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ARTICLE 

  Composition Dependent Transport Diffusion in Non-Ideal 
Mixtures from Spatially Resolved Nuclear Magnetic 
Resonance Spectroscopy 
 
Christian F. Pantoja,a Y. Mauricio Muñoz-Muñoz b, Lorraine Guastar a, Jadran Vrabec b, and Julien 
Wist *a 

Nuclear magnetic resonance (NMR) is a well-established technique for the measurement of intra-diffusion coefficients. 
Recently, such information has been used as a basis of predictive models to extrapolate to the Fick diffusion coefficient of 
liquid mixtures. The present work presents a new approach to directly access the Fick diffusion coefficient by spatially 
resolved NMR experiments. The Fick diffusion coefficient of the binary mixture TEA/H2O was determined at two 
temperatures, 283.2 K and 275.2 K. The results are consistent with values previously reported either from optical 
experiments or predictive Darken-type models developed for this system. The proposed methodology adds high-resolution 
NMR to the toolbox for the study of transport diffusion of multicomponent mixtures. It is, however, still limited to mixtures 
with liquid-liquid equilibrium phase separation. 

Introduction 
Transport diffusion is widely studied because of its importance to 
understand natural phenomena and improve industrial processes1 2 
3. Different experimental techniques are being employed for that 
task4, typically providing diffusion coefficient data. Based on the 
nonetheless still surprisingly small experimental database5, a range 
of numerical models was proposed for their prediction6 7.   

Transport diffusion can be described by means of two formalisms, 
which can be transformed into each other if sufficient 
thermodynamic information on the system is available. The Maxwell-
Stefan approach describes diffusion from a physically sound 
perspective and postulates chemical potential gradients as driving 
forces for mass flux8 9. It is being used e.g. for studies of catalytic 
performance in reactors10, pervaporation membranes11 or for 
predicting transport diffusion coefficients by equilibrium molecular 
dynamics simulation12. Alternatively, Fick’s “law” assumes 
concentration gradients as driving forces for mass flux, which is 
beneficial from a practical standpoint. The related diffusion 
coefficients are usually measured by Taylor dispersion13 or 
interferometry techniques14 15. 

However, the precise measurement of diffusion coefficients entails 
significant experimental effort and is only possible for mixtures 
consisting of a small number of components (typically ≤3). Also, most 
numerical predictive models explicitly focus on such systems only, 
mainly because of the lack of appropriate data. Consequently, the 
uncertainty associated with transport diffusion in multi-component 
mixtures is high16. 

Diffusion coefficients of liquid mixtures tend to be strongly 
dependent on composition. In contrast to common assumptions, this 
holds for both Fick and Maxwell-Stefan diffusion coefficients. 
Experiments thus have to be carried out in a repetitive manner 
varying the mixture composition. An approach first proposed in the 
1970s17 has recently been revitalized by Bardow et al.18. It allows for 
the determination of the Fick diffusion coefficient of a liquid mixture 
in the entire composition range with a single experimental run if a 
varying spatial distribution of composition can be measured over 
time with a resolution that is sufficient for fitting a diffusion model 
to these data. A similar strategy has successfully been employed to 

gain insight about absorption19 as well as transport in anionic gels20 
and polyelectrolytes21. Moreover, the corresponding data can be 
used to discriminate models, such as in the incremental-model 
approach proposed by Bardow and coworkers. This model-free 
methodology was validated on the basis of Raman spectroscopy 
data18 22 23. Because Raman spectroscopy is capable to sample the 
individual contribution of all components constituting a mixture, it 
may pave the way to the study of truly multi-component systems.  

Nuclear Magnetic Resonance (NMR) spectroscopy offers comparable 
advantages as Raman spectroscopy. Indeed, the molar fraction of all 
components in a mixture can be measured with a good temporal and 
spatial resolution borrowing concepts from Magnetic Resonance 
Imaging (MRI)24. Moreover, NMR spectroscopy is suitable for the 
concurrent measurement of intra-diffusion coefficients, which 
describe the random motion of molecular species in a mixture25. It 
has also been used to improve model-based schemes, which rely on 
Raman spectroscopy measurements, especially for molar fraction 
regimes where the presence of small concentration gradients 
prohibits good estimations of transport diffusion coefficients26.        

NMR spectroscopy was used in preceding work of our group to 
observe the temporal and spatial evolution of all molar fractions of a 
multi-component mixture during its mixing process, starting from a 
liquid-liquid equilibrium (LLE) state point27. In the present work, we 
propose a scheme for measuring the Fick diffusion coefficient of 
binary liquid mixtures by combining that experimental technique 
with a numerical solution of partial differential equations (PDE) for 
the mixing process inside a cylindrical tube. The binary mixture 
Triethylamine (TEA) / Water (H2O) was chosen to validate this 
approach. Due to its highly non-ideal thermodynamic behavior, it 
was necessary to employ a coordinate transformation as shown by 
Bardow et al.23. TEA / H2O has also recently been used to validate a 
predictive model by D’Agostino et al.28, which very accurately 
performs for its Fick diffusion coefficient over a wide composition 
range. Moreover, the present results are compared to experimental 
literature values and other recent predictive models29 30. 

 



 

Experimental 
Sample preparation 

To evaluate the proposed methodology, four liquid TEA/H2O mixture 
samples were prepared together with Deuterium oxide (D2O) 
purchased from Sigma-Aldrich. D2O was added for technical reasons 
only, i.e., to lock the resonance frequency during multiple scan 
acquisitions, and its amount was kept as low as possible (30.5 μL). 
The composition of these samples is reported in Table 1. 

Table 1 
Experimental conditions employed in the present work. T stands for 
the temperature and 𝑥𝑥TEA,  𝑥𝑥H2O , 𝑥𝑥D2O are the molar fractions of TEA, 
water and deuterium oxide, respectively. Numbers in parentheses 
stand for the uncertainties.    
  

T / K 
(±0.1) 

𝑥𝑥TEA /  
mol.mol-1 
(±0.0001) 

𝑥𝑥H2O /  
mol.mol-1 

(±0.0001) 

𝑥𝑥D2O /  
mol.mol-1 
(±0.0001) 

283.2 0.1149 0.7799 0.1052 

283.2 0.1127 0.7881 0.0992 

278.2 0.1168 0.7825 0.1007 

278.2 0.1167 0.7802 0.1031 

The influence of the isotopic substitution of H2O with D2O has 
previously been studied for this mixture31. Its lower critical solution 
temperature (LCST) is reduced by 3.80 K in case of complete 
substitution. On the other hand, it was found that the transport 
properties, such as the Fick diffusion coefficient, are independent of 
the degree of deuteration32. 

The amount of each component was carefully chosen to place the 
interface between the two phases under LLE as close as possible to 
the center of the NMR coil (zcc), i.e. approximately 2 cm above the 
bottom of the NMR tube, cf. Fig. 1A. Once prepared, the samples 
were allowed to rest for at least 12 hours at ambient temperature 
and pressure. 

 

Spatially selective sampling 

The experiments were carried out with a 400 MHz Bruker Avance II 
NMR spectrometer, equipped with a double channel 5 mm probe 
(BBO) and triple axis gradients. A robust temperature control (±0.1 
K) was achieved with a BCU1 unit (Bruker, Rheinstetten) and high 
quality 5 mm NMR tubes were used as sampling cell. 

A Double Pulsed  Field Gradient Selective Echo (DPFGSE) pulse 
sequence was used to measure the composition distribution along 
the 𝑧𝑧 coordinate because it is suitable for inhomogeneous systems33, 
cf. Fig 1A. The excitation pulse frequency was set to 22.2 kHz. A 
Gaussian-shaped pulse of 1 ms and an encoding gradient of 10.61 
G/cm were used in the gradient echo. The offset Ω𝑖𝑖 of the selective 
pulse was varied between -20 kHz to 24 kHz, which selects horizontal 
slices or isochromats located at 1.53 cm and 2.53 cm. The thickness 
of the isochromat is defined by the bandwidth of the pulse and was 
determined to be 0.5 mm.  

Once the mixing process was established in the NMR tube, spatially 
selective sampling was performed to map the concentration profile 
along the z direction. Each mapping consisted of measuring 23 slices 

along z in random order, an operation that was achieved in 244 s. For 
each sample according to Table 1, a total of 83 mappings was 
recorded every 5 minutes for a total duration of 7 hours. The 23 
isochromats were chosen to cover a region of 1.1 cm located inside 
the NMR coil active region. The acquisition time of the free induction 
decay (FID) was set to 1 s, and the width of the spectral window was 
set to 15 ppm. The resulting 32k complex points were stored in a 
matrix of dimension 83x(23x32k). Further data processing, such as 
apodization (3 Hz) and baseline correction, was performed using 
Topspin 2.5 (Bruker Rheinstetten), while integration of the signals 
was done with in-house scripts written for Scilab 5.5. 

Calibration of the spatial coordinate and determination of the bulk 
temperature 

To precisely estimate the location 𝑧𝑧 of the selected isochromats, it is 
essential to determine the strength of the pulsed field gradient 𝐺𝐺𝑧𝑧 
with a good accuracy, cf. supplementary material. This was achieved 
by calibration with solvents of well-known self-diffusion coefficients. 
For that purpose, D2O with a purity of 99.9% (Sigma-Aldrich) was 
used. Transport phenomena in liquid systems are strongly 
temperature dependent, thus the experimental setup must control 
this property. Deuterated Methanol (methanol-d4) with a purity of 
99.8% (Sigma-Aldrich) was used to accurately calibrate the bulk 
temperature measurement, cf. supplementary material. 

Extraction of molar fractions 

The intensity 𝐼𝐼𝑗𝑗  of the signal was obtained by integrating the signal 
area and is related to the number of molecules 𝑛𝑛𝑗𝑗  present in the 
sample by34  

𝐼𝐼𝑗𝑗 = 𝐾𝐾𝐴𝐴𝑗𝑗𝑛𝑛𝑗𝑗 . (1) 

Therein, 𝐾𝐾 is a constant that depends on the experimental setup 
and 𝐴𝐴𝑗𝑗 is the number of protons involved. The integral of the signal 
was preferred over the signal height because it is less dependent on 
the individual spin relaxation rates, cf. supplementary material. It 
is possible to demonstrate that the molar fraction 𝑥𝑥𝑗𝑗 is readily 
obtained from the intensities by 

𝑥𝑥𝑗𝑗 =
𝐴𝐴𝑗𝑗−1𝐼𝐼𝑗𝑗

∑ 𝐴𝐴𝑘𝑘−1𝐼𝐼𝑘𝑘𝑛𝑛
𝑘𝑘=1

 . 
(2) 

In the present experiments, the relaxation rates depend on time and 
spatial location. Therefore, a longer relaxation time of 4 s was chosen 
to ensure that all spins had relaxed. Finally, the accumulation of only 
two acquisitions was necessary to obtain a high signal-to-noise ratio. 



 

 

 
Figure 1. A) Double Pulsed  Field Gradient Selective Echo (DPFGSE) 
pulse sequence33. NMR signals can be spatially encoded by applying 
a pulse field gradient simultaneously with a narrowband rf-pulse35. 
B) The field gradient shifted the Larmor frequency linearly in the 𝑧𝑧 
coordinate, while the narrow band pulse36 was used to select the 
vertical region of interest by tuning its resonance frequency offset 
Ω𝑖𝑖. The resonance frequency at this 𝑧𝑧 coordinate is thus defined as 
shown in panel B), where 𝜔𝜔𝑧𝑧(𝑧𝑧) represents the resonance frequency 
of the nuclei with gyromagnetic constant 𝛾𝛾, 𝐵𝐵0 is the magnitude of 
the external magnetic field and 𝐺𝐺𝑧𝑧 the strength of the gradient at 
coordinate 𝑧𝑧. The thickness of the selected slice is directly related to 
the bandwidth of pulse. Repeating the experiment by varying the 
frequency offset of the selective pulse allows for the observation of 
the composition the different coordinates 𝑧𝑧. 

Measuring a gradient in the NMR tube 

TEA/H2O exhibits a LLE region with a LCST, i.e., starting from a two-
phase state point, the temperature has to be decreased to enter the 
homogeneous region where mixing occurs, cf. Fig. 2B (insert). 
Therefore, to establish and measure a gradient of concentration in 
the NMR tube, the system is first set to equilibrate a temperature 
where both phase coexist (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖= 300 K). Subsequently, this system 
was cooled below the mixing temperature (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=293.7 K) to a 
final temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 278,2𝐾𝐾 𝑜𝑜𝑜𝑜 283.2𝐾𝐾), as described in 
Figure 2B (insert). While reaching its new equilibrium, sampling of 
the concentration gradient were recorded as described above. 

Prior to the experiment, the concentration profile was measured to 
locate the position of the interface separating the two phases under 
LLE, which was near the center of the NMR coil, cf. Figure 2A. Before 
acquiring data, a time delay 𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐 (Figure 2B) was necessary to avoid 
the sampling of contributions from convective phenomena presents 
instep 1 and 2. The measurements takes place during step 3 when 
the remaining flux 𝑵𝑵𝒊𝒊 in the tube was only caused by diffusive 
contributions 𝑱𝑱𝒊𝒊. This process was repeated for all samples listed in 
Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The experimental setup to observe the time t evolution of 
the molar fractions 𝑥𝑥𝑖𝑖(𝑧𝑧, 𝑡𝑡) during the mixing process, where z is the 
relevant spatial coordinate A) The sampled sections were chosen to 
be near the center of the observation window (red vertical line), 
defined by the height of the coil in the NMR setup (not depicted). 
Experimentally, this window is determined as the largest portion of 
the coil for which the response is homogeneous, while the intensity 
of the signal is reduced at the edges of the coil. The preparation of 
the sample ensured that the LLE interface was at the center of the 
observation window, i.e., about 2 cm above the bottom of the NMR 
tube in the present setup. B)  Cooling curve and phase diagram 
(insert) of the TEA/H2O system37. The measurement cycle consisted 
of preparing the sample at a temperature where two phases 
coexist 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, cool it down below 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to a target temperature 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 in the homogeneous region, and sample how this new 
equilibrium is attained. The mixing temperature is defined as the 
crossing point in the liquid-liquid coexistence curve (red diamonds) 
for the composition of our system (𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇 = 0.1149). During cooling, 
diffusive 𝐽𝐽𝑖𝑖 and convective contributions to the flux are present 
(steps 1 and 2). Measurements started after a temporal delay that 
ensured that contributions from convective processes had subsided 
(step 3). 

 

 

 

 



 

Modeling the mixing process in an NMR tube 
The assumption of constant volume is not valid for the binary mixture 
TEA/H2O, which exhibits a significant excess volume 𝑣𝑣𝐸𝐸(𝑇𝑇, 𝑝𝑝, 𝑥𝑥1) at 
283.15 K38 and 278.15 K39. An appropriate mass transfer model was 
proposed by Bardow et al.23  employing a coordinate transformation 
proposed in Ref.40. The continuity equation is solved in a molar 
reference frame because the total number of moles is constant 
during the diffusion process. However, this reference frame is 
defined using a transformed concentration 𝜉𝜉𝑖𝑖𝑀𝑀 = 𝑥𝑥𝑖𝑖 𝑣𝑣𝑛𝑛0⁄ , where 𝑣𝑣𝑛𝑛0 is 
the molar volume of a pure reference component. In this new 
reference frame, the continuity equation of component 1 in the 
binary mixture can be recast as 

𝜕𝜕𝜉𝜉1𝑀𝑀

𝜕𝜕𝜕𝜕 =
𝜕𝜕
𝜕𝜕𝑧𝑧̅ �𝐷𝐷12

(𝑐𝑐𝑡𝑡𝑣𝑣10)2
𝜕𝜕𝜉𝜉1𝑀𝑀

𝜕𝜕𝑧𝑧̅ � . 
(3) 

Therein,  𝑣𝑣10(𝑇𝑇, 𝑝𝑝) is the molar volume of TEA, 𝐷𝐷12 the Fick diffusion 
coefficient, 𝑧𝑧 the laboratory framework coordinate and 𝑧𝑧̅ represents 
a fictional distance which is related to z through23 

𝑧𝑧̅ = ∫ 𝑐𝑐𝑡𝑡(𝑡𝑡, 𝑧𝑧′)𝑣𝑣𝑛𝑛0𝑑𝑑𝑑𝑑′
𝑧𝑧
0 . (4) 

Furthermore, the total concentration is given by 1 𝑐𝑐𝑡𝑡⁄ =
∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖0(𝑇𝑇, 𝑝𝑝) +  𝑣𝑣𝐸𝐸(𝑇𝑇,𝑝𝑝, 𝑥𝑥1)𝑖𝑖 . For the excess volume, a Redlich-Kister 
type correlation was fitted to experimental data 

 𝑣𝑣𝐸𝐸(𝑇𝑇, 𝑝𝑝, 𝑥𝑥1) = 𝑥𝑥1(1 − 𝑥𝑥1)[𝐴𝐴 + 𝐵𝐵(2𝑥𝑥1 − 1) +
𝐶𝐶(2𝑥𝑥1 − 1)2 + 𝐷𝐷(2𝑥𝑥1 − 1)3]. 

(5) 

which excellently describes the experimental literature data38 39, cf. 
Fig. 3C, D. Coefficients for both target temperatures are reported in 
Table 1S of the supplementary material. The effect of D2O as a third 
component on the excess properties has been well studied and is 
expected to be small for compositions where its molar fraction is 
below 0.99941.  

Results and discussion                                             
To illustrate how the present approach may be used to access the 
composition dependence of the Fick diffusion coefficient of a binary 
mixture, TEA/H2O systems were prepared as described above. A 
given sample was cooled down below the temperature of mixing 
and, after a temporal delay that allowed the convective flux to 
vanish, the concentration profile along the z coordinate was 
measured over time. Fig. 3 shows the first sampled concentration 
profile that was used as initial condition for TEA in the new 
coordinate system. A strategy to solve the resulting PDE is outlined 
in the following. 

Initial condition 

Although the mixing process occurs inside the NMR magnet, it is not 
possible to start the measurement immediately, and a temporal 
delay is necessary to ensure that contributions from convective 
processes have terminated, i.e., the temperature had to attain a 
constant value. Here, this condition was chosen to initiate the first 
mapping at 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, cf. Figure 2B. This issue is not specific to the present 
method and the effects of such a choice have been discussed for 
other experimental techniques42. An error function was used to fit 
the initial condition in the new reference frame at 𝑡𝑡 = 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜. 

𝜉𝜉(𝑧𝑧̅, 𝑡𝑡 = 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑈𝑈 + 𝑉𝑉erf[𝑌𝑌(𝑧𝑧 + 𝑊𝑊)]. (6) 

Therein, 𝑼𝑼, 𝑽𝑽, 𝒀𝒀, and 𝑾𝑾 are fitting parameters as reported in Table 
1S of the supplementary material. Because the observation window 
was limited by the length of the active volume of the coil, the 
concentration profile of the mixture beyond these limits was 
extrapolated. Fig. 3 shows the initial condition in the new reference 
frame for both target temperatures. It allows for the definition of 
boundary conditions that are required to solve Eq. (3). 

 

Figure 3. Initial condition 𝜉𝜉(𝑧𝑧̅, 0) for solving Eq. (3) for temperatures 
278.2 K and 283.2 K as well as excess volume 𝑣𝑣𝐸𝐸(𝑇𝑇,𝑝𝑝, 𝑥𝑥1). The initial 
condition was built using the fictional distance 𝑧𝑧̅ obtained by means 
of Eq. (6) and a new composition variable calculated using molar 
volume 𝑣𝑣10(𝑇𝑇,𝑝𝑝) for TEA. The experimental data (A) and (B) can be 
approximated with the error function. The parameters calculated by 
least squares are presented for each temperature. Note that the 
separation between the points is not regularly spaced because the 
fictional distance is proportional to 𝑐𝑐𝑡𝑡 at specific locations. The four 
parameter Redlich-Kister model was fitted to experimental excess 
volume data (C) and (D) from the literature38 39. Negative excess 
volume values reflect contraction of the liquid during mixing. 

Numerical solution 

The PDE, Eq. (3), was solved numerically for TEA/H2O with the 
method of the lines43 as implemented in the Mathematica software. 
The fictional distance 𝑧𝑧̅ was chosen as the variable to be discretized. 
The composition dependence of Fick diffusion coefficient can be 
represented by a polynomial44 

𝐷𝐷12(𝑇𝑇, 𝑝𝑝, 𝑥𝑥1) = �𝜈𝜈𝑘𝑘𝑥𝑥1𝑘𝑘−1
𝑁𝑁

𝑘𝑘=1

. 
(7) 



 

 

Therein, x1 is the molar fraction of component 1 and 𝜈𝜈𝑘𝑘 are fitting 
parameters. In case of the mixture Toluene/Cyclohexane, a 
combination of low order polynomials was sufficient to describe the 
Fick diffusion coefficient in the entire composition range 45. Here, the 
following functionality was deduced by adjustment to present 
experimental data 

𝐷𝐷12(𝑇𝑇, 𝑝𝑝, 𝑥𝑥1) = ν4𝑥𝑥13 + ν2(𝑥𝑥1 − 𝑥𝑥12). (8) 

This expression was transformed in terms of the new composition 
variable 𝜉𝜉 and inserted into Eq. (3). Once the PDE was solved in the 
new coordinate space (𝜉𝜉, 𝑧𝑧̅), the results were converted back to the 
laboratory reference frame by reversing the expression 𝜉𝜉𝑖𝑖𝑀𝑀 = 𝑥𝑥𝑖𝑖 𝑣𝑣𝑛𝑛0⁄  

𝑧𝑧 =
1

𝑣𝑣10(𝑇𝑇,𝑝𝑝)
�[𝑥𝑥1𝑣𝑣10(𝑇𝑇,𝑝𝑝) + (1 − 𝑥𝑥1)𝑣𝑣20(𝑇𝑇, 𝑝𝑝)
𝑧̅𝑧

0
+ 𝑣𝑣𝐸𝐸(𝑇𝑇, 𝑝𝑝, 𝑥𝑥1)]𝑑𝑑𝑧𝑧̅. 

(9) 

Solutions for specific combinations of the coefficients 𝜈𝜈2 and 𝜈𝜈4 were 
parametrized to maximize the correlation coefficient 𝑅𝑅2. The results 
obtained for the target temperatures 278.15 K and 283.15 K are 
shown in Fig. 4 and reported numerically in Table 2S of the 
supplementary material. 

Comparison to other data 
Predictive models often assume a relationship between the 
propagation of molecular species quantified by the intra-diffusion 
coefficients 𝐷𝐷𝑖𝑖∗ and the Fick diffusion coefficient 𝐷𝐷12. The Darken 
equation46 is particularly straightforward 

𝐷𝐷12 = (𝑥𝑥2𝐷𝐷1∗ + 𝑥𝑥1𝐷𝐷2∗). (10) 

This expression can be meaningful if the involved components 
exhibit similar intermolecular interactions between like and unlike 
species, as is the case for some metal alloys46 or ideal mixtures47. 
However, once the behavior of mixtures is associated with non-
ideality, it is necessary to consider the thermodynamic factor [1 +
𝜕𝜕lnγ1 𝜕𝜕𝑥𝑥1⁄ ]48 

𝐷𝐷12 = (𝑥𝑥2𝐷𝐷1∗ + 𝑥𝑥1𝐷𝐷2∗) �1 +
𝜕𝜕lnγ1
𝜕𝜕𝑥𝑥1

�. (11) 

The thermodynamic factor is usually extracted from vapor-liquid 
equilibrium (VLE) data. D'Agostino et al.28 calculated this factor for 
the TEA/H2O mixture using experimental VLE data reported by 
Counsell49. Modifications to Eq. (11) were recently presented for 
binary mixtures that have a consulate point, such as the 
Hexane/Nitrobenzene50 or for non ideal mixtures51. Given its success 
in predicting  𝐷𝐷12 over a wide composition range, a similar 
modification was proposed for TEA/H2O in the vicinity of its 
consulate point28 

𝐷𝐷12 = (𝑥𝑥2𝐷𝐷1∗ + 2𝑥𝑥1𝐷𝐷2∗) �1 +
𝜕𝜕lnγ1
𝜕𝜕𝑥𝑥1

�
𝛼𝛼

. 
(12) 

Theoretical considerations have been presented to motivate the 
exponent 𝛼𝛼52. However, it can also be seen as a fitting parameter to 
alleviate shortcomings of the Darken equation which is more closely 
related to the Maxwell-Stefan diffusion coefficient. 

The present results obtained by solving the PDE are contrasted in Fig. 
5 with numerical models and experimental literature data29 30. For 
the sake of comparison, we applied our methodology at 
temperatures for which Fick diffusion coefficient data for TEA/H2O 
are available in the literature. 

 

Figure 4. Experimental data measured at 278.2 K (A) and 283.2 K (C) 
are contrasted with the numerical solution of the PDE for each case. 
The spatial variable was discretized by 500 points between 1.4 cm 
and 2.8 cm. Parameters 𝜈𝜈2 and 𝜈𝜈4 were fitted to maximize the 
correlation coefficient 𝑅𝑅2 (B and D).  

Both predictive models achieve a better match with the 
experimental literature data than the present approach, in particular 
for low TEA molar fractions (𝑥𝑥1< 0.2 mol/mol). However, when the 
entire composition range is considered, the present results are 
equally consistent with the experimental literature data. For a fair 
assessment, the following issues have to be considered: 

1. The predictive models are more accurate, but they require 
a large amount of experimental transport data as an input 
because they rest on intra-diffusion coefficients of both 
components over the entire composition range.  

2. The predictive models also rely on the thermodynamic 
factor that may greatly vary depending on the choice of the 
activity coefficient model53 and requires information on 
the VLE. 

It must be returned to the central idea of the method first proposed 
by Gupta and Cooper17 to understand the discrepancies observed for 
diluted states, cf. Supplementary material. Instead of carrying out 
several experiments varying the molar fraction, its time evolution is 
followed by a single experiment. In this approach, data about low (or 
high) TEA molar fractions may only be captured during the very sharp 
gradients present immediately after the mixing occurs (or after 
infinite time). Because of convective phenomena present at the 
beginning of the mixing process it is not possible to record an 
infinitely sharp gradient, nor it is possible to continue the experiment 
until  any gradient at all.. For instance, our experiment starts from a 
composition dictated by the LLE of the system (𝑥𝑥1 = 0.75 mol/mol) 
and stops before perfect equilibrium is attained. Given these 
conditions, some degree of uncertainty is unavoidable in dilute 
regimes. This problem has already been observed in the 
implementation of an incremental model for Ethyl 
acetate/Cyclohexane26 and its explanation is consistent with our 



 

results; deviations observed between the two repetitions are larger 
for molar fractions near infinite dilution. The use of an a priori model 
when solving the PDE has been discussed elsewhere19 20. Ideally, one 
would like to discover an appropriate model from the experimental 
data only.  

 

Figure 5. Fick diffusion coefficient obtained by solving the PDE for 
TEA/H2O in comparison to experimental literature data by Dudley 
and Tyrell at 278.15 K29 A) and 283.15 K30 B), interpolating the data 
for the latter. The predictive models of Darken and D'Agostino et al. 
were applied by using intra-diffusion coefficients and 
thermodynamic factor data reported in Ref.28. The green lines 
represent the Fick diffusion coefficient obtained by NMR. The dark 
and light green lines represent the first and second replicate, 
following the order in Table 1. 

Indeed, such an approach has been successfully applied in recent 
work using Raman spectroscopy54. It is assumed that the same 
method, translated to our work, may deliver appropriate models and 
accurate diffusion coefficients, provided that it is supported by a 
suitable experimental design. For instance, a better understanding of 
the impact of the initial cooling period is crucial because it affects 
several factors, such as the position of the center and shape of the 
first measured gradient. Further experiments in this direction are 
currently under development. 

Conclusions 

A complementary strategy is presented for the determination of the 
Fick diffusion coefficient in a wide composition range for non-ideal 

systems. This approach is nevertheless limited to systems that 
possess an LCST or an upper critical solution temperature (UCST), as 
a mean to establish a reproducible gradient inside of an NMR tube. 
Even with the strong restrictions imposed by the NMR tube, different 
experimental designs may, in the future, extend this method to other 
systems without consolute point.  The formulated PDE for the binary 
mixture TEA/Water was solved numerically, adopting a reduced 
functionality to estimate the binary Fick diffusion coefficient 𝐷𝐷12 
through fitting to NMR data. The results are consistent with 
experimental literature data measured with other techniques. 
Predictive models developed for the TEA/H2O system were also 
compared with the functionality obtained for the Fick diffusion 
coefficient. 

Despite the restrictions discussed above, the reduction in 
experimental effort is notable, which may compensate for a larger 
uncertainty in dilute regimes. Considering the spectroscopic benefits 
to be comparable to those provided by Raman, the NMR setup allows 
for the measurement at different temperatures out-of-the-box, 
which is essential for a broader study of mass transport phenomena. 
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