
Complexity and Approximability

of k–Splittable Flows

Ronald Koch ∗

Universität Dortmund, Fachbereich Mathematik, 44221 Dortmund, Germany,

ronald.koch@math.uni-dortmund.de, tel. 0049 231 7557210, fax 49 231 7557215

Ines Spenke ∗,1

Technische Universität Berlin, Institut für Mathematik, 10623 Berlin, Germany,

spenke@math.tu-berlin.de, tel. 0049 30 31425739, fax 0049 30 31425191

Abstract

Let G = (V, E) be a graph with a source node s and a sink node t, |V | = n, |E| = m.
For a given number k, the Maximum k–Splittable Flow Problem (MkSF) is to find
an s, t–flow of maximum value with a flow decomposition using at most k paths.
In the multicommodity case this problem generalizes disjoint paths problems and
unsplittable flow problems.

We provide a comprehensive overview of the complexity and approximability
landscape of MkSF on directed and undirected graphs. We consider constant values
of k and k depending on graph parameters. For arbitrary constant values of k, we
prove that the problem is strongly NP–hard on directed and undirected graphs
already for k = 2. This extends a known NP–hardness result for directed graphs
that could not be applied to undirected graphs. Furthermore, we show that MkSF

cannot be approximated with a performance ratio better than 5/6. This is the first
constant bound given for this value. For non constant values of k, the polynomial
solvability was known before for all k ≥ m, but open for smaller k. We prove that
MkSF is NP–hard for all k fulfilling 2 ≤ k ≤ m − n + 1 (for n ≥ 3). For all other
values of k the problem is shown to be polynomially solvable.

Key words: s, t–flow; k–splittable flow; complexity; approximation.

∗ Corresponding author.
1 Supported by the DFG Research Center Matheon “Mathematics for key tech-
nologies”.

Preprint submitted to Elsevier Science 20 September 2006

1 Introduction

In classic flow theory, flow is sent through a network from sources to sinks
respecting edge capacities. It does not matter how many paths the flow uses.
It can split into small flow portions along a large number of paths. Many ap-
plications in transport, telecommunication, production or traffic are modeled
as flow problems but they do not allow to split into an unbounded number
of paths with possibly tiny flow portions. In logistics for example, paths often
mean vehicles that are used to transport goods. Usually, this transport has to
be done with a limited number of vehicles. The problem that we consider here
limits the number of paths that are used in a flow by a given integer k.

Problem Description. Let G = (V,E) be a connected undirected or di-
rected graph with n nodes and m edges, capacities u : E → Q≥0, a source
s ∈ V and a sink t ∈ V . Furthermore, a number k ∈ N is given. A flow is called
k–splittable if it can be decomposed using at most k paths. The paths are not
required to be disjoint, not even different. This k–splittability has been intro-
duced recently by Baier, Köhler, and Skutella [4]. In the Maximum k–Splittable

Flow problem (MkSF) we ask for a k–splittable s, t–flow of maximum value.
Of course, k–splittability can also be considered in the more general multi–
commodity setting. Then it generalizes unsplittable flow problems and disjoint
paths problems. In this paper we consider the single commodity case.

Results from the Literature. Many publications consider s, t-flows with
no bound on the number of used paths, see e.g. Ford and Fulkerson [5]. It is
well known that a maximum s, t–flow can be computed in polynomial time,
for example, by augmenting path algorithms. Another classical result states
that any s, t–flow can be decomposed into flow along at most m paths and
cycles. For further details see the book by Ahuja, Magnanti, and Orlin [1].

Kleinberg [6] studies unsplittable flows. These multicommodity flows send the
entire demand for each commodity along one path. This concept generalizes
edge–disjoint paths. Kleinberg analyses complexity and approximation algo-
rithms for different unsplittable flow problems, e.g. for minimizing the conges-
tion on edges or equivalently maximizing the throughput, for the problem of
minimizing the number of rounds needed to satisfy all demands, and for the
problem of maximizing the total demand which can be routed simultaneously.
In the multicommodity setting, k–splittable flows constitute a generalization
of unsplittable flows.

Baier, Köhler, and Skutella [4] (see also [3]) investigate k–splittable flows in
the single- and in the multicommodity setting. They prove NP–hardness of

2

MkSF in directed graphs for all constant k ≥ 2. For the special case of the
uniform MkSF, where all k paths must carry the same amount of flow, they
give a max flow – min cut result as well as an O(k m log n) algorithm for
an optimal solution. Based on these insights, they present 1/2–approximation
algorithms for the general MkSF problem. Bagchi, Chaudhary, Scheideler,
and Kolman [2] consider fault tolerant routing in networks and define notions
similar to k–splittable flows. To ensure connection for each commodity for
up to k − 1 edge failures in the network, they require edge disjoint flow–
paths per commodity. Martens and Skutella [9] consider a new variant of
k–splittable multicommodity flows with upper bounds on the amount of flow
sent along each path. The objective is to minimize the congestion on arcs.
They prove that any ρ–approximation for the unsplittable flow problem gives
a 2ρ–approximation for two different variants of the considered problem.

Krysta, Sanders, and Vöcking [8] consider related problems in the area of
machine scheduling problems by imposing a bound on the number of preemp-
tions of each task. In their k–splittable scheduling problem, each task can
be split into at most k ≥ 2 pieces that are assigned to different machines.
They describe a polynomial time algorithm for finding an exact solution for
the k–splittable scheduling problem and a slightly more general problem. This
algorithm has a running time which is exponential in the number of machines
but linear in the number of tasks.

Koch, Skutella, and Spenke [7] decouple the problem MkSF into two steps.
A first step called Packing determines a set of path flow value candidates for
solving MkSF to optimality for constant k and near-optimal for k being part
of the input. A second step called Routing finds out which path flow value
tuples can be routed. The packing procedure is described for general graphs,
the routing for graphs of bounded treewidth. Finally, they get a polynomial
algorithm for MkSF on graphs of bounded treewidth if k is constant and a
PTAS if k is part of the input.

Our Paper. In this paper, we investigate the complexity and approxima-
bility of MkSF for different values of k.

The well-known maximum s, t–flow problem is polynomially solvable. Our
problem MkSF differs from it by allowing at most k paths. We show that this
additional requirement results in a strongly NP–hard problem on directed and
undirected graphs for arbitrary constant k, even for k = 2. From this result
we derive a constant bound for the approximability of MkSF. It cannot be
approximated better than with a guarantee of 5/6, unless P = NP .

It is a known result that each s, t–flow can be decomposed into flow along
at most m paths and cycles. Thus, for large k in relation to m MkSF is

3

obviously polynomially solvable. Until now it was not clear what happens
with e.g. k = m/2. We prove that the problem is NP -hard for all k within
the range 2 ≤ k ≤ m − n + 1 and polynomially solvable for k ≥ m − n + 2
for n ≥ 3. We add some results for simple graphs. These are graphs without
parallel edges and loops.

For the sake of simplicity we restrict ourselves to undirected graphs, but any
result can be applied to the directed case by minor modifications in the proofs.
To the best of our knowledge, all publications on k–splittable flows so far deal
with directed graphs.

2 Constant Number of Paths

In this section we consider constant values of k ≥ 2. MkSF is shown to be
strongly NP–hard. We show that there is no approximation algorithm with
performance ratio better than 5/6. To the best of our knowledge, there was
no constant bound given before.

In [4] the NP–hardness of MkSF is proven for constant k ≥ 2 in directed
graphs. The construction given there cannot be applied to undirected graphs.
Theorem 1 and Corollary 2 prove NP–hardness for both. To simplify notation,
we denote the problem MkSF with k = 2 by M2SF, as well for other k.

Theorem 1 M2SF is strongly NP–hard and cannot be approximated in poly-

nomial time with a guarantee better than 2/3, unless P = NP .

PROOF. We reduce 3SAT to M2SF and show that a satisfiable instance of
3SAT yields an optimum solution of value 3, whereas an unsatisfiable instance
yields an optimum of value 2 for the corresponding M2SF–instance.

Consider an instance of 3SAT with variables x1, ..., xr and clauses C1, ..., Cq.
We construct the corresponding M2SF–instance in two steps illustrated in
Fig. 1 and Fig. 2. The entire construction is shown in Fig. 3.

Step 1, Fig. 1: The graph constructed in this step represents the clauses of
the 3SAT–instance. Introduce two nodes s and t and for every clause Cj two
nodes aj , bj. Introduce three parallel edges between aj and bj for each j. Each
of these edges belongs to a literal that occurs in the clause Cj. Later in Step 2,
we will insert additional nodes into these edges such that they finally build
aj , bj–paths. The nodes aj, bj together with the three edges among them are
said to “represent” the clause Cj. Connect the representations of the clauses
by the q +1 edges {s, a1}, {b1, a2}, {b2, a3}, ..., {bq, t}. All edges created in this
step get capacity 1. The construction so far allows s, t–paths traversing each

4

clause along one path representing one literal of the clause. To control that
such s, t–paths do not use paths that belong to contrary literals we introduce
a blocking construction in Step 2.

Step 2, Fig. 2: We want to avoid that an s, t–path traverses the graph using
an edge representing a literal xi and also an edge representing x̄i. Assume
that there are h pairs of contrary literals xi and x̄i. Consider the l-th pair and
assume that xi appears in a clause C and x̄i in a clause C ′. Insert one edge
{yl, zl} into an edge {u, v} of unit capacity of the path representing xi. The
new edges {u, yl} and {zl, v} get a capacity of 1 and the edge {yl, zl} gets a
capacity of 2. Analogously, insert an edge {y′

l, z
′
l} into an edge {u′, v′} of unit

capacity of the path representing x̄i. Introduce two nodes cl and dl and edges
{cl, yl}, {dl, zl}, {cl, y

′
l), {dl, z

′
l} with capacities 2 to get a blocking construction

for the l-th pair of contrary literals. This has to be done for all pairs of contrary
literals for all pairs of clauses C,C ′. To complete the construction we add edges
{s, c1}, {d1, c2}, {d2, c3}, ..., {dh−1, ch}, {dh, t}, also with capacities 2.

Figure 3 shows the entire construction for an instance. This reduction is of
polynomial size: The number of nodes is at most quadratic in the number q of
clauses and the number of edges is bounded due to a maximum node degree of
4. Furthermore, any s, t–flow has a value no more than 3, because the capacity
of edges incident to s is 3. Next we show that any 2–splittable flow with a
value greater than 2 implies the satisfiability of the 3SAT–instance.

Assume to have two s, t–paths carrying in sum a flow value greater than 2.
Then there has to be a path P1 with flow value greater than 1. P1 can only use
edges with capacity 2. Such edges only occur in the blocking constructions of
contrary literals. According to the graph structure, P1 has to traverse all these
blocking constructions. A second path P2 has to be disjoint from P1 because
edge capacities never exceed 2 and both path values are assumed to be greater
than 2 in sum. Thus, P2 has to traverse all clause representations from Step
1. While traversing the clauses, P2 never sends flow along paths representing
contrary literals because P1 blocks at least one of them. Referring to the
3SAT instance, set xi := 1 if P2 traverses an aj, bj–path representing xi in
one arbitrary clause Cj. Otherwise, set xi := 0. Thus, every variable is set
to 0 or 1 and every clause has to contain one true literal. We have described
a satisfying assignment for the 3SAT–instance. The paths being disjoint we
could have sent 2 flow units along P1 and one unit along P2.

As well, every satisfiable 3SAT instance implies a maximum 2–splittable flow
of value 3: Choose one satisfied literal for each clause in a satisfying assign-
ment. Route one flow unit along a path P2 traversing the clause representa-
tions, always along one fulfilled literal. Send 2 flow units through the blocking
constructions using an s, t–path P1. This is possible because P2 never traverses
contrary literals simultaneously. We get a 2–splittable flow of value 3.

5

Thus, 3SAT can be reduced to M2SF such that a 3SAT–instance is satisfiable
if and only if a maximum 2–splittable flow has value 3 and not satisfiable if
and only if the maximum value is 2. 2

Corollary 2 MkSF, k ≥ 2 constant, cannot be approximated with a perfor-

mance guarantee better than 5/6, unless P = NP .

PROOF. We show this bound by a reduction from 3SAT to MkSF. Given k,
write k as 2q + r with q ∈ N odd and r ∈ {0, 1, 2, 3}. Consider an instance
of 3SAT. Construct a graph G by using q times the graph constructed in
the proof of Theorem 1 (see Fig. 3) and linking all these identical graphs by
common nodes s and t. Moreover, add r edges from s to t with capacity 1. We
get a graph polynomial in the input size of the instance, which is sketched in
Fig. 4. Note, that a maximum s, t–flow has a value of 3q + r independent from
the satisfiability of the 3SAT instance and therefore this is an upper bound
for the value of any k–splittable flow.

Solve MkSF in the constructed graph. If the 3SAT instance is satisfiable, then
MkSF results in a flow of value 3 along two paths in each of the q subgraphs.
On the r additional edges we get a flow of value r on r paths. Thus, MkSF

gives a total flow of value 3q + r on 2q + r = k paths.

If the 3SAT instance is not satisfiable, then in each of the q subgraphs we
can use 0, 1, 2 or 3 and more paths to send flow of value at most 0, 2, 2 or 3,
respectively. With the aim to maximize the flow on a limited number of paths
we will not use two or more than three paths in any subgraph. Consider a
solution of MkSF in G. Let a1 be the number of subgraphs with a flow of
value 2 on one path, a2 be the number of subgraphs with a flow of value 3 on
three paths and a3 be the number of s, t–edges carrying one unit of flow. The
following integer program gives the maximum value of a k–splittable s, t–flow:

max 2a1 + 3a2 + a3

s.t. a1 + a2 ≤ q (1)

a3 ≤ r (2)

a1 + 3a2 + a3 ≤ 2q + r (3)

a1, a2, a3 ∈ N (4)

The following setting gives a feasible solution a1 = (q + 1)/2, a2 = (q − 1)/2,
a3 = r with the value 2a1 + 3a2 + a3 = (5q − 1)/2 + r. Since q is odd, the
optimal value is bounded by the same value. To show this, we take a linear
combination of the inequalities (1), (2), (3) with coefficients 3/2, 1/2 and 1/2,
respectively, and get:

6

2a1 + 3a2 + a3 ≤ 5q/2 + r ⇒ 2a1 + 3a2 + a3 ≤ (5q − 1)/2 + r.

Thus, MkSF gets the optimal value (5q − 1)/2 + r if the instance is unsatis-
fiable. We cannot approximate better than with a guarantee of 5/6 because:

5q−1
2

+ r

3q + r
=

5

6
−

1 − r
3

6q + 2r
≤

5

6
∀q ∈ N, r ∈ {0, 1, 2, 3}.

2

Remark 3 By a more detailed consideration of the last estimation in the proof

of Corollary 2 we get that MkSF with constant k ≥ 2 cannot be approximated

better than with

5
6
− 1

6(2l−1)
for k = 4l − 2, l ∈ N≥1

5
6
− 1

6(3l−1)
for k = 4l − 1, l ∈ N≥1

5
6
− 1

6(6l−1)
for k = 4l, l ∈ N≥1

5
6

for k = 4l + 1, l ∈ N≥1

unless P = NP .

3 Number of Paths Depending on Network Parameters

We consider two kinds of problems. In the first one, we assume that the number
of paths k is a function k(m,n) on the number of edges m and nodes n. That
means, that for a given instance an algorithm knows k. In the second one,
we allow that an algorithm can first choose k in a certain interval and then
computes a maximal splittable s, t–flow for this chosen k. The interval also
depends on n and m.

Note, that in both cases k and the interval are not seen as a part of the input,
but as a property of the problem. Thus, for different functions k(m,n) or
intervals we consider different problems. For the first type of problems some
functions cause polynomial solvability. We write k(m) to emphasize that k
depends on m only.

3.1 Polynomially Solvable Cases

Theorem 4 MkSF with k(m,n) ≥ m − n + 2 is polynomially solvable.

PROOF. We show that any maximum s, t–flow f in G can be decomposed
into at most m − n + 2 paths and cycles in polynomial time. Consider an

7

orientation of the edges of G such that f is still a feasible flow and add an
edge (t, s) of infinite capacity to obtain a directed graph G′. Setting the flow
on the edge (t, s) to the value of f results in a circulation f ′ in G′. Each
decomposition of f ′ in cycles easily yields a decomposition of f in paths and
cycles with the same number of elements.

We compute a decomposition of f ′ with the standard decomposition algo-
rithm of Fulkerson: Start with a flow carrying edge and go through G′ only
along edges with a positive amount of flow until a cycle is closed. Assign the
maximal possible flow value to this cycle with respect to f ′ and reduce f ′

by the cycle flow. Repeat the procedure until f ′ = 0. Since in any iteration
the flow on at least one edge is set to 0 the incidence vectors of these cycles
are linearly independent. Furthermore, the cycle space of G′ has a dimension
of m + 1 − n + 1 = m − n + 2 such that the computed decomposition of f ′

contains at most m − n + 2 cycles. 2

Corollary 5 MkSF with k(m) = m − 1 is polynomially solvable.

PROOF. If n ≥ 3, this is implied by the previous lemma. If n = 2, the graph
consists of two nodes and m parallel edges. Sending flow along the m−1 edges
with highest capacity gives an optimal solution to MkSF which can obviously
be found in polynomial time. 2

3.1.1 Simple Graphs

Theorem 6 On simple graphs, MkSF can be solved in polynomial time for

k(m) = m − c, where c ∈ N≥2 is an arbitrary constant.

PROOF. Theorem 4 shows that MkSF is polynomially solvable in the case
that m − c ≥ m − n + 2 (resp. n ≥ c + 2). Therefore, for all graphs fulfilling
n ≥ c + 2 the assertion holds. Assume to work on a graph with n < c + 2.
Consider an instance of MkSF. If we specify which paths are used in a solu-
tion (P1, ..., Pk), then it takes polynomial time to assign optimal flow values
to the paths by solving the linear program:

max f1 + f2 + ... + fk

s.t.
∑

i∈{1,...,k}:e∈Pi

fi ≤ ue ∀e ∈ E

fi ≥ 0 ∀i ∈ {1, ..., k} .

Having a constantly bounded number of nodes clearly also the number of
edges and the number of paths are bounded by a constant and with them the

8

number of possibilities to choose m− c paths. Requiring more precise bounds
later, we evaluate the number of possibilities to choose m−c paths in a simple
graph G with less than c + 2 nodes more in detail. Such a bound effects that
the problem MkSF can be solved in polynomial time.

Paths can contain nodes more than once. Obviously, there is always a so-
lution of MkSF on simple paths without node repetition. So we can re-
strict our considerations to simple paths. We want to calculate the number
of different simple s, t–paths in a simple graph with at most c + 1 nodes.
This number is bounded from above by the number of simple s, t–paths in
a complete graph with c + 1 nodes. It holds that a complete graph has
(c − 1)(c − 2)...(c − i + 1) = (c − 1)!/(c − i)! different simple s, t–paths using
i edges (1 for i = 1) and thus in total not more than c! different paths:

c
∑

i=1

(c − 1)!/(c − i)! = (c − 1)!
c−1
∑

i=0

1/i! ≤ c!.

A simple undirected graph with at most c + 1 nodes fulfills m ≤ c(c + 1)/2.

Thus, m − c ≤ c(c − 1)/2. There are no more than
(

c!
m−c

)

≤
(

c!
c(c−1)/2

)

possi-
bilities to choose m − c simple s, t–paths in G. The inequality holds because
m − c ≤ c(c − 1)/2 ≤ c!/2 for all c ∈ N and the binomial coefficients in-
crease monotonically in that range. Thus, the number of simple paths in G is
bounded by a constant, which implies that MkSF can be solved in polynomial
time for k = m − c.

The argument also holds for directed graphs with little modifications concern-
ing the bounds. Our arguments consider exactly m − c different paths. If an
optimal solution of MkSF contains less than m − c different paths we would
choose m − c paths and the solution of the linear program would assign the
value 0 to some fi. 2

Theorem 7 On simple graphs, MkSF can be solved in polynomial time for

all k(m,n) ≥ m − (log p(m,n))ǫ, where p is a polynomial in m and n and

ǫ ∈ (0, 1/3).

PROOF. We refer to Theorem 6 and describe how to bound the possibilities
to choose k = m − c simple s, t–paths. Notice, that c is not a constant here.
For this number it holds:

(

c!
c(c−1)

2

)

≤ c!c(c−1)/2 ≤ c!c
2

≤ (cc)c2 = ((2log c)c)
c2

= 2log c c3 ∀c ∈ N.

If 2log c c3 could be bounded from above by a polynomial p in m and n, then we
only had to check a polynomial number of path combinations to solve MkSF.

9

Thus, MkSF would be polynomially solvable. Here we can, in fact, do this.
Fix a polynomial p(m,n) and an ǫ ∈ (0, 1/3). Let be c ≤ (log p(m,n))ǫ and
define δ := 1/ǫ − 3 > 0. We see the following:

c ≤ (log p(m,n))1/(3+δ)

⇒ c3+δ ≤ log p(m,n)

⇒ cδc3 ≤ log p(m,n)

There exists a cδ such that for all c > cδ we have log c ≤ cδ. Note that cδ is a
constant and so Theorem 6 gives polynomial solvability for these k ≥ m− cδ.
For c > cδ it follows:

(log c) c3 ≤ log p(m,n)

⇒ 2(log c) c3 ≤ p(m,n)

Thus, MkSF, k ≥ m − (log p(m,n))ǫ, is polynomially solvable when p is a
polynomial in m and n and ǫ ∈ (0, 1/3). 2

3.2 NP–Hardness Proofs

We show that the problem MkSF is NP–hard for all functions k(m,n) with
2 ≤ k(m,n) ≤ m − n + 1. This is done in two steps. We prove the NP–hardness
for MkSF where k can be chosen in the range 2 ≤ k ≤ m−mǫ by a reduction
from 3SAT and then for mǫ ≤ k ≤ m−n+1 by a reduction from SubsetSum.
In both cases ǫ ∈ (0, 1).

Theorem 8 Let ǫ ∈ (0, 1). The problem MkSF allowing an algorithm to

choose k in the range 2 ≤ k ≤ m − mǫ is strongly NP–hard and cannot be

approximated with a guarantee better than (m + 3)/(m + 4), unless P = NP .

PROOF. Given ǫ ∈ (0, 1) we reduce 3SAT to MkSF where k can be chosen
in the range 2 ≤ k ≤ m − mǫ. We extend the instance constructed in Theo-
rem 1. For a 3SAT–instance let m0 be the number of edges of this graph G0

and set m := ⌈m
1/ǫ
0 ⌉. We add m−m0 edges from s to t with capacity 1

2
to G0

and obtain a graph G with m edges. Note, that the size of G is polynomial in
the 3SAT–instance because this holds for m0 and thus also for m and G.

Let k be in the range 2 ≤ k ≤ m − mǫ the number of paths chosen by the
algorithm. For the number m − m0 of additional s, t–edges we have:

2 ≤ k ≤ m − mǫ ≤ m − (m
1/ǫ
0)ǫ = m − m0

10

Because of Theorem 1 the considered 3SAT instance is satisfiable if and only
if a k–splittable flow in G has a maximum value of 3+ 1

2
(k−2) = 1

2
(k+4) and

is not satisfiable if and only if the maximum value is 3 + 1
2
(k − 3) = 1

2
(k + 3).

So this MkSF–problem is strongly NP–hard (because of the NP–hardness of
3SAT and the constantly bounded capacities in the reduction) and cannot be
approximated with performance guarantee better than

k + 3

k + 4
≤

m − mǫ + 3

m − mǫ + 4
≤

m + 3

m + 4
,

unless P = NP . 2

Theorem 9 MkSF with k(m) = m − 2 is NP–hard.

PROOF. We reduce Subset Sum to MkSF with k = m − 2. Consider
a Subset Sum decision problem: Given q positive integers u1, ..., uq and a
number M , is there a subset S ⊆ {1, ..., q} such that

∑

i∈S ui = M? This
problem is known to be NP–complete. Figure 5 shows a transformation of
this problem to a k–splittable flow problem on a graph with three nodes s, v, t.
The nodes s and v are connected by q parallel edges with capacities u1, ..., uq.
The nodes v and t are connected by two parallel edges with capacities M and
U − M , where U = u1 + ... + uq.

Solve MkSF with k = m − 2 = q for this special graph. The optimal value
cannot exceed U . If a flow of value U is realized, then all q + 2 edges have to
be filled up to their capacity. If we compose such a flow using q paths, then
every path has to consist of one s, v–edge and has to continue either via the
edge with capacity M or with capacity (U − M) and has to carry a flow of
value ui, one path for each ui. This means that the flow of value M on the
edge with capacity M is formed by path flows with value ui for some values
i. Thus, the number M is the sum of some ui and the Subset Sum instance
is satisfiable. On the other hand, if Subset Sum is satisfiable, then MkSF,
k = m−2, results in a flow of value U . For all i ∈ S we send a flow of value ui

along the s, v–edge with capacity ui and continue on the edge with capacity
M . For all i /∈ S we send a flow of value ui along the s, v–edge with capacity
ui and continue on the edge with capacity U − M .

Thus, Subset Sum can be reduced polynomially to the MkSF problem with
k = m − 2. 2

Theorem 10 Let ǫ ∈ (0, 1). The problem MkSF allowing an algorithm to

choose k in the range mǫ ≤ k ≤ m− n + 1 is NP–hard for every given n > 2.

11

PROOF. Again, we use a reduction from Subset Sum. Fix ǫ ∈ (0, 1). We
transform an instance of Subset Sum to an instance of MkSF where k can
be chosen in the range mǫ ≤ k ≤ m − n + 1.

Given a Subset Sum instance construct a graph G′ with m′ = q + 2 edges as
in the proof of Theorem 9 (see Fig. 5) and add n− 3 nodes w4, w5, ..., wn and
n− 3 edges {s, wi}, i ∈ {4, ..., n}. Note, that these additional nodes and edges
do not affect the argumentation given in the proof of Theorem 9, because
they cannot appear in any s, t–path. To complete the construction add ⌈q1/ǫ⌉
s, t–edges each with capacity 1/2 and get a graph G with m edges (see Fig.
6).

The hardness of SubsetSum gives insight for MkSF here, if k ≥ q and
k ≤ q + ⌈q1/ǫ⌉. It holds:

k ≥ mǫ ≥ (m′ + ⌈q
1

ǫ ⌉)ǫ ≥ (q
1

ǫ)ǫ = q

k ≤ m − n + 1 = (m′ + n − 3 + ⌈q
1

ǫ ⌉) − n + 1 = q + ⌈q
1

ǫ ⌉

Solve MkSF in G. We show that Subset Sum is satisfiable if and only if
MkSF has value U + 1/2(k − q).

If Subset Sum is satisfiable, then we get a flow of value U using q paths in
the smaller graph G′ and additionally a value 1/2(k − q) on the remaining
k−q paths each formed by an s, t–edge with capacity 1/2. On the other hand,
assume that MkSF has the optimal value U +1/2(k−q) on k paths. According
to the capacities of edges incident with s, k paths carry at most a flow of value
u1, u2, ..., uq (first q paths) and 1/2, ..., 1/2 (last k − q paths) regarding that
ui ∈ N≥1. Thus, a k–splittable flow with value u1 + u2 + ... + uq + 1/2(k − q)
is only possible if all q edges from s to v carry a flow of their capacity and if
additionally k − q edges from s to t transport each 1/2. It follows that these
k − q edges from s to t form k − q paths from s to t and exactly q paths are
left to transport U along s, v, t–paths. We have seen before that this implies
a satisfiable Subset Sum instance. 2

The next corollary follows essentially from Theorem 8 and Theorem 10 (choose
ǫ = 1/3).

Corollary 11 MkSF with 2 ≤ k(m,n) ≤ m − n + 1 is NP–hard for n > 2.

Remark 12 Corollary 5 and Theorem 9 imply that MkSF is NP–hard for

2 ≤ k(m) ≤ m − 2 and polynomially solvable for other k.

12

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Theory,

Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] A. Bagchi, A. Chaudhary, P. Kolman, and C. Scheideler. Algorithms for
faulttolerant routing in circuit-switched networks. In Proceedings of the 14th

Annual ACM Symposium on Parallel Algorithms and Architectures, pages 265–
274. ACM Press, 2002.

[3] G. Baier. Flows with Path Restrictions. PhD thesis, TU Berlin, 2003.

[4] G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow problem.
Algorithmica, 42:231–248, 2005.

[5] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[6] J. M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD
thesis, M.I.T., 1996.

[7] R. Koch, M. Skutella, and I. Spenke. Approximation and complexity of k-
splittable flows. In T. Erlebach and P. Persiano, editors, WAOA, Lecture Notes
in Computer Science, pages 244–257. Springer, 2005.

[8] P. Krysta, P. Sanders, and B. Vöcking. Scheduling and traffic allocation for tasks
with bounded splittability. In Proceedings of the 28th International Symposium

on Mathematical Foundations of Computer Science, volume 2747, pages 500–510.
Springer, Berlin, 2003.

[9] M. Martens and M. Skutella. Flows on few paths: Algorithms and lower bounds.
In S. Albers and T. Radzik, editors, Algorithms — ESA ’04, volume 3221 of
Lecture Notes in Computer Science, pages 520–531. Springer, Berlin, 2004.

13

