
Habib Mostafaei, Shafi Afridi, Jemal H. Abawajy

SNR: Network-aware geo-distributed stream
analytics

Open Access via institutional repository of Technische Universität Berlin

Document type
Conference paper | Accepted version
(i. e. final author-created version that incorporates referee comments and is the version accepted for
publication; also known as: Author’s Accepted Manuscript (AAM), Final Draft, Postprint)

This version is available at
https://doi.org/10.14279/depositonce-12279

Citation details
Mostafaei, H., Afridi, S., Abawajy, J. H. (2021, May). SNR: Network-aware Geo-Distributed Stream Analytics.
2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
https://doi.org/10.1109/ccgrid51090.2021.00100.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

Terms of use
This work is protected by copyright and/or related rights. You are free to use this work in any way permitted by
the copyright and related rights legislation that applies to your usage. For other uses, you must obtain
permission from the rights-holder(s).

https://doi.org/10.14279/depositonce-12279
https://doi.org/10.1109/ccgrid51090.2021.00100

SNR: Network-aware Geo-Distributed Stream
Analytics

Habib Mostafaei
TU Berlin

Shafi Afridi
TU Berlin

Jemal H. Abawajy
Deakin University

Abstract—Emerging applications such as those running on the
Internet of Things (IoT) devices produce constant data streams
that need to be processed in real-time. Distributed stream pro-
cessing systems (DSPs), with geographically distributed cluster
networks interconnected via wide area network (WAN) links,
have recently gained interest in handling these applications. How-
ever, these applications have stringent requirements such as low-
latency and high bandwidth that must be guaranteed to ensure
the quality of service (QoS). These application requirements
raise fundamental DSPs resource management and scheduling
challenge. In this paper, we formulate the problem of placement
of worker nodes on a geo-distributed DSPs cluster network as a
multi-criteria decision-making problem and propose an additive
weighting-based approach to solve it. The proposed solution finds
the trade-off among different network parameters and allows
executing the tasks according to the desired performance metrics.
We evaluated the proposed approach using the Yahoo! streaming
benchmark on a testbed and compare it against mechanisms
deployed in Apache Spark, Apache Storm, and Apache Flink.
The results of the evaluation show that our approach improves
the performance of Spark up to 2.2x-7.2x, Storm up to 1.2x-3.4x,
and Flink up to 1.4x-3.3x compared to other approaches, which
makes our approach useful for use in practical environments.

Index Terms—IoT, worker node placement, Geo-distributed
analytics, Stream processing, Simple Additive Weighting

I. INTRODUCTION

Emerging applications running on the Internet of Things
(IoT) devices, social networks, or user-clicks on websites
typically generate a massive amount of continuous stream
of raw data from distributed geographical locations. Orga-
nizations need to analyze and mine these data to obtain
insights and valuable intelligence such as trend detection in
social networks in real-time. These applications normally have
stringent requirements ranging from low-latency to high band-
width. Therefore, processing this massive amount of streaming
data in a single location within a limited timeframe is not
practically possible. As a result, distributed stream process-
ing systems (DSPs) composed of geographically distributed
(geo-distributed) networks that communicate via WAN have
recently become a popular choice to run these applications
[1]. The main idea of geo-distributed stream data processing
systems is to push the computations to the edge of the network
close to the sources of the streaming data. This approach
provides several benefits that include privacy preservation and
cost-saving due to the minimization of data transfer overhead.

Although geo-distributed cluster networks have the capacity
to handle stream data processing, stringent QoS requirements
of the stream data processing applications raise fundamental

resource management and scheduling challenge. Currently,
various systems such as Apache Spark [2], Apache Storm [3],
and Apache Flink [4] are used for processing streaming data.
However, these systems are designed to process the queries
at a single location on a cluster rather than on geo-distributed
cluster networks. There are several attempts to address the
stream data processing in geo-distributed cluster networks [1],
[5], [6]. The techniques in such solutions are mostly applied
for batch scenarios in which the input data is available prior to
query execution. Although the approaches proposed in existing
works [7]–[10] do not assume that the data size and the rate
are not known in advance, these solutions focus on different
aspects such as links delay, bandwidth, and cost of running
a task in different datacenters. For example, the work in [11]
claims that the link cost should have higher priority than the
delay and bandwidth in a multi datacenters environment. The
reason for such a claim is due to the amount of data transferred
using high-cost links. Nevertheless, none of these solutions
offer the flexibility in prioritizing various network parameters
in placing the workers on a geo-distributed cluster.

In this paper, we address the placement of worker nodes
on geo-distributed cluster networks. Specifically, we attempt
to answer the following questions: (i) How can we prioritize
network metrics to efficiently run a task on geo-distributed
cluster networks?; and (ii) What is the trade-off among differ-
ent network parameters in placing worker nodes in a multi-
cloud environment? To answer the above questions, we first
formulate the problem of placement of worker nodes on geo-
distributed cluster network as a multi-criteria decision-making
problem and use the Simple Additive Weighting (SAW) [12]
method to solve it. We call the proposed approach a SAW-
based Node Ranking (SNR) algorithm. The main goal of SNR
is to find the best placement of the worker nodes on geo-
distributed cluster networks by considering multiple network
criteria. We check the different impacts of SNR on the placing
nodes, and the obtained results show that the internode delays
of our algorithm on average are 2.4x less than the current
default algorithm. To perform the real-world experiments, we
use the Yahoo! streaming benchmark [13] on a cluster of 11
VMs running Apache Spark, Apache Storm, and Apache Flink.
Our results show the significant performance improvement of
SNR compared to the default placement approach.

The contribution of our work can be summarized as follows:
• We develop SNR (worker node placement on geo-

distributed cluster network) that considers the most sig-

nificant network relevant parameters when placing the
workers in a geo-distributed cluster network;

• We study the trade-off among the relevant parameters of
worker selection;

• We perform real-world experiments to evaluate the per-
formance of SNR on a set of custom and all networks
taken from TopologyZoo [14]. The obtained results show
that SNR improves the execution latency of Spark up to
2.2x-7.2x, Storm up to 1.2x-3.4x, and Flink up to 1.4x-
3.3x compared to the default placement approach.

The rest of the paper is organized as follows. Section II
states the system model and problem formulation. The detail
of the SNR algorithm comes in Section III. Section IV details
the evaluation of the SNR and reports the obtained results. The
related works come in Section V and Section VI concludes the
paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a scenario in which the compute slots of the
cluster are geographically distributed around the globe. There
is a global manager that is in charge of running the tasks across
different locations depending on the enterprise requirements.
The compute slots are connected through WAN links that
have different features such as bandwidth, delay, and cost.
For example, the uplink and downlink bandwidths of a link
can be different because different applications share the same
links [5]. The global manager can query the network to obtain
the information of the underlying infrastructure. Fig. 1 shows
an example scenario with 5 datacenters (DCs). Each datacenter
has its own compute slots, and the input data comes as a
stream from different resources depending on the application
scenarios. The data should be processed close to the source
for several reasons such as saving the bandwidth and cost
or privacy of data. The global manager has the view of the
available resources and decides where should a task runs.

DC1

DC4

DC3

DC2

DC5

Global manager

Fig. 1. A geo-distributed stream-processing system spanning over 5 datacen-
ters (DCs).

B. Problem Statement

The main objective is to minimize the execution latency
and cost of streaming tasks while obeying the bandwidth con-
straints in placing the workers of a cluster in a geo-distributed
environment. The streaming tasks run for an infinite time. We

consider the network relevant parameters such as bandwidth,
delay, and cost when placing the tasks for execution.

We consider a network topology of G = (V,E) in which
V is the set of worker nodes, and E is the set of edges (links)
connecting the worker nodes. Each worker node1 has a set
of available task slots to execute tasks. We assume that the
workers already exist and ready for task execution. Each link
in G has three different parameters, namely, bandwidth, delay,
and cost. The main goal is to enable the users to select a set
of worker nodes in the network according to the given priority
to the network-related parameters2.
Delay. The internode delays in a geo-distributed cluster are
different from those in a single cluster. The delay can vary
from 10s to 100s of milliseconds depending on the loca-
tions of the compute slots [15]. Therefore, link delay plays
a determinant role in task execution, especially for delay-
sensitive applications. For such kinds of applications, every
millisecond of latency can have a huge economical impact
on enterprises. For example, Akamai in 2017 reported that
every 100 milliseconds of delay have a determinant impact in
dropping the customers of online businesses [16]. Therefore,
one of our goals is to select a subset of worker nodes in
such a way that the sum of internode delays is minimized.
Mathematically,

minimize
n∑

x=1

T y
x (1)

subject to T y
x > 0, ∀(x, y) ∈ G′ and x 6= y,

where T y
x is the link delay in milliseconds (ms) crossing from

node x to y, and n is the number of chosen worker nodes from
graph G. We assume that G′ is the sub-graph of the chosen
nodes in graph G.
Cost. We model the cost as follows. Let Cy

x be the data
transmission cost from worker x to y through the link among
them. The total transmission cost can be computed as follows.

minimize
n∑

x=1

Cy
x (2)

subject to Cy
x > 0, ∀(x, y) ∈ G′ and x 6= y.

We consider the cost as the cost of steering 1GB of data
traffic over a link in USD ($). The goal is to minimize the
sum of the cost of G′.
Bandwidth. We model the network traffic as follows. Let By

x

be the available bandwidth of a link in Mbps from worker x
and y. The total generated traffic on link (ex, ey) ∈ E′ can be
computed as follows. ∑

By
x, x 6= y, (3)

We assume that multiple tasks can be executed on the available
task slots on a worker. Therefore, each task generates data

1We assume the nodes in the graph are placed in different physical locations.
2We use the available task slots on a VM as the same meaning of the

worker nodes to avoid any confusion.

traffic and consumes a portion of the available bandwidth
between nodes x and y. The goal is to maximize the minimum
available bandwidth among the selected nodes in G′. Consider
a scenario in which we have several worker nodes distributed
on a geo-distributed network. In this case, there are multiple
hops between two nodes in the graph with diverse parameters.
Therefore, the link with the lowest bandwidth determines the
amount of traffic that can be sent through that path.

III. SNR ALGORITHM

In this section, we state how SNR selects the task slots
by considering multiple criteria. We also explain a running
example of SNR in placing worker nodes in the cluster
network.

A. SNR algorithm

WE use different criteria in the node selection step of
the SNR algorithm. This problem is known as the multi-
objective problem, and we use the Simple Additive Weighting
(SAW) method to transform the problem into a single objective
one [17]. The SAW method is a simple and popular technique
to make a decision on a set of attributes for each alternative.
We explain the detail of SNR as follows.

Algorithm 1: The SNR algorithm
input : network graph G, links bandwidth, delay, cost , number

of worker nodes , priority of each parameter
output: a set of nodes W

1 W = ∅ /* The set of worker nodes */
2 for each x ∈ G do
3 N=G.getNeighbors(x)
4 Lsum = 0, BWsum = 0, Csum = 0
5 for y ∈ N do
6 BWsum += By

x

7 Lsum += T y
x

8 Csum += Cy
x

9 end
10 normalize the parameters of each node using Eq. 4
11 end
12 x = firstNode(G)
13 W =W

⋃
x

14 while |W | < t do
/* We look for the neighbors of x to add
the next node to W */

15 for y ∈ x.Neighbors do
16 find maximum value of each parameter
17 end
18 for y ∈ N do
19 apply Eq. 6
20 end
21 find rank using Eq. 5
22 β=get the neighbor with the highest rank
23 W =W

⋃
β

24 x = β
25 end

Let E be a set of links and m be the set of decision criteria
for each link in G. Here, we consider the available bandwidth,
delay, and cost as the decision criteria, i.e., |m| = 3. We prefer
the highest value for the available bandwidth. While for the
delay, and cost the lowest values are better. Let assume that
wk is the weight of importance for each criterion.

Algorithm 1 presents the pseudo-code of the SNR algorithm.
In this algorithm, we first normalize the network-relevant
parameters of each connected link to a node in the graph.
Then, we compute the rank of each node to select a node in
each step of the algorithm. The algorithm is general-purpose
and can be used to select a subset of task slots available on
the worker nodes.

First node selection. The SNR algorithm starts by selecting
the first node on a graph. Therefore, we first normalize the
criteria based on the network-related parameters of neighbors
of each node using Eq. 4. To do so, we take the average of
the available bandwidth of all connected links to a node and
divide it over the maximum available bandwidth. Similar to
the bandwidth, SNR computes the average link delays and
costs. Then, it divides the averaged values into their minimum
values. This procedure executes once when SNR selects the
first node. We normalize the values of attributes of each node
x in graph G as follows.

ψx =

n∑
e=1

exy

n
max(exy)

, bandwidth

min(exy)
n∑

e=1
exy

n

, delay and cost,
(4)

where n is the number of neighbors of a node and exy is the
edge from node x to y. This equation returns the normalized
value ψx for the entire nodes of the graph. Now, we assign
the weight for each criterion of a link connected to node x
according to the user needs. Mathematically,

Rnode =
∑

ψxwk, for x = 1, . . . , n and k = 1, 2, 3,
(5)

where Rnode is the rank of each node in the graph G, n is the
number of neighbors of node x, and wk is the priority weight
of each attribute, i.e., bandwidth, latency, and cost. Each wk

has a value in the range (0,1), and the sum of them is equal to
1. We select the node with the highest rank as the first node.
We colocate the master and the first worker node of the cluster
on the first node. We use the master node to submit the query
to a set of workers/clients. Algorithm 2 shows the pseudo-
code of the first node selection of the SNR approach. Node
selection. After selecting the first node, we use the neighbor
nodes of this node to add the next node to our subset of worker
nodes. To do so, we normalize the available bandwidth, delay,
and cost of the links that are connected to the current node
using Eq. 6. Then, we apply Eq. 5 by replacing the ψx with
πx to rank the neighbors of the current node. The neighbor
with the highest rank will be selected as the next node, and
this procedure continues until the desired number of worker

Algorithm 2: Find the first node
input : Network graph G , bandwidth, delay, and cost of each

link
output: A node with highest rank (xbest)

1 Function firstNode(G):
2 tmp=∅
3 for each x ∈ G do
4 for y ∈ N do
5 BWmax = maxBandwidth(x,y)
6 Lmin = minLatency(x,y)
7 Cmin = minCost(x,y)
8 end
9 for y ∈ N do

10 EBW = w1 ·
By

x
BWmax

11 EL = w2 · Lmin

T
y
x

12 EC = w3 · Cmin

C
y
x

13 end
14 find rank using Eq. 5
15 tmp= tmp

⋃
x

16 end
17 xbest = ∅
18 Rtmp = 0
19 for x ∈ tmp do
20 if Rx > Rtmp then
21 Rtmp = Rx

22 xbest = x
23 end
24 end
25 return xbest
26 End Function

nodes has been chosen.

πx =

n∑
e=1

exy

max(exy)
, bandwidth

min(exy)
n∑

e=1
exy

, delay and cost.
(6)

Note thta we remove the selected node from the available
nodes list while using Eq. 5. This mechanism speeds up the
node selection step of the SNR algorithm due to the reduction
in the search space.
SNR orchestrator. We develop an orchestrator to integrate
SNR with the current DSPs, i.e., Storm, Spark, and Flink.
It executes the given streaming tasks on the chosen worker
nodes. To do so, it gets an input file including the directory of
each DSP on all worker nodes, the number of worker nodes,
and the node selection mechanism. The orchestrator uses the
daemons provided by each DSP to start either the master or the
worker nodes. Then, it submits the received streaming tasks
to the chosen worker nodes for execution.

B. Running Example for SNR

In this section, we explain our SNR method in selecting the
worker nodes by using an example. Fig. 2 depicts a network
graph of 6 nodes. Each edge in this graph has three network-
related parameters, namely, the link bandwidth in Mbps, the
link latency in milliseconds, and the link cost as the cost of
transferring 1GB of data over that link in USD($). We consider

the Round-Trip Time (RTT) delay as the link delay in this
graph.

1

6

3

2 4

5

[10.33, 10, 0.45]

[8.90, 10, 0.47]
[12.33, 8, 0.68]

[15.91, 8, 0.25]

[14.89, 8, 0.29]

[9.38, 9, 0.38][1
3.

25
, 9

, 0
.3

1]

[10.43, 10, 0.42]

[8
.3

8,
 9

, 0
 .1

7]

[Latency (ms), BW (Mbps), Cost ($ per GB)]

31

Fig. 2. An example graph with six nodes.

First node selection. To select the first node from the graph
in SNR, we compute the normalized value of all nodes in
the graph. In this example, we have 6 nodes, and Table I
indicates the normalized value for the bandwidth, latency, and
cost of each edge connected to that node. We compute these
values using the same parameters on each edge in Eq. 4. SNR
computes the weight of each edge in the graph using the
normalized values. We apply Eq. 5 and select the maximum
value as the highest rank. SNR selects the corresponding node
to that highest rank link as the first node. According to the
example graph in Fig. 2, the SNR selects node number 3 as
the first node.

TABLE I
THE NORMALIZED VALUES FOR EACH NODE AND THEIR CORRESPONDING

RANK IN FIRST NODE SELECTION STEP OF SNR.

Node Latency BW Cost Rx

Node 1 0.90 1.00 0.68 2.57

Node 2 1.00 0.60 0.88 2.48

Node 3 1.00 0.88 0.87 2.75

Node 4 0.90 0.69 0.98 2.57

Node 5 0.97 0.68 1.00 2.65

Node 6 0.97 0.75 0.83 2.55

Node selection. We assume that our goal is to select three
nodes for the cluster and all three networking parameters have
the same priority for the placement. After choosing the first
node, we apply a similar mechanism for the remaining nodes
in the graph until we reach the desired number of nodes for the
cluster. According to our example, SNR selects node number
3 as the first node.

Table II shows the rank of each node in the example graph.
Now, we check the neighbors of this node and their rank to
choose the next node. Among the neighbors of node number
3, node number 4 has the highest rank value, and we add
this node as the next node to our list of selected nodes. We
need to pick another node according to our needs, and we
check the neighbors of node number 4 to choose the next node
because this is the last selected node in the cluster. Among the
neighbors of this node, SNR picks node number 5. Therefore,
the final selected nodes are 3, 4, and 5.
Tradeoff among the parameters. We now show the tradeoff
among different parameters. Table III shows the impact of

TABLE II
THE NORMALIZED VALUES FOR EACH NODE WITH THEIR NEIGHBORS

RANK IN SNR.

Node Normalized values
BW Latency Cost Rx To

Node 1
1.00 1.00 0.81 2.81 Node 2
0.89 0.83 1.00 2.72 Node 3
0.89 0.89 0.86 2.64 Node 6

Node 2

0.90 0.67 1.00 2.57 Node 1
1.00 0.85 0.74 2.59 Node 3
0.80 0.72 0.46 1.98 Node 4
1.00 1.00 0.66 2.66 Node 6

Node 3

0.80 0.53 0.68 2.01 Node 1
1.00 0.80 0.40 2.21 Node 2
0.90 1.00 1.00 2.90 Node 4
1.00 0.81 0.38 2.19 Node 5

Node 4
0.89 0.68 0.25 1.82 Node 2
1.00 1.00 1.00 3.00 Node 3
1.00 0.89 0.45 2.34 Node 5

Node 5 1.00 1.00 1.00 3.00 Node 3
0.89 0.52 0.59 1.99 Node 4

Node 6 0.80 0.60 1.00 2.40 Node 1
1.00 1.00 0.62 2.62 Node 2

TABLE III
THE TRADE-OFF AMONG THE METRICS IN EXAMPLE GRAPH OF SNR.

Prioritized metric Nodes BW Latency Cost

Bandwidth {3,2,6} 10,10,10 10.43,8.9,19.33 0.42,.47,0.89

Latency {5,4,3} 8,10,9 9.38,10.33,8.38 0.38,0.45,0.17

Cost {1,3,4} 8,9,8 15.91,8.38,24.29 0.25,0.17,0.42

giving a higher priority to the bandwidth, delay, and cost. The
nodes column in this table shows the selected nodes by SNR
for the corresponding prioritized metric. When we give the
highest priority to the bandwidth, SNR picks the nodes with
the highest available bandwidth. For example, by prioritizing
the bandwidth, SNR selects nodes 3, 2, and 6. There are 3
links among these nodes, and thus, we have three values for
each row in Table III that shows the chosen parameter value
for that link. While for the latency and cost, SNR selects the
nodes with the lowest latency and cost. The corresponding
values for each prioritized parameter are highlighted in red in
Table III. The results show that the priority of each network
parameter dictates the selection of the nodes. The obtained
results confirm that SNR selects the worker nodes based on
the applications’ demand.

IV. EVALUATIONS

In this section, we first study the tradeoff among different
network-related parameters of the worker node placement by
assigning priorities to bandwidth, latency, and cost of WAN
links. Then, we measure the performance of the SNR algo-
rithm on three custom and all topologies of TopologyZoo [14].
The goal is to assess the impact of placement on various
network-related performance metrics such as average delay
among the nodes and the number of hops. Finally, we measure
the impact of placement on the execution latency of streaming
queries using Yahoo! streaming benchmark [18].

TABLE IV
CUSTOM GRAPH PROPERTIES.

Graph Nodes Links BW [Mbps] Delay [ms] Cost [$ per GB]

Small 20 35 [7, 14] [1, 25] [0.02, 0.25]
Medium 30 65 [7, 14] [26, 75] [0.02, 0.25]
Large 50 140 [7, 14] [76, 125] [0.02, 0.25]

We use the real networks’ delay such as the ones in [15],
[19], cost [20]–[22], and bandwidth [23] among the worker
nodes and set the locations of worker nodes using the real-
world datacenter locations [24]–[26]. We create three custom
random graphs, namely small, medium, and large, to simulate
diverse networks in terms of size and other parameters. Ta-
ble IV presents the corresponding network parameters with
their values in each graph. The link delay information for
TopologyZoo networks is obtained using the coordination
information.

A. Illustrating Tradeoff

We check the tradeoff among different network-relevant
parameters by assigning different priorities among them for
scenarios with 8 worker nodes. In this experiment, we first give
the highest priority to the available bandwidth while keeping
the priority among the delay and cost fixed and the same in
Eq. 5. Then, we do the same measurements for the delay
and cost in all three custom topologies. The values for the
bandwidth are in [Mbps], latency in [ms], and cost [$ per
GB].

TABLE V
THE TRADE-OFF AMONG THE METRICS IN SMALL TOPOLOGY.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 9.4 34.29 17.12

Latency 7.3 20.55 22.58

Cost 7.3 26.29 15.47

TABLE VI
THE TRADE-OFF AMONG THE METRICS IN MEDIUM TOPOLOGY.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 10.1 107.35 16.44

Latency 7.5 92.18 24.03

Cost 8.3 96.16 11.28

TABLE VII
THE TRADE-OFF AMONG THE METRICS IN LARGE TOPOLOGY.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 8.7 223.89 16.98

Latency 7.0 132.95 11.53

Cost 7.2 155.95 10.4

Tables V, VI, and VII reports the tradeoff among bandwidth,
delay, and cost of running SNR on small, medium, and large

topologies for the links among the chosen nodes. In these ta-
bles, we report the minimum available bandwidth (min(BW))
among the chosen nodes because it will impact the data
transfer rate. We put the average delays (Latency) among the
nodes, while for the cost, we sum the cost (

∑
Cost) of each

among the selected nodes. We highlight the corresponding
values from the output of SNR for each prioritized parameter
in red. The obtained results confirm that SNR can select the
worker nodes according to their priority. For example, it selects
worker nodes with minimum delays among them when link
delay has the highest priority in Tables V, VI, and VII.

B. Topology-aware Results

Custom topology. First, we use the same priority among the
parameters and measure the average link delay among the
chosen worker nodes by the SNR and default algorithms. In
the default approach, each DSP selects the worker nodes in
an ordered fashion starting from node number 1. We run the
SNR and default methods to choose 4 to 8 worker nodes by
assuming that all the worker nodes have the same number
of available task slots to execute the streaming tasks. Fig. 3
shows that by increasing the number of worker nodes in a
cluster, the average delay among them also increases in all
three topologies. The obtained results show that the average
delays in SNR are 1.35x, 1.42x, and 1.61x less than the default
method in small, medium, and large topologies, respectively.

4 5 6 7 8
Workers

5
10
15
20
25

D
el

ay
[m

s]

SNR
Default

(a) Small

4 5 6 7 8
Workers

40
60
80

100
120

D
el

ay
[m

s]

SNR
Default

(b) Medium

4 5 6 7 8
Workers

110
140
170
200
230

D
el

ay
[m

s] SNR
Default

(c) Large

Fig. 3. The average delay among the worker nodes on custom topologies for
different number of workers in a cluster network.

TopologyZoo results. We check the impact of placement in
SNR on all network graphs of TopologyZoo. We use the co-
ordination information of the nodes to compute the link delay
among the nodes for the networks with such data. Fig. 4(a)
shows that the SNR selects the worker nodes on average
1.44x less link delay than the default approach. Furthermore,
Fig. 4(b) presents that the traffic among the nodes should cross
1.41x times more hops in the default approach than SNR.
Using a fewer number of hops decreases the routing overhead
among the nodes, and it also better utilizes the available
capacity of the links.

C. Evaluation on Real Systems

In this section, we report the testbed used to run the Yahoo!
streaming benchmark. The Yahoo! streaming benchmark [13]
is a popular streaming benchmark that has been used in
other research studies related to the performance evaluation
of big data analytics platforms [27]. The Yahoo! streaming
benchmark measures the performance of DSPs, e.g., Apache
Storm, Apache Spark, and Apache Flink. The benchmark
emulates an advertisement analytics pipeline in the DSPs and

4 5 6 7 8
Workers

0

2

4

6

8

D
el

ay
[m

s]

1.44x

SNR
Default

(a)

4 5 6 7 8
Workers

1

2

3

4

H
op

s

1.41x

SNR
Default

(b)

Fig. 4. SNR vs. default. (a) Average delay among the chosen nodes
in TopologyZoo networks (b) Average hops among the chosen nodes in
TopologyZoo networks

measures the performance of the various systems. There is
a number of advertising campaigns in the query in which
each one gets a set of advertisements. The producer of
the benchmark generates events with a timestamp. Then, it
truncates them to a specific digit that determines the campaign
it belongs to. Each event also carries the last update timestamp
along with the event information. The benchmark uses Apache
Kafka [28] for event generation. After processing the event
by each DSP, the benchmark calculates the event latency by
deducting the window timestamp and duration from the last
updated timestamp. The benchmark uses Redis [29] as the
sink of query and it was the bottleneck for the benchmark.
The bottleneck has been removed from the benchmark in [18].
Finally, the obtained latency value along with the number
of processed events are written into appropriate files. More
detailed information on the benchmark could be found in [13].

The testbed has 11 VMs with 16 CPU cores and 8 GB
of RAM running Debian 10. Each DSP has a server-client
architecture, where the master node executes the tasks on
the set of slaves or worker nodes. We assign a VM for the
master node, and 8 VMs for the worker nodes in each system.
Therefore, the cluster executes the query with 8 worker nodes
emulating 8 different locations in the network. Each worker
node has 6 task slots to execute the streaming query and we use
6700MB of memory in each worker to use for task execution.
We dedicate a VM for Kafka and a VM for the Redis database.
We use Kafka and Redis VMs to generate the required input
rate.

We measure the impact of the worker node placement
on three custom topologies on Spark, Storm, and Flink. To
do so, we apply SNR on the network graphs, i.e., small,
medium, and large, to select the place of the worker nodes
and obtain the network-related parameter values. Then, we
use the tc tool to set artificial delays among the worker
nodes given from running SNR. Each node is connected to
other nodes via a link avoiding the routing overhead. We
also apply the recommended settings of the Yahoo! streaming
benchmark to set the configuration parameters in each DSP.
We set the Spark batch interval to 10k milliseconds, and also
the event acknowledgment of Storm to 0. We connect the
Kafka and Redis VMs directly to the worker nodes. This
setting allows us to simulate the scenarios in which the query
execution of the system is performed close to the source.
Furthermore, we use the parallelism parameter of Flink, i.e.,

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s] SNR

Default

(a) Spark

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s] SNR

Default

(b) Storm

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s] SNR

Default

(c) Flink

Fig. 5. The 99-percentile execution latency of Spark, Storm, and Flink on small topology by varying the input data rate.

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s]

SNR
Default

(a) Spark

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s]

SNR
Default

(b) Storm

10k 20k 30k 40k 50k
Load [events/s]

103

104

105

106

La
te

nc
y

[m
s] SNR

Default

(c) Flink

Fig. 6. The 99-percentile execution latency of Spark, Storm, and Flink on medium topology by varying the input data rate.

parallelism.default, to 48 and the settings for Spark
by assigning spark.default.parallelism to 48. We
also use 6 task executors per worker in Storm. Finally, we
assume that latency has the highest priority in selecting worker
nodes and assign w2 = 0.9 in Eq. 5.
Small topology results. In the small topology, the nodes
are close to each other, which results in having low link
delay among them. However, the available bandwidth among
the nodes stays unchanged in a public cloud. We vary the
input rate in the range of 10k to 50k events per second.
Figs. 5(a), 5(b), 5(c) show the 99-percentile execution latency
for each DSP. The general trend in these three figures can be
summarized as follows. By increasing the input rate of each
system, the execution latency of the events also increases.
However, the performance of Storm and Flink are similar,
while Spark has the highest execution latency. Furthermore,
the SNR improves the execution latency of Spark up to 1.5x-
2.9x, Storm up to 1.1x-2.5x, and Flink up to 1.1x-1.45x
compared to the default approach, respectively. The reason for
such improvements is due to a low inter-node latency among
the worker nodes in the DSPs. We also checked 95th- and
90th percentile latency of the task execution for Spark, Storm,
and Flink, and found similar behavior. The obtained results
confirm that Spark, Storm, and Flink can process the events
irrespective of WAN delays when they are in the range of a
few 10s of milliseconds.
Medium topology results. We do the same experiments on
medium topology that has higher inter-node delays compared
to those of small topology. Fig. 6 shows the execution latency
in the medium topology is longer than the small topology
since the internode delays are longer. However, SNR improves
the execution latency of Spark up to 2.2x-7.2x, Storm up
to 1.2x-3.4x, and Flink 1.4x-3.3x compared to the default

approach. One of the main reasons for such results lies in
Transmission Control Protocol (TCP) that suffers from high
RTT among the worker nodes. The second reason for the
difference among DSPs comes from the different architectures
of each one. Spark streaming is not a pure stream processing
system and processes the incoming stream of events in a
micro-batch fashion. Therefore, the batch interval of Spark
plays a determinant role here. Furthermore, Storm topology
uses a different number of task executors using Spout and
Bolts operators. Therefore, running a Storm topology in a geo-
distributed environment needs further attention. Even though
if all DSPs use the Netty framework [30] for internode
communications, but the way they exchange data is different.
Large topology results. We also see similar trends in the
results of all DSPs for large topology, but the SNR has
less improvement since the DPSs cannot tolerate such inter-
node delays in processing the incoming events. However,
we exclude the relevant figures in the paper due to space
limitations.

V. RELATED WORK

This section briefly reports the current state-of-the-art place-
ment in the geo-distributed analytics systems.
Wide-area Data Analytics. Several works have been proposed
to execute queries in wide-area scenarios [1], [5], [6], [11],
[31], [32]. These works consider different aspects of job exe-
cution in a wide-area such as minimizing the bandwidth usage
or handling the WAN delays. For example, Kimchi [11] studies
the impact of the network cost on the task placement by giving
the priority to the link cost rather than bandwidth and delay.
Additionally, the paper considers the dynamic of link cost in
the selection procedure by applying the proposed approach
on Apache Spark. RTSATD [33] minimizes the completion

time and monetary cost of processing big data workflows in
clouds without delaying the completion of workflows. These
solutions mostly tackle the problems in scenarios in which the
input data size known prior to the query execution.
Understanding the tradeoff. There are some attempts that
find the tradeoff between one of the network-relevant param-
eters and performance in wide-area analytics. For example,
some works [5], [11], [31] consider the tradeoff between the
query execution and WAN usage. Nevertheless, non of these
works focus on finding the tradeoff among all network-relevant
parameters while SNR does.
Wide-area Stream Analytics. There are numerous works
that have been considered the applications for the streaming
scenarios [7]–[9], [34], [35]. In this case, there is no ending
for the job execution and the input data rate can change due to
several reasons like the number of users generating the data for
the system. A WAN-aware scheduling algorithm for Apache
Flink in multi-query scenarios has been proposed in [35]. The
system checks the common parts of the input queries and
schedules them to run once. The work in [34] considers WAN
bandwidth limitations of a geo-distributed streaming cluster to
schedule the streaming task in Apache Spark streaming using
Amazon EC2. CONA [36] addresses the congestion problem
in the inter-datacenter transfer methods that use the bandwidth
allocation for high utilization. However, the contributions of
these works consider some of the network-relevant parameters
for the task execution in wide-area scenarios.

VI. CONCLUSION

This paper presents a simple-additive weighting-based ap-
proach for worker node placement in a geo-distributed cluster.
Our algorithm SNR allows the users to place the workers
according to their needs. The users can prioritize the task
execution according to the network-relevant parameters such
as the available bandwidth, delay, or cost. Furthermore, SNR
finds the tradeoff among the available bandwidth, latency, and
cost allowing the users to plan the job execution. We apply
SNR on three custom topologies by changing all the relevant
parameters in deciding for the placement. Furthermore, the
real-world experiments using the Yahoo! streaming benchmark
show that SNR improves the performance of the current
distributed stream processing systems. We plan to extend our
contribution to include the physical resource information of the
workers in node selection. Furthermore, we plan to use the
concept of Software-Defined Networking (SDN) to monitor
the network for the dynamics of WAN links.

ACKNOWLEDGMENT

This work was partially funded by the German Ministry for
Education and Research as BIFOLD - Berlin Institute for the
Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

REFERENCES

[1] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
Wan-aware optimization for analytics queries,” in OSDI 16, 2016, pp.
435–450.

[2] Apache Spark, 2020, https://spark.apache.org/.
[3] A. Storm, 2020, https://storm.apache.org/.
[4] Apache Flink, 2020, https://flink.apache.org/.
[5] Q. Pu, G. Ananthanarayanan, P. Bodík, S. Kandula, A. Akella, P. Bahl,

and I. Stoica, “Low latency geo-distributed data analytics,” in SIG-
COMM’2015, 2015, pp. 421–434.

[6] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“Wanalytics: Analytics for a geo-distributed data-intensive world,” CIDR
2015, January 2015.

[7] D. Kumar, J. Li, A. Chandra, and R. Sitaraman, “A ttl-based approach
for data aggregation in geo-distributed streaming analytics,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 2, Jun. 2019.

[8] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in SIGCOMM ’18,
2018, p. 236–252.

[9] F. Lai, J. You, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Sol:
Fast distributed computation over slow networks,” in NSDI’20, 2020,
pp. 273–288.

[10] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing timeliness and
cost in geo-distributed streaming analytics,” IEEE T CLOUD COMPUT,
pp. 1–1, 2017.

[11] K. Oh, A. Chandra, and J. Weissman, “A network cost-aware geo-
distributed data analytics system,” in CCGRID’20, 2020, pp. 649–658.

[12] T. Evangelos, “Multi-criteria decision making methods: a comparative
study,” Netherland: Kluwer Academic Publication, vol. 4, 2000.

[13] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, flink and spark
streaming,” in IPDPSW’16, May 2016, pp. 1789–1792.

[14] The Internet Topology Zoo, 2020, http://bit.ly/3uQMH8O.
[15] G. P. S. P. times between WonderNetwork servers, 2020, https://

wondernetwork.com/pings.
[16] J. Young and T. Barth, “Web performance analytics show even 100-

millisecond delays can impact customer engagement and online rev-
enue,” 2017, Akamai Online Retail Performance Report.

[17] E. Triantaphyllou, Multi-Criteria Decision Making Methods. Springer,
2000, pp. 5–21.

[18] Extending the Yahoo Streaming Benchmarks, 2020, https://github.com/
dataArtisans/yahoo-streaming-benchmark.

[19] ATT network delay, 2020. [Online]. Available: http://soc.att.com/
30cKc2m

[20] M. A. B. P. Details, 2020, http://bit.ly/3e5PkxF.
[21] G. cloud: pricing, 2020, https://cloud.google.com/pubsub/pricing.
[22] A. E. O.-D. Pricing, 2020, http://amzn.to/3beAFOJ.
[23] akamai’s [state of the internet]: Q1 2017 report, 2017, https://www.bit.

ly/3jPSKEP.
[24] Microsoft Azure, https://bit.ly/3qdWimV, 2020.
[25] Google Datacenters, https://about.google/locations/, 2020.
[26] Amazon, https://amzn.to/38zsFq4, 2020.
[27] S. Zeuch, B. D. M., J. Karimov, C. Lutz, M. Renz, J. Traub, S. Breß,

T. Rabl, and V. Markl, “Analyzing efficient stream processing on modern
hardware,” VLDB, vol. 12, no. 5, 2019.

[28] Apache Kafka, 2020, https://kafka.apache.org/.
[29] Redis, 2020, https://redis.io/.
[30] Netty framework, 2020, https://netty.io/.
[31] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,

“Wide-area analytics with multiple resources,” in EuroSys ’18, 2018.
[32] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-aware big data processing

across geo-distributed datacenters,” IEEE T PARALL DISTR, vol. 28,
no. 11, pp. 3114–3127, Nov 2017.

[33] H. Chen, J. Wen, W. Pedrycz, and G. Wu, “Big data processing work-
flows oriented real-time scheduling algorithm using task-duplication in
geo-distributed clouds,” IEEE TBDATA, vol. 6, no. 1, pp. 131–144, 2020.

[34] W. Li, D. Niu, Y. Liu, S. Liu, and B. Li, “Wide-area spark streaming:
Automated routing and batch sizing,” IEEE T PARALL DISTR, vol. 30,
no. 6, pp. 1434–1448, June 2019.

[35] A. Jonathan, A. Chandra, and J. Weissman, “Multi-query optimization
in wide-area streaming analytics,” in SoCC ’18, 2018, p. 412–425.

[36] X. Tao, K. Ota, M. Dong, W. Borjigin, H. Qi, and K. Li, “Congestion-
aware traffic allocation for geo-distributed data centers,” IEEE T CLOUD
COMPUT, pp. 1–1, 2020.

https://spark.apache.org/
https://storm.apache.org/
https://flink.apache.org/
http://bit.ly/3uQMH8O
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://github.com/dataArtisans/yahoo-streaming-benchmark
https://github.com/dataArtisans/yahoo-streaming-benchmark
http://soc.att.com/30cKc2m
http://soc.att.com/30cKc2m
http://bit.ly/3e5PkxF
https://cloud.google.com/pubsub/pricing
http://amzn.to/3beAFOJ
https://www.bit.ly/3jPSKEP
https://www.bit.ly/3jPSKEP
https://kafka.apache.org/
https://redis.io/
https://netty.io/

	Introduction
	System Model and Problem Statement
	System Model
	Problem Statement

	SNR Algorithm
	SNR algorithm
	Running Example for SNR

	Evaluations
	Illustrating Tradeoff
	Topology-aware Results
	Evaluation on Real Systems

	Related Work
	Conclusion
	References

