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Introduction

One is tempted to assert that positive systems are the most often encountered
systems in almost all areas of science and technology.
- Lorenzo Farina / Sergio Rinaldi

We consider linear time-invariant positive descriptor systems in continuous-time

Ei(t) = Az(t) + Bu(t), z(0) = xg (1a)
y(t) = Cuz(t) + Du(t), (1b)
and in discrete-time
Ex(t+1) = Az(t)+ Bu(t), x(0) =z (2a)
y(t) = Cuz(t) + Du(t), (2b)

where £, A € R™*", B € R™™, C € RP*", D € RP*™ are real constant coefficient matri-
ces. In the continuous-time case, the state z, input « and output y are real-valued vector
functions. In the discrete-time case x,u and y are real-valued vector sequences. Posi-
tive systems, and here we mean internally positive systems, are systems whose state
and output variables take only nonnegative values at all times ¢ for any nonnegative
initial state and any nonnegative input [2], [38], [64], [83].

Positive systems arise naturally in many applications such as pollutant transport,
chemotaxis, pharmacokinetics, Leontief input-output models, population models and
compartmental systems [2], [3], [14], [15], [19], [31], [38], [64]. In these models, the
variables represent concentrations, population numbers of bacteria or cells or, in gen-
eral, measures that are per se nonnegative. Positive standard systems, i.e., where
E' is the identity matrix, are subject to ongoing research by many authors [1], [32],
[33], [38], [64], [100], [102], [110], [118], [119]. Recent advances on control theoretical
issues have been made especially in the positive discrete-time case. Yet, there are
still many open problems, especially for standard positive systems in continuous-time.
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Control theory of linear time-invariant descriptor systems without the nonnegativity re-
striction was studied in [34], [95]. Very little is known about positive descriptor systems
up to now, however, some properties mainly in the discrete-time case were studied
in [23], [24], [25], [31], [64].

With this work we aim to lay the foundation for understanding positive descriptor sys-
tems in the continuous-time as well as in the discrete-time case. We present a cohesive
framework that allows to generalise many results from standard positive systems to the
descriptor case. In the following paragraphs we briefly explain the main constituent
parts of our framework.

It is well known that many properties of standard systems, where £ = I, are closely
related to the spectral properties of the system matrix A. For instance, asymptotic
stability of the system is equivalent to the eigenvalues of A being located in the open
left complex half-plane in the continuous-time case, or to the eigenvalues of A being
located in the open unit ball around the origin in the discrete-time case. If the dynamics
of the system, however, is described by an implicit differential or difference equation,
then such properties are determined by the eigenvalues and eigenvectors associated
with the matrix pencil \E' — A, or just the matrix pair (£, A).

Most pertinent to the spectral analysis of standard positive systems is the well-known
Perron-Frobenius theory. The classical Perron-Frobenius Theorem states that for an
elementwise nonnegative matrix the spectral radius, i.e., the largest modulus of an
eigenvalue is itself an eigenvalue and has a nonnegative eigenvector, see Chapter 2,
Section 2.1. For the analysis of positive descriptor systems, it is therefore essential to
have available a meaningful counterpart of the Perron-Frobenius theory for matrix pairs
(E,A).

Due to the many applications, several approaches have been presented in the literature
to generalise the classical Perron-Frobenius theory to matrix pencils or further to matrix
polynomials [9], [41], [87], [107]. However, none of these generalisations is suitable in
the case of positive descriptor systems.

In Chapter 2, Section 2.2, we propose a new approach to extend the classical Perron-
Frobenius theory to matrix pairs (E, A), where a sufficient condition guarantees that
the finite spectral radius of (E, A) is an eigenvalue with a corresponding nonnegative
eigenvector. For the special case £ = I our new approach reduces to the classical
Perron-Frobenius theorem for matrices. We present several examples where the new
condition holds, whereas previous conditions in the literature are not satisfied.

Another notion from the theory of nonnegative matrices that we focus on in Chapter 2
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are nonnegative projectors, i.e. nonnegative idempotent matrices. In the descriptor
case, the choice of the right projector onto the deflating subspace that corresponds
to the finite eigenvalues of the matrix pair (£, A) is crucial for the analysis [89]. As
it turns out, nonnegative projectors play an important role in the analysis of positive
descriptor systems, see Chapter 3 and Chapter 4. Furthermore, Schur complements
constitute a fundamental tool in applications [129], in particular such as algebraic multi-
grid methods [123] or model reduction [82]. However, it is important to ensure that the
main properties of the matrix, the Schur complement is applied to, are preserved. In
our case, in a positivity preserving model reduction method proposed in Chapter 6, two
variations of the Schur complement will be applied to nonnegative projectors. There-
fore, in Section 2.4 we show that for a nonnegative projector, if the corresponding part
of the matrix is invertible, the Schur complement is again a nonnegative projector. Oth-
erwise, if the corresponding part has a positive diagonal, the Moore-Penrose inverse
Schur complement is again a nonnegative projector. Also the nonnegativity of a shifted
Schur complement needed for discrete-time systems is shown.

The positivity condition that the state and output variables take only nonnegative values
at all times ¢ > 0, per se, is not easy to check. In the standard case, however, an
equivalent characterisation is available in the continuous-time as well as in the discrete-
time case that allows to determine positivity by just considering the system matrices,
see, e.g., [38], [64].

In the descriptor case discussed in Chapter 3, the situation is more complicated. Not
every initial value is consistent and consistency depends on the choice of the input [26],
[34], [74]. Furthermore, the properties of the matrices in the standard case have to
hold for special matrix products and on the deflating subspace that corresponds to the
finite eigenvalues of the matrix pair (£, A). Assuming that the spectral projector onto
this subspace is a nonnegative matrix allows to establish equivalent characterisations
of positivity that directly correspond to the characterisations in the standard case. We
reason why the nonnegativity assumption on the spectral projector is meaningful from
the point of view of applications.

The characterisation of positivity for descriptor systems established in Section 3.2 im-
poses a very special structure on the system matrices. In Section 3.2.2 we analyse and
specify this structure. For instance, this becomes important in Section 6.3, where we
prove positivity of the reduced order descriptor system for the proposed model reduc-
tion technique.

In the case of standard positive systems, classical stability criteria take a simple form
[38], [64]. In Chapter 4 we present generalisations of these stability criteria for the case
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of positive descriptor systems. It turns out, that if the spectral projector onto the finite
deflating subspace of the matrix pair (£, A) is nonnegative, then all stability criteria
for standard positive systems take a comparably simple form in the positive descriptor
case.

Stability properties and also many other control theoretical issues such as model reduc-
tion methods or the quadratic optimal control problem are, furthermore, closely related
to the solution of Lyapunov equations, see. e.g., [5], [44], [45], [79], [95]. For descriptor
systems, projected generalised Lyapunov equations were presented in [115]. In the
context of positive systems one is interested not only in positive (semi)definite solutions
of such Lyapunov equations but rather in doubly nonnegative solutions, i.e., solutions
that are both positive semidefinite and entry-wise nonnegative. Such results for stan-
dard Lyapunov equations, e.g., can easily be deduced from a more general discussion
in [35]. In Chapter 5, we provide sufficient conditions that guarantee the existence of
doubly nonnegative solutions of projected generalised Lyapunov equations.

A very important issue in systems and control theory is the development of model re-
duction techniques [5], [101], [116]. The need for highly detailed and accurate models
leads to very large and complex systems. On the other hand, when dealing with simu-
lation and especially control of such systems, limitations in computational and storage
capabilities pose the problem of finding a simpler model that approximates the complex
one in some sense. A crucial issue in model reduction is the preservation of special
system properties such as stability, passivity or in our case the positivity of the system.

In Chapter 6 we propose a model reduction method for positive systems. In Section 6.2
we generalise the model reduction methods of standard balanced truncation [46], and
singular perturbation balanced truncation [82], such that positivity is preserved. The
proposed technique uses a linear matrix inequality (LMI) approach [37], [81], and we
show that stability is preserved and an error bound in the H_,-norm is provided.

Furthermore, in Section 6.3 we generalise this technique to the case of positive de-
scriptor systems. Here, the procedure involves the additive decomposition of the trans-
fer function into a strictly proper and a polynomial part as in [116]. The reduced order
model is obtained via positivity preserving reduction of the strictly proper part of the
transfer function, whereas the polynomial part remains unchanged.

In Chapter 7 we reflect the studied topics and give some concluding remarks. This is fol-
lowed by Chapter 8 where we discuss open problems and point out possible directions
of future research.



Chapter 1

Preliminaries and notation

Consistency is the last refuge of the unimaginative.
- Oscar Wilde

In the present chapter, we introduce concepts from systems theory of descriptor sys-
tems as well as from nonnegative matrix theory, that are essential for the analysis of
positive descriptor systems. Throughout this thesis, we adapt the following standard
notation. R and C are the fields of real and complex numbers, respectively. N is the set
of nonnegative integers and R, denotes the nonnegative real numbers. C_ and C, are
the open left and right complex half-planes. For A € C we denote by R()\) its real part
and by |\| its absolute value. For the image space of a matrix A € R™*" we write im(A)
and for the nullspace of A we write ker(A). The rank of A is denoted by rank(A). For a
matrix A € C**™ we denote by AT the transpose of A and by A* the conjugate trans-
pose of A. Let I denote a real interval. The space of k-times continuously differentiable
functions from the real interval I into the real vector space R" is denoted by C*(I, R"),
or shortly by C*.

We define submatrices of a matrix as follows. Let (n) := {1,...,n} and let o =
{ag,...,q}, 8 = {P1,...,0m} € (n) be two nonempty sets. For A € R"*" we de-
note by Al«, 3] the submatrix of A composed of the rows and columns indexed by the
sets « and [ respectively, i.e.,

A[O!,ﬁ] — [aaiﬂj]l,m L€ Rlxm'

i,j=
For square matrices A4, ..., A, we define the block diagonal matrix
Ay 0
diag(Ay,..., A,) = :
0 A,
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and for matrix products AB, we denote the (i, j)-th (block) entry by [AB];;.

1.1 Matrix pencils and the generalised eigenvalue
problem

Let £, A € R™™. A matrix pair (£, A), or a matrix pencil \E' — A, is called regular if £
and A are square (n = m) and det(AE — A) # 0 for some A\ € C. It is called singular
otherwise. In the present work we only consider square and regular pencils. The terms
matrix pair and matrix pencil will be used interchangeably throughout this work.

Note that all notions defined in this section have the usual definitions for a single matrix
A as a special case when setting £ = 1.

A scalar A € Cis said to be a (finite) eigenvalue of the matrix pair (£, A) if det(A\E—A) =
0. A vector z € C"\ {0} such that (A\E' — A)x = 0 is called (right) eigenvector of (E, A)
corresponding to A. If £ is singular and v € C™ \ {0}, such that Fv = 0 holds, then v is
called (right) eigenvector of (F, A) corresponding to the eigenvalue oc.

The equation
AEv = Aw, (1.2)

is called generalised eigenvalue problem.

The set of all eigenvalues is called spectrum of (£, A) and is defined by

or(E,A), if £ is invertible,

o(E,A) = { o¢(E,A)U{oo}, if Eis singular,

where o;(E, A) is the set of all finite eigenvalues. We denote by

E. A) = A
pf( ) ) )\eg;?éA)| ‘7

the finite spectral radius of (£, A).

A k-dimensional subspace V C C" is called right deflating subspace of (E, A), if there
exists a k-dimensional subspace W C C" such that EV C W and AV C W. A k-
dimensional subspace V C C" is called left deflating subspace of (E, A), if it is right
deflating subspace of (ET, AT) [65], [125]. Note that deflating subspaces are some-
times also termed eigenspaces [113].

Vectors vy, ..., v, form a right Jordan chain of the matrix pair (F, A) corresponding to
the finite eigenvalue X if
(/\E — A)UZ = —Evi_l,
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forall 1 <i < k and vy = 0. Note that vectors wy, . .., w, form a right Jordan chain of the
matrix pair (E, A) corresponding to the eigenvalue ~c if they form a right Jordan chain
of the matrix pair (A, E) corresponding to the eigenvalue 0. A subspace Sf"’f cCr
is called right deflating subspace of (£, A) corresponding to the eigenvalue A, if it is
spanned by all right Jordan chains corresponding to .

Let A,...,\,, be the pairwise distinct finite eigenvalues of (£, A) and let S;lff, i =
1,...,p, be the right deflating subspaces corresponding to these eigenvalues. We call
the subspace defined by

SFl=8®... 0850 (1.2)
the right finite deflating subspace of (£, A). We call the subspace S/ right infinite
deflating subspace.

Vectors z, . . ., z, form a left Jordan chain of the matrix pair (£, A) corresponding to the
finite eigenvalue X if

wi(AE — A) = —w} | E,
forall1 <i < kandw, = 0. A subspace Vi ¢ C" is called left deflating subspace
of (E, A) corresponding to the eigenvalue X if it is spanned by all left Jordan chains
corresponding to \.

Let Aq,...,\,, be the pairwise distinct finite eigenvalues of (£, A) and let V;lff, 1=
1,...,p, be the left deflating subspaces corresponding to these eigenvalues. We call
the subspace defined by

Vil =vide. ov (1.3)
the left finite deflating subspace of (E, A). We call the subspace V%/ left infinite deflat-
ing subspace.
Often it is useful to consider the regular matrix pair (E, A) in the Weierstrall canonical
form [26], [34] that is a special case of the Kronecker canonical form [45].

Theorem 1.1 (Weierstral® canonical form (WCF)) Let (£, A) with E; A € R™" be a
regular matrix pair. Then, there exist regular matrices W, T' € R"*" such that

I 0
s (ot 8

J 0

W
0 I

T) , (1.4)

where J is a matrix in Jordan canonical form and NN is a nilpotent matrix also in Jordan
canonical form.

The smallest nonnegative integer v such that

rank(E") = rank(E"™)
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is called the index of the matrix £ and is denoted by ind(£). For a nilpotent matrix
N, i.e., there exists k € N with N* = 0, the smallest k with this property is called the
index of nilpotency. Note that for a nilpotent matrix the index and the index of nilpotency
coincide.

For a matrix pair (F, A) the index is defined by the index of nilpotency of the nilpotent
block N in the Weierstrald canonical form and is denoted by ind(F, A). For a descriptor
system with constant coefficients as in (1a) or (2a), we define the index of the descriptor
system by ind(£, A). Note that for a regular matrix pair (£, A) with A = AE, we have
ind(F, A) = ind(F).

1.2 Projectors and index of (£, A)

In this subsection, we present an alternative derivation of the index of (E, A) using
projectors, that is due to [52].

A matrix Q € R™" is called projector if Q? = (. A projector () is called projector
onto a subspace S C R" if im@) = S. Itis called projector along a subspace S C R"
if ker(Q = S. The following Lemma 1.2, in particular, states that every projector is
diagonalisable, see, e.g., [58].

Lemma 1.2 Let P be a projector. Then, there exists a regular matrix 7" such that

I 0
0 0

pP=7" T.

Furthermore, we will make use of the following well-known property of projectors, see,
e.g., [58].

Lemma 1.3 Let P, P, be projectors. Then,

1. P, P, project onto the same subspace S if and only if P, = P,P, and P, = P, Ps.

2. Py, P, project along the same subspace S ifand only if P, = PP, and P, = P, P;.

A simple consequence of Lemma 1.3 is that a projector is uniquely defined by two
subspaces, the one it projects onto and the one along which it projects. Consider the
Weierstral3 canonical form of the pair (E, A) given in (1.4). The matrices

I 0

Po=T"
00

0

T and B::W[é 0] Wt (1.5)
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are the unique spectral projectors onto the right and left finite deflating subspaces along
the right and left infinite deflating subspaces, respectively.

Now, we define the matrix chain as introduced in [52]. Let (E, A) be a regular matrix
pair and set
Ey =F, AO =A and

. . (1.6)
Ei=E —AQ;, A =APF, for i>0,

where (; are projectors onto ker E; and P, = I — Q;. Since we have assumed (E, A)
to be regular, there exists an index v such that £, is nonsingular and all F; are singular
for i < v [52], [88]. Note, that v is independent of a specific choice of the projectors
Q;. We say that the matrix pair (F, A) has tractability index v. It is well known that
for regular pairs (£, A) with constant coefficients the tractability index is equal to the
(differentiation) index as defined in Section 1.1, see, e.g., [27], and it can be determined
as the size of the largest Jordan block associated with the eigenvalue infinity in the
Weierstrald canonical form of the pair (E, A), see [74] , [88].

For the analysis of descriptor system via projector chains as defined in (1.6), it is es-
sential to use specific, so called canonical projectors @;, fori = 0,...,v — 1, that have
additional properties [89]. Note that for ind(E, A) > 1, even these specific projectors
are not unique. However, the canonical projector (), _; is unique and can be calculated
as in the following Lemma 1.4 [88].

Lemma 1.4 Let (£, A) be a matrix pair and define a matrix chain as in (1.6). Further-
more, define sets S; by

S;:={yeR": Ajy € im E;}. @.7)
Then, if E;,; is nonsingular, we have that
Qi = _QiE;_11Ai
is a projector onto ker E along S;.

For the construction of canonical projectors in the higher index cases in Section 2.2.4,
we need the following properties.

Lemma 1.5 Let (F, A) be a regular matrix pair of ind(¥, A) = v and define a matrix
chain as in (1.6), where the projectors Q; are chosen such that Q;Q; = 0 holds for all
0<i<j<v-—1 For0<i<vr—1define new projectors (); onto ker E; by setting
Qi=—Q;E;'A;and P, =T — Q;. Then, Q;Q; =0 holds forall 0 <i < j <v —1,



10 Chapter 1. Preliminaries and notation

Proof. The matrix —QiEglAZ- is a projector for all 0 < < v — 1, since
<_QiE;1Ai)2 = @iE;1<Ei - Ei+1)QiE;1Ai = _QiE;lEi+1QiE;lAi = —Q:E, " A;,
where we have used that £,Q; = (Eiy1 — Ai1Qit1 — ... — Ay 1Qu_1)Qi = Eip1 Q.

To show that ;; = 0 holds for all 0 < i < j < v — 1, let ¢, 5 be arbitrarily chosen fixed
indeces 0 <i < 7 <v — 1. Then, we have that

Q;Qi = Q;E, " A;Q: B, Ay = QB APy - Py QB A
= Q;E; A1 — Qi) (I — Qju)QiE " Ay = QE, " Ai(Qi — Qy)
=0.

1.3 Nonnegative matrices

A vector x € R", x = [z;]"_, is called nonnegative (positive) and we write z > 0 (z > 0)
if all entries =; are nonnegative (positive). A matrix A € R™", A = [a;]};_, is called
nonnegative (positive) and we write A > 0 (A > 0) if all entries a;; are nonnegative
(positive). A matrix A is called nonnegative on a subset S C R" if for all z € SN R}, we
have Ax € R} [17].

A matrix P € R}*" that has precisely one entry in each column and each row whose
value is 1 and all other entries are zero is called permutation matrix. Denote by II,, C
R?*" the set of permutation matrices of order n.

In the theory of nonnegative matrices, irreducibility of a matrix plays an important role.
We call a matrix A reducible if there exists a permutation matrix P € II,,, such that

All A12

PAPT =
0 A22

)

where A;;, Ay are square. Otherwise A is called irreducible.
The direct sum of n matrices A; € R"*" is defined by
Ay 0
EB?:lAi = diag(Al, . 7An) = .
0 A,

The following Theorem 1.6 states a canonical form for nonnegative projectors [17], [39].
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Theorem 1.6 Let A € R.*" be a nonnegative projector, i.e., A> = Aand A > 0, and let
A be of rank k. Then, there exists a permutation matrix II such that

J JU 00

man” = | 000 , (1.8)
VJ VJU 0 0
0 0 00

where U,V > 0 are arbitrary matrices and J = @*_,.J;, where the matrices J; € Rlﬂ“
are positive projectors of rank 1, i.e., J; = u;v}, where 0 < wu;,v; € le with vTu; = 1
for i = 1,..., k. Conversely, every matrix of the form in (1.8), where J = @®F_,J; and
U,V >0, is a nonnegative projector of rank &.

A matrix A is called Z-matrix if its off-diagonal entries are nonpositive. In the literature,
a matrix for which —A is a Z-matrix sometimes is called L-matrix, Metzler matrix or
essentially positive matrix, see, e.g., [17], [38], [64], [122]. Throughout this work we will
use the term —Z-matrix.

Lemma 1.7 Let A € R™™, Then, e4* > 0 for all t > 0 if and only if A is a —Z-matrix.

Proof. See, e.g., [122]. U

Let B > 0 with spectral radius p(B). A matrix A of the form A = sI — B, with s > 0, and
s > p(B) is called M-matrix. If s > p(B) then A is a nonsingular A-matrix, if s = p(B)
then A is a singular M-matrix. The class of M -matrices is a subclass of the Z-matrices.
Accordingly, a matrix for which — A is an M-matrix we call a — M -matrix.

The following Lemma 1.8 and Theorem 1.9 are well-known properties of M-matrices
and can be found, e.g., in [17].

Lemma 1.8 Let A be a —Z-matrix with 0(A) € C_. Then, A is a —M-matrix.

Theorem 1.9 Let A € R™*" be an irreducible singular AM-Matrix. Then,
e rank(A) =n — 1.

e Every principal submatrix of A other than A is nonsingular M-matrix.

By Theorem 1.9, for an irreducible singular M-matrix, one can deduce the existence of
an LU-decomposition that takes a special form.
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Corollary 1.10 Let A € R™*" be an irreducible singular M-matrix. Then, there exists a
unit lower triangular nonsingular M-matrix L and an upper triangular M-matrix U such

that
1
A=LU = i\ : (1.9)
1 0
Proof. See [76]. [

A symmetric matrix A is called positive (semi)definite and we write (A > 0) A > 0 if for
all z # 0 we have (z" Az > 0) 27 Az > 0. If this holds for —A then A is called negative
(semi)definite and we write (A < 0) A < 0. For matrices A, B we write (A < B) A< B
if(B—A>0)B—Ax>0.

1.4 Generalised inverses

Since we consider descriptor systems, where the matrix £ in systems (1a) or (2a) is
singular, we will need the concept of generalised inverses. The definitions and notation
we adopt here are taken from [17]. Generalised inverses are matrices for which some
of the properties of the standard inverses do not hold whereas some others do. If a
matrix A is nonsingular, then the matrix X = A~! satisfies the properties

AXA = A, (1.10a)
XAX = X, (1.10b)
(AX)" = AX, (1.10c)
(XA)T = XA, (1.10d)

AX = XA, (1.10€e)
XA = A% forkeN. (1.10f)

We only introduce three special cases of generalised inverses that we need in the
following.

Definition 1.11 (Semi-inverse) A matrix that satisfies conditions (1.10a) and (1.10b)
is called semi-inverse of A and we denote it by A&™"Y,

Note that a semi-inverse is not unique. The Moore-Penrose inverse of a matrix A is a
special case of a semi-inverse and it is uniquely defined by two additional properties,
see, e.g., [29].
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Definition 1.12 (Moore-Penrose inverse) A Moore-Penrose inverse A' of A is defined
by the properties (1.10a)-(1.10d).

The following Lemma 1.13 is well known and gives explicit formulas for any semi-inverse
and the Moore-Penrose inverse of a special matrix A, see, e.g., [29].

Lemma 1.13 Let A = xy”, z,y € R™\ {0}. Then any semi-inverse is of the form
ASY — T 2w e R,

such that (y”z)(w”z) = 1. In particular, the Moore-Penrose inverse is given by

1
At = — — 2T,
@T2)(yTy)"

In general, the Moore-Penrose inverse may be calculated via the reduced singular value
decomposition (SVD), see, e.g., [49].

Theorem 1.14 Let A € R™" with rank(A) = r. Then, there exist matrices U =
[uy,...,u,] €R™ and V = [vy, ..., v,] € R™", such that UTU = VTV = [, and

A=UxVT,

where ¥ = diag(oy,...,0.)and oy > 09 > ... > 0, > 0.

Lemma 1.15 Let A € R™" and let A = UXVT, where U, ¥,V are the matrices of the
reduced SVD as in Theorem 1.14. Then, the Moore-Penrose inverse of A is given by

At =Vt

For the explicit solution representation of the systems (1a) or (2a) that we introduce
in Section 1.6 we need the Drazin generalised inverse, first introduced in [36]. For a
matrix theoretical approach and applications, see, e.g., [29].

Definition 1.16 (Drazin inverse) Let A € R"*" with ind(A) = v. The Drazin inverse
AP e R of A is defined by the properties (1.10b), (1.10e) and (1.10f).

The following result states the Jordan canonical form representation of the Drazin in-
verse [29], which gives a more intuitive idea of this generalised inverse.
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Theorem 1.17 (JCF representation of the Drazin inverse) Let £ € R"™™ be such
that ind(£) = v > 0 and let P € R™*" be a regular matrix such that

c 0
0 N

E=P Pt

where C'is regular and N is nilpotent of index v. Then,

ct o
0 0

EP =P Pt

Corollary 1.18 (Existence and uniqueness of the Drazin inve rse) Every £ € R™"
has one and only one Drazin inverse EP.

1.5 Transfer function and H.-norms

Let the matrix quintuple [E', A, B, C', D] denote the system (1) or (2) with a regular
matrix pair (F, A), respectively. The function

G(\)=C(\E—A)"'B+D

is called transfer function and )\ is called frequency variable. Conversely, the quintuple
|E,A, B, C, D]is called realisation of G. Note that realisations are in general not
unique. Typically, the frequency variable is denoted by s in continuous-time and by z in
discrete-time. A transfer function G(\) is called proper if

/\113)10 G(\) < oo,
and improper otherwise. If lim,_., G(\) = 0, then G()) is called strictly proper. Let
H. . be the space of all transfer functions that are analytic and bounded in the open
right complex half-plane C, and let H, 4 be the space of all transfer functions that are
analytic and bounded on C\D, where D is the closed unit ball around the origin. The
continuous-time and discrete-time H,.-norms are defined by

|1Glloc.e = sup |G(s)]l2  [|Glloc,a = sup [|G(2)]l2, (1.11)
seCy 2€C\D

respectively, where || - || denotes the spectral matrix norm.
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1.6 Explicit solution representation

Consider the systems (1a) and (2a). In this work, we adopt the classical solvability
concept. A vector function z € C! is called solution of (1a), if for the assigned input u
and the given initial condition z it satisfies (1a) pointwise. A vector sequence z is called
solution of (2a), if for the assigned input sequence « and the given initial condition xz it
satisfies (2a) pointwise.

In order to formulate explicit solution representations of (1a) and (2a), respectively, we
need that the matrices £ and A commute. If they do not commute and the matrix pair
(E, A) is regular, we can obtain commuting matrices by multiplication with a scaling
factor as stated in the following Lemma, [26].

Lemma 1.19 Let (F, A) be a regular matrix pair. Let A be chosen such that AE — A is
nonsingular. Then, the matrices

A ~

E=ME—-A)"'"Fand A= (\E—A)'4

commute.

In the following, we refer to £, A as defined in Lemma 1.19 independently of the specific
choice of \. Furthermore, for a matrix B from system (1) or (2) we define

B:=(\E—A)"'B. (1.12)

Note, that for systems (1a) and (2a), respectively, the scaling by a nonsingular factor
such as (\E — A)~! does not change the solution.

For the matrices E, A as defined in Lemma 1.19 and their corresponding Drazin in-
verses, the following properties hold, see, e.qg., [74]:

EAP = APE, (1.13a)
EPA = AFEP, (1.13b)
EPAP = APEP. (1.13c)

Note that if we form matrix products such as EPE, EP A, EAP, EPB, AP B, the terms in
) cancel out, so that these products do not depend on the specific choice of \, see [74,
Chapter 2, Exercise 11]. This can be verified by transforming (E, A) into Weierstraf}
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canonical form in Theorem 1.1. Then, we have

—1
E=(\E—-A'E= s |l Yl row ] O} wlt Y-
0 N 0 I 0 N
~ —1
B DY A R I e A
0 AN — 1 0 N
_ (A — J)™! 0 T
0 (AN = DN |
and similarly,
A . N\ — J)!
A:(AE—fl)—lA:T—l(A NS 0 LT
0 (AN = 1)
For the Drazin inverses of £ and A we obtain
~ \ — ~ D \ —
pr = [M JE;T and ADzz“leQI J) "

0 0 AN — T

Here, we have used that the matrices J and (Al — .J)~! commute, and for commuting
matrices Z,, Z, with Z, regular, we have (Z,2,)” = ZPZ*, see, e.qg., [74]. Therefore,
the products

P _ YT 1y-1
AP h 1 M —J 0] |(M =) ) 0 T -l I 0 T

0 0 0 (AN —I)7IN 00
o Nl T1T/57 . 71—1
AP A - 71 M—J 0 |(M—=J)" ' ) 0 _ J 0 T

0 0 0 (AN — 1)1 0 0

(s 11 Va D D
BAD — 71 (M —J) ) 0 (N = J)J ) 0 |/ 0 T
0 (AN —I)"'N 0 AN — 1 0 N

do not depend on A. Note that P, = EPE is the unique spectral projector onto S{/
along the deflating subspace corresponding to the eigenvalue oo defined in (1.5). Let B

be defined as in (1.12) and B = W B, where B = ?] is partitioned according to the

2
Weierstrald canonical form of (£, A). Then, we have

-1
T> i

J 0

[OT—W
0 I

B=(\E—-A"'B= AW
0 N
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B S DR . .
61] and APB = T-! JB 1] , which are also independent
2

and we obtain EPB = 7!

of \.
The following Theorem 1.20 gives an explicit solution representation in terms of the
Drazin inverse.

Theorem 1.20 Let (E, A) be a regular matrix pair with £, A € R™™ and ind(E, A) =
v. Let E, A be defined as in Lemma 1.19 and B as in (1.12). Furthermore, for the
continuous-time case, let v € C” and denote by «,i = 0...,v — 1, the i-th derivative
of u. Then, every solution z € C' to Equation (1a) has the form:

S . t . . v—1
2(t) = " MEP By + / AP Bu(r)dr — (I — EPE)Y " (EAP) AP Bu(t),
0 i=0

(1.14)
for some v € R". In the discrete-time case, every solution sequence z(t) to Equa-
tion (2a) has the form:

=

t—1 v
Ev+ ) (EPA)TEPBu(r) — (I - EPE) > (EAP) AP Bu(t +1).
=0

7

~

x(t) = (EPA)EP

I
o

(1.15)

for some v € R™.
Proof. See, e.qg., [26], [74]. U

Corollary 1.21 Under the same assumptions as in Theorem 1.20, the continuous-time
initial value problem (1a) has a (unique) solution corresponding to the initial condition
xo and to the input « € C" if and only if there exists a vector v € R"™ such that

—_

= EPEBv— (I — EPE)Y  (EAP) AP Bu™(0). (1.16)

i

I
o

The discrete-time initial value problem (2a) has a (unique) solution corresponding to the
initial condition z, and to the input sequence w if and only if there exists a vector v € R
such that

v—1
— EPFBv— (I — EPE)Y (EAP) AP Bu(i). (1.17)

7

Il
o
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Proof. See, e.g., [26], [74]. U

Unlike in the standard case, Corollary 1.21 shows that not for every initial condition x,
there exists a solution to systems (1a) or (2a). The set of initial conditions for which a
solution exists is restricted and depends on the chosen input. This leads to the following
definition of consistent initial values.

Definition 1.22 We call an initial value z, in (1a) or in (2a) consistent with respect to
an assigned input v if (1.16) or (1.17) holds, respectively.



Chapter 2

Nonnegative matrix theory for positive
descriptor systems

As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.
- Arthur Cayley

2.1 Classical Perron-Frobenius theory

The well-known Perron-Frobenius Theorem states that for an elementwise nonnegative
matrix, the spectral radius is itself an eigenvalue and has a nonnegative eigenvector. It
is named after Oscar Perron and Georg Ferdinand Frobenius. Perron proved the first
part of the theorem for positive matrices in 1907 [106], and Frobenius extended it to
irreducible and nonnegative matrices in 1912 [43].

This result has many applications in all areas of science and engineering, in particular
in economics and population dynamics, see, e.g., [17]. Also, the Perron-Frobenius
theorem is widely used in the analysis of standard positive systems, see, e.g., [2],
[14], [31], [38], [120]. For instance, stability properties of positive systems are mainly
determined by the Perron-Frobenius theory, see Chapter 4.

The classical Perron-Frobenius Theorem, see, e.g., [17, pp. 26/27], states as follows.
Theorem 2.1 (Perron-Frobenius Theorem) Let A > 0 have the spectral radius p(A).
Then p(A) is an eigenvalue of A and A has a nonnegative eigenvector v corresponding

to p(A). If, in addition, A is irreducible, then p(A) is simple and A has a positive eigen-
vector v corresponding to p(A). Furthermore, v > 0 is unique up to a scalar multiple,

19
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i.e. if w > 0 is an eigenvector of A, then w = av, o € R,..

Since we consider positive descriptor systems as in (1) or (2), where E, A arereal n xn
matrices, the dynamics is described by the eigenvalues and eigenvectors associated
with the matrix pair (F, A). Therefore, the next section is devoted to the extension of
this important theory to matrix pairs.

2.2 Perron-Frobenius theory for matrix pairs

In this section we present a new approach to extend the classical Perron-Frobenius
theory to matrix pairs (E, A), where a sufficient condition guarantees that the finite
spectral radius of (E, A) is an eigenvalue with a corresponding nonnegative eigenvec-
tor [96]. Our approach is based on the construction of projector chains as they were
introduced in the context in [52]. For the special case E = I our new approach reduces
to the classical Perron-Frobenius theorem for matrices. We present several examples
where the new condition holds, whereas previous conditions are not satisfied.

2.2.1 Previous generalisations and their drawbacks

In the literature, several approaches have been presented to generalise the classical
Perron-Frobenius theory to matrix pencils or further to matrix polynomials. In [87] the
nonnegativity condition for A, which can be stated as y > 0 = Ay > 0, is directly
generalised. For the matrix pair (E, A) the condition E7y > 0 = ATy > 0is given, which
is sufficient for the existence of a positive eigenvalue and a corresponding nonnegative
eigenvector. In [9] a sufficient condition, (E — A)~'A > 0, for the existence of a positive
eigenvalue in (0, 1) and a corresponding positive eigenvector if (E—A)~! A is irreducible,
is proved. The relationship of the two ideas from [9] and [87] is studied in [97]. In
[93], the condition from [9] is imposed by requiring £ — A to be a nonsingular M-
matrix and A > 0. Here, the structure of nonnegative eigenvectors is studied from
the combinatorial point of view. In [107] the Perron-Frobenius theory was extended to
matrix polynomials, where the coefficient matrices are entrywise nonnegative. Other
extensions concerning matrix polynomials are given in [41].

The main drawbacks of the generalisation in [9] is that on the one hand it is a restrictive
condition, since E — A is not necessarily invertible, and on the other hand it does not
have the classical Perron-Frobenius theory as a special case, where £ = [. Further-
more, only the existence of a nonnegative real eigenvalue is guaranteed instead of the
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spectral radius being an eigenvalue. The condition in [87] has the classical Perron-
Frobenius theory as a special case but the condition is not easy to verify. Furthermore,
for regular matrix pairs (£, A) with singular E this condition never holds, since one can
always find a vector y < 0 in the nullspace of £ or ET such that Ay < 0 or ATy < 0.
However, this is the situation that is studied in this work.

Our extension of the Perron-Frobenius theory to regular matrix pairs (E, A) has a num-
ber of advantages over the existing conditions in the literature. In Section 2.2.2, for the
case of index 1 pencils, we prove an easily computable sufficient condition in Theo-
rem 2.2 that guarantees that the finite spectral radius of (E, A) is an eigenvalue with a
corresponding nonnegative eigenvector. We present several examples where the new
condition holds, whereas the conditions in [9] and [87] are not satisfied. In the general
case (where the index may be arbitrary) presented in Section 2.2.3, we have to impose
an additional condition on the projectors, see Lemma 2.7, that is satisfied naturally in
the index 1 case. The general sufficient condition that we then prove in Theorem 2.8 is
in the index 1 case the same as in Theorem 2.2 and also guarantees that the finite spec-
tral radius of (£, A) is an eigenvalue with a corresponding nonnegative eigenvector. In
Corollary 2.10, we prove two further conditions that are equivalent to the condition in
Theorem 2.8. All conditions have the classical Perron-Frobenius theory as a special
case when £ = 1.

2.2.2 Regular matrix pairs of index at most one

In this subsection we study regular pairs (£, A) of index at most one. This is a special
case of the general result of this section that we present in the next subsection. The aim
of this section is to gain a more intuitive idea of the projector-based approach before
stating and proving the result in its full generality. The techniques used in the index 1
case go back to [52].

Theorem 2.2 Let (E, A), with £, A € R™*", be a regular matrix pair with ind(F, A) < 1.
Let )y be a projector onto ker £ along the subspace S, defined as in (1.7) fori = 0, i.e.,

So:={yeR": Ay € im E'}, (2.2)
let Py =1— Qo,and Ay = AP,. Then E, := E — AQ, is nonsingular and if
E'A >0, (2.2)

and os(E, A) # 0, then the finite spectral radius p;(E, A) is an eigenvalue of the matrix
pair (E, A) and if ps(E, A) > 0, then there exists a nonnegative eigenvector v corre-
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sponding to p;(E, A). If E;'A,, in addition, is irreducible, then p;(E, A) is simple and
v > 0 is unique up to a scalar multiple.

Proof. Let ind(E, A) = 0. Then, E' is regular and we have that @y = 0, £, = E and the
condition in Theorem 2.2 reduces to the one of the classical Perron-Frobenius theorem
for E7LA.

Letind(£, A) = 1 and consider the generalised eigenvalue problem (1.1). We have that
E; as defined in (1.6) is nonsingular, see [88], and we can premultiply equation (1.1) by
E;'. By also using that Py + Qo = I, we obtain

Efl()\E — A)(Po + Qo)U = O,

or equivalently
(AET'E — E;'APy — E;YAQo)v = 0.

Furthermore, we have E;'E = Py since £\ Py = (E—AQy) Py = Eand —E;'AQy = —Q,
since F1Qy = (F — AQo)Qo = —AQ,. Hence, we obtain

(A — E;PA) Py + Qolv = 0,

which after multiplication by P, and @), from the left is equivalent to the system of two
equations

{ Py[(M — ETTA)Py + Qolv = 0, (2.3)

Qo[(AM — E{ ' A)Py + Qolv = 0.

We have that () is a projector onto ker £ along S, and by Lemma 1.4 we conclude that
—QoE;'Ais also a projector onto ker E along S,. Hence, by Lemma 1.4, we have that
(—QoE["A)Py = QuPy = 0. Therefore, by writing Py = I — @, in the first equation of
(2.3), the two equations reduce to

(M — E[TA)Pyv = 0,
Q(ﬂ) = 0.

Since Py = PP, this is equivalent to

[ — EYAP) Py —
{(A AR Pov =0, (2.4)

QQU = 0
Setting x = Pyv, y = Qov and v = FPyv + Qv = = + y, we obtain a standard eigenvalue

problem in the first equation and a linear system in the second equation. From the
first equation we know by the Perron-Frobenius Theorem that if £, ' AP, > 0, then the
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spectral radius of E;'APR, is an eigenvalue with a corresponding nonnegative eigen-
vector. If E;*AP, is in addition irreducible, then we have that p(E;'AP,) is a simple
eigenvalue and there exists a corresponding positive eigenvector that is unique up to a
scalar multiple. Set A := p(E;'AR,) and if A # 0, due to (2.4), we can set & = Py for

the corresponding nonnegative (positive) eigenvector. Then, we obtain

E;'APyi Az
& APy \E, &
& APy ME — AQo)i
& APy Py AEPyv — AQoPyv
& A(Pyv + Qo) AEv
< Av S\Ev,

which is the generalised eigenvalue problem (1.1). Hence, p(E;'APy) = p;(E, A) and
if ps(E,A) # 0, there exists a corresponding nonnegative eigenvector. This completes
the proof. [

Note that in the index 1 case, the projector F, is the unique spectral projector onto the
right finite deflating subspace of (E, A) defined in (1.5).

Example 2.3 Consider the pair (£, A) given by

2 2
0

E = and A=

10
0 1]

We have ind(E, A) = 1 and the pair has only one finite eigenvalue A\ = 0.5 with eigenvector

V=

v . )
1] , where we may normalise the eigenvector so that v; > 0.

To check the sufficient condition (2.2) of Theorem 2.2, we choose a projector Qo onto

ker Ey, e.g.,
Qo =

and get

For the inverse we obtain
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and a projector )y onto ker £ along S is given by

Qo = —Qoéfle =

We then have

2 3

Ei=Fy— A =
1 0 0Qo [O q

and we set Py = I — Qo. Condition (2.2) then reads
o5 || o] |1 1] _
0 =110 1} ({0 O

For this example, the theories in [9] and [87] cannot be applied, since (E — A)™'A =

E;lAl - E;IAPO -

11
22>O
0 o] 7

and we can apply Theorem 2.2.

1 2 1
[O 1] # 0 and there exists a vector, e.g., y = [ 1] such that £7y > 0 but ATy # 0.

Ey 0
Example 2.4 Consider a pair (E, A) with ind(F,A) = 1 and F = 011 ol where Fyq
- R |
is nonsingular and A = A A is partitioned accordingly. For a pencil in this form,
21 A2
ind(E,A) = 1 is equivalent to Ay being nonsingular, see, e.g., |74]. We choose any

projector Qo onto ker E, e.g.
~ 00
QO - [O I] )
and compute £, and El_l. We obtain

By —Ap

Bl —EARAL
0 — A}

-1
) 1

Ey=E— AQ, =

Then, we determine a projector )y onto ker F along Sy = {y € R" : Ay € im E'} as

0 0
0 I

0 0

B —EARAL
0 — A5}

All A12
A21 A22

Qo = —QoEflA =
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1 0 1 .
Furthermore, we get Py = ., and then compute £ and F; . We obtain
By — ApAy An —Ap
E, = E—AQy = ,
1 < — Ay —Ag
Bl _ Byl —Ei Ay
1 - — — — — — —
—Ap AnER' Ay An Bt A Ay — Ay
Condition (2.2) then reads as
E-AP, — Bt — B AL AL Ay A I 0
! Ay An Byt Ay An B AnAy — Ay | [An A |—AynAn 0
I -1
_ _?11 AS_1 0 >0,
where AS = All — A12A2_21A21.
Consider again the eigenvalue problem
(AE — A)v = 0.
In our case we obtain
AE — A=Al |n -0
—Ag —Axp| |ve
Since F1; is nonsingular, we can rewrite this system as
()\I — El_llAll)Ul - E1_11A12U2 = O,
—Ag1vy — Apvy = 0,
which is equivalent to
{ Ve o 25)

-1
Vg = —A22A21U1,

where Ag = Ay — A12A2_21A21. Condition (2.2) gives El_llAS > 0 and, by the Perron-
Frobenius Theorem, we obtain from the first equation of (2.5) that p(E;'Ag) =: A is an

eigenvalue with a corresponding eigenvector vy > 0. Using this, from the second equation

of (2.5) we obtain

Vg = —A2_21A21’Ul = —)\_1142_21/121)\1)1 = —)\_1A2_21A21E1_11A51)1 Z 0,

since — A5, Ay Byt Ag > 0 by (2.2) and we have A >0 and v; > 0 from the first equation

of (2.5).
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Remark 2.5 1. Considering the case £ = [ in Theorem 2.2, we have Py = I, and the
condition Fy YA, > 0 reduces to the condition A > 0 of the classical Perron-Frobenius
theorem.

2. Condition E;'A; > 0, written out, reads as

(E—A(I — Ry)) ARy > 0,
which, without the projectors, would be the condition in [9]:
(E—A)tA>0.

Yet, whereas (E — A(I — Fp)) is nonsingular by construction, the matrix £ — A is not
necessarily invertible. Hence, the new condition finds a much broader applicability.

3. Consider the case o;(F, A) # () and p;(E, A) = 0. If E;'A; > 0, then we obtain that
pr(E,A) =0 1is an eigenvalue of (E, A), however, there is not necessarily a corresponding
nonnegative eigenvector, as the following Example 2.6 shows.

Example 2.6 Consider the matrices

- _71 - - —- - - -
- 11 1 11 2 2
E = T'ET= ! = :
-1 —=2| |0 0| |-1 -2 -1 -1
— =4 -1 r — - — -
- 11 11 -1 -2
A = TTAT = 00 =
-1 =2| |0 1] |-1 -2 12

Note that by (1.5) we have that E = P, is the spectral projector onto the right finite
deflating subspace of (E, A). Hence, we obtain

-1 =2 2 2
=0,
1 2] [—1 —1]

and o¢(E,A) # 0. Therefore, ps(E,A) = 0 is an eigenvalue of (E,A). However, the
T T
eigenpairs of (E,A) are (0, [1 —0.5} ) and (oo, [1 —1] ) and there does not ezists a

nonnegative eigenvector corresponding to ps(E, A).

E'A = E;TAE = B

2.2.3 Regular matrix pairs of general index

In this section we consider a regular matrix pair (£, A) of ind(E,A) = v. For v >
1 we need to define the matrix chain in (1.6) with specific projectors. The following
Lemma 2.7 guarantees the existence of projectors with the required property. Canonical
projectors as defined in [89] fulfil the condition of Lemma 2.7. An alternative way to
construct these projectors along with some examples is presented in Section 2.2.4.
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Lemma 2.7 Let (E, A), with £, A € R™", be a regular matrix pair of ind(E, A) = v.
Then, a matrix chain as in (1.6) can be constructed with specific projectors @, P; such
that Q;v = 0 holds for all v € ¢/ and for all 0 < i < v.

Proof. From [89] we know that for a regular matrix pair (E, A), we have that
ker F; Nker A; = {0} (2.6)
holds for all 0 < < v. Furthermore, from (2.6) or, e.g., from [89] we obtain that
ker E; Nker E; 11 = {0} (2.7)

forall 0 < i < v — 1. We now show by induction that we can construct projectors Q;
such that Qv = 0 holds for all v € S{* and for all 0 < i < v. For the existence of
such a Qo, we have to show that ker Ey N S§*/ = {0}. Suppose that = € ker Ey N S
Then from Eyz = 0 we obtain that x = 0, since otherwise, by definition, x would be
an eigenvector of (E, A) corresponding to the eigenvalue co. Thus, we can choose the
projector (), onto ker F, along some subspace M, that completely contains ijef . This
ensures Qv = 0 for allv € S§*/. Now, suppose that Q;v = 0 holds for all v € 5§/ and for
all0 <i < kforsome k < v— 1. Note that for the complementary projectors P, = I — Q;,
this implies that P,v = v forall v € S}l“"f. To construct a projector ()1 onto ker Fj,, such
that Qy,1v = 0 holds for all v € S§*/, we have to show that ker E 1 N ijef = {0}. For
this, suppose that 0 # x € ker Ey,q N ijef. Then, by using the assumption, we obtain

0 = Eppr=(Ey— AQo — ... — AQr)r = By,

from which we again conclude that =z = 0, since otherwise, by definition, = would be
an eigenvector of (£, A) corresponding to the eigenvalue co. Thus, we can choose the
projector @, onto ker Ej,; along some subspace M, that completely contains ijef.
This ensures Q,1v = 0 for all v € S§* and completes the proof. [

Note that for » = 1, condition Qqv = 0 holds automatically for all v € ijef and in
particular for all eigenvectors, see (2.4).

The following Theorem 2.8 states our main result. We prove a new, broadly applicable
Perron-Frobenius-type condition for matrix pairs (£, A) in the general index case.

Theorem 2.8 Let (E, A), with E, A € R"™*", be a regular matrix pair of ind(E, A) = v.
Let a matrix chain as in (1.6) be constructed with projectors Q; as in Lemma 2.7. If

E;'A, >0, (2.8)
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and o;(E, A) # 0, then the finite spectral radius p;(E, A) is an eigenvalue of (£, A) and
if ps(E,A) > 0, then there exists a corresponding nonnegative eigenvector v > 0. If
E 1A, is, in addition, irreducible, then we have that p;(E, A) is simple and v > 0 is
unique up to a scalar multiple.

Proof. Consider the generalised eigenvalue problem (1.1)
(AE — A)v = 0.

If v is an eigenvector corresponding to a finite eigenvalue A, i.e., v € S}lef, then we have
Qv =0forall 0 <i < vand we can equivalently express (1.1) as

(ME —A)Qo — A1Q1 — ... — Ay 1Quq) — Ay = 0
< (AE,— Ay = 0
s (M —-E*Aw = 0. (2.9)

By construction, we have that v = F, - - - P,_;v and we obtain that (2.9) is equivalent to

M —-E'A)Py---P,_jv = 0
<:>()\[—E;lApo"'nyl)Po"'nylv =0
s (M-E*A)v = 0. (2.10)

Note, that in this way, we have shown that any finite eigenpair of (E, A) is an eigen-
pair of E1A,. Conversely, by (2.10), we have that any eigenpair (\,v) of E 1A, with
A # 0 is afinite eigenpair of (E, A). Since E,'A, > 0, by the classical Perron-Frobenius
Theorem we obtain that p(E,'A,) is an eigenvalue of E;'A, and there exists a corre-
sponding eigenvector v > 0. Since we have assumed that o;(E, A) # (), we have that
p(E;TA,) = ps(E, A) is also an eigenvalue of (E, A). If p(E;'A,) > 0, then there exists
a corresponding nonnegative eigenvector. [

Remark 2.9 In Theorem 2.8 it is shown that any eigenpair (\,v) of E; 1A, with A # 0
is a finite eigenpair of (E, A). However, this is not necessarily the case if A = 0, since
an eigenvalue 0 of £,' A can correspond either to the eigenvalue 0 of (E, A) or to the
eigenvalue oo of (E, A). One can see this by considering an eigenvector w correspond-
ing to an infinite eigenvalue of (E, A), i.e., Fw = 0. Then, we obtain F,'A w = 0,
since Fy---P,_yw = 0. Since we have assumed that o;(E, A) # (), we have that
p(E;TA,) = ps(E, A) = 0 is an eigenvalue of (E, A). However, a corresponding non-
negative eigenvector does not necessarily exist as Example 2.6 shows.
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Corollary 2.10 Let P. be the spectral projector of the matrix pair (£, A) onto the right
finite deflating subspace 5§ defined in (1.5), and let £, A be defined as in Lemma 1.19.
Under the assumptions of Theorem 2.8, each of the conditions

P.E'A > 0, (2.11)
EJYAEPE > 0 (2.12)
EPA > 0 (2.13)

is equivalent to condition (2.8), respectively.

Proof. From [89, Theorem 3.1, Section 4] we obtain that for projectors as in Lemma 2.7,
we have By ... P, , = P. = EPE and

E'A,=E;'AP, = P,E;'A=EPA. (2.14)

Remark 2.11 Condition
E;lA >0, (2.15)

can also be proved to be sufficient in Theorem 2.8, see Equation (2.9), yet there is no

evidence for it to ever hold.

2.2.4 Construction of projectors

In Section 2.2.3, Lemma 2.7, we have proved the existence of specific projectors
for constructing the matrix chain in (1.6) in order to establish a sufficient condition
in Theorem 2.8 for ps(E, A) to be an eigenvalue with a corresponding nonnegative
eigenvector. In [89], projectors with properties as in Lemma 2.7 are called canonical.
Note that canonical projectors are not unique for ind(E, A) > 1. In [89], motivated
by a decoupling procedure of differential-algebraic equations, specific canonical pro-
jectors, the so called completely decoupling projectors, are defined by the property
Qi=—QiPiy1---P,_1E; ' A;foralli =0,...,v—1. Itis shown in [89, Theorem 2.2] that
such projectors exist and a constructive proof is given. However, to keep the present
work self-contained, we provide an alternative procedure to construct canonical projec-
tors with properties as in Lemma 2.7.

First, we will formulate the construction procedure in the general case and give a proof
by induction. Then, in Section 2.2.5, we will exemplarily show how this procedure works
in the index v = 2 case and give two examples for v = 2.
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Consider a regular matrix pair (£, A) of ind(E, A) = v. We make the following observa-
tions:

1. For fixed projectors @, ..., Q,_o, the projector ),_; is uniquely defined by being
a projector onto ker F,,_; along S,_;, see [89].

2. Consider the sets S; as defined in (1.7). We have that ij"’f C Sy, since for any
v e S§' there exists a w € S§/ such that Av = Ew, and hence, Av € im I, i.e.,
v € Sy. Furthermore, we have that S, € S; C ... C S,_4, see [88], and therefore,
S¢ C S,_1. From this we conclude that @,_v = 0 holds for all v € 57/

In the foIIowing recursive constructions of matrix and projector chains, we denote by
EJ(Z), A( D Q ) the i-th iterate of £, A;, Q;, P; in the recursive construction.

With the basic construction of projectors Q; fori =1,...,v —1asin[89], i.e., Q;Q; =0
for j > i, we construct the chain in (1.6) and set £\ = £;, A" = 4;, Q" = @,, and
Pj(l) = P;. Now, to obtain projectors with properties as in Lemma 2.7, we redefine the
initial projectors by the procedure in Algorithm 1.:

Algorithm 1 : Construction of completely decoupling projectors

Input : projectors Q forz' =1,...,v—1 such that Q,Q; = 0for j > i

Output : projectors Q> such that QP My =o0forallv e Sy
1 fori=0,...,v—1do
2 for j=1,...,v—ido
(new) (old) old) 1 4(old) ; ; .
3 Q,_; QV TS (ESTY) AT, where old denotes an appropriate index;
4 redefine the last part of the chain using QV’”‘;” ;
5 apply Algorithm 1 t0 Q,_;1,...,Q,—1 in order to regain the completely
decoupling property, i.e. Q,_j;1v=...=Q, jv=0forallv e ijef.
Theorem 2.12 For the projectors Q computed in Algorithm 1 we have Q e

for all v € 7.

Proof. We perform an induction over the length £ = v — i of the chain in (1.6), where ¢
is the index variable in Algorithm 1.

Let £ = 1. Without loss of generality, we can consider the index v = 1 (and i = 0)
case. We take any projector Qol onto ker £ and having computed E{l) we set Qf’ =
—QO ( ) LA, which by Lemma 1.4 fulfils 2y = 0forallv e Sj‘fef.
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Suppose that for some chain of length £ > 1 we can construct completely decoupling
projectors and consider a chain of length k£ + 1. Without loss of generality we consider
the index » = k + 1 case, i.e., we have an initial chain with projectors le), . QV 1
such that Qg.l)QEl) = 0 holds for 7 > i and start Algorithm 1. Note, that this is also true
for any intermediate chain of length £ + 1 in a general index v > k + 1 case due to
Lemma 2.7.

Now, we have to subsequently redefine projectors ,_; for j = 1,...,v — 4 and have to
show that the redefined projectors are completely decoupling Therefore, we perform
an induction over j. Let j = 1. We set Q?, = —Q'" (ESY)~*A" that by Lemma 1.4
fulfils Qv = 0 for all v € S§.

Suppose, we have completely decoupling projectors @,_i,...,Q,_, forsome 1 < j <
vV —1.

Set Q Q(Vl,)j,l(E(k ) 140 where k is an appropriate index. By Lemma 1.5,
we have that Qf_)j_l is a projector. By the definition of deflating subspace, we have that

for all v € S/ there exists w € 9/ with Av = Bw. Therefore, we obtain Q. v = 0
for all v € S/, since

1/]1: v—j—1°

2 1 140 1
Qz(/f)jflv = _Qz(/f)jfl EF)71Af )j 1V = Qu j— 1(E(k) Au j— 2P( )] U =

(E)7)
1 — 1 1
= QL (B TAR, L - Q2 v =
1 — 1 1 1
= Q(V—)j—l(Elgk)) 1A(y—)j—QU - Q(y—)j—1Q(y—)j—2U =
= QL (EP)TAY P == QU (EP) T Aw =
Qz(jl—)2(E£k) ' Eyw =
oW (g_ow_  _ _
Qy—j—l( Qo Q,, S~ Quj— - Qu-1)w
where Q,_jw = ... = Q,_yw = 0, since Qy,],...,QV , are compIeter decoupling.

Furthermore, we have Q(yl_)j_ngll) =0fori; =0,...,v—j—2and QV VA QV Zi1) =0.
Hence, we obtain

QV —j-v=0.
This completes the induction over & and we have shown that we can construct a Qéz)
such that Qv = 0 for all v € S/

We redefine the chain starting from Q[(f) and consider the chain starting from ;. The
new chain has length & and we can construct completely decoupling projectors by ap-
plying the induction assumption. This completes the proof. [

In total, we have to make 25;5(2”1 — 1) updates of the projectors @);. The sulfficient
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condition of Theorem 2.8 is then checked using Efyl) instead of £/,_; and reads

EZNAPPPY ... PZ) > 0

v—

& BX)A® Ip®) >

So far the described procedure is merely of theoretical value. For a discussion of how
to apply this procedure numerically, see [78].

2.2.5 Examples

We now show how the projectors are constructed in Algorithm 1 for the index v = 2
case and give two examples.

1)

We start by choosing any projectors Qf)l), () onto ker E0 ,ker E1 , respectively. We

then determine E$" and set Q!” gl)(E(1 )1AY. Thenwe have Qv =0 for all v e
S¢/. By using Qf) we compute E{” and proceed by setting Q\” = —Q\"(E?)-1ALY,
WhICh iS a projector by Lemma 1.5. Forany v € ijef we have w € ij“’f such that
o= —Q¢(B) ™ Av = QI (ESY) " Bw =~ (1 - Q) - Qi)w =0,
since Q1 w = 0. Here we have used the properties ( ) 1A Q le) fori =0,1
and
BP = B APQ - AP

el = (BB - (B) A - (B) A ey

e = (ED)TEY + Q" + Q.
By using Q\” we compute £'* and A4'®). Now, we proceed as in the case v = 1 to define

(3) as a projector onto ker E(Q) To ensure that it pro;ects along S; we again compute

Eég , set Q(4 ~QP(BY) 1A and obtain that Q{"v = 0 for all v € S}, Flnally, we
compute E . The sufficient condition of Theorem 2.8 is then checked Wlth E )instead
of £, and reads Eé"‘ APSQ)PI( ) > 0. For an illustration of the recursive construction of the
projectors in the index 2 case with the properties required in Theorem 2.8, see Figure
2.1

We now present two index v = 2 examples, where condition (2.8) of Theorem 2.8 holds,
whereas the conditions in [9] and [87] do not hold.
Example 2.13 Consider the matrix pair (¥, A) with

0 110
E=10 010 and A=
0 01

[enl NaniN
Ol—= O
NSO O
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Figure 2.1: lllustration of the recursive construction of projectors in the index 2 case.
Top down, we have the chain matrices in increasing order. From left to right, we have
the successive calculation of these.

We have that (E,A) is regular with ind(£, A) = 2 and there is one finite eigenvalue

T
pr(E,A) = 2 and a corresponding eigenvector [O 0 03] , which can be chosen so that
V3 > 0.

We compute the matrix chain by setting, e.g.,

1 00 -1 10 000
QY =1000|, BV=£-4Q" =10 0 0], AV=4P"=|0 10
000 0 01 0 0 2
We choose, e.g.,
1 00 0
W—110 0|, and PPV =|-1 1 0],
000 0 01
and compute
-1 10 0 -1 0
B =) —APQY = -1 0 0| and (B{)'=|1 -1 0
0 01 0 0 1
Then, we compute the projector onto ker Efl) along S by setting
010
QY =-Q(E") AV =10 1 0
000
and determine
-1 1 0 -1 -1 0
EY =pD —AVQP =10 -1 0| and (EY) 0 —1 0
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We set
1 10 0 -1 0
= —Q(EMN T 4,=10 0 0| and PP =10 1 o0,
0 00 0 0 1
and compute
-1 00 0 -1 0
EP =B —AQY =10 0 0] and AP =4,PP =10 1 o0
0 01 0 0 2
0 00
Choosing Q§3): 0 1 0f, we determine
0 00
-1 1 0
B =B -APQY = | 0 -1 0| =EY and (B)=(5),
0 0 1
and verify that Qg = _Q1 ( ) A (3). We finally set P4 = [ — §4). The
sufficient condition (2.8) of Theorem 2.8 then holds, since
-1 1 0[]0 0 O 0 00
(EMAPPPY =10 —1 0| |0 0 0] =100 0] >0
0 0 21001 0 0 2
The condition in [9], however, is not satisfied, since
-1 -1 0|1 0 O -1 -1 0
(E—A)T"A=]|0 -1 0|0 1 0/=]0 —1 0] #0.
0O 0 1|0 0 2 0 0 2

T
Also the condition in [87] does not hold, since, e.g., for y = [—1 1 1} we have Fy > 0

but Ay # 0. Note, that we have P, = P(Q)P( ) , yet, condition (2.15) does not hold, since
(ES) 1A # 0.

Example 2.14 Consider the regular matrix pair (E, A) of ind(F, A) = 2, where

Ell E12 0 0 0 0 0 A14
o Ey FEyp 00 and A — 0 A O 0
0 0 00 0 0 A 0
0 0 00 Ay 0O 0 0
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Note, that every regular matrix pair of index 2 can be equivalently transformed into such

a form, where Ay4, A4y, Asz, Eag are square regular matrices, see [74]. We choose

00 0O
@ 0000
@ 00 I 0]’
00 0 I
and compute
I 00 O FEi1 Eq 0 — A
I E E
Pél): 0 0 0 and Efl): 21 29 0 0
00 0 0 0 0 —As 0
00 0O 0 0 0 0
Choosing
I 0 0 0
Q(l): —E£21E21 000
! 0 00 0]’
A7lEy, 0 0 0
where E~11 = E11 — E12E521E21, we obtain
[0 000 0 0 00
Pl(l) _ E;;Egl I 0 0 ’ Agl): 0 A22 0 0 ’ and
0 0 71 0 0 0O 00
—AG'En 0 0 T Ay 0 00
[ En By, 0 —Ay
gV _ By + AgEyy) Eyy  Eng 0 0
2 0 0 —Ay; 0 |’
—An 0 0 0
[0 0 0 — A
(EMV)1 = 0 Es5y 0 By (B + A Eoy Eay ) Ay
2 0 0 — Az} 0
| —All AU EREL 0 —AL (B — EnEyR ApnEy Ex) AL

We verify that Q?) = —le)(Eél))*lAgl) = le) and, hence, Pl(z) = 1(1), A§2) = Agl),
E§2) = Eél) and (EéQ))_1 = (Eél))_l. Setting

0 0 0 0
2) (1) (231 0 0 0 0
Ay (B — E12E2_21A22E2_21E21) —A14E12E2_21A22 0 I
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we compute

I 0 00
I
Pég) _ 0 00 ’
0 0 00
—A14(E11—E12E§21A225521E21) A14E12E§21A22 00
Ero(I + Byt A By By Erp(I+ EyptAy) 00 —Ay
(2) (2) FEo FEa 0 0
E = F-A = )
! @ 0 0 —Ass 0
0 0 0 0
—En+ Eu(I+ Byt Ap)ER'Eyy BBy Ay 00
A
AR APO(Q): 0 22 00
0 0 00
An 0 00
Choosing
I 000
(3) _ —E{;Egl 000
! 0 00 0]’
0 0 00
we determine
0 0 0 O
B _ Ep'Ey I 0 0
1 - )
0 0 I 0
|0 0 0 [
[Eyy + EnEy' ApsEy)' By Eip+ EnEylAyy 0 —Ay
B _ By 4+ ApnEy' By Eo 0 0
2 0 0 —Ass 0 |’
i — Ay 0 0 0
and
0 0 0 —A
71 ~
(3)y—1 0 Esy 0 Eay
E = ,
(") 0 0 —Az 0
~Ayl Ein 0 Fu
where

Eyy = Eg’;(Em + A22E521E21)AZ117
Ey = AL Eo(I + Eyl Ay Ex
By = —A7 By — BByt Ago(I 4+ Eyt Ayy) By, Eo) AL
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We verify that Q1" = —Q{(EP) 4P = QI and, hence, P¥ = P¥), E{Y = E{ and
(ES"~1 = (E(Y)~1. The sufficient condition (2.8) of Theorem 2.8 then reads as

0 0 0 0
(E9) 1A p = Eyy AssEyy Eoy By Agg 00|,
2 1 1 O 0 O O =
ALl BBy Apo By Aoy By By AT} E1oEgy Aoy By Az 0 0

Consider again the eigenvalue problem
(AE — A)v = 0.

For the given matrices £ and A, we obtain

AE AE1s 0 —Au| |n

AEy1 AEy —Age 0 0 vl _
0 0 —Ass 0 U3

—Ay 0 0 0 Uy

Since A4; and Ass are nonsingular, we obtain v; = vy = 0 and the following system of

equations

=

AE9vg — Ajyvy =
()\E22 - A22)U2 =

=

which is equivalent to

()\I_E2_21A22)U2 == O,
Vg = )\Al_41E12’UQ.

Condition (2.8) gives Ey, Asy > 0 and, hence, we obtain from the first equation that
p(Ey Agy) =: X is an eigenvalue and there exists a corresponding eigenvector v, > 0. By

using this, we obtain from the second equation that
Vg4 = /\AI_4IE12U2 = A1_41E12E2_21A22U2 = —)\_1A1_41E12E2_21A22E2_21A22U2 Z 0,

since Ay BBy Ay Eyyt Ass > 0 by (2.8) and A > 0, vy > 0 from the first equation.

The condition in [9], however, is not necessarily applicable, since £ — A may not be

invertible if Fy — Ay is not. Also the condition in [87] does not hold, since we may choose

T
Y1, Yo in y = [yl Yo Y3 y4] such that Fy > 0 and choose y3, y4 such that Ay # 0.
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Summary

In this section, we have proposed a new generalisation of the well-known Perron-
Frobenius theory to matrix pairs (£, A) that, unlike previous such generalisations, is
suitable for the analysis of positive descriptor systems. We have presented several
examples where the new condition holds whereas previous generalisations do not.

2.3 Nonnegativity of the Drazin inverse

The results of this short section give characterisations of positivity of the Drazin inverse,
which will be useful, for instance, since the explicit solution representation given in 1.6
is stated in terms of the Drazin inverse.

The following Lemma 2.15 is given as an exercise in [17].

Lemma 2.15 (Positivity of the Drazin inverse)  Let A € R™*" with ind(A) = k. Then,
AP > 0if and only if from Az € R} + ker(A*) and = € im(A¥), it follows that = > 0.

Proof. “=" Let AP > 0. Furthermore, let z € im(A*), i.e., there exists y € R such that
AFy =z, and let Az = v + v, where v > 0 and A¥v = 0. Then, by using the properties
of the Drazin inverse in Definition 1.16 we obtain
x= Ay = AP ARy = AP Az = APu+ APv = APu+ AP AAPy =
= APy + (AP)M ARy = AP,
=0
Since u > 0 and AP > 0, we have = > 0.
“<" To show A” > 0, let w € R’} be arbitrarily chosen.
Step 1. Show APw € im(A*) and AAPw € R + ker(AF).
For this purpose, we decompose w into w = AAPw + (I — AAP)w =: u + v, where
u € im(A¥), since u = AAPw = A*(AP)*w and v € ker(A*), since by the properties of
the Drazin inverse in Definition 1.16 we have

Afy = AF(I — AAPYw = AT AP (T — AAPYw = AF(AAP — AAP)w = 0.

Thus, we obtain:
AAPw =u=w —v € R} + ker(A").

Furthermore,
APw = AP AAPw = AF(APYF+ 1y,
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from which we conclude that A”w € im(A").

Step 2. Set z := APw. Since from Az € R" + ker(A*) and = € im(A"), it follows that
x > 0. We obtain z = APw > 0. As w > 0 was arbitrarily chosen, this completes the
proof. [

The Drazin inverse may be written in terms of canonical projectors, which we can use
for an alternative sufficient condition for positivity of the Drazin inverse in Corollary 2.17.

Lemma 2.16 Let £ € R™ ™ with ind(F) = v. For the matrix pair (£, 1), let a matrix
chain as in (1.6) be constructed with canonical projectors P;,Q;,i = 0,...,v — 1 as in
Lemma 2.7. Then, EP = E;'P,... P,_,.

Proof. Consider the matrix pair (F,I). We have ind(E,I) = ind(E) = v and
since £ commutes with the identity matrix, we conclude from Corollary 2.10 that
ED:EI;lPQ...Pl,,l. D

Corollary 2.17 Let £ € R™ ™ with ind(F) = v. For the matrix pair (E,I), let a matrix
chain as in (1.6) be constructed with canonical projectors P;, Q;, i =0,...,v —1asin
Lemma 2.7. Then, if £, is an M-matrix and P, ... P,_; > 0, we have EP > 0.

Proof. From Lemma 2.16, we have that E® = E;'P, ... P,_;. If E, is an M-matrix, then
E;!'>0andsince also Py ... P,_; > 0 we obtain E” >0. 0

2.4 Nonnegativity of Schur complements of nonnega-
tive projectors

A main issue in the analysis of descriptor systems is the choice of the right projector
onto the deflating subspace that corresponds to the finite eigenvalues of the matrix
pair (£, A) [89]. In the following Chapter 3 we will see that nonnegative projectors play
an important role in the context of positive descriptor systems. Note that in the linear
algebra literature, projectors are also referred to as idempotent matrices. Therefore,
these terms are used here interchangeably.

Schur complements constitute a fundamental tool in applications [129], in particular
such as algebraic multigrid methods [123] or model reduction [82]. However, one has
to ensure that essential properties are preserved. The results of this section become
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important in Chapter 6 where we discuss positivity preserving model reduction for pos-
itive descriptor systems. There, the Schur complement of the nonnegative spectral
projector will be required to be again nonnegative.

We now introduce the problem setting. Let o = {«y,..., o} € (n) be a nonempty set
and define by o := (n)\«a the nonempty set that is complementary to «.

If Ao, o] is invertible, then the Schur complement of A corresponding to « is given by
Ala) := Alaf, ] — Alaf, a]Ala, o]t Ala, af]. (2.16)

If Ao, o] is not invertible, then the Moore-Penrose Schur complement of A correspond-
ing to « is defined by

Ai(a) = Alaf, o] — Alaf, ] Ala, o] Ala, ], (2.17)

where Ao, a] is the Moore-Penrose inverse of Ala, ], see Definition 1.12. Further-
more, assuming that (I — A[«, «]) is invertible, we consider a shifted Schur complement
defined by

Ai(a) == Ala®, o] + Aa®, o) (I — Ala, a]) "  Ala, ], (2.18)

which becomes important in this work when considering descriptor systems in discrete-
time, see Section 6.3. This construct is used, for instance, in model reduction of
discrete-time systems in the singular perturbation balanced truncation method [82].

Properties of generalised Schur complements of projectors were discussed in [8]. We
assume that A is a nonnegative projector and show that if A[a, o] has a positive diagonal
then A () is a nonnegative projector. We provide an example for the case that Af«, o
has a zero on its main diagonal, where A;(«) fails to be nonnegative. The results of this
section were published in [42].

For our main result we need the following simplification of the canonical form for non-
negative projectors given in Theorem 1.6

Lemma 2.18 Let B € R*" be a nonzero nonnegative projector of rank k. Then, there
exists a permutation matrix I such that

J JG 0
P .=T1IBIIT = 0 00|, JeRPMGeRM"™ FeRP™, (2.19)
FJ FJG 0

where n =ny; +ns +n3, 1 < ny,0 < ny,0 < ng, F,G are arbitrary nonnegative matrices,
and J is a direct sum of £ > 1 positive projectors J; € RT“ of rank 1, i.e.,

J=aF  Ji, Ji=uv! 0 < u, v € ]Rli, viug=1,i=1,...,k (2.20)
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Proof. Theorem 1.8 states that B is permutationally similar to the following block matrix
[39]

J JGy 0 0

C o 0 000
FJ FJG 00

0 0 00

Here, J € R!"*™ is of the form (2.20), G; € R}*™ F, € R’P*™ are arbitrary
nonnegative matrices, and the last m, rows and columns of C are zero. Hence,
ny+ me +nz+my = nand 0 < mgy,n3,my. If my = 0 then C is of the form (2.19).
It remains to show that C' is permutationally similar to P if m, > 0.

Interchanging the last row and column of C' with the (n; 4+ my + 1)-st row and column of
C' we obtain a matrix C;. Then, we interchange the (n — 1)-st row and column of C; with
the (n; +msy+2)-nd row and column of ;. We continue this process until we obtain the
idempotent matrix P with n, = ms+my4 zero rows located at the rows n, +1, ..., ny +ns.
It follows that P is of the form

,G € RI™ F g RI*™ [ ¢ RI™,

v

|
N o«
T o @
o o o

Since P? = P we have that
G=JG, F=FJ H=FG=(FJ)(JG) =FJG.

Hence, P is of the form (2.19).

The consequence of Lemma 2.18 is that for nonnegative projectors, without loss of
generality, we may assume the following block structure:

By 0 0 By
0 By Boy,
B= 0 (2.21)
: By  Big+
0 0 0
N Bk+271 Bk+2,k+1

where B;; e RY"™ foralli,j =1,...,k+2.
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2.4.1 Nonnegativity of the Moore-Penrose inverse Schur com ple-
ment

In this subsection, in Theorem 2.19, assuming that A[a, o] does not have zero diago-
nal entries, we show that the Schur complement constructed via the Moore-Penrose
inverse as defined in (2.17) is again a nonnegative projector. Note that this includes the
case when Ala, o] is invertible. However, this result is false for the general case of the
Moore-Penrose Schur complement. A counterexample is given in Example 2.25.

Theorem 2.19 Let A € R}*" be a nonnegative projector. We assume that for () #
a & (n), the submatrix Afa,a] has a positive diagonal. Then A;(«a) is a nonnegative
projector. Furthermore,

rank A; (o) = rank A — rank Ala, o. (2.22)

Proof. Without loss of generality we may assume that A is of the form (2.19). Since
Ala, a) has a positive diagonal, we have that Ao, a] is a submatrix of J. First we
consider the special case Ao, a] = J. Using the identity J.JTJ = .J, we obtain that
Ai(a) = 0. Since rank A = rank .J, also the equality in (2.22) holds.

Let J, F, G be defined as in (2.19) and assume now that Al«, o] is a strict submatrix of
J. In the following, for an integer j we write j + (m) for the index set {j + 1,...,j + m}.
Let o' := (ny)\o, §:=ny + (ny) and v := n; + ny + (ns3). Then,

J[o/, o
Aot a]Ala, o]t Ala, o] = 0 | Jeal' | Jo,o!] (JO)[a, ] o]
(£ )y, af
Jlo,a)J]a, ot [, o] Jo, o) I, )T (JG) e, B]

0
- 0 00
(FD)ly. alJ]a, o]t J[a, o] (F )]y, a]J]a, o] (JG)[a, 5] 0

On the other hand, we have
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Thus, the nonnegativity of A;(«) is equivalent to the following entrywise inequalities

J[o/, o] > J[o, o] J[a, o]l J[a, o], (2.23)
(JO), 8] = T, ) [, ) (TG, B, (2.24)
(FD), o] > (FJ)y, ol e, ol J[a, o], (2.25)
FJIG > (FJ)y,alJ[a, o] (JG) a, 5]. (2.26)

Without loss of generality, we may assume that J is permuted such that the indices
of the first ¢ blocks J; are contained in «af¢, the indices of the following blocks J; for
=q+1,...,q + p are split between o and a¢ and the indices of the blocks J; for
t=q+p+1,...,q+p+ ¢ =k are contained in «. Partitioning the vectors u; and v;
in (2.20) according to o and a“ as
uT (aT xT)a

K3 10

U; (b17y1)7 i=q+1,....,9+p,

we obtain that

Jla', o] = (B, i) @3+5+1 a,bT, Jlo, o] = (@q+q+1x1yz ) @3+5:zf+1 Ji.
Note that
g = rank J — rank Ao, o] = rank A — rank Ao, af. (2.27)
We will only consider the case ¢, p, ¢ > 0, as other cases follow similarly. We have
1 1
Je, o)l = (@17 —— et ! 2.28
[Oé Oé] (631 q+1 (l’ m1)<yz yz)y ) @Z q+p+1 (U;FUZ)(U;FUZ)U Uj s ( )
q+p pT
Jlaya) = | O =t |0 01 (2.29)
0 0 oY a0
and hence,
0 0
! T
J[a/ ,Oé]J[Oé, Oé] @Zq+qp+1 1 'TzT 0 ) (230)
0 @qup sz T
J[o, o] J[a, o] = = qHy v : (2.31)
0 0 |
, i , 0 0
Jo ol J|a, o' T, o] = |- (2.32)
0 @F ab!

Therefore, we obtain

Jo, o] = J[, ol J]a, o] Jo, o/] =

1 O] > 0, (2.33)



44 Chapter 2. Nonnegative matrix theory

which proves (2.23).

We now show the inequalities (2.24) and (2.25). First, we observe that JG and F'.J have
the following block form

T
U197
JG=| i | FI=[ el o ol | s eRyE fieRE fori=1,. k.
ukg/:f
(2.34)
Hence, we obtain
[ $q+1gg+1 |
Tq+ply-
(JG)a, B] = R AL I (2.35)
Ug+p+19g+p+1
ung’
U19ip
Uu gT
(J&)o, 8] = B (2.36)
(g+19¢+1
L U/Q‘i’pgg—i-p |
(FJ)[’%O‘] = [ fq+1yg+1 fQ+pyg+p fq+p+1vg+p+1 fkvg :| ) (237)
(FDa) = [ fol o Sl foabley o by | (2.38)
Using (2.31), we obtain that
(ED el ol o] = [0 0 bl o fugbl, |

Therefore, we have

(FJ)[%O/]—<FJ)[7,a]J[a,a]U[a,a']:[ foT o fal 0 o]. (2.39)

q
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Similarly, using (2.30), we obtain

T
U191

(JG)[e, 8] — J[o, &) T[a, o] (JG) e, 5] = | "9 | . (2.40)

Hence, the inequalities (2.24) and (2.25) hold.

We now show the last inequality (2.26). To this end, we observe that

FJIG = Z figt. (2.41)

Multiplying (2.28), (2.35) and (2.37) we obtain that

(F )y, o) e, of (JG)a, 8] = Z figl
Hence,
PJG = (FJ)y,0)J[a, o] (JG)la, 8] = fig > 0. (2.42)

In particular, this proves that (2.26) holds.

It is left to show that A;(«) is a projector. If ¢ = 0 then A;(«) = 0 and, thus, A;(«) is a
trivial projector and (2.27) yields (2.22).

Assuming finally that ¢ > 0, it follows that A;(«) has the block form (2.19) with J =
@7, J; ®0. Hence, A;(«) is a projector whose rank is ¢ and (2.27) yields (2.22).

Corollary 2.20 Let A € R}, A # 0 be idempotent. If o & (n) is chosen such that
Ala, o is an invertible matrix, then Ao, o] is diagonal.

Proof. Note that the number ¢ in the proof of Theorem 2.19 is either zero or the corre-
sponding blocks J; are positive 1 x 1 matrices fori = g+p+1,...,q+p-+{. Furthermore,
for the split blocks, we also have that z;y] € R, fori = ¢+ 1,...,q + p, since z;y! is
of rank 1. Therefore, A[a, o] is diagonal. [

Corollary 2.21 Let A € R}, A # 0 be idempotent. If o & (n) is chosen such that
Ala, o is a regular matrix, then the standard Schur complement (2.16) is nonnegative.
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Corollary 2.22 Let A € R}, A # 0 be idempotent. Choose a & (n), such that I —
Ala, o] is regular. Then, A(«) defined in (2.18) is a nonnegative idempotent matrix.

To prove this Corollary 2.22 we need the following fact for idempotent matrices, which
is probably known.

Lemma 2.23 Let A € R™*" A # 0 be idempotent given as a 2 x 2 block matrix A =
Ay Agg
Ay Ay

Agy) 1Ay is idempotent.

. Assume that (I — Ay) € R* ™ is regular. Then, B := Ay + Ap(I —

Proof. Let
E = (I — Ap) Ay, D= Ay + AgpB, 2 = EI €R", z € R™.
X
Bx 9 . . .
Note that Az = . As Az = Az and z is an arbitrary vector, we obtain the
xXr

equalities

AHB -+ A12D - B, Ang + AQQD - D (243)

From the second equality of (2.43) we obtain D = EB. Substituting this equality into
the first equality of (2.43) we obtain that B? = B. []

Proof of Corollary 2.22. The assumption that I — A[«, «] is regular implies that Af«, ]
does not have an eigenvalue 1, i.e., p(Alo,a]) < 1. Hence, I — Ala,a] is an M-
matrix [17] and (I — Ala, «])~! > 0. The assertion of Corollary 2.22 now follows using
Lemma 2.23. [

2.4.2 Anexample

In this subsection we assume that the nonnegative idempotent matrix A is of the special

form
J JG

0 0

A= (2.44)

Furthermore, we assume that Al«, o] has a zero on its main diagonal. We give an
example where A;(«) may fail to be nonnegative. To this end, we first start with the
following known result.
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Lemma 2.24 Let A € R"*" be a singular matrix of the following form

All A12

0(nfp) Xp 0(nﬂo) X (n—p)

A= L A € RPP A, € RPXMP) - for some 1 < p < n.

Then (A" has the same block form as A.

Proof. Let r = rank A, where » < p. Then, the reduced singular value decomposition of
A'is of the form U, X, V.Y, where U,,V, € R™" U'U, = V,VI = I, and ¥, is a diagonal
matrix, whose diagonal entries are the positive singular values of A.

Hence, AAT = and all eigenvectors of AA” corresponding to

positive eigenvalues are of the form (2%, 07)",z € RF. Thus, Ul = [U} 0,+(u-p] Where
U, € R, Since AT = V,X1UT, the above form of U, establishes the lemma. [

In the following example we permute some rows and columns of A, in order to find the
Schur complement of the right lower block.

Example 2.25 Consider a nonnegative idempotent matrix in the block form

[ uol 0 uyst |ugtt 0

0 o bg a9 Sg @1{5 a2yg
B = 0 0 0 0 0
0 0 0 0 0

T T T T
0 xoby w28y | 11ty Tay, |

Then,
tgxg
O 0 O T T T
B[aaa] = [ 7 T | B[Oé,Oé]T = (2 352)(;2252"'92 y2)
Xz X 2
1l2 2Y2 T Tt
and
0 tth2U1b2T tTtQ’ulsg
c + . tltotylys  tlTtot+ylye
Bla®,a]Bla,a]'Bla,a’] = [0 agbt assT
0 0 0

Hence B;(a)i; > 0, Bi(a)iz < 0 and the Moore-Penrose inverse Schur complement is
neither nonnegative nor nonpositive if t{tg > 0.
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Summary

In this section we have shown that for a nonnegative projector, i.e. idempotent matrix,
we have that the Schur complement constructed via the Moore-Penrose inverse is again
a nonnegative projector, if the diagonal of A[a, a] is strictly positive. In particular the
nonnegativity also holds for the standard Schur complement if the corresponding part
of the matrix is invertible. Also for a shifted Schur complement defined in (2.18), the
nonnegativity was proved.

In Chapter 6, Section 6.3 we will propose and discuss a positivity preserving model
reduction technique that is based on singular perturbation balanced truncation. In the
descriptor case, the choice of the right projector onto the deflating subspace that cor-
responds to the finite eigenvalues of the matrix pair (F, A) is important for the analysis.
In Chapter 3, we assume the nonnegativity of this spectral projector in order to charac-
terise positivity in the descriptor case. Therefore, starting with a nonnegative spectral
projector, the reduced order projector should also be nonnegative. It turns out that
the reduced order projectors can be constructed via the standard Schur complement
defined in (2.16) in the continuous-time case and via the shifted Schur complement
defined in (2.18) in the discrete-time case. The nonnegativity of these is essential to
ensure the positivity of the reduced order model and this is where the results of this
section will be deployed.



Chapter 3

Positive systems and their
characterisation

The theory of positive systems is deep and elegant -
and yet pleasantly consistent with intuition.
- David G. Luenberger

Positive systems arise in many applications. An important branch is systems biol-
ogy [67], [68], [104], where metabolic networks, gene regulatory networks or signalling
pathways are models that constitute positive descriptor systems. The state variables
represent nonnegative quantities and the dynamics of the system are constrained via
mass conservation laws. There are compartmental systems [3], [21], [47], such as
models of pollution in connected water reservoirs, epidemic models, heat exchangers
but also models in pharmacokinetics [86], where for instance the rates of absorption,
distribution, metabolism and excretion of a drug substance are nonnegative quanti-
ties. In population dynamics [4], [7], [117], for instance, when modelling a chemostat
or predator-prey interactions, the models result in positive systems. Also advection-
diffusion-reaction systems [61], used for modelling in atmospheric chemistry, pollutant
transport chemistry or for chemo-taxis problems are positive systems. However, pos-
itive systems arise not only in applications in life sciences. One also has to mention
various applications in economy [77], [103], where mathematical modelling is used for
predicting prices and productions.

Some of the models mentioned above, in fact, appear in a linear form as in (1) in
continuous-time or in (2) in discrete-time. These are, for instance, models of age-
structured population or certain models of connected water reservoirs, see also Chap-
ter 6, Section 6.4 for examples. However, most models in systems biology such as

49
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metabolic networks or signalling pathways are highly nonlinear, see, e.g., [67], [104],
[126], and appear in a general form

F(t,z,&,u) =0, x(ty) = o,
y = G(x,u).

Nonlinear positive systems were studied in [50], [51], [70], [71], [72], [99]. Linearisation
along constant trajectories leads to the here considered linear time-invariant systems in
(1) or (2). An algorithm that would preserve the positivity property of the nonlinear sys-
tem, however, is not available up to now and, thus, poses an open problem, although
the application of the classical procedure sometimes leads to the desired outcome [59].
A more realistic approximation may be obtained by linearising along nonconstant tra-
jectories, which leads to linear time-varying systems [28]. Yet, the analysis of positive
time-varying systems is beyond the scope of this thesis but constitutes an interesting
and promising research topic as an extension of the present work.

In the literature, an extensive amount of research exists that deals with positive sys-
tems in specific applications. Even so, on the theoretical side, this topic only recently
has become a popular research area. Previously and even now, when dealing with cer-
tain systems theoretical or control theoretical issues of positive systems, the positivity
property was and is being neglected in order to scoop the extensive toolbox of the well-
developed systems theory and control theory for unconstrained systems. At the same
time, there are many examples that show that it is worth the effort to consider problem
specific properties and develop structured algorithms that preserve these.

There are various different definitions of positivity in systems theory that can be found
in the literature. The definition of internally positive systems as discussed in this work
goes back to Luenberger who presented some first theoretical results in [83]. There
are also external positivity that is due to [38] and weak positivity introduced in [64],
which we briefly discuss in the following. The extension of positivity to general cone
invariance was studied by many authors, see, e.g., [10], [17], [18], [121]. In [69] the
positivity concept is extended to positive operators.

There are mainly two books devoted to positive linear systems [38], [64]. In [38] linear
time-invariant single input single output standard positive systems are treated. Certain
control theoretical issues such as stability, reachability, observability are discussed and
many examples from applications are provided. These include compartmental systems,
Markov chains, queueing systems, or in particular the Leslie model of age-structured
population or the Leontief input-output model used in economy. In [64] linear 1D and 2D
systems are treated. The author also introduces descriptor systems discussing different
positivity concepts. These are weak positivity, in which all matrices are assumed to be
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nonnegative, except for the matrix A in the continuous-time case that is assumed to be
a —Z-matrix, and also external and internal positivity. However, the characterisation of
internal positivity is given only for a special case of index 1 systems.

In Section 3.1 we briefly review the positivity concepts introduced in the literature and
in Section 3.2.1 we present a new extension of the definition and characterisation of
positivity for continuous-time and discrete-time descriptor systems [124]. The defini-
tion is based on consistent initial values of the descriptor system. In Section 3.2.2, we
analyse and specify the special structure of the system matrices induced by the char-
acterisation of positivity given in Section 3.2.1. Furthermore, in Section 3.3 we present
a reduction technique by means of the Schur complement that allows to reduce special
index 1 systems to a standard positive system.

3.1 Standard positive systems

In this section we briefly discuss several concepts of positivity that are encountered in
the literature. Then, we state the well-known characterisation of (internal) positivity that
is generalised to descriptor systems in the next section.

Internal positivity seems to be the most natural definition from the mathematical point
of view. It goes back to Luenberger [83] and reads as follows.

Definition 3.1 (Internal positivity) ~ The continuous-time system (1) with £ = [ is
called internally positive if for any input function v € C° such that u(t) > 0 for all t > 0
and any initial condition =, > 0 we have z(¢) > 0 and y(t) > 0 for all t > 0.

The discrete-time system (2) with £ = I is called internally positive if for any input se-
quence u(t) > 0 for ¢t > 0 and any initial condition z, > 0 we have z(t) > 0 and y(t) > 0
for all ¢t > 0.

In [38] Farina and Rinaldi distinguish between internal and external positivity. External
positivity is defined as follows.

Definition 3.2 (External positivity) ~ The continuous-time system (1) with £ = [ is
called externally positive if for any input function « € C° such that u(¢) > 0 for all
t >0and zy =0 we have y(t) > 0forall t > 0.

The discrete-time system (2) with £ = [ is called externally positive if for any input
sequence u(t) > 0 for ¢t > 0 and 2, = 0 we have y(t) > 0 for all t > 0.
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Internal positivity implies external positivity but conversely this is not necessarily the
case. Moreover, in [38] it is shown that there exist externally positive systems that can-
not be made internally positive through any change of basis of the state space. External
positivity can be characterised by merely a property of the impulse response or equiva-
lently the transfer function of the system. Therefore, the differentiation between internal
and external positivity becomes useful, for instance, in the realisation problem. There,
the external positivity condition is used for characterising positively realisable transfer
functions [38], i.e. transfer functions that can be realised as an internally positive sys-
tem. A definition and characterisation of external positivity in the descriptor case are
given in [64] and is analogous to the one in the standard case.

The following type of positivity is defined only for descriptor systems since for standard
systems it is equivalent to internal positivity. It was introduced by Kaczorek in [64], mo-
tivated by applications such as electrical circuits composed of resistances, inductances
and voltage sources or of resistances capacitances and voltage sources, where such
conditions hold.

Definition 3.3 (Weak positivity)  The continuous-time system (1) is called weakly pos-
itive if £, B,C,D >0 and A is a —Z-matrix.
The discrete-time system (2) is called weakly positive if £, A, B,C, D > 0.

The following theorem states a well-known characterisation of (internally) positive sys-
tems in the standard case that is easy to check, see, e.g., [38, 64].

Theorem 3.4 The continuous-time system (1) with £ = [ is (internally) positive if and
only if Aisa —Z-matrix and B,C, D > 0. The discrete-time system (2) with £ = [ is
positive if and only if A, B,C, D > 0.

In the following section we generalise Theorem 3.4 to the descriptor case.

3.2 Positive descriptor systems

In this section, we define (internal) positivity for descriptor systems and provide a char-
acterisation in the continuous-time and in the discrete-time case. Furthermore, we
discuss the special structure induced by the required conditions.

First, we give a definition of positivity in the continuous-time as well as in the discrete-
time case.
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Definition 3.5 (Positivity) ~ We call the continuous-time system (1) with ind(E, A) = v
positive if for all ¢ € R, we have z(¢) > 0 and y(t) > 0 for any input function v € C* such
that u®(7) >0fori =0,...,v —1and 0 < 7 <t and any consistent initial value z, > 0.
The discrete-time system (2) with ind(E, A) = v is called positive if for all ¢ € N we have
xz(t) > 0 and y(t) > 0 for any input sequence u(r) > 0for 0 < 7 < ¢+ v — 1 and any
consistent initial value xy > 0.

3.2.1 Characterisation of positivity

For characterising positive systems in the descriptor case, we consider systems (1)
and (2) with D = 0. Note, that adding a D > 0 to a positive system will obviously not
spoil positivity, since only nonnegative input functions are allowed. However, for D # 0
one does not obtain the same only if condition for the matrix C' that we prove in this
section.

To formulate a characterisation of positivity in the continuous-time case we need the
following Lemma.

Lemma 3.6 For a regular matrix pair (F, A) let E, A be defined as in Lemma 1.19. If
for all v > 0 we have £ A EP Ey > 0 for all ¢ > 0, then there exists a > 0 such that

EPA+aEPE > 0.
Proof. By assumption, we have that
EPAEPE >0 forall ¢ > 0. (3.1)

We now show that from this we obtain that E”E > 0 and [EP A];; > 0 for all pairs (i, 5)
such that [EDE]ij = 0. Suppose that there exists a pair of subscripts (i, j) such that
[EPE);; < 0or [EPE],; = 0and [EPA],; < 0, then for t > 0 small enough, we would
obtain

PP MEPE]; = [EP By + [EP Alt + O(#) < 0,

which contradicts equation (3.1). Here, we have used the property that EPAEPE =
EP A, which follows from the properties of the Drazin inverse in Definition 1.16 and
from (1.13b). Since EPE > 0, setting

EP Al
min [Ai]]

o> nin =
(i.4):[EP B)ij#0 [EP E,;

Y

we obtain EPA + aEPE > 0. [
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Remark 3.7 The important implication of Lemma 3.6 is that we can shift the finite spec-
trum of the matrix pair (£, A) as in the standard case, see, e.g., [38, p.38], so that the
shifted matrix pair (£, A + oF) fulfils the assumptions of Theorem 2.8 and its finite
spectral radius is an eigenvalue. For any finite eigenvalue p of (E, A + oFE) we have
that A\ = p — « is a finite eigenvalue of (E, A). The eigenvectors and eigenspaces of
(E,A)and (E, A+ «F) are the same. In particular, the eigenspace that corresponds to
the eigenvalue oo remains unchanged. Note that we can choose « large enough such
that ps(£, A+ aF) > 0 and, therefore, we always have a corresponding nonnegative
eigenvector in this case.

In addition to the implication of Lemma 3.6 in Remark 3.7 note the following. The proof
of Lemma 3.6 implies that if the assumption of Lemma 3.6 holds then we have EPE > 0.
Hence, if we require that the homogeneous system Ei = Ax has a nonnegative solution
for any initial value =, > 0 (instead of any consistent initial value =, = E? Ev > 0), then
EPE > 0 turns out to be a necessary condition. Therefore, it seems plausible to have
EPE > 0 as an assumption for a characterisation of positivity, which is the case in
the following theorem. Moreover, from the point of view of applications it makes more
sense to prescribe an initial condition that is just nonnegative instead of one that is
nonnegative on some special subspace.

Now we state a characterisation of positivity in the continuous-time case.

Theorem 3.8 Let E, A, B,C be the matrices in system (1) with (£, A) regular of
ind(E,A) = v. Let E, A be defined as in Lemma 1.19 and B as in (1.12). Further-
more, assume that

(i) (I — EPE)EAPYAPB <0fori=0,...,v—1,
(i) EPE > 0.

Then, the continuous-time system (1) is positive if and only if the following conditions
hold

1. there exists a scalar o« > 0 such that the matrix

M := —al + (EPA+ aEPE)
iSs a —Z-matrix,

2. EPB >0,
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3. C'is nonnegative on the subspace X defined by
X :=im, [EPE, —(I — EPE)APB,...,—(I — EPE)(EAP)"*APB], (3.2)
where for a matrix W € R"*? we define

im+W = {’LUl e R" | Jw, € Ri cWwy = wl}.

Proof. “=" Let the system in (1) be positive. By definition, for all ¢ > 0 we have z(¢) > 0
and y(t) > 0 for every vector function u € C" that satisfies u()(7) > 0fori =0,...,v —1
and 0 < 7 <t and for every consistent z, > 0.

1. Choose u = 0, then for any v > 0 we have that xq = EPEw > 0 is a consistent initial
condition. Hence, for all v > 0, from (1.14) we obtain that

x(t) = EPMED By >0, forall t> 0. (3.3)

Then, by Lemma 3.6, there exists a scalar a > 0 such that £ A + o EPE > 0. Hence,
the matrix M = —al + (EP A + o EPE) has nonnegative off-diagonal entries, i.e. M is
a —Z-matrix.

2. Choose now u(r) = {7 for some ¢ € R™. We have that u(7) > 0fori =0,...,v—1
and 0 < 7 < t. Furthermore, we have v’ (0) = 0 fori = 0,...,v — 1. Therefore, for
some v € ker EPF, we have that 2z, = EP Ev = 0 is a consistent |n|t|al condition. Thus,
from (1.14) we obtain that for all ¢ > 0 we have

t ) . r—1
z(t) = / A EP Bu(r)dr — (I — EPE)Y (EAPY AP Bu(t) > 0. (3.4)
0 =0
Since EPE > 0, we can premultiply the inequality (3.4) by EP E and obtain
t fat n A~ A
EPEx(t) = / PPAT ED Bervdr > 0. (3.5)

0

We now show that EPB > 0. Suppose that this is not the case, i.e. there exist some
indices i, j with [EDB]ij < 0. Then, for £ = e, the j-th unit vector, and for ¢ > 0 small
enough, we would obtain
t
(EPEa(t)); = / (1 + EPA(t — ) + O((t — 7)2)) E” Bu(r))sdr
0
t
_ / ([EP Bl + O(t — 7))rdr < 0,
0

which contradicts (3.5). Therefore, we conclude that 2B > 0.
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3. Note that by Assumptions (i) and (ii) the subspace X contains only nonnegative
vectors. Let v € im[EPE], v > 0. For u = 0, we have that z, = E” Ev > 0 is consistent
with u. Since the system is positive, we have

y(0) = Czg = CEPEv > 0. (3.6)
Since EPE is a projector, we have EP Ev = v and hence, by (3.6), C' is nonnegative on
im[EPE).

Let now wy € im . [—(I — EPE)AP B, then there exists & > 0 such that
—(I - EADEA)ADB&) = Wyp-

Choose uy(7) = &. Then, we have u,(0) = & and ug“(()) =0fori:=1,...,v—1. The
initial condition 2, = — (I — EP E) AP B¢, is nonnegative by Assumption (i) and consistent
with u, for some v € ker EPE. Since the system is positive, we obtain

y(0) = Czg = —C(I — EPE)AP B¢y = Cwy > 0. (3.7)

We have shown that for all w, € im,[—(I — EPE)APB] we have Cw, > 0, i.e. Cis
nonnegative on im_[—(/ — EPE)APB).

Let wy € im,[—(I — EPE)(EAP)APB], then there exists ¢, > 0 such that —(I —
EPE)(EAPYAPBE, = wy. Set uy(t) = &7. Then, we have u;(0) = 0, v (0) = &
and u{"(0) =0, i =2,...,v — 1. The initial condition zo = —(I — EPE)(EAP)AP B¢, is
nonnegative by Assumption (i) and consistent with «;. Since the system is positive, we
have

y(0) = Cxg = —C(I — EPE)(EAPYAP B¢, = Cw, > 0,
and hence, C'is nonnegative on im_ [—(I — EPE)(EAP)APB].

We now proceed in the same manner. By subsequently letting

w; € imy[—(I — EPE)(EAP)YD AP B,

for i = 2,...,v — 1, finding the corresponding nonnegative preimage ¢&;, setting
u;(7) = &7 and using the same argument as above we obtain that C' is nonnega-
tive on im, [—(I — EPE)(EAP)APB] fori = 2,...,v — 1. In total, we have shown that

C'is nonnegative on X as in (3.2).

“«<" Let (i), (if) and 1.-3. hold. We have to show that the system in (1) is positive, i.e. for
all t > 0 and for every vector function « € C such that Y (r) > 0fori =0,...,v — 1
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and 0 < 7 < t and for any consistent z, > 0, we get z(t) > 0 and y(¢) > 0. The solution
at time ¢ > 0 is given by

A t o o v—1 . o
w(t) = "M EP By + / A EP Bu(r)dr — (I — EPE)Y (EAPY AP Bu(t)(3.8)
0

—0

~

and any consistent x, satisfies

v

1
£ = EPEu — (I - EDE) (EAD)iADBu(i)(O)’

7

Il
o

for some v € R". We now subsequently show that the three summands in (3.8) are
nonnegative.

1) Since EPE > 0, for any consistent z, > 0 we get that £ Ez, > 0. Note, that for any
v e St we have EPEv = v and

Mv = (—al + EPA+ aEPE)v = EP Av. (3.9)
Since EPE is a projector onto 5§/, we also have
EPAEDfr  MUED o (3.10)

and ¢t > 0, since M is a —Z-matrix. Hence, the first term of (3.8) is nonnegative.

2) For the second term we have that £ B > 0 and therefore

eEDA(t’T)EDBu(T) >0

Y

for all 0 < 7 < t. Since integration is monotone, the second term is nonnegative.

3) We have —(I — EPE)(EAPYAPB > 0fori=0,...,v—1 and therefore the third term
is also nonnegative for any vector function u € C* such that u™(t) > 0fori =0,...,v—1
and 0 <7 <t

Thus, z(t) > 0. From y(t) = Cz(t) with C' nonnegative on X and x(t) € X for all t, we
also conclude that y(¢) > 0. U

Corollary 3.9 Let E, A, B, C be the matrices in the system in (1) with (£, A) regular of
ind(E, A) = v. Let E, A be defined as in Lemma 1.19 and B as in (1.12). Furthermore,
we assume that (I — EPE)(EAPYAPB < 0fori=0,...,v — 1. If the matrix EPA is a
—Z-matrix and EP B, C' > 0, then the continuous-time system in (1) is positive.
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Proof. If EPA is a —Z-matrix, this implies that M is a —Z-matrix for « = 0. Internal
positivity follows from Theorem 3.8. [

The first of the following two examples demonstrates that the property that E° A is a
—Z-matrix is not necessary for the system in (1) to be positive. The second example is
a system that is not positive.

Example 3.10 Consider the system

(11 0 1 0 0 0
000la=]0 -1 0|z+|0]|u
000 0 0 -1 1

Since the matrices £ and A commute, we can directly compute

(1 -1 0 110
EPA=10 o o|l, EPE=10 0 0|, EPB=0.
0 0 0 000

Note that E” A is not a —Z-matrix. For the state vector, we obtain

w(t) = e""MEPEy— (I — EPE) ADBu t) =
et et—1 0] [vy + UQ
= |o 10
0 0 1

Hence, the system is positive, although E” A is not a —Z-matrix.

Example 3.11 Consider the system

1 10 10 0 0
01 0lz=1]01 0 ]x+ (0] w.
000 00 -1 1

The matrices £ and A commute and we can compute

1 =10 10 0]
EPA=10 1 o|l, EPE=1]0 1 0|, EPB=0.
0 0 0 0 0 0]
For the solution, we obtain
et —tet 0| |y 0
2(t) =" "MEPEy — (I — EPEYAPBu(t) = |0 ¢ 0| || —| 0 | u(®).
0 0 1|10 —1

The system is not positive, since the first component of x may become negative.
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In [24], the following characterisation of positivity in the case of discrete-time systems
was given. Note, that in [24] the proof is given without the consistency requirement on
xg, thus, referring to a somewhat different solution concept. However, with a minor mod-
ification of the proof, the characterisation is also valid for positivity as in Definition 1.22,
i.e., only for consistent initial values. Furthermore, we add the condition on the matrix
C for completeness.

Theorem 3.12 Let E, A, B,C be the system matrices in (2) with (E, A) regular of
ind(E,A) = v. Let E,A be defined as in Lemma 1.19 and B as in (1.12). If
EPE > 0, then the discrete-time system in (2) is positive if and only if E°A, EPB > 0,
(I — EPE)(EAP) APB < 0fori=0,...,v —1 and C is nonnegative on X as defined
in (3.2).

3.2.2 A special structure induced by the characterisations in The-
orem 3.8 and Theorem 3.12

The conditions of Theorem 3.8 or Theorem 3.12 impose a very special structure on
the system matrices that will be important in the following. We analyse this structure
for the continuous-time case. However, the same results hold for discrete-time positive
systems with properties as in Theorem 3.12.

Consider the initial continuous-time system in (1a). Since we consider regular matrix
pairs (E, A), we have that the matrix R = EP, + A(I — F,) is regular and, hence, we
may scale the system in (1a) by R~!. Considering (E, A) in Weierstral3 canonical form
as in (1.4), we have that R~! = T-'W~!. We obtain the scaled system

R'Ei =R 'Az + R 'Bu, (3.11)

5’1]
~ u.
By

Note that the matrices R~'E and R~'A commute. System (3.11) is equivalent to the
system of two equations

that in Weierstral3 canonical form is given by

I 0
0 N

J 0

To+ T
0T T+

71! Ti=T""1

P.R'Ei = P.R'Ax+ PR 'Bu,
(I - P)R'Ei =(I—P)R Az + (I — P)R"'Bu. '
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that in Weierstral3 canonical form is given by

I B
T-1 0 Ti =T7! S0 Te+T71 |72 w
00 0 0 0
0 0 00 0 ’
T-1 Ti =T1 Te+T71| - |u
0 N 0 I Bo

which by using the results in Section 1.6 is equal to

L R 3.12
(I — P)EAP: = (I— P+ (I — P,)APBu (3.12)

{ P.i = EPAz+ EPBu
We assume that system (3.12) is positive and fulfils the conditions of Theorem 3.8.
Note that symmetric permutations of the matrices do not change the matrix properties
in Theorem 3.8. Therefore, without loss of generality, we may assume that P, is in
canonical form as in (2.21), i.e.,

11 0 e 0 T, k41 0

0  mp . 5 Tokt1 0
p - : o 0 : s (3.13)

: e Tk Trker 0

0 AU 0 0 0

| k421 -vo -oo Thy2k Tht2kt+1 0

where 7;; € R™ 45 = 1,...,k+2, and m,...,m > 0 are irreducible with
p(m1) = ... = p(m) = 1. Note that the irreducible diagonal blocks are of rank 1.

Partition the matrices EP A, EP B, EAP, AP B accordingly, i.e.

[ [EPAL .. [EPA] s ] [ [EPB);
EPA = 5 5 L EPB=| i,

[EP Aljgay o [EP Aliyapgn) [EP Blit

[ [EAP)y ... [EAP) e ] [ [APB];
EAP = : , APB= :

[EAP)i21 o [EAP ok [APBliy2

Firstly, from condition P,EPA = EP A, we have that [EPAJ; 1, = Ofori=1,... k+2
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and from EPAP, = EP A, we have [EP A, = 0fori=1,...,k + 2. Therefore,

[ [EPAl, ... [EPAhga O

EPA= | [EPA), ... [EPAlsn 0] (3.14)
0 0 0
_[EDA]k+2’1 . e [EDA]k+2’k+1 0_

Since by Lemma 3.6 there exists a > 0 such that EPA+ aP,. > 0, additionally, we have
that [EPA]; > 0ford,j=1,... kandi# j.

Secondly, since we have P.EP B = EP B, we obtain that
vk

EPB = |EPB),| » (3.15)
0

*

where by x we denote a block entry that we do not need to specify for our purpose.

Furthermore, from Theorem 3.8, we have that (I — P,)AP B < ( holds for ind(E, A) > 1,
i.e.,

[ I—my 0 ... 0 —mier O | [ [APB]; ]
0 L : . .
(I — P)APB = 0 | <o (3.16)
: I -7 —7ppqr O [AADAB]k
0 0 I 0 | [[A”Blrs
R TOT U ATYRE AR o || DB]k:+2_

Hence, from the second last row of (3.16), we have [ADB]k+1 < 0. Furthermore, we
have
([ - Wll)[ADB]Z - 7Ti7k+1[ADB]]€+1 S 0, (317)

for i = 1,...,k. We have that m,,.; > 0 and [APB],,; < 0 and therefore,
—Tins1[APBlryy > 0. Thus, (I — 7;)[APB]; must be less than or equal to 0 for
i=1,...,k Now we show that this implies (I — m;;)[APB]; =0fori=1,..., k.

To this end, we use the property that =; is a positive (irreducible) projector of rank 1
with p(m;) = 1, see Theorem 1.6. Hence, I — m; is a singular AM/-matrix. In [123],
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for a singular M-matrix I — T, where T is stochastic, it was shown that for the LU-
decomposition of 7 — 7" as in (1.9), we have that the last row of L' is the vector of
all ones. For a more general discussion on LU-factorisations of singular M -matrices,
see [94] and the references therein. In our case, we show that the last row of L~! has
only positive entries.

Lemma 3.13 Let P = uv”, 0 < u,v € R’ be a projector. Then, @ := I — P is a singular
M-matrix that has an LU-decomposition as in (1.9), where the last row of L~! has only
positive entries.

Proof. We have (Q = LU, where L is a regular and U is a singular M-matrix, or equiva-
lently

Lig- B\ +\ ; Ly

+ 0

Furthermore, we have that L=! > 0 and the last row of U is zero. Since P > 0,
we have Q,,,; < 0forj = 1,...,m; — 1. Since [L7Y,,,.,, = 1 we have, for in-
stance, [L™Y,,m,@m,1 < 0 and, therefore, we must have [L™'],,.; > 0, since otherwise
el L7'Q = 0, where e,,, denotes the e, -th unit vector, will not hold. Analogously, we
obtain [L7Y],,; >0forj=1,...,m; —1. [

We now show that (I — 7;;)[APB]; < 0 implies (I —7;;)[APB]; = 0fori =1,... k. Since
L~' >0, we obtain that

A

(I —m)[APB); = LU[APB); <0,

fori =1,... k, is equivalent to

A A

L™Y(I —7)[APB); = U[APB]; < 0.

Furthermore, we have

Gz';iL_l(I — WZZ)[ADB]Z = 0
By Lemma 3.13, we have ¢!, L~' > 0 and, since (I — m;)[AP B]; < 0, we conclude that
With this, from (3.17), we obtain that ;1 [A”B];1 = 0 fori = 1,..., k. From the last
row of (3.16), we now obtain

_7Tk+2,k+1[ADB]k+1 + [ADB]IC+2 <0,
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and since — 75 541[AP Blrs1 > 0, we have [AP B, < 0.

Thus, we have

(I — P)APB = 0 < 0. (3.18)
[ADB]kJrl
k

In general, we obtain the following structure.

Lemma 3.14 Consider the system matrices in (3.12) and let v be the index of nilpo-
tency of (I — P,)(EAP). Then, assuming the block structure induced by P, in (3.13), for
1=0,...,v—1, we have

(I — P)(EAPYAPB = |0 | <0, (3.19)

where %, x; denote some unspecified entries.

Proof. Note first that for i > v, we have (I — P,)(EAP)" = 0. We perform an induction
over the index i. Let i = 0, then by Equation (3.18) we have the desired form. Suppose
that for some i > 0 we have the structure in (3.19). Then, for i + 1 we obtain

(I — PY(EAPY+LAPB =(I — P,)EAP ((I - Pr)(EAD)iADB> — (I - P)EAP | g

¥ * [EAP] [EA ) k2 0

| x  [EAPluppr [BAP] ke 0| <0,
* $ [EAP)uirnsr [EAPuianse]| |*1
* ...k * * o

(3.20)
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where from the third equality of (3.20) we have that
[EAD]j,kH = (I - Wjj)[EAD]j,k+1 - Wj,k+1[EAD]k+1,k+1 (3 21)
[EAP) k42 = (I = m)[EAP)jr2 — iaia [BAP Jis1 o

for j =1,..., k. For the second last entry on the left hand side of (3.20) we obtain
(I = B)(EAPY T AP Blisy = [EAP )1 pr - (1) + [BAP i pga - (42) 0. (3.22)

Furthermore, for the entries j = 1, ..., k, using (3.21), we obtain

A A A A

[EAP] k1 - (%1) 4 [EAP]j kg2 (x2) = ((I — 1) [EAP) i — Wj7k+1[EAD]k+1,k+1> - (#1)+
+ ((I — wjj)[EAD]j,k+2 - Wj,k+1[EAD]k+1,k+2) < (*2)
=(I = ;) ([EAP k41 - (41) + [EAP kg2 (%2))—
— i [(I — B (EAP) AP B, < 0.

~

Since 7,41 > 0for j=1,...,kand [(I — P,)(EAP
that (I — ;) ([EAP]j i1 - (51) + [EAP]p12(x2)) <
argument as before, we obtain

(I = 7)) ([EAP g - (51) + [EAP]jrga(32)) = 0,

for j = 1,...,k and, hence, —m; 1 - [(I — P.)(EAP)* APB] .y = 0forj = 1,... k.
Thus, we have obtained the desired structure, which completes the proof. [

JHLAP B), .1 < 0 by (3.20), we have
0. Using Lemma 3.13 and the same

By using the property in (3.19), and also the properties in (3.14) and in (3.15), we
deduce that the system in (3.11) is equivalent to

Ei = Az + Bu, (3.23)
where
Ay An o L 1211,19 Al,kJrl 0 ] [ [EDB]l ]
Ay Ay : 1212,k+1 : :
A : A1 : : B :
A e Ak,k—l A Ak,k-}—l ; [AEDAB]k
0 U 0 I 0 [AP Bljsa
| Akg2n - e Apror Apgoprr 1 i * i

E =P +(I—P)EAP,

and A;; = [EPA];; —m; fori > korj > k.
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Note that the form in (3.23) displays several spectral properties of the system. The last
two block rows correspond to the infinite eigenvalues that are responsible for the pos-
sibly higher index of the system. The blocks 7;;, for i = 1,..., k are positive irreducible
projectors, i.e., the associated block rows correspond to one finite eigenvalue and m; —1
infinite eigenvalues, where m; is the size of the block 7;. In particular, this means that
the system has £ finite eigenvalues. Since any projector is similar to a matrix [{ 3], the
corresponding infinite eigenvalues can only have Jordan chains of a maximum length
1, which means that they do not contribute to a possibly higher index of the system.

3.3 Special case: index 1 systems

The aim of this section is twofold. On the one hand the index 1 case exemplarily verifies
the general results established in the previous Section 3.2. On the other hand we
present a reduction technique by means of the Schur complement that allows to reduce
certain positive index 1 system to the positive standard case.

Continuous-time

Consider a system of the form (1), where £ = ESI 8 with £, € R™" regular and
A, B are partitioned accordingly: i i
Eip 0] |1 A Ap —351 _Bl
= + : 3.24
0 0 [ZU2 Ay Al |12 By ! ( )

Assume that A, is invertible, then we can reduce the descriptor system to a standard
system by the following procedure. We premultiply the system (3.24) by the matrix

E7l —EPARALL .

1 11 124522 | 5nd obtain:

0 [nfr
I. 0| |z E'As 0 | |2y E;'Bs
0 0 ) A21 A22 ) B2 ’

where Ag := A;; — A Ay Ay and By := By — A Ay By > 0. For the solution of the
transformed system we obtain

¢
x1(t) = eEl_llAstzlo +/ eEl_llAS(t_T)EilBSu(T)dT
0

2o(t) = — Ay (An1(t) + Baul(t)).
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If we assume that E}' Ag is a —Z-matrix, E;;' Bs > 0 and A5, B, <0, Ay Ay <0, then
for any input function « > 0 we obtain z(¢) > 0 for all t > 0, i.e., the system is internally
positive. Note that 2, does not appear in the solution. This is due to the fact that E°E
projects onto the first component.

For regular matrix pairs (E,A) with ind(E,A) = 1 we have the property that the
corresponding system can always be equivalently transformed into a system of the
form (3.24), see, e.qg. [74].

Lemma 3.15 Consider a system of the form (1), where (£, A) is a regular matrix pair
with ind(F, A) = 1. Then there exist regular matrices P, @, R such that with E = PEQ,
A = PAQ and B = PBR we obtain a system of the form (3.24).

Note that the condition ind(£, A) = 1 is equivalent to E;; and Ay, being regular in the
form (3.24). We thus have proved the following theorem that states that every index 1
system that can be equivalently transformed into a system of the form as in (3.24) can
be reduced to a standard positive system by means of the Schur complement.

Theorem 3.16 Consider a system of the form (1), where (F, A) is a regular matrix pair
of ind(F, A) = 1. If there exist regular matrices P, (), R with @), R > 0 such that with
E = PEQ, A = PAQ and B = PBR we obtain a system of the form (3.24) and, if we
additionally assume that E;'As is a —Z-matrix, E;;'Bs > 0 and Ay By, Ay, Ay < 0,
then the system in (1) is internally positive and can be reduced to an internally positive
standard system.

Note that the transformation matrices P, @, R in Lemma 3.15 are not necessarily non-
negative. In Theorem 3.16, we assume that only the matrices @), R are nonnegative,
since transformations of the equations from the left with P only scale the system but
do not change the solution. The following Corollary 3.17, therefore, states the most
realistic case, when such a Schur complement reduction in the index 1 case to an ODE
case is possible.

Corollary 3.17 Consider a system of the form (1), where (E, A) is a regular matrix pair
of ind(E, A) = 1. If there exists a regular matrix P such that with £ = PE, A = PA
and B = PB we obtain a system of the form (3.24) and, if we additionally assume that
Ej'Ag is a —Z-matrix, E;'Bg > 0 and A, By, Ay, Ay; < 0, then the system in (1) is
internally positive and can be reduced to an internally positive standard system.
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It is now of interest to compare this to the results we obtain by using Theorem 3.8.
Assuming ind(E, A) = 1, for the system (3.24) we have

— A Ay 0 — A As Bt Ag 0

- . - (3.25)
o E'B S
Erp= | PulPs g oprparp-| 9|

__A22 An By Bg Ay B2_

Theorem 3.8 restated in our context now means the following. If
i) Ay By <0 and
i) —Ay Ay >0,
then the system in (3.24) is positive if and only if the following conditions hold

1. there exists a scalar o > 0 such that the matrix

M := —al + (EPA+ aEPE)
is a —Z-matrix,

2. EPB > 0.

We have that
- Bt Ag 0
— A Ao (B Ag +al)  —al

is a —Z-matrix if and only if £;;'Ag is a —Z-matrix. Note that in this case a > 0 can
be chosen such that E;;'Ag + ol > 0. Furthermore, we have E°B > 0 if and only
if £;;'Bs > 0. Hence, we see that the intuitive conditions for positivity in this index 1
example are exactly reflected in the corresponding conditions of Theorem 3.8.

Discrete-time

Consider a system of the form (2), where £ =

FE 0 .
0“ O] with E;; € R™*" regular and

A, B are partitioned accordingly:

Ey 0
0 0

Il(t + 1)
zo(t + 1)

All A12
A21 A22

T (t)
.I'Q(lf)

+ u(t). (3.26)

By
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Assume that Ao, is invertible. Then we can reduce the descriptor system to a standard
system by the same procedure as in the continuous-time case. We premultiply the
Bt —EtARAL

system (3.24) by the matrix [ (1)1 ; and obtain:
L o] [ne+1)] [Ei'4s o] [m0)]  [EZ'Bs ()
0 0 ZEQ(t + ].) A21 AQQ i) (t) BQ ’

where Ag = (A — A1sAy Ayy) and By = (By — A1, AL By). For the solution of the
transformed system we obtain

t—1
7i(t) = (B As)'zio+ Y (Bt As) " ER! Bou(r)

=0

19(t) = —Asy (A1 (t) + Bou(t)).

If we assume that E;' As > 0, E;;'Bs > 0 and A, Ba, Ay, Ay < 0, then for any input
function « > 0 we obtain z(¢t) > 0 for all ¢ > 0, i.e., the system is internally positive.

Theorem 3.18 Consider a system of the form (2), where (F, A) is a regular matrix pair
of ind(E, A) = 1. If there exist regular matrices P, (), R with @), R > 0 such that with
E = PEQ, A = PAQ and B = PBR we obtain a system of the form (3.26) and, if
we additionally assume that E;,' As > 0, E;' Bs > 0 and Ay, By, A5y Ao < 0, then the
system in (2) is internally positive and can be reduced to an internally positive standard
system.

Note that as in the continuous-time case the transformation matrices (), R have to be
nonnegative whereas the matrix P can be chosen arbitrarily, since it only scales the
system without changing the solution.

For completeness, we compare this to the results of Theorem 3.12. Assuming
ind(E,A) = 1, for system (3.26) we obtain the same matrices as in (3.25). Theo-
rem 3.12 now states that if —A,,A;; > 0 then system (3.26) is positive if and only if
E'As >0, E;'Bs > 0 and A, B, < 0. Hence, the intuitive assumptions on the index 1
system that we made here are reflected in the conditions of Theorem 3.12.

Summary

In this chapter we have reviewed the definition and the well-known characterisations of
positivity in the standard case. We have generalised the definition of positivity to the
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descriptor case and have provided a characterisation of positivity that corresponds to
the characterisation of standard positive systems. The special structure of the system
matrices imposed by this characterisation has been specified. Finally, we have used
a Schur complement decoupling approach to illustrate the obtained conditions by an
example in a special index 1 situation.






Chapter 4

Stability of positive systems

True stability results when presumed order and presumed disorder are balanced. A
truly stable system expects the unexpected, is prepared to be disrupted, waits to be
transformed.

- Tom Robbins, “Even Cowgirls Get the Blues”

In the course of this section, we discuss asymptotic stability properties of positive sys-
tems. To this end, we consider linear homogeneous time-invariant systems:

e in continuous-time:
Ei(t) = Axz(t), z(0) = xo, (4.1)

e Or in discrete-time:
Ex(t+1) = Az(t), z(0) = zo. (4.2)

The following two definitions describe Lyapunov and asymptotic stability of descriptor
systems in the continuous-time case as well as in the discrete-time case [115].

Definition 4.1 (Lyapunov stability)  The trivial solution z(¢) = 0 of the systems in (4.1)

or in (4.2), respectively, is called Lyapunov stable, if for all ¢ > 0 there exists § > 0, so
that ||z(t, z0)|| < e for all t > 0 and for all z, € im EPE with ||z, < 4.

Definition 4.2 (Asymptotic stability) The trivial solution =(t) = 0 of system (4.1) or
(4.2), respectively, is called asymptotically stable, if

1. itis Lyapunov stable and

71



72 Chapter 4. Stability of positive systems

2. there exists § > 0, such that for all z, € im EPE with [|2o] < 6 we have that
x(t,xg) — 0 ast — oc.

The following Theorem 4.3 is a well-known characterisation of asymptotically stable
continuous-time and discrete-time systems in terms of the spectral properties of the
corresponding matrix pair (£, A) [34], [52].

Theorem 4.3 Let (E, A) be a regular matrix pair. The trivial solution z(¢) = 0 of the
systemin (4.1)

(i) is asymptotically stable, if and only if all finite eigenvalues of (E, A) have negative
real part.

(i) is Lyapunov stable, if and only if all finite eigenvalues of (E, A) have nonpositive
real part and the eigenvalues with zero real part have the same algebraic and
geometric multiplicities.

The trivial solution z(t) = 0 of the system in (4.2)

(i) is asymptotically stable, if and only if all finite eigenvalues of (£, A) are of modulus
less than 1.

(i) is Lyapunov stable, if and only if all finite eigenvalues of (£, A) are of modulus less
than or equal to 1 and the eigenvalues with modulus equal to 1 have the same
algebraic and geometric multiplicities.

Since stability properties of linear time-invariant systems depend only on the spectral
properties of the matrix pair (E, A), the following definition is useful.

Definition 4.4 (c-/d-stable matrix pair) A regular matrix pair (F, A) is called c-stable
if of(E,A) € C_. Aregular matrix pair (£, A) is called d-stable if ps(E, A) < 1.

Note that Definition 4.4 generalises the usual stability definition for matrices, i.e., a
matrix A is called c-stable (d-stable) if (1, A) or equivalently A is c-stable (d-stable). The
following theorem states the Lyapunov characterisation of stability, see [105], [115].

Theorem 4.5 Let (E, A) be a regular matrix pair. The pair (E, A) is c-stable if and only
if there exists a positive definite matrix X such that

Q:=E"XA+ATXE <0,
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and @ is negative definite on S}/
The pair (£, A) is d-stable if and only if there exists a positive definite matrix X such
that

Q:=ATXA-ETXE =<0,

and @ is negative definite on 57/

In the case of positive systems, classical stability criteria take a simple form. Such
criteria for standard positive systems can be found in [38], [64] and are presented in
Section 4.1. The main tool for standard positive systems that allows this simplification is
the classical Perron-Frobenius Theorem 2.1. In Section 2.2, we have established a new
generalisation of the Perron-Frobenius theory to matrix pairs that is applicable in the
descriptor case. We show that this theory allows the same simplifications of standard
stability criteria for positive systems in the descriptor case. These are presented in
Section 4.2.

Definition 4.6 (c-/d-positive matrix pair) We call a matrix pair (E, A) c-positive if sys-
tem (4.1) is positive. We call a matrix pair (£, A) d-positive if system (4.2) is positive.

Remark 4.7 Note that by Theorem 3.8, if EPE > 0, then (E, A) is c-positive if and only
if there exists o > 0 such that EPA + o EPE > 0. By Theorem 3.12, if EPE > 0, then
(E, A) is d-positive if and only if EPA > 0.

Stability conditions for positive systems are closely related to and can be characterised
by the so called dominant eigenvalue(s) of the system.

Definition 4.8 (c-/d-dominant eigenvalue) For linear continuous-time systems (4.1),
we call a finite eigenvalue X of the matrix pair (£, A) c-dominant if its real part is greater
than or equal to the real part of any other eigenvalue of the matrix pair (£, A), i.e.
R(N) > R(N) forall \; € of(E, A).

For linear discrete-time systems (4.2), we call a finite eigenvalue of the matrix pair
(E, A) d-dominant if it is greater than or equal in modulus to any other eigenvalue of the
matrix pair (E, A), i.e. |A| > |\ forall \; € o¢(E, A).

4.1 Standard positive systems

In this subsection we summarise the main stability conditions for standard positive sys-
tems. These conditions take a simple form compared to those for unconstrained sys-
tems.
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The result of the following Theorem 4.9, see e.g. [38], allows to relax the condition of
Theorem 4.3 that all eigenvalues have to be in the open left complex half-plane in the
continuous-time case to considering only the real eigenvalues. The same applies to the
discrete-time case, where the following result ensures that it is sufficient to check that
the real eigenvalues are in modulus less than 1.

Theorem 4.9 For a continuous-time standard positive system, i.e., system (4.1) with
E = I, the c-dominant eigenvalue is real and unique. There exists a corresponding
nonnegative eigenvector.

For a discrete-time standard positive system, i.e., system (4.2) with £ = I, p(A) is a
d-dominant eigenvalue and there exists a corresponding nonnegative eigenvector.

The next result relaxes the Lyapunov condition in Theorem 4.5, [38]. Instead of posi-
tive definite Lyapunov functions, here positive definite matrices, for stability of positive
systems it is enough to consider diagonal matrices with a positive diagonal.

Theorem 4.10 The matrix A is c-stable if and only if there exists a positive definite
diagonal matrix X such that the matrix A7 X + X A is negative definite.

The matrix A is d-stable if and only if there exists a positive definite diagonal matrix X
such that the matrix AT X A — X is negative definite.

Note that this relaxation is possible due to the diagonal stability property of AM-matrices
[6], [17]. For matrix diagonal stability in a more general context see [66] and the ref-
erences therein. Furthermore, for positive systems, additional stability conditions are
given in [38] in terms of certain M -matrix properties of the matrix — A in the continuous-
time case and of the matrix / — A in the discrete-time case.

Theorem 4.11 The matrix A is c-stable if and only if one of the following conditions
holds

1. all principal minors of the matrix — A are positive;

2. the coefficients of the characteristic polynomial of the matrix — A are negative.

The matrix A is d-stable if and only if one of the above conditions holds for I — A.

4.2 Positive descriptor systems

In this subsection we generalise the stability conditions for positive systems from the
standard case in Section 4.1 to the descriptor case [124].
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In the following Theorem 4.12, we generalise the result on dominant eigenvalues in
Theorem 4.9 to descriptor systems.

Theorem 4.12 Let (£, A) be a regular matrix pair. Consider the positive continuous-
time system (4.1). If o;(E, A) # 0 and EPE > 0, where F is defined as in Lemma 1.19,
then the c-dominant eigenvalue \ of the system is real and unique. Furthermore, there
exists a nonnegative eigenvector corresponding to \.

Consider the positive discrete-time system (4.2). If o4(E, A) # § and EPE > 0, then
ps(E, A) is a d-dominant eigenvalue and there exists a corresponding nonnegative
eigenvector.

Proof. In the continuous-time case, since FPE > 0, by Remark 4.7 and Remark 3.7 we
have that there exists a scalar « > 0 such that for the shifted matrix pair (E, A + aF),
by the generalised Perron-Frobenius Theorem 2.8, the finite spectral radius ps(E, A +
aF) =: u is an eigenvalue. Hence, A = p — « is an eigenvalue of (F, A) and it is
the eigenvalue with the largest real part, i.e., the c-dominant eigenvalue of the positive
system (4.1). Hence, the c-dominant eigenvalue X is real and unique. Figure 4.1 depicts
the situation. By Remark 3.7 there exists a corresponding nonnegative eigenvector.

Uf(E7A> |m Uf(E,A+OéE)
A It
_ Re
Q

Figure 4.1: The c-dominant eigenvalue \ of (E, A) is real and unique.

For a positive discrete-time system (2), by Remark 4.7, if EPE > 0, we have that
EPA > 0. Hence, by the generalised Perron-Frobenius Theorem 2.8 and using the
identity in (2.14), the finite spectral radius of (E, A) is an eigenvalue and, by Remark 3.7,
there exists a corresponding nonnegative eigenvector. [

Theorem 4.12 implies that a c-positive matrix pair is c-stable if and only if all of its real
eigenvalues have negative real part. Analogously, a d-positive matrix pair is d-stable if
and only if all of its real eigenvalues are in modulus less than 1.

Example 4.13 Let £ = 8] and A =

(1)] . Since E and A commute, we have
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EPE =

8] and EPA =

—1 . .
0 8] . Hence, the system (4.1) for this choice of (£, A)

et 0l |1 Of |n _ ety >0,
0O 1{1]0 0| [ve 0 -

for all v; > 0. Choosing « = 1, we obtain

iS positive, since

D
6E AtEDEU —

EPA+ aEPE =

OO>0.
0 0] —

Hence, i := p(EPA + aEPE) = 0 is an eigenvalue and the corresponding c-dominant
eigenvalue of (£, A) is A = n — a = —1. This means that (£, A) is also c-stable. Note
that although p = 0, due to the fact that E” E > 0, we have a nonnegative eigenvector
corresponding to i and, hence, to \, see Remark 3.7.

For a c-stable matrix pair, the following Lemma provides an associated c-stable matrix
that has all finite eigenvalues of (F, A) as eigenvalues and an additional stable eigen-
value —«, where o > 0 may be chosen arbitrarily, that corresponds to the eigenvalue oo
of (E, A). In the case of positive systems, this associated c-stable matrix is in addition
a —M-matrix and plays an essential role in the generalisation of properties of positive
systems from the standard to the descriptor case.

Lemma 4.14 Let (F, A) be a regular c-stable matrix pair. Then, for any « > 0 we have
that

M := —al + EPA+ oEPE,

is a stable (regular) matrix. If, in addition, the matrix pair (£, A) is c-positive and EPE >
0, then there exists o > 0 such that M is a —M-matrix.

Proof. All finite eigenvalues of (E, A) are also eigenvalues of EP A and the eigenvalue
oo of (F, A) is mapped to the eigenvalue 0 of EPA, see Section 2.2. For any finite
eigenpair (A, v) of (E, A), we have

Muv = EP Ay = ).

Therefore, all stable finite eigenvalues of the pair (E, A) are stable eigenvalues of M.
For any eigenvector w corresponding to the eigenvalue oo of (E, A), i.e., Ew = 0, we
have by the properties of £, A in Lemma 1.19 and Equations (1.13) that

A~

EP Aw = EPAEPBw = EPAEP(AE — A)"'Ew = 0,



4.2. Positive descriptor systems 77

and hence,
M”LU = —Qw.

Thus, w is now an eigenvector corresponding to a negative eigenvalue —a. Hence, all
eigenvalues of M have negative real parts and therefore M is stable. If, in addition, the
matrix pair (E, A) is c-positive and E°E > 0, then by Remark 4.7 we have that there
exists a > 0 such that

T := EPA+ oEPFE > 0.

By the generalised Perron-Frobenius Theorem 2.8 we have that p(T') is an eigenvalue
of T"and p(T') — « is the finite eigenvalue of (£, A) with the largest real part and it is
negative, since (£, A) is c-stable. Therefore, we have o > p(T") and

M= —(al =T)

isa —M-matrix. [

In the following we generalise a Lyapunov-type stability condition from the standard
case in Theorem 4.10 to the descriptor case.

Theorem 4.15 Let the matrix pair (£, A) be regular and let £, A be defined as in
Lemma 1.19. If (E, A) is c-positive and EPE > 0, then the pair (E, A) is c-stable if
and only if there exists a positive definite diagonal matrix Y such that

(EPA)TY +Y(EPA) <0,

and (EPA)TY + Y (EP A) is negative definite on S}/
If (E, A) is d-positive and EPE > 0, then (E, A) is d-stable if and only if there exists a
positive definite diagonal matrix Y such that

(EPATY(EPA)—Y <0.
Proof. Continuous-time case:
“="By Lemma 4.14, we have that there exists « > 0 such that the matrix
M :=al — (EPA + aEPE),
is a regular M-matrix. For all v € S§* we have by (3.9) that
VT (EPA)TY v +0"Y (EP A = 0" (=M)TYv +0"Y (= M)w.

It is well known that for an M-matrix M there exists a positive definite diagonal matrix
Y so that the matrix —(MTY + Y M) is negative definite, see, e.g., [6], [11], [17], [38].
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Hence, Y is a positive definite diagonal matrix such that (EPA)7Y +Y (EP A) is negative
definite on S{/. For any w € R"\ ${*/, we have EP Aw = 0 and hence, (E?A)TY +
Y (EP A) is negative semidefinite on R”.

“<" We have to show that all finite eigenvalues of (£, A) have negative real part. If
o¢(E, A) =0, there is nothing to prove. Therefore, assume that o;(E, A) # 0. Then, by
Theorem 4.12, we have that the c-dominant eigenvalue \ of (E, A) is real and unique.
Hence, it suffices to show that ) is negative. Let v be an eigenvector corresponding to
A. Since the eigenpair (), v) is also an eigenpair of EP A, see Section 2.2, we obtain

v (EPA)TY v +0TY (EPA)w = 0" Yo +0"Y Mo = 200" Y0 < 0,
whereas v"Yv > 0. Hence, \ < 0.

Discrete-time case:
“>" If EPE > 0, for a positive system we also have EP? A > 0, see Remark 4.7. Since
the matrix pair (E, A) is d-stable, we have p¢(E, A) < 1 and hence, the matrix

M:=1—EPA,

is a regular M-matrix. Therefore, there exists a diagonal positive definite matrix Y~ so
that the matrix (E2 A)TY (EPA) — Y is negative definite, see, e.g. [6], [38].

“<” As in the continuous-time case, we assume that o;(E, A) # (. Then, by Theo-
rem 4.12, we have that there exists a d-dominant eigenvalue A of (E, A) that is nonneg-
ative and real. Hence, it suffices to show that ) is less than 1. Let v be an eigenvector
corresponding to A. Since the eigenpair (A, v) is also an eigenpair of EP A, see Sec-
tion 2.2, we obtain

T (EPA)TY(EP Ay —oTve = 0Ty —oTYo = (A2 = 1)0"Yv < 0,
whereas v7Yv > 0. Since ) is nonnegative, we have A < 1. [

The following corollary restates the result of Theorem 4.15 in terms of the continuous-
time and discrete-time generalised projected Lyapunov operators, as introduced in [115]
for descriptor systems, that are used in Theorem 4.5 for characterising stability proper-
ties of unconstrained descriptor systems. To adhere the condition of the existence of a
diagonal Lyapunov function, however, an additional condition is needed.

Corollary 4.16 Let the matrix pair (E, A) be regular of ind(E, A) = v and let £, A be
defined as in Lemma 1.19. Assume that (E, A) is c-positive with P, = EPE > 0 and
that P,E; ! is diagonal, where E,, is defined as in (1.6). Then, the pair (E, A) is c-stable
if and only if there exists a positive definite diagonal matrix X such that

ETXA+ ATXE <0,
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and ETX A + ATXE is negative definite on S}
For the discrete-time case, assume that (F, A) is d-positive with P, > 0 and that P, E!
is diagonal. Then (£, A) is d-stable if and only if there exists a positive definite diagonal
matrix X such that

ATXA-ETXE <0,

and ATX A — ET X E is negative definite on S}/

Proof. Consider first the continuous-time case. It is enough to prove the if part, since
the only if part follows directly from Theorem 4.5. By Theorem 4.15 we have that there
exists a diagonal positive definite matrix Y such that (E?A)"Y + Y (EP A) < 0. Setting

X:=E"P'YPE", (4.3)
we have that X is diagonal positive definite. For all v € S/ we have

VI ETX Av + 0T ATX Ev =0T ET(E;TPTY P.E;Y) Av + vT AT(E;TPTY P.E;Y) Ev
—TY EP Av + T (EP A)TYw < 0,

where we have used that P,E;'E = P, and P,E;'A = EP A, see Section 2.2.3. Hence,
ETXA + ATXF is negative definite on ijef. Furthermore, for any w € R" \ S?ef, we
have P,w = 0 and hence, ET X A + AT X E is negative semidefinite on R".

Consider now the discrete-time case. As in the continuous-time case it is enough to
prove the if part, since the only if part follows directly from Theorem 4.5. By The-
orem 4.15 we have that there exists a diagonal positive definite matrix Y such that
(EPA)TY(EPA) —Y < 0. Setting X as in (4.3) we obtain that X is diagonal positive
definite and for all v € S we have

VI ATX Av — 0" ET X Ev =0T AT(E;TPTY PE; Y Av — v EY(E; T PTY P.E; Y Ev =
=T(EPATY EP Av — oY < 0.

Hence, AT X A — ET X E is negative definite on ijef. Furthermore, for any w € R™\ S;fef,
we have P.w = 0 and hence, A" X A + ET X E is negative semidefinite on R".
0

The following corollary restates the result of Theorem 4.15 in terms of M-matrix prop-
erties.

Corollary 4.17 Let the matrix pair (F, A) be regular and let £, A be defined as in
Lemma 1.19. If (E, A) is c-positive and EPE > 0, then the matrix pair (E, A) is c-stable
if and only if there exists a scalar o > 0 such that for the matrix M := al—(EP A+aEPE)
one of the following properties holds
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1. all principal minors of M are positive;

2. the coefficients of the characteristic polynomial of M are negative.

If (£, A) is d-positive and EPE > 0, then the matrix pair (E, A) is d-stable if and only if
one of the properties 1.-2. holds for the matrix M := I — EP A.

Proof. In the continuous-time case, by Lemma 4.14 there exists « > 0 such that M is
an M-matrix. In the discrete-time case, M is an M-matrix by Theorem 4.15. Therefore,
the assertions of this corollary follow directly from the M-matrix properties [17], [38]. U

4.3 Stability of switched positive descriptor systems

The study of stability properties of switched systems is subject to ongoing research, see
[112] and the references therein. Especially, in the case of standard positive systems,
progress has been made on this subject due to the existence of a diagonal Lyapunov
function, see, e.g., [90], [91], and the references therein. The existence of a common
diagonal Lyapunov function of two positive systems, i.e. a diagonal positive definite
matrix Y such that

ATY + YA, and
ALY +Y A,

are negative definite, guarantees the stability of the switched system under arbitrary
switching. In this section, we show how we can use the framework established through-
out this chapter in order to generalise these results to positive descriptor systems.

The following sufficient conditions for the existence of a common diagonal Lyapunov
function in the standard case can be found, e.g., in [90], [91].

Theorem 4.18 Let A;, A, € R"™" be —M-matrices, i.e., stable —Z-matrices. Then,
each of the following conditions is sufficient for the existence of a common diagonal
Lyapunov function:

1. AjA;' and A5 ' A, are both M-matrices.

2. A Ayt and A A, are both nonnegative.

The generalisation to positive descriptor systems uses Theorem 4.15 and is as follows.
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Theorem 4.19 Let (Ey, Ay), (E,, A,) be two c-stable matrix pairs and let £, A;, i = 1,2
be defined as in Lemma 1.19 with EPE, > 0 and EPE, > 0. Then there exist scalars
oy, o > 0 such that

M, = ol — EAlDAl — OéElDEl, and
M2 = QI—EQDAQ —QE’QDEQ

are M-matrices and each of the following conditions is sufficient for the existence of a
common diagonal Lyapunov function:

1. MM, " and M, ' M, are both M-matrices.

2. MM, " and M, ' M, are both nonnegative.

Proof. By Lemma 4.14, there exist scalars a4, a; > 0 such that M, M, are M-matrices.
The rest follows as in the proof of the standard case in Theorem 4.18. [

Summary

In this chapter we have discussed stability properties of positive descriptor systems
in the continuous-time as well as in the discrete-time case. We have reviewed some
prevalent stability concepts in the positive standard case along with different stability
criteria that take a simple form in the case of positive systems. We have presented
generalisations of (internal) stability criteria for the case of positive descriptor systems.
It was shown that if the spectral projector onto the finite deflating subspace of the matrix
pair (E, A) is nonnegative, then all stability criteria for standard positive systems take
a comparably simple form in the positive descriptor case. As an application of the
framework established throughout this chapter, we have shown how stability criteria of
switched standard positive systems can be extended to the descriptor case.






Chapter 5

Generalised Lyapunov eqguations for
positive systems

An idea is always a generalisation, and generalisation is a property of thinking.
To generalise means to think.
Georg Wilhelm Friedrich Hegel

We consider the following projected generalised Lyapunov equations [115] in
continuous-time

ETXA+A"XE = -P'GP,, (5.1)

or in discrete-time
ATXA - E"XE = -P'GP,, (5.2)

where G € R™" and P,, as defined in (1.5), is the unique spectral projector onto the
finite deflating subspace S/ of the pencil (E, A).

Lyapunov equations are named after Alexander Mikhailovitch Lyapunov, who presented
the stability theory for linear and nonlinear systems in 1892 [84].

Lyapunov equations have been studied in many different contexts, especially in applica-
tions such as differential and difference equations [45], [48], [105], [114], [115]. Stability
properties in systems theory and also many other control theoretical issues such as
model reduction methods or the quadratic optimal control problem are also closely re-
lated to the solution of Lyapunov equations, see. e.g., [5], [44], [45], [79], [95].

The following Theorem 5.1 gives necessary and sufficient conditions for the existence
of solutions of (5.1) [115].

83
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Theorem 5.1 Let (E, A) be a regular matrix pair and let P. and P, be the spectral pro-
jectors onto the right and left finite deflating subspaces defined in (1.5). Furthermore,
let Ay, ..., \,,, Wwhere n; = rank(F,) be the finite not necessarily distinct eigenvalues of
(E, A). The generalised Lyapunov equation (5.1) has a solution for every matrix G if
and only if \; + A, # O forall j,k = 1,...,n;. If, in addition, the solution X is required to
satisfy the condition X = X P}, then it is unique.

The additional condition X = X P, corresponds to the requirement that the nonunique
part of the solution X is zero in the Weierstral3 canonical form. Therefore, in [115], the
following system of equations is considered

ETXA+ ATXE = -PI'GP,,
(5.3)
X=XP,.
For the discrete-time case, consider the projected generalised discrete-time Lyapunov
equation (5.2). The following Theorem 5.2 gives necessary and sufficient conditions for
the existence of solutions of (5.2) [115].

Theorem 5.2 Let F, A be a regular matrix pair and let P, and P, be the spectral pro-
jectors onto the right and left finite deflating subspaces defined in (1.5). Furthermore,
let Ay, ..., \,,, Wwhere n; = rank(F,) be the finite not necessarily distinct eigenvalues of
(E, A). The generalised Lyapunov equation (5.2) has a solution for every matrix G if
and only if \;\; # 1 forall j,k = 1,...,n. If, in addition, the solution X is required to
satisfy the condition P/ X = X P, then it is unique.

As in the continuous-time case, the additional condition P*X = X P, corresponds to
the requirement that the nonunique part of the solution X is zero in the Weierstraf3
canonical form. Therefore, in [115], the following system of equations is considered

ATXA - E"XE =-P'GP,
- (5.4)
P X =XDP,.
In the context of positive systems one is interested not only in positive (semi)definite
solutions of such Lyapunov equations but rather in doubly nonnegative solutions, i.e.,
solutions that are both positive semidefinite and entry-wise nonnegative. Such results
for standard Lyapunov equations are well known. We summarise these in the next
Section 5.1.
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5.1 Doubly nonnegative solutions of projected gener-
alised Lyapunov equations: standard case

The following result is on the nonnegativity of the solution of the standard continuous-
time Lyapunov equation.

Theorem 5.3 Let A be a —Z-matrix and let A be c-stable, i.e., 0(A) C C_. Then, the
solution X of the Lyapunov equation

ATX + XA =-G (5.5)
is given by
X = / AT GeMdt. (5.6)
0

The solution X is positive (semi)definite for any positive (semi)definite matrix G and X
is nonnegative for any nonnegative G. Moreover, if G > 0 then, X > 0.

Proof. For a c-stable matrix A it is well known, that the solution to (5.5) can be explicitly
given by (5.6), see, e.g., [60]. Since A is a —Z-matrix, we get by Lemma 1.3 that
eA"t > 0and e > 0 forall ¢ > 0. Since G > 0 (G > 0) and integration is monotone, we
get that X > 0 (X > 0). Furthermore, if G > 0 (G = 0) we have that X > 0 (X = 0). [

Remark 5.4 Note, that the condition in Theorem 5.3 that A is a c-stable —Z-matrix is
equivalent to the condition that A is a regular —M-matrix, see Lemma 1.8. The proof
to Theorem 5.3 can therefore alternatively be accomplished by forming vec X, which

T
stacks the columns X, ..., X, of the matrix X into a long vector [XlT ... XTIl and
by solving instead of (5.5) the equivalent linear system

IT@ AT + AT @ I)vec X = —vecG, (5.7)
(

where ® is the Kronecker product. Since A is a regular —M-matrix, the matrix (/@ A” +
AT ® 1) is also a regular —M-matrix [55] and hence (I ® AT + AT @ I)~! < 0. Therefore,
we conclude that if G > 0, we get X > 0 and if G > 0 we get X > 0.

The following result is on positivity of the solution of the standard discrete-time Lya-
punov equation.
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Theorem 5.5 Let A > 0 be d-stable, i.e., p(A) < 1. Then, the solution X of the Lya-
punov equation

ATXA - X =-G (5.8)

is given by

X =) (AT)rGgAF. (5.9)
k=0
The solution X is positive (semi)definite for any positive (semi)definite matrix G and X
is nonnegative for any nonnegative GG. Moreover, if A,G > 0 then, X > 0.

Proof. The series in (5.9) is absolutely convergent since the spectral radius of A is less
than one and (5.9) is a solution since

o0

ATXA-X = ATY (AT)FGAFA - (AT)rGAk =

k=0 k=0
= ) (ANFGAF =Y (AT GAF = -G
k=1 k=0

Now, if A,G >0 (A,G > 0), we get X > 0 (X > 0). Furthermore, if G = 0 (G = 0) we
have that X = 0 (X = 0). [

In the following Section 5.2 we extend the well-known results of this section to the
descriptor case [124].

5.2 Doubly nonnegative solutions of projected gener-
alised Lyapunov equations: descriptor case

Consider the projected generalised continuous-time Lyapunov equation given in (5.3)
and recall that P, = EPF, see Section 1.6. The following Theorem 5.6 gives sufficient
conditions for the existence of a doubly nonnegative solution of (5.3).

Theorem 5.6 Let (F, A) be a regular c-stable matrix pair. Let £, A be defined as in
Lemma 1.19 and assume that E°E > 0. Then, system (5.3) has a unique solution for
every matrix GG. The solution is given by

X=E" ( / h B AT pT G’Pre(EDA)tdt) E" (5.10)
0
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where E, is defined as in the matrix chain in (1.6). If the matrix G is symmetric positive
(semi)definite, then X is symmetric positive semidefinite. If, in addition, we have that
the matrix pair (E, A) is c-positive, PGP, > 0 and P.E,! > 0, then also X > 0.

Proof. We first show that X as defined in (5.10) is solution of (5.1). Since (E, A) is
c-stable, by Lemma 4.14, we have that for any o > 0 the matrix

M :=—al + EPA + oEPE

is c-stable and M P, = P.M = EPA. We now use the following properties that can be
deduced from the properties of canonical projectors in [89], [96]:

EV_IAlQZ = —Q; forall = 0,...,v—1, (511)
where FE,, A; are defined as in the matrix chain (1.6) with canonical projectors @);. By

definition, we have £, = E— AqgQy — ... — A,_1Q,_1 and with the identities in (5.11) we
get

EJM’E=1-Qy—...—Q,_1. (5.12)
Since P, =F,...P,_;, where P, = I — ();, we have, [89], [96],
P.Q; =0, forall i=0,...,v—1. (5.13)
By using this, we obtain that
E'XE = E'E]T ( / " A pr GPTe(EDA)tdt) E;'E
O pTET ( /O " EPApT GPre(EDA)tdt> (I=Qo— .~ Quor)
(019 / ) e@%:tpf GPe PPt
(3.10) /O e "PrGPR.Mdt
0
is a solution of the standard Lyapunov equation

(E*XE)M + MY (ETXE) = —P'GP,.
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On the other hand, by using the identity (2.14), we obtain
ATXE = ATE;T < / B AT p GPTe(EDA)tdt) E;'E =
0
= PrATE]" ( / " B ATepr GPre(EDA)tdt) =
0
= (EPAYT ( / T ERATpr GPre(EDA)tdt> =
0

= M7 (/Oo e(EDA)TtPfGPre(EDA)tdQ =
0
= M"(ETXE),

and analogously ETX A = (ETX E)M. Hence, if we plug X defined in (5.10) into equa-
tion (5.1), then we obtain

ETXA+ ATXE = (E"XE)M + MT(E"XE) =
= —PIGP,.

To show the uniqueness of the solution we make use of the Weierstrald canonical form.
By the construction of £, we have that

PE'=T""
0 0

! 0] w1 (5.14)

and P, is defined as in (1.5). Hence, we have that P.E;'P, = P.E, ! and therefore, the
condition X = X P, holds.

If G is positive (semi)definite, then X is positive semidefinite [115]. If (£, A) is c-positive
and P, > 0, then e®” AP, > 0. With PGP, > 0 and P,E;! > 0 we obtain X > 0. [

Remark 5.7 Note that by (5.14), in the solution representation (5.10), the matrix £, can
be replaced by any regular matrix R such that R~ in the WeierstraR canonical form has
the following structure

I 0] -

0 =*

R*l _ T*l

where x denotes an arbitrary regular submatrix. For instance, such a matrix could also
be R=(EP.+ A(I — P,)).

With such a matrix R, alternatively, the results of Theorem 5.6 may be obtained by
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considering the Weierstrald canonical form and verifying that the relations

P.R'E=T"" Lo T=F,
0 0
P.R'A=T"" ‘g 8 T =EPA,

hold.

For the discrete-time case, consider the projected generalised discrete-time Lyapunov
equationin (5.4). The following Theorem 5.8 gives sufficient conditions for the existence
of a doubly nonnegative solution of (5.4).

Theorem 5.8 Let (E, A) be a regular d-stable matrix pair. Let £, A be defined as in
Lemma 1.19 and assume EPE > 0. Then system (5.4) has a unique solution for every
matrix G. The solution is given by

X=£g" (i((EDA)T)tPf GPT(EDA)t) EY (5.15)

t=0

where E, is defined as in the matrix chain in (1.6). If G is symmetric positive
(semi)definite, then X is symmetric positive semidefinite. If, in addition, we have that
the matrix pair (F, A) is d-positive, PTGP, > 0 and P,E;! > 0, then also X > 0.

Proof. We first show that X as defined in (5.15) is solution of (5.2). For X as defined in
(5.15) we have that

E'XE =ETE;" (i((EDA) N'G(EP A) ) E'E = Z pPTGP,.(EPA)

t=0

is a solution of the standard discrete-time Lyapunov equation
(EPA)T(ETXE)(EPA) — (E"XE) = —PTGP.,.

On the other hand, we have

ATXA = (BPAYT (i((EDA)T)fG(EDA)t> (BPA)

t=0

Hence, if we plug X into equation (5.2), then we obtain

ATXA - E'XE = (EPAT(E"XE)(EPA) — (E*XE) = —PYGP,.
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Condition P X = X P, can be shown as in the continuous-time case by considering the
Weierstral3 canonical form representation in (5.14).

If (E, A) is d-positive and P, > 0, then we have that E° A > 0 [24]. With PTG P, > 0 and
P.E;1 > 0we obtain X >0. [

Note that Remark 5.7 is also true in the discrete-time case.

5.3 Special case: index 1 systems

In this section, the Schur complement decoupling technique presented in Section 3.3 is
applied to show nonnegativity of the solution of projected generalised Lyapunov equa-
tions for special systems of index 1.

In the following theorem we give sufficient conditions for the nonnegativity of the solution
X of (5.3) for a special matrix E.

Theorem 5.9 Let P, and P, be the spectral projectors onto the right and left finite deflat-

ing subspaces of the matrix pair (¥, A) defined in (1.5), where E = EOH 8] with E£1;

All A12
A21 AQZ
and AgE;! is a regular —M-matrix, where Ag = A, — Ay Ay Agy.

regular and A = is partitioned accordingly. Suppose that A,, is invertible

Moreover, suppose that A;,A4,," < 0. Then, for any G such that

C:TYH C}Y12

PIGP, =:
G21 G22

, (5.16)

and El‘lTénEl‘ll > 0, the unique solution X of Equation (5.3) satisfies X > 0.

Proof. We have that

AsER 0
0 Az

9

PEQ = [é 8] and PAQ =

where P =
I

and Q =

B 0 :
. . are regular matrices. Hence,
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we can compute the projectors P, and F, by

10 7 0]
P. = = )
@ 0 0] @ —A Ay 0
- ) (5.17)
0 0 0 0

Scaling the first equation in (5.3) with QT and @ we obtain the equivalent equation

QTET"XAQ + QTATXEQ = —Q"PIGPQ.

We have
E;, 0 Eit 0 I0 -
EQ=|" I = = E, (5.18)
and
A, A Eit AEL A -
AQ = 11 12 I 11 B 0 _ Sta1 12 — A (5.19)
Ay Ag| |—ARAnE 1 0 Az
Since
I 0 Bt 0 Bt 0
Q=1 _aoian of |—aganEs 1| T |—AglAnED 0]
22 21 22 21411 22 214411
we obtain
ET X1 Xio A4 AT X Xl = _ —EﬂTénEﬁl 0 ’
Xo1 Xoo Xo1 Xoo 0 0

where Gy, = (G — AL AT Gy — (G — AT AT Ga0) AL Asy). Hence, we have the
following decoupled system of equations

XHASEl_ll + EﬂTAgXll - —El_lTénEl_ll
X11A19 + X12A490 = 0
A’{QXH —|— Ag2X21 — 0

0 0

By Theorem 5.3, since AgE;;! is a —M-matrix and E;,"Gy E;' > 0, we obtain that
the first equation has the unique solution X;; > 0. We have that A, is invertible and
A A5} < 0. Therefore, from the second and third equations, we get

X2 = —X11A12A2_21 >0,
X21 - —AQ_QTA?QXH ZO
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Furthermore, since we required that X = X P, i.e.,
Xll X12 _
X21 X22

we obtain Xy, = — X5 4,545, > 0. Hence, we conclude that X > 0. [

0 0

9

Xll X12
X21 X22

X1 _X11A12A2_21
Xoy —Xo1ApAsy

All A12
A21 A22
partitioned accordingly. If A is a regular —M-matrix, then for any G > 0 the unique
solution X satisfies X > 0.

Corollary 5.10 Consider Equation (5.3), where £ = [é 8] and A =

Proof. Since A is a regular —M-matrix, we have that the Schur complement As =
Ay — A ASy Aoy is a regular —M-matrix [85]. Also we know that — A5, > 0and A5 > 0.
Hence, A,A; < 0. Finally we obtain PYGP, > 0 for any G > 0 since Gy, = Gy —
AT AL Gy — (Gro — AL AL Gog)Agy Ay > 0. [

The following Theorem 5.11 is the discrete version of Theorem 5.9 and gives sufficient
conditions for nonnegativity of the solution X of (5.2) for a special matrix E.

Theorem 5.11 Let P, and P, be the spectral projectors onto the right and left finite
Ey 0

deflating subspaces of the matrix pair (£, A) defined in (1.5), where E = 0 0

All A12
A21 A22
invertible and AgFE; ', where Ag = Ay — A A5y Asy, is d-stable, i.e., all eigenvalues are
of modulus less than one.

with E;; regular and A = is partitioned accordingly. Suppose that Ay, is

Moreover, suppose that A, Ay, < 0. Then, for any G such that EﬁT@HEﬁl > 0, where
G11 is defined as in (5.16), the unique solution X to Equation (5.4) satisfies X > 0.

Proof. As in the proof to Theorem 5.9, we have

I 0 AsERY 0
PEQ = and PAQ = 1
@ [O 0] @ Ago |’
I —A A E! .
where P = 12722 1 and Q = I are regular matrices. Therefore,

we have the same projectors P, and P, as in (5.17).
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Scaling the first equation in (5.4) with Q” and @ we obtain the equivalent equation
QTATXAQ - Q"E"XEQ = -Q"PTGP,Q.

As in the continuous-time case, we have EQ = E and AQ = A, where E., A are defined
as in (5.18) and (5.19), respectively.

Since
I 0 Bt 0 Bt 0
FQ=1_ 41, CAMAGESY T | —AG AL ESY ol
90 A21 0 99 Ao1 By 90 Ao1Eyy 0
we obtain
AT X1 Xio A_ET X Xie o —EﬁTénEﬂl 0 ’
Xo1 Xoo Xo1 Xoo 0 0

where Gy, = (G — AL AL Gy — (Gra — AL AL Gyy)ASL Ayy). Hence, we have the
following decoupled system of equations

EﬁTAgXllASEl_ll — X11 - —El_lTéllEl_ll
EﬂTAgXllAlg + EﬂTA§X12A22 - 0
A{QXHASEl_ll + A§2X21A5Eil - 0

A1T2X11A12 + A1T2X12A22 + AQTQX21A12 + A52X22A22 = 0

Since Ag = (A} — AppAs) Asy) > 0 is d-stable, i.e. all eigenvalues are of modulus less
than one, and EﬁTénEﬂl > 0, we obtain from Theorem 5.5 that the first equation has
a unigue solution X;; > 0.

We have that Ay, and Ag are invertible and A;,A5, < 0. Hence from the second and
third equations, we get

X1y = —XpApAy >0,

Furthermore, since we required the condition P X = X P, i.e.,

Xll X12
—Ay AL Xn Ay AL X

_ X1 —X11A12A§21
Xo1 —X211412142_21

Y

we obtain
Xoy = — Ayl AL X 1y = — X1 A1 Ay > 0.

Therefore, we conclude that X > 0. [
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Summary

In this chapter we have reviewed the solvability of projected generalised Lyapunov
equations for descriptor systems and the well-known sufficient conditions that guaran-
tee doubly nonnegative solutions of Lyapunov equations in the positive standard case.
We have presented a generalisation of such sufficient condition that guarantee dou-
bly nonnegative solutions of projected generalised Lyapunov equations in the positive
descriptor case. Finally, we have used the Schur complement decoupling approach
presented in Section 3.3 to deduce such conditions in a special index 1 situation. All
results were given in the continuous-time as well as in the discrete-time case.



Chapter 6

Positivity preserving model reduction

All exact science is dominated by the idea of approximation.
- Bertrand Russel

In this chapter, we present a model reduction technique that preserves the positivity of
a system in the continuous-time as well as in the discrete-time case. In Section 6.1,
we review the methods of standard balanced truncation [46] and singular perturbation
balanced truncation [82].

For standard systems the proposed positivity preserving method, which we present in
Section 6.2, is based on the existence of a diagonal solution of Lyapunov inequalities
that are shown to be feasible. Such solutions may be obtained via LMI solution meth-
ods [20]. The reduction is then performed by standard balanced truncation or singular
perturbation balanced truncation methods. It is shown that both methods preserve pos-
itivity. These results were published in [108].

Furthermore, we generalise this technique to positive descriptor systems. Here, the
procedure involves the additive decomposition of the transfer function into a strictly
proper and a polynomial part as in [116]. It is shown that the system matrices may also
be additively decomposed according to these two parts using the spectral projector. The
reduced order model is then obtained via positivity preserving reduction of the strictly
proper part, where we apply the reduction technique as proposed for the standard case,
whereas the polynomial part remains unchanged. We give a reduced order descriptor
system and show that it is positive.

Finally, numerical examples in the continuous-time and in the discrete-time case are
provided and illustrate the functionality of the proposed algorithm.

95
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6.1 Balanced truncation

In this section we review the properties of standard balanced truncation and singular
perturbation balanced truncation established in [46], [82].

Continuous-time case

Consider the standard continuous-time system (1) with £ = I and the transfer function
G(s) = C(sI — A)~'B + D. Assume that A is c-stable. Let P, Q = 0 be the solutions of
the continuous-time Lyapunov equations

AP +PAT + BBT =0,

ATQ+ QA+ CTC =0. -
System (1) is said to be balanced if
by by
die 0
P = 0 , Q= o ; (6.2)
0 0
are partitioned accordingly with square matrices X, > 0, >, = 0 and
Y = diag(oy,09,...,04) forsome oy > 09 > ... > 0 > 0. (6.3)

The numbers o, ...0; are called Hankel singular values. Consider a partition of the
balanced system

All A12
AZI A22

B,

A—
By

. B= , C:[Ol 02}, (6.4)

where A;; € R‘ and either ¢ = k or ¢ < k such that 0,,, < 0,. The matrices B and C
are partitioned accordingly. By means of balanced realisations, reduced order models
To(t) = Ap(t) + Boug(t),

o(t) = Agzy(t) + Bou(t) 6.5)
yg(t) = C’gl’g(t) -+ DgUg(t),

can now be constructed. In the method of standard balanced truncation [46], the matri-
ces Ay, By, Cy, D, are defined by

AZ:Alh Bﬁ:Blv Cﬁ:CIa Dﬁ:D (66)
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An alternative method for the construction of reduced order models is singular pertur-
bation balanced truncation [82]. There, the reduced order model is defined by

A= Ay — A1pAy Asy, Be= By — A Ay, Bo,

(6.7)
Cp=C) — CoAzt Ay, Dy= D — CyA; By

For the reduced order models defined by (6.6) or (6.7), we have the following result on
an error bound in the H,,-norm [82]:

Lemma 6.1 Let (A, B, C', D) be a realisation of G(s) that is c-stable, balanced with
¥, and partitioned as in (6.4) and let ( A,, B,, Cy, D,) be the realisation that is either
constructed by (6.6) or (6.7). Then, the system in (6.5) is balanced with P = Q =
diag(cy, ..., o). For the corresponding transfer function G(s) = Cy(sI, — A;)"' By + Dy,
we have

k
16— Cllc <2 Y o

i=0+1

The main difference between the discussed truncation methods is that standard bal-
anced truncation is exact for s = oo meaning that G(cc) = G(c0), whereas singular
perturbation balanced truncation is exact at s = 0.

Discrete-time case

Consider a discrete-time system (2) with transfer function G(z) = C(2I — A)"'B+ D
and assume that A is d-stable. Then there exist matrices P, Q € R"*", P.Q = 0 that
solve the the discrete-time Lyapunov equations

APAT — P+ BB =0,

6.8
ATQA -9+ CTC =0. (6.8)

In accordance with the continuous-time case, the system in (2) is called balanced if P
and Q are defined as in (6.2), where o, > 05 > ... > o0}, are the Hankel singular values.
Consider a partition of the balanced system as in (6.4) and assume that either ¢ = k or
¢ < k with 04,1 < 0,. Standard balanced truncation leads to a reduced order model

:L’g(t -+ 1) = Agl’g(t) + BgUg(t),

(6.9)
yg(t) = Cgl‘g(t) + DgUg(t),
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that is constructed via (6.6). In the singular perturbation balanced truncation technique,
the matrices in (6.9) are given by

Ap = A1 + Aa(Lr — Ap) ' Ay,
By = By + App(Lny — Ag) ™' By,
Cy=Cy+ Co(l—r — Agg) ' Ay,
Dy =D + Cy(I,_r — Ag) ' Bs.

(6.10)

For the reduced order models, we have an analogous result as in Lemma 6.1 [46], [82].

Lemma 6.2 Let (A, B, C, D) be a realisation of G(z) that is stable, balanced with
Y. and partitioned as in (6.4) and let ( A,, B,, Cy, D,) be the realisation that is either
constructed by (6.6) or (6.10). Then, the system in (6.9) is balanced with P = Q =
diag(oy,...,0,). For the corresponding transfer function G(z) = Cy(zl, — A)"'B, + Dy,
we have

k
IG = Glloca <2 ) 0. (6.11)

i={+1

6.2 Model reduction for standard positive systems

In this section we generalise the model reduction methods reviewed in Section 6.1
to standard positive systems. To this end, note that the results in Lemma 6.1 and
Lemma 6.2 still hold if the Lyapunov equations in (6.1) and (6.8) are replaced by Lya-
punov inequalities in continuous-time

AP +PAT + BBT <0,

6.12
ATQ+ A+ CTC =0, (6.12)

or in discrete-time
APAT — P+ BBT <0,

6.13
ATQA-Q+C"C =0, 619

respectively. The proofs can be found in [81] for continuous-time and in [12] for discrete-
time standard balanced truncation. Note that the results for singular perturbation bal-
anced truncation can be deduced analogously. We show that for a transfer function
of any positive system there exists a positive realisation with P and Q as in (6.2) that
solves the inequalities (6.12) or (6.13), respectively.
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Theorem 6.3 Consider the standard c-stable continuous-time positive system (1) with
E = 1. Then, there exists a diagonal positive definite matrix 7" such that the positive
system (A, B, C', D) given by

A=T7'AT, B=T"'B and C=CT, (6.14)

is balanced in the sense that there exist matrices P = 0, Q = 0 as in (6.2) with diagonal
and positive definite X, such that the following Lyapunov inequalities hold:

AP +PAT + BBT <0,

) o 6.15
ATO+ QA+ CTC =0. (6.15)

Proof. It is well known that a —M-matrix is diagonally stable, i.e., there exist diagonal
positive definite matrices X, Y such that

AX 4+ XAT <0 and ATY +YA <0,

see, e.g. [6], [17]. In particular, there exist positive semi-definite diagonal matrices X, Y
such that
AX + XAT + BBT <0, ATY+YA+CTC=0.

Take a permutation matrix II € II,, such that

X11 )/11

7 XTI = X2

with the additional property that X, = diag(xy,...,zx) and Yi; = diag(y, . .., yx) satisfy
Tiy1 = ToYy2 = ... = Tl > 0.

Now defining 7' = diag((X1,Y;;")1,1,1,1) and T = IIT, we have that P = 7' X7T-7,
Q = TTYT have the desired form. The transformed system is given by (A, B, C', D)
as defined in (6.14). Since A is a —Z-matrix and B,C, D > 0, the transformed system
is positive by Theorem 3.4. [

In the discrete-time case, we have an analogous result, which is stated without proof.

Theorem 6.4 Consider a discrete-time positive system (A, B,C,D), e,
A,B,C,D > 0, that is d-stable, i.e., p(A) < 1. Then, there exists a positive def-
inite diagonal matrix 7' such that the system (A, B, C', D), where A = TAT!,
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B =TBand C = CT"!, is balanced in the sense that there exists a positive definite
diagonal matrix X such that the following Lyapunov inequalities hold:

A AT -+ BBT <0,
o o (6.16)
ATLA -2+ CTC <0.
Theorem 6.3 and Theorem 6.4 guarantee the existence of a positive balanced realisa-

tion. Once we have a positive balanced realisation, standard balanced truncation and
singular perturbation balanced truncation can be applied.

The reduced order systems are again positive, which can be verified as follows. In the
continuous-time case, the reduced system defined in (6.6) is again a positive system,
since B, > 0, C, > 0, D, > 0 and A, is a —M-matrix as a submatrix of a — M/ -matrix.
In (6.7), the —M-matrix property of A, is preserved, since it is a Schur complement of
A [122]. Furthermore, since A, is also a —M-matrix, we have A, < 0, and hence,
By, Cy, Dy > 0.

In the discrete-time case, the reduced system defined by (6.6) is positive, since A,
By, Cy, D, are submatrices of positive matrices. Furthermore, (6.10) is also a positive
system, which can be observed as follows. By the stability assumption, we have that
p(As) < p(A) < 1. Hence, I,,_, — Ayy is an M-matrix and (I,,_, — As)~! > 0. Therefore,
we obtain A,, B,, Cy, D, > 0.

Note that for the computation of positive reduced order models, there is no need to
compute a balanced realisation explicitely. Instead, for diagonal solutions

P = diag(p1,...,p,) and Q = diag(qi,-..,qn)
of (6.1) or (6.8), indices {4, ..., «a,} have to be found such that

Parlar = -+ 2 Payloy > PagirQagir = -+ 2 Panan-

Reduced order models (6.5) (or (6.9)) can be obtained in the following way: Let o =
{Oé7 . ,Oég}, 6= {()ég+1, S ,Oén} and

Then, the following properties hold:
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(i) The continuous-time (discrete-time) system (A, By, Cy, D) is positive and has the
same transfer function as the ¢-th order system obtained by positive standard bal-
anced truncation in (6.6).

(i) The continuous-time system
(An —A12A2_21A21 , By —121121212_2132 ; 6'1—6'21212_2112121 ; D—02A§21§2 )

is positive and has the same transfer function as the /-th order system obtained by
positive singular perturbation balanced truncation in (6.7).

(i) The discrete-time system

(/_1114-/_112([71—7«—1‘_122)_11‘_121 ; B1+A12(In—r_12122)_lg2 ;
01+C2(In—r_A22>_1A21 ) D—i‘éz(]n—r—[lm)_lgﬂ

is positive and has the same transfer function as the /-th order system obtained by
positive singular perturbation balanced truncation in (6.10).

Let us finally give a remark on the Lyapunov inequalities (6.12) and (6.13). It is clear that
their solutions are not unique and one should look for solutions P = diag(pi,...,pn),
Q = diag(qy,-..,q,) such that Vv/PQ has a large number of small diagonal elements.
This yields components of the state which are candidates to truncate. A good heuristic
for this is the minimisation of the trace of P and Q. For getting even sharper bounds,
the Lyapunov inequalities can be solved once more while now minimising the sum of
those diagonal elements of P and Q corresponding to the candidates for truncation.

6.3 Model reduction for positive descriptor systems

In the present section, we generalise the results of Section 6.2 to the descriptor case
as characterised in Theorem 3.8.

From [98], we have that the transfer function G(s) = C(sE—A)~! B+ D can be additively
decomposed as G(s) = G,(s) + P(s), where G,,(s) is the strictly proper and P(s) is the
polynomial part of G(s). By considering the pair (£, A) in Weierstraf3 canonical form
and the Laurent expansion at infinity, it is shown in [98] that

Gy(s)=> CFeBs™, where F,=T7"

— 0 0

k
/ 0] w1, (6.17)
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and
0
P(s)= Y  CF_Bs*+D, where F,=T"

k=—v+1

0 0
0 —N-k!

] Wl (6.18)

The following Lemma 6.5 reformulates the two parts of the transfer function G,(s) and
P(s) in terms of the matrices that appear in the solution formulas of the continuous-
time and discrete-time state equations in Theorem 1.20, respectively. In particular, this
shows that the system matrices can also be additively decomposed according to the
two parts of the transfer function.

Lemma 6.5 Let (£, A) be a regular matrix pair and let E,A be defined as in
Lemma 1.19 and B as in (1.12). Then, we have that the strictly proper part Gp(s)
of the transfer function G(s) can be written as

o0

Go(s) =D (CP)EPAFEPB)s™ = (CP,)(sI — EPA)" (E"B), (6.19)
k=1

and the polynomial part can be written as

—_

<

L B P ADNK(T AP Bs* =
P(s)=—C(I - P,) O(EA 'L = P)A"Bs" + D (6.20)

=C(I — P,)(s(I — PYEAP — )"Y(I — P.YA” B + D.

i

Proof. By using the Weierstrafd canonical form for (E, A), we get the following facts, see
Section 1.6. For some A chosen such that A\E — A is nonsingular, we have

. (37 -1
()\E_A)—l — T—l ()\] J) . 0 . W—l,
0 (AN — 1)
g0 _ e |[M =T 0|
0 0
i — |7 Y T,
0 0

where E is defined as in Lemma 1.19. Hence, from (6.17) for & > 0 we obtain

k
Fo=T|" Yw =
0 0
[k ] \T N
e |10 et (M= 0 (M=) 0 Jwer
0 0 0 0 0 (AN — 1)~
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Since B = (\E — A)"'Band £ = EPEEP = P,EP, we obtain (6.19).

Analogously, by using the results of Section 1.6, i.e.,

EAP =771 770 7!
0 N ’
S (6.21)
AD:T—I J (A]_‘]) R O T_l,
0 (AN — 1)
fork=-1,...,—v+ 1, we have

-1 0 0 —1 " AD\—k—1 1D/ —1
F.=T 0 _N-k-1 W= =(I-P,)(EA") AV (AE — A)™.

By setting k£ to —k, we obtain the first equality of (6.20). The second equality follows
due to the fact that (I — P,)EAP is nilpotent. [

6.3.1 Continuous-time case

In this section, for positive continuous-time descriptor systems, we first prove the ex-
istence of a positive balanced realisation. Based on this, we define a reduced or-
der system and show that it is positive and that it yields the usual H,, error bound in
Lemma 6.1.

Consider the continuous-time Lyapunov equations corresponding to G,

(EPAYP, + P(EP AT + EPBBT(EP)T = 0, (6.22a)
(EPA)TQ. + Q. (EPA) + PTcTCP, = . (6.22b)

In the following, we show as in the standard case that there exist diagonal posi-
tive definite matrices that fulfil the corresponding Lyapunov inequalities. Note that if
P. = P./P.P, holds, as is assumed in [98], then the Lyapunov equations in (6.22) are
equivalent to the generalised Lyapunov equations in (5.3), see also [98]. However, for
diagonal positive definite solutions of the corresponding Lyapunov inequalities this will
not necessarily be the case.

Theorem 6.6 Consider the positive c-stable continuous-time system ( E, A, B, C, D).
Then, there exists a diagonal positive definite matrix 7' such that the positive system
(E, A, B, C, D), where

E=T7'ET, A=T'AT, B=T"'B and C=CT, (6.23)
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is positive and balanced in the sense that there exists a diagonal positive definite matrix
Y such that the following Lyapunov inequalities hold

A

(EPA)S + S(EPA)T + EPBBT(EPYT < 0, (6.24a)

(EPAYTS + X(EPA) + PTCTCR, < o, (6.24b)

where ]3, /:1, B are obtained as in Lemma 1.19 and in (1.12) from the matrices E, A, B
and P, is the corresponding spectral projector as in (1.5).

Proof. From Theorem 4.15, we have that for a positive c-stable system, if P, > 0, then
there exist X,Y = 0, such that

(EPA)X + X (EPA)T
(EPATY +Y(EPA)

0,

=
= 0,

and the above inequalities are strict on S/, i.e., for any 0 # v € S/, we have

v (BEPA)Xv+ 0T X(EPA)Tv < 0,
T (EPA)TY v +0"Y (EPAw < 0.

Since we have EPBBT(EP)T > 0 and PTCTCP, > 0 by assumption and since both
terms are projected onto S}/, we obtain the existence of XY - 0 such that

= 0,
Y(EPA)+ PTCTCP, =< 0,

A ~

(EPA)X + X(EPA)T + EPBBT(EP)T
(EPA)TY +

by using the same argument as in the proof of Theorem 6.3. Hence, there exist diagonal

positive definite matrices ¥ and T such that by setting £ = TET ', A = TAT !,
B=TBandC = CT"!, we obtain

(EPA)Y + X(EPAYT + EPBBT(EP)T < 0,

(EPAYTS + S(EPA) + PTCTCP, < o,

IA

where E, A, B are obtained as in Lemma 1.19 and in (1.12) from the matrices £, A, B
and P, = TP.T ' is the corresponding spectral projector as in (1.5). Since T is diagonal
with positive diagonal entries, the transformed system is again positive. [

From now on, we consider the balanced system ( £, A, B, C, D) in the sense of The-

orem 6.6. Scaling the state equation of the system by the regular matrix R~! =
(EP,4+A(I-P,))"" asin Section 3.2.2, we obtain an equivalent system ( £, A, B, C, D)
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with system matrices £ := R™'E, A := R™'A, B := R~'B. The multiplication with the
spectral projector and its complementary projector, respectively, leads to an equivalent
system of two equations as in (3.12).

We now derive a procedure for computing a reduced order system that is again positive
having the usual H, error bound as for standard balanced truncation, see Lemma 6.1.

Consider a partitioning as in (6.4) but for the matrices EP A, EP B, CP,:
[EPA)y, [EPA],

A

[BP ALy [BP Al

A ~ ~ - AD :
EPA =  EPB = [ngl O = [[Cpr]l [CRL|. (6.25)

2

where [EDA]ll € R** and /¢ is chosen as in the standard case in (6.4). The matrices
EP B and CP, are partitioned accordingly.

Our aim is to construct a reduction method that allows to obtain an H., error bound
as in the standard case. This is possible, for instance, if the polynomial part P(s) of
the transfer function G(s) remains unchanged, whereas the strictly proper part G,(s)
is reduced as in the standard case [116]. In this case, the polynomial parts of the
original and the reduced transfer functions cancel out in the H,, norm and we obtain
the usual H, error bound. Note that, since (£, A) was assumed to be c-stable, we have
that £P A has only stable eigenvalues except for possibly several eigenvalues zero that
correspond to the eigenvalue oo of (E, A), see Section 2.2.3. To obtain an H,, error
bound, these must not be reduced and, hence, we have to make sure that the block
[EP Alyy is regular.

We partition the spectral projector P, and the matrices £A”, AP B conformably with the
partitioning of the matrix EP A,

(6.26)

The following Lemma 6.7, in particular, states that [P,]., is regular whenever [EDA]22 is
regular.

Lemma 6.7 Let the matrix £ A and the nonnegative projector P, be partitioned as in
(6.25) and (6.26), respectively, such that [EP Ay, is regular. Then, [P,]., is a (regular)
diagonal matrix with positive diagonal entries.

Proof. We have that P, > 0 is a projector. Hence, there exists a permutation matrix
Q € 11, such that QP,Q" is in canonical form (2.21). We use the permutation matrix @
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to obtain a corresponding permutation of £ A and partition it accordingly

A A oo Al
QEPAQT = A?l (6.27)
Apron .. Apy2 k2

Since P,EPA = EPA and w4141 = 0, We have that my 1 g1 Ari1; = Apyrs = 0 for
i =1,...,k + 2. Furthermore, since EPAP, = EPA and 7442 = 0, we have that
A pyoThtokya = Aigro = 0fori =1,..., k4 2. This implies that whenever we choose
a regular part of £ A, then the corresponding part of 2, will have a positive diagonal
by construction. Furthermore, since EPAP, = EPA we have that A;m; = A for
i =1,....k — 1 and hence rank(4;;) < rank(m;) = 1. Since rank(EPA) = rank(P,)
we conclude that rank(A;;) = rank(m;) = 1. Hence, for a regular part of EP A, we can
pick at most one row/column from each block row/column in (6.27). By construction the
corresponding part of P. will be also regular. Moreover, this part will be diagonal with
positive diagonal entries. [J

Consider the decoupled system in (3.12) that is equivalent to the system in (1a).
The special structure of (I — PT)ADE’ given in (3.18) and the special structure of
(I — P,)(EAP)! AP B given in (3.19) lead to the following facts. Let

[(I - PT)ADB]I
[(I - PT)ADBb

A

(I - P)APB =

be partitioned according to £ A in (6.25). Since the part [(I — P,) A” B], corresponds to
the regular part P,,, by considering the canonical form (2.21) of P, and the correspond-
ing form of (I — P,)AP B in (3.18), the term [(I — P,) AP B], must be zero. By (3.19), we
have that

A

[([ - PT>ADB]1

~ A

A . ; AD ] /\D
(EAD)1<I_PT> DR [EA ]11 [EA ]12

[EAD)y, [EAP)y, 0

- H . (6.28)

and we conclude that [EAP],[(I — P,)APB], = 0.
Since (I — P,)E AP is nilpotent, the second equation of (3.12) has the solution
v—1
(I = Pa(t) ==Y (EAP)(I — P,) AP Bu(t),
=1

and by (6.28) is equivalent to

(I — Pyy)[EAP)y, " (6.29)
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The system in (3.12) is therefore equivalent to the following decoupled system of two
equations

‘i‘f: Afxf+Bfu : (630)
Fooo = Too + Boou
where
xy =P, Ap = E’DA, By = E’DB,
_ " AD _ AD 6.31
v =(I— Pz, By e | POEAT Oy (= B)APBL (6.31)
0 0
Furthermore, we set
Crp:=CP,, Cyn:=C(-P). (6.32)

Consider again the transfer function G(s). By using (3.12) and Lemma 6.5, we can
additively decompose G(s) as

G(s)=C(sE—-A)"'B+D=C(sR'E-~R'A)'R"'B+D =
~(CP,+ C(I = P) {s(P 4+ (I = B)EAP)  (EPA+ (1 - pr))}‘l .
(EPB+(I-P)APB)+D =
=Gyp(s) + P(s),

where - -
Gsp(s) :(Cpr)(sj —_ EDA)fl(EDB) — Cf(s[ o Af)lef
P(s) =C(I — P)(s(I - P,)EA? — 1)™Y(I — P)APB + D =
:COO(SEOO - I)_IBOO + D.
The first equation of the system in (6.30) is a standard system on the subspace im P,.

Requiring that [EP Ay, = [A/],, is regular, we can apply the reduction scheme in (6.7)
to the system ( Ay, By, Cy, 0). We obtain the reduced order system

(Afw szv Cfeﬂ sz) with éSP(S) = sz(SI - Afz)_lee + sz'

Since Ay is c-stable on im P, and ( Ay, By, Cy, 0) is balanced on im P,, we have that
G, (s) yields the error bound in Lemma 6.1.

The second equation of (6.30) corresponds to the system ( E,, Be, Coo, D). ASSUM-
ing the same partitioning as for ( Ay, By, C, 0), we can apply the standard balanced
truncation reduction scheme in (6.6). We obtain the reduced order system

(Fno,, Booyy Cooyy D) With  P(s) = Cop,(5Es, — I) ' Bao, + D = P(s).
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That P(s) = P(s) can be verified as follows. By Lemma 6.5 we have that

<
—

P(s)=—C(I = P)Y (EAPY(I — P)APBs* 4 D.
0

e
i

On the other hand, by (3.19) we know that if P, is in canonical form and the matrices
EAP AP B are permuted and partitioned accordingly, we have that

0

(EAPY(I — P)APB = |9

*

Therefore, if we consider a partitioning as in (6.29), we obtain that

[EOOBOO]l

P(s) = — [0001 0002} ,

= O [ExBu]i = P(s).

Note that, in particular, this proves that Assertion (i) of Theorem 3.8 still holds for the
reduced order system.

We obtain a corresponding descriptor system ( E,, Ay, By, Cy, Dy) of ind(Ey, Ay) =
ind(FE, A) = v by setting the reduced order spectral projector P, to

Py =[P — [Pi2[P)3 [Praa, (6.33)
and
E, =P+ Ey,,
Ap:=Ap + (1 — Py,
By := By, + B,, (6.34)
Cyp:=0Cy + Cx,,
Dy =Dy, + D.

For the reduced order transfer function G(s) we obtain

G(S) = GSP(S) + p(S) = Cg(SEg — Ag)_lBg + Dg,

and since P(s) = P(s) we have the error bound

k
|G = Cllsse = G = Gapllwc <2 ) a3,

i=0+1
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where 04,4, ..., 0} are the truncated Hankel singular values.

We still have to show that the thus obtained reduced order system in (6.34) is again
positive in the sense of Theorem 3.8.

The matrix P, is again a nonnegative projector, which is proved in Section 2.4. Further-
more, the projector P, has the following properties that are essential for the positivity of
the reduced order system.

Lemma 6.8 Let P, be defined as in (6.33) and the reduced order system matrices as
in (6.34). Then, the following relations hold:

1. PgAfg :Afépg:Afe;
2. Pfoe :Bfé;
3. CfZPgICfé.

Proof. For Relation 1. we have to take into account that A; = E” A and use the relations
for the partitioned block matrices that arise from the property P,EP A = EP AP, = EP A,
ie.,

[BrlulArln + [Prlie[Aflar [PrlulAfhe + [Prliz[Afe
_[Pr]zl[Af]n + [Prl2a[Aplar  [Prlai[Afliz + [Prlaa[Afle

—[Af]ll[Pr]ll + [Afl2[Prlar [Aflia[Prliz + [Af)ie[ P22
_[Af]Zl[Pr]ll + [Af]Qz[Pr]zl [Af]Ql[Pr]lz + [Af]22[Pr]22_
Exemplarily, we prove the relation P,A;, = Ay, since the proof of the relation Ay, P, =
Ay, is completely analogous. We have
PeAg, =([PJu — [Pi2lP I3 [P)a) (gl — (Aol Al [Aglan)
=[P JulAfln — [Phe[P)% [Plaa[Afn — [Plu[Af]ie[Af]% [Af]a
+ [P ]12[P5s [Pr]aa [Afie[Afles [Af]ar,
where plugging in the relations

(6.35)

[Prli[Aflie =[Afli2 — [Br]i2[Af]e, (6.36)

we obtain
PAs, =[PlulAflin — [PrlialPrle [Aflar + [Pl Aglar — [Afha[Afle [Af]ar + [Pria[Af]2
+ [P2[P3s [Aflar — [Prli2[Aflan
:Afw
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where for the last equality we have used that [P,]11[A¢]11 + [Pr]i2[Af]21 = [Af]i-

Similarly, Relation 2. follows by direct calculation, recalling that By, = EP B and taking
into account the block relations that arise from P.EPB = EP B, i.e.,

(6.37)

We obtain

PyBy, =([Pin — [Pr12lPas [Pan)([Belh — [Afli2lAf]s [Byla)
=[P]u[Bslr = [P12lPlas [P [Belt — [PulAfli2lAflss [Byla
+ [P1a[ P [Pra1 [Afli2[Af]o [Byla,

where plugging in the last two relations of (6.36) and [P, ]1[Bf|1 = [Byla — [Prl22[Byla,
we obtain

PyBy, =[PJu[Bsh — [Pia[Plas [Brla + [Prial Brla — [AflialAfles [Bfla + [Prli2[ Bl
+ [Poh2[P3s [Byla — [Prli2l Byle
:Bfe'

Here, for the last equality, we have used the first relation of (6.37).
For Relation 3., note that C; = CP,, i.e.,

Cy = [01[ 11 4+ Co[Prlar Ch[Pr]i2 + Co[Ps ] (6.38)
Therefore, we need the block relations that arise from P, = P2, i.e.,

[Pr]ll [Pr]IQ
[Pr]21 [Pr]22

(P[Pl + [Prlie[Prlar [P Prliz + [Prlio[Prloe .
(Prlo1 [Pl + [Prloa[Prlor  [Prla1[Prliz + [Prlao[Prl2e

(6.39)

By using (6.38), we obtain

Cy, Pr =([Cth — [CrlalAflas [Af]20) ([Pran — [Pelaal Pl [Prar)

=[Cih [P = [CehlPelPla [Pl — [CrlalAf]z [Aflar [P
+ [Crla[Af)o [Af]ar [Pz Prlos [Pl
=Ci[PIu[Pn + Co[Par[Prhi — Ci[Pu[ Pl Prlos [Prn
— Co[Par [Pria[Prlos [Prlar — Ci[PrhalAfle [Af]a [P
— Oo[P]aa[Aglos [Alan [P + Ci[Pria[Aflos [Af)ar [Pr]ia[ P2 [Prln
+ Co[Poa Aflo [Aflar [Pr]ia[ P [P,
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where plugging in the first and the last relations of (6.36) and using the relations
in (6.39), we obtain

Cr, P =Cr[P [P + Co[Plar[B]n — Ci P[P [Prlar + Ch[P]ia[ P
— Cy[Plor + Co[Ploa[Plor — Ci[PouaAflas [Aflor + C1[Pria[ P
— Co[Plaa[Af]5s [Aflor + Co[Plas[Prlar + Ci[Po1a[ P2 (P2t — Ci[Prlia[ Py
+ Cs[Py)a1 — Co[Prgo[ Pl
=C1 [P + Co[PJar — (Ci[Priz + Co[Prlaa)[Aflos [Af]n
=CY,.
0

By Lemma 6.8 we have that the matrices E, and A, commute, since Py E., = Ey, P =
0, which follows from E., = (I — P,)EAP and P.E,, = 0. Therefore, by using the
properties of P, we have that

Eui = Aji + Byu,

is equivalent to the decoupled system

Pg]L} = Afli’ + Bflu
B, = (I — P)i+ By,u

We have already shown that Assumptions (i)-(ii) of Theorem 3.8 hold for the reduced
order system. It remains to show Relations 1.-3. in Theorem 3.8.

To this end, note that by Lemma 6.7, [P,|2. is a diagonal matrix with a strictly positive
diagonal. Hence, from the relation

Af—i—ozPr:EDA—i—ozPrz()

we conclude that [4/],, must be a —Z-matrix. Since A; = E” A has only stable eigen-
values except for the eigenvalue 0 that corresponds to the eigenvalue oo of (£, A)
and since [Af]gg is regular, it must be c-stable and therefore, a —M/-matrix and we
have [Af] < 0. By using Lemma 6.8 and the relations P,[P,];; = [P.].1 P = P, and
P,[P,]12 = [P]21P, = 0 that can be verified by direct calculation, we obtain

Afe + OéPg :Pg(Afl + OdPg)Pg
=P([Afli1 + a[Pu — [AghalAflas [Afln — a[Pia[ Py [Prar) P
=Py([Aflin + alPu — ([Afliz + a[P12) [Aflos ([Aflar + alPa1)) P > 0,

since Ay + aP, > 0.
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Next, we show that B;, > 0. By Lemma 6.8 we know that P,B;, = By,. Then, by using
P,[P,]12 = 0, we obtain

By, =Pi([Bsl — [Ash2[Afle [Bfle) = Pu([Bsli — ([Aflia + a[Pi2)[Afl3 [Byl2) > 0.
Similarly, by Lemma 6.8 and since [F,],; P, = 0 we have that
Cr, =([Csl — X[Crla[Afl5 [Af]a0) Pe = ([Cfli — X[Cla[Afl22 ([Aflor + a[Pr]o1)) Pe > 0.
Finally, D, = D;, + D > 0 holds, since D > 0 remains unchanged and

Dy, = —[Cfla[Afl5s [Byl2 > 0.

We have shown that the reduced order system as defined in 6.34 is again positive. The
strictly proper part G,(s) of the transfer function G(s) is reduced as in the standard
case, whereas the polynomial part P(s) remains unchanged, which leads to the usual
H_, error bound as for standard balanced truncation in Lemma 6.1.

6.3.2 Discrete-time case

Consider the discrete-time Lyapunov equations corresponding to G,
(EPAyP(EPA)T — P, + EPBBT(EP)T =0,
(EPA)TQ.(EPA) — Q.+ PTcTCP, = 0.

For a positive discrete-time system, by Theorem 3.8, if P, > 0 then we have EP A > 0.
Since (E, A) is d-stable, we also have that p(E”A) < 1. Hence, as in the standard
discrete-time case in Theorem 6.4, there exists a balanced positive realisation that
fulfils the corresponding Lyapunov inequalities.

From now on, we consider the balanced system ( E, A, B, C, D). Scaling the sys-
tem as in the continuous-time case by R~ = (EP. + A(I — P,))~! and multiplying the
state equation with P. and (I — P,), respectively leads to the equivalent system of two
equations

{ Pa(t+1) = EPAx(t) + EP Bu(t) (6.40)

(I - P)EAPz(t+1) = (I—P)x(t)+ (I — P)APBu(t)

By using the conditions on (I — P,)APB and (I — P,)(EA”)AP B derived in Section 6.2
for the continuous-time case, we deduce that the system in (6.40) is equivalent to

ZL‘f(t + 1) = AfZL‘f(t) + Bfu(t)
{ Eotoo(t+1) = x5(t) + Boou(t) (6-41)
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where the systems (Af, By, Cy, 0) for G,,(s) and ( E, B, Cx, D) for P(s) are given
by the matrices in (6.31) and (6.32).

As in the continuous-time case, we reduce the strictly proper part G,(s) of G(s) using
standard singular perturbation balanced truncation, whereas the polynomial part P(s)
remains unchanged. We show that we obtain a reduced positive descriptor system that
approximates the original system with the usual H,, error bound in Lemma 6.2.

Consider a partitioning as in (6.25) and (6.26). As in the continuous-time case we
choose the block [A]», regular and therefore, p([Af]22) < 1 and we have that (1 —[Af]22)
is an M-matrix with (1 — [Af]s2) > 0.

The first equation of the system in (6.41) is a standard system on the subspace im P,.
If the block [P, ]2, contains ones on the diagonal, we first apply the balanced truncation
scheme in (6.6) to the corresponding part of the system. The truncated projector is
again a nonnegative projector and also the system is again positive. Therefore, without
loss of generality, we may assume that the diagonal entries of [P,],; are strictly less
than 1.

We apply the reduction scheme in (6.10) and obtain a reduced order system
(Afw Bfev szv Dfe) with GSP(S) = Cfe(SI - Afz)ileé + 'Dfé'
Since Ay is d-stable on im P, and ( Ay, By, Cy, 0) is balanced on im P, we have that

Gp(s) yields the error bound in Lemma 6.2.

As in the continuous-time case, we partition system ( E.,, B, C, D) according to
(A, By, Cy, 0) and reduce it by standard balanced truncation in (6.6). We obtain the
reduced system

(Enoy, Booyy Cooyy D) With  P(s) = Coy,(sEso, — I) ' Ba, + D = P(s).

To obtain a corresponding descriptor system we set the reduced order spectral projector
to

Py =[P + [Pia(I = [Prla2) [P (6.42)

In Section 2.4.1 we have shown that P, is again a projector and that P, > 0 if P. > 0.
The reduced order descriptor system ( E,, A, By, Cy, D) is then given by the matrices
in (6.34).

For the reduced order transfer function G(s) we obtain

G(S) = G~sp(5) -+ P(S) = Cg(SEg — Ag)—lBg + Dg,
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with P(s) = P(s) and

k
IG = Gllooi = Gep ~ Gpllca <2 3" 0

i=0+1
where 04,1, ..., 0} are the truncated Hankel singular values.

We still have to show that the thus obtained reduced order system is again positive in
the sense of Theorem 3.12. As in the standard case we have that (I — [Af]y) is an
M-matrix and hence, Ay,, By,,Cy,, Dy, > 0.

For the reduced order discrete-time descriptor system given by the matrices in (6.34),
we can obtain an equivalent system of two decoupled equations by using the properties
of the projector P, given in the following Lemma 6.9.

Lemma 6.9 Let P, be defined as in (6.42) and Ay,, By, be the reduced order matrices
from singular perturbation balanced truncation. Then, we have

1. PgAfg = Afépg = Afe;

2. P,By, = By,.

Proof. Exemplarily, we show the relation P,A;, = Ay,. Using the relations arising from
P,EPA = EP A in (6.35), we obtain

PiAs, =([Pn + [Polia(I = [Prla2) " [Prlar ) ([Aglin + [Agha(I — [Af]a2) " [Af]n)
=[PJulAfl + [PlulAsie( = [Afle) ' [Afar + [Plia( = [Pl22) ' [Paa[Afln+

+ [Pia(I = [Pa2) T [Prlaa[Aglia(T — [Af]as) " Ao

=[P JulAsin + ([Afhie = [Pia[Afle2) (T = [Aflaa) ' [Aflor+
+ [Prlia(I = [Prla2) T (1 = [Pr]aa) [Af]ar+
+ [Plia(1 = [Prloa) (I — [P22) [Aglaa (T — [Af]aa) T Af]

=([PJu[Afln + [Plia[Aglor) + [Aha(I = [Aflea) HAfl2r = Ay,
The other relations follow similarly. [

By using Lemma 6.9, we obtain that £, and A, commute and the reduced order state
equation
Ey(t +1) = Aji(t) + By(u),

is equivalent to

L

P (t + 1) = Afej(t) + Bfeu(t)
Emei'(t + 1) = (I — Pg)i’(t) + Bmeu(t) .
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We have shown that the discrete-time reduced order system as defined in 6.34 is again
positive. The strictly proper part G, (s) of the transfer function G(s) is reduced as in the
standard case, whereas the polynomial part P(s) remains unchanged, which leads to
the usual H, error bound as for standard balanced truncation in Lemma 6.2.

6.4 Examples

In this section we present some numerical examples to demonstrate the properties
of the discussed model reduction approaches for positive systems. The numerical
tests were run in MATLAB® Version 7.4.0 on a PC with an Intel(R) Pentium(R) 4 CPU
3.20GHz processor.

Example 6.10 (Continuous-time) Consider a system of n water reservoirs such as
schematically shown in Figure 6.1. All reservoirs Ry, ..., R, are assumed to be located
on the same level. The base area of R; and its fill level are denoted by a;, and h;,
respectively. The first reservoir R, has an inflow « which is the input of the system, and
for each i € {1,...,n}, R, has an outflow f,; through a pipe with diameter d,;. The
output of the system is assumed to be the sum of all outflows. Furthermore, each R;
and R, are connected by a pipe with diameter d;; = d;; > 0. The direct flow from R;
to R; is denoted by f;;. We assume that the flow depends linearly on the difference
between the pressures on both ends. This leads to the equations

fig@t) = & - (hi(t) = hi (1), foult) = d5; - - (Rilt) — hy(t)),
where ¢ is a constant that depends on the viscosity and density of the medium and
gravity. The fill level of R; thus satisfies the following differential equation

C

- <—d§7ihi(t) + Z dz;(hy (t) - m(ﬂ)) + ﬁéuu@),

a;

where 4,; denotes the Kronecker symbol, that is §;; = 1 if i = 1 and zero otherwise.

e

.....

& _d?),i - Zzzl d?k =7,
. 2 . .
i dij i # 7,

where we define d;; = 0.
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hi Ry | s Foz

Fo / J23 Ve fon—1
f1 2\ f n—1>7 R
R3 | h3 w hn

fon

Figure 6.1: System of n water reservoirs

For our illustrative computation, we have constructed the presented compartment
model with ten states. We assume that we have two well connected substructures
each consisting of five reservoirs, where each reservoir is connected with every other
reservoir by a pipe of diameter 1. The substructures are connected with each other by
a pipe of diameter 0.01 between reservoirs one and ten. For simplicity reasons, we set
all base areas of the reservoirs to 1 and also ¢ = 1. The system matrices for this model
are as follows,

(501 1 1 1 0 0 0 0 o001
1 -5 1 1 0 0 0 0 0
1 1 -5 1 1 0 0 0 0 0
1 1 1 -5 1 0 0 0 0 0
Lot 11 s 0 0 0 0 0
o o0 0 0 0 -5 1 1 1 1 |
0o 0 0 0 0 1 -5 1 1 1
0o 0 0 0 0 1 1 -5 1 1
0O 0 0 0 0 1 1 -5 1
(001 0 0 0 0 1 1 1 1 -501]
B:[1000000000]T,
02[1111111111].

With standard balanced truncation the reduced model with five states is again positive
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with

[—5.01 1.32 1.32 132 1.32]
0.76 —5.00 1.00 1.00 1.00
A= 076 1.00 -5.00 1.00 1.00 [,
0.76  1.00 1.00 —5.00 1.00
| 0.76 1.00 1.00 1.00 —5.00]

T
Bg:[o.45 00 0 0] ,

Cp = [2.20 2.90 2.90 2.90 2.90}.

With singular perturbation balanced truncation the reduced model with five states is

Frequency plots of original and reduced order systems

T T T
1 — original system
0.8 = = =singular perturbation H
0.6- == balanced truncation
0.41
0.2t : » : 1
1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
w
Frequency plots of error systems and error bound
T T T T T
100 + : . i
10—95 { . . B
= = =singular perturbation
10710 ¢ i
== balanced truncation
— error bound
1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Figure 6.2: Frequency plot showing original and reduced order models.
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again positive with

[—5.01 135 1.35 135 1.35
0.76 —=5.00 1.00 1.00 1.00
Ay=| 076 100 —-5.00 1.00 1.00 |,
0.76 1.00 1.00 —5.00 1.00
| 0.76 1.00 1.00 1.00 —5.00]

352[0.45 00 0 O]T,

C, = [2.22 2.90 2.90 2.90 2.90}.

The frequency responses, i.e., the transfer function G(s) at values s = jw, for w € [0, 3],
of the original and of the reduced order models are depicted in the upper diagram of
Figure 6.2.The lower diagram shows the frequency response of the error systems along
with the mutual error bound 0.0162.

As an example in discrete-time, we consider the well-known Leslie model [80], which
describes the time evolution of age-structured populations.

Example 6.11 (Discrete-time) Let the time ¢t € N, describe the reproduction season
(year) and let z;(t), i = 1,...,n, represent the number of individuals of age 7 at time t.
We assume constant survival rates s;, i = 0,...,n — 1, i.e., the fraction of individuals of
age i that survive for at least one year, and fertility rates f;, i = 1,...,n, i.e., the mean
number of offspring born from an individual at age i. For purely illustrative purposes of
this example, we use the estimated data given in [38, p. 118] for squirrel reproduction.
Furthermore, we assume that immigration into the considered tribe can only happen at
birth, i.e., the input is a positive multiple of the first unit vector, and as the output we
take the total population, i.e., the sum of the population numbers over all ages. Thus,
the aging process is described by the following difference equations

T (t+1) =sx(t), i=1,...,n—1, (6.43)
and the first state equation takes into account reproduction and immigration

z1(t+1) = so(fiz1(t) + faza(t) + ... + fazn(t) + ull)). (6.44)
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The system matrices for squirrel reproduction in [38, p. 118] are as follows,

[0.24 0.48 0.76 0.76 0.76 0.76 0.76 0.76 0.72 0.64]
024 0 O 0O O O 0 0 0 0
0O 03 0O 0O 0 0 0 0 0 0
O 0 03 0 0 0 0 0 0 0
4_|0 0o 0 03 0 0o 0 0 0 0

o 0 0 0 03 0 0 0 0 0]
o 0 0O 0 0 03 0 0 0 0
o 0 0O 0 0 0 028 0 0 0
o 0 0 0 0 0 0 024 0 0

0o 0 0 0 0 0 0 0 027 0

T

B:[0.4000000000},

C:[1111111111]

With standard balanced truncation the reduced model with five states is again positive
with _ ;
0.24 1.25 3.74 533 7.12
0.09 0 0 0 0
A= 0 016 0 0 0

0 0 023 0 0
| 0 0 0 025 0

T
Bg:[0.19 00 0 0] ,

Cy = [2.15 5.60 10.61 15.12 20.18].

With singular perturbation balanced truncation the reduced model with five states is

again positive with

[0.24 1.25 3.74 5.33 10.43]

0.09 0 0 0 0

Ag=1 0 016 0 0 0o 1,
0 0 023 0 0

| O 0 0 0.25 0

T
Bg:[o.w 00 0 0] ,
C, = [2.15 5.60 10.61 15.12 29.56] .

The frequency responses, i.e., the transfer function G(z) at values z = ¢, for w €
[0, 2x], of the original and of the reduced order models are depicted in the upper diagram
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Frequency plots of original and reduced order systems

1 [ T T ]
— original system
0.§] . .
= = -singular perturbation
0.61 ~ = balanced truncation ]
0.4 q
0.2 J
1 1 31
0 z T =T 27
2 ; 2
e’LUJ
Frequency plots of error systems and error bound
T T T
100 i
P R PP PR S A ]
1
10—5 o |I7
1 1
,' = = =singular perturbation !
107104 ‘f
f == balanced truncation 1
n |
— error bound
1 1
0 5 T 37" 27

e’l,UJ

Figure 6.3: Frequency plot showing original and reduced order models.

of Figure 6.3. The lower diagram shows the frequency response of the error systems
along with the mutual error bound 0.0357.

We now present two examples of descriptor systems in the index 1 case.

Example 6.12 (Continuous-time index 1 descriptor system) For a purely illustrative
example of a continuous-time system in the index 1 case, consider Example 6.10 and,
furthermore, assume that we have an additional reservoir with fill level equal to the
inflow to the system. This results in an additional equation h,.(t) = u(t). The system
matrices are

10 ... ... 0]

1 0 0
E_ ’ A: AODE 0 ’
0 1

1 0

0 0]
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where Appr denotes the system matrix A in Example 6.10. The reduced order system
obtained by the procedure as described in Section 6.3 is given by

100000 [—5.01 1.32 1.32 1.32 1.32 0
010000 0.76 -5 1 1 1 0
001000 . 1 — 1 1

B, = 7 A, _ 0.76 ) 0 7
000100 0.76 1 1 -5 1 0
000010 0.76 1 1 -5 0
0000 0 0] 0 0 0 0 1}

T
By=1045 0 0 0 0 —1| , Cy = [2.22 290 290 290 290 1].

The frequency responses, i.e., the transfer function G(s) at values s = jw, for w € [0, 3],
of the original and of the reduced order models are depicted in the upper diagram of
Figure 6.4. The lower diagram shows the frequency response of the error systems
along with the error bound.

Frequency plots of original and reduced order systems

2 N m
1_5\

05 — original system
= = -~ reduced order system
1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
w
Frequency plots of error system and error bound
T T T T T
100 + 1
105 ]
10710 L
= = -error of reduced order system
—error bound
1 1 T T T
0 0.5 1 1.5 2 2.5 3

w

Figure 6.4: Frequency plot showing original and reduced order models.
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Example 6.13 (Discrete-time index 1 descriptor system) For an example of a
discrete-time descriptor system in the index 1 case, consider Example 6.11 and addi-
tionally, assume that the number of immigrants at each time ¢ into the considered tribe
is equal to the number of those who die at the age n + 1. This results in an additional
equation x,,1(t) = u(t). The system matrices are

10 ... ... 0

01 0 ...0
o | A Aoprk 0]’
0 1

1 0

0 . 0]

T

B:[O.4 0 ... 0 —1] . 02[1 1},

where Appr denotes the system matrix A in Example 6.11.

The reduced order system obtained by the procedure as described in Section 6.3 is
given by

100000 [0.24 125 3.74 532 1041 0|
010000 0092 0 0 0 0 0
001000 0 016 0 0 0 0

EZ: ) Af: )
000100 0 0 023 0 0 0
0000T10 0 0 0 025 0 0
0000 0 0 0 0 0 0 0 1

T
B,=1019 0 0 0 0 —1| , Cy = [2.16 561 10.61 15.1 29.54 1|.

The frequency responses, i.e., the transfer function G(z) at values »z = /¥, for w €
0, 27], of the original and of the reduced order models are depicted in Figure 6.5. The
lower diagram shows the frequency response of the error systems along with the error
bound.

Summary

In this chapter we have presented a model reduction approach that preserves positiv-
ity of continuous-time as well as of discrete-time systems in the standard and in the
descriptor case. In particular, we have reviewed the basic concept of standard bal-
anced truncation and singular perturbation balanced truncation methods and extended
these to preserve positivity of standard systems. The proposed approach is based
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Frequency plots of original and reduced order systems

— original system

= = =reduced order system

0.5+ J
Il L 31
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Figure 6.5: Frequency plot showing original and reduced order models.

on the existence of a diagonal solution of Lyapunov inequalities, which may be used
instead of Lyapunov equations in the classical approach. In this method, along with
positivity, also stability is preserved and an error bound in the H,, norm is provided.
Furthermore, we have generalised this positivity preserving model reduction technique
to positive descriptor systems. The additive decomposition of the transfer function into
a strictly proper and a polynomial part allows to use the results established for the stan-
dard case. The strictly proper part may be reduced as in the standard case, whereas
the polynomial part remains unchanged. This guarantees the same H,., error bound
as in the standard case. Positivity of the reduced order system has been shown using
the projector properties proved in Section 2.4, and the special properties of the system
matrices established in Section 3.2.2. The functionality of the proposed method has
been illustrated by some numerical examples. Note that the numerical solution of linear
matrix inequalities is up to now only possible for small to medium-size problems [20].
However, further research is conducted in this area.






Chapter 7

Conclusions

| think and think for months and years. Ninety-nine times, the conclusion is false. The
hundredth time | am right.
- Albert Einstein

In the present thesis we define and characterise (internally) positive descriptor systems
and discuss several related topics. We establish two results in nonnegative linear al-
gebra that are fundamental for the analysis of such systems. Furthermore, stability
properties, solution of Lyapunov equations and model reduction, which constitute cen-
tral topics in systems and control theory, are treated in the context of positivity. All result
are shown for both, continuous-time and discrete-time systems.

In the following, we briefly summarise the novel contributions of this thesis disclosing
own contributions and results that were obtained in collaboration with other authors.

Chapter 2 addresses mainly two important topics in linear algebra that shape up as
key results for the analysis of positive descriptor systems. A suitable generalisation
of the well-known Perron-Frobenius theory that is presented in Section 2.2 has been
developed in joint work with V. Mehrmann and R. Nabben and was published in [96].
The positivity of standard, generalised and shifted Schur complements of a positive
projector presented in Section 2.4 was proved in joint work with S. Friedland and was
published in [42].

The generalisation of the definition of positivity and the characterisations of positive
systems to the descriptor case established in Section 3.2, Chapter 3, were published
in [124]. In Section 3.2.2 we analyse and specify the special structure, which the char-
acterisation of positivity for descriptor systems in Section 3.2.1 imposes on the system
matrices.

125
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In Chapter 4 we present generalisations of (internal) stability criteria for the case of
positive descriptor systems. By using the generalised Perron-Frobenius theory devel-
oped in Section 2.2, it is shown that if the spectral projector onto the finite deflating
subspace of the matrix pair (£, A) is nonnegative, then all stability criteria for standard
positive systems take a comparably simple form in the positive descriptor case. As an
application of the framework established throughout this chapter, we show how stability
criteria of switched standard positive systems can be extended to the descriptor case.
The results of this chapter were published in [124].

In Chapter 5 we present sufficient conditions that guarantee doubly nonnegative solu-
tions of projected generalised Lyapunov equations in the positive descriptor case, which
were also published in [124].

Chapter 6 treats the problem of positivity preserving model reduction. The method pro-
posed in Section 6.2 for standard systems has been developed in joint work with T. Reis
and was published in [108]. It is based on the existence of a diagonal solution of Lya-
punov inequalities combined with standard balanced truncation or singular perturbation
balanced truncation methods. Along with positivity, also stability is preserved and an
error bound in the H,, norm is available.

The generalisation of positivity preserving model reduction to positive descriptor sys-
tems proposed in Section 6.3 is based on the additive decomposition of the transfer
function into a strictly proper and a polynomial part. The strictly proper part is reduced
as in the standard case, whereas the polynomial part remains unchanged, which pro-
vides us with the same H., error bound as in the standard case. Positivity of the re-
duced order system is shown using the projector properties proved in Section 2.4, and
the special properties of the system matrices established in Section 3.2.2.



Chapter 8

Outlook and open questions

[..] but | now see that the whole problem is so intricate that it is safer to leave its
solution to the future.
- Charles Darwin, “The Descent of Man”, 2nd edition, 18741

In the scope of this thesis, we have treated a set of topics and presented several results
that, so hopes the author, lay the foundation for further investigation and understanding
of positive descriptor systems. However, the domain of theory, simulation and control
of positive descriptor systems is still widely open. In the following, we list some related
open problems and research directions, which may be of interest in the future.

Simulation

When modelling real world problems, one often encounters the situation that the sys-
tems are not easily modelled from first principles or specifications, and therefore a
dynamical description of the system is not available but has to be fitted from measured
input-output data. This leads to the problem of model or parameter identification. One
approach that such data allows is to approximate the transfer function of the system.
The problem of finding a realisation of this transfer function of minimal size is mostly
understood for unconstrained systems, see, e.g., [5, Section 4.4]. However, for positive
systems this is still an open problem where only sufficient existence conditions could
be given so far [13]. On the other hand, there are examples of transfer functions, where
one can prove that the minimal realisation size for an unconstrained system cannot be
achieved when requiring that the realisation is positive [16].

lWhat the quote refers to is the sex ratio problem, whose solution is known as Fischer’s theory (1930)
but which in fact was solved only a decade later by C. Duising (1884).

127
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Discretisation is the first step in solving systems of differential or differential-algebraic
equations numerically. A suitable discretisation has to preserve important properties
of the original system. Hence, for simulation of positive systems it will be fundamental
to find and explore discretisation techniques that would preserve the positivity condi-
tion. In, e.g., [61], [111] some discretisation techniques are discussed. In [111] it was
shown that for two point boundary value problems special inverse-isotone discretisation
methods lead to a nonnegative solution. For spatial methods introduced in [61] the re-
tention of positivity cannot be guaranteed. From these results, one can see that the task
of finding the right discretisation technique for positive systems of ordinary differential
equations is already problematic. For positive descriptor systems this area is still widely
open.

Although there are many different concepts of an index of differential-algebraic equa-
tions, all of them aim to make a characterisation or classification of the DAE with respect
to its solvability. For instance, only for the differentiation index 1 DAES, the stability of the
numerical solution can be generally guaranteed. For higher index differential-algebraic
equations, it can happen that although the problem has a unique solution, the discre-
tised equation is not stably solvable. Therefore, index reduction techniques are used
to reduce DAEs of higher index to the index 1 case. Such techniques were discussed,
e.g., in [57], [73], [75], [92]. The existing techniques do not take into account positivity,
which would be the important property to preserve in our context.

Control

Reachability, controllability, observability and stabilisability are the core notions of the
axiomatic framework in control theory. A systematic extension of this framework to
the case of positive descriptor systems is therefore essential. For positive systems of
ODEs, these concepts were partially studied, e.g., in [22], [30], [40], [62], [64], [109],
[127], [128]. For positive systems of DAES, this problem has not been addressed yet.

One central topic in control theory is that of finding an optimal control « in the sense
that it would minimise a certain assigned cost function. Here again, the aim would be
to extend the existing theory, see, e.g., [35], [53], [54], [56], [63], to positive descriptor
systems. For systems of ordinary and stochastic differential equations this optimisa-
tion problem leads to the problem of solving differential or algebraic Riccati equations.
Therefore, an obvious idea is to derive a corresponding equivalent Riccati formulation
of the problem for positive descriptor systems and, by using results as, e.g., in [53], [56],
to prove the existence of an elementwise nonnegative minimal solution.
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Time-varying and nonlinear systems

In the scope of this thesis, we have studied positive descriptor systems in the linear
time-invariant case. When dealing with real world applications, one recognises that
most problems in biology and medicine show nonlinear behaviour [67], [104], [126].
Therefore, the study of positive nonlinear systems is indispensable.

A possible approach to deal with positive nonlinear systems is to develop positivity
preserving linearisation techniques. Standard linearisation techniques do not preserve
positivity in general, although the application of the classical procedures sometimes
leads to the desired outcome [59]. It is possible that linearisation along constant tra-
jectories, which results in linear time-invariant systems, may not produce a positive
system or the accuracy of the approximation is not sufficient. Alternatively, the nonlin-
ear system may be linearised along nonconstant trajectories where one obtains linear
time-varying systems [28]. In this case, the concepts presented in this thesis would
have to be extended to the time-varying case.
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