Convex Quadratic Programming Relaxations
for Network Scheduling Problems*

Martin Skutella**

Technische Universitét Berlin
skutella@math.tu-berlin.de
http://www.math.tu-berlin.de/ skutella/

Abstract. In network scheduling a set of jobs must be scheduled on un-
related parallel processors or machines which are connected by a network.
Initially, each job is located on some machine in the network and cannot
be started on another machine until sufficient time elapses to allow the
job to be transmitted there. This setting has applications, e.g., in dis-
tributed multi-processor computing environments and also in operations
research; it can be modeled by a standard parallel machine environment
with machine-dependent release dates. We consider the objective of min-
imizing the total weighted completion time.

The main contribution of this paper is a provably good convex quadratic
programming relaxation of strongly polynomial size for this problem. Un-
til now, only linear programming relaxations in time- or interval-indexed
variables have been studied. Those LP relaxations, however, suffer from
a huge number of variables. In particular, the best previously known re-
laxation is of exponential size and can therefore not be solved exactly
in polynomial time. As a result of the convex quadratic programming
approach we can give a very simple and easy to analyze randomized
2—-approximation algorithm which slightly improves upon the best previ-
ously known approximation result. Furthermore, we consider preemptive
variants of network scheduling and derive approximation results and re-
sults on the power of preemption which improve upon the best previously
known results for these settings.

1 Introduction

We study the following parallel machine scheduling problem. A set J of n jobs
has to be scheduled on m unrelated parallel machines which are connected by
a network. The jobs continually arrive over time and each job originates at
some node of the network. Therefore, before a job can be processed on another
machine, it must take the time to travel there through the network. This is

* © Springer-Verlag. To appear in the proceedings of the 7th Annual European Sym-
posium on Algorithms (ESA’99).
** This research was partially supported by DONET within the frame of the TMR
Programme (contract number ERB FMRX-CT98-0202) while the author was staying
at C.0.R.E., Louvain-la-Neuve, Belgium, for the academic year 1998/99.

2 Martin Skutella

modeled by machine-dependent release dates r;; > 0 which denote the earliest
point in time when job j may be processed on machine i. Together with each
job j we are given its positive processing requirement which also depends on the
machine ¢ job j will be processed on and is therefore denoted by p;;. Each job
j must be processed for the respective amount of time without interruption on
one of the m machines, and may be assigned to any of them. However, for a
given job j it may happen that p;; = oo for some (but not all) machines 4 such
that job j cannot be scheduled on those machines. Every machine can process
at most one job at a time. This network scheduling model has been introduced
in [4,1].

We denote the completion time of job j by C;. The goal is to minimize the
total weighted completion time: a weight w; > 0 is associated with each job
J and we seek to minimize } . ;w;C;. In scheduling, it is quite convenient
to refer to the respective problems using the standard classification scheme of
Graham, Lawler, Lenstra, and Rinnooy Kan [7]. The problem R |r;; | > w;C},
just described, is strongly NP-hard, even for the special case of two identical
parallel machines without nontrivial release dates, see [2,12].

Since we cannot hope to be able to compute optimal schedules in polynomial
time, we are interested in how close one can approach the optimum in polynomial
time. A (randomized) a—approximation algorithm computes in polynomial time
a feasible solution to the problem under consideration whose (expected) value is
bounded by a times the value of an optimal solution; « is called the performance
guarantee or performance ratio of the algorithm. All randomized approximation
algorithms that we discuss or present can be derandomized by standard methods;
therefore we will not go into the details of derandomization.

The first approximation result for the scheduling problem R|r;; | w;C;
was obtained by Phillips, Stein, and Wein [15] who gave an algorithm with
performance guarantee O(log®n). The first constant factor approximation was
developed by Hall, Shmoys, and Wein [9] (see also [8]) whose algorithm achieves
performance ratio %. Generalizing a single machine approximation algorithm
of Goemans [6], this result was then improved by Schulz and Skutella [18] to
a (2 + e)—approximation algorithm. All those approximation results rely some-
how on (integer) linear programming formulations or relaxations in time-indexed
variables. In the following discussion we assume that all processing times and

release dates are integral; furthermore, we define pmax := max; j pi;.

Phillips, Stein, and Wein modeled the network scheduling problem as a hy-
pergraph matching problem by matching each job j to p;; consecutive time
intervals of length 1 on a machine ¢. The underlying graph contains a node for
each job and each pair formed by a machine and a time interval [t,¢+ 1) where ¢
is integral and can achieve values in a range of size np,q,- Therefore, since pmax
may be exponential in the input size, the corresponding integer linear program
contains exponentially many variables as well as exponentially many constraints.
Phillips et al. eluded this problem by partitioning the set of jobs into groups such
that the jobs in each group can be scaled down to polynomial size. However, this
complicates both the design and the analysis of their approximation algorithm.

Convex Quadratic Programming Relaxations for Network Scheduling 3

The result of Hall, Shmoys, and Wein is based on a polynomial variant of
time-indexed formulations which they called interval-indered. The basic idea is
to replace the intervals of length 1 by time intervals [2¥,2F+1) of geometrically
increasing size. The decision variables in the resulting linear programming re-
laxation then indicate on which machine and in which time interval a given job
completes. Notice, however, that one looses already at least a factor of 2 in this
formulation since the interval-indexed variables do not allow a higher precision
for the completion times of jobs. The approximation algorithm of Hall et al.
relies on Shmoys and Tardos’ rounding technique for the generalized assignment
problem [20].

Schulz and Skutella generalized an LP relaxation in time-indexed variables
that was introduced by Dyer and Wolsey [5] for the corresponding single machine
scheduling problem. It contains a decision variable for each triple formed by a
job, a machine, and a time interval [¢t,¢ + 1) which indicates whether the job is
being processed in this time interval on the respective machine. The resulting LP
relaxation is a 2-relaxation of the scheduling problem under consideration, i.e.,
the optimum LP value is within a factor 2 of the value of an optimal schedule.
However, as the formulation of Phillips et al., this relaxation suffers from an expo-
nential number of variables and constraints. One can overcome this drawback by
turning again to interval-indexed variables. However, in order to ensure a higher
precision, Schulz and Skutella used time intervals of the form [(1+¢)¥, (14¢)k*1)
where € > 0 can be chosen arbitrarily small; this leads to a (2 + ¢)-relaxation
of polynomial size. Notice, however, that the size of the relaxation still depends
substantially on pya.x and may be huge for small values of €. The approximation
algorithm based on this LP relaxation uses a randomized rounding technique.

For the problem of scheduling unrelated parallel machines in the absence
of nontrivial release dates R| | > w;Cj, the author has introduced a convex
quadratic programming relaxation that leads to a simple %—approximation algo-
rithm [22]. One of the basic observations for this result is that in the absence of
nontrivial release dates the parallel machine problem can be reduced to an as-
signment problem of jobs to machines; for a given assignment of jobs to machines
the sequencing of the assigned jobs can be done optimally on each machine i by
applying Smith’s Ratio Rule [24]: schedule the jobs in order of nonincreasing
ratios w; /p;;. Therefore, the problem can be formulated as an integer quadratic
program in assignment variables. An appropriate relaxation of this program to-
gether with randomized rounding leads to the approximation result mentioned
above. Independently, the same result has later also been derived by Jay Sethu-
raman and Mark S. Squillante [19].

Unfortunately, for the general network scheduling problem including release
dates the situation is more complicated; for a given assignment of jobs to ma-
chines, the sequencing problem on each machine is still strongly NP-hard, see
[12]. However, we know that in an optimal schedule a ‘violation’ of Smith’s Ratio
Rule can only occur after a new job has been released; in other words, whenever
two successive jobs on machine i can be exchanged without violating release
dates, the job with the higher ratio w;/p;; will be processed first in an optimal

4 Martin Skutella

schedule. Therefore, the sequencing of jobs that are being processed between
two successive release dates can be done optimally by Smith’s Ratio Rule. We
make use of this insight by partitioning the processing on each machine ¢ into n
time slots which are essentially defined by the n release dates r;;, j € J; since
the sequencing of jobs in each time slot is easy, we have to solve an assignment
problem of jobs to time slots and can apply similar ideas as in [22]. In partic-
ular, we derive a convex quadratic programming relaxation in n?m assignment
variables and O(nm) constraints. Randomized rounding based on an optimal
solution to this relaxation finally leads to a very simple and easy to analyze
2—-approximation algorithm for network scheduling.

Our technique can be extended to network scheduling problems with pre-
emptions. In preemptive scheduling, a job may repeatedly be interrupted and
continued later on another (or the same) machine. In the context of network
scheduling it is reasonable to assume that after a job has been interrupted on
one machine, it cannot immediately be continued on another machine; it must
again take the time to travel there through the network. We call the delay caused
by such a transfer communication delay. In a similar context, communication de-
lays between precedence constrained jobs have been studied, see, e.g., [14].

We give a 3-approximation algorithm for the problem R |r;;, pmtn | w;C;
that, in fact, does not make use of preemptions but computes nonpreemptive
schedules. Therefore, this approximation result also holds for preemptive net-
work scheduling with arbitrary communication delays. Moreover, it also implies
a bound on the power of preemption, i.e., one cannot gain more than a fac-
tor 3 by allowing preemptions. For the problem without nontrivial release dates
R|pmitn | w;C;, the same technique yields a 2-approximation algorithm. For
the preemptive scheduling problems without communication delays, Phillips,
Stein, and Wein [16] gave an (8 + €)—approximation. In [21] the author has
achieved slightly worse results than those presented here, based on a time-
indexed LP relaxation in the spirit of [18].

The paper is organized as follows. In the next section we introduce the con-
cept of scheduling in time slots. We give an integer quadratic programming
formulation of the network scheduling problem in Section 3 and show how it
can be relaxed to a convex quadratic program. In Section 4 we present a sim-
ple 2—approximation algorithm and prove a bound on the quality of the convex
quadratic programming relaxation. Finally, in Section 5, we briefly sketch the
results and techniques for preemptive network scheduling.

Due to space limitations, we do not provide proofs in this extended abstract;
we refer to the full paper [23] which combines [22] and the paper at hand and
can be found on the authors homepage.

2 Scheduling in time slots

The main idea of our approach for the scheduling problem R |r;; | > w;Cj is to
somehow get rid of the release dates of jobs. We do this by partitioning time
on each machine 7 into several time slots. Each job is being processed on one

Convex Quadratic Programming Relaxations for Network Scheduling 5

machine in one of its time slots and we make sure that job j can only be processed
in a slot that starts after its release date.

Let pi;, < pi, < -+ < p;, be an ordering of the release dates 745, j € J;
moreover, we set p;, , = oo. For a given feasible schedule we say that iz, the
kth time slot on machine i, contains all jobs j that are started within the interval
[Pir > Pirs,) O machine i; we denote this by j € ix. We may assume that there
is no idle time between the processing of jobs in one time slot, i.e., all jobs in a
slot are processed one after another without interruption.

Moreover, as a consequence of Smith’s Ratio Rule we can restrict to schedules
where the jobs in time slot i are sequenced in order of nonincreasing ratios
wj/pij. Throughout the paper we will use the following convention: whenever
we apply Smith’s Ratio Rule in a time slot on machine ¢ and wy/pir = w;/psj
for a pair of jobs j, k&, the job with smaller index is scheduled first. For each
machine i = 1,... ,m we define a corresponding total order (J, <;) on the set of
jobs by setting j <; k if either w;/p;; > wg/pir Or w;/pij = wi/pir, and j < k.

Lemma 1. In an optimal solution to the scheduling problem under considera-
tion, the jobs in each time slot iy are scheduled without interruption in order of
nondecreasing ratios w;/p;;j. Furthermore, there exists an optimal solution where
the jobs are sequenced according to <; in each time slot iy,.

Notice that there may be several empty time slots ix. This happens in partic-
ular if p;, = p;,,, - Therefore it would be sufficient to introduce only g; time slots
for machine ¢ where g; is the number of different values r;;, j € J. For example,
if there are no nontrivial release dates (i.e., r;; = 0 for all ¢ and j), we only need
to introduce one time slot [0,00) on each machine. The problem R| | > w;C;
has been considered in [22]; for this special case our approach coincides with the
one given there.

Up to now we have described how a feasible schedule can be interpreted as a
feasible assignment of jobs to time slots. We call an assignment feasible if each
job j is being assigned to a time slot i, with p;, > r;;. On the other hand, for a
given feasible assignment of the jobs in J to time slots we can easily construct
a corresponding feasible schedule: Sequence the jobs in time slot i; according
to <; and start it as early as possible after the jobs in the previous slot on
machine ¢ are finished but not before p;, ; in other words, the starting time s;,
of time slot i is given by s;, := p;; and si,,, = max{pi,, i, + 2 e, Pish
fork=1,...,n—1.

Lemma 2. Given its assignment of jobs to time slots, we can reconstruct an
optimal schedule meeting the properties described in Lemma 1.

We close this section with one final remark. Notice that several feasible as-
signments of jobs to time slots may lead to the same feasible schedule. Consider,
e. g., an instance consisting of three jobs of unit length and unit weight that have
to be scheduled on a single machine. Jobs 1 and 2 are released at time 0, while
job 3 becomes available at time 1. We get an optimal schedule by processing the

6 Martin Skutella

jobs without interruption in order of increasing numbers. This schedule corre-
sponds to five different feasible assignments of jobs to time slots. We can assign
job 1 to one of the first two slots, job 2 to the same or a later slot, and finally
job 3 to slot 3.

3 A convex quadratic programming relaxation

As a consequence of Lemma 2 we have reduced the scheduling problem under
consideration to finding an optimal assignment of jobs to time slots. Therefore
we can give a formulation of R | r;; | Y w;C}; in assignment variables a;, ; € {0,1}
where a;,; = 1 if job j is being assigned to time slot i, and a;,; = 0 otherwise.
This leads to the following integer quadratic program:

minimize E w;C}

J

subject to Z a;; =1 for all j (1)
ik
Sii = Piy for all 4 (2)
Sipyr = max{pik+1) Si, T Z aikjpz-j} for all 4, k 3)

J
C] = zaikj (Sik +pz] + z aikj/pij,) for all J (4)
i,k],'<z]

g =0 if pi, <mij (5)
ai.j € 0,1} for all 4, &, j

Constraints (1) ensure that each job is being assigned to exactly one time slot.
In constraints (2) and (3) we set the starting times of the time slots as described
in Section 2. If job j is being assigned to time slot i, its completion time is
the sum of the starting time s;, of this slot, its own processing time p;;, and
the processing times of other jobs j' <; j that are also scheduled in this time
slot. The right hand side of (4) is the sum of these expressions over all time
slots i, weighted by a;, ;; it is thus equal to the completion time of j. Finally,
constraints (5) ensure that no job is being processed before its release date.

It follows from our considerations in Section 2 that we could replace (5) by
the stronger constraint

Q55 = 0 if Pir < Tij O Piy, = Pipiy

which reduces the number of available time slots on each machine. For the special
case R| |Y_ w,;C; this leads to the integer quadratic program that has been
introduced in [22]. It is also shown there that it is still NP-hard to solve the
continuous relaxation of this integer quadratic program; however, it can be solved
in polynomial time if the term p;; on the right hand side of (4) is replaced by

pij (1 + aij)/2.

Convex Quadratic Programming Relaxations for Network Scheduling 7

Observe that this replacement does not affect the value of the integer qua-
dratic program since the new term is equal to p;; whenever a;; = 1. This
motivates the study of the following quadratic programming relaxation (QP)
for the general problem including release dates:

minimize E w;C;

J

subject to Z(lik]’ =1 for all j

i,k

Siy = Piy for all ¢ (6)
(QP) Sikp1 — maX{pik+17 S, + Zaikjpij} for all ia k (7)

J
1+ ay,; .
C] = Z Qi j (sik + %p” + Z aikj,pij/) for all] (8)
ik 3'<ig
a;,; =0 if piy, <1y
@i >0 for all ¢, k, j

Notice that a solution to this program is uniquely determined by giving the
values of the assignment variables a;, ;. In contrast to the case without nontrivial
release dates, we cannot directly prove that this quadratic program is convex.
Nevertheless, in the remaining part of this section we will show that it can be
solved in polynomial time. The main idea is to show that one can restrict to
solutions satisfying s;, = p;, for all i and k. Adding these constraints to (QP)
then leads to a convex quadratic program.

Lemma 3. For all instances of R|r;; | Y w;C; there exists an optimal solution
to (QP) satisfying s;, = ps, for all i and k.

As a consequence of Lemma 3 we can replace the variables s;, in (QP) by
the constants p;, by changing constraints (7) to

Zaikjpij < Piry1 — Pis for all i, k.
J
Furthermore, if we remove constraints (8) and replace C; in the objective func-
tion by the right hand side of (8), we can reformulate the quadratic programming
relaxation as follows:

minimize b"a + $a’ Da (9)
subject to Zaikj =1 for all j (10)
ik
(cQr) Zaikjpij < Pirg1 — Pin for all ¢, k (11)
J
@ipj =0 if pi, <y

8 Martin Skutella

Here, a € R™ denotes the vector consisting of all variables a;,; lexicographi-
cally ordered with respect to the natural order 11, 15,... ,m, of the time slots
and then, for each slot iy, the jobs ordered according to <;. The vector b € R™
is given by bi; = 3w;pij + w;pi,, and D = (d(ikj)(i;,j’)) is a symmetric
mn? X mn?-matrix given through

0 if g 75 i;c’ >

daniyi,n =4 09 Wik =iy and j < 7',
k: wpiy if iy =i}, and j' <; j,

W;Pij if 4y, :i;ﬁ: and j zjl'

Because of the lexicographic order of the indices the matrix D is decomposed
into mn diagonal blocks corresponding to the mn time slots. If we assume that
the jobs are indexed according to <; and if we denote p;; simply by p;, each
block corresponding to a time slot on machine ¢ has the following form:

wip1 w2Pp1 w3p1 - WpP1
wW2P1 W2p2 W3pP2 * - Wnpp2

W3p1 W3p2 wW3p3 - - WppP3

WnpP1 WnpP2 WnP3 - WnpPn

It has been observed in [22] that those matrices are positive semidefinite and
therefore the whole matrix D is positive semidefinite. In particular, the objective
function (9) is convex and the quadratic programming relaxation can be solved
in polynomial time, see, e.g., [11, 3].

The convex quadratic programming relaxation (CQP) is in some sense sim-
ilar to the linear programming relaxation in time-indexed variables that has
been introduced in [18]. Without going into the details, we give a rough idea
of the common underlying intuition of both relaxations: a job may be split into
several parts (corresponding to fractional values a;, ; in (CQP)) who can be
scattered over the machines and over time. The completion time of a job in such
a ‘fractional schedule’ is somehow related to its mean busy time; the mean busy
time of a job is the average point in time at which its fractions are being pro-
cessed (see (8) where C; is set to the average over the terms in brackets on the
right hand side weighted by a;, ;). However, in contrast to the time-indexed LP
relaxation, the construction of the convex quadratic program (CQP) contains
more insights into the structure of an optimal schedule. As a result, (CQP)
is of strongly polynomial size while the LP relaxation contains an exponential
number of time-indexed variables and constraints.

4 A simple 2—approximation algorithm

The value of an optimal solution to the convex quadratic programming relaxation
(CQP) of the last section is a lower bound on the value of an optimal schedule.

Convex Quadratic Programming Relaxations for Network Scheduling 9

Moreover, from the structure of an optimal solution to the relaxation we can gain
important insights that turn out to be useful in the construction of a provably
good solution to the scheduling problem under consideration. In this context,
randomized rounding has proved to be a powerful algorithmic tool. On the one
hand, it yields very simple and easy to analyze algorithms; on the other hand, it
is able to minutely capture the structure of the solution to the relaxation and to
carry it over to a feasible schedule. The idea of using randomized rounding in the
study of approximation algorithms was introduced by Raghavan and Thompson
[17], an overview can be found in [13].

For a given optimal solution a to (CQP), we compute an integral solution a
by setting for each job j exactly one of the variables a;, ; to 1 with probabilities
given through a;, ;. Notice that 0 < a;,; < 1 and the sum of the a;,; for job
Jj is equal to one by constraints (10). Although the integral solution a does
not necessarily fulfill constraints (11), it represents a feasible assignment of jobs
to time slots, i.e., a feasible solution to (QP), and thus a feasible schedule.
For our analysis we require that the random choices are performed pairwise
independently for the jobs.

Theorem 1. Computing an optimal solution to (CQP) and using randomized
rounding to turn it into a feasible schedule is a 2—approzrimation algorithm for
the problem R|ri; | > w;C;.

Theorem 1 follows from the next lemma which gives a slightly stronger result
including job-by-job bounds.

Lemma 4. Using randomized rounding in order to turn an arbitrary feasible
solution to (QP) into a feasible assignment of jobs to time slots yields a sched-
ule such that the expected completion time of each job is bounded by twice the
corresponding value (8) in the given solution to (QP).

Since the value of an optimal solution to (CQP) is a lower bound on the
value of an optimal schedule, Theorem 1 follows from Lemma 4 and linearity of
expectations.

Our result on the quality of the computed schedule described in Theorem 1
also implies a bound on the quality of the quadratic programming relaxation
that served as a lower bound in our estimations.

Corollary 1. For instances of R|rij | Y- w;Cj, the value of an optimal solution
to the relaxation (CQP) is within a factor 2 of the value of an optimal schedule.
This bound is tight even for the case of identical parallel machines without release
dates P| | > w,C;.

5 Extensions to scheduling with preemptions

In this section we discuss the preemptive problem R |r;;, pmtn|) w;C; and
generalizations to network scheduling. In contrast to the nonpreemptive setting,
a job may now repeatedly be interrupted and continued later on another (or the

10 Martin Skutella

same) machine. In the context of network scheduling, it is reasonable to assume
that after a job has been interrupted on one machine it cannot be continued on
another machine until a certain communication delay is elapsed that allows the
job to travel through the network to its new machine.

The ideas and techniques presented in the last section can be generalized to
this setting. However, since we have to use a somewhat weaker relaxation in order
to capture the possibility of preemptions, we only get a 3—approximation algo-
rithm. This result can be improved to performance guarantee 2 in the absence
of nontrivial release dates R |pmitn|) w;C; but with arbitrary communication
delays. For reasons of brevity we only give a brief sketch of the main differences
to the nonpreemptive setting.

Although the quadratic program (QP) allows to break a job into fractions
and thus to preempt it by choosing fractional values a;, ;, it is not a relaxation
of R|rij, pmin | w;C;. However, we can turn it into a relaxation by replacing
(8) with the weaker constraint

iy _
Cj= Zam’ <3ik + %pﬁ + Z aikj’pij’) for all j.
ik J'<ij

Moreover, we restrengthen the relaxation by adding the following constraint
D wiCi =Y wi Y aipij
J J ik

which bounds the objective value from below by the weighted sum of processing
times (a similar constraint has already been used in [22]). Since Lemma 3 can be
carried over to the new setting, we again get a convex quadratic programming
relaxation.

In order to turn an optimal solution to this relaxation into a feasible schedule,
we apply exactly the same randomized rounding heuristic as in the nonpreemp-
tive case. In particular, we do not make use of the possibility to preempt jobs
but compute a nonpreemptive schedule. Therefore, our results hold for the case
of arbitrary communication delays.

Theorem 2. Randomized rounding based on an optimal solution to the con-
ver quadratic programming relazation yields a 3—approximation algorithm for
R|rij, pmin| Y w;C; and a 2—approzimation algorithm for R|pmin|> w;C;,
even for the case of arbitrary communication delays. The same bounds hold for
the quality of the relaxation.

Theorem 2 also implies bounds on the power of preemption. Since we can
compute a nonpreemptive schedule whose value is bounded by 3 respectively 2
times the value of an optimal preemptive schedule, we have derived upper bounds
on the ratios of optimal nonpreemptive to optimal preemptive schedules.

Corollary 2. For instances of R|7; | Y w;C}, the value of an optimal nonpre-
emptive schedule is at most a factor 3 above the value of an optimal preemptive
schedule. In the absence of nontrivial release dates, this bound can be improved
to 2.

Convex Quadratic Programming Relaxations for Network Scheduling 11
6 Conclusion

We have presented convex quadratic programming relaxations of strongly poly-
nomial size which lead to simple and easy to analyze approximation algorithms
for preemptive and nonpreemptive network scheduling. Although our approach
and the presented results might be at first sight of mainly theoretical interest,
we hope that nonlinear relaxations like the one we discuss in this paper will
also prove useful in solving real world scheduling problems in the near future.
With the development of better algorithms that solve convex quadratic programs
more efficiently in practice, the results obtained by using such relaxations might
become comparable or even better than those based on linear programming re-
laxations with a huge number of time-indexed variables and constraints.

Precedence constraints between jobs play a particularly important role in
most real world scheduling problems. Therefore it would be both of theoreti-
cal and of practical interest to incorporate those constraints into our convex
quadratic programming relaxation.

Hoogeveen, Schuurman, and Woeginger [10] have shown that the problems
R|7;|>Cjand R| |} w;C; cannot be approximated in polynomial time within
arbitrarily good precision, unless P=NP. It is an interesting open problem to
close the gap between this negative result and the 2—approximation algorithm
presented in this paper.

References

1. B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling.
In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing,
pages 571 — 581, 1992.

2. J. L. Bruno, E. G. Coffman Jr., and R. Sethi. Scheduling independent tasks to
reduce mean finishing time. Communications of the Association for Computing
Machinery, 17:382 — 387, 1974.

3. S. J. Chung and K. G. Murty. Polynomially bounded ellipsoid algorithms for
convex quadratic programming. In O. L. Mangasarian, R. R. Meyer, and S. M.
Robinson, editors, Nonlinear Programming 4, pages 439 — 485. Academic Press,
1981.

4. X. Deng, H. Liu, J. Long, and B. Xiao. Deterministic load balancing in computer
networks. In Proceedings of the 2nd Annual IEEE Symposium on Parallel and
Distributed Processing, pages 50 — 57, 1990.

5. M. E. Dyer and L. A. Wolsey. Formulating the single machine sequencing problem
with release dates as a mixed integer program. Discrete Applied Mathematics,
26:255 — 270, 1990.

6. M. X. Goemans. Improved approximation algorithms for scheduling with release
dates. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 591 — 598, 1997.

7. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5:287 — 326, 1979.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Martin Skutella

. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average

completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22:513 — 544, 1997.

. L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion

time: Off-line and on-line algorithms. In Proceedings of the 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 142 — 151, 1996.

H. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results
for scheduling problems with minsum criteria. In R. E. Bixby, E. A. Boyd, and
R. Z. Rios-Mercado, editors, Integer Programming and Combinatorial Optimiza-
tion, volume 1412 of Lecture Notes in Computer Science, pages 353 — 366. Springer,
Berlin, 1998.

M. K. Kozlov, S. P. Tarasov, and L. G. Hacijan. Polynomial solvability of convex
quadratic programming. Soviet Mathematics Doklady, 20:1108 — 1111, 1979.

J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343 — 362, 1977.

R. Motwani, J. Naor, and P. Raghavan. Randomized approximation algorithms in
combinatorial optimization. In D. S. Hochbaum, editor, Approzimation algorithms
for NP-hard problems, chapter 11, pages 447 — 481. Thomson, 1996.

C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM Journal on Computing, 19:322 — 328, 1990.
C. Phillips, C. Stein, and J. Wein. Task scheduling in networks. SIAM Journal on
Discrete Mathematics, 10:573 — 598, 1997.

C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the
presence of release dates. Mathematical Programming, 82:199 — 223, 1998.

P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365 — 374, 1987.

A. S. Schulz and M. Skutella. Scheduling-LPs bear probabilities: Randomized
approximations for min—sum criteria. In R. Burkard and G. J. Woeginger, editors,
Algorithms — ESA °97, volume 1284 of Lecture Notes in Computer Science, pages
416 — 429. Springer, Berlin, 1997.

J. Sethuraman and M. S. Squillante. Optimal scheduling of multiclass prallel
machines. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 963 — 964, 1999.

D. B. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461 — 474, 1993.

M. Skutella. Approzimation and Randomization in Scheduling. PhD thesis, Tech-
nical University of Berlin, Germany, 1998.

M. Skutella. Semidefinite relaxations for parallel machine scheduling. In Proceed-
ings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
pages 472 — 481, 1998.

M. Skutella. Convex Quadratic and Semidefinite Programming Relaxations in
Scheduling. Manuscript, 1999.

W. E. Smith. Various optimizers for single—stage production. Naval Research and
Logistics Quarterly, 3:59 — 66, 1956.

