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Introduction

One is tempted to assert that positive systems are the most often encountered
systems in almost all areas of science and technology.

- Lorenzo Farina / Sergio Rinaldi

We consider linear time-invariant positive descriptor systems in continuous-time

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0 (1a)

y(t) = Cx(t) + Du(t), (1b)

and in discrete-time

Ex(t + 1) = Ax(t) + Bu(t), x(0) = x0 (2a)

y(t) = Cx(t) + Du(t), (2b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, are real constant coefficient matri-
ces. In the continuous-time case, the state x, input u and output y are real-valued vector
functions. In the discrete-time case x, u and y are real-valued vector sequences. Posi-
tive systems, and here we mean internally positive systems, are systems whose state
and output variables take only nonnegative values at all times t for any nonnegative
initial state and any nonnegative input [2], [38], [64], [83].

Positive systems arise naturally in many applications such as pollutant transport,
chemotaxis, pharmacokinetics, Leontief input-output models, population models and
compartmental systems [2], [3], [14], [15], [19], [31], [38], [64]. In these models, the
variables represent concentrations, population numbers of bacteria or cells or, in gen-
eral, measures that are per se nonnegative. Positive standard systems, i.e., where
E is the identity matrix, are subject to ongoing research by many authors [1], [32],
[33], [38], [64], [100], [102], [110], [118], [119]. Recent advances on control theoretical
issues have been made especially in the positive discrete-time case. Yet, there are
still many open problems, especially for standard positive systems in continuous-time.
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2 Introduction

Control theory of linear time-invariant descriptor systems without the nonnegativity re-
striction was studied in [34], [95]. Very little is known about positive descriptor systems
up to now, however, some properties mainly in the discrete-time case were studied
in [23], [24], [25], [31], [64].

With this work we aim to lay the foundation for understanding positive descriptor sys-
tems in the continuous-time as well as in the discrete-time case. We present a cohesive
framework that allows to generalise many results from standard positive systems to the
descriptor case. In the following paragraphs we briefly explain the main constituent
parts of our framework.

It is well known that many properties of standard systems, where E = I, are closely
related to the spectral properties of the system matrix A. For instance, asymptotic
stability of the system is equivalent to the eigenvalues of A being located in the open
left complex half-plane in the continuous-time case, or to the eigenvalues of A being
located in the open unit ball around the origin in the discrete-time case. If the dynamics
of the system, however, is described by an implicit differential or difference equation,
then such properties are determined by the eigenvalues and eigenvectors associated
with the matrix pencil λE − A, or just the matrix pair (E,A).

Most pertinent to the spectral analysis of standard positive systems is the well-known
Perron-Frobenius theory. The classical Perron-Frobenius Theorem states that for an
elementwise nonnegative matrix the spectral radius, i.e., the largest modulus of an
eigenvalue is itself an eigenvalue and has a nonnegative eigenvector, see Chapter 2,
Section 2.1. For the analysis of positive descriptor systems, it is therefore essential to
have available a meaningful counterpart of the Perron-Frobenius theory for matrix pairs
(E,A).

Due to the many applications, several approaches have been presented in the literature
to generalise the classical Perron-Frobenius theory to matrix pencils or further to matrix
polynomials [9], [41], [87], [107]. However, none of these generalisations is suitable in
the case of positive descriptor systems.

In Chapter 2, Section 2.2, we propose a new approach to extend the classical Perron-
Frobenius theory to matrix pairs (E,A), where a sufficient condition guarantees that
the finite spectral radius of (E,A) is an eigenvalue with a corresponding nonnegative
eigenvector. For the special case E = I our new approach reduces to the classical
Perron-Frobenius theorem for matrices. We present several examples where the new
condition holds, whereas previous conditions in the literature are not satisfied.

Another notion from the theory of nonnegative matrices that we focus on in Chapter 2



Introduction 3
are nonnegative projectors, i.e. nonnegative idempotent matrices. In the descriptor
case, the choice of the right projector onto the deflating subspace that corresponds
to the finite eigenvalues of the matrix pair (E,A) is crucial for the analysis [89]. As
it turns out, nonnegative projectors play an important role in the analysis of positive
descriptor systems, see Chapter 3 and Chapter 4. Furthermore, Schur complements
constitute a fundamental tool in applications [129], in particular such as algebraic multi-
grid methods [123] or model reduction [82]. However, it is important to ensure that the
main properties of the matrix, the Schur complement is applied to, are preserved. In
our case, in a positivity preserving model reduction method proposed in Chapter 6, two
variations of the Schur complement will be applied to nonnegative projectors. There-
fore, in Section 2.4 we show that for a nonnegative projector, if the corresponding part
of the matrix is invertible, the Schur complement is again a nonnegative projector. Oth-
erwise, if the corresponding part has a positive diagonal, the Moore-Penrose inverse
Schur complement is again a nonnegative projector. Also the nonnegativity of a shifted
Schur complement needed for discrete-time systems is shown.

The positivity condition that the state and output variables take only nonnegative values
at all times t ≥ 0, per se, is not easy to check. In the standard case, however, an
equivalent characterisation is available in the continuous-time as well as in the discrete-
time case that allows to determine positivity by just considering the system matrices,
see, e.g., [38], [64].

In the descriptor case discussed in Chapter 3, the situation is more complicated. Not
every initial value is consistent and consistency depends on the choice of the input [26],
[34], [74]. Furthermore, the properties of the matrices in the standard case have to
hold for special matrix products and on the deflating subspace that corresponds to the
finite eigenvalues of the matrix pair (E,A). Assuming that the spectral projector onto
this subspace is a nonnegative matrix allows to establish equivalent characterisations
of positivity that directly correspond to the characterisations in the standard case. We
reason why the nonnegativity assumption on the spectral projector is meaningful from
the point of view of applications.

The characterisation of positivity for descriptor systems established in Section 3.2 im-
poses a very special structure on the system matrices. In Section 3.2.2 we analyse and
specify this structure. For instance, this becomes important in Section 6.3, where we
prove positivity of the reduced order descriptor system for the proposed model reduc-
tion technique.

In the case of standard positive systems, classical stability criteria take a simple form
[38], [64]. In Chapter 4 we present generalisations of these stability criteria for the case



4 Introduction

of positive descriptor systems. It turns out, that if the spectral projector onto the finite
deflating subspace of the matrix pair (E,A) is nonnegative, then all stability criteria
for standard positive systems take a comparably simple form in the positive descriptor
case.

Stability properties and also many other control theoretical issues such as model reduc-
tion methods or the quadratic optimal control problem are, furthermore, closely related
to the solution of Lyapunov equations, see. e.g., [5], [44], [45], [79], [95]. For descriptor
systems, projected generalised Lyapunov equations were presented in [115]. In the
context of positive systems one is interested not only in positive (semi)definite solutions
of such Lyapunov equations but rather in doubly nonnegative solutions, i.e., solutions
that are both positive semidefinite and entry-wise nonnegative. Such results for stan-
dard Lyapunov equations, e.g., can easily be deduced from a more general discussion
in [35]. In Chapter 5, we provide sufficient conditions that guarantee the existence of
doubly nonnegative solutions of projected generalised Lyapunov equations.

A very important issue in systems and control theory is the development of model re-
duction techniques [5], [101], [116]. The need for highly detailed and accurate models
leads to very large and complex systems. On the other hand, when dealing with simu-
lation and especially control of such systems, limitations in computational and storage
capabilities pose the problem of finding a simpler model that approximates the complex
one in some sense. A crucial issue in model reduction is the preservation of special
system properties such as stability, passivity or in our case the positivity of the system.

In Chapter 6 we propose a model reduction method for positive systems. In Section 6.2
we generalise the model reduction methods of standard balanced truncation [46], and
singular perturbation balanced truncation [82], such that positivity is preserved. The
proposed technique uses a linear matrix inequality (LMI) approach [37], [81], and we
show that stability is preserved and an error bound in the H∞-norm is provided.

Furthermore, in Section 6.3 we generalise this technique to the case of positive de-
scriptor systems. Here, the procedure involves the additive decomposition of the trans-
fer function into a strictly proper and a polynomial part as in [116]. The reduced order
model is obtained via positivity preserving reduction of the strictly proper part of the
transfer function, whereas the polynomial part remains unchanged.

In Chapter 7 we reflect the studied topics and give some concluding remarks. This is fol-
lowed by Chapter 8 where we discuss open problems and point out possible directions
of future research.



Chapter 1

Preliminaries and notation

Consistency is the last refuge of the unimaginative.
- Oscar Wilde

In the present chapter, we introduce concepts from systems theory of descriptor sys-
tems as well as from nonnegative matrix theory, that are essential for the analysis of
positive descriptor systems. Throughout this thesis, we adapt the following standard
notation. R and C are the fields of real and complex numbers, respectively. N is the set
of nonnegative integers and R+ denotes the nonnegative real numbers. C− and C+ are
the open left and right complex half-planes. For λ ∈ C we denote by ℜ(λ) its real part
and by |λ| its absolute value. For the image space of a matrix A ∈ Rn×n we write im(A)

and for the nullspace of A we write ker(A). The rank of A is denoted by rank(A). For a
matrix A ∈ Cn×m we denote by AT the transpose of A and by A∗ the conjugate trans-
pose of A. Let I denote a real interval. The space of k-times continuously differentiable
functions from the real interval I into the real vector space Rn is denoted by Ck(I, Rn),
or shortly by Ck.

We define submatrices of a matrix as follows. Let 〈n〉 := {1, . . . , n} and let α =

{α1, . . . , αl}, β = {β1, . . . , βm} ⊆ 〈n〉 be two nonempty sets. For A ∈ Rn×n we de-
note by A[α, β] the submatrix of A composed of the rows and columns indexed by the
sets α and β respectively, i.e.,

A[α, β] := [aαiβj
]l,mi,j=1 ∈ Rl×m.

For square matrices A1, . . . , An we define the block diagonal matrix

diag(A1, . . . , An) :=






A1 0
. . .

0 An




 ,

5



6 Chapter 1. Preliminaries and notation

and for matrix products AB, we denote the (i, j)-th (block) entry by [AB]ij .

1.1 Matrix pencils and the generalised eigenvalue
problem

Let E,A ∈ Rn×m. A matrix pair (E,A), or a matrix pencil λE − A, is called regular if E

and A are square (n = m) and det(λE − A) 6= 0 for some λ ∈ C. It is called singular
otherwise. In the present work we only consider square and regular pencils. The terms
matrix pair and matrix pencil will be used interchangeably throughout this work.

Note that all notions defined in this section have the usual definitions for a single matrix
A as a special case when setting E = I.

A scalar λ ∈ C is said to be a (finite) eigenvalue of the matrix pair (E,A) if det(λE−A) =

0. A vector x ∈ Cn \ {0} such that (λE − A)x = 0 is called (right) eigenvector of (E,A)

corresponding to λ. If E is singular and v ∈ Cn \ {0}, such that Ev = 0 holds, then v is
called (right) eigenvector of (E,A) corresponding to the eigenvalue ∞.

The equation
λEv = Av, (1.1)

is called generalised eigenvalue problem.

The set of all eigenvalues is called spectrum of (E,A) and is defined by

σ(E,A) :=

{

σf(E,A), if E is invertible,
σf(E,A) ∪ {∞}, if E is singular,

where σf (E,A) is the set of all finite eigenvalues. We denote by

ρf (E,A) = max
λ∈σf (E,A)

|λ|,

the finite spectral radius of (E,A).

A k-dimensional subspace V ⊂ Cn is called right deflating subspace of (E,A), if there
exists a k-dimensional subspace W ⊂ Cn such that EV ⊂ W and AV ⊂ W. A k-
dimensional subspace V ⊂ Cn is called left deflating subspace of (E,A), if it is right
deflating subspace of (ET , AT ) [65], [125]. Note that deflating subspaces are some-
times also termed eigenspaces [113].

Vectors v1, . . . , vk form a right Jordan chain of the matrix pair (E,A) corresponding to
the finite eigenvalue λ if

(λE − A)vi = −Evi−1,
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for all 1 ≤ i ≤ k and v0 = 0. Note that vectors w1, . . . , wk form a right Jordan chain of the
matrix pair (E,A) corresponding to the eigenvalue ∞ if they form a right Jordan chain
of the matrix pair (A,E) corresponding to the eigenvalue 0. A subspace S

def
λ ⊂ Cn

is called right deflating subspace of (E,A) corresponding to the eigenvalue λ, if it is
spanned by all right Jordan chains corresponding to λ.

Let λ1, . . . , λp, be the pairwise distinct finite eigenvalues of (E,A) and let S
def
λi

, i =

1, . . . , p, be the right deflating subspaces corresponding to these eigenvalues. We call
the subspace defined by

S
def
f := S

def
λ1

⊕ . . . ⊕ S
def
λp

(1.2)

the right finite deflating subspace of (E,A). We call the subspace Sdef
∞ right infinite

deflating subspace.

Vectors z1, . . . , zk form a left Jordan chain of the matrix pair (E,A) corresponding to the
finite eigenvalue λ if

w∗
i (λE − A) = −w∗

i−1E,

for all 1 ≤ i ≤ k and w0 = 0. A subspace Vdef
λ ⊂ Cn is called left deflating subspace

of (E,A) corresponding to the eigenvalue λ if it is spanned by all left Jordan chains
corresponding to λ.

Let λ1, . . . , λp, be the pairwise distinct finite eigenvalues of (E,A) and let Vdef
λi

, i =

1, . . . , p, be the left deflating subspaces corresponding to these eigenvalues. We call
the subspace defined by

Vdef
f := Vdef

λ1
⊕ . . . ⊕ Vdef

λp
(1.3)

the left finite deflating subspace of (E,A). We call the subspace Vdef
∞ left infinite deflat-

ing subspace.

Often it is useful to consider the regular matrix pair (E,A) in the Weierstraß canonical
form [26], [34] that is a special case of the Kronecker canonical form [45].

Theorem 1.1 (Weierstraß canonical form (WCF)) Let (E,A) with E,A ∈ Rn×n be a
regular matrix pair. Then, there exist regular matrices W,T ∈ Rn×n such that

(E,A) =

(

W

[

I 0

0 N

]

T,W

[

J 0

0 I

]

T

)

, (1.4)

where J is a matrix in Jordan canonical form and N is a nilpotent matrix also in Jordan
canonical form.

The smallest nonnegative integer ν such that

rank(Eν) = rank(Eν+1)
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is called the index of the matrix E and is denoted by ind(E). For a nilpotent matrix
N , i.e., there exists k ∈ N with Nk = 0, the smallest k with this property is called the
index of nilpotency. Note that for a nilpotent matrix the index and the index of nilpotency
coincide.

For a matrix pair (E,A) the index is defined by the index of nilpotency of the nilpotent
block N in the Weierstraß canonical form and is denoted by ind(E,A). For a descriptor
system with constant coefficients as in (1a) or (2a), we define the index of the descriptor
system by ind(E,A). Note that for a regular matrix pair (E,A) with EA = AE, we have
ind(E,A) = ind(E).

1.2 Projectors and index of (E, A)

In this subsection, we present an alternative derivation of the index of (E,A) using
projectors, that is due to [52].

A matrix Q ∈ Rn×n is called projector if Q2 = Q. A projector Q is called projector
onto a subspace S ⊆ Rn if im Q = S. It is called projector along a subspace S ⊆ Rn

if kerQ = S. The following Lemma 1.2, in particular, states that every projector is
diagonalisable, see, e.g., [58].

Lemma 1.2 Let P be a projector. Then, there exists a regular matrix T such that

P = T−1

[

I 0

0 0

]

T.

Furthermore, we will make use of the following well-known property of projectors, see,
e.g., [58].

Lemma 1.3 Let P1, P2 be projectors. Then,

1. P1, P2 project onto the same subspace S if and only if P1 = P2P1 and P2 = P1P2.

2. P1, P2 project along the same subspace S if and only if P1 = P1P2 and P2 = P2P1.

A simple consequence of Lemma 1.3 is that a projector is uniquely defined by two
subspaces, the one it projects onto and the one along which it projects. Consider the
Weierstraß canonical form of the pair (E,A) given in (1.4). The matrices

Pr := T−1

[

I 0

0 0

]

T and Pl := W

[

I 0

0 0

]

W−1 (1.5)
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are the unique spectral projectors onto the right and left finite deflating subspaces along
the right and left infinite deflating subspaces, respectively.

Now, we define the matrix chain as introduced in [52]. Let (E,A) be a regular matrix
pair and set

E0 := E, A0 := A and

Ei+1 := Ei − AiQ̃i, Ai+1 := AiP̃i, for i ≥ 0,
(1.6)

where Q̃i are projectors onto ker Ei and P̃i = I − Q̃i. Since we have assumed (E,A)

to be regular, there exists an index ν such that Eν is nonsingular and all Ei are singular
for i < ν [52], [88]. Note, that ν is independent of a specific choice of the projectors
Qi. We say that the matrix pair (E,A) has tractability index ν. It is well known that
for regular pairs (E,A) with constant coefficients the tractability index is equal to the
(differentiation) index as defined in Section 1.1, see, e.g., [27], and it can be determined
as the size of the largest Jordan block associated with the eigenvalue infinity in the
Weierstraß canonical form of the pair (E,A), see [74] , [88].

For the analysis of descriptor system via projector chains as defined in (1.6), it is es-
sential to use specific, so called canonical projectors Qi, for i = 0, . . . , ν − 1, that have
additional properties [89]. Note that for ind(E,A) > 1, even these specific projectors
are not unique. However, the canonical projector Qν−1 is unique and can be calculated
as in the following Lemma 1.4 [88].

Lemma 1.4 Let (E,A) be a matrix pair and define a matrix chain as in (1.6). Further-
more, define sets Si by

Si := {y ∈ Rn : Aiy ∈ im Ei}. (1.7)

Then, if Ei+1 is nonsingular, we have that

Qi = −Q̃iE
−1
i+1Ai

is a projector onto kerE along Si.

For the construction of canonical projectors in the higher index cases in Section 2.2.4,
we need the following properties.

Lemma 1.5 Let (E,A) be a regular matrix pair of ind(E,A) = ν and define a matrix
chain as in (1.6), where the projectors Q̃i are chosen such that Q̃jQ̃i = 0 holds for all
0 ≤ i < j ≤ ν − 1. For 0 ≤ i ≤ ν − 1 define new projectors Qi onto kerEi by setting
Qi = −Q̃iE

−1
ν Ai and Pi = I − Qi. Then, QjQi = 0 holds for all 0 ≤ i < j ≤ ν − 1.
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Proof. The matrix −Q̃iE
−1
ν Ai is a projector for all 0 ≤ i ≤ ν − 1, since

(−Q̃iE
−1
ν Ai)

2 = Q̃iE
−1
ν (Ei − Ei+1)Q̃iE

−1
ν Ai = −Q̃iE

−1
ν Ei+1Q̃iE

−1
ν Ai = −QiE

−1
ν Ai,

where we have used that EνQ̃i = (Ei+1 − Ai+1Q̃i+1 − . . . − Aν−1Qν−1)Q̃i = Ei+1Q̃i.

To show that QjQi = 0 holds for all 0 ≤ i < j ≤ ν − 1, let i, j be arbitrarily chosen fixed
indeces 0 ≤ i < j ≤ ν − 1. Then, we have that

QjQi = Q̃jE
−1
ν AjQ̃iE

−1
ν Ai = Q̃jE

−1
ν AiP̃i · · · P̃j−1Q̃iE

−1
ν Ai

= Q̃jE
−1
ν Ai(I − Q̃i) · · · (I − Q̃j−1)Q̃iE

−1
ν Ai = Q̃jE

−1
ν Ai(Q̃i − Q̃i)

= 0.

1.3 Nonnegative matrices

A vector x ∈ Rn, x = [xi]
n
i=1 is called nonnegative (positive) and we write x ≥ 0 (x > 0)

if all entries xi are nonnegative (positive). A matrix A ∈ Rn×n, A = [aij ]
n
i,j=1 is called

nonnegative (positive) and we write A ≥ 0 (A > 0) if all entries aij are nonnegative
(positive). A matrix A is called nonnegative on a subset S ⊂ Rn if for all x ∈ S ∩ Rn

+, we
have Ax ∈ Rn

+ [17].

A matrix P ∈ Rn×n
+ that has precisely one entry in each column and each row whose

value is 1 and all other entries are zero is called permutation matrix. Denote by Πn ⊂
Rn×n

+ the set of permutation matrices of order n.

In the theory of nonnegative matrices, irreducibility of a matrix plays an important role.
We call a matrix A reducible if there exists a permutation matrix P ∈ Πn, such that

PAP T =

[

A11 A12

0 A22

]

,

where A11, A22 are square. Otherwise A is called irreducible.

The direct sum of n matrices Ai ∈ Rni×ni is defined by

⊕n
i=1Ai := diag(A1, . . . , An) =






A1 0
. . .

0 An




 .

The following Theorem 1.6 states a canonical form for nonnegative projectors [17], [39].
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Theorem 1.6 Let A ∈ Rn×n

+ be a nonnegative projector, i.e., A2 = A and A ≥ 0, and let
A be of rank k. Then, there exists a permutation matrix Π such that

ΠAΠT =








J JU 0 0

0 0 0 0

V J V JU 0 0

0 0 0 0








, (1.8)

where U, V ≥ 0 are arbitrary matrices and J = ⊕k
i=1Ji, where the matrices Ji ∈ Rli×li

+

are positive projectors of rank 1, i.e., Ji = uiv
T
i , where 0 < ui, vi ∈ Rli

+ with vT
i ui = 1

for i = 1, . . . , k. Conversely, every matrix of the form in (1.8), where J = ⊕k
i=1Ji and

U, V ≥ 0, is a nonnegative projector of rank k.

A matrix A is called Z-matrix if its off-diagonal entries are nonpositive. In the literature,
a matrix for which −A is a Z-matrix sometimes is called L-matrix, Metzler matrix or
essentially positive matrix, see, e.g., [17], [38], [64], [122]. Throughout this work we will
use the term −Z-matrix.

Lemma 1.7 Let A ∈ Rn×n. Then, eAt ≥ 0 for all t ≥ 0 if and only if A is a −Z-matrix.

Proof. See, e.g., [122].

Let B ≥ 0 with spectral radius ρ(B). A matrix A of the form A = sI − B, with s > 0, and
s ≥ ρ(B) is called M -matrix. If s > ρ(B) then A is a nonsingular M -matrix, if s = ρ(B)

then A is a singular M -matrix. The class of M -matrices is a subclass of the Z-matrices.
Accordingly, a matrix for which −A is an M -matrix we call a −M -matrix.

The following Lemma 1.8 and Theorem 1.9 are well-known properties of M -matrices
and can be found, e.g., in [17].

Lemma 1.8 Let A be a −Z-matrix with σ(A) ∈ C−. Then, A is a −M -matrix.

Theorem 1.9 Let A ∈ Rn×n be an irreducible singular M -Matrix. Then,

• rank(A) = n − 1.

• Every principal submatrix of A other than A is nonsingular M -matrix.

By Theorem 1.9, for an irreducible singular M -matrix, one can deduce the existence of
an LU -decomposition that takes a special form.
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Corollary 1.10 Let A ∈ Rn×n be an irreducible singular M -matrix. Then, there exists a
unit lower triangular nonsingular M -matrix L and an upper triangular M -matrix U such
that

A = LU =








@
@

@
@@

1

1

@
@

@
@















@
@

@
@@

0








. (1.9)

Proof. See [76].

A symmetric matrix A is called positive (semi)definite and we write (A � 0) A ≻ 0 if for
all x 6= 0 we have (xT Ax ≥ 0) xT Ax > 0. If this holds for −A then A is called negative
(semi)definite and we write (A � 0) A ≺ 0. For matrices A, B we write (A � B) A ≺ B

if (B − A � 0) B − A ≻ 0.

1.4 Generalised inverses

Since we consider descriptor systems, where the matrix E in systems (1a) or (2a) is
singular, we will need the concept of generalised inverses. The definitions and notation
we adopt here are taken from [17]. Generalised inverses are matrices for which some
of the properties of the standard inverses do not hold whereas some others do. If a
matrix A is nonsingular, then the matrix X = A−1 satisfies the properties

AXA = A, (1.10a)

XAX = X, (1.10b)

(AX)T = AX, (1.10c)

(XA)T = XA, (1.10d)

AX = XA, (1.10e)

XAk+1 = Ak for k ∈ N. (1.10f)

We only introduce three special cases of generalised inverses that we need in the
following.

Definition 1.11 (Semi-inverse) A matrix that satisfies conditions (1.10a) and (1.10b)
is called semi-inverse of A and we denote it by Aginv.

Note that a semi-inverse is not unique. The Moore-Penrose inverse of a matrix A is a
special case of a semi-inverse and it is uniquely defined by two additional properties,
see, e.g., [29].
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Definition 1.12 (Moore-Penrose inverse) A Moore-Penrose inverse A† of A is defined
by the properties (1.10a)-(1.10d).

The following Lemma 1.13 is well known and gives explicit formulas for any semi-inverse
and the Moore-Penrose inverse of a special matrix A, see, e.g., [29].

Lemma 1.13 Let A = xyT , x, y ∈ Rn \ {0}. Then any semi-inverse is of the form

Aginv = zwT , z, w ∈ Rn,

such that (yT z)(wT x) = 1. In particular, the Moore-Penrose inverse is given by

A† =
1

(xT x)(yT y)
yxT .

In general, the Moore-Penrose inverse may be calculated via the reduced singular value
decomposition (SVD), see, e.g., [49].

Theorem 1.14 Let A ∈ Rn×n with rank(A) = r. Then, there exist matrices U =

[u1, . . . , ur] ∈ Rn×r and V = [v1, . . . , vr] ∈ Rn×r, such that UTU = V T V = Ir and

A = UΣV T ,

where Σ = diag(σ1, . . . , σr) and σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Lemma 1.15 Let A ∈ Rn×n and let A = UΣV T , where U,Σ, V are the matrices of the
reduced SVD as in Theorem 1.14. Then, the Moore-Penrose inverse of A is given by

A† = V Σ−1UT .

For the explicit solution representation of the systems (1a) or (2a) that we introduce
in Section 1.6 we need the Drazin generalised inverse, first introduced in [36]. For a
matrix theoretical approach and applications, see, e.g., [29].

Definition 1.16 (Drazin inverse) Let A ∈ Rn×n with ind(A) = ν. The Drazin inverse
AD ∈ Rn×n of A is defined by the properties (1.10b), (1.10e) and (1.10f).

The following result states the Jordan canonical form representation of the Drazin in-
verse [29], which gives a more intuitive idea of this generalised inverse.
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Theorem 1.17 (JCF representation of the Drazin inverse) Let E ∈ Rn×n be such
that ind(E) = ν > 0 and let P ∈ Rn×n be a regular matrix such that

E = P

[

C 0

0 N

]

P−1,

where C is regular and N is nilpotent of index ν. Then,

ED = P

[

C−1 0

0 0

]

P−1.

Corollary 1.18 (Existence and uniqueness of the Drazin inve rse) Every E ∈ Rn×n

has one and only one Drazin inverse ED.

1.5 Transfer function and H∞-norms

Let the matrix quintuple [E ,A , B , C , D] denote the system (1) or (2) with a regular
matrix pair (E,A), respectively. The function

G(λ) = C(λE − A)−1B + D

is called transfer function and λ is called frequency variable. Conversely, the quintuple
[E ,A , B , C , D] is called realisation of G. Note that realisations are in general not
unique. Typically, the frequency variable is denoted by s in continuous-time and by z in
discrete-time. A transfer function G(λ) is called proper if

lim
λ→∞

G(λ) < ∞,

and improper otherwise. If limλ→∞ G(λ) = 0, then G(λ) is called strictly proper. Let
H∞,c be the space of all transfer functions that are analytic and bounded in the open
right complex half-plane C+ and let H∞,d be the space of all transfer functions that are
analytic and bounded on C\D, where D is the closed unit ball around the origin. The
continuous-time and discrete-time H∞-norms are defined by

‖G‖∞,c = sup
s∈C+

‖G(s)‖2, ‖G‖∞,d = sup
z∈C \D

‖G(z)‖2, (1.11)

respectively, where ‖ · ‖2 denotes the spectral matrix norm.
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1.6 Explicit solution representation

Consider the systems (1a) and (2a). In this work, we adopt the classical solvability
concept. A vector function x ∈ C1 is called solution of (1a), if for the assigned input u

and the given initial condition x0 it satisfies (1a) pointwise. A vector sequence x is called
solution of (2a), if for the assigned input sequence u and the given initial condition x0 it
satisfies (2a) pointwise.

In order to formulate explicit solution representations of (1a) and (2a), respectively, we
need that the matrices E and A commute. If they do not commute and the matrix pair
(E,A) is regular, we can obtain commuting matrices by multiplication with a scaling
factor as stated in the following Lemma, [26].

Lemma 1.19 Let (E,A) be a regular matrix pair. Let λ̂ be chosen such that λ̂E − A is
nonsingular. Then, the matrices

Ê = (λ̂E − A)−1E and Â = (λ̂E − A)−1A

commute.

In the following, we refer to Ê, Â as defined in Lemma 1.19 independently of the specific
choice of λ̂. Furthermore, for a matrix B from system (1) or (2) we define

B̂ := (λ̂E − A)−1B. (1.12)

Note, that for systems (1a) and (2a), respectively, the scaling by a nonsingular factor
such as (λ̂E − A)−1 does not change the solution.

For the matrices Ê, Â as defined in Lemma 1.19 and their corresponding Drazin in-
verses, the following properties hold, see, e.g., [74]:

ÊÂD = ÂDÊ, (1.13a)

ÊDÂ = ÂÊD, (1.13b)

ÊDÂD = ÂDÊD. (1.13c)

Note that if we form matrix products such as ÊDÊ, ÊDÂ, ÊÂD, ÊDB̂, ÂDB̂, the terms in
λ̂ cancel out, so that these products do not depend on the specific choice of λ̂, see [74,
Chapter 2, Exercise 11]. This can be verified by transforming (E,A) into Weierstraß
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canonical form in Theorem 1.1. Then, we have

Ê = (λ̂E − A)−1E =

(

λ̂W

[

I 0

0 N

]

T − W

[

J 0

0 I

]

T

)−1

W

[

I 0

0 N

]

T =

=

(

W

[

λ̂I − J 0

0 λ̂N − I

]

T

)−1

W

[

I 0

0 N

]

T =

= T−1

[

(λ̂I − J)−1 0

0 (λ̂N − I)−1N

]

T,

and similarly,

Â = (λ̂E − A)−1A = T−1

[

(λ̂I − J)−1J 0

0 (λ̂N − I)−1

]

T.

For the Drazin inverses of Ê and Â we obtain

ÊD = T−1

[

λ̂I − J 0

0 0

]

T and ÂD = T−1

[

JD(λ̂I − J) 0

0 λ̂N − I

]

T.

Here, we have used that the matrices J and (λ̂I − J)−1 commute, and for commuting
matrices Z1, Z2 with Z1 regular, we have (Z1Z2)

D = ZD
2 Z−1

1 , see, e.g., [74]. Therefore,
the products

ÊDÊ = T−1

[

λ̂I − J 0

0 0

][

(λ̂I − J)−1 0

0 (λ̂N − I)−1N

]

T = T−1

[

I 0

0 0

]

T,

ÊDÂ = T−1

[

λ̂I − J 0

0 0

][

(λ̂I − J)−1J 0

0 (λ̂N − I)−1

]

T = T−1

[

J 0

0 0

]

T,

ÊÂD = T−1

[

(λ̂I − J)−1 0

0 (λ̂N − I)−1N

][

(λ̂I − J)JD 0

0 λ̂N − I

]

T = T−1

[

JD 0

0 N

]

T,

do not depend on λ̂. Note that Pr = ÊDÊ is the unique spectral projector onto S
def
f

along the deflating subspace corresponding to the eigenvalue ∞ defined in (1.5). Let B̂

be defined as in (1.12) and B = WB̃, where B̃ =

[

B̃1

B̃2

]

is partitioned according to the

Weierstraß canonical form of (E,A). Then, we have

B̂ = (λ̂E − A)−1B =

(

λ̂W

[

I 0

0 N

]

T − W

[

J 0

0 I

]

T

)−1

W

[

B̃1

B̃2

]

= T−1

[

(λ̂I − J)−1B̃1

(λ̂N − I)−1B̃2

]

,
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and we obtain ÊDB̂ = T−1

[

B̃1

0̃

]

and ÂDB̂ = T−1

[

JDB̃1

B̃2

]

, which are also independent

of λ̂.

The following Theorem 1.20 gives an explicit solution representation in terms of the
Drazin inverse.

Theorem 1.20 Let (E,A) be a regular matrix pair with E,A ∈ Rn×n and ind(E,A) =

ν. Let Ê, Â be defined as in Lemma 1.19 and B̂ as in (1.12). Furthermore, for the
continuous-time case, let u ∈ Cν and denote by u(i), i = 0 . . . , ν − 1, the i-th derivative
of u. Then, every solution x ∈ C1 to Equation (1a) has the form:

x(t) = eÊDÂtÊDÊv +

∫ t

0

eÊDÂ(t−τ)ÊDB̂u(τ)dτ − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(i)(t),

(1.14)
for some v ∈ Rn. In the discrete-time case, every solution sequence x(t) to Equa-
tion (2a) has the form:

x(t) = (ÊDÂ)tÊDÊv +
t−1∑

τ=0

(ÊDÂ)t−1−τ ÊDB̂u(τ) − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(t + i).

(1.15)

for some v ∈ Rn.

Proof. See, e.g., [26], [74].

Corollary 1.21 Under the same assumptions as in Theorem 1.20, the continuous-time
initial value problem (1a) has a (unique) solution corresponding to the initial condition
x0 and to the input u ∈ Cν if and only if there exists a vector v ∈ Rn such that

x0 = ÊDÊv − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(i)(0). (1.16)

The discrete-time initial value problem (2a) has a (unique) solution corresponding to the
initial condition x0 and to the input sequence u if and only if there exists a vector v ∈ Rn

such that

x0 = ÊDÊv − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(i). (1.17)
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Proof. See, e.g., [26], [74].

Unlike in the standard case, Corollary 1.21 shows that not for every initial condition x0,
there exists a solution to systems (1a) or (2a). The set of initial conditions for which a
solution exists is restricted and depends on the chosen input. This leads to the following
definition of consistent initial values.

Definition 1.22 We call an initial value x0 in (1a) or in (2a) consistent with respect to
an assigned input u if (1.16) or (1.17) holds, respectively.



Chapter 2

Nonnegative matrix theory for positive
descriptor systems

As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.

- Arthur Cayley

2.1 Classical Perron-Frobenius theory

The well-known Perron-Frobenius Theorem states that for an elementwise nonnegative
matrix, the spectral radius is itself an eigenvalue and has a nonnegative eigenvector. It
is named after Oscar Perron and Georg Ferdinand Frobenius. Perron proved the first
part of the theorem for positive matrices in 1907 [106], and Frobenius extended it to
irreducible and nonnegative matrices in 1912 [43].

This result has many applications in all areas of science and engineering, in particular
in economics and population dynamics, see, e.g., [17]. Also, the Perron-Frobenius
theorem is widely used in the analysis of standard positive systems, see, e.g., [2],
[14], [31], [38], [120]. For instance, stability properties of positive systems are mainly
determined by the Perron-Frobenius theory, see Chapter 4.

The classical Perron-Frobenius Theorem, see, e.g., [17, pp. 26/27], states as follows.

Theorem 2.1 (Perron-Frobenius Theorem) Let A ≥ 0 have the spectral radius ρ(A).
Then ρ(A) is an eigenvalue of A and A has a nonnegative eigenvector v corresponding
to ρ(A). If, in addition, A is irreducible, then ρ(A) is simple and A has a positive eigen-
vector v corresponding to ρ(A). Furthermore, v > 0 is unique up to a scalar multiple,

19



20 Chapter 2. Nonnegative matrix theory

i.e. if w > 0 is an eigenvector of A, then w = αv, α ∈ R+.

Since we consider positive descriptor systems as in (1) or (2), where E,A are real n×n

matrices, the dynamics is described by the eigenvalues and eigenvectors associated
with the matrix pair (E,A). Therefore, the next section is devoted to the extension of
this important theory to matrix pairs.

2.2 Perron-Frobenius theory for matrix pairs

In this section we present a new approach to extend the classical Perron-Frobenius
theory to matrix pairs (E,A), where a sufficient condition guarantees that the finite
spectral radius of (E,A) is an eigenvalue with a corresponding nonnegative eigenvec-
tor [96]. Our approach is based on the construction of projector chains as they were
introduced in the context in [52]. For the special case E = I our new approach reduces
to the classical Perron-Frobenius theorem for matrices. We present several examples
where the new condition holds, whereas previous conditions are not satisfied.

2.2.1 Previous generalisations and their drawbacks

In the literature, several approaches have been presented to generalise the classical
Perron-Frobenius theory to matrix pencils or further to matrix polynomials. In [87] the
nonnegativity condition for A, which can be stated as y ≥ 0 ⇒ Ay ≥ 0, is directly
generalised. For the matrix pair (E,A) the condition ET y ≥ 0 ⇒ AT y ≥ 0 is given, which
is sufficient for the existence of a positive eigenvalue and a corresponding nonnegative
eigenvector. In [9] a sufficient condition, (E − A)−1A ≥ 0, for the existence of a positive
eigenvalue in (0, 1) and a corresponding positive eigenvector if (E−A)−1A is irreducible,
is proved. The relationship of the two ideas from [9] and [87] is studied in [97]. In
[93], the condition from [9] is imposed by requiring E − A to be a nonsingular M -
matrix and A ≥ 0. Here, the structure of nonnegative eigenvectors is studied from
the combinatorial point of view. In [107] the Perron-Frobenius theory was extended to
matrix polynomials, where the coefficient matrices are entrywise nonnegative. Other
extensions concerning matrix polynomials are given in [41].

The main drawbacks of the generalisation in [9] is that on the one hand it is a restrictive
condition, since E − A is not necessarily invertible, and on the other hand it does not
have the classical Perron-Frobenius theory as a special case, where E = I. Further-
more, only the existence of a nonnegative real eigenvalue is guaranteed instead of the
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spectral radius being an eigenvalue. The condition in [87] has the classical Perron-
Frobenius theory as a special case but the condition is not easy to verify. Furthermore,
for regular matrix pairs (E,A) with singular E this condition never holds, since one can
always find a vector y ≤ 0 in the nullspace of E or ET such that Ay ≤ 0 or AT y ≤ 0.
However, this is the situation that is studied in this work.

Our extension of the Perron-Frobenius theory to regular matrix pairs (E,A) has a num-
ber of advantages over the existing conditions in the literature. In Section 2.2.2, for the
case of index 1 pencils, we prove an easily computable sufficient condition in Theo-
rem 2.2 that guarantees that the finite spectral radius of (E,A) is an eigenvalue with a
corresponding nonnegative eigenvector. We present several examples where the new
condition holds, whereas the conditions in [9] and [87] are not satisfied. In the general
case (where the index may be arbitrary) presented in Section 2.2.3, we have to impose
an additional condition on the projectors, see Lemma 2.7, that is satisfied naturally in
the index 1 case. The general sufficient condition that we then prove in Theorem 2.8 is
in the index 1 case the same as in Theorem 2.2 and also guarantees that the finite spec-
tral radius of (E,A) is an eigenvalue with a corresponding nonnegative eigenvector. In
Corollary 2.10, we prove two further conditions that are equivalent to the condition in
Theorem 2.8. All conditions have the classical Perron-Frobenius theory as a special
case when E = I.

2.2.2 Regular matrix pairs of index at most one

In this subsection we study regular pairs (E,A) of index at most one. This is a special
case of the general result of this section that we present in the next subsection. The aim
of this section is to gain a more intuitive idea of the projector-based approach before
stating and proving the result in its full generality. The techniques used in the index 1

case go back to [52].

Theorem 2.2 Let (E,A), with E,A ∈ Rn×n, be a regular matrix pair with ind(E,A) ≤ 1.
Let Q0 be a projector onto kerE along the subspace S0 defined as in (1.7) for i = 0, i.e.,

S0 := {y ∈ Rn : Ay ∈ im E}, (2.1)

let P0 = I − Q0, and A1 = AP0. Then E1 := E − AQ0 is nonsingular and if

E−1
1 A1 ≥ 0, (2.2)

and σf(E,A) 6= ∅, then the finite spectral radius ρf(E,A) is an eigenvalue of the matrix
pair (E,A) and if ρf (E,A) > 0, then there exists a nonnegative eigenvector v corre-
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sponding to ρf(E,A). If E−1
1 A1, in addition, is irreducible, then ρf(E,A) is simple and

v > 0 is unique up to a scalar multiple.

Proof. Let ind(E,A) = 0. Then, E is regular and we have that Q0 = 0, E1 = E and the
condition in Theorem 2.2 reduces to the one of the classical Perron-Frobenius theorem
for E−1A.
Let ind(E,A) = 1 and consider the generalised eigenvalue problem (1.1). We have that
E1 as defined in (1.6) is nonsingular, see [88], and we can premultiply equation (1.1) by
E−1

1 . By also using that P0 + Q0 = I, we obtain

E−1
1 (λE − A)(P0 + Q0)v = 0,

or equivalently
(λE−1

1 E − E−1
1 AP0 − E−1

1 AQ0)v = 0.

Furthermore, we have E−1
1 E = P0 since E1P0 = (E−AQ0)P0 = E and −E−1

1 AQ0 = −Q0

since E1Q0 = (E − AQ0)Q0 = −AQ0. Hence, we obtain

[(λI − E−1
1 A)P0 + Q0]v = 0,

which after multiplication by P0 and Q0 from the left is equivalent to the system of two
equations

{

P0[(λI − E−1
1 A)P0 + Q0]v = 0,

Q0[(λI − E−1
1 A)P0 + Q0]v = 0.

(2.3)

We have that Q0 is a projector onto kerE along S0 and by Lemma 1.4 we conclude that
−Q0E

−1
1 A is also a projector onto ker E along S0. Hence, by Lemma 1.4, we have that

(−Q0E
−1
1 A)P0 = Q0P0 = 0. Therefore, by writing P0 = I − Q0 in the first equation of

(2.3), the two equations reduce to
{

(λI − E−1
1 A)P0v = 0,

Q0v = 0.

Since P0 = P0P0, this is equivalent to
{

(λI − E−1
1 AP0)P0v = 0,

Q0v = 0.
(2.4)

Setting x = P0v, y = Q0v and v = P0v + Q0v = x + y, we obtain a standard eigenvalue
problem in the first equation and a linear system in the second equation. From the
first equation we know by the Perron-Frobenius Theorem that if E−1

1 AP0 ≥ 0, then the
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spectral radius of E−1

1 AP0 is an eigenvalue with a corresponding nonnegative eigen-
vector. If E−1

1 AP0 is in addition irreducible, then we have that ρ(E−1
1 AP0) is a simple

eigenvalue and there exists a corresponding positive eigenvector that is unique up to a
scalar multiple. Set λ̂ := ρ(E−1

1 AP0) and if λ̂ 6= 0, due to (2.4), we can set x̂ = P0v for
the corresponding nonnegative (positive) eigenvector. Then, we obtain

E−1
1 AP0x̂ = λ̂x

⇔ AP0x̂ = λ̂E1x̂

⇔ AP0x̂ = λ̂(E − AQ0)x̂

⇔ AP0P0v = λ̂EP0v − AQ0P0v

⇔ A(P0v + Q0v) = λ̂Ev

⇔ Av = λ̂Ev,

which is the generalised eigenvalue problem (1.1). Hence, ρ(E−1
1 AP0) = ρf(E,A) and

if ρf(E,A) 6= 0, there exists a corresponding nonnegative eigenvector. This completes
the proof.

Note that in the index 1 case, the projector P0 is the unique spectral projector onto the
right finite deflating subspace of (E,A) defined in (1.5).

Example 2.3 Consider the pair (E,A) given by
E =

[

2 2

0 0

] and A =

[

1 0

0 1

]

.

We have ind(E,A) = 1 and the pair has only one �nite eigenvalue λ = 0.5 with eigenve
tor
v =

[

v1

0

], where we may normalise the eigenve
tor so that v1 > 0.
To 
he
k the su�
ient 
ondition (2.2) of Theorem 2.2, we 
hoose a proje
tor Q̃0 onto
kerE0, e.g.,

Q̃0 =

[

1 0

−1 0

]

,

and get
Ẽ1 = E0 − A0Q̃0 =

[

1 2

1 0

]

.

For the inverse we obtain
Ẽ−1

1 =

[

0 1
1
2

−1
2

]

,
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and a proje
tor Q0 onto kerE along S0 is given by
Q0 = −Q̃0Ẽ

−1
1 A0 =

[

0 −1

0 1

]

.

We then have
E1 = E0 − A0Q0 =

[

2 3

0 −1

]

, E−1
1 =

[
1
2

3
2

0 −1

]

,

and we set P0 = I − Q0. Condition (2.2) then reads
E−1

1 A1 = E−1
1 AP0 =

[
1
2

3
2

0 −1

][

1 0

0 1

][

1 1

0 0

]

=

[
1
2

1
2

0 0

]

≥ 0,

and we 
an apply Theorem 2.2.For this example, the theories in [9℄ and [87℄ 
annot be applied, sin
e (E − A)−1A =
[

1 2

0 −1

]

� 0 and there exists a ve
tor, e.g., y =

[

1

−1

] su
h that ET y ≥ 0 but AT y � 0.
Example 2.4 Consider a pair (E,A) with ind(E,A) = 1 and E =

[

E11 0

0 0

], where E11

is nonsingular and A =

[

A11 A12

A21 A22

] is partitioned a

ordingly. For a pen
il in this form,
ind(E,A) = 1 is equivalent to A22 being nonsingular, see, e.g., [74℄. We 
hoose anyproje
tor Q̃0 onto kerE, e.g.

Q̃0 =

[

0 0

0 I

]

,

and 
ompute Ẽ1 and Ẽ−1
1 . We obtain

Ẽ1 = E − AQ̃0 =

[

E11 −A12

0 −A22

]

, Ẽ−1
1 =

[

E−1
11 −E−1

11 A12A
−1
22

0 −A−1
22

]

.

Then, we determine a proje
tor Q0 onto kerE along S0 = {y ∈ Rn : Ay ∈ im E} as
Q0 = −Q̃0E

−1
1 A =

[

0 0

0 I

][

E−1
11 −E−1

11 A12A
−1
22

0 −A−1
22

][

A11 A12

A21 A22

]

=

[

0 0

A−1
22 A21 I

]

.
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Furthermore, we get P0 =

[

I 0

−A−1
22 A21 0

] and then 
ompute E1 and E−1
1 . We obtain

E1 = E − AQ0 =

[

E11 − A12A
−1
22 A21 −A12

−A21 −A22

]

,

E−1
1 =

[

E−1
11 −E−1

11 A12A
−1
22

−A−1
22 A21E

−1
11 A−1

22 A21E
−1
11 A12A

−1
22 − A−1

22

]

.

Condition (2.2) then reads as
E−1

1 AP0 =

[

E−1
11 −E−1

11 A12A
−1
22

−A−1
22 A21E

−1
11 A−1

22 A21E
−1
11 A12A

−1
22 − A−1

22

][

A11 A12

A21 A22

][

I 0

−A−1
22 A21 0

]

=

[

E−1
11 AS 0

−A−1
22 A21E

−1
11 AS 0

]

≥ 0,

where AS = A11 − A12A
−1
22 A21.Consider again the eigenvalue problem

(λE − A)v = 0.In our 
ase we obtain
[

λE11 − A11 −A12

−A21 −A22

][

v1

v2

]

= 0.

Sin
e E11 is nonsingular, we 
an rewrite this system as
{

(λI − E−1
11 A11)v1 − E−1

11 A12v2 = 0,

−A21v1 − A22v2 = 0,whi
h is equivalent to
{

(λI − E−1
11 AS)v1 = 0,

v2 = −A−1
22 A21v1,

(2.5)

where AS = A11 − A12A
−1
22 A21. Condition (2.2) gives E−1

11 AS ≥ 0 and, by the Perron-Frobenius Theorem, we obtain from the �rst equation of (2.5) that ρ(E−1
11 AS) =: λ̂ is aneigenvalue with a 
orresponding eigenve
tor v1 ≥ 0. Using this, from the se
ond equationof (2.5) we obtain

v2 = −A−1
22 A21v1 = −λ−1A−1

22 A21λv1 = −λ−1A−1
22 A21E

−1
11 ASv1 ≥ 0,sin
e −A−1

22 A21E
−1
11 AS ≥ 0 by (2.2) and we have λ̂ ≥ 0 and v1 ≥ 0 from the �rst equationof (2.5).
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Remark 2.5 1. Considering the 
ase E = I in Theorem 2.2, we have P0 = I, and the
ondition E−1
1 A1 ≥ 0 redu
es to the 
ondition A ≥ 0 of the 
lassi
al Perron-Frobeniustheorem.2. Condition E−1

1 A1 ≥ 0, written out, reads as
(E − A(I − P0))

−1AP0 ≥ 0,whi
h, without the proje
tors, would be the 
ondition in [9℄:
(E − A)−1A ≥ 0.Yet, whereas (E − A(I − P0)) is nonsingular by 
onstru
tion, the matrix E − A is notne
essarily invertible. Hen
e, the new 
ondition �nds a mu
h broader appli
ability.3. Consider the 
ase σf (E,A) 6= ∅ and ρf (E,A) = 0. If E−1

1 A1 ≥ 0, then we obtain that
ρf(E,A) = 0 is an eigenvalue of (E,A), however, there is not ne
essarily a 
orrespondingnonnegative eigenve
tor, as the following Example 2.6 shows.Example 2.6 Consider the matri
es

E := T−1ẼT =

[

1 1

−1 −2

]−1 [

1 0

0 0

][

1 1

−1 −2

]

=

[

2 2

−1 −1

]

,

A := T−1ÃT =

[

1 1

−1 −2

]−1 [

0 0

0 1

][

1 1

−1 −2

]

=

[

−1 −2

1 2

]

.

Note that by (1.5) we have that E = Pr is the spe
tral proje
tor onto the right �nitede�ating subspa
e of (E,A). Hen
e, we obtain
E−1

1 A1 = E−1
1 AE = E−1

1

[

−1 −2

1 2

][

2 2

−1 −1

]

= 0,

and σf (E,A) 6= ∅. Therefore, ρf(E,A) = 0 is an eigenvalue of (E,A). However, theeigenpairs of (E,A) are (0,
[

1 −0.5
]T

) and (∞,
[

1 −1
]T

) and there does not exists anonnegative eigenve
tor 
orresponding to ρf (E,A).
2.2.3 Regular matrix pairs of general index

In this section we consider a regular matrix pair (E,A) of ind(E,A) = ν. For ν >

1 we need to define the matrix chain in (1.6) with specific projectors. The following
Lemma 2.7 guarantees the existence of projectors with the required property. Canonical
projectors as defined in [89] fulfil the condition of Lemma 2.7. An alternative way to
construct these projectors along with some examples is presented in Section 2.2.4.
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Lemma 2.7 Let (E,A), with E,A ∈ Rn×n, be a regular matrix pair of ind(E,A) = ν.
Then, a matrix chain as in (1.6) can be constructed with specific projectors Qi, Pi such
that Qiv = 0 holds for all v ∈ S

def
f and for all 0 ≤ i < ν.

Proof. From [89] we know that for a regular matrix pair (E,A), we have that

kerEi ∩ ker Ai = {0} (2.6)

holds for all 0 ≤ i < ν. Furthermore, from (2.6) or, e.g., from [89] we obtain that

kerEi ∩ kerEi+1 = {0} (2.7)

for all 0 ≤ i < ν − 1. We now show by induction that we can construct projectors Qi

such that Qiv = 0 holds for all v ∈ S
def
f and for all 0 ≤ i < ν. For the existence of

such a Q0, we have to show that kerE0 ∩ S
def
f = {0}. Suppose that x ∈ ker E0 ∩ S

def
f .

Then from E0x = 0 we obtain that x = 0, since otherwise, by definition, x would be
an eigenvector of (E,A) corresponding to the eigenvalue ∞. Thus, we can choose the
projector Q0 onto ker E0 along some subspace M0 that completely contains S

def
f . This

ensures Q0v = 0 for all v ∈ S
def
f . Now, suppose that Qiv = 0 holds for all v ∈ S

def
f and for

all 0 ≤ i ≤ k for some k < ν−1. Note that for the complementary projectors Pi = I−Qi,
this implies that Piv = v for all v ∈ S

def
f . To construct a projector Qk+1 onto ker Ek+1 such

that Qk+1v = 0 holds for all v ∈ S
def
f , we have to show that ker Ek+1 ∩ S

def
f = {0}. For

this, suppose that 0 6= x ∈ kerEk+1 ∩ S
def
f . Then, by using the assumption, we obtain

0 = Ek+1x = (E0 − A0Q0 − . . . − AkQk)x = E0x,

from which we again conclude that x = 0, since otherwise, by definition, x would be
an eigenvector of (E,A) corresponding to the eigenvalue ∞. Thus, we can choose the
projector Qk+1 onto ker Ek+1 along some subspace Mk+1 that completely contains S

def
f .

This ensures Qk+1v = 0 for all v ∈ S
def
f and completes the proof.

Note that for ν = 1, condition Q0v = 0 holds automatically for all v ∈ S
def
f and in

particular for all eigenvectors, see (2.4).

The following Theorem 2.8 states our main result. We prove a new, broadly applicable
Perron-Frobenius-type condition for matrix pairs (E,A) in the general index case.

Theorem 2.8 Let (E,A), with E,A ∈ Rn×n, be a regular matrix pair of ind(E,A) = ν.
Let a matrix chain as in (1.6) be constructed with projectors Qi as in Lemma 2.7. If

E−1
ν Aν ≥ 0, (2.8)
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and σf (E,A) 6= ∅, then the finite spectral radius ρf(E,A) is an eigenvalue of (E,A) and
if ρf(E,A) > 0, then there exists a corresponding nonnegative eigenvector v ≥ 0. If
E−1

ν Aν is, in addition, irreducible, then we have that ρf(E,A) is simple and v > 0 is
unique up to a scalar multiple.

Proof. Consider the generalised eigenvalue problem (1.1)

(λE − A)v = 0.

If v is an eigenvector corresponding to a finite eigenvalue λ, i.e., v ∈ S
def
f , then we have

Qiv = 0 for all 0 ≤ i < ν and we can equivalently express (1.1) as

(λ(E − A0Q0 − A1Q1 − . . . − Aν−1Qν−1) − A)v = 0

⇔ (λEν − A)v = 0

⇔ (λI − E−1
ν A)v = 0. (2.9)

By construction, we have that v = P0 · · ·Pν−1v and we obtain that (2.9) is equivalent to

(λI − E−1
ν A)P0 · · ·Pν−1v = 0

⇔ (λI − E−1
ν AP0 · · ·Pν−1)P0 · · ·Pν−1v = 0

⇔ (λI − E−1
ν Aν)v = 0. (2.10)

Note, that in this way, we have shown that any finite eigenpair of (E,A) is an eigen-
pair of E−1

ν Aν . Conversely, by (2.10), we have that any eigenpair (λ, v) of E−1
ν Aν with

λ 6= 0 is a finite eigenpair of (E,A). Since E−1
ν Aν ≥ 0, by the classical Perron-Frobenius

Theorem we obtain that ρ(E−1
ν Aν) is an eigenvalue of E−1

ν Aν and there exists a corre-
sponding eigenvector v ≥ 0. Since we have assumed that σf(E,A) 6= ∅, we have that
ρ(E−1

ν Aν) = ρf(E,A) is also an eigenvalue of (E,A). If ρ(E−1
ν Aν) > 0, then there exists

a corresponding nonnegative eigenvector.

Remark 2.9 In Theorem 2.8 it is shown that any eigenpair (λ, v) of E−1
ν Aν with λ 6= 0

is a finite eigenpair of (E,A). However, this is not necessarily the case if λ = 0, since
an eigenvalue 0 of E−1

ν Aν can correspond either to the eigenvalue 0 of (E,A) or to the
eigenvalue ∞ of (E,A). One can see this by considering an eigenvector w correspond-
ing to an infinite eigenvalue of (E,A), i.e., Ew = 0. Then, we obtain E−1

ν Aνw = 0,
since P0 · · ·Pν−1w = 0. Since we have assumed that σf (E,A) 6= ∅, we have that
ρ(E−1

ν Aν) = ρf(E,A) = 0 is an eigenvalue of (E,A). However, a corresponding non-
negative eigenvector does not necessarily exist as Example 2.6 shows.
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Corollary 2.10 Let Pr be the spectral projector of the matrix pair (E,A) onto the right
finite deflating subspace S

def
f defined in (1.5), and let Ê, Â be defined as in Lemma 1.19.

Under the assumptions of Theorem 2.8, each of the conditions

PrE
−1
ν A ≥ 0, (2.11)

E−1
ν AÊDÊ ≥ 0 (2.12)

ÊDÂ ≥ 0 (2.13)

is equivalent to condition (2.8), respectively.

Proof. From [89, Theorem 3.1, Section 4] we obtain that for projectors as in Lemma 2.7,
we have P0 . . . Pν−1 = Pr = ÊDÊ and

E−1
ν Aν = E−1

ν APr = PrE
−1
ν A = ÊDÂ. (2.14)

Remark 2.11 Condition
E−1

ν A ≥ 0, (2.15)
an also be proved to be su�
ient in Theorem 2.8, see Equation (2.9), yet there is noeviden
e for it to ever hold.
2.2.4 Construction of projectors

In Section 2.2.3, Lemma 2.7, we have proved the existence of specific projectors
for constructing the matrix chain in (1.6) in order to establish a sufficient condition
in Theorem 2.8 for ρf (E,A) to be an eigenvalue with a corresponding nonnegative
eigenvector. In [89], projectors with properties as in Lemma 2.7 are called canonical.
Note that canonical projectors are not unique for ind(E,A) > 1. In [89], motivated
by a decoupling procedure of differential-algebraic equations, specific canonical pro-
jectors, the so called completely decoupling projectors, are defined by the property
Qi = −QiPi+1 · · ·Pν−1E

−1
ν−1Ai for all i = 0, . . . , ν−1. It is shown in [89, Theorem 2.2] that

such projectors exist and a constructive proof is given. However, to keep the present
work self-contained, we provide an alternative procedure to construct canonical projec-
tors with properties as in Lemma 2.7.

First, we will formulate the construction procedure in the general case and give a proof
by induction. Then, in Section 2.2.5, we will exemplarily show how this procedure works
in the index ν = 2 case and give two examples for ν = 2.
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Consider a regular matrix pair (E,A) of ind(E,A) = ν. We make the following observa-
tions:

1. For fixed projectors Q0, . . . , Qν−2, the projector Qν−1 is uniquely defined by being
a projector onto kerEν−1 along Sν−1, see [89].

2. Consider the sets Si as defined in (1.7). We have that S
def
f ⊆ S0, since for any

v ∈ S
def
f there exists a w ∈ S

def
f such that Av = Ew, and hence, Av ∈ im E, i.e.,

v ∈ S0. Furthermore, we have that S0 ⊆ S1 ⊆ . . . ⊆ Sν−1, see [88], and therefore,
S

def
f ⊆ Sν−1. From this we conclude that Qν−1v = 0 holds for all v ∈ S

def
f .

In the following recursive constructions of matrix and projector chains, we denote by
E

(i)
j , A

(i)
j , Q

(i)
j , P

(i)
j the i-th iterate of Ej , Aj, Qj, Pj in the recursive construction.

With the basic construction of projectors Qi for i = 1, . . . , ν − 1 as in [89], i.e., QjQi = 0

for j > i, we construct the chain in (1.6) and set E
(1)
j = Ej , A

(1)
j = Aj, Q

(1)
j = Qj, and

P
(1)
j = Pj. Now, to obtain projectors with properties as in Lemma 2.7, we redefine the

initial projectors by the procedure in Algorithm 1:

Algorithm 1 : Construction of completely decoupling projectors

Input : projectors Q
(1)
i for i = 1, . . . , ν − 1 such that QjQi = 0 for j > i

Output : projectors Q
(2i+1)
i such that Q

(2i+1)
i v = 0 for all v ∈ S

def
f

for i = 0, . . . , ν − 1 do1

for j = 1, . . . , ν − i do2

Q
(new)
ν−j = −Q

(old)
ν−j (E

(old)
ν )−1A

(old)
ν−j , where old denotes an appropriate index;3

redefine the last part of the chain using Q
(new)
ν−j ;4

apply Algorithm 1 to Qν−j+1, . . . , Qν−1 in order to regain the completely5

decoupling property, i.e. Qν−j+1v = . . . = Qν−1v = 0 for all v ∈ S
def
f .

Theorem 2.12 For the projectors Q
(2i+1)
i computed in Algorithm 1 we have Q

(2i+1)
i v = 0

for all v ∈ S
def
f .

Proof. We perform an induction over the length k = ν − i of the chain in (1.6), where i

is the index variable in Algorithm 1.

Let k = 1. Without loss of generality, we can consider the index ν = 1 (and i = 0)
case. We take any projector Q

(1)
0 onto ker E and having computed E

(1)
1 we set Q

(2)
0 =

−Q
(1)
0 (E

(1)
1 )−1A, which by Lemma 1.4 fulfils Q

(2)
0 v = 0 for all v ∈ S

def
f .
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Suppose that for some chain of length k > 1 we can construct completely decoupling
projectors and consider a chain of length k + 1. Without loss of generality we consider
the index ν = k + 1 case, i.e., we have an initial chain with projectors Q

(1)
0 , . . . , Q

(1)
ν−1,

such that Q
(1)
j Q

(1)
i = 0 holds for j > i and start Algorithm 1. Note, that this is also true

for any intermediate chain of length k + 1 in a general index ν > k + 1 case due to
Lemma 2.7.

Now, we have to subsequently redefine projectors Qν−j for j = 1, . . . , ν − i and have to
show that the redefined projectors are completely decoupling. Therefore, we perform
an induction over j. Let j = 1. We set Q

(2)
ν−1 = −Q

(1)
ν−1(E

(1)
ν )−1A

(1)
ν−1 that by Lemma 1.4

fulfils Q
(2)
ν−1v = 0 for all v ∈ S

def
f .

Suppose, we have completely decoupling projectors Qν−1, . . . , Qν−j for some 1 < j <

ν − i.

Set Q
(2)
ν−j−1 = −Q

(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−1, where k is an appropriate index. By Lemma 1.5,

we have that Q
(2)
ν−j−1 is a projector. By the definition of deflating subspace, we have that

for all v ∈ S
def
f there exists w ∈ S

def
f with Av = Ew. Therefore, we obtain Q

(2)
ν−j−1v = 0

for all v ∈ S
def
f , since

Q
(2)
ν−j−1v = −Q

(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−1v = −Q

(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−2P

(1)
ν−j−2v =

= −Q
(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−2(I − Q

(1)
ν−j−2)v =

= −Q
(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−2v − Q

(1)
ν−j−1Q

(1)
ν−j−2v =

= −Q
(1)
ν−j−1(E

(k)
ν )−1A

(1)
ν−j−3P

(1)
ν−j−3v = . . . = −Q

(1)
ν−j−1(E

(k)
ν )−1A0v =

= −Q
(1)
ν−2(E

(k)
ν )−1E0w =

= −Q
(1)
ν−j−1(I − Q

(1)
0 − . . . − Q

(1)
ν−j−1 − Qν−j − . . . − Qν−1)w,

where Qν−jw = . . . = Qν−1w = 0, since Qν−j, . . . , Qν−1 are completely decoupling.
Furthermore, we have Q

(1)
ν−j−1Q

(1)
i1

= 0 for i1 = 0, . . . , ν−j−2 and Q
(1)
ν−j−1(I−Q

(1)
ν−j−1) = 0.

Hence, we obtain

Q
(2)
ν−j−1v = 0.

This completes the induction over k and we have shown that we can construct a Q
(2)
0

such that Q
(2)
0 v = 0 for all v ∈ S

def
f .

We redefine the chain starting from Q
(2)
0 and consider the chain starting from Q1. The

new chain has length k and we can construct completely decoupling projectors by ap-
plying the induction assumption. This completes the proof.

In total, we have to make
∑ν−1

i=0 (2i+1 − 1) updates of the projectors Qi. The sufficient
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condition of Theorem 2.8 is then checked using E
(2ν)
ν−1 instead of Eν−1 and reads

E
(2ν)
ν−1AP

(2)
0 P

(4)
1 · · ·P (2ν)

ν−1 ≥ 0

⇔ E
(2ν)
ν−1A

(2ν−1)
ν−1 P

(2ν)
ν−1 ≥ 0.

So far the described procedure is merely of theoretical value. For a discussion of how
to apply this procedure numerically, see [78].

2.2.5 Examples

We now show how the projectors are constructed in Algorithm 1 for the index ν = 2

case and give two examples.

We start by choosing any projectors Q
(1)
0 , Q

(1)
1 onto ker E

(1)
0 , ker E

(1)
1 , respectively. We

then determine E
(1)
2 and set Q

(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 . Then we have Q

(2)
1 v = 0 for all v ∈

S
def
f . By using Q

(2)
1 we compute E

(2)
2 and proceed by setting Q

(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A

(1)
0 ,

which is a projector by Lemma 1.5. For any v ∈ S
def
f we have w ∈ S

def
f such that

Q
(2)
0 v = −Q

(1)
0 (E

(2)
2 )−1Av = −Q

(1)
0 (E

(2)
2 )−1Ew = −Q

(1)
0 (I − Q

(1)
0 − Q

(2)
1 )w = 0,

since Q
(2)
1 w = 0. Here we have used the properties (E

(2)
2 )−1A

(1)
i Q

(1)
i = −Q

(1)
i for i = 0, 1

and

E
(2)
2 = E

(1)
0 − A

(1)
0 Q

(1)
0 − A

(1)
1 Q

(2)
1

⇔ I = (E
(2)
2 )−1E

(1)
0 − (E

(2)
2 )−1A

(1)
0 Q

(1)
0 − (E

(2)
2 )−1A

(1)
1 Q

(2)
1

⇔ I = (E
(2)
2 )−1E

(1)
0 + Q

(1)
0 + Q

(2)
1 .

By using Q
(2)
0 we compute E

(2)
1 and A

(2)
1 . Now, we proceed as in the case ν = 1 to define

Q
(3)
1 as a projector onto kerE

(2)
1 . To ensure that it projects along S1 we again compute

E
(3)
2 , set Q

(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 and obtain that Q

(4)
1 v = 0 for all v ∈ S

def
f . Finally, we

compute E
(4)
2 . The sufficient condition of Theorem 2.8 is then checked with E

(4)
2 instead

of E2 and reads E
(4)
2 AP

(2)
0 P

(4)
1 ≥ 0. For an illustration of the recursive construction of the

projectors in the index 2 case with the properties required in Theorem 2.8, see Figure
2.1.

We now present two index ν = 2 examples, where condition (2.8) of Theorem 2.8 holds,
whereas the conditions in [9] and [87] do not hold.

Example 2.13 Consider the matrix pair (E,A) with
E =






0 1 0

0 0 0

0 0 1




 and A =






1 0 0

0 1 0

0 0 2




 .
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Q

(1)
0 , P

(1)
0

Q
(1)
1 , A

(1)
1 , E

(1)
1

E
(1)
2

Q
(2)
1

E
(2)
2

Q
(2)
0 , P

(2)
0

E
(3)
2

Q
(4)
1 , P

(4)
1

E
(4)
2

Q
(3)
1 , A

(2)
1 , E

(2)
1

Figure 2.1: Illustration of the recursive construction of projectors in the index 2 case.
Top down, we have the chain matrices in increasing order. From left to right, we have
the successive calculation of these.

We have that (E,A) is regular with ind(E,A) = 2 and there is one �nite eigenvalue
ρf(E,A) = 2 and a 
orresponding eigenve
tor [0 0 v3

]T , whi
h 
an be 
hosen so that
v3 > 0.We 
ompute the matrix 
hain by setting, e.g.,

Q
(1)
0 =






1 0 0

0 0 0

0 0 0




 , E

(1)
1 = E − AQ

(1)
0 =






−1 1 0

0 0 0

0 0 1




 , A

(1)
1 = A0P

(1)
0 =






0 0 0

0 1 0

0 0 2




 .

We 
hoose, e.g.,
Q

(1)
1 =






1 0 0

1 0 0

0 0 0




 , and P

(1)
1 =






0 0 0

−1 1 0

0 0 1




 ,

and 
ompute
E

(1)
2 = E

(1)
1 − A

(1)
1 Q

(1)
1 =






−1 1 0

−1 0 0

0 0 1




 and (E

(1)
2 )−1 =






0 −1 0

1 −1 0

0 0 1




 .

Then, we 
ompute the proje
tor onto ker E
(1)
1 along S1 by setting

Q
(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 =






0 1 0

0 1 0

0 0 0




 .

and determine
E

(2)
2 = E

(1)
1 − A

(1)
1 Q

(2)
1 =






−1 1 0

0 −1 0

0 0 1




 and (E

(2)
2 )−1 =






−1 −1 0

0 −1 0

0 0 1




 .
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We set
Q

(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A0 =






1 1 0

0 0 0

0 0 0




 and P

(2)
0 =






0 −1 0

0 1 0

0 0 1




 ,

and 
ompute
E

(2)
1 = E0 − A0Q

(2)
0 =






−1 0 0

0 0 0

0 0 1




 and A

(2)
1 = A0P

(2)
0 =






0 −1 0

0 1 0

0 0 2




 .

Choosing Q
(3)
1 =






0 0 0

0 1 0

0 0 0




, we determine

E
(3)
2 = E

(2)
1 − A

(2)
1 Q

(3)
1 =






−1 1 0

0 −1 0

0 0 1




 = E

(2)
2 and (E

(3)
2 )−1 = (E

(2)
2 )−1,

and verify that Q
(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 = Q

(3)
1 . We �nally set P (4) = I − Q

(4)
1 . Thesu�
ient 
ondition (2.8) of Theorem 2.8 then holds, sin
e

(E
(4)
2 )−1AP

(2)
0 P

(4)
1 =






−1 1 0

0 −1 0

0 0 2











0 0 0

0 0 0

0 0 1




 =






0 0 0

0 0 0

0 0 2




 ≥ 0.

The 
ondition in [9℄, however, is not satis�ed, sin
e
(E − A)−1A =






−1 −1 0

0 −1 0

0 0 1











1 0 0

0 1 0

0 0 2




 =






−1 −1 0

0 −1 0

0 0 2




 � 0.

Also the 
ondition in [87℄ does not hold, sin
e, e.g., for y =
[

−1 1 1
]T we have Ey ≥ 0but Ay � 0. Note, that we have Pr = P

(2)
0 P

(4)
1 , yet, 
ondition (2.15) does not hold, sin
e

(E
(4)
2 )−1A � 0.

Example 2.14 Consider the regular matrix pair (E,A) of ind(E,A) = 2, where
E =








E11 E12 0 0

E21 E22 0 0

0 0 0 0

0 0 0 0








and A =








0 0 0 A14

0 A22 0 0

0 0 A33 0

A41 0 0 0








.
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Note, that every regular matrix pair of index 2 
an be equivalently transformed into su
ha form, where A14, A41, A33, E22 are square regular matri
es, see [74℄. We 
hoose

Q
(1)
0 =








0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I








,

and 
ompute
P

(1)
0 =








I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0








and E
(1)
1 =








E11 E12 0 −A14

E21 E22 0 0

0 0 −A33 0

0 0 0 0








.

Choosing
Q

(1)
1 =








I 0 0 0

−E−1
22 E21 0 0 0

0 0 0 0

A−1
14 Ẽ11 0 0 0








,

where Ẽ11 = E11 − E12E
−1
22 E21, we obtain

P
(1)
1 =








0 0 0 0

E−1
22 E21 I 0 0

0 0 I 0

−A−1
14 Ẽ11 0 0 I








, A
(1)
1 =








0 0 0 0

0 A22 0 0

0 0 0 0

A41 0 0 0








, and
E

(1)
2 =








E11 E12 0 −A14

E21 + A22E
−1
22 E21 E22 0 0

0 0 −A33 0

−A41 0 0 0








,

(E
(1)
2 )−1 =








0 0 0 −A−1
41

0 E−1
22 0 E−1

22 (E21 + A22E
−1
22 E21)A

−1
41

0 0 −A−1
33 0

−A−1
14 A−1

14 E12E
−1
22 0 −A−1

14 (Ẽ11 − E12E
−1
22 A22E

−1
22 E21)A

−1
41








.

We verify that Q
(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 = Q

(1)
1 and, hen
e, P

(2)
1 = P

(1)
1 , A

(2)
1 = A

(1)
1 ,

E
(2)
2 = E

(1)
2 and (E

(2)
2 )−1 = (E

(1)
2 )−1. Setting

Q
(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A0 =








0 0 0 0

0 0 0 0

0 0 I 0

A14(Ẽ11 − E12E
−1
22 A22E

−1
22 E21) −A14E12E

−1
22 A22 0 I








,
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we 
ompute
P

(2)
0 =








I 0 0 0

0 I 0 0

0 0 0 0

−A14(Ẽ11 − E12E
−1
22 A22E

−1
22 E21) A14E12E

−1
22 A22 0 0








,

E
(2)
1 = E − AQ

(2)
0 =








E12(I + E−1
22 A22)E

−1
22 E21 E12(I + E−1

22 A22) 0 −A14

E21 E22 0 0

0 0 −A33 0

0 0 0 0








,

A
(2)
1 = AP

(2)
0 =








−E11 + E12(I + E−1
22 A22)E

−1
22 E21 E12E

−1
22 A22 0 0

0 A22 0 0

0 0 0 0

A41 0 0 0








.

Choosing
Q

(3)
1 =








I 0 0 0

−E−1
22 E21 0 0 0

0 0 0 0

0 0 0 0








,

we determine
P

(3)
1 =








0 0 0 0

E−1
22 E21 I 0 0

0 0 I 0

0 0 0 I








,

E
(3)
2 =








E11 + E12E
−1
22 A22E

−1
22 E21 E12 + E12E

−1
22 A22 0 −A14

E21 + A22E
−1
22 E21 E22 0 0

0 0 −A33 0

−A41 0 0 0








,

and
(E

(3)
2 )−1 =








0 0 0 −A−1
41

0 E−1
22 0 Ě24

0 0 −A−1
33 0

−A−1
14 Ě42 0 Ě44








,

where
Ě24 = E−1

22 (E21 + A22E
−1
22 E21)A

−1
41 ,

Ě42 = A−1
14 E12(I + E−1

22 A22)E
−1
22 ,

Ě44 = −A−1
14 (Ẽ11 − E12E

−1
22 A22(I + E−1

22 A22)E
−1
22 E21)A

−1
41 .
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We verify that Q

(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 = Q

(3)
1 and, hen
e, P

(4)
1 = P

(3)
1 , E

(4)
2 = E

(3)
2 and

(E
(4)
2 )−1 = (E

(3)
2 )−1. The su�
ient 
ondition (2.8) of Theorem 2.8 then reads as

(E
(4)
2 )−1A

(2)
1 P

(4)
1 =








0 0 0 0

E−1
22 A22E

−1
22 E21 E−1

22 A22 0 0

0 0 0 0

A−1
14 E12E

−1
22 A22E

−1
22 A22E

−1
22 E21 A−1

14 E12E
−1
22 A22E

−1
22 A22 0 0







≥ 0.

Consider again the eigenvalue problem
(λE − A)v = 0.For the given matri
es E and A, we obtain








λE11 λE12 0 −A14

λE21 λE22 − A22 0 0

0 0 −A33 0

−A14 0 0 0















v1

v2

v3

v4








= 0.

Sin
e A41 and A33 are nonsingular, we obtain v1 = v3 = 0 and the following system ofequations
{

λE12v2 − A14v4 = 0,

(λE22 − A22)v2 = 0,whi
h is equivalent to
{

(λI − E−1
22 A22)v2 = 0,

v4 = λA−1
14 E12v2.Condition (2.8) gives E−1

22 A22 ≥ 0 and, hen
e, we obtain from the �rst equation that
ρ(E−1

22 A22) =: λ is an eigenvalue and there exists a 
orresponding eigenve
tor v2 ≥ 0. Byusing this, we obtain from the se
ond equation that
v4 = λA−1

14 E12v2 = A−1
14 E12E

−1
22 A22v2 = −λ−1A−1

14 E12E
−1
22 A22E

−1
22 A22v2 ≥ 0,sin
e A−1

14 E12E
−1
22 A22E

−1
22 A22 ≥ 0 by (2.8) and λ ≥ 0, v2 ≥ 0 from the �rst equation.The 
ondition in [9℄, however, is not ne
essarily appli
able, sin
e E − A may not beinvertible if E22−A22 is not. Also the 
ondition in [87℄ does not hold, sin
e we may 
hoose

y1, y2 in y =
[

y1 y2 y3 y4

]T su
h that Ey ≥ 0 and 
hoose y3, y4 su
h that Ay � 0.
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Summary

In this section, we have proposed a new generalisation of the well-known Perron-
Frobenius theory to matrix pairs (E,A) that, unlike previous such generalisations, is
suitable for the analysis of positive descriptor systems. We have presented several
examples where the new condition holds whereas previous generalisations do not.

2.3 Nonnegativity of the Drazin inverse

The results of this short section give characterisations of positivity of the Drazin inverse,
which will be useful, for instance, since the explicit solution representation given in 1.6
is stated in terms of the Drazin inverse.

The following Lemma 2.15 is given as an exercise in [17].

Lemma 2.15 (Positivity of the Drazin inverse) Let A ∈ Rn×n with ind(A) = k. Then,
AD ≥ 0 if and only if from Ax ∈ Rn

+ + ker(Ak) and x ∈ im(Ak), it follows that x ≥ 0.

Proof. “⇒” Let AD ≥ 0. Furthermore, let x ∈ im(Ak), i.e., there exists y ∈ R such that
Aky = x, and let Ax = u + v, where u ≥ 0 and Akv = 0. Then, by using the properties
of the Drazin inverse in Definition 1.16 we obtain

x = Aky = ADAk+1y = ADAx = ADu + ADv = ADu + ADAADv =

= ADu + (AD)k+1 Akv
︸︷︷︸

=0

= ADu.

Since u ≥ 0 and AD ≥ 0, we have x ≥ 0.
“⇐” To show AD ≥ 0, let w ∈ Rn

+ be arbitrarily chosen.
Step 1. Show ADw ∈ im(Ak) and AADw ∈ Rn

+ + ker(Ak).
For this purpose, we decompose w into w = AADw + (I − AAD)w =: u + v, where
u ∈ im(Ak), since u = AADw = Ak(AD)kw and v ∈ ker(Ak), since by the properties of
the Drazin inverse in Definition 1.16 we have

Akv = Ak(I − AAD)w = Ak+1AD(I − AAD)w = Ak(AAD − AAD)w = 0.

Thus, we obtain:
AADw = u = w − v ∈ Rn

+ + ker(Ak).

Furthermore,
ADw = ADAADw = Ak(AD)k+1w,
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from which we conclude that ADw ∈ im(Ak).
Step 2. Set x := ADw. Since from Ax ∈ Rn

+ + ker(Ak) and x ∈ im(Ak), it follows that
x ≥ 0. We obtain x = ADw ≥ 0. As w ≥ 0 was arbitrarily chosen, this completes the
proof.

The Drazin inverse may be written in terms of canonical projectors, which we can use
for an alternative sufficient condition for positivity of the Drazin inverse in Corollary 2.17.

Lemma 2.16 Let E ∈ Rn×n with ind(E) = ν. For the matrix pair (E, I), let a matrix
chain as in (1.6) be constructed with canonical projectors Pi, Qi, i = 0, . . . , ν − 1 as in
Lemma 2.7. Then, ED = E−1

ν P0 . . . Pν−1.

Proof. Consider the matrix pair (E, I). We have ind(E, I) = ind(E) = ν and
since E commutes with the identity matrix, we conclude from Corollary 2.10 that
ED = E−1

ν P0 . . . Pν−1.

Corollary 2.17 Let E ∈ Rn×n with ind(E) = ν. For the matrix pair (E, I), let a matrix
chain as in (1.6) be constructed with canonical projectors Pi, Qi, i = 0, . . . , ν − 1 as in
Lemma 2.7. Then, if Eν is an M -matrix and P0 . . . Pν−1 ≥ 0, we have ED ≥ 0.

Proof. From Lemma 2.16, we have that ED = E−1
ν P0 . . . Pν−1. If Eν is an M -matrix, then

E−1
ν ≥ 0 and since also P0 . . . Pν−1 ≥ 0 we obtain ED ≥ 0.

2.4 Nonnegativity of Schur complements of nonnega-
tive projectors

A main issue in the analysis of descriptor systems is the choice of the right projector
onto the deflating subspace that corresponds to the finite eigenvalues of the matrix
pair (E,A) [89]. In the following Chapter 3 we will see that nonnegative projectors play
an important role in the context of positive descriptor systems. Note that in the linear
algebra literature, projectors are also referred to as idempotent matrices. Therefore,
these terms are used here interchangeably.

Schur complements constitute a fundamental tool in applications [129], in particular
such as algebraic multigrid methods [123] or model reduction [82]. However, one has
to ensure that essential properties are preserved. The results of this section become
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important in Chapter 6 where we discuss positivity preserving model reduction for pos-
itive descriptor systems. There, the Schur complement of the nonnegative spectral
projector will be required to be again nonnegative.

We now introduce the problem setting. Let α = {α1, . . . , αl} ( 〈n〉 be a nonempty set
and define by αc := 〈n〉\α the nonempty set that is complementary to α.

If A[α, α] is invertible, then the Schur complement of A corresponding to α is given by

A(α) := A[αc, αc] − A[αc, α]A[α, α]−1A[α, αc]. (2.16)

If A[α, α] is not invertible, then the Moore-Penrose Schur complement of A correspond-
ing to α is defined by

A†(α) := A[αc, αc] − A[αc, α]A[α, α]†A[α, αc], (2.17)

where A[α, α]† is the Moore-Penrose inverse of A[α, α], see Definition 1.12. Further-
more, assuming that (I −A[α, α]) is invertible, we consider a shifted Schur complement
defined by

Ã†(α) := A[αc, αc] + A[αc, α](I − A[α, α])−1A[α, αc], (2.18)

which becomes important in this work when considering descriptor systems in discrete-
time, see Section 6.3. This construct is used, for instance, in model reduction of
discrete-time systems in the singular perturbation balanced truncation method [82].

Properties of generalised Schur complements of projectors were discussed in [8]. We
assume that A is a nonnegative projector and show that if A[α, α] has a positive diagonal
then A†(α) is a nonnegative projector. We provide an example for the case that A[α, α]

has a zero on its main diagonal, where A†(α) fails to be nonnegative. The results of this
section were published in [42].

For our main result we need the following simplification of the canonical form for non-
negative projectors given in Theorem 1.6

Lemma 2.18 Let B ∈ Rn×n
+ be a nonzero nonnegative projector of rank k. Then, there

exists a permutation matrix Π such that

P := ΠBΠT =






J JG 0

0 0 0

FJ FJG 0




 , J ∈ Rn1×n1

+ , G ∈ Rn1×n2

+ , F ∈ Rn3×n1

+ , (2.19)

where n = n1 + n2 + n3, 1 ≤ n1, 0 ≤ n2, 0 ≤ n3, F,G are arbitrary nonnegative matrices,
and J is a direct sum of k ≥ 1 positive projectors Ji ∈ Rli×li

+ of rank 1, i.e.,

J = ⊕k
i=1Ji, Ji = uiv

T
i , 0 < ui, vi ∈ Rli

+, vT
i ui = 1, i = 1, . . . , k. (2.20)
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Proof. Theorem 1.8 states that B is permutationally similar to the following block matrix
[39]

C :=








J JG1 0 0

0 0 0 0

F1J F1JG1 0 0

0 0 0 0








.

Here, J ∈ Rn1×n1

+ is of the form (2.20), G1 ∈ Rn1×m2

+ , F1 ∈ Rn3×n1

+ are arbitrary
nonnegative matrices, and the last m4 rows and columns of C are zero. Hence,
n1 + m2 + n3 + m4 = n and 0 ≤ m2, n3,m4. If m4 = 0 then C is of the form (2.19).
It remains to show that C is permutationally similar to P if m4 > 0.

Interchanging the last row and column of C with the (n1 + m2 + 1)-st row and column of
C we obtain a matrix C1. Then, we interchange the (n−1)-st row and column of C1 with
the (n1 +m2 +2)-nd row and column of C1. We continue this process until we obtain the
idempotent matrix P with n2 = m2 +m4 zero rows located at the rows n1 +1, . . . , n1 +n2.
It follows that P is of the form

P :=






J G 0

0 0 0

F H 0




 , G ∈ Rn1×n2

+ , F ∈ Rn3×n1

+ , H ∈ Rn3×n3

+ .

Since P 2 = P we have that

G = JG, F = FJ, H = FG = (FJ)(JG) = FJG.

Hence, P is of the form (2.19).

The consequence of Lemma 2.18 is that for nonnegative projectors, without loss of
generality, we may assume the following block structure:

B =














B11 0 . . . 0 B1k 0

0 B22
. . .

... B2k

...
...

. . . . . . 0
...

...
...

. . . Bk,k Bk,k+1 0

0 . . . . . . 0 0 0

Bk+2,1 . . . . . . . . . Bk+2,k+1 0














, (2.21)

where Bij ∈ Rmi×mj

+ for all i, j = 1, . . . , k + 2.
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2.4.1 Nonnegativity of the Moore-Penrose inverse Schur com ple-
ment

In this subsection, in Theorem 2.19, assuming that A[α, α] does not have zero diago-
nal entries, we show that the Schur complement constructed via the Moore-Penrose
inverse as defined in (2.17) is again a nonnegative projector. Note that this includes the
case when A[α, α] is invertible. However, this result is false for the general case of the
Moore-Penrose Schur complement. A counterexample is given in Example 2.25.

Theorem 2.19 Let A ∈ Rn×n
+ be a nonnegative projector. We assume that for ∅ 6=

α $ 〈n〉, the submatrix A[α, α] has a positive diagonal. Then A†(α) is a nonnegative
projector. Furthermore,

rank A†(α) = rankA − rank A[α, α]. (2.22)

Proof. Without loss of generality we may assume that A is of the form (2.19). Since
A[α, α] has a positive diagonal, we have that A[α, α] is a submatrix of J . First we
consider the special case A[α, α] = J . Using the identity JJ†J = J , we obtain that
A†(α) = 0. Since rank A = rank J , also the equality in (2.22) holds.

Let J, F,G be defined as in (2.19) and assume now that A[α, α] is a strict submatrix of
J . In the following, for an integer j we write j + 〈m〉 for the index set {j + 1, . . . , j + m}.
Let α′ := 〈n1〉\α, β := n1 + 〈n2〉 and γ := n1 + n2 + 〈n3〉. Then,

A[αc, α]A[α, α]†A[α, αc] =






J [α′, α]

0

(FJ)[γ, α]




 J [α, α]†

[

J [α, α′] (JG)[α, β] 0
]

=






J [α′, α]J [α, α]†J [α, α′] J [α′, α]J [α, α]†(JG)[α, β] 0

0 0 0

(FJ)[γ, α]J [α, α]†J [α, α′] (FJ)[γ, α]J [α, α]†(JG)[α, β] 0




 .

On the other hand, we have

A[αc, αc] =






J [α′, α′] (JG)[α′, β] 0

0 0 0

(FJ)[γ, α′] FJG 0




 .
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Thus, the nonnegativity of A†(α) is equivalent to the following entrywise inequalities

J [α′, α′] ≥ J [α′, α]J [α, α]†J [α, α′], (2.23)

(JG)[α′, β] ≥ J [α′, α]J [α, α]†(JG)[α, β], (2.24)

(FJ)[γ, α′] ≥ (FJ)[γ, α]J [α, α]†J [α, α′], (2.25)

FJG ≥ (FJ)[γ, α]J [α, α]†(JG)[α, β]. (2.26)

Without loss of generality, we may assume that J is permuted such that the indices
of the first q blocks Ji are contained in αc, the indices of the following blocks Ji for
i = q + 1, . . . , q + p are split between α and αc and the indices of the blocks Ji for
i = q + p + 1, . . . , q + p + ℓ = k are contained in α. Partitioning the vectors ui and vi

in (2.20) according to α and αc as

uT
i = (aT

i , xT
i ), vT

i = (bT
i , yT

i ), i = q + 1, . . . , q + p,

we obtain that

J [α′, α′] = (⊕q
i=1Ji) ⊕q+p

i=q+1 aib
T
i , J [α, α] = (⊕q+p

j=q+1xiy
T
i ) ⊕q+p+ℓ

i=q+p+1 Ji.

Note that
q = rank J − rank A[α, α] = rankA − rank A[α, α]. (2.27)

We will only consider the case q, p, ℓ > 0, as other cases follow similarly. We have

J [α, α]† = (⊕q+p
i=q+1

1

(xT
i xi)(yT

i yi)
yix

T
i ) ⊕q+p+ℓ

i=q+p+1

1

(uT
i ui)(vT

i vi)
viu

T
i , (2.28)

J [α, α′] =

[

0 ⊕q+p
i=q+1xib

T
i

0 0

]

, J [α′, α] =

[

0 0

⊕q+p
i=q+1aiy

T
i 0

]

, (2.29)

and hence,

J [α′, α]J [α, α]† =

[

0 0

⊕q+p
i=q+1

1
xT

i xi
aix

T
i 0

]

, (2.30)

J [α, α]†J [α, α′] =

[

0 ⊕q+p
i=q+1

1
yT

i yi
yib

T
i

0 0

]

, (2.31)

J [α′, α]J [α, α]†J [α, α′] =

[

0 0

0 ⊕q+p
i=q+1aib

T
i

]

. (2.32)

Therefore, we obtain

J [α′, α′] − J [α′, α]J [α, α]†J [α, α′] =

[

⊕q
i=1Ji 0

0 0

]

≥ 0, (2.33)
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which proves (2.23).

We now show the inequalities (2.24) and (2.25). First, we observe that JG and FJ have
the following block form

JG =






u1g
T
1

...
ukg

T
k




 , FJ =

[

f1v
T
1 · · · fkv

T
k

]

, gi ∈ Rn2

+ , fi ∈ Rn3

+ for i = 1, . . . , k.

(2.34)
Hence, we obtain

(JG)[α, β] =














xq+1g
T
q+1

...
xq+pg

T
q+p

uq+p+1g
T
q+p+1

...
ukg

T
k














, (2.35)

(JG)[α′, β] =














u1g
T
1

...
uqg

T
q

aq+1g
T
q+1

...
uq+pg

T
q+p














, (2.36)

(FJ)[γ, α] =
[

fq+1y
T
q+1 · · · fq+py

T
q+p fq+p+1v

T
q+p+1 · · · fkv

T
k

]

, (2.37)

(FJ)[γ, α′] =
[

f1v
T
1 · · · fqv

T
q fq+1b

T
q+1 · · · fq+pb

T
q+p

]

. (2.38)

Using (2.31), we obtain that

(FJ)[γ, α]J [α, α]†J [α, α′] =
[

0 · · · 0 fq+1b
T
q+1 · · · fq+pb

T
q+p

]

.

Therefore, we have

(FJ)[γ, α′] − (FJ)[γ, α]J [α, α]†J [α, α′] =
[

f1v
T
1 · · · fqv

T
q 0 · · · 0

]

. (2.39)
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Similarly, using (2.30), we obtain

(JG)[α′, β] − J [α′, α]J [α, α]†(JG)[α, β] =














u1g
T
1

...
uqg

T
q

0
...
0














. (2.40)

Hence, the inequalities (2.24) and (2.25) hold.

We now show the last inequality (2.26). To this end, we observe that

FJG = (FJ)(JG) =
k∑

i=1

fig
T
i . (2.41)

Multiplying (2.28), (2.35) and (2.37) we obtain that

(FJ)[γ, α]J [α, α]†(JG)[α, β] =
k∑

i=q+1

fig
T
i .

Hence,

FJG − (FJ)[γ, α]J [α, α]†(JG)[α, β] =

q
∑

i=1

fig
T
i ≥ 0. (2.42)

In particular, this proves that (2.26) holds.

It is left to show that A†(α) is a projector. If q = 0 then A†(α) = 0 and, thus, A†(α) is a
trivial projector and (2.27) yields (2.22).

Assuming finally that q > 0, it follows that A†(α) has the block form (2.19) with J =

⊕q
i=1Ji ⊕ 0. Hence, A†(α) is a projector whose rank is q and (2.27) yields (2.22).

Corollary 2.20 Let A ∈ Rn×n
+ , A 6= 0 be idempotent. If α $ 〈n〉 is chosen such that

A[α, α] is an invertible matrix, then A[α, α] is diagonal.

Proof. Note that the number ℓ in the proof of Theorem 2.19 is either zero or the corre-
sponding blocks Ji are positive 1 × 1 matrices for i = q+p+1, . . . , q+p+ℓ. Furthermore,
for the split blocks, we also have that xiy

T
i ∈ R1×1, for i = q + 1, . . . , q + p, since xiy

T
i is

of rank 1. Therefore, A[α, α] is diagonal.

Corollary 2.21 Let A ∈ Rn×n
+ , A 6= 0 be idempotent. If α $ 〈n〉 is chosen such that

A[α, α] is a regular matrix, then the standard Schur complement (2.16) is nonnegative.
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Corollary 2.22 Let A ∈ Rn×n
+ , A 6= 0 be idempotent. Choose α $ 〈n〉, such that I −

A[α, α] is regular. Then, Ã(α) defined in (2.18) is a nonnegative idempotent matrix.

To prove this Corollary 2.22 we need the following fact for idempotent matrices, which
is probably known.

Lemma 2.23 Let A ∈ Rn×n, A 6= 0 be idempotent given as a 2 × 2 block matrix A =
[

A11 A12

A21 A22

]

. Assume that (I − A22) ∈ Rn−m is regular. Then, B := A11 + A12(I −

A22)
−1A21 is idempotent.

Proof. Let

E = (I − A22)
−1A21, D = A21 + A22E, z =

[

x

Ex

]

∈ Rn, x ∈ Rm.

Note that Az =

[

Bx

Dx

]

. As A2z = Az and x is an arbitrary vector, we obtain the

equalities
A11B + A12D = B, A21B + A22D = D. (2.43)

From the second equality of (2.43) we obtain D = EB. Substituting this equality into
the first equality of (2.43) we obtain that B2 = B.

Proof of Corollary 2.22. The assumption that I − A[α, α] is regular implies that A[α, α]

does not have an eigenvalue 1, i.e., ρ(A[α, α]) < 1. Hence, I − A[α, α] is an M -
matrix [17] and (I − A[α, α])−1 ≥ 0. The assertion of Corollary 2.22 now follows using
Lemma 2.23.

2.4.2 An example

In this subsection we assume that the nonnegative idempotent matrix A is of the special
form

A :=

[

J JG

0 0

]

. (2.44)

Furthermore, we assume that A[α, α] has a zero on its main diagonal. We give an
example where A†(α) may fail to be nonnegative. To this end, we first start with the
following known result.
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Lemma 2.24 Let A ∈ Rn×n be a singular matrix of the following form

A =

[

A11 A12

0(n−p)×p 0(n−p)×(n−p)

]

, A11 ∈ Rp×p, A12 ∈ Rp×(n−p), for some 1 ≤ p < n.

Then (A†)T has the same block form as A.

Proof. Let r = rankA, where r ≤ p. Then, the reduced singular value decomposition of
A is of the form UrΣrV

T
r , where Ur, Vr ∈ Rn×r, UT

r Ur = VrV
T
r = Ir and Σr is a diagonal

matrix, whose diagonal entries are the positive singular values of A.

Hence, AAT =

[

A11A
T
11 + A12A

T
12 0

0 0

]

and all eigenvectors of AAT corresponding to

positive eigenvalues are of the form (xT , 0T )T , x ∈ Rp. Thus, UT
r = [UT

r1 0r×(n−p)] where
Ur1 ∈ Rp×r. Since A† = VrΣ

−1
r UT

r , the above form of Ur establishes the lemma.

In the following example we permute some rows and columns of A, in order to find the
Schur complement of the right lower block.

Example 2.25 Consider a nonnegative idempotent matrix in the block form

B =










u1v
T
1 0 u1s

T
1 u1t

T
1 0

0 a2b
T
2 a2s

T
2 a1t

T
2 a2y

T
2

0 0 0 0 0

0 0 0 0 0

0 x2b
T
2 x2s

T
2 x1t

T
2 x2y

T
2










.

Then,

B[α, α] =

[

0 0

x1t
T
2 x2y

T
2

]

, B[α, α]† =




0

t2xT
2

(xT
2

x2)(tT
2

t2+yT
2

y2)

0
y2xT

2

(xT
2

x2)(tT
2

t2+yT
2

y2)



 ,

and

B[αc, α]B[α, α]†B[α, αc] =






0
tT
1

t2u1bT
2

tT
2

t2+yT
2

y2

tT
1

t2u1sT
2

tT
2

t2+yT
2

y2

0 a2b
T
2 a2s

T
2

0 0 0




 .

Hence B†(α)11 > 0, B†(α)12 ≤ 0 and the Moore-Penrose inverse Schur complement is
neither nonnegative nor nonpositive if tT1 t2 > 0.
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Summary

In this section we have shown that for a nonnegative projector, i.e. idempotent matrix,
we have that the Schur complement constructed via the Moore-Penrose inverse is again
a nonnegative projector, if the diagonal of A[α, α] is strictly positive. In particular the
nonnegativity also holds for the standard Schur complement if the corresponding part
of the matrix is invertible. Also for a shifted Schur complement defined in (2.18), the
nonnegativity was proved.

In Chapter 6, Section 6.3 we will propose and discuss a positivity preserving model
reduction technique that is based on singular perturbation balanced truncation. In the
descriptor case, the choice of the right projector onto the deflating subspace that cor-
responds to the finite eigenvalues of the matrix pair (E,A) is important for the analysis.
In Chapter 3, we assume the nonnegativity of this spectral projector in order to charac-
terise positivity in the descriptor case. Therefore, starting with a nonnegative spectral
projector, the reduced order projector should also be nonnegative. It turns out that
the reduced order projectors can be constructed via the standard Schur complement
defined in (2.16) in the continuous-time case and via the shifted Schur complement
defined in (2.18) in the discrete-time case. The nonnegativity of these is essential to
ensure the positivity of the reduced order model and this is where the results of this
section will be deployed.



Chapter 3

Positive systems and their
characterisation

The theory of positive systems is deep and elegant -
and yet pleasantly consistent with intuition.

- David G. Luenberger

Positive systems arise in many applications. An important branch is systems biol-
ogy [67], [68], [104], where metabolic networks, gene regulatory networks or signalling
pathways are models that constitute positive descriptor systems. The state variables
represent nonnegative quantities and the dynamics of the system are constrained via
mass conservation laws. There are compartmental systems [3], [21], [47], such as
models of pollution in connected water reservoirs, epidemic models, heat exchangers
but also models in pharmacokinetics [86], where for instance the rates of absorption,
distribution, metabolism and excretion of a drug substance are nonnegative quanti-
ties. In population dynamics [4], [7], [117], for instance, when modelling a chemostat
or predator-prey interactions, the models result in positive systems. Also advection-
diffusion-reaction systems [61], used for modelling in atmospheric chemistry, pollutant
transport chemistry or for chemo-taxis problems are positive systems. However, pos-
itive systems arise not only in applications in life sciences. One also has to mention
various applications in economy [77], [103], where mathematical modelling is used for
predicting prices and productions.

Some of the models mentioned above, in fact, appear in a linear form as in (1) in
continuous-time or in (2) in discrete-time. These are, for instance, models of age-
structured population or certain models of connected water reservoirs, see also Chap-
ter 6, Section 6.4 for examples. However, most models in systems biology such as

49
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metabolic networks or signalling pathways are highly nonlinear, see, e.g., [67], [104],
[126], and appear in a general form

F (t, x, ẋ, u) = 0, x(t0) = x0,

y = G(x, u).

Nonlinear positive systems were studied in [50], [51], [70], [71], [72], [99]. Linearisation
along constant trajectories leads to the here considered linear time-invariant systems in
(1) or (2). An algorithm that would preserve the positivity property of the nonlinear sys-
tem, however, is not available up to now and, thus, poses an open problem, although
the application of the classical procedure sometimes leads to the desired outcome [59].
A more realistic approximation may be obtained by linearising along nonconstant tra-
jectories, which leads to linear time-varying systems [28]. Yet, the analysis of positive
time-varying systems is beyond the scope of this thesis but constitutes an interesting
and promising research topic as an extension of the present work.

In the literature, an extensive amount of research exists that deals with positive sys-
tems in specific applications. Even so, on the theoretical side, this topic only recently
has become a popular research area. Previously and even now, when dealing with cer-
tain systems theoretical or control theoretical issues of positive systems, the positivity
property was and is being neglected in order to scoop the extensive toolbox of the well-
developed systems theory and control theory for unconstrained systems. At the same
time, there are many examples that show that it is worth the effort to consider problem
specific properties and develop structured algorithms that preserve these.

There are various different definitions of positivity in systems theory that can be found
in the literature. The definition of internally positive systems as discussed in this work
goes back to Luenberger who presented some first theoretical results in [83]. There
are also external positivity that is due to [38] and weak positivity introduced in [64],
which we briefly discuss in the following. The extension of positivity to general cone
invariance was studied by many authors, see, e.g., [10], [17], [18], [121]. In [69] the
positivity concept is extended to positive operators.

There are mainly two books devoted to positive linear systems [38], [64]. In [38] linear
time-invariant single input single output standard positive systems are treated. Certain
control theoretical issues such as stability, reachability, observability are discussed and
many examples from applications are provided. These include compartmental systems,
Markov chains, queueing systems, or in particular the Leslie model of age-structured
population or the Leontief input-output model used in economy. In [64] linear 1D and 2D
systems are treated. The author also introduces descriptor systems discussing different
positivity concepts. These are weak positivity, in which all matrices are assumed to be
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nonnegative, except for the matrix A in the continuous-time case that is assumed to be
a −Z-matrix, and also external and internal positivity. However, the characterisation of
internal positivity is given only for a special case of index 1 systems.

In Section 3.1 we briefly review the positivity concepts introduced in the literature and
in Section 3.2.1 we present a new extension of the definition and characterisation of
positivity for continuous-time and discrete-time descriptor systems [124]. The defini-
tion is based on consistent initial values of the descriptor system. In Section 3.2.2, we
analyse and specify the special structure of the system matrices induced by the char-
acterisation of positivity given in Section 3.2.1. Furthermore, in Section 3.3 we present
a reduction technique by means of the Schur complement that allows to reduce special
index 1 systems to a standard positive system.

3.1 Standard positive systems

In this section we briefly discuss several concepts of positivity that are encountered in
the literature. Then, we state the well-known characterisation of (internal) positivity that
is generalised to descriptor systems in the next section.

Internal positivity seems to be the most natural definition from the mathematical point
of view. It goes back to Luenberger [83] and reads as follows.

Definition 3.1 (Internal positivity) The continuous-time system (1) with E = I is
called internally positive if for any input function u ∈ C0 such that u(t) ≥ 0 for all t ≥ 0

and any initial condition x0 ≥ 0 we have x(t) ≥ 0 and y(t) ≥ 0 for all t ≥ 0.
The discrete-time system (2) with E = I is called internally positive if for any input se-
quence u(t) ≥ 0 for t ≥ 0 and any initial condition x0 ≥ 0 we have x(t) ≥ 0 and y(t) ≥ 0

for all t ≥ 0.

In [38] Farina and Rinaldi distinguish between internal and external positivity. External
positivity is defined as follows.

Definition 3.2 (External positivity) The continuous-time system (1) with E = I is
called externally positive if for any input function u ∈ C0 such that u(t) ≥ 0 for all
t ≥ 0 and x0 = 0 we have y(t) ≥ 0 for all t ≥ 0.
The discrete-time system (2) with E = I is called externally positive if for any input
sequence u(t) ≥ 0 for t ≥ 0 and x0 = 0 we have y(t) ≥ 0 for all t ≥ 0.
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Internal positivity implies external positivity but conversely this is not necessarily the
case. Moreover, in [38] it is shown that there exist externally positive systems that can-
not be made internally positive through any change of basis of the state space. External
positivity can be characterised by merely a property of the impulse response or equiva-
lently the transfer function of the system. Therefore, the differentiation between internal
and external positivity becomes useful, for instance, in the realisation problem. There,
the external positivity condition is used for characterising positively realisable transfer
functions [38], i.e. transfer functions that can be realised as an internally positive sys-
tem. A definition and characterisation of external positivity in the descriptor case are
given in [64] and is analogous to the one in the standard case.

The following type of positivity is defined only for descriptor systems since for standard
systems it is equivalent to internal positivity. It was introduced by Kaczorek in [64], mo-
tivated by applications such as electrical circuits composed of resistances, inductances
and voltage sources or of resistances capacitances and voltage sources, where such
conditions hold.

Definition 3.3 (Weak positivity) The continuous-time system (1) is called weakly pos-
itive if E,B,C,D ≥ 0 and A is a −Z-matrix.
The discrete-time system (2) is called weakly positive if E,A,B,C,D ≥ 0.

The following theorem states a well-known characterisation of (internally) positive sys-
tems in the standard case that is easy to check, see, e.g., [38,64].

Theorem 3.4 The continuous-time system (1) with E = I is (internally) positive if and
only if A is a −Z-matrix and B,C,D ≥ 0. The discrete-time system (2) with E = I is
positive if and only if A,B,C,D ≥ 0.

In the following section we generalise Theorem 3.4 to the descriptor case.

3.2 Positive descriptor systems

In this section, we define (internal) positivity for descriptor systems and provide a char-
acterisation in the continuous-time and in the discrete-time case. Furthermore, we
discuss the special structure induced by the required conditions.

First, we give a definition of positivity in the continuous-time as well as in the discrete-
time case.
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Definition 3.5 (Positivity) We call the continuous-time system (1) with ind(E,A) = ν

positive if for all t ∈ R+ we have x(t) ≥ 0 and y(t) ≥ 0 for any input function u ∈ Cν such
that u(i)(τ) ≥ 0 for i = 0, . . . , ν − 1 and 0 ≤ τ ≤ t and any consistent initial value x0 ≥ 0.
The discrete-time system (2) with ind(E,A) = ν is called positive if for all t ∈ N we have
x(t) ≥ 0 and y(t) ≥ 0 for any input sequence u(τ) ≥ 0 for 0 ≤ τ ≤ t + ν − 1 and any
consistent initial value x0 ≥ 0.

3.2.1 Characterisation of positivity

For characterising positive systems in the descriptor case, we consider systems (1)
and (2) with D = 0. Note, that adding a D ≥ 0 to a positive system will obviously not
spoil positivity, since only nonnegative input functions are allowed. However, for D 6= 0

one does not obtain the same only if condition for the matrix C that we prove in this
section.

To formulate a characterisation of positivity in the continuous-time case we need the
following Lemma.

Lemma 3.6 For a regular matrix pair (E,A) let Ê, Â be defined as in Lemma 1.19. If
for all v ≥ 0 we have eÊDÂtÊDÊv ≥ 0 for all t ≥ 0, then there exists α ≥ 0 such that

ÊDÂ + αÊDÊ ≥ 0.

Proof. By assumption, we have that

eÊDÂtÊDÊ ≥ 0 for all t ≥ 0. (3.1)

We now show that from this we obtain that ÊDÊ ≥ 0 and [ÊDÂ]ij ≥ 0 for all pairs (i, j)

such that [ÊDÊ]ij = 0. Suppose that there exists a pair of subscripts (i, j) such that
[ÊDÊ]ij < 0 or [ÊDÊ]ij = 0 and [ÊDÂ]ij < 0, then for t > 0 small enough, we would
obtain

[eÊDÂtÊDÊ]ij = [ÊDÊ]ij + [ÊDÂ]ijt + O(t2) < 0,

which contradicts equation (3.1). Here, we have used the property that ÊDÂÊDÊ =

ÊDÂ, which follows from the properties of the Drazin inverse in Definition 1.16 and
from (1.13b). Since ÊDÊ ≥ 0, setting

α ≥
∣
∣
∣
∣
∣

min
(i,j):[ÊDÊ]ij 6=0

[ÊDÂ]ij

[ÊDÊ]ij

∣
∣
∣
∣
∣
,

we obtain ÊDÂ + αÊDÊ ≥ 0.
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Remark 3.7 The important implication of Lemma 3.6 is that we can shift the finite spec-
trum of the matrix pair (E,A) as in the standard case, see, e.g., [38, p.38], so that the
shifted matrix pair (E,A + αE) fulfils the assumptions of Theorem 2.8 and its finite
spectral radius is an eigenvalue. For any finite eigenvalue µ of (E,A + αE) we have
that λ = µ − α is a finite eigenvalue of (E,A). The eigenvectors and eigenspaces of
(E,A) and (E,A + αE) are the same. In particular, the eigenspace that corresponds to
the eigenvalue ∞ remains unchanged. Note that we can choose α large enough such
that ρf(E,A + αE) > 0 and, therefore, we always have a corresponding nonnegative
eigenvector in this case.

In addition to the implication of Lemma 3.6 in Remark 3.7 note the following. The proof
of Lemma 3.6 implies that if the assumption of Lemma 3.6 holds then we have ÊDÊ ≥ 0.
Hence, if we require that the homogeneous system Eẋ = Ax has a nonnegative solution
for any initial value x0 ≥ 0 (instead of any consistent initial value x0 = ÊDÊv ≥ 0), then
ÊDÊ ≥ 0 turns out to be a necessary condition. Therefore, it seems plausible to have
ÊDÊ ≥ 0 as an assumption for a characterisation of positivity, which is the case in
the following theorem. Moreover, from the point of view of applications it makes more
sense to prescribe an initial condition that is just nonnegative instead of one that is
nonnegative on some special subspace.

Now we state a characterisation of positivity in the continuous-time case.

Theorem 3.8 Let E,A,B,C be the matrices in system (1) with (E,A) regular of
ind(E,A) = ν. Let Ê, Â be defined as in Lemma 1.19 and B̂ as in (1.12). Further-
more, assume that

(i) (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1,

(ii) ÊDÊ ≥ 0.

Then, the continuous-time system (1) is positive if and only if the following conditions
hold

1. there exists a scalar α ≥ 0 such that the matrix

M̄ := −αI + (ÊDÂ + αÊDÊ)

is a −Z-matrix,

2. ÊDB̂ ≥ 0,
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3. C is nonnegative on the subspace X defined by

X := im+[ÊDÊ,−(I − ÊDÊ)ÂDB̂, . . . ,−(I − ÊDÊ)(ÊÂD)ν−1ÂDB̂], (3.2)

where for a matrix W ∈ Rn×q we define

im+ W := {w1 ∈ Rn | ∃w2 ∈ Rq
+ : Ww2 = w1}.

Proof. “⇒” Let the system in (1) be positive. By definition, for all t ≥ 0 we have x(t) ≥ 0

and y(t) ≥ 0 for every vector function u ∈ Cν that satisfies u(i)(τ) ≥ 0 for i = 0, . . . , ν − 1

and 0 ≤ τ ≤ t and for every consistent x0 ≥ 0.

1. Choose u ≡ 0, then for any v ≥ 0 we have that x0 = ÊDÊv ≥ 0 is a consistent initial
condition. Hence, for all v ≥ 0, from (1.14) we obtain that

x(t) = eÊDÂtÊDÊv ≥ 0, for all t ≥ 0. (3.3)

Then, by Lemma 3.6, there exists a scalar α ≥ 0 such that ÊDÂ + αÊDÊ ≥ 0. Hence,
the matrix M̄ = −αI + (ÊDÂ + αÊDÊ) has nonnegative off-diagonal entries, i.e. M̄ is
a −Z-matrix.

2. Choose now u(τ) = ξτ ν for some ξ ∈ Rm
+ . We have that u(i)(τ) ≥ 0 for i = 0, . . . , ν−1

and 0 ≤ τ ≤ t. Furthermore, we have u(i)(0) = 0 for i = 0, . . . , ν − 1. Therefore, for
some v ∈ ker ÊDÊ, we have that x0 = ÊDÊv = 0 is a consistent initial condition. Thus,
from (1.14) we obtain that for all t ≥ 0 we have

x(t) =

∫ t

0

eÊDÂ(t−τ)ÊDB̂u(τ)dτ − (I − ÊDÊ)

ν−1∑

i=0

(ÊÂD)iÂDB̂u(i)(t) ≥ 0. (3.4)

Since ÊDÊ ≥ 0, we can premultiply the inequality (3.4) by ÊDÊ and obtain

ÊDÊx(t) =

∫ t

0

eÊDÂ(t−τ)ÊDB̂ξτ νdτ ≥ 0. (3.5)

We now show that ÊDB̂ ≥ 0. Suppose that this is not the case, i.e. there exist some
indices i, j with [ÊDB̂]ij < 0. Then, for ξ = ej , the j-th unit vector, and for t > 0 small
enough, we would obtain

[ÊDÊx(t)]i =

∫ t

0

[(I + ÊDÂ(t − τ) + O((t − τ)2))ÊDB̂u(τ)]idτ

=

∫ t

0

([ÊDB̂]ij + O(t − τ))τ νdτ < 0,

which contradicts (3.5). Therefore, we conclude that ÊDB̂ ≥ 0.
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3. Note that by Assumptions (i) and (ii) the subspace X contains only nonnegative
vectors. Let v ∈ im[ÊDÊ], v ≥ 0. For u ≡ 0, we have that x0 = ÊDÊv ≥ 0 is consistent
with u. Since the system is positive, we have

y(0) = Cx0 = CÊDÊv ≥ 0. (3.6)

Since ÊDÊ is a projector, we have ÊDÊv = v and hence, by (3.6), C is nonnegative on
im[ÊDÊ].

Let now w0 ∈ im+[−(I − ÊDÊ)ÂDB̂], then there exists ξ0 ≥ 0 such that

−(I − ÊDÊ)ÂDB̂ξ0 = w0.

Choose u0(τ) ≡ ξ0. Then, we have u0(0) = ξ0 and u
(i)
0 (0) = 0 for i = 1, . . . , ν − 1. The

initial condition x0 = −(I−ÊDÊ)ÂDB̂ξ0 is nonnegative by Assumption (i) and consistent
with u0 for some v ∈ ker ÊDÊ. Since the system is positive, we obtain

y(0) = Cx0 = −C(I − ÊDÊ)ÂDB̂ξ0 = Cw0 ≥ 0. (3.7)

We have shown that for all w0 ∈ im+[−(I − ÊDÊ)ÂDB̂] we have Cw0 ≥ 0, i.e. C is
nonnegative on im+[−(I − ÊDÊ)ÂDB̂].

Let w1 ∈ im+[−(I − ÊDÊ)(ÊÂD)ÂDB̂], then there exists ξ1 ≥ 0 such that −(I −
ÊDÊ)(ÊÂD)ÂDB̂ξ1 = w1. Set u1(τ) = ξ1τ . Then, we have u1(0) = 0, u′

1(0) = ξ1

and u
(i)
1 (0) = 0, i = 2, . . . , ν − 1. The initial condition x0 = −(I − ÊDÊ)(ÊÂD)ÂDB̂ξ1 is

nonnegative by Assumption (i) and consistent with u1. Since the system is positive, we
have

y(0) = Cx0 = −C(I − ÊDÊ)(ÊÂD)ÂDB̂ξ1 = Cw1 ≥ 0,

and hence, C is nonnegative on im+[−(I − ÊDÊ)(ÊÂD)ÂDB̂].

We now proceed in the same manner. By subsequently letting

wi ∈ im+[−(I − ÊDÊ)(ÊÂD)(i)ÂDB̂],

for i = 2, . . . , ν − 1, finding the corresponding nonnegative preimage ξi, setting
ui(τ) = ξiτ

i and using the same argument as above we obtain that C is nonnega-
tive on im+[−(I − ÊDÊ)(ÊÂD)iÂDB̂] for i = 2, . . . , ν − 1. In total, we have shown that
C is nonnegative on X as in (3.2).

“⇐” Let (i), (ii) and 1.-3. hold. We have to show that the system in (1) is positive, i.e. for
all t ≥ 0 and for every vector function u ∈ Cν such that u(i)(τ) ≥ 0 for i = 0, . . . , ν − 1
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and 0 ≤ τ ≤ t and for any consistent x0 ≥ 0, we get x(t) ≥ 0 and y(t) ≥ 0. The solution
at time t ≥ 0 is given by

x(t) = eÊDÂtÊDÊx0 +

∫ t

0

eÊDÂ(t−τ)ÊDB̂u(τ)dτ − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(i)(t),(3.8)

and any consistent x0 satisfies

x0 = ÊDÊv − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂDB̂u(i)(0),

for some v ∈ Rn. We now subsequently show that the three summands in (3.8) are
nonnegative.

1) Since ÊDÊ ≥ 0, for any consistent x0 ≥ 0 we get that ÊDÊx0 ≥ 0. Note, that for any
v ∈ S

def
f we have ÊDÊv = v and

M̄v = (−αI + ÊDÂ + αÊDÊ)v = ÊDÂv. (3.9)

Since ÊDÊ is a projector onto S
def
f , we also have

eÊDÂtÊDÊ = eM̄tÊDÊ. (3.10)

and eM̄t ≥ 0, since M̄ is a −Z-matrix. Hence, the first term of (3.8) is nonnegative.

2) For the second term we have that ÊDB̂ ≥ 0 and therefore

eÊDÂ(t−τ)ÊDB̂u(τ) ≥ 0,

for all 0 ≤ τ ≤ t. Since integration is monotone, the second term is nonnegative.

3) We have −(I − ÊDÊ)(ÊÂD)iÂDB̂ ≥ 0 for i = 0, . . . , ν − 1 and therefore the third term
is also nonnegative for any vector function u ∈ Cν such that u(i)(t) ≥ 0 for i = 0, . . . , ν−1

and 0 ≤ τ ≤ t.

Thus, x(t) ≥ 0. From y(t) = Cx(t) with C nonnegative on X and x(t) ∈ X for all t, we
also conclude that y(t) ≥ 0.

Corollary 3.9 Let E,A,B,C be the matrices in the system in (1) with (E,A) regular of
ind(E,A) = ν. Let Ê, Â be defined as in Lemma 1.19 and B̂ as in (1.12). Furthermore,
we assume that (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1. If the matrix ÊDÂ is a
−Z-matrix and ÊDB̂, C ≥ 0, then the continuous-time system in (1) is positive.
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Proof. If ÊDÂ is a −Z-matrix, this implies that M̄ is a −Z-matrix for α = 0. Internal
positivity follows from Theorem 3.8.

The first of the following two examples demonstrates that the property that ÊDÂ is a
−Z-matrix is not necessary for the system in (1) to be positive. The second example is
a system that is not positive.

Example 3.10 Consider the system





1 1 0

0 0 0

0 0 0




 ẋ =






−1 0 0

0 −1 0

0 0 −1




x +






0

0

1




u.

Since the matrices E and A commute, we can directly compute

EDA =






−1 −1 0

0 0 0

0 0 0




 , EDE =






1 1 0

0 0 0

0 0 0




 , EDB = 0.

Note that EDA is not a −Z-matrix. For the state vector, we obtain

x(t) = eEDAtEDEv − (I − EDE)ADBu(t) =

=






e−t e−t − 1 0

0 1 0

0 0 1











v1 + v2

0

0




−






0

0

−1




u(t).

Hence, the system is positive, although EDA is not a −Z-matrix.

Example 3.11 Consider the system





1 1 0

0 1 0

0 0 0




 ẋ =






1 0 0

0 1 0

0 0 −1




x +






0

0

1




u.

The matrices E and A commute and we can compute

EDA =






1 −1 0

0 1 0

0 0 0




 , EDE =






1 0 0

0 1 0

0 0 0




 , EDB = 0.

For the solution, we obtain

x(t) = eEDAtEDEv − (I − EDE)ADBu(t) =






et −tet 0

0 et 0

0 0 1











v1

v2

0




−






0

0

−1




u(t).

The system is not positive, since the first component of x may become negative.
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In [24], the following characterisation of positivity in the case of discrete-time systems
was given. Note, that in [24] the proof is given without the consistency requirement on
x0, thus, referring to a somewhat different solution concept. However, with a minor mod-
ification of the proof, the characterisation is also valid for positivity as in Definition 1.22,
i.e., only for consistent initial values. Furthermore, we add the condition on the matrix
C for completeness.

Theorem 3.12 Let E,A,B,C be the system matrices in (2) with (E,A) regular of
ind(E,A) = ν. Let Ê, Â be defined as in Lemma 1.19 and B̂ as in (1.12). If
ÊDÊ ≥ 0, then the discrete-time system in (2) is positive if and only if ÊDÂ, ÊDB̂ ≥ 0,
(I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1 and C is nonnegative on X as defined
in (3.2).

3.2.2 A special structure induced by the characterisations in The-
orem 3.8 and Theorem 3.12

The conditions of Theorem 3.8 or Theorem 3.12 impose a very special structure on
the system matrices that will be important in the following. We analyse this structure
for the continuous-time case. However, the same results hold for discrete-time positive
systems with properties as in Theorem 3.12.

Consider the initial continuous-time system in (1a). Since we consider regular matrix
pairs (E,A), we have that the matrix R = EPr + A(I − Pr) is regular and, hence, we
may scale the system in (1a) by R−1. Considering (E,A) in Weierstraß canonical form
as in (1.4), we have that R−1 = T−1W−1. We obtain the scaled system

R−1Eẋ = R−1Ax + R−1Bu, (3.11)

that in Weierstraß canonical form is given by

T−1

[

I 0

0 N

]

T ẋ = T−1

[

J 0

0 I

]

Tx + T−1

[

B̃1

B̃2

]

u.

Note that the matrices R−1E and R−1A commute. System (3.11) is equivalent to the
system of two equations

{

PrR
−1Eẋ = PrR

−1Ax + PrR
−1Bu,

(I − Pr)R
−1Eẋ = (I − Pr)R

−1Ax + (I − Pr)R
−1Bu.

,
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that in Weierstraß canonical form is given by







T−1

[

I 0

0 0

]

T ẋ = T−1

[

J 0

0 0

]

Tx + T−1

[

B̃1

0̃

]

u

T−1

[

0 0

0 N

]

T ẋ = T−1

[

0 0

0 I

]

Tx + T−1

[

0

B̃2

]

u

,

which by using the results in Section 1.6 is equal to

{

Prẋ = ÊDÂx + ÊDB̂u

(I − Pr)ÊÂDẋ = (I − Pr)x + (I − Pr)Â
DB̂u

. (3.12)

We assume that system (3.12) is positive and fulfils the conditions of Theorem 3.8.
Note that symmetric permutations of the matrices do not change the matrix properties
in Theorem 3.8. Therefore, without loss of generality, we may assume that Pr is in
canonical form as in (2.21), i.e.,

Pr =














π11 0 . . . 0 π1,k+1 0

0 π22
. . . ... π2,k+1 0

...
. . . . . . 0

...
...

...
. . . πkk πk,k+1 0

0 . . . . . . 0 0 0

πk+2,1 . . . . . . πk+2,k πk+2,k+1 0














, (3.13)

where πij ∈ Rmi×mj

+ , i, j = 1, . . . , k + 2, and π11, . . . , πkk > 0 are irreducible with
ρ(π11) = . . . = ρ(πkk) = 1. Note that the irreducible diagonal blocks are of rank 1.
Partition the matrices ÊDÂ, ÊDB̂, ÊÂD, ÂDB accordingly, i.e.

ÊDÂ =






[ÊDÂ]11 . . . [ÊDÂ]1,k+2

...
...

[ÊDÂ]k+2,1 . . . [ÊDÂ]k+2,k+2




 , ÊDB̂ =






[ÊDB̂]1
...

[ÊDB̂]k+2




 ,

ÊÂD =






[ÊÂD]11 . . . [ÊÂD]1,k+2

...
...

[ÊÂD]k+2,1 . . . [ÊÂD]k+2,k+2




 , ÂDB̂ =






[ÂDB̂]1
...

[ÂDB̂]k+2




 .

Firstly, from condition PrÊ
DÂ = ÊDÂ, we have that [ÊDÂ]k+1,i = 0 for i = 1, . . . , k + 2



3.2. Positive descriptor systems 61
and from ÊDÂPr = ÊDÂ, we have [ÊDÂ]i,k+2 = 0 for i = 1, . . . , k + 2. Therefore,

ÊDÂ =











[ÊDÂ]11 . . . [ÊDÂ]1,k+1 0
...

...
...

[ÊDÂ]k,1 . . . [ÊDÂ]k,k+1 0

0 . . . 0 0

[ÊDÂ]k+2,1 . . . [ÊDÂ]k+2,k+1 0











. (3.14)

Since by Lemma 3.6 there exists α ≥ 0 such that ÊDÂ + αPr ≥ 0, additionally, we have
that [ÊDÂ]ij ≥ 0 for i, j = 1, . . . , k and i 6= j.

Secondly, since we have PrÊ
DB̂ = ÊDB̂, we obtain that

ÊDB̂ =











[ÊDB̂]1
...

[ÊDB̂]k
0

∗











, (3.15)

where by ∗ we denote a block entry that we do not need to specify for our purpose.

Furthermore, from Theorem 3.8, we have that (I −Pr)Â
DB̂ ≤ 0 holds for ind(E,A) ≥ 1,

i.e.,

(I − Pr)Â
DB̂ =














I − π11 0 . . . 0 −π1,k+1 0

0
. . . . . .

...
...

...
...

. . . . . . 0
...

...
...

. . . I − πkk −πk,k+1 0

0 . . . . . . 0 I 0

−πk+2,1 . . . . . . −πk+2,k −πk+2,k+1 I



























[ÂDB̂]1
...
...

[ÂDB̂]k
[ÂDB̂]k+1

[ÂDB̂]k+2














≤ 0. (3.16)

Hence, from the second last row of (3.16), we have [ÂDB̂]k+1 ≤ 0. Furthermore, we
have

(I − πii)[Â
DB̂]i − πi,k+1[Â

DB̂]k+1 ≤ 0, (3.17)

for i = 1, . . . , k. We have that πi,k+1 ≥ 0 and [ÂDB̂]k+1 ≤ 0 and therefore,
−πi,k+1[Â

DB̂]k+1 ≥ 0. Thus, (I − πii)[Â
DB̂]i must be less than or equal to 0 for

i = 1, . . . , k. Now we show that this implies (I − πii)[Â
DB̂]i = 0 for i = 1, . . . , k.

To this end, we use the property that πii is a positive (irreducible) projector of rank 1

with ρ(πii) = 1, see Theorem 1.6. Hence, I − πii is a singular M -matrix. In [123],
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for a singular M -matrix I − T , where T is stochastic, it was shown that for the LU -
decomposition of I − T as in (1.9), we have that the last row of L−1 is the vector of
all ones. For a more general discussion on LU -factorisations of singular M -matrices,
see [94] and the references therein. In our case, we show that the last row of L−1 has
only positive entries.

Lemma 3.13 Let P = uvT , 0 < u, v ∈ Rmi
+ be a projector. Then, Q := I−P is a singular

M -matrix that has an LU -decomposition as in (1.9), where the last row of L−1 has only
positive entries.

Proof. We have Q = LU , where L is a regular and U is a singular M -matrix, or equiva-
lently

L−1Q =








@
@

@
@@

1

1

@
@

@
@















−

−

+

+

@
@

@@








=








@
@

@
@@

0








= U.

Furthermore, we have that L−1 ≥ 0 and the last row of U is zero. Since P > 0,
we have Qmij < 0 for j = 1, . . . ,mi − 1. Since [L−1]mimi

= 1 we have, for in-
stance, [L−1]mimi

Qmi1 < 0 and, therefore, we must have [L−1]mi,1 > 0, since otherwise
eT

mi
L−1Q = 0, where emi

denotes the emi
-th unit vector, will not hold. Analogously, we

obtain [L−1]mij > 0 for j = 1, . . . ,mi − 1.

We now show that (I − πii)[Â
DB̂]i ≤ 0 implies (I −πii)[Â

DB̂]i = 0 for i = 1, . . . , k. Since
L−1 ≥ 0, we obtain that

(I − πii)[Â
DB̂]i = LU [ÂDB̂]i ≤ 0,

for i = 1, . . . , k, is equivalent to

L−1(I − πii)[Â
DB̂]i = U [ÂDB̂]i ≤ 0.

Furthermore, we have
eT

mi
L−1(I − πii)[Â

DB̂]i = 0.

By Lemma 3.13, we have eT
mi

L−1 > 0 and, since (I − πii)[Â
DB̂]i ≤ 0, we conclude that

(I − πii)[Â
DB̂]i = 0.

With this, from (3.17), we obtain that πi,k+1[Â
DB̂]k+1 = 0 for i = 1, . . . , k. From the last

row of (3.16), we now obtain

−πk+2,k+1[Â
DB̂]k+1 + [ÂDB̂]k+2 ≤ 0,
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and since −πk+2,k+1[Â

DB̂]k+1 ≥ 0, we have [ÂDB̂]k+2 ≤ 0.

Thus, we have

(I − Pr)Â
DB̂ =











0
...
0

[ÂDB̂]k+1

∗











≤ 0. (3.18)

In general, we obtain the following structure.

Lemma 3.14 Consider the system matrices in (3.12) and let ν be the index of nilpo-
tency of (I −Pr)(ÊÂD). Then, assuming the block structure induced by Pr in (3.13), for
i = 0, . . . , ν − 1, we have

(I − Pr)(ÊÂD)iÂDB̂ =











0
...
0

∗1

∗2











≤ 0, (3.19)

where ∗1, ∗2 denote some unspecified entries.

Proof. Note first that for i ≥ ν, we have (I − Pr)(ÊÂD)i = 0. We perform an induction
over the index i. Let i = 0, then by Equation (3.18) we have the desired form. Suppose
that for some i > 0 we have the structure in (3.19). Then, for i + 1 we obtain

(I − Pr)(ÊÂD)i+1ÂDB̂ =(I − Pr)ÊÂD
(

(I − Pr)(ÊÂD)iÂDB̂
)

= (I − Pr)ÊÂD











0
...
0

∗1

∗2











=ÊÂD
(

(I − Pr)(ÊÂD)iÂDB̂
)

=











∗ . . . ∗ [ÊÂD]1,k+1 [ÊÂD]1,k+2

...
...

...
...

∗ . . . ∗ [ÊÂD]k,k+1 [ÊÂD]k,k+2

∗ . . . ∗ [ÊÂD]k+1,k+1 [ÊÂD]k+1,k+2

∗ . . . ∗ ∗ ∗





















0
...
0

∗1

∗2











≤ 0,

(3.20)
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where from the third equality of (3.20) we have that

[ÊÂD]j,k+1 = (I − πjj)[ÊÂD]j,k+1 − πj,k+1[ÊÂD]k+1,k+1

[ÊÂD]j,k+2 = (I − πjj)[ÊÂD]j,k+2 − πj,k+1[ÊÂD]k+1,k+2

(3.21)

for j = 1, . . . , k. For the second last entry on the left hand side of (3.20) we obtain

[(I − Pr)(ÊÂD)i+1ÂDB̂]k+1 = [ÊÂD]k+1,k+1 · (∗1) + [ÊÂD]k+1,k+2 · (∗2) ≤ 0. (3.22)

Furthermore, for the entries j = 1, . . . , k, using (3.21), we obtain

[ÊÂD]j,k+1 · (∗1) + [ÊÂD]j,k+2(∗2) =
(

(I − πjj)[ÊÂD]j,k+1 − πj,k+1[ÊÂD]k+1,k+1

)

· (∗1)+

+
(

(I − πjj)[ÊÂD]j,k+2 − πj,k+1[ÊÂD]k+1,k+2

)

· (∗2)

=(I − πjj)([ÊÂD]j,k+1 · (∗1) + [ÊÂD]j,k+2(∗2))−
− πj,k+1[(I − Pr)(ÊÂD)i+1ÂDB̂]k+1 ≤ 0.

Since πj,k+1 ≥ 0 for j = 1, . . . , k and [(I − Pr)(ÊÂD)i+1ÂDB̂]k+1 ≤ 0 by (3.20), we have
that (I − πjj)([ÊÂD]j,k+1 · (∗1) + [ÊÂD]j,k+2(∗2)) ≤ 0. Using Lemma 3.13 and the same
argument as before, we obtain

(I − πjj)([ÊÂD]j,k+1 · (∗1) + [ÊÂD]j,k+2(∗2)) = 0,

for j = 1, . . . , k and, hence, −πj,k+1 · [(I − Pr)(ÊÂD)i+1ÂDB̂]k+1 = 0 for j = 1, . . . , k.
Thus, we have obtained the desired structure, which completes the proof.

By using the property in (3.19), and also the properties in (3.14) and in (3.15), we
deduce that the system in (3.11) is equivalent to

Ẽẋ = Ãx + B̃u, (3.23)

where

Ã =














Ã11 Ã12 . . . Ã1,k Ã1,k+1 0

Ã21 Ã22
. . .

... Ã2,k+1
...

...
. . . . . . Ãk−1,k

...
...

Ãk1 . . . Ãk,k−1 Ãkk Ãk,k+1
...

0 . . . . . . 0 I 0

Ãk+2,1 . . . . . . Ãk+2,k Ãk+2,k+1 I














, B̃ =














[ÊDB̂]1
...
...

[ÊDB̂]k
[ÂDB̂]k+1

∗














Ẽ = Pr + (I − Pr)ÊÂD,

with Ãii = [ÊDÂ]ii + (I − πii), for i = 1, . . . , k, Ãij = [ÊDÂ]ij for i, j = 1, . . . , k and i 6= j

and Ãij = [ÊDÂ]ij − πij for i > k or j > k.
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Note that the form in (3.23) displays several spectral properties of the system. The last
two block rows correspond to the infinite eigenvalues that are responsible for the pos-
sibly higher index of the system. The blocks πii, for i = 1, . . . , k are positive irreducible
projectors, i.e., the associated block rows correspond to one finite eigenvalue and mi−1

infinite eigenvalues, where mi is the size of the block πii. In particular, this means that
the system has k finite eigenvalues. Since any projector is similar to a matrix [ I 0

0 0 ], the
corresponding infinite eigenvalues can only have Jordan chains of a maximum length
1, which means that they do not contribute to a possibly higher index of the system.

3.3 Special case: index 1 systems

The aim of this section is twofold. On the one hand the index 1 case exemplarily verifies
the general results established in the previous Section 3.2. On the other hand we
present a reduction technique by means of the Schur complement that allows to reduce
certain positive index 1 system to the positive standard case.

Continuous-time

Consider a system of the form (1), where E =

[

E11 0

0 0

]

with E11 ∈ Rr×r regular and

A,B are partitioned accordingly:
[

E11 0

0 0

] ˙[
x1

x2

]

=

[

A11 A12

A21 A22

][

x1

x2

]

+

[

B1

B2

]

u. (3.24)

Assume that A22 is invertible, then we can reduce the descriptor system to a standard
system by the following procedure. We premultiply the system (3.24) by the matrix
[

E−1
11 −E−1

11 A12A
−1
22

0 In−r

]

and obtain:

[

Ir 0

0 0

] ˙[
x1

x2

]

=

[

E−1
11 AS 0

A21 A22

][

x1

x2

]

+

[

E−1
11 BS

B2

]

u,

where AS := A11 − A12A
−1
22 A21 and BS := B1 − A12A

−1
22 B2 ≥ 0. For the solution of the

transformed system we obtain

x1(t) = eE−1

11
AStx10 +

∫ t

0

eE−1

11
AS(t−τ)E−1

11 BSu(τ)dτ

x2(t) = −A−1
22 (A21x1(t) + B2u(t)).
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If we assume that E−1
11 AS is a −Z-matrix, E−1

11 BS ≥ 0 and A−1
22 B2 ≤ 0, A−1

22 A21 ≤ 0, then
for any input function u ≥ 0 we obtain x(t) ≥ 0 for all t ≥ 0, i.e., the system is internally
positive. Note that x20 does not appear in the solution. This is due to the fact that ÊDÊ

projects onto the first component.

For regular matrix pairs (E,A) with ind(E,A) = 1 we have the property that the
corresponding system can always be equivalently transformed into a system of the
form (3.24), see, e.g. [74].

Lemma 3.15 Consider a system of the form (1), where (E,A) is a regular matrix pair
with ind(E,A) = 1. Then there exist regular matrices P,Q,R such that with Ẽ = PEQ,
Ã = PAQ and B̃ = PBR we obtain a system of the form (3.24).

Note that the condition ind(E,A) = 1 is equivalent to E11 and A22 being regular in the
form (3.24). We thus have proved the following theorem that states that every index 1

system that can be equivalently transformed into a system of the form as in (3.24) can
be reduced to a standard positive system by means of the Schur complement.

Theorem 3.16 Consider a system of the form (1), where (E,A) is a regular matrix pair
of ind(E,A) = 1. If there exist regular matrices P,Q,R with Q,R ≥ 0 such that with
Ẽ = PEQ, Ã = PAQ and B̃ = PBR we obtain a system of the form (3.24) and, if we
additionally assume that E−1

11 AS is a −Z-matrix, E−1
11 BS ≥ 0 and A−1

22 B2, A
−1
22 A21 ≤ 0,

then the system in (1) is internally positive and can be reduced to an internally positive
standard system.

Note that the transformation matrices P,Q,R in Lemma 3.15 are not necessarily non-
negative. In Theorem 3.16, we assume that only the matrices Q,R are nonnegative,
since transformations of the equations from the left with P only scale the system but
do not change the solution. The following Corollary 3.17, therefore, states the most
realistic case, when such a Schur complement reduction in the index 1 case to an ODE
case is possible.

Corollary 3.17 Consider a system of the form (1), where (E,A) is a regular matrix pair
of ind(E,A) = 1. If there exists a regular matrix P such that with Ẽ = PE, Ã = PA

and B̃ = PB we obtain a system of the form (3.24) and, if we additionally assume that
E−1

11 AS is a −Z-matrix, E−1
11 BS ≥ 0 and A−1

22 B2, A
−1
22 A21 ≤ 0, then the system in (1) is

internally positive and can be reduced to an internally positive standard system.
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It is now of interest to compare this to the results we obtain by using Theorem 3.8.
Assuming ind(E,A) = 1, for the system (3.24) we have

ÊDÊ =

[

I 0

−A−1
22 A21 0

]

, ÊDÂ =

[

E−1
11 AS 0

−A−1
22 A21E

−1
11 AS 0

]

,

ÊDB̂ =

[

E−1
11 BS

−A−1
22 A21E

−1
11 BS

]

, (I − ÊDÊ)ÂDB̂ =

[

0

A−1
22 B2

]

.

(3.25)

Theorem 3.8 restated in our context now means the following. If

i) A−1
22 B2 ≤ 0 and

ii) −A−1
22 A21 ≥ 0,

then the system in (3.24) is positive if and only if the following conditions hold

1. there exists a scalar α ≥ 0 such that the matrix

M̄ := −αI + (ÊDÂ + αÊDÊ)

is a −Z-matrix,

2. ÊDB̂ ≥ 0.

We have that

M̄ =

[

E−1
11 AS 0

−A−1
22 A21(E

−1
11 AS + αI) −αI

]

is a −Z-matrix if and only if E−1
11 AS is a −Z-matrix. Note that in this case α ≥ 0 can

be chosen such that E−1
11 AS + αI ≥ 0. Furthermore, we have ÊDB̂ ≥ 0 if and only

if E−1
11 BS ≥ 0. Hence, we see that the intuitive conditions for positivity in this index 1

example are exactly reflected in the corresponding conditions of Theorem 3.8.

Discrete-time

Consider a system of the form (2), where E =

[

E11 0

0 0

]

with E11 ∈ Rr×r regular and

A,B are partitioned accordingly:
[

E11 0

0 0

][

x1(t + 1)

x2(t + 1)

]

=

[

A11 A12

A21 A22

][

x1(t)

x2(t)

]

+

[

B1

B2

]

u(t). (3.26)
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Assume that A22 is invertible. Then we can reduce the descriptor system to a standard
system by the same procedure as in the continuous-time case. We premultiply the

system (3.24) by the matrix

[

E−1
11 −E−1

11 A12A
−1
22

0 In−r

]

and obtain:

[

Ir 0

0 0

][

x1(t + 1)

x2(t + 1)

]

=

[

E−1
11 AS 0

A21 A22

][

x1(t)

x2(t)

]

+

[

E−1
11 BS

B2

]

u(t),

where AS = (A11 − A12A
−1
22 A21) and BS = (B1 − A12A

−1
22 B2). For the solution of the

transformed system we obtain

x1(t) = (E−1
11 AS)tx10 +

t−1∑

τ=0

(E−1
11 AS)(t−1−τ)E−1

11 BSu(τ)

x2(t) = −A−1
22 (A21x1(t) + B2u(t)).

If we assume that E−1
11 AS ≥ 0, E−1

11 BS ≥ 0 and A−1
22 B2, A

−1
22 A21 ≤ 0, then for any input

function u ≥ 0 we obtain x(t) ≥ 0 for all t ≥ 0, i.e., the system is internally positive.

Theorem 3.18 Consider a system of the form (2), where (E,A) is a regular matrix pair
of ind(E,A) = 1. If there exist regular matrices P,Q,R with Q,R ≥ 0 such that with
Ẽ = PEQ, Ã = PAQ and B̃ = PBR we obtain a system of the form (3.26) and, if
we additionally assume that E−1

11 AS ≥ 0, E−1
11 BS ≥ 0 and A−1

22 B2, A
−1
22 A21 ≤ 0, then the

system in (2) is internally positive and can be reduced to an internally positive standard
system.

Note that as in the continuous-time case the transformation matrices Q,R have to be
nonnegative whereas the matrix P can be chosen arbitrarily, since it only scales the
system without changing the solution.

For completeness, we compare this to the results of Theorem 3.12. Assuming
ind(E,A) = 1, for system (3.26) we obtain the same matrices as in (3.25). Theo-
rem 3.12 now states that if −A−1

22 A21 ≥ 0 then system (3.26) is positive if and only if
E−1

11 AS ≥ 0, E−1
11 BS ≥ 0 and A−1

22 B2 ≤ 0. Hence, the intuitive assumptions on the index 1

system that we made here are reflected in the conditions of Theorem 3.12.

Summary

In this chapter we have reviewed the definition and the well-known characterisations of
positivity in the standard case. We have generalised the definition of positivity to the
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descriptor case and have provided a characterisation of positivity that corresponds to
the characterisation of standard positive systems. The special structure of the system
matrices imposed by this characterisation has been specified. Finally, we have used
a Schur complement decoupling approach to illustrate the obtained conditions by an
example in a special index 1 situation.





Chapter 4

Stability of positive systems

True stability results when presumed order and presumed disorder are balanced. A
truly stable system expects the unexpected, is prepared to be disrupted, waits to be

transformed.
- Tom Robbins, “Even Cowgirls Get the Blues”

In the course of this section, we discuss asymptotic stability properties of positive sys-
tems. To this end, we consider linear homogeneous time-invariant systems:

• in continuous-time:

Eẋ(t) = Ax(t), x(0) = x0, (4.1)

• or in discrete-time:

Ex(t + 1) = Ax(t), x(0) = x0. (4.2)

The following two definitions describe Lyapunov and asymptotic stability of descriptor
systems in the continuous-time case as well as in the discrete-time case [115].

Definition 4.1 (Lyapunov stability) The trivial solution x(t) ≡ 0 of the systems in (4.1)
or in (4.2), respectively, is called Lyapunov stable, if for all ǫ > 0 there exists δ > 0, so
that ‖x(t, x0)‖ < ǫ for all t ≥ 0 and for all x0 ∈ im ÊDÊ with ‖x0‖ < δ.

Definition 4.2 (Asymptotic stability) The trivial solution x(t) ≡ 0 of system (4.1) or
(4.2), respectively, is called asymptotically stable, if

1. it is Lyapunov stable and

71
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2. there exists δ > 0, such that for all x0 ∈ im ÊDÊ with ‖x0‖ < δ we have that
x(t, x0) → 0 as t → ∞.

The following Theorem 4.3 is a well-known characterisation of asymptotically stable
continuous-time and discrete-time systems in terms of the spectral properties of the
corresponding matrix pair (E,A) [34], [52].

Theorem 4.3 Let (E,A) be a regular matrix pair. The trivial solution x(t) ≡ 0 of the
system in (4.1)

(i) is asymptotically stable, if and only if all finite eigenvalues of (E,A) have negative
real part.

(ii) is Lyapunov stable, if and only if all finite eigenvalues of (E,A) have nonpositive
real part and the eigenvalues with zero real part have the same algebraic and
geometric multiplicities.

The trivial solution x(t) ≡ 0 of the system in (4.2)

(i) is asymptotically stable, if and only if all finite eigenvalues of (E,A) are of modulus
less than 1.

(ii) is Lyapunov stable, if and only if all finite eigenvalues of (E,A) are of modulus less
than or equal to 1 and the eigenvalues with modulus equal to 1 have the same
algebraic and geometric multiplicities.

Since stability properties of linear time-invariant systems depend only on the spectral
properties of the matrix pair (E,A), the following definition is useful.

Definition 4.4 (c-/d-stable matrix pair) A regular matrix pair (E,A) is called c-stable
if σf (E,A) ∈ C−. A regular matrix pair (E,A) is called d-stable if ρf(E,A) < 1.

Note that Definition 4.4 generalises the usual stability definition for matrices, i.e., a
matrix A is called c-stable (d-stable) if (I, A) or equivalently A is c-stable (d-stable). The
following theorem states the Lyapunov characterisation of stability, see [105], [115].

Theorem 4.5 Let (E,A) be a regular matrix pair. The pair (E,A) is c-stable if and only
if there exists a positive definite matrix X such that

Q := ET XA + AT XE � 0,
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and Q is negative definite on S

def
f .

The pair (E,A) is d-stable if and only if there exists a positive definite matrix X such
that

Q := AT XA − ET XE � 0,

and Q is negative definite on S
def
f .

In the case of positive systems, classical stability criteria take a simple form. Such
criteria for standard positive systems can be found in [38], [64] and are presented in
Section 4.1. The main tool for standard positive systems that allows this simplification is
the classical Perron-Frobenius Theorem 2.1. In Section 2.2, we have established a new
generalisation of the Perron-Frobenius theory to matrix pairs that is applicable in the
descriptor case. We show that this theory allows the same simplifications of standard
stability criteria for positive systems in the descriptor case. These are presented in
Section 4.2.

Definition 4.6 (c-/d-positive matrix pair) We call a matrix pair (E,A) c-positive if sys-
tem (4.1) is positive. We call a matrix pair (E,A) d-positive if system (4.2) is positive.

Remark 4.7 Note that by Theorem 3.8, if ÊDÊ ≥ 0, then (E,A) is c-positive if and only
if there exists α ≥ 0 such that ÊDÂ + αÊDÊ ≥ 0. By Theorem 3.12, if ÊDÊ ≥ 0, then
(E,A) is d-positive if and only if ÊDÂ ≥ 0.

Stability conditions for positive systems are closely related to and can be characterised
by the so called dominant eigenvalue(s) of the system.

Definition 4.8 (c-/d-dominant eigenvalue) For linear continuous-time systems (4.1),
we call a finite eigenvalue λ of the matrix pair (E,A) c-dominant if its real part is greater
than or equal to the real part of any other eigenvalue of the matrix pair (E,A), i.e.
ℜ(λ) ≥ ℜ(λi) for all λi ∈ σf(E,A).
For linear discrete-time systems (4.2), we call a finite eigenvalue of the matrix pair
(E,A) d-dominant if it is greater than or equal in modulus to any other eigenvalue of the
matrix pair (E,A), i.e. |λ| ≥ |λi| for all λi ∈ σf(E,A).

4.1 Standard positive systems

In this subsection we summarise the main stability conditions for standard positive sys-
tems. These conditions take a simple form compared to those for unconstrained sys-
tems.
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The result of the following Theorem 4.9, see e.g. [38], allows to relax the condition of
Theorem 4.3 that all eigenvalues have to be in the open left complex half-plane in the
continuous-time case to considering only the real eigenvalues. The same applies to the
discrete-time case, where the following result ensures that it is sufficient to check that
the real eigenvalues are in modulus less than 1.

Theorem 4.9 For a continuous-time standard positive system, i.e., system (4.1) with
E = I, the c-dominant eigenvalue is real and unique. There exists a corresponding
nonnegative eigenvector.
For a discrete-time standard positive system, i.e., system (4.2) with E = I, ρ(A) is a
d-dominant eigenvalue and there exists a corresponding nonnegative eigenvector.

The next result relaxes the Lyapunov condition in Theorem 4.5, [38]. Instead of posi-
tive definite Lyapunov functions, here positive definite matrices, for stability of positive
systems it is enough to consider diagonal matrices with a positive diagonal.

Theorem 4.10 The matrix A is c-stable if and only if there exists a positive definite
diagonal matrix X such that the matrix AT X + XA is negative definite.
The matrix A is d-stable if and only if there exists a positive definite diagonal matrix X

such that the matrix AT XA − X is negative definite.

Note that this relaxation is possible due to the diagonal stability property of M -matrices
[6], [17]. For matrix diagonal stability in a more general context see [66] and the ref-
erences therein. Furthermore, for positive systems, additional stability conditions are
given in [38] in terms of certain M -matrix properties of the matrix −A in the continuous-
time case and of the matrix I − A in the discrete-time case.

Theorem 4.11 The matrix A is c-stable if and only if one of the following conditions
holds

1. all principal minors of the matrix −A are positive;

2. the coefficients of the characteristic polynomial of the matrix −A are negative.

The matrix A is d-stable if and only if one of the above conditions holds for I − A.

4.2 Positive descriptor systems

In this subsection we generalise the stability conditions for positive systems from the
standard case in Section 4.1 to the descriptor case [124].
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In the following Theorem 4.12, we generalise the result on dominant eigenvalues in
Theorem 4.9 to descriptor systems.

Theorem 4.12 Let (E,A) be a regular matrix pair. Consider the positive continuous-
time system (4.1). If σf (E,A) 6= ∅ and ÊDÊ ≥ 0, where Ê is defined as in Lemma 1.19,
then the c-dominant eigenvalue λ of the system is real and unique. Furthermore, there
exists a nonnegative eigenvector corresponding to λ.
Consider the positive discrete-time system (4.2). If σf(E,A) 6= ∅ and ÊDÊ ≥ 0, then
ρf(E,A) is a d-dominant eigenvalue and there exists a corresponding nonnegative
eigenvector.

Proof. In the continuous-time case, since ÊDÊ ≥ 0, by Remark 4.7 and Remark 3.7 we
have that there exists a scalar α > 0 such that for the shifted matrix pair (E,A + αE),
by the generalised Perron-Frobenius Theorem 2.8, the finite spectral radius ρf(E,A +

αE) =: µ is an eigenvalue. Hence, λ = µ − α is an eigenvalue of (E,A) and it is
the eigenvalue with the largest real part, i.e., the c-dominant eigenvalue of the positive
system (4.1). Hence, the c-dominant eigenvalue λ is real and unique. Figure 4.1 depicts
the situation. By Remark 3.7 there exists a corresponding nonnegative eigenvector.

α

λ µ

Im

Re

σf (E,A) σf (E,A + αE)

Figure 4.1: The c-dominant eigenvalue λ of (E,A) is real and unique.

For a positive discrete-time system (2), by Remark 4.7, if ÊDÊ ≥ 0, we have that
ÊDÂ ≥ 0. Hence, by the generalised Perron-Frobenius Theorem 2.8 and using the
identity in (2.14), the finite spectral radius of (E,A) is an eigenvalue and, by Remark 3.7,
there exists a corresponding nonnegative eigenvector.

Theorem 4.12 implies that a c-positive matrix pair is c-stable if and only if all of its real
eigenvalues have negative real part. Analogously, a d-positive matrix pair is d-stable if
and only if all of its real eigenvalues are in modulus less than 1.

Example 4.13 Let E =

[

1 0

0 0

]

and A =

[

−1 0

0 1

]

. Since E and A commute, we have
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EDE =

[

1 0

0 0

]

and EDA =

[

−1 0

0 0

]

. Hence, the system (4.1) for this choice of (E,A)

is positive, since

eEDAtEDEv =

[

e−t 0

0 1

][

1 0

0 0

][

v1

v2

]

=

[

e−tv1

0

]

≥ 0,

for all v1 ≥ 0. Choosing α = 1, we obtain

EDA + αEDE =

[

0 0

0 0

]

≥ 0.

Hence, µ := ρ(EDA + αEDE) = 0 is an eigenvalue and the corresponding c-dominant
eigenvalue of (E,A) is λ = µ − α = −1. This means that (E,A) is also c-stable. Note
that although µ = 0, due to the fact that EDE ≥ 0, we have a nonnegative eigenvector
corresponding to µ and, hence, to λ, see Remark 3.7.

For a c-stable matrix pair, the following Lemma provides an associated c-stable matrix
that has all finite eigenvalues of (E,A) as eigenvalues and an additional stable eigen-
value −α, where α > 0 may be chosen arbitrarily, that corresponds to the eigenvalue ∞
of (E,A). In the case of positive systems, this associated c-stable matrix is in addition
a −M -matrix and plays an essential role in the generalisation of properties of positive
systems from the standard to the descriptor case.

Lemma 4.14 Let (E,A) be a regular c-stable matrix pair. Then, for any α > 0 we have
that

M̄ := −αI + ÊDÂ + αÊDÊ,

is a stable (regular) matrix. If, in addition, the matrix pair (E,A) is c-positive and ÊDÊ ≥
0, then there exists α > 0 such that M̄ is a −M -matrix.

Proof. All finite eigenvalues of (E,A) are also eigenvalues of ÊDÂ and the eigenvalue
∞ of (E,A) is mapped to the eigenvalue 0 of ÊDÂ, see Section 2.2. For any finite
eigenpair (λ, v) of (E,A), we have

M̄v = ÊDÂv = λv.

Therefore, all stable finite eigenvalues of the pair (E,A) are stable eigenvalues of M̄ .
For any eigenvector w corresponding to the eigenvalue ∞ of (E,A), i.e., Ew = 0, we
have by the properties of Ê, Â in Lemma 1.19 and Equations (1.13) that

ÊDÂw = ÊDÂÊDÊw = ÊDÂÊD(λE − A)−1Ew = 0,



4.2. Positive descriptor systems 77
and hence,

M̄w = −αw.

Thus, w is now an eigenvector corresponding to a negative eigenvalue −α. Hence, all
eigenvalues of M̄ have negative real parts and therefore M̄ is stable. If, in addition, the
matrix pair (E,A) is c-positive and ÊDÊ ≥ 0, then by Remark 4.7 we have that there
exists α > 0 such that

T := ÊDÂ + αÊDÊ ≥ 0.

By the generalised Perron-Frobenius Theorem 2.8 we have that ρ(T ) is an eigenvalue
of T and ρ(T ) − α is the finite eigenvalue of (E,A) with the largest real part and it is
negative, since (E,A) is c-stable. Therefore, we have α > ρ(T ) and

M̄ = −(αI − T )

is a −M -matrix.

In the following we generalise a Lyapunov-type stability condition from the standard
case in Theorem 4.10 to the descriptor case.

Theorem 4.15 Let the matrix pair (E,A) be regular and let Ê, Â be defined as in
Lemma 1.19. If (E,A) is c-positive and ÊDÊ ≥ 0, then the pair (E,A) is c-stable if
and only if there exists a positive definite diagonal matrix Y such that

(ÊDÂ)T Y + Y (ÊDÂ) � 0,

and (ÊDÂ)T Y + Y (ÊDÂ) is negative definite on S
def
f .

If (E,A) is d-positive and ÊDÊ ≥ 0, then (E,A) is d-stable if and only if there exists a
positive definite diagonal matrix Y such that

(ÊDÂ)T Y (ÊDÂ) − Y ≺ 0.

Proof. Continuous-time case:
“⇒”By Lemma 4.14, we have that there exists α > 0 such that the matrix

M := αI − (ÊDÂ + αÊDÊ),

is a regular M -matrix. For all v ∈ S
def
f we have by (3.9) that

vT (ÊDÂ)T Y v + vT Y (ÊDÂ)v = vT (−M)TY v + vT Y (−M)v.

It is well known that for an M -matrix M there exists a positive definite diagonal matrix
Y so that the matrix −(MT Y + Y M) is negative definite, see, e.g., [6], [11], [17], [38].



78 Chapter 4. Stability of positive systems

Hence, Y is a positive definite diagonal matrix such that (ÊDÂ)T Y +Y (ÊDÂ) is negative
definite on S

def
f . For any w ∈ Rn \ S

def
f , we have ÊDÂw = 0 and hence, (ÊDÂ)T Y +

Y (ÊDÂ) is negative semidefinite on Rn.
“⇐” We have to show that all finite eigenvalues of (E,A) have negative real part. If
σf (E,A) = ∅, there is nothing to prove. Therefore, assume that σf(E,A) 6= ∅. Then, by
Theorem 4.12, we have that the c-dominant eigenvalue λ of (E,A) is real and unique.
Hence, it suffices to show that λ is negative. Let v be an eigenvector corresponding to
λ. Since the eigenpair (λ, v) is also an eigenpair of ÊDÂ, see Section 2.2, we obtain

vT (ÊDÂ)TY v + vT Y (ÊDÂ)v = vT λY v + vT Y λv = 2λvT Y v < 0,

whereas vT Y v > 0. Hence, λ < 0.

Discrete-time case:
“⇒” If ÊDÊ ≥ 0, for a positive system we also have ÊDÂ ≥ 0, see Remark 4.7. Since
the matrix pair (E,A) is d-stable, we have ρf(E,A) < 1 and hence, the matrix

M := I − ÊDÂ,

is a regular M -matrix. Therefore, there exists a diagonal positive definite matrix Y so
that the matrix (ÊDÂ)T Y (ÊDÂ) − Y is negative definite, see, e.g. [6], [38].
“⇐” As in the continuous-time case, we assume that σf (E,A) 6= ∅. Then, by Theo-
rem 4.12, we have that there exists a d-dominant eigenvalue λ of (E,A) that is nonneg-
ative and real. Hence, it suffices to show that λ is less than 1. Let v be an eigenvector
corresponding to λ. Since the eigenpair (λ, v) is also an eigenpair of ÊDÂ, see Sec-
tion 2.2, we obtain

vT (ÊDÂ)T Y (ÊDÂ)v − vT Y v = λ2vT Y v − vT Y v = (λ2 − 1)vT Y v < 0,

whereas vT Y v > 0. Since λ is nonnegative, we have λ < 1.

The following corollary restates the result of Theorem 4.15 in terms of the continuous-
time and discrete-time generalised projected Lyapunov operators, as introduced in [115]
for descriptor systems, that are used in Theorem 4.5 for characterising stability proper-
ties of unconstrained descriptor systems. To adhere the condition of the existence of a
diagonal Lyapunov function, however, an additional condition is needed.

Corollary 4.16 Let the matrix pair (E,A) be regular of ind(E,A) = ν and let Ê, Â be
defined as in Lemma 1.19. Assume that (E,A) is c-positive with Pr = ÊDÊ ≥ 0 and
that PrE

−1
ν is diagonal, where Eν is defined as in (1.6). Then, the pair (E,A) is c-stable

if and only if there exists a positive definite diagonal matrix X such that

ET XA + AT XE � 0,
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and ET XA + AT XE is negative definite on S

def
f .

For the discrete-time case, assume that (E,A) is d-positive with Pr ≥ 0 and that PrE
−1
ν

is diagonal. Then (E,A) is d-stable if and only if there exists a positive definite diagonal
matrix X such that

AT XA − ET XE � 0,

and AT XA − ET XE is negative definite on S
def
f .

Proof. Consider first the continuous-time case. It is enough to prove the if part, since
the only if part follows directly from Theorem 4.5. By Theorem 4.15 we have that there
exists a diagonal positive definite matrix Y such that (ÊDÂ)T Y + Y (ÊDÂ) � 0. Setting

X := E−T
ν P T

r Y PrE
−1
ν , (4.3)

we have that X is diagonal positive definite. For all v ∈ S
def
f we have

vT ET XAv + vT AT XEv =vT ET (E−T
ν P T

r Y PrE
−1
ν )Av + vT AT (E−T

ν P T
r Y PrE

−1
ν )Ev

=vT Y ÊDÂv + vT (ÊDÂ)T Y v < 0,

where we have used that PrE
−1
ν E = Pr and PrE

−1
ν A = ÊDÂ, see Section 2.2.3. Hence,

ET XA + AT XE is negative definite on S
def
f . Furthermore, for any w ∈ Rn \ S

def
f , we

have Prw = 0 and hence, ET XA + AT XE is negative semidefinite on Rn.
Consider now the discrete-time case. As in the continuous-time case it is enough to
prove the if part, since the only if part follows directly from Theorem 4.5. By The-
orem 4.15 we have that there exists a diagonal positive definite matrix Y such that
(ÊDÂ)T Y (ÊDÂ) − Y ≺ 0. Setting X as in (4.3) we obtain that X is diagonal positive
definite and for all v ∈ S

def
f we have

vT AT XAv − vT ET XEv =vT AT (E−T
ν P T

r Y PrE
−1
ν )Av − vT ET (E−T

ν P T
r Y PrE

−1
ν )Ev =

=vT (ÊDÂ)TY ÊDÂv − vT Y v < 0.

Hence, AT XA−ET XE is negative definite on S
def
f . Furthermore, for any w ∈ Rn \S

def
f ,

we have Prw = 0 and hence, AT XA + ET XE is negative semidefinite on Rn.

The following corollary restates the result of Theorem 4.15 in terms of M -matrix prop-
erties.

Corollary 4.17 Let the matrix pair (E,A) be regular and let Ê, Â be defined as in
Lemma 1.19. If (E,A) is c-positive and ÊDÊ ≥ 0, then the matrix pair (E,A) is c-stable
if and only if there exists a scalar α > 0 such that for the matrix M := αI−(ÊDÂ+αÊDÊ)

one of the following properties holds
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1. all principal minors of M are positive;

2. the coefficients of the characteristic polynomial of M are negative.

If (E,A) is d-positive and ÊDÊ ≥ 0, then the matrix pair (E,A) is d-stable if and only if
one of the properties 1.-2. holds for the matrix M := I − ÊDÂ.

Proof. In the continuous-time case, by Lemma 4.14 there exists α > 0 such that M is
an M -matrix. In the discrete-time case, M is an M -matrix by Theorem 4.15. Therefore,
the assertions of this corollary follow directly from the M -matrix properties [17], [38].

4.3 Stability of switched positive descriptor systems

The study of stability properties of switched systems is subject to ongoing research, see
[112] and the references therein. Especially, in the case of standard positive systems,
progress has been made on this subject due to the existence of a diagonal Lyapunov
function, see, e.g., [90], [91], and the references therein. The existence of a common
diagonal Lyapunov function of two positive systems, i.e. a diagonal positive definite
matrix Y such that

AT
1 Y + Y A1 and

AT
2 Y + Y A2

are negative definite, guarantees the stability of the switched system under arbitrary
switching. In this section, we show how we can use the framework established through-
out this chapter in order to generalise these results to positive descriptor systems.

The following sufficient conditions for the existence of a common diagonal Lyapunov
function in the standard case can be found, e.g., in [90], [91].

Theorem 4.18 Let A1, A2 ∈ Rn×n be −M -matrices, i.e., stable −Z-matrices. Then,
each of the following conditions is sufficient for the existence of a common diagonal
Lyapunov function:

1. A1A
−1
2 and A−1

2 A1 are both M -matrices.

2. A1A
−1
2 and A−1

2 A1 are both nonnegative.

The generalisation to positive descriptor systems uses Theorem 4.15 and is as follows.
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Theorem 4.19 Let (E1, A1), (E2, A2) be two c-stable matrix pairs and let Êi, Âi, i = 1, 2

be defined as in Lemma 1.19 with ÊD
1 Ê1 ≥ 0 and ÊD

2 Ê2 ≥ 0. Then there exist scalars
α1, α2 > 0 such that

M1 := αI − ÊD
1 Â1 − αÊD

1 Ê1, and

M2 := αI − ÊD
2 Â2 − αÊD

2 Ê2

are M -matrices and each of the following conditions is sufficient for the existence of a
common diagonal Lyapunov function:

1. M1M
−1
2 and M−1

2 M1 are both M -matrices.

2. M1M
−1
2 and M−1

2 M1 are both nonnegative.

Proof. By Lemma 4.14, there exist scalars α1, α2 > 0 such that M1,M2 are M -matrices.
The rest follows as in the proof of the standard case in Theorem 4.18.

Summary

In this chapter we have discussed stability properties of positive descriptor systems
in the continuous-time as well as in the discrete-time case. We have reviewed some
prevalent stability concepts in the positive standard case along with different stability
criteria that take a simple form in the case of positive systems. We have presented
generalisations of (internal) stability criteria for the case of positive descriptor systems.
It was shown that if the spectral projector onto the finite deflating subspace of the matrix
pair (E,A) is nonnegative, then all stability criteria for standard positive systems take
a comparably simple form in the positive descriptor case. As an application of the
framework established throughout this chapter, we have shown how stability criteria of
switched standard positive systems can be extended to the descriptor case.





Chapter 5

Generalised Lyapunov equations for
positive systems

An idea is always a generalisation, and generalisation is a property of thinking.
To generalise means to think.

Georg Wilhelm Friedrich Hegel

We consider the following projected generalised Lyapunov equations [115] in
continuous-time

ET XA + AT XE = −P T
r GPr, (5.1)

or in discrete-time

AT XA − ET XE = −P T
r GPr, (5.2)

where G ∈ Rn×n and Pr, as defined in (1.5), is the unique spectral projector onto the
finite deflating subspace S

def
f of the pencil (E,A).

Lyapunov equations are named after Alexander Mikhailovitch Lyapunov, who presented
the stability theory for linear and nonlinear systems in 1892 [84].

Lyapunov equations have been studied in many different contexts, especially in applica-
tions such as differential and difference equations [45], [48], [105], [114], [115]. Stability
properties in systems theory and also many other control theoretical issues such as
model reduction methods or the quadratic optimal control problem are also closely re-
lated to the solution of Lyapunov equations, see. e.g., [5], [44], [45], [79], [95].

The following Theorem 5.1 gives necessary and sufficient conditions for the existence
of solutions of (5.1) [115].

83
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Theorem 5.1 Let (E,A) be a regular matrix pair and let Pr and Pl be the spectral pro-
jectors onto the right and left finite deflating subspaces defined in (1.5). Furthermore,
let λ1, . . . , λnf

, where nf = rank(Pr) be the finite not necessarily distinct eigenvalues of
(E,A). The generalised Lyapunov equation (5.1) has a solution for every matrix G if
and only if λj + λ̄k 6= 0 for all j, k = 1, . . . , nf . If, in addition, the solution X is required to
satisfy the condition X = XPl, then it is unique.

The additional condition X = XPl corresponds to the requirement that the nonunique
part of the solution X is zero in the Weierstraß canonical form. Therefore, in [115], the
following system of equations is considered

ET XA + AT XE = −P T
r GPr,

X = XPl.
(5.3)

For the discrete-time case, consider the projected generalised discrete-time Lyapunov
equation (5.2). The following Theorem 5.2 gives necessary and sufficient conditions for
the existence of solutions of (5.2) [115].

Theorem 5.2 Let E,A be a regular matrix pair and let Pr and Pl be the spectral pro-
jectors onto the right and left finite deflating subspaces defined in (1.5). Furthermore,
let λ1, . . . , λnf

, where nf = rank(Pr) be the finite not necessarily distinct eigenvalues of
(E,A). The generalised Lyapunov equation (5.2) has a solution for every matrix G if
and only if λjλ̄k 6= 1 for all j, k = 1, . . . , nf . If, in addition, the solution X is required to
satisfy the condition P T

l X = XPl, then it is unique.

As in the continuous-time case, the additional condition P T
l X = XPl corresponds to

the requirement that the nonunique part of the solution X is zero in the Weierstraß
canonical form. Therefore, in [115], the following system of equations is considered

AT XA − ET XE = −P T
r GPr,

P T
l X = XPl.

(5.4)

In the context of positive systems one is interested not only in positive (semi)definite
solutions of such Lyapunov equations but rather in doubly nonnegative solutions, i.e.,
solutions that are both positive semidefinite and entry-wise nonnegative. Such results
for standard Lyapunov equations are well known. We summarise these in the next
Section 5.1.
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5.1 Doubly nonnegative solutions of projected gener-

alised Lyapunov equations: standard case

The following result is on the nonnegativity of the solution of the standard continuous-
time Lyapunov equation.

Theorem 5.3 Let A be a −Z-matrix and let A be c-stable, i.e., σ(A) ⊂ C−. Then, the
solution X of the Lyapunov equation

AT X + XA = −G (5.5)

is given by

X =

∫ ∞

0

eAT tGeAtdt. (5.6)

The solution X is positive (semi)definite for any positive (semi)definite matrix G and X

is nonnegative for any nonnegative G. Moreover, if G > 0 then, X > 0.

Proof. For a c-stable matrix A it is well known, that the solution to (5.5) can be explicitly
given by (5.6), see, e.g., [60]. Since A is a −Z-matrix, we get by Lemma 1.3 that
eAT t ≥ 0 and eAt ≥ 0 for all t ≥ 0. Since G ≥ 0 (G > 0) and integration is monotone, we
get that X ≥ 0 (X > 0). Furthermore, if G � 0 (G ≻ 0) we have that X � 0 (X ≻ 0).

Remark 5.4 Note, that the condition in Theorem 5.3 that A is a c-stable −Z-matrix is
equivalent to the condition that A is a regular −M -matrix, see Lemma 1.8. The proof
to Theorem 5.3 can therefore alternatively be accomplished by forming vec X, which

stacks the columns X1, . . . , Xn of the matrix X into a long vector
[

XT
1 . . . XT

n

]T

and
by solving instead of (5.5) the equivalent linear system

(I ⊗ AT + AT ⊗ I) vecX = − vec G, (5.7)

where ⊗ is the Kronecker product. Since A is a regular −M -matrix, the matrix (I⊗AT +

AT ⊗ I) is also a regular −M -matrix [55] and hence (I ⊗AT +AT ⊗ I)−1 ≤ 0. Therefore,
we conclude that if G ≥ 0, we get X ≥ 0 and if G > 0 we get X > 0.

The following result is on positivity of the solution of the standard discrete-time Lya-
punov equation.
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Theorem 5.5 Let A ≥ 0 be d-stable, i.e., ρ(A) < 1. Then, the solution X of the Lya-
punov equation

AT XA − X = −G (5.8)

is given by

X =
∞∑

k=0

(AT )kGAk. (5.9)

The solution X is positive (semi)definite for any positive (semi)definite matrix G and X

is nonnegative for any nonnegative G. Moreover, if A,G > 0 then, X > 0.

Proof. The series in (5.9) is absolutely convergent since the spectral radius of A is less
than one and (5.9) is a solution since

AT XA − X = AT

∞∑

k=0

(AT )kGAkA −
∞∑

k=0

(AT )kGAk =

=
∞∑

k=1

(AT )kGAk −
∞∑

k=0

(AT )kGAk = −G.

Now, if A,G ≥ 0 (A,G > 0), we get X ≥ 0 (X > 0). Furthermore, if G � 0 (G ≻ 0) we
have that X � 0 (X ≻ 0).

In the following Section 5.2 we extend the well-known results of this section to the
descriptor case [124].

5.2 Doubly nonnegative solutions of projected gener-
alised Lyapunov equations: descriptor case

Consider the projected generalised continuous-time Lyapunov equation given in (5.3)
and recall that Pr = ÊDÊ, see Section 1.6. The following Theorem 5.6 gives sufficient
conditions for the existence of a doubly nonnegative solution of (5.3).

Theorem 5.6 Let (E,A) be a regular c-stable matrix pair. Let Ê, Â be defined as in
Lemma 1.19 and assume that ÊDÊ ≥ 0. Then, system (5.3) has a unique solution for
every matrix G. The solution is given by

X = E−T
ν

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

E−1
ν , (5.10)
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where Eν is defined as in the matrix chain in (1.6). If the matrix G is symmetric positive
(semi)definite, then X is symmetric positive semidefinite. If, in addition, we have that
the matrix pair (E,A) is c-positive, P T

r GPr ≥ 0 and PrE
−1
ν ≥ 0, then also X ≥ 0.

Proof. We first show that X as defined in (5.10) is solution of (5.1). Since (E,A) is
c-stable, by Lemma 4.14, we have that for any α > 0 the matrix

M̄ := −αI + ÊDÂ + αÊDÊ

is c-stable and M̄Pr = PrM̄ = ÊDÂ. We now use the following properties that can be
deduced from the properties of canonical projectors in [89], [96]:

E−1
ν AiQi = −Qi for all i = 0, . . . , ν − 1, (5.11)

where Eν , Ai are defined as in the matrix chain (1.6) with canonical projectors Qi. By
definition, we have Eν = E −A0Q0 − . . .−Aν−1Qν−1 and with the identities in (5.11) we
get

E−1
ν E = I − Q0 − . . . − Qν−1. (5.12)

Since Pr = P0 . . . Pν−1, where Pi = I − Qi, we have, [89], [96],

PrQi = 0, for all i = 0, . . . , ν − 1. (5.13)

By using this, we obtain that

ET XE = ET E−T
ν

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

E−1
ν E

(5.12)
= ET E−T

ν

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

(I − Q0 − . . . − Qν−1)

(5.13)
=

∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

(3.10)
=

∫ ∞

0

eM̄T tP T
r GPre

M̄tdt

is a solution of the standard Lyapunov equation

(ET XE)M̄ + M̄T (ET XE) = −P T
r GPr.
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On the other hand, by using the identity (2.14), we obtain

AT XE = AT E−T
ν

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

E−1
ν E =

= P T
r AT E−T

ν

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

=

= (ÊDÂ)T

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

=

= M̄T

(∫ ∞

0

e(ÊDÂ)T tP T
r GPre

(ÊDÂ)tdt

)

=

= M̄T (ET XE),

and analogously ET XA = (ET XE)M̄ . Hence, if we plug X defined in (5.10) into equa-
tion (5.1), then we obtain

ET XA + AT XE = (ET XE)M̄ + M̄T (ET XE) =

= −P T
r GPr.

To show the uniqueness of the solution we make use of the Weierstraß canonical form.
By the construction of Eν , we have that

PrE
−1
ν = T−1

[

I 0

0 0

]

W−1, (5.14)

and Pl is defined as in (1.5). Hence, we have that PrE
−1
ν Pl = PrE

−1
ν and therefore, the

condition X = XPl holds.

If G is positive (semi)definite, then X is positive semidefinite [115]. If (E,A) is c-positive
and Pr ≥ 0, then e(ÊDÂ)tPr ≥ 0. With P T

r GPr ≥ 0 and PrE
−1
ν ≥ 0 we obtain X ≥ 0.

Remark 5.7 Note that by (5.14), in the solution representation (5.10), the matrix Eν can
be replaced by any regular matrix R such that R−1 in the Weierstraß canonical form has
the following structure

R−1 = T−1

[

I 0

0 ∗

]

W−1,

where ∗ denotes an arbitrary regular submatrix. For instance, such a matrix could also
be R = (EPr + A(I − Pr)).

With such a matrix R, alternatively, the results of Theorem 5.6 may be obtained by
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considering the Weierstraß canonical form and verifying that the relations

PrR
−1E =T−1

[

I 0

0 0

]

T = Pr,

PrR
−1A =T−1

[

J 0

0 0

]

T = ÊDÂ,

hold.

For the discrete-time case, consider the projected generalised discrete-time Lyapunov
equation in (5.4). The following Theorem 5.8 gives sufficient conditions for the existence
of a doubly nonnegative solution of (5.4).

Theorem 5.8 Let (E,A) be a regular d-stable matrix pair. Let Ê, Â be defined as in
Lemma 1.19 and assume ÊDÊ ≥ 0. Then system (5.4) has a unique solution for every
matrix G. The solution is given by

X = E−T
ν

(
∞∑

t=0

((ÊDÂ)T )tP T
r GPr(Ê

DÂ)t

)

E−1
ν , (5.15)

where Eν is defined as in the matrix chain in (1.6). If G is symmetric positive
(semi)definite, then X is symmetric positive semidefinite. If, in addition, we have that
the matrix pair (E,A) is d-positive, P T

r GPr ≥ 0 and PrE
−1
ν ≥ 0, then also X ≥ 0.

Proof. We first show that X as defined in (5.15) is solution of (5.2). For X as defined in
(5.15) we have that

ET XE = ET E−T
ν

(
∞∑

t=0

((ÊDÂ)T )tG(ÊDÂ)t

)

E−1
ν E =

∞∑

t=0

((ÊDÂ)T )tP T
r GPr(Ê

DÂ)t

is a solution of the standard discrete-time Lyapunov equation

(ÊDÂ)T (ET XE)(ÊDÂ) − (ET XE) = −P T
r GPr.

On the other hand, we have

AT XA = (ÊDÂ)T

(
∞∑

t=0

((ÊDÂ)T )tG(ÊDÂ)t

)

(ÊDÂ).

Hence, if we plug X into equation (5.2), then we obtain

AT XA − ET XE = (ÊDÂ)T (ET XE)(ÊDÂ) − (ET XE) = −P T
r GPr.
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Condition P T
l X = XPl can be shown as in the continuous-time case by considering the

Weierstraß canonical form representation in (5.14).

If (E,A) is d-positive and Pr ≥ 0, then we have that ÊDÂ ≥ 0 [24]. With P T
r GPr ≥ 0 and

PrE
−1
ν ≥ 0 we obtain X ≥ 0.

Note that Remark 5.7 is also true in the discrete-time case.

5.3 Special case: index 1 systems

In this section, the Schur complement decoupling technique presented in Section 3.3 is
applied to show nonnegativity of the solution of projected generalised Lyapunov equa-
tions for special systems of index 1.

In the following theorem we give sufficient conditions for the nonnegativity of the solution
X of (5.3) for a special matrix E.

Theorem 5.9 Let Pr and Pl be the spectral projectors onto the right and left finite deflat-

ing subspaces of the matrix pair (E,A) defined in (1.5), where E =

[

E11 0

0 0

]

with E11

regular and A =

[

A11 A12

A21 A22

]

is partitioned accordingly. Suppose that A22 is invertible

and ASE−1
11 is a regular −M -matrix, where AS = A11 − A12A

−1
22 A21.

Moreover, suppose that A12A
−1
22 ≤ 0. Then, for any G such that

P T
r GPr =:

[

G̃11 G̃12

G̃21 G̃22

]

, (5.16)

and E−T
11 G̃11E

−1
11 ≥ 0, the unique solution X of Equation (5.3) satisfies X ≥ 0.

Proof. We have that

PEQ =

[

I 0

0 0

]

and PAQ =

[

ASE−1
11 0

0 A22

]

,

where P =

[

I −A12A
−1
22

0 I

]

and Q =

[

E−1
11 0

−A−1
22 A21E

−1
11 I

]

are regular matrices. Hence,
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we can compute the projectors Pr and Pl by

Pr =Q

[

I 0

0 0

]

Q−1 =

[

I 0

−A−1
22 A21 0

]

,

Pl =P−1

[

I 0

0 0

]

P =

[

I −A12A
−1
22

0 0

]

.

(5.17)

Scaling the first equation in (5.3) with QT and Q we obtain the equivalent equation

QT ET XAQ + QTAT XEQ = −QT P T
r GPrQ.

We have

EQ =

[

E11 0

0 0

][

E−1
11 0

−A−1
22 A21E

−1
11 I

]

=

[

I 0

0 0

]

=: Ẽ, (5.18)

and

AQ =

[

A11 A12

A21 A22

][

E−1
11 0

−A−1
22 A21E

−1
11 I

]

=

[

ASE−1
11 A12

0 A22

]

=: Ã. (5.19)

Since

PrQ =

[

I 0

−A−1
22 A21 0

][

E−1
11 0

−A−1
22 A21E

−1
11 I

]

=

[

E−1
11 0

−A−1
22 A21E

−1
11 0

]

,

we obtain

ẼT

[

X11 X12

X21 X22

]

Ã + ÃT

[

X11 X12

X21 X22

]

Ẽ =

[

−E−T
11 G̃11E

−1
11 0

0 0

]

,

where G̃11 = (G11 − AT
21A

−T
22 G21 − (G12 − AT

21A
−T
22 G22)A

−1
22 A21). Hence, we have the

following decoupled system of equations






X11ASE−1
11 + E−T

11 AT
SX11 = −E−T

11 G̃11E
−1
11

X11A12 + X12A22 = 0

AT
12X11 + AT

22X21 = 0

0 = 0

.

By Theorem 5.3, since ASE−1
11 is a −M -matrix and E−T

11 G̃11E
−1
11 ≥ 0, we obtain that

the first equation has the unique solution X11 ≥ 0. We have that A22 is invertible and
A12A

−1
22 ≤ 0. Therefore, from the second and third equations, we get

X12 = −X11A12A
−1
22 ≥ 0,

X21 = −A−T
22 AT

12X11 ≥ 0.
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Furthermore, since we required that X = XPl, i.e.,

[

X11 X12

X21 X22

]

=

[

X11 X12

X21 X22

][

I −A12A
−1
22

0 0

]

=

[

X11 −X11A12A
−1
22

X21 −X21A12A
−1
22

]

,

we obtain X22 = −X21A12A
−1
22 ≥ 0. Hence, we conclude that X ≥ 0.

Corollary 5.10 Consider Equation (5.3), where E =

[

I 0

0 0

]

and A =

[

A11 A12

A21 A22

]

is

partitioned accordingly. If A is a regular −M -matrix, then for any G ≥ 0 the unique
solution X satisfies X ≥ 0.

Proof. Since A is a regular −M -matrix, we have that the Schur complement AS =

A11−A12A
−1
22 A21 is a regular −M -matrix [85]. Also we know that −A−1

22 ≥ 0 and A12 ≥ 0.
Hence, A12A

−1
22 ≤ 0. Finally we obtain P T

r GPr ≥ 0 for any G ≥ 0 since G̃11 = G11 −
AT

21A
−T
22 G21 − (G12 − AT

21A
−T
22 G22)A

−1
22 A21 ≥ 0.

The following Theorem 5.11 is the discrete version of Theorem 5.9 and gives sufficient
conditions for nonnegativity of the solution X of (5.2) for a special matrix E.

Theorem 5.11 Let Pr and Pl be the spectral projectors onto the right and left finite

deflating subspaces of the matrix pair (E,A) defined in (1.5), where E =

[

E11 0

0 0

]

with E11 regular and A =

[

A11 A12

A21 A22

]

is partitioned accordingly. Suppose that A22 is

invertible and ASE−1
11 , where AS = A11 −A12A

−1
22 A21, is d-stable, i.e., all eigenvalues are

of modulus less than one.

Moreover, suppose that A12A
−1
22 ≤ 0. Then, for any G such that E−T

11 G̃11E
−1
11 ≥ 0, where

G̃11 is defined as in (5.16), the unique solution X to Equation (5.4) satisfies X ≥ 0.

Proof. As in the proof to Theorem 5.9, we have

PEQ =

[

I 0

0 0

]

and PAQ =

[

ASE−1
11 0

0 A22

]

,

where P =

[

I −A12A
−1
22

0 I

]

and Q =

[

E−1
11 0

−A−1
22 A21E

−1
11 I

]

are regular matrices. Therefore,

we have the same projectors Pr and Pl as in (5.17).
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Scaling the first equation in (5.4) with QT and Q we obtain the equivalent equation

QTAT XAQ − QT ET XEQ = −QTP T
r GPrQ.

As in the continuous-time case, we have EQ = Ẽ and AQ = Ã, where Ẽ, Ã are defined
as in (5.18) and (5.19), respectively.

Since

PrQ =

[

I 0

−A−1
22 A21 0

][

E−1
11 0

−A−1
22 A21E

−1
11 I

]

=

[

E−1
11 0

−A−1
22 A21E

−1
11 0

]

,

we obtain

ÃT

[

X11 X12

X21 X22

]

Ã − ẼT

[

X11 X12

X21 X22

]

Ẽ =

[

−E−T
11 G̃11E

−1
11 0

0 0

]

,

where G̃11 = (G11 − AT
21A

−T
22 G21 − (G12 − AT

21A
−T
22 G22)A

−1
22 A21). Hence, we have the

following decoupled system of equations






E−T
11 AT

SX11ASE−1
11 − X11 = −E−T

11 G̃11E
−1
11

E−T
11 AT

SX11A12 + E−T
11 AT

SX12A22 = 0

AT
12X11ASE−1

11 + AT
22X21ASE−1

11 = 0

AT
12X11A12 + AT

12X12A22 + AT
22X21A12 + AT

22X22A22 = 0

.

Since AS = (A11 − A12A
−1
22 A21) ≥ 0 is d-stable, i.e. all eigenvalues are of modulus less

than one, and E−T
11 G̃11E

−1
11 ≥ 0, we obtain from Theorem 5.5 that the first equation has

a unique solution X11 ≥ 0.

We have that A22 and AS are invertible and A12A
−1
22 ≤ 0. Hence from the second and

third equations, we get

X12 = −X11A12A
−1
22 ≥ 0,

X21 = −A−T
22 AT

12X11 ≥ 0.

Furthermore, since we required the condition P T
l X = XPl, i.e.,

[

X11 X12

−A−T
22 AT

12X11 −A−T
22 AT

12X12

]

=

[

X11 −X11A12A
−1
22

X21 −X21A12A
−1
22

]

,

we obtain

X22 = −A−T
22 AT

12X12 = −X21A12A
−1
22 ≥ 0.

Therefore, we conclude that X ≥ 0.
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Summary

In this chapter we have reviewed the solvability of projected generalised Lyapunov
equations for descriptor systems and the well-known sufficient conditions that guaran-
tee doubly nonnegative solutions of Lyapunov equations in the positive standard case.
We have presented a generalisation of such sufficient condition that guarantee dou-
bly nonnegative solutions of projected generalised Lyapunov equations in the positive
descriptor case. Finally, we have used the Schur complement decoupling approach
presented in Section 3.3 to deduce such conditions in a special index 1 situation. All
results were given in the continuous-time as well as in the discrete-time case.



Chapter 6

Positivity preserving model reduction

All exact science is dominated by the idea of approximation.
- Bertrand Russel

In this chapter, we present a model reduction technique that preserves the positivity of
a system in the continuous-time as well as in the discrete-time case. In Section 6.1,
we review the methods of standard balanced truncation [46] and singular perturbation
balanced truncation [82].

For standard systems the proposed positivity preserving method, which we present in
Section 6.2, is based on the existence of a diagonal solution of Lyapunov inequalities
that are shown to be feasible. Such solutions may be obtained via LMI solution meth-
ods [20]. The reduction is then performed by standard balanced truncation or singular
perturbation balanced truncation methods. It is shown that both methods preserve pos-
itivity. These results were published in [108].

Furthermore, we generalise this technique to positive descriptor systems. Here, the
procedure involves the additive decomposition of the transfer function into a strictly
proper and a polynomial part as in [116]. It is shown that the system matrices may also
be additively decomposed according to these two parts using the spectral projector. The
reduced order model is then obtained via positivity preserving reduction of the strictly
proper part, where we apply the reduction technique as proposed for the standard case,
whereas the polynomial part remains unchanged. We give a reduced order descriptor
system and show that it is positive.

Finally, numerical examples in the continuous-time and in the discrete-time case are
provided and illustrate the functionality of the proposed algorithm.

95
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6.1 Balanced truncation

In this section we review the properties of standard balanced truncation and singular
perturbation balanced truncation established in [46], [82].

Continuous-time case

Consider the standard continuous-time system (1) with E = I and the transfer function
G(s) = C(sI − A)−1B + D. Assume that A is c-stable. Let P ,Q � 0 be the solutions of
the continuous-time Lyapunov equations

AP + PAT + BBT = 0,

ATQ + QA + CT C = 0.
(6.1)

System (1) is said to be balanced if

P =








Σ

Σc

0

0








, Q =








Σ

0

Σo

0








, (6.2)

are partitioned accordingly with square matrices Σc ≻ 0, Σo ≻ 0 and

Σ = diag(σ1, σ2, . . . , σk) for some σ1 ≥ σ2 ≥ . . . ≥ σk > 0. (6.3)

The numbers σ1 . . . σk are called Hankel singular values. Consider a partition of the
balanced system

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, C =
[

C1 C2

]

, (6.4)

where A11 ∈ Rℓ×ℓ and either ℓ = k or ℓ < k such that σℓ+1 < σℓ. The matrices B and C

are partitioned accordingly. By means of balanced realisations, reduced order models

ẋℓ(t) = Aℓxℓ(t) + Bℓuℓ(t),

yℓ(t) = Cℓxℓ(t) + Dℓuℓ(t),
(6.5)

can now be constructed. In the method of standard balanced truncation [46], the matri-
ces Aℓ, Bℓ, Cℓ, Dℓ are defined by

Aℓ = A11, Bℓ = B1, Cℓ = C1, Dℓ = D. (6.6)
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An alternative method for the construction of reduced order models is singular pertur-
bation balanced truncation [82]. There, the reduced order model is defined by

Aℓ = A11 − A12A
−1
22 A21, Bℓ = B1 − A12A

−1
22 B2,

Cℓ = C1 − C2A
−1
22 A21, Dℓ = D − C2A

−1
22 B2.

(6.7)

For the reduced order models defined by (6.6) or (6.7), we have the following result on
an error bound in the H∞-norm [82]:

Lemma 6.1 Let ( A , B , C , D ) be a realisation of G(s) that is c-stable, balanced with
Σ and partitioned as in (6.4) and let ( Aℓ , Bℓ , Cℓ , Dℓ ) be the realisation that is either
constructed by (6.6) or (6.7). Then, the system in (6.5) is balanced with P = Q =

diag(σ1, . . . , σℓ). For the corresponding transfer function G̃(s) = Cℓ(sIℓ − Aℓ)
−1Bℓ + Dℓ,

we have

‖G − G̃‖∞,c ≤ 2
k∑

i=ℓ+1

σi.

The main difference between the discussed truncation methods is that standard bal-
anced truncation is exact for s = ∞ meaning that G(∞) = G̃(∞), whereas singular
perturbation balanced truncation is exact at s = 0.

Discrete-time case

Consider a discrete-time system (2) with transfer function G(z) = C(zI − A)−1B + D

and assume that A is d-stable. Then there exist matrices P ,Q ∈ Rn×n, P ,Q � 0 that
solve the the discrete-time Lyapunov equations

APAT − P + BBT = 0,

ATQA −Q + CT C = 0.
(6.8)

In accordance with the continuous-time case, the system in (2) is called balanced if P
and Q are defined as in (6.2), where σ1 ≥ σ2 ≥ . . . ≥ σk are the Hankel singular values.
Consider a partition of the balanced system as in (6.4) and assume that either ℓ = k or
ℓ < k with σℓ+1 < σℓ. Standard balanced truncation leads to a reduced order model

xℓ(t + 1) = Aℓxℓ(t) + Bℓuℓ(t),

yℓ(t) = Cℓxℓ(t) + Dℓuℓ(t),
(6.9)
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that is constructed via (6.6). In the singular perturbation balanced truncation technique,
the matrices in (6.9) are given by

Aℓ = A11 + A12(In−r − A22)
−1A21,

Bℓ = B1 + A12(In−r − A22)
−1B2,

Cℓ = C1 + C2(In−r − A22)
−1A21,

Dℓ = D + C2(In−r − A22)
−1B2.

(6.10)

For the reduced order models, we have an analogous result as in Lemma 6.1 [46], [82].

Lemma 6.2 Let ( A , B , C , D ) be a realisation of G(z) that is stable, balanced with
Σ and partitioned as in (6.4) and let ( Aℓ , Bℓ , Cℓ , Dℓ ) be the realisation that is either
constructed by (6.6) or (6.10). Then, the system in (6.9) is balanced with P = Q =

diag(σ1, . . . , σℓ). For the corresponding transfer function G̃(z) = Cℓ(zIℓ − Aℓ)
−1Bℓ + Dℓ,

we have

‖G − G̃‖∞,d ≤ 2
k∑

i=ℓ+1

σi. (6.11)

6.2 Model reduction for standard positive systems

In this section we generalise the model reduction methods reviewed in Section 6.1
to standard positive systems. To this end, note that the results in Lemma 6.1 and
Lemma 6.2 still hold if the Lyapunov equations in (6.1) and (6.8) are replaced by Lya-
punov inequalities in continuous-time

AP + PAT + BBT � 0,

ATQ + QA + CT C � 0,
(6.12)

or in discrete-time
APAT −P + BBT � 0,

ATQA −Q + CT C � 0,
(6.13)

respectively. The proofs can be found in [81] for continuous-time and in [12] for discrete-
time standard balanced truncation. Note that the results for singular perturbation bal-
anced truncation can be deduced analogously. We show that for a transfer function
of any positive system there exists a positive realisation with P and Q as in (6.2) that
solves the inequalities (6.12) or (6.13), respectively.
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Theorem 6.3 Consider the standard c-stable continuous-time positive system (1) with
E = I. Then, there exists a diagonal positive definite matrix T such that the positive
system ( Ã , B̃ , C̃ , D ) given by

Ã = T−1AT, B̃ = T−1B and C̃ = CT, (6.14)

is balanced in the sense that there exist matrices P � 0, Q � 0 as in (6.2) with diagonal
and positive definite Σ, such that the following Lyapunov inequalities hold:

ÃP + PÃT + B̃B̃T � 0,

ÃTQ + QÃ + C̃T C̃ � 0.
(6.15)

Proof. It is well known that a −M -matrix is diagonally stable, i.e., there exist diagonal
positive definite matrices X,Y such that

AX + XAT ≺ 0 and AT Y + Y A ≺ 0,

see, e.g. [6], [17]. In particular, there exist positive semi-definite diagonal matrices X,Y

such that
AX + XAT + BBT � 0, AT Y + Y A + CT C � 0.

Take a permutation matrix Π ∈ Πn such that

ΠT XΠ=








X11

X22

0

0








, ΠY ΠT=








Y11

0

Y33

0








with the additional property that X11 = diag(x1, . . . , xk) and Y11 = diag(y1, . . . , yk) satisfy

x1y1 ≥ x2y2 ≥ . . . ≥ xkyk > 0.

Now defining T̄ = diag((X11Y
−1
11 )

1

4 , I, I, I) and T = ΠT̄ , we have that P = T−1XT−T ,
Q = T T Y T have the desired form. The transformed system is given by ( Ã , B̃ , C̃ , D )

as defined in (6.14). Since Ã is a −Z-matrix and B,C,D ≥ 0, the transformed system
is positive by Theorem 3.4.

In the discrete-time case, we have an analogous result, which is stated without proof.

Theorem 6.4 Consider a discrete-time positive system ( A , B , C , D ), i.e.,
A,B,C,D ≥ 0, that is d-stable, i.e., ρ(A) < 1. Then, there exists a positive def-
inite diagonal matrix T such that the system ( Ã , B̃ , C̃ , D ), where Ã = TAT−1,
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B̃ = TB and C̃ = CT−1, is balanced in the sense that there exists a positive definite
diagonal matrix Σ such that the following Lyapunov inequalities hold:

ÃΣÃT − Σ + B̃B̃T � 0,

ÃT ΣÃ − Σ + C̃T C̃ � 0.
(6.16)

Theorem 6.3 and Theorem 6.4 guarantee the existence of a positive balanced realisa-
tion. Once we have a positive balanced realisation, standard balanced truncation and
singular perturbation balanced truncation can be applied.

The reduced order systems are again positive, which can be verified as follows. In the
continuous-time case, the reduced system defined in (6.6) is again a positive system,
since Bℓ ≥ 0, Cℓ ≥ 0, Dℓ ≥ 0 and Aℓ is a −M -matrix as a submatrix of a −M -matrix.
In (6.7), the −M -matrix property of Aℓ is preserved, since it is a Schur complement of
A [122]. Furthermore, since A22 is also a −M -matrix, we have A−1

22 ≤ 0, and hence,
Bℓ, Cℓ, Dℓ ≥ 0.
In the discrete-time case, the reduced system defined by (6.6) is positive, since Aℓ,
Bℓ, Cℓ, Dℓ are submatrices of positive matrices. Furthermore, (6.10) is also a positive
system, which can be observed as follows. By the stability assumption, we have that
ρ(A22) ≤ ρ(A) < 1. Hence, In−ℓ −A22 is an M -matrix and (In−ℓ −A22)

−1 ≥ 0. Therefore,
we obtain Aℓ, Bℓ, Cℓ, Dℓ ≥ 0.

Note that for the computation of positive reduced order models, there is no need to
compute a balanced realisation explicitely. Instead, for diagonal solutions

P = diag(p1, . . . , pn) and Q = diag(q1, . . . , qn)

of (6.1) or (6.8), indices {α1, . . . , αn} have to be found such that

pα1
qα1

≥ . . . ≥ pαℓ
qαℓ

> pαℓ+1
qαℓ+1

≥ . . . ≥ pαn
qαn

.

Reduced order models (6.5) (or (6.9)) can be obtained in the following way: Let α =

{α, . . . , αℓ}, β = {αℓ+1, . . . , αn} and

Ā11 = A[α, α], Ā12 = A[α, β],

Ā21 = A[β, α], Ā22 = A[β, β],

B̄1 = B[α, {1, . . . , p}], B̄2 = B[β, {1, . . . , p}],
C̄1 = C[{1, . . . , q}, α], C̄2 = C[{1, . . . , q}, β].

Then, the following properties hold:
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(i) The continuous-time (discrete-time) system (Ā11, B̄1, C̄1, D) is positive and has the

same transfer function as the ℓ-th order system obtained by positive standard bal-
anced truncation in (6.6).

(ii) The continuous-time system

( Ā11−Ā12Ā
−1
22 Ā21 , B̄1−Ā12Ā

−1
22 B̄2 , C̄1−C̄2Ā

−1
22 Ā21 , D−C̄2Ā

−1
22 B̄2 )

is positive and has the same transfer function as the ℓ-th order system obtained by
positive singular perturbation balanced truncation in (6.7).

(iii) The discrete-time system

( Ā11+Ā12(In−r−Ā22)
−1Ā21 , B̄1+Ā12(In−r−Ā22)

−1B̄2 ,

C̄1+C̄2(In−r−Ā22)
−1Ā21 , D+C̄2(In−r−Ā22)

−1B̄2 )

is positive and has the same transfer function as the ℓ-th order system obtained by
positive singular perturbation balanced truncation in (6.10).

Let us finally give a remark on the Lyapunov inequalities (6.12) and (6.13). It is clear that
their solutions are not unique and one should look for solutions P = diag(p1, . . . , pn),
Q = diag(q1, . . . , qn) such that

√
PQ has a large number of small diagonal elements.

This yields components of the state which are candidates to truncate. A good heuristic
for this is the minimisation of the trace of P and Q. For getting even sharper bounds,
the Lyapunov inequalities can be solved once more while now minimising the sum of
those diagonal elements of P and Q corresponding to the candidates for truncation.

6.3 Model reduction for positive descriptor systems

In the present section, we generalise the results of Section 6.2 to the descriptor case
as characterised in Theorem 3.8.

From [98], we have that the transfer function G(s) = C(sE−A)−1B+D can be additively
decomposed as G(s) = Gsp(s)+P (s), where Gsp(s) is the strictly proper and P (s) is the
polynomial part of G(s). By considering the pair (E,A) in Weierstraß canonical form
and the Laurent expansion at infinity, it is shown in [98] that

Gsp(s) =
∞∑

k=1

CFk−1Bs−k, where Fk = T−1

[

Jk 0

0 0

]

W−1, (6.17)
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and

P (s) =
0∑

k=−ν+1

CFk−1Bs−k + D, where Fk = T−1

[

0 0

0 −N−k−1

]

W−1. (6.18)

The following Lemma 6.5 reformulates the two parts of the transfer function Gsp(s) and
P (s) in terms of the matrices that appear in the solution formulas of the continuous-
time and discrete-time state equations in Theorem 1.20, respectively. In particular, this
shows that the system matrices can also be additively decomposed according to the
two parts of the transfer function.

Lemma 6.5 Let (E,A) be a regular matrix pair and let Ê, Â be defined as in
Lemma 1.19 and B̂ as in (1.12). Then, we have that the strictly proper part Gsp(s)

of the transfer function G(s) can be written as

Gsp(s) =
∞∑

k=1

(CPr)(Ê
DÂ)k−1(ÊDB̂)s−k = (CPr)(sI − ÊDÂ)−1(ÊDB̂), (6.19)

and the polynomial part can be written as

P (s) = − C(I − Pr)
ν−1∑

k=0

(ÊÂD)k(I − Pr)Â
DB̂sk + D =

=C(I − Pr)(s(I − Pr)ÊÂD − I)−1(I − Pr)Â
DB̂ + D.

(6.20)

Proof. By using the Weierstraß canonical form for (E,A), we get the following facts, see
Section 1.6. For some λ̂ chosen such that λ̂E − A is nonsingular, we have

(λ̂E − A)−1 = T−1

[

(λ̂I − J)−1 0

0 (λ̂N − I)−1

]

W−1,

ÊD = T−1

[

λ̂I − J 0

0 0

]

T,

ÊDÂ = T−1

[

J 0

0 0

]

T,

where Ê is defined as in Lemma 1.19. Hence, from (6.17) for k ≥ 0 we obtain

Fk = T−1

[

Jk 0

0 0

]

W−1 =

= T−1

[

Jk 0

0 0

]

TT−1

[

λ̂I − J 0

0 0

]

TT−1

[

(λ̂I − J)−1 0

0 (λ̂N − I)−1

]

W−1 =

= (ÊDÂ)kÊD(λ̂E − A)−1.
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Since B̂ = (λ̂E − A)−1B and ÊD = ÊDÊÊD = PrÊ

D, we obtain (6.19).

Analogously, by using the results of Section 1.6, i.e.,

ÊÂD = T−1

[

JD 0

0 N

]

T−1,

ÂD = T−1

[

JD(λ̂I − J) 0

0 (λ̂N − I)

]

T−1,

(6.21)

for k = −1, . . . ,−ν + 1, we have

Fk = T−1

[

0 0

0 −N−k−1

]

W−1 = (I − Pr)(ÊÂD)−k−1ÂD(λ̂E − A)−1.

By setting k to −k, we obtain the first equality of (6.20). The second equality follows
due to the fact that (I − Pr)ÊÂD is nilpotent.

6.3.1 Continuous-time case

In this section, for positive continuous-time descriptor systems, we first prove the ex-
istence of a positive balanced realisation. Based on this, we define a reduced or-
der system and show that it is positive and that it yields the usual H∞ error bound in
Lemma 6.1.

Consider the continuous-time Lyapunov equations corresponding to Gsp

(ÊDÂ)Pc + Pc(Ê
DÂ)T + ÊDB̂B̂T (ÊD)T = 0, (6.22a)

(ÊDÂ)TQc + Qc(Ê
DÂ) + P T

r CT CPr = 0. (6.22b)

In the following, we show as in the standard case that there exist diagonal posi-
tive definite matrices that fulfil the corresponding Lyapunov inequalities. Note that if
Pc = PrPcPr holds, as is assumed in [98], then the Lyapunov equations in (6.22) are
equivalent to the generalised Lyapunov equations in (5.3), see also [98]. However, for
diagonal positive definite solutions of the corresponding Lyapunov inequalities this will
not necessarily be the case.

Theorem 6.6 Consider the positive c-stable continuous-time system ( E, A, B, C, D ).
Then, there exists a diagonal positive definite matrix T such that the positive system
( Ẽ, Ã, B̃, C̃, D ), where

Ẽ = T−1ET, Ã = T−1AT, B̃ = T−1B and C̃ = CT, (6.23)
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is positive and balanced in the sense that there exists a diagonal positive definite matrix
Σ such that the following Lyapunov inequalities hold

( ˆ̃
ED ˆ̃

A)Σ + Σ( ˆ̃
ED ˆ̃

A)T + ˆ̃
ED ˆ̃

B
ˆ̃
BT ( ˆ̃

ED)T � 0, (6.24a)

( ˆ̃
ED ˆ̃

A)T Σ + Σ( ˆ̃
ED ˆ̃

A) + P̃ T
r C̃T C̃P̃r � 0, (6.24b)

where ˆ̃
E,

ˆ̃
A,

ˆ̃
B are obtained as in Lemma 1.19 and in (1.12) from the matrices Ẽ, Ã, B̃

and P̃r is the corresponding spectral projector as in (1.5).

Proof. From Theorem 4.15, we have that for a positive c-stable system, if Pr ≥ 0, then
there exist X,Y ≻ 0, such that

(ÊDÂ)X + X(ÊDÂ)T � 0,

(ÊDÂ)T Y + Y (ÊDÂ) � 0,

and the above inequalities are strict on S
def
f , i.e., for any 0 6= v ∈ S

def
f , we have

vT (ÊDÂ)Xv + vT X(ÊDÂ)T v < 0,

vT (ÊDÂ)T Y v + vT Y (ÊDÂ)v < 0.

Since we have ÊDB̂B̂T (ÊD)T ≥ 0 and P T
r CT CPr ≥ 0 by assumption and since both

terms are projected onto S
def
f , we obtain the existence of X̃, Ỹ ≻ 0 such that

(ÊDÂ)X̃ + X̃(ÊDÂ)T + ÊDB̂B̂T (ÊD)T � 0,

(ÊDÂ)T Ỹ + Ỹ (ÊDÂ) + P T
r CT CPr � 0,

by using the same argument as in the proof of Theorem 6.3. Hence, there exist diagonal
positive definite matrices Σ and T̃ such that by setting Ẽ = T̃ET̃−1, Ã = T̃AT̃−1,
B̃ = T̃B and C̃ = CT̃−1, we obtain

( ˆ̃
ED ˆ̃

A)Σ + Σ( ˆ̃
ED ˆ̃

A)T + ˆ̃
ED ˆ̃

B
ˆ̃
BT ( ˆ̃

ED)T � 0,

( ˆ̃
ED ˆ̃

A)T Σ + Σ( ˆ̃
ED ˆ̃

A) + P̃ T
r C̃T C̃P̃r � 0,

where ˆ̃
E,

ˆ̃
A,

ˆ̃
B are obtained as in Lemma 1.19 and in (1.12) from the matrices Ẽ, Ã, B̃

and P̃r = T̃ PrT̃
−1 is the corresponding spectral projector as in (1.5). Since T̃ is diagonal

with positive diagonal entries, the transformed system is again positive.

From now on, we consider the balanced system ( E, A, B, C, D ) in the sense of The-
orem 6.6. Scaling the state equation of the system by the regular matrix R−1 =

(EPr+A(I−Pr))
−1 as in Section 3.2.2, we obtain an equivalent system ( Ẽ, Ã, B̃, C, D )
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with system matrices Ẽ := R−1E, Ã := R−1A, B̃ := R−1B. The multiplication with the
spectral projector and its complementary projector, respectively, leads to an equivalent
system of two equations as in (3.12).

We now derive a procedure for computing a reduced order system that is again positive
having the usual H∞ error bound as for standard balanced truncation, see Lemma 6.1.

Consider a partitioning as in (6.4) but for the matrices ÊDÂ, ÊDB̂, CPr:

ÊDÂ =

[

[ÊDÂ]11 [ÊDÂ]12

[ÊDÂ]21 [ÊDÂ]22

]

, ÊDB̂ =

[

[ÊDB̂]1
[ÊDB̂]2

]

, CPr =
[

[CPr]1 [CPr]2

]

, (6.25)

where [ÊDÂ]11 ∈ Rℓ×ℓ and ℓ is chosen as in the standard case in (6.4). The matrices
ÊDB̂ and CPr are partitioned accordingly.

Our aim is to construct a reduction method that allows to obtain an H∞ error bound
as in the standard case. This is possible, for instance, if the polynomial part P (s) of
the transfer function G(s) remains unchanged, whereas the strictly proper part Gsp(s)

is reduced as in the standard case [116]. In this case, the polynomial parts of the
original and the reduced transfer functions cancel out in the H∞ norm and we obtain
the usual H∞ error bound. Note that, since (E,A) was assumed to be c-stable, we have
that ÊDÂ has only stable eigenvalues except for possibly several eigenvalues zero that
correspond to the eigenvalue ∞ of (E,A), see Section 2.2.3. To obtain an H∞ error
bound, these must not be reduced and, hence, we have to make sure that the block
[ÊDÂ]22 is regular.

We partition the spectral projector Pr and the matrices ÊÂD, ÂDB̂ conformably with the
partitioning of the matrix ÊDÂ,

Pr =

[

[Pr]11 [Pr]12

[Pr]21 [Pr]22

]

, ÊÂD =

[

[ÊÂD]11 [ÊÂD]12

[ÊÂD]21 [ÊÂD]22

]

, ÂDB̂ =

[

[ÂDB̂]1
[ÂDB̂]2

]

. (6.26)

The following Lemma 6.7, in particular, states that [Pr]22 is regular whenever [ÊDÂ]22 is
regular.

Lemma 6.7 Let the matrix ÊDÂ and the nonnegative projector Pr be partitioned as in
(6.25) and (6.26), respectively, such that [ÊDÂ]22 is regular. Then, [Pr]22 is a (regular)
diagonal matrix with positive diagonal entries.

Proof. We have that Pr ≥ 0 is a projector. Hence, there exists a permutation matrix
Q ∈ Πn such that QPrQ

T is in canonical form (2.21). We use the permutation matrix Q
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to obtain a corresponding permutation of ÊDÂ and partition it accordingly

QÊDÂQT =









A11 A12 . . . A1,k+2

A21
. . .

...
...

. . .
...

Ak+2,1 . . . Ak+2,k+2









. (6.27)

Since PrÊ
DÂ = ÊDÂ and πk+1,k+1 = 0, we have that πk+1,k+1Ak+1,i = Ak+1,i = 0 for

i = 1, . . . , k + 2. Furthermore, since ÊDÂPr = ÊDÂ and πk+2,k+2 = 0, we have that
Ai,k+2πk+2,k+2 = Ai,k+2 = 0 for i = 1, . . . , k + 2. This implies that whenever we choose
a regular part of ÊDÂ, then the corresponding part of Pr will have a positive diagonal
by construction. Furthermore, since ÊDÂPr = ÊDÂ we have that Aiiπii = Aii for
i = 1, . . . , k − 1 and hence rank(Aii) ≤ rank(πii) = 1. Since rank(ÊDÂ) = rank(Pr)

we conclude that rank(Aii) = rank(πii) = 1. Hence, for a regular part of ÊDÂ, we can
pick at most one row/column from each block row/column in (6.27). By construction the
corresponding part of Pr will be also regular. Moreover, this part will be diagonal with
positive diagonal entries.

Consider the decoupled system in (3.12) that is equivalent to the system in (1a).
The special structure of (I − Pr)Â

DB̂ given in (3.18) and the special structure of
(I − Pr)(ÊÂD)iÂDB̂ given in (3.19) lead to the following facts. Let

(I − Pr)Â
DB̂ =

[

[(I − Pr)Â
DB̂]1

[(I − Pr)Â
DB̂]2

]

be partitioned according to ÊDÂ in (6.25). Since the part [(I−Pr)Â
DB̂]2 corresponds to

the regular part P22, by considering the canonical form (2.21) of Pr and the correspond-
ing form of (I − Pr)Â

DB̂ in (3.18), the term [(I − Pr)Â
DB̂]2 must be zero. By (3.19), we

have that

(ÊÂD)i(I − Pr)Â
DB̂ =

[

[ÊÂD]11 [ÊÂD]12

[ÊÂD]21 [ÊÂD]22

][

[(I − Pr)Â
DB̂]1

0

]

=

[

∗
0

]

, (6.28)

and we conclude that [ÊÂD]21[(I − Pr)Â
DB̂]1 = 0.

Since (I − Pr)ÊÂD is nilpotent, the second equation of (3.12) has the solution

(I − Pr)x(t) = −
ν−1∑

i=1

(ÊÂD)i(I − Pr)Â
DB̂u(i)(t),

and by (6.28) is equivalent to
[

(I − P11)[ÊÂD]11 0

0 0

]

ẋ = (I − Pr)x +

[

[(I − Pr)Â
DB̂]1

0

]

u. (6.29)
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The system in (3.12) is therefore equivalent to the following decoupled system of two
equations {

ẋf = Afxf + Bfu

E∞ẋ∞ = x∞ + B∞u
, (6.30)

where

xf :=Prx, Af := ÊDÂ, Bf := ÊDB̂,

x∞ :=(I − Pr)x, E∞ :=

[

(I − P11)[ÊÂD]11 0

0 0

]

, B∞ :=

[

[(I − Pr)Â
DB̂]1

0

]

.
(6.31)

Furthermore, we set
Cf := CPr, C∞ := C(I − Pr). (6.32)

Consider again the transfer function G(s). By using (3.12) and Lemma 6.5, we can
additively decompose G(s) as

G(s) =C(sE − A)−1B + D = C(sR−1E − R−1A)−1R−1B + D =

=(CPr + C(I − Pr))
{

s(Pr + (I − Pr)ÊÂD) − (ÊDÂ + (I − Pr))
}−1

·

· (ÊDB̂ + (I − Pr)Â
DB̂) + D =

=Gsp(s) + P (s),

where
Gsp(s) =(CPr)(sI − ÊDÂ)−1(ÊDB̂) = Cf(sI − Af )

−1Bf

P (s) =C(I − Pr)(s(I − Pr)ÊÂD − I)−1(I − Pr)Â
DB̂ + D =

=C∞(sE∞ − I)−1B∞ + D.

The first equation of the system in (6.30) is a standard system on the subspace im Pr.
Requiring that [ÊDÂ]22 = [Af ]22 is regular, we can apply the reduction scheme in (6.7)
to the system ( Af , Bf , Cf , 0 ). We obtain the reduced order system

(Afℓ
, Bfℓ

, Cfℓ
, Dfℓ

) with G̃sp(s) = Cfℓ
(sI − Afℓ

)−1Bfℓ
+ Dfℓ

.

Since Af is c-stable on im Pr and ( Af , Bf , Cf , 0 ) is balanced on im Pr, we have that
G̃sp(s) yields the error bound in Lemma 6.1.

The second equation of (6.30) corresponds to the system ( E∞, B∞, C∞, D ). Assum-
ing the same partitioning as for ( Af , Bf , Cf , 0 ), we can apply the standard balanced
truncation reduction scheme in (6.6). We obtain the reduced order system

( E∞ℓ
, B∞ℓ

, C∞ℓ
, D ) with P̃ (s) = C∞ℓ

(sE∞ℓ
− I)−1B∞ℓ

+ D = P (s).
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That P̃ (s) = P (s) can be verified as follows. By Lemma 6.5 we have that

P (s) = −C(I − Pr)
ν−1∑

k=0

(ÊÂD)k(I − Pr)Â
DB̂sk + D.

On the other hand, by (3.19) we know that if Pr is in canonical form and the matrices
ÊÂD, ÂDB̂ are permuted and partitioned accordingly, we have that

(ÊÂD)k(I − Pr)Â
DB̂ =











0
...
0

∗
∗











.

Therefore, if we consider a partitioning as in (6.29), we obtain that

P (s) = −
[

C∞1
C∞2

]
[

[E∞B∞]1
0

]

= −C∞1
[E∞B∞]1 = P̃ (s).

Note that, in particular, this proves that Assertion (i) of Theorem 3.8 still holds for the
reduced order system.

We obtain a corresponding descriptor system ( Eℓ, Aℓ, Bℓ, Cℓ, Dℓ ) of ind(Eℓ, Aℓ) =

ind(E,A) = ν by setting the reduced order spectral projector Pℓ to

Pℓ := [Pr]11 − [Pr]12[Pr]
−1
22 [Pr]21, (6.33)

and
Eℓ := Pℓ + E∞ℓ

,

Aℓ := Afℓ
+ (I − Pℓ),

Bℓ := Bfℓ
+ B∞ℓ

,

Cℓ := Cfℓ
+ C∞ℓ

,

Dℓ := Dfℓ
+ D.

(6.34)

For the reduced order transfer function G̃(s) we obtain

G̃(s) = G̃sp(s) + P̃ (s) = Cℓ(sEℓ − Aℓ)
−1Bℓ + Dℓ,

and since P (s) = P̃ (s) we have the error bound

‖G − G̃‖∞,c = ‖Gsp − G̃sp‖∞,c ≤ 2
k∑

i=ℓ+1

σi,
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where σℓ+1, . . . , σk are the truncated Hankel singular values.

We still have to show that the thus obtained reduced order system in (6.34) is again
positive in the sense of Theorem 3.8.

The matrix Pℓ is again a nonnegative projector, which is proved in Section 2.4. Further-
more, the projector Pℓ has the following properties that are essential for the positivity of
the reduced order system.

Lemma 6.8 Let Pℓ be defined as in (6.33) and the reduced order system matrices as
in (6.34). Then, the following relations hold:

1. PℓAfℓ
= Afℓ

Pℓ = Afℓ
;

2. PℓBfℓ
= Bfℓ

;

3. Cfℓ
Pℓ = Cfℓ

.

Proof. For Relation 1. we have to take into account that Af = ÊDÂ and use the relations
for the partitioned block matrices that arise from the property PrÊ

DÂ = ÊDÂPr = ÊDÂ,
i.e.,

[

[Af ]11 [Af ]12

[Af ]21 [Af ]22

]

=

[

[Pr]11[Af ]11 + [Pr]12[Af ]21 [Pr]11[Af ]12 + [Pr]12[Af ]22

[Pr]21[Af ]11 + [Pr]22[Af ]21 [Pr]21[Af ]12 + [Pr]22[Af ]22

]

=

[

[Af ]11[Pr]11 + [Af ]12[Pr]21 [Af ]11[Pr]12 + [Af ]12[Pr]22

[Af ]21[Pr]11 + [Af ]22[Pr]21 [Af ]21[Pr]12 + [Af ]22[Pr]22

]

.

(6.35)

Exemplarily, we prove the relation PℓAfℓ
= Afℓ

, since the proof of the relation Afℓ
Pℓ =

Afℓ
is completely analogous. We have

PℓAfℓ
=([Pr]11 − [Pr]12[Pr]

−1
22 [Pr]21)([Af ]11 − [Af ]12[Af ]

−1
22 [Af ]21)

=[Pr]11[Af ]11 − [Pr]12[Pr]
−1
22 [Pr]21[Af ]11 − [Pr]11[Af ]12[Af ]

−1
22 [Af ]21

+ [Pr]12[Pr]
−1
22 [Pr]21[Af ]12[Af ]

−1
22 [Af ]21,

where plugging in the relations

[Pr]21[Af ]11 =[Af ]21 − [Pr]22[Af ]21,

[Pr]11[Af ]12 =[Af ]12 − [Pr]12[Af ]22,

[Pr]21[Af ]12 =[Af ]22 − [Pr]22[Af ]22,

(6.36)

we obtain

PℓAfℓ
=[Pr]11[Af ]11 − [Pr]12[Pr]

−1
22 [Af ]21 + [Pr]12[Af ]21 − [Af ]12[Af ]

−1
22 [Af ]21 + [Pr]12[Af ]21

+ [Pr]12[Pr]
−1
22 [Af ]21 − [Pr]12[Af ]21

=Afℓ
,
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where for the last equality we have used that [Pr]11[Af ]11 + [Pr]12[Af ]21 = [Af ]11.

Similarly, Relation 2. follows by direct calculation, recalling that Bfℓ
= ÊDB̂ and taking

into account the block relations that arise from PrÊ
DB̂ = ÊDB̂, i.e.,

[

[Bf ]1
[Bf ]2

]

=

[

[Pr]11[Bf ]1 + [Pr]12[Bf ]2
[Pr]21[Bf ]1 + [Pr]22[Bf ]2

]

. (6.37)

We obtain

PℓBfℓ
=([Pr]11 − [Pr]12[Pr]

−1
22 [Pr]21)([Bf ]1 − [Af ]12[Af ]

−1
22 [Bf ]2)

=[Pr]11[Bf ]1 − [Pr]12[Pr]
−1
22 [Pr]21[Bf ]1 − [Pr]11[Af ]12[Af ]

−1
22 [Bf ]2

+ [Pr]12[Pr]
−1
22 [Pr]21[Af ]12[Af ]

−1
22 [Bf ]2,

where plugging in the last two relations of (6.36) and [Pr]21[Bf ]1 = [Bf ]2 − [Pr]22[Bf ]2,
we obtain

PℓBfℓ
=[Pr]11[Bf ]1 − [Pr]12[Pr]

−1
22 [Bf ]2 + [Pr]12[Bf ]2 − [Af ]12[Af ]

−1
22 [Bf ]2 + [Pr]12[Bf ]2

+ [Pr]12[Pr]
−1
22 [Bf ]2 − [Pr]12[Bf ]2

=Bfℓ
.

Here, for the last equality, we have used the first relation of (6.37).

For Relation 3., note that Cf = CPr, i.e.,

Cf =
[

C1[Pr]11 + C2[Pr]21 C1[Pr]12 + C2[Pr]22

]

. (6.38)

Therefore, we need the block relations that arise from Pr = P 2
r , i.e.,

[

[Pr]11 [Pr]12

[Pr]21 [Pr]22

]

=

[

[Pr]11[Pr]11 + [Pr]12[Pr]21 [Pr]11[Pr]12 + [Pr]12[Pr]22

[Pr]21[Pr]11 + [Pr]22[Pr]21 [Pr]21[Pr]12 + [Pr]22[Pr]22

]

. (6.39)

By using (6.38), we obtain

Cfℓ
Pℓ =([Cf ]1 − [Cf ]2[Af ]

−1
22 [Af ]21)([Pr]11 − [Pr]12[Pr]

−1
22 [Pr]21)

=[Cf ]1[Pr]11 − [Cf ]1[Pr]12[Pr]
−1
22 [Pr]21 − [Cf ]2[Af ]

−1
22 [Af ]21[Pr]11

+ [Cf ]2[Af ]
−1
22 [Af ]21[Pr]12[Pr]

−1
22 [Pr]21

=C1[Pr]11[Pr]11 + C2[Pr]21[Pr]11 − C1[Pr]11[Pr]12[Pr]
−1
22 [Pr]21

− C2[Pr]21[Pr]12[Pr]
−1
22 [Pr]21 − C1[Pr]12[Af ]

−1
22 [Af ]21[Pr]11

− C2[Pr]22[Af ]
−1
22 [Af ]21[Pr]11 + C1[Pr]12[Af ]

−1
22 [Af ]21[Pr]12[Pr]

−1
22 [Pr]21

+ C2[Pr]22[Af ]
−1
22 [Af ]21[Pr]12[Pr]

−1
22 [Pr]21,
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where plugging in the first and the last relations of (6.36) and using the relations
in (6.39), we obtain

Cfℓ
Pℓ =C1[Pr]11[Pr]11 + C2[Pr]21[Pr]11 − C1[Pr]12[Pr]

−1
22 [Pr]21 + C1[Pr]12[Pr]21

− C2[Pr]21 + C2[Pr]22[Pr]21 − C1[Pr]12[Af ]
−1
22 [Af ]21 + C1[Pr]12[Pr]21

− C2[Pr]22[Af ]
−1
22 [Af ]21 + C2[Pr]22[Pr]21 + C1[Pr]12[Pr]

−1
22 [Pr]21 − C1[Pr]12[Pr]21

+ C2[Pr]21 − C2[Pr]22[Pr]21

=C1[Pr]11 + C2[Pr]21 − (C1[Pr]12 + C2[Pr]22)[Af ]
−1
22 [Af ]21

=Cfℓ
.

By Lemma 6.8 we have that the matrices Eℓ and Aℓ commute, since PℓE∞ℓ
= E∞ℓ

Pℓ =

0, which follows from E∞ = (I − Pr)ÊÂD and PrE∞ = 0. Therefore, by using the
properties of Pℓ we have that

Eℓ
˙̃x = Aℓx̃ + Bℓu,

is equivalent to the decoupled system
{

Pℓ
˙̃x = Afℓ

x̃ + Bfℓ
u

E∞ℓ
˙̃x = (I − Pℓ)x̃ + B∞ℓ

u
.

We have already shown that Assumptions (i)-(ii) of Theorem 3.8 hold for the reduced
order system. It remains to show Relations 1.-3. in Theorem 3.8.

To this end, note that by Lemma 6.7, [Pr]22 is a diagonal matrix with a strictly positive
diagonal. Hence, from the relation

Af + αPr = ÊDÂ + αPr ≥ 0

we conclude that [Af ]22 must be a −Z-matrix. Since Af = ÊDÂ has only stable eigen-
values except for the eigenvalue 0 that corresponds to the eigenvalue ∞ of (E,A)

and since [Af ]22 is regular, it must be c-stable and therefore, a −M -matrix and we
have [Af ]

−1
22 ≤ 0. By using Lemma 6.8 and the relations Pℓ[Pr]11 = [Pr]11Pℓ = Pℓ and

Pℓ[Pr]12 = [Pr]21Pℓ = 0 that can be verified by direct calculation, we obtain

Afℓ
+ αPℓ =Pℓ(Afℓ

+ αPℓ)Pℓ

=Pℓ([Af ]11 + α[Pr]11 − [Af ]12[Af ]
−1
22 [Af ]21 − α[Pr]12[Pr]

−1
22 [Pr]21)Pℓ

=Pℓ([Af ]11 + α[Pr]11 − ([Af ]12 + α[Pr]12)[Af ]
−1
22 ([Af ]21 + α[Pr]21))Pℓ ≥ 0,

since Af + αPr ≥ 0.
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Next, we show that Bfℓ
≥ 0. By Lemma 6.8 we know that PℓBfℓ

= Bfℓ
. Then, by using

Pℓ[Pr]12 = 0, we obtain

Bfℓ
=Pℓ([Bf ]1 − [Af ]12[Af ]

−1
22 [Bf ]2) = Pℓ([Bf ]1 − ([Af ]12 + α[Pr]12)[Af ]

−1
22 [Bf ]2) ≥ 0.

Similarly, by Lemma 6.8 and since [Pr]21Pℓ = 0 we have that

Cfℓ
=([Cf ]1 − X[Cf ]2[Af ]

−1
22 [Af ]21)Pℓ = ([Cf ]1 − X[Cf ]2[Af ]

−1
22 ([Af ]21 + α[Pr]21))Pℓ ≥ 0.

Finally, Dℓ = Dfℓ
+ D ≥ 0 holds, since D ≥ 0 remains unchanged and

Dfℓ
= −[Cf ]2[Af ]

−1
22 [Bf ]2 ≥ 0.

We have shown that the reduced order system as defined in 6.34 is again positive. The
strictly proper part Gsp(s) of the transfer function G(s) is reduced as in the standard
case, whereas the polynomial part P (s) remains unchanged, which leads to the usual
H∞ error bound as for standard balanced truncation in Lemma 6.1.

6.3.2 Discrete-time case

Consider the discrete-time Lyapunov equations corresponding to Gsp

(ÊDÂ)Pc(Ê
DÂ)T −Pc + ÊDB̂B̂T (ÊD)T = 0,

(ÊDÂ)TQc(Ê
DÂ) −Qc + P T

r CT CPr = 0.

For a positive discrete-time system, by Theorem 3.8, if Pr ≥ 0 then we have ÊDÂ ≥ 0.
Since (E,A) is d-stable, we also have that ρ(ÊDÂ) < 1. Hence, as in the standard
discrete-time case in Theorem 6.4, there exists a balanced positive realisation that
fulfils the corresponding Lyapunov inequalities.

From now on, we consider the balanced system ( E, A, B, C, D ). Scaling the sys-
tem as in the continuous-time case by R−1 = (EPr + A(I − Pr))

−1 and multiplying the
state equation with Pr and (I − Pr), respectively leads to the equivalent system of two
equations

{

Prx(t + 1) = ÊDÂx(t) + ÊDB̂u(t)

(I − Pr)ÊÂDx(t + 1) = (I − Pr)x(t) + (I − Pr)Â
DB̂u(t)

. (6.40)

By using the conditions on (I − Pr)Â
DB̂ and (I − Pr)(ÊÂD)ÂDB̂ derived in Section 6.2

for the continuous-time case, we deduce that the system in (6.40) is equivalent to
{

xf (t + 1) = Afxf(t) + Bfu(t)

E∞x∞(t + 1) = x∞(t) + B∞u(t)
, (6.41)
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where the systems ( Af , Bf , Cf , 0 ) for Gsp(s) and ( E∞, B∞, C∞, D ) for P (s) are given
by the matrices in (6.31) and (6.32).

As in the continuous-time case, we reduce the strictly proper part Gsp(s) of G(s) using
standard singular perturbation balanced truncation, whereas the polynomial part P (s)

remains unchanged. We show that we obtain a reduced positive descriptor system that
approximates the original system with the usual H∞ error bound in Lemma 6.2.

Consider a partitioning as in (6.25) and (6.26). As in the continuous-time case we
choose the block [Af ]22 regular and therefore, ρ([Af ]22) < 1 and we have that (I−[Af ]22)

is an M -matrix with (I − [Af ]22) ≥ 0.

The first equation of the system in (6.41) is a standard system on the subspace im Pr.
If the block [Pr]22 contains ones on the diagonal, we first apply the balanced truncation
scheme in (6.6) to the corresponding part of the system. The truncated projector is
again a nonnegative projector and also the system is again positive. Therefore, without
loss of generality, we may assume that the diagonal entries of [Pr]22 are strictly less
than 1.

We apply the reduction scheme in (6.10) and obtain a reduced order system

( Afℓ
, Bfℓ

, Cfℓ
, Dfℓ

) with Gsp(s) = Cfℓ
(sI − Afℓ

)−1Bfℓ
+ Dfℓ

.

Since Af is d-stable on im Pr and ( Af , Bf , Cf , 0 ) is balanced on imPr we have that
Gsp(s) yields the error bound in Lemma 6.2.

As in the continuous-time case, we partition system ( E∞, B∞, C∞, D ) according to
( Af , Bf , Cf , 0 ) and reduce it by standard balanced truncation in (6.6). We obtain the
reduced system

( E∞ℓ
, B∞ℓ

, C∞ℓ
, D ) with P̃ (s) = C∞ℓ

(sE∞ℓ
− I)−1B∞ℓ

+ D = P (s).

To obtain a corresponding descriptor system we set the reduced order spectral projector
to

Pℓ := [Pr]11 + [Pr]12(I − [Pr]22)
−1[Pr]21. (6.42)

In Section 2.4.1 we have shown that Pℓ is again a projector and that Pℓ ≥ 0 if Pr ≥ 0.
The reduced order descriptor system ( Eℓ, Aℓ, Bℓ, Cℓ, Dℓ ) is then given by the matrices
in (6.34).

For the reduced order transfer function G̃(s) we obtain

G̃(s) = G̃sp(s) + P̃ (s) = Cℓ(sEℓ − Aℓ)
−1Bℓ + Dℓ,
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with P̃ (s) = P (s) and

‖G − G̃‖∞,d = ‖Gsp − G̃sp‖∞,d ≤ 2
k∑

i=ℓ+1

σi,

where σℓ+1, . . . , σk are the truncated Hankel singular values.

We still have to show that the thus obtained reduced order system is again positive in
the sense of Theorem 3.12. As in the standard case we have that (I − [Af ]22) is an
M -matrix and hence, Afℓ

, Bfℓ
, Cfℓ

, Dfℓ
≥ 0.

For the reduced order discrete-time descriptor system given by the matrices in (6.34),
we can obtain an equivalent system of two decoupled equations by using the properties
of the projector Pℓ given in the following Lemma 6.9.

Lemma 6.9 Let Pℓ be defined as in (6.42) and Afℓ
, Bfℓ

be the reduced order matrices
from singular perturbation balanced truncation. Then, we have

1. PℓAfℓ
= Afℓ

Pℓ = Afℓ
;

2. PℓBfℓ
= Bfℓ

.

Proof. Exemplarily, we show the relation PℓAfℓ
= Afℓ

. Using the relations arising from
PrÊ

DÂ = ÊDÂ in (6.35), we obtain

PℓAfℓ
=([Pr]11 + [Pr]12(I − [Pr]22)

−1[Pr]21)([Af ]11 + [Af ]12(I − [Af ]22)
−1[Af ]21)

=[Pr]11[Af ]11 + [Pr]11[Af ]12(I − [Af ]22)
−1[Af ]21 + [Pr]12(I − [Pr]22)

−1[Pr]21[Af ]11+

+ [Pr]12(I − [Pr]22)
−1[Pr]21[Af ]12(I − [Af ]22)

−1[Af ]21

=[Pr]11[Af ]11 + ([Af ]12 − [Pr]12[Af ]22)(I − [Af ]22)
−1[Af ]21+

+ [Pr]12(I − [Pr]22)
−1(I − [Pr]22)[Af ]21+

+ [Pr]12(I − [Pr]22)
−1(I − [Pr]22)[Af ]22(I − [Af ]22)

−1[Af ]21

=([Pr]11[Af ]11 + [Pr]12[Af ]21) + [Af ]12(I − [Af ]22)
−1[Af ]21 = Afℓ

.

The other relations follow similarly.

By using Lemma 6.9, we obtain that Eℓ and Aℓ commute and the reduced order state
equation

Eℓ
˙̃x(t + 1) = Aℓx̃(t) + Bℓ(u),

is equivalent to
{

Pℓx̃(t + 1) = Afℓ
x̃(t) + Bfℓ

u(t)

E∞ℓ
x̃(t + 1) = (I − Pℓ)x̃(t) + B∞ℓ

u(t)
.
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We have shown that the discrete-time reduced order system as defined in 6.34 is again
positive. The strictly proper part Gsp(s) of the transfer function G(s) is reduced as in the
standard case, whereas the polynomial part P (s) remains unchanged, which leads to
the usual H∞ error bound as for standard balanced truncation in Lemma 6.2.

6.4 Examples

In this section we present some numerical examples to demonstrate the properties
of the discussed model reduction approaches for positive systems. The numerical
tests were run in MATLAB R© Version 7.4.0 on a PC with an Intel(R) Pentium(R) 4 CPU
3.20GHz processor.

Example 6.10 (Continuous-time) Consider a system of n water reservoirs such as
schematically shown in Figure 6.1. All reservoirs R1, . . . , Rn are assumed to be located
on the same level. The base area of Ri and its fill level are denoted by ai and hi,
respectively. The first reservoir R1 has an inflow u which is the input of the system, and
for each i ∈ {1, . . . , n}, Ri has an outflow fo,i through a pipe with diameter do,i. The
output of the system is assumed to be the sum of all outflows. Furthermore, each Ri

and Rj are connected by a pipe with diameter dij = dji ≥ 0. The direct flow from Ri

to Rj is denoted by fij. We assume that the flow depends linearly on the difference
between the pressures on both ends. This leads to the equations

fij(t) = d2
ij · c · (hi(t) − hj(t)), fo,i(t) = d2

o,i · c · (hi(t) − hj(t)),

where c is a constant that depends on the viscosity and density of the medium and
gravity. The fill level of Ri thus satisfies the following differential equation

ḣi =
c

ai

(

−d2
o,ihi(t) +

n∑

j=1

d2
ij(hj(t) − hi(t))

)

+
1

ai

δ1iu(t),

where δ1i denotes the Kronecker symbol, that is δ1i = 1 if i = 1 and zero otherwise.
Then, we obtain System (1) with D = 0 and matrices A = [aij]i,j=1,...,n, B = [bi1]i=1,...,n,
C = [c1j]j=1,...,n with bi1 = δ1i

a1
, ci1 = c · d2

o,i and

aij =
c

ai

·







−d2
o,i −

∑n

k=1 d2
ik i = j,

d2
ij i 6= j,

where we define dii = 0.
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Figure 6.1: System of n water reservoirs

For our illustrative computation, we have constructed the presented compartment
model with ten states. We assume that we have two well connected substructures
each consisting of five reservoirs, where each reservoir is connected with every other
reservoir by a pipe of diameter 1. The substructures are connected with each other by
a pipe of diameter 0.01 between reservoirs one and ten. For simplicity reasons, we set
all base areas of the reservoirs to 1 and also c = 1. The system matrices for this model
are as follows,

A =






















−5.01 1 1 1 1 0 0 0 0 0.01

1 −5 1 1 1 0 0 0 0 0

1 1 −5 1 1 0 0 0 0 0

1 1 1 −5 1 0 0 0 0 0

1 1 1 1 −5 0 0 0 0 0

0 0 0 0 0 −5 1 1 1 1

0 0 0 0 0 1 −5 1 1 1

0 0 0 0 0 1 1 −5 1 1

0 0 0 0 0 1 1 1 −5 1

0.01 0 0 0 0 1 1 1 1 −5.01






















,

B =
[

1 0 0 0 0 0 0 0 0 0
]T

,

C =
[

1 1 1 1 1 1 1 1 1 1
]

.

With standard balanced truncation the reduced model with five states is again positive
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with

Aℓ =










−5.01 1.32 1.32 1.32 1.32

0.76 −5.00 1.00 1.00 1.00

0.76 1.00 −5.00 1.00 1.00

0.76 1.00 1.00 −5.00 1.00

0.76 1.00 1.00 1.00 −5.00










,

Bℓ =
[

0.45 0 0 0 0
]T

,

Cℓ =
[

2.20 2.90 2.90 2.90 2.90
]

.

With singular perturbation balanced truncation the reduced model with five states is
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Figure 6.2: Frequency plot showing original and reduced order models.
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again positive with

Aℓ =










−5.01 1.35 1.35 1.35 1.35

0.76 −5.00 1.00 1.00 1.00

0.76 1.00 −5.00 1.00 1.00

0.76 1.00 1.00 −5.00 1.00

0.76 1.00 1.00 1.00 −5.00










,

Bℓ =
[

0.45 0 0 0 0
]T

,

Cℓ =
[

2.22 2.90 2.90 2.90 2.90
]

.

The frequency responses, i.e., the transfer function G(s) at values s = jω, for ω ∈ [0, 3],
of the original and of the reduced order models are depicted in the upper diagram of
Figure 6.2.The lower diagram shows the frequency response of the error systems along
with the mutual error bound 0.0162.

As an example in discrete-time, we consider the well-known Leslie model [80], which
describes the time evolution of age-structured populations.

Example 6.11 (Discrete-time) Let the time t ∈ N0 describe the reproduction season
(year) and let xi(t), i = 1, . . . , n, represent the number of individuals of age i at time t.
We assume constant survival rates si, i = 0, . . . , n− 1, i.e., the fraction of individuals of
age i that survive for at least one year, and fertility rates fi, i = 1, . . . , n, i.e., the mean
number of offspring born from an individual at age i. For purely illustrative purposes of
this example, we use the estimated data given in [38, p. 118] for squirrel reproduction.
Furthermore, we assume that immigration into the considered tribe can only happen at
birth, i.e., the input is a positive multiple of the first unit vector, and as the output we
take the total population, i.e., the sum of the population numbers over all ages. Thus,
the aging process is described by the following difference equations

xi+1(t + 1) = sixi(t), i = 1, . . . , n − 1, (6.43)

and the first state equation takes into account reproduction and immigration

x1(t + 1) = s0(f1x1(t) + f2x2(t) + . . . + fnxn(t) + u(t)). (6.44)
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The system matrices for squirrel reproduction in [38, p. 118] are as follows,

A =






















0.24 0.48 0.76 0.76 0.76 0.76 0.76 0.76 0.72 0.64

0.24 0 0 0 0 0 0 0 0 0

0 0.30 0 0 0 0 0 0 0 0

0 0 0.33 0 0 0 0 0 0 0

0 0 0 0.34 0 0 0 0 0 0

0 0 0 0 0.33 0 0 0 0 0

0 0 0 0 0 0.30 0 0 0 0

0 0 0 0 0 0 0.28 0 0 0

0 0 0 0 0 0 0 0.24 0 0

0 0 0 0 0 0 0 0 0.27 0






















,

B =
[

0.4 0 0 0 0 0 0 0 0 0
]T

,

C =
[

1 1 1 1 1 1 1 1 1 1
]

.

With standard balanced truncation the reduced model with five states is again positive
with

Aℓ =










0.24 1.25 3.74 5.33 7.12

0.09 0 0 0 0

0 0.16 0 0 0

0 0 0.23 0 0

0 0 0 0.25 0










,

Bℓ =
[

0.19 0 0 0 0
]T

,

Cℓ =
[

2.15 5.60 10.61 15.12 20.18
]

.

With singular perturbation balanced truncation the reduced model with five states is
again positive with

Aℓ =










0.24 1.25 3.74 5.33 10.43

0.09 0 0 0 0

0 0.16 0 0 0

0 0 0.23 0 0

0 0 0 0.25 0










,

Bℓ =
[

0.19 0 0 0 0
]T

,

Cℓ =
[

2.15 5.60 10.61 15.12 29.56
]

.

The frequency responses, i.e., the transfer function G(z) at values z = ejω, for ω ∈
[0, 2π], of the original and of the reduced order models are depicted in the upper diagram
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Figure 6.3: Frequency plot showing original and reduced order models.

of Figure 6.3. The lower diagram shows the frequency response of the error systems
along with the mutual error bound 0.0357.

We now present two examples of descriptor systems in the index 1 case.

Example 6.12 (Continuous-time index 1 descriptor system) For a purely illustrative
example of a continuous-time system in the index 1 case, consider Example 6.10 and,
furthermore, assume that we have an additional reservoir with fill level equal to the
inflow to the system. This results in an additional equation hn+1(t) = u(t). The system
matrices are

E =











1 0 . . . . . . 0

0 1 0 . . . 0
...

. . .
...

1 0

0 . . . 0











, A =

[

AODE 0

0 1

]

,

B =
[

0.4 0 . . . 0 −1
]T

, C =
[

1 . . . 1
]

,
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where AODE denotes the system matrix A in Example 6.10. The reduced order system
obtained by the procedure as described in Section 6.3 is given by

Eℓ =













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0













, Aℓ =













−5.01 1.32 1.32 1.32 1.32 0

0.76 −5 1 1 1 0

0.76 1 −5 1 1 0

0.76 1 1 −5 1 0

0.76 1 1 1 −5 0

0 0 0 0 0 1













,

Bℓ =
[

0.45 0 0 0 0 −1
]T

, Cℓ =
[

2.22 2.90 2.90 2.90 2.90 1
]

.

The frequency responses, i.e., the transfer function G(s) at values s = jω, for ω ∈ [0, 3],
of the original and of the reduced order models are depicted in the upper diagram of
Figure 6.4. The lower diagram shows the frequency response of the error systems
along with the error bound.

 

 

 

 

0

0

1

1

1

0.5

0.5

0.5

1.5

1.5

1.5

2

2

2

2.5

2.5

3

3

100

10−5

10−10

ω

ω

original system

error bound

reduced order system

error of reduced order system

Frequency plots of error system and error bound

Frequency plots of original and reduced order systems

Figure 6.4: Frequency plot showing original and reduced order models.



122 Chapter 6. Positivity preserving model reduction

Example 6.13 (Discrete-time index 1 descriptor system) For an example of a
discrete-time descriptor system in the index 1 case, consider Example 6.11 and addi-
tionally, assume that the number of immigrants at each time t into the considered tribe
is equal to the number of those who die at the age n + 1. This results in an additional
equation xn+1(t) = u(t). The system matrices are

E =











1 0 . . . . . . 0

0 1 0 . . . 0
...

. . .
...

1 0

0 . . . 0











, A =

[

AODE 0

0 1

]

,

B =
[

0.4 0 . . . 0 −1
]T

, C =
[

1 . . . 1
]

,

where AODE denotes the system matrix A in Example 6.11.

The reduced order system obtained by the procedure as described in Section 6.3 is
given by

Eℓ =













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0













, Aℓ =













0.24 1.25 3.74 5.32 10.41 0

0.092 0 0 0 0 0

0 0.16 0 0 0 0

0 0 0.23 0 0 0

0 0 0 0.25 0 0

0 0 0 0 0 1













,

Bℓ =
[

0.19 0 0 0 0 −1
]T

, Cℓ =
[

2.16 5.61 10.61 15.1 29.54 1
]

.

The frequency responses, i.e., the transfer function G(z) at values z = ejω, for ω ∈
[0, 2π], of the original and of the reduced order models are depicted in Figure 6.5. The
lower diagram shows the frequency response of the error systems along with the error
bound.

Summary

In this chapter we have presented a model reduction approach that preserves positiv-
ity of continuous-time as well as of discrete-time systems in the standard and in the
descriptor case. In particular, we have reviewed the basic concept of standard bal-
anced truncation and singular perturbation balanced truncation methods and extended
these to preserve positivity of standard systems. The proposed approach is based
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Figure 6.5: Frequency plot showing original and reduced order models.

on the existence of a diagonal solution of Lyapunov inequalities, which may be used
instead of Lyapunov equations in the classical approach. In this method, along with
positivity, also stability is preserved and an error bound in the H∞ norm is provided.
Furthermore, we have generalised this positivity preserving model reduction technique
to positive descriptor systems. The additive decomposition of the transfer function into
a strictly proper and a polynomial part allows to use the results established for the stan-
dard case. The strictly proper part may be reduced as in the standard case, whereas
the polynomial part remains unchanged. This guarantees the same H∞ error bound
as in the standard case. Positivity of the reduced order system has been shown using
the projector properties proved in Section 2.4, and the special properties of the system
matrices established in Section 3.2.2. The functionality of the proposed method has
been illustrated by some numerical examples. Note that the numerical solution of linear
matrix inequalities is up to now only possible for small to medium-size problems [20].
However, further research is conducted in this area.





Chapter 7

Conclusions

I think and think for months and years. Ninety-nine times, the conclusion is false. The
hundredth time I am right.

- Albert Einstein

In the present thesis we define and characterise (internally) positive descriptor systems
and discuss several related topics. We establish two results in nonnegative linear al-
gebra that are fundamental for the analysis of such systems. Furthermore, stability
properties, solution of Lyapunov equations and model reduction, which constitute cen-
tral topics in systems and control theory, are treated in the context of positivity. All result
are shown for both, continuous-time and discrete-time systems.

In the following, we briefly summarise the novel contributions of this thesis disclosing
own contributions and results that were obtained in collaboration with other authors.

Chapter 2 addresses mainly two important topics in linear algebra that shape up as
key results for the analysis of positive descriptor systems. A suitable generalisation
of the well-known Perron-Frobenius theory that is presented in Section 2.2 has been
developed in joint work with V. Mehrmann and R. Nabben and was published in [96].
The positivity of standard, generalised and shifted Schur complements of a positive
projector presented in Section 2.4 was proved in joint work with S. Friedland and was
published in [42].

The generalisation of the definition of positivity and the characterisations of positive
systems to the descriptor case established in Section 3.2, Chapter 3, were published
in [124]. In Section 3.2.2 we analyse and specify the special structure, which the char-
acterisation of positivity for descriptor systems in Section 3.2.1 imposes on the system
matrices.
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In Chapter 4 we present generalisations of (internal) stability criteria for the case of
positive descriptor systems. By using the generalised Perron-Frobenius theory devel-
oped in Section 2.2, it is shown that if the spectral projector onto the finite deflating
subspace of the matrix pair (E,A) is nonnegative, then all stability criteria for standard
positive systems take a comparably simple form in the positive descriptor case. As an
application of the framework established throughout this chapter, we show how stability
criteria of switched standard positive systems can be extended to the descriptor case.
The results of this chapter were published in [124].

In Chapter 5 we present sufficient conditions that guarantee doubly nonnegative solu-
tions of projected generalised Lyapunov equations in the positive descriptor case, which
were also published in [124].

Chapter 6 treats the problem of positivity preserving model reduction. The method pro-
posed in Section 6.2 for standard systems has been developed in joint work with T. Reis
and was published in [108]. It is based on the existence of a diagonal solution of Lya-
punov inequalities combined with standard balanced truncation or singular perturbation
balanced truncation methods. Along with positivity, also stability is preserved and an
error bound in the H∞ norm is available.

The generalisation of positivity preserving model reduction to positive descriptor sys-
tems proposed in Section 6.3 is based on the additive decomposition of the transfer
function into a strictly proper and a polynomial part. The strictly proper part is reduced
as in the standard case, whereas the polynomial part remains unchanged, which pro-
vides us with the same H∞ error bound as in the standard case. Positivity of the re-
duced order system is shown using the projector properties proved in Section 2.4, and
the special properties of the system matrices established in Section 3.2.2.



Chapter 8

Outlook and open questions

[..] but I now see that the whole problem is so intricate that it is safer to leave its
solution to the future.

- Charles Darwin, “The Descent of Man”, 2nd edition, 18741

In the scope of this thesis, we have treated a set of topics and presented several results
that, so hopes the author, lay the foundation for further investigation and understanding
of positive descriptor systems. However, the domain of theory, simulation and control
of positive descriptor systems is still widely open. In the following, we list some related
open problems and research directions, which may be of interest in the future.

Simulation

When modelling real world problems, one often encounters the situation that the sys-
tems are not easily modelled from first principles or specifications, and therefore a
dynamical description of the system is not available but has to be fitted from measured
input-output data. This leads to the problem of model or parameter identification. One
approach that such data allows is to approximate the transfer function of the system.
The problem of finding a realisation of this transfer function of minimal size is mostly
understood for unconstrained systems, see, e.g., [5, Section 4.4]. However, for positive
systems this is still an open problem where only sufficient existence conditions could
be given so far [13]. On the other hand, there are examples of transfer functions, where
one can prove that the minimal realisation size for an unconstrained system cannot be
achieved when requiring that the realisation is positive [16].

1What the quote refers to is the sex ratio problem, whose solution is known as Fischer’s theory (1930)
but which in fact was solved only a decade later by C. Düsing (1884).
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Discretisation is the first step in solving systems of differential or differential-algebraic
equations numerically. A suitable discretisation has to preserve important properties
of the original system. Hence, for simulation of positive systems it will be fundamental
to find and explore discretisation techniques that would preserve the positivity condi-
tion. In, e.g., [61], [111] some discretisation techniques are discussed. In [111] it was
shown that for two point boundary value problems special inverse-isotone discretisation
methods lead to a nonnegative solution. For spatial methods introduced in [61] the re-
tention of positivity cannot be guaranteed. From these results, one can see that the task
of finding the right discretisation technique for positive systems of ordinary differential
equations is already problematic. For positive descriptor systems this area is still widely
open.

Although there are many different concepts of an index of differential-algebraic equa-
tions, all of them aim to make a characterisation or classification of the DAE with respect
to its solvability. For instance, only for the differentiation index 1 DAEs, the stability of the
numerical solution can be generally guaranteed. For higher index differential-algebraic
equations, it can happen that although the problem has a unique solution, the discre-
tised equation is not stably solvable. Therefore, index reduction techniques are used
to reduce DAEs of higher index to the index 1 case. Such techniques were discussed,
e.g., in [57], [73], [75], [92]. The existing techniques do not take into account positivity,
which would be the important property to preserve in our context.

Control

Reachability, controllability, observability and stabilisability are the core notions of the
axiomatic framework in control theory. A systematic extension of this framework to
the case of positive descriptor systems is therefore essential. For positive systems of
ODEs, these concepts were partially studied, e.g., in [22], [30], [40], [62], [64], [109],
[127], [128]. For positive systems of DAEs, this problem has not been addressed yet.

One central topic in control theory is that of finding an optimal control u in the sense
that it would minimise a certain assigned cost function. Here again, the aim would be
to extend the existing theory, see, e.g., [35], [53], [54], [56], [63], to positive descriptor
systems. For systems of ordinary and stochastic differential equations this optimisa-
tion problem leads to the problem of solving differential or algebraic Riccati equations.
Therefore, an obvious idea is to derive a corresponding equivalent Riccati formulation
of the problem for positive descriptor systems and, by using results as, e.g., in [53], [56],
to prove the existence of an elementwise nonnegative minimal solution.
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Time-varying and nonlinear systems

In the scope of this thesis, we have studied positive descriptor systems in the linear
time-invariant case. When dealing with real world applications, one recognises that
most problems in biology and medicine show nonlinear behaviour [67], [104], [126].
Therefore, the study of positive nonlinear systems is indispensable.

A possible approach to deal with positive nonlinear systems is to develop positivity
preserving linearisation techniques. Standard linearisation techniques do not preserve
positivity in general, although the application of the classical procedures sometimes
leads to the desired outcome [59]. It is possible that linearisation along constant tra-
jectories, which results in linear time-invariant systems, may not produce a positive
system or the accuracy of the approximation is not sufficient. Alternatively, the nonlin-
ear system may be linearised along nonconstant trajectories where one obtains linear
time-varying systems [28]. In this case, the concepts presented in this thesis would
have to be extended to the time-varying case.
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