
FACHBEREICH 3
MATHEMATIK

ON THE REPRESENTATION OF RESOURCE

CONSTRAINTS IN PROJECT SCHEDULING

by

FREDERIK STORK MARC UETZ

No. 693/2000

On the Representation of Resource
Constraints in Project Scheduling

Frederik Stork
� § Marc Uetz

� ‡

February 9, 2001

Abstract

In project scheduling, resource constraints are usually defined via resource
consumption and -availability. Many algorithmic approaches, however, are based
on the concept of minimal forbidden sets to represent the resource constraints.
Jobs of a forbidden set can be scheduled simultaneously with respect to the
precedence constraints, however, they consume more resources than available.
Forbidden sets are usually not given explicitly, and by definition even the number
of inclusion-minimal forbidden sets may be exponential in the number of jobs.
In this paper, we analyze some algorithmic questions related to these different
respresentations, and we propose a simple backtracking algorithm to efficiently
compute a minimal forbidden set representation. We evaluate the algorithm on
well established test sets of the project scheduling problem library PSPLIB. In
addition, we exhibit a close relation between the different representations of re-
source constraints and threshold hypergraphs.

Keywords: Project Scheduling, Resource Constraints, Forbidden Sets, Thresh-
old Hypergraphs, Threshold Dimension, Minimal Cover Inequalities

1 Introduction

We consider scheduling problems where a set V � � 1 � 2 ��������� n � of jobs has to be exe-
cuted subject to both precedence and resource constraints. Precedence constraints are
given as an acyclic directed graph D �	� V � A
 , where � i � j
�� A if j cannot be started be-
fore i has been completed. In addition, jobs need different (renewable) resource types
k � K while being processed. A constant amount of Rk ��
 units of each resource
type is available throughout the project and each job j consumes r jk � Rk (r jk ��
)
units of resource k � K while in process. A schedule is called feasible if it respects all
precedence constraints and at any time t and for each resource type k, the sum of the
resource consumption of all jobs which are in process at t does not exceed the avail-
ability Rk. This is the most common representation of resource constraints in project
�
Author’s addresses: Technische Universität Berlin, Fachbereich Mathematik, Sekr. MA 6-1,

Straße des 17. Juni 136, D-10623 Berlin, Germany. Email: � stork, uetz � @math.tu-berlin.de
§Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Mo 446/3-3.
‡Supported by the German-Israeli Foundation for Scientific Research and Development (GIF), grant

I 246-304.02/97.

1

scheduling. Let us call it the threshold representation (the motivation for this notation
will become clear in Section 2). To give an example, scheduling problems on m (par-
allel) machines arise as the special case where exactly one resource is available in m
units, and all jobs require exactly one unit of that resource.

The topic of this paper is an alternative representation of resource constraints, the
so-called (minimal) forbidden set representation. A subset F

�
V of jobs is called for-

bidden if the jobs in F are an anti-chain of the partial order defined by the precedence
digraph D, and the total resource consumption ∑ j � F r jk exceeds the resource availabil-
ity Rk for some k � K. F is called minimal forbidden if any proper subset F ��� F is
resource-feasible, that is, ∑ j � F � r jk � Rk for all k � K. Let us denote by F the system
of minimal forbidden sets, then �F � can obviously be exponential in n, the number of
jobs. For a parallel machine scheduling problem with m machines, for example, the
minimal forbidden sets are exactly the anti-chains of cardinality m � 1.

Minimal forbidden sets are an important concept to represent resource constraints.
In fact, they form the basis of numerous algorithmic approaches to resource-constrained
project scheduling. Probably the most important field of application is stochastic
scheduling, where job processing times are uncertain, e. g. in [15, 14, 19, 21, 26], but
they also play a role in algorithmic approaches to deterministic project scheduling
problems, e. g. in [24, 6]. In addition, forbidden sets are useful to derive cutting planes
within integer programming approaches, e. g. in [1, 20]. Interestingly, Schäffter [25]
derives inapproximability results for resource-constrained project scheduling prob-
lems by means of the forbidden set representation of resource-constraints: He proves
that vertex coloring in graphs reduces to scheduling subject to forbidden sets, hence
all inapproximability results for vertex coloring, e. g. in [10], also hold for resource-
constrained project scheduling. Finally, forbidden sets can be seen as a generalization
of the disjunctive graph concept known from job-shop scheduling, as pointed out by
Radermacher [24]; see also [2].

The paper is organized as follows. In Section 2, we first discuss theoretical is-
sues related to the threshold and minimal forbidden set representations of resource
constraints, revealing a close relation to threshold (hyper-)graphs. In Section 3, we
propose a backtracking algorithm which computes the system F of minimal forbidden
sets for an instance which is given by the usual threshold representation. We show that,
for instances with only one resource type (�K � � 1), the algorithm can be implemented
to run in polynomial time with respect to the in- and output. A computational eval-
uation of the algorithm is presented in Section 4, based on the widely used instances
from the project scheduling library PSPLIB [23]. The results exhibit the benefits of
the proposed algorithm in comparison to an approach to compute F previously sug-
gested by Bartusch [5]. Our results also provide further insights in the structure of the
instances of the library. We conclude with some final remarks in Section 5.

2 Threshold and Forbidden Set Representations

In this section, we address several questions which are related to the transformation
between the two above mentioned representations of resource constraints.

2

2.1 Relations to Threshold (Hyper-)Graphs

One can think of the system of minimal forbidden sets � V � F
 as an undirected hyper-
graph where jobs of the scheduling instance correspond to the vertices of the hyper-
graph and the minimal forbidden sets correspond to hyperedges. Let us first address
the question if these hypergraphs have any particular property. To start with, consider
the following problem: Given a problem instance with a minimal forbidden set rep-
resentation of the resource constraints, what is the minimal number of resource types
k required in a threshold representation? Obviously, �F � different resource types suf-
fice, and it is easy to see that one resource type does not suffice in general, e. g. with
V � � 1 � 2 � 3 � 4 � and F � � � 1 � 2 � � � 3 � 4 � � . Moreover, as demonstrated by Example 1 in
the Appendix, the number of resource types required in a threshold representation can
be exponential in n, the number of jobs.

It turns out that exactly the same problem has been studied in the context of thres-
hold (hyper-)graphs: According to Golumbic [12], a threshold hypergraph is an undi-
rected hypergraph � V � F
 , F

�
2V , with the following property: A non-negative inte-

ger value r j can be assigned to each vertex j � V such that there is an integer thres-
hold R with the property that a subset B

�
V is stable if and only if ∑ j � B r j � R. Here, a

stable set of a hypergraph is a subset B
�

V which does not contain any hyperedge, that
is, F

��
B for all F � F ; see [9]. In other words, the system of stable sets of a threshold

hypergraph can be represented by only one linear inequality, namely ∑ j � V r j x j � R.
Here, x � � x1 ������� � xn
 is the characteristic vector of a subset X of V , where x j � 1
if j � X and x j � 0 otherwise. Notice that the stable sets exactly correspond to the
resource-feasible sets in our application, hence � V � F
 defines a threshold hypergraph
exactly if one resource type suffices to represent the resource constraints. In analogy
with the definitions for ordinary graphs, the threshold dimension t of a hypergraph
� V � F
 can be defined as the minimum number of inequalities which are required to
represent the system of stable sets; see Chvátal and Hammer [8]. More precisely, there
exist t inequalities ∑ j � V r jk x j � Rk, k � 1 ������� � t, such that X is a stable set in � V � F

if and only if all t inequalities are fulfilled. But even for ordinary graphs, the deter-
mination of the threshold dimension is NP-hard [8]. According to Yannakakis [27],
already the decision problem if the threshold dimension of a graph is bounded by 3 is
NP-complete (the decision problem if the threshold dimension of a graph is bounded
by 2 can be solved in polynomial time). We refer to the surveys [17] and [7] for more
details and references. Hence, we obtain the following theorem.

Theorem 1. Given a project scheduling problem with minimal forbidden set repre-
sentation F of resource constraints, and given that the number of minimal forbidden
sets F is polynomial in n, it is NP-hard to determine the minimum number of resource
types required in a threshold representation.

Proof. The claim even holds if all minimal forbidden sets F � F have cardinality 2.
Then � V � F
 is an ordinary graph, and the problem corresponds to the determination
of the threshold dimension of that graph, which is NP-hard.

2.2 From Thresholds to Minimal Forbidden Sets

We next discuss the complexity of the computation of F , given the (usual) threshold
representation of resource constraints. Clearly, since F can be exponential in n, the

3

number of jobs, there is no algorithm with polynomial running time with respect to n.
However, if only one resource type is present (�K � � 1), the following will be proved
in Section 3.2.

Theorem 2. Given a project scheduling problem with threshold representation of re-
source constraints, and given that the number of resource types �K � equals 1, the min-
imal forbidden sets F can be computed in time polynomial in �F � and n.

We finally consider the following three related problems that are important if an
instance with threshold representation is given. For a given subset W

�
V of jobs,

which is an anti-chain of the partial order induced by the precedence constraints, we
ask whether

(i) W is minimal forbidden,

(ii) W is contained in a (not necessarily minimal) forbidden set F
�

W , and

(iii) W is contained in a minimal forbidden set F
�

W .

It is trivial to decide Problem (i): W must be a forbidden set, that is, ∑ j � W r jk �
Rk � 1 for some k � K, and W is minimal forbidden if and only if W � � j � is resource-
feasible for each j � W and all k. This can obviously be verified in O � �K � �W �
 time.
We can also decide Problem (ii) in polynomial time: Denote by N

�
V all jobs in

V which are unrelated to all jobs in W (with respect to the precedence constraints).
Obviously, if there is a forbidden set F with W

�
F , then F

�
W � N, and there must

be at least one resource type k � K such that the weight of the maximum weight anti-
chain in W � N exceeds Rk. A maximum weight anti-chain of a partially ordered set
equals a maximum weight stable set in the underlying comparability graph. For each
resource type k, this problem can be solved in time polynomial in n as a minimum flow
problem; see [18]. Finally, Problem (iii) turns out to be NP-complete, since already
the following, restricted problem is NP-complete.

Theorem 3. Given a project scheduling problem (even without precedence constraints)
with threshold representation of the resource constraints, and given that the number
of resource types is polynomial in n, it is NP-complete to determine if a given job is
contained in some minimal forbidden set F � F or not.

Proof. The problem is obviously in NP; according to the preceding remarks, a poly-
nomially checkable proof is the set F itself. We will use a simple reduction of the
NP-complete problem PARTITION (see, e. g., [11]). The problem PARTITION is the
following: We are given n items of integral weight r j � 0 with ∑n

j � 1 r j even, and
the question is if there exists a partition of the items into two subsets of equal total
weight. Now define a project scheduling problem as follows. We have no precedence
constraints and one job per item, each with resource requirement r j. The resource
availability is R � 1

2 ∑n
j � 1 r j . In addition, we have one more job, say i, with resource

requirement ri � 1. Now, if i is contained in a minimal forbidden set F , we have
∑ j � F ��� i 	 r j � R, since F is minimal forbidden and since i requires only one resource
unit. On the other hand, if i is not contained in a minimal forbidden set, there is no
subset F of the original items with total weight R. This completes the proof.

4

2.3 Related Topics

Interestingly, threshold graphs and related questions have been considered also in the
context of the so-called PV-chunk synchronizing primitive, which generalizes the clas-
sical semaphore concept for synchronization of parallel processing. In fact, apparently
prior to Chvátal and Hammer [8], threshold graphs have been defined and character-
ized in this context by Henderson and Zalcstein [13]; see also [22].

In the form of minimal covers, minimal forbidden sets also arise in the context
of the knapsack polytope, or more generally knapsack inequalities in 0–1 integer pro-
gramming. Given a 0–1–polytope P � �

x � � 0 � 1 �
�
V
�
� ∑ j � V r jx j � R � , a cover is a

set C
�

V with ∑ j � C r j � R, and C is called minimal if it is minimal with respect to
this property. In other words, minimal covers exactly correspond to minimal forbidden
sets in our application. In the context of integer programming, minimal covers play an
important role, since they give rise to cover inequalities of the form ∑ j � C x j � �C ��� 1,
which are valid for P, and also to lifted cover inequalities, which are even facet-
inducing for P. We refer, e.g., to [3] for more details.

3 Computing Minimal Forbidden Sets

In this section, we propose an algorithm which computes the minimal forbidden set
representation F for an instance which is given in its threshold representation. Notice
that exponentially many minimal forbidden sets may exist, hence the output of such
an algorithm may be exponential with respect to n, the number of jobs.

Bartusch [5, Section 7.1.2] has previously suggested an approach to compute all
minimal forbidden sets F . His algorithm is based on the following ‘divide-and-
conquer’ approach. The given instance, say I, is partitioned into �K � partial instances
I1 ������� � I �K � where each Ik only consists of jobs which require a positive amount of re-
source k. Then, for each Ik, the set of minimal forbidden sets Fk is calculated with
respect to resource k only. To this end, Bartusch first computes all maximal anti-chains
of the corresponding partial instance Ik (see [4] for an algorithm which computes all
maximal anti-chains of a partial order). He then determines all minimal forbidden sets
contained in these anti-chains. For all k, the system of all so-computed sets then in-
cludes the minimal forbidden sets Fk of the partial instance Ik. Finally, the minimal
forbidden sets F of the original instance are given by the inclusion-minimal sets of
�

k Fk. This approach, however, has the major drawback that within the individual
subproblems many minimal forbidden sets of jobs are potentially computed that later
turn out to be forbidden but not minimal forbidden. Even if there are comparatively
few minimal forbidden sets F in total, already for one resource type k and one max-
imal anti-chain in the corresponding partial instance Ik, exponentially many minimal
forbidden sets may exist.

3.1 Description of the Algorithm

The basic approach is to enumerate subsets of V in a tree T where each node w of T ,
except the root node, is associated to exactly one job j � V (however, the mapping of
nodes to jobs is not an injection). If node w is associated to some job j, w has a child
node for each job i � j � 1 ������� � n. The root node has a child node for each job i � V .

5

Each node w of the tree defines a subset W
�

V of jobs with j � W by traversing the
tree from w to the root node, and collecting the associated jobs on that path. In fact,
a node of the tree only consists of its associated job j, a pointer to its father, and, for
technical reasons, the (current) number of child nodes. With these basic definitions,
there is a one-to-one correspondence between the set of nodes of T and the power set
2V of all subsets of V .

To build a tree T � F
 which exactly represents all minimal forbidden sets F , the
tree T is pruned during this generic process like in a branch-and-bound algorithm:
A node w is discarded as soon as it can be proved that neither W nor any superset
of W that is located in the subtree rooted at w is a minimal forbidden set. T � F
 is
constructed in a DFS fashion. For each node w that is to be added within the construc-
tion of T � F
 , it is tested whether W is a minimal forbidden set. This is done in two
steps. First, we check whether the associated set W is an anti-chain with respect to
the (transitively implicit) precedence constrains. If this is not the case, by definition of
minimal forbidden sets, the subtree rooted at w can be discarded (including w itself).
Otherwise, if W is forbidden, that is, ∑ j � W r jk � Rk for some k � K, we test if W is
minimal forbidden. This is done by verifying whether each set W � � j � , j � W , is
resource-feasible; see Problem (i) in Section 2.2. If this is the case then W is minimal
forbidden and w is stored as a leaf of the tree T � F
 . Otherwise, W is not minimal
forbidden and the subtree rooted at w can be discarded (including w itself). If W is
resource-feasible, there may exist minimal forbidden sets F

�
W that are located in

the subtree rooted at w; hence branching is required on w. Finally, if some node does
not represent a minimal forbidden set, and does not have any further descendants, it
is deleted from the tree. Notice that deletion of nodes is meant recursively, that is, if
a deleted node w was the only child of its father u in T � F
 then u is deleted as well.
Upon termination, the constructed tree T � F
 has precisely �F � leaves.

Let us give a simple example. Let D � � V � A
 be the precedence graph with V ��
1 � 2 � 3 � 4 � and A � � � 1 � 2
 � . There is one resource type with availability R1 � 3, and

the resource requirement of jobs is r1 � 1 � 3, r2 � 1 � 2, r3 � 1 � 1, and r4 � 1 � 1. Then the
minimal forbidden sets are

�
1 � 3 � , � 1 � 4 � , and

�
2 � 3 � 4 � . Figure 1 depicts the trees T

and T � F
 .
PSfrag replacements

/0/0

11 2

2

2

33

3

33

3

4

4

4

44 4

444

4

T T � F

Figure 1: Example of the trees T and T � F
 .

6

3.2 Analysis of the Algorithm

Let us now discuss the computational complexity of the proposed algorithm. We prove
that the algorithm can be implemented to run polynomial in n and �F � , the size of the
in- and output, if there is only one resource type (see Theorem 2 above). Note that,
for practical purposes, our implementation differs from the algorithm described next;
it will be discussed in Section 3.3 below.

Let us first assume that �K � � 1, let r j be the resource consumption of jobs j � V ,
and let R be the resource availability. To make the above generic procedure polynomial
in the size of the in- and output, we consider the jobs in a non-increasing order of their
resource consumption r j; so assume w.l.o.g. that r1 � r2 � ����� � rn. Then the following
observation is immediate.

Lemma 1. If �K ��� 1 and if the jobs are considered in non-increasing order of r j, i. e.,
in the order 1 � 2 � ����� � n in T � F
 , then each forbidden set F found by the generic
procedure described in Section 3.1 is already minimal forbidden.

Proof. Say a forbidden set F � � j1 � j2 ����� � jt � is found, where j1 � j2 � ����� � jt . Then,
by construction, the set F � � jt � is resource feasible, and since r j1 � r j2 � ����� � r jt , also
all sets F � � ji � are resource feasible for all i � 1 ������� � t � 1.

Hence, the above described procedure only generates nodes w which correspond to
anti-chains W which are either resource feasible or minimal forbidden. Now recall
that for any given feasible subset of jobs W

�
V , which is an anti-chain with respect to

the precedence constraints, one can decide in time polynomial in n if W is contained in
some (not necessarily minimal) forbidden set or not; this is Problem (ii) mentioned in
Section 2.2. In particular, at any node w considered in the generic procedure described
in Section 3.1, associated to some job j, one can decide in time polynomial in n if the
corresponding anti-chain W is contained in some forbidden set F with F

�
W � � j �

1 ������� � n � or not. In other words, one can decide in time polynomial in n if node w will
eventually lead to some forbidden set or not. Combined with Lemma 1, we now obtain
the following.

Lemma 2. If �K � � 1 and if the jobs are considered in non-increasing order of r j,
i. e., in the order 1 � 2 � ����� � n in T � F
 , at any node w considered in the generic
procedure described in Section 3.1, one can decide in time polynomial in n if w will
eventually lead to some minimal forbidden set or not.

Since the number of nodes in T � F
 is obviously polynomial in �F � , this shows that
for �K � � 1, the time required to compute the tree T � F
 is in fact polynomial in n and
�F � , which concludes the proof for Theorem 2.

For �K � � 1, however, the described algorithm is not polynomial in F . The reason
is that, given a node w considered in the generic procedure described in Section 3.1, we
can no longer decide in polynomial time if the associated anti-chain W is contained in a
minimal forbidden set or not (recall Theorem 3). This was possible for the case �K � � 1
only due to Lemma 1, which does no longer hold if �K � � 1. Consequently, if �K � � 1,
one possibly ends at nodes w such that the associated set of jobs W is forbidden, but
not minimal forbidden. In fact, the number of such nodes may be exponential in �F �
for our algorithm, as is demonstrated by Example 2 given in the Appendix.

7

3.3 Implementation and Fast Reduction Tests

Contrary to what was described in Section 3.2, in our actual implementation we only
considered heuristic but very efficient ‘reduction tests’ in order to decide if a node of
the tree potentially leads to a minimal forbidden set or not. These simple tests greatly
improved the performance of the simple generic procedure described in Section 3.1;
they will be described in this section. To simplify notation, we omit the resource index
k. Resource requirements r j and supply R are treated as vectors and any inequality
involving r j or R is meant component-wise. Moreover, rW denotes the vector of total
resource consumption of W .

First, motivated by the results of Section 3.2, also for instances with more than one
resource type it showed to be computationally more effective to consider the jobs in
a suitable ordering: Therefore we identify a resource k

� � K that is scarcest, defined
as a resource with smallest ratio Rk

�
∑ j � V r jk, and assume that jobs are numbered in

non-increasing order of their consumption of this resource type k
�
. Although this does

not help theoretically, it helps to heuristically close the gap between rW and R in as
many nodes w as soon as possible. Notice that this is particularly important since for
any node w of the generic tree T , the subtree rooted at w is extremely unbalanced:
If s � j
 denotes the size of a subtree rooted at some node w associated to job j, then
s � j
 � 1 � ∑n

k � j � 1 s � k
 , hence s � j
 � 2n � j.
Next, two jobs i and j cannot be in a common forbidden set if there is a (transitively

implicit) precedence constraint between i and j. In addition, we implemented two
other heuristic tests to determine if no minimal forbidden set contains both i and j.
First, if the resources required by i and j are disjoint in the sense that r ik

� r jk � 0
for each k � K, then i and j together do not belong to any minimal forbidden set.
Second, let U be the set of jobs that are unrelated to both i and j with respect to
the (transitively implicit) precedence constraints. Then, if r j � ri � rU � R, then i
and j are not contained in a common minimal forbidden set, either. All above tests
are performed as preprocessing, and the resulting information is stored in a Boolean
matrix M of size n � n in order to provide access in O � 1
 time.

Finally, we implemented another heuristic test which is particularly useful to keep
the tree small if resource constraints are weak; it is a heuristic test in order to detect
nodes w which cannot lead to any forbidden set: For a given node w, associated to some
job j and a set W of jobs, j � W , we simply sum up the resource requirements of all
jobs out of

�
j � 1 ������� � n � that are not precedence-related to any of the jobs of W ; denote

this set by N. Then, if rW � rN � R, the subtree rooted at w can be discarded because
each of the subsets of jobs in that subtree is resource-feasible. We also experimented
with the exact method which decides if a given node of the tree leads to a forbidden
set or not; see Problem (ii) of Section 2.2 for details. However, the computational
overhead was too large due to the time required to solve the associated minimum-flow
problems.

Algorithm 1 shows further details of the proposed procedure. For a given node w of
the tree, associated to some job j, and some job i � j, Algorithm 1 calls the subroutines
EvaluateNode(i � w) and possibly also CreateNode(i � w). EvaluateNode computes the
status of the set W � � i � , i. e., it decides whether W � � i � is (minimal) forbidden or
resource-feasible. Algorithmic details are given in Algorithm 2. CreateNode(i � w)
generates a new node of the tree which is a child of w and associated to job i.

8

Algorithm 1: Compute all minimal forbidden sets
Input : Jobs V , precedence constraints A, resource constraints r j � R.

Output : The set of minimal forbidden sets represented by the tree T � F
 .
Find suitable k � K and create ordering L of jobs with non-increasing r jk;
Compute Boolean matrix M which indicates whether

�
F with i � j � F;

F : � /0; // stores the forbidden sets
root : � root node of tree T ; Stack : � /0;
for all jobs j � V do

w : � CreateNode(j � root);
push w on Stack;

while Stack
�� /0 do

remove node w from Stack;
j : � job associated to w; W : � set of jobs associated to w;
for all jobs i � L j do

EvaluateNode(i � w);
if W � � i � is a minimal forbidden set then

u : � CreateNode(i � w);
Add u to F ;

if W � � i � is feasible then
u : � CreateNode(i � w);
Add u to Stack;

(Recursively) delete w if it is not minimal forbidden and has no children;

return F ;

Algorithm 2: EvaluateNode
Input : A feasible set W of jobs (represented by node w) and a new job i.

Output : Status of the set W � � i �
(feasible / minimal forbidden / can be discarded).

if i and some j � W cannot be in a minimal forbidden set w. r. t. M then
return (can be discarded);

if rW k � rik � Rk for some k then
for j � W do

if rWk � rik � r jk � Rk for some k then
return (can be discarded);

return (minimal forbidden);

N : � jobs of
�

j �V � j � L i � that potentially can be in some minimal forbidden
set F with � W � � i �
 � F (according to Matrix M);

if rW � rN � R then return (can be discarded);
else return (resource-feasible);

9

3.4 Compact Representation of Forbidden Sets

Algorithm 1 immediately suggests to store the minimal forbidden sets in a data struc-
ture given by the tree T � F
 . The jobs of the forbidden sets are represented as nodes
in the tree, and upon building the tree as described before, a vector of pointers to the
leaves of T � F
 is generated. To access (or loop) all jobs of a forbidden set F , one sim-
ply traverses T � F
 from the leaf which corresponds to F to the root node, obviously in
O � �F �
 time. In comparison to a representation as a vector of lists of the correspond-
ing job numbers (which would certainly be the simplest data structure that provides
fast access to traverse all minimal forbidden sets), this reduces memory requirement
considerably (empirically analyzed in Section 4 below).

4 Computational Evaluation

We first describe the computational setup and the benchmark instances, and then ana-
lyze the performance of the proposed algorithm in dependence on different parameters
which have been used to generate the instances.

4.1 Setup and Benchmark Instances

Our experiments were conducted on a Sun Ultra 1 with 143 MHz clock pulse operating
under Solaris 2.7. The code is written in C++ and has been compiled with the GNU
g++ compiler version 2.91.66 using the -O3 optimization option. The memory limit
was set to 50 MB.

We have tested the proposed algorithm on instances of the library PSPLIB [23] that
was generated by Kolisch and Sprecher with the help of the instance generator Pro-
Gen [16]. The library contains instances with 30, 60, 90, and 120 jobs, respectively.
The instances have been generated by modifying three parameters, (i) the network
complexity (NC) which is the average number of direct successors of a job, (ii) the re-
source factor (RF) which describes the average number of different resource types re-
quired in order to process a job divided by the total number of resource types, and (iii)
the resource strength (RS), which is a measure of the scarcity of the resources (see [16]
for details). The parameters have been chosen out of the sets NC � � 1 � 5 � 1 � 8 � 2 � 1 �
and RF � � 0 � 25 � 0 � 5 � 0 � 75 � 1 � 0 � . For the benchmark sets with 30, 60 and 90 jobs the
resource strength RS has been chosen from the values

�
0 � 2 � 0 � 5 � 0 � 7 � 1 � 0 � , while for

instances with 120 jobs it was chosen from
�
0 � 1 � 0 � 2 � 0 � 3 � 0 � 4 � 0 � 5 � . The smaller the

parameter RS, the scarcer are the resources; hence, on average, the resource capacities
are scarcer for the instances with 120 jobs. For each combination of the parameters,
10 instances have been generated at random. This results in 480 instances for each of
instance sizes 30, 60, and 90, and 600 instances with 120 jobs.

Before we turn to our computational experiences with these instances, let us briefly
comment on the relationship between the systems of minimal forbidden sets and the
above mentioned parameters. According to Radermacher [24, p. 237], instances are
essentially equal if both precedence constraints and the systems of minimal forbidden
sets coincide. In this respect, the variation of the resource factor RF does not neces-
sarily lead to essentially different instances: Although two instances have a different
resource factor, they can be identical in the sense that they have identical precedence

10

constraints and systems of minimal forbidden sets. For example, if the threshold rep-
resentation of the resource constraints defines a threshold hypergraph without isolated
nodes, the resource factor is obviously 1. However, the same system of minimal forbid-
den sets can be represented by �F � different resource types, which generally leads to a
resource factor strictly smaller than 1. Another remark addresses the above definition
of network complexity. Since the definition as the average number of direct successors
disregards transitive precedence constraints, instances with identical network complex-
ity may have an essentially different topology, hence also essentially different systems
of minimal forbidden sets. For example, for V � � 1 ������� � 4 � , the precedence constraints
A1 : � � � 1 � 2
 � � 1 � 4
 � � 3 � 4
 � and A2 : � � � 1 � 2
 � � 2 � 3
 � � 3 � 4
 � both have a network com-
plexity NC � 3

�
4. While � V � A2
 is a chain, and hence has no non-trivial anti-chain,

� V � A1
 has three non-trivial anti-chains. However, our computational results with the
PSPLIB instances show that, on average, there is a meaningful correlation between all
three parameters and the system of minimal forbidden sets.

4.2 Computational Results

Table 1 shows for each test set the number of solved instances (#solved), that is, all
minimal forbidden sets could be computed within the memory restriction of 50 MB,
as well as the average and maximum number of forbidden sets (

�
#FS and max. #FS)

and required computation times (
�

CPU and max. CPU). As the table suggests, the
algorithm easily computes all minimal forbidden sets for the instances with 30 jobs;
the computation time is negligible. Most of the instances with 60 jobs can also be
solved in short time, however, there already exist few (17) instances for which not all
minimal forbidden sets could be determined within the memory restriction of 50 MB
(even with a limit 500 MB, 7 instances remain unsolved).

#jobs #inst. #solved
�

#FS max. #FS
�

CPU max. CPU

30 480 480 326 4,411 0.01 0.2
60 480 463 101,773 2,163,692 7 167
90 480 309 255,476 1,867,239 23 490

120 600 340 243,871 1,996,505 13 200

Table 1: For each set of instances the table displays the number of instances in the test
set (#inst.), the number of solved instances (#solved), the average and the maximum
number of minimal forbidden sets (

�
#FS and max. #FS), and the average and the

maximum computation time in seconds (
�

CPU and max. CPU).

Although for larger instances the average memory requirement strongly increases, the
algorithm still solves more than a half of the instances with 90 and 120 jobs with no
more than 50 MB memory requirement. Note that, even for instances with 120 jobs,
for all instances with scarce resources (RS � 0 � 1) or small resource factor (RF � 0 � 25,
that is, each job requires only one resource type on average), the algorithm computes
all minimal forbidden sets at an average running time of less than 5 seconds. Instances
with scarce resources are known to be particularly hard with respect to makespan min-
imization and lower bound computations.

11

Forbidden set statistics. Figures 2 and 3 show how the average number and cardi-
nality of minimal forbidden sets depend on the instance parameters RS, RF, and NC.
Since we did not observe that these parameters were significantly correlated, all fig-
ures are based on average values with respect to the whole set of instances (with 30
jobs). As expected, both the number and cardinality of minimal forbidden sets heavily
depend on the instance parameters RS, RF, and NC; let us briefly analyze the outcome
of this evaluation.

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25

0.5 0.7

0.75

1

1.5

1.8

2.1

100

200

300

400

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25 0.5

0.7

0.75 1

1.5

1.8

2.1

100

300

500

700

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25

0.5

0.7

0.75

1

1.5 1.8 2.1

100

300

500

700

Figure 2: The plots display the average number of minimal forbidden sets depending
on the instance parameters RS (left), RF (middle), and NC (right). The data is based
on the test set with 30 jobs per instance.

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25

0.5 0.7

0.75

1

1

2

3

4

1.5

1.8

2.1

100

200

300

400

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25 0.5

0.7

0.75 1

1

2

3

4

1.5

1.8

2.1

100

300

500

700

PSfrag replacements

average
�
F

�

RS

RF

NC

0.2

0.25

0.5

0.7

0.75

1

1

2

3

4

1.5 1.8 2.1

100

300

500

700

Figure 3: The plots display the average cardinality of minimal forbidden sets depend-
ing on the instance parameters RS (left), RF (middle), and NC (right). The data is
based on the test set with 30 jobs per instance.

The dependence of the average cardinality of minimal forbidden sets on the re-
source strength RS as shown in Figure 3 is intuitive. With respect to the average num-
ber of minimal forbidden sets in dependence of the resource strength RS, it is notice-
able that this figure is small either if the resource strength RS is very low (0.2; scarce
resource capacity) or very high (1.0; loose resource capacity). For scarce resources,
this is due to the fact that the minimal forbidden sets tend to be of small cardinality, as
also suggested by Figure 3. For loose resources this is due to the fact that if there are
hardly any resource constraints, already many anti-chains tend to be resource-feasible,
hence there are fewer forbidden sets at all (with larger cardinality on average, as can
be seen in Figure 3).

The behavior of the average cardinality of minimal forbidden sets in dependence
of the resource factor RF in Figure 3 can be explained as follows. If each job requires
only one or few resource types on average, that is, the resource factor RF is small, it is
very likely that in a given anti-chain, there are pairs � i � j
 of jobs with disjoint resource
requirements (rik

� r jk � 0 for all resource types k), hence minimal forbidden sets tend
to be smaller on average the smaller the resource factor RF . (Consequently, there are
also fewer of them, as can be seen in Figure 2.)

With respect to the network complexity NC, our results show that both number and
cardinality of minimal forbidden sets trends down when NC increases. The reason is
that, for the considered instances, the total number of precedence constraints (includ-

12

ing transitive ones) increases with the network complexity. Recall, however, that the
network complexity is not a measure for the total number of precedence constraints in
general (see Section 4.1).

We finally observed that the average cardinality of the minimal forbidden sets in-
creases with the number of jobs. The respective average values (based on the number
of solved instances as given in Table 1) are 3.5 (maximum 10) for 30 jobs, 4.9 (max-
imum 16) for 60 jobs, 5.1 (maximum 13) for 90 jobs, and 4.5 (maximum 12) for 120
jobs. Notice that the average and maximum cardinality is comparatively small for the
test set with 120 jobs, which is due to the fact that the resource strength parameters
are smaller for these instances (and perhaps also since quite some (260) of the 600
instances could not be solved within the 50 MB memory limitation).

Computational performance. Let us next analyze the computational performance
with respect to running times, and compare the proposed algorithm (with and without
reduction tests) to a variation of the earlier mentioned divide-and-conquer approach by
Bartusch [5]; see Section 3. Table 2 first shows the average and maximal computation
times for the algorithm proposed in this paper, both with and without reduction tests.

#jobs #solved
�

CPU max. CPU

with reduction tests 30 480 0.01 0.2
no reduction tests 30 480 0.04 0.5

with reduction tests 60 463 7 167
no reduction tests 60 446 145 6,280

Table 2: For both variations of the algorithm, the table displays the number of solved
instances (#solved) and the respective average and the maximum computation time in
seconds (

�
CPU and max. CPU); based on instances with 30 and 60 jobs, respectively.

The results obviously confirm that the additional reduction tests proposed in Sec-
tion 3.3 are worthwhile, reducing the average required computation time by a factor
of almost 4 for the instances with 30 jobs. The importance of the additional reduction
tests is even more apparent for the instances with 60 jobs. There, the average com-
putation time decreases from 145 seconds (without reduction tests) to 7 seconds (with
reduction tests); a factor of more than 20.

Figure 4 shows more details with respect to the computation times, based on the
test set with 30 jobs. It is intuitive that the computation times are small whenever there
are only few, and small minimal forbidden sets, and large if there are many and large
minimal forbidden sets. This is indeed validated by Figure 4. There is however, one
more remark on the computation times which concerns the reduction tests proposed in
Section 3.3 (see also Table 2): If the reduction tests are not performed, the dependence
of computation time on the resource factor RF gives a picture which is exactly reverse,
showing that these tests are extremely effective particularly for instances where the
resource factor RF is small. In fact, for RF � 0 � 25, the computation time increases
from 1.4 ms (Figure 4; with reduction tests) to 41 ms (without reduction tests).

We have also experimented with a divide-and-conquer approach, based on the
paradigm of the previously described approach proposed by Bartusch [5] (see the brief

13

PSfrag replacements

CPU(ms)

RS

RF

NC

0.2

0.25

0.5 0.7

0.75

1

1.5

1.8

2.1

5

10

15

20

PSfrag replacements

CPU(ms)

RS

RF

NC

0.2

0.25 0.5

0.7

0.75 1

1.5

1.8

2.1

5

10

15

20

PSfrag replacements

CPU(ms)

RS

RF

NC

0.2

0.25

0.5

0.7

0.75

1

1.5 1.8 2.1

5

10

15

20

Figure 4: The plots display the average running time (in milliseconds) depending on
the instance parameters RS (left), RF (middle), and NC (right). The data is based on
the test set with 30 jobs per instance.

description of this approach in Section 3). The basic idea is to partition the given in-
stance, say I, into �K � partial instances I1 ������� � I �K � where each Ik only consists of jobs
which require a positive amount of resource k. Then, for each Ik, the set of minimal
forbidden sets Fk is calculated with respect to resource k only. This has the major
advantage that each of the subproblems can be solved in polynomial time with respect
to its in- and output, which is n and �Fk � , respectively (see Theorem 2 and Section 3.2).
In comparison to the algorithm proposed in this paper, this can in fact reduce the
computation time by orders of magnitude for particular instances, as demonstrated by
Example 2 in the Appendix. On the other hand, it is obvious that the systems of min-
imal forbidden sets Fk for the subproblems Ik may be exponential with respect to F
itself. Apart from that, even if the minimal forbidden sets Fk are given, in order to
obtain the minimal forbidden sets F for the original instance, an efficient computation
of the inclusion-minimal subsets of

�
k Fk is necessary, which constitutes a non-trivial

problem in its own.
Based on the instances from the PSPLIB, we have compared the time required to

compute F using the algorithm proposed in this paper with the overall time required
time to compute all minimal forbidden sets Fk for all partial instances Ik, k � 1 ������� � �K � .
It turned out that these computation times are in fact comparable on average, how-
ever, for only few instances the divide-and-conquer approach was more efficient. In
particular, notice that this comparison does not even take into account the additional
overhead required to compute the inclusion-minimal subsets of

�
k Fk. In fact, using a

straightforward implementation, this overhead turned out to be a major bottleneck of
the divide-and-conquer approach; it required by far more computation time than the
computation of the minimal forbidden sets

�
k Fk itself. Hence, a divide-and-conquer

approach seems to be beneficial only for instances with very particular structure (e. g.
Example 2 in the Appendix).

Memory requirements. Finally, we analyze the memory required to store the min-
imal forbidden sets in the data structure given by the tree T � F
 , in comparison to the
ordinary list representation, where each minimal forbidden set is stored as a list of job
numbers. For the instances with 30 jobs, the average sum ∑F � F �F � is roughly 1400,
while the average number of nodes in T is only 600. Despite of the fact that we have
to maintain some overhead in order to generate (and delete) the tree T � F
 , namely
an integer which counts the number of children of each node in the tree, the memory
requirement is reduced by a factor of roughly 1.5 in comparison to the list representa-
tion. For instances with 60, 90, and 120 jobs, the memory requirements are reduced
by a factor of roughly 2.5. (This value only refers to instances for which all mini-

14

mal forbidden sets could be computed within the given memory limitation of 50 MB.)
Consequently, compared to the ordinary list representation, the proposed data structure
given by T � F
 allows a much more efficient representation of minimal forbidden sets.

5 Concluding Remarks

We addressed several questions related to the transformation between two different
representations of resource constraints in project scheduling, the threshold and the
minimal forbidden set representation. Moreover, we presented and analyzed a simple
algorithm which computes all minimal forbidden sets for an instance which is given
in a threshold representation. There are some open questions which remain for future
research: The question if some given job i is contained in some minimal forbidden set
or not (given a threshold representation of the resource constraints) was proved to be
NP-complete, even for the case without precedence constraints using a reduction from
PARTITION (Theorem 3). In fact, it is not hard to see that this problem can be solved in
pseudo-polynomial time by iteratively solving SUBSETSUM problems. However, it is
open whether the problem becomes strongly NP-hard if also precedence constraints are
present. Another interesting open problem is the question whether minimal forbidden
sets can be computed in time polynomial in the in- and the output size of the problem if
the number of resource types is greater than one, which would generalize Theorem 2.

References

[1] R. Alvarez-Valdés Olaguíbel and J. M. Tamarit Goerlich. The project scheduling poly-
hedron: Dimension, facets, and lifting theorems. European Journal of Operational Re-
search, 67:204–220, 1993.

[2] E. Balas. Project scheduling with resource constraints. In E. M. L. Beale, editor, Applica-
tions of Mathematical Programming Techniques. The English University Press, London,
1970.

[3] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers. SIAM
Journal on Applied Mathematics, 34:119–148, 1978.

[4] M. Bartusch. An algorithm for generating all maximal independent subsets of a poset.
Computing, 26:343–354, 1981.

[5] M. Bartusch. Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen
Betriebsmitteln. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen,
1984.

[6] M. Bartusch, R. H. Möhring, and F. J. Radermacher. Scheduling project networks with
resource constraints and time windows. Annals of Operations Research, 16:201–240,
1988.

[7] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, 1999.

[8] V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming. An-
nals of Discrete Mathematics, 1:145–162, 1977.

[9] P. Duchet. Hypergraphs. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook
of Combinatorics, chapter 7, pages 381–432. Elsevier Science, Amsterdam, 1995.

15

[10] U. Feige and J. Kilian. Zero-knowledge and the chromatic number. Journal of Computer
and System Sciences, 57:187–199, 1998.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[12] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[13] P. B. Henderson and Y. Zalcstein. A graph-theoretic characterization of the PVchunk class
of synchronizing primitives. SIAM Journal on Computing, 6:88–108, 1977.

[14] G. Igelmund and F. J. Radermacher. Algorithmic approaches to preselective strategies
for stochastic scheduling problems. Networks, 13:29–48, 1983.

[15] G. Igelmund and F. J. Radermacher. Preselective strategies for the optimization of
stochastic project networks under resource constraints. Networks, 13:1–28, 1983.

[16] R. Kolisch and A. Sprecher. PSPLIB - A project scheduling problem library. European
Journal of Operational Research, 96:205–216, 1996.

[17] N. V. R. Mahadev and U. N. Peled. Threshold Graphs and Related Topics, volume 56 of
Annals of Discrete Mathematics. North-Holland, 1995.

[18] R. H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In
I. Rival, editor, Graphs and Order, NATO Advanced Science Institute Series, pages 41–
101. D. Reidel Publishing Company, Dordrecht, 1985.

[19] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I:
General strategies. ZOR - Zeitschrift für Operations Research, 28:193–260, 1984.

[20] R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project scheduling prob-
lems by minimum cut computations. Technical Report 680, Fachbereich Mathematik,
Technische Universität Berlin, 2000. Submitted.

[21] R. H. Möhring and F. Stork. Linear preselective policies for stochastic project scheduling.
Mathematical Methods of Operations Research, 2000. to appear.

[22] E. T. Ordman. Dining philosophers and graph covering problems. The Journal of Com-
binatorial Mathematics and Combinatorial Computing, 1:181–190, 1987.

[23] ftp://ftp.bwl.uni-kiel.de/pub/operations-research/psplib/
HTML/data.html, January 2000.

[24] F. J. Radermacher. Scheduling of project networks. Annals of Operations Research,
4:227–252, 1985.

[25] M. Schäffter. Scheduling with respect to forbidden sets. Discrete Applied Mathematics,
72:141–154, 1997.

[26] F. Stork. A branch-and-bound algorithm for minimizing expected makespan in stochas-
tic project networks with resource constraints. Technical Report 613/1998, Technische
Universität Berlin, Department of Mathematics, Germany, 1998. Revised July 2000.

[27] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic and Discrete Methods, 3:351–358, 1982.

16

Appendix

Example 1. Let V � �
1 ��������� 4n � , and let V1

� �
1 ��������� 2n � and V2

� �
2n � 1 ��������� 4n � be a

partition of V . Now, for each U1 � V1 define a corresponding U2 : � �
u � 2n 	 u
 U1 � , and let

F : � �
U1 � U2 	 U1 � V1 �
	U1 	 � n � be the minimal forbidden sets.

Here, the number of minimal forbidden sets is � 2n
n �
 Ω � 2n � . Now for any two distinct minimal

forbidden sets, say U1 � U2 and W1 � W2, where U1 � W1
 V1 and U2 � W2
 V2 according to the
above definition, two different resource types are required, since otherwise at least one of the
sets U1 � W1, U2 � W2, U1 � W2, or U2 � W1 would not be resource feasible. Hence, Ω � 2n �
resource types are required to represent F . In other words, the threshold dimension of � V � F �
is Ω � 2n � .
Example 2. Let V � �

1 ��������� n � , 	K 	 � 2, R1
� R2

� 2n � 4, r1 � 1 � r2 � 1 � rn � 1 � 2 � rn � 2 � n, and
r jk

� 1 otherwise.

Then F consists of exactly six sets, namely
�
1 � 2 � , � n � 1 � n � , and

�
i � 3 � 4 ��������� n � 3 � n � 2 � j �

for i � 1 � 2 and j � n � 1 � n. Hence 	F 	�
 O � 1 � for any n
�� , but the number of nodes which
are examined within our algorithm is exponential in n. Notice that this is an example where the
previously described divide-and-conquer approach by Bartusch (see Section 3) is beneficial,
since it runs polynomial in n.

17

Reports from the group

“Combinatorial Optimization and Graph Algorithms”

of the Department of Mathematics, TU Berlin

705/2000 Ekkehard Köhler: Recognizing Graphs without Asteroidal Triples

704/2000 Ekkehard Köhler: AT-free, coAT-free Graphs and AT-free Posets

702/2000 Frederik Stork: Branch-and-Bound Algorithms for Stochastic Resource-Constrained
Project Scheduling

700/2000 Rolf H. Möhring: Scheduling under uncertainty: Bounding the makespan distribu-
tion

698/2000 Sándor P. Fekete, Ekkehard Köhler, and Jürgen Teich: More-dimensional packing
with order constraints

697/2000 Sándor P. Fekete, Ekkehard Köhler, and Jürgen Teich: Extending partial suborders
and implication classes

696/2000 Sándor P. Fekete, Ekkehard Köhler, and Jürgen Teich: Optimal FPGA module
placement with temporal precedence constraints

695/2000 Sándor P. Fekete, Henk Meijer, André Rohe, and Walter Tietze: Solving a “hard”
problem to approximate an “easy” one: heuristics for maximum matchings and maxi-
mum Traveling Salesman Problems

694/2000 Esther M. Arkin, Sándor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc
Noy, Vera Sacristánm and Saurabh Sethia: On the reflexivity of point sets

693/2000 Frederik Stork and Marc Uetz: On the representation of resource constraints in
project scheduling

691/2000 Martin Skutella and Marc Uetz: Scheduling precedence constrained jobs with
stochastic processing times on parallel machines

689/2000 Rolf H. Möhring, Martin Skutella, and Frederik Stork: Scheduling with AND/OR
precedence constraints

685/2000 Martin Skutella: Approximating the single source unsplittable min-cost flow prob-
lem

684/2000 Han Hoogeveen, Martin Skutella, and Gerhard J. Woeginger: Preemptive schedul-
ing with rejection

683/2000 Martin Skutella: Convex quadratic and semidefinite programming relaxations in
Scheduling

682/2000 Rolf H. Möhring and Marc Uetz: Scheduling scarce resources in chemical engineer-
ing

681/2000 Rolf H. Möhring: Scheduling under uncertainty: optimizing against a randomizing
adversary

680/2000 Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: Solving project
scheduling problems by minimum cut computations (Journal version for the previous
Reports 620 and 661)

674/2000 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S.
B. Mitchell, and Saurabh Sethia: Optimal covering tours with turn costs

669/2000 Michael Naatz: A note on a question of C. D. Savage

667/2000 Sándor P. Fekete and Henk Meijer: On geometric maximum weight cliques

666/2000 Sándor P. Fekete, Joseph S. B. Mitchell, and Karin Weinbrecht: On the continuous
Weber and k-median problems

664/2000 Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: On project
scheduling with irregular starting time costs

661/2000 Frederik Stork and Marc Uetz: Resource-constrained project scheduling: from a
Lagrangian relaxation to competitive solutions

658/1999 Olaf Jahn, Rolf H. Möhring, and Andreas S. Schulz: Optimal routing of traffic flows
with length restrictions in networks with congestion

655/1999 Michel X. Goemans and Martin Skutella: Cooperative facility location games

654/1999 Michel X. Goemans, Maurice Queyranne, Andreas S. Schulz, Martin Skutella, and
Yaoguang Wang: Single machine scheduling with release dates

653/1999 Andreas S. Schulz and Martin Skutella: Scheduling unrelated machines by random-
ized rounding

646/1999 Rolf H. Möhring, Martin Skutella, and Frederik Stork: Forcing relations for
AND/OR precedence constraints

640/1999 Foto Afrati, Evripidis Bampis, Chandra Chekuri, David Karger, Claire Kenyon,
Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella, Cliff Stein, and
Maxim Sviridenko: Approximation schemes for minimizing average weighted Comple-
tion time with release dates

639/1999 Andreas S. Schulz and Martin Skutella: The power of α-points in preemptive single
machine scheduling

634/1999 Karsten Weihe, Ulrik Brandes, Annegret Liebers, Matthias Müller–Hannemann,
Dorothea Wagner and Thomas Willhalm: Empirical design of geometric algorithms

633/1999 Matthias Müller–Hannemann and Karsten Weihe: On the discrete core of quadri-
lateral mesh refinement

632/1999 Matthias Müller–Hannemann: Shelling hexahedral complexes for mesh generation
in CAD

631/1999 Matthias Müller–Hannemann and Alexander Schwartz: Implementing weighted b-
matching algorithms: insights from a computational study

629/1999 Martin Skutella: Convex quadratic programming relaxations for network schedul-
ing problems

628/1999 Martin Skutella and Gerhard J. Woeginger: A PTAS for minimizing the total
weighted completion time on identical parallel machines

624/1999 Rolf H. Möhring: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen

627/1998 Jens Gustedt: Specifying characteristics of digital filters with FilterPro

620/1998 Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: Resource con-
strained project scheduling: computing lower bounds by solving minimum cut problems

619/1998 Rolf H. Möhring, Martin Oellrich, and Andreas S. Schulz: Efficient algorithms for
the minimum-cost embedding of reliable virtual private networks into telecommunica-
tion networks

618/1998 Friedrich Eisenbrand and Andreas S. Schulz: Bounds on the Chvátal rank of poly-
topes in the 0/1-Cube

617/1998 Andreas S. Schulz and Robert Weismantel: An oracle-polynomial time augmenta-
tion algorithm for integer proramming

616/1998 Alexander Bockmayr, Friedrich Eisenbrand, Mark Hartmann, and Andreas S.
Schulz: On the Chvátal rank of polytopes in the 0/1 cube

615/1998 Ekkehard Köhler and Matthias Kriesell: Edge-dominating trails in AT-free graphs

613/1998 Frederik Stork: A branch and bound algorithm for minimizing expected makespan
in stochastic project networks with resource constraints

612/1998 Rolf H. Möhring and Frederik Stork: Linear preselective policies for stochastic
project scheduling

611/1998 Rolf H. Möhring and Markus W. Schäffter: Scheduling series-parallel orders subject
to 0/1-communication delays

609/1998 Arfst Ludwig, Rolf H. Möhring, and Frederik Stork: A computational study on
bounding the makespan distribution in stochastic project networks

605/1998 Friedrich Eisenbrand: A note on the membership problem for the elementary clo-
sure of a polyhedron

596/1998 Andreas Fest, Rolf H. Möhring, Frederik Stork, and Marc Uetz: Resource con-
strained project scheduling with time windows: A branching scheme based on dynamic
release dates

595/1998 Rolf H. Möhring Andreas S. Schulz, and Marc Uetz: Approximation in stochastic
scheduling: The power of LP-based priority policies

591/1998 Matthias Müller–Hannemann and Alexander Schwartz: Implementing weighted b-
matching algorithms: Towards a flexible software design

590/1998 Stefan Felsner and Jens Gustedt and Michel Morvan: Interval reductions and ex-
tensions of orders: bijections to chains in lattices

584/1998 Alix Munier, Maurice Queyranne, and Andreas S. Schulz: Approximation bounds
for a general class of precedence constrained parallel machine scheduling problems

577/1998 Martin Skutella: Semidefinite relaxations for parallel machine scheduling

Reports may be requested from: Hannelore Vogt-Möller
Fachbereich Mathematik, MA 6–1
TU Berlin
Straße des 17. Juni 136
D-10623 Berlin – Germany

e-mail: moeller@math.TU-Berlin.DE

Reports are also available in various formats from

http://www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number-
year.ps

