩| ≤ CÑ,ϕ · tÑ (1 + |x|2)−Ñ

with a constant CÑ,ϕ > 0 independent of (x, η, t) ∈ X. In view of Lemma 4.3.9, this is a
direct consequence of Theorem 2.2.2.

Concerning (4.9), we first observe that an analogous estimate holds true for the discrete
α-curvelets ψj,ℓ,k ∈ C•

α. There exists a constant CN > 0 such that

∥ψj,ℓ,k∥N ≤ CN 2j(1+α)/22jN (1 + |xj,ℓ,k|2)N uniformly for all (j, ℓ, k) ∈ M. (4.43)

This follows analogously as in the proof of Lemma 4.1.2. The only difference is that, instead
of the generators gt of the continuous α-curvelet frame given by (3.9), we need to use the
functions at as in (3.25).

Now we can also show that, with a constant C̃N > 0,

∥ψ̃x∥N ≤ C̃N t
−(1+α)/2t−N (1 + |x|2)N for all x = (x, η, t) ∈ X.

Indeed, let x = (x, η, t) ∈ U
α, 1

3
j,ℓ,k. Then there exist ∆t ∈ J

1
3 = [2− 1

3 , 2
1
3 ] and ∆k ∈ Q

1
3 =

[−1
3 ,

1
3 ]2 such that x = R−1

j,ℓA
−1
j (k + ∆k) and 2jt = ∆t. Now we use (4.43) and

1 + |xj,ℓ,k|2 = 1 + |A−1
j k|2 ≤ (1 + |A−1

j (k + ∆k)|2)(1 + |A−1
j ∆k|2) ≤ (1 + |x|2)(1 + |∆k|2)

to get with C̃N := CN 2(1+α)/6+N/3(1 +
√

2/3)N as desired

∥ψ̃x∥N = ∥ψj,ℓ,k∥N ≤ CN 2j(1+α)/22jN1 + |A−1
j k|2

N ≤ C̃N t
−(1+α)/2t−N (1 + |x|2)N .

The rest of the proof is analogous to Subsection 4.1.2.
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Next, we introduce a scale of sequence spaces on the discrete α-curvelet index set M .

Definition 4.3.11. Let α ∈ [0, 1], s ∈ R, 0 < p, q < ∞. Further, M = J × Z2 shall be the
α-curvelet index set as defined in (4.37). We then define the sequence space

ℓsp,q(M) :=


(cµ)µ∈M ⊂ C : ∥(cµ)µ|ℓsp,q∥ < ∞

,

with associated quasi-norm defined for (cµ)µ = (cj,ℓ,k)j,ℓ,k by

∥(cµ)µ|ℓsp,q∥ :=
 

(j,ℓ)∈J
2jsq

 
k∈Z2

|cj,ℓ,k|p
q/p1/q

.

The following lemma is the final discretization step on our way to Theorem 4.3.13.

Lemma 4.3.12. Define s̃ := s− (1 + α)/p− (1 − α)/q. Then

Co(C•
α,Lα,s

p,q ) ≍ Co(C•
α, ℓ

s̃
p,q) :=


f ∈ S ′(R2) : VC•

α
f ∈ ℓs̃p,q


,

where Co(C•
α, ℓ

s̃
p,q) is equipped with the quasi-norm ∥ · |Co(C•

α, ℓ
s̃
p,q)∥ := ∥VC•

α
(·)|ℓs̃p,q∥.

Proof. Let f ∈ S ′, and let C•
α = {ψµ}µ∈M be the discrete α-curvelet frame defined in

Definition 3.2.6. We have, with cµ := ⟨f, ψµ⟩S′×S being the curvelet coefficients,

VC•
α
f(x) =


µ

cµω
−1/2
µ X α, 1

3
µ (x) , x ∈ X,

where ωµ = ωj,ℓ,k are the weights defined in (4.39). Further, the short-hand notation
X α,τ

µ := X α,τ
j,ℓ,k := XUα,τ

j,ℓ,k
for τ > 0 is used. Recalling (4.38), namely Uα,τ

j,ℓ,k = Qα,τ
j,ℓ,k ×Iα,τ

j,ℓ ×Jτ
j ,

it is useful to decompose

X α,τ
j,ℓ,k(x, η, t) = χτ

j (t) · χα,τ
j,ℓ (η) · χα,τ

j,ℓ,k(x) , (x, η, t) ∈ X,

with χτ
j = XJτ

j
, χα,τ

j,ℓ = XIα,τ
j,ℓ

, and χα,τ
j,ℓ,k = XQα,τ

j,ℓ,k
.

Since, as a consequence of Corollary 4.2.12, we have ωµ ≍ 1 uniformly for all µ ∈ M , we
can deduce for x ∈ X

|VC•
α
f(x)| =


µ

|cµ|ω−1/2
µ X α, 1

3
µ (x) ≍


µ

|cµ|X α, 1
3

µ (x) .
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For arbitrary τ > 0, we then calculate for the homogeneous component,

 1
0


T

t−sq


j,ℓ,k

cj,ℓ,kX α,τ
j,ℓ,k(·, η, t)

Lp

q dη dt

t

1/q

=
 1

0


T

t−sq


j,ℓ

χτ
j (t)χα,τ

j,ℓ (η)


k

|cj,ℓ,k|p
χα,τ

j,ℓ,k

L1
q/p dη dt

t

1/q

≍
 1

0


T

t−sq

j,ℓ

χτ
j (t)χα,τ

j,ℓ (η)


k

|cj,ℓ,k|p
χα,τ

j,ℓ,k

L1
q/p dη dt

t

1/q

=


j,ℓ

1
0


T

t−sqχτ
j (t)χα,τ

j,ℓ (η)dη dt
t


k

|cj,ℓ,k|p
χα,τ

j,ℓ,k

L1
q/p

1/q

≍
 

(j,ℓ)∈J0

2js̃q


k

|cj,ℓ,k|p
q/p

1/q

= ∥(cµ)µ|ℓs̃p,q(M0)∥,

with s̃ = s− (1 + α)/p− (1 − α)/q and implicit constants depending on τ .
Hence we deduce, with τ > 0 sufficiently large,

∥(cµ)µ|ℓs̃p,q(M0)∥ ≍
 1

0


T

t−sq


µ

cµX α, 1
3

µ

Lp

q dη dt

t

1/q

≍ ∥VC•
α
f |Ls

p,q(X0)∥

≤ ∥VC•
α
f |Lα,s

p,q (X0)∥ .
 1

0


T

t−sq


µ

cµX α,τ
µ

Lp

q dη dt

t

1/q

≍ ∥(cµ)µ|ℓs̃p,q(M0)∥.

Here we used ∥VC•
α
f |Lα,s

p,q (X0)∥ = ∥WαVC•
α
f |Ls

p,q(X0)∥, where Wα = Wα
1 is the α-

anisotropic Wiener maximal operator from (4.17), and that we can estimate for sufficiently
large τ > 0,

WαVC•
α
f(x) ≤


µ

|cµ|ω−1/2
µ WαX α, 1

3
µ (x) .


µ

|cµ|X α,τ
µ (x) , x ∈ X.

Similarly, we argue for the inhomogeneous part. Here, for τ > 0 sufficiently large,

∥(cµ)µ|ℓs̃p,q(M1)∥ ≍


T


µ

cµX α, 1
3

µ (·, η, 1)
Lp

q
dη

1/q

≍ ∥VC•
α
f |Ls

p,q(X1)∥

≤ ∥VC•
α
f |Lα,s

p,q (X1)∥ .


T


µ

cµX α,τ
µ (·, η, 1)

Lp

q
dη

1/q

≍ ∥(cµ)µ|ℓs̃p,q(M1)∥,
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since for arbitrary τ > 0
T


j,ℓ,k

cj,ℓ,kX α,τ
j,ℓ,k(·, η, 1)

Lp

q
dη

1/q

=


T


j,ℓ

χτ
j (1)χα,τ

j,ℓ (η)


k

|cj,ℓ,k|p
χα,τ

j,ℓ,k

L1
q/p

dη

1/q

≍
 

ℓ∈L0


T

χα,τ
0,ℓ (η) dη


k

|c0,ℓ,k|p
χα,τ

0,ℓ,k

L1
q/p

1/q

≍
 

ℓ∈L0


k

|c0,ℓ,k|p
q/p

1/q

= ∥(cµ)µ|ℓs̃p,q(M1)∥.

Altogether, this proves Co(C•
α,Lα,s

p,q ) ≍ Co(C•
α, ℓ

s̃
p,q).

Finally, we can formulate the main result of this subsection, Theorem 4.3.13, giving a
discrete characterization of Co(Cα,Lα,s

p,q ).

Theorem 4.3.13. It holds with s̃ := s− (1 + α)/p− (1 − α)/q and equivalent quasi-norms

Co(Cα,Lα,s
p,q ) ≍ Co(C•

α, ℓ
s̃
p,q).

Proof. For the proof, we just need to combine Lemma 4.3.10 and Lemma 4.3.12,

Co(Cα,Lα,s
p,q ) ≍ Co(C•

α,Lα,s
p,q ) ≍ Co(C•

α, ℓ
s̃
p,q).

We are now able to draw a connection between the coorbits Co(Cα,Lα,s
p,q ) and other known

scales of function spaces. The discrete characterization of Theorem 4.3.13 allows to identify
them with shearlet and curvelet smoothness spaces or more general decomposition spaces
(see e.g. [6]), for which equivalent discretizations have been derived. For example, they
coincide, up to equivalence of quasi-norms, with the shearlet smoothness spaces considered
in [85].

The discretization procedure presented in this subsection, based on the continuization
of a discrete frame, is more or less a hands-on technique to obtain discrete descriptions. A
more systematic approach to discretizations is developed in the next section.

4.4 Discretization Theory

As we have seen in the previous section, the coorbit spaces Co(Cα,Lα,s
p,q ) coincide with the

smoothness spaces defined and analyzed in [85]. In particular, they can also be characterized
as decomposition spaces (see [6]). Both, the coorbit approach as well as the decomposition
approach, offer their own advantages. One feature of coorbit theory is the rich and powerful
discretization machinery it comes along with. In the following, it allows us to derive very
general discrete descriptions of Co(Cα,Lα,s

p,q ) (see our main Theorems 4.4.19 and 4.4.21).
Let us first recall the collection Uα

τ = Uα
τ [X] = {Uα

τ (x) : x ∈ X} consisting of the sets
Uα

τ (x) defined in (4.15) as

Uα
τ (x) =


x+R−1

η Aα,tQ
τ


×

η + t1−αIτ


2π

×

tJτ ∩ (0, 1)


, x ∈ X0 ,

x+R−1
η Qτ


×

η + Iτ


2π

×

{1}


, x ∈ X1 ,

(4.44)
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4 α-MOLECULE COORBIT SPACES

where Qτ = [−τ, τ ]2, Iτ = [−τ, τ ], and Jτ = [2−τ , 2τ ]. This collection Uα
τ constitutes a

continuous covering of X depending on α ∈ [0, 1] and a density parameter τ > 0. Later, by
suitably sampling the transform domain X, we will extract from Uα

τ discrete coverings of X.
Thereby even certain types of irregular samplings will be allowed.

By a sampling PΛ of the curvelet domain X we thereby mean a pair PΛ = (Λ,P) of
some countable index set Λ and a map P : Λ → X. For convenience, this notation will also
be used for the point family PΛ = {xλ}λ∈Λ where xλ := P(λ). A sampling of X at the
points PΛ naturally leads to the family

Uα
τ [PΛ] :=


Uα

τ (xλ) : λ ∈ Λ


of subsets of X, whereby α ∈ [0, 1] and τ > 0 are fixed parameters.
An important concept for the discretization theory is the notion of an admissible covering

of the transform domain. Let us recall this notion [74, Def. 2.4] and extend it to admissible
collections of subsets of X.

Definition 4.4.1. Let Λ be a countable index set. A collection U = {Uλ}λ∈Λ of subsets
of X is called admissible if it is non-empty, locally finite and if it further has the following
properties:

i) The sets Uλ are measurable, relatively compact, and have non-void interior;

ii) The intersection number s(U) of the collection U is finite, i.e.,

s(U) := sup
λ∈Λ

♯{µ ∈ Λ : Uλ ∩ Uµ ̸= ∅} < ∞ . (4.45)

Note that for a partition U the intersection number s(U) is 1.

If additionally X =


λ∈Λ Uλ is fulfilled we call U an admissible covering.
We call a collection U of subsets of X relatively separated if we can partition U into

a finite number of subcollections, each of which only contains pairwise disjoint sets. The
order of the separation is the smallest possible number of such subcollections.

Note, that admissible collections of subsets of X, due to their local finiteness, are nec-
essarily countable since X is σ-compact. Further, we will see in the next lemma that a
collection of sets with finite intersection number N is also relatively separated of order at
most N . The other direction of this statement is not always true. However, for collec-
tions of the type Uα

τ [PΛ] the reverse implication also holds, which will be proved below in
Corollary 4.4.7.

Lemma 4.4.2. Let U = {Uλ}λ∈Λ be a collection of subsets of X. If the intersection number
s(U) defined in (4.45) is finite, then U is relatively separated.

Proof. By Zorn’s lemma we can find a maximal subcollection U1 consisting of pairwise
disjoint sets. Taking out this subfamily decreases the intersection number of the remaining
family by at least 1. Iterating this process, we end up with a partition U =

r
i=1 Ui into at

most s(U) subcollections of pairwise disjoint sets.

Next, we are going to characterize those samplings PΛ = (Λ,P) of X which lead to
admissible coverings of the form Uα

τ [PΛ].
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4.4 Discretization Theory

4.4.1 Well-spread Families of Points in X

We make the following definition in analogy to [43, Def. 3.2], where similar notions were
introduced on locally compact groups.

Definition 4.4.3. Let α ∈ [0, 1] and let τ > 0. A family of points PΛ = {xλ}λ∈Λ in X is
called (α, τ)-dense if


λ∈Λ U

α
τ (xλ) = X. It is called (α, τ)-separated if Uα

τ (xλ) ∩Uα
τ (xµ) = ∅

for λ ̸= µ ∈ Λ. It is called relatively α-separated if there exists τ > 0 such that PΛ is a finite
union of (α, τ)-separated subfamilies. It is called α-well-spread if it is relatively α-separated
and if it is (α, τ)-dense for some τ > 0.

The finite union of relatively α-separated families of points is again relatively α-separated.

Remark 4.4.4. Note that every subset of X can be interpreted as a family by indexing each
element with itself. This perspective allows to apply the notions defined for point families
in Definition 4.4.3 to subsets of X in a canonical way.

We will later need the following intuitive fact for which we nevertheless provide a short
proof for reasons of mathematical rigor.

Lemma 4.4.5. Let PΛ be an (α, τ)-separated family of points in X, α ∈ [0, 1] and τ > 0
be fixed. Then there exists an extension of PΛ to an α-well-spread family of points in X,
which is still (α, τ)-separated.

Proof. The proof is based upon Zorn’s lemma. Let P(Λ) denote the sampling points of PΛ
interpreted as a subset of X. Then consider the class E of all (α, τ)-separated extensions of
P(Λ), partially ordered by inclusion, whereby (α, τ)-separation shall be understood in the
light of Remark 4.4.4. The union of the points in each chain in E is again an element of the
class E, i.e., an (α, τ)-separated point set. Moreover, it majorizes the chain and hence, by
Zorn’s lemma, there exists a maximal element in E, which we denote by P(Λ)ext.

This subset of X is (α, τ)-separated and extends P(Λ). Moreover, P(Λ)ext is (α, σ)-
dense for σ ≥ h(τ, τ), since otherwise there would be x /∈


y∈P(Λ)ext Uα

σ (y), and thus
Uα

τ (x) ∩


y∈P(Λ)ext Uα
τ (y) = ∅ by Lemma 4.2.5(v). This would be a contradiction to the

maximality of P(Λ)ext. Finally note that the set P(Λ)ext is countable since, due to the
σ-compactness of X, all elements of E are countable. In particular, the index set Λ of PΛ
can be extended to some countable index set Λext, and P(Λ)ext, suitably indexed by Λext,
becomes an extension of the family PΛ with the desired properties.

The following result establishes a connection between the relative α-separation of points
and the intersection number of associated α-patches. Note that the finite union of set collec-
tions with finite intersection numbers need not have a finite intersection number any more.
Even the union of two collections of pairwise disjoint sets can have an infinite intersection
number in general.

Lemma 4.4.6. Assume that PΛ is a relatively α-separated family of points in X. Then for
each τ > 0 the family Uα

τ [PΛ] has a finite intersection number, dependent on τ .

Proof. Let τ > 0 be fixed, and take an arbitrary x ∈ P(Λ), where P(Λ) – as in the proof
of the previous lemma – denotes the subset of X consisting of the points contained in the
family PΛ. For the proof we will subsequently count the number of non-trivial intersections
the set Uα

τ (x) has with other sets in Uα
τ [PΛ].
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4 α-MOLECULE COORBIT SPACES

Since PΛ is relatively α-separated there exist σ > 0, N ∈ N, and a partition Λ =
N

k=1 Λk

such that the subfamilies PΛk are (α, σ)-separated. For all y ∈ P(Λ) with y ∈ X\Uα
h(τ,τ)(x)

we have Uα
τ (x) ∩ Uα

τ (y) = ∅ due to Lemma 4.2.5(v). Hence, it only remains to count the
number of points in P(Λk) ∩ Uα

h(τ,τ)(x) for each k ∈ {1, . . . , N}. For this, we note that all
the sets in Uα

σ [PΛk ] with centers in Uα
h(τ,τ)(x) are contained in the larger set Uα

f(h(τ,τ),σ)(x),
which is true due to Lemma 4.2.5(iii). The volume of this set is upper-bounded by some
constant C > 0, independent of x ∈ X, according to Corollary 4.2.12. Further, also by
Corollary 4.2.12, the volumes of the sets Uα

σ (y), y ∈ P(Λ), are uniformly lower-bounded
by some D > 0. Since PΛk is (α, σ)-separated, we conclude that the number of points in
P(Λk) ∩ Uα

h(τ,τ)(x) is bounded by C/D for each k ∈ {1, . . . , N}.

As a consequence of Lemma 4.4.2 and Lemma 4.4.6, we can formulate the following result
establishing relations between the notions of relatively α-separated points, corresponding
set collections, and finite intersection numbers.

Corollary 4.4.7. Let PΛ be a family of points in X. For arbitrary τ > 0 we have the
equivalence:

i) PΛ is relatively α-separated,

ii) Uα
τ [PΛ] is relatively separated,

iii) Uα
τ [PΛ] has a finite intersection number.

Proof. We use a circle argument. Assume PΛ is relatively α-separated. Then by Lemma 4.4.6
the collection Uα

τ [PΛ] has a finite intersection number. By Lemma 4.4.2 this in turn implies
that Uα

τ [PΛ] is relatively separated. Finally, if Uα
τ [PΛ] is relatively separated, then there

exist N ∈ N and a partition Λ =
N

k=1 Λk such that Uα
τ [PΛk ] consists of pairwise disjoint

sets for every k ∈ {1, . . . , N}. As a consequence, the families PΛk are (α, τ)-separated, and
in turn PΛ is relatively α-separated.

As a consequence, with α ∈ [0, 1] and τ > 0 fixed and PΛ being a family of points in X,
we have the following equivalence:

PΛ is relatively α-separated. ⇐⇒ Uα
τ [PΛ] is an admissible collection.

Now we are ready to prove the close relationship between admissible coverings of the form
Uα

τ [PΛ] and α-well-spread point families. One should compare this result to [43, Lem. 3.3],
for example.

Proposition 4.4.8. Let PΛ be a family of points in X. The collection Uα
τ [PΛ] is an ad-

missible covering of X if and only if PΛ is α-well-spread and (α, τ)-dense in X. Moreover,
if we have an admissible covering of the form Uα

τ [PΛ] for some family PΛ in X and τ > 0,
then by choosing one point in each set one obtains an α-well-spread family of points.

Proof. Assume that PΛ is α-well-spread. Then PΛ is relatively α-separated and, according
to Lemma 4.4.6, the intersection number of Uα

τ [PΛ] remains finite for all τ > 0. Assuming,
in addition, (α, τ)-density, the properties of an admissible covering are easy to establish.

Conversely, if Uα
τ [PΛ] is an admissible covering, then PΛ is in particular (α, τ)-dense.

Moreover, also Uα
τ+1[PΛ] is an admissible covering, whose intersection number N is finite.
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4.4 Discretization Theory

By Lemma 4.4.2 we can decompose Uα
τ+1[PΛ] into (at most) N subfamilies Uα

τ+1[PΛk ],
k ∈ {1, . . . , N}, consisting of pairwise disjoint sets. A sampling P̃k subordinate to Uα

τ [PΛk ]
is then (α, σ)-separated for small enough σ > 0. Hence, P̃Λ :=


k P̃k is relatively α-

separated. Moreover, for large enough ρ > 0, the sampling P̃Λ is also (α, ρ)-dense. This
proves that it is α-well-spread, and thus, as a special case, also PΛ is α-well-spread.

4.4.2 Associated Sequence Spaces

Let PΛ = (Λ,P) be an α-well-spread sampling of X. Then we can use PΛ as a means
to associate sequence spaces to Ls

p,q(X) and Lα,s
p,q (X). The definition and analysis of these

spaces is the topic of this subsection.
Let us first introduce the abstract concept of a sequence space Y ♭⟨U⟩ associated to a

rich solid QBF-space Y on X and an admissible collection U = {Uλ}λ∈Λ of subsets of X.
Hereby we do not require U to be a covering as in [74, Def. 2.6].

Definition 4.4.9 (compare [74, Def. 2.6]). Let Y be a rich solid QBF-space on X and let
U = {Uλ}λ∈Λ be an admissible collection of subsets of X. The sequence space Y ♭ := Y ♭⟨U⟩
is defined as the space

Y ♭⟨U⟩ :=


{cλ}λ∈Λ ⊂ C :

λ∈Λ

|cλ|XUλ
∈ Y


,

equipped with the quasi-norm

∥{cλ}|Y ♭⟨U⟩∥ :=


λ∈Λ
|cλ|XUλ

Y .
Note that, since X is σ-compact and U is admissible, the indices Λ necessarily constitute

a countable set. Further, since the collection U is locally finite, the sum


λ∈Λ |cλ|XUλ
is

always well-defined in a point-wise sense.
A sequence {cλ}λ∈Λ can be viewed as a function on the index set Λ. Taking this per-

spective, the spaces Y ♭⟨U⟩ are function spaces on Λ. Moreover, we can think of Λ as
being equipped with the discrete topology and the counting measure. Then the notion of
a QBF-space on Λ and the corresponding terminology are available (see [74]). For better
distinction, we refer to the latter as quasi-Banach sequence spaces, abbreviated QBS-spaces.

The space Y ♭⟨U⟩ inherits many properties from Y . It was shown in [74] that it constitutes
a rich solid QBS-space with the same quasi-norm constant CY as Y .

Proposition 4.4.10 ([74, Prop. 2.7]). The sequence space Y ♭⟨U⟩ is a rich solid QBS-space
with the same quasi-norm constant CY as Y .

Proof. We refer to [74, Prop. 2.7].

Depending on α ∈ [0, 1] and τ > 0, we now partition X as follows. We put τ̃ := 2π

⌈2π/τ⌉,

which is an integer fraction of 2π, and define for every J = (j, ℓ) ∈ N2
0

Xα,τ
J :=


x = (x, η, t) ∈ X : t ∈ 2−jτ [1, 2τ ) , η ∈ 2−⌈jτ(1−α)⌉ℓτ̃ + [0, τ̃)


.
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Then X =


J∈N2
0
Xα,τ

J is a partition of X, whereby many of the sets Xα,τ
J are empty. Given

a sampling P : Λ → X with λ →→ xλ, the above partition further induces a corresponding
partition of the index set Λ, namely Λ =


J∈N2

0
Λα,τ

J with

Λα,τ
J := Λα,τ

J [P] :=

λ ∈ Λ : xλ ∈ Xα.τ

J


.

Now we are ready for the next definition.

Definition 4.4.11. Let α ∈ [0, 1], s ∈ R, 0 < p, q < ∞. Let PΛ = {xλ}λ∈Λ be a relatively
α-separated family of points in X. We then define the sequence space

ℓα,s
p,q [PΛ] :=


{cλ}λ∈Λ :

{cλ}λ|ℓα,s
p,q [PΛ]

 :=
 

J∈N2
0

 
λ∈Λα,1

J [P]

|vα,s
p,q (xλ)cλ|p

q/p1/q
< ∞


,

where vα,s
p,q is the weight from (4.24) given by

vα,s
p,q (x) := t−s+(1+α)/p+(1−α)/q , x = (x, η, t) ∈ X .

As a consequence of Proposition 4.4.10 and the characterization established below by
Theorem 4.4.12, these spaces are rich solid QBS-spaces.

Theorem 4.4.12. Let α ∈ [0, 1] and let PΛ = {xλ}λ∈Λ be a family of points in X which is
relatively α-separated. Assume further that s ∈ R and 0 < p, q < ∞. For every fixed τ > 0
we then have the equivalence

Ls
p,q(X)♭⟨Uα

τ [PΛ]⟩ ≍ ℓα,s
p,q [PΛ].

Proof. Recall the definition of the sets Uα
τ (x) from (4.44), namely

Uα
τ (x) =


x+R−1

η Aα,tQ
τ


×

η + t1−αIτ


2π

×

tJτ ∩ (0, 1)


, x ∈ X0 ,

x+R−1
η Qτ


×

η + Iτ


2π

×

{1}


, x ∈ X1 ,

where x = (x, η, t) ∈ X and Qτ = [−τ, τ ]2, Iτ = [−τ, τ ], Jτ = [2−τ , 2τ ]. For the associated
characteristic functions, we will subsequently use the short-hand notation X α,τ

x := XUα
τ (x)

as introduced in (4.21). Further, recall that one can decompose these functions in the form
X α,τ

x (y, θ, u) = χα,τ
x,η,t(y) · χα,τ

η,t (θ) · χτ
t (u) with characteristic functions as in (4.22).

We will handle the proof for the homogeneous and the inhomogeneous parts of the
sequence spaces separately. Accordingly, we decompose Λ = Λ0 ∪ Λ1 into

Λ0 :=

λ ∈ Λ : xλ ∈ X0


and Λ1 :=


λ ∈ Λ : xλ ∈ X1


.

We further introduce the convenient notation

∥{cλ}λ∥(τ)
hom := ∥{cλ}λ∈Λ0

(Ls
p,q)♭⟨Uα

τ [PΛ0 ]⟩
 , ∥{cλ}λ∥(τ)

in := ∥{cλ}λ∈Λ1

(Ls
p,q)♭⟨Uα

τ [PΛ1 ]⟩
.
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4.4 Discretization Theory

Since the intersection number of Uα
τ [PΛ0 ] is finite, we can rewrite the homogeneous part

of the quasi-norm in the form

∥{cλ}λ∥(τ)
hom =

 1
0

2π
0

u−sq
 

λ∈Λ0

|cλ|X α,τ
xλ

(·, θ, u)
Lp

q dθ du

u

1/q

≍
 1

0

2π
0

u−sq
 

λ∈Λ0

|cλ|pχτ
tλ

(u)χα,τ
ηλ,tλ

(θ)
χα,τ

xλ,ηλ,tλ

L1
q/p dθ du

u

1/q

≍
 1

0

2π
0

u−sq
 

J∈N×N0

2−jσ(1+α) 
λ∈Λα,σ

J

|cλ|pχτ
tλ

(u)χα,τ
ηλ,tλ

(θ)

  
(∗)

q/p dθ du

u

1/q

,

(4.46)

where we used that for every fixed τ > 0χα,τ
x,η,t

L1
 ≍ |Aα,tQ

τ | ≍ t1+α holds uniformly in (x, η, t) ∈ X .

We next estimate (∗) from above and below.
First, we note that for λ ∈ Λα,σ

J and J = (j, ℓ) ∈ N2
0 we have by definition

tλ ∈ 2−jσ[1, 2σ) and ηλ ∈ 2−⌈jσ(1−α)⌉(ℓσ̃ + [0, σ̃)),

where σ̃ := 2π

⌈2π/σ⌉. We deduce

tλJ
τ ⊆ 2−jσ[2−τ , 2τ+σ) and t1−α

λ Iτ ⊆ 2−jσ(1−α)2σ(1−α)Iτ ,

which yields
tλJ

τ ∩ (0, 1] ⊆ J+,τ,σ
j := 2−jσ[2−τ , 2τ+σ) ∩ (0, 1].

Further, since 2−⌈jσ(1−α)⌉ ≤ 2−jσ(1−α) and σ̃ ≤ σ, it holds

ηλ ∈ 2−⌈jσ(1−α)⌉(ℓσ̃ + [0, σ̃)) ⊆ 2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)[0, σ].

This implies

ηλ + t1−α
λ Iτ ⊆ 2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)2σ(1−α)[−τ, τ ] + [0, σ]


⊆ 2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)2σ(1−α)[−τ, τ + σ],

and hence

(ηλ + t1−α
λ Iτ )2π ⊆ I+,τ,σ

j,ℓ :=

2−⌈jσ(1−α)⌉ℓσ̃ + 2−(j−1)σ(1−α)[−τ, τ + σ]


2π
.

Altogether, this proves for every J ∈ N2
0 and (θ, u) ∈ T × (0, 1] the inequality

λ∈Λα,σ
J

|cλ|pχτ
tλ

(u)χα,τ
ηλ,tλ

(θ) ≤


λ∈Λα,σ
J

|cλ|pχ+,τ,σ
J (θ, u), (4.47)

where χ+,τ,σ
J is the characteristic function of the set I+,τ,σ

j,ℓ × J+,τ,σ
j .
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4 α-MOLECULE COORBIT SPACES

Similarly, we obtain an estimate from below, this time with σ = τ however. It holds


λ∈Λα,σ

J

|cλ|pχσ
tλ

(u)χα,σ
ηλ,tλ

(θ) ≥


λ∈Λα,σ
J

|cλ|pχ−,σ
J (θ, u) (4.48)

with the characteristic function χ−,σ
J of the set

I−,σ
j,ℓ × J−,σ

j :=


2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)[0, σ)


2π


×

2−jσ[1, 2σ) ∩ (0, 1]


.

Indeed, we see that for λ ∈ Λα,σ
J and J = (j, ℓ) ∈ N2

0,

tλJ
σ ⊇ 2−jσ[1, 2σ) and t1−α

λ Iσ ⊇ 2−jσ(1−α)Iσ.

Further, as above,

ηλ ∈ 2−⌈jσ(1−α)⌉(ℓσ̃ + [0, σ̃)) ⊆ 2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)[0, σ].

Hence

ηλ + t1−α
λ Iσ ⊇ 2−⌈jσ(1−α)⌉ℓσ̃ + 2−jσ(1−α)[0, σ],

and the estimate (4.48) follows.
In the sequel, it is essential that the functions χ+,τ,σ

J and χ−,σ
J are merely dependent on

the indices J ∈ N × N0, and not on the particular λ ∈ Λα,τ
J any more. We calculate

1
0

2π
0

χ−,σ
J (θ, u)dθ du

u
≍

1
0

2π
0

χ+,τ,σ
J (θ, u)dθ du

u
≍ 2−jσ(1−α)

for fixed τ, σ > 0.
Using (4.47) and (4.48), we can then prove

∥{cλ}λ∥(τ)
hom .

 
J∈N×N0

 
λ∈Λα,σ

J

|vα,s
p,q (xλ)cλ|p

q/p
1/q

. ∥{cλ}λ∥(σ)
hom, (4.49)

whereby the implicit constants are dependent on τ and σ.
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4.4 Discretization Theory

For the first inequality, we plug (4.47) into (4.46) and obtain

∥{cλ}λ∥(τ)
hom .

 1
0

2π
0

u−sq
 

J∈N×N0

2−jσ(1+α)χ+,τ,σ
J (θ, u)


λ∈Λα,σ

J

|cλ|p
q/p dθ du

u

1/q

≍
 1

0

2π
0

u−sq


J∈N×N0

2−jσ(1+α)q/pχ+,τ,σ
J (θ, u)

 
λ∈Λα,σ

J

|cλ|p
q/p dθ du

u

1/q

≍
 

J∈N×N0

2jσsq2−jσ(1+α)q/p
 1

0

2π
0

χ+,τ,σ
J (θ, u)dθ du

u

 
λ∈Λα,σ

J

|cλ|p
q/p

1/q

≍
 

J∈N×N0

2jσsq2−jσ(1+α)q/p2−jσ(1−α)
 

λ∈Λα,σ
J

|cλ|p
q/p

1/q

=
 

J∈N×N0

 
λ∈Λα,σ

J

2jσ(s−(1+α)/p−(1−α)/q)p|cλ|p
q/p

1/q

≍
 

J∈N×N0

 
λ∈Λα,σ

J

|vα,s
p,q (xλ)cλ|p

q/p
1/q

.

Plugging (4.48) into (4.46), we obtain the second inequality

∥{cλ}λ∥(σ)
hom &

 1
0

2π
0

u−sq
 

J∈N×N0

2−jσ(1+α)χ−,σ
J (θ, u)


λ∈Λα,σ

J

|cλ|p
q/p dθ du

u

1/q

=
 1

0

2π
0

u−sq


J∈N×N0

2−jσ(1+α)q/pχ−,σ
J (θ, u)

 
λ∈Λα,σ

J

|cλ|p
q/p dθ du

u

1/q

≍
 

J∈N×N0

2jσsq2−jσ(1+α)q/p
 1

0

2π
0

χ−,σ
J (θ, u)dθ du

u

 
λ∈Λα,σ

J

|cλ|p
q/p

1/q

≍
 

J∈N×N0

2jσsq2−jσ(1+α)q/p2−jσ(1−α)
 

λ∈Λα,σ
J

|cλ|p
q/p

1/q

≍
 

J∈N×N0

 
λ∈Λα,σ

J

|vα,s
p,q (xλ)cλ|p

q/p
1/q

.

For arbitrary τ, σ > 0 we can finally deduce, using the symmetry of (4.49),

∥{cλ}λ∥(τ)
hom ≍ ∥{cλ}λ∥(σ)

hom,

with implicit constants depending on those parameters. A similar estimate as (4.49) holds
true for the inhomogeneous parts, as well as ∥{cλ}λ∥(τ)

in ≍ ∥{cλ}λ∥(σ)
in .

This shows that for every τ > 0 the spaces (Ls
p,q)♭⟨Uα

τ [PΛ]⟩ contain the same sequences.
Furthermore, the quasi-norms of these spaces are all equivalent. Finally, choosing τ = σ = 1
in (4.49) and the analogue for the inhomogeneous part yields the assertion.
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4 α-MOLECULE COORBIT SPACES

For the Wiener spaces Lα,s
p,q (X) we can derive the same associated sequence spaces.

Corollary 4.4.13. Under the same assumptions as in Theorem 4.4.12, we have

Lα,s
p,q (X)♭⟨Uα

τ [PΛ]⟩ ≍ ℓα,s
p,q [PΛ].

Proof. In view of Lemma 4.2.5(v) (see also (4.20)), we have with σ := h(τ, 1)

WαXUα
τ (xλ) ≤ XUα

σ (xλ)

for all xλ ∈ PΛ. Hence we can estimate

∥{cλ}|(Ls
p,q)♭⟨Uα

τ [PΛ]⟩∥ ≤ ∥{cλ}|(Lα,s
p,q )♭⟨Uα

τ [PΛ]⟩∥ = ∥


λ

|cλ|XUα
τ (xλ)|Lα,s

p,q ∥

≤ ∥


λ

|cλ|XUα
σ (xλ)|Ls

p,q∥ = ∥{cλ}|(Ls
p,q)♭⟨Uα

σ [PΛ]⟩∥.

Since the quasi-norms on the left- and right-hand side are equivalent, according to Theo-
rem 4.4.12, the assertion follows.

As the last result of this subsection, we prove that the definition of the spaces ℓα,s
p,q [PΛ]

is rather robust with respect to the utilized sampling PΛ.

Corollary 4.4.14. Let PΛ = {xλ}λ∈Λ be an α-well-spread family of points in X, and assume
that S : Λ → X is a sampling subject to the condition S(λ) ∈ Uα

τ (xλ) for all λ ∈ Λ, where
τ > 0 is arbitrary but fixed. Then ℓα,s

p,q [PΛ] ≍ ℓα,s
p,q [SΛ].

Proof. Using Lemma 4.2.5(iii) and (iv), we obtain

Uα
τ (xλ) ⊆ Uα

σ (S(λ)) ⊆ Uα
τ ′(xλ)

with σ := g(τ, τ) and τ ′ := f(τ, σ). With the help of Theorem 4.4.12, we then deduce

ℓα,s
p,q [PΛ] ≍


Ls

p,q(X)
♭⟨Uα

τ [PΛ]⟩ .

Ls

p,q(X)
♭⟨Uα

σ [SΛ]⟩ ≍ ℓα,s
p,q [SΛ],

and the opposite direction

ℓα,s
p,q [SΛ] ≍


Ls

p,q(X)
♭⟨Uα

σ [SΛ]⟩ .

Ls

p,q(X)
♭⟨Uα

τ ′ [PΛ]⟩ ≍ ℓα,s
p,q [PΛ].

The proof is finished.

4.4.3 Discrete Characterizations: Atomic Decompositions and
Quasi-Banach Frames

In this subsection we will finally apply the abstract discretization results [74, Thm. 2.48] and
[74, Thm. 2.50] to our specific coorbit space setting, leading to Theorems 4.4.19 and 4.4.21
below. In order to do this we need some preparation. Let us start with some definitions.

Definition 4.4.15 (compare [110, Def. 3.9]). Suppose Y is a quasi-Banach space. A family
{hλ}λ∈Λ of bounded linear functionals on Y is called a quasi-Banach frame for Y , if there
exists a QBS-space Y ♭ = Y ♭(Λ) and a bounded linear reconstruction operator Ω : Y ♭ → Y
such that the following holds true,
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4.4 Discretization Theory

i) The associated analysis operator H : f →→ {hλ(f)}λ∈Λ is bounded from Y to Y ♭,

ii) It holds Ω(H(f)) = f for all f ∈ Y .

Note that if {hλ}λ∈Λ is a quasi-Banach frame for Y , then there exist frame bounds
0 < C1 ≤ C2 ≤ ∞ such that

C1∥f |Y ∥ ≤ ∥H(f)|Y ♭∥ ≤ C2∥f |Y ∥.

A somewhat dual notion to a frame is the notion of an atomic decomposition.

Definition 4.4.16 (compare [110, Def. 3.8]). A family {gλ}λ∈Λ in a quasi-Banach space Y
is called an atomic decomposition for Y , if there exists a quasi-Banach frame {hλ}λ∈Λ for
Y with associated QBS-space Y ♭ such that:

i) The associated synthesis operator Ω : {cλ}λ∈Λ →→


λ∈Λ
cλgλ is bounded from Y ♭ to Y ,

ii) The reconstruction formula f =


λ∈Λ
hλ(f)gλ holds true for all f ∈ Y .

Frame Sampling

Our first discretization result, Theorem 4.4.19, yields atomic decompositions and discrete
quasi-Banach frames for the coorbit space Co(Cα,Lα,s

p,q ) by suitably sampling the continuous
α-curvelet frame Cα. Its proof is based on the analysis of the so-called oscillation kernel
associated to Cα.

Definition 4.4.17 ([74]). Let U = {Uλ}λ∈Λ be an admissible covering of X and let Γ :
X × X → S1 be a phase function. We define the oscillation kernel associated to U and the
α-curvelet frame Cα = {ψx}x∈X from Section 3.1 by

oscU ,Γ(x,y) := sup
z∈Uy

|G[Cα](x,y) − Γ(y, z)G[Cα](x, z)| = sup
z∈Uy

|⟨ψx, ψy − Γ(y, z)ψz⟩|,

where x,y ∈ X and Uy :=


λ:y∈Uλ
Uλ. Further, we put osc∗

U ,Γ(x,y) := oscU ,Γ(y,x).

We next want to apply [74, Thm. 2.48]. For this, we need to verify Property D(δ, ν, Y )
for Cα. The following definition is in line with [74, Def. 2.43].

Definition 4.4.18 (compare [74, Def. 2.43]). Let Y be a rich solid QBF-space on X and
let Cα be the Parseval frame of α-curvelets from Section 3.1. We say that Cα possesses
Property D(δ, ν, Y ) for a weight ν ≥ 1 and some δ > 0 if it has Property F (ν, Y )(see
Definition 4.3.6) and if there exists an admissible covering U and a phase function Γ :
X ×X → S1 so that

(i) |G[Cα]|, oscU ,Γ, osc∗
U ,Γ ∈ Bmν ,Y .

(ii) ∥oscU ,Γ|Bmν ,Y ∥ < δ and ∥osc∗
U ,Γ|Bmν ,Y ∥ < δ.

Now we are ready to apply [74, Thm. 2.48]. We obtain the theorem below.
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4 α-MOLECULE COORBIT SPACES

Theorem 4.4.19. Let α ∈ [0, 1] and let Cα := {ψx}x∈X be the continuous Parseval frame
of α-curvelets constructed in Section 3.1. Further, let s ∈ R and 0 < p, q < ∞ be fixed.
Then there exists τ0 = τ0[α, s, p, q] > 0 such that for every α-well-spread sampling PΛ of X
of density τ ≤ τ0 the sampled system {ψλ := ψxλ

: λ ∈ Λ} is a discrete α-curvelet frame for
Co(Cα,Lα,s

p,q ) which possesses a corresponding dual frame {ψ̃λ : λ ∈ Λ} such that:

i) (Analysis) For f ∈ (Hν
1)q with ν = να,s

p,q as in (4.35) we have

f ∈ Co(Cα,Lα,s
p,q ) ⇔ {⟨f, ψλ⟩}λ ∈ ℓα,s

p,q [PΛ] ⇔ {⟨f, ψ̃λ⟩}λ ∈ ℓα,s
p,q [PΛ].

In case f ∈ Co(Cα,Lα,s
p,q ) the quasi-norms are equivalent, i.e.,

∥f |Co(Cα,Lα,s
p,q )∥ ≍ ∥{⟨f, ψλ⟩}λ|ℓα,s

p,q [PΛ]∥ ≍ ∥{⟨f, ψ̃λ⟩}λ|ℓα,s
p,q [PΛ]∥ .

ii) (Synthesis) For each sequence {cλ}λ ∈ ℓα,s
p,q [PΛ] the sums

λ∈Λ
cλψλ and


λ∈Λ

cλψ̃λ

converge unconditionally in Co(Cα,Lα,s
p,q ). Moreover, the assigned synthesis operators

are bounded from ℓα,s
p,q [PΛ] to Co(Cα,Lα,s

p,q ).

iii) (Reconstruction) For all f ∈ Co(Cα,Lα,s
p,q ) we have

f =

λ∈Λ

⟨f, ψλ⟩ψ̃λ =

λ∈Λ

⟨f, ψ̃λ⟩ψλ .

Proof. We have shown in Proposition 4.2.9 that Y := Lα,s
p,q is a rich solid QBF-space on

X. Let CY denote the associated quasi-norm constant and ν := να,s
p,q the associated weight

defined in (4.35). We know from Proposition 3.1.3 and Theorem 4.5.5 that G[Cα] ∈ Bmν ,Y .
Hence, we can choose a number δ = δ[α, s, p, q] > 0 which satisfies

δ

(1 + CY )

|G[Cα]|
Bmν ,Y

+ δCY


CY ≤ 1,

the condition required in [74, Thm. 2.48].
Now assume that PΛ : Λ → X defines an α-well-spread and (α, τ)-dense point family

{xλ}λ∈Λ in X. According to Proposition 4.4.8, the collection U := Uα
τ [PΛ] is then an

admissible covering. Further, due to Lemma 4.2.5(iv), if σ ≥ g(τ, τ) we have

Uy :=


λ:y∈Uα
τ (xλ)

Uα
τ (xλ) ⊆ Uα

σ (y) for all y ∈ X.

It follows, with Γ ≡ 1, that oscU ,Γ(x,y) ≤ oscσ(x,y) and osc∗
U ,Γ(x,y) ≤ osc∗

σ(x,y), where
oscσ is the oscillation kernel from Definition 4.5.6.

According to Theorem 4.5.7, there further exists σ0 > 0 such that

∥oscσ|Bmν ,Y ∥ < δ and ∥osc∗
σ|Bmν ,Y ∥ < δ for all σ ≤ σ0.

We now choose τ0 > 0 such that σ0 ≥ g(τ0, τ0). Then for all τ ≤ τ0 and U = Uα
τ [PΛ]

∥oscU ,Γ|Bmν ,Y ∥ < δ and ∥osc∗
U ,Γ|Bmν ,Y ∥ < δ.

This shows that Cα possesses Property D(δ, ν, Y ) with respect to U = Uα
τ [PΛ] if τ ≤ τ0.

Hence we can apply [74, Thm. 2.48] with sampling points xλ ∈ Uλ = Uα
τ (xλ). Finally, note

that it holds ℓα,s
p,q [PΛ] ≍ Lα,s

p,q (X)♭⟨Uα
τ [PΛ]⟩ due to Corollary 4.4.13. Taking into account

Corollary 4.2.12 and the fact that the finite sequences are dense in ℓα,s
p,q [PΛ], since p, q < ∞,

the assertions follow.
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Frame Expansion

Another useful discretization result of the abstract coorbit theory is [74, Thm. 2.50]. Sub-
sequently, we consider a discrete frame M•

α = {mλ}λ∈Λ of α-molecules, indexed by some
countable index set Λ, such that the associated parametrization Φ : Λ → X yields an α-well-
spread family ΦΛ of points in X. In Theorem 4.4.21, we will derive a sufficient condition,
using the abstract result [74, Thm. 2.50], when such a frame constitutes a quasi-Banach
frame as well as an atomic decomposition for the coorbit Co(Cα,Lα,s

p,q ).
The proof is based on the analysis of so-called cross-Gramian maximal kernels defined

as follows.

Definition 4.4.20 (compare [74, eq. (2.13)]). Let Mα = {mx}x∈X and Mα = {m̃x}x∈X be
two systems of α-molecules of order (L,M,N1, N2) with respect to the canonical parametriza-
tion. Let U = {Uλ}λ∈Λ be an admissible covering of X. The associated cross-Gramian
maximal kernel is defined by

MU [Mα,Mα](x,y) := sup
z∈Uy

|G[Mα,Mα](x, z)| = sup
z∈Uy

|⟨mx, m̃z⟩|, x,y ∈ X .

where Uy :=


λ:y∈Uλ
Uλ. Further, we put MU [Mα,Mα]∗(x,y) := MU [Mα,Mα](y,x).

Now we can formulate the next theorem and prove it with [74, Thm. 2.50] (see also
[111, Thm. 3.14]). Recall that Cα = {ψx}x∈X denotes the continuous Parseval frame of
α-curvelets from Section 3.1.

Theorem 4.4.21. Let α ∈ [0, 1] and let M•
α = {mλ}λ∈Λ and M•

α = {m̃λ}λ∈Λ be two discrete
α-molecule frames in L2(R2) of order (L,M,N1, N2) and with respective parametrizations
Φ : Λ → X and Φ̃ : Λ → X. Further, assume that M•

α and M•
α are dual to each other, i.e.,

f =

λ∈Λ

⟨f, m̃λ⟩mλ =

λ∈Λ

⟨f,mλ⟩m̃λ for all f ∈ L2(R2). (4.50)

Provided that the following conditions are fulfilled:

i) There exist τ > 0 and an α-well-spread point family PΛ = {xλ}λ∈Λ in X such that

Φ(λ) ∈ Uα
τ (xλ) and Φ̃(λ) ∈ Uα

τ (xλ) for all λ ∈ Λ,

ii) The order (L,M,N1, N2) of M•
α and M•

α satisfies condition (4.36) with respect to
s ∈ R and 0 < p, q < ∞,

then both frames M•
α and M•

α are contained in Hν
1 , where ν := να,s

p,q as in (4.35), and the ex-
pansion (4.50) is valid for all f ∈ Co(Cα,Lα,s

p,q ) with quasi-norm convergence in Co(Cα,Lα,s
p,q ).

Here ⟨·, ·⟩ must be interpreted as the duality product of the pairing (Hν
1)q × Hν

1 .
Furthermore, for every f ∈ (Hν

1)q we have

f ∈ Co(Cα,Lα,s
p,q ) ⇔


⟨f,mλ⟩


λ

∈ ℓα,s
p,q [PΛ] ⇔


⟨f, m̃λ⟩


λ

∈ ℓα,s
p,q [PΛ] ,

and – in case f ∈ Co(Cα,Lα,s
p,q ) – it holds

∥f |Co(Cα,Lα,s
p,q )∥ ≍ ∥


⟨f,mλ⟩


λ
|ℓα,s

p,q [PΛ]∥ ≍ ∥

⟨f, m̃λ⟩


λ
|ℓα,s

p,q [PΛ]∥ .
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Proof. We want to apply [74, Thm. 2.50]. To this end, note that according to Lemma 4.4.6
the intersection number N of Uα

τ [PΛ] is finite, where τ > 0 stems from condition (i).
By Lemma 4.4.2 we can thus split the family PΛ into at most N subfamilies PΛk , where
k ∈ {1, . . . , r} and r ≤ N , which are each (α, τ)-separated. The associated splitting of
the index set Λ shall be denoted by Λk. We obtain corresponding collections Uα

τ [PΛk ],
k ∈ {1, . . . , r}, consisting of pairwise disjoint sets.

Next, we build r continuous families of α-molecules. We define for k ∈ {1, . . . , r}:

M(k)
α := {m(k)

x : x ∈ X} with m
(k)
x :=


mλ if x = Φ(λ), λ ∈ Λk,

0 else,

M̃(k)
α := {m̃(k)

x : x ∈ X} with m̃
(k)
x :=


m̃λ if x = Φ̃(λ), λ ∈ Λk,

0 else.

By definition, these families are nonzero merely on a discrete subset of X, namely the
sampling points determined by Φ and Φ̃. Further, they are systems of α-molecules with
respect to the canonical parametrization of the same order (L,M,N1, N2) as M•

α and M•
α.

We proceed by extending each point family PΛk to an α-well-spread family Pext
k that is

still (α, τ)-separated. This is possible by Lemma 4.4.5. More concretely, looking into the
proof of this lemma, we can assume Pext

k to be (α, σ)-dense for some σ ≥ h(τ, τ), where h
is the function from Lemma 4.2.5(v).

Let us denote the extended index sets by Λext
k , and for the extended point families Pext

k

let us write Pext
k = {xk

λ : λ ∈ Λext
k } with xk

λ := xλ for λ ∈ Λk. By Proposition 4.4.8, we
obtain associated admissible coverings Uk := Uα

σ [Pext
k ] = {Uk

λ : λ ∈ Λext
k } where Uk

λ :=
Uα

σ (xk
λ). Furthermore, these coverings are moderate (see [46, page 260] for a definition)

since µ(Uk
λ ) ≍ 1 by Corollary 4.2.12. In particular, [74, eq. 2.25] is satisfied.

In view of Lemma 4.2.5(iv), if ρ ≥ g(σ, σ) we have

Uk
y :=


λ:y∈Uk

λ

Uk
λ ⊆ Uα

ρ (y) for all y ∈ X.

Hence, we can define and estimate the kernel functions Kk and K̃k, k ∈ {1, . . . , r}, as follows,

Kk(x,y) := MUk
[M(k)

α ,Cα](x,y) ≤ Mα
ρ [M(k)

α ,Cα](x,y) ,
K̃k(x,y) := MUk

[M̃(k)
α ,Cα](x,y) ≤ Mα

ρ [M̃(k)
α ,Cα](x,y) ,

with Mα
ρ [M(k)

α ,Cα] and Mα
ρ [M̃(k)

α ,Cα] being defined as in (4.54).
According to Theorem 4.5.5 and due to condition (ii), these kernel functions as well as

their involutions Mα
ρ [M(k)

α ,Cα]∗ and Mα
ρ [M̃(k)

α ,Cα]∗, are elements of the algebra Bmν ,Y for
ν := να,s

p,q and Y := Lα,s
p,q . By solidity, the kernels Kk, K̃k, K∗

k, and K̃∗
k thus also belong to

Bmν ,Y .
We now choose for each k ∈ {1, . . . , r} and each λ ∈ Λext

k sampling points xk,λ ∈ Uk
λ and

x̃k,λ ∈ Uk
λ as follows:

xk,λ := Φ(λ) and x̃k,λ := Φ̃(λ) for λ ∈ Λk,

xk,λ := x̃k,λ ∈ Uα
τ (xk

λ) arbitrary for λ ∈ Λext
k \Λk.
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Then we get from (4.50) the validity of

f =
r

k=1


λ∈Λext

k

⟨f, m̃(k)
x̃k,λ

⟩m(k)
xk,λ =

r
k=1


λ∈Λext

k

⟨f,m(k)
xk,λ⟩m̃(k)

x̃k,λ
for all f ∈ L2(R2).

Hence, the prerequisites to apply [74, Thm. 2.50] are (almost) fulfilled, albeit not pre-
cisely since we have used possibly different coverings Uk for each pair of kernels Kk and K̃k.
Moreover, the primal and dual sampling points xk,λ ∈ Uk

λ and x̃k,λ ∈ Uk
λ might not coincide

and may also differ for different k.
Hence, we need to apply the original theorem [74, Thm. 2.50] in a slightly generalized

form. This is possible, since revisiting the proof of [74, Thm. 2.50] (see [111, Thm. 3.14]), it
becomes clear that the statement of [74, Thm. 2.50] still holds true under these generalized
assumptions. An application thus yields the assertion. To see this, we remark that as a
consequence of Corollary 4.4.13

r
k=1

∥{⟨f,m(k)
xk,λ⟩}λ∈Λk |Lα,s

p,q (X)♭⟨Uk⟩∥ ≍ ∥{⟨f,mλ⟩}λ∈Λ|ℓα,s
p,q [PΛ]∥.

Also observe that the finite sequences are dense in ℓα,s
p,q [PΛ].

Note that the frames M•
α and M•

α in Theorem 4.4.21 need not coincide, which extends the
range of applicability of the result significantly. For example, frames of compactly supported
shearlets, where no tight frame constructions are known, might be possible choices for M•

α.
A drawback for the application however is the required knowledge on the dual frame, which
is not available for many concrete constructions.

4.5 Appendix: Kernel Analysis
In this appendix the technical details are provided needed for the application of the abstract
theory of coorbit spaces from [74] to our concrete setting of α-molecule coorbits. The
abstract theory relies heavily on the analysis of certain kernel functions and their mapping
properties. In the following exposition we pursue the required analysis for the specific
kernels associated with the continuous α-molecule transform.

Thereby, in our concrete setting, a kernel function, or a kernel for short, refers to a
measurable function K : X × X → C. For convenience, we collect all such kernels in the set

K :=

K : X × X → C : K (µ⊗ µ)-measurable


and identify those which coincide apart from a null set. Clearly, equipped with point-wise
addition and scalar multiplication, K is a C-linear space. Moreover, this space is closed
under involution, i.e., the operation given by

K →→ K∗ where K∗(x,y) := K(y,x) , x,y ∈ X.

The significance of the kernel space K stems from the fact that its elements naturally
act on functions with domain X. This shall be understood in the following sense: A kernel
K ∈ K maps a measurable function F : X → C to a function KF := K[F ] via

K[F ](x) :=

X

K(x,y)F (y) dµ(y) , x ∈ X,
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4 α-MOLECULE COORBIT SPACES

whenever the integral on the right-hand side is well-defined for almost every x ∈ X. Note
however, that for a given kernel K ∈ K this may not be the case for all measurable functions
F : X → C.

The operator associated with a kernel K will sometimes be denoted by Kop, for better
distinction, but whenever the meaning is clear we will use the same notation K. The com-
position Kop ◦Lop of two kernel operators leads to a corresponding multiplication operation
on the kernel space K given by


K ◦ L


(x,y) :=


X

K(x, z)L(z,y) dµ(z) , x,y ∈ X. (4.51)

But one has to be careful since again this multiplication is not a well-defined operation for
all kernel pairs (K,L) in K × K.

The algebra Amν A natural subset of K, where the multiplication is well-defined for all
kernel pairs, is the space (see [46, page 249])

A :=

K ∈ K : ∥K|A∥ < ∞


,

where for K ∈ K the symbol ∥K|A∥ denotes the norm

∥K|A∥ := max


ess sup
x∈X


y∈X

|K(x,y)| dµ(y), ess sup
y∈X


x∈X

|K(x,y)| dµ(x)

.

The space A is even a Banach algebra as we will see in Proposition 4.5.1 below. Moreover,
it is solid and closed under involution. The solidity of a kernel space is thereby defined
analogously to the notion on a QBF-space, i.e., a subspace L ⊆ K with quasi-norm ∥ · |L∥
is said to be solid if for every kernel K ∈ K we have the implication

|K| ≤ |L| for some L ∈ L ⇒ K ∈ L and ∥K|L∥ ≤ ∥L|L∥ .

Before we come to Proposition 4.5.1, let us introduce a more general weighted version of A
which plays an essential role in coorbit theory.

Given a weight function ν : X → R+ on X, which is without saying always assumed to
be measurable, we can associate a bivariate weight mν : X × X → [1,∞) via

mν(x,y) := max
ν(x)
ν(y) ,

ν(y)
ν(x)


, x,y ∈ X.

The weighted kernel algebra Amν (see [46, page 250] and [74, eq. (2.8)]) is then defined by

Amν :=

K ∈ K : ∥K|Amν ∥ < ∞


with norm ∥K|Amν ∥ := ∥Kmν |A∥.

For a constant weight ν we get mν ≡ 1 and thus retrieve the unweighted algebra A = Amν .
In general, we have mν ≥ 1 wherefore Amν is always continuously embedded into A.

An important structural result for Amν is stated in the following proposition.

Proposition 4.5.1. For each weight ν : X → R+ the kernel space Amν is a Banach algebra,
solid, and closed under involution.
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Since a proof of this fact is not contained in [46, 111, 74] we decided to include one in
this thesis.

Proof. We first prove that Amν is a Banach space with norm ∥ · |Amν ∥. Apart from the
completeness, everything is straightforward to verify. Hence let us just concentrate on the
completeness and consider a Cauchy sequence (Kn)n∈N in Amν .

Without loss of generality we can assume ∥Kn+1 − Kn|Amν ∥ ≤ 2−n for every n ∈ N.
We then define the auxiliary kernels Lm, m ∈ N, given by

Lm(x,y) :=
m

n=1
|(Kn+1(x,y) −Kn(x,y))mν(x,y)| , x,y ∈ X.

Using monotone convergence, we obtain

∥ lim
m→∞

Lm(x, ·)|L1∥ = lim
m→∞

∥Lm(x, ·)|L1∥ ≤
∞

n=1
∥Kn+1 −Kn|Amν ∥ ≤ 1 for a.e. x ∈ X.

Hence, at every position x ∈ X apart from a null set, the sequence
∞

n=1 |(Kn+1(x,y) −
Kn(x,y))mν(x,y)| converges for almost all y ∈ X. Since everywhere mν(x,y) ̸= 0, also∞

n=1 |(Kn+1(x,y) − Kn(x,y))| converges for almost all x,y ∈ X. This allows to define a
kernel K as the pointwise limit

K(x,y) := lim
n→∞

Kn(x,y) , x,y ∈ X,

since those limits exist almost everywhere. This kernel is also characterized by the property

K(x, ·)mν(x, ·) = L1- limn→∞Kn(x, ·)mν(x, ·) for a.e. x ∈ X,
K(·,y)mν(·,y) = L1- limn→∞Kn(·,y)mν(·,y) for a.e. y ∈ X.

This follows from the fact that (Kn(x, ·)mν(x, ·))n∈N and (Kn(·,y)mν(·,y))n∈N are Cauchy
sequences in L1 for almost every x ∈ X and y ∈ X, respectively.

The validity of K ∈ Amν and Kn → K in Amν is now a consequence of the observation

ess sup
x∈X

∥(Kn(x, ·) −K(x, ·))mν(x, ·)|L1∥ = ess sup
x∈X

lim
m→∞

∥(Kn(x, ·) −Km(x, ·))mν(x, ·)|L1∥

≤ lim inf
m→∞

ess sup
x∈X

∥(Kn(x, ·) −Km(x, ·))mν(x, ·)|L1∥

≤ lim inf
m→∞

∥Kn −Km|Amν ∥ → 0 (n → ∞)

and the analogous result

ess sup
y∈X

∥(Kn(·,y) −K(·,y))mν(·,y)|L1∥ ≤ lim inf
m→∞

∥Kn −Km|Amν ∥ → 0 (n → ∞).

This proves the completeness of Amν and establishes Amν as a Banach space. The solidity
of Amν and the closedness under involution are clear.

Let us finally turn to the multiplicative structure. First observe that

mν(x,y) ≤ mν(x, z)mν(z,y) for all x,y, z ∈ X.
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Hence, we can estimate for almost every x ∈ X
X


X

|K(x, z)L(z,y)|mν(x,y) dµ(z) dµ(y)

≤

X

|K(x, z)|mν(x, z)
 
X

|L(z,y)|mν(z,y) dµ(y)

dµ(z)

≤ ∥L|Amν ∥

X

|K(x, z)|mν(x, z) dµ(z) ≤ ∥K|Amν ∥∥L|Amν ∥.

As a consequence of this estimate and the corresponding dual result
X


X

|K(x, z)L(z,y)|mν(x,y) dµ(z) dµ(x) ≤ ∥K|Amν ∥∥L|Amν ∥,

we obtain the point-wise well-definedness of the product kernel (K ◦L)(x,y) at almost every
(x,y) ∈ X × X and the estimate

∥K ◦ L|Amν ∥ ≤ ∥K|Amν ∥∥L|Amν ∥.

The proof is finished.

Next, we are interested in mapping properties of kernels belonging to Amν . Using Schur’s
test and the Riesz-Thorin theorem, it can be shown that kernels in A operate continuously
on the Lebesgue spaces Lp(X) if 1 ≤ p ≤ ∞. More general, as observed in [46], kernels in
the weighted algebra Amν operate continuously on the weighted spaces Lν

p(X) and L1/ν
p (X).

Lemma 4.5.2 (see [46, page 250]). Let p ∈ [1,∞] and ν : X → R+ be a weight on X. Then
all kernels K ∈ Amν operate continuously on Lν

p(X) and L
1/ν
p (X) with ∥Kop|Lν

p → Lν
p∥ ≤

∥K|Amν ∥ and ∥Kop|L1/ν
p → L

1/ν
p ∥ ≤ ∥K|Amν ∥.

Proof. Let K̃ := |K|mν . Then, by Schur’s test and complex interpolation, K̃ operates con-
tinuously on Lp, 1 ≤ p ≤ ∞, with ∥K̃op|Lp → Lp∥ ≤ ∥K̃|A∥ = ∥K|Amν ∥. Further, the ker-
nelsK1 andK2 defined byK1(x,y) := ν(x)K(x,y)/ν(y) andK2(x,y) := ν(y)K(x,y)/ν(x)
for x,y ∈ X are majorized by K̃, i.e., |K1| ≤ K̃ and |K2| ≤ K̃. In view of Lemma 4.5.3
and the solidity of Lp, these kernels hence also induce continuous operations on Lp with
∥Kop

i : Lp → Lp∥ ≤ ∥K|Amν ∥ for i = 1, 2. This translates to the assertion of the lemma.

The algebra Bmν ,Y Another way to define meaningful subspaces of the kernel space K
is to distinguish those kernels which operate continuously on some given function space
Y . To be more concrete, let us assume that Y is a QBF-space on X. The space L(Y ) of
all bounded linear operators on Y is then a quasi-Banach space with the same quasi-norm
constant CY as Y . Moreover, equipped with the operator-quasi-norm and the composition
operation as multiplication, this space becomes a quasi-Banach algebra since in particular

∥K ◦ L|Y → Y ∥ ≤ ∥K|Y → Y ∥∥L|Y → Y ∥ for every K,L ∈ L(Y ).
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Also observe that, if Tn → T in L(Y ), we have limn→∞ ∥T − Tn|Y → Y ∥ = 0 and thus the
estimate

C−1
Y ∥T |Y → Y ∥ ≤ lim inf

n→∞


∥T − Tn|Y → Y ∥ + ∥Tn|Y → Y ∥


= lim inf

n→∞
∥Tn|Y → Y ∥.

(4.52)

In case of kernel operations, things are a bit more complicated, since in general not all
elements of L(Y ) stem from associated kernel functions.

A useful auxiliary result concerning the operations of kernels on solid QBF-spaces is the
following lemma.

Lemma 4.5.3 ([74, Lem. 2.45]). Let Y be a solid QBF-space on X, and let K : X×X → C
be a kernel such that |K| operates continuously on Y . Further, let L : X×X → C be a kernel
satisfying |L| ≤ |K| almost everywhere. Then L acts continuously on Y with the estimate
∥Lop|Y → Y ∥ ≤ ∥|K|op|Y → Y ∥.

Proof. Let F ∈ Y . Then by the solidity of Y we have |F | ∈ Y with ∥F |Y ∥ = ∥|F ||Y ∥. It
follows |K|op[|F |] ∈ Y , and since

X
|L(x,y)F (y)| dµ(y) ≤


X

|K(x,y)F (y)| dµ(y) = |K|op[|F |](x)

for almost every x ∈ X, the operator

Lop[F ](x) =

X
L(x,y)F (y) dµ(y)

is well-defined since the integral converges absolutely at these x ∈ X. Moreover, by solidity
of Y , we have Lop[F ] ∈ Y and finally, we conclude

∥Lop[F ]|Y ∥ ≤ ∥|L|op[|F |]|Y ∥ ≤ ∥|K|op[|F |]|Y ∥ ≤ ∥|K|op|Y → Y ∥∥F |Y ∥.

Hence L defines a continuous operator Lop : Y → Y with ∥Lop|Y → Y ∥ ≤ ∥|K|op|Y →
Y ∥.

For the choice L = K in Lemma 4.5.3 we can deduce that especially K acts on Y with
∥Kop|Y → Y ∥ ≤ ∥|K|op|Y → Y ∥. Notice however that ∥Kop|Y → Y ∥ = ∥|K|op|Y → Y ∥
need not be true.

Now we can give the definition of the algebra Bmν ,Y which plays an important role in
coorbit theory. It is the space

Bmν ,Y :=

K ∈ K : ∥K|Amν ∥ < ∞ , |K|op : Y → Y operates continuously


equipped with the quasi-norm

∥K|Bmν ,Y ∥ := max


∥K|Amν ∥,
|K|op

Y → Y
.

Note that, motivated by Lemma 4.5.3, we pursued a small modification in the definition
of Bmν ,Y compared to [74] or [111, eq. (3.4)]. We require |K|op to be a continuous operator
on Y , which is a slightly stricter condition than just requiring this for Kop. The algebra
Bmν ,Y is then always a solid space in the sense defined above. Moreover, this modification
leads to a straight-forward proof that Bmν ,Y is a quasi-Banach algebra.
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Proposition 4.5.4. Let Y be a rich solid QBF-space on X and let ν : X → R+ be a weight
function. Then Bmν ,Y is a solid quasi-Banach algebra.

Proof. It is clear that Bmν ,Y is an algebra. Further, ∥ · |Bmν ,Y ∥ is a quasi-norm on Bmν ,Y

with quasi-norm constant CY inherited from Y . The solidity of Bmν ,Y follows directly from
Lemma 4.5.3 and the solidity of Amν . Further ∥K ◦ L|Bmν ,Y ∥ ≤ ∥K|Bmν ,Y ∥∥L|Bmν ,Y ∥.

It remains to prove the completeness. First note that a Cauchy sequence (Kn)n∈N in
Bmν ,Y is also Cauchy sequences in Amν . By Proposition 4.5.1 we hence obtain a unique
kernel K ∈ Amν as the Amν -limit. Moreover, by possibly taking a suitable subsequence,
we can without loss of generality assume that Kn → K pointwise almost everywhere (see
proof of Proposition 4.5.1). In the sequel we will use this assumption.

Using the notation K0 := 0 for the zero kernel, we will subsequently show that |K−Kn|op

is a well-defined element of L(Y ) for all n ∈ N0 and that |K − Kn|op → 0 in L(Y ). With
this we then directly obtain K ∈ Bmν ,Y and Kn → K in Bmν ,Y , finishing the proof.

Let us turn to the operator side. For each fixed n ∈ N0, the operator sequence (|Km −
Kn|op)m∈N is a Cauchy sequence in L(Y ) due to the estimate ||Km −Kn| − |Km̃ −Kn|| ≤
|Km̃ −Km|, the solidity of Y and Lemma 4.5.3. Let K̂n ∈ L(Y ) denote the respective limits
and take an arbitrary F ∈ Y . Using Fatou’s lemma, we can estimate for almost every x ∈ X

X
|(K −Kn)(x,y)F (y)| dµ(y) =


X

lim
m→∞

|(Km −Kn)(x,y)F (y)| dµ(y)

≤ lim inf
m→∞


X

|(Km −Kn)(x,y)F (y)| dµ(y)

= lim inf
m→∞

|Km −Kn|op[|F |](x) ≤ K̂n[|F |](x).

Here the last inequality is due to Lemma 4.2.1.
Since K̂n


|F |


∈ Y , we deduce that |K − Kn|opF is well-defined pointwise almost ev-
erywhere for every F ∈ Y . Further, by solidity, |K − Kn|opF ∈ Y since ||K − Kn|opF | ≤
|K−Kn|op[|F |] ≤ K̂n[|F |]. Moreover, the operators |K−Kn|op are contained in L(Y ) since

∥|K −Kn|opF |Y ∥ ≤ ∥K̂n[|F |]|Y ∥ ≤ ∥K̂n|Y → Y ∥∥F |Y ∥. (4.53)

For the particular choice n = 0, this shows |K|op ∈ L(Y ) and hence K ∈ Bmν ,Y . Further,
using (4.52), we get for n ≥ 1

C−1
Y ∥K̂n|Y → Y ∥ ≤ lim inf

m→∞
∥|Km −Kn|op|Y → Y ∥ ≤ lim inf

m→∞
∥Km −Kn|Bmν ,Y ∥,

which with (4.53) finally implies

∥|K −Kn|op|Y → Y ∥ ≤ ∥K̂n|Y → Y ∥ ≤ CY lim inf
m→∞

∥Km −Kn|Bmν ,Y ∥ → 0 (n → ∞).

Together with ∥K − Kn|Amν ∥ → 0, this establishes Kn → K in Bmν ,Y , finishing the
proof.

With this structural result on Bmν ,Y our general introduction to kernel functions ends.
In the remainder, we are interested in the concrete kernels occurring in the context of coorbit
theory. Thereby our main aim are simple criteria to decide whether these kernels belong to
Amν or Bmν ,Y .
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4.5.1 The (cross-)Gramian Kernels

Let α ∈ [0, 1], and let Mα = {mx}x∈X and Mα = {m̃x}x∈X be two systems of α-molecules
in L2(R2) with respect to the canonical parametrization. The associated cross-Gramian
kernel is given by

G[Mα,Mα](x,y) := ⟨mx, m̃y⟩ = ⟨m̃y,mx⟩ , x,y ∈ X.

If both systems Mα and Mα coincide, we simply speak of the Gramian kernel associated
to Mα and denote it by G[Mα].

Properties of such kernels play an essential role in the theory of α-molecule coorbit
spaces. Their respective maximal versions (compare with [74, eq. (2.13)]) are given as
follows,

Mα
τ [Mα,Mα](x,y) := sup

z∈Uα
τ (y)

|G[Mα,Mα](x, z)| = sup
z∈Uα

τ (y)
|⟨mx, m̃z⟩| , x,y ∈ X, (4.54)

where τ ≥ 0 is a parameter and Uα
τ (y) are subsets of X of the form (4.15). They are

referred to as the cross-Gramian maximal kernels associated to Mα and Mα. If Mα = Mα

we use the notation Mα
τ [Mα] := Mα

τ [Mα,Mα]. Note that in the definition of Mα
τ the strict

supremum and not the essential supremum is taken.
One of the main results of this appendix is Theorem 4.5.5 below. It states that, if

the order of the α-molecule systems Mα and Mα is sufficiently high, the associated cross-
Gramian maximal kernels belong to Amν or even Bmν ,Y .

Theorem 4.5.5. Let α ∈ [0, 1], and let Mα and Mα be two systems of α-molecules of order
(L,M,N1, N2) with respect to the canonical parametrization. Assume that for some ρ ≥ 0

L > 2(ρ+ 2) , M > 3(ρ+ 2) − 3 − α

2 , N1 > ρ+ 2 + 1 + α

2 , N2 > 2(ρ+ 2) . (4.55)

Then, for arbitrary τ ≥ 0, the following statements on the associated cross-Gramian maxi-
mal kernels Mα

τ [Mα,Mα] from (4.54) and their involutions Mα
τ [Mα,Mα]∗ hold true:

i) If ρ ≥ |γ|, γ ∈ R, we have with the weight ν = νγ from (4.31)

Mα
τ [Mα,Mα] ∈ Amν and Mα

τ [Mα,Mα]∗ ∈ Amν .

ii) Let 0 < p, q < ∞, r := min{1, p, q}, and s ∈ R. If ρ ≥ max{|s| + 2(1/r − 1), |s̃|},
where s̃ := s − (1 + α)/p − (1 − α)/q, then, for Y := Lα,s

p,q (X) and associated weight
ν := να,s

p,q as in (4.35), it holds

Mα
τ [Mα,Mα] ∈ Bmν ,Y and Mα

τ [Mα,Mα]∗ ∈ Bmν ,Y .

Proof. Condition (4.55) allows to choose N > ρ+ 2 such that condition (4.57) in Proposi-
tion 4.5.8 is fulfilled. For such N , according to Proposition 4.5.8, it then holds

Mα
τ [Mα,Mα](x,y) . GN (x,y) and Mα

τ [Mα,Mα]∗(x,y) . GN (x,y).

If ρ ≥ |γ| we have N > 2+ |γ| and thus GN ∈ Amν with ν = νγ by Proposition 4.5.13. Since
Amν is solid, this proves (i).
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If ρ ≥ max{|s| + 2(1/r − 1), |s̃|}, we obtain, since now N > 2 + ρ ≥ 2 + |s̃|,
GN ∈ Amν with ν = νs̃.

Further, since N > 2 + ρ ≥ 2/r + |s|, according to Proposition 4.5.16
GN : Lα,s

p,q → Lα,s
p,q operates continuously.

Hence, GN ∈ Bmν ,Y and by solidity of Bmν ,Y statement (ii) follows.

Due to the solidity of Amν and Bmν ,Y , Theorem 4.5.5 also has implications for the
corresponding cross-Gramian kernels G[Mα,Mα], since

Mα
0 [Mα,Mα] =

G[Mα,Mα]
.

4.5.2 The Oscillation Kernels

Another important class of kernels occurring in the proof of Theorem 4.4.19 are the oscil-
lation kernels from Definition 4.4.17 associated to the continuous α-curvelet frame Cα and
admissible coverings of X. In the following definition, we introduce a continuous variant.
Definition 4.5.6. Let α ∈ [0, 1]. For τ ≥ 0 we define the oscillation kernel oscτ associated
to the continuous α-curvelet frame Cα = {ψx}x∈X by

oscτ (x,y) := sup
z∈Uα

τ (y)

G[Cα](x,y) − G[Cα](x, z)
 = sup

z∈Uα
τ (y)

⟨ψx, ψy − ψz⟩
, x,y ∈ X .

Further, we put osc∗
τ (x,y) := oscτ (y,x).

Let ν := να,s
p,q and Y := Lα,s

p,q (X). As a direct consequence of Theorem 4.5.5, Proposi-
tion 3.1.3, and the solidity of Bmν ,Y , the estimates

|oscτ | ≤ |G[Cα]| + |Mα
τ [Cα]| and |osc∗

τ | ≤ |G[Cα]∗| + |Mα
τ [Cα]∗| (4.56)

yield
oscτ ∈ Bmν ,Y and osc∗

τ ∈ Bmν ,Y for all τ ≥ 0.
However, we can even prove a more sophisticated result.

Theorem 4.5.7. Let α ∈ [0, 1]. Let Y := Lα,s
p,q (X) and ν := να,s

p,q be the associated weight
defined in (4.35). Then, for τ ≥ 0, the kernels oscτ and osc∗

τ defined in Definition 4.5.6
belong to Bmν ,Y , and they satisfy

∥oscτ : Bmν ,Y ∥ ≤ Cτ (2τ − 1) and ∥osc∗
τ : Bmν ,Y ∥ ≤ Cτ (2τ − 1)

with a value Cτ > 0 that increases monotonically with τ .
Proof. Choose N ∈ N such that N > max{|s|+2/r, 2+|s−(1+α)/p−(1−α)/q|}. Then GN ∈
Bmν ,Y due to Proposition 4.5.13 and Proposition 4.5.16. According to Proposition 4.5.9, we
further have

oscτ (x,y) ≤ CN,τ (2τ − 1)GN (x,y) and osc∗
τ (x,y) ≤ CN,τ (2τ − 1)GN (x,y).

Since Bmν ,Y is solid by Proposition 4.5.4, we deduce
∥oscτ : Bmν ,Y ∥ ≤ CN,τ (2τ − 1)∥GN : Bmν ,Y ∥ . CN,τ (2τ − 1),
∥osc∗

τ : Bmν ,Y ∥ ≤ CN,τ (2τ − 1)∥GN : Bmν ,Y ∥ . CN,τ (2τ − 1).
The proof of Theorem 4.5.5 and Theorem 4.5.7 rests on two bounding results, namely

Proposition 4.5.8 and Proposition 4.5.9, which will be proved in the next subsection.
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4.5.3 The Bounding Kernels

Motivated by Theorem 2.2.2, for each N > 0 we now introduce a non-negative kernel
function GN by

GN : X × X → [0,∞) , GN (x,y) := ωα(x,y)−N .

Clearly, due to 1 ≤ ωα < ∞, these functions satisfy 0 < GN ≤ 1 for all N > 0. More
precisely, they equal 1 on the diagonal and decay away from it, with a rate controlled by
the parameter N .

Recalling Theorem 2.2.2, the kernels GN are naturally suited for bounding the cross-
Gramian kernels associated to canonically parameterized α-molecule systems. A precise
statement is formulated in the following proposition.

Proposition 4.5.8. Let α ∈ [0, 1]. Let Mα and Mα be two systems of α-molecules of
order (L,M,N1, N2) with respect to the canonical parametrization. Further assume that for
N > 0

L ≥ 2N , M > 3N − 3 − α

2 , N1 ≥ N + 1 + α

2 , N2 ≥ 2N . (4.57)

Then, for each τ ≥ 0, the cross-Gramian maximal kernel Mα
τ [Mα,Mα] and its involution

Mα
τ [Mα,Mα]∗ satisfy

Mα
τ [Mα,Mα](x,y) ≤ CN,τ GN (x,y) and Mα

τ [Mα,Mα]∗(x,y) ≤ CN,τ GN (x,y),

with a constant CN,τ > 0 independent of x,y ∈ X which grows with larger τ .

Proof. An application of Theorem 2.2.2 yields for every x,y ∈ X

Mα
τ [Mα,Mα](x,y) = sup

z∈Uα
τ (y)

|⟨mx, m̃z⟩| ≤ CN sup
z∈Uα

τ (y)
ωα(x, z)−N ,

with a constant CN > 0 depending only on N . Further, by Corollary 2.2.22 we have the
estimate

sup
z∈Uα

τ (y)
ωα(x, z)−N ≤ Cτωα(x,y)−N = Cτ GN (x,y),

where Cτ ≥ 1 increases with τ ≥ 0. For the involution, we argue as follows,

Mα
τ [Mα,Mα]∗(x,y) = Mα

τ [Mα,Mα](y,x) . GN (y,x) . GN (x,y),

where the last estimate is due to the quasi-symmetry of ωα (see Theorem 2.2.12).

The kernels GN can also be used to bound the oscillation kernels oscτ defined for τ ≥ 0
in Definition 4.5.6. In view of (4.56), we directly obtain

oscτ . GN and osc∗
τ . GN ,

which is true for arbitrary N > 0 due to the regularity of the α-curvelet frame Cα.
However, we can prove the much stronger result given below.
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Proposition 4.5.9. For every N > 0 and every τ ≥ 0, there exists a constant CN,τ > 0
such that

oscτ (x,y) ≤ CN,τ (2τ − 1)GN (x,y) and osc∗
τ (x,y) ≤ CN,τ (2τ − 1)GN (x,y)

holds for all x,y ∈ X, whereby CN,τ increases monotonically with τ .

Proof. By definition, the oscillation kernel oscτ , where τ ≥ 0, has the form

oscτ (x,y) = sup
z∈Uα

τ (y)
|⟨ψx, ψy − ψz⟩| , x,y ∈ X,

whereby ψx ∈ Cα are the α-curvelets defined in Section 3.1. If τ = 0, we have oscτ = 0 and
the statement of the proposition is obviously true.

Let us turn to the case τ > 0. For y = (y, θ, u) ∈ X and z = (z, κ, v) ∈ Uα
τ (y), we first

split

ψy − ψz =

ψy − ψz,θ,u


+

ψz,θ,u − ψz,κ,u


+

ψz,κ,u − ψz


=: I1(y, z) + I2(y, z) + I3(y, z),

leading to the estimate

|⟨ψx, ψy − ψz⟩| ≤ |⟨ψx, I1(y, z)⟩| + |⟨ψx, I2(y, z)⟩| + |⟨ψx, I3(y, z)⟩|.

For the proof of the assertion, it then suffices to verify

sup
z∈Uα

τ (y)
|⟨ψx, Ij(y, z)⟩| . (2τ − 1)GN (x,y) for j ∈ {1, 2, 3} (4.58)

with an implicit constant depending on N .
To obtain these estimates, the regularity of the continuous α-curvelet frame Cα =

{ψx}x∈X needs to be taken into account. Recall that, on the Fourier side, for every
x = (x, η, t) ∈ X the curvelets ψx = ψx,η,t ∈ Cα have the form

ψx,η,t(ξ) = t(1+α)/2 exp(−2πi⟨x, ξ⟩)Wη,t(ξ)

with the wedge functions Wη,t ∈ C∞
c (R2) from (3.2) given by

Wη,t

ξ(r, φ)


=

U(tr)V (t−(1−α){φ+ η}2T) , x = (x, η, t) ∈ X0 ,

U1(r)V1({φ}2T) , x = (x, η, 1) ∈ X1 .

Hereby, the points ξ(r, φ) = (r cos(φ), r sin(φ)) ∈ R2 are determined by their polar coordi-
nates r ∈ [0,∞) and φ ∈ [0, 2π). For the definition of the functions U , U1, V , and V1 we
refer to Section 3.1.
Step 1: In a first step, we differentiate ψ̂x,η,t with respect to the parameters (x, η, t) ∈ X.
This is possible due to the regularity of the system Cα = {ψx}x∈X.

In the sequel, the differentiation operators ∂x1 and ∂x2 shall act on the respective lo-
cation parameters x = (x1, x2) ∈ R2. The symbol ∇x := (∂x1 , ∂x2) will be used for the
corresponding nabla operator. For a fixed orientation η ∈ T, with associated orientation
vector eη = (cos(η),− sin(η)) ∈ R2, we further introduce the rotated versions

∂η
x1 := [Rη(∂x1 , ∂x2)T ]1 = ⟨eη,∇x⟩ = cos η · ∂x1 − sin η · ∂x2 ,

∂η
x2 := [Rη(∂x1 , ∂x2)T ]2 = ⟨Rπ

2
eη,∇x⟩ = sin η · ∂x1 + cos η · ∂x2 .
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Here, the brackets [·]1 and [·]2 evaluate the first and second component, respectively.
At a fixed position x = (x, η, t) ∈ X, we obtain for ξ ∈ R2

∂η
x1
ψx,η,t(ξ) = ∂η

x1


t(1+α)/2Wη,t(ξ) exp(−2πi⟨x, ξ⟩)


= −2πi[Rηξ]1t(1+α)/2Wη,t(ξ) exp(−2πi⟨x, ξ⟩)

= t−1t(1+α)/2W
[1]
η,t(ξ) exp(−2πi⟨x, ξ⟩)


=: t−1 ψ[1]

x,η,t(ξ)

with W
[1]
η,t(ξ) := −2πit[Rηξ]1Wη,t(ξ).

Similarly, we calculate

∂η
x2
ψx,η,t(ξ) = ∂η

x2


t(1+α)/2Wη,t(ξ) exp(−2πi⟨x, ξ⟩)


= −2πi[Rηξ]2t(1+α)/2Wη,t(ξ) exp(−2πi⟨x, ξ⟩)

= t−αt(1+α)/2W
[2]
η,t(ξ) exp(−2πi⟨x, ξ⟩)


=: t−α ψ[2]

x,η,t(ξ)

with W
[2]
η,t(ξ) := −2πitα[Rηξ]2Wη,t(ξ).

We proceed with the differentiation ∂η with respect to the parameter η ∈ T. Here we
obtain for x = (x, η, t) ∈ X0

∂η
ψx,η,t(ξ) = ∂η


t(1+α)/2U(tr)V (t−(1−α){φ+ η}2T) exp(−2πi⟨x, ξ⟩)


= t−(1−α)


t(1+α)/2U(tr)V ′(t−(1−α){φ+ η}2T) exp(2πi⟨x, ξ⟩)


.

For x = (x, η, 1) ∈ X1 the derivative vanishes,

∂η
ψx,η,1(ξ) = ∂η


U1(r)V1({φ}2T) exp(−2πi⟨x, ξ⟩)


= 0.

These results motivate the definition

W
[η]
η,t (ξ(r, φ)) :=


U(tr)V ′(t−(1−α){φ+ η}2T) , x = (x, η, t) ∈ X0,

0 , x = (x, η, 1) ∈ X1,

and further

ψ[η]
x,η,t(ξ) := t(1+α)/2W

[η]
η,t (ξ) exp(2πi⟨x, ξ⟩).

Then we can write

∂η
ψx,η,t(ξ) = t−(1−α) ψ[η]

x,η,t(ξ).

For the differentiation operator with respect to the scale variable t ∈ (0, 1) we shall
subsequently use the symbol ∂t. We calculate for x = (x, η, t) ∈ X0

∂t
ψx,η,t(ξ) = ∂t


t(1+α)/2U(tr)V (t−(1−α){φ+ η}2T) exp(2πi⟨x, ξ⟩)


= t−1 ·


t(1+α)/2W

[t]
η,t(ξ) exp(2πi⟨x, ξ⟩)


=: t−1 ψ[t]

x,η,t(ξ) ,
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where W [t]
η,t(ξ) is the sum

W
[t]
η,t(ξ) := W

[t,0]
η,t (ξ) +W

[t,1]
η,t (ξ).+W

[t,2]
η,t (ξ).

With U [t] ∈ C∞
c ([0,∞)) and V [t] ∈ C∞

c ([−π, π]) given by

U [t](r) := rU ′(r) and V [t](φ) := φV ′(φ),

the summands of this sum are the functions

W
[t,0]
η,t (ξ(r, φ)) := 1 + α

2 Wη,t(ξ(r, φ)),

W
[t,1]
η,t (ξ(r, φ)) := U [t](tr)V (t−(1−α){φ+ η}2T),

W
[t,2]
η,t (ξ(r, φ)) := (α− 1)U(tr)V [t](t−(1−α){φ+ η}2T).

Finally, for x = (x, η, 1) ∈ X1, we introduce the functions ψ[t]
x,η,1 := 0.

By parameter differentiation we have thus derived new function systems from Cα, namely

C[1]
α :=


ψ

[1]
x


x∈X, C[2]
α :=


ψ

[2]
x


x∈X, C[η]
α :=


ψ

[η]
x


x∈X, C[t]
α :=


ψ

[t]
x


x∈X .

Step 2: Next, we verify that these systems are instances of continuous α-molecules of order
(∞,∞,∞,∞) with respect to the canonical parametrization, as Cα = {ψx}x∈X itself.

The reason for this is that the modified wedge functions W [1]
η,t , W

[2]
η,t , W

[η]
η,t , W [t,0]

η,t , W [t,1]
η,t ,

and W
[t,2]
η,t are all built in the same way as the original functions Wη,t. Indeed, for W [η]

η,t ,
W

[t,0]
η,t , W [t,1]

η,t , and W
[t,2]
η,t this is already clear from the above representations. Concerning

W
[1]
η,t , and W [2]

η,t , in polar representation ξ(r, φ) = (r cos(φ), r sin(φ)), we have with U [1](r) :=
rU(r) and V [1](φ) := V (φ)

W
[1]
η,t(ξ(r, φ)) := −2πi cos({φ+ η}2T)U [1](tr)V [1](t−(1−α){φ+ η}2T).

Further, with U [2](r) = rU(r) and V [2](φ) = φV (φ), it holds

W
[2]
η,t(ξ(r, φ)) := −2πisin({φ+ η}2T)

{φ+ η}2T
U [2](tr)V [2](t−(1−α){φ+ η}2T)

The remaining arguments are then analogous to those used in the proof of Proposi-
tion 3.1.3. They are based on the smoothness and support properties of the functions U [1],
V [1], U [2], V [2], U [t], V [t], and V ′, which are similar to the properties of U and V .
Step 3: In the final step, we provide the desired estimates in (4.58) for j ∈ {1, 2, 3}.

Let us first assume y = (y, θ, u) ∈ X0 and z = (z, κ, v) ∈ Uα
τ (y). In this case, z ∈ X0

and it holds (see definition of Uα
τ (y) in (4.15))

z̃ := z − y ∈ R−1
θ Aα,uQ

τ , κ̃ := {κ− θ}2T ∈ u1−αIτ , ṽ := v/u ∈ Jτ .

Using the fundamental theorem of calculus, we obtain for ξ ∈ R2

Î1(ξ) = ψ̂y,θ,u(ξ) − ψ̂y+z̃,θ,u(ξ) = −
 1

0
⟨∇yψ̂y+(1−a)z̃,θ,u(ξ), z̃⟩ da

= −u−1
 1

0
ψ̂

[1]
y+az̃,θ,u(ξ)[Rθz̃]1 da− u−α

 1

0
ψ̂

[2]
y+az̃,θ,u(ξ)[Rθz̃]2 da.
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Similarly, with κ̃ = {κ− θ}2T, we get for fixed ξ ∈ R2

Î2(ξ) = ψ̂z,θ,u(ξ) − ψ̂z,(θ+κ̃)2π ,u(ξ) =
 0

κ̃
∂ηψ̂z,(θ+a)2π ,u(ξ) da = u−(1−α)

 0

κ̃
ψ̂

[η]
z,(θ+a)2π ,u(ξ) da.

Hereby (θ + a)2π is the value of θ + a modulo 2π. Further, it holds for ṽ = v/u and ξ ∈ R2

Î3(ξ) = ψ̂z,κ,u(ξ) − ψ̂z,κ,ṽu(ξ) =
 u

ṽu
∂tψ̂z,κ,a(ξ) da = u−1

 u

ṽu
ψ̂[t]

z,κ,a(ξ) da =
 1

ṽ
ψ̂[t]

z,κ,au(ξ) da.

Using the Plancherel theorem and the theorem of Fubini-Tonelli, we deduce for arbitrary
x ∈ X, y ∈ X0, and z ∈ Uα

τ (y)

⟨ψx, I1(y, z)⟩
 =

 [Rθz̃]1
u


ψ̂x,

1
0

ψ̂
[1]
y+az̃,θ,u da


+ [Rθz̃]2

uα


ψ̂x,

1
0

ψ̂
[2]
y+az̃,θ,u da


≤ |[Rθz̃]1|

u

1
0

⟨ψ̂x, ψ̂
[1]
y+az̃,θ,u⟩

 da+ |[Rθz̃]2|
uα

1
0

⟨ψ̂x, ψ̂
[2]
y+az̃,θ,u⟩

 da
≤ |[Rθz̃]1|

u
Mα

τ [C[1]
α ,Cα](x,y) + |[Rθz̃]2|

uα
Mα

τ [C[2]
α ,Cα](x,y) .

From z̃ ∈ R−1
θ Aα,uQ

τ we deduce Rθz̃ ∈ Aα,uQ
τ and hence |[Rθz̃]1| ≤ τu and |[Rθz̃]2| ≤

τuα. Invoking Proposition 4.5.8, we arrive at the estimate⟨ψx, I1(y, z)⟩
 ≤ CN,ττGN (x,y) ,

from which the desired estimate for j = 1 in (4.58) follows due to τ ≤ 2τ − 1.
Similarly, we estimate the two other terms corresponding to j ∈ {2, 3} in (4.58). Since

κ̃ ∈ u1−αIτ , we have |κ̃| ≤ τu1−α and thus⟨ψx, I2(y, z)⟩
 =

⟨ψ̂x, Î2(y, z)⟩
 = u−(1−α)

ψ̂x,

 κ̃

0
ψ̂

[η]
z,(θ+a)2π ,u(ξ) da


≤ u−(1−α)

 |κ̃|

0

⟨ψ̂x, ψ̂
[η]
z,(θ+a)2π ,u⟩

 da ≤ u−(1−α)
 |κ̃|

0
Mα

τ [C[η]
α ,Cα](x,y) da

≤ CN,τu
−(1−α)|κ̃|GN (x,y) ≤ CN,ττGN (x,y).

Finally, due to ṽ ∈ Jτ = [2−τ , 2τ ] we have |1 − ṽ| ≤ 2τ − 1. This yields⟨ψx, I3(y, z)⟩
 =

⟨ψ̂x, Î3(y, z)⟩
 =

ψ̂x,

 1

ṽ
ψ̂[t]

z,κ,au(ξ) da


≤
  1

ṽ

⟨ψ̂x, ψ̂
[t]
z,κ,au⟩

 da ≤
 1

ṽ

Mα
τ [C[t]

α ,Cα](x,y) da


≤ CN,τ |1 − ṽ|GN (x,y) ≤ CN,τ (2τ − 1)GN (x,y).

It remains to handle the case y ∈ X1. Here the estimates are trivial for j ∈ {2, 3} since
I2(y, z) = I3(y, z) = 0. For j = 1 the arguments are the same as before.

Concerning the estimate of the involuted kernel osc∗
τ , we can argue with the quasi-

symmetry of GN which directly follows from the quasi-symmetry of ωα (see Theorem 2.2.12).
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In the following, we will deduce sufficient conditions for GN to belong to Amν and
Bmν ,Y . Together with solidity arguments based on Propositions 4.5.8 and 4.5.9, those are
the foundation for the proof of Theorem 4.5.5 and Theorem 4.5.7.

4.5.4 The Convolution-Type Auxiliary Kernels

For the subsequent investigation, it is useful to introduce another scale of kernels with a
convolution-type structure. For N > 0, let us introduce

HN : X × X → [0,∞) , HN (x,y) := max
 t
u
,
u

t

−N
1 + d′

α(x,y)
−N

,

where, with e1 and e2 denoting the respective unit vectors of R2,

d′
α(x,y) := |{η − θ}|2

max{t, u}2(1−α) +
|⟨R−1

η e2, x− y⟩|2

max{t, u}2α
+

|⟨R−1
η e1, x− y⟩|
max{t, u}

.

Hereby, the bracket {·} = {·}T denotes the projective bracket defined in (2.9). For conve-
nience, we will often use the short-hand notation (t, u)+ := max{t, u} for t, u ∈ R in the
sequel.

The kernels HN can also be written in the form

HN (x,y) = HN


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t


with non-negative functions HN : R2 × R × R+ → [0,∞) given by

HN (a, b, c) := max

c, c−1−N


1 + |b|2

max{1, c}2(1−α) + |[a]2|2

max{1, c}2α
+ |[a]1|

max{1, c}

−N

.

(4.59)

Clearly, from the definition, 0 < HN (a, b, c) ≤ 1 for all (a, b, c) ∈ R2 × R × R+.
An important relation of HN to the kernels GN and G∗

N are the following estimates.

Lemma 4.5.10. For every N > 0 we have

GN (x,y) . HN (x,y) and G∗
N (x,y) . HN (x,y) , x,y ∈ X.

Proof. Recall the simplified index distance ωsim
α from Definition 2.2.3 given by

ωsim
α (x,y) = max

 t
u
,
u

t


1 + dsim

α (x,y)


with
dsim

α (x,y) = |{η − θ}|2

max{t, u}2(1−α) + |x− y|2

max{t, u}2α
+

|⟨R−1
η e1, x− y⟩|
max{t, u}

.

It was proved in Lemma 2.2.4 that ωα(x,y) & ωsim
α (x,y) and dα(x,y) & dsim

α (x,y). Since
|⟨R−1

η e2, x− y⟩| ≤ |x− y| we can deduce

dα(x,y) & dsim
α (x,y) ≥ d′

α(x,y).

The assertion follows.
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As a consequence of these estimates, a sufficient condition for HN to belong to Amν

and Bmν ,Y allows to deduce such conditions for GN and G∗
N . The advantage of the kernels

HN is their convolution-type structure. Due to this structure, the analysis of HN can be
reduced to an analysis of the corresponding function HN given by (4.59), which is a great
simplification.

One could pose the question, why the kernels GN are defined after all, if we could directly
use HN as bounding kernels. The reason for this is that the kernels HN do not possess the
same symmetry and stability properties as GN (see Corollary 2.2.9 and Corollary 2.2.22).

In the sequel, the integrability properties of HN stated in the next lemma are essential.

Lemma 4.5.11. Let 0 < r ≤ 1, γ ∈ R, and N > 2/r + max{γ, 0}. Then
R+


R


R2

HN (y, θ, u)r max{u, u−1}rγ(u+ 1)2dy dθ du

u3 < ∞ ,


R


R2

HN (y, θ, 1)r dy dθ < ∞ .

Proof. For fixed u ∈ R+, let us first consider the inner integral

I(u) :=

R


R2

HN (y, θ, u)r dy dθ.

Generally, we have for quantities R > 0, c > 0, γ > 0, and N > 1
γ the formula

∞
0

(R+ c−γaγ)−N da ≍
∞

0

(R1/γ + c−1a)−γN da = c ·
∞

R1/γ

a−γN da

= c

1 − γN


a−γN+1

∞
R1/γ

= c

γN − 1R
−(N−1/γ) ≍ c ·R−(N−1/γ) .

Applying this formula iteratively, we can calculate I(u). For N > 2/r and u ∈ R+ we
obtain

I(u) = max{u, u−1}−Nr

R


R2


1 + |θ|2

max{1, u}2(1−α) + |[y]2|2

max{1, u}2α
+ |[y]1|

max{1, u}

−Nr
dy dθ

≍ max{u, u−1}−Nr max{1, u}2.

Specifically for u = 1, this implies I(1) ≍ 1 < ∞ proving the second assertion.
To obtain the first assertion, we evaluate the outer integral over the scales, namely
R+
I(u) max{u, u−1}rγ(u+ 1)2du

u3 ≍
 ∞

0
max{u, u−1}−Nr+γr max{1, u}2(u+ 1)2 du

u3

=
 1

0
uNr−γr−2(u+ 1)2 du

u
+
 ∞

1
u−Nr+γr+2 (u+ 1)2

u2
du

u

≍
 1

0
uNr−γr−2 du

u
+
 ∞

1
u−(Nr−γr−2) du

u
< ∞ .

Precisely if Nr − γr − 2 > 0, or equivalently N > 2/r + γ, the last two integrals converge.
Since the assumption N > 2/r + max{γ, 0} ensures both N > 2/r as well as N > 2/r + γ,
the proof is finished.

145



4 α-MOLECULE COORBIT SPACES

Another important auxiliary result concerning HN is the following lemma.

Lemma 4.5.12. It holds, uniformly in (x, η, t) ∈ R2 × R × R+,

inf
(κ,v)∈I×J

HN (x, η + t1−ακ, tv) ≍ HN (x, η, t) ≍ sup
(κ,v)∈I×J

HN (x, η + t1−ακ, tv),

where I := [−1, 1] and J := [ 1
2 , 2].

Proof. Let us define H̃N (x, η, t) := sup(κ,v)∈I×J HN (x, η + t1−ακ, tv) and H ′
N (x, η, t) :=

inf(κ,v)∈I×J HN (x, η + t1−ακ, tv). Clearly, H ′
N (x, η, t) ≤ HN (x, η, t) ≤ H̃N (x, η, t). For the

opposite estimates, we first note that for c ∈ R+

inf
v∈cJ

max{v, v−1} ≍ sup
v∈cJ

max{v, v−1} and inf
v∈cJ

max{1, v} ≍ sup
v∈cJ

max{1, v}.

Further, the estimate |η + t1−ακ|2 ≤ 2|η|2 + 2 max{1, t}2(1−α)|κ|2 yields

sup
κ∈I

|η + t1−ακ|2

max{1, t}2(1−α) ≤ 2|η|2

max{1, t}2(1−α) + 2.

Similarly, |η|2 ≤ 2|η − t1−ακ|2 + 2 max{1, t}2(1−α)|κ|2 leads to

inf
κ∈I

|η + t1−ακ|2

max{1, t}2(1−α) ≥ |η|2

2 max{1, t}2(1−α) − 1.

Altogether, all these ingredients yield H̃N (x, η, t) . HN (x, η, t) . H ′
N (x, η, t).

After this preparation, we are now ready to prove conditions on N ensuring the mem-
bership of HN , and in turn GN and G∗

N , in the algebras Amν and Bmν ,Y .

4.5.5 Kernel Criteria for GN ∈ Amν and GN ∈ Bmν ,Y

In this last subsection of the appendix we aim for an easily applicable criterion to be able
to decide whether a kernel GN belongs to the algebra Bmν ,Y , where either Y := Ls

p,q(X) or
Y := Lα,s

p,q (X) and ν is the respective associated weight.
As a first step, we prove a simple criterion which ensures that GN belongs to the algebra

Amν with a weight ν = νγ of the form (4.31) with γ ∈ R. The following proposition shows
that there exists a threshold for N above which GN ∈ Amν is guaranteed. This is not
surprising since a large N promotes a fast off-diagonal decay of GN .

Proposition 4.5.13. Let γ ∈ R and let ν = νγ be the weight defined in (4.31). If N > 2+|γ|
then GN is an element of Amν .

Proof. According to Lemma 4.5.10 we have

GN (x,y) . HN (x,y) = HN


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

,

where HN is the function from (4.59). An application of Lemma 4.5.15, which is proved
below, then yields the assertion. We only need to verify that the quantities Ai, i ∈ {1, 2, 3},
associated to HN are finite if N > 2 + |γ|.
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For the quantities A1 and A3 this follows directly from Lemma 4.5.11 which asserts

A1 =

R+


R


R2

HN (y, θ, u) max{u, u−1}|γ|(u+ 1)2dy dθ du

u3 < ∞ ,

A3 =

T


R2

HN (y, θ, 1) dy dθ ≤

R


R2

HN (y, θ, 1) dy dθ < ∞ .

Using Lemma 4.5.14 and Lemma 4.5.12, we can further show that A2 . A1. Indeed, noting
that dt/t is the Haar measure of the multiplicative group R+, we have with the window
J := [ 1

2 , 2] ⊂ R+

A2 ≤ ess sup
u∈R+


ess sup

v∈uJ


R


R2

|HN (y, θ, v)| max{v, v−1}|γ|(1 + v)−2 dy dθ


.

R+

 
R


R2

ess sup
v∈uJ

|HN (y, θ, v)| max{v, v−1}|γ| dy dθ
du
u

.

R+


R


R2

|HN (y, θ, u)| max{u, u−1}|γ| dy dθ du

u
≤ A1.

As a consequence, also A2 < ∞ holds true if N > 2 + |γ|.

In the proof of the previous proposition, we have implicitly used an embedding result
for Wiener amalgam spaces. It can be termed as an estimate of the corresponding quasi-
norms. Given an arbitrary measure space (X, µ) and 0 < p ≤ ∞, let Lp(X) denote the usual
Lebesgue space on X with quasi-norm ∥ · |Lp∥. Further, assume that {Wx}x∈X is a family
of measurable windows Wx ⊆ X such that the associated dual windows Wx ⊆ X defined by
the relation X Wx

(y) = XWy(x) are also measurable. Then we have the following estimate.

Lemma 4.5.14. If there is m > 0 such that µ(Wx) ≥ m holds independently of x ∈ X,
then we have for 0 < p ≤ q ≤ ∞ and every measurable function f : X → C the estimate

∥Kf |Lq∥ ≤ m1/q−1/p∥Kf |Lp∥,

where Kf(x) := ess supy∈X |f(y)|XWx(y) is a Wiener control function as in (4.14).
Proof. We restrict the proof to the case q < ∞, with obvious modifications if q = ∞.

First, we observe that ∥Kf |L∞∥ = ∥f |L∞∥. Second, we see that

∥Kf |Lq∥q =

X

ess sup
y∈X

|f(y)XWx(y)|q dµ(x)

≥ ess sup
y∈X


X

|f(y)|qXWx(y) dµ(x) ≥ m∥Kf |L∞∥q.

Since |Kf |/∥Kf |L∞∥ ≤ 1 almost everywhere, we can deduce for p ≤ q

m ≤ ∥Kf |Lq∥q

∥Kf |L∞∥q
≤ ∥Kf |Lp∥p

∥Kf |L∞∥p
.

Since 1/q ≤ 1/p, this further implies
∥Kf |Lq∥

∥Kf |L∞∥m1/q
≤ ∥Kf |Lp∥

∥Kf |L∞∥m1/p
,

and therefore ∥Kf |Lq∥ ≤ m1/q−1/p∥Kf |Lp∥.
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Note that the proven estimate ∥Kf |Lq∥ . ∥Kf |Lp∥ for 0 < p ≤ q ≤ ∞ resembles the
relation ∥ · ∥ℓq ≤ ∥ · ∥ℓp of the discrete Lebesgue quasi-norms. Hence, we can record that the
embedding properties of the Wiener amalgams are analogous to those of the corresponding
sequence spaces.

Another essential ingredient in the proof of Proposition 4.5.13 is the following technical
lemma.

Lemma 4.5.15. Let α ∈ [0, 1], and assume that K : X × X → C is a kernel function and
H : R2 × R × R+ → [0,∞) a measurable function such that

|K

x,y


| ≤ H


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

.

Further let γ ∈ R be fixed and let us put T := [−π/2, π/2) and (u, 1)+ := max{u, 1}. Then
the finiteness of the quantities

A1 :=

R+


R


R2
H(y, θ, u) max{u, u−1}|γ|(1 + u)2dy dθ du

u3 ,

A2 := ess sup
u∈R+


(u,1)1−α

+ T


R2
H(y, θ, u) max{u, u−1}|γ|(1 + u)−2 dy dθ,

A3 :=


T


R2
H(y, θ, 1) dy dθ,

implies
K ∈ Amν with ∥K|Amν ∥ ≤ 2


A1 + max{4A2, A3}


,

with mν denoting the bivariate weight associated to the weight ν = νγ defined in (4.31).

Proof. For fixed x = (x, η, t) ∈ X we have
X

|K(x,y)|mν(x,y) dµ(y) ≤ 2

I0(x) + I1(x)


with the integrals

I0(x) := 1
2

1
0


T


R2

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

(t/u, u/t)|γ|

+
dy dθ du

u3 ,

I1(x) := 1
2


T


R2

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, 1/t

t−|γ| dy dθ.

Eliminating the brackets {·} in these integrals, they simplify to

I0(x) =
1

0


T


R2

H

A−1

α,tRη(y − x), t−(1−α)θ, u/t

(t/u, u/t)|γ|

+
dy dθ du

u3 ,

I1(x) =

T


R2

H

A−1

α,tRη(y − x), t−(1−α)θ, 1/t

t−|γ| dy dθ.
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Substituting y →→ R−1
η Aα,ty + x and θ →→ t1−αθ, we obtain

I0(x) = t2
1

0


t−(1−α)T


R2

H

y, θ, u/t


(t/u, u/t)|γ|

+
dy dθ du

u3 ,

I1(x) = t2


t−(1−α)T


R2

H

y, θ, 1/t


t−|γ| dy dθ .

The substitution u →→ tu further yields

I0(x) =
1/t
0


t−(1−α)T


R2

H

y, θ, u


(u, 1/u)|γ|

+
dy dθ du

u3 .

Now we observe

ess sup
x∈X

I1(x) = max


ess sup
x∈X0

I1(x), ess sup
x∈X1

I1(x)


with the terms

ess sup
x∈X1

I1(x) =

T


R2

H

y, θ, 1


dy dθ = A3,

ess sup
x∈X0

I1(x) = ess sup
t>1

t|γ|


t1−αT


R2

H

y, θ, t

 dy dθ
t2

≤ 4A2 .

Further, we have

ess sup
x∈X

I0(x) = max


ess sup
x∈X0

I0(x), ess sup
x∈X1

I0(x)


≤
∞

0


R


R2

H

y, θ, u


(u, 1/u)|γ|

+
dy dθ du

u3 ≤ A1 .

Analogously, for fixed y = (y, θ, u) ∈ X we get
X

|K(x,y)|mν(x,y) dµ(x) ≤ 2

Ĩ0(y) + Ĩ1(y)


with the integrals

Ĩ0(y) := 1
2

1
0


T


R2

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

(t/u, u/t)|γ|

+
dx dη dt

t3
,

Ĩ1(y) := 1
2


T


R2

H

Rη(y − x), {θ − η}, u


u−|γ| dx dη.
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We now first use the substitution η →→ θ − η. Then, as before, we eliminate the brackets,

Ĩ0(y) = 1
2

1
0


T


R2

H

A−1

α,tRθ−η(y − x), t−(1−α){η}, u/t

(t/u, u/t)|γ|

+
dx dη dt

t3

=
1

0


T


R2

H

A−1

α,tRθ−η(y − x), t−(1−α)η, u/t

(t/u, u/t)|γ|

+
dx dη dt

t3
,

Ĩ1(y) = 1
2


T


R2

H

Rθ−η(y − x), {η}, u


u−|γ| dx dη

=

T


R2

H

Rθ−η(y − x), η, u


u−|γ| dx dη.

The substitutions x →→ y −R−1
θ−ηAα,tx and η →→ t1−αη yield

Ĩ0(y) =
1

0


t−(1−α)T


R2

H

x, η, u/t


(t/u, u/t)|γ|

+
dx dη dt

t
,

Ĩ1(y) =

T


R2

H

x, η, u


u−|γ| dx dη .

Finally, the substitution t →→ u/t gives

Ĩ0(y) =
∞

u


(t/u)1−αT


R2

H

x, η, t


(t, 1/t)|γ|

+
dx dη dt

t
.

We obtain

ess sup
y∈X

Ĩ1(y) = max


ess sup
y∈X0

Ĩ1(y), ess sup
y∈X1

Ĩ1(y)


with

ess sup
y∈X1

Ĩ1(y) =

T


R2

H

x, η, 1


dx dη = A3,

ess sup
y∈X0

Ĩ1(y) = ess sup
0<u<1


T


R2

H

x, η, u


u−|γ| dx dη ≤ 4A2 .

For ess sup
y∈X

Ĩ0(y) = max


ess sup
y∈X0

Ĩ0(y), ess sup
y∈X1

Ĩ0(y)


we get

ess sup
y∈X

Ĩ0(y) ≤

R+


R


R2

H

x, η, t


(t, 1/t)|γ|

+
dx dη dt

t
≤ A1 .

This finishes the proof.
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We next formulate a sufficient criterion ensuring that the kernel GN operates contin-
uously on the function spaces Ls

p,q(X) and Lα,s
p,q (X). As in Proposition 4.5.13, it can be

expected that a sufficiently large N provides such a guarantee, since, intuitively, the larger
N the closer GN is to the identity operator.

Proposition 4.5.16. Let α ∈ [0, 1], 0 < p, q < ∞, r = min{1, p, q}, and s ∈ R. If
N > 2

r + |s| then GN operates continuously on Lα,s
p,q (X). In the Banach case, i.e., when

r = 1, the kernel GN also operates continuously on Ls
p,q(X).

Proof. For every N > 0 and all x,y ∈ X we have by Corollary 2.2.22 and Lemma 4.5.10

sup
(a,b)∈Uα

1 (x)×Uα
1 (y)

GN (a,b) . GN (x,y) . HN (x,y),

and HN (x,y) = HN ((x, η, t), (y, θ, u)) has the representation

HN (x,y) = HN


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t


with the function HN from (4.59). Hence GN is of the required form to apply Lemma 4.5.17
or Lemma 4.5.18.

It only remains to show that the quantities Bi, or B̃i respectively, are finite for each
i ∈ {1, . . . , 4}. This task is simplified by the following observation. If q ≥ 1 we have ℓ1 ↩→ ℓq

and thus – as a consequence of Lemma 4.5.14 and Lemma 4.5.12 – using J := [ 1
2 , 2] as a

window

B2 ≤
 ∞

1


ess sup

v∈uJ


v1−αT


R2

vsHN


y, θ, v

dy dθ
v2

q du

u

1/q

.

R+


R


R2

ess sup
v∈uJ

vsHN


y, θ, v

dy dθ
v2

du

u
. B1.

Similarly, one can prove B3 . B1, and analogously also B̃2 . B̃1 and B̃3 . B̃1.
Finally, since N > 2/r + |s|, according to Lemma 4.5.11, we have

B1, B̃1 ≤

R+


R


R2

HN (y, θ, u)r max{u, u−1}|s|r(u+ 1)2dy dθ du

u3 < ∞ ,

B4, B̃4 ≤

R


R2

HN (y, θ, 1)r dy dθ < ∞ .

As a consequence, all quantities B1, B4, B̃1, B̃4 are finite if N > 2/r+ |s|, and the statement
is proven.

The proof of the previous proposition builds upon the following two lemmas.

Lemma 4.5.17. Let α ∈ [0, 1], 1 ≤ p, q < ∞, and s ∈ R be fixed. Further, put T :=
[−π/2, π/2) and assume that K : X × X → C is a kernel with the property

|K

x,y


| ≤ H


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

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for some measurable function H : R2 ×R×R+ → [0,∞). Then K is a well-defined bounded
operator

K : Ls
p,q(X) → Ls

p,q(X) with ∥K|Ls
p,q → Ls

p,q∥ . B1 +B2 +B3 +B4,

provided that, with q′ := q/(q − 1) denoting the dual exponent of q,

B1 :=
∞

0


R


R2

usH

y, θ, u

dy dθ du
u3 < ∞ ,

B2 :=
 ∞

1

 
u1−αT


R2

usH

y, θ, u

dy dθ
u2

q du

u

1/q

< ∞,

B3 :=
  1

0


T


R2

usH

y, θ, u

 dy dθ
u2

q′
du

u

1/q′

< ∞ ,

B4 :=

T


R2

H

y, θ, 1


dy dθ < ∞ .

Proof. Due to Lemma 4.5.3 and the solidity of Ls
p,q, we can without loss of generality assume

that the kernel K is non-negative. In this special case, for any measurable non-negative
function F : X → [0,∞), the integral

KF (x) :=

X

K(x,y)F (y) dµ(y) , x ∈ X,

has a well-defined value in the extended range [0,∞] at almost all points x ∈ X. One thus
obtains a measurable function KF on X with the target set [0,∞]. The investigation below
will further show that the additional assumption F ∈ Ls

p,q ensures KF ∈ Ls
p,q with the

estimate ∥KF |Ls
p,q∥ . (B1 +B2 +B3 +B4)∥F |Ls

p,q∥.
For an arbitrary, not necessarily non-negative, function F ∈ Ls

p,q we can then argue as
follows. Since |F | ∈ Ls

p,q is non-negative, by the above, we have K|F | ∈ Ls
p,q, which in

particular entails K|F |(x) < ∞ for almost all x ∈ X. At those points, KF (x) is contained
in C, giving rise to a measurable function KF : X → C. Further, since |KF | ≤ K|F | almost
everywhere, KF ∈ Ls

p,q holds true by solidity and

∥KF |Ls
p,q∥ ≤ ∥K|F ||Ls

p,q∥ ≤ (B1 +B2 +B3 +B4)∥|F ||Ls
p,q∥ = (B1 +B2 +B3 +B4)∥F |Ls

p,q∥.

This proves the assertion of the lemma. All, that remains to be shown, is that KF ∈ Ls
p,q

with ∥KF |Ls
p,q∥ ≤ (B1 +B2 +B3 +B4)∥F |Ls

p,q∥ holds true for every non-negative function
F ∈ Ls

p,q. The proof of this claim is split into several steps.
Step 1: First we estimate the functions K[FXX0 ]. Thereby we transfer the integration
domain from P to P via the canonical projection p : P → P defined in (2.12). For this, it is
useful to associate to F : P → [0,∞) the auxiliary function F̆ : P → [0,∞) by

F̆ (y, {θ}, u) := F (y, θ, u) + F (y, θ + π, u) , θ ∈ [0, π),

where {·} = {·}T denotes the projective bracket from (2.9).
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Let now x = (x, η, t) ∈ X be fixed. We then have

K[FXX0 ](x) =

X0

K

(x, η, t), (y, θ, u)


F (y, θ, u) dµ0(y, θ, u)

≤

X0

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

F (y, θ, u) dµ0(y, θ, u)

=
1

0


T


R2

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t

F̆ (y, θ, u) dy dθ du

u3 .

Note {{a + b} + c} = {a + b + c}. With the substitutions y →→ R−1
η Aα,ty + x, θ →→

{t1−αθ + η}, u →→ tu, we hence arrive at

K[FXX0 ](x) ≤
1/t
0


t−(1−α)T


R2

H

y, θ, u


F̆ (R−1

η Aα,ty + x, {t1−αθ + η}, tu) dy dθ du
u3 .

Analogously, one shows with the substitutions y →→ R−1
η y + x, θ →→ {θ + η},

K[FXX1 ](x) =

X1

K

(x, η, t), (y, θ, 1)


F (y, θ, 1) dµ1(y, θ, 1)

≤

X1

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, 1/t

F (y, θ, 1) dµ1(y, θ, 1)

=

T


R2

H

A−1

α,tRη(y − x), t−(1−α){θ − η}, 1/t

F̆ (y, θ, 1) dy dθ

=

T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t


F̆ (R−1

η y + x, {θ + η}, 1) dy dθ.

Step 2: For each fixed t ∈ (0, 1], we now decompose
T

∥KF (·, η, t)|Lp∥q dη

1/q

≍


T

∥K[FXX0 ](·, η, t)|Lp∥q dη

1/q

+


T

∥K[FXX1 ](·, η, t)|Lp∥q dη

1/q

=: T0(t) + T1(t).

Then we estimate T0(t) and T1(t), using Step 1 and the continuous Minkowski inequality,

T0(t) ≤


T

 1/t
0


t−(1−α)T


R2

H

y, θ, u


F̆ (R−1

η Aα,ty + ·, {t1−αθ + η}, tu) dy dθ du
u3

Lp

q
dη

1/q

≤
1/t
0


t−(1−α)T


R2

H

y, θ, u

 
T

F̆ (R−1
η Aα,ty + ·, {t1−αθ + η}, tu)

Lp

q
dη

1/q dy dθ du

u3

=
1/t
0


t−(1−α)T


R2

H

y, θ, u

 
T

F̆ (·, η, tu)|Lp

q
dη

1/q dy dθ du

u3 ,
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and analogously

T1(t) ≤


T

 
T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t


F̆ (R−1

η y + ·, {θ + η}, 1) dy dθ
Lp

q
dη

1/q

≤

T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t

 
T

F̆ (R−1
η y + ·, {θ + η}, 1)

Lp

q
dη

1/q

dy dθ

=

T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t


dy dθ


T

∥F̆ (·, η, 1)|Lp∥q dη

1/q

.

Step 3: Finally, we decompose the kernel K =
1

i=0
1

j=0Ki,j with

Ki,j(x,y) := K(x,y)XXi×Xj (x,y) for (i, j) ∈ {0, 1}2.

To finish the proof, it then suffices to check that for every (i, j) ∈ {0, 1}2

Si,j := ∥Ki,jF |Ls
p,q∥ . ∥FXXj |Ls

p,q∥.

We start with S0,1 and S1,1 and observe

S1,1 = T1(1) and S0,1 =
 1

0

t−sqT1(t)q dt

t

1/q

.

Plugging in the estimates from Step 2, we get

S1,1 ≤

T


R2

H

y, θ, 1


dy dθ


T

∥F̆ (·, η, 1)|Lp∥q dη

1/q

.

Further, taking into account

∥FXX1 |Ls
p,q∥ ≍


T

∥F̆ (·, η, 1)|Lp∥q dη

1/q

, (4.60)

a relation proved in Step 4 below, this yields

S1,1 . B4 · ∥FXX1 |Ls
p,q∥ with B4 =


T


R2

H

y, θ, 1


dy dθ.

For S0,1 we derive from Step 2

S0,1 ≤
 1

0

t−sq


T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t


dy dθ


T

∥F̆ (·, η, 1)|Lp∥q dη

1/qq dt

t

1/q

.

We deduce, again with (4.60),

S0,1 . B2 · ∥FXX1 |Ls
p,q∥
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with

B2 =
 1

0

t−sq


T


R2

H

A−1

α,ty, t
−(1−α)θ, 1/t


dy dθ

q dt

t

1/q

=
 ∞

1

 
t1−αT


R2

tsH

y, θ, t

 dy dθ
t2

q dt

t

1/q

.

Next, we turn to S1,0 and S0,0 given by

S1,0 = T0(1) and S0,0 =
 1

0

t−sqT0(t)q dt

t

1/q

.

To estimate S1,0, we use the results of Step 2 and Hölder’s inequality, where q′ shall
denote the dual exponent of q satisfying 1/q + 1/q′ = 1. We obtain

S1,0 ≤
1

0


T


R2

H

y, θ, u

 
T

F̆ (·, η, u)|Lp

q
dη
1/q dy dθ du

u3

=
1

0

 
T


R2

H

y, θ, u

 dy dθ
u2


·
 

T

F̆ (·, η, u)|Lp

q
dη
1/q du

u

≤
 1

0

uq′s
 

T


R2

H

y, θ, u

 dy dθ
u2

q′ du

u

1/q′

·
  1

0
u−sq


T

F̆ (·, η, u)|Lp

q dη du

u

1/q
.

Using the relation

∥FXX0 |Ls
p,q∥ ≍

 1
0


T

t−sq∥F̆ (·, η, t)|Lp∥q dη dt

t

1/q

, (4.61)

whose proof is outsourced to Step 4, we arrive at

S1,0 . B3 · ∥FXX0 |Ls
p,q∥ with B3 =

 1
0

 
T


R2

usH(y, θ, u)dy dθ
u2

q′ du

u

1/q′

.

Last but not least, we estimate S0,0. Note that X(0,1/t)(u) = X(0,1/u)(t) for t, u ∈ R+.
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S0,0 ≤
 1

0

t−sq
 1/t

0


t−(1−α)T


R2

H

y, θ, u

 
T

F̆ (·, η, tu)|Lp

q
dη
1/q dy dθ du

u3

q dt

t

1/q

≤
 1

0

t−sq
 ∞

0


R


R2

X(0,1/t)(u)H

y, θ, u

 
T

F̆ (·, η, tu)|Lp

q
dη
1/q dy dθ du

u3

q dt

t

1/q

≤
∞

0


R


R2

H

y, θ, u

 1
0


T

t−sqX(0,1/u)(t)
F̆ (·, η, tu)|Lp

q
dη
dt

t

1/q dy dθ du

u3

=
∞

0


R


R2

H

y, θ, u

 1/u
0


T

t−sq
F̆ (·, η, tu)|Lp

q dη dt

t

1/q dy dθ du

u3

=
∞

0


R


R2

H

y, θ, u


us
 1

0


T

t−sq
F̆ (·, η, t)|Lp

q dη dt

t

1/q dy dθ du

u3 .

With (4.61), this leads to

S0,0 . B1 · ∥FXX0 |Ls
p,q∥ with B1 =

∞
0


R


R2

usH

y, θ, u

dy dθ du
u3 .

Step 4: It remains to show (4.60) and (4.61). First, observe that due to the non-negativity
of F for every η ∈ [0, π) and t ∈ (0, 1],

∥F̆ (·, {η}, t)|Lp∥ ≍ ∥F (·, η, t)|Lp∥ + ∥F (·, η + π, t)|Lp∥.

As a consequence, for every fixed t ∈ (0, 1]
T

∥F̆ (·, η, t)|Lp∥q dη

1/q

=
 π

0

∥F̆ (·, {η}, t)|Lp∥q dη

1/q

≍
 π

0

∥F (·, η, t)|Lp∥q + ∥F (·, η + π, t)|Lp∥q dη

1/q

≍
 2π

0

∥F (·, η, t)|Lp∥q dη

1/q

=: I(t).

Plugging in t = 1 yields (4.60) since I(1) = ∥FXX1 |Ls
p,q∥. For t ∈ (0, 1) we get (4.61),

since

∥FXX0 |Ls
p,q∥ =

 1
0

t−sqI(t)q dt

t

1/q

≍ rhs(4.61).

Under slightly stronger assumptions on the kernel K, we can formulate the following
companion result to Lemma 4.5.17 which is also valid in the quasi-Banach range.
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Lemma 4.5.18. Let α ∈ [0, 1], and assume that K : X × X → C is a kernel with the
property

ess sup
(a,b)∈Uα

1 (x)×Uα
1 (y)

|K

a,b


| ≤ H


A−1

α,tRη(y − x), t−(1−α){θ − η}, u/t


for some measurable function H : R2 × R × R+ → [0,∞). Assuming s ∈ R, 0 < p, q < ∞,
the kernel K is a well-defined bounded operator

K : Lα,s
p,q (X) → Lα,s

p,q (X) with ∥K|Lα,s
p,q → Lα,s

p,q ∥ . B̃1 + B̃2 + B̃3 + B̃4,

provided that

B̃1 :=
∞

0


R


R2

usrH

y, θ, u

r dy dθ du
u3 < ∞ ,

B̃2 :=
 ∞

1

 
u1−αT


R2

usrH

y, θ, u

r dy dθ
u2

q̃ du

u

1/q̃

< ∞,

B̃3 :=
 1

0


T


R2

usrH

y, θ, u

r dy dθ
u2

q̃′
du

u

1/q̃′

< ∞ ,

B̃4 :=

T


R2

H

y, θ, 1

r
dy dθ < ∞ ,

where r := min{1, p, q}, T := [−π/2, π/2), q̃ := q/r, and q̃′ := q̃/(q̃ − 1).

Proof. Recall the Wiener maximal operator W̃α = W̃α
1 defined in (4.17) for any measurable

function F : X → C. We subsequently use the abbreviation F := W̃αF . For convenience,
we also introduce the kernel

K(x,y) := ess sup
(a,b)∈Uα

1 (x)×Uα
1 (y)

|K

a,b


| , (x,y) ∈ X × X.

We want to show that for each F ∈ Lα,s
p,q the function KF is well-defined, an element of

Lα,s
p,q , and satisfies

∥KF |Lα,s
p,q ∥ = ∥W̃α[KF ]|Ls

p,q∥ . (B̃1 + B̃2 + B̃3 + B̃4)∥F |Lα,s
p,q ∥.

With a trick, we can utilize the previous lemma for the proof, even in the quasi-Banach
range. For this, in a first step which is only relevant in the quasi-Banach setting, we ‘elevate’
the parameters of Lα,s

p,q into the Banach range: We introduce p̃ := p/r, q̃ := q/r, s̃ = sr,
where r = min{1, p, q}, and observe that for any measurable function F : X → C we have
the equivalence

∥F |Ls
p,q∥r =

 
T

∥F (·, η, 1)|Lp∥q dη

1/q

+
 1

0


T

t−sq∥F (·, η, t)|Lp∥q dη dt

t

1/qr

(4.62)

≍


T

∥|F (·, η, 1)|r|Lp̃∥q̃ dη

1/q̃

+
 1

0


T

t−s̃q̃
|F (·, η, t)|r

Lp̃

q̃ dη dt

t

1/q̃

= ∥|F |r|Ls̃
p̃,q̃∥.
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As a consequence, for F ∈ Lα,s
p,q we have F ∈ Ls

p,q and thus Fr ∈ Ls̃
p̃,q̃. Note that, with p̃ ≥ 1

and q̃ ≥ 1, the space Ls̃
p̃,q̃ is a Banach space.

As in Lemma 4.5.17, we now assume that K and F are non-negative, such that KF is
a well-defined measurable function. From the previous considerations, we obtain

∥KF |Lα,s
p,q ∥r = ∥W̃α[KF ]|Ls

p,q∥r ≍ ∥|W̃α[KF ]|r|Ls̃
p̃,q̃∥. (4.63)

Next, using Lemma 4.5.14 with a Wiener amalgam embedding of the type ℓr ↩→ ℓ1, we
obtain for almost every x ∈ X

W̃α[KF ](x)
r ≤ ess sup

a∈Uα
1 (x)


X

ess sup
b∈Uα

1 (y)
|K(a,b)F (b)| dµ(y)

r

. ess sup
a∈Uα

1 (x)


X


ess sup
b∈Uα

1 (y)
|K(a,b)F (b)|

r
dµ(y)

≤

X


K(x,y)F(y)

r
dµ(y) = Kr[Fr](x).

Hereby, the implicit constant is independent of x ∈ X, since µ(Uα
1 (x)) ≍ µ(U ′,α

1 (x)) ≍ 1 for
all x ∈ X according to Corollary 4.2.12.

Together with (4.63), the last estimate yields

∥KF |Lα,s
p,q ∥r . ∥Kr[Fr]|Ls̃

p̃,q̃∥.

Since Ls̃
p̃,q̃ is a Banach space and

Kr(x,y) ≤ HrA−1
α,tRη(y − x), t−(1−α){θ − η}, u/t


we can now apply Lemma 4.5.17. Indeed, we see that the kernel Kr is bounded by Hr

as required. Further, the function Hr satisfies the prerequisites of Lemma 4.5.17 for the
parameters s̃, p̃, and q̃. Note in particular the equality B̃i = Bi for i ∈ {1, . . . , 4} in case
r = 1. We can thus conclude that Kr is a bounded linear operator from Ls̃

p̃,q̃ to Ls̃
p̃,q̃.

Altogether, this yields for F ∈ Lα,s
p,q

∥KF |Lα,s
p,q ∥r . ∥Kr[Fr]|Ls̃

p̃,q̃∥ . (B̃1 + B̃2 + B̃3 + B̃4)∥Fr|Ls̃
p̃,q̃∥,

and by (4.62) we have ∥Fr|Ls̃
p̃,q̃∥ ≍ ∥F|Ls

p,q∥r = ∥F |Lα,s
p,q ∥r. This settles the proof for

non-negative K and F .
Finally, with an argument as in the proof of Lemma 4.5.17, the assertion can be shown

to be valid for general K and F .
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Chapter 5

Cartoon Approximation with
α-Molecules: Bounds

Many applications require efficient encoding of multivariate data in the sense of optimal
sparse approximation. This is typically phrased as a problem of best N -term approximation
with respect to a suitable representation system as explained in Subsection 2.3.1.

In the following two chapters we are concretely interested in the performance of α-
molecule systems for the sparse approximation of image data. As a model for the data,
we will use the model of cartoon-like functions which very well captures the occurrence of
discontinuities such as edges in an image. Some guarantees for actually achievable N -term
approximation rates will be derived in the next chapter. In this chapter the focus is on
theoretical bounds limiting the maximally achievable approximation rates by α-molecules.

The presented research was conducted in [60] and [102]. At first, we study the approx-
imability of cartoon-like data by arbitrary dictionaries under the assumption of a polyno-
mial search depth. The main result, Theorem 5.3.3 ([60, Thm. 2.8]), will provide an upper
bound for the achievable rates in this general setup. In Theorems 5.4.2 and 5.4.4 ([102,
Thm. 3.9 & 3.11]), we then prove more specific bounds for the α-curvelet frame from Sub-
section 3.2.3. Those also have implications for more general α-molecule frames, as derived
in Theorem 5.4.6 ([102, Thm. 5.3]).

5.1 Sparse Approximation Bounds

As in Subsection 2.3.1, we again begin with some abstract considerations in a separable
Hilbert space H. Assume that Φ = {ϕλ}λ∈Λ is a dictionary in H and let ΣN := ΣN [Φ]
be the associated space of N -term expansions introduced in (2.29). Further recall that the
N -term approximation error (2.30) for a signal f ∈ H with respect to Φ is given by

σN (f) := inf
g∈ΣN

∥f − g∥.

To measure the approximation performance of Φ with respect of f , we will subsequently
use the asymptotic approximation rate, i.e., the decay of the approximation error σN (f)
as N → ∞. For a subclass F ⊆ H, the approximation performance shall be judged by
the worst-case approximations, i.e., the worst decay rate of σN (f) for f ∈ F. In this
sense, a dictionary Φ is considered optimal for sparse approximation of F, if its worst-case
approximation rates for signals f ∈ F are the best among all systems.

Without reasonable restrictions, however, the investigation of the best N -term approxi-
mation error with respect to a given dictionary can be meaningless for practical applications.
For example, if Φ is chosen as a countable dense subset of H one would obtain arbitrarily
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

good 1-term approximations for every signal f ∈ H. This would translate to arbitrarily
good approximation rates, which clearly cannot be realized in practice.

For a proper assessment of the approximation performance of a dictionary, the actual
approximation scheme needs to be taken into account, i.e., the utilized process of selecting
suitable dictionary elements. A realistic assumption for such a selection procedure is a
so-called polynomial depth search constraint, which requires that the terms of the N -term
approximations have to be selected from the first π(N) elements of the dictionary, where π
is some fixed polynomial [38].

5.1.1 Polynomial Depth Search in a Dictionary

For the subsequent investigation, let us concretize our considered scenario. Assume that we
have a countable dictionary Φ = (ϕn)n∈N which without loss of generality is indexed by the
natural numbers. A non-linear N -term approximation scheme can then be described by a
set-valued selection function S, which determines for given f ∈ H and N ∈ N the selected
dictionary elements, i.e., S(f,N) ⊂ Φ with #S(f,N) = N . Note that, due to the allowed
dependence of S on f , by this general procedure even adaptive approximation schemes
can be implemented. The obtained approximants are the elements fN ∈ span S(f,N)
minimizing the error ∥f − fN ∥.

A polynomial depth search constraint for the selection rule S is described by a fixed
polynomial π and the condition S(f,N) ⊆ {ϕ1, . . . , ϕπ(N)} for all f ∈ H and N ∈ N. Under
this condition, an optimal selection S thus yields best N -term approximations fN ∈ ΣN in
the following modified sense,

fN = arg min
g=


λ∈ΛN
cλϕλ

∥f − g∥ s.t. ΛN ⊆ {1, . . . , π(N)}, #ΛN ≤ N. (5.1)

This definition of fN should be compared with (2.31). Whereas fN in the sense of (2.31)
might not exist, the existence of fN as in (5.1) is always guaranteed.

We now recall a benchmark derived in [38] concerning the optimal approximation rate
of a dictionary when polynomial depth search is used. Beforehand, we have to recall what
it means for a subclass F ⊆ H to contain a copy of ℓp0 (see also [38, Def. 1&2]).

Definition 5.1.1 ([60, Def. 2.2]). (i) A subclass F ⊆ H is said to contain an embedded
orthogonal hypercube of dimension m and sidelength δ if there exist f0 ∈ F and or-
thogonal elements ψi ∈ H for i = 1, ...,m with ∥ψi∥ = δ such that the collection of
hypercube vertices

H(m; f0, (ψi)i) =

h = f0 +

m
i=1

ϵiψi : ϵi ∈ {0, 1}


is contained in F. It should be noted that H just consists of its vertices.

(ii) A subclass F ⊆ H is said to contain a copy of ℓp0, p > 0, if there exists a sequence
of orthogonal hypercubes (Hk)k∈N, embedded in F, which have dimensions mk and
sidelengths δk, such that δk → 0 and for some constant C > 0

mk ≥ Cδ−p
k for all k ∈ N. (5.2)
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Note, that if F contains a copy of ℓp0, then it also contains a copy of ℓq0 for all 0 < q < p.
It was shown in [38, Thm. 2] that if a subclass F contains a copy of ℓp0 there exists an
upper bound on the maximal achievable approximation rate via reconstruction in a fixed
dictionary.

We state a reformulation of this landmark result, which in its original form [38, Thm. 2]
is stated in terms of the coefficient decay. The original proof can be adapted to lead
to the following formulation from [60, Thm. 2.2], which is in terms of the best N -term
approximation and more appropriate for our needs.

Theorem 5.1.2 ([60, Thm. 2.2]). Suppose, that a class F ⊆ H is uniformly bounded and
contains a copy of ℓp0 for p ∈ (0, 2]. Then, allowing only polynomial depth search in a given
dictionary, there is a constant C > 0 such that for every N0 ∈ N there is a vector f ∈ F
and an N ∈ N, N ≥ N0 such that

∥f − fN ∥2 ≥ C

N log2(N)

−(2−p)/p
,

where fN denotes the best N -term approximation under the polynomial depth search con-
straint.

Proof. Let Φ = (ϕn)n∈N be a given dictionary and π the polynomial specifying the search
depth. The best N -term approximation of f ∈ H obtained in this setting, i.e., (5.1), shall
be denoted by fN , the corresponding optimal selection rule, as described above, by S.

Each system S(f,N) can be orthonormalized by the Gram-Schmidt procedure (starting
from lower indices to higher indices), giving rise to an orthonormal basis of span S(f,N)
(with the exception of some possible zero vectors). Therefore we can represent each fN by
the unique set of coefficients obtained from an expansion in this basis. (If a basis element
is zero, the corresponding coefficient is chosen to be zero.)

In order to apply information theoretic arguments, we consider the following coding
procedure. For f ∈ F we select the dictionary elements S(f,N) and quantize the coefficients
of fN obtained as above by rounding to multiples of the quantity q = N−2/p.

We need N log2(π(N)) bits of information to encode the locations of the selected ele-
ments S(f,N) and N log2(2T/q) bits for the coefficients themselves, where T is the uniform
norm bound for the elements of F. Hence, in this procedure we are encoding with at most

R(N) = N

C1 + C2 log2(N)


, C1, C2 > 0,

bits, and for N ≥ 2 we have R(N) ≤ C3N log2(N) for some constant C3 > 0. To decode,
we simply reconstruct the rounded values of the coefficients and then synthesize using the
selected dictionary elements.

Let H be a hypercube in F of dimension m and sidelength δ. Starting with a vertex
h ∈ H the coding-decoding procedure (for some fixed N ∈ N) yields some h̃ ∈ H. By passing
to the closest vertex ĥ, we again obtain an element of the hypercube H.

Every vertex h ∈ H can be represented as a word of m bits, each bit corresponding to one
side of the cube. Thus the above coding procedure gives a map of the m bits, which specify
the vertex h ∈ H, to R = R(N) bits. The decoding then reconstructs the m bits specifying
the vertex ĥ ∈ H. Since at the intermediate step we just have R bits of information we
unavoidably loose information if R < m.

Now we can apply an information theoretic argument. By rate-distortion theory [38, 5]
there must be at least one vertex h ∈ H, where the number of false reconstructed bits is
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

larger than Dm(R). Here Dm(R) is the so-called m-letter distortion-rate function. Since
each bit determines a side of the cube, the error we make for this vertex h obeys

∥h− ĥ∥2 ≥ δ2 ·Dm(R).

Since by construction ∥h̃− h∥ ≥ ∥h̃− ĥ∥ we have ∥h̃− h∥ ≥ 1
2∥ĥ− h∥. It follows

∥h̃− h∥2 ≥ 1
4δ

2 ·Dm(R).

By assumption, F contains a copy of ℓp0. Therefore we can find a sequence of hypercubes
Hk with sidelengths δk → 0 as k → ∞ and dimensions mk = mk(δk) ≥ Cδ−p

k . For large k
we then pick Nk ∈ N such that Nk log2(Nk) ≍ mk subject to the condition C3Nk log2(Nk) ≤
1
3mk. This ensures that Nk obeys the inequality R(Nk) ≤ 1

3mk.
Here we can apply another result from rate-distortion theory. If R

m ≤ ρ for some ρ < 1
2

it holds Dm(R)/m ≥ D1(ρ), where D1 is the so-called single-letter distortion-rate function.
Hence, if R

m ≤ 1
3 , we have

∥h̃− h∥2 ≥ 1
4D1(1

3)δ2m.

Let hk denote the vertices with maximal reconstruction error ∥hk−h̃k∥ at each hypercube
Hk. Taking into account Nk log2(Nk) ≍ mk & δ−p

k we can then conclude for large k

∥h̃k − hk∥2 ≥ 1
4D1(1

3)δ2
kmk & δ2

kmk & (Nk log2(Nk))−(2−p)/p.

Finally we have to take care of the rounding errors. The best Nk-term approximation h′
k

differs from h̃k by at most q
√
Nk, i.e.,

∥h̃k − h′
k∥ ≤ q


Nk ,

since the coefficients belong to an orthonormal basis. It follows, with some constant C > 0,

∥hk − h′
k∥ ≥ ∥h̃k − hk∥ − ∥h̃k − h′

k∥ ≥ C(Nk log2(Nk))
1
2 − 1

p −N
1/2−2/p
k

& (Nk log2(Nk))−(2−p)/(2p).

This finishes the proof.

We will apply Theorem 5.1.2 to obtain an upper bound on the achievable approximation
rates for cartoon-like functions. This model class for natural images is introduced in the
next section.

5.2 Cartoon-like Functions

In order to theoretically analyse the approximability of images, a suitable data model for the
images under consideration is required. For bivariate data in general, a standard continuum
model is given by the Hilbert space L2(R2). Our concrete objects of interest are natural
images, however, such as pictures or photographs of real-world motives. Due to their specific
structure, the model space L2(R2) can be significantly reduced.
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5.2 Cartoon-like Functions

Suitable models for natural images are provided for example by subclasses of L2(R2),
consisting of so-called cartoon-like functions. These are functions which consist of smooth
regions separated from one another by piecewise-smooth discontinuity curves. Their struc-
ture imitates the fact that edges, a typical feature of natural images, are characterized by
abrupt changes of color and brightness, whereas changes in the regions in between occur
smoothly.

Mathematically, models of cartoon-like functions can be concretised in different ways.
The classic model [15] postulates a compact image domain separated into two C2 regions
by a closed C2 discontinuity curve. This model was generalized in various directions, e.g.,
to take into account piecewise-smooth edges or to allow more general Cβ regularity with
β ∈ [0,∞). Cartoon classes of this kind have been studied extensively, especially in the
range β ∈ (1, 2], e.g., in [83, 73, 60]. Another variant are the closely related horizon classes,
where the discontinuity is not a closed curve in the image domain but a (possibly curved)
horizontal or vertical line stretching across. Such classes have been investigated e.g. in
[35, 18, 87]. Let us also mention that there exist extensions to multi-dimensions, see e.g.
[83]. In particular, the corresponding 3D models have been applied in the investigation of
video data. We will have a closer look at the 3D setting in Section 7.5 of Chapter 7. In this
chapter, our attention is restricted to 2 dimensions.

The following definition is a template for different classes of bivariate cartoons, compris-
ing many of those mentioned above. It provides the flexibility to taylor the model to the
particular needs of specific applications.

Definition 5.2.1 ([102, Def. 3.1]). Let β ∈ [0,∞) and ν > 0. Given a domain Ω ⊆ R2 and
a set A of admissible subsets of R2, the class Eβ(Ω; A, ν) consists of all functions f ∈ L2(R2)
of the form

f = f1 + f2XD,

where D ∈ A and f1, f2 ∈ Cβ(R2) with supp f1, f2 ⊆ Ω and ∥f1∥Cβ , ∥f2∥Cβ ≤ ν. The class
Eβ

bin(Ω; A) shall be the collection of all ‘binary functions’ XD, where D ∈ A and D ⊆ Ω.

For particular choices of A many of the classes appearing in the literature can be re-
trieved, including classes of horizon-type. In this section we focus on the class Eβ(Ω; A, ν)
with fixed image domain Ω = [−1, 1]2 and certain Cβ domains as admissible sets A. Similar
to [38, 15, 78, 83], we restrict our investigation to star-shaped domains, since those allow a
simple parametrization of the boundary curve. The results obtained however also hold true
for more general domains.

Let us introduce the collection of admissible sets Starβ(ν), ν > 0, as all translates of
sets B ⊆ R2, whose boundary ∂B possesses a parametrization b : T → R2 of the form

b(ϕ) = ρ(ϕ)


cos(ϕ)
sin(ϕ)


, ϕ ∈ T = [0, 2π] ,

where the radius function ρ : T → R is a Cβ function with

|∂⌊β⌋ρ(ϕ) − ∂⌊β⌋ρ(ϕ′)| ≤ νρ0|ϕ− ϕ′|β−⌊β⌋ for all ϕ,ϕ′ ∈ T, (5.3)

where we set ρ0 := minϕ∈T ρ(ϕ) ≥ ν−1. The condition (5.3) implies that with C = C(β) =
(2π)β ≥ 1 we have ∥ρ(k)∥C0(T) ≤ Cρ0ν for every k ∈ {1, . . . , ⌊β⌋} if β ≥ 1, and |ρ(ϕ) −
ρ(ϕ′)| ≤ Cρ0ν for ϕ,ϕ′ ∈ T. In particular ρ0 ≤ ρ(ϕ) ≤ ρ0(1 + Cν) for all ϕ ∈ T.
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

Note, that the set Starβ(ν) differs from the set of star-shaped domains used in [38, 15,
78, 83]. The domains in Starβ(ν) are not restricted to subsets of [−1, 1]2. In fact, every
star-shaped Cβ domain with center 0 and ρ0 > 0 is contained in Starβ(ν) for suitably large
ν. Moreover, the collection Starβ(ν) is scaling invariant in the sense that for B ∈ Starβ(ν)
and λ > 0 also λB ∈ Starβ(ν), provided λρ0 ≥ ν−1. In addition, with B ∈ Starβ(ν) also
the complement Bc = R2\B is contained in Starβ(ν).

Building upon Definition 5.2.1, we now define the class of functions which we want to
study.

Definition 5.2.2 (see (28) in [102]). Assume β ∈ [0,∞) and ν > 0. We define

Eβ([−1, 1]2; ν) := Eβ([−1, 1]2; Starβ(ν), ν)

as the class of cartoon-like functions obtained from Definition 5.2.1 by choosing Ω = [−1, 1]2
and A = Starβ(ν). The associated binary class shall be denoted by Eβ

bin([−1, 1]2; ν) :=
Eβ

bin([−1, 1]2; Starβ(ν)).

In the sequel, we will be interested in the approximation performance of α-molecule
systems with respect to the class Eβ([−1, 1]2; ν). Let us at first assume, however, that we
can freely choose the utilized dictionary, and let us aim for a benchmark for the best possible
N -term approximation rate achievable under a polynomial depth search constraint.

5.3 Entropy Bounds for Cartoon-like Functions

In this section we establish an upper bound on the maximal achievable approximation rate
for Eβ([−1, 1]2; ν) when polynomial depth search in an arbitrary dictionary is used. A
result like this was first derived by Donoho [38, Thm. 1] for binary Cβ cartoons in the range
β ∈ (1, 2]. Later similar results were proved for more general cartoon classes [83, 73, 60].

In principle, our statement, Theorem 5.3.3, is a known result (see e.g. [83]). However,
for reasons of completeness, we outline a short proof based on the technique used in [38].
It relies on Theorem 5.1.2 and the fact that the class Eβ([−1, 1]2; ν) contains a copy of ℓp0
for p = 2/(β+ 1). To show this, let us introduce the following subclass of smooth functions
for β ∈ [0,∞) and ν > 0,

Cβ
0 ([−1, 1]2; ν) :=


f ∈ Cβ

0 ([−1, 1]2) : ∥f∥Cβ ≤ ν

.

Note, that the choice Ω = [−1, 1]2 and A = {∅} in Definition 5.2.1 yields this class. As a
consequence, we have

Cβ
0 ([−1, 1]2; ν) ⊂ Eβ([−1, 1]2; ν). (5.4)

Before turning to Eβ([−1, 1]2; ν), we now first analyze for which p > 0 the classes
Cβ

0 ([−1, 1]2; ν) and Eβ
bin([−1, 1]2; ν) contain a copy of ℓp0.

Lemma 5.3.1. Let ν > 0, β ∈ [0,∞), and p = 2/(β + 1). Then the following holds true.

(i) The function class Cβ
0 ([−1, 1]2; ν) contains a copy of ℓp0.

(ii) The class of binary cartoons Eβ
bin([−1, 1]2; ν) contains a copy of ℓp0 if ν ≥ 1, otherwise

it only contains the zero-function.
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5.3 Entropy Bounds for Cartoon-like Functions

Proof. The proof is a 2D-adaption of the proof of [83, Thm. 3.2].
Part (i): Let φ ∈ C∞

0 (R) with suppφ ⊆ [0, 1] and φ ≥ 0 and put ψ(t) = φ(t1)φ(t2) for
t = (t1, t2) ∈ R2. Then ψ ∈ C∞(R2) with suppψ ⊆ [0, 1]2. We choose φ ̸= 0 such that
∥ψ∥Cβ(R2) ≤ ν. Next, we define for k ∈ N and ℓ = (ℓ1, ℓ2) ∈ {0, ..., k − 1}2 the functions

ψk,ℓ(t) = k−βφ(kt1 − ℓ1)φ(kt2 − ℓ2).

These functions ψk,ℓ ∈ C∞(R2) are dilated and translated versions of ψ with suppψk,ℓ ⊆
[ ℓ1

k ,
ℓ1+1

k ] × [ ℓ2
k ,

ℓ2+1
k ] and ∥ψk,ℓ∥Cβ(R2) ≤ ∥ψ∥Cβ(R2) ≤ ν. In particular, ψk,ℓ and ψk,ℓ′ are

orthogonal in L2(R2) if ℓ ̸= ℓ′. The functions in the set

Hk :=
 

ℓ∈{0,...,k−1}2

ϵℓψk,ℓ : ϵℓ ∈ {0, 1} for every ℓ ∈ {0, . . . , k − 1}2


constitute the vertices of an orthogonal hypercube of dimension mk = k2 and side-length
δk = ∥ψk,ℓ∥2 = k−β−1∥ψ∥2, which is embedded in the class Cβ

0 ([−1, 1]2; ν). The sequence
(δk)k∈N obeys δk → 0 as k → ∞. Further (5.2) is fulfilled with p = 2/(β + 1) since

mk = k2 = (δk/∥ψ∥2)− 2
β+1 = ∥ψ∥

2
β+1
2 · (δk)− 2

β+1 .

Part (ii): We start with a function φ0 ∈ C∞(R) and assume suppφ0 ⊆ [0, π/4], 0 ≤ φ0 ≤
cos(π/8)−1 − 1, and ∥φ0∥Cβ(R) = 1. Then we define for k ∈ N and ℓ ∈ {0, ..., k − 1} the
functions

φk,ℓ(t) = k−βφ0(kt− ℓπ/4),

which clearly satisfy ∥φk,ℓ∥Cβ(R) ≤ ∥φ0∥Cβ(R) = 1. Moreover, they have the property
∥φk,ℓ∥C0(R) ≤ k−β(cos(π/8)−1 − 1) and ∥φk,ℓ∥1 = k−β−1∥φ0∥1.

Next, we define the functions ρk,ℓ ∈ C∞(T) on the torus T = [0, 2π) via ρk,ℓ(t) =
1 + φk,ℓ(t− π/8). They satisfy 1 ≤ ρk,ℓ ≤ cos(π/8)−1, such that Dk,ℓ ⊂ [−1, 1]2 for the sets

Dk,ℓ :=

x ∈ R2 : x = (r, ϕ) in polar coordinates with 1 < r ≤ ρk,ℓ(ϕ), ϕ ∈ T


.

For fixed k, the characteristic functions ψk,ℓ := XDk,ℓ
are mutually orthogonal in L2(R2)

due to their disjoint support. Let B2(0, 1) denote the unit ball in R2 and consider the
orthogonal hypercubes Hk of dimension mk = k and side-length δk = ∥ψk,ℓ∥2 given by

Hk :=


XB2(0,1) +


ℓ∈{0,...,k−1}
ϵℓψk,ℓ : ϵ = (ϵ1, . . . , ϵk−1) ∈ {0, 1}k−1


.

If ν ≥ 1 those are contained in Eβ
bin([−1, 1]2; ν). Moreover, since 0 ≤ ∥φk,ℓ∥2

2 ≤ ∥φk,ℓ∥1, it
holds

∥ψk,ℓ∥2
2 =

 2π

0

 ∞

0
|ψk,ℓ(r, ϕ)|r drdϕ =

 2π

0

 1+φk,ℓ(ϕ)

1
r drdϕ = ∥φk,ℓ∥1 + 1

2∥φk,ℓ∥2
2 ≍ ∥φk,ℓ∥1.

This implies δk ≍ k−(β+1)/2 → 0 for k → ∞ and (5.2) with p = 2/(β + 1) since mk = k ≍
(δk)− 2

β+1 .
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As a consequence of (5.4), we can deduce from Lemma 5.3.1(i) that also Eβ([−1, 1]2; ν)
contains a copy of ℓ2/(β+1)

0 .

Corollary 5.3.2. The function class Eβ([−1, 1]2; ν) contains a copy of ℓp0 for p = 2/(β+1).

An application of Theorem 5.1.2 thus yields Theorem 5.3.3 below.

Theorem 5.3.3 (compare [83]). Let β, γ ∈ [0,∞) and ν > 0. Assume that there is a
constant C > 0 such that

sup
f∈Eβ([−1,1]2;ν)

∥f − fN ∥2
2 ≤ CN−γ for all N ∈ N,

where fN denotes the best N -term approximation of f obtained by polynomial depth search
in a fixed dictionary. Then necessarily γ ≤ β.

The optimality benchmark N−β is also valid for Cβ
0 ([−1, 1]2; ν) and Eβ

bin([−1, 1]2; ν) with
ν ≥ 1. We end this section with this observation.

Remark 5.3.4. According to Lemma 5.3.1(i), the bound of Theorem 5.3.3 even holds true
for the class Cβ

0 ([−1, 1]2; ν). This is a stronger statement due to the inclusion (5.4). Further,
due to Lemma 5.3.1(ii), a statement analogous to Theorem 5.3.3 holds true for the binary
class Eβ

bin([−1, 1]2; ν) if ν ≥ 1.

5.4 Approximation Bounds for α-Molecule Systems

Whereas the subject of the previous section was the approximability of the set Eβ([−1, 1]2; ν)
by general dictionaries, we are now more specifically interested in the approximation α-
molecule systems can provide. In the subsequent investigation, which was first conducted
in [102], we will analyze the approximation performance of the discrete Parseval frame of
α-curvelets C•

α from Subsection 3.2.3. As shown by Proposition 3.2.8, this frame is a system
of α-molecules of order (∞,∞,∞,∞), which makes it a suitable anchor system for the
application of the transfer principle, Theorem 2.3.6. Hence, the bounds we will obtain in
Theorem 5.4.2 ([102, Thm. 3.9]) and Theorem 5.4.4 ([102, Thm. 3.11]) for the achievable
rates of C•

α also have consequences for other α-molecule systems. These will be stated in
Theorem 5.4.6 ([102, Thm. 5.3]).

5.4.1 The Anchor System: α-Curvelets

Before our investigation of approximation properties, let us shortly revisit the construction
of the frame C•

α = {ψµ}µ∈M from Subsection 3.2.3. First, recall that its index set M is of
the form M = J × Z2 with

J :=

J = (j, ℓ) : j ∈ N0, ℓ ∈ {0, . . . , Lj − 1}


and

Lj = 2⌊j(1−α)⌋ , j ∈ N0. (5.5)
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Next, recall that the functions ψj,ℓ,k ∈ C•
α are simply rotations and translations of the

α-curvelets ψj,0,0. Let Rη denote the rotation matrix (2.3) and Aα,t the α-scaling matrix
(2.4), i.e.,

Rη =


cos(η) − sin(η)
sin(η) cos(η)


and Aα,t =


t 0
0 tα


, η ∈ R, t ∈ R+.

Then, according to (3.23), for every (j, ℓ, k) ∈ M we have the relation

ψj,ℓ,k(·) = ψj,0,0

Rℓωj

· −A−1
α,2jk


,

where ωj is the angle

ωj = πL−1
j = π2−⌊j(1−α)⌋ , j ∈ N0.

Finally, recall that the Fourier representation of ψj,ℓ,k ∈ C•
α is given by

ψ̂j,ℓ,k(ξ) = Wj,ℓ(ξ)uj,ℓ,k(ξ) , ξ ∈ R2,

where Wj,ℓ : R2 → [0, 1] is a wedge function as in (3.18) and uj,ℓ,k = uj,0,k(Rℓωj
·) is obtained

by rotating the exponential

uj,0,k(ξ) = 2−j(1+α)/2 exp

2πi(2−jk1ξ1 + 2−jαk2ξ2)


, ξ = (ξ1, ξ2) ∈ R2.

We will now elaborate a bit on the geometric aspects of the frequency tiling induced
by C•

α. Clearly, it is determined by the support of the functions WJ ∈ C∞
0 (R2) which,

according to their definition (3.18), are polar tensor products of respective radial and angular
components. For each J = (j, ℓ) ∈ J we have

Wj,ℓ(ξ) = Uj(|ξ|2)Vj,ℓ(ξ/|ξ|2), ξ ∈ R2, (5.6)

with a radial function Uj ∈ C∞(R+
0 , [0, 1]) and an angular function Vj,ℓ ∈ C∞(S1, [0, 1]).

The functions Uj ∈ C∞(R+
0 ), j ∈ N0, satisfy the support condition suppUj ⊆ Ij ,

whereby

I0 := 1
6π · [0, 2] and Ij := 1

6π · [2j−1, 2j+1] , j ≥ 1. (5.7)

Further, due to (3.15) and (3.16), they equal 1 on the respective intervals

I−
0 := 1

6π · [0, τ1] and I−
j := 1

6π · [2j−1τ2, 2jτ1], j ≥ 1. (5.8)

As a consequence, all functions WJ belonging to a fixed scale j ∈ N0 have support in a
corona Cj defined by C0 := {ξ ∈ R2 : 6π|ξ|2 ≤ 2} for j = 0 and

Cj :=

ξ ∈ R2 : 2j−1 ≤ 6π|ξ|2 ≤ 2j+1


, for j ≥ 1.

More concretely, taking into account the support of the functions Vj,ℓ, the approximate
support of Wj,ℓ corresponds to a pair of opposite wedges Wj,ℓ := R−1

ℓωj
Wj,0, which is obtained

as a rotation of the set

Wj,0 :=

ξ = (ξ1, ξ2) ∈ Cj : |ξ1| ≥ cos(ϕj/2)|ξ|2


.
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

To analyze the support of Wj,ℓ in more detail, note that the angular function Vj,0
covers an angle range of 3

2ωj on S1. Moreover, Vj,0 ≡ 1 on a range of size 1
2ωj . Hence,

suppVj,ℓ ⊆ Aj,ℓ and Vj,ℓ ≡ 1 on A−
j,ℓ for the angular intervals

Aj,ℓ := R−1
j,ℓ Aj,0 with Aj,0 :=


ξ = (ξ1, ξ2) ∈ S1 : |ξ1| ≥ cos(3ωj/4)


,

A−
j,ℓ := R−1

j,ℓ A−
j,0 with A−

j,0 :=

ξ = (ξ1, ξ2) ∈ S1 : |ξ1| ≥ cos(ωj/4)


.

Introducing the wedge pairs

W+
J :=


ξ ∈ R2 : |ξ|2 ∈ Ij , ϕ(ξ) ∈ AJ


and W−

J :=

ξ ∈ R2 : |ξ|2 ∈ I−

j , ϕ(ξ) ∈ A−
J


,

(5.9)

we can thus formulate the following support properties, which will be of essential importance
later,

suppWJ ⊆ W+
J and WJ ≡ 1 on W−

J . (5.10)

A geometric illustration is displayed in Figure 5.1.

C0
I0

C1

I1

...

Cj

Wj,0
Ij

Wj,ℓ

ωj

ℓωj

(a)

Wj,0

W+
j,0

W−
j,0

Ξj,0

Cj

S1

Aj,0A−
j,0

I−
j

Ij

(b)

Figure 5.1: (a): Tiling of Fourier domain into coronae Cj and wedges Wj,ℓ. (b): Schematic
display of the frequency support of a wedge function Wj,0.

We finally note that the sets W+
J are contained in respective rectangles ΞJ of size 2j×2jα.

Those were defined in (3.20) and are given by

ΞJ = R−1
J Ξj,0 , where Ξj,0 = [−2j−1, 2j−1] × [−2jα−1, 2jα−1].

5.4.2 Approximation Bounds for α-Curvelets

The main results of this subsection, Theorems 5.4.2 and 5.4.4, will establish bounds on
the achievable N -term approximation rate for the class Eβ([−1, 1]2; ν), β ∈ [0,∞), when
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5.4 Approximation Bounds for α-Molecule Systems

using the α-curvelet frame C•
α for approximation. Unlike the more general bounds in The-

orem 5.3.3, these bounds are tied to the particular approximation system C•
α. They are

established by studying the approximability of certain example cartoons.
We choose the characteristic function of the ball B2(0, 1

2) ⊂ R2 of radius 1
2 , for which

we subsequently use the symbol

Θ(x) := XB2(0, 1
2 )(x1, x2) , x ∈ R2. (5.11)

This function embodies an exceptionally regular binary cartoon. Its boundary is a closed
C∞-curve. It is radial symmetric and contained in Eβ

bin([−1, 1]2, ν) for arbitrary β ∈ [0,∞)
and ν ≥ 2. Furthermore, for every β ∈ [0,∞) and ν ≥ 2 there is γ > 0 such that γΘ ∈
Eβ([−1, 1]2; ν), wherefore the approximability of Θ has implications for the approximability
of these cartoon classes.

The Fourier transform of Θ is explicitly computable. Let J1 denote the Bessel function
of order 1, then according to (5.21)

Θ(ξ) = J1(π|ξ|)
2|ξ|

, ξ ∈ R2. (5.12)

Some properties of J1 and Bessel functions in general are collected in the appendix, Sec-
tion 5.5.

At the center of the following investigation is the lemma below, which estimates the
energy of Θ contained in the wedges WJ , J ∈ J. Let {WJ}J∈J be a family of wedge
functions of the kind (3.18) with property (3.17). Further, let

W−
J := XW−

J
and W+

J := XW+
J

be the characteristic functions of the sets W−
J and W+

J defined in (5.9).

Lemma 5.4.1 ([102, Lem. 3.8]). There are constants 0 < C1 ≤ C2 < ∞, independent of
scale j ≥ j0, where j0 ∈ N0 is a suitable base scale, such that for all J ∈ J with |J | ≥ j0

C12−j(2−α) ≤ ∥ΘW−
J ∥2

2 ≤ ∥ΘWJ∥2
2 ≤ ∥ΘW+

J ∥2
2 ≤ C22−j(2−α),

whereby |J | = j for J = (j, ℓ) ∈ J.

Proof. Let us recall the Bessel function J1 of order 1 and its asymptotic behavior. According
to (5.23) there is a constant C > 0 and a function R1 on [1,∞) satisfying |R1(r)| ≤ Cr−3/2

such that

J1(r) =


2
πr

cos(r − 3π
4 ) +R1(r) for r ≥ 1.

This allows to separate terms of higher order from J 2
1 . We decompose

J 2
1 (r) =

 2
π

cos2(r − 3π
4 )r−1


+
 8

π
cos(r − 3π

4 )r−1/2R1(r) +R1(r)2


=: T1(r) + T2(r).

For the following argumentation we need the square wave function ⊓ : R → {0, 1} defined
by

⊓(r) :=


1 , r ∈


k∈Z kπ + [−π
2 , 0],

0 , r ∈


k∈Z kπ + (0, π
2 ).
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

For all r ∈ R it has the property 2 cos2(r − 3π/4) ≥ ⊓(r). Therefore we can deduce for
1 ≤ a ≤ b b

a
T1(r)r−1 dr = 1

π

 b

a
2 cos2(r − 3π

4 )r−2 dr ≥ 1
π

 b

a
⊓(r)r−2 dr ≥ 1

2


k∈Ia,b

(kπ)−2

with Ia,b := {k ∈ Z : kπ ∈ [a+ π, b]}. To proceed, we use the relation
n

k=m

(kπ)−2 ≥ 1
π

 (n+1)π

mπ
k−2 dk,

which is valid for all m,n ∈ N and m ≤ n. We obtain

1
2


k∈Ia,b

(kπ)−2 ≥ 1
2π

 b

a+2π
k−2 dk = 1

2π
  b

a
k−2 dk −

 a+2π

a
k−2 dk


≥ 1

2π (a−1 − b−1) − a−2.

Next, we see that with a constant C > 0 independent of 1 ≤ a ≤ b b

a
|T2(r)|r−1 dr ≤ C

 b

a
r−3 dr ≤ C

 ∞

a
r−3 dr ≤ Ca−2.

Altogether, we conclude that b

a

J 2
1 (r)
r

dr ≥ 1
2π (1 − ab−1)a−1 − (1 + C)a−2.

If c = ab−1 ≤ 1 is fixed, we can deduce for a ≥ 4π 1+C
1−c the estimate a/c

a

J 2
1 (r)
r

dr ≥ 1
4π (1 − c)a−1. (5.13)

After this preparation, we can now turn to the actual proof of the assertion. The relation

∥ΘW−
J ∥2

2 ≤ ∥ΘWJ∥2
2 ≤ ∥ΘW+

J ∥2
2

is a direct consequence of (5.10) and ∥WJ∥∞ ≤ 1. Let Ij be the intervals defined in (5.7).
Further, recall the intervals I−

j ⊂ Ij defined in (5.8). Using (5.12) and the definition (5.9)
of W−

J we calculate

∥ΘW−
J ∥2

2 =


W−
J

J 2
1 (π|ξ|)
4|ξ|2

dξ =


I−
j


A−

J

J 2
1 (πr)
4r dϕdr ≍ 2−j(1−α)


πI−

j

J 2
1 (r)
r

dr.

The intervals I−
j scale like ∼ 2j . Hence, if j ∈ N is chosen large enough by (5.13)

∥ΘW−
J ∥2

2 ≍ 2−j(1−α)


πI−
j

J 2
1 (r)r−1 dr & 2−j(1−α)2−j = 2−j(2−α).

The estimate from above is much easier to establish. If j ∈ N such that πIj ⊂ [1,∞) we
have

∥ΘW+
J ∥2

2 =


W+
J

J 2
1 (π|ξ|)
4|ξ|2

dξ =


Ij


AJ

J 2
1 (πr)
4r dϕdr ≍ 2−j(1−α)


πIj

J 2
1 (r)
r

dr

. 2−j(1−α)


Ij

r−2 dr . 2−j(2−α).
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Based on Lemma 5.4.1 we can prove the first main result of this subsection.

Theorem 5.4.2 ([102, Thm. 3.9]). Let C•
α be the α-curvelet frame constructed in Subsec-

tion 3.2.3 for fixed α ∈ [0, 1). There exists a constant C > 0 such that for any given N ∈ N
every N -term approximation fN of Θ with respect to C•

α (not even subject to a polynomial
depth search constraint) satisfies

∥Θ − fN ∥2
2 ≥ CN− 1

1−α .

Proof. Let N ∈ N be fixed and assume that

fN =
N

r=1
θJr,krψJr,kr

is a linear combination of α-curvelets ψJr,kr with coefficients θJr,kr ∈ R. The curvelets
ψJr,kr ∈ C•

α satisfy supp ψJr,kr ⊆ W+
Jr

as recorded in (5.10). It follows supp fN ⊆ WN

where WN :=


J∈JN
W+

J for JN := {J1, . . . , JN } ⊂ J. Using the notation Jc
N := J\JN and

Wc
N := R2\WN we get with Lemma 5.4.1

∥Θ − fN ∥2
2 = ∥Θ − fN ∥2

2 ≥ ∥Θ∥2
L2(Wc

N ) ≥


J∈Jc
N

∥ΘW−
J ∥2

2 &


J∈Jc
N

2−j(2−α).

We want to bound the right-hand side from below. By (5.5), the number of tiles in each
corona Cj , j ∈ N0, is given by Lj , where Lj = 2⌊j(1−α)⌋ for j ∈ N0. Let j(N) ∈ N denote
the unique number such that

j(N)−1
j=0

Lj < N ≤
j(N)
j=0

Lj .

Since 2−j(2−α) decreases with rising scale we obtain


J∈Jc

N

2−j(2−α) ≥
∞

j=j(N)+1
Lj2−j(2−α) ≥ 1

2

∞
j=j(N)+1

2−j & 2−j(N).

Here we used Lj ≥ 2j(1−α)−1. Since N &
j(N)−1

j=0 2j(1−α) & 2j(N)(1−α) we can finally deduce

∥Θ − fN ∥2
2 & 2−j(N) =


2j(N)(1−α)

− 1
1−α

& N− 1
1−α .

This result can be strengthened if we restrict to greedy N -term approximations obtained
by thresholding the coefficients. Essential is the following observation, which has also been
used in [60]. Due to its importance we give a rigorous proof here.

Lemma 5.4.3 ([102, Lem. 3.10]). There is a constant C > 0 such that all curvelets ψµ ∈ C•
α,

µ ∈ M , satisfy
∥ψµ∥1 ≤ C2−j(1+α)/2.
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

Proof. Let aj be the functions from (3.25) and recall that according to (3.27) the support ofaj is contained in the unit square Ξ0,0 for every j ∈ N0. Let Id denote the identity operator.
We have the estimateF−1


(Id + ∂2

1)(Id + ∂2
2)aj


∞

≤ ∥(Id + ∂2
1)(Id + ∂2

2)aj∥1 ≤ ∥(Id + ∂2
1)(Id + ∂2

2)aj∥∞.

According to Proposition 3.2.8(ii) the right-hand side is bounded uniformly over all scales.
We conclude that there is a constant C > 0, independent of j ∈ N0, such that

sup
x∈R2

|(1 + x2
1)(1 + x2

2)aj(x)| ≤ C.

In other words |aj(x)| ≤ C(1 + x2
1)−1(1 + x2

2)−1. Using the representation (3.26) we obtain

|ψj,0,0(x)| = 2j(1+α)/2|aj(Ajx)| ≤ C2j(1+α)/2(1 + 22jx2
1)−1(1 + 22jαx2

2)−1

and hence
R2

|ψj,0,0(x)| dx . 2j(1+α)/2

R2

(1 + 22jx2
1)−1(1 + 22jαx2

2)−1 dx

= 2−j(1+α)/2

R2

(1 + x2
1)−1(1 + x2

2)−1 dx . 2−j(1+α)/2.

Since ∥ψj,ℓ,k∥1 = ∥ψj,0,0∥1 the proof is finished.

Lemma 5.4.3 allows to deduce a simple a-priori estimate of the curvelet coefficient size,
namely

|θµ| = |⟨f, ψµ⟩| ≤ ∥f∥∞∥ψµ∥1 ≤ C∥f∥∞2−j(1+α)/2 for µ = (j, ℓ, k) ∈ M. (5.14)

Note, that the constant C > 0 is fully determined by C•
α. Using (5.14) we now prove a

stronger statement than Theorem 5.4.2 for greedy approximations.

Theorem 5.4.4 ([102, Thm. 3.11]). Let α ∈ [0, 1] be fixed. Further, let fN denote the N -
term approximation of Θ with respect to the α-curvelet frame C•

α obtained by thresholding
the coefficients. There is a constant C > 0 such that for every N ∈ N

∥Θ − fN ∥2
2 ≥ CN

− 1
max{α,1−α} .

Proof. If α ≤ 1
2 the assertion is true by Theorem 5.4.2. It remains to handle the range 1 ≥

α > 1
2 . Let θJr,kr = ⟨Θ, ψJr,kr ⟩, r ∈ {1, . . . , N}, be the N largest curvelet coefficients which

determine the approximant fN :=
N

r=1 θJr,krψJr,kr . On the Fourier side the curvelet ψJ,k ∈
C•

α is the product of the functions WJ and uJ,k defined in (3.18) and (3.21), respectively.
Using condition (3.17) we first estimate

∥Θ − fN ∥2
2 = ∥Θ − fN ∥2

2 ≥

J∈J

∥ΘWJ − fNWJ∥2
2 ≥


J∈J

∥ΘW−
J − fNW

−
J ∥2

2,

where W−
J is the characteristic function of the set W−

J defined in (5.9). The triangle
inequality yields

1
2∥ΘW−

J ∥2
2 ≤ ∥ΘW−

J − fNW
−
J ∥2

2 + ∥ fNW
−
J ∥2

2 for every J ∈ J. (5.15)
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Observe the relation W−
J = W−

J WJ and W−
J WJ ′ = 0 for J ̸= J ′. Therefore, it holds

fNW
−
J =

N
r=1

θJr,kr
ψJr,krW

−
J =

N
r=1

θJr,kruJr,krWJrW
−
J =


k∈KJ

θJ,kuJ,kW
−
J

with KJ = {kr ∈ Z2 : r ∈ {1, . . . , N}, Jr = J}. Next, we use that {uJ,k}k∈Z2 is an
orthonormal basis for L2(ΞJ), where ΞJ ⊃ W−

J is the set defined in (3.20). We estimate

 
k∈KJ

θJ,kuJ,kW
−
J

2

2
≤
 

k∈KJ

θJ,kuJ,k

2

L2(ΞJ )
=


k∈KJ

|θJ,k|2.

The frame coefficients satisfy the a-priori estimate |θJ,k|2 . 2−j(1+α) according to (5.14).
Thus we obtain

∥ fNW
−
J ∥2

2 =
 

k∈KJ

θJ,kuJ,kW
−
J

2

2
. (#KJ)2−j(1+α).

By Lemma 5.4.1 we have ∥ΘW−
J ∥2

2 & 2−j(2−α). We deduce from (5.15)

∥ΘW−
J − fNW

−
J ∥2

2 ≥ 1
2∥ΘW−

J ∥2
2 − ∥ fNW

−
J ∥2

2 & 2−j(2−α) − (#KJ)2−j(1+α).

Altogether, we conclude

∥Θ − fN ∥2
2 ≥


J∈J

∥ΘW−
J − fNW

−
J ∥2

2 &

J∈J

max

0, 2−j(2−α) − (#KJ)2−j(1+α).

Note that


J(#KJ) ≤ N . To derive a lower bound let us consider the following minimiza-
tion problem:

Minimize
{NJ }J∈J


J∈J

max{0, 2−j(2−α) −NJ2−j(1+α)} s.t.

J∈J

NJ ≤ N, NJ ∈ [0,∞) (J ∈ J).

The condition NJ ∈ [0,∞), which simplifies the subsequent argumentation, is possible since
we are only interested in a bound. For the optimal choice {NJ}J , it necessarily holds

J NJ = N and
NJ ≤ 2−j(2−α)2j(1+α) = 2j(2α−1).

Hence, the minimization problem can be reformulated as minimizing the term
J∈J


2−j(2−α) −NJ2−j(1+α)

under the constraints


J NJ = N and NJ ≤ 2j(2α−1). Assume that the family {NJ}J fulfills
these constraints. Further, let j(N) ∈ N denote the number determined by the property

j(N)−1
j=0

2j(2α−1)Lj < N ≤
j(N)
j=0

2j(2α−1)Lj , (5.16)
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where Lj from (5.5) counts the wedges in the corona Cj . Then the following estimate holds
true


J∈J


2−j(2−α) −NJ2−j(1+α)


≥

∞
j=j(N)+1

 
|J |=j

2−j(2−α)


≥
∞

j=j(N)+1
2−j & 2−j(N).

To see this, note that 2−j(1+α) is decreasing with rising scale and that Lj ≥ 2j(1−α)−1. Since
N ≍ 2j(N)α, which follows from (5.16), we have proven

∥Θ − fN ∥2
2 &


J∈J

max

0, 2−j(2−α) − (#KJ)2−j(1+α) & 2−j(N) ≍ N− 1

α

and the proof is finished.

The approximation results for Θ have direct implications for the class-wise approxima-
tion of cartoon-like functions. If ν ≥ 2, then Θ ∈ Eβ

bin([−1, 1]2; ν) for arbitrary β ∈ [0,∞).
Moreover, we can always find γ > 0 such that γΘ ∈ Eβ([−1, 1]2; ν). This allows to draw
the following conclusion.

Corollary 5.4.5 ([102, Cor. 3.12]). Let β ∈ [0,∞) and ν ≥ 2. The uniform decay of
the N -term approximation error for Eβ

bin([−1, 1]2; ν) and Eβ([−1, 1]2; ν) provided by C•
α can-

not exceed N− 1
1−α . Futhermore, thresholding of coefficients cannot yield rates better than

N
− 1

max{α,1−α} .

If β > 2 it is thus impossible for C•
α to reach the theoretically possible approximation order

of N−β for the class Eβ([−1, 1]2; ν). In this case, the best performance is still achieved for
the classic choice α = 1

2 , with an associated approximation rate of order N−2. A smaller α
leads to a deterioration of the rate.

To be more precise, this behavior applies to cartoons with curved edges exemplified by
the function Θ = XB2(0, 1

2 ) from (5.11). For such cartoons the rate inevitably deteriorates
as α tends to 0. This can be explained by the distribution of the Fourier energy of such
functions which is spread more or less uniformly across all directions of the Fourier plane.

For cartoons with straight edges, on the other hand, a smaller α improves the approxi-
mation rate [102]. In a certain sense, such cartoons are the opposite extreme of the isotropic
function Θ. They are highly anisotropic and their Fourier energy is concentrated in only
one distinguished direction.

5.4.3 Limitations for α-Molecule Systems

As shown by Proposition 3.2.8(ii), the Parseval frame C•
α is a system of α-molecules of order

(∞,∞,∞,∞) with respect to the α-curvelet parametrization (M,ΦM ) where

ΦM : M → P , (j, ℓ, k) →→ (xj,ℓ,k, ℓωj , 2−j) = (R−1
ℓωj
A−1

j k, ℓωj , 2−j). (5.17)

By the transfer principle, Theorem 2.3.6, we can deduce the following result from Theo-
rem 5.4.4.
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Theorem 5.4.6 ([102, Thm. 5.3]). Let α ∈ [0, 1] and let M•
α := {mλ}λ∈Λ be a discrete

frame of α-molecules whose parametrization, for some k > 0, is (α, k)-consistent with the
α-curvelet parametrization (5.17). Further, assume that for some γ > γ̃ := max{α, 1−α}−1

the order (L,M,N1, N2) of M•
α satisfies

L ≥ k(1 + γ), M ≥ 3k
2 (1 + γ) + α− 3

2 , N1 ≥ k

2 (1 + γ) + 1 + α

2 , N2 ≥ k(1 + γ).
(5.18)

Then the coefficients {cλ}λ∈Λ of each representation Θ =


λ∈Λ cλmλ of the function Θ
from (5.11) with respect to M•

α satisfy {cλ}λ∈Λ /∈ ℓp(Λ) for p < 2
1+γ̃ .

Proof. Let p < 2
1+γ̃ and assume that {cλ}λ ∈ ℓp(Λ). According to Theorem 2.3.6 con-

dition (5.18) ensures that the systems M•
α and C•

α are sparsity equivalent in ℓp, which
means ∥{⟨mλ, ψµ⟩}λ,µ∥ℓp→ℓp < ∞. (see [59, Def. 5.3]). Hence, by sparsity equivalence,
{⟨Θ, ψµ⟩}µ ∈ ℓp(M). Using Θ =


µ⟨Θ, ψµ⟩ψµ and Lemma 2.3.1, this then implies an

N -term approximation rate of order N−γ , in contradiction to Theorem 5.4.4.

5.5 Appendix: Bessel Functions
In this appendix we collect some useful facts about Bessel functions mainly taken from [71]
and [51]. We are only interested in Bessel functions Jν of integer and half-integer order in
the range ν ∈ {−1

2 , 0,
1
2 , 1, . . .}. Bessel functions of this kind occur naturally in the Fourier

analysis of radial functions. For t ∈ R+ the value Jν(t) is conveniently defined by either of
the two series (see [71] and [51, Appendix B.3])

Jν(t) =
 t

2
ν ∞

k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)
 t

2
2k

= 1√
π

 t
2
ν ∞

k=0

(−1)kΓ(k + 1
2)

Γ(k + ν + 1)
t2k

(2k)! , (5.19)

where the Gamma function Γ extends the factorial z! to the complex numbers with Γ(z) =
(z−1)!. To verify the equivalence of both representations, it is useful to note that Γ(k+ 1

2) =
(2k)!
k!4k

√
π for k ∈ N0. We explicitly remark, that definition (5.19) is also valid for ν = −1

2 ,
although this case is not included in the exposition of [51]. As is obvious from the second
representation, the functions Jν of half-integer order can be expressed in closed form in
terms of trigonometric functions. For integer orders such closed form representations do
not exist.

If f(x) = f0(|x|) is a radial function on Rd, d ∈ N, with a suitable function f0 defined
on R+

0 = [0,∞), the Fourier transform of f is given by the formula

f(ξ) = 2π
|ξ|(d−2)/2

 ∞

0
f0(r)Jd/2−1(2πr|ξ|)rd/2 dr , ξ ∈ Rd.

Applying this formula to the characteristic function XBd(0,1) of the d-dimensional unit ball
Bd(0, 1) centered at the origin of Rd yields

(XBd(0,1))∧(ξ) = 2π
|ξ|(d−2)/2

 1

0
Jd/2−1(2π|ξ|r)rd/2 dr =

Jd/2(2π|ξ|)
|ξ|d/2 , ξ ∈ Rd. (5.20)
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5 CARTOON APPROXIMATION WITH α-MOLECULES: BOUNDS

Here, for the integration, we used the second of the following recurrence relations [51,
Appendix B.2], which are valid for ν ∈ 1

2N and all t ∈ R+,

t−ν+1Jν(t) = − d

dt


t−ν+1Jν−1(t)


and tνJν−1(t) = d

dt


tνJν(t)


.

The case ν = 1
2 is not treated in [51], yet it can be easily confirmed by a direct calculation.

By scaling, we can further deduce from (5.20) the following Fourier representation of
the bivariate function Θ(x) = XB2(0,1)(2x), x ∈ R2, from (5.11),

Θ(ξ) = 1
4(XB2(0,1))∧(ξ/2) = J1(π|ξ|)

2|ξ|
, ξ ∈ R2. (5.21)

Important for our investigation in Section 5.4 is the asymptotic behavior of Jν(r) as r → ∞.
We cite the following result from [51, Appendix B.8], which states for ν ∈ 1

2N0 the identity

Jν(r) =


2
πr

cos(r − πν

2 − π

4 ) +Rν(r) , r ∈ R+, (5.22)

with a function Rν given on R+ by

Rν(r) = (2π)−1/2rν

Γ(ν + 1/2)e
i(r−πν/2−π/4)

 ∞

0
e−rttν+1/2[(1 + it/2)ν−1/2 − 1] dt

t

+ (2π)−1/2rν

Γ(ν + 1/2)e
−i(r−πν/2−π/4)

 ∞

0
e−rttν+1/2[(1 − it/2)ν−1/2 − 1] dt

t
.

Further, for each ν ∈ 1
2N0 there is a constant Cν > 0 such that Rν satisfies the estimate

|Rν(r)| ≤ Cνr
−3/2 whenever r ≥ 1. (5.23)

The representation (5.22) and the estimate (5.23) play an important role in the proof of
Lemma 5.4.1. For completeness, let us finally note that the identity (5.22) especially holds
true in case ν = −1

2 , with vanishing R− 1
2

≡ 0. This is a direct consequence of the defini-
tion (5.19) and the Taylor series of the cosine.
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Chapter 6

Cartoon Approximation with
α-Molecules: Guarantees

In this chapter, which is a follow-up of Chapter 5, we continue with the investigation of
the approximation performance of α-molecule systems with respect to cartoon-like data.
The model setting is the same, i.e., we still consider the cartoon classes Eβ

bin([−1, 1]2; ν) and
Eβ([−1, 1]2; ν) specified in Definition 5.2.2. The main results, Theorem 6.0.1 ([60, Thm. 4.1])
and Theorem 6.0.2 ([59, Thm. 5.12]) which will be proved below, are approximation guar-
antees which nicely complement the bounds established in the previous chapter.

Recall that the order of the N -term approximation rate achievable for the classes
Eβ

bin([−1, 1]2; ν), ν ≥ 1, and Eβ([−1, 1]2; ν), ν > 0, cannot exceed N−β . This bound, es-
tablished in Theorem 5.3.3 (see also Remark 5.3.4), is valid for arbitrary dictionaries and
independent of the approximation scheme employed, as long as a polynomial depth search
condition is fulfilled. Even adaptive approximation schemes cannot perform better.

Schemes, where these rates are provably achieved, at least up to order, have been de-
veloped for binary cartoons based on wedgelets [35] and surflets [19], for general cartoons
utilizing bandelets [86, 87], to give a few examples. These results show that the optimality
benchmark N−β can indeed be realized in practice, at least up to order. However, the
utilized schemes are mostly adaptive, only for certain cartoon classes nonadaptive methods
with quasi-optimal performance are known.

A breakthrough concerning the nonadaptive approximation of cartoon-like functions was
the introduction of the classic curvelets by Candès and Donoho [14, 15]. By a simple thresh-
olding scheme, they achieve an approximation rate for the class E2([−1, 1]2; ν) matching the
class bound N−2 up to a log-factor. The reason for this quasi-optimal performance is the
parabolic scaling law employed. The following argument shall heuristically explain, why
parabolic scaling is ideal for the representation of C2 edges.

In local Cartesian coordinates, a C2 curve can be represented as the graph (E(x), x) of a
function E ∈ C2(R) and one can choose a coordinate system such that E′(0) = E(0) = 0. A
Taylor expansion then yields approximately E(x) ≈ 1

2E
′′(0)x2, which matches the essential

support width ≈ length2 of parabolically scaled functions. Hence, those can provide optimal
resolution of the curve across all scales.

The quasi-optimal performance of curvelets for the class Eβ([−1, 1]2; ν) with β = 2 raised
the question if similar quasi-optimal results can be obtained for other cartoon classes with
a regularity β ̸= 2. At least in the range β ∈ (1, 2), a heuristic, similar to the one given
above for C2 curves, applies to Cβ curves. Generally, if β ∈ (1, 2], a Taylor expansion of
E ∈ Cβ(R) yields |E(x)| . xβ , and thus the boundary curve is contained in a rectangle of
size width ≈ lengthβ . This suggests α-scaling with α = β−1 for optimal approximation.

And indeed, quasi-optimal approximation could be shown in [73, 83] for α-shearlet
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6 CARTOON APPROXIMATION WITH α-MOLECULES: GUARANTEES

frames if α = β−1 and β ∈ (1, 2]. For α-curvelets, the classic approximation result by
Candès and Donoho was extended in [60, Thm. 4.1]. This extension is stated below, slightly
modified to fit into our model setting, since the class Eβ([−1, 1]2; ν) used here is not fully
identical to the class used in [60].

Theorem 6.0.1 ([60, Thm. 4.1]). Let β ∈ (1, 2], ν > 0. For the choice α = β−1, the
Parseval frame of α-curvelets C•

α constructed in Subsection 3.2.3 provides almost optimal
sparse approximations for the class of cartoon-like functions Eβ([−1, 1]2; ν). More precisely,
there exists a constant C > 0 such that for every f ∈ Eβ([−1, 1]2; ν) and N ∈ N

∥f − fN ∥2
2 ≤ CN−β log2(1 +N)1+β ,

where fN denotes the N -term approximation of f obtained by choosing the N largest coef-
ficients.

When we compare this theorem with the benchmark Theorem 5.3.3, we see that the
frame C•

α = {ψµ}µ∈M attains the maximal achievable approximation rate up to a log-factor.
Moreover, as for the classical curvelets, this rate is achieved by simply thresholding the
frame coefficients, leading to an intrinsically non-adaptive approximation scheme.

Unfortunately, Theorem 5.4.2 proved in the previous chapter shows that α-curvelets are
not able to provide approximation rates beyond N−2, which is suboptimal for Eβ([−1, 1]2; ν)
if β > 2. This is due to the fact that α-scaling is not able to take advantage of smoothness
beyond C2. Further, Theorem 5.4.6 is an indicator that also more general α-molecule
systems are not able to overcome this N−2 barrier. In fact, up to now no frame construction
is known where a nonadaptive thresholding scheme yields approximation rates better than
N−2 for Eβ([−1, 1]2; ν). Therefore further research is required and new ideas need to be
considered.

Let us now turn to the proof of Theorem 6.0.1. It is based on an analysis of the decay
of the curvelet coefficients {θµ}µ∈M given by θµ = ⟨f, ψµ⟩ for a signal f ∈ Eβ([−1, 1]2; ν).
This analysis will be conducted below, beginning in Section 6.1, with the main result being
Theorem 6.1.1. It shows that {θµ}µ ∈ ωℓp(M) with p = 2/(1 + β) + ε and ε > 0 arbitrarily
small. This decay rate is in fact sufficient for a proof of Theorem 6.0.1 via Lemma 2.3.1.

Before turning to Section 6.1, let us state another consequence of Theorem 6.1.1. By
applying the transfer principle, Theorem 2.3.6, it is possible to deduce approximation rates
for more general α-molecule systems. Let (M,ΦM ) denote the parametrization (3.28) of
the Parseval frame of α-curvelets C•

α. Then we can formulate the following theorem, which
is the other main result of this chapter.

Theorem 6.0.2 ([59, Thm. 5.12]). Let β ∈ (1, 2], ν > 0, and α = β−1. Assume that, for
some k > 0, a discrete frame {mλ}λ∈Λ of α-molecules satisfies the following two conditions:

(i) its parametrization (Λ,ΦΛ) and (M,ΦM ) are (α, k)-consistent,

(ii) its order (L,M,N1, N2) satisfies

L ≥ k(1+β), M ≥ 3k
2 (1+β)+α− 3

2 , N1 ≥ k

2 (1+β)+1 + α

2 , and N2 ≥ k(1+β).
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6.1 Sparsity of Curvelet Coefficients

Then each dual frame {m̃λ}λ∈Λ possesses an almost optimal N -term approximation rate for
the class of cartoon-like functions Eβ([−1, 1]2; ν), i.e., for all f ∈ Eβ([−1, 1]2; ν),

∥f − fN ∥2
2 . N−β+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

Note that, by Corollary 3.4.4, the required condition (i) holds in particular for the α-
curvelet and α-shearlet parametrizations, for k > 2. Thus, this result allows a simple and
systematic derivation of approximation results for α-curvelets and α-shearlets. For example,
we obtain the statement of [59, Thm. 5.13] on cartoon approximation with band-limited
α-shearlet systems, where the optimal approximation rate is reached up to an arbitrarily
small deviation ε > 0.

6.1 Sparsity of Curvelet Coefficients

The main statements of this chapter, Theorem 6.0.1 and Theorem 6.0.2, are both conse-
quences of the following result on the coefficient decay of curvelet coefficients.

Theorem 6.1.1 ([60, Thm. 4.2]). Let θ∗
N denote the (in modulus) N th largest curvelet

coefficient. Then there exists some universal constant C such that

sup
f∈Eβ([−1,1]2;ν)

|θ∗
N | ≤ C ·N−(1+β)/2 · (log2N)(1+β)/2 .

This theorem is the centerpiece for proving both Theorem 6.0.1 and Theorem 6.0.2. In
fact, Theorem 6.1.1 together with Lemma 2.3.1 directly leads to Theorem 6.0.1.

Proof of Theorem 6.0.1. Applying Lemma 2.3.1 and Theorem 6.1.1 we can estimate

∥f − fN ∥2 .


m>N

|θ∗
m|2 .


m>N

m−(1+β) · (log2m)(1+β) .
 ∞

N
t−(1+β) · (log2 t)

(1+β) dt.

Using partial integration we obtain ∞

N
t−(1+β) · (log2 t)

(1+β) dt . [−t−β (log2 t)
(1+β)]∞N +

 ∞

N
t−(1+β) · (log2 t)

β dt

. N−β (log2N)(1+β) +
 ∞

N
t−(1+β) · (log2 t)

⌈β⌉ dt

. . . . . N−β (log2N)(1+β) +
 ∞

N
t−(1+β) dt

. N−β (log2N)(1+β) .

Using the transfer principle, Theorem 2.3.6, it is further possible to deduce Theo-
rem 6.0.2.
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Proof of Theorem 6.0.2. Let C•
α = {ψµ}µ∈M be the α-curvelet frame from Definition 3.2.6,

and let f ∈ Eβ([−1, 1]2; ν). By Theorem 6.1.1, the sequence of curvelet coefficients {θµ}µ

given by θµ = ⟨f, ψµ⟩ belongs to ωℓp(M) for every p > 2
1+β . Since ωℓp ↩→ ℓp+ε for arbitrary

ε > 0, this further implies {θµ}µ ∈ ℓp(M) for every p > 2
1+β .

By Theorem 2.3.6, conditions (i) and (ii) guarantee that the frame {mλ}λ∈Λ is sparsity
equivalent to {ψµ}µ∈M in ℓp for every p > 2

1+β . This implies that the cross-Gramian
{⟨ψµ,mλ⟩}µ,λ is a bounded operator ℓp(M) → ℓp(Λ). It maps {θµ}µ to the sequence {cλ}λ

given by
cλ =


µ

⟨ψµ,mλ⟩θµ = ⟨f,mλ⟩.

As a consequence, {cλ}λ ∈ ℓp(Λ) for every p > 2
1+β . The embedding ℓp ↩→ ωℓp further

proves {cλ}λ ∈ ωℓp(Λ) for every p > 2
1+β .

Finally observe that we can expand f with respect to the dual frame {m̃λ}λ in the
following way,

f =

λ∈Λ

cλm̃λ.

Hence, for arbitrary ε > 0, an application of Lemma 2.3.1 yields

∥f − fN ∥2
2 . N−β+ε,

where fN denotes the N -term approximation with respect to the dual frame {m̃λ}λ obtained
by choosing the N largest coefficients.

It remains to prove Theorem 6.1.1. For this, we first recall the a-priori estimate (5.14)
for the size of the curvelet coefficients θµ = ⟨f, ψµ⟩ at scale j, namely

|θµ| = |⟨f, ψµ⟩| ≤ ∥f∥∞∥ψµ∥1 ≤ B∥f∥∞2−(1+α)j/2 (6.1)

with a constant B > 0 independent of the index µ ∈ M .
Using this estimate together with Theorem 6.1.2, which is stated and proved below, we

can give a proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. Let Mj ⊂ M denote the indices corresponding to curvelets at scale
j, and for ε > 0 put

Mj,ε =

µ ∈ Mj , |θµ| > ε


.

By Theorem 6.1.2, which is stated and proved below, we have for ε > 0

#Mj,ε = #

µ ∈ Mj , |θµ| > ε


. ε−2/(1+β). (6.2)

On the other hand, (6.1) shows that there is a constant B, independent of scale, such that

|θµ| ≤ B∥f∥∞2−(1+α)j/2.

It follows that for each ε > 0 there is jε such that at scales j ≥ jε the coefficients satisfy
θµ < ε. Hence, for j ≥ jε

#Mj,ε = #

µ ∈ Mj , |θµ| > ε


= 0.

180



6.1 Sparsity of Curvelet Coefficients

The number of scales at which Mj,ε is nonempty is therefore bounded by

2
1 + α


log2(B) + log2(∥f∥∞) + log2(ε−1)


. log2(ε−1). (6.3)

It follows from (6.2) and (6.3) that there is a constant C ≥ 1 such that

#

µ ∈ M, |θµ| > ε


=


j

#

µ ∈ Mj , |θµ| > ε


≤ Cε−2/(1+β) log2(ε−1).

Let θ∗
N be the Nth largest coefficient. Then for εN > δN , where δN satisfies N =Cδ−2/(1+β)

N log2(δ−1
N ), we have |θ∗

N | ≤ εN . If N ≥ 2 it holds CN4/(1+β) log2(N2) ≥ N ,
because 1 ≤ β ≤ 2 and C ≥ 1. For N ≥ 2 therefore

N4/(1+β) log2(N2) ≥ δ
−2/(1+β)
N log2(δ−1

N ).

This implies δN ≥ N−2, and we can conclude that εN > δN if we choose εN as the solution
of

N = Cε−2/(1+β)
N log2(N2).

This choice leads to

εN = (2 C)(1+β)/2 ·N−(1+β)/2(log2N)(1+β)/2,

which proves our claim with constant C = (2 C)(1+β)/2.

The last missing piece is now Theorem 6.1.2.

Theorem 6.1.2 ([60, Thm. 4.3]). Let Mj denote the curvelet indices at scale j. The
sequence {θµ}µ∈Mj obeys

∥{θµ}µ∈Mj ∥wℓ2/(1+β) ≤ C,

for some constant C > 0 independent of scale j.

The proof of this theorem is rather involved. In fact, the remainder of this whole chapter
is solely devoted to this task. Thereby, we follow the exposition in [60]. The techniques
used are very similar to those in [15, Sec. 5]. Due to the presence of fractional smoothness,
however, some new tools involving divided differences have to be applied.

In a first step, we smoothly decompose f ∈ Eβ([−1, 1]2; ν) into so-called fragments,
which can then be analyzed separately. For that we cover R2 at each scale j ∈ N0 with
cubes

Q = [(k1 − 1)2−jα, (k1 + 1)2−jα] × [(k2 − 1)2−jα, (k2 + 1)2−jα] , (k1, k2) ∈ Z2,

which we collect in the sets Qj . Further, we put Q :=


j∈N0 Qj . Note how the size of the
squares depends upon the scale 2−j : The ‘width’ of the curvelets at scale j obeys ∼ 2−j

and the ‘length’ of the curvelets is approximately ∼ 2−αj . Thus, the size of the squares is
about the length of the curvelets.

Next, we take a smooth partition of unity {ωQ}Q∈Qj , where these squares are used
as the index set and the functions ωQ are supported in the corresponding squares Q :=
(2−jαk1, 2−jαk2) + [−2−jα, 2−jα]2. More precisely, for some fixed nonnegative C∞-function
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ω vanishing outside the square [−1, 1]2, we put ωQ = ω(2jαx1 − k1, 2jαx2 − k2) and assume
that


Q∈Qj

ωQ(x) ≡ 1. The cartoon f = f0 + f1XB ∈ Eβ([−1, 1]2; ν) can then at each scale
j ∈ N0 be smoothly localized into the fragments

fQ := fωQ, Q ∈ Qj .

For Q ∈ Qj let θQ denote the curvelet coefficient sequence of fQ at scale j, i.e.,

θQ =


⟨fQ, ψµ⟩


µ∈Mj

. (6.4)

The strategy laid out in [15] is to analyze the sparsity of the sequences θQ and combine
these results to obtain Theorem 6.1.2. In this investigation we have to distinguish between
two cases: Either the square Q ∈ Qj meets the edge curve Γ = ∂B of the cartoon or not.
Accordingly, we let Q1

j be the subset of Qj containing those cubes, which intersect the edge
curve Γ. Among the remaining cubes of Qj we collect those, which intersect supp f , in Q0

j .
The others can be neglected, because they lead to trivial sequences θQ.

The following two propositions ([60, Thm. 4.4] and [60, Thm. 4.5]) directly lead to
Theorem 6.1.2.

Theorem 6.1.3 (Analysis of a Smooth Fragment). Let Q be a square such that Q ∈ Q0
j .

The curvelet coefficient sequence θQ defined in (6.4) obeys

∥θQ∥wℓ2/(1+β) ≤ C · 2−(1+α)j ,

for some constant C > 0 independent of Q and j.

Theorem 6.1.4 (Analysis of an Edge Fragment). Let Q be a square such that Q ∈ Q1
j .

The curvelet coefficient sequence θQ defined in (6.4) obeys

∥θQ∥wℓ2/(1+β) ≤ C · 2−(1+α)j/2,

for some constant C > 0 independent of Q and j.

Theorem 6.1.2 is an easy consequence of these two results and the observation, that
there are constants A0 and A1, independent of scale, such that

#Q0
j ≤ A022αj and #Q1

j ≤ A12αj . (6.5)

The estimates (6.5) hold true since f is supported in [−1, 1]2.

Proof of Theorem 6.1.2. For 0 < p ≤ 1 we have the p-triangle inequality

∥a+ b∥p
wℓp ≤ ∥a∥p

wℓp + ∥b∥p
wℓp , a, b ∈ wℓp.

Since {θµ}µ∈Mj =


Q∈Qj
θQ, we can conclude

∥{θµ}µ∈Mj ∥2/(1+β)
wℓ2/(1+β) ≤


Q∈Qj

∥θQ∥2/(1+β)
wℓ2/(1+β)

≤

#Q1

j


· sup

Q1
j

∥θQ∥2/(1+β)
wℓ2/(1+β) +


#Q0

j


· sup

Q0
j

∥θQ∥2/(1+β)
wℓ2/(1+β) .

The claim follows now from the above two theorems together with observation (6.5).
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It remains to prove Theorems 6.1.3 and 6.1.4. For that let Q ∈ Qj be a fixed cube at
a fixed scale j ∈ N0, which nontrivially intersects supp f . We need to analyze the decay
of the sequence θQ = {⟨fQ, ψµ⟩}µ∈Mj . Since the frame elements ψµ are bandlimited, it is
advantageous to turn to the Fourier side. The Plancherel identity yields

⟨fQ, ψµ⟩ = ⟨ fQ, ψµ⟩.

These scalar products can be estimated, if we have knowledge about the localization of the
functions fQ. This investigation is carried out separately in Sections 6.2 and 6.3 for the
cases Q ∈ Q0

j and Q ∈ Q1
j , respectively.

6.2 Analysis of a Smooth Fragment

The goal of this section ([60, Sec. 5]) is a proof of Theorem 6.1.3. Broadly, we follow the
arguments in [15, Sec. 8] for β = 2, but with the important difference that our signal class
Eβ([−1, 1]2; ν) generally involves functions with smoothness of fractional order. This forces
us to translate several estimates in [15] for derivatives of various functions into estimates
for corresponding moduli of smoothness. The same remark applies to the next Section 6.3.

An important tool is the forward difference operator ∆(h1,h2), where h1, h2 ∈ R, which
acts on a bivariate function f : R2 → R as follows,

∆(h1,h2)f(x1, x2) := f(x1 + h1, x2 + h2) − f(x1, x2). (6.6)

Its one-dimensional analogon takes the simple form ∆hf(t) := f(t + h) − f(t) for h ∈ R.
When applied to a bivariate function f : R2 → R, to simplify notation, the operator ∆h

shall exclusively act on variables denoted t or τ ∈ R, e.g., the symbol ∆hf(t, u) denotes the
function (t, u) →→ f(t+ h, u) − f(t, u). Note that the symbol ∆ without a subscript denotes
the standard Laplacian.

Let us now come back to the proof of Theorem 6.1.3 and recall the notation introduced
at the end of the previous section. We treat the case Q ∈ Q0

j , where the cube Q does not
intersect the edge curve Γ = ∂B. In this case we call fQ = fωQ a smooth fragment.

Before we begin, we briefly recall our setting. The parameters α ∈ [1
2 , 1) and β = α−1 ∈

(1, 2] are fixed, as is f ∈ Eβ([−1, 1]2; ν). Since Q does not intersect the edge curve, there is
a function g ∈ Cβ(R2) such that fQ = gωQ. By smoothly cutting g off outside the square
[−1, 1]2, we can even assume g ∈ Cβ

0 (R2).
We want to analyze fQ and for simplicity we look at the following model situation.

Without loss of generality we assume that the cube Q is centered at the origin, by possibly
translating the coordinate system. In this case the smooth fragment takes the simple form

fj(x) := fQ(x) = g(x)ω(2αjx), x ∈ R2,

where g ∈ Cβ
0 (R2) and ω ∈ C∞

0 (R2) with suppω ⊂ [−1, 1]2 is the fixed window generating
the partition of unity (ωQ)Q (note that by our simplifications the fragment fQ only depends
on the scale j and therefore the notation fj is justified).

By rescaling fj we obtain for each scale j the functions

Fj(x) = g(2−αjx)ω(x), x ∈ R2, (6.7)

with suppFj ⊂ [−1, 1]2. We put gj(x) := g(2−αjx), so that we can write Fj(x) = gj(x)ω(x).
It is important to note, that gj and Fj depend on the scale, whereas ω remains fixed.
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6.2.1 Fourier Analysis of a Smooth Fragment

We first analyze the localization of Fj , where Fj is given as in (6.7). The key result in this
direction will be Proposition 6.2.2. Its proof relies on Lemma 6.2.1 below. Here we use the
forward difference operator (6.6) defined above.

Lemma 6.2.1. Let α ∈ [1
2 , 1) and β = α−1 ∈ (1, 2]. Assume that h = C2−(1−α)j for some

fixed constant C > 0, and put N := 2 + ⌈ α
1−α⌉. We then have

∥∆N
(h,0)∂1Fj∥2

2 . h2β2−2jα,

where the implicit constant is independent of the scale j. Notice that h is not independent
and depends on the scale j.

Proof. Since suppFj ⊂ [−1, 1]2 it suffices to prove

∥∆N
(h,0)∂1Fj∥∞ . hβ2−jα. (6.8)

By the product rule we have ∂1Fj = ∂1gj · ω + gj · ∂1ω and it holds

∆N
(h,0)


∂1gj · ω


=

N
k=0

∆k
(h,0)∂1gj · ∆N−k

(h,0)ω(· + kh, ·),

∆N
(h,0)


gj · ∂1ω


=

N
k=0

∆k
(h,0)gj · ∆N−k

(h,0)∂1ω(· + kh, ·).
(6.9)

Clearly, we have ∥∂1gj∥∞ . 2−αj and for every k ∈ N0 the estimates ∥∆k
(h,0)ω∥∞ . hk and

∥∆k
(h,0)∂1ω∥∞ . hk. According to Lemma 6.4.3, it further holds

∥∆(h,0)gj∥∞ . h2−αj and ∥∆k
(h,0)gj∥∞ . hβ2−j for k ≥ 2,

as well as ∥∆k
(h,0)∂1gj∥∞ . hβ2−αj for k ≥ 1.

Since N ≥ 3, these estimates suffice to bound the summands in (6.9) for k ̸= 0. In case
k = 0, we observe that hN . hβ2−jα, due to N ≥ β + α

1−α . The assertion (6.8) follows.

The previous lemma is key to the proof of the following proposition. Here we use the
notation |ξ| ∼ 2(1−α)j to indicate |ξ| ∈ [C12(1−α)j , C22(1−α)j ] for some arbitrary but fixed
constants 0 < C1 ≤ C2 < ∞. A typical choice would be C1 = 1 and C2 = 21−α.

Proposition 6.2.2 ([60, Prop. 5.2]). It holds independently of the scale j
|ξ|∼2(1−α)j

| Fj(ξ)|2 dξ . 2−2βj .

Proof. Let 0 < C1 ≤ C2 < ∞ be fixed and choose C > 0 such that C2C < 2π. Putting
h := C2−(1−α)j , there then exists c > 0 such that |eiξ1h − 1|2 ≥ c for every ξ1 with
|ξ1| ∈ [C12(1−α)j , C22(1−α)j ]. Using Lemma 6.2.1 with N := 2 + ⌈ α

1−α⌉ we then estimate the
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integrals on the vertical strips:

22(1−α)j


|ξ1|∼2(1−α)j


ξ2

| Fj(ξ1, ξ2)|2 dξ2 dξ1 ≍


|ξ1|∼2(1−α)j


ξ2

|ξ1|2| Fj(ξ1, ξ2)|2 dξ2 dξ1

.


|ξ1|∼2(1−α)j


ξ2

|eiξ1h − 1|2N |ξ1|2| Fj(ξ1, ξ2)|2 dξ2 dξ1

=


|ξ1|∼2(1−α)j


ξ2

| ∆N
(h,0)∂1Fj(ξ1, ξ2)|2 dξ2 dξ1

≤

R2

| ∆N
(h,0)∂1Fj(ξ)|2 dξ = ∥∆N

(h,0)∂1Fj∥2
2 . h2β2−2jα.

Interchanging ξ1 and ξ2 yields analogous estimates for the horizontal strips. Altogether, we
obtain 

|ξ|∼2(1−α)j
| Fj(ξ)|2 dξ . 2−2j(1−α)h2β2−2jα ≍ 2−2βj .

As an immediate conclusion, we deduce a corresponding estimate for the original smooth
fragment fj .

Theorem 6.2.3 ([60, Thm. 5.3]). We have independently of scale j
|ξ|∼2j

| fj(ξ)|2 dξ . 2−2(β+α)j .

Proof. The statement follows from the relation fj(ξ) = 2−2αj Fj(2−αjξ).

Finally, we state a refinement of Theorem 6.2.3.

Corollary 6.2.4 ([60, Cor. 5.4]). Let m = (m1,m2) ∈ N2
0 and ∂m = ∂m1

1 ∂m2
2 . We have

|ξ|∼2j
|∂m fj(ξ)|2 dξ . 2−2jα|m|12−2(β+α)j .

Proof. Recall that fj = gω(2αj ·). Let us define the window ω̃(x) := xmω(x) and the
function f̃j(x) := g(x)ω̃(2αjx) for x ∈ R2. Then because of ω̃(2αjx) = 2jα|m|1xmω(2αjx) for
every x ∈ R2

xmfj(x) = g(x)xmω(2αjx) = 2−jα|m|1g(x)ω̃(2αjx) = 2−jα|m|1 f̃j(x).

We conclude with Theorem 6.2.3
|ξ|∼2j

|∂m fj(ξ)|2 dξ =


|ξ|∼2j
| xmfj(x)(ξ)|2 dξ

= 2−2jα|m|1


|ξ|∼2j
|F f̃j(ξ)|2 dξ . 2−2jα|m|12−2(β+α)j .
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6.2.2 Curvelet Analysis of a Smooth Fragment

Let J = (j, ℓ) be a scale-angle pair and WJ the wedge function from (5.6), used in the
construction of the α-curvelet frame C•

α. Then WJ is a non-negative real-valued function,
supported in the wedge pair W+

J given in (5.9) and satisfying ∥WJ∥∞ ≤ 1.
Theorem 6.2.3 directly leads to a central result, namely that it holds

R2


|J |=j

|( fjWJ)(ξ)|2 dξ . 2−2j(β+α). (6.10)

Recall the notation |J | = j. Our next goal, is to refine this result. Let us first record a
basic fact.

Lemma 6.2.5 ([60, Lem. 5.5]). Let m ∈ N2
0. It holds for all ξ ∈ R2


|J |=j

|∂mWJ(ξ)|2 . 2−2jα|m|1 .

Proof. From the definition it follows that WJ scales with 2−αj in one direction and with
2−j in the orthogonal direction. No matter what direction, we always do better than
|∂mWJ(ξ)|2 . 2−2jα|m|1 . For fixed ξ only a fixed number of summands are not zero, uni-
formly for all ξ. The claim follows.

Next we prove an auxiliary lemma. Here ∆ = ∂2
1 + ∂2

2 denotes the standard Laplacian.

Lemma 6.2.6 ([60, Lem. 5.6]). Let ∆ = ∂2
1 + ∂2

2 denote the standard Laplacian. It holds
for m ∈ N0 

R2


|J |=j

|∆m( fjWJ)(ξ)|2 dξ . 2−2j(β+α) · 2−4mαj .

Proof. For m = 0 this is just (6.10), a direct consequence of Theorem 6.2.3. Now let m > 0.
It holds with a, b ∈ N2

0 and certain coefficients ca,b ∈ N0

∆m( fjWJ)(ξ) =


|a|+|b|=2m

ca,b∂
a fj(ξ)∂bWJ(ξ).

Let a, b ∈ N2
0 such that |a|1 + |b|1 = 2m. Then with Lemma 6.2.5 and Corollary 6.2.4

R2


|J |=j

|∂a fj(ξ)|2|∂bWJ(ξ)|2 dξ . 2−2jα|b|1


|ξ|∼2j
|∂a fj(ξ)|2 dξ

. 2−2jα|b|12−2jα|a|12−2(β+α)j

= 2−2jα(|a|1+|b|1)2−2(β+α)j = 2−4jαm2−2(β+α)j .

Now we come to the refinement of (6.10). For that, we need the differential operator

L = I − 22αj∆, (6.11)

where I is the identity and ∆ the standard Laplacian. The theorem below shows that
L2( fjWJ) obeys the same estimate (6.10) as fjWJ .
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6.2 Analysis of a Smooth Fragment

Theorem 6.2.7 ([60, Thm. 5.7]). Let L be the differential operator defined in (6.11). It
holds 

R2


|J |=j

|L2( fjWJ)(ξ)|2 dξ . 2−2j(β+α).

Proof. It holds
L2 = I − 2 · 22αj∆ + 24αj∆2.

Applying (6.10) and Lemma 6.2.6 yields the desired result.

Finally we can give the proof of Theorem 6.1.3.

6.2.3 Proof of Theorem 6.1.3

Proof. Recall the curvelet frame C•
α = {ψµ}µ∈M . On the Fourier side

ψj,ℓ,k = WJuj,k(RJ ·),

with rotation matrix RJ given as in (3.24) and functions

uj,k(ξ) := 2−j(1+α)/2e2πi(2−jk1,2−αjk2)·ξ, ξ ∈ R2.

We have to study the decay of the sequence θQ defined in (6.4). Its elements θ̃j,ℓ,k :=
⟨fj , ψj,ℓ,k⟩ are given by the formula

θ̃j,ℓ,k =

R2
fjWJ(ξ)uj,k(RJξ) dξ.

We observe

Luj,k = (1 + 2−2j(1−α)k2
1 + k2

2)uj,k,

which also holds for the rotated versions uj,k(RJ ·). Partial integration thus yields

θ̃j,ℓ,k =

R2
fj(ξ)WJ(ξ)uj,k(RJξ) dξ = (1 + 2−2j(1−α)k2

1 + k2
2)−2


R2

L2( fjWJ)uj,k(RJξ) dξ.

For j ∈ N and K = (K1,K2) ∈ Z2 we define the set

Zj,K :=


(k1, k2) ∈ Z2 : k12−j(1−α) ∈ [K1,K1 + 1), k2 = K2

.

Further, we put
Mj,K :=


µ = (j, ℓ, k) ∈ Mj : k ∈ Zj,K


,

where Mj denotes the curvelet indices at scale j. It follows from the orthogonality properties
of the Fourier system {uj,k}k∈Z2 that


k∈Zj,K

|θ̃j,ℓ,k|2 ≤ (1 + |K|22)−4

R2

|L2( fjWJ)(ξ)|2 dξ,
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where |K|22 = K2
1 +K2

2 . We further conclude
µ∈Mj,K

|θ̃µ|2 =


|J |=j


k∈Zj,K

|θ̃J,k|2 ≤ (1 + |K|22)−4

R2


|J |=j

|L2( fjWJ)(ξ)|2 dξ.

Now we apply Theorem 6.2.7 and obtain
µ∈Mj,K

|θ̃µ|2 . 2−2j(β+α)(1 + |K|22)−4,

which directly implies {θ̃µ}µ∈Mj,K


ℓ2 . 2−j(β+α)(1 + |K|22)−2. (6.12)

It holds #Zj,K ≤ 1 + 2j(1−α) and therefore, since Lj = 2⌊j(1−α)⌋, the estimate #Mj,K ≤
2 · 22j(1−α). Now we recall the interpolation inequality ∥{cλ}λ∥ℓp ≤ n1/p−1/2∥{cλ}λ∥ℓ2 for a
finite sequence {cλ}λ with n nonzero entries. Applying this inequality with p = 2/(1 + β)
and n = 2 · 22j(1−α) the maximal size of Mj,K , we get from (6.12){θ̃µ}µ∈Mj,K


ℓ2/(1+β) . 2j(β−1){θ̃µ}µ∈Mj,K


ℓ2 ≤ 2−j(1+α)(1 + |K|22)−2.

It follows
µ∈Mj,K

|θ̃µ|2/(1+β) . 2−j(1+α)2/(1+β) · (1 + |K|22)−4/(1+β) = 2−2αj(1 + |K|22)−4/(1+β).

Finally, we have
µ∈Mj

|θ̃µ|2/(1+β) =


K∈Z2


µ∈Mj,K

|θ̃µ|2/(1+β) ≤ 2−2αj


K∈Z2

(1 + |K|22)−4/(1+β) . 2−2αj .

The desired estimate for the sequence θQ = {θ̃µ}µ∈Mj follows, i.e.,

∥θQ∥ℓ2/(1+β) . 2−j(α+1).

The following section is devoted to the proof of Theorem 6.1.4.

6.3 Analysis of an Edge Fragment

Let us turn to the more complicated case Q ∈ Q1
j and the proof of Theorem 6.1.4. In this

case the cube Q intersects the edge curve Γ and fQ = fωQ is accordingly called an edge
fragment. The subsequent exposition is taken from [60, Sec. 6].

Again we follow the broad outline for the case β = 2 which has been established in [15],
and again we will need to adapt the estimates of [15, Sec. 6] to functions of fractional order
smoothness via the use of moduli of smoothness. This turns out to cause serious difficulties
and forces us to turn to techniques based on the forward difference operator (6.6).

In order to prove Theorem 6.1.4 we need to analyze the decay of the sequence θQ =
{⟨fQ, ψµ⟩}µ∈Mj = {⟨ fQ, ψµ⟩}µ∈Mj . To estimate these scalar products, we again study the
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6.3 Analysis of an Edge Fragment

localization of the function fQ. As in the treatment of the smooth fragments, our investi-
gation starts with some simplifying reductions.

First, we note that it suffices to prove Theorem 6.1.4 for an edge fragment fQ = fωQ,
where f ∈ Eβ([−1, 1]2; ν) is a cartoon of the simple form f = gXB with g ∈ Cβ

0 (R2). In
fact, the curvelet coefficient sequence of a general edge fragment fQ = f0ωQ + f1XBωQ =:
f0

Q + f1
Q can be decomposed into θ(0)

Q = {⟨f0
Q, ψµ⟩}µ∈Mj and θ

(1)
Q = {⟨f1

Q, ψµ⟩}µ∈Mj . From
Theorem 6.1.3 we already know

∥θ(0)
Q ∥wℓ2/(1+β) . 2−(1+α)j . 2−(1+α)j/2 .

Therefore it only remains to show ∥θ(1)
Q ∥wℓ2/(1+β) . 2−(1+α)j/2. Since B ⊂ [−1, 1]2, we can

further smoothly cut off f1 ∈ Cβ(R2) outside of [−1, 1]2 to obtain a function g ∈ Cβ
0 (R2)

such that f1
Q = gXBωQ.

Second, without loss of generality we restrict ourselves to the following model situation.
The cube Q is centered at the origin and the edge curve Γ is the graph of a function
E : [−2−jα, 2−jα] → [−2−jα, 2−jα] belonging to Cβ(R), with x1 = E(x2). Further, it shall
hold E(0) = E′(0) = 0, so that Γ approximates a vertical line through the origin. If the
scale j is big enough, say bigger than some fixed base scale j0 ∈ N0, it is always possible to
arrive at this setting by possibly translating or rotating the coordinate axes. Henceforth,
we assume j ∈ N and j ≥ j0 which clearly poses no loss of generality.

In this simplified model situation the edge fragment fQ can be written in the form

fj(x) := fQ(x) = ω(2αjx)g(x)X{x1≥E(x2)}, x = (x1, x2) ∈ R2, (6.13)

where g ∈ Cβ
0 (R2), and ω ∈ C∞

0 (R2) is the nonnegative window with suppω ⊂ [−1, 1]2,
generating the partition of unity {ωQ}Q.

As in the discussion of the smooth fragments in the previous section, we introduce the
notation fj := fQ for the standard edge fragment (6.13) to indicate the sole dependence on
the scale j. In addition, it is again more convenient to work with rescaled versions Fj of
the edge fragments fj . Therefore, we put gj := g(2−αj ·) and define

Fj(x) := ω(x)gj(x)X{x1≥Ej(x2)}, x = (x1, x2) ∈ R2, (6.14)

with the rescaled edge functions

Ej : [−1, 1] → [−1, 1] , Ej(x2) := 2αjE(2−αjx2).

It holds Ej ∈ Cβ([−1, 1]) with E′
j = E′(2−αj ·) and Höl(E′

j , β − 1) ≤ δj , where

δj := 2−j(1−α) · Höl(E′, β − 1).

Observe that Höl(E′, β−1) is a constant independent of the scale j. Together with Ej(0) =
E′

j(0) = 0 this implies for all u ∈ [−1, 1] that

|Ej(u)| ≤ δj and |E′
j(u)| ≤ δj . (6.15)

For convenience, we continuously extend the function Ej to the whole of R by attaching
straight lines on the left and on the right, with constant slopes E′

j(1) and E′
j(−1) respec-

tively. Since this extension occurs outside of the square [−1, 1]2, it does not change the
representation (6.14) of the edge fragment. Furthermore, it also does not alter the regular-
ity and the Hölder constant.
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Figure 6.1: Illustration of standard edge fragment.

6.3.1 Fourier Analysis of an Edge Fragment

Our first goal is to analyze the Fourier transform Fj (and thus also fj) along radial lines,
whose orientations are specified by angles η ∈ [−π/2, π/2] with respect to the x1-axis.
If the angle η satisfies | sin η| > δj , it is possible because of (6.15) to define a function
u = uj(·, η) : R → R implicitly by

Ej(u(t)) cos η + u(t) sin η = t. (6.16)

The value u(t) is the x2-coordinate of the intersection point of the (extended) edge curve Γ
and the line Lt,η defined by

Lt,η :=

x = (x1, x2) ∈ R2 : x1 cos η + x2 sin η = t


. (6.17)

Further, we can define the function a = aj(·, η) : R → R by

a(t) := −Ej(u(t)) sin η + u(t) cos η. (6.18)

The value a(t) is the x2-coordinate of the point (Ej(u), u)T ∈ Γ in the coordinate system
rotated by the angle η. For an illustration we refer to Figure 6.1.

The functions u and a are strictly monotone, increasing if η > 0 and decreasing if η < 0.
Note, that we suppressed the dependence of u and a on j and η in the notation. The
following lemma studies the regularity of u under the assumption | sin η| ≥ 2δj .

Lemma 6.3.1 ([60, Lem. 6.1]). Assume | sin η| ≥ 2δj. Then the function u : R → R defined
implicitly by (6.16) belongs to Cβ(R). Moreover, we have ∥u′∥∞ . | sin η|−1 and

∥∆hu
′∥∞ . δjh

β−1| sin η|−1−β ,

where the implicit constants are independent of the scale j, the angle η, and h ≥ 0.
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Proof. First of all it is not difficult to show that u = uj(·, η) ∈ C1(R) with

u′(t) =


sin η + E′
j(u(t)) cos η

−1
.

Under the assumption | sin η| ≥ 2δj it follows ∥u′∥∞ . | sin η|−1 because of |E′
j(u)| ≤ δj ≤

1
2 | sin η| for all u ∈ [−1, 1]. Finally, we examine ∆hu

′. For t ∈ R

∆hu
′(t) = u′(t+ h) − u′(t) = u′(t+ h)u′(t)


u′(t)−1 − u′(t+ h)−1

= u′(t+ h)u′(t) cos η

E′

j(u(t)) − E′
j(u(t+ h))


.

Using Höl(E′
j , β − 1) ≤ δj and the mean value theorem leads to

∥∆hu
′∥∞ ≤ ∥u′∥2

∞δj∥∆hu∥β−1
∞ ≤ ∥u′∥β+1

∞ δjh
β−1 . δjh

β−1| sin η|−1−β .

The following lemma collects some properties of the function a : R → R defined in
(6.18).

Lemma 6.3.2 ([60, Lem. 6.2]). Assume | sin η| ≥ 2δj. It holds a ∈ Cβ(R) with

∥a′∥∞ . | sin η|−1, ∥∆ha∥∞ . h| sin η|−1, ∥∆ha
′∥∞ . δjh

β−1| sin η|−1−β ,

with implicit constants independent of j, η, and h ≥ 0.

Proof. This is an easy consequence of the properties of u proved in the previous lemma.

Next, we introduce the scale-dependent interval

I(η) := Ij(η) := [aj(η), bj(η)],

where aj(η) = Ej(−1) cos η − sin η and bj(η) = Ej(1) cos η + sin η. The restrictions of u
and a to I(η) correspond precisely to that part of the edge curve Γ lying inside the square
[−1, 1]2. In particular, we have a bijection u : I(η) → [−1, 1]. In the sequel it is more
convenient to work with an extension of I(η), given by

I(η) := Ij(η) := [aj(η) − Cδj , bj(η) + Cδj ], (6.19)

for some suitable fixed constant C > 0.

Lemma 6.3.3 ([60, Lem. 6.3]). For | sin η| > δj we have

|I(η)| . | sin η| and |I(η)| . | sin η|.

Proof. In view of | sin η| > δj and (6.15) we can estimate

|I(η)| ≤ |Ej(1) − Ej(−1)|| cos η| + 2| sin η| ≤ 2δj + 2| sin η| . | sin η|.

The estimate for I(η) then follows directly from | sin η| > δj .
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We want to analyze Fj along lines through the origin with orientation η ∈ [−π/2, π/2].
The central tool in this investigation is the Fourier slice theorem. In view of this theorem it
makes sense to first study the Radon transform RFj (see (1.5) for a definition), in particular
its regularity. By Paley-Wiener type arguments we can then later extract information
about the decay of Fj . Basically, this is the same approach taken in [15]. Due to the lack of
regularity in our case, however, we have to use a more refined technique in this investigation.
The main idea is to use finite differences instead of derivatives.

The value RFj(t, η) of the Radon transform is obtained by integrating Fj along the line
Lt,η defined in (6.17). Rotating Fj by the angle η yields the function F η

j and we can write

(RFj)(t, η) =

R
F η

j (t, u) du.

The rescaled edge fragment Fj can be rewritten as the product Fj = GjX{x1≥Ej(x2)} with
the function

Gj := ωg(2−αj ·) = ωgj . (6.20)

Then we have

(RFj)(t, η) =
 a(t,η)

−∞
Gη

j (t, u) du, (6.21)

where Gη
j is the function obtained by rotating Gj by the angle η. Using the notation gη

j

and ωη for the rotated versions of gj and ω, the integrand of (6.21) takes the form

Gη
j = gη

jω
η. (6.22)

We see, that the component gη
j = gη(2−αj ·) ∈ Cβ

0 (R2) of Gη
j is scaled and the window

ωη ∈ C∞
0 (R2) remains fixed.

The central lemma of this subsection is given below. Its proof relies on estimates of the
functions gη

j and ωη and is outsourced to Section 6.4.

Lemma 6.3.4 ([60, Lem. 6.4]). Assume that | sin η| ≥ 2δj. For h = C2−(1−α)j, where
C > 0 is some fixed constant, we then have

∆h∂1RFj(t, η) = S1,j(t, η) + S2,j(t, η)

with functions S1,j , S2,j such that

∥S1,j(·, η)∥2
2 . δ2

jh
2(β−1)| sin η|−1−2β ,

∥∆(h,0)S2,j(·, η)∥2
2 . h2β | sin η|−1−2β ,

where the implicit constants are independent of the scale j and the angle η.

The previous lemma is the key to the following proposition. The notation |λ| ∼ 2(1−α)j

indicates that |λ| ∈ [C12(1−α)j , C22(1−α)j ] for fixed constants 0 < C1 ≤ C2 < ∞. A typical
choice would be C1 = 1 and C2 = 21−α.
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Proposition 6.3.5 ([60, Prop. 6.5]). It holds
|λ|∼2(1−α)j

| Fj(λ cos η, λ sin η)|2 dλ . 2−(1−α)j

1 + 2(1−α)j | sin η|

−1−2β

with an implicit constant independent of j and η.

Proof. First we assume | sin η| ≥ 2δj . The integration domain is [C12(1−α)j , C22(1−α)j ] for
fixed constants 0 < C1 ≤ C2 < ∞. Let us fix h := C2−j(1−α), where C > 0 is chosen
such that C2C < 2π. For this choice of h there is c > 0 such that |eiλh − 1|2 ≥ c for
all |λ| ∈ [C12(1−α)j , C22(1−α)j ] at all scales. We conclude, where S1,j and S2,j denote the
entities from Lemma 6.3.4:

|λ|∼2j(1−α)

|λ|2| Fj(λ cos η, λ sin η)|2 dλ .


|λ|∼2j(1−α)

|eiλh − 1|2|λ|2| Fj(λ cos η, λ sin η)|2 dλ

=


|λ|∼2j(1−α)

|F

∆h∂1RFj(·, η)


(λ)|2 dλ

.


|λ|∼2j(1−α)

| S1,j(·, η)(λ)|2 dλ+


|λ|∼2j(1−α)

| S2,j(·, η)(λ)|2 dλ

.


|λ|∼2j(1−α)

| S1,j(·, η)(λ)|2 dλ+


|λ|∼2j(1−α)

|eiλh − 1|2| S2,j(·, η)(λ)|2 dλ

≤

R

| S1,j(·, η)(λ)|2 dλ+

R

|eiλh − 1|2| S2,j(·, η)(λ)|2 dλ

= ∥S1,j(·, η)∥2
2 + ∥∆hS2,j(·, η)∥2

2 . h2β | sin η|−1−2β .

It follows 
|λ|∼2j(1−α)

| Fj(λ cos η, λ sin η)|2 dλ . 2−j(1−α)2j(1−α)| sin η|
−1−2β

.

Next, we handle the case | sin η| < 2δj . We want to show
|λ|∼2j(1−α)

| Fj(λ cos η, λ sin η)|2 dλ . 2−j(1−α). (6.23)

Altogether we then obtain the desired estimate
|λ|∼2(1−α)j

| Fj(λ cos η, λ sin η)|2 dλ . 2−(1−α)j

1 + 2(1−α)j | sin η|

−1−2β
,

since 2(1−α)j | sin η| & 1 if | sin η| ≥ 2δj and 2(1−α)j | sin η| . 1 if | sin η| < 2δj .
It remains to show (6.23). For this we write the edge fragment as a sum Fj = F 0

j + F 1
j ,

where

F 0
j (x) = g(2−jαx)ω(x)X{x1≥δj}, x ∈ R2, (6.24)

is a fragment with a straight edge and F 1
j (x) = Fj(x) − F 0

j (x) is the deviation.
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The function F 1
j is supported in a vertical strip around the x2-axis of width 2δj . For η

satisfying | sin η| < 2δj the Radon transform RF 1
j (·, η) is L∞-bounded and supported in an

interval of length

2(δj cos η + sin η) . δj .

It follows ∥RF 1
j (·, η)∥2

2 . δj . 2−j(1−α), and therefore
|λ|∼2j(1−α)

|F 1
j (λ cos η, λ sin η)|2 dλ ≤


R

| RF 1
j (·, η)(λ)|2 dλ . 2−j(1−α).

Finally, the estimate 
|λ|∼2j(1−α)

|F 0
j (λ cos η, λ sin η)|2 dλ . 2−j(1−α)

follows from the fact, that we have decay |F 0
j (λ, 0)| ∼ |λ|−1/2 normal to the straight singu-

larity curve, and that the second argument (λ sin η) remains bounded due to the condition
| sin η| < 2δj . This finishes the proof.

A direct consequence is the following theorem.

Theorem 6.3.6 ([60, Thm. 6.6]). We have
|λ|∼2j

| fj(λ cos η, λ sin η)|2 dλ . 2−(1+2α)j

1 + 2(1−α)j | sin η|

−1−2β
.

Proof. The statement follows directly from the relation fj(ξ) = 2−2αjFj(2−αjξ).

A refinement of the discussion in this subsection, which can be found in Section 6.5,
yields the following theorem.

Theorem 6.3.7 ([60, Thm. 6.7]). We have for m = (m1,m2) ∈ N2
0 the estimate

|λ|∼2j

|∂m fj(λ cos η, λ sin η)|2 dλ

. 2−j2α|m|1

2−j2(1−α)m12−(1+2α)j


1 + 2(1−α)j | sin η|

−1−2β
+ 2(−1−2β)j


.

6.3.2 Curvelet Analysis of an Edge Fragment

In the following J = (j, ℓ) shall denote a scale-angle pair with j ∈ N0, ℓ ∈ {0, . . . , Lj − 1},
and WJ shall be the wedge functions from (5.6). Recall also the characteristic angle ωj =
π2−⌊j(1−α)⌋ at scale j and the corresponding orientations ωJ := ℓωj , ranging between 0 and
π. From Theorem 6.3.6 we can directly conclude the following result.

Theorem 6.3.8 ([60, Thm. 6.8]). We have
R2

| fjWJ(ξ)|2 dξ . 2−(1+α)j

1 + 2(1−α)j | sinωJ |

−1−2β
. (6.25)

194



6.3 Analysis of an Edge Fragment

Proof. It holds ∥WJ∥∞ ≤ 1 and suppWJ ⊂ W+
J , where W+

J is the wedge defined in (5.9).
Let us define the intervals Kj = 1

6π [2j−1, 2j+1] and AJ = [ωJ − 3ωj/4, ωJ + 3ωj/4]. Using
Theorem 6.3.6 we calculate

R2
| fjWJ(ξ)|2 dξ ≤


W+

J

| fj(ξ)|2 dξ

=


Kj

 
AJ

+


π+AJ


| fj(λ, η)|2λ dη dλ

.
 

AJ

+


π+AJ


2−(1+2α)j


1 + 2(1−α)j | sin η|

−1−2β
2j dη

. 2−(1+α)j

1 + 2(1−α)j | sinωJ |

−1−2β
.

For a scale-angle pair J = (j, ℓ) let us define the quantity

ℓJ = 1 + 2(1−α)j | sinωJ | (6.26)

and the differential operator

L = (I − (2j/ℓJ)2D2
1)(I − 22αjD2

2) = I − 22jℓ−2
J D2

1 − 22αjD2
2 + 22(1+α)jℓ−2

J D2
1D2

2, (6.27)

with identity I and partial derivatives

D1 = cosωJ · ∂1 + sinωJ · ∂2 and D2 = − sinωJ · ∂1 + cosωJ · ∂2. (6.28)

We will show that L( fjWJ) obeys the same estimate (6.25) as fjWJ . The key result for
this statement is Theorem 6.3.7

Theorem 6.3.9 ([60, Thm. 6.9]). Let L be the differential operator defined in (6.27). We
have 

R2
|L( fjWJ)(ξ)|2 dξ . 2−(1+α)j


1 + 2(1−α)j | sinωJ |

−1−2β
.

Proof. First, observe that for each pair m = (m1,m2) ∈ N2
0 the mixed derivative of WJ

obeys

∥Dm1
1 Dm2

2 WJ∥∞ = O

2−jm1 · 2−jαm2


. (6.29)

This follows from the fact, that the functions WJ from (5.6) scale with their support wedges
W+

J , which are of length ∼ 2j and width ∼ 2αj .
Next, from the definition (6.28) of the operators D1 and D2 we deduce for m1 ∈ N0

Dm1
1
fj =


a+b=m1

ca,b(cosωJ)a(sinωJ)b∂(a,b) fj

with binomial coefficients ca,b ∈ N. A similar formula holds for Dm2
2
fj and m2 ∈ N0. Using

| sinωJ | ≤ 2−(1−α)jℓJ with the quantity ℓJ from (6.26) we obtain the estimate

∥Dm1
1
fj∥2

L2(W+
J ) .


a+b=m1

| sinωJ |2b · ∥∂(a,b) fj∥2
L2(W+

J )

≤


a+b=m1

(2−(1−α)jℓJ)2b · ∥∂(a,b) fj∥2
L2(W+

J ).
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Analogously, we obtain

∥Dm2
2
fj∥2

L2(W+
J ) .


a+b=m2

∥∂(a,b) fj∥2
L2(W+

J ).

Taking into account the width ∼ 2αj of the wedges W+
J , Theorem 6.3.7 gives for (a, b) ∈

N2
0 the bound

∥∂(a,b) fj∥2
L2(W+

J ) ≤ Ca,b2αj · 2−j2α(a+b)2−2j(1−α)a2−(1+2α)jℓ−1−2β
J + 2(−1−2β)j,

with some constant Ca,b > 0 independent of scale. Therefore we can estimate for m1 ∈ N0

∥Dm1
1
fj∥2

L2(W+
J ) . 2−j2αm1


2−2j(1−α)m12−(1+α)jℓ2m1−1−2β

J + 2αj2(−1−2β)j.
If m1 ≤ 2 this further simplifies to

∥Dm1
1
fj∥2

L2(W+
J ) . 2−2jm12−(1+α)jℓ2m1−1−2β

J , (6.30)

since for every m1 ≤ (1 + α)/α we have

2αj2(−1−2β)j . 2−2j(1−α)m12−(1+α)jℓ2m1−1−2β
J .

Similar calculations lead to

∥Dm2
2
fj∥2

L2(W+
J ) . 2−2αjm22−(1+α)jℓ−1−2β

J . (6.31)

Indeed, if a+ b = m2 we have

∥∂a
1∂

b
2
fj∥2

L2(W+
J ) ≤ Ca,b · 2αj · 2−2αjm2


2−(1+2α)jℓ−1−2β

J + 2(−1−2β)j.
Since 1 ≤ ℓJ ≤ 2 · 2(1−α)j it holds

2j(1+α)2−2βj = 2−(1−α)(1+2β)j . ℓ−1−2β
J .

Therefore, taking into account 1 ≤ 2(1−α)j , we can conclude

2(−1−2β)j ≤ 2j(1+α)2−2βj2−(1+2α)j . 2−(1+2α)jℓ−1−2β
J .

Altogether we obtain the desired estimate (6.31).
After this preliminary work we can finally prove the statement of Theorem 6.3.9. We

have

L( fjWJ) = fjWJ − 22jℓ−2
J D2

1( fjWJ) − 22αjD2
2( fjWJ) + 22(1+α)jℓ−2

J D2
1D2

2( fjWJ),

which allows us to show the desired estimate for each term separately. For fjWJ the estimate
holds true by Theorem 6.3.8.

Let us turn to the second term. The product rule yields

D2
1( fjWJ) = (D2

1
fj)WJ + 2(D1 fj)(D1WJ) + fj(D2

1WJ).
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The previous estimates together with the Hölder inequality then lead to

∥D2
1( fjWJ)∥2

2 . 2−4jℓ4J2−(1+α)jℓ−1−2β
J .

Here (6.30) was used, and that ∥Dm1
1 WJ∥2

∞ ≤ 2−2jm1 ≤ 2−2jm1ℓ2m1
J by (6.29). This settles

the claim for the second term.
Analogously, we can deduce

∥D2
2( fjWJ)∥2

2 . 2−4αj2−(1+α)jℓ−1−2β
J ,

using (6.31) and that ∥Dm2
2 WJ∥2

∞ ≤ 2−2αjm2 by (6.29). This gives the estimate for the
third term.

Finally, it also holds

∥D2
1D2

2( fjWJ)∥2
2 . 2−4j(1+α)ℓ4J2−(1+α)jℓ−1−2β

J ,

which establishes the result for the fourth term.

At last we are ready to give the proof of Theorem 6.1.4. The essential tool is Theo-
rem 6.3.9.

6.3.3 Proof of Theorem 6.1.4

Proof. Recall the curvelet frame C•
α = {ψµ}µ∈M . On the Fourier side we have

ψj,ℓ,k = WJuj,k(RJ ·),

with rotation matrix RJ given as in (3.24) and functions

uj,k(ξ) := 2−j(1+α)/2e2πi(2−jk1,2−αjk2)·ξ, ξ ∈ R2.

The elements θ̃j,ℓ,k := ⟨fj , ψj,ℓ,k⟩ of the sequence θQ are therefore given by the formula

θ̃j,ℓ,k =

R2
fjWJ(ξ)uj,k(RJξ) dξ.

Since

L(uj,k) = (1 + ℓ−2
J k2

1)(1 + k2
2)uj,k,

integration by parts yields

θ̃j,ℓ,k = (1 + ℓ−2
J k2

1)−1(1 + k2
2)−1


R2

L( fjWJ)(ξ)uj,k(RJξ) dξ.

Let J = (j, ℓ) be a scale-angle pair, K = (K1,K2) ∈ Z2 and define

ZJ,K :=


(k1, k2) ∈ Z2 : ℓ−1
J k1 ∈ [K1,K1 + 1), k2 = K2


.

For fixed J = (j, ℓ) the Fourier system

uj,k(RJ ·)


k∈Z2 is an orthonormal basis for L2(ΞJ),

where ΞJ is the rectangle defined in (3.20) containing the support of WJ . Therefore,
k∈ZJ,K

|θ̃j,ℓ,k|2 . (1 +K2
1 )−2(1 +K2

2 )−2

R2

|L( fjWJ)(ξ)|2 dξ.
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The integral on the right-hand side is bounded by Theorem 6.3.9, and we thus arrive at
k∈ZJ,K

|θ̃j,ℓ,k|2 . (LK)−22−(1+α)jℓ−1−2β
J (6.32)

with LK := (1 +K2
1 )(1 +K2

2 ).
Let MJ denote the subset of curvelet coefficients associated with a fixed scale-angle pair

J = (j, ℓ). Further, let NJ,K(ε) be the number of indices µ ∈ MJ such that k ∈ ZJ,K and
|θ̃µ| > ε.

Since #ZJ,K ≤ ℓJ and because of (6.32) we can conclude

NJ,K(ε) . min

ℓJ , (εLK)−22−(1+α)jℓ−1−2β

J


. (6.33)

For ωJ = πℓ2−⌊j(1−α)⌋ ∈ [0, π) let ⟨ωJ⟩ denote the equivalent angle modulo π in the
interval (−π/2, π/2]. The corresponding indices in the range {⌊−Lj/2 + 1⌋, . . . , ⌊Lj/2⌋}
shall be denoted by ⟨ℓ⟩. Since it holds | sin η| ≍ |η| for η ∈ [−π/2, π/2], it follows

ℓJ = 1 + 2(1−α)j | sinωJ | = 1 + 2(1−α)j | sin⟨ωJ⟩| ≍ 1 + |⟨ℓ⟩|. (6.34)

Let ℓ∗ be the solution of the equation ℓ∗ = (εLK)−22−(1+α)jℓ−1−2β
∗ and put L∗ = ⌊ℓ∗⌋.

Utilizing (6.33) and (6.34) yields
|J |=j

NJ,K(ε) .


ℓ∈{0,...,Lj−1}
|⟨ℓ⟩|≤L∗−1

(1 + |⟨ℓ⟩|) +


ℓ∈{0,...,Lj−1}
|⟨ℓ⟩|≥L∗

(εLK)−22−(1+α)j(1 + |⟨ℓ⟩|)−1−2β

.
L∗−1
ℓ=0

(1 + |ℓ|) +
∞

ℓ=L∗
(εLK)−22−(1+α)j(1 + |ℓ|)−1−2β

. (L∗)2 + (εLK)−22−(1+α)j(L∗)−2β .

This translates to 
|J |=j

NJ,K(ε) . ε−2/(1+β) · L−2/(1+β)
K · 2−(1+α)j/(1+β).

Since β < 3 we have


K∈Z2 L
−2/(1+β)
K < ∞. Hence

#

µ ∈ Mj , |θ̃µ| > ε


=


K∈Z2


|J |=j

NJ,K(ε) . 2−(1+α)j/(1+β)ε−2/(1+β).

This finishes the proof.

6.4 Appendix A: Proof of Lemma 6.3.4
This section corresponds to [60, Appendix A]. Let us start with a simple result, that shows
how scaling affects the Hölder constant.
Lemma 6.4.1 ([60, Lem. 6.10]). Let f ∈ Cα(R) and 0 < α < 1. Then for t, s > 0

Höl(sf(t·), α) = stα · Höl(f, α).

We proceed with some technical estimates of the functions gη
j and ωη, which occur as

components of the functions Gη
j defined in (6.22). These estimates will provide the basis

for the more complex estimates needed in the actual proof of Lemma 6.3.4.
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6.4.1 Estimates for gη
j

The functions gη
j are given for j ∈ N0 by gη

j = gη(2−αj ·), where gη is a rotated version
of the fixed function g ∈ Cβ

0 (R2) with β ∈ (1, 2]. Thus clearly, gη ∈ Cβ
0 (R2) and also

gη
j ∈ Cβ

0 (R2). However, the parameters of the regularity change. Applying Lemma 6.4.1
yields the following result.

Lemma 6.4.2 ([60, Lem. 6.11]). Let β ∈ (1, 2] and gη ∈ Cβ
0 (R2). Then for gη

j = gη(2−αj ·)

Höl(∂1g
η
j , β − 1) = 2−jHöl(∂1g

η, β − 1).

Proof. In view of Lemma 6.4.1 we have

Höl(∂1g
η
j , β − 1) = Höl(2−αj∂1g

η(2−αj ·), β − 1) = 2−jHöl(∂1g
η, β − 1).

It is obvious that ∥gη
j ∥∞ . 1. Further, the chain rule yields

∥∂1g
η
j ∥∞ . 2−αj and ∥∂2g

η
j ∥∞ . 2−αj .

Some more estimates for gη
j are collected in the following two lemmas. Here ∆(h,0) is a

forward difference operator as in (6.6).

Lemma 6.4.3 ([60, Lem. 6.12]). The following estimates hold true for gη
j :

∥∆(h,0)g
η
j ∥∞ . 2−αjh,

∥∆(h,0)∂1g
η
j ∥∞, ∥∆(h,0)∂2g

η
j ∥∞ . 2−jhβ−1 = 2−αjhβ ,

∥∆2
(h,0)g

η
j ∥∞ . 2−jhβ ,

with implicit constants, that do not depend on j ∈ N0 and h ≥ 0.

Proof. Applying the mean value theorem yields

∥∆(h,0)g
η
j ∥∞ ≤ h∥∂1g

η
j ∥∞ . 2−αjh.

Considering Lemma 6.4.2 we obtain

∥∆(h,0)∂1g
η
j ∥∞ . 2−jhβ−1 = 2−αjhβ .

Noting the commutativity ∂1∆(h,0) = ∆(h,0)∂1, we obtain

∥∆2
(h,0)g

η
j ∥∞ . h∥∆(h,0)∂1g

η
j ∥∞ . 2−jhβ .

The next lemma gives estimates for gη
j along the edge curve. Here the function a ∈ Cβ(R)

comes into play, which was defined in (6.18). The following estimates also depend on the
properties of a, which are summarized in Lemma 6.3.2. Recall that by convention ∆h only
acts on the variables t or τ .
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Lemma 6.4.4 ([60, Lem. 6.13]). Assume | sin η| ≥ 2δj. The following estimates hold true
for gη

j :

sup
t∈R

|∆hg
η
j (t, a(t))| . h| sin η|−12−αj ,

sup
t∈R

|∆h∂1g
η
j (t, a(t))|, sup

t∈R
|∆h∂2g

η
j (t, a(t))| . hβ−1| sin η|1−β2−j ,

sup
t∈R

|∆2
hg

η
j (t, a(t))| . hβ | sin η|−1−β2−j ,

where the implicit constants are independent of j ∈ N0 and h ≥ 0.

Proof. In view of Lemma 6.3.2 it holds

sup
t∈R

|∆hg
η
j (t, a(t))| . h · sup

t∈R
| d
dt
gη

j (t, a(t))|

. h ·


sup
t∈R

|∂1g
η
j (t, a(t))| + sup

t∈R
|∂2g

η
j (t, a(t))a′(t)|


. h · | sin η|−12−αj .

Considering the transformation behavior of the Hölder constant we obtain with Lemma 6.3.2

sup
t∈R

|∆h∂1g
η
j (t, a(t))| . 2−j sup

t∈R
|(h, a(t+ h) − a(t))|β−1

2

. 2−jhβ−1 + sup
t∈R

|a(t+ h) − a(t)|β−1
. 2−jhβ−1| sin η|1−β .

Applying Lemma 6.3.2, the mean value theorem and d
dt∆h = ∆h

d
dt yields

sup
t∈R

|∆2
hg

η
j (t, a(t))| . h · sup

t∈R
|∆h

d

dt
gη

j (t, a(t))|

= h · sup
t∈R

|∆h


∂1g

η
j (t, a(t)) + ∂2g

η
j (t, a(t))a′(t)


|

= h · sup
t∈R

|∆h∂1g
η
j (t, a(t)) + ∆h∂2g

η
j (t, a(t))a′(t+ h) + ∂2g

η
j (t, a(t))∆ha

′(t)|

. hβ | sin η|1−β2−j + hβ | sin η|−β2−j + δjh
β | sin η|−1−β2−αj .

6.4.2 Estimates for ωη

Similarly, we obtain estimates for the window function ωη ∈ C∞
0 (R2), which in contrast to

the functions gη
j remains fixed at all scales. This fact and the smoothness of ωη result in

different estimates.
First, we state the trivial estimates ∥ωη∥∞ . 1, ∥∂1ω

η∥∞ . 1, and ∥∂2ω
η∥∞ . 1. Next,

we apply the forward difference operator ∆(h,0) to ωη.

Lemma 6.4.5 ([60, Lem. 6.14]). Let k ∈ N0. It holds with implicit constants independent
of h ≥ 0

∥∆k
(h,0)ω

η∥∞ . hk and ∥∆k
(h,0)∂1ω

η∥∞ . hk.
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6.4 Appendix A: Proof of Lemma 6.3.4

Analogous to Lemma 6.4.4 we establish estimates along the edge curve.

Lemma 6.4.6 ([60, Lem. 6.15]). Assume | sin η| ≥ 2δj. It holds

sup
t∈R

|∆hω
η(t, a(t))| . h| sin η|−1,

sup
t∈R

|∆h∂1ω
η(t, a(t))|, sup

t∈R
|∆h∂2ω

η(t, a(t))| . h| sin η|−1,

sup
t∈R

|∆2
hω

η(t, a(t))| . h2| sin η|−2 + δjh
β | sin η|−1−β .

Proof. This proof is analogous to the proof of Lemma 6.4.4.

Now we are in the position to give the proof of Lemma 6.3.4.

6.4.3 Proof of Lemma 6.3.4

Proof. First we differentiate RFj(t, η) with respect to t and obtain from (6.21)

∂1(RFj)(t, η) = a′(t)Gj(t, a(t)) +
 a(t)

−∞
∂1Gj(t, u) du =: T (t),

where on the right-hand side the dependence on η is omitted in the notation. In the
remainder of the proof, we will also suppress the index j as far as possible. Applying ∆h

then yields for t ∈ R

∆hT (t) = ∆ha
′(t)G(t+ h, a(t+ h)) + a′(t)∆hG(t, a(t))

+
 a(t+h)

a(t)
∂1G(t+ h, u) du+

 a(t)

−∞
∆(h,0)∂1G(t, u) du

=: T1(t) + T2(t) + T3(t) + T4(t).

Next, we estimate the L∞-norms of the functions Ti for i ∈ {1, 2, 3, 4}. Let us begin with
T1. Applying Lemma 6.3.2 we obtain

∥T1∥∞ ≤ ∥∆ha
′∥∞∥G∥∞ . ∥∆ha

′∥∞ . δjh
β−1| sin η|−1−β . hβ | sin η|−1−β .

The estimate of T2 takes some more effort. The product rule yields for t ∈ R

T2(t) = a′(t)∆hG(t, a(t)) = a′(t)∆hgj(t, a(t))ω(t+ h, a(t+ h))
+ a′(t)gj(t, a(t))∆hω(t, a(t)) =: T21(t) + T22(t).

Using the mean value theorem and Lemmas 6.3.2 and 6.4.4 yields

∥T21∥∞ ≤ ∥a′∥∞ sup
t∈R

|∆hgj(t, a(t))|∥ω∥∞ . h| sin η|−22−αj . hβ | sin η|−1−β .

We take another forward difference of the component T22 and obtain

∆hT22(t) = ∆ha
′(t)gj(t+ h, a(t+ h))∆hω(t+ h, a(t+ h))

+a′(t)∆hgj(t, a(t))∆hω(t+ h, a(t+ h)) + a′(t)g(t, a(t))∆2
hω(t, a(t))

=: T 1
22(t) + T 2

22(t) + T 3
22(t).
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6 CARTOON APPROXIMATION WITH α-MOLECULES: GUARANTEES

These terms allow the following estimates, where we use Lemmas 6.3.2, 6.4.6 and 6.4.4.
Also note h . | sin η|.

∥T 1
22∥∞ ≤ hβ+1| sin η|−2−β . hβ | sin η|−1−β ,

∥T 2
22∥∞ ≤ h2| sin η|−32−αj . hβ | sin η|−1−β ,

∥T 3
22∥∞ ≤ h2| sin η|−3 + hβ+1| sin η|−2−β . hβ | sin η|−1−β .

By substitution, the term T3 transforms to

T3(t) =
 t+h

t
∂1G(t+ h, a(u))a′(u) du

=
 t+h

t
∂1gj(t+ h, a(u))ω(t+ h, a(u))a′(u) du

+
 t+h

t
gj(t+ h, a(u))∂1ω(t+ h, a(u))a′(u) du

=: T31(t) + T32(t).

We apply ∆h to T31. Here ∆h acts exclusively on t and τ . We obtain

∆hT31(t) =
 t+h

t
∆h


∂1gj(t+ h, a(τ))ω(t+ h, a(τ))a′(τ)


dτ

=
 t+h

t
∆h∂1gj(t+ h, a(τ))ω(t+ 2h, a(τ + h))a′(τ + h) dτ

+
 t+h

t
∂1gj(t+ h, a(τ))∆hω(t+ h, a(τ))a′(τ + h) dτ

+
 t+h

t
∂1gj(t+ h, a(τ))ω(t+ h, a(τ))∆ha

′(τ) dτ

=: T 1
31(t) + T 2

31(t) + T 3
31(t).

Analogously, we decompose

∆hT32(t) =
 t+h

t
∆h


gj(t+ h, a(τ))∂1ω(t+ h, a(τ))a′(τ)


dτ =: T 1

32(t) + T 2
32(t) + T 3

32(t).

Then we estimate with the results from the appendix

∥T 1
31∥∞ . h| sin η|−12−jhβ−1 + hβ−1| sin η|1−β . hβ | sin η|−1−β ,

∥T 2
31∥∞ . h| sin η|−12−αjh+ h| sin η|−1 . hβ | sin η|−1−β ,

∥T 3
31∥∞ . h2−αj∥∆ha

′∥∞ . hβ | sin η|−1−β ,

and

∥T 1
32∥∞ . h| sin η|−12−αjh+ h| sin η|−1 . hβ | sin η|−1−β ,

∥T 2
32∥∞ . h| sin η|−1h+ h| sin η|−1 . hβ | sin η|−1−β ,

∥T 3
32∥∞ . h∥∆ha

′∥∞ . hβ | sin η|−1−β .
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Finally, we treat the term T4,

T4(t) =
 a(t)

−∞
∆h∂1G(t, u) du =

 a(t)

−∞
∆h


∂1gj(t, u)ω(t, u) + gj(t, u)∂1ω(t, u)


du

=
 a(t)

−∞
∆h∂1gj(t, u)ω(t+ h, u) du+

 a(t)

−∞


∂1gj(t, u)∆hω(t, u)

+∆hgj(t, u)∂1ω(t+ h, u)

du

+
 a(t)

−∞
gj(t, u)∆h∂1ω(t, u) du =: T41(t) + T42(t) + T43(t).

The terms T41 and T42 can be estimated directly,

∥T41∥∞ . hβ−1 · 2−j ≤ hβ ,

∥T42∥∞ . h · 2−αj ≍ 2−j ≤ 2−j(β−1) ≍ hβ .

The term T43 again needs some further preparation,

∆hT43(t) =
 a(t+h)

a(t)
gj(t+ h, u)∆h∂1ω(t+ h, u) du

+
 a(t)

−∞
∆h


gj(t, u)∆h∂1ω(t, u)


du =: T 1

43(t) + T 2
43(t).

In the end we arrive at

∥T 1
43∥∞ . h2| sin η|−1 . hβ | sin η|−1,

∥T 2
43∥∞ . h2 . hβ .

Now we collect the appropriate terms and add them up to obtain S1 and S2. In a last step,
we use our L∞-estimates to obtain the desired L2-estimates. Here we use that |suppTi| .
|I(η)| . | sin η| according to Lemma 6.3.3 for i ∈ {1, 2, 3} and |suppT4| . 1. This finishes
the proof.

6.5 Appendix B: Refinement of Theorem 6.3.6
In this final section ([60, Appendix B]) we prove Theorem 6.3.7, which is a refinement of
Theorem 6.3.6. For that we need to analyze the modified edge fragment Fj , given for fixed
m ∈ N0 by

Fj(x) = r(x)mFj(x), x ∈ R2, (6.35)

where Fj is the function (6.14) and r : R2 → R shall map a vector x = (x1, x2) ∈ R2 to
its first component x1 ∈ R. Alternatively, (6.35) can be written as the product Fj(x) =Gj(x)X{x1≥Ej(x2)} with the function

Gj(x) := r(x)mGj(x) = r(x)mω(x)gj(x), x ∈ R2, (6.36)

which is a modified version of Gj(x) = gj(x)ω(x) from (6.20).
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Rotating by the angle η yields Gη
j (x) = (rη(x))mGη

j (x) = (rη(x))mgη
j (x)ωη(x), where

Gη
j and rη are the functions obtained by rotating Gj and r, respectively. The function

rη : R2 → R has the form

rη(t, a) := t cos η − a sin η, (t, a) ∈ R2. (6.37)

Some important properties of rη and Gη
j are collected below.

6.5.1 Estimates for rη

First we analyze the function rη : R2 → R given by (6.37). Clearly rη ∈ C∞(R2). Also note
that rη is not compactly supported. Since rη only occurs as a factor in products with the
window ωη this does not cause any problems however.

Thanks to the smoothness of rη we have the following result.

Lemma 6.5.1 ([60, Lem. 6.16]). Let k,m ∈ N0 and K ⊂ R2 a compact set. Then we have

∥∆k
(h,0)(r

η)m∥L∞(K) . hk.

Along the edge curve the following estimates hold. Here I(η) denotes the interval defined
in (6.19).

Lemma 6.5.2 ([60, Lem. 6.17]). Let | sin η| ≥ 2δj. Then we have sup
t∈I(η) |rη(t, a(t))| . δj.

Moreover, for h ≥ 0 it holds

sup
t∈R

|∆hr
η(t, a(t))| . h and sup

t∈R
|∆2

hr
η(t, a(t))| . hβδj | sin η|−β .

Proof. For every t ∈ R the point (t, a(t)) ∈ R2 in rotated coordinates lies on the (ex-
tended) edge curve Γ. We know that the function Ej deviates little from zero and obeys
sup|x2|≤1 |Ej(x2)| ≤ δj . 2−j(1−α) according to (6.15). Furthermore, the slope of Ej outside
of [−1, 1] is constant and bounded by δj . This yields the estimate sup

t∈I(η) |rη(t, a(t))| . δj .
The other estimates follow from Lemma 6.3.2. In view of this lemma we conclude

sup
t∈R

|∆hr
η(t, a(t))| ≤ h · sup

t∈R
| cos η − a′(t) sin η| . h| sin η|−1| sin η| = h,

and
sup
t∈R

|∆2
hr

η(t, a(t))| ≤ h| sin η|∥∆ha
′∥∞ . hβδj | sin η|−β .

6.5.2 Estimates for Gη
j

The function Gη
j is the rotated version of the function Gj given in (6.36) as the composition

of the ‘elementary functions’ gj , ω, and r. Hence we can apply the previous estimates to
obtain estimates for Gη

j .
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Lemma 6.5.3 ([60, Lem. 6.18]). Let | sin η| ≥ 2δj. Let Gη
j (t, a) = (rη(t, a))mGη

j (t, a) for
(t, a) ∈ R2, m ∈ N, m ̸= 0. Then there are the estimates

sup
t∈R

| Gη
j (t, a(t))| . δm

j , sup
t∈R

|∆h
Gη

j (t, a(t))| . δm−1
j h,

sup
t∈R

|∂1 Gη
j (t, a(t))| . δm−1

j , sup
t∈R

|∂2 Gη
j (t, a(t))| . δm−1

j | sin η|.

Proof. We omit the dependence on j and η and calculate for (t, a) ∈ R2

∂1 G(t, a) = ∂1

r(t, a)mG(t, a)


= (cos η)mr(t, a)m−1G(t, a) + r(t, a)m∂1G(t, a),

and ∂2 G(t, a) = ∂2

r(t, a)mG(t, a)


= −(sin η)mr(t, a)m−1G(t, a) + r(t, a)m∂2G(t, a).

The assertion is then a consequence of the following facts. It holds ∥G∥∞ . 1 and
|r(t, a(t))| ≤ δj for all t ∈ I(η). Further, for t /∈ I(η) the expressions G(t, a(t)), ∂1G(t, a(t)),
and ∂2G(t, a(t)) vanish.

6.5.3 Refinement of Lemma 6.3.4

In this subsection we prove the following generalization of Lemma 6.3.4.

Lemma 6.5.4 ([60, Lem. 6.19]). For m ∈ N0 let Fj be the modified edge fragment (6.35).
Further, assume that | sin η| ≥ 2δj and h ≍ 2−(1−α)j. Then the function S := ∆h∂1R Fj(·, η)
admits a decomposition

S = S0
1 + S0

2 ,

such that ∆hS
0
2 = S1

1 + S1
2 ,

∆hS
1
2 = S2

1 + S2
2 ,

...
∆hS

m−1
2 = Sm

1 + Sm
2 ,

∆hS
m
2 = Sm+1

1 ,

with the estimates

∥Sk
1 ∥2

2 . 2−2jm(1−α)h2β | sin η|−1−2β + 2−j(1−α)(2β+1), k = 0, 1, . . . ,m+ 1.

For convenience we set Sm+1
2 = 0.

We introduce the following language and say, that the function S admits a decomposition
(Sk

1 , S
k
2 )k of the form (∗) of length m+ 1 with the estimates

∥Sk
1 ∥2

2 . 2−2jm(1−α)h2β | sin η|−1−2β + 2−j(1−α)(2β+1), k = 0, 1, . . . ,m+ 1.

Before we come to the proof of Lemma 6.5.4 we need to establish three important
technical results.
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Lemma 6.5.5 ([60, Lem. 6.20]). Let Gη
j (x) = (rη(x))mGη

j (x) for x ∈ R2 and m ∈ N0.
Further, let h ≍ 2−j(1−α). The function T : R → R defined by T (t) = a′(t)∆h

Gη
j (t, a(t))

then admits a decomposition (T k
1 , T

k
2 )k of the form (∗) of length (m+ 1) with the estimates

∥T k
1 ∥∞ . hmhβ | sin η|−1−β , k = 0, . . . ,m+ 1,

∥T k
2 ∥∞ . hm| sin η|−1, k = 0, . . . ,m,

and subject to the condition suppT k
i ⊂ I(η), where I(η) is the interval from (6.19).

Proof. We prove this by induction on m. If m = 0 we put T 0
1 = T21, T 0

2 = T22, T 1
1 = ∆hT22,

and T 1
2 = 0, with entities T21 and T22 as defined in the proof of Lemma 6.3.4. The estimates

for T21 and ∆hT22 have been carried out there. In view of h . sin η we can further estimate

∥T 0
2 ∥∞ = ∥T22∥∞ . h| sin η|−2 . h0| sin η|−1.

This proves the case m = 0.
We proceed with the induction and assume that the lemma is true for T , where m ∈

N0 is fixed but arbitrary. The associated decomposition of length m + 1 shall be de-
noted by (T k

1 , T
k
2 )k. We will show that under this hypothesis also the function T (t) :=

a′(t)∆h
G+(t, a(t)), where G+(x) = (rη(x))m+1Gη

j (x) for x ∈ R2, admits a decomposition
(T̃ k

1 , T̃
k
2 )k of the form (∗) of length (m+ 2) with the desired properties.

Subsequently, we simplify the notation by omitting the indices η and j. First we de-
compose as follows,

T (t) = a′(t)∆h


r(t, a(t)) G(t, a(t))


= a′(t)∆hr(t, a(t)) G(t+ h, a(t+ h)) + r(t, a(t))a′(t)∆h

G(t, a(t))
=

r(t, a(t))T 0

1 (t)


+

a′(t)∆hr(t, a(t)) G(t+ h, a(t+ h)) + r(t, a(t))T 0

2 (t)


=: T̃ 0
1 (t) + T̃ 0

2 (t).

In view of the properties of T 0
1 and Lemma 6.5.2 we see that the function T̃ 0

1 satisfies the
assertion. The estimate

∥T̃ 0
2 ∥∞ . ∥a′∥∞ sup

t∈R
|∆hr(t, a(t))| sup

t∈R
| G(t, a(t))| . | sin η|−1 · h · δm

j ,

where Lemmas 6.3.2, 6.5.2 and 6.5.3 were used, shows the claim also for T̃ 0
2 .
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We take another forward difference of the component T̃ 0
2 and obtain

∆hT̃
0
2 (t) = ∆ha

′(t)∆hr(t+ h, a(t+ h)) G(t+ 2h, a(t+ 2h))
+a′(t)∆2

hr(t, a(t)) G(t+ 2h, a(t+ 2h))
+∆hr(t, a(t))a′(t)∆h

G(t+ h, a(t+ h)) + ∆hr(t, a(t))T 0
2 (t+ h)

+r(t, a(t))∆hT
0
2 (t)

= ∆ha
′(t)∆hr(t+ h, a(t+ h)) G(t+ 2h, a(t+ 2h))

+a′(t)∆2
hr(t, a(t)) G(t+ 2h, a(t+ 2h))

+∆hr(t, a(t))(T 0
1 (t+ h) + T 0

2 (t+ h))
−∆hr(t, a(t))∆ha

′(t)∆h
G(t+ h, a(t+ h))

+∆hr(t, a(t))T 0
2 (t+ h) + r(t, a(t))T 1

1 (t) + r(t, a(t))T 1
2 (t)

=

∆ha

′(t)∆hr(t+ h, a(t+ h)) G(t+ 2h, a(t+ 2h))
+a′(t)∆2

hr(t, a(t)) G(t+ 2h, a(t+ 2h))
−∆hr(t, a(t))∆ha

′(t)∆h
G(t+ h, a(t+ h)) + r(t, a(t))T 1

1 (t)
+∆hr(t, a(t))T 0

1 (t+ h)


+

2∆hr(t, a(t))T 0

2 (t+ h) + r(t, a(t))T 1
2 (t)


=: T̃ 1

1 (t) + T̃ 1
2 (t).

For T̃ 1
1 we check directly

sup
t∈R

|∆ha
′(t)∆hr(t, a(t)) G(t+ h, a(t+ h))| . hβ−1δj | sin η|−1−βhhm

= hm+1hβ | sin η|−1−β ,

sup
t∈R

|a′(t)∆2
hr(t, a(t)) G(t+ 2h, a(t+ 2h))| . | sin η|−1hβδj | sin η|−βhm

= hm+1hβ | sin η|−1−β ,

sup
t∈R

|∆hr(t, a(t))∆ha
′(t)∆h

G(t+ h, a(t+ h))| . δm
j h

βh| sin η|−1−β

. hm+1hβ | sin η|−1−β .

The estimates for the remaining two terms are obvious. Hence T̃ 1
1 fulfills the desired prop-

erties.
For T̃ 1

2 we use the induction hypothesis and Lemma 6.5.2 to obtain

∥T̃ 1
2 ∥∞ . sup

t∈R
|r(t, a(t))T 1

2 (t)| + sup
t∈R

|∆hr(t, a(t))T 0
2 (t+ h)| . hm+1| sin η|−1.

Moving forward, this procedure yields terms for k = 1, . . . ,m+ 1,

T̃ k+1
1 (t) = r(t, a(t))T k+1

1 (t) + (k + 1)∆hr(t+ h, a(t+ h))T k
1 (t+ h)

+(k + 1)∆2
hr(t, a(t))T k−1

2 (t+ h) + (k + 1)∆2
hr(t, a(t))T k

2 (t+ h),
T̃ k

2 (t) = r(t, a(t))T k
2 (t) + (k + 1)∆hr(t, a(t))T k−1

2 (t+ h),

which satisfy the desired estimates. Here we put Tm+2
1 = Tm+2

2 = 0 for convenience.
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Indeed, using the induction assumptions, we obtain

∥T̃ k+1
1 ∥∞ . sup

t∈R
|r(t, a(t))T k+1

1 (t)| + sup
t∈R

|∆hr(t+ h, a(t+ h))T k
1 (t+ h)|

+ sup
t∈R

|∆2
hr(t, a(t))T k−1

2 (t+ h)| + sup
t∈R

|∆2
hr(t, a(t))T k

2 (t+ h)|

. hm+1hβ | sin η|−1−β ,

∥T̃ k
2 ∥∞ . sup

t∈R
|r(t, a(t))T k

2 (t)| + sup
t∈R

|∆hr(t, a(t))T k−1
2 (t+ h)| . hm+1| sin η|−1.

Note, that Tm+1
2 = Tm+2

1 = Tm+2
2 = 0. Hence, for k = m+ 1 these expressions read

T̃m+2
1 (t) = (m+ 2)∆hr(t+ h, a(t+ h))Tm+1

1 (t+ h) + (m+ 2)∆2
hr(t, a(t))Tm

2 (t+ h),
T̃m+1

2 (t) = (m+ 2)∆hr(t, a(t))Tm
2 (t+ h).

Since ∆hT̃
m+1
2 = T̃m+2

1 we have T̃m+2
2 = 0 and the proof is finished.

The following Lemma 6.5.6 is in the same spirit as Lemma 6.5.5.

Lemma 6.5.6 ([60, Lem. 6.21]). Let Gη
j (x) = (rη(x))mGη

j (x) for x ∈ R2, m ∈ N0, and
h ≍ 2−j(1−α). Then the function S : R → R defined by S(t) = a′(t)∆h∂1 Gη

j (t, a(t)) admits
a decomposition (Sk

1 , S
k
2 )k of the form (∗) of length m+ 1 with estimates

∥Sk
1 ∥∞ . hm−1hβ | sin η|−1−β , k = 0, . . . ,m+ 1,

∥Sk
2 ∥∞ . hm−1| sin η|−1, k = 0, . . . ,m.

Moreover, these functions can be chosen such that suppSk
i ⊂ I(η) with I(η) from (6.19).

Proof. The proof is by induction on m. To enhance readability we again omit the indices η
and j. The assertions are clearly true for m = 0.

For the induction we let m ∈ N0 be fixed and let S be the function defined in the
setting. Further, let us assume that we have a decomposition (Sk

1 , S
k
2 )k of length m + 1

with the desired properties for S. We put Sm+1
2 = 0 and for convenience we also define

Sm+2
1 = Sm+2

2 = 0. We will show that under these assumptions the function S : R → R
given by S(t) := a′(t)∆h∂1 G+(t, a(t)), where G+(x) = r(x)m+1G(x) for x ∈ R2, admits a
decomposition (S̃k

1 , S̃
k
2 )k of length m+ 2 of the same form. First we calculate

S(t) = a′(t)∆h∂1 G+(t, a(t)) = a′(t)∆h


cos η G(t, a(t)) + r(t, a(t))∂1 G(t, a(t))


= a′(t) cos η∆h

G(t, a(t)) + a′(t)∆hr(t, a(t))∂1 G(t, a(t))
+ r(t+ h, a(t+ h))a′(t)∆h∂1 G(t, a(t)).

Using the induction hypothesis we can proceed,

S(t) =

r(t+ h, a(t+ h))S0

1(t)


+

r(t+ h, a(t+ h))S0

2(t) + a′(t) cos η∆h
G(t, a(t))

+a′(t)∆hr(t, a(t))∂1 G(t, a(t))


=: S̃0
1(t) + S̃0

2(t).
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The terms S̃0
1 and S̃0

2 have the desired properties, which follows from the estimates

sup
t∈R

|r(t+ h, a(t+ h))S0
1(t)| . hhm−1hβ | sin η|−1−β ,

sup
t∈R

|r(t+ h, a(t+ h))S0
2(t)| . hhm−1| sin η|−1,

sup
t∈R

|a′(t) cos η∆h
G(t, a(t))| . | sin η|−1δm−1

j h,

sup
t∈R

|a′(t)∆hr(t, a(t))∂1 G(t, a(t))| . | sin η|−1hδm−1
j .

Taking another forward difference of S̃0
2 yields

∆hS̃
0
2(t) = ∆hr(t+ h, a(t+ h))S0

2(t) + r(t+ 2h, a(t+ 2h))∆hS
0
2(t)

+∆ha
′(t) cos η∆h

G(t, a(t))
+a′(t+ h) cos η∆2

h
G(t, a(t)) + ∆ha

′(t)∆hr(t, a(t))∂1 G(t, a(t))
+a′(t+ h)∆2

hr(t, a(t))∂1 G(t, a(t))
+a′(t+ h)∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t)).

Let T denote the function from Lemma 6.5.5. We observe,

a′(t+ h)∆2
h
G(t, a(t)) = a′(t+ h)


∆h

G(t+ h, a(t+ h)) − ∆h
G(t, a(t))


= a′(t+ h)∆h

G(t+ h, a(t+ h)) − a′(t)∆h
G(t, a(t))

+ (a′(t) − a′(t+ h))∆h
G(t, a(t))

= a′(t+ h)∆h
G(t+ h, a(t+ h)) − a′(t)∆h

G(t, a(t))
− ∆ha

′(t)∆h
G(t, a(t))

= T (t+ h) − T (t) − ∆ha
′(t)∆h

G(t, a(t))
= ∆hT (t) − ∆ha

′(t)∆h
G(t, a(t)).

Now we know by Lemma 6.5.5 that there is a decomposition (T k
1 , T

k
2 )k of T of length m+ 1

with the specific properties given there. This allows to decompose ∆hT = ∆hT
0
1 + T 1

1 + T 1
2

and we obtain

a′(t+ h)∆2
h
G(t, a(t)) = ∆hT

0
1 (t) + T 1

1 (t) + T 1
2 (t) − ∆ha

′(t)∆h
G(t, a(t)).

Using this observation we obtain

∆hS̃
0
2(t) = ∆hr(t+ h, a(t+ h))S0

2(t) + r(t+ 2h, a(t+ 2h))S1
1(t)

+r(t+ 2h, a(t+ 2h))S1
2(t)

+∆ha
′(t) cos η∆h

G(t, a(t)) + cos η∆hT
0
1 (t) + cos η(T 1

1 (t) + T 1
2 (t))

− cos η∆ha
′(t)∆h

G(t, a(t))
+∆ha

′(t)∆hr(t, a(t))∂1 G(t, a(t)) + a′(t+ h)∆2
hr(t, a(t))∂1 G(t, a(t))

+a′(t)∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t))
+(a′(t+ h) − a′(t))∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t))
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and further

∆hS̃
0
2(t) =


r(t+ 2h, a(t+ 2h))S1

1(t) + ∆ha
′(t) cos η∆h

G(t, a(t))
+ cos η∆hT

0
1 (t) − cos η∆ha

′(t)∆h
G(t, a(t)) + cos ηT 1

1 (t)
+∆ha

′(t)∆hr(t, a(t))∂1 G(t, a(t)) + a′(t+ h)∆2
hr(t, a(t))∂1 G(t, a(t))

+∆ha
′(t)∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t)) + ∆hr(t+ h, a(t+ h))S0

1(t)


+

r(t+ 2h, a(t+ 2h))S1

2(t) + cos ηT 1
2 (t) + 2∆hr(t+ h, a(t+ h))S0

2(t)


=: S̃1
1(t) + S̃1

2(t).

Now we can split ∆hS̃
0
2 = S̃1

1 + S̃1
2 with

S̃1
1(t) = r(t+ 2h, a(t+ 2h))S1

1(t) + cos η∆ha
′(t)∆h

G(t, a(t))
+∆ha

′(t)∆hr(t, a(t))∂1 G(t, a(t))
+a′(t+ h)∆2

hr(t, a(t))∂1 G(t, a(t)) + ∆hr(t+ h, a(t+ h))S0
1(t) + cos η∆hT

0
1 (t)

+∆ha
′(t)∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t)) − cos η∆ha

′(t)∆h
G(t, a(t))

+ cos ηT 1
1 (t),

S̃1
2(t) = 2∆hr(t+ h, a(t+ h))S0

2(t) + r(t+ 2h, a(t+ 2h))S1
2(t) + cos ηT 1

2 (t).

These terms have the desired properties. To see this, we calculate

sup
t∈R

|r(t+ 2h, a(t+ 2h))S1
1(t)| . hhm−1hβ | sin η|−1−β ,

sup
t∈R

|∆ha
′(t)∆h

G(t, a(t))| . δjh
β−1| sin η|−1−β · δm−1

j h,

sup
t∈R

|∆ha
′(t)∆hr(t, a(t))∂1 G(t, a(t))| . δjh

β−1| sin η|−1−β · h · δm−1
j ,

sup
t∈R

|a′(t+ h)∆2
hr(t, a(t))∂1 G(t, a(t))| . | sin η|−1 · hβδj | sin η|−β · δm−1

j ,

sup
t∈R

|∆hr(t+ h, a(t+ h))S0
1(t)| . hhm−1hβ | sin η|−1−β ,

sup
t∈R

|∆hT
0
1 (t)| . hmhβ | sin η|−1−β ,

sup
t∈R

|∆ha
′(t)∆h

G(t, a(t))| . δjh
β−1| sin η|−1−β · δm−1

j h,

sup
t∈R

|∆ha
′(t)∆hr(t+ h, a(t+ h))∆h∂1 G(t, a(t))| . δjh

β−1| sin η|−1−β · h · δm−1
j ,

sup
t∈R

|T 1
1 (t)| . δm

j h
β | sin η|−1−β ,

and

sup
t∈R

|2∆hr(t+ h, a(t+ h))S0
2(t)| . hhm−1| sin η|−1,

sup
t∈R

|r(t+ 2h, a(t+ 2h))S1
2(t)| . hhm−1| sin η|−1,

sup
t∈R

|T 1
2 (t)| . hhm−1| sin η|−1.
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We proceed with

∆hS̃
1
2(t) =


cos ηT 2

1 (t) + r(t+ 3h, a(t+ 3h))S2
1(t) + 2∆hr(t+ 2h, a(t+ 2h))S1

1(t)
+2∆2

hr(t+ h, a(t+ h))S0
2(t)


+

cos ηT 2

2 (t) + r(t+ 3h, a(t+ 3h))S2
2(t)

+3∆hr(t+ 2h, a(t+ 2h))S1
2(t)


=: S̃2

1(t) + S̃2
2(t).

Inductively, we put for k = 1, . . . ,m+ 1, where for convenience Tm+2
1 = 0,

S̃k+1
1 (t) := cos ηT k+1

1 (t) + r(t+ (k + 2)h, a(t+ (k + 2)h))Sk+1
1 (t)

+(k + 1)∆hr(t+ (k + 1)h, a(t+ (k + 1)h))Sk
1 (t)

+(k + 1)∆2
hr(t+ kh, a(t+ kh))Sk−1

2 (t),
S̃k

2 (t) := cos ηT k
2 (t) + r(t+ (k + 1)h, a(t+ (k + 1)h))Sk

2 (t)
+(k + 1)∆hr(t+ kh, a(t+ kh))Sk−1

2 (t).

These terms clearly satisfy ∆hS̃
k
2 = S̃k+1

1 + S̃k+1
2 . They also have the desired properties

since

sup
t∈R

|T k+1
1 (t)| . hmhβ | sin η|−1−β ,

sup
t∈R

|r(t+ (k + 2)h, a(t+ (k + 2)h))Sk+1
1 (t)| . h · hm−1hβ | sin η|−1−β ,

sup
t∈R

|∆hr(t+ (k + 1)h, a(t+ (k + 1)h))Sk
1 (t)| . h · hm−1hβ | sin η|−1−β ,

sup
t∈R

|∆2
hr(t+ kh, a(t+ kh))Sk−1

2 (t)| . hβδj | sin η|−β · hm−1| sin η|−1,

and

sup
t∈R

|T k
2 (t)| . hm| sin η|−1,

sup
t∈R

|r(t+ (k + 1)h, a(t+ (k + 1)h))Sk
2 (t)| . h · hm−1| sin η|−1,

sup
t∈R

|∆hr(t+ kh, a(t+ kh))Sk−1
2 (t)| . h · hm−1| sin η|−1.

Since Sm+1
2 = Sm+2

1 = Sm+2
2 = Tm+1

2 = Tm+2
1 = 0, for k = m+1 these expressions read

S̃m+2
1 (t) = (m+ 2)∆hr(t+ (m+ 2)h, a(t+ (m+ 2)h))Sm+1

1 (t)
+(m+ 2)∆2

hr(t+ (m+ 1)h, a(t+ (m+ 1)h))Sm
2 (t),

S̃m+1
2 (t) = (m+ 2)∆hr(t+ (m+ 1)h, a(t+ (m+ 1)h))Sm

2 (t).

We see that ∆hS̃
m+1
2 = S̃m+2

1 . Therefore S̃m+2
2 = 0 and the proof is finished.

A slight modification of the previous proof leads to the following lemma.

Lemma 6.5.7 ([60, Lem. 6.22]). Let Gη
j (x) = (rη(x))mGη

j (x) for x ∈ R2 and m ∈ N0

and h ≍ 2−j(1−α). The function S : R2 → R given by S(t, τ) = a′(τ)∆h∂1 Gη
j (t, a(τ)) for

(t, τ) ∈ R2 admits a decomposition (S̃k
1 , S̃

k
2 )k of the form (∗) of length m+ 1 with estimates

sup
t∈R

sup
τ∈[t−h,t+h]

|S̃k
1 (t, τ)| . hm−1hβ | sin η|−1−β , k = 0, . . . ,m+ 1,

sup
t∈R

sup
τ∈[t−h,t+h]

|S̃k
2 (t, τ)| . hm−1| sin η|−1, k = 0, . . . ,m.
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Proof. A small adaption of the previous proof is required to account for the little deviation
of τ from t. We just make the following remark. For t, τ ∈ R we have rη(t, a(τ)) =
rη(t, a(t)) + (a(t) − a(τ)) sin η. It follows for h ∈ R

sup
τ∈[t−h,t+h]

|rη(t, a(τ))| ≤ |rη(t, a(t))| + |h sin η|∥a′∥∞ . |rη(t, a(t))| + |h|.

Since h ≍ 2−j(1−α) this additional term poses no problem in the estimations.

Finally, we have all the tools available to give the proof of Lemma 6.5.4.

Proof of Lemma 6.5.4. We have Gη
j (x) = (rη(x))mGη

j (x) for x ∈ R2 and analogous to (6.21)

R Fj(t, η) =
 a(t,η)

−∞
Gη

j (t, u) du.

For simplicity we omit the superindex η subsequently, and also j wherever possible. Similar
to the proof of Lemma 6.3.4 we obtain

S(t) = ∆ha
′(t) G(t+ h, a(t+ h)) + a′(t)∆h

G(t, a(t)) +
 a(t+h)

a(t)
∂1 G(t+ h, u) du

+
 a(t)

−∞
∆(h,0)∂1 G(t, u) du

=: T1(t) + T2(t) + T3(t) + T4(t).

We will show the assertion for each of these terms separately. Moreover, it suffices to prove
L∞-estimates, which can be transformed to the desired L2-estimates via the corresponding
support properties. Note that |supp Ti| . |I(η)| . | sin η| according to Lemma 6.3.3 for
i ∈ {1, 2, 3} and that |supp T4| . 1.

For T1 the estimate

∥ T1∥∞ ≤ ∥∆ha
′∥∞ sup

t∈R
| G(t, a(t))| . ∥∆ha

′∥∞ sup
t∈I(η)

|r(t, a(t))|m

. δm+1
j hβ−1| sin η|−1−β . hmhβ | sin η|−1−β

is sufficient. Next, we show that T2 and T3 admit decompositions ( T k
1 ,
T k
2 )k of the form (∗)

of length m+ 1 with supp T k
i ⊂ I(η), i ∈ {1, 2}, and the estimates

∥ T k
1 ∥∞ . hmhβ | sin η|−1−β , k = 0, . . . ,m+ 1,

∥ T k
2 ∥∞ . hm| sin η|−1, k = 0, . . . ,m.

The decomposition of the component T2 is provided by Lemma 6.5.5. Let us turn to T3.
By substitution this term transforms to

T3(t) =
 t+h

t
∂1 G(t+ h, a(u))a′(u) du.
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We put T 0
1 = 0 and T 0

2 = T3. These terms clearly satisfy the assertions. Next we take the
forward difference of T 0

2 . Here ∆h acts on both t and τ . We obtain

∆h
T 0
2 (t) = ∆h

T3(t) =
 t+h

t
∆h


∂1 G(t+ h, a(τ))a′(τ)


dτ

=
 t+h

t
∆h∂1 G(t+ h, a(τ))a′(τ) dτ

+
 t+h

t
∂1 G(t+ 2h, a(τ + h))∆ha

′(τ) dτ

=: T31(t) + T32(t).

Lemma 6.5.7 then yields a decomposition ( Sk
1 ,
Sk

2 )k, such that we can write

∆h∂1 G(t+ h, a(τ))a′(τ) = S0
1(t, τ) + S0

2(t, τ).

This leads to

T31(t) =
 t+h

t
∆h∂1 G(t+ h, a(τ))a′(τ) dτ =

 t+h

t

S0
1(t, τ) dτ +

 t+h

t

S0
2(t, τ) dτ.

We put T 1
1 (t) := T32(t)+

 t+h
t

S0
1(t, τ) dτ and T 1

2 (t) :=
 t+h

t
S0

2(t, τ) dτ . These terms T 1
1 andT 1

2 then satisfy the requirements, i.e.,

∥ T 1
1 ∥∞ . ∥ T32∥∞ + h · sup

t∈R
sup

τ∈[t,t+h]
| S0

1(t, τ)| . h · δm−1
j · hβ−1δj | sin η|−1−β ,

∥ T 1
2 ∥∞ . h sup

t∈R
sup

τ∈[t,t+h]
| S0

2(t, τ)| . hm| sin η|−1.

Taking another forward difference of T 1
2 yields

∆h
T 1
2 (t) =

 t+h

t
∆hS

0
2(t, τ) dτ.

Proceeding inductively from here with Lemma 6.5.7 settles the claim for the component T3.
Finally, we turn to the function T4(t) =

 a(t)
−∞ ∆(h,0)∂1 G(t, u) du. First, we calculate

∆h
T4(t) =

 a(t+h)

a(t)
∆(h,0)∂1 G(t+ h, u) du+

 a(t)

−∞
∆2

(h,0)∂1 G(t, u) du =: T41(t) + T42(t),

∆h
T42(t) =

 a(t+h)

a(t)
∆2

(h,0)∂1 G(t+ h, u) du+
 a(t)

−∞
∆3

(h,0)∂1 G(t, u) du =: T43(t) + T44(t).

Next, we show ∥ T44∥∞ . hβ+ 1
2 because then, in view of |supp T44| ≍ 1,

∥ T44∥2
2 . h2β+1 ≍ 2−j(1−α)(2β+1).

The L∞-estimate of the term T44 relies on the fact, that for h ≍ 2−j(1−α)

∥∆3
(h,0)∂1 G∥∞ . hβ2−αj . hβ+1.
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This estimate is a consequence of Lemmas 6.4.3, 6.4.5, and 6.5.1 and is analogous to (6.8).
Essential is the observation that since α ≥ 1

2 Lemma 6.4.3 yields

∥∆(h,0)∂1gj∥∞ . 2−αjhβ . hβ+1.

Finally, we take care of the remaining terms T41 and T43. First we note that |supp T41| .
|I(η)| . | sin η| and also |supp T43| . |I(η)| . | sin η| according to Lemma 6.3.3. Hence, it
suffices to prove ∥ T41∥∞ . hmhβ | sin η|−1−β and ∥ T41∥∞ . hmhβ | sin η|−1−β . It holds

∥ T41∥∞ ≤ sup
t∈R

  a(t+h)

a(t)
∂1 G(t+ 2h, u) du

+ sup
t∈R

  a(t+h)

a(t)
∂1 G(t+ h, u) du

.
Analogously, we have

∥ T43∥∞ ≤ sup
t∈R

  a(t+h)

a(t)
∂1 G(t+ 3h, u) du

+ 2 sup
t∈R

  a(t+h)

a(t)
∂1 G(t+ 2h, u) du


+ sup

t∈R

  a(t+h)

a(t)
∂1 G(t+ h, u) du

.
All these terms on the right-hand side can be estimated in the same way as

T3(t) =
 t+h

t
∂1 G(t+ h, a(u))a′(u) du.

This finishes the proof.

6.5.4 Proof of Theorem 6.3.7

Lemma 6.5.4 enables us to prove a generalization of Proposition 6.3.5.

Proposition 6.5.8 ([60, Prop. 6.23]). We have for m = (m1,m2) ∈ N2
0 the estimate

|λ|∼2j(1−α)
|∂mFj(λ cos η, λ sin η)|2 dλ

. 2−2(1−α)jm12−(1−α)j1 + 2(1−α)j sin η
−1−2β + 23αj2(−1−2β)j .

Proof. Observe that ∂mFj =

xmFj

∧. Putting F j := xm2
2 Fj , the function Fj(x) :=

xmFj(x) takes the form of a modified edge fragment as defined in (6.35), i.e., Fj = xm1
1 F j .

Analogous to Proposition 6.3.5 we distinguish between the cases | sin η| < 2δj and | sin η| ≥
2δj .

In case | sin η| < 2δj we show
|λ|∼2j(1−α)

|∂mFj(λ cos η, λ sin η)|2 dλ . 2−2jm1(1−α)2−j(1−α).

For this let F j = F 0
j + F 1

j be a decomposition similar to (6.24), where

F 0
j (x) := xm2

2 g(2−jαx)ω(x)X{x1≥δj}.
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Further, we write Fj = F 0
j + F 1

j withF 0
j (x) := xm1

1 F 0
j (x) = xmg(2−jαx)ω(x)X{x1≥δj}

and F 1
j (x) := Fj(x) − F 0

j (x) the deviation. Note that F 0
j is a fragment with a straight edge

of height about δm1
j and that the function F 1

j is supported in a vertical strip of width 2δj .
For η satisfying | sin η| < 2δj the Radon transform R F 1

j (·, η) is L∞-bounded with
∥R F 1

j (·, η)∥∞ . δm1
j ∥RF 1

j (·, η)∥∞ . δm1
j and it is supported in an interval of length

2(δj cos η + sin η) . δj .

It follows ∥R F 1
j (·, η)∥2

2 . δ2m1
j δj . δ2m1

j 2−j(1−α). Therefore
|λ|∼2j(1−α)

|F F 1
j (λ cos η, λ sin η)|2 dλ ≤


R

| R F 1
j (·, η)(λ)|2 dλ . δ2m1

j 2−j(1−α).

It remains to show 
|λ|∼2j(1−α)

|F F 0
j (λ cos η, λ sin η)|2 dλ . δ2m1

j 2−j(1−α).

This follows from the fact, that we have decay |F F 0
j (λ, 0)| . δm1

j |λ|−1/2 normal to the
straight singularity curve, since the height of the jump is δm1

j . Further, the second argument
(λ sin η) remains bounded due to the condition | sin η| < 2δj .

In case | sin η| ≥ 2δj we conclude as follows. Let C1, C2 > 0 be the constants specifying
the integration domain [C12j(1−α), C22j(1−α)]. We choose C > 0 such that C2C < 2π and fix
h := C2−j(1−α). Then there is c > 0 such that |eiλh−1|m1 ≥ c for |λ| ∈ [C12j(1−α), C22j(1−α)]
at all scales. We obtain

|λ|∼2j(1−α)
|λ|2|∂mFj(λ cos η, λ sin η)|2 dλ

.


|λ|∼2j(1−α)
|eiλh − 1|2|λ|2|xmFj(λ cos η, λ sin η)|2 dλ

.


|λ|∼2j(1−α)
|eiλh − 1|2|λ|2|


R Fj(·, η)

∧
(λ)|2 dλ

.


|λ|∼2j(1−α)
|

∆h∂1R Fj(·, η)

∧(λ)|2 dλ.

From Lemma 6.5.4 we know that S = ∆h∂1R Fj(·, η) admits a decomposition (Sk
1 , S

k
2 )k of

length m1 + 1 with estimates

∥Sk
1 ∥2

2 . 2−2jm1(1−α)h2β | sin η|−1−2β + 2−j(1−α)(2β+1), k = 0, 1, . . . ,m1 + 1.

Using the same trick as in Proposition 6.3.5, we can then conclude
|λ|∼2j(1−α)

|λ|2|∂mFj(λ cos η, λ sin η)|2 dλ .


|λ|∼2j(1−α)
|

∆h∂1R Fj(·, η)

∧(λ)|2 dλ

.
m1+1
k=0


|λ|∼2j(1−α)

|Sk
1 |2 dλ

.
m1+1
k=0

∥Sk
1 ∥2

2

. 2−2jm1(1−α)h2β | sin η|−1−2β + 2−j(1−α)(2β+1).
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It follows
|λ|∼2j(1−α)

|∂mFj(λ cos η, λ sin η)|2 dλ . 2−2j(1−α)(m1+1)h2β | sin η|−1−2β + 2−j(1−α)(2β+3)

. 2−2(1−α)jm12−(1−α)j2(1−α)j sin η
−1−2β + 23αj2(−1−2β)j .

This finishes the proof.

By rescaling Fj to the original edge fragment fj we obtain Theorem 6.3.7, because of
the relation fj(ξ) = 2−2αjFj(2−αjξ).
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Chapter 7

Multivariate α-Molecules

The framework of α-molecules presented so far is confined to a bivariate setting. Its appli-
cability is thus limited and, since nowadays one often has to deal with higher dimensional
data, an extension to higher dimensions is desirable. Such an extension was pursued in [45].
As a main result, a d-dimensional version of Theorem 2.2.2 ([45, Thm. 2.5]) could be proved.

Subsequently, we will present the results of [45], whereby we adapt the exposition to the
continuous setting. As an exemplary application, we investigate the sparse approximation
of video signals, which are instances of 3D data. The multivariate theory allows to derive
almost optimal approximation rates for a large class of 3-variate 1

2 -molecule systems.

7.1 The Concept of α-Molecules in L2(Rd)

Recalling Definition 2.1.3, a system of bivariate α-molecules consists of functions in L2(R2)
obtained by applying α-scaling, rotations, and translations to a set of generating functions
which need to be sufficiently localized in time and frequency. As a consequence, every
α-molecule is associated with a certain scale, orientation and spatial position, which – in
the bivariate case – is conveniently represented by a point in the parameter space P =
R2 × T × R+.

Aiming for a multivariate generalization, we first need to introduce a d-dimensional
version of P. Let Sd−1 denote the unit sphere in Rd. Then we put

Pd := Rd × Sd−1 × R+.

Since S1 can be identified with T via (2.2), we have P2 ∼= P and Pd can be regarded as a
canonical extension of P to d dimensions.

As in the bivariate case, each function mλ ∈ L2(Rd) of a system of d-variate α-molecules
{mλ}λ∈Λ shall be associated with a point xλ := (xλ, eλ, tλ) ∈ Pd, where the variable tλ ∈ R+
represents the scale, the vector eλ ∈ Sd−1 the orientation, and xλ ∈ Rd the spatial position
of mλ. The relation between the index λ of a molecule mλ and its phase space coordinates
xλ ∈ Pd is again described by a so-called parametrization.

Definition 7.1.1 (compare [45, Def. 2.1]). A parametrization is a pair (Λ,ΦΛ), where Λ is
an index set and ΦΛ a mapping

ΦΛ : Λ → Pd , λ →→ xλ = (xλ, eλ, tλ),

which associates to each λ ∈ Λ a scale tλ ∈ R+, an orientation eλ ∈ Sd−1, and a location
xλ ∈ Rd.

217



7 MULTIVARIATE α-MOLECULES

For practical purposes it is more convenient to represent an orientation η ∈ Sd−1 by a
set of angles. Therefore we define the rotation matrix Rθ for θ = (θ1, . . . , θd−2) ∈ Rd−2 by

Rθ :=

cos(θ1) − sin(θ1)
Id−2

sin(θ1) cos(θ1)

 · . . . ·


cos(θd−2) − sin(θd−2)

1
sin(θd−2) cos(θd−2)

Id−3

 ,
where Id for d ∈ N denotes the d-dimensional identity matrix. Furthermore, we introduce
for ϕ ∈ R the matrix

Rϕ :=

 cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

Id−2

 . (7.1)

Note that these definitions pose an inconsistency in the notation, since they depend on the
particular naming of the index. However, since we always use these particular indices, this
will not lead to any problems while improving the readability significantly.

We now observe that each orientation η ∈ Sd−1 can be uniquely represented by a set of
angles (θ1, . . . , θd−2, ϕ) ∈ [0, π] × [−π

2 ,
π
2 ]d−3 × [0, 2π] via the relation

η = RT
ϕR

T
θ ed, (7.2)

where ed is the dth unit vector of Rd. This representation is similar to a representation by
Eulerian angles. Explicitly, η is given by

η(θ, ϕ) =

η1(θ, ϕ)
...

ηd(θ, ϕ)

 =



cos(ϕ) cos(θd−2) · · · · · · cos(θ2) sin(θ1)
sin(ϕ) cos(θd−2) · · · · · · cos(θ2) sin(θ1)

− sin(θd−2) cos(θd−3) · · · cos(θ2) sin(θ1)
...

− sin(θ3) cos(θ2) sin(θ1)
− sin(θ2) sin(θ1)

cos(θ1)


.

We also need to adapt the α-scaling matrix (2.4) to the multivariate setting. For α ∈
[0, 1], we set

Aα,t :=

tαId−1

t


, t ∈ R+. (7.3)

In case α = 1 this matrix scales isotropically, in the range α ∈ [0, 1) it scales uniformly in
all directions except for the ed-direction. Hence, in contrast to the matrix (2.4), where e1
was chosen as the distinguished direction in which the scaling is stronger, here we choose
ed .

After this preparation we are ready to give the definition of a system of d-variate α-
molecules, d ∈ N\{1}, which essentially reduces to Definition 2.1.3 for d = 2, except for
the interchanged roles of the directions e1 and ed and an inversion of the utilized rotation
matrix since, if d = 2, the matrix (7.1) is the inverse of the matrix (2.3).

Recall that we use the notation [x]i := ⟨x, ei⟩, i ∈ {1, . . . , d}, for the i:th component of
a vector x ∈ Rd. Further, we define |x|[d−1] := |([x]1, . . . , [x]d−1, 0)|2.
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Definition 7.1.2 (compare [45, Def. 2.2]). Let α ∈ [0, 1], d ∈ N\{1}, and L,M,N1, N2 ∈
N0∪{∞}. Further let (Λ,ΦΛ) be a parametrization with ΦΛ(λ) = (xλ, eλ, tλ) ∈ Pd for λ ∈ Λ.
The corresponding angles (7.2) for eλ shall be denoted by (θλ, ϕλ). A family of functions
{mλ}λ∈Λ ⊆ L2(Rd) is called a system of d-variate α-molecules of order (L,M,N1, N2) with
respect to the parametrization (Λ,ΦΛ), if each mλ is of the form

mλ = t
− 1+(d−1)α

2
λ gλ


A−1

α,tλ
Rθλ

Rϕλ
(· − xλ)


(7.4)

with generators gλ ∈ L2(Rd) satisfying for every multi-index ρ ∈ Nd
0 with |ρ|1 ≤ L the

condition

|∂ρĝλ(ξ)| . min


1, tλ + |[ξ]d| + t1−α
λ |ξ|[d−1]

M
⟨|ξ|⟩−N1⟨|ξ|[d−1]⟩−N2 . (7.5)

The implicit constant in (7.5) is required to be uniform in Λ. In case that a control parameter
takes the value ∞, this shall mean that the condition (7.5) is fulfilled with the respective
quantity arbitrarily large.

A system of d-variate α-molecules {mλ}λ∈Λ is thus obtained in the same way as a
system of bivariate α-molecules. One applies rotations, translations, and α-scaling to a
set of generating functions {gλ}λ which are required to obey a prescribed time-frequency
localization. This localization is specified by (7.5), where the number L describes the
spatial localization, M the number of directional almost vanishing moments, and N1, N2
the smoothness of gλ.

Applying A−1
α,t with α < 1 and t < 1 to the unit ball B := {x ∈ Rd : |x| ≤ 1} stretches B

in the ed-direction. For small t ∈ R+ this results in a plate-like support of the characteristic
function XB(A−1

α,t·). At high scales, d-variate α-molecules thus resemble plate-like objects in
the spatial domain with the ‘plate’ lying in the plane spanned by the vectors {e1, . . . , ed−1}.
The approximate frequency support on the other hand is concentrated in a pair of opposite
wedges in the direction of the respective orientation.

Also note that the weighting function on the right-hand side of (7.5) is symmetric with
respect to rotations around the ed-axis, as well as reflections along this axis.

Remark 7.1.3. It may seem more natural to choose a rotation Rη from ed to η ∈ Sd−1 in
the (ed, η)-plane to adjust the orientation in (7.4). Due to the symmetries of the weighting
function of the generators in (7.5), this choice is however not necessary. Since it is easier to
use fixed rotation planes, we stick to this more pragmatic choice of rotation parameters.

7.2 The Index Distance

A central ingredient of the theory of bivariate α-molecules is the fact that the parameter
space P can be equipped with a natural phase-space metric ωα such that the distance
between two points in P ‘anti-correlates’ with the size of the cross-correlations of α-molecules
associated with those points: The greater the distance between two points xλ,xµ ∈ P, the
smaller the modulus of the scalar product of corresponding α-molecules mλ, m̃µ ∈ L2(R2).

Our next aim is to find a suitable analogon of this phase-space metric for the parameter
space Pd. Thereby, for simplicity, we do not generalize ωα from Definition 2.2.1 but the
simplified version ωsim

α from Definition 2.2.3.
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For orientations eλ, eµ ∈ Sd−1, we define the angle dS(eλ, eµ) := arccos(⟨eλ, eµ⟩) with
dS(eλ, eµ) ∈ [0, π]. Again, the angle dS(eλ, eµ) is projected onto the interval T := [−π/2, π/2),
with {dS(eλ, eµ)} being the unique element of the set {dS(eλ, eµ) + nπ | n ∈ Z} in T. Anal-
ogous to the bivariate case, a suitable measure for the distance on Sd−1 is then given by the
quantity |{dS(eλ, eµ)}|. Note that in two dimensions we have |{dS(eλ, eµ)}| = |{ϕλ − ϕµ}|.

We arrive at the following definition which directly generalizes the simplified metric from
Definition 2.2.3.

Definition 7.2.1 ([45, Def. 2.4]). Let α ∈ [0, 1], d ∈ N\{1}. The index distance ωα :
Pd ×Pd → [1,∞) is defined by

ωα(xλ,xµ) := max
 tλ
tµ
,
tµ
tλ


1 + dα(xλ,xµ)


,

where xλ := (xλ, eλ, tλ), xµ := (xµ, eµ, tµ) ∈ Pd and with t0 := max{tλ, tµ}

dα(xλ,xµ) := t−2α
0 |xλ − xµ|2 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−1

0 |⟨eλ, xλ − xµ⟩|.

As in the bivariate case, this index distance ωα on Pd is quasi-symmetric and satisfies
a quasi-triangle inequality. These properties, shown for the simplified version ωsim

α in the
2-dimensional setting, can be found in [65]. Their proofs translate very well to higher
dimensions. Other properties analogous to those proved in Section 2.2 can certainly be
shown, but this has not been carried out explicitly.

Let us now state the analogon of Theorem 2.2.2 in the multivariate setting. It relates
the index distance to the size of the cross-correlations of α-molecules.

Theorem 7.2.2 ([45, Thm. 2.5]). Let α ∈ [0, 1], d ∈ N\{1}, and let {mλ}λ∈Λ and {m̃µ}µ∈∆
be two systems of d-variate α-molecules of order (L,M,N1, N2) with respect to parametriza-
tions (Λ,ΦΛ) and (∆,Φ∆), respectively. Further, assume that there exists some constant
C > 0 such that

tλ, tµ ≤ C for all λ ∈ Λ, µ ∈ ∆ with (xλ, eλ, tλ) := ΦΛ(λ), (xµ, eµ, tµ) := Φ∆(µ).

If N1 >
d
2 and if there exists some positive integer N ∈ N such that

L ≥ 2N, M > 3N − d+ 1 + (d− 1)α
2 , N1 ≥ N + 1 + (d− 1)α

2 , N2 ≥ 2N + d− 2,

then we have

|⟨mλ, pµ⟩| . ωα

ΦΛ(λ),Φ∆(µ)

−N for all λ ∈ Λ, µ ∈ ∆.

Proof. The proof is analogous to the proof of Theorem 2.2.2. It is outsourced to Section 7.6.

Based on Theorem 7.2.2, the same methodology as in the bivariate setting to categorize
α-molecule frames according to their sparse approximation behavior can be developed. For
this we next formulate a d-dimensional version of the transfer principle, Theorem 2.3.6.
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7.3 Transfer Principle and Consistency of Parametrizations

In this section we derive a d-dimensional version of Theorem 2.3.6. Beforehand, we need to
adapt the notion of (α, k)-consistency of parametrizations to d dimensions. The definition
is analogue to Definition 2.3.5.

Definition 7.3.1 ([45, Def. 3.5]). Let α ∈ [0, 1], d ∈ N\{1}, and k > 0. Two parametriza-
tions (Λ,ΦΛ) and (∆,Φ∆) with ΦΛ : Λ → Pd, Φ∆ : ∆ → Pd, are called (α, k)-consistent,
if

sup
λ∈Λ


µ∈∆

ωα

ΦΛ(λ),Φ∆(µ)

−k
< ∞ and sup

µ∈∆


λ∈Λ

ωα

ΦΛ(λ),Φ∆(µ)

−k
< ∞.

Using Theorem 7.2.2 and Schur’s test (Lemma 2.3.4), we obtain the following general-
ization of Theorem 2.3.6 in d dimensions.

Theorem 7.3.2 ([45, Thm. 3.7]). Let α ∈ [0, 1], d ∈ N\{1}, k > 0, and 0 < p ≤ 1. Let
{mλ}λ∈Λ and {m̃µ}µ∈∆ be two frames of d-variate α-molecules of order (L,M,N1, N2) with
(α, k)-consistent parametrizations (Λ,ΦΛ) and (∆,Φ∆) satisfying

tλ, tµ ≤ C, for all λ ∈ Λ, µ ∈ ∆

and

L ≥ 2k
p
, M > 3k

p
−d+ 1 + α(d− 1)

2 , N1 >
d

2 , N1 ≥ k

p
+ 1 + α(d− 1)

2 , N2 ≥ 2k
p

+d−2.

Then {mλ}λ∈Λ and {m̃µ}µ∈∆ are sparsity equivalent in ℓq for all p ≤ q < 2.

Proof. By Lemma 2.3.4, it suffices to prove that

max


sup
λ∈Λ


µ∈∆

|⟨mλ, m̃µ⟩|p, sup
µ∈∆


λ∈Λ

|⟨mλ, m̃µ⟩|p
1/p

< ∞.

Since, by Theorem 7.2.2, we have |⟨mλ, m̃µ⟩| . ωα(ΦΛ(λ),Φ∆(µ))−k/p, we can conclude
that

max


sup
λ∈Λ


µ∈∆

|⟨mλ, m̃µ⟩|p, sup
µ∈∆


λ∈Λ

|⟨mλ, m̃µ⟩|p


. max


sup
λ∈Λ


µ∈∆

ωα(ΦΛ(λ),Φ∆(µ))−k, sup
µ∈∆


λ∈Λ

ωα(ΦΛ(λ),Φ∆(µ))−k

,

with the expression on the right-hand side being finite due to the (α, k)-consistency of the
parametrizations (Λ,ΦΛ) and (∆,Φ∆). The proof is completed.

This theorem allows to categorize frames of d-variate α-molecules according to their
sparse approximation behavior, similar to Theorem 2.3.6 in the bivariate case. In the
sequel, we will apply this methodology with respect to video data, which is modelled as 3D
cartoon functions. Before that, however, we introduce multivariate α-shearlet molecules, a
large subclass of multivariate α-molecule systems.
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7.4 Multivariate α-Shearlet Molecules

In this section, we introduce a very general class of shear-based systems in d dimensions,
namely systems of d-variate α-shearlet molecules. The definition is analogous to the bi-
variate case [59]. Roughly speaking, they are shear-based systems obtained from variable
generators, where similar to α-molecules the conditions on the generators have been relaxed
to a mere time-frequency localization requirement. The notion of α-shearlet molecules com-
prises many specific shear-based constructions and simplifies the treatment of such systems
within the general framework of α-molecules.

Remark 7.4.1. One might wonder if there also exists a natural generalization of the concept
of (discrete) α-curvelet molecules to dimensions d > 2. Up to now, no such generalization
has been put forward. A major difficulty is the question of how to suitably discretize the
sphere Sd−1 to obtain the discrete rotation parameters. This problem is avoided when using
the shearlet approach.

As explained in Section 3.3, shearlet-like constructions are based on anisotropic scaling,
shearings, and translations. For the change of scale, we utilize α-scaling as defined by (7.3).
The change of orientation is provided by shearings, in d dimensions given by the shearing
matrices

Sh =

Id−1 0
hT 1


and ST

h =

Id−1 h

0 1


, h ∈ Rd−1,

which are the natural generalizations of (1.2). The matrix ST
h shears parallel to the

(e1, . . . , ed−1)-plane and the shear vector h ∈ Rd−1 determines the direction of the shear-
ing in this plane. Note that the transformations associated with shearings and α-scalings
naturally form a group [25].

To avoid directional bias, the frequency domain is divided into cone-like regions along
the coordinate axes and a coarse-scale box for the low frequencies. Note that this comes
at the cost of the loss of the group properties mentioned above. This division procedure
is however crucial for applications, and also, as the subsequent arguments will show, for
including α-shearlets in the concept of α-molecules. The pyramids are defined as

Pε =


(ξ1, . . . , ξd) ∈ Rd | ∀i = 1, . . . d : |ξi| ≤ |ξϵ|

,

where ε ∈ {1, . . . , d}. ε = 0 shall refer to the coarse-scale box R. In the sequel we will
always stay in this so-called cone-adapted setting. For an illustration of this specific setting
in 3D, we refer to Subsection 7.5.2.

In each cone we require different versions of the scaling and shearing operators. The
cyclic permutation matrix

Z =


0 1
Id−1 0


(7.6)

allows to elegantly define these operators associated with the respective cones by ZεShZ
−ε

and ZεAα,tZ
−ε.

Before we come to the definition of α-shearlet molecules, we need to introduce a set of
characteristic parameters, associated with these systems. The resolution of the underlying
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7.4 Multivariate α-Shearlet Molecules

sampling grid is determined by the parameters σ > 1, τ1, . . . , τd > 0, and a sequence
Θ = (ηj)j∈N0 ∈ RN0

+ . The parameter σ specifies the fineness of the scale sampling. The
parameters τε, ε ∈ {1, . . . , d}, determine the spatial resolution in the eε-direction. For
convenience they are summarized in the diagonal matrix T := diag(τ1, . . . , τd) ∈ Rd×d.
The angular resolution at each scale j ∈ N0 is given by the value ηj of the sequence Θ. Last
but not least, in each cone ε ∈ {1, . . . , d} and at each scale j ∈ N0 the shearing parameter ℓ
is restricted to a set Lε,j . These sets are collected in L := {Lε,j : ε ∈ {1, . . . , d}, j ∈ N0}.

After the introduction of this sampling data D := {σ,Θ,L , T } we can now give the
definition of a system of α-shearlet molecules in d dimensions, depending on D. The scale-
dependent step size ηj of the directional sampling is assumed to satisfy ηj ≍ σ−j(1−α) for
j ∈ N0. Further, we require the upper bounds Lj := max


|ℓ|∞ : ℓ ∈ Lε,j , ε ∈ {1, . . . , d}


,

j ∈ N0, to fulfill the complementary condition Lj . σj(1−α). We remark, that the translation
parameters τε may also vary with the indices (ε, j, ℓ), as long as their values are restricted to
some fixed interval [τmin, τmax] with 0 < τmin ≤ τmax < ∞. However, this is not indicated
in the notation.

Definition 7.4.2 ([45, Def. 5.1]). Let α ∈ [0, 1], d ∈ N\{1}, and L,M,N1, N2 ∈ N0 ∪ {∞}.
Further the sampling data D shall be given as above. For ε ∈ {1, . . . , d}, a system of
functions

Σε :=

mε

j,ℓ,k ∈ L2(Rd) : (j, ℓ, k) ∈ Λs
ε


,

indexed by the set Λs
ε :=


(j, ℓ, k) : j ∈ N0, ℓ ∈ Lε,j ⊆ Zd−1, k ∈ Zd


, is called a system

of d-variate α-shearlet molecules of order (L,M,N1, N2) associated with the orientation ε,
if it is of the form

mε
j,ℓ,k(x) = σ

(1+α(d−1))j
2 γε

j,ℓ,k


ZεAj

α,σSℓηj
Z−εx− T k


with generating functions γε

j,ℓ,k ∈ L2(Rd) satisfying for every ρ ∈ Nd
0 with |ρ|1 ≤ L

|∂ργ̂ε
j,ℓ,k(ξ)| .

min{1, σ−j + σ−(1−α)j |Z−εξ|[d−1] + |[Z−εξ]d|}M

⟨|ξ|⟩N1⟨|Z−εξ|[d−1]⟩N2
. (7.7)

The implicit constant is required to be uniform over Λs
ε. If one of the parameters L,M,N1, N2

takes the value ∞, this shall mean that condition (7.7) is fulfilled with the respective quan-
tity arbitrarily large.

Combining systems of α-shearlet molecules of order (L,M,N1, N2) for each orientation
ε ∈ {1, . . . , d} with a system of coarse-scale elements

Σ0 :=

m0

0,0,k := γ0
0,0,k(· − T k) : k ∈ Zd


, (7.8)

where the generators γ0
0,0,k ∈ L2(Rd) fulfill |∂ργ̂0

0,0,k(ξ)| . ⟨|ξ|⟩−N1⟨|ξ|[d−1]⟩−N2 for every
ρ ∈ Nd

0 with |ρ|1 ≤ L, yields a system of α-shearlet molecules of order (L,M,N1, N2). The
associated index set is

Λs
0 :=


(0,0, k) : k ∈ Zd


⊂ N0 × Zd−1 × Zd.
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Definition 7.4.3 ([45, Def. 5.2]). For each ε ∈ {1, . . . , d}, let Σε be a system of α-shearlet
molecules of order (L,M,N1, N2) associated with the respective orientation. Further, let
Σ0 be a system of coarse-scale elements defined as in (7.8). Then the union

Σ :=
d

ε=0
Σε

is called a system of d-variate α-shearlet molecules of order (L,M,N1, N2). The associated
α-shearlet index set is given by

Λs = {(ε, j, ℓ, k) : ε ∈ {0, . . . , d}, (j, ℓ, k) ∈ Λs
ε}.

In the next subsection, we will show that the concept of d-variate α-shearlet molecules fits
into the general theory of multivariate α-molecules.

7.4.1 The α-Shearlet Parametrization

As the following theorem shows, d-variate α-shearlet molecules constitute a subclass of d-
variate α-molecule systems. The respective parametrizations are referred to as α-shearlet
parametrizations and generalize the bivariate notion.

Theorem 7.4.4 ([45, Thm. 5.3]). Let α ∈ [0, 1], d ∈ N\{1}, and Σ = {mλ}λ∈Λs be a system
of d-variate α-shearlet molecules of order (L,M,N1, N2). Then Σ constitutes a system of d-
variate α-molecules of the same order. The associated α-shearlet parametrization (Λs,Φs)
is given by the map Φs(λ) = (xλ, eλ, tλ) ∈ Pd, where for λ = (ε, j, ℓ, k) ∈ Λs

tλ = σ−j , eλ = nλ · Zε


ηjℓ
1


, xλ = ZεS−1

ℓηj
A−j

α,σZ
−εT k (7.9)

with normalization constant nλ = (1 + η2
j |ℓ|22)−1/2.

In particular, for ε = 0 we have tλ = 1, eλ = ed, and xλ = T k for every λ = (0, 0,0, k) ∈
Λs.

Proof. Since a finite union of systems of α-molecules is itself a system of α-molecules, we
can prove this theorem separately for each system Σε, ε ∈ {0, . . . , d}. For Σ0 the statement
is obvious. For the other systems it suffices to give the proof for ε = d, since they are all
related by a mere permutation of indices. We subsequently drop the index ε to simplify the
notation and note Zε = I for ε = d.

For λ = (d, j, ℓ, k) ∈ Λs
d let mλ be an α-shearlet molecule with corresponding generating

function γλ. As usual we denote the angles representing the orientation eλ by (θλ, ϕλ), i.e.
eλ = RT

ϕλ
RT

θλ
ed. The molecule mλ can clearly be written in the form (7.4) with respect to

the generator

gλ(x) := γd
j,ℓ,k(Aj

α,σSℓηj
RT

ϕλ
RT

θλ
A−j

α,σx), x ∈ Rd.

It remains to check condition (7.5) for these functions. On the Fourier side we have

ĝλ(ξ) = γ̂d
j,ℓ,k(A−j

α,σS
−T
ℓηj
RT

ϕλ
RT

θλ
Aj

α,σξ), ξ ∈ Rd.
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For λ = (d, j, ℓ, k) ∈ Λs
d let us first examine the matrix

Mλ := S−T
ℓηj
RT

ϕλ
RT

θλ
. (7.10)

A simple calculation shows Mλed = S−T
ℓηj
RT

ϕλ
RT

θλ
ed = S−T

ℓηj
eλ = S−T

ℓηj
nλ(ηjℓ, 1)T = nλed.

Hence, the entries of the last column of Mλ vanish except for the last one. Next, we prove
the uniform boundedness of the set of operators {Mλ}λ∈Λs

d
. It holds uniformly for λ ∈ Λs

d

∥Mλ∥2→2 = ∥S−T
ℓηj

∥2→2 ≤

d+ η2

j |ℓ|22 .

d+ η2

j L2
j . 1.

Note that this implies that each entry in Mλ is bounded in modulus. Since similar con-
siderations hold for the inverse M−1

λ = Rθλ
Rϕλ

ST
ℓηj
, we can conclude that both Mλ :=

A−j
α,σMλA

j
α,σ and its inverse M−1

λ have the form
∗ . . . ∗ 0

∗ . . . ∗
...

∗ . . . ∗ 0
� . . . � ∗

 ,
where the entries ∗ are the same as in Mλ (or M−1

λ ) and the entries � are of the form
σ−j(1−α)[Mλei]d (or σ−j(1−α)[M−1

λ ei]d) for i ∈ {1, . . . , d − 1}. In particular, the entries
of Mλ and M−1

λ are uniformly bounded in modulus. This implies ∥Mλ∥2→2 . 1 and
∥M−1

λ ∥2→2 . 1. Altogether, we obtain

|Mλξ| ≍ |ξ| uniformly for ξ ∈ Rd and λ ∈ Λs
d. (7.11)

Due to the structure of the last column of Mλ we further have for ξ = (ξ1, . . . , ξd)T ∈ Rd

|Mλξ|[d−1] = |Mλ(ξ1, . . . , ξd−1, 0)T |[d−1] ≤ ∥Mλ∥2→2|(ξ1, . . . , ξd−1, 0)T | = ∥Mλ∥2→2|ξ|[d−1].

For the inverse M−1 it holds analogously |M−1
λ ξ|[d−1] ≤ ∥M−1

λ ∥2→2|ξ|[d−1]. We conclude

|Mλξ|[d−1] ≍ |ξ|[d−1] uniformly for ξ ∈ Rd and λ ∈ Λs
d. (7.12)

Finally, the following estimate holds uniformly for ξ = (ξ1, . . . , ξd)T ∈ Rd and λ ∈ Λs
d,

|[Mλξ]d| ≤ |[Mλed]d||ξd| +
d−1
i=1

σ−j(1−α)|[Mλei]d||ξi| . σ−(1−α)j |ξ|[d−1] + |ξd|. (7.13)

Finally, we can prove (7.5) for every ρ ∈ Nd
0 with |ρ|1 ≤ L,

|∂ρĝλ(ξ)| . sup
|β|1≤L

|

∂β γ̂d

j,ℓ,k


(Mλξ)| .

min{1, σ−j + σ−(1−α)j |Mλξ|[d−1] + |[Mλξ]d|}M

⟨|Mλξ|⟩N1⟨|Mλξ|[d−1]⟩N2

.
min{1, σ−j + σ−(1−α)j |ξ|[d−1] + |[ξ]d|}M

⟨|ξ|⟩N1⟨|ξ|[d−1]⟩N2
.

The first estimate holds true, since ĝλ(ξ) = γ̂d
λ(Mλξ) and the entries of Mλ are uniformly

bounded in λ. The second estimate is due to (7.7). For the last estimate we used (7.11),
(7.12), and (7.13). The observation tλ = σ−j finishes the proof.
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7.4.2 Consistency of α-Shearlet Parametrizations

In view of Theorem 7.3.2 the consistency of parametrizations is of particular interest when
comparing the approximation properties of different α-molecule systems. In this paragraph
we shall prove, in Proposition 7.4.7, that – as in the bivariate setting – the α-shearlet
parametrizations in d dimensions are all consistent with each other. This allows to establish
approximation rates for various shearlet-like constructions simultaneously, as long as they
fall under the umbrella of the shearlet-molecule concept.

We start with an auxiliary lemma.

Lemma 7.4.5 ([45, Lem. 5.4]). Let 1 ≥ c > 0 be fixed, and consider the gnomonic projection
φ : Rd\


x ∈ Rd | [x]d = 0


→ Rd, x →→ 1

[x]dx. For v, w ∈ Sd−1 ∩

x ∈ Rd : [x]d ≥ c


we then

have |φ(v) − φ(w)| ≍ |v − w| and |v − w|[d−1] ≍ |v − w|.

Proof. First note that |v − w|[d−1] = |π(v) − π(w)|, where π is the orthogonal projection
of Rd onto the (e1, . . . , ed−1)-plane. On the set Sd−1 ∩


x ∈ Rd : [x]d ≥ c


, the mappings φ

and π are diffeomorphisms with bounded derivatives in both directions. This implies the
statement.

We also need the following observation.

Lemma 7.4.6 ([45, Lem. 6.3]). Let c > 0 be a constant. Then we have for all v, w ∈ Sd−1

with [v]d ≥ c and [w]d ≥ 0

|{dS(v, w)}| ≍ |v − w|.

Proof. Under the assumptions there exists ε > 0 dependent on c, such that 0 ≤ dS(v, w) ≤
π−ε. It follows ε

π−ε |dS(v, w)| ≤ |{dS(v, w)}| ≤ |dS(v, w)|. The observation dS(v, w) ≍ |v−w|
finishes the proof.

After this preparation we are in the position to prove the consistency. Note that the
proof is a slightly modified version of the proof given for [45, Prop. 5.6]. In particular, we
do not need [45, Lem. 5.5].

Proposition 7.4.7 ([45, Prop. 5.6]). Let α ∈ [0, 1], d ∈ N\{1}, and let (Λ,ΦΛ) and (∆,Φ∆)
be two α-shearlet parametrizations, possibly with different parameters. Then (Λ,ΦΛ) and
(∆,Φ∆) are (α, k)-consistent for every k > d.

Proof. Due to symmetry, it suffices to prove that for N > d it holds

sup
µ∈∆


λ∈Λ

ωα

ΦΛ(λ),Φ∆(µ)

−N
< ∞.

For this task it is convenient to decompose the shearlet index set Λ = Λ0 ∪ · · · ∪ Λd into
the sets Λε associated with the respective pyramidal regions P̃ε for ε ∈ {1, . . . , d} and the
low-frequency box R for ε = 0. The sum then splits accordingly into d+ 1 parts, which we
handle separately below.

226



7.4 Multivariate α-Shearlet Molecules

Λ0: Let µ ∈ ∆ and λ = (0, 0,0, k) ∈ Λ0 with k ∈ Zd. The shearlet parametrization (7.9)
yields tλ = 1, eλ = ed, and xλ = T k. Furthermore, tµ ≤ 1 for all µ ∈ ∆. Hence we have

ωα

ΦΛ(λ),Φ∆(µ)


= t−1

µ (1 + |T k − xµ|2 + | {dS(ed, eµ)} |2 + |⟨ed, T k − xµ⟩|)
≥ t−1

µ (1 + |T k − xµ|2).

We conclude
λ∈Λ0

ωα

ΦΛ(λ),Φ∆(µ)

−N ≤


k∈Zd

tNµ (1 + |T k − xµ|2)−N .


k∈Zd

(1 + |k|2)−N ,

where for N > d/2 the sum on the right converges.

Λε, ε ∈ {1, . . . , d}: We only deal with the special case ε = d, since the other cases can be
transformed to this case via rotations. Let µ ∈ ∆ and write tµ = σ−j′ with j′ ∈ R. In view
of tλ = σ−j for λ = (d, j, ℓ, k) ∈ Λd we then have

λ∈Λd

ωα

ΦΛ(λ),Φ∆(µ)

−N =


j∈N0

σ−N |j−j′| 
λ∈Λd

tλ=σ−j


1 + dα


ΦΛ(λ),Φ∆(µ)

−N
.

If we can prove that

S :=


λ∈Λd
tλ=σ−j


1 + dα


ΦΛ(λ),Φ∆(µ)

−N
. σd|j−j′|, (7.14)

independently of j ∈ N0 and µ ∈ ∆, we are done, since σ > 1, tµ = σ−j′ , max{tλ/tµ, tµ/tλ} =
σ|j−j′| and thus if N > d

λ∈Λd

ωα

ΦΛ(λ),Φ∆(µ)

−N
.


j∈N0

σ(d−N)|j−j′| ≤ 2


j∈N0

σ(d−N)j = 2
1 − σd−N

< ∞.

Putting in the definition of dα and abbreviating j0 := min{j, j′}, the sum S becomes

S =


λ∈Λd
tλ=σ−j


1 + σ2αj0 |xλ − xµ|2 + σ2(1−α)j0 | {dS(eλ, eµ)} |2 + σj0 |⟨eλ, xλ − xµ⟩|

−N
.

(7.15)

In order to prove the estimate (7.14) for S, we first study the different terms of the
summand independently. Let λ = (d, j, ℓ, k) ∈ Λd and recall the matrix Mλ from (7.10). It
holds

MT
λ = Rθλ

Rϕλ
S−1

ℓηj
,

and – according to the discussion of Mλ in the proof of Theorem 7.4.4 – its last row is given
by (0, . . . , 0, nλ) with nλ = (1 + η2

j |ℓ|22)− 1
2 . Since ηj ≍ σ−j(1−α) and |ℓ|2 . Lj . σj(1−α) this

implies nλ ≍ 1 uniformly for all λ ∈ Λd.
As a direct consequence [MT

λ x]d = nλ[x]d ≍ [x]d uniformly for λ ∈ Λd and x ∈ Rd.
In addition, we have |MT

λ x| ≍ |x| uniformly for λ ∈ Λd and x ∈ Rd since ∥MT
λ ∥2→2 =

∥Mλ∥2→2 . 1 and also ∥M−T
λ ∥2→2 = ∥M−1

λ ∥2→2 . 1.
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These observations allow the following estimate,

|xλ − xµ| = |S−1
ℓηj
A−j

α,σT k − xµ| ≍ |A−j
α,σT k − Sℓηj

xµ| ≍ |A−j
α,σk − T −1Sℓηj

xµ|

& |A−j
α,σk − T −1Sℓηj

xµ|[d−1] = |σ−jαk − T −1Sℓηj
xµ|[d−1]. (7.16)

In view of eλ = RT
ϕλ
RT

θλ
ed and Sℓηj

= M−T
λ Rθλ

Rϕλ
we also have the estimate

|⟨eλ, xλ − xµ⟩| = |⟨eλ, S
−1
ℓηj
A−j

α,σT k − xµ⟩| = |⟨ed, Rθλ
Rϕλ

S−1
ℓηj
A−j

α,σT k −Rθλ
Rϕλ

xµ⟩|

= |⟨ed,M
T
λ


T A−j

α,σk −M−T
λ Rθλ

Rϕλ
xµ

⟩| ≍ |⟨ed, A

−j
α,σk − T −1Sℓηj

xµ⟩|
= |⟨ed, σ

−jk − T −1Sℓηj
xµ⟩|. (7.17)

According to the α-shearlet parametrization (7.9) we have eλ = nλ(ℓηj , 1)T , where
nλ ≍ 1 as shown above. Hence, there is a constant c > 0 such that nλ ≥ c for all λ ∈ Λd. It
follows [eλ]d ≥ c > 0 for all λ ∈ ∆d. Without loss of generality we can further assume that
[eµ]d ≥ 0 since |{dS(eλ,−eµ)}| = |{dS(eλ, eµ)}|. In this situation Lemma 7.4.6 applies and
tells us that | {dS(eλ, eµ)} | ≍ |eλ − eµ|.

Moreover, if |[eµ]d| ≥ c/2 we obtain with Lemma 7.4.5

|eλ − eµ| ≍ |φ(eλ) − φ(eµ)| = |(ℓηj , 1)T − φ(eµ)|,

where φ denotes the gnomonic projection. In this case, we define νµ ∈ Rd−1 by φ(eµ) =:
(νµ, 1)T . Then

|eλ − eµ| ≍ |(ℓηj , 1)T − (νµ, 1)T | = |(ℓηj)T − (νµ)T |.

If |[eµ]d| < c/2 we put νµ := 0. Then, since [eλ]d ≥ c,

|eλ − eµ| ≥ |[eλ]d − [eµ]d| > c/2 & |(ℓηj)T | = |(ℓηj)T − (νµ)T |.

Altogether, we arrive at

| {dS(eλ, eµ)} | & |ℓηj − νµ|. (7.18)

We now use (7.16), (7.17) and (7.18) to estimate the sum S in (7.15). Introducing the
quantities q1(ℓ) := σjαT −1Sℓηj

xµ, q2(ℓ) := σjT −1Sℓηj
xµ, and q3 := η−1

j νµ, and taking into
account ηj ≍ σ−(1−α)j we obtain with p := j0 − j ≤ 0

S .


k∈Zd


ℓ∈Ld,j


1 + σ2αp|k − q1(ℓ)|2[d−1] + σp|⟨ed, k − q2(ℓ)⟩| + σ2(1−α)p|ℓ− q3|2

−N
.

The term σpdS is thus – up to a multiplicative constant – bounded by
ℓ∈Zd−1

σp(1−α)(d−1) 
k∈Zd

σpα(d−1)σp

·

1 + σ2αp|k − q1(ℓ)|2[d−1] + σp|⟨ed, k − q2(ℓ)⟩| + σ2(1−α)p|ℓ− q3|2

−N
.

The last sum can be interpreted as a Riemann sum, which is bounded – up to a multi-
plicative constant independent of p ≤ 0 – by the corresponding integral

y∈Rd−1


x∈Rd


1 + |x− σαpq1(y)|2[d−1] + |⟨ed, x− σpq2(y)⟩| + |y − σ(1−α)pq3|2

−N
dx dy.
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All in all we end up with

S . σd(j−j0)


y∈Rd−1


x∈Rd


1 + |x|2[d−1] + |⟨ed, x⟩| + |y|2

−N
dx dy.

To see that the integral converges for N > d, we carry out the integration over xd, which
yields up to a fixed constant

y∈Rd−1


x̃∈Rd−1

(1 + |x̃|2[d−1] + |y|2)−(N−1) dx̃ dy =


z∈R2(d−1)
(1 + |z|2)−(N−1).

The integral on the right converges precisely for N > d. This observation concludes the
proof.

7.5 Application: Sparse Approximation of Video Data

In this section, we will demonstrate with a specific example how the machinery of d-variate
α-molecules can be applied in practice. In our exemplary application, we are interested in
the sparse approximation of video signals modelled by the class of cartoon-like functions
E2([0, 1]3, ν) introduced below.

Following the general methodology of the transfer principle, we just need to find a
suitable anchor system for which a sparse approximation result with respect to E2([0, 1]3, ν)
is known. Utilizing Theorem 7.3.2, the framework can then transfer the approximation rate
from this anchor system to other systems. In this way, we will identify a large class of
representation systems providing almost optimal sparse approximation for E2([0, 1]3, ν).

7.5.1 Cartoon-like Functions in 3D

A suitable model for video data is provided by a 3-dimensional version of the original class
of cartoon-like functions introduced by Donoho in [38], namely the following model defined
in [83].

Definition 7.5.1 ([38],[83, Def 2.1]). For fixed ν > 0, the class E2([0, 1]3, ν) of cartoon-like
functions consists of functions f : R3 → C of the form

f = f0 + f1XB,

where B ⊂ [0, 1]3 and fi ∈ C2(R3) with supp fi ⊂ [0, 1]3 and ∥fi∥C2 ≤ ν for each i = 0, 1.
Further, the discontinuity ∂B shall be a closed C2-surface with principal curvatures bounded
by ν.

This model is justified by the observation that real-life video data, just like real-life image
data, typically consists of smooth regions, separated by piecewise smooth boundaries. Note
however that for simplicity we restrict to cartoon-like functions with smooth boundaries in
Definition 7.5.1.
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7.5.2 Pyramid-adapted Shearlet Systems in 3D

In the sequel, we will present some concrete shearlet systems in 3 dimensions which are
already on the market. Thereby we restrict our attention to parabolically scaled systems.

In the classic sense [79], a shearlet system in L2(R3) refers to a collection of functions
of the form 

ψj,ℓ,k = 2jψ(SℓA
j
1
2 ,2 · −k) : j ∈ Z, ℓ ∈ Z2, k ∈ Z3


, (7.19)

where ψ ∈ L2(R3) is some suitable generator. The classic choice for ψ is furthermore a
function defined on the frequency domain by

ψ̂(ξ) = w(ξ3)v( ξ1
ξ3

)v( ξ2
ξ3

), ξ = (ξ1, ξ2, ξ3)T ∈ R3,

where v ∈ C∞
c (R) is a bump function and w ∈ C∞

c (R) is the Fourier transform of a suitable
univariate discrete wavelet. It was shown in [79] that it is possible to choose v and w so
that (7.19) becomes a Parseval frame for L2(R3).

Unfortunately, the shearlet system (7.19) is directionally biased due to the fact that for
large shearings the frequency support of the shearlets becomes more and more elongated
along the (e1, e2)-plane. This bias has a negative effect on the approximation properties
and makes the system (7.19) impractical for most applications.

To avoid this problem, the Fourier domain is partitioned into three pyramidal regions
similar to the two cones in 2 dimensions,

P1 =


(ξ1, ξ2, ξ3) ∈ R3 : | ξ2
ξ1

| ≤ 1, | ξ3
ξ1

| ≤ 1

,

P2 =


(ξ1, ξ2, ξ3) ∈ R3 : | ξ1
ξ2

| ≤ 1, | ξ3
ξ2

| ≤ 1

,

P3 =


(ξ1, ξ2, ξ3) ∈ R3 : | ξ1
ξ3

| ≤ 1, | ξ2
ξ3

| ≤ 1

.

Then, for each pyramid a separate shearlet system can be used and, since each system now
only has to cover one pyramid, large shears are avoided. To take care of low frequencies,
as in the 2-dimensional case, it is common to use distinguished coarse-scale elements with
frequencies in a centered box around the origin. Subsequently, it will be the cube

R =

ξ ∈ R3 : |ξ|∞ ≤ 1

8


.

Note that this cube together with the truncated pyramids P̃1 := P1\R, P̃2 := P2\R, and
P̃3 := P3\R partitions the Fourier domain into 4 distinct regions.

With each of these regions, different operators are associated. The coarse-scale functions
are only translated, in the other regions we also scale and shear. The scaling and shearing
operators associated with the respective regions ε ∈ {1, 2, 3} are given by A(ε)

1
2 ,t

= ZεA 1
2 ,tZ

−ε

and S
(ε)
h = ZεShZ

−ε, and take the concrete form

A
(1)
1
2 ,t

=

t 0 0
0 t

1
2 0

0 0 t
1
2

 , A
(2)
1
2 ,t

=

t
1
2 0 0
0 t 0
0 0 t

1
2

 , A
(3)
1
2 ,t

= Aα,s =

t
1
2 0 0
0 t

1
2 0

0 0 t

 ,
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for t > 0, and for h ∈ R2

S
(1)
h =

1 h1 h2
0 1 0
0 0 1

 , S
(2)
h =

 1 0 0
h2 1 h1
0 0 1

 , S
(3)
h = Sh =

 1 0 0
0 1 0
h1 h2 1

 .
Now we are ready to define a modified shearlet system, which is adapted to our partition

of the Fourier domain and therefore called pyramid-adapted. This system does not exhibit
the directional bias as (7.19) and can be considered as a 3D-version of the cone-adapted
shearlet system from Definition 3.3.8.

Definition 7.5.2 ([83, 82]). For fixed τ1, τ2 > 0 let T = diag(τ1, τ2, τ2) ∈ R3×3. The
(affine) pyramid-adapted 3D shearlet system generated by the functions φ ∈ L2(R3) and
ψε ∈ L2(R3), ε ∈ {1, 2, 3}, is defined as the union

SH(φ, ψ1, ψ2, ψ3; τ1, τ2) := Φ(φ; τ1) ∪ Ψ1(ψ1; τ1, τ2) ∪ Ψ2(ψ2; τ1, τ2) ∪ Ψ3(ψ3; τ1, τ2) (7.20)

of the coarse-scale functions Φ(φ; τ1) := {φk = φ(· − τ1k) : k ∈ Z3} and the functions

Ψε(ψε; τ1, τ2) :=

ψε

j,ℓ,k : j ∈ N0, ℓ ∈ Z2, |ℓ|∞ ≤ ⌈2j/2⌉, k ∈ Z3

,

associated with the pyramids P̃ε for ε ∈ {1, 2, 3}, which are given by

ψε
j,ℓ,k := 2jψε(ZεSℓA

j
1
2 ,2Z

−ε · −ZεT Z−εk).

These pyramid-adapted affine systems are the prime examples of 1
2 -shearlet-molecules.

In practice, one usually wants them to be frames, or even Parseval or tight frames. However,
ensuring the frame property of pyramid-adapted shearlets is not trivial.

Frames of Pyramid-adapted Shearlets

The simplest way to obtain a Parseval frame of pyramid-adapted shearlets builds upon a
Parseval shearlet frame of the type (7.19), which is easier to construct. A shearlet system
associated with the pyramid P̃3 is then obtained by removing all elements, whose frequency
support does not intersect P̃3. Truncating the remaining functions in the frequency domain
outside of P̃3, one obtains a Parseval frame for the space

L2(P̃3)∨ := {f ∈ L2(R3) : supp f̂ ⊂ P̃3}.

A similar procedure yields Parseval frames associated with the the other parts of the Fourier
domain, namely for L2(P̃ε)∨, ε ∈ {1, 2}, and L2(R)∨. The union of these frames then is a
Parseval frame for the whole space L2(R3).

This approach has the drawback that it leads to bad spatial localization of the shearlets
due to their lack of smoothness in the frequency domain, which is a consequence of the
truncation. A different approach was taken by Candès, Demanet, and Ying in [115]. They
gave up on the affine structure of the system and could then find a shearlet-type construction
with the Parseval property. Guo and Labate later modified this approach [69, 70] and found
another shearlet-type construction, which is even close to affine.

We will subsequently denote this system by SH. It is a Parseval frame of band-limited
shearlets for L2(R3). Moreover, it is a system of 1

2 -molecules.
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Proposition 7.5.3 ([45, Prop. 5.9]). Appropriately re-indexed, the smooth Parseval frame
of band-limited 3D-shearlets SH constructed in [69] constitutes a system of 3-dimensional
1
2 -shearlet molecules of order (∞,∞,∞,∞).

In particular, SH is a system of 3-dimensional 1
2 -molecules of order (∞,∞,∞,∞). The

associated parametrization (ΛSH ,ΦSH) is given explicitly in [45, Cor. 5.10]. It is related to
a 1

2 -shearlet parametrization by a mere relabelling of the shearlets.

Remark 7.5.4 ([45, Rem. 5.11]). Although (ΛSH ,ΦSH) is not a shearlet parametriza-
tion, it is (1

2 , k)-consistent with every 1
2 -shearlet parametrization for k > 3. This follows

from Proposition 7.4.7 and the observation that relabelling of elements does not make any
difference.

There also exist shearlet frames for L2(R3) consisting of compactly supported functions.
Such frames have been constructed for example in [83]. As the following proposition shows,
they are also instances of 1

2 -shearlet molecules and their order can be controlled by the
regularity of the generators.

Proposition 7.5.5 ([45, Prop. 5.12]). Let φ, ψ1, ψ2, ψ3 ∈ L2(R3) be compactly supported
and L,M,N1, N2 ∈ N0 ∪ {∞}. If φ ∈ CN1+N2(R3) and if, for every ε ∈ {1, 2, 3},

(i) the derivatives ∂γψε exist and are continuous for every γ ∈ N3
0 with [Zεγ]1, [Zεγ]2 ≤

N1 +N2 and [Zεγ]3 ≤ N1, where Z is the cyclic permutation matrix (7.6),

(ii) the generator ψε has M + L directional vanishing moments in eε-direction, i.e.

∀(x1, x2) ∈ R2 :

R
ψε(Zεx)xN

3 dx3 = 0 for every N ∈ {0, . . . ,M + L− 1},

then the system (7.20) obtained from these generators is a system of 1
2 -shearlet molecules

of order (L,M,N1, N2).

Proof. Due to the assumptions, the generators are functions in Cc(R3) and hence in par-
ticular contained in L1(R3). As a consequence, their Fourier transforms φ̂, ψ̂1, ψ̂2, ψ̂3 are
bounded. Hence, rightly indexed, the induced system of the form (7.20) constitutes a sys-
tem of 1

2 -shearlet molecules. It remains to verify the order of the system. For this, little
more is needed than utilizing the facts that spatial decay implies smoothness in Fourier
domain (and vice versa), and that vanishing moments in spatial domain implies estimates
of the form |ĝ(ξ)| . min(1, |ξ|)M in Fourier domain. We refer to [62, Prop. 3.11] for details,
where a similar two-dimensional version of the theorem is proven.

7.5.3 Quasi-Optimal Approximation with 3D Parabolic Molecules

In [83] the optimal approximation rate under a polynomial depth search constraint for
E2([0, 1]3, ν) was derived. Recall that a dictionary-based algorithm for sparse approxima-
tion is said to satisfy a polynomial depth search constraint if there exists a polynomial π
such that the algorithm only chooses from the first π(N) dictionary elements when forming
the N :th sparse approximation [38]. If such a constraint is not assumed, one could for
instance use the whole of E2([0, 1]3, ν) as a dictionary yielding 1-sparse representations for
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any element of E2([0, 1]3, ν). But clearly, those have no practical relevance for real-world
approximation schemes.

The following benchmark for E2([0, 1]3, ν) was proved in [83] with the same techniques
used in Section 5.3.

Theorem 7.5.6 ([38, Thm 7.2],[83, Thm 3.2]). The best N -term approximation rate for
E2([0, 1]3, ν), achieved by an arbitrary dictionary under the restriction of polynomial depth
search, cannot exceed

∥f − fN ∥2
2 . N−1,

where fN is the best N -term approximation of f ∈ E2([0, 1]3, ν).

There are several examples of frames which almost provide these optimal rates [69, 83],
typically up to log-terms. In particular, it was proven by Guo and Labate [69] that the
smooth Parseval frame of 3D-shearlets SH sparsely approximates this class. The obtained
approximation result is stated below in (7.21). It is based on the following estimate for the
size of the shearlet coefficients.

Theorem 7.5.7 ([69, Thm 3.1]). Let SH = {ψλ}λ∈Λs be the smooth Parseval frame of
3D-shearlets defined in [70]. Then the sequence of shearlet coefficients θλ(f) := ⟨f, ψλ⟩,
λ ∈ Λs, associated with f ∈ E2([0, 1]3, ν) satisfies

sup
f∈E2([0,1]3,ν)

|θλ(f)|N . N−1 · log(N),

where |θλ(f)|N denotes the N :th largest shearlet coefficient.

Theorem 7.5.7 shows that the shearlet coefficients belong to ωℓp(Λs) for every p > 1. In
view of Lemma 2.3.1, for every f ∈ E2([0, 1]3, ν), the frame SH therefore provides at least
the approximation rate

∥f − fN ∥2
2 . N−1+ε , ε > 0 arbitrary, (7.21)

where fN denotes the N -term approximation obtained from the N largest coefficients. Ac-
cording to Theorem 7.5.6, this is almost the optimal approximation rate achievable for
cartoon-like functions E2([0, 1]3, ν). For small ε > 0, we get arbitrarily close to the optimal
rate.

Transfer of the Approximation Rate

We now come to our final goal of identifying a large class of representation systems which
achieve the almost optimal rate (7.21) for the class E2([0, 1]3, ν). For this, we put the
machinery of α-molecules to work. Concretely, we use Theorem 7.3.2 to transfer the ap-
proximation rate (7.21) of the smooth Parseval frame of 3D-shearlets SH to other systems
of 3-dimensional 1

2 -molecules. This leads to the following result, whereby (ΛSH ,ΦSH) shall
denote the parametrization of SH.

Theorem 7.5.8 ([45, Thm. 4.4]). Assume that a frame {mλ}λ∈Λ of 3-dimensional parabolic
molecules satisfies, for some k > 0, the following two conditions:

(i) its parametrization (Λ,ΦΛ) is (1
2 , k)-consistent with (ΛSH ,ΦSH),
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(ii) its order (L,M,N1, N2) satisfies

L ≥ 2k, M ≥ 3k − 2, N1 ≥ k + 1, N1 > 3/2, N2 ≥ 2k + 1.

Then each dual frame {m̃λ}λ∈Λ possesses an almost optimal N -term approximation rate for
the class of cartoon-like functions E2([0, 1]3, ν), i.e., for all f ∈ E2([0, 1]3, ν)

∥f − fN ∥2
2 . N−1+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

Proof. The proof is analogous to the proof of Theorem 6.0.2. Due to Proposition 7.5.3, the
frame SH is a system of 3-dimensional 1

2 -molecules of order (∞,∞,∞,∞). It is thus a
suitable reference system for the application of the transfer principle, Theorem 7.3.2. The
assertion then follows from Theorem 7.5.7.

Theorem 7.5.8 specifies a large class of multiscale systems with almost optimal approx-
imation performance for video data in the class E2([0, 1]3, ν). According to Remark 7.5.4,
condition (i) is in particular fulfilled by every 1

2 -shearlet parametrization (see Section 7.4)
for k > 3. Hence, due to condition (ii), all systems of 3-dimensional 1

2 -shearlet molecules of
order

L ≥ 7, M ≥ 8, N1 ≥ 5, N2 ≥ 8,

provide almost optimal approximation for E2([0, 1]3, ν).
Taking into account Proposition 7.5.5, the statement of Theorem 7.5.8 in particular

includes the following result for compactly supported shearlet frames.

Corollary 7.5.9 ([45, Cor. 4.5]). Any dual frame of a shearlet frame of the form (7.20)
generated by compactly supported functions φ, ψ1, ψ2, ψ3 ∈ L2(R3), so that φ ∈ C13(R3) and
for each permutation (i, j, k) of (1, 2, 3), we have

(i) ∂γψi exists and is continuous for every γ ∈ N3
0 with γi ≤ 5 and γj , γk ≤ 13,

(ii) ψi has at least 15 vanishing directional moments in direction ei,

provides the almost optimal approximation rate (7.21) for the cartoon class E2([0, 1]3, ν).

A result similar to this corollary was proved in [83]. In comparison, the most intriguing
fact about this corollary is the simplicity of its deduction. The framework of α-molecules
enables a simple transfer of the decay rates.

7.6 Appendix: Proof of Theorem 7.2.2

This section is devoted to the proof of Theorem 7.2.2. The exposition is essentially the
same as in [45, Sec. 6]. It is split into several parts and has the same general structure as
the proof of Theorem 2.2.2 in Section 2.5. Let us first collect some simple elementary facts,
which turn out to be useful.
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7.6.1 Auxiliary Lemmas

Subsequently O(d,R) shall denote the orthogonal group of Rd. Further, recall the ‘projec-
tion’ {θ} of θ ∈ R onto the interval T := [−π

2 ,
π
2 ) defined in (2.9). Recall also the notation

dS(v, w) for the angle arccos(⟨v, w⟩) ∈ [0, π] between two vectors v, w ∈ Sd−1.
An immediate corollary of Lemma 2.5.1 is the following result.

Lemma 7.6.1 ([45, Lem. 6.2]). Let ed ∈ Rd be the d:th unit vector. For η ∈ Sd−1 we have
| {dS(η, ed)} | ≍ |η|[d−1].

Proof. Using a suitable rotation R ∈ O(d,R) of the form

R =

Rd−1 0

0 1


,

where Rd−1 ∈ O(d−1,R), we can achieve Rη = (sin(θ), 0, . . . , 0, cos(θ))T with θ = dS(η, ed).
Since |η|[d−1] = |η− ed|[d−1] = |R(η− ed)|[d−1] = |Rη− ed|[d−1] = | sin(θ)|, it just remains to
prove | sin(θ)| ≍ | {θ} |, which is true by Lemma 2.5.1.

We will further need the lemma below.

Lemma 7.6.2 ([45, Lem. 6.4]). Let R ∈ O(d,R) be a rotation and θ0 = dS(ed, Red) ∈ [0, π]
the angle between the d:th unit vector ed ∈ Rd and its image Red under R. Then it holds
for all η ∈ Sd−1

|Rη|[d−1] = sin(dS(Rη, ed)) ≥ min{| sin(dS(η, ed) + θ0)|, | sin(dS(η, ed) − θ0)|}.

Note dS(η, ed) = dS(Rη,Red).

Proof. Let η = (η1, . . . , ηd)T ∈ Sd−1 and put θ1 := dS(η, ed) = arccos(⟨η, ed⟩) ∈ [0, π]. The
rotation R ∈ O(d,R) can be decomposed in the form R = R̃Rθ0 with R̃, Rθ0 ∈ O(d,R) such
that

R̃ =

Rd−1

1


and Rθ0 =

cos(θ0) − sin(θ0)
Id−2

sin(θ0) cos(θ0)

 ,
where Rd−1 ∈ O(d − 1,R) is some (d − 1)-dimensional rotation matrix and Id−2 is the
(d− 2)-dimensional identity matrix. The rotation R̃ leaves | · |[d−1] invariant, whence

|Rη|[d−1] = |R̃Rθ0η|[d−1] = |Rθ0η|[d−1].

Using ηd = cos(θ1) and |η|2[d−1] = η2
1 + η2

2 + . . .+ η2
d−1 = 1 − η2

d, it further follows

|Rθ0η|2[d−1] = (cos(θ0)η1 − sin(θ0)ηd)2 + η2
2 + · · · + η2

d−1

= cos2(θ0)η2
1 + sin2(θ0) cos2(θ1) − 2 cos(θ0) sin(θ0)η1 cos(θ1) + (1 − η2

1 − cos2(θ1))
= 1 − (η1 sin(θ0) + cos(θ1) cos(θ0))2.

The last expression is a second-degree polynomial in the variable η1 with a negative leading
coefficient. Since η2

1 ≤ 1 − η2
d = 1 − cos2(θ1) = sin2(θ1), the variable η1 can take values only
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in [− sin(θ1), sin(θ1)]. The polynomial attains its minimum on this interval at the endpoints.
Hence, we can conclude

|Rθ0η|2[d−1] ≥ min
ϵ∈{−1,1}


1 − (ϵ sin(θ1) sin(θ0) + cos(θ1) cos(θ0))2

= min
ϵ∈{−1,1}


1 − cos2(θ1 − ϵθ0)


= min

ϵ∈{−1,1}


sin2(θ1 − ϵθ0)


,

which proves the claim.

7.6.2 Integral Estimates

We start with an estimate which can be used for the generators in (7.4) and allows us to
work in polar coordinates.

Lemma 7.6.3 ([45, Lem. 6.5]). Let the family of functions {gλ}λ∈Λ satisfy

|∂ρgλ(ξ)| . min


1, tλ + |[ξ]d| + t1−α
λ |ξ|[d−1]

M
⟨|ξ|⟩−N1⟨|ξ|[d−1]⟩−N2 (7.22)

uniformly for a multi-index ρ ∈ Nd
0, and assume that there is a constant C > 0 such that

tλ ≤ C for all λ ∈ Λ. Then the following estimate holds true uniformly for λ ∈ Λ and
ξ ∈ Rd

|(∂ρgλ)(Aα,tλ
Rθλ

Rϕλ
ξ)| . min {1, tλ(1 + |ξ|)}M

(1 + tλ|ξ|)N1

1 + tαλ |Rθλ

Rϕλ
ξ|[d−1]

N2
. (7.23)

Note that (7.22) is just the condition (7.5) imposed on the Fourier side on the generating
set of a system of α-molecules.

Proof. We have |Aα,tλ
ξ| ≥ min{tλ, tαλ}|ξ| & tλ|ξ| uniformly for ξ ∈ Rd and λ ∈ Λ, since

t−1
λ ≥ 1/C > 0 for every λ ∈ Λ. It follows |Aα,tλ

Rθλ
Rϕλ

ξ| & tλ|Rθλ
Rϕλ

ξ| = tλ|ξ|. Further,
we observe |Aα,tλ

ξ|[d−1] = tαλ |ξ|[d−1] and |[Aα,tλ
ξ]d| = tλ|[ξ]d|. Finally, it holds ⟨|ξ|⟩ ≍ 1 + |ξ|

and |[ξ]d| + |ξ|[d−1] ≍ |ξ|. Collecting all of these estimates, one obtains

∂ρgλ


(Aα,tλ

Rθλ
Rϕλ

ξ)
 . min


1, tλ + |[Aα,tλ

Rθλ
Rϕλ

ξ]d| + t1−α
λ |Aα,tλ

Rθλ
Rϕλ

ξ|[d−1]
M

⟨|Aα,tλ
Rθλ

Rϕλ
ξ|⟩N1⟨|Aα,tλ

Rθλ
Rϕλ

ξ|[d−1]⟩N2

.
min {1, tλ(1 + |ξ|)}M

(1 + tλ|ξ|)N1

1 + tαλ |Rθλ

Rϕλ
ξ|[d−1]

N2
.

The expression on the right-hand side of (7.23) can further be estimated by the function

Sλ,M,N1,N2(ξ) := min {1, tλ(1 + |ξ|)}M

(1 + tλ|ξ|)N1(1 + t
−(1−α)
λ |Rθλ

Rϕλ
(ξ/|ξ|)|[d−1])N2

, ξ ∈ Rd. (7.24)

As already discussed in Lemma 2.5.4 of Subsection 2.5.2, this function can be separated
into angular and radial components, which allows to treat these parts independently in the
integration later.
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Lemma 7.6.4 ([45, Lem. 6.6]). Assume that tλ ≤ C holds for all λ ∈ Λ. For every
M,N1, N2,K ∈ N0 such that 0 ≤ K ≤ N2 we have with respect to λ ∈ Λ and ξ ∈ Rd the
uniform estimate

min {1, tλ(1 + |ξ|)}M

(1 + tλ|ξ|)N1

1 + tαλ |Rθλ

Rϕλ
ξ|[d−1]

N2
. Sλ,M−K,N1,K(ξ).

Proof. The proof is analogous to the proof of Lemma 2.5.4.

Next, we want to estimate the scalar product of two functions of the form (7.24). Before
the actual result, Lemma 7.6.8, we need some preparation. This is the part of the proof of
Theorem 7.2.2 which differs the most from the situation in two dimensions.

As a direct corollary of Lemma 2.5.2, we get the following result.

Lemma 7.6.5 ([45, Lem. 6.7]). Let a ≥ a′ > 0, d ∈ N\{1}, and N > 1. Then we have
uniformly for y ∈ R

R

|x|d−2dx

(1 + a|x|)N+d−2(1 + a′|x− y|)N+d−2 . a−(d−1)(1 + a′|y|)−N .

Proof. Utilizing Lemma 2.5.2 ,the result from Grafakos [51][Appendix K.1],
R

dx

(1 + a|x|)N (1 + a′|x− y|)N
. max{a, a′}−1(1 + min{a, a′}|y|)−N

we can estimate
R

|x|d−2dx

(1 + a|x|)N+d−2(1 + a′|x− y|)N+d−2 = a−(d−2)

R

|ax|d−2dx

(1 + a|x|)N+d−2(1 + a′|x− y|)N+d−2

≤ a−(d−2)

R

(1 + |ax|)d−2dx

(1 + a|x|)N+d−2(1 + a′|x− y|)N+d−2

≤ a−(d−2)

R

dx

(1 + a|x|)N (1 + a′|x− y|)N

. a−(d−2) max{a, a′}−1(1 + min{a, a′}|y|)−N = a−(d−1)(1 + a′|y|)−N .

We can immediately deduce the following generalization of Lemma 2.5.3.

Corollary 7.6.6 ([45, Cor. 6.8]). Let a ≥ a′ > 0, d ∈ N\{1}, and N > 1. Then we have
uniformly for θ0 ∈ R π

0

| sind−2(θ)| dθ
(1 + a| sin(θ)|)N+d−2(1 + a′| sin(θ − θ0)|)N+d−2 . a−(d−1)1 + a′| {θ0} |

−N
.

Proof. Let us call the integral to be estimated S. Since the integrand on the left hand side is
π-periodic, we may change the domain of integration to [−π/2, π/2]. Applying Lemma 2.5.1,
we can further conclude

S ≍
π/2

−π/2

|θ|d−2dθ

(1 + a|θ|)N+d−2(1 + a′| {θ − θ0} |)N+d−2 ,
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Since |{θ0}| ≤ π
2 we can estimate

S .


ϑ∈{−π,0,π}


R

|θ|d−2dθ

(1 + a|θ|)N+d−2(1 + a′|θ − ({θ0} + ϑ)|)N+d−2 ,

We now use Lemma 7.6.5 to estimate this by

S .


ϑ∈{−π,0,π}
a−(d−1)(1 + a′|{θ0} + ϑ|)−N . a−(d−1)(1 + a′| {θ0} |)−N .

This result is used to estimate the integral of the angular parts of (7.24) over the sphere
Sd−1.
Lemma 7.6.7 ([45, Lem. 6.9]). Let a, a′ > 0, d ∈ N, d ≥ 2, θλ, θµ ∈ [0, π] × [−π

2 ,
π
2 ]d−3,

ϕλ, ϕµ ∈ [0, 2π] and N > 1. Further, let dσ denote the standard surface measure on the
sphere Sd−1. We then have the estimate

Sd−1

dσ(η)
(1 + a|RθµRϕµη|[d−1])N+d−2(1 + a′|Rθλ

Rϕλ
η|[d−1])N+d−2

. max{a, a′}−(d−1)1 + min{a, a′}|{dS(eλ, eµ)}|
−N

,

where eλ = RT
ϕλ
RT

θλ
ed and eµ = RT

ϕµ
RT

θµ
ed.

Proof. Note the symmetry of the statement with respect to interchanging the entities a, a′

and λ, µ. Without loss of generality we can therefore restrict to the case a ≥ a′ > 0.
Since the mapping RθµRϕµ is an isometry, the integral is equal to

S :=

Sd−1

dσ(η)
(1 + a|η|[d−1])N+d−2(1 + a′|Rθλ

Rϕλ
RT

ϕµ
RT

θµ
η|[d−1])N+d−2 .

For the integration we parameterize the sphere Sd−1 by standard spherical coordinates, i.e.
coordinates (θ1, . . . θd−2, ϕ) ∈ [0, π]d−2 × [0, 2π) such that for η ∈ Sd−1

η(θ, ϕ) =


sin(θ1) · · · · · · sin(θd−2) cos(ϕ)
sin(θ1) · · · · · · sin(θd−2) sin(ϕ)
sin(θ1) · · · sin(θd−3) cos(θd−2)

...
cos(θ1)

 .

Observe that ⟨η, ed⟩ = cos(θ1) and thus θ1 = dS(η, ed). Also note |η|[d−1] = | sin(θ1)|.
Letting θ0 := dS(eλ, eµ) ∈ [0, π] denote the angle between eλ and eµ we have the equality
θ0 = dS(ed, Rθλ

Rϕλ
RT

ϕµ
RT

θµ
ed). Since Rθλ

Rϕλ
RT

ϕµ
RT

θµ
∈ O(d,R) we can apply Lemma 7.6.2

to estimate |Rθλ
Rϕλ

RT
ϕµ
RT

θµ
η|[d−1]. We obtain

S ≤
 2π

0

 π

0
. . .

 π

0

sind−2(θ1) sind−3(θ2) . . . sin(θd−2)dθ1dθ2 . . . dθd−2dϕ

(1 + a| sin(θ1)|)N+d−2(1 + a′ min{| sin(θ1 + θ0)|, | sin(θ1 − θ0)|})N+d−2

.
 π

0

sind−2(θ1) dθ1
(1 + a| sin(θ1)|)N+d−2(1 + a′ min{| sin(θ1 + θ0)|, | sin(θ1 − θ0)|})N+d−2

≤


ϵ∈{−1,1}

 π

0

| sin(θ1)|d−2 dθ1
(1 + a| sin(θ1)|)N+d−2(1 + a′| sin(θ1 − ϵθ0)|)N+d−2 .
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Using Corollary 7.6.6 we finally arrive at S . max{a, a′}−(d−1)1+min{a, a′}| {θ0} |
−N .

With this estimate for the angular components in our toolbox, we proceed to prove the
main result concerning the correlation of functions of the form (7.24). It corresponds to
Lemma 2.5.5.

Lemma 7.6.8 ([45, Lem. 6.10]). Let α ∈ [0, 1], d ∈ N\{1}, and M,N1, N2 ∈ N0. Further,
let (Λ,ΦΛ) and (∆,Φ∆) be parametrizations with (xλ, eλ, tλ) = ΦΛ(λ) and (xµ, eµ, tµ) =
Φ∆(µ) for λ ∈ Λ, µ ∈ ∆, such that tλ ≤ C and tµ ≤ C for a fixed constant C > 0. Then
for A > 0 and B > 1 satisfying

N1 >
d

2 , M + d > N1 ≥ A+ 1 + (d− 1)α
2 , and N2 ≥ B + d− 2

the following estimate holds true with an implicit constant independent of λ ∈ Λ and µ ∈ ∆,

(tλtµ)
1+(d−1)α

2


Rd

Sλ,M,N1,N2(x)Sµ,M,N1,N2(x) dx

. max

tλ
tµ
,
tµ
tλ

−A 
1 + max{tλ, tµ}−(1−α)|{dS(eλ, eµ)}|

−B
.

Proof. Without loss of generality we subsequently assume tλ ≥ tµ. The strategy is to
separate the integration into an angular and a radial part and estimate these independently.
For the estimate of the angular part we can use Lemma 7.6.7, which yields

(tλtµ)
(1+α(d−1)

2

 ∞

0


Sd−1

Sλ,M,N1,N2(η, r)Sµ,M,N1,N2(η, r)rd−1 dσ(η)dr

. (tλtµ)
1+α(d−1)

2 t(1−α)(d−1)
µ t−d

µ


1 + t

−(1−α)
λ |{dS(eλ, eµ)}|

−B · S

with a remaining radial integral

S := tdµ

 ∞

0

min {1, tλ(1 + r)}M

(1 + tλr)N1

min {1, tµ(1 + r)}M

(1 + tµr)N1
rd−1 dr.

Note that for the estimate we used the assumptions tλ ≥ tµ, B > 1 and N2 ≥ B + d− 2. It
remains to verify the relation (tµtλ)(1+α(d−1))/2t

(1−α)(d−1)
µ t−d

µ · S . (tµ/tλ)A, or equivalently

S .
 tµ
tλ

A+ 1+α(d−1)
2

.

To prove this, we split the integration of S into three parts S1,S2,S3 corresponding to the
integration ranges 0 ≤ r ≤ 1, 1 ≤ r ≤ sµ, and sµ ≤ r respectively.

0 ≤ r ≤ 1: Here we estimate min {1, tλ(1 + r)}M ≤ tMλ (1+r)M ≤ 2M tMλ and (1+ tλr)N1 ≥
1, and similarly for the index µ. Hence, the integral over this part can be estimated by

S1 . tdµt
M
λ tMµ

 1

0
rd−1 dr ≍ tM+d

µ tMλ .

tµ
tλ

M+d

,

where the last inequality holds because of the uniform upper bound tλ ≤ C for λ ∈ Λ.
Finally observe that the assumed inequalities imply M + d > A+ 1+α(d−1)

2 .
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1 ≤ r ≤ t−1
µ We estimate the terms involving µ as follows: (1+tµr)N1 ≥ 1 and (r+1) ≤ 2r.

Hence

min {1, tµ(1 + r)}M ≤ tMµ (1 + r)M ≤ tMµ (r + r)M ≤ 2M tMµ rM .

For the terms with λ’s, we have (1 + tλr)N1 ≥ tN1
λ rN1 and min {1, tλ(1 + r)}M ≤ 1. The

integral S2 hence satisfies

S2 . tdµt
−N1
λ tMµ

 t−1
µ

1
rM−N1+d−1 dr . tM+d

µ t−N1
λ t−M−d+N1

µ =
 tµ
tλ

N1
,

where it was used that M+d > N1, which implies M+d−N1 −1 > −1, for the integration.
By assumption N1 ≥ A+ 1+α(d−1)

2 , giving the desired result.

t−1
µ ≤ r We estimate both terms like the λ-terms above to obtain

S3 . tdµt
−N1
λ t−N1

µ

 ∞

t−1
µ

rd−1−2N1 dr . t−N1+d
µ t−N1

λ t2N1−d
µ .

 tµ
tλ

N1
.

The integral converges since N1 >
d
2 . Since N1 ≥ A+ 1+α(d−1)

2 the proof is finished.

7.6.3 Cancellation Estimates

Theorem 7.2.2 provides estimates for the scalar products of α-molecules. To derive them
we evaluate these scalar products on the Fourier side, where we can take advantage of
cancellation phenomena. Technically, the method is based on a clever integration by parts
involving the following differential operator, depending on λ ∈ Λ, µ ∈ ∆,

Lλ,µ := I − t−2α
0 ∆ − t−2

0

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

⟨eλ,∇⟩2, (7.25)

where t0 = max{tλ, tµ}, I is the identity operator, ∇ the gradient and ∆ the standard
Laplacian.

Lemma 7.6.9 shows how Lλ,µ acts on products of functions aλ, bµ which satisfy (7.5).
It corresponds to Lemma 2.5.6.

Lemma 7.6.9 ([45, Lem. 6.11]). Let aλ and bµ satisfy (7.22) for every multi-index ρ ∈ Nd
0

with |ρ|1 ≤ L and assume tλ, tµ ≤ C. Then we can write the expression

Lλ,µ


aλ(Aα,tλ

Rθλ
Rϕλ

ξ)bµ(Aα,tµRθµRϕµξ)


as a finite linear combination of terms of the form

pλ(Aα,tλ
Rθλ

Rϕλ
ξ)qµ(Aα,tµRθµRϕµξ)

with functions pλ, qµ, which satisfy (7.22) for all multi-indices ρ ∈ Nd
0 with |ρ|1 ≤ L− 2.
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Proof. For convenience we introduce the operator Oλ := Aα,tλ
Rθλ

Rϕλ
and the operator

Oµ := Aα,tµRθµRϕµ . Further, we define the functions aλ(ξ) := aλ(Oλξ) and bµ(ξ) :=
bµ(Oµξ). We also abbreviate ξλ := Oλξ and ξµ := Oµξ. Taking into account tλ . 1,
we observe ∥Oλ∥2→2 = ∥Aα,tλ

∥2→2 = max{tαλ , tλ} . tαλ . Analogously, it holds ∥Oµ∥2→2 =
∥Aα,tµ∥2→2 . tαµ. Finally, we introduce the ‘transfer’ matrix

Tλ,µ := RθµRϕµR
T
ϕλ
RT

θλ
∈ O(d,R). (7.26)

After these remarks we turn to the proof, where we treat the components of Lλ,µ

separately.

I This term causes no pain.

t−2α
0 ∆ By the product rule we have

∆(aλ
bµ) = 2⟨∇aλ,∇bµ⟩  

A

+ aλ∆bµ + bµ∆aλ  
B

.

In the following we first treat part A and then part B.

A The chain rule yields ∇aλ(ξ) = OT
λ ∇aλ(ξλ) for every ξ ∈ Rd and an analogous formula

for bµ. Thus we obtain
∇aλ(ξ),∇bµ(ξ)


=

OT

λ ∇aλ(ξλ), OT
µ ∇bµ(ξµ)


=

OµO

T
λ ∇aλ(ξλ),∇bµ(ξµ)


.

The expression

OµO

T
λ ∇aλ,∇bµ


is a linear combination of the products ∂iaλ∂jbµ, where

i, j ∈ {1, . . . , d}, with the entries of the matrix OµO
T
λ as coefficients. The functions ∂iaλ

and ∂jbµ clearly satisfy (7.5) for every ρ ∈ Nd
0 with |ρ|1 ≤ L−1. Moreover, the entries of the

matrix OµO
T
λ are bounded in modulus by ∥OµO

T
λ ∥2→2, which in turn obeys the estimate

∥OµO
T
λ ∥2→2 = ∥Aα,tµTλ,µAα,tλ

∥2→2 ≤ ∥Aα,tµ∥2→2∥Aα,tλ
∥2→2 . (tµtλ)α ≤ t2α

0 ,

where t0 = max{tλ, tµ}. This shows that the function t−2α
0 A can be written as claimed.

B Due to symmetry it suffices to treat the term bµ∆aλ. Since bµ(ξ) = bµ(ξµ) for ξ ∈ Rd

and since bµ fulfills condition (7.5) for every ρ ∈ Nd
0 with |ρ|1 ≤ L, the function bµ is a

suitable first factor with the required properties. Let us investigate the second factor ∆aλ.
The second derivative of aλ is at each ξ ∈ Rd a bilinear mapping Rd × Rd → R, which

by the chain rule satisfies for v, w ∈ Rd

a ′′
λ (ξ)[v, w] = a′′

λ(ξλ)[Oλv,Oλw].

Thus, we have the expansion

∆aλ(ξ) =
d

i=1
a′′

λ(ξ)[ei, ei] =
d

i=1
a′′

λ(ξλ)[Oλei, Oλei].
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Let ρ ∈ Nd
0 be a multi-index with |ρ|1 ≤ L− 2. Then the partial derivative with respect

to ρ of the function ξ →→
d

i=1 t
−2α
0 a′′

λ(ξ)[Oλei, Oλei] clearly exists. It remains to prove the
frequency localization (7.5).

In view of ∂ρ(a′′
λ) = (∂ρaλ)′′ we can estimate for every i ∈ {1, . . . , d} and every ξ ∈ Rd

t−2α
0 |∂ρa′′

λ(ξ)[Oλei, Oλei]| ≤ t−2α
0

∂ρa′′
λ(ξ)

∥Oλ∥2
2→2 .

∂ρa′′
λ(ξ)

.
The norm of the bilinear mapping is given by |||∂ρa′′

λ(ξ)||| = sup|v|,|w|=1 |∂ρa′′
λ(ξ)[v, w]|. This

is equal to the spectral norm of the corresponding Hesse matrix. Therefore we can deduce
|||∂ρa′′

λ(ξ)||| . sup|β|1=2 |∂β∂ρaλ(ξ)|. The functions ∂β∂ρaλ satisfy (7.5) for every β ∈ Nd
0

with |β|1 = 2 due to the assumption on aλ. The required frequency localization follows.

t−2
0 (1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2)−1⟨eλ,∇⟩2 First we define the numbers w1 := t−2

0 , w2 :=
t−2α
0 | {dS(eλ, eµ)} |−2, and w3 := t

−(1+α)
0 | {dS(eλ, eµ)} |−1 and notice that the pre-factor sat-

isfies

t−2
0 (1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2)−1 ≤ min{w1, w2, w3}. (7.27)

The first two estimates are obvious. For the third, recall that 1 + t2 ≥ 2t for all t ∈ R.
Hence,

t−2
0 (1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2)−1 ≤ 1

2 t
−2
0 (t−(1−α)

0 | {dS(eλ, eµ)} |)−1

≤ t
−(1+α)
0 | {dS(eλ, eµ)} |−1.

We begin with the product rule, which yields

⟨eλ,∇⟩2aλ
bµ


= bµ⟨eλ,∇⟩2aλ + 2(⟨eλ,∇⟩aλ)(⟨eλ,∇⟩bµ) + aλ⟨eλ,∇⟩2bµ. (7.28)

Recall that eλ = RT
ϕλ
RT

θλ
ed. We calculate with the chain rule for ξ ∈ Rd


eλ,∇aλ(ξ)


=

Oλeλ,∇aλ(ξλ)


=

Aα,tλ

ed,∇aλ(ξλ)


= tλ∂daλ(ξλ),

where we used Oλeλ = Aα,tλ
ed. We similarly obtain, with Tλ,µ as in (7.26),

eλ,∇bµ(ξ)


=

Oµeλ,∇bµ(ξµ)


=

Aα,tµTλ,µed,∇bµ(ξµ)


.

Next, we note that ⟨eλ,∇⟩2aλ(ξ) = a′′
λ(ξ)[eλ, eλ]. Together with the chain rule, this

implies

⟨eλ,∇⟩2aλ(ξ) = a′′
λ(ξλ)[Oλeλ, Oλeλ] = a′′

λ(ξλ)[Aα,tλ
ed, Aα,tλ

ed] = t2λ∂
2
daλ(ξλ).

We also obtain

⟨eλ,∇⟩2bµ(ξ) = b′′
µ(ξµ)[Oµeλ, Oµeλ] =


⟨Aα,tµTλ,µed,∇⟩2bµ


(ξµ).

Let us henceforth use the abbreviation η := Tλ,µed ∈ Sd−1. Plugging the above calcula-
tions into (7.28) leads to the following expression for ⟨eλ,∇⟩2aλ

bµ

(ξ) at ξ ∈ Rd

t2λbµ(ξµ) · ∂2
daλ(ξλ) + 2tλ∂daλ(ξλ) · ⟨Aα,tµη,∇bµ(ξµ)⟩ + aλ(ξλ) ·


⟨Aα,tµη,∇⟩2bµ


(ξµ).

(7.29)
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For the first summand of (7.29) we consider the product of the functions t2λ∂2
daλ and

bµ. Since t2λ ≤ t20 and in view of (7.27) the pre-factor w1 is compensated. Due to the
assumptions on aλ and bµ the product is thus of the desired form.

Let us put η[d−1] := (η1, . . . , ηd−1, 0)T ∈ Rd and η[d] := (0, . . . , 0, ηd)T ∈ Rd and observe
that

Aα,tµη = Aα,tµ(η[d−1] + η[d]) = tαµη[d−1] + tµη[d].

The second summand of (7.29) then becomes – up to the factor 2 –

∂daλ(ξλ) ·

tλt

α
µ⟨η[d−1],∇bµ(ξµ)⟩ + tλtµηd∂dbµ(ξµ)


.

We choose the function ∂daλ as the first factor, which clearly has the required properties,
and the function

ξ →→ tλt
α
µ⟨η[d−1],∇bµ(ξ)⟩ + tλtµηd∂dbµ(ξ).

as the second factor. The second component of this function causes no problems because
|ηd| ≤ 1 and the pre-factor w1 is compensated due to tλtµ ≤ t20. To deal with the other
term, notice that by Lemma 7.6.1 |η[d−1]| = |η|[d−1] ≍ | {dS(eλ, eµ)} |. Thus

tλt
α
µ|⟨η[d−1],∇bµ⟩| . tλt

α
µ| {dS(eλ, eµ)} ||∇bµ|.

The fact that ∂ibµ, i ∈ {1, . . . , d}, satisfy (7.5) by assumption, and that tλtαµ| {dS(eλ, eµ)} |
compensates w3, implies that also the first component satisfies the required properties.

Let us turn to the last summand of (7.29). The first factor aλ is of the desired form.
For the second factor we expand the function ⟨Aα,tµη,∇⟩2bµ in the form

t2α
µ ⟨η[d−1],∇⟩2bµ + 2t1+α

µ ηd⟨η[d−1],∇⟩∂dbµ + t2µη
2
d∂

2
dbµ.

Its partial derivatives of order ρ ∈ Nd
0 with |ρ|1 ≤ L−2 clearly exist, and we get the estimate

|⟨Aα,tµη,∇⟩2∂ρbµ| . t2α
0 |{dS(eλ, eµ)}|2

d−1
i,j=1

|∂i∂j∂
ρbµ|

+ 2t1+α
0 |{dS(eλ, eµ)}||∇∂d∂

ρbµ| + t20|∂2
d∂

ρbµ|.

We again used Lemma 7.6.1. This estimate completes the proof, taking into account the
estimate (7.27) of the pre-factor and the fact that the partial derivatives of bµ up to order
L satisfy (7.5).

7.6.4 Actual Proof of Theorem 7.2.2

At last we have all the tools available to prove Theorem 7.2.2. Write ∆x = xλ − xµ. An
application of the Plancherel identity yields

⟨mλ, pµ⟩ = ⟨m̂λ, p̂µ⟩

= (tλtµ)
1+(d−1)α

2


Rd
âλ(Aα,tλ

Rθλ
Rϕλ

ξ)b̂µ(Aα,tµRθµRϕµξ) exp(−2πi⟨ξ,∆x⟩) dξ

for two α-moleculesmλ and pµ with respective generators aλ and bµ. According to Lemma 7.6.3,
the functions ∂ρâλ and ∂ρb̂µ satisfy (7.23) for every ρ ∈ Nd

0 with |ρ|1 ≤ L
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7 MULTIVARIATE α-MOLECULES

Next, we want to exploit cancellation. For this we utilize the differential operator Lλ,µ

from (7.25). First, we observe that partial integration yields
L N

λ,µ exp(−2πi⟨ξ,∆x⟩), âλ(Aα,tλ
Rθλ

Rϕλ
ξ)b̂µ(Aα,tµRθµRϕµξ)


=


exp(−2πi⟨ξ,∆x⟩),L N
λ,µ


âλ(Aα,tλ

Rθλ
Rϕλ

ξ)b̂µ(Aα,tµRθµRϕµξ)

,

since the boundary terms vanish due to the decay properties of the generators and their
derivatives. Note that we assume N1 > d/2 and L ≥ 2N . Second, we calculate for ξ ∈ Rd

L N
λ,µ


exp(−2πi⟨ξ,∆x⟩)


=


1 + 4π2t−2α
0 |∆x|2 + 4π2t−2

0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

N

· exp(−2πi⟨ξ,∆x⟩).

Consequently, we have

⟨mλ, pµ⟩ =


1 + 4π2t−2α
0 |∆x|2 + 4π2t−2

0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

−N

· Sλ,µ,

with

Sλ,µ := (tλtµ)
1+(d−1)α

2


Rd

L N
λ,µ


âλ(Aα,tλ

Rθλ
Rϕλ

ξ)b̂µ(Aα,tµRθµRϕµξ)


exp(−2πi⟨ξ,∆x⟩) dξ.

Since L ≥ 2N by assumption, Lemma 7.6.9 can iteratively be applied N times, and we
conclude that

L N
λ,µ


âλ(Aα,tλ

Rθλ
Rϕλ

ξ)b̂µ(Aα,tµRθµRϕµξ)


can be written as a finite linear combination of terms of the form

pλ(Aα,tλ
Rθλ

Rϕλ
ξ)qµ(Aα,tµRθµRϕµξ),

where pλ and qµ satisfy (7.22) (for the multi-index ρ ∈ Nd
0 just containing zeros).

Using Lemma 7.6.3 and putting K = 2N + d− 2 ≤ N2 in Lemma 7.6.4 then yieldsL N
λ,µ


âλ(Aα,tλ

Rθλ
Rϕλ

ξ)b̂µ(Aα,tµRθµRϕµξ)


. Sλ,M−(2N+d−2),N1,2N+d−2(ξ)Sµ,M−(2N+d−2),N1,2N+d−2(ξ).

Due to the assumptions, we can further choose a number N ≤ N1 which satisfies

(M − (2N + d− 2)) + d > N ≥ N + 1 + (d− 1)α
2 . (7.30)

Since N ≤ N1 we have the estimate Sη,M−(2N+d−2),N1,2N+d−2 ≤ S
η,M−(2N+d−2), N,2N+d−2

for η = λ, µ. Hence, we obtain

|Sλ,µ| . (tλtµ)
1+(d−1)α

2


Rd
Sλ,M−(2N+d−2),N1,2N+d−2)(ξ)Sµ,M−(2N+d−2),N1,2N+d−2(ξ) dξ

. (tλtµ)
1+(d−1)α

2


Rd
S

λ,M−(2N+d−2), N,2N+d−2(ξ)S
µ,M−(2N+d−2), N,2N+d−2(ξ) dξ

. max
 tλ
tµ
,
tµ
tλ

−N
(1 + t

−(1−α)
0 | {dS(eλ, eµ)} |)−2N .
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7.6 Appendix: Proof of Theorem 7.2.2

Here we used (7.30) and Lemma 7.6.8 in the last line (using this S and setting M̃ =
M − (2N + d− 2), A = N and B = 2N (B > 1, A > 0 since N > 1)).

Altogether, we arrive at the desired estimate

|⟨mλ, pµ⟩| . max
 tλ
tµ
,
tµ
tλ

−N


1 + t−2α
0 |∆x|2 + t−2

0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

−N

·

1 + t

−(1−α)
0 | {dS(eλ, eµ)} |

−2N

. max
 tλ
tµ
,
tµ
tλ

−N

·


1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−2α

0 |∆x|2 + t−2
0 ⟨eλ,∆x⟩2

1 + t
−2(1−α
0 | {dS(eλ, eµ)} |2

−N

. ωα

ΦΛ(λ),Φ∆(µ)

−N
.

For the last estimate observe that the inequality between the arithmetic and the geometric
mean


1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2


+ t−2

0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

≥ 2t−1
0 |⟨eλ,∆x⟩|

implies

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−2α

0 |∆x|2 + t−2
0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2

≥ 1
2

1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−2α

0 |∆x|2


+ 1
2


1 + t

−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−2

0 ⟨eλ,∆x⟩2

1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2



& 1 + t
−2(1−α)
0 | {dS(eλ, eµ)} |2 + t−2α

0 |∆x|2 + t−1
0 |⟨eλ,∆x⟩| = 1 + dα


ΦΛ(λ),Φ∆(µ)


.

This concludes the proof.

245



246



Bibliography

[1] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Continuous frames in Hilbert space. Ann.
Physics, 222(1):1–37, 1993.

[2] H. W. Alt. Lineare Funktionalanalysis. Springer-Verlag, Berlin-Heidelberg, 5. edition,
2006.

[3] T. Aoki. Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo, 18:588–
594, 1942.

[4] P. Balazs and N. Holighaus. Discretization in generalized coorbit spaces: extensions,
annotations and errata for “ Continuous frames, function spaces, and the discretization
problem” by M. Fornasier and H. Rauhut. Online available: https://www.univie.
ac.at/nonstatgab/warping/baho15.pdf.

[5] T. Berger. Rate Distortion Theory. Wiley Online Library, 1971.

[6] L. Borup and M. Nielsen. Frame decompositions of decomposition spaces. J. Fourier
Anal. Appl., 13:39–70, 2007.

[7] J. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: total variation, wavelet
frames, and beyond. J. Amer. Math. Soc., 25:1033–1089, 2012.

[8] E. Candès. Ridgelets: theory and applications. PhD thesis, Stanford University, 1998.

[9] E. Candès and D. L. Donoho. Ridgelets: a key to higher-dimensional intermittency?
Phil. Trans. R. Soc. Lond. A., 357:2495–2509, 1999.

[10] E. Candès and D. L. Donoho. Continuous curvelet transform: I. Resolution of the
wavefront set. Appl. Comput. Harmon. Anal., 19(2):162–197, 2005.

[11] E. Candès and D. L. Donoho. Continuous curvelet transform: II. Discretization and
frames. Appl. Comput. Harmon. Anal., 19(2):198–222, 2005.

[12] E. J. Candès. Ridgelets and the representation of mutilated Sobolev functions. SIAM
J. Math. Anal., 33(2):347–368, 2001.

[13] E. J. Candès and L. Demanet. The curvelet representation of wave propagators is
optimally sparse. Comm. Pure Appl. Math., 58:1472–1528, 2005.

[14] E. J. Candès and D. L. Donoho. Curvelets - a surprisingly effective nonadaptive
representation for objects with edges. In C. Rabut, A. Cohen, and L. Schumaker,
editors, Curves and Surfaces, pages 105–120. Vanderbilt University Press, 2000.

[15] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal repre-
sentations of objects with C2 singularities. Comm. Pure Appl. Math., 56:219–266,
2004.

247

https://www.univie.ac.at/nonstatgab/warping/baho15.pdf
https://www.univie.ac.at/nonstatgab/warping/baho15.pdf


BIBLIOGRAPHY

[16] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. G. Baraniuk. Compressing
piecewise smooth multidimensional functions using surflets: rate-distortion analysis.
Technical report, Department of Electrical and Computer Engineering, Rice Univer-
sity, Mar. 2004.

[17] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. G. Baraniuk. Compression of
higher dimensional functions containing smooth discontinuities. In Conference on
Information Sciences and Systems, Princeton, Mar. 2004.

[18] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. G. Baraniuk. Surflets: a sparse
representation for multidimensional functions containing smooth discontinuities. In
IEEE Symposium on Information Theory, Chicago, Jul. 2004.

[19] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. G. Baraniuk. Representation
and compression of multidimensional piecewise functions using surflets. IEEE Trans.
Inform. Theory, 55(1):374–400, 2009.

[20] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, 2003.

[21] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 still image coding
system: an overview. IEEE Trans. Consum. Electron., 46(4):1103–1127, 2000.

[22] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator
equations: convergence rates. Math. Comp., 70:27–75, 2001.

[23] S. Dahlke, F. De Mari, E. De Vito, D. Labate, G. Steidl, G. Teschke, and S. Vigogna.
Coorbit spaces with voice in a Fréchet space. J. Fourier Anal. Appl., 23(1):141–206,
2017.

[24] S. Dahlke, M. Fornasier, H. Rauhut, G. Steidl, and G. Teschke. Generalized coorbit
theory, Banach frames, and the relation to alpha-modulation spaces. Proc. London
Math. Soc. (3), 96:464–506, 2008.

[25] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, and H.-G. Stark. The uncertainty princi-
ple associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut.
Inf. Process., 6:157–181, 2008.

[26] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke. Shearlet coorbit spaces and
associated Banach frames. Appl. Comput. Harmon. Anal., 27(2):195–214, 2009.

[27] S. Dahlke, G. Steidl, and G. Teschke. Coorbit spaces and Banach frames on homoge-
neous spaces with applications to the sphere. Adv. Comput. Math., 21(1-2):147–180,
2004.

[28] S. Dahlke, G. Steidl, and G. Teschke. Weighted coorbit spaces and Banach frames
on homogeneous spaces. J. Fourier Anal. Appl., 10(5):507–539, 2004.

[29] W. Dahmen, C. Huang, G. Kutyniok, C. Schwab, and G. Welper. Efficient resolution
of anisotropic structures. In Extraction of Quantifiable Information from Complex
Systems, volume 102 of Lecture Notes in Computational Science and Engineering,
pages 25–51. Springer, 2014.

248



Bibliography

[30] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis.
IEEE Trans. Inf. Theor., 36(5):961–1005, 1990.

[31] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.

[32] M. V. de Hoop, K. Gröchenig, and J. L. Romero. Exact and approximate expansions
with pure Gaussian wavepackets. SIAM J. Math. Anal., 46(3):2229–2253, 2014.

[33] M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multires-
olution image representation. IEEE Trans. Image Proc., 14:2091–2106, 2005.

[34] D. Donoho and G. Kutyniok. Microlocal analysis of the geometric separation problem.
Comm. Pure Appl. Math., 66:1–47, 2013.

[35] D. L. Donoho. Wedgelets: nearly-minimax estimation of edges. Ann. Statist., 27:859–
897, 1999.

[36] D. L. Donoho. Orthonormal ridgelets and linear singularities. SIAM J. Math. Anal.,
31(5):1062–1099, 2000.

[37] D. L. Donoho. Ridge functions and orthonormal ridgelets. J. Approx. Theory,
111(2):143–179, 2001.

[38] D. L. Donoho. Sparse components of images and optimal atomic decomposition.
Constr. Approx., 17:353–382, 2001.

[39] D. L. Donoho and X. Huo. Beamlet pyramids: a new form of multiresolution analysis
suited for extracting lines, curves, and objects from very noisy image data. In Wavelet
Applications in Signal and Image Processing VIII (San Diego, CA, 2000), Proc. SPIE,
volume 4119, pages 434–444. SPIE, 2000.

[40] G. Easley and D. Labate. Shearlets: Multiscale Analysis for Multivariate Data, chapter
Image Processing using Shearlets, pages 283–320. Birkhäuser Boston, 2012.

[41] H. G. Feichtinger. Modulation spaces on locally compact Abelian groups. Technical
report, University Vienna, January 1983.

[42] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via
integrable group representations. In Function spaces and applications (Lund, 1986),
volume 1302 of Lecture Notes in Math., pages 52–73. Springer, Berlin, 1988.

[43] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group rep-
resentations and their atomic decompositions, I. Journ. Funct. Anal., 86(2):307–340,
1989.

[44] A. Flinth. 3D parabolic molecules. Bachelor’s thesis, TU Berlin, 2013.

[45] A. Flinth and M. Schäfer. Multivariate α-molecules. J. Approx. Theory, 202:64–108,
2016.

[46] M. Fornasier and H. Rauhut. Continuous frames, function spaces, and the discretiza-
tion problem. J. Fourier Anal. Appl., 11(3):245–287, 2005.

249



BIBLIOGRAPHY

[47] M. Frazier, B. Jawerth, and G. Weiss. Littlewood-paley theory and the study of func-
tion spaces. In Conference Board of the Mathematical Sciences, Regional Conference
Series in Mathematics, volume 79. American Mathematical Society, Providence, R.I,
1991.

[48] H. Führ. Coorbit spaces and wavelet coefficient decay over general dilation groups.
Trans. Amer. Math. Soc., 367:7373–7401, 2015.

[49] H. Führ. Vanishing moment conditions for wavelet atoms in higher dimensions. Adv.
Comput. Math., 42(1):127–153, 2015.

[50] H. Führ and F. Voigtlaender. Wavelet coorbit spaces viewed as decomposition spaces.
J. Funct. Anal., 269:80–154, 2015.

[51] L. Grafakos. Classical Fourier Analysis. Springer, 2 edition, 2008.

[52] R. Gribonval and M. Nielsen. Non-linear approximation with dictionaries. I. Direct
estimates. J. Fourier Anal. Appl., 10:51–71, 2004.

[53] A. Grigoreva. Eine hinreichende Bedingung für die Frame-Eigenschaft von α-
Molekülsystemen. Bachelor’s thesis, TU Berlin, 2017.

[54] K. Gröchenig. Unconditional bases in translation and dilation invariant function
spaces on Rn. In Constructive theory of functions (Varna, 1987), pages 174–183.
Publ. House Bulgar. Acad. Sci., Sofia, 1988.

[55] K. Gröchenig. Describing functions: atomic decompositions versus frames. Monatsh.
Mathem., 112:1–41, 1991.

[56] K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, Boston, 2001.

[57] P. Grohs. Ridgelet-type frame decompositions for Sobolev spaces related to linear
transport. J. Fourier Anal. Appl., 18(2):309–325, 2012.

[58] P. Grohs. Intrinsic localization of anisotropic frames. Appl. Comput. Harmon. Anal.,
2013. to appear.

[59] P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer. α-Molecules. Appl. Comput.
Harmon. Anal., 41(1):297–336, 2016.

[60] P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer. Cartoon approximation with
α-curvelets. J. Fourier Anal. Appl., 22(6):1235–1293, 2016.

[61] P. Grohs and Z. Kereta. Continuous parabolic molecules. Technical Report 2015-17,
Seminar for Applied Mathematics, ETH Zürich, Switzerland, June 2015.

[62] P. Grohs and G. Kutyniok. Parabolic molecules. Found. Comput. Math., 14(2):299–
337, 2014.

[63] P. Grohs and A. Obermeier. On the approximation of functions with line singularities
by ridgelets. Technical Report 2016-4, Seminar for Applied Mathematics, ETH Zürich,
Switzerland, 2016.

250



Bibliography

[64] P. Grohs and A. Obermeier. Optimal adaptive ridgelet schemes for linear advection
equations. Appl. Comput. Harmon. Anal., 41(3):768–814, 2016.

[65] P. Grohs and S. Vigogna. Intrinsic localization of anisotropic frames II: α-molecules.
J. Fourier Anal. Appl., 21(1):182–205, 2015.

[66] K. Guo, G. Kutyniok, and D. Labate. Sparse multidimensional representations using
anisotropic dilation and shear operators. In Wavelets and Splines (Athens, GA, 2005),
volume 14, pages 189–201. Nashboro Press, Nashville, TN, 2006.

[67] K. Guo and D. Labate. Optimally sparse multidimensional representation using shear-
lets. SIAM J. Math. Anal., 39:298–318, 2007.

[68] K. Guo and D. Labate. Representation of Fourier integral operators using shearlets.
J. Fourier Anal. Appl., 14:327–371, 2008.

[69] K. Guo and D. Labate. Optimally sparse representations of 3D data with C2 surface
singularities using Parseval frames of shearlets. SIAM J. Math. Anal., 44:851–886,
2012.

[70] K. Guo and D. Labate. The construction of smooth Parseval frames of shearlets.
Math. Model. Nat. Phenom., 8(1):82–105, 2013.

[71] W. Hackbusch, H. R. Schwarz, and E. Zeidler. Teubner-Taschenbuch der Mathematik.
B. G. Teubner Stuttgart, Leipzig, 1996.

[72] L. Jantscher. Distributionen. Walter de Gruyter, Berlin-New York, 1971.

[73] S. Keiper. A flexible shearlet transform - sparse approximation and dictionary learn-
ing. Bachelor’s thesis, TU Berlin, 2013.

[74] H. Kempka, M. Schäfer, and T. Ullrich. General coorbit space theory for quasi-Banach
spaces and inhomogeneous function spaces with variable smoothness and integrability.
J. Fourier Anal. Appl., 23(6):1348–1407, 2017.

[75] Z. Kereta. Continuous Parabolic Molecules. Doctoral thesis, ETH Zürich, Germany,
2016.

[76] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of compactly supported
shearlet frames. Constr. Approx., 35(1):21–72, 2012.

[77] J. Krommweh. Image approximation by adaptive tetrolet transform. In International
conference on sampling theory and applications, Marseille, France, May 2009.

[78] G. Kutyniok and W.-Q Lim. Compactly supported shearlets are optimally sparse. J.
Approx. Theory, 163(11):1564–1589, 2011.

[79] G. Kutyniok and D. Labate, editors. Shearlets: Multiscale Analysis for Multivariate
Data. Birkhäuser, Boston, 2012.

[80] G. Kutyniok and D. Labate. Shearlets: Multiscale Analysis for Multivariate Data,
chapter Introduction to Shearlets, pages 1–38. Birkhäuser Boston, 2012.

251



BIBLIOGRAPHY

[81] G. Kutyniok, D. Labate, W.-Q Lim, and G. Weiss. Sparse multidimensional repre-
sentation using shearlets. In Wavelets XI(San Diego, CA), SPIE Proc., volume 5914,
pages 254–262. SPIE, Bellingham, WA, 2005.

[82] G. Kutyniok, J. Lemvig, and W. -Q Lim. Compactly supported shearlets. In
M. Neamtu and L. Schumaker, editors, Approximation Theory XIII: San Antonio
2010, volume 13 of Springer Proceedings in Mathematics, pages 163–186. Springer
New York, 2012.

[83] G. Kutyniok, J. Lemvig, and W.-Q Lim. Optimally sparse approximations of 3D
functions by compactly supported shearlet frames. SIAM J. Math. Anal., 44(4):2962–
3017, 2012.

[84] G. Kutyniok, V. Mehrmann, and P. Petersen. Regularization and numerical solution
of the inverse scattering problem using shearlet frames. J. Inverse Ill-Posed Probl.,
25(3):287–309, 2017.

[85] D. Labate, L. Mantovani, and P. Negi. Shearlet smoothness spaces. J. Fourier Anal.
Appl., 19(3):577–611, 2013.

[86] E. Le Pennec and S. Mallat. Bandelet image approximation and compression. Multi-
scale Model. Simul., 4(3):992–1039, 2005.

[87] E. Le Pennec and S. Mallat. Sparse geometric image representations with bandelets.
IEEE Trans. Image Process., 14(4):423–438, 2005.

[88] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. New characterizations of
Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier
Anal. Appl., 18(5):1067–1111, 2012.

[89] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. A new framework for
generalized Besov-type and Triebel-Lizorkin-type spaces. Diss. Math., 489, 2013.

[90] A. Lisowska. Smoothlets – multiscale functions for adaptive representation of images.
IEEE Trans. Image Process., 20(7):1777–1787, 2011.

[91] A. Lisowska. Multiwedgelets in image denoising. In J. Park, J. Ng, H.-Y. Jeong, and
B. Waluyo, editors, Multimedia and Ubiquitous Engineering: MUE 2013, pages 3–11.
Springer Netherlands, Dordrecht, 2013.

[92] J. Ma. Seismic denoising with nonuniformly sampled curvelets. Comput. Sci. Eng.,
8(3):16–25, 2006.

[93] J. Ma. Curvelets for surface characterization. Appl. Phys. Lett., 90:054109, 2007.

[94] J. Ma, M. Hussaini, O. Vasilyev, and F.-X. Le Dimet. Multiscale geometric analysis
of turbulence by curvelets. Physics of Fluids, 21:075104, 2009.

[95] J. Ma and G. Plonka. Combined curvelet shrinkage and nonlinear anisotropic diffu-
sion. IEEE Trans. Image Process., 16(9):2198–2206, 2007.

252



Bibliography

[96] J. Ma and G. Plonka. A review of curvelets and recent applications. In IEEE Signal
Processing Magazine, 2009.

[97] S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press,
2nd edition, 2008.

[98] S. Mallat. Geometrical grouplets. Appl. Comput. Harmon. Anal., 26(2):161–180, 2009.

[99] K. N. Rasmussen and M. Nielsen. Compactly supported curvelet-type systems. J.
Funct. Spaces Appl., pages Art. ID 876315, pp. 18, 2012.

[100] H. Rauhut. Coorbit space theory for quasi-Banach spaces. Studia Math., 180(3):237–
253, 2007.

[101] S. Rolewicz. On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl.
III., 5:471–473, 1957.

[102] M. Schäfer. The role of α-scaling for cartoon approximation. 2016. submitted.

[103] B. Scharf. Atomare Charakterisierungen vektorwertiger Funktionenräume. Diplomar-
beit, Friedrich-Schiller-Universität Jena, Germany, 2009.

[104] H. Smith. A Hardy space for Fourier integral operators. J. Geom. Anal., 8(4):629–653,
1998.

[105] R. S. Strichartz. A Guide to Distribution Theory and Fourier Transforms. World
Scientific Publishing Co. Pte. Ltd., 1994.

[106] B. Sun, J. Ma, H. Chauris, and H. Yang. Solving the Wave Equation Using Curvelets.
In 72nd EAGE Conference and Technical Exhibition, Eur. Ass. of Geoscientists and
Engineers, page C044, Barcelone, Spain, June 2010.

[107] H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983.

[108] H. Triebel. Characterizations of Besov-Hardy-Sobolev spaces: a unified approach.
Journ. of Approx. Theory, 52:162–203, 1988.

[109] H. Triebel. Theory of Function Spaces II. Birkhäuser, Basel, 1992.

[110] T. Ullrich. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new
interpretations as coorbits. Journ. Funct. Spaces Appl., page Art. ID 163213, 2012.

[111] T. Ullrich and H. Rauhut. Generalized coorbit space theory and inhomogeneous
function spaces of Besov-Lizorkin-Triebel type. J. Funct. Anal., 260(11):3299–3362,
2011.

[112] D. Werner. Funktionalanalysis. Springer, Berlin-Heidelberg-New York, 5. edition,
2004. erweiterte Auflage.

[113] R. M. Willet and R. D. Nowak. Platelets: a multiscale approach for recovering edges
and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imag., 22(3):332–
350, 2003.

253



BIBLIOGRAPHY

[114] P. Wojtaszczyk. A Mathematical Introduction to Wavelets. Cambridge University
Press, Cambridge, 1997.

[115] L. Ying, L. Demanet, and E. Candès. 3D discrete curvelet transform. In Wavelets
XI(San Diego, CA), SPIE Proc., volume 5914. SPIE, 2005.

254


	Title Page
	German Abstract
	English Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Multiscale Analysis
	1.2 Directional Representation Systems
	1.3 A Common Framework
	1.4 α-Molecule Coorbit Spaces
	1.5 Outline
	1.6 Preliminaries: Notation and Conventions

	2 Bivariate α-Molecules
	2.1 The Concept of α-Molecules in L2(R2)
	2.2 Metrization of the Parameter Space
	2.3 Transfer Principle for Discrete α-Molecule Frames
	2.4 A Sufficient Condition for Discrete α-Molecule Frames
	2.5 Appendix: Proof of Theorem 2.2.2

	3 Examples of α-Molecules in L2(R2)
	3.1 Continuous α-Curvelets
	3.2 α-Curvelet Molecules
	3.3 α-Shearlet Molecules
	3.4 Consistency of α-Curvelet and α-Shearlet Parametrizations
	3.5 Wavelet Systems
	3.6 Ridgelet Systems

	4 α-Molecule Coorbit Spaces
	4.1 The Continuous α-Curvelet Transform
	4.2 QBF-Spaces on the Curvelet Domain
	4.3 α-Molecule Coorbit Spaces
	4.4 Discretization Theory
	4.5 Appendix: Kernel Analysis

	5 Cartoon Approximation with α-Molecules: Bounds
	5.1 Sparse Approximation Bounds
	5.2 Cartoon-like Functions
	5.3 Entropy Bounds for Cartoon-like Functions
	5.4 Approximation Bounds for α-Molecule Systems
	5.5 Appendix: Bessel Functions

	6 Cartoon Approximation with α-Molecules: Guarantees
	6.1 Sparsity of Curvelet Coefficients
	6.2 Analysis of a Smooth Fragment
	6.3 Analysis of an Edge Fragment
	6.4 Appendix A: Proof of Lemma 6.3.4
	6.5 Appendix B: Refinement of Theorem 6.3.6

	7 Multivariate α-Molecules
	7.1 The Concept of α-Molecules in L2(Rd)
	7.2 The Index Distance
	7.3 Transfer Principle and Consistency of Parametrizations
	7.4 Multivariate α-Shearlet Molecules
	7.5 Application: Sparse Approximation of Video Data
	7.6 Appendix: Proof of Theorem 7.2.2

	Bibliography



