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ABSTRACT 

The automotive industry is currently experiencing a volatile market environment. To be 

successful in this environment, it is essential to retain existing customers and to attract new 

customers. A comparison of competitor automobiles demonstrates a similarity in technical 

features. Product features such as design and quality play a decisive role in the success of a 

company and in convincing customers of its products (Carbon and Jakesch 2013; Esch 2013; 

Falk, Quattelbaum, and Schmitt 2010; Fontana, Giannini, and Meirana 1999). Both factors differ 

from traditional, objective assessments of products. The consideration of design and quality 

involves the research area of perceived quality. Perceived quality is a concept that describes the 

communication of the product quality and the subject's perception. The definition of perceived 

quality is that the entirety is more than the sum of the individual parts (Steenkamp 1990; Zeithaml 

1988a). To stand out from the competition in the area of perceived quality and to remain 

resource-efficient, it is necessary to understand the customer's perception, their attitudes, and 

their needs and requirements. As these are highly subjective and depend on experience, 

knowledge, and expectations (Carbon 2019), the collection, interpretation, and assessment of 

design and quality at an objective level is challenging (Carbon and Jakesch 2013). Given this 

problem, some research methods were developed, which evaluate design and quality of 

products concerning perceived quality. The central element of these methods is the 

decomposition of a product into its individual components. This procedure contradicts the 

definition of perceived quality. Based on this gap in research, the aim of this thesis is to develop 

an objective assessment method for perceived quality. Split-lines are the object of investigation. 

The attributes gap, flush, and parallelism were identified, thus they represent design and a quality 

feature. Additionally, the development of an objective assessment method included 

psychological foundations from the field of perception. Four research aspects were defined in 

the thesis to derive an objective evaluation method for the perceived split-line quality. The first 

aspect examined the industrial evaluation process of visual split-line quality. A processual deficit 

was identified, as the current visual split-line quality was derived from split-lines' functional 

requirements. To eliminate this deficit, an evaluation level with four areas, Global Quality, Global 

Design, Local Quality, and Local Design was developed and integrated into the current process. 

In the second aspect, parameters influencing perception related to the visual split-line quality 

were investigated. Two parameter categories were derived: human-related and product-related 

categories. In the third aspect, the influence of the global product context on the visual split-line 

quality was investigated. In detail, the perception effects resulting from the combination of split-

line attributes in the global product context were considered. In the fourth aspect of the thesis, 

the previous results were incorporated into developing a method for the objective evaluation of 

the visual split-line quality. Since the modeling of correlations and rules for a high level of 

perceived split-line quality depends on different variables and the complexity increases 

drastically with the capture of all variables, a neural network was used to map these correlations. 

By using the neural network, the split-line quality as an entirety was assessed. Thus, a method 

is developed, which assesses the perceived split-line quality concerning the definition of 

perceived quality. 
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ZUSAMMENFASSUNG 

Die Automobilindustrie befindet sich derzeit in einem volatilen Marktumfeld und die Bindung und 

Gewinnung von Kunden gegenüber dem Wettbewerb steigt in Bedeutung. Der 

Wettbewerbsvergleich zeigt eine große Ähnlichkeit von technischen Produktmerkmalen, wie 

beispielsweise die Beschleunigung. Um dennoch Kunden von eigenen Produkten zu 

überzeugen, bilden Produktmerkmale wie Design und Qualität entscheidende Erfolgsfaktoren 

(Carbon and Jakesch 2013; Esch 2013; Falk, Quattelbaum, and Schmitt 2010; Fontana, 

Giannini, and Meirana 1999). Beide Faktoren unterscheiden sich von der klassischen, objektiven 

Bewertung von Produkten. Die Betrachtung von Design und Qualität sind im Forschungsbereich 

von Perceived Quality (wahrgenommene Qualität) enthalten. Perceived Quality beschreibt die 

Produktqualität wahrgenommen durch ein Subjekt. Die Definition von Perceived Quality ist, dass 

die Gesamtheit mehr ist als die Summe der Einzelteile (Steenkamp 1990; Zeithaml 1988a). Um 

sich im Design und der Qualität, vom Wettbewerb abzuheben und trotzdem ressourceneffizient 

agieren zu können, ist es notwendig die Kundenwünsche und -anforderungen zu kennen. Eine 

Herausforderung sind die Erhebung, die Auslegung und die Bewertung von Design und Qualität 

auf einem objektiven Level (Carbon and Jakesch 2013). Da Design und Qualität stark subjektiv, 

von Erfahrungen, von Wissen und von Erwartungen (Carbon 2019) abhängen. Unterschiedliche 

Methoden zeigen für die Bewertung von Perceived Quality eine Produktzerlegung in 

Einzelkomponenten auf. Die Einzelkomponenten werden soweit heruntergebrochen, bis diese 

mit traditionellen Methoden bewertbar sind. Anschließend an die Bewertung werden die 

Einzelergebnisse aufsummiert und ergeben das Perceived Quality Level. Diese Vorgehensweise 

widerspricht jedoch der Definition von Perceived Quality. Das Ziel der Doktorarbeit war die 

Entwicklung einer objektiven Bewertungsmethode anhand der Definition von Perceived Quality. 

Die Methode wurde am Beispiel der Spaltmaßqualität von Breite, Versatz und Parallelität von 

Fahrzeugen hergeleitet. Zur Herleitung einer objektiven Bewertungsmethode der 

wahrgenommenen Spaltmaßqualität wurden vier Aspekte in der Arbeit bearbeitet. Der erste 

Aspekt war die Untersuchung des industriellen Bewertungsprozess der visuellen 

Spaltmaßqualität. Ein Ergebnis der Untersuchung war, dass die visuelle Bewertung der 

Spaltmaßqualität von funktionellen Anforderungen abgeleitet werden. Um dieses Defizit 

aufzuheben, wurde ein Bewertungslevel mit vier Bereichen Globale Qualität, Globales Design, 

Lokale Qualität und Lokales Design entwickelt und in den derzeitigen Prozess integriert. Im 

zweiten Aspekt der Arbeit wurden Einflussparameter in Bezug auf Perceived Quality untersucht. 

Dafür wurden zwei Parameterkategorien definiert, welche in mensch-zentriert und produkt-

zentriert unterteilen wurden. Der dritte Aspekt untersuchte den Einfluss des Gesamtkontextes 

auf die visuelle Spaltmaßqualität. Die Erkenntnisse wurden in einer weiteren Studie detailliert und 

zusätzlich sind die Einflüsse von Spaltmaßkombinationen auf die Wahrnehmung der Qualität 

untersucht. Im vierten Aspekt wurde eine Methode zur objektivierten Bewertung der visuellen 

Spaltmaßqualität entwickelt. Da die Abbildung der Zusammenhänge und Regeln, welche für eine 

gute wahrgenommene Spaltmaßqualität ausschlaggebend sind, von unterschiedlichen 

Variablen abhängen und da bei der Erfassung aller Variablen die Komplexität zunimmt, wurde, 

um diese Zusammenhänge abzubilden, ein Neuronales Netz entwickelt. Durch die Verwendung 

des Neuronalen Netzes konnte die Spaltmaßqualität gesamtheitlich bewertet werden und die 

Definition von Perceived Quality eingehalten werden. 
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1. INTRODUCTION 

Products provide the connection between companies and customers. Even in the current 

turbulent and volatile market environment, this connection remains valid. Uncertain factors such 

as globalization or political circumstances complicate this connection and companies are forced 

to assert themselves in the market with new and innovative products. Caused by similar factors 

like globalization, customers can choose from a wide range of products from different markets, 

which in turn creates additional competitive pressure on companies. In order to survive in the 

market and to be able to convince by products and services, it is an essential advantage for 

companies to know their customers, their needs and expectations (Schmitt et al. 2015).  

The automotive industry faces exactly these circumstances. Additional to the large number of 

competitors, the offerings of competitors are similar in many technical solutions, for example 

such as the realized power of an engine. To convince customers of own products, companies 

are forced to distinguish themselves by further product features. It turns out that product-external 

characteristics such as brand or service (Homer 2008) are purchasing-critical for customers. A 

strategy for differentiation from the competition is the automobile design and its quality (Carbon 

2015a). As determined in various studies and research, design and quality convert to an 

important purchasing criteria (Carbon and Jakesch 2013; Esch 2013; Falk, Quattelbaum, and 

Schmitt 2010; Fontana, Giannini, and Meirana 1999). Through individual designs and expressive 

design language, a product character is assigned that fascinates customers or customers even 

identify with this design (Creusen and Schoormans 2004). In addition, a perfect fit of an 

automobile exterior demonstrates technical perfection and a high level of craftmanship. In turn, 

this competence of perfect execution indicates another distinguishing feature from competitors. 

Therefore, the appearance of an automobile, by individual designs and perfect execution, is an 

opportunity to differentiate from competitors and to excite customers. Consequentially, design 

and quality are essential for a long-term market success of companies (Leder and Carbon 2005). 

It is crucial to understand the own product and the importance of individual characteristics and 

their mutual visual effects. The discussion of these questions is the aim of perceived quality, 

which is anchored in different research disciplines, such as engineering, psychology and 

marketing. 

However, the already challenging objective to design products with a high level of customer 

satisfaction alone is subjected to high-cost pressure. Due to resource-related restrictions, 

companies are forced to achieve the highest possible customer satisfaction at low costs. Since 

an automobile is a complex product with a multitude of linked features. For example, the design 

of an automobile is directly linked to its quality. Complex designs often require challenging 

manufacturing technologies. In contrary, if an elaborate design is poorly realized, it may not 

convince customers and decrease the payment disposition (Schmitt et al. 2015). New and 

innovative manufacturing technologies increase customer expectations regarding an automobile 

quality realization. Consequently, realizing an innovative design and a high level of quality often 

results in high costs (Stylidis, Wickman, and Söderberg 2018). Facing the cost pressure, the 

realization of such designs in high quality performance is highly difficult.  

One product feature that contributes to the visual appearance of automobiles and fits in the 

research scope of perceived quality are split-lines. Split-lines are necessary due to different 

functions, like opening a door. Additionally, their composition influences on the one hand the 

design and on the other hand the perceived quality of the automobile. The global and design-

strategic location of split-lines has a significant influence on the visual appearance. The global 

design of split-lines also influences the subsequent manufacturability and thus again the visual 

appearance of the automobile. In this context, the described relationship between design and 



 2 

quality is evident. Different methods have been developed to understand the cause-effect 

relationships, to structure the product complexity and to measure the subjective perception of 

products. The assessment process is one common problem with these methods. A product is 

decomposed into its individual characteristics and then evaluated by using numerical methods. 

For example, the visual quality of individual split-line attributes are assessed using discrete 

numerical values. This procedure contradicts the perception process. The split-line attribute 

deviations do not occur individually and are therefore not perceived individually. The numerical 

limitation cannot be recorded in a visual assessment. This decomposition contradicts the human 

perception, thus human perception does not necessarily reflect the physical world (Carbon 

2015b). Carbon (2015b) summarizes that human perception is mostly reliable and objective, but 

is not necessarily veridical or valid. Based on the fundamentals of perception, considerations of 

product or quality perception are defined by the term perceived quality. Its definition is that 

perceived quality is more than the sum of the individual attributes (Zeithaml 1988a). Therefore, 

current industry- and research-related assessment processes are not suitable for the visual split-

line assessment. In order to assess product features with respect to perceived quality, it is 

necessary to understand and to consider human perception within these usually engineering-

based assessment processes (Carbon 2019). However, including human perception and 

deriving an objective assessment method for subjective product features represents a major 

challenge (Carbon 2016). An important factor is to know and understand customer requirements 

and deriving an approach to transfer these requirements into products to reach high customer 

satisfaction or fascination (Carbon and Jakesch 2013). Fundamental to this approach are the 

consideration of following relations: 

(1) Product features are very closely related to each other and influence each other, 

(2) their visual effects and correlations are unknown and thus represent a factor of 

unawareness, 

(3) parameters that determine the subjective evaluation of product features are unidentified,  

(4) an objective assessment of these attributes, which correspond with the perception 

process and includes the product context, is important. 

The aim of this thesis is to derive an assessment method which pursues the definition of 

perceived quality by using a four-stage approach. First, the process of assessing split-lines 

regrading technical and visual requirements in industry was investigated. Therefore, a method 

was defined and applied for identifying weaknesses and improving the assessment process of 

split-lines. Second, parameters which influence the visual perception process of split-lines were 

identified. The identified parameters were analyzed in terms of how they are perceived with 

respect to design and quality and how they affect an assessment of design and quality regarding 

perceived quality. It is crucial to identify the parameters that influence the evaluation of split-lines 

and to define them in sufficient detail to enable a reliable evaluation. Guidelines were derived 

based on the research results, which should be chosen in an evaluation process of split-lines 

regarding perceived quality. Third, based on the current research methods the context of split-

lines in the field of perceived quality related to design and quality was examined. As investigation 

method a conjoint analysis was applied, which aims to disclose the correlations between split-

lines as design and as quality attributes. In addition, the influence of split-line regarding perceived 

quality was investigated. In a further investigation, the split-line influence regarding perceived 

quality was examined by a perceptual study. Individual split-line attributes were variated and 

combined. The resulting combinations were tested for their influence on perceived quality. This 

approach allows a fundamental analysis of the split-lines in the perceived quality context with a 

focus on perception, importance and connections. Fourth, the research gap of an objective 

assessment method of split-lines was investigated. Machine learning methods were considered 
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to provide an assessment of split-lines based on images and related to the definition of perceived 

quality. This investigation was based on the previous derived parameters, which effect the split-

line assessment. The approach for applying machine learning methods for a subjective 

assessment was presented.  

In summary, the objectives of the thesis are:  

(1) Process analysis of the current split-line assessment process and derivation of a process 

improvement. 

(2) Identification of the factors and parameters which effect the assessment of split-lines in 

perceived quality and deducing guidelines for a reasonable visual assessment. 

(3) Investigation of the context of split-lines and perceived quality regarding the global 

product concept and regarding relations between split-lines and split-line attributes. 

(4) Derivation of an objective assessment method by using a machine learning approach. 
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2. THEORETICAL BACKGROUND 

The theoretical background is split into five sections. The first section introduces the discipline 

of tolerance management. Also, the split-line attributes used in the thesis are introduced. The 

second section refers to rendering and ray-tracing methods, which were used in the conducted 

studies and for the generation of the database for the machine learning approach. Within the 

third chapter, qualitative, quantitative, mixed research models and conjoint analysis methods are 

presented. The theoretical background of perceived quality regarding different research 

disciplines is presented in the fourth section. For this purpose, a brief introduction to perception 

is obtained. Subsequently, different perceived quality assessment methods are presented, which 

are based on marketing, psychology, and engineering. Afterward, these methods are compared 

with each other by discussing similarities and differences. Based on the current methods, the 

definition of perceived quality in this thesis is derived. In the fifth section, an introduction to the 

functionality and applications of machine learning is given. Additionally, different machine 

learning approaches are presented. The focus lies on convolutional neural networks, which are 

suitable for application in the field of machine vision. Besides, the concept of Siamese networks 

is presented. Afterwards, methods for analyzing a network regarding importance features are 

presented. These methods are summarized with the term of explainable AI methods. A summary 

of current machine learning methods that assess product quality concerning classification or 

regression tasks is presented in the following section. Finally, the methods and the research 

questions of the thesis are presented. 
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2.1. TOLERANCE MANAGEMENT AND SPLIT-LINES 

Until the 18th century, the definition of tolerances of components was less relevant for industry 

(Bohn and Hetsch 2013b). Once series production was introduced and thus interchangeability 

of components had to be guaranteed, the definition of tolerances for components was integrated 

into the product development process (Bohn and Hetsch 2013b, 2013c, 2013a). For series 

production, components need to be replaceable. To achieve a component substitution, 

components need to be similar or at least similar to a certain extent (Bohn and Hetsch 2013b). 

The realization of this flexibility is the aim of a tolerance management process. Consequentially, 

tolerance management is defined as a sub-process of the product development process (Bohn 

and Hetsch 2013b). The central aim is to fulfill product functions by using management methods 

to achieve the lowest possible manufacturing costs through an optimal tolerance concept (Bohn 

and Hetsch 2013b). Tolerances impact the function, the producibility, the costs, and the product 

appearance (Bohn and Hetsch 2013b, 2013c, 2013a). 

Accordingly, the tolerance management process within the automobile industry represents a 

major part of the development process. The tolerance management process includes tolerating 

individual parts up to the entire product (Bohn and Hetsch 2013b). Within the automobile 

industry, tolerances between exterior and interior components are defined as split-lines 

(Forslund and Söderberg 2008; Wagersten et al. 2013; Wickman et al. 2014). Split-lines describe 

the passage between two components. Their geometrical variation is defined by tolerances, 

which comply with product functions (Forslund and Söderberg 2008; Wagersten et al. 2013; 

Wickman et al. 2014). The permitted variations are defined in a concept derived in a split-line or 

tolerance concept by the design and construction department and submitted to the production 

department (Bohn and Hetsch 2013b). Figure 1 shows exemplarily split-lines of an automobile 

exterior (BMW Group 2018).  

 

Figure 1. Exemplary Split-lines in context of an automobile, visualised by BMW Group, 
Department Total Vehicle Validation, 2018. 
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2.1.1. FUNCTION OF TOLERANCES 

Within the product design, tolerances comply with different functions (Bohn and Hetsch 2013b; 

Esch 2013; Forslund and Söderberg 2008; Juster et al. 2001), which are categorized in technical 

and aesthetic functions (Backhaus, Erichson, and Weiber 2015; Bohn and Hetsch 2013b; 

Wickman and Söderberg 2004). The aesthetic function aims to fulfill a high visual quality 

standard and is therefore essential for satisfying the customer requirements (Bohn and Hetsch 

2013b; Wagersten et al. 2013). To achieve high visual quality, split-lines must be as small and 

parallel as possible. Components have to provide additional functions, such as opening and 

closing doors (Bohn and Hetsch 2013b). Therefore, tolerances and split-lines are categorized 

based on technical functions: the joining function of components, the kinematics, and the density 

function (Bohn and Hetsch 2013b). The joining function of components defines the position 

concerning other components (Bohn and Hetsch 2013b). Therefore, the three-dimensional 

orientation of individual components and the surfaces for joining other components are 

described. The function of kinematics considers three-dimensional movements of components, 

such as locking and unlocking the doors. Components with kinematic function often affect other 

functions such as aesthetical or density functions (Bohn and Hetsch 2013b). The third function 

considers the density of products or assemblies. Density should protect against moisture, water, 

and noise (Bohn and Hetsch 2013b). Besides, components must fulfill high aesthetical functions, 

especially in the exterior. 

In summary, tolerances and split-lines have to comply different functions, which affect each 

other. Their definition is complicated, depending on the number of components involved and 

their functions. The assessment of the functions is related to different criteria. Table 1 illustrates 

different functions and their assessment criteria. 

Table 1. Functions of tolerances, adapted from Bohn (2013). 

Function Assessment criteria Method 

Aesthetical 

Split-line attributes (e.g. gap, flush, 

parallelism) 

Surface (e.g. character lines) 

Optical definition and transfer to 

numerical limits 

Joining Position, orientation and surfaces 
Numerical values, design and 

calculation 

Kinematics 
Position and orientation for the 

maximal movement 

Numerical values, design and 

calculation 

Density Position and dimension compression 
Numerical values, design and 

calculation 

Different calculation and simulation methods are used in the design process to define tolerance 

limitations concerning their requirement fulfillment. These are mainly used to design technical 

functions. An evaluation of the optical function fulfillment usually is performed afterward. The 

possible calculation methods simulate either stiff components or elastic components. Finite 

element methods (FEM) represent complicated approaches and are used to calculate elastic 

components (Bohn and Hetsch 2013b). 
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On the contrary to FEM, traditional calculation methods are: 

(1) The analytical best-worst calculation, 

(2) the analytical statistical calculation, and 

(3) the numerical statistical calculation. (Bohn and Hetsch 2013b) 

Within the analytical best-worst calculation, the tolerances' worst extreme values are summed 

up (Bohn and Hetsch 2013b). The result is then analyzed for functional fulfillment of 

requirements. The analytical statistical calculation uses the root-sum-square method, where 

normally distributed individual tolerances are added, squared, and then the root is taken (Bohn 

and Hetsch 2013b). Both methods only work in simple geometric contexts (Bohn and Hetsch 

2013b). Numerical methods are used for more complicated geometric component contexts. A 

frequently used method is a Monte-Carlo simulation. Here, random individual tolerances are 

formed and then summed up (Bohn and Hetsch 2013b). This process occurs several times, 

whereby statistical characteristic values can be determined (Bohn and Hetsch 2013b; Ehlert et 

al. 2016). First, the tolerance chain of a split-line is defined based on a CAD model. Since each 

component includes a component tolerance, and each connection between two components is 

defined with an assembly tolerance, the combination of both tolerance types is included in a 

tolerance chain. This definition can be used, for example, to calculate the resulting derivation for 

the split-line tolerance using a Monte-Carlo simulation. In turn, these simulation results are high 

in detail that the deviations are determined on each split-line attribute, i.e., gap, flush, and 

parallelism. Based on these numerical values, maximal and minimal values, which were defined 

by limiting positions, can be derived. Based on the limiting positions, the fulfillment of, i.e., 

technical requirements, can be verified. 

2.1.2. TYPES OF SPLIT-LINE ATTRIBUTES 

Due to process fluctuations, the realization of products includes tolerances, which affect the 

visual appearance of split-lines between components. Therefore, tolerance concepts for split-

lines, which include the definition of acceptable tolerance derivations, were deduced within the 

product development stage. As a result, split-lines are spread on the exterior and are integral 

elements of automobiles.  

The definition of split-lines regarding optical requirements is sensible. Experts define, often 

supported by virtual methods, complex split-line concepts (Forslund and Söderberg 2008; Kajiya 

1986; Ungemach, Mantwill, and Rund 2008; Wagersten et al. 2013; Wickman and Söderberg 

2007). Within these concepts mainly three split-line attributes are considered: gap, flush, and 

parallelism (see Figure 2). 

 

Figure 2. Geometrical variation of split-line attributes gap, flush and parallelism, adapted from 
Forslund, Dagman, and Söderberg (2006). 

Gap Flush Parallelism 
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Gap is defined as the width between two components. Flush defines the offset between two 

components. Parallelism describes the rotation of two components towards each other. The 

resulting split-line appearance of the rotation is called in industry A-shaped split-line. 
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2.2. RENDERING AND RAY TRACING 

The use of virtual methods in the product development process increased due to the high and 

rising cost pressure. Therefore, rendering methods have been established within the automobile 

design's evaluation process (Juster et al. 2001; Wickman and Söderberg 2007). These methods 

have various advantages compared to hardware prototypes. Their application offers a high 

degree of flexibility and enables fast and cost-effective visualizations of product concepts (Rix, 

Haas, and Teixeira 1995). The implementation of virtual methods is also performed during the 

assessment of visual split-line quality. 

Rendering procedures are available in various computer software. Their objective is to picture a 

three-dimensional scene in a two-dimensional image (McKesson 2012). Using these methods, 

the product structure is transferred to polygons, which are the basis to create visualizations. The 

virtual image aims to represent a simulation of a scene that is as realistic as possible. The 

following input variables are required for a scene: the model of the object represented in 

polygons, the definition of materials, light source, and camera settings (Haines and Akenie-Loeler 

Tomas 2019; McKesson 2012; Richard 2005; Semmo 2016; Veach 1997). 

Typically, three tasks are performed to create renderings. First, based on the camera position, 

the visible objects are defined. Second, virtual surfaces are defined by using material settings. 

Third, the lightning is calculated within the scene (Haines and Akenie-Loeler Tomas 2019; 

McKesson 2012; Richard 2005). The critical difference in rendering approaches is the method 

to calculate the image. For visualization of a created scene, mainly four different rendering 

methods are available: 

(1) rasterization,  

(2) ray casting,  

(3) ray tracing or  

(4) path tracing.  

Rasterization is the digitalization of a model using simple shapes like points, lines, or polygons 

(Chen 2010). This method is a simple implementation and is used to display virtual geometry. A 

3D scene and vectors are transformed into a 2D image, including pixels. Ray casting is a more 

advanced rendering method than rasterization. A ray for each pixel of a camera perspective is 

calculated within the virtual space. If the ray hits an object in the space, the color value for this 

pixel is determined (Chen 2010). Due to the simple implementation of this method, the bouncing 

of a ray is not further calculated, and therefore, shadows are not displayable. A more advanced 

method of ray casting, which includes the calculation of shadows, is ray tracing. Using the ray 

tracing method, a ray is sent from a viewpoint (the camera) into the scene. In doing so, 

intersections with objects are recursively calculated. Bounces between reflections and 

intersections with objects or refractions are considered in the calculation (Chen 2010). The 

reverse approach of calculating the ray is time-optimized compared to a ray foreword calculation 

(Chen 2010). The resulting image illustrates shading, refraction, and hard shadows of objects. 

The most advanced method is path tracing, which is also based on the ray tracing method. A ray 

is traced back from a camera in space. If it hits an object, it is refracted and pursued until it hits 

an object again. The bouncing happens until the ray hits the light source, or the ray darkens after 

a sufficiently long time. In retrospect, the pixel value is then calculated from the information 

obtained by the ray. The difference to ray tracing is that only one beam is tracked in space, and 

thus this beam acts like the light in reality (Veach 1997). Accordingly, the size and position of the 

light are decisive for path tracing methods. The path tracing result contains the same possibilities 

as ray tracing and color bleeding, ambient occlusion, global illumination, and soft shadows. The 
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difference between ray tracing and path tracing is illustrated in Figure 3 (BMW Group 2018; 

Jensen 1996; Jensen and Buhler 2002).The left image illustrates the ray tracing method. 

Typically for this method are hard shadows. In the right image, the path tracing method was 

used. There, soft shadows, color bleeding, ambient occlusion, and global illumination are visible. 

A high contribution to a realistic image is made by the texture assigned to the object. Depending 

on the definition of the texture, the reflection behavior of the simulated light beam is influenced 

(Chen 2010). The process of assigning a texture to a pixel is texture mapping. Textures can, for 

example, be obtained using real images (Chen 2010). 

Figure 3. Comparison of ray tracing (left) and path tracing (right), rendered by BMW Group 
(2018). 
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2.3. RESEARCH DESIGN AND METHODS 

Empirical science considers the validity of hypotheses and theories within reality (Reinders and 

Ditton 2011). This investigation can either be a deduction or an induction. A deduction is an 

analysis, which extrapolates from the general to a particular case, or from the entire to the 

individual or from the abstract to the concrete (Reinders and Ditton 2011). An induction 

extrapolates from particular cases to general cases, or from the individual to the entire or from 

the concrete to the abstract (Reinders and Ditton 2011). Deductions are typically performed by 

quantitative research methods, whereas inductions are usually conducted using qualitative 

research methods (Reinders and Ditton 2011). 

2.3.1. QUALITATIVE AND QUANTITATIVE RESEARCH  

Qualitative and quantitative empirical research methods are based on assumptions and axioms 

(Schumann 2018). Qualitative research methods have their fundamentals within humanistic 

psychology, whereas quantitative research methods are derived by natural science (Schumann 

2018). Within qualitative research methods, the focus lies on the human as individuum 

(Schumann 2018).Therefore, regularities within an individuum’s behavior are deduced. The aim 

is to understand a human and their perception within their entirety. A limitation within qualitative 

research methods is the assumption that mapping reality is impossible (Schumann 2018). In 

contrast, quantitative research methods consider humans as a research object (Schumann 

2018).The acquired data is used to verify general valid hypotheses, according to which humans 

behave. Besides, the acquired data is used for analyzing the derivation of characteristics within 

the considered entirety. Qualitative research has the basic assumption and the ideal to picture 

the reality one-to-one. Qualitative and quantitative research methods are incompatible within 

their basic assumptions, but the use of single methods from the contrasting research method 

can be performed to a certain extent (Schumann 2018). The difference between qualitative and 

quantitative research methods are presented in Table 2. 

Table 2. Comparison of qualitative and quantitative research methods, combined and adapted 

from Schumann (2018). 

Qualitative  Quantitative 

Induction Deduction 

Holistic approach Elementary approach 

Objective: descriptive, understanding  Objective: causal relations 

Data in need of interpretation Numerical data 

Theoretical generalization Statistical generalization 

Quality criterion: validity  
Quality criterium: objectivity, reliability, 

validity 

Natural environment Laboratory 

Qualitative research methods often deal with more research questions (Reinders and Ditton 

2011). A characteristic of qualitative research methods is an open and flexible approach, i.e., 
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realized in an unstructured observation or a qualitative interview (Reinders and Ditton 2011). A 

general approach for dealing with qualitative research methods is presented in Figure 4. 

The research question is the initial starting point of qualitative research methods. The choice of 

methods is based on the posed questions in a second step (Reinders and Ditton 2011). 

Afterward, data acquisition is performed by applying the chosen method (Reinders and Ditton 

2011). The analysis step results can either create new knowledge, hypotheses or affect the 

posed questions or affect the applied method in further acquisitions (Reinders and Ditton 2011). 

An advantage of qualitative research methods is that the acquired data is firstly processed and 

analyzed during the survey (Reinders and Ditton 2011). Therefore, early information on previous 

studies is used within upcoming surveys to increase the information level (Reinders and Ditton 

2011). This feedback results in a dynamic research character of qualitative research methods 

(Reinders and Ditton 2011). Qualitative research methods demonstrate two specific 

characteristics. Firstly, qualitative research methods are more open, explorative, and pursue 

given research questions (Reinders and Ditton 2011). Secondly, this research character enables 

a fast combination of a question, applied method, and first results (Reinders and Ditton 2011).  

Qualitative quality criteria are defined for assurance of the research quality (Himme 2009b; 

Mayring 2007, 2010). These criteria are documentation of the procedure, argumentative 

interpretation, rule-based conduction, proximity to the object, communicative validation, and 

triangulation. The criterion of the procedure documentation requires the planning, 

implementation, and analysis of a study. The criterion of argumentative interpretation forces that 

interpretations need to be justified. The rule-based conduction criterion defines a structured and 

systematic approach within the study despite its flexible qualitative research methods. The 

criterion of proximity to the object requests a consideration within realistic and natural 

environments. The results of qualitative methods depend heavily on the realization of this 

criterion. The communicative validation criterion evaluates the results by discussing them with 

the participants after the analysis. The last criterion, the triangulation, compares, and evaluates 

results gained by different methods but for the same research question. This criterion aims to 

compare different results to examine a research question from a different point of view. 

Quantitative research methods examine theories or hypotheses for their validity (Reinders and 

Ditton 2011). The approach of quantitative research methods is structured and systematic 

(Reinders and Ditton 2011). The approach to conducting a quantitative research method is 

presented in Figure 5. 

Previous knowledge Question 

Method 

Acquisition 

Analysis 

Figure 4. Approach of qualitative research methods, adapted from Reinders and Ditton (2011). 
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The theory or formed hypotheses are the basic consideration object of a quantitative research 

method (Reinders and Ditton 2011). Based on the theory, a suitable method is selected 

depending on the verification purpose (Reinders and Ditton 2011). The characteristics, which 

are included in the theory aspect, are operationalized within the third step (Reinders and Ditton 

2011). The operationalization is performed to transform the characteristics into a measurable 

value (Reinders and Ditton 2011). Therefore, a suitable scale has to be chosen. The types of 

scale levels can be characterized by nominal, ordinal and metrical or cardinal scale (Greving 

2009). These scale levels differentiate regarding their measurable capacity (Greving 2009). 

Subsequent to the operationalization the data acquisition is performed (Reinders and Ditton 

2011). The data analysis step is conducted by using statistic methods. As a result of the analysis 

step, the validity of the initial theory or hypotheses are tested as true or false (Reinders and Ditton 

2011). 

The quality of quantitative research methods is evaluated by using three criteria: objectivity, 

reliability, and validity (Himme 2009b). The objectivity criterion is a general valid criterion for 

scientific research (Himme 2009b). Research results have to be independent of the situation and 

the investigator (Himme 2009b). The criterion of reliability considers the dependability and the 

stability of the study (Himme 2009b). This criterion is achieved if comparable results are obtained 

within a repletion test by having relatively constant conditions (Himme 2009b). The criterion of 

validity considers if a quantitative study has measured the right characteristics (Himme 2009b). 

Within an experiment, the validity criterion is separated into internal and external validity (Himme 

2009b). Internal validity is achieved if the dependent variable's variation depends exclusively on 

the modifications of the independent variable (Himme 2009b). An experiment has external 

validity if the results are transformable to population, situation, and variable validity (Himme 

2009b). 

A mix of qualitative and quantitative methods is called mixed methods (Johnson, Onwuegbuzie, 

and Turner 2007). A typical combination of the methods is within elicitation or the analysis phase 

(Johnson, Onwuegbuzie, and Turner 2007). Four common types of mixed research models are 

triangulation, embedded, explanatory, and exploratory (Borrego, Douglas, and Amelink 2009). 

2.3.2. CONJOINT ANALYSIS 

Pioneers in the development and research of conjoint analysis are Green and Srinivasan (1990). 

Conjoint analysis is applied in various research disciplines and primarily used in marketing 

questions or product pricing targets (Hillig 2006). The aim of Conjoint analysis is the elicitation 

of part-worth utilities for single attributes of a product (Himme 2009a). Therefore, two methods 

can be applied: compositional and decompositional approaches (Sattler 2006). By using 

Theory Method 

Operationalisation 

Acquisition 

Analysis 

Figure 5. The approach of quantitative research methods, adapted from Reinders and Ditton 
(2011). 
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compositional methods, participants are directly asked about their preferred product attributes 

(Himme 2009a). By using decompositional methods, the entire product is assessed by 

participants, and by using statistical methods, the value of single product attributes is calculated 

(Himme 2009a). Conjoint analysis methods are decompositional methods (Himme 2009a). 

Conjoint analysis methods are defined as an approach to measure individual attribute 

preferences of entire products. Therefore, an advantage is the practical assessment task, as 

participants analyze and assess holistic products or concepts and chose those who fit their 

expectations most (Green and Srinivasan 1990; Hillig 2006). An overview of methods for 

analyzing product preferences is presented in Figure 6. 

Self-explicated methods are standard for compositional models (Himme 2009a). These 

methods usually perform two steps. Participants are asked to choose the best and worst product 

feature characteristics (Himme 2009a). In the second step, the feature characteristics of a 

product are weighted (Himme 2009a). Hybrid methods combine the compositional and 

decompositional methods (Himme 2009a). The adaptive conjoint analysis method is a hybrid 

variant (Himme 2009a). Within this method, participants are asked in a compositional survey part 

about the relevance and importance of a product's features and characteristics (Himme 2009a). 

Within the decompositional survey part, the product variants with different combinations of 

feature characteristics are assessed (Himme 2009a). The advantage of adaptive models is that 

essential product attributes are asked in detail, and irrelevant product attributes are neglected by 

the algorithm (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). A recent hybrid 

conjoint analysis method is the golden conjoint (Himme 2009a; Sattler 2006). In the first 

compositional survey part, participants are asked about their most important product attributes 

(Himme 2009a). In the second step, the mentioned attributes are weighted using a slider bar 

(Himme 2009a). In the final part of the conventional survey, unimportant attributes are eliminated 

by the participants (Himme 2009a). The results of the compositional survey part are used to 

generate choice-sets (Himme 2009a). These choice-sets are pareto-optimal and include no 

dominant stimuli (Himme 2009a). Within the decompositional survey part, the choice-sets are 

assessed by the participants (Himme 2009a). Based on the ranking of the choice-sets, the 

weighting of the attribute (Himme 2009a). The traditional conjoint analysis (TCA) was the first 

conjoint analysis approach and established the basis for further developed methods (Backhaus 

et al. 2016). The following premise underlay the TCA: customer preferences towards products 

are achieved by ranking product alternatives. Accordingly, a product alternative is a package of 

attributes, and each attribute had different levels. This theory is a multi-attribute method, and 

participants make a weighing decision, where they latently evaluate product attributes (Green 

and Srinivasan 1990; Hillig 2006). The Choice-based conjoint analysis method is based on the 

assumption that participants chose utility-maximizing, and therefore, the contribution of product 

characteristics is calculated (Backhaus et al. 2016; Himme 2009a). Hierarchical conjoint analysis 

methods are applied within complex product decisions with countless product characteristics 

Figure 6. Overview of different models for calculating product preferences, adapted from 
Himme (2009a). 

Decompositional 

Traditional conjoint analysis 
Choice-based conjoint 

analysis 
Bridging conjoint analysis 

Limit conjoint analysis 

Compositional 

Self-explicated methods 

Hybrid 

Adaptive conjoint analysis 
Golden conjoint 
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(Himme 2009a). Therefore, a decision is firstly made on an abstract level, and participants are 

based on their choices guided through more detailed levels (Himme 2009a; Sattler 2006). A 

similar method is the bridging conjoint analysis, which uses sub designs to picture complex 

products (Himme 2009a). By using the limit conjoint analysis, the traditional conjoint analysis is 

extended, and the purchase intention is requested (Himme 2009a). 

The approach of conjoint analysis is based on the TCA and is divided into five steps (Backhaus 

et al. 2016; Backhaus, Erichson, and Weiber 2015), which are: 

(1) Definition of product attributes 

(2) Stimuli 

(3) Assessment of stimuli 

(4) Calculation of utility values 

(5) Aggregation of values 

The product attributes are selected within the first step, which is analyzed by using the conjoint 

analysis. The selection of product attributes is based on seven criteria: relevant, influenceable, 

independent, feasible, compensatory relation, no exclusion criteria, and limited (Backhaus et al. 

2016; Backhaus, Erichson, and Weiber 2015). By considering the first criterion, product 

attributes are chosen, which are assumed to affect a product's value. Within the conjoint analysis, 

a stimulus is defined as a product combination by several attributes (Backhaus et al. 2016; 

Backhaus, Erichson, and Weiber 2015). The criterion influenceable prefers attributes for the 

conjoint analysis, which can be variated (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 

2015). The criterion independent suggests attributes, which can be individually variated 

(Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). This criterion is primarily essential 

for the adaptive conjoint analysis (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). 

The criterion feasible focuses on these attributes, which are technically producible (Backhaus et 

al. 2016; Backhaus, Erichson, and Weiber 2015). The criterion of compensatory relations 

between attributes relates to the value of a product by accumulating each attribute, which is 

substitutable (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). The criterion of no 

exclusion defines that the chosen attributes are not supposed to be mutually precluding 

(Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). The last criterion considers the 

limited number of attributes. Within conjoint studies, the number of attributes and product 

variants can exponentially increase, and therefore, this attribute considers the limitation of 

attributes and their levels (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). 

Based on the defined attributes, several product alternatives are created in the second step. The 

product alternatives result from different combinations of the defined attributes and their levels 

(Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). Within a subsequent step three, 

the assessment of the stimuli by participants is conducted. The necessary data is acquired in 

the next step (Backhaus et al. 2016; Backhaus, Erichson, and Weiber 2015). The calculation of 

the utility values and the importance values of the product attributes are performed in the fourth 

step (Förster and Kreuz 2003). The aggregation of the results is performed in the fifth step of 

the TCA analysis. The fact that participants continually evaluate exclusive products with different 

versions of the variants means that the global product context and the evaluation's relations 

remain the same. A disadvantage of this approach is the limited scope for consideration. The 

study design of conjoint analyses can quickly gain in complexity and the number of resulting 

product variants. For this reason, only a few product attributes and their levels can be 

considered.  
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Within conjoint analysis methods, the product remains in its entirety. Therefore, three 

advantages of the conjoint method are presented (Förster and Kreuz 2003): 

(1) A reliable method to map the decision-making process and determine the benefit of 

product attributes, 

(2) Precise knowledge about the individual attribute and its characteristic, 

(3) The analysis provides an accurate result regarding the pricing of a product. 
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2.4. PERCEIVED QUALITY 

Quality is more than just fulfilling the technical requirements of a product (Zeithaml 1988a). 

Quality is multidimensional and defined by many influencing factors. Garvin (1984) specified 

eight levels of quality: performance, features, reliability, conformance, durability, serviceability, 

aesthetics, and perceived quality (Garvin 1984). This framework, especially the two dimensions, 

aesthetic and perceived quality, was classified as highly subjective. The explanation of these 

dimensions' subjective assessment was based on a personal assessment of how a product was 

individually perceived through sensory perception (Garvin 1984). Based on this research, the 

perceived quality was deduced in detail by Zeithaml (1988a). With the focus on the character of 

perceived quality, four aspects of perceived quality were presented:  

(1) Difference between perceived and objective quality, 

(2) Higher abstraction level, 

(3) Global assessment and  

(4) Experience based perception (Zeithaml 1988a). 

Both research contributions demonstrate the importance of perceived quality. Besides, they also 

point to the subjectivity, the abstraction level, and the globality of their evaluation. 

Perceived quality appeared in various research disciplines, such as marketing, engineering, and 

psychology. A central aspect of perceived quality in each discipline was the subjective 

assessment of product value regarding product attributes by customers (Chi 2009; Freeman, 

Dart, and Dart 2008; Oude Ophuis and Van Trijp 1995; Snoj, Korda, and Mumel 2013; Stylidis 

et al. 2015; Tsiotsou 2014). Often within marketing perspectives, a link between prize, product, 

and brand image was created. Therefore, a practical implementation of perceived quality 

correlates in quantifiable success for companies, and this relationship was called prize-perceived 

quality (Lichtenstein and Burton 1989; Snoj, Korda, and Mumel 2013; Tsiotsou 2014; Völckner 

and Hofmann 2007). In contrast, engineering perspectives focused on product execution and 

strategies to realize customer-related attributes, and some concepts were presented by Falk, 

Quattelbaum, and Schmitt (2010); Liu (2003); Steenkamp (1990); Stylidis et al. (2015). 

Psychological-based approaches often concentrated on finding interdependencies between 

perceived quality and customer satisfaction (Gotlieb, Grewal, and Brown 1994) or investigated 

sensory influences in detail (Carbon and Jakesch 2013).  

2.4.1. PERCEPTION IN PRODUCT DESIGN 

Human perception is optimized for daily situations to make fast, efficient, and focused decisions 

(Carbon 2015b). Perception is highly subjective and does not always comply with reality (Carbon 

2015b; Raab, Unger, and Unger 2016; Zimbardo 1978). It is not essential to record the actual 

reality of an object, but it is essential to correctly, and target-oriented interpret tan situation 

(Carbon 2015b). Therefore, the understanding of human perception is essential concerning 

engineering science. Thus, a technically perfect design does not necessarily correlate with 

perception as a perfect object. For example, the definition of split-lines via a numerical limitation 

of deviations may be technically correct, but optical perfection is not necessarily achieved by 

using this procedure. In design, different theories of perception are regarded as the design basis 

for product design (Raab, Unger, and Unger 2016). As a basis for perceived quality in the 

technical environment, the following section is a brief introduction of perception basics. 

The necessary prerequisites of the perceptual apparatus need to be clarified. A comparison of 

the use of different senses shows that visual perception is given a major priority (Bream 2004). 

The human eye has two systems with different functions: rods and cones (Zimbardo 1978). The 
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cones are active within lighted situations and are responsible for seeing colors and visual acuity 

(Zimbardo 1978). The rods are active within dusk, react sensibly regarding less brightness, and 

respond to black, white, and grey (Zimbardo 1978). Rods and cones are present on the lowest 

layer of the retina (Zimbardo 1978). To receive light, the light has to pass through different layers, 

nerve fibers, and blood vessels (Zimbardo 1978). The concentration of cones is high in the fovea 

area, and their concentration decreases when getting to the periphery of the retina (Zimbardo 

1978). Rods are present at the entire retina, without the area of the fovea (Zimbardo 1978). Both 

receptors are connected to bipolar cells, which are synapses with ganglion cells (Zimbardo 

1978). The optic nerve consists of axons of these ganglion cells (Zimbardo 1978). The optic 

nerve connects to the corpus geniculatum laterale of the thalamus and connects the occipital 

lobe (Zimbardo 1978). 

Nevertheless, human visual perception is, like all visual systems, restricted. The perception of 

visible light for humans is between a wavelength of 380 – 780 nm (Carbon 2015b). Besides, the 

brain loses information by visual leakage and a filter mechanism. Many external influences 

evidence the filtering mechanism of the brain. The brain prevents an overflow of stimuli by 

blocking supposedly unimportant information (Carbon 2014; Chollet 2018). 

The direction of perception was often discussed. Navon demonstrated a global to local process 

(Navon 1981): A forest was perceived first and afterward single trees. If the same individual 

elements are present, the global appearance is perceived first (Navon 1981, 2003). Gregory 

introduced a top-down theory (Gregory 1997, 2005; Ramachandran and Gregory 1991). Based 

on this theory, information reaches the brain, but the majority is filtered. The arriving information 

is processed and actively reconstructed by using knowledge and experience. The top-down 

process principle was that hypotheses were tested through perception influenced by knowledge 

and personal experience. One assumption is that visual illusions are an incorrect question of the 

brain. 

In addition to the previous perception concepts, there are other perceptual effects, such as the 

blind spots or saccades, which affect human perception (Carbon 2014, 2015b). Blind spots 

occur in the area of the retina of the eye, where light receptors are missing (Zimbardo 1978). If 

information hits the blind spot, information is lost, but subsequently, the input is interpolated, and 

an overall image is created (Carbon 2014, 2015b). A similar interpolation occurs in saccades, 

which appear during fast eye movements. During these movements, the perception is 

interrupted. Nevertheless, the exposure is filled, and the perceived snapshots are interpolated, 

creating a seamless experience (Carbon 2014, 2015b). 

The incoming information is processed further based on influence factors (Raab, Unger, and 

Unger 2016). This further processing is manipulated by experience, prior knowledge, and 

expectations (Carbon 2015b). Various experiments demonstrated that information influences 

perception in daily situations, called priming. Priming is defined by triggering a particular 

perception by targeted advanced information, thus objects appeal to a higher probability in a 

specific context (Carbon 2015b). Further theories identified expectations to have a proven 

influence on perception. The importance of an object's context was demonstrated by Bruner 

and Minturn (1955). Within a study, they wrote less precise a combination of the letter "B" and 

the number "13". They had verified that participants perceive either the letter or the number, 

depending on the context. In conclusion, the product context is essential for perception and, 

therefore, for assessing perceived quality. 

Additionally, an equally good influence of prior knowledge on perception was demonstrated by 

an experiment, which included an image displaying a rat or a man (Bugelski and Alampay 1961). 
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Within these experiments, the evidence was provided that combined perception and comparison 

with previous knowledge and expectations support daily decisions and helps to recognize things 

under challenging conditions (Carbon 2015b). Furthermore, perception aims to recognize 

patterns including a meaning. In structures or images, an urge is to recognize the design, which 

corresponds to a reward of the visual system and, at the same time, counteracts cognitive 

tiredness (Muth and Carbon 2013). If an object is imprinted in perception under different 

conditions, mental representations arise. These representations support perception, and even if 

objects are exposed to a strong distortion or noise, they can be identified (Carbon 2015b). 

Despite the many influencing factors on perception, these factors are consistent for every 

individuum. Therefore, these conditions result in a universal space of perception shaped by 

expectations, prior knowledge, and experience (Carbon 2015b). In summary, the influencing 

factors are subjectivity, selectivity, and activity (Kroeber-Riel and Gröppel-Klein 2013; Raab, 

Unger, and Unger 2016). Subjectivity reflects on the individual perception process of persons 

and their reality. Selectivity summarizes the filtering factors, distortion factors, and falsification 

factors that influence the information which needs to proceed. The activity includes the 

conscious reception and processing of information (Raab, Unger, and Unger 2016). 

When considering the appearance of products, such as automobiles, theories of perception 

become relevant and the basics of the perception process. One theory is the gestalt theory, 

which was introduced by Wertheimer (1923), Koffka (1937) and Köhler (1967). The theory's 

basis is that the entirety is more than the sum of its parts (Zimbardo 1978). Based on this, 

individuals strive to recognize clear patterns embedded in an overall context (Raab, Unger, and 

Unger 2016). The recognition of these relationships can create a kind of reward and joy for the 

perceiver (Carbon 2015b; Muth and Carbon 2013). The order, conciseness, harmony, or 

meaningful forms within objects are therefore incentives that are sought in an overall concept 

(Raab, Unger, and Unger 2016). Based on these theories, Wertheimer deduced six Gestalt laws 

(Wertheimer 1923), presented in Table 3. 

Table 3. Laws of Gestalt based on the Gestalt theory. 

Law of gestalt Explanation Examples 

Law of similarity 
Objects of comparable shape, colour 

are perceived as a group.  

Law of pragnanz 
Forms are perceived as simple as 

possible 
 

Law of proximity 
Objects which are close to each other 

are perceives as group.  

Law of continuity 
Points or dotted lines are perceived, 

as are they combines by a line. 
 

Law of closure 

Interruptions in objects are perceived 

as entirety and spaces are 

interpolated.  
 

1 

2 3 

4 
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Law of common 

regions 

Elements or objects with the same 

purpose are perceived as a belonging 

together.  

The law of similarity demonstrates that objects with a similar shape are perceived as a group. 

This law can occur within images or music as well. Table 3 demonstrates the law of similarity by 

different colored dots, which were perceived line-wise. The law of Prägnanz is demonstrated by 

using the Olympic sign, which is perceived as five cycles. Other wordings of this law are the law 

of good figure or the law of simplicity. This law refers to the fact that forms are perceived as 

thoroughly as possible. The law of proximity describes a grouped perception of objects that are 

close to each other. Due to the closeness of objects, they are perceived as belonging together. 

This law is demonstrated in Table 3 by 18 dots, which are perceived as two groups of 9 dots. 

The continuity law explains that points or dotted lines appear as if they were connected to 

smooth lines. The lines are perceived as continuous lines rather than sharp angles. This law is 

illustrated by using the dots in a line. These are perceived from 1 to 2 and from 3 to 4. Due to 

line-wise perception, these are perceived continuously. The closure law describes that even 

through interrupted lines, a Gestalt of an object is perceived as continuous and complete. 

Interrupted lines or figures are interpolated, and the entirety is perceived, which is demonstrated 

in Table 3, having a rectangle and a triangle. According to the law of common regions, objects 

with the same purpose are perceived as belonging together. For example, when elements move 

in the same direction, they are perceived as belonging together. The law of common regions is 

demonstrated by using a border around the elements. The elements within a boarder are 

perceived as a group. 

Some of these laws are used within an automobile design to achieve an attractive appearance. 

An example, within the interior, operating buttons, which belong to the same function, are 

grouped, for example, to operate the radio. Applying the law of proximity, users understand the 

connection and the shared function of the buttons. The split-lines of the exterior are to align with 

other component edges. Designs at the rear lights often fulfill the law of continuity. The split-

lines are continuous and ideally have no angles, which creates a homogeneous impression. 

Furthermore, perception is more schematically than image-based (Carbon 2015b). An example 

of the abstract perception and filtering mechanism was discussed by Gregory (2005) and Gimini 

(2016a, 2016b). In the project Velocipedia, Gimini illustrated bizarre bicycle drawings, which 

people have created out of memory (Gimini 2016a, 2016b). The bizarre sketches explained that 

the brain filters irrelevant information, such as the individual components for a bicycle, and 

creates a sketch. Besides, special functions were assigned to these sketches and made the 

object more abstract (Gregory 2005). Recognizing a bicycle is simple but drawing a truthful 

sketch from memory is complicated. This effect can be referred to as recall and recognition. For 

humans, recognition is more accessible than the reproduction of objects (recall). 

A concept for translating psychology theories to product design was introduced by Carbon 

(2019). Fundamental psychology theories were presented, which considered aspects of 

perception in product design to meet customer requirements and reach a high customer 

satisfaction level. This concept – the so-called Psychology of Design - defined eleven conceptual 

moves. They support creating a product design and are closely related to customer 

requirements, safe usage, and loved design (Carbon 2019). These conceptual moves were 

derived from personal experience, designers, and technicians. The power of associations to 

assess aesthetics was considered by Fechner and translated by Ortlieb and Ku (2020). Within 

these studies, two concepts of perceiving aesthetics were presented: the Aesthetics from Above 
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and the Aesthetics form Below (Ortlieb and Ku 2020). The focus of Fechner’s work was the 

Aesthetics from below. This research's novelty lay in the consideration of previous knowledge 

and experience within perception and the evaluation of beauty. The association of an object 

attaches meaning to it and associates an impression. This impression is highly important for 

evaluating an object as beautiful (Ortlieb and Ku 2020). Therefore, the Aesthetics of Below is 

crucial for product design. Thus, customers' association affects the perceived pleasure of 

products, which needs to be understood within the product development process. For realizing 

a psychological turn in product design, the following conceptual moves are necessary (Carbon 

2019): 

(1) Understanding the importance of perception related to a hypothesis-driven process, 

which cannot be assessed objective. 

(2) Understanding the effects of design on prediction, which impact conscious actions. 

(3) Understanding Zeitgeist, in terms of a cognitive mechanism regarding changes and 

drivers, triggers of change. 

(4) Understanding the underlying reasons and arguments for assessing design. 

(5) Understanding the relation of cognition and emotions shaped and triggered by the 

body. 

(6) Understanding the product context of design. 

(7) Transforming products from a functional design to a design with an own personality. 

(8) Enabling a modulation of affordance to meet flexible affordances related to culture, 

knowledge, experience and expectations. 

(9) Understanding the impact of analogies to support customers understanding product 

functions. 

(10) Transforming the product assessment to a multisensory consideration and respecting 

a natural perception of product designs. 

(11) Including the Gestalt theories within products for a successful design. 

The first conceptual move is related to the perception process, which had a highly subjective 

character. Products and their operation depend on a person's expectations, knowledge, and 

hypothesis testing (Carbon 2019). These variables differ between persons, and therefore, the 

perceived reality of an individual is always subjective. The Gestalt theory established the second 

conceptual move. This move's objective was to understand how product designs were perceived 

and which predictions were triggered using different designs. By understanding the effects of 

design on predictions, product designs, which ended up in incorrect handling, were avoided 

(Carbon 2019). A changeable factor of design due to time was considered in the third conceptual 

move. The introduction of Zeitgeist within design demonstrated that a physical and mental 

change occurs, which needed to be considered for a successful design in the future (Carbon 

2019). Within the fourth conceptual move, the reasons for assessing design were investigated. 

Based on the familiarity of a design, the product's assessment differed, especially regarding 

innovativeness (Carbon and Leder 2005). Product familiarity needed to be considered for 

assessing a product design. An assumption was that by doing so, assessments gain the power 

of prediction (Carbon 2019). The relation between body and soul, which were identified to impact 

the perception of the design, was considered in the fifth conceptual move. Body and soul were 

connected, and therefore, a separate consideration is unreasonable. Within the sixth conceptual 

move, the importance of the product context regarding product design perception was derived. 

Products were designed to fulfill requirements, which were different related to the scenario. 

Therefore, product designs stood in context to the scenario-specific requirements and were 

assessed within this context (Carbon 2019). The seventh conceptual move demanded to design 

products with a unique personality. By creating a product personality, customers quickly and 
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implicitly understand product usage in different situations. Additionally, the usage of product 

personality is a strategy to differentiate between competitors. 

The conceptual move for creating a product personality includes the process knowledge of 

building a personality, understanding its impact, the comparability of personalities, and the 

effects of strategic personality changes (Carbon 2019). Culture, knowledge, experience, 

expectations, and task-related factors have a proven effect on product perception—the variability 

of these factors needed to be considered in product design. The eighth conceptual move solves 

the variability of affordance. The idea for handling the variability was a modular structure of 

affordance (Carbon 2019). Within the ninth conceptual move, analogies were presented which 

support the understanding of product functions. Analogies within product design establish 

product functions, which were more intuitive and resulted in a good product experience (Carbon 

2019). The combination of senses in product design was presented in the tenth conceptual 

move. The multisensory view on product design a more aesthetic and natural product design 

resulted (Carbon 2019). Finally, the eleventh conceptual move demonstrated the importance of 

the Gestalt theory in product design, whereby the definition of perceived quality was respected. 

In its entirety, a product's design was a success factor for pleasure design (Carbon 2019). 

In summary, the influence of experience and distortion of reality creates an individual perception 

of the outside world (Carbon 2014). Returning to the perceived quality assessment, the 

perception and internal and external influences play a central role. To achieve a high level of 

perceived quality or to assess perceived quality, the perception process and influences on 

perception are essential to consider. 

2.4.2. PERCEIVED QUALITY IN MARKETING 

Based on the definition of perceived quality and foundations of perception, the methods and 

different research disciplines are presented following (Figure 9). An early developed marketing-

based approach was defined by Oude Ophuis and Van Trijp (1995). A customer-integrated 

approach dealing with perceived quality from a marketing viewpoint was presented. This 

method's basis was the perception process of customers and the relationship of perceived 

quality to product, place, and person. Also, the perception process of perceived quality was 

investigated and explained in detail. The main contribution was the abstract and multidimensional 

estimation of perceived quality, which cannot be captured and evaluated by consumers and 

results in an evaluation of indirect quality characteristics. A support for companies was a 

developed quality guidance, introducing three steps: identify customer-based quality 

assessments, demerge quality evaluations, and transfer customer requirements, including the 

knowledge of intrinsic quality attributes.  

An equally marketing-based approach, provided by Chi (2009), investigated the relationship 

between perceived quality and brand loyalty. The attempt to investigate the relationship was 

realized by four study-related research questions dealing with 

(1) Influences of brand awareness and perceived quality, 

(2) effects of perceived quality and brand loyalty, 

(3) meditational effects of perceived quality on the relationship of brand awareness and 

purchase intension, and 

(4) meditational effects of brand loyalty on the relationship between brand awareness and 

purchase intention. 

The results showed a significant and positive relation between brand awareness or loyalty and 

perceived quality. Perceived quality and brand loyalty were identified as mediator roles between 

brand awareness and purchase. The primary goal was to establish the correlations of the four 



 23 

categories more precisely. Thus, a detailed consideration of individual product attributes 

regarding the four research questions was not further addressed. A positive correlation regarding 

a purchase intention was determined with brand identity, brand recall, action, and effective loyalty 

based on the general research scope. 

The research scope of Snoj, Korda, and Mumel (2013) was perceived quality, perceived risk, and 

perceived product value. The main aspects of perceived value: customers assess product value 

related to their expertise, knowledge of buying and using, product value is assessed by 

customers subjectively and cannot be assessed objectively by companies, perceived value is a 

multidimensional concept. Snoj, Korda, and Mumel (2013) identified and criticized approaches 

of simplifying perceived value as a combination of perceived quality and price. Based on a 

discussion of various concepts of perceived quality, Snoj, Korda, and Mumel (2013) followed the 

definition of Zeithaml (1988a) that the entity of a product is more than the sum of its part. 

Perceived sacrifices were defined as product aspects that negatively affect perceived value, 

which can be the price of a product and the non-monetary aspects like waiting or searching 

costs. Based on the fundamental research of the three research disciplines, Snoj, Korda, and 

Mumel (2013) investigated their relationship and focused on four aspects dealing with perceived 

value, quality, and risk, which were (Snoj, Korda, and Mumel 2013): 

(1) perceived risk and perceived value,  

(2) dependencies between variables,  

(3) disparities between the study groups and  

(4) the disparities between the theoretical basics and the study results.  

The main contribution was the derived triangle relationship and the individual relationships 

between perceived quality, perceived risk, and perceived value, described by Cronbach's alpha. 

Significant results were the adverse effects of perceived quality on perceived risks, perceived 

risks on perceived value, and perceived quality's positive effects on perceived value. Like the Chi 

(2009) approach, Snoj, Korda, and Mumel (2013) conducted a general research scope of a 

product. The product was considered in its entity without detailed consideration of individual 

product attributes. 

2.4.3. PERCEIVED QUALITY IN PSYCHOLOGY 

A marketing and psychological approach was presented by Steenkamp (1990). This approach 

contributed to a detailed understanding of perceived quality and their relating influences. He 

discussed different definitions of perceived quality and identified a lack of considering 

psychological and customer behavior within these definitions. Therefore, he derived a new 

definition of perceived quality, which included three main commitments (Steenkamp 1990): 

Personal preferences are involved during a perceived quality evaluation, perceived quality is 

neither objective nor completely subjective, the subject-object relation is characterized by 

comparison of competing products, personal and situational, and the entirety of a product 

defines perceived quality. Based on the presented definition of perceived quality, a conceptual 
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model for describing the quality perception process was developed. Figure 7 illustrates the 

model. 

Steenkamp's derived model (Steenkamp 1990) included three levels: cue acquisition and 

categorization, quality attribute belief formation, and integration of quality attribute beliefs. Within 

the first stage, customers were overflowed by product quality cues. Based on the cognitive 

system, these cues were filtered, acquired, and categorized. Within the second stage of the 

conceptual model, the acquired and categorized cues were assessed based on individual 

experience and credence. Within this stage, single attributes and combinations of attributes were 

evaluated concerning perceived quality. This evaluation was defined as the transition to the third 

stage. Within the third stage, the evaluations of single and combined attributes were compiled. 

The developed model demonstrated an initial process explanation of how customers perceive 

quality. The method is differentiated to further methods by including psychological aspects 

within the perception process. 

A psychological concept, which sheds light on the relationship between perceived quality, 

satisfaction, and behavioral intentions, was presented by Gotlieb, Grewal, and Brown (1994). 

Primary research questions were the investigation of a complementary or divergent relation 

between perceived quality and customer satisfaction. Firstly, the context and effect chain were 

analyzed concerning disconfirmation up to the behavioral intention. Afterward, it was discussed 

whether the theories resemble the developed process up to the behavioral intention. 

Subsequently, a process and influence diagram were developed, which showed the relationship, 

whether positive or negative and in the exact order.  

Lastly, an also psychological-based concept was presented by Carbon and Jakesch (2013). 

Contrary to the previous models, the model focused on the influence of haptic product 

characteristics on perceived quality. 

2.4.4. PERCEIVED QUALITY IN ENGINEERING  

An engineering-based approach was introduced by Stylidis et al. (Stylidis et al. 2015; Stylidis, 

Wickman, and Söderberg 2015a, 2018; Stylidis et al. 2015). The contribution was a perceived 

quality framework primary for the premium automobile industry. Product quality value was 

defined by Value-based perceived quality (VPQ), which included the total product experience 

and had subsections, e.g., brand value. A substage of VPQ was Technical-based perceived 

quality (TPQ). This stage considered and assessed product attributes related to sensory 

modalities. Figure 8 shows the perceived quality framework, including the stages VPQ and TPQ. 

Personal and situational factors 

Cues in the 
environment 

Intrinsic quality 
cue beliefs 

Extrinsic quality 
cue beliefs 

Experience quality 
attribute beliefs 

Credence quality 
attribute beliefs 

Perceived quality 

1. Cue acquisition and 
categorisation 

2. Quality attribute belief 
formation 

3. Integration of quality 
attribute beliefs 

Figure 7. Conceptual model to describe the quality perception process, adapted from 
Steenkamp (1990). 
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TPQ is defined by different levels. The first level included primary senses assigned to olfactory, 

auditory, tactile, visual, and gustatory quality. The second stage defined sensory modalities, e.g., 

smell, sound, or geometry quality. Within the third level, ground attributes were defined and 

considered. For consideration of those attributes, the framework used ranking methods to weigh 

the attributes (Stylidis, Wickman, and Söderberg 2018). Given by the decomposition, in the 

lowest product level, attributes were weighted by ranking methods. By accumulating the results 

per level, a corresponding value for each primary sense was developed. 

Zöller and Wartzack (2017) introduced a product design, which was called Application for 

Computer-Aided Design for Emotional Impression (ACADE), and demonstrated a method for 

matching subjective customer requirements to product features. Contrary to other methods, this 

method demonstrated an approach for designing a product close to customer requirements 

instead of assessing a final product. Therefore, the method was designed in three stages. The 

first stage was developed to investigate the product context by using four levels. Firstly, the 

product context was defined. Secondly, a characterization of the product was conducted. A 

varying and visualizing of the product in its characteristics was conducted in levels three and four. 

These steps aimed to develop a product profile. Parallel to this process, a user context was 

established, which resulted in a personal profile. In the third step, the product and personal 

profiles were placed on top of each other. The product design was based on personal 

preferences. Through this procedure, target-oriented customer-oriented product development 

could be realized. This approach went beyond assessing product attributes regarding perceived 

quality and showed similarities to Kansei Engineering (Nagamachi 2016). The described 

procedure objectively captures customer perception and translates it into a product.  

Lieb, Quattelbaum, and Schmitt (2008) presented an equally engineering-based approach and 

included a perception-based assessment of product quality. The relationship between the term 

perceived quality and product-customer-relationship was explained in detail:  

 

Figure 8. Perceived Quality Framework, adapted from Stylidis et al. (Stylidis et al. 2015; Stylidis, 
Wickman, and Söderberg 2015a, 2018; Stylidis et al. 2015). 

TPQ: Technical perceived quality  

Auditory Tactile Visual Gustatory Olfactory 

Smell Sound 
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Paint 

Joining 

Illumination 

Appearance 
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1. 
level 

2. 
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VPQ: total customer experience TPQ + external factors (e.g. brand heritage   



 26 

(1) Perceived quality influences the opinion of the customer and, thus, his satisfaction. 

(2) The perception of product quality is subjective.  

(3) Perceived quality often includes a comparison of several similar products.  

(4) Major influencing factors on perceived quality are usage, aesthetics, environmental 

influences, brand, and reputation. 

In order to improve the understanding and handling of perceived quality, this research introduced 

a three-step method, which included the levels “Identification,” “Quantification,” and 

“Qualification.”  

Similar to the methods of Lieb, Quattelbaum, and Schmitt (2008), Falk, Quattelbaum, and 

Schmitt (2010) aimed to introduce a customer-centered concept to identify relevant product 

features and to present an objective evaluation method. A top-down method, similar to PQF, 

was presented. The method decomposed a product into individual characteristics by reducing 

the degree of abstraction. The including steps are overall impression, perception cluster, quality 

attribute, descriptor, and technical parameter. The developed method was applicable within the 

whole supply chain, and a product evaluation by concrete facts was possible.  

2.4.5. COMPARISON OF THE METHODS 

The presented methods demonstrated various approaches to objectify perceived quality and to 

match customer requirements for a high level of customer satisfaction. Figure 9 shows the 

presented methods and approaches for assessing perceived quality. 

These four criteria were applied to compare the methods: Research discipline, definition of 

perceived quality, product context and relations, perceived quality measurement method.  

These criteria were derived by the four research hypotheses of the thesis. The first criterium is 

related to the research discipline. Afterwards, the second criterium reviews the given definitions 

Falk et al., 2010  

E N G I N E E R I N G  M A R K E T I N G  

P S Y C H O L O G Y  

 Stylidis et al., 2018  

Snoj et al., 2013 

Oude Ophuis & Van 
Trijp, 1995 

Chi, 2009 

Steenkamp,  
1990 

Gotlieb et al., 1994 

Carbon & 
Jakesch, 2013 

Lieb et al., 2008 

Zöller & Wartzack, 2017 

Figure 9. Exemplary perceived quality methods structured regarding the research area. 
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within the approaches towards the concept of perceived quality. The third criterion considered 

the product context and relations of attributes regarding the perceived quality or considers the 

strategy to realize high customer satisfaction. As a perceived quality assessment method is 

subjective, the fourth criterion considered the availability of a method, and if any exists, the 

procedure is briefly described. Table 4 presents an overview of the eight presented methods 

and the four introduced criteria. 

Table 4. Comparison of perceived quality methods. 

 Research 

discipline 

Definition Context & relations Assessment 

method 

Stylidis et al. 

2015; 

Stylidis, 

Wickman, 

and 

Söderberg 

2015a, 2018; 

Stylidis et al. 

2015 
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Oude Ophuis 
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The term perceived quality was established in all methods, whereby further terms such as 

perceived value (Snoj, Korda, and Mumel 2013), haptic aesthetics (Carbon and Jakesch 2013), 

or customer satisfaction (Gotlieb, Grewal, and Brown 1994; Oude Ophuis and Van Trijp 1995; 

Zöller and Wartzack 2017) were related to perceived quality. The second criteria provided an 

identical consumer-centric perspective on the perceived quality of every research approach. 

Some of the methods linked in their definition to further perceived quality definitions, e.g., 

Zeithaml (1988a) or Shocker and Aaker (2006). Other methods introduced a more detailed 

definition for perceived quality, which contained more aspects (Steenkamp 1990). A similarity 

was the highly subjective nature of perceived quality and the individual and experience-based 

assessment by consumers. A somewhat differently consideration was the third criterium, which 

considers the context and relations of attributes related to perceived quality. Whereby Stylidis et 

al. (Stylidis et al. 2015; Stylidis, Wickman, and Söderberg 2015a, 2018; Stylidis et al. 2015) had 

a broad product scope on perceived quality, Falk, Quattelbaum, and Schmitt (2010) and Lieb, 

Quattelbaum, and Schmitt (2008) defined perceived quality attributes across the supply chain. 

Zöller and Wartzack defined perceived quality as an input factor for customer satisfaction (Zöller 

and Wartzack 2017). Steenkamp (1990) deduced an abstract perceived quality level without 

considering individual product functions. Snoj, Korda, and Mumel (2013), Gotlieb, Grewal, and 

Brown (1994) and Chi (2009) considered different perceived quality relationships with additional 

features. The features were company-related, such as brand names or product-specific or, in 

the third case, customer-specific, such as satisfaction. Carbon and Jakesch (2013) considered 

the perception process, influences, and expands the strong visual perception of perceived quality 

to include influences of haptics. The last criterium considered an assessment method for 

perceived quality of a product. Four of the presented methods provided a perceived quality 

assessment method for products; these concepts were introduced by Stylidis et al. (Stylidis et 

al. 2015; Stylidis, Wickman, and Söderberg 2015a, 2018; Stylidis et al. 2015), Falk, Quattelbaum, 

and Schmitt (2010), Oude Ophuis and Van Trijp (1995), Zöller and Wartzack (2017), and Carbon 

and Jakesch (2013). The first three methods were similar and aiming to decompose the product 

into individual functions, attributes or characteristics. The complexity was reduced, and the 

individual product functions were objectively evaluated. Subsequently, the individually evaluated 

functions were accumulated and resulted in a total perceived quality value. As a disadvantage, 

the related individual functions were individually assessed, and relations between characteristics 

remain unnoticed. Zöller and Wartzack (2017) described a more holistic approach without 

decomposing a product. Within this method, the product context and user context were 

elaborated, and in conclusion, the customer requirements and product attributes were matched. 

Carbon and Jakesch (2013) examined haptic effects by subdividing the perception process into 

three levels. The product remained in its entirety, but a quantifiable value for perceived quality 

was not derived. As the comparison concerning the criteria indicated, some presented perceived 

quality methods were similar in several aspects across disciplines but differed in the scope of 

perceived quality and perceived quality assessment methods. In summary, the technical-based 

approaches decomposed a product to assess perceived quality, whereas marketing-based 

approaches considered the relation to customers and psychological-based approaches 

considered the perception process. 
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2.4.6. DEFINITION OF PERCEIVED QUALITY IN RELATION TO SPLIT-LINES 

A consideration of perceived quality definitions of various research approaches identified a lot of 

similar aspects. In all definitions, the subjective perception of product quality was underlined and 

highlighted. Subjective criteria often exist in the methods next to the objective product or quality 

attributes. A distinguishing feature is the abstraction level of perceived quality. A definition of 

perceived quality by Zeithaml (1988a) illustrated that the perception of the entity is more than 

just the sum of the individual product elements. 

Additionally, Steenkamp (1990) defined perceived quality as the entirety of a product. Both 

definitions are strongly related to the basis of design theory that the whole is more than just the 

individual parts' sum. All three definitions raised perceived quality and the shape of objects to an 

abstract level. Within this thesis, the term perceived quality is examined in detail and the context 

of an automobile. The assessment of perceived quality is considered at different levels. A holistic 

consideration of an automobile represents the highest level. Within detailed levels, product 

features, such as split-lines, regarding perceived quality, are investigated. The scope of this 

thesis is the consideration of the perceived quality of split-lines. Perceived quality is, therefore, 

characterized in this thesis by the following statements. 

(1) It is subjective and therefore individually perceived,  

(2) It stands in context to product design, 

(3) It is not independently considerable, 

(4) It contributes to the entire product perception and 

(5) It depends on personal and product-based factors. 
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2.5. MACHINE LEARNING 

Artificial intelligence is defined as the attempt to create computer programs, which execute 

intellectual tasks usually performed by humans (Chollet 2018; McCarthy, Minsky, Rochester, & 

Shannon 1955; Minsky 1982). The research field of artificial intelligence includes learning 

methods and technologies to perceive input signals or to move. In comparison to human 

intelligence, Artificial Intelligence is divided into three levels (Kaplan and Haenlein 2019): 

(1) Artificial Narrow Intelligence (ANI) 

(2) Artificial General Intelligence (AGI) 

(3) Artificial Super Intelligence (ASI)  

Various functions differentiate Artificial Intelligence systems: Cognitive Intelligence, Emotional 

Intelligence, Social Intelligence, and Artistic Creativity (Kaplan and Haenlein 2019). Figure 10 

shows the research discipline of artificial intelligence and further sub-disciplines. 

As illustrated in Figure 10, machine learning is a sub-discipline of Artificial Intelligence (Chollet 

2018). It deals with computer learning techniques, which significantly differ from traditional 

programming approaches. Machine learning is defined as a programming technique in which 

complex problems are solved by computers using a high amount of input data and their 

corresponding answers (Chollet 2018; Eraslan et al. 2019; Kaplan and Haenlein 2019). 

Subsequently, unknown rules and relationships are extracted and learned by the program itself 

(Chollet 2018; Eraslan et al. 2019; Kaplan and Haenlein 2019). As a result, a trained model can 

predict answers on a new data set using the developed algorithms. The approach of machine 

learning stands in contrast to traditional programming approaches. Traditional programs 

calculate input data by using defined rules to get answers. 

For machine learning issues, three aspects are significant to solve (Chollet 2018; Eraslan et al. 

2019; Kaplan and Haenlein 2019; Lecun, Bengio, and Hinton 2015): 

(1) the input data (i.e., pictures for visual tasks),  

(2) examples of the output (i.e., animals of different classes) and  

(3) a method to evaluate the performance of a model (i.e., a calculation of the derivation 

between original and predicted output).  

In summary, machine learning programs are “trained rather than explicitly programmed” (Chollet 

2018, 5). The central task of machine learning is to find other or further representations of data 

to approximate rules, which match inputs to correct outputs. The main challenge is the extraction 

of rules, which are associated with features. The process of extracting them is often called 

feature engineering (Lecun, Bengio, and Hinton 2015). 

Figure 10. Context of Artificial Intelligence, Machine Learning and Deep Learning, adapted 
from Chollet (2018). 

Artificial Intelligence 
 
Research field to develop  
Machines which have an  
equal intellectual level  
as humans. 

Machine Learning 
 
Research discipline, which  
concentrates on  
technologies 
to learn from data. 
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Research discipline using 
Neural Networks. 
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Machine learning approaches differ in the input and output data and the type of problem they 

solve (Chollet 2018; Kaplan and Haenlein 2019). The approaches are commonly defined in three 

approaches: Supervised learning, unsupervised learning, and reinforcement learning. An 

overview of these training approaches is presented in Figure 11. 

Supervised learning is present if the learning data set is represented by input data combined with 

labels, often determined by experts or humans (Chollet 2018; Eraslan et al. 2019; Kaplan and 

Haenlein 2019; Lecun, Bengio, and Hinton 2015; Schmidhuber 2015). Classification or 

regression algorithms represent supervised learning methods (Chollet 2018; Eraslan et al. 2019). 

Examples of methods using supervised learning approaches are image classification or 

regression for predicting purchase decisions. Unsupervised learning aims to find data 

transformations without getting information about the output (Chollet 2018; Eraslan et al. 2019; 

Kaplan and Haenlein 2019; Lecun, Bengio, and Hinton 2015). An example of using unsupervised 

learning is clustering, i.e., for grouping customer data. In contrast to supervised learning and 

unsupervised learning methods, a third learning approach is called reinforcement learning. It has 

an optimization request besides the challenge's classification to reach a maximum or minimum 

in combination with various decisions (Chollet 2018; Kaplan and Haenlein 2019; Schmidhuber 

2015). 

Besides machine learning approaches, models, which are used for training, are necessary to 

introduce. There are different types of models developed within research, which can perform 

one or more machine learning approaches. The most common models are decision trees, 

support vector machines, linear regression, logistic regression neural networks, and 

convolutional neural networks for image classification with a focus on unsupervised and 

supervised learning algorithms. The categorization of these models to a learning approach is 

presented in Figure 12. 

Figure 11. Overview of different machine learning algorithms, summarized from Lanquillon 
(2019). 
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2.5.1. DECISION TREES 

Decision trees are a machine learning method to document a decision-making process based 

on past knowledge (Ben-Gal et al. 2014). Decision trees are non-parametric algorithms with a 

fast calculation time (Richter 2019a). The decision trees' approach uses an amount of 

attributes/pair values to classify an object (Beierle and Kern-Isberner 2019). Besides the ability 

of classification, decision trees can also perform a regression algorithm (Richter 2019a). The 

architecture of a decision tree is related to Boolean function (Beierle and Kern-Isberner 2019). A 

truth-value marks a tree's leaves; each node is marked by an attribute (Beierle and Kern-Isberner 

2019). A classification task is performed by going through a tree's different nodes (Beierle and 

Kern-Isberner 2019). The training of a decision tree is performed by the architecture modeled 

(Figure 13), and the training data listed in the form of a table (Table 5) (Kotsiantis 2013). 

The training set is provided within a table, which is exemplary presented in Table 5. 

Attribute 1 

Attribute 2 No No 

Attribute 3 Attribute 4 Yes 

No Yes No Yes 

a1 b1 c1 

a2 b2 c2 

a3 b3 a4 b4 

Figure 13. Example of a decision tree architecture, adapted from Kotsiantis (2013). 

Unsupervised Learning Supervised Learning 

Classification Algorithm Clustering Algorithms Regression Algorithm 

Support Vector Machines 

Linear Regression Logistic Regression 

Neural Networks 

Convolutional Neural 
Networks 

Decision Trees k-means 

Figure 12. Categorisation of machine learning approaches. 
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Table 5. Training data set for a decision tree machine learning approach, adapted from 

Kotsiantis (2013). 

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class 

a1 a2 a3 a4 Yes 

a1 a2 a3 b4 Yes 

a1 b2 a3 a4 Yes 

a1 b2 b3 b4 No 

a1 c2 a3 a4 Yes 

a1 c2 a3 b4 No 

b1 b2 b3 b4 No 

c1 b2 b3 b4 No 

Various iterations perform one training cycle. A single iteration uses a defined path through the 

tree, which is described by the attributes (Attribute 1-4, Figure 13) and the connections (a1-a4, 

b1-b4, c1, Figure 13) (Kotsiantis 2013). 

By using this general approach, different decision tree variants are developed, which are for 

example binary trees, top-down induction of decision trees (TDIDT), ID3, C4.5, CART (Gray 

1990; Kotsiantis 2013). 

2.5.2. SUPPORT VECTOR MACHINES  

Support Vector Machines (SVM) represents a machine learning method, which can be applied 

within classification or regression tasks (Lanquillon 2019). An example of SVM's application is 

the classification of the fraudulent usage of credit cards by using a massive amount of information 

(Noble 2006). For realizing an SVM algorithm, four concepts are decisive: the separating 

hyperplane, the maximum-margin hyperplane, the soft margin, and the kernel function (Noble 

2006). The separating hyperplane is a mathematical function, which divides two bundles of 

points by a function. The distance between the divided bundles is equal (Figure 14 a) (Cortes 

and Vapnik 1995; Noble 2006). The mathematical function, which separates the bundles by 

having the maximal distance to both bundles, is called maximum-margin hyperplane (Figure 14 

a) (Noble 2006). This hyperplane results in the optimal hyperplane with an optimal margin (Cortes 

and Vapnik 1995). These functions are used by having a problem, which is separable by using a 

linear function. The soft margin is applied if single points of one bundle are within the other 

bundle. The soft margin is applied to handle such a situation, which allows some data points of 

one bundle to push through the margin without affecting the result (Figure 14 b)) (Noble 2006). 

The kernel function is used to separate data sets with more than one dimension (Noble 2006). 

The fundamental concept of the kernel function is to add another dimension to the data by 

squaring the original expression values (Figure 14 c),d)) (Cortes and Vapnik 1995; Noble 2006). 

In summary, the kernel function is a mathematical trick that enables running an SVM algorithm 

on one-dimensional data by transforming data of low dimensions in a higher-dimensional space 

(Noble 2006). By using a suitable kernel function, it is possible to separate any data set linearly 
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and to handle nonlinear problems (Lanquillon 2019; Noble 2006; Schölkopf et al. 2002). The 

presented concepts of SVM are presented in Figure 14. 

Within a basic form, SVMs are applicable for two different variables. The SVM algorithm has to 

be extended to a multi-class SVM for using more than two variables (Noble 2006). Therefore, 

the two possibilities are presented. A first possibility is a one-versus-rest approach, where each 

class is differentiated from each (Cortes and Vapnik 1995; Noble 2006). The second possibility 

is a one-versus-one classification, where respectively, two classes are distinguished (Cortes and 

Vapnik 1995; Noble 2006). Some advantages of SVMs are a high prediction accuracy, a low 

tendency for overfitting, efficient classification of new objects and compact models (Burges 

1998; Cortes and Vapnik 1995; Cristianini and Shawne-Taylor 2000; Joachims 1998). 

Disadvantages of SVMs can belong to training time, complex implementations, and trained 

models are hard to evaluate (Burges 1998; Cortes and Vapnik 1995; Cristianini and Shawne-

Taylor 2000; Joachims 1998). 

Figure 14. Concepts of SMVs. a) separating two bundles of data points with a separating 
hyperplane and showing the maximum-margin hyperplane. b) showing the concept of soft 
margin. c) one dimensional data set. d) transformed data set by the kernel function and defining 
a separating hyperplane, adapted from (Noble 2006),(Cortes and Vapnik 1995). 

Legend: 
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2.5.3. LINEAR REGRESSION  

Linear regression has its fundamentals within statistics (Richter 2019b). A metrical target variable 

is calculated using further metrical attributes when using a linear regression model (Lanquillon 

2019). Within the primary case, the relation between the target variable and other explanatory 

variables is described by a linear function or a more dimensional space by a linear hyperplane 

(Lanquillon 2019). A linear regression model within a two-dimensional space is presented in 

Figure 15. 

Linear regression models can also cover non-linear function, the term linear stands for the 

coefficients in the function and do not limit the degree of features (Lanquillon 2019; Richter 

2019b; Shalev-Shwartz and Ben-David 2014). An advantage of linear regression models is that 

the parameters of a linear function can be estimated by using the least square method (Shalev-

Shwartz and Ben-David 2014). 

2.5.4. LOGISTIC REGRESSION  

Logistic regression is an algorithm for classification tasks, which is a predictive analysis algorithm 

using probability (Lanquillon 2019). The primary use of logistic regression models is to calculate 

the probability of a binary event related to different explanatory variables (Lanquillon 2019). 

Therefore, logistic regression uses the sigmoid function to calculate the class probability of 

inputs (Dreiseitl and Ohno-Machado 2002). The sigmoid function is presented in Figure 16. 

The basic function of a logistic regression model is (Park 2013) 

𝑙𝑜𝑔𝑖𝑡(𝑦) =  𝛼 + 𝛽𝑋. (1) 

The underlying function is binominal, and the parameters are estimated using the maximum 

likelihood method (Lanquillon 2019; Park 2013; Shalev-Shwartz and Ben-David 2014). A 

likelihood is a probability to predict the dependent variable using the values of the independent 

x1 

x2 

Figure 15. Linear Regression within a two-dimensional space, adapted from Shalev-Shwartz 
and Shai (2014). 

1 

0.5 

Figure 16. Sigmoid function, used in logistic regression algorithms, adapted from Shalev-
Shwartz and Shai (2014). 
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variables (Park 2013). The advantage of logistic regression models is a low risk of overfitting the 

network using a variable selection method (Dreiseitl and Ohno-Machado 2002). Nevertheless, 

this decreased risk goes hand in hand with reduced flexibility of logistic regression models 

(Dreiseitl and Ohno-Machado 2002). 

2.5.5. K-MEANS 

The k-means algorithm was developed and presented by MacQueen (1967). The k-means 

algorithm is an approach for clustering input data and is therefore allocated to the unsupervised 

learning methods (Lanquillon 2019; Wagstaff et al. 2001). The algorithm clusters input data 

points to a priori defined number of clusters (Lanquillon 2019). Therefore, the algorithm 

minimizes the distance between the cluster center and the single points of the data set 

(Lanquillon 2019). The beginning is a random mapping that is iteratively optimized using four 

steps (Lanquillon 2019; Richter 2019b; Shalev-Shwartz and Ben-David 2014). In the first step, 

the cluster centers are places in the space of data sets (Kodinariya and Makwana 2013). In the 

second step, the single data points are mapped to one cluster center, to which the distance from 

the point to the center is minimal (Lanquillon 2019). In a third step, the center's value is calculated 

by the mean value of all distances (Lanquillon 2019). In a fourth step, the cluster centers are 

newly located (Kodinariya and Makwana 2013). This procedure is repeated until the centers are 

optimal and do not move (Kodinariya and Makwana 2013). The optimum results after a finite 

number of iterations and the algorithm converge at a local minimum (Lanquillon 2019). 

Therefore, the algorithm is typically performed several times using several different values for 

the number of clusters and different starting values (Lanquillon 2019). The cluster center's data 

point is smaller by having more defined cluster numbers (Lanquillon 2019). Therefore, the 

number of cluster centers must be limited to provide overfitting of the algorithm (Lanquillon 

2019). 

2.5.6. NEURAL NETWORKS 

Within standard machine learning methods, the extraction of essential features is performed 

manually, and for many problems, this effort exceeds feasible limits. Therefore, a subdiscipline 

of machine learning was developed: deep learning (cf. Figure 10). The effort of deep learning 

methods is that feature engineering is performed automatically by the method itself (Lecun, 

Bengio, and Hinton 2015). Thereby, deep learning methods can map complex and 

multidimensional data and solve more scientific and industrial problems. (Deep) neural networks 

represent the idea of deep learning. Neurobiology and the abstract concept of a human brain’s 

neurons inspired their name, but neural networks do not aim to represent the human brain 

(Chollet 2018). Within a neural network architecture, a neuron displays the fundamental element 

(Husain, Dellen, and Torras 2017). Each layer within a neural network includes several neurons 

(Husain, Dellen, and Torras 2017). The combined neurons form the output of one layer 𝑙 and the 

input of the subsequent layer 𝑙 + 1 (Husain, Dellen, and Torras 2017). The relation of output and 

input layers are defined by, 

𝑎𝑙+1 = 𝑓(𝑊𝑙𝑎𝑙 + 𝑏𝑙), (2) 
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where 𝑊𝑙 is the weight matrix, 𝑙 the layer, 𝑏𝑙 the bias and 𝑓 the activation function for layer 𝑙 

provided by 𝑎𝑙 (Husain, Dellen, and Torras 2017). The training of a neural network implies to find 

a set for 𝑊 and 𝑏 with a minimal cost function (Husain, Dellen, and Torras 2017). Figure 17 

shows the approach of defining an optimal set of parameters for 𝑊 and 𝑏.  

Within this process three subsystems are essential: the traditional system, the evaluation 

module, and the adjustment module. Within the first traditional system, the architecture of a 

neural network is defined by neurons, layers and weights. The evaluation system considers the 

calculation of the loss function, which is the accuracy of the network predictions related to the 

original targets 𝑦. In this case, the loss function is calculated to measure the derivation between 

original target and predicted output. For one training sample, the loss function is defined as, 

𝐽(𝑊, 𝑏; 𝑦′, 𝑦) =
1

2
‖𝑦′ − 𝑦‖2. 

(3) 

As a base for the subsequent adjustment system, the result of the loss function is considered. 

In combination with the results, the model weights are modified to get a higher prediction 

accuracy by reducing the loss function due to updated weights. This process is called 

backpropagation and is an integral approach of neural networks (Chollet 2018; LeCun and 

Bengio 1995). For this purpose, an algorithm (i.e., gradient descent) is used to compute the 

gradients concerning the loss function (Chollet 2018; Eraslan et al. 2019; Husain, Dellen, and 

Torras 2017).  

The difference between deep learning and machine learning approaches is automatizing feature 

engineering, which aims to identify layers with a more useful representation of input data to 

predict an output. The advantages of neural networks are summarized (Chollet 2018): 

1. Traditional System: Network Architecture 

3. Adjustment 
Module 

2. Evaluation Module: Verification of the 
trained algorithm  

Layer: Data Transformation 

Layer: Data Transformation 

Layer: Data Transformation 

. 

. 

. 

Weights 

Weights 

Weights 

Predictions Y’ True Targets Y 

Loss Function 

Loss Score Optimizer 

Input 

Weight 
update 

Figure 17. Learning system for deep neural networks, adapted from Chollet (2018). 
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(1) Simplicity: Given the automation of Deep Neural Network's feature engineering, the 

engineering requirements are reduced, and end-to-end solutions are achievable. 

(2) Scalability: High level of parallelism is possible due to the usage of graphics processing 

units (GPU) or tensor processing unit (TPU).  

(3) Versatility and reusability: Approaches are recyclable, and for example, a trained network 

for image classification can be reused for a video processing network or smaller datasets.  

2.5.7. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks (CNN) are up to many scientific and industrial fields, such as 

autonomous driving (Ciresan et al. 2012; Lecun, Bengio, and Hinton 2015). Besides classification 

problems, convolutional neural networks can perform object detection, multi-object detection, 

and image segmentation problems. Within an object detection algorithm, certain classes were 

locally predicted within an image (Chollet 2018). Similarly, multi-object detection algorithms 

identify various classes within an image (Chollet 2018). Image segmentation problems assign 

individual pixels to a particular class (Chollet 2018). 

Common concepts of convolutional neural networks include three concepts (LeCun and Bengio 

1995): local receptive fields, shared weights, and spatial or temporal subsampling. Figure 18 

shows the architecture and the processing of a convolutional neural network by sketching 

convolutions and subsampling. 

Local receptive fields (Figure 18) can extract basic features, i.e., edges combined by higher layers 

to display more abstract patterns or total images. Besides, different receptive fields within one 

image perceive features using a detector with identical weights over the entire image (shared 

weights). The result of calculating an image with a receptive field is called a feature map. In 

conclusion, various feature maps (Figure 18) with different weights are included within a 

convolutional layer (LeCun and Bengio 1995). Since a feature is detected and extracted, the local 

position is irrelevant unless a connection to other features is available. Within the next step, a 

subsampling of the feature maps is performed to reduce the image size and increase network 

robustness. A typical arrangement of convolutional neural networks is convolution, and 

subsampling layers are in the form of a pyramid, displaying an increasing number of feature maps 

by having a reduced spatial resolution (Chollet 2018; LeCun and Bengio 1995). 

Based on the presented common concepts of convolutional neural networks, the following 

section focuses on the different types of layers. The layers within a convolutional neural network 

alternate between convolutional layers, pooling layers, and concludes with fully connected layers 

Figure 18. Architecture of convolutional neural networks, adapted from LeCun and Bengio 
(1995). 
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(Chollet 2018). Independently of the layer type, all neurons of one layer have similar input weights 

(shared weights, cf. 2.5.6). Within the convolutional layer, an activation function is used to detect 

local patterns. As activation function is binary step function, linear activation function or non-

linear activation function are selectable (Eraslan et al. 2019). Linear functions have limitations 

regarding image and speech recognition (Lecun, Bengio, and Hinton 2015). Therefore, non-

linear activation functions were applied within convolutional neural networks, such as the sigmoid 

or the Rectified Linear Unit (ReLU) function. The ReLU function especially demonstrated good 

results in machine vision (Ramachandran, Zoph, and Le 2017; Schmidt-Hieber 2017). 

Additional non-linear activation functions are hyperbolic tangent (tanh), leaky ReLU, parametric 

ReLU, softmax, and swish (Lecun, Bengio, and Hinton 2015). Compared to the other activation 

functions, the ReLU function trains faster than, for example, the tanh function (Lecun, Bengio, 

and Hinton 2015). The output of convolutional layers is feature maps (Goodfellow, Bengio 2015), 

which are processed further. Pooling layers realize a subsampling of the feature maps by 

applying a filter. For this filter, the max pool function is often applied (Chollet 2018). The last 

layers are typically fully-connected, which are also called dense layers. These layers differentiate 

from convolutional layers by the fact that they learn global patterns (Chollet 2018). In preparation 

for the dense layer, the convolutional layers' multidimensional outputs are converted into a one-

dimensional vector. This step is called flatten (Hinton, Sutskever, and Salakhutdinov 2014). As 

activation function for the output layer of a classification problem, the sigmoid or the softmax 

function are implementable. Based on the number of output variables, one of these functions is 

used. The sigmoid function is applied by having two output labels, and the softmax function is 

applied by having more than two labels (Chollet 2018). Additionally, within the final layer, a loss 

function and an optimizer are defined. The loss function, or cost function, is defined as the 

function which has to be minimized within the training (Goodfellow, Bengio, and Courville 2016). 

The initial problem indicates the choice of loss function and is directly linked to the activation 

function of the output layer (Goodfellow, Bengio, and Courville 2016). Regression problems often 

use a linear activation function and a mean-squared error loss function (Chollet 2018). Binary 

classification problems are often modeled using a sigmoid activation function and a binary cross-

entropy as a loss function (Chollet 2018). Multi-class classification problems are often solved by 

applying the softmax activation function and a categorical cross-entropy as a loss function 

(Chollet 2018). Cross-entropy is a method based on information theory that calculates the 

distance between prediction and correct label (Chollet 2018). 

Several network architectures were developed in research, which is, i.e., VGG-16 (Simonyan and 

Zisserman 2014), ResNet (He et al. 2016), Inception (Szegedy et al. 2015), or AlexNet 

(Krizhevsky, Sutskever, and Hinton 2012). These architectures generally include the presented 

layers within their architecture, but the specific combination, selection of local receptive fields, 

shared weights, and spatial or temporal subsampling are different. 

2.5.8. SIAMESE NETWORKS 

A dual-input of two VGG-16 networks was used within the thesis, which was combined directly 

after the weighted layers. For the implementation of this network architecture, the concept of 

Siamese networks was exploited. Initially, Siamese networks were introduced by Bromley et al. 

(1993) and were used to identify and verify signatures. The basic idea was to use two identical 

subnetworks, which were combined at their output. Additionally, the subnetworks had identical 

architecture and had identical shared weights (Zagoruyko and Komodakis 2015). Each branch 

got one input, and this was processed by several convolutional ReLU and pooling layers 

(Zagoruyko and Komodakis 2015).  Subsequently, the outputs of the subnetworks were 

combined. These were the input for the decision network. This type of network was represented 
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by fully-connected and ReLU layers (Zagoruyko and Komodakis 2015). The derivation between 

both outputs provided information about the similarity of their features (Bromley et al. 1993). The 

architecture of Siamese neural networks is presented in Figure 19. 

Based on this idea, various studies applied Siamese networks on several levels, for example, to 

compare image patches (Zagoruyko and Komodakis 2015), to improve one-shot learning (Koch 

2015), to reidentify humans (Varior, Haloi, and Wang 2016), and using a VGG-16 for easy visual 

tracking (Li and Zhang 2019). Siamese networks were used to compare two data inputs towards 

their similarity or create a kind of memory (Koch 2015; Li and Zhang 2019; Varior, Haloi, and 

Wang 2016; Zagoruyko and Komodakis 2015). In the present research, Siamese networks were 

primarily used to increase the robustness and the reliability of the network. 

2.5.9. EXPLAINABLE AI 

Massive expenditure on machine learning and convolutional neural networks had required 

evaluation techniques at the same time. Therefore, methods were derived from gaining insights 

into the network relevant features. Given that convolutional neural networks optimize weights 

and thus the feature maps themselves, it was essential to decode the black boxes and get an 

insight into them (Chollet 2018). Explainable AI methods were developed to realize decoding. 

The idea of explainable AI methods is presented in Figure 20. 

Figure 19. Architecture of Siamese networks, adapted from Bromley et al. (1993). 
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 The central objective of all methods is the derivation of heatmaps, which highlight relevant pixels. 

The initial step is to predict an input image by a trained neural network. The second step is to 

analyze the network architecture after a prediction. Thereby, a necessary pixel can be derived 

from three different methods. Thus, explainable AI methods are categorized concerning those 

three methods: attribution, function, and signal (Kindermans et al. 2017). Table 6 shows the three 

categories, an explanation, and examples of the developed methods. 

Table 6. Categorization of explainable AI methods, adapted from Kindermans et al. (2017). 

Method Explanation Examples 

Attribution 

Contribution of the signal dimensions 

to the output through the layers 

(Kindermans et al. 2017) 

Deep Taylor (Müller et al. 

2016), Layer-wise 

Relevance Propagation 

(Bach et al. 2015) 

Signal 

Activities are traced back to the input 

pixel and it is shown which part of the 

input caused which activation of the 

features maps (Kindermans et al. 

2017; Zeiler and Fergus 2014) 

Guided Backpropagation 

(Springenberg et al. 2014) 

Function 

Investigation of the functions the 

model uses to predict the output. By 

making small changes to the input it 

is possible to see how the output 

changes. (Kindermans et al. 2017) 

SmoothGrad (Smilkov et al. 

2017), 

Integrated Gradient 

(Sundararajan, Taly, and Yan 

2017) 

Figure 20. Approach of Explainable AI methods for visualizing decision relevant pixels, images 
from Chollet (2018). 
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Attribution-based methods are based on the signal dimension and the contribution of different 

layers concerning the output layer (Kindermans et al. 2017). The relevance of inputs is calculated 

by individual contributions of the output using the backpropagation (Kindermans et al. 2017). 

Two methods within attribution-based methods were Deep Tylor and Layer-wise Relevance 

Propagation (Kindermans et al. 2017). 

Deep Taylor is an explainable AI decomposition method introduced by Müller et al. (2016).  The 

objective was to derive a heatmap for extracting feature relevant pixels by tracking an input image 

through the non-linear structure of a network. The basic idea was a divide-and-conquer method, 

which split the trained functions and the weights of a network. These split functions were applied 

either for local image pixels or within a particular abstraction level. Additionally, this research's 

approach deduced a top-down dependency between neurons and their particular relevance, 

which depended again on other neurons and their relevance.  

The second approach of attribution-based methods was presented by Bach et al. (2015), which 

is called Layer-wise Relevance Propagation (LRP) and considers non-linear classifiers of a 

network (Bach et al. 2015). LRP demonstrates an unsupervised process during which individual 

feature maps were disassembled to discover relevancies for a single pixel. Additionally, the 

method also used the last neuron. Therefore, the relevancies were calculated for the entire 

network architecture from the output layer to the input layer by adding each pixel's relevance. 

The result was a heatmap highlighting areas with high relevance and areas with low or zero 

relevance for the actual prediction. 

The second method category is signal-based explainable AI methods. The input patterns are 

analyzed, which causes a triggering of the feature maps (Zeiler and Fergus 2014). Therefore, the 

network signal network is calculated, which causes an activation within feature maps 

(Kindermans et al. 2017). 

A signal-based explainable AI method is Guided Backpropagation, developed by Springenberg 

et al. (2014). This method used a deconvolutional approach for underlining prediction-relevant 

pixels: Guided Backpropagation used the idea of Zeiler & Fergus (2014) for implementing a 

deconvolutional network to visualize relevant parts of an image. Neurons and their contribution 

are analyzed within high-level feature maps, and a reassembled image is formed based on the 

importance of a neuron—a mapping result, which displays decision-relevant areas of the input 

image. 

Function-based methods are the third explainable AI methods. The operations are identified, 

which a trained network uses (Kindermans et al. 2017). By applying function-based methods, 

the network is changed, and based on changes; the functions can be extracted. The generated 

heatmaps visualize the functions used for classification. Due to the non-linear structure of deep 

neural networks, the function extraction is only approximate (Kindermans et al. 2017). 

The SmoothGrad method was deduced by Smilkov et al. (2017) and implemented the idea of 

derived gradient-based sensitivity maps. For calculating these maps, the noise was added to a 

particular input image, and this additional noise had a smoothing effect, which contributed to 

highlighting relevant pixels. These effects were enhanced by enriching the training with images 

of random noises. 

The integrated Gradient method was presented by Sundararajan, Taly, and Yan (2017). This 

method distinguished between the further explained methods because of its simple and easy 

implementation. For generating a heatmap based on relevant pixels or areas, the method 

calculates the invariance of gradients in connection with sensitivity techniques. 
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2.6. MACHINE LEARNING APPROACHES IN PERCEIVED QUALITY 

Machine learning methods for quality assessments have been successfully tested and applied 

in different industrial areas. These methods range from the textile industry to wood processing 

and food quality checks. In this thesis, six different methods and research approaches were 

considered. 

Chang et al. (1997) presented an approach for cork quality classification in 1998. The advantage 

of the machine learning-based classification was standardization and process automation. A 

combined approach of morphological filtering, contour extraction, feature extraction, and neural 

networks was chosen for implementation. Two two-dimensional images of a cork top and a cork 

bottom were used as input data. The top image had 288170 pixels, and the bottom image had 

28893 pixels. As a result, a rejection error of the machine learning method of 6.7 % was 

presented, rated as excellent by experts. The long computing time was identified as a weakness 

of the method. For further research potential and an application in the running production, a real-

time prediction of the methods had to be reached (Joongho Chang et al. 1997). 

Another use of neural networks for quality control was developed by Bahlmann, Heidemann, and 

Ritter (1999) in 1999. Their object was textile seams, whereby the human-based evaluation 

process was to be replaced by a standardized and time-optimized process. The neural network 

was defined by an unsupervised learning approach combined with feature vectors (Kohonen 

1982). The neural network training data was acquired based on construction, whereby a camera 

and the illumination could be optimally adjusted and varied. As a result of the data acquisition, 

2D images with 80512 pixels could be obtained. The classification result of the neural network 

was according to expert-based evaluations, and the network reached a normalized mean square 

error (NMSE) of 0.13. The evaluation time could be reduced by 29 s using the neural network 

for quality assessment (Bahlmann, Heidemann, and Ritter 1999). 

Edwards et al. (1999) had achieved a further use of neural networks for quality control in the 

paper industry. One quality parameter in the paper production process was the paper curl. The 

examination of this parameter was complicated, as the paper curl could only be inspected beside 

the running production process. The idea was to predict paper quality using ten parameters. An 

advantage of a neural network-based prediction was the saving of quality control during running 

production. As a machine learning method, multilayer perception neural networks were used. 

The classification performance was evaluated using a confusion matrix, and the prediction results 

showed an accuracy of approximately 80.0 % (Edwards et al. 1999). 

Another application of a neural network quality assessment was developed by Packianather and 

Drake (2000) in the wood industry. The application was to classify 13 - 17 different wood errors, 

e.g., holes or rotten knots. Traditionally, a stressful expert-based assessment was used with short 

assessment intervals. Evidenced by further literature was an expert-based accuracy of wood 

error detection between 55 % and 68 %. For training the neural network, two-dimensional 

images of 512  512 pixels in greyscale were used. As a first result, the network scored 86.5 %, 

which was a higher accuracy compared to the expert-based assessment. Additionally, the 

prediction time of the neural network was between 0.16 - 0.11 s per image. In summary, the 

trained neural network performed better than an expert-based assessment due to the accuracy 

and the time (Packianather and Drake 2000). 

Pan et al. (2017) presented a study in the automotive environment, which evaluated the 

aesthetics of automobiles in customer satisfaction. In a first step, a conditional generative 

adversarial network (cGAN) was trained to create downscaled images of automobiles by filtering 

design elements, e.g., body type. A second stage was designed to classify the cGAN-generated 
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images. Therefore, a Siamese network was used for a customer-centered evaluation. With the 

network's assistance, a prediction in how a particular customer perceives a specific automobile 

design. The prediction result was evaluated in a third stage using guides backpropagation to 

visualize design relevant features on the automobile. The network accuracy was concerning four 

different design attributes (appealing, sporty, luxurious, innovative) between 67.3 % and 75.4 % 

(Pan et al. 2017). 

Gussen, Ellerich, and Schmitt (2019) presented a methodology for combining objective and 

subjective surface quality assessments. The approach was to collect objective, measurable 

parameters of surfaces and conduct a study for a subjective assessment of similar surfaces. 

Subsequently, the collected data will be combined by using machine learning methods. This 

procedure was presented as an idea and a future approach. In detail, surfaces will be analyzed 

by using a visual, tactile, and acoustic sensor. In parallel, the similar surfaces will be assessed by 

conducting a study and asking participants to assess the surfaces' perceived quality on a scale 

between 1 and 7. Consequentially, different machine learning types will be tested to perform a 

regression, classification, or clustering. Therefore, linear and logistic regression, super vector 

machines, k-nearest neighbors, decision trees, neural networks, k-means, and expectation-

maximization will be investigated. Gussen, Ellerich, and Schmitt (2019) presented an idea and an 

approach for implementation; first results and an implementation of the machine learning 

methods are missing. 

The Table 7 presents a summary of the presented methods. 

Table 7. Comparison of methods using machine learning for quality assessments. 

 Industry/ 

Object 

Method Data Result 

Chang et al. 

1997 

Cork quality 

classification 

Mixed method, 

using 

morphological 

filtering, contour 

extraction, fuzzy-

Neural Network  

2D cork 

images, (top 

& bottom) 

rejection error 

6.7 % 

Bahlmann, 

Heidemann, 

and Ritter 

1999 

Quality 

classification of 

textile seams 

Neural Network: 

Kohonen Map and 

feature vectors 

2D images 

80512 

pixels 

NMSE 0.13 

Edwards et al. 

1999 

Prediction of 

paper curl 

quality 

multilayer 

perceptron (MLP) 

Neural Network 

10 different 

production-

based 

parameters 

accuracy 80.0 % 

Packianather 

and Drake 

2000 

Classification 

of wood errors 
Neural Network 

2D images 

in greyscale 
accuracy 86.5 % 
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Pan et al. 2017 

Classification 

of automobile 

designs for 

certain 

customer 

cGAN, Siamese 

network, guided 

backpropagation 

2D data of 

cars 

Accuracy: 

appealing: 67.3 %,  

sporty: 75.1 % 

luxurious: 75.1 % 

innovative: 75.4 % 

Gussen, 

Ellerich, and 

Schmitt 2019 

Visual, haptic 

and acoustic 

quality of 

surfaces 

Regression, 

classification and 

clustering 

Sensory 

data and 

study 

results 

No results 

presented 
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3. SUMMARY AND RESEARCH QUESTIONS 

Perceived quality in research includes aspects of marketing, psychology, and engineering. 

Especially in the automotive industry, perceived quality is a distinguishing feature between 

competitors. As a result, strategies for realizing a high level of perceived quality in products gain 

interest. The assessment of perceived quality demonstrates several difficulties. When analyzing 

the definition of perceived quality, one difficulty becomes inevitable: the entire product's 

perception is a crucial factor (Zeithaml 1988a). 

Current research studies introduced methods for designing products with a high perceived 

quality level or for assessing perceived quality. Within these methods, visual, haptic, acoustic, 

and olfactory senses were considered (Stylidis, Wickman, and Söderberg 2018). A common 

approach for assessing a product regarding perceived quality is considering the sensory organs 

and using a product decomposition to identify individual attributes. Subsequently, these 

attributes were assessed, and the results were cumulated for a total perceived quality value. 

Figure 21 generally presents the decomposition approach. 

This assessment approach shows a discrepancy in the definition of perceived quality. Especially 

methods based in psychology identified this discrepancy. Carbon (2019) developed eleven 

conceptual moves, which support product design and a higher perceived quality level with 

psychology aspects. An aspect within the conceptual moves was the complexity of product 

perception, i.e., the effects of experience or expectations (Carbon 2019). In summary, the 

conceptual moves provided requirements for assessing a product, which is significant in 

developing a perceived quality assessment method. 

The development of a perceived quality assessment method in this thesis is conducted 

exemplarily by automobile split-lines. Split-lines are, besides the functional necessity, a design, 

and a quality feature. Accordingly, the realization of split-lines has an impact on the perceived 

quality of an automobile. Current methods for assessing split-line quality use a decomposition 

approach, which cannot include the complexity of the perception process. Therefore, the visual 

assessment of split-lines regarding perceived quality is used for applying the developed method 

in this thesis. 

rules 
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Figure 21. Product decomposition, rules between levels and relationships between attributes. 
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The research question is: Which perceived quality assessment method is concerning the 

definition of perceived quality, which means to include the global product context, relations, and 

influencing factors? 

Based on this question, the following questions were derived: 

I. How is the current process of assessing split-lines, and does this process need to be 

expanded to assess visual requirements? 

II. Which influencing factors are present during the split-lines assessment, and how have 

they to be defined for an improved assessment? 

III. What effect do the holistic product context and relations between split-lines and their 

attributes affect the perception of the visual quality of split-lines? 

IV. How can machine learning approaches offer an improved assessment method for split-

line perceived quality? 

The holistic research method for considering the four research questions is shown in Figure 22. 

The first question investigates the current assessment process of split-lines. As presented in the 

theoretical background (cf. chapter 2.1), split-lines fulfill functional and aesthetic requirements. 

The literature review demonstrated methods for defining tolerance ranges for single split-line 

attributes with different levels of complexity. These methods focus on the definition and 

assessment of functional split-line requirements. Additionally, the presented methods lack the 

definition and consideration of the assessment process within the industry. Interactions and 

relations between the assessment of functional and aesthetical split-line requirements are less 

considered. As a result, there is a risk that functional split-line requirements will be given 

preference in the evaluation process. The current assessment process of split-lines has to be 

identified, analyzed, and improved to develop an objective assessment method for aesthetical 

split-line requirements based on perceived quality. Without identifying the current process, the 

development of an improved split-line assessment of aesthetical requirements neglects 

industrial needs. Therefore, the first research question deals with a process analysis with the 

following objectives: 

 

 

Figure 22. Research approach used to develop the research questions in the thesis. 
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(1) identify and visualize the current split-line assessment process, 

(2) analyze the assessment of functional and aesthetical split-line requirements, 

(3) identify methods and tools for functional and aesthetical split-line assessments, 

(4) identify weaknesses in the assessment of split-lines with a focus on aesthetical 

requirements,  

(5) deduce an improved assessment split-line assessment process and define methods and 

tools to assess functional and aesthetical split-line requirements. 

After analyzing the current split-line assessment process in the industry and deducing an 

improved process, the visual assessment of split-lines is investigated. The current and human-

based assessment of split-lines shows the following weaknesses: 

(1) the parameters, which affect a split-line assessment are unknown, 

(2) effects of the product context are disregarded, 

(3) split-line attributes are individually assessed, and relations, which appear in reality, are 

ignored, 

(4) the reproduction of an assessment result by the same person can lead to different 

results, 

(5) the assessment result is subjective and depends on the operating person. 

The first identified weakness is unknown parameters, which affect the assessment of split-lines. 

The assessment of split-line perceived quality is performed in virtual and real environments by 

experts. Two parameter categories are decisive for a visual split-line assessment in reality as well 

as in virtual environments. Firstly, the assessment of split-lines is affected by the expert. The 

taken position and perspective during an expert assessment have a direct influence on the visible 

parts of an automobile. Therefore, relevant assessment positions and perspectives summarized 

by the term "human-related parameters" are essential within a split-line assessment. Mainly by 

using virtual environments, the human-related parameters are estimated (Ilhan and Çelik 2017; 

İlhan, Ünal, and Altınok 2017) in research and industry. An estimation of these parameters 

contains the risk that visualizations are created with an incorrect camera position and 

perspective, leading to a different assessment result of the split-line perceived quality. The thesis 

aims to investigate human-related parameters, which minimize this risk of an unrealistic 

representation of split-lines. Besides the human-related parameter, the product-related 

parameter also affects the assessment of split-lines. The varnish of an automobile has a major 

impact on the perception of split-lines. Different colors and surface structures have a strong 

influence on human perception (Yoto et al. 2007). The assessment results of split-lines of an 

automobile with dark paint probably turn out differently than the assessment results of split-lines 

of an automobile with light paint. The effects of different automobile varnish on human 

perception of split-lines are also considered in the second research question. Additionally, virtual 

environments for split-line assessments offer many possibilities to visualize split-line situations 

of automobiles. To guarantee a virtual environment, which matches a realistic assessment 

situation, the knowledge of human- and product-related parameters, and how they affect split-

line perceived quality are essential and necessary. 

The second identified weakness addresses the investigation of the product context effect on the 

perceived split-line quality. This identified weakness is part of the third research question. Split-

lines are spread all over an automobile. Depending on their position, split-lines are better or more 

difficult to recognize from different views. The different split-line attributes can also be 

recognized differently in different levels of detail, depending on their position on the automobile 

and the chosen view. The assessment position and perspective chosen by a human are 

examined in the previous research question. The effect of a split-line position on an automobile 
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on the perception of split-line attributes is not investigated. For designing an automobile with 

high visual quality, it is crucial to know and understand which split-line attributes are perceived 

dominantly in different automobile areas.  

The third weakness considers relations and combinations of attributes and their effect on the 

split-line perceived quality. Currently, split-line attributes are separately considered. This means 

that the split-line quality is defined by considering gap, flush, and parallelism individually and 

independently. In reality, these attributes appear mostly in combination and rarely alone. In the 

current assessment process, the risk results that other split-line situations are considered and 

evaluated than those that occur in reality. Besides, it is unknown what influence combinations of 

split-line attributes have on the perception of quality. The investigation of the third weakness is 

part of the third research question. 

The identified weaknesses four and five are addressed in the fourth research question. As 

presented in the section above, the methods for assessing perceived quality often show a 

decomposition approach for assessing perceived quality. These methods stand in contrast to 

the definition of perceived quality. Using a decompositional approach, product relations, for 

example, relations between split-line attributes, are often neglected. Therefore, a need for a 

method is identified that evaluates the perceived quality of split-lines on a higher level and 

includes attribute relations. Based on the various relations of different product attributes, the 

definition of a method for assessing perceived quality is challenging. Machine learning methods 

provide a possibility to extract unknown rules and relations in data sets (cf. chapter 2.5). 

Especially deep learning methods, for example, neural networks, were successfully used within 

different industries for assessing visual quality in products (Bahlmann, Heidemann, and Ritter 

1999; Edwards et al. 1999; Gussen, Ellerich, and Schmitt 2019; Joongho Chang et al. 1997; 

Kohonen 1982; Packianather and Drake 2000; Pan et al. 2017). 

Compared to traditional machine learning methods, neural networks have the advantage of being 

able to perform the feature extraction of decision-relevant information by themselves. Since the 

relations are challenging to identify when assessing the split-line quality, it makes sense to use 

a neural network to classify the quality of split-lines rather than to use a traditional machine 

learning approach. Additionally, a trained machine learning algorithm reproduces an identical 

classification result for the same data input. This possibility addresses the fourth identified 

weakness of a human-based split-line assessment: the lack of reproducibility. Because human 

perception is characterized by subjectivity, selectivity, and activity (Raab, Unger, and Unger 

2016), a risk exists that one person's assessment results are different in two situations. The 

usage of a trained machine learning algorithm can provide reproducible results. By using a 

machine learning algorithm to assess the split-line quality, it is reasonable to use a supervised 

learning approach. Supervised learning approaches require training data with a label. Thereby 

the algorithm can be taught the quality classes directly. This procedure offers the possibility to 

objectify the labels and, therefore, the assessment result. The objectification can be achieved by 

several test persons labeling the data concerning each quality class. As a result, the training data 

is objectified. Therefore, the fifth weakness can be reduced by using a machine learning 

approach for assessing the split-line quality. The application of a trained algorithm is originally 

always a black box. The relevant features extracted by the algorithm itself are not transparent to 

the operator. Therefore, there is a risk of not being able to evaluate the trained algorithm. In the 

worst case, the extracted and relevant features are the wrong ones. An essential step is to 

evaluate a trained algorithm. Research methods were derived from visualizing relevant features 

of a trained neural network (cf. Chapter 2.5.9). Therefore, the trained algorithm for classifying the 

visual split-line quality is evaluated by explainable AI methods. 
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4. PROCESS OF SPLIT-LINE ASSESSMENTS 

Currently, technical requirements are primarily the basis for the visual assessment of split-lines. 

For example Stoll and Paetzold (2008), Wittmann (2011), and Ungemach et al. (2008) introduced 

virtual methods for a visual assessment of tolerances in the industry. The basis for the virtual 

assessment methods was deformed CAD geometries (Stoll and Paetzold 2008), simulated 

assembly and geometry tolerance derivations (Wittmann 2011), or tolerance derivations based 

on FEM simulation results (Ungemach, Mantwill, and Rund 2008). These methods are aimed at 

optimizing the tolerance ranges for components or products. A common approach of these 

methods was ray tracings or renderings for an additional visual assessment. The subsequent 

assessment of the tolerances and the product appearance was not supported within these 

methods and was, therefore, expert-based and highly subjective.  

The first research question considered the process of split-line assessment in an industry with a 

focus on technical and visual requirements. The research question addresses two aspects, the 

investigation of the current split-line assessment process and identifying a process 

improvement. These two aspects are considered in this chapter. For the investigation, both 

aspects are transferred into questions, which are answered within this chapter: 

(1) How is the current process of assessing split-lines described in the industry? 

(2) How is the interaction between the assessment of technical and aesthetical  

split-line requirements in the current process? 

(3) Which methods and tools should be used to support an assessment of technical and 

aesthetical split-line requirements? 

(4) Is there an improvement potential regarding the aesthetical assessment of split-lines? 

(5) How has a balanced process for assessing technical and aesthetical split-line 

requirements to be designed? 

The research method, the results of the analysis of the split-line assessment process, and the 

proof of concept were published by the author (S. Striegel et al. 2017). 
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4.1. METHOD 

For investigating the first research question, a new method was derived following process 

improvement methods. Based on their approach, the method for analyzing the current process 

of visual split-line assessment was derived. The resulting method is presented in Figure 23. 

Within the first step of the process analysis, the current process of assessing the split-lines is 

derived. Based on the results of the process identification, the next step is to analyze the process. 

The focus of the process analysis lies in the visual split-line assessment process. Missing 

assessment levels are deduced and within the next step of process improvement, these process 

weaknesses are improved. Additionally, the improvement step includes an identification of 

necessary assessment tools and methods. Within the last step of the process analysis, the new 

and improved process is applied and tested within an industrial application. 

 

 

1. Determination of 
the current split-line 
assessment process 

2. Analysis of the 
assessment process 
→ visual assessment 

3. Improvement of the process by 
adding a visual split-line assessment 
level  

4. Application of a 
visual assessment 
process 

Figure 23. Method for analysing and improving the current visual split-line assessment 
process. 
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4.2. RESULTS 

Perceived quality offers companies to differentiate from competitors. Therefore, the design and 

the quality of products gain in importance (Carbon and Jakesch 2013). For realizing an 

assessment method, the current process of assessing the split-line quality needed to be 

deduced, analyzed, and optimized. Therefore, the scope and the importance of this process 

analysis is based on the arguments presented in the introduction. Similarly, the chances of an 

assessment process considering the visual quality of split-lines lie in the improvement of 

perceived quality, which can result in a distinguishing feature and was presented within the 

introduction, as well. 

4.2.1. DETERMINATION OF THE CURRENT ASSESSMENT PROCESS 

The process of defining and assessing split-lines is based in an early stage of the product 

development process. This process aims to calculate the split-line quality by using tolerance 

management methods and tools. Priority is given to the construction and verification of the 

technical requirements, such as tightness. The process of reviewing the technical requirements 

is shown in Figure 24. 

Within an initial process step, the definition of split-lines is based on internal expertise and 

comparison to competitors. The assessment of these initial split-line definitions is verified based 

on tolerance management methods, i.e., Monte-Carlo simulations. As a result of these methods, 

upper and lower limiting positions are derived, resulting from form and assembly tolerances of 

components within the tolerance chain (Ehlert et al. 2016). The limiting positions were derived 

for each split-line attribute, gap, flush, and parallelism separately (cf. section 2.1.1). 

Subsequently, the resulting tolerance limits were categorized into critical and non-critical (cf. 

Figure 24). Non-critical results are not further considered. Thus, the technical requirements are 

fulfilled with these split-line results. Conceptual or constructive specifications modify the critical 

simulation results. In conclusion to the application of specifications and the adjustment of the 

split-line concept, a new tolerance simulation iteration follows. This process is repeated until the 

split-line results are in target and fulfill the technical requirements. During this simulation, the 

technical design is examined to ensure the production of automobiles in reality. Therefore, the 

consideration of these aspects is summarized by the term of Producible Quality. 

Figure 24. Identified split-line assessment process in industry. 

Split line concept 
and technical 
specification based 
on experience values 
and product 
attractiveness 

Definition 

Producible Quality 
3D tolerance 
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achieved 
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target 

Yes No 

Results in tolerance 
limits? 

Specification 

Specific measures 
due to a category 
conceptual 
constructive 
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4.2.2. ANALYSIS OF THE DERIVED PROCESS 

Producible Quality is defined by a functional investigation of split-lines, i.e., the tightness. The 

fulfillment of these requirements is measured by using tolerance management tools. The 

problem definition of Producible Quality is to derive numerical values for upper and lower limiting 

positions (Ehlert et al. 2016) of split-line attributes and has an objective assessment character. 

A weakness of the current process is that visual verifications of the split-lines remain unnoticed 

based on numerical simulations and their results. In the current process, a visual assessment is 

performed at a later stage using hardware prototypes. Accordingly, changes in the product are 

within a late stage of the product development process and are costly and time-consuming. The 

visual requirements need to be assessed at an early stage of the development process to 

improve the perceived quality and be integrated into the current process. Therefore, a new 

assessment level, which was called Refinement, was deduced. For analyzing the relation 

between both levels, a matrix, which is presented in Figure 25, was derived. 

The first category was achieved by having the level Producible Quality in limits and the 

Refinement level with high visual quality. This category represented a high level of perceived 

split-line quality. Tolerance calculations or simulations resulted in limits, which correspond to 

technical requirements. Experts assessed the Refinement level represented by visualizations 

with a high level of quality. Therefore, design and tolerance processes should aim to reach this 

category. 

The second category differed from the first category in the Refinement level. Producible Quality 

assessments resulted within limits, and technical requirements were fulfilled. In contrast, the 

Refinement level was evaluated by experts with low visual quality. Therefore, the Refinement 

level had to be optimized to reach higher visual quality. 

The third category represented producible quality out of limits and Refinement with a low visual 

quality. Split-line assessments resulting in this category were optimized regarding both 

categories. Technical, as well as visual requirements were not fulfilled. Strategies had to be 

deduced, which include the improvement of both levels. 

Producible Quality results defined the fourth category out of limits and Refinement with high 

visual quality results. Technical requirements were not realized, and the concept had to be 

REFINEMENT 
Hardware assessments 

High visual quality Low visual quality 

3 

2 

4 

1 

Figure 25. Derived matrix for categorisation of Producible Quality and Refinement. 
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enhanced. Thus, the visual quality was assessed with high quality, and a strategy was performed 

to optimize tolerance limits in a tolerance chain without changing the Refinement level results. 

This matrix offered an opportunity to structure split-line assessment results concerning the levels 

of Producible Quality and Refinement. This analysis concluded that without an early assessment 

of the Refinement level, visual quality issues were identified at a late stage of the product 

development process. For a process improvement, this matrix needed to be detailed to assess 

the visual split-line quality and improve the level of perceived quality. 

The visual assessment of split-lines, within the Refinement level, has a design and a quality 

aspect. Both aspects contribute to the level of perceived quality. To assess a product concerning 

the level of perceived quality, both aspects need to be considered. With regard to the perception 

aspects of the assessment process, Navon (1981, 2003) demonstrated a global-to-local effect, 

which was called global precedence. Based on this research, the assessment of split-lines was 

divided into a local and a global assessment level. A product-perception matrix was derived, 

considering both product levels and both perception levels. This matrix is shown in Figure 26. 

The focus was on the perception of several split-lines and their visual interaction within the global 

quality level. The harmony of their split-line arrangement and the split-line run is considered. The 

global design level considers the harmony of the product. Therefore, the interaction between 

several attributes, including the split-lines, is focused. The local quality level investigates the 

visual result of the technical execution of split-lines. Local Design includes the assessment of 

several design elements. 

4.2.3. IMPROVEMENT OF THE DERIVED PROCESS 

Based on the analysis level results, the Refinement level had to be integrated into the current 

process of assessing split-line quality. For the integration of this level, dependencies between 

Producible Quality and Refinement were pointed out. 

Figure 26. Deduced product and perception matrix for analysing quality and design issues. 
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 The Refinement level considered the visual appearance of a product related to the product-

perception matrix. Therefore, Refinement aims to define a high-quality split-line design. The 

Refinement level is mainly assessed by using hardware prototypes. An additional process 

improvement is the use of ray tracings (Kajiya 1986) in the Refinement level and an early stage 

of the product development process. Thus, hardware prototypes are cost-intensive and have a 

temporal offset for the visual quality assessment. A summary of both levels and the 

dependencies between both levels are presented in Figure 27. 

As a result of this process step, the responsibilities of both levels need to be defined. Therefore, 

the process responsibility of the Producible Quality level lies in the tolerance management 

department of a company; thus, this level is related to traditional tolerance management tasks 

(Bohn and Hetsch 2013b). Compared to Producible Quality, the evaluation of Refinement is 

intensely subjective and is, therefore, provided by designers. 

The process improvement included a synchronization between Refinement and Producible 

Quality level and to integrate the classification matrix. Therefore, the current assessment process 

of split-lines was expanded by adding a fourth stage to the initial three-stage process. The four-

stage process shows this additional assessment level (see Figure 28). 

Dependencies of 
technology &  

design 

Refinement Producible Quality 

- Definition of technical limits 
- Based on requirements, e.g. 
tightness 
- Based in the tolerance 
management process 
Tools: statistical, 3D tolerance 
calculations 

- Definition due to visual effects 
- Related to global and local 
product structure 
- Responsibility by design 
Tools: hardware or virtual 
prototypes & expert 
assessment 

consistent split line strategy due to technical and visual requirements 
→ high level of perceived split-line quality 

Figure 27. Identification of dependencies between the levels Producible Quality and 
Refinement. 
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The improved process started with a similar process step as the former process: defining an 

initial split-line concept derived by experience, previous construction limits, and competitor 

designs. An addition within this level was assessing this initial concept by experts of the 

Producible Quality and Refinement level. Within Producible Quality, familiar tolerance 

management tools were used to assess the concept. Within the Refinement level, the split-line 

concept was visualized by using raytracing or rendering methods. Subsequently, the 

visualizations were assessed due to the assessment purpose. This purpose was further specified 

by using the product-perception matrix. 

Consequently, the results from both levels were categorized using the developed Producible 

Quality-Refinement matrix. The resulting category was decisive for further considerations and 

product improvements regarding perceived quality—results within categories 2 to 4 needed to 

be improved. Based on the category, strategies were deduced to improve either the Producible 

Quality, the Refinement, or both levels. With the adjusted split-line concept, the process started 

again. This process is repeated until results were classified in category 1 of the Producible 

Quality-refinement matrix. This category is achieved with a high split-line quality, which fulfills 

technical and visual requirements. 

4.2.4. INDUSTRIAL APPLICATION 

The improved process was integrated into the automobile industry at an early stage of product 

development. The consideration included the split-line between the chassis and the tailgate 

based on the Producible Quality and Refinement levels. By using the derived Producible Quality-

Refinement matrix, the split-line was classified in category 2. The Producible Quality level is 

characterized in limit but a Refinement level with low visual quality. Therefore, a strategy was 

derived from increasing the Refinement level. The derived strategy was the additional painting 

of components within an inner level of the automobile body. The increase in product quality is 

shown in Figure 29. 
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Split line concept 
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Figure 28. Evolution of the split-line assessment process by implementing the derived 
Refinement level. 
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Figure 29 shows the trunk lid of an BMW 2 series (SOP 2014) and the tolerances within a 

nominal and upper limiting position. The images a) and b) in Figure 29 represent the visual quality 

of the split-line with the previous process, which solely had the Producible Quality level. The 

visualized quality defect are visible noticeable unpainted surfaces at the trunk lid. Based on the 

statistical methods and without considering the Refinement level, the unpainted surfaces were 

not identified. By performing the improved process, the unpainted surfaces were detected within 

the Refinement level. The local quality level was improved by conducting a painting 

measurement. The improved quality is visualized in Figure 29 c) and d). 

Split-line quality with previous process. 

Low Refinement level: unpainted surfaces 

Split-line quality with improved process.  

d) limiting position c) nominal 

High visual quality: no visual defects  

b) limiting position a) nominal 

Figure 29. Resulting split-line quality by using the traditional and the improved split-line 
assessment process. 
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4.3. SUMMARY AND CONTRIBUTION OF RESEARCH QUESTION 1 

The first research question dealt with analyzing the current split-line quality assessments 

process and the deduction of a process improvement. Therefore, an approach for analyzing and 

improving the visual split-line assessment process was derived based on process improvement 

methods. In an initial step, the current assessment process of split-lines in the automotive 

industry was resumed. This analysis is also the answer to the first asked question at the 

beginning of the chapter. Based on this current process, the interaction between the technical 

and visual assessment process of split-lines was conducted (the second question of research 

question one). Therefore, the levels of Producible Quality and Refinement were identified, which 

were necessary for a high level of perceived quality regarding split-lines. The levels were 

analyzed regarding their applied tools (the third question of the research question). The 

producible quality level demonstrated a solid base of methods, which were primary tolerance 

management tools. 

On the contrary, the Refinement level demonstrated improvement potential, which was defined 

by the fourth question of the first research question. The product-perception matrix was 

developed, including Global Quality, Global Design, Local Quality, and Local Design, to support 

the Refinement level. This level, including the product-perception matrix, were implemented 

within the current assessment process of split-lines. The interaction of both levels, the 

Producible Quality, and the Refinement level were included in a process improvement, and the 

fifth question of the first research question was answered. For evaluation of the new process, an 

industrial application was demonstrated. This application improved the level of perceived quality 

by using photorealistic visualizations in an early stage of the product development process. This 

analysis demonstrated a frontloading and a higher product maturity in an early product 

development phase. 

The conducted process analysis of the first research question supports state-of-the-art methods 

within visual assessments of optimized results. The assessment of the product visualization of 

these methods can be supported by using the developed product-perception matrix within the 

Refinement level. By using this matrix, the presented methods are extended. Therefore, the 

improved process is the next step of these methods and no substitutional method. 

Carbon (2019) deduced eleven conceptual moves, which support the design of products by 

psychological aspects. These aspects can be realized and integrated within the improved 

process. These conceptual moves can be monitored within the Refinement level. This level 

demonstrated an initial approach to integrate psychological aspects within the visual assessment 

of split-lines. The product-perception matrix was deduced to include psychological aspects. This 

matrix demonstrated a methodical tool for categorizing visual assessment tasks for split-lines 

and can also be used to assess products or attributes regarding design and quality. 

The integration of a Refinement level within the split-lines assessment process demonstrated a 

processual implementation for capturing the level of perceived quality. Various methods 

demonstrated an assessment method for the level of perceived quality of a product. Besides 

these assessment methods, the improved process demonstrates integrating these methods 

within the product development process. Besides evaluating technical product requirements, a 

level was developed, focusing on evaluating perceived quality requirements. 
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5. HUMAN-RELATED PARAMETERS 

A method to define human-related parameters was introduced by Ilhan and Çelik (2017); İlhan, 

Ünal, and Altınok (2017). The method presented activities, which affect perceived quality, from 

the concept process to the final product. Within these activities, assessment positions were 

estimated in a workshop. The concluding assessment position was a distance of 1.5 m to 0.5 m 

and a height of 1.8 m. A limitation of the assessment position introduced by Ilhan and Çelik 

(2017); İlhan, Ünal, and Altınok (2017) is that the trunk lid was focused and the investigation was 

on the local joint quality without differentiating the evaluation level regarding a global and local 

investigation. The scope of the presented tracking study was the entire automobile, and 

therefore, the assessment positions and perspectives were derived independently of a specific 

component. 

The second research question demanded factors that influence the perception and the 

assessments of split-lines regarding perceived quality. There are three parameters identified in 

a perceived quality product assessment: human, product, and environment. Figure 30 presents 

the context of the three parameters categories human, product, and environment. 

The subject of this thesis and the second research question are the human- and product-related 

parameters. The consideration of both parameter types is divided into two chapters. Based on 

the research question, the following questions, which will be answered in the following two 

chapters, were derived: 

(1) Which methods are suitable for deriving human-related parameters? 

(2) Which are the variables for human-related parameters? 

(3) How are these parameters for a visual split-line assessment used within the industry? 

The human-related parameters determined the position and the perspective during an 

assessment. A person intrinsically chose both parameters. A definition of human-related 

parameters regarding the visual split-line quality assessment, implemented in the thesis, is: 

Human-related parameters are those, which an individual chooses intrinsically, intuitively, and 

independently in a visual assessment of products. 

The research method, the approach and the results of the human-related parameters were 

published by the author (Striegel and Zielinski 2018) 

Figure 30. Illustration of the context of product, human and environment during an 
assessment. 
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5.1. METHOD 

Experts and laypersons intuitively choose the human-related parameters during a split-line 

assessment. Previous knowledge about these parameters is rare. Instead, there is the question 

of how human-related parameters are chosen within an assessment. Therefore, the chosen 

research method was a qualitative research method. The approach was an observation of 

individuals during their split-line assessment. Each participant was tracked during their 

assessment. The general method for identifying and analyzing human-related parameters within 

a visual split-line assessment is presented in Figure 31. 

The first step of the method is the study preparation. Within this step, organizational tasks are 

arranged. These tasks are selecting a tracking device based on the data that wants to be 

acquired, defining the object of investigation, and preparing the setting, i.e., the environment and 

supportive tools. This first step forms the basis for further consideration. The second step 

considers the selection of participants. Within the focus on the visual split-line assessment, the 

participants can be experts or laypersons in the field of split-line assessment. The third step is 

the study conduction, and the data is acquired by tracking the participants and having an 

observer for further information. The fourth step considers the processing of the tracked data. 

Based on the selected tracing data, the personal data and the investigated object's data have to 

be synchronized. The subsequent step is the data analysis step. Within this step, the acquired 

and processed data is analyzed regarding the human-related parameters. This fifth step is the 

basis for the concluding interpretation of the data. 

 

Selection of participants 

Selecting a tracking device 
Defining an object of 

investigating 
Preparing the settings 

Study preparation Study conduction 

Data postprocessing Data analysis Interpretation 

Definition of the participant’s 
skill level (expert or 

layperson)  

Data acquisition by observing 
and tracking each participant 

Tracing data processing: 
transforming the data to one 

similar coordinate system 

Method and calculation for 
clustering the acquired data 

Interpretation of the data 
regarding human-related 

parameters 

1. 2. 3. 

4. 5. 6. 

Figure 31. Derived method for analysing human-related parameters in context of the visual 
assessment of split-line quality. 
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5.2. APPROACH 

Within an assessment of products, the identified human-related parameters position and 

perspective are essential for the perception. Experts in the industrial quality assessment were 

trained to use the parameters intuitively. Therefore, assessments were, to some extent, 

standardized, but a direct request would be inefficient since there were no explicit specifications 

of these parameters. The idea of the study was to acquire the data indirectly by tracking experts 

during their visual assessment of split-lines. In doing so, the results were a reflection of the 

assessment procedure of hardware prototypes. This approach has two advantages. Firstly, the 

assessment process is recorded and therefore archived and digitalized. Secondly, the acquired 

data is the basis for an analysis of the assessment process to derive perception influencing 

parameters. 

5.2.1. STUDY DESIGN 

The investigation object of the study was a BMW 5 series sedan (SOP 2017). The study settings 

were as follows: A participant assessed an automobile regarding the visual split-line quality. The 

study settings are presented in Figure 32. 

Figure 32 visualizes the study settings. A participant’s position (P1) and the viewing perspective 

(V1) were tracked. The participants' assessment task was to evaluate the visual split-line quality 

regarding the global and local level of the developed product-perception matrix (cf. Figure 26). 

Therefore, the split-line attributes gap, flush, parallelism, and symmetry were assessed. The 

attributes were identified related to their industrial assessment relevance. In addition to the 

previous attributes, the attribute symmetry was appended. This attribute considers an equal 

technical execution of mirrored split-lines, for example, at the left and right front light. When 

considering parts of an automobile, this attribute can often not be considered.  

5.2.2. PARTICIPANTS 

14 participants (female=1) joined the tracking-based study. These were experts in the field of 

visual split-line assessments. The age of the participants was between 28 and 55 years. Their 

level of experience was between 1 and 15 years.  

X1 
Y1 
Z1 

P1= 

V1 

Notes: 
P1: position of participant 
V1: perspective of participant 

Task:  
Split-lines design & quality 
assessment  
→ product-perception matrix 

Tolerances:  
gap, flush, 
parallelism, 
symmetry 

Participants:  
14 experts in 
assessing split-lines 

Acquisition: 
tracking function of 
MS Hololens 

Figure 32. Study design for investigating human-related parameters assessing the split-line 
quality of an automobile. 
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5.2.3. APPARATUS & STIMULUS 

 As a tracking device, the Augmented Reality (AR) device from Microsoft (MS), the HoloLens 

(Microsoft 2020), was utilized. The MS HoloLens uses inside-out tracking for self-localization 

within the environment by default (Microsoft 2020). This inside-out tracking function was 

modified and used for the study related tracking. A script-based request was set six times per 

second. Within this request, the current position and the corresponding perspective were 

located. As the tracking was placed in the three-dimensional environment, the position was 

tracked by 3D coordinates. These coordinates were analyzed by transforming them in the 

distance and height related to the object under investigation. The tracking of the perspective 

was subjected to the MS HoloLens function. Indeed, the MS HoloLens used to track the normal 

vector in viewing direction. For the study, the assumption of the participants' straight viewing 

direction was made, so the normal vector tracking was a simplification of eye-tracking—the 

output of the perspective tracking as a vector. For using the MS HoloLens, two previous 

requirements had to be implemented. Firstly, a virtual model (wireframe) of the 5 series was 

necessary to calculate the parameters concerning the object. Secondly, to overlap exactly the 

virtual model with the hardware model, a marker was necessary. The marker had the additional 

function to ensure continuous and consistent tracking during the study. Figure 33 presents the 

hardware and virtual study design. 

Within Figure 33 the same situation is visualized. In the left image an actual assessing situation 

is presented. The right image shows the same assessment situation transferred to the virtual 

scene. The virtual scene visualizes a central element of the study: the coordination 

transformation. During the assessment, an observer attended the study for documentation of 

special conspicuous features. The study setting was spacious, with 450 m2 to ensure full 

freedom of movement and simulate a typical discovery procedure. Additionally, within the study 

settings, the area lights were unique lights to simulate daylight. Initially, each participant was 

shortly briefed outside the study area and prepared for the set-up of the tracking device. The 

average assessment time per participant was 25 min. 

X Y 

Z 

X‘ 

Z‘ 
Y‘ 

α 
 

 

Study design 

Wire frame → necessary for localization 
Tracking information: coordinates (X, Y, Z), 
vector (, , ) 
→ Translation and rotation 

Virtual transfer of the localization data. 
Implementation of product-based and 
person-based coordinate systems. 

Marker 

Expert 

Object 

Observer 

Wire frame Wire frame 

Product 
coordinates 

Person 
coordinates 

Figure 33. Concept of the tracking approach within the study and showing the approach for 
tracking a person related to the automobile using the MS HoloLens as tracking device 
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5.2.4. DATA PROCESSING 

Since the MS HoloLens and the investigated automobile had different coordinate systems, data 

processing was necessary. The acquired data was proceeded by using coordinate 

transformations. Therefore, translations were performed by using a value 𝑡 related to the x-, y- 

or z-dimensions, and rotations were conducted by the rotation angles per dimension (, , ) 

(Arens et al. 2013; Hackbusch, Schwarz, and Zeidler 2003; Wörle, Rumpf, and Erven 1994). The 

applied three-dimensional translation matrices are represented in the Appendix A. 

The rotation was three-dimensional and implemented around each axis, and the translation was 

performed by a linear adjustment of a three-dimensional coordinate point. In doing so, the 

acquired person-based data was transformed into the product-based coordinate system. Using 

this procedure, a relation between the tracked participant and the product results. This 

transformed data was the input value for the data analysis. 

5.2.5. DATA ANALYSIS 

The data analysis aimed to support the identification of three different values: frequently 

assessed areas, position, and perspective. For analyzing the data, a heatmap of the acquired and 

transformed data was derived. The steps are for the data analysis, and the heatmap deduction 

are presented in Figure 34. 

The input was the transferred data, which consisted of three-dimensional space coordinates of 

one participant. Within the first step, the space was segmented in similar cubes with the extent 

of 0.80.80.8 m and a volume of 0.51 m3. This segmentation was the basis for further 

consideration. The heatmap deduction was performed by calculation of the tracked positions 

within each cube. The assessment intense was calculated using the tracking quantity. For each 

participant, a single heat map was deducted by using the following procedure: 

(1) Counting the number 𝑛 of tracking coordinates 𝑡 per cube c with 0.51 m3: 

𝑛𝑐 = ∑ 𝑡𝑘

𝑡

𝑘=0

 (8) 

(2) Identifying for all cubes c the maximum and minimum number 𝑛 tracking coordinates 𝑡: 

𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑛1, … , 𝑛𝑐} (9) 

(3) Calculating the color scale 𝑠 per cube c: 

𝑠𝑐 =
𝑛𝑐

𝑛𝑚𝑎𝑥
 (10) 

Figure 34. Approach for analysing the acquired data and for deducing human-related 
assessment parameters. 
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(4) Color scale: 

Red:  𝑠𝑐 = 1 

Green: 0 < 𝑠𝑐 < 1 

Transparent: 𝑠𝑐 = 0 

For a derivation of a total heatmap of all participants, a similar procedure was performed. Initial to 

the procedure, the three-dimensional space coordinates of one participant were accumulated to 

one data input. Subsequently, the segmentation and heatmap deduction was applied. 

(1) H 

(2) F 

(3) f 
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5.3. RESULTS 

The results are presented using the deduced overall heatmap regarding the three values 

frequently assessed areas, position and perspective. The deduced heatmap in four different 

perspectives is presented in Figure 35. Each cube has the extent of 0.80.80.8 m. 

The cubes were derived by using the calculation method presented in chapter 5.2.5. For 

presenting the results of the tracking study, these were categorized within frequently assessed 

areas, assessment position and perspective. 

5.3.1. FREQUENTLY ASSESSED AREAS 

Within the visualized heatmaps, the frequently assessed areas were identified by the different 

colored cubes. According to the heatmaps, the cubes were mainly symmetrical to the x-axis (cf. 

Figure 35b)). The evaluation intensity of the attributes on the driver's and passenger's side was 

accordingly the same. Red-marked cubes were areas with a high or long assessment 

occurrences of the participants. These cubes were identified at the a-pillar on the driver and the 

passenger side, at the doors on both sides, the fuel flap, and the front flap. 

Furthermore, the red cubes were close to the automobile, which indicates a local quality 

assessment. Green highlighted cubes classified assessment positions with low frequency. 

These areas were typically at a greater distance to the assessed object and indicated a global 

product quality assessment. Green cubes were primary at the front-end and the rear-end of the 

automobile. In summary, the frequently assessed areas were identified and assigned to the 

study's global and local assessment tasks. 

45° front view Top view 

Rear view Side view 

a) b) 

d) c) 

Figure 35. Resulting heatmaps of the human-related parameters during a split-line 
assessment. a) visualizing the assessment cubes from a 45° front view, b) visualizing the 
assessment cubes from a top view, c) visualizing the assessment cubes from a rear view, c) 
visualizing the assessment cubes from a side view. 
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5.3.2. POSITION 

The assessment positions were defined by the distance of a person related to the product and 

the height. Within the tracking study, the distance and height were characterized by three-

dimensional coordinates in the person-based system. The assessment distance and an 

assessment height concerning the product were identified by transferring the tracked 

coordinates into the product-based coordinate system. The distance was defined in x- or y-

dimension within the product-based coordinate system. In contrast, the height was described in 

the z-dimension of the product coordinate system. Consequently, the tracked three-dimensional 

coordinate of participants was first transferred into the product-based coordinate system. 

Secondly, the x- and y-dimension parts were translated into the assessment distance. Thirdly, 

the z-dimension parts of the coordinates were defining the assessment height. In doing so, the 

frequently received assessment distances were up to 0.8 m (cf. Figure 35b)). 

Further assessment distances were up to 3.2 m (cf. Figure 35b)). During the tracking study, the 

assessment height was mainly chosen at the eye level of 1.6 m (cf. Figure 35c)-d)). The derived 

cubes have their center at a height of 1.6 m. Therefore, the upper cube starts at the height of 

1.2 m and ends at 2.0 m. The lower cube starts at a height of 1.2 m and ends at the height of 

0.4 m. The chosen height was constant and independent of the assessment distance. An 

exception was during the assessment of the front end. Within this assessment distance, a lower 

assessment height was chosen, which was up to 0.8 m. 

5.3.3. PERSPECTIVE 

As a third category, the perspective during an assessment was considered. The parameter 

perspective was defined by the normal vector of the MS HoloLens. Similar to the deduction of 

the position, the derivation of the parameter perspective required a coordinate transformation 

from the person-based system into the product-based system. In doing so, a data correction 

was required. The participants interacted with their surroundings, e.g., with the observer, and 

therefore, the perspectives which did not focus on the automobile were deleted. Due to the 

simplification of eye-tracking, a precise definition of the field of vision is not possible. The 

perspective complied with the head and body rotation related to one area. 

5.3.4. STANDARDIZED HUMAN-RELATED PARAMETERS 

The conducted study supported the derivation of human-related assessment parameters 

identified by frequently assessed areas, assessment positions, and perspectives. Based on the 

three-dimensional assessment environment, the parameter position was characterized by three-

dimensional coordinates. The parameter perspective was defined by a position-corresponding 

vector in the three-dimensional environment. The assessment procedure of experts was tracked 

and therefore virtualized and documented. This documentation was an accompanying effect, as 

assessments were, in the meantime, experience-based and intuitive. The main advantage 

provides the deduction of standardized split-line assessment parameters. Therefore, the results 

were summarized, and a parameter recommendation was deduced per assessment level. The 

results were maintained to be categorized by the global and local assessment levels. Global 

assessments include the product context and, therefore, further product attributes. In order to 

perform a global product assessment, an assessment distance up to 3.2. m, and an assessment 

height of 1.6 m were deducted. The perspective in a global quality assessment was 

accompanied by head and body rotations to perceive the whole product context. Within local 

quality assessments, the focus lay on individual product attributes. Therefore, the assessment 

distance was closer to the automobile and up to 0.8 m. Similar to a global assessment, the height 

was constant at 1.6 m. The deduced parameter is presented in Table 8. 
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Table 8. Summary of the human-related parameters with respect to the assessment level. 

Frequently  

assessed 

areas 

Assessment 

level 

Position-

distance 

Position-

height 

Perspective 

A-pillar Local Quality 0.8 m 1.6 m Focused: details 

Fuel flap Local Quality 0.8 m 1.6 m Focused: details 

Doors 

Local Quality 0.8 m 1.6 m Focused: details 

Global Design 1.6 - 2.4 m 1.6 m 
Head & body rotations: 

holistic 

Front flap Local Quality 0.8 m 1.6 m Focused: details 

Front end Global Design 3.2 m 0.8 – 1.6 m 
Head & body rotations: 

holistic 

Rear end Global Design 3.2 m 1.6 m 
Head & body rotations: 

holistic 

The application was exemplarily demonstrated at the most frequently assessed area to apply the 

derived standardized human-related parameters (third question research question 2). As the 

most frequently assessed area, a-pillar was identified. Within this area, the assessment scope 

were Local Quality attributes of split-lines. This area was assessed by using two assessment 

distances and heights. The first assessment distance was 0.8 m and a height of 1.6 m. This 

perspective demonstrated a front view of the a-pillar, shown in Figure 36 on the left side. The 

second assessment distance was 0.8 m and a height of 1.6 m at a more frontal view of the driver 

side. The results of this second view are presented in Figure 36 on the right side. 
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Distance: 0.8 m, height: 1.6 m, perspective: 
details 

Distance: 0.8 m, height: 1.6 m, perspective: 
details 

Figure 36. Application of the derived human-related parameters within an industrial application. 
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6. PRODUCT-RELATED PARAMETERS 

In addition to the human-related parameters, product-related parameters were identified as 

influencing parameters in assessing perceived quality, which represents the third research 

question (cf. Figure 30). As product-related parameters, color and reflection were identified. 

Regarding the product-related parameter investigation, the following questions were derived by 

the second research question and extend the research questions of the human-related 

parameters: 

(1) Which method is suitable for the investigation of product-related parameters? 

(2) Which are the variables for product-related parameters? 

(3) Which values can be derived for Global Quality, Local Quality, Global Design, and Local 

Design assessment tasks related to human and product parameters? 

Similar to the definition of the human-related parameters, a definition of product-related 

parameters was deduced. The definition of product-related parameters influenced the 

perception of individual product attributes or features. For example, reflections were perceived 

differently with light automobile paint than with dark paint. This category of parameters results 

from the following definition: 

Product-related parameters are those, which are extrinsically assigned to the object before the 

assessment. 
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6.1. GENERAL RESEARCH METHOD 

Compared to the human-related parameters, which were intuitively captured during an 

assessment, the product-related parameters were defined before an assessment. The 

investigation is a mixed-method using technical analysis and a quantitative research method. 

The investigation method for the empirical study was based on an experimental design. The 

entire approach of the investigation is presented in Figure 37. 

Within the first step, the object for the investigation of product-related parameters is defined. 

Based on the object, the variables which affect the product appearance are identified. For each 

variable, the split-line attribute and their characteristic are defined. A product alternative, or a 

stimulus, is represented by a combination of split-line attributes and their characteristic. The 

product alternatives are visualized using rendering or ray tracing methods (section 2.2). The 

rendered visualizations are in photorealistic quality to provide a realistic assessment. The method 

for generating the visualizations is presented in section 6.2. A technical investigation and a 

perception study are conducted to provide an evaluation of the product-related parameter 

results. The technical investigation uses the luminance scale to analyze the renderings regarding 

the visual assessment of split-lines. The luminance scale values of the product alternatives are 

ranked to get a best-to-worst order of the alternatives. Analogically, the perception study aims 

to deduce an order of the product alternatives. The perception study is an experimental method 

for deducing such an order, and participants assess the product alternatives related to different 

visual split-line assessment tasks. Therefore, the study is implemented by using a browser-

based application. The method for designing and implementing the application is presented in 

Appendix B. In a final step, the results of the technical and of the perception study are compared. 

Comparing the results of the 
technical investigation and 

the perception study 
→ deducting product-related 
parameters for a visual split-

line investigation 

 Result comparison & 
interpretation 

8. 

Selecting an object to be 
investigated regarding 

product-related parameters 

 Definition of the 
investigation object 

1. 

Developing an experimental 
plan, where the variables and 

their combinations are 
defined (product alternatives) 

 Definition of stimuli 
2. 

Rendering each product 
alternative 

Visualisations of the 
product alternatives  

3. 

Conducting a quantitative 
study to evaluate the visual 
perception of each product 

variant 

 Perception study 
6. 

Ranking the product 
alternatives by using the data 

acquired within the study 

 Analysis 
7. 

Determining the luminance 
scale for each product variant 

 Technical investigation 
4. 

Ranking the product 
alternatives by their 

determined luminance values 

 Analysis 
5. 

Figure 37. Method for investigating product-related parameters in context of the visual 
assessment of split-line quality. 
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A product-related parameter set for different visual split-line assessment tasks is recommended 

based on both results and comparison. Additionally, the results of both approaches can be used 

to verify whether the technical investigation is a substitutional approach for the perception study. 
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6.2. METHOD FOR GENERATING PHOTOREALISTIC VISUALIZATIONS 

Within the thesis, photorealistic visualizations were used in various tasks, i.e., to illustrate the 

product and the stimuli for assessing the product-related parameters. The photorealistic 

visualizations were created with the software Blender (version 2.79b) (Blender Foundation 

2019a), based on a path tracing method. The approach for generating the visualizations is shown 

in Figure 38. 

The approach for generating the visualizations was divided into three sub-processes. The first 

process included data acquisition and the conversion of the data format. Within the first step, the 

relevant product data was defined using the product-data-management (PDM) system (cf. 

Figure 38, 1a). Within the thesis, the BMW 5 series was used as an investigation object. 

Therefore, the product data of this automobile was extracted in the first step. Via a visualization 

tool, i.e., Teamcenter visualization by Siemens, the second step was performed, and the product 

data was saved in jupiter tessellation (jt) format (cf. Figure 38, 1b). For realizing a high quality 

within the visualizations, the data format needed to be converted in the third step into filmbox 

(fbx) format (cf. Figure 38, 1c). Within this converted data format, information regarding the 

surface normal was maintained, and an even surface resulted. The second sub-process included 

data preparation with the software Blender (Blender Foundation 2019). The first step of this sub-

process was importing the converted fbx product data (cf. Figure 38, 2a). Cleaning the product 

data and erasing unnecessary product data was the next step (cf. Figure 38, 2b). For example, 

the thesis considered the exterior of the automobile. Therefore, the interior data and internal 

product data, i.e., the engine compartment, was removed. Within the third step of the second 

sub-process, various materials were assigned to the components (cf. Figure 38, 2c). For 

example, the windscreen and the side windows were defined as glass, whereas the front flap or 

the chassis were defined as painted components. 

The third sub-process was individually adapted concerning each research hypotheses. In 

general, the sub-process started with the definition of a high dynamic range image (HDRI) (cf. 

Figure 38, 3a). These images were the background of the visualization, and the environment the 

product was placed. The type of HDRI was decisive for the subsequent visualization result, i.e., 

Figure 38. Approach for generating photorealistic visualisations by using the software Blender. 

a. Definition product 
data using the PDM 
system 

b. Export of the product 
data in jt format 

c. Conversion of the jt 
format into fbx format 

1. Data acquisition & conversion 

a. Import of converted 
product data in fbx format 

b. Erasing unnecessary 
product data 

c. Definition of materials 
for components 

2. Data preparation 

a. Definition of an 
environment using a 
HDRI & lightning 

b. Definition of a 
camera position and 
perspective 

c. Definition & 
Automatization of the 
stimuli 

3. Scene preparation & definition of the stimuli 

a. b. c. 

a. b. c. 

a. b. c. 
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the reflections and the lighting were affected. An advantage of using an HDRI for lighting settings 

is a realistic and smooth illumination within the scenery. Subsequently, the camera settings were 

defined in the third sub-process (cf. Figure 38, 3b). The third sub-process step was manipulating 

parameters for creating the stimuli (cf. Figure 38, 3c). In this research question of identifying 

product-related parameters, two different parameters were variated, which were color and 

reflection. The variable color was variated in red, blue, yellow, black, white, and grey. The variable 

reflection was modified in metallic, regular, and matte.  

The use of photorealistic visualizations had various advantages compared to the use of real 

images. The advantages were: easy manipulation of the stimuli, simple control of the settings, 

i.e., camera, lighting, HDRI, the color of the automobile, uniform adjustment of all settings in each 

visualization, and flexible generation of further visualizations. 

The method for designing a Browser based-survey is in the Appendix B. 
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6.3. APPROACH 

Two approaches conducted the approach of investigating the product-related parameters. The 

generating of the stimuli was identically for both approaches. The conduction of the technical 

and the perception study was separately performed and is therefore presented individually. 

6.3.1. STUDY DESIGN  

Like the previous studies, the investigation object for the product-related parameters was a 

BMW 5 series sedan. The scope of the investigation of the product-related parameters was a 

global and local product assessment regarding the design and quality of the automobile. 

Consequently, the product-related parameters were categorized into four tasks, dealing with 

Global Quality, Global Design, Local Quality, and Local Design. The categories were based on 

the product-perception matrix, which is presented in Figure 26. As investigation method was an 

approach chosen, which used a technical and a perception study. In the second step, the results 

of both investigation methods were compared. An additional objective of this investigation was 

to find a substitutional method for the perception study.  

6.3.2. APPARATUS & STIMULUS 

The data for both methods were photorealistic product visualizations, which were generated by 

the method presented in the Appendix B. The investigation of product-related parameters 

required other visualizations compared to the previous studies. The stimuli within this 

investigation were the variables color and reflection. Therefore, the third sub-process of the data 

generation method was manually modified for each stimulus. As HDRI, a sunny day was used, 

which was similar to the simulated lighting setting, to investigate the human-related parameters. 

The camera setting was defined in a more general setting and related to a global assessment 

derived by Striegel and Zielinski (2018) in the tracking study for the human-related parameter. 

Therefore, a distance of 3.2 m and a height of 1.6 m were selected. The perspective was a 

sidewise and frontal view of the entire automobile. For generating the stimuli, the parameters 

color and reflection were variated. The parameter color was varied in six levels. For a 

comprehensive investigation, the colors red, blue, yellow, black, white, and grey were considered. 

The RGB values of the color variables were: red (255, 0, 0), blue (0, 0, 255), yellow (255, 255, 0), 

black (0, 0, 0), white (255, 255, 255) and grey (0, 0, 0) with 35 % transparency. The variations of 

the reflection variable were metallic, regular, and matte. The metallic variation was rendered using 

a second transparent color with additional metallic flakes (Dumont-Bècle et al. 2001). The 

second color was transparent and glossy for realizing the regular reflection variant (Dumont-

Bècle et al. 2001). No additional color created the matte variations. The resulting variants are 

presented in Figure 39. 
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The resulting products had slight differences in the color saturation due to the second paint for 

simulating the reflection levels metallic and regular. The saturation of these variants decreased 

compared to the mate variants. The study design was full factorial, and therefore, 18 product 

variants resulted.  

6.3.3. TECHNICAL INVESTIGATION METHOD 

 For deducting standardized assessment parameters, two investigation methods were applied. 

The first investigation method was a technical consideration of the variable color and reflection. 

The technical investigation method was deduced by the industrial approach of assessing 

product designs and split-lines. Within the industrial assessment approach, only two levels were 

considered. The considered levels were the Global Design and the Local Quality levels based on 

the product-perception matrix. The basic idea for the technical investigation was to use the 

luminance scale. Within the software Blender, the luminance scale was defined by the light 

intensity of images, surfaces, squares, or different elements (Blender Foundation 2019c, 2019d, 

2019e). Using the luminance scale, visual effects, such as character lines or split-lines, can be 

identified. Due to the variables color and reflection, the product variants were different regarding 

the luminance values. The assumption for a subsequent ranking was: the higher the difference 

between the maximum and minimum luminance value, the better the variant was suitable for an 

assessment within the category. The approach to measuring the luminance scale is illustrated in 

Figure 40. 

blue yellow black white grey red 

12 11 10 09 08 07 

01 03 02 

18 17 16 15 14 13 

05 04 06 

Color 

Figure 39. Resulting variants by a full factorial study design of the parameters color and 
reflection. 

R
e

fl
e

c
ti

o
n

 

m
a
tt

e
  
  
re

g
u

la
r  

  
m

e
ta

lli
c
 



 77 

The input data for deducing the luminance ranking were the 18 photorealistic product variants 

(cf. Figure 39). Within a second step, a virtual section was defined. The defined section was at a 

similar position within each variant. Within the investigation, the virtual section was placed at the 

front flap. The luminance was deduced in a third step, related to the virtual section. A Blender 

integrated function was applied for deducing the luminance at a specific object or line (Blender 

Foundation 2019b). The luminance at the virtual section was deduced in the form of a luminance 

distribution for each variant. The distribution had on the x-axis the section length x and the y-axis 

the luminance value from 0 to 1. Based on the distributions, an analysis regarding the levels of 

Global Design and Local Quality was conducted. The difference between the maximum and 

minimum luminance value was calculated for analyzing and ranking the variants. A differentiation 

between the Global Design and Local Quality consideration was conducted. The differentiation 

was performed by distinguishing between a local and global minimum and maximum values 

within the luminance scales. In the Global Design consideration, the global minimum and 

maximum values of the entire distribution were identified. Within the Local Quality investigation, 

the local minimum and maximum values of one specific quality attribute were considered. The 

investigation was performed using the local split-line attribute at the front flap.  

 

Figure 40. Approach for the calculation of the variants ranking in the technical investigation. 

B) Local Quality 
1. Identifying the local  
max & min value of one 
attribute in the  
distribution. 
2. Calculating the 
difference between 
min. value and max. 
value. 

4. Calculation of the maximum. 
A) Global Design 
1. Identifying the  
global max & min  
value in the distribution. 
2. Calculating the  
difference between  
min. value & max.  
value. 

5. Ranking Results 
Ranking of the variants due to the differences. 

2. Definition virtual section 
Specification of a section over a partial area of  
the automobile that makes sense in terms of  
perspective, lightning. 

3. Luminance Scale 
Deducting a luminance scale for every product  
variant using the integrated Blender function. 
Result: Luminance distribution of the local  
selected section 

1. Input data 
Each of the 18 product variants  
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6.3.4. PERCEPTION STUDY 

The second applied investigation method for considering product-related parameters was a 

perceptual study. The study's basis was the identical rendered data, which was used in the 

technical investigation method (cf. Figure 39). The study's scope was to determine the 

perceptual assessment possibilities of the derived product-related parameters regarding the four 

levels of the product-perception matrix (cf. Figure 26). 

Participants 

In summary, the study participants were 33 (female = 15) non-professionals in the field of design 

or quality assessments but with experience in the automotive industry. The age of the 

participants was between 23 and 59 years. The experience of the experts in the field of split-line 

assessments was between 3 and 14 years. 

Perception study Questions 

In a first step for generating the apparatus and stimulus of the perception study method, the 

product-perception matrix derived levels were translated into a study question. The resulting 

study questions are presented in Table 9. 

Table 9. Study questions deduced by the perception product matrix. 

PPM level Question Definition 

Global Quality How precisely can the automobile 

split-line’s harmony be assessed? 

The question asks for a global and a 

holistic assessment of the 

automobile’s split-line design due to 

the different variants. 

Global Design How precisely can the automobile’s 

appearance and its gestalt be 

assessed? 

Assessment of the variants 

regarding the entire product 

appearance including individual 

design attributes and their context. 

Local Quality How precisely can the course of the 

split-lines be assessed with regard to 

its geometric quality (focus on details 

of individual split-lines)? 

The assessment of the variants with 

regard to split-line details and 

individual split-line attributes.  

Local Design How precisely can character lines, 

lighting design, component design 

and other design features be 

assessed?  

Question scope was, by which 

product variants design details can 

be assessed best. 

Within the first question, the 18 product variants were examined concerning global split-line 

quality. Consequently, the focus lay on the product context, the integration, and the combination 

between split-lines. The aim was to identify the product-related parameter combinations by 

which the Global Quality context was assessed best. The Global Design level within the study 

had an abstract and comprehensive scope. The first impression of the entire product and, 

therefore, the automobile's design and appearance regarding the parameters color and reflection 

was investigated by the study question. In comparison to this question, the Local Quality level in 
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the third question, the variables color, and reflection were evaluated concerning their reliability of 

a detailed split-line assessment. The focus lay on individual split-lines and their assessment 

regarding the product-related parameters. Conclusively, the fourth study question considered 

the Local Design level. Within this level, the product-related parameters were assessed 

regarding their assessment possibilities of individual design attributes. Individual design 

attributes were specified in detail by, i.e., character lines, lighting design, and component design. 

In contrast to the Local Quality Level, the scope of this question was the parameter context 

regarding further design attributes than split-lines. Since split-lines were defined as design and 

quality attributes, their product-related parameters were considered compared to further design 

attributes. 

For conducting the study, a web-based application was used, which was established using the 

method presented in Appendix B. The application was an HTML-script based on SurveyJS. The 

structure of the study was split into five sections. Section one gave a short introduction and study 

details. By using study-included information, each participant had the same knowledge base. 

Subsequently, the parameter variants of the first question regarding the Global Quality were 

presented in the second section. The following sections three to five considered the other three 

study questions. A metric scale level, which had levels between 0 % and 100 %, was used to 

assess the product variants. This functionality of the assessment slider was implemented by 

using JavaScript and the library SurveyJS. The order of the variants was randomly varied within 

the four questions and between the participants to prevent sequence effects in the results. The 

results of the study were downloaded for each participant automatically. 

In the beginning, the participants were introduced, and the background information of the study 

was presented. The study was conducted with a similar 17" monitor, which had full HD 

(19201080 pixels) and a 16:9 aspect ratio. For each study iteration, the processing time was 

approximately 30 minutes per participant for the four questions (Table 9). 

Data analysis 

The results of the perception study were prepared by using descriptive statistical methods. For 

deriving a ranking order of all product variants for each survey question, the mean value was 

conducted. Therefore, the following approach for deriving the ranking order was conducted. 

The first step was to calculate the mean value for each product alternative 𝑣𝑎𝑗. For this calculation 

following formula was used  

𝑣𝑎𝑗  =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑥𝑗
, 

(11) 

with the product alternative 𝑎𝑖 (for 𝑖 = 1, … , 18) of each participant 𝑥𝑗 (for 𝑗 = 1, … 𝑛 and 𝑛 =

𝑛𝑢𝑚𝑏𝑟𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠). The resulting mean values 𝑣𝑎𝑗 were ranked from the highest to the 

lowest mean value for each study question. 
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6.4. RESULTS 

The results of the technical investigation and the perception study are presented separately. For 

each investigation, the ranking of the product alternatives based on each analysis method was 

derived and is presented in this section. Subsequently, a comparison of the results was 

conducted, and a parameter set for the product-related parameters were derived. 

6.4.1. TECHNICAL INVESTIGATION METHOD 

The technical investigation method was conducted by deriving a ranking of the different product 

variants. Therefore, the approach presented in chapter 6.3.3 was used to analyze the luminance 

scale. Concerning the product-perception matrix, a difference between a Global Design and a 

Local Quality assessment was made. The results for the Global Design and the Local Quality 

levels are presented in Table 10. Within this table, the calculated luminance differences and the 

rankings for both levels are illustrated.  

Table 10. Resulting technical ranking of the product variants. 

Product 

variant 

Reflection Color Global 

luminance 

difference  

Global 

Design 

Rank 

Local 

luminance 

difference  

Local 

Quality 

Rank 

1 Metallic Red 0.48 8 0.12 8 

2 Metallic Blue 0.50 6 0.09 10 

3 Metallic Yellow 0.34 11 0.25 2 

4 Metallic Black 0.53 3 0.07 12 

5 Metallic White 0.31 13 0.23 3 

6 Metallic Grey 0.53 2 0.10 9 

7 Regular Red 0.50 7 0.13 7 

8 Regular Blue 0.52 4 0.07 12 

9 Regular Yellow 0.36 9 0.29 1 

10 Regular Black 0.55 1 0.08 11 

11 Regular White 0.06 15 0.06 16 

12 Regular Grey 0.50 5 0.21 5 

13 Matte Red 0.05 16 0.04 17 

14 Matte Blue 0.05 17 0.07 15 

15 Matte Yellow 0.31 12 0.14 6 
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16 Matte Black 0.04 18 0.07 14 

17 Matte White 0.34 10 0.21 4 

18 Matte Grey 0.14 14 0.03 18 

The variants of regular black, metallic grey and metallic black were ranked best for assessing the 

Global Design level. Metallic grey and metallic black reached the same luminance difference 

value and were sharing their ranking position. The worst-ranked variants to assess the Global 

Design level were the matte variants and the regular white variant. The matte variants and bright 

variants, such as white or yellow, were ranked worst for assessing the Global Design level. On 

the contrary, dark colors with a regular or metallic reflection were ranked best for assessing the 

Global Design level. Based on the technical investigation, the best product-related parameters 

for assessment tasks at a Global Design level were for color black or grey and for reflection, 

metallic or regular. 

Within the Local Quality level, the top-ranked color and reflection variants were regular yellow, 

metallic yellow, and metallic white. The assessment task of the Local Quality level was a detailed 

split-line assessment. Due to the shadows and the resulting dark-colored split-line shape, the 

contrast of a bright-colored product was ranked higher. Thus, bright colors such as yellow, white, 

or grey were suitable parameters for assessing the Local Quality level. The reflection parameter 

did slightly influence the ranking results. Mostly, the dark color variants were ranked worse. In 

summary, the recommendation for assessing split-lines is to choose a bright color, such as white, 

yellow, or grey, with any reflection variables metallic, regular, or matte. The best-ranked product 

variants inclusive their luminance derivation for Global Design and Local Quality levels, were 

presented in Figure 41. 

The three best-ranked variants of the Global Design Level show each a luminance distribution 

with a characteristic value increase at the beginning, in the middle, and at the end (cf. Figure 

41a)). The variants of the Local Quality Level presented a similar distribution for all three variants 

(cf. Figure 41b)). Their distribution showed a constant level of luminance without high differences 

between luminance values. A small luminance value was represented solely in the area of a split-

line. Nevertheless, these three distributions differed from the three distributions of the Global 

Design Level. 
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Figure 41. The three best rated product variants in the technical investigation. 
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6.4.2. PERCEPTION STUDY 

The collected data analysis was for each study question by calculating the mean value per 

parameter combination. On this basis, a ranking was deducted. The order sequence was from 

the best-assessed variant to the worst assessed variant. Therefore, the color and reflection 

variants which provide an optimal assessment basis for each study question was identified. The 

following Figure 42 presents the mean values per parameter variant and for each level. 

Based on the calculated mean values the ranking of the parameters variants was deduced for 

each level. The resulting ranking is presented in Table 11. 

Table 11. Resulting rankings for the product variants by the perception study. 

Product 

variant 

Reflection Color Global 

Quality Rank 

Global 

Design Rank 

Local 

Quality 

Rank 

Local 

Design 

Rank 

1 Metallic Red 6 9 4 2 

2 Metallic Blue 8 7 11 8 

3 Metallic Yellow 2 10 2 3 

4 Metallic Black 5 1 13 10 

5 Metallic White 13 13 6 12 

6 Metallic Grey 7 2 9 1 

7 Regular Red 4 8 3 4 

8 Regular Blue 10 5 10 5 

9 Regular Yellow 1 6 1 6 

10 Regular Black 9 3 14 7 
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Figure 42. Overview of the study results of all product variants and the four study questions. 
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11 Regular White 12 12 12 14 

12 Regular Grey 3 4 7 9 

13 Matte Red 15 15 15 15 

14 Matte Blue 17 17 16 16 

15 Matte Yellow 14 16 8 13 

16 Matte Black 18 18 18 18 

17 Matte White 11 11 5 11 

18 Matte Grey 16 9 17 17 

Within the Global Quality level, the variants of regular yellow, metallic yellow, and regular grey 

were identified as product-related parameters that support an assessment. On the contrary, the 

parameter variants matte grey, matte blue, and matte black were assessed as variants, which do 

not support Global Quality assessment. For assessing the level of Global Quality, brighter colors 

in combination with a metallic or regular reflection level were deduced as suitable product-related 

parameters. 

For assessing the level Global Design, the following varnish variants were assessed to be 

supportive: metallic black, metallic grey, and regular black. The variants identified to be 

unsupportive within an assessment of the Global Design level: matte yellow, matte blue, and 

matte black. A product-related parameter set recommendation is a black or grey color in 

combination with a metallic or regular reflection. 

The results of the Local Quality level demonstrated a ranking of the following best parameter 

variants: regular yellow, metallic yellow, and regular red. The parameter variants which scored 

poorly were matte blue, matte grey, and matte black. For assessing products and product details 

in the Local Quality level, a bright color, e.g., yellow, and a metallic or regular reflection level was 

supportively perceived and is therefore recommended. 

Individual design attributes, such as front lights or character lines, were assessed within the Local 

Design level. The following parameters were identified within the study, which supported the 

assessment: metallic grey, metallic red, and metallic yellow. The parameter variants identified for 

not supporting the visual assessment were: matte blue, matte grey, and matte black. These 

parameter variants were similar to the Local Quality assessment. Equally to the other levels, the 

matte reflection parameters were assessed worse, and therefore, this reflection parameter is not 

suitable for one of the four research questions. A recommendable color and reflection 

parameters for an assessment within the Local Design level are the color grey or yellow and a 

metallic reflection. The best assessed parameter variants are illustrated in Figure 43. 



 84 

For the Global and Local Quality level, the color and reflection of the first two parameter 

combinations were similar. In both levels, the color yellow and the reflection parameters regular 

were ranked best. Besides, the color parameter yellow and the reflection parameters metallic 

rated as second best in both levels. Therefore, a yellow color and regular or metallic reflection 

are supportive and reasonable assessment parameters for a Global or Local Quality assessment.  

For the Local and Global Design levels, the metallic grey parameter combination was ranked on 

position one and two. Therefore, this combination is supportive and reasonable for a Design 

assessment.  

6.4.3. STANDARDIZED PRODUCT-RELATED PARAMETERS 

The third research question considered parameters, which influence the assessment of 

perceived quality. In order to accomplish this requirement, human-related and product-related 

parameters were identified. To generate a consistent assessment basis, the parameters that 

support a visual product assessment were examined. Due to the multi-layered product 

assessment, this was divided into four explicit levels: Global Quality, Global Design, Local Quality, 

and Local Design. For the product-related parameters, these four areas were examined 

concerning the parameters color and reflection. The aim was to identify the parameter 

combination that supports the corresponding level in a visual assessment. The identified 

product-related parameters from both investigations favorable for the levels are illustrated in the 

following Table 12. 

 

 

 

 

 

 

 

 

 

 

a) Global Quality, perception study b) Global Design, perception study 
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c) Local Quality, perception study d) Local Design, perception study 
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Figure 43. The three best ranked product variants in the perception study. 
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Table 12. Summary of technical investigation and perception study. 

Level Technical 

investigation 

Visualization Perception study Visualization 

Global 

Quality 

color: - 

reflection: - 

 

 
color: yellow 

reflection: regular 

 

Global 

Design 

color: black 

reflection: regular 

 

 color: black 

reflection: metallic 

 

 

Local 

Quality 

color: yellow 

reflection: regular 

 
color: yellow 

reflection: regular 

 

Local 

Design 

color: - 

reflection: - 
 

color: grey 

reflection: metallic 

 

 

The levels of Global Quality and Local Design were not considered within the technical 

investigation method. In summary, for an assessment of Local Quality or Global Quality, the 

regular yellow parameters are reasonable parameters based on both investigations. For a Global 

Design assessment based on the technical investigation, the metallic black, based on the 

perception, study the regular black parameters. Both variants were perceived similarly, and 

therefore one of them can be chosen. For the Local Design assessment, the metallic grey 

combination is suggested. Since this combination was also very similar to the metallic and regular 

black, these can also be summarized. Consequently, the metallic grey variant is suitable for a 

Global and Local Design assessment. Besides, this variant is recommended for an overall 

assessment of all four areas. Additionally, this combination is also highly listed in the Global and 

Local Quality rankings. 

 

09 

10 04 

06 

09 09 
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6.5. SUMMARY AND CONTRIBUTION OF RESEARCH QUESTION 2 

The scope of the previous two chapters was research question two, which focused on the 

consideration of parameters affecting the assessment process of split-lines regarding perceived 

quality. Thereby, three-parameter categories were identified: human-related, product-related, 

and environment-related. Environment-based parameters had effects on the product 

appearance based on Zeitgeist (Carbon 2010, 2020). Environment-based parameters were not 

considered within the thesis. These parameters are abstract and follow time aspects, trends, and 

current events. Within the static consideration in this thesis, these parameters were independent 

of the considered product and, also, not influenceable. The thesis focuses on the human and 

product-related parameters. Within this thesis, the human-related and product-related 

parameters were investigated by using different study types. The human-related parameters 

were conducted using an empirical study using a qualitative research method (the first question 

research question two). The participants were observed and tracked during an assessment of 

split-line design and quality. In doing so, assessment patterns were tracked and subsequently 

analyzed. As a result, the human-related parameters position and perspective were deduced (the 

second question research question two). The research method for the product-related 

parameters was a mixed approach, using a technical, analytical investigation, and a perception 

study (the fourth question research question two). The product-related parameters were 

identified as color and reflection (the fifth question research question two). The parameter color 

was variated in six levels: red, blue, yellow, black, white, and grey. The parameter reflection had 

three characteristics: metallic, regular, and matte. For the selected full factorial study design, 18 

variants were analyzed. The parameters were conducted by using a technical investigation 

method and a perception study. The technical investigation was based on the luminance analysis 

of an automobile section. By analyzing the luminance derivation of the parameter combinations, 

a ranking of the combinations was derived. The assumption of the analysis was, based on a high 

difference between maximum and minimum luminance value within a derivation, the reflection 

and the automobile appearance are perceived well, and therefore, the combination is supportive 

for a visual assessment. The perception study was based on a perceptual study. The parameter 

combinations were assessed regarding a Global Quality, Global Design, Local Quality, and Local 

Design level. In conclusion, the results of both investigations were compared, and the similarities 

and differences were discussed. In summary, the results of both investigations were mainly 

similar. The study results for the human- and product-related parameters are presented in Table 

13. The results were structured by Global Quality, Global Design, Local Quality and Local Design 

(the sixth question research question two). 
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Table 13. Derived human-related and product-related parameters for a visual assessment of 

split-line quality. 

 Human-related Parameters Product-related Parameters 

 Position Perspective Color Reflection 

Global 

Quality 

Distance: 3.2 m 

Height: 1.6 m 
Wide angle 

Technical: - 

Perception: yellow 

Technical: - 

Perception: regular 

Global 

Design 

Distance: 3.2 m 

Height: 1.6 m 
Wide angle 

Technical: black 

Perception: black 

Technical: regular 

Perception: metallic 

Local 

Quality 

Distance: 0.8 m 

Height: 1.6 m 
Small angle 

Technical: yellow 

Perception: yellow 

Technical: regular 

Perception: regular 

Local 

Design 

Distance: 0.8 m 

Height: 1.6 m 
Small angle 

Technical: - 

Perception: grey 

Technical: - 

Perception: metallic 

Related to the assessment level, Table 13presented reasonable human-related and product-

related parameters. The human-related parameters were structured related to the assessment 

level, either global or local. The global assessment position was 3.2 m for distance, 1.6 m for 

height with a broad perspective angle. The local assessment parameters were defined as 

distance with 0.8 m, height with 1.6 m, and a small perspective angle. The recommendation for 

product-related parameters is metallic grey within a combined assessment of design and quality 

at global and local levels. This parameter combination was ranked in the first half of the ranking 

based on the perception study. 

Similarly, the technical investigation revealed a metallic grey variant for a Global Design 

assessment. Since the color yellow is perceived differently, this color can be a disruptive factor. 

The color grey is, therefore, more subtle and is not intensely perceived. Therefore, the metallic 

grey parameter presents a good fit by assessing quality and design in combination. 

6.5.1. HUMAN-RELATED PARAMETERS 

The derivation of the human-related parameters demonstrated a frequently assessed area of the 

a-pillar. An explanation for this frequent assessment is a complex product concept. Three 

components, the side panel, the doors, and the front flap, were combined within this area. Due 

to the many components, the split-lines had a sophisticated design. Based on this sophisticated 

design, these split-lines' tolerances were high and required an increased assessment effort.  

Further conspicuity is the differentiation between the assessment distances, which are 

explainable by a global and local quality assessment. A global quality assessment includes the 

global product shape and the context of design elements. Therefore, a greater assessment 

distance was necessary. In conclusion, an assessment distance of 3.2 m was chosen for global 

product assessments. Additionally, the greater assessment distance was mainly identified at the 

front- and rear-end of the automobile. In these areas, many designs and quality attributes stand 

in contrast and define an automobile's appearance primarily. Therefore, the front- and rear-end 

were assessed concerning global and local product quality. 

The presented method by Ilhan et al. (Ilhan and Çelik 2017; İlhan, Ünal, and Altınok 2017) 

demonstrated related results to the tracking study, and the estimated values can be used as a 
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first concept. The study by Ilhan et al. (Ilhan and Çelik 2017; İlhan, Ünal, and Altınok 2017) 

represented the following assessment position: a distance of 1.5 m to 0.5 m and a height of 

1.8 m. The tracking-based study results in the thesis show a distance of 3.2 m to 0.8 m and a 

height of 1.6 m regarding the perception level. Within the tracking study, the results were in 

detail, executed, and more specific. Additionally, besides the investigation of the assessment 

position, the tracking-based study in the thesis derived an assessment perspective, which is an 

additional distinctive feature compared to the estimated values by Ilhan and Çelik (2017); İlhan, 

Ünal, and Altınok (2017). The derived human-based parameters contribute to various virtual 

assessment methods. The different assessment positions and perspectives identified a 

distinguishing feature between the global and local quality assessment. For example, Wickman 

and Söderberg (2004) studied differences in hardware and virtual assessment tasks. A possible 

improvement could be achieved by implementing the derived human-related parameters within 

the study. In conclusion, the deduced position and perspective apply to various virtual research 

contributions. 

A limitation of this method was the derivation of the perspective—the analysis of the 

perspectives performed by a simplified eye tracking method. The actual eye movement was 

reduced to the normal vector of the tracking device. A detailed consideration of the parameter 

perspective by using an eye-tracking device provides further research potential. Based on the 

scope of the study, the simplified consideration was acceptable to deduce standardized human-

related assessment parameters. 

6.5.2. PRODUCT-RELATED PARAMETERS 

The product-related parameters were derived by two investigation methods, a technical 

investigation, and a perception study. An advantage of this approach is that the results of both 

investigations can be compared. Both investigation methods derived a ranking of the product-

related parameters color and reflection. The parameter color was variated in both investigations 

in red, blue, yellow, black, white, and grey. The reflection parameter was variated in metallic, 

regular, and matte. By combining the parameters color and reflection, 18 product variants were 

generated. The ranking of these product variants using the technical investigation method and 

perception study a comparison is possible. 

A similarity between the technical investigation and the perception study results was the ranking 

of the matte product variants. Within both investigations, the matte reflection parameter was 

ranked in the last positions. Additionally, the combinations of matte reflection with dark colors, 

e.g., black or blue, were rated worse. Considering the luminance derivations of the matte product 

variants, a less distinctive distribution with a constant low luminance value occurred (cf. Figure 

44). 

The colors red, blue, black, and grey presented a distribution with a low luminance scale. Based 

on this low scale, the context of reflections due to the product shape was imperceptible. This 

result was demonstrated by the technical investigation and the perception study. Within the 

technical investigation, the calculated difference value was low, and therefore, the resulting 
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Figure 44. Comparison of the luminance scale of matte product variants using the technical 
investigation method. 
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ranking position was at the end. Similarly, within the perception study, the ranking positions of 

these variants were at the end. Thus, both investigations demonstrated that the reflection matte 

is no reasonable parameter for assessing the four levels. 

Further correspondence of the results from both investigations occurred concerning the Local 

Quality level. The aim of this level is a detailed quality assessment of individual split-line 

attributes. In both studies, the color yellow was identified as a suitable assessment parameter for 

the Local Quality level. Furthermore, the perception study revealed that bright colors were 

preferred in the split-line assessment. Both investigations identified metallic or regular for the 

parameter reflection to be favorable for a detailed split-line assessment. 

The technical investigation rankings and the perception study demonstrated a similarity across 

almost all positions for the Global Design and the Local Quality level. The rankings of the product 

variants overlap or deviate by one position. Some exceptions existed, in which the ranking deviate 

at most four positions between both investigation methods. An example of such a deviation is 

the metallic red product variant. This variant was on position eight in the technical investigation 

and on position four in the perception study. Nevertheless, both rankings were very similar and 

strengthened the validity of the results. Therefore, a conclusion is that the technical investigation 

with the luminance value assistant is a suitable approximation to the perception study. For first 

investigations in different areas, the technical investigation can be used as approximation and 

simulation. 

Similar high comparability of the product rankings is provided by the technical investigation and 

the perception study for the Global Design level. For instance, both investigations presented 

regular black or metallic grey as favorable product-related parameters at a Global Design level. 

The product variants regular black and metallic grey indicate good substitutability of both product 

variants based on their similar luminance distribution. Therefore, the technical investigation 

indicates a reliable approximation for the perception study.  

A compromise for a combined assessment of all levels is the grey metallic or grey regular 

parameter combination. The color grey and the metallic reflection was ranked in the first part of 

the ranking table. Exaptation is the Local Quality assessment. Within this level, the grey metallic 

variant was ranked in the ninth position. Nevertheless, the metallic grey combination 

demonstrated compromise within the product-related parameter set. 

The investigation of the product-related parameters was conducted by a technical investigation 

and a perception study. Both the study scope of analyzing product-related parameters and the 

mixed-method approach were new concepts. Therefore, no comparable methods in literature 

were identified. However, the product-related parameter investigation results supported various 

virtual assessment methods with Design or Quality scope. For example, the consistent method 

introduced by Ilhan et al. (Ilhan and Çelik 2017; İlhan, Ünal, and Altınok 2017) to evaluate 

perceived quality could be enhanced by applying reasonable product-related parameters for 

each assessment task. Equally, the results of the comparison of the virtual and hardware-based 

quality perception introduced by Wickman and Söderberg (2004) might be reviewed by applying 

the parameters per assessment task. The assessment difference between virtual and hardware 

might be reduced related to an improvement in the parameters. In conclusion, the investigation 

of the product-related attributes introduced unconsidered influencing factors. Due to the less 

existing methods, the investigation for these parameters required basic research. Thereby, a 

different perception of the parameters color and reflection related to a different assessment task 

was demonstrated. Additionally, a recommendation of a suitable parameter set was deduced. 
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7. GLOBAL PRODUCT CONTEXT IN PERCEIVED QUALITY 

After analyzing the split-line assessment process and the analyses of human-related and 

product-related parameters, the visual assessment of split-lines regarding perceived quality was 

further investigated within the third research question. A comparable method concerning the 

investigation of the global product context and relations between attributes was introduced by 

Dagman, Söderberg, and Wickman (2004). Their objective was to analyze different product 

attributes of Visual Quality Appearance (VQA) of an automobile exterior. For an investigation, 

different VQA attributes were derived in design, color, feeling, VQA of split-lines, material, brand, 

size, rims, details and chrome. The perception level of the considered attributes ranged between 

local, e.g. rims or chrome, and global, e.g. design or brand. The assessment of these attributes 

was performed by industry experts and customers during an interview. As a result, the VQA of 

split-lines were perceived as an important attribute for both industry and customers. Additionally, 

an assessment gap and perception asymmetry between experts and customers were identified. 

The importance of split-lines was higher ranked by experts than by customers. The research 

scope of Dagman, Söderberg, and Wickman (2004) was the consideration of split-line attribute 

in relation other attributes. For a detailed investigation of the global product context, the third 

research question was divided into two studies. The first study considered the importance of the 

global product context and the second study the perception of variations of split-line attributes. 

For each study, questions were derived, which are answered in the following two chapters. The 

derived questions for the investigation of the global product context are: 

(1) How are different split-line attributes perceived in different areas of an automobile? 

(2) Which split-line attributes designed with smaller tolerances at which area? 

(3) How is the impact of the global product appearance influencing the split-line perception? 

The importance of a global context and relations of attributes regarding the perception of 

products were derived by Carbon's conceptual moves (Carbon 2019). For example, the sixth 

conceptual move addressed the importance of understanding the product context for deducing 

a harmonious design (Carbon 2019). Within this thesis, the global context of split-lines in product 

design and the relations between split-line attributes were investigated. A summary and the 

contribution of the third research question is presented in chapter 8.4. 
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7.1. GENERAL RESEARCH METHOD 

The first study investigated the influence of split-lines on product design. Therefore, a conjoint 

analysis was chosen as the investigation method. The advantages of conjoint analyses are the 

decompositional approach, where a product is assessed within its entirety. Using this 

decompositional approach, participants can assess a whole product alternative and not explicitly 

assess individual product attributes. Therefore, the assessment process is realistic for 

participants. Based on the variants of conjoint analysis methods, the traditional approach was 

selected. This TCA approach was selected based on two arguments. Firstly, the traditional split-

line assessment process in the industry considers each tolerance attribute individually. In reality, 

tolerance attributes occur in combination. For providing a realistic assessment situation for 

participants, the holistic approach of TCAs was suitable. The second argument is that the 

objective was to investigate the exact influence of individual split-line attributes within a global 

context. This research intention has an explorative character with less previous information. A 

product decomposition into the individual attributes was hardly possible. The more reasonable 

approach was to maintain a holistic product assessment. The method for conducting the conjoint 

analysis is presented in Figure 37. 

The first step is to choose an investigation object and the participants' knowledge level, which 

can be an expert or layperson level. Based on the chosen object, the specific investigation areas 

need to be defined. These areas are chosen by different split-line shapes to picture a high 

variance between the chosen areas. The third step is the definition of product attributes, which 

are to be considered within the TCA. These attributes are defined by the criteria of relevance, 

feasibility, independence, compensability, and several attributes (Guckelsberger and Unger 

1999). The relevance criterion demands attributes, which have an impact on the purchase 

Selecting an investigation 
object, expert-level or 

layperson-level participants 

 Definition investigation 
object & participants 

1. 

Defining the specific areas of 
the investigation 

 Definition of  
investigation area 

2. 

Choosing product attributes 
which are considered in the 

TCA 

 Definition of  
product attributes 

3. 

Defining the characteristic 
levels for the chosen 

attributes 

Definition of the  
attribute characteristics 

4. 

Combining the different 
attributes and characteristic 
to product alternatives for a 
full factorial research design 

Generation of a 
 full factorial design 

5. 

Based on the resulting 
product alternatives, these 

need to be reduced 

Reduction of stimuli 
6. 

The resulting product 
alternatives are visualised by 
using rendering/ray tracing 

methods 

Generating Renderings 
7. 

Implementation of a study 
application to rank the 

product alternatives per area 

Creating a study 
8. 

Calculation of the part-worth 
utilities and the importance of 

the attributes 

Analysis 
9. 

Figure 45. Approach for investigating the effects of the global product context on visual split-
line assessments. 
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decision of customers. The feasibility criterion requires such attributes, which are modifiable by 

the company. The autonomy of the selected attributes is essential based on the independence 

criterion. The compensability criterion excludes the necessary presence of an attribute. The 

limited number of attributes is defined within the fifth criterion. Based on the TCA's defined 

attributes, the level of attribute characteristics is defined in the fourth step of the investigation 

approach. The resulting attributes and their characteristic levels are combined in the fifth step of 

the approach, and a full factorial design of product alternatives (stimuli) results. Thus, the number 

of product alternatives needs to be limited to a practicable quantity; the full factorial design must 

be reduced in the sixth step. The seventh step considers the generating of photorealistic 

visualizations of the remaining product alternatives. The rendering method is presented in 

chapter 7.2. The study conduction is supported by a browser-based application developed 

within the eight-step, and the method is presented in chapter Appendix B. The ninth step of the 

approach includes the study conduction and data collection. The collected data is analyzed by 

the TCA approach. Thereby, the part-worth utilities and the importance of the attributes are 

calculated 
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7.2. METHOD FOR GENERATING PHOTOREALISTIC VISUALIZATIONS 

The generation of the photorealistic visualizations is related to the approach presented in chapter 

6.2. The sub-process one (data acquisition and conversion) and the sub-process two (data 

preparation) is similar in both methods. The third sub-process is different between both 

generation processes. The generation of the stimuli is within this study the manipulation of three 

split-line attributes. Therefore, an automatization was developed to generate product 

alternatives. The manipulation of the split-line attributes was performed based on the Blender 

integrated add-in, called Animation nodes. This add-in represents a visual programming 

language. The approach of the automatized stimuli generation is shown in Figure 46. 

This method was applied in the selected areas of the automobile. The approach for automatically 

generating the stimuli was similar for each area. Therefore, the approach is explained, 

considering the area of the front flap. The script was designed from the left to the right side. 

Within the first step of the script, the number and the value of the individual attributes were varied. 

The three considered split-line attributes gap, flush, and parallelism was arranged below each 

other on the left side. Within the second step of the script, the individual split-line attributes were 

combined, and a full factorial design resulted. The third step of the script defined the automatic 

start of the rendering process and the automatic saving in a user-defined folder. 

 

Figure 46. Approach for automatically generating the rendered stimuli by using Blender nodes. 

1. Manipulation of individual attributes 2. Combination of attributes 3. Rendering 

c
) 

p
a
ra

lle
lis

m
 

 
 

b
) 

fl
u

sh
  

 
a
) 

g
a
p

 



 94 

7.3. APPROACH 

The following three different automobile areas were considered to investigate the third research 

question: the fuel flap, the doors, and the front flap. These areas are shown in Figure 47. Within 

each area, the split-line quality of the Refinement level was conducted in a global and holistic 

product consideration. Due to the different split-line design executions, the three areas were 

selected. 

As a first investigation area, the fuel flap was chosen. This split-line design at the fuel flap was 

oval-shaped, with a character line on the surface, and included two components. For the second 

investigation area, the doors were considered. A vertical profile characterized this split-line 

design with a long straight shape, but with additional local design features, i.e., the chromium-

plated board. An additional design feature is included at the doors: a chromium-plated board 

(design feature) combined with a split-line (quality feature). This combination ensured a 

complicated assessment situation: local design and quality features within a global product 

context. The third investigation area was the front flap. A horizontal, straight split-line 

characterized this area with several character lines on the surface of the front flap. Classifying the 

front light using the product-perception matrix is defined as a local design feature that impacts 

the global product appearance. Therefore, a similar assessment situation resulted in the front 

flap and at the doors: a local quality and design assessment of the split-line in the global product 

context.  

The investigation method for analyzing the influence of the product design on split-line 

assessment was a conjoint analysis. The method for collecting the data was based on the 

methods presented in the previous section. The detailed method was divided into three steps: 

participants, apparatus & stimulus, and procedure. 

7.3.1. PARTICIPANTS 

A number of 34 participants joined the study, which were non-professionals in the field of split-

line assessment. The focus group was selected based on potential customers of the automotive 

premium segment. The age of the participants was between 18 and 60 years. 

7.3.2. APPARATUS & STIMULUS 

The study was conducted using photorealistic visualization, which was generated by the method 

presented in chapter 6.2. The third-subprocess (cf. Figure 38), which was the scene preparation, 

fuel flap 
doors 

front flap 

1 

2 

3 

1 
2 

3 

Figure 47. The three chosen areas for the investigation: fuel flap, doors and front flap. 
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and the definition of the stimuli were individually adapted for the conjoint study. The HDRI for 

the conjoint study was a panoramic image with cloudy scenery. For defining a realistic camera 

setting, the distance, the height, and the perspective of the virtual camera were deduced by a 

study performed by Striegel and Zielinski (2018). Accordingly, the camera's following parameters 

were chosen: distance up to 0.8 m, the height of 1.6 m eye level, and a perspective with a focus 

on details. The individual split-line attributes were variated in three levels: perfect, medium, 

drastic. The level entirely complied with the product construction without tolerance derivations. 

The second level was defined by a medium split-line tolerance derivation, which was realized by 

a slight variation from the initial construction. The greatest manipulation of the split-line tolerance 

was investigated by the attribute level drastic.  

The tolerance derivations per split-line attribute and manipulation level were transferred into a 

vector for generating photorealistic visualizations. These vectors represented a translation for 

the attributes gap and flush in mm and a rotation for the attribute parallelism in degree. The 

vectors for each area, attribute, and manipulation level are presented in Table 14. 

Table 14. Translation and rotation vectors for realizing the manipulation level. 

Area Attribute Perfect Medium Drastic 

Fuel Flap 

Gap 

(mm) 
�⃗�𝑃1 = (

1.005
1.005
1.005

) �⃗�𝑆1 = (
1
1
1

) �⃗�𝐵1 = (
0.995
0.995
0.995

) 

Flush 

(mm) 
�⃗�𝑃1 = (

0
0
0

) �⃗�𝑆1 = (
0

1.45
0

) �⃗�𝐵1 = (
0

2.9
0

) 

Parallelism 

(°) 
�⃗⃗�𝑃1 = (

0
0
0

) �⃗⃗�𝑆1 = (
0

1.2
0

) �⃗⃗�𝐵1 = (
0

2.4
0

) 

Doors 

Gap 

(mm) 
�⃗�𝑃2 = (

−4
0
0

) �⃗�𝑆2 = (
0
0
0

) �⃗�𝐵2 = (
4
0
0

) 

Flush 

(mm) 
�⃗�𝑃2 = (

0
0
0

) �⃗�𝑆2 = (
0.069
1.658
3.117

) �⃗�𝐵2 = (
0.138
3.316
6.234

) 

Parallelism 

(°) 
�⃗⃗�𝑃2 = (

0
0
0

) �⃗⃗�𝑆2 = (
0

−0.29
0

) �⃗⃗�𝐵2 = (
0

−0.58
0

) 

Front Flap 

Gap 

(mm) 
�⃗�𝑃3 = (

3.08
3.51

−0.58
) �⃗�𝑆3 = (

0
0
0

) �⃗�𝐵3 = (
−3.08
−3.51
0.58

) 

Flush 

(mm) 
�⃗�𝑃3 = (

0
0
0

) �⃗�𝑆3 = (
−3.072
0.263
0.377

) �⃗�𝐵3 = (
−6.144
0.527
0.753

) 

Parallelism 

(°) 
�⃗⃗�𝑃3 = (

0
0
0

) �⃗⃗�𝑆3 = (
0
0

0.36
) �⃗⃗�𝐵3 = (

0
0

0.72
) 
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A risk within in conjoint studies is a quick increasement of the product alternatives, which 

participants need to evaluate. Product alternatives were defined as the combination of attributes 

with different manipulation levels. Green and Srinivasan (1990) recommended a number of 20 

different product alternatives. Based on experience, these alternatives represent a manageable 

size for participants to rank. This number was exceeded rapidly since the number of attributes 

multiplied with the level. Considering a full-factorial design of the conducted study with three 

attributes and three characteristics, the resulting number of product alternatives was 27. 

Therefore, a systematic selection of stimuli was necessary. One method for reducing the 

alternatives considering a symmetrical study design was the Latin square method (Backhaus, 

Erichson, and Weiber 2015). This reduction method was used because of the symmetrical study 

design. Each split-line attribute had an equal number of manipulation levels. In addition to the 

condition of a symmetrical study design, the Latin square method was applicable because the 

attributes and the levels each amounted to three. According to the application of the Latin square 

method, the product alternatives were reduced to nine. The advantage of reduced study design 

was that each attribute and level was represented in a product alternative. The conjoint analysis 

calculates the importance and utility value for each attribute and level. Therefore, concluding the 

analysis, each combination of a full factorial design can be calculated. The reduced study design 

and the alternatives are presented in Figure 48. 

Within the method for generating the visualizations, these product alternatives were rendered 

automatically. This automatization was defined as the first step of the script (cf. (cf. Figure 46). 

The combination of the vectors was performed in the second step and resulted in a full factorial 

design. The reduction of the product alternatives was performed in the third stage of the script. 

Within the conjoint analysis, assessing the resulting nine product alternatives was done by 

ranking the alternatives (Clancy and Garsen 1970). As described in Appendix B, the study used 

for acquiring the data was a browser-based application with two study sections, having a general 

and a study-related part. The design of this application is generally explained in Appendix B. The 

general part addressed the question about an individuum’s automobile property. If any was 

available, the segment of the automobile was asked. The study-related part was adjusted 

regarding the ranking method of the conjoint analysis. Within the conjoint analysis, a drag-and-

drop technique was used. The adjustment was conducted within the second step of the 

Figure 48. Resulting and reduced study design after applying the Latin square method. 
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JavaScript code, which performed the study functions. The approach and illustration of this 

technique is shown in Figure 49. 

The ranking of the product alternatives was executed regarding the three areas: the fuel flap, the 

doors, and the front flap. The order of these three areas was similar between the participants. 

The order of the visualizations per area was randomly sampled to avoid order effects in the data. 

Each participant was separately questioned. Therefore, a short introduction was presented. An 

introduction was included in the browser-based application to guarantee similar information for 

each participant. The average processing time was 15 min per participant. The study was 

performed using a 17’’ monitor with a display resolution of full HD (19201080 pixels) and a 16:9 

aspect ratio. The acquired data analysis was performed by using the traditional conjoint analysis 

approach, which deduces the ranking of the alternatives, the utility values, and the attribute 

importance. 

7.3.3. DATA ANALYSIS 

The chosen conjoint analysis type was a TCA. The calculation of the part-worth utilities and the 

importance value was performed by using the approach of Guckelsberger & Unger (1999). 

Therefore, the total utility value 𝑦𝑖 of a stimulus is calculated by using the additive model [40]: 

𝑦𝑖 = 𝜇 + ∑ ∑ 𝛽𝑘𝑗
∗ 𝜎𝑘𝑗

𝑚𝑘

𝑗=1

𝐾

𝑘=1

 

𝑦𝑖 , which is the estimated total utility value of the stimulus i, 

𝛽𝑘𝑗
, which is the part-worth utility value of an attribute 𝑚 with the level 𝑘, 𝜎𝑘𝑗

 is 

a binary value of 1 or 0, which depends if the stimulus i, an attribute 𝑚 and level 

𝑘 is available 

𝜇 is the basis utility value 

(12) 

 

The idea of the estimation of the part-worth utilities is that the individual values of stimuli differ 

from the basis utility value 𝜇 (Guckelsberger and Unger 1999). Therefore, the least square 

method can be used for estimating the part-worth utilities (Guckelsberger and Unger 1999). This 

approach results in a minimization problem, where the total utility value of a product alternative 

is estimated, so that the value differs as little as possible from the real ranking position 

(Guckelsberger and Unger 1999).  

Explanation of the technique Realisation in the study 

Figure 49. Realised drag-and-drop technique for ranking the product alternatives within the 
browser-based study application. 
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∑(𝑟𝑖 −

𝑛

𝑖=1

𝑦𝑖)2  → 𝑚𝑖𝑛 

𝑟𝑖 is the ranking position of a stimulus i 

(13) 

By using the calculation of the total utility value 𝑦𝑖 (1) the following minimization problem results 

(Guckelsberger and Unger 1999). 

∑(𝑟𝑖 −

𝑛

𝑖=1

𝜇 + ∑ ∑ 𝛽𝑘𝑗
∗ 𝜎𝑘𝑗

𝑚𝑘

𝑗=1

𝐾

𝑘=1

)2  → 𝑚𝑖𝑛 (14) 

For calculation of this problem, the following approach is used (Guckelsberger and Unger 1999). 

In a first step of the approach, the basis utility value 𝜇 is calculated (Guckelsberger and Unger 

1999). 

𝜇 =
1

𝑛
∑ 𝑟𝑖

𝑛

𝑖=1

 

𝑛 is the number of levels, 

𝑟𝑖 is the ranking position of a stimulus i 

(15) 

In a second step, the average ranking position 𝜇𝑘𝑗
 is calculated for each attribute 𝑚 with each 

level 𝑘 (Guckelsberger and Unger 1999). Therefore, the each ranking position, in which an 

attribute with an level appears, is summed and divided by the number of ranking positions 

(Guckelsberger and Unger 1999). In a third step, the part-worth utility values 𝛽𝐾𝑗
 are calculated 

by subtracting basis utility value 𝜇 from the the average ranking position 𝜇𝑘𝑗
 (Guckelsberger and 

Unger 1999). 

𝛽𝐾𝑗
= 𝜇𝐾𝑗

− 𝜇 (16) 

In a fourth step, the resulting part-worth utility value is transformed to reach values of a positive 

value 𝛽`𝐾𝑗
.  

𝛽`𝐾𝑗
= 𝛽𝐾𝑗

− 𝑚𝑖𝑛𝛽𝑘 (17) 

Within a fifth step, this positive value 𝛽`𝐾𝑗
 is normalised to a part-worth utility value 𝛽``𝐾𝑗

 to be 

comparable to different importance values: 

𝛽``𝐾𝑗
=

𝛽`𝐾𝑗

∑ max 𝛽`𝐾𝑗

𝑘
𝐾=1

 (18) 

The normalized total utility value 𝑦′𝑖 of a product alternative is the sum of the normalized part-

worth utility values 𝛽``𝐾𝑗
. 

The importance value of an attribute is calculated in three further steps. In the first step, the level 

range s𝑚 of an attribute 𝑚 is calculated by subtracting the minimal part-worth utility value 𝛽𝑘 𝑚𝑖𝑛 

from the maximal part-worth utility value 𝛽𝑘 𝑚𝑎𝑥 (Backhaus et al. 2016). 
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s𝑚 = 𝛽𝑘 𝑚𝑎𝑥 − 𝛽𝑘 𝑚𝑖𝑛 (19) 

In the second step, the level range s𝑚 of each attribute (m=1, …, n) are summed up (Backhaus 

et al. 2016). 

s𝑔𝑒𝑠 = s𝑚1 + ⋯ +  s𝑚𝑛 (20) 

In the third step, the attribute importance per attribute 𝑊𝑚 is calculated by dividing the individual 

level range s𝑚 by the total level range s𝑔𝑒𝑠 (Backhaus et al. 2016). 

𝑊𝑚 =
s𝑚 

s𝑔𝑒𝑠
 (21) 
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7.4. RESULTS 

The conjoint analysis subject was an investigation of the influence of the global product context 

on the perception of split-lines. The results are presented regarding the ranking of the 

alternatives, the part-worth utilities, and the importance values for the areas fuel flap, doors, and 

front flap. 

7.4.1. RANKING OF THE ALTERNATIVES 

The first result of the study was the ranking of the visualizations concerning the three considered 

areas. This ranking of the product alternatives was calculated by the average ranking choices of 

the 34 individual participants, which is illustrated in Figure 50. 

The figure is structured as follows: the best rating is placed on the left side. The averaged 

visualization ratings get worse when going right. Besides the visualization rankings, explanations 

are presented concerning the stimuli at the button. The top-ranking within the perspective fuel 

flap had the characteristics gap perfect, flush perfect, and parallelism perfect. Also, these 

characteristics were ranked for the top position within the perspective front flap. However, the 

results of these two perspectives stand in contrast to the perspective doors, which had the best 

ranking for the stimuli gap medium, flush: perfect, parallelism medium. In comparison, the three 

rankings of the perspectives show slight differences. One variation was the top-ranking position. 

Whereas the perspectives fuel flap and front flap concluded a small gap with no flush and perfect 

parallel split-line level, the perspective doors ensured as the top-ranking position a split-line with 

medium gap and parallelism but with no flush. The perspectives fuel flap and front flap revealed 

further similarities in the ranking positions two, three, and seven. An almost entirely different 

ranking demonstrated the perspective doors with the perspective fuel flap. There were two 

positions, four and nine, similarly ranked in the perspectives of fuel flap and doors. In comparison 

to the perspective front flap, the sixth position was similarly listed in the perspective doors. 

In addition to the first results, these rankings are also the basis for the conjoint analysis and the 

calculation of the utility values and the attribute importance. 

7.4.2. PART-WORTH UTILITY VALUE 

Additional results of the conjoint analysis and the including calculation were the part-worth utility 

values for each tolerance attribute and their level. Due to the reduced study design, not each 

alternative was queried by the participants. Nevertheless, the reduction by the Latin square 
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Figure 50. Ranking result per area of the split-line quality assessment within the conjoint 
analysis. 
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method's assistance allowed the calculation of every alternative utility value in conclusion. 

Therefore, the individual utility values for each alternative were calculated based on the individual 

alternative rankings. The utility values were standardized for subsequent comparison of the 

different product areas. The results of the different standardized utility values are presented in 

Figure 51. 

The figure is structured by the three perspectives fuel flap, doors, and front flap. Within these 

perspectives, the tolerance attributes gap, flush, and parallelism and their levels are presented. 

The tolerance attribute parallelism demonstrated the highest part-worth utility value by reaching 

0.40 and the lowest value by having 0.00 at the fuel flap. The split-line attribute combination with 

the highest utility value for the front flap was gap, flush, and parallelism with perfect execution of 

all three attributes. In contrast to the fuel flap, the calculation within the area doors presented the 

tolerance attribute flush with a high difference of the highest utility value, reaching 0.42, and the 

lowest value reaching 0.01. This difference was an indicator of a high importance of this attribute 

at the area doors. Within the doors' area, the attribute combination with medium gap, perfect 

flush, and perfect parallelism gained the highest utility value. The third area front flap contrasted 

both previous results. The front flap results presented the tolerance attribute gap with the most 

considerable difference of the highest utility value 0.48, and the lowest value 0.01. Therefore, 

the highest utility value was reached with the split-line combination of perfect gap, perfect flush, 

and medium parallelism. 

7.4.3. ATTRIBUTE IMPORTANCE 

A primary objective of conjoint analysis is the derivation of the attribute importance. In the 

analysis, each attribute importance concerning the three perspectives was calculated based on 

the above presented standardized utility values. 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

Fuel flap Doors Front flap

Utility values (standardized)

Gap: perfect

Gap: medium

Gap: drastic

Flush: perfect

Flush: medium

Flush: drastic

Parallelism: perfect

Parallelism: medium

Parallelism: drastic

0.23 

0.13 

0.01 0.01 0.01 0.01 0.00 

0.10 

0.34 

0.30 

0.40 

0.14 

0.19 0.18 

0.33 

0.20 

0.42 

0.02 

0.48 

0.04 

0.10 0.10 

0.34 

0.06 

0.27 

0.12 0.11 

Figure 51. Resulting part-worth utility values per investigated area using the conjoint analysis. 
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The attribute importance values of the fuel flap perspective reached 24 % for the attribute gap 

of 34 % for flush, and the highest value got the attribute parallelism by having 42 %.  

In contrast, the importance values within the perspective doors achieved 35 % for the attribute 

gap, 43 % for the attribute flush, and 22 % for the third attribute parallelism. The third area front 

flap reached the importance values of the attribute gap of 53 %, the attribute flush attained 29 %, 

and the attribute parallelism obtained 18 %. Similar to evaluating the utility values, the evaluation 

of the attribute importance indicated different priorities regarding the three perspectives. The 

essential attribute within the perspective fuel flap was parallelism, whereas the attribute flush was 

influential in the second perspective doors, and the attribute gap identified the highest 

importance value considering the front flap. A summarizing illustration of the calculated attribute 

importance is presented in Figure 52. 

In summary, the conjoint study was conducted to gain information about customer’s product 

attribute prioritization gap, flush and parallelism. A resulting statement is that for all three areas 

the different tolerance attributes were decisive and the customer’s importance ranking allowed 

different attributes to be considered important in each of the three areas. 

 

Figure 52. Importance values of the split-line attributes per area using the conjoint analysis. 
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8. PERCEPTION OF SPLIT-LINE ATTRIBUTES 

The third research question was divided into two parts. The first part was investigating the global 

product context on the assessment of split-lines regarding perceived quality. The second part 

considered the relation between split-line attributes regarding perceived quality. The objective 

of this part was a deep dive into the investigated areas and a detailed investigation of the effect 

of combinations of split-line attributes. Therefore, the following questions were investigated 

within this research part: 

(1) How do split-line attributes affect each other concerning perceived quality? 

(2) Which impact has the area of consideration and the combination of split-line attributes 

on the perception of quality? 

(3) How do the results of both studies affect each other? 

(4) Which attribute is dominant, what are conspicuousness of attribute levels, what effects 

have attribute combinations, and what patterns are in the diagrams? 

(5) Which design guidelines can be derived for a high level of perceived quality regarding the 

split-line attributes? 

This research part focuses on deducing basic knowledge of split-line perception. Research and 

industry have a research gap regarding the perception of an individual or combined split-line 

attributes. The third research question focuses on closing the gap and deducing new knowledge. 

Therefore, recommendations regarding the design and tolerancing of split-line attributes are 

derived by using both research parts. 
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8.1. METHOD 

The research of effects of split-line attribute combinations on perceived quality is performed 

based on a quantitative research approach. Therefore, an experimental study for considering 

theses effects is used. The study is related to the previous research using a TCA. The method 

for the consideration of relations between split-line attributes is presented in Figure 53. 

The first five steps of the approach for investigating split-line attribute relations on perceived 

quality are similar to the research approach in chapter 7.1. The first step is to define an 

investigation object and the knowledge level of the participants. Within the second step, the 

areas for investigation are defined in detail. Steps three and four focus on the selection of 

attributes and their characteristic levels. Based on this selection, a full factorial design is derived. 

The resulting product alternatives of the full factorial design are visualized by using ray tracing 

methods. This visualization process is similar to the process described in chapter 7.2. Similarly, 

the process step of implementing a browser-based study application is related to Appendix B. 

The eight-step is the procedure of the study by using the product alternatives and the browser-

based study application. Within the ninth step, the collected data is analyzed using descriptive 

statistical methods, which are the calculation of mean value and standard derivation. Additionally, 

for each area, a table for an easy visual comparison of the product alternatives is derived. 
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full factorial research design 
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Analysis 
9. 

Figure 53. Method for investigating split-line attribute relations on perceived quality. 
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8.2. APPROACH 

The experimental study to analyze the effect of relations between split-line attributes was based 

on the conjoint analysis approach. Similarly, the experimental study focused on the three 

automobile areas: fuel flap, doors and front flap (Figure 47). The method for the perceptual study 

is further explained in the following section, by presenting the participants, apparatus & stimulus 

and the procedure. 

8.2.1. PARTICIPANTS 

The participants of the study were non-professionals in the field of split-line quality assessment. 

In comparison to experts, non-professionals perceive split-line quality differently. Due to a daily 

confrontation, experts have different experiences and can receive detailed knowledge about 

split-lines. Thus, a difference between the perception process exists. For companies, the 

perception of customers is decisive, and therefore, non-professionals had participated. The 

number of participants was 40, and the participants' average age was 23,9 years and a range of 

18 to 51. 32 participants were female. 

8.2.2. APPARATUS & STIMULUS 

The perceptual study was performed by using photorealistic visualizations of the BMW 5 series 

sedan. The method for generating the visualizations was presented in chapter 6.2. The third sub-

process was adopted for the perceptual study. The parameters like HDRI, camera settings, and 

automatic stimuli generation was identical to the conjoint study. The investigated variables were 

the split-line attributes gap, flush, and parallelism in the area of the fuel flap, the doors, and the 

front flap. Compared to the conjoint study, the attributes were variated in five levels. The range 

of the levels was based on a previous split-line concept. The five levels were specified regarding: 

perfect, slight, medium, high, and drastic. The levels increased linearly from perfect to drastic. 

Similar to the conjoint study, manipulating the split-line attributes was performed by using a 

translation and rotation vector to relocate components. The translation vector affected the split-

line attributes gap and flush. The rotation vector influenced the level of the split-line attribute 

parallelism. The numerical translation vector was in mm, and the values in the rotation vector 

were defined in degree. The study design was full factorial, and therefore, the split-line attributes 

and their levels were combined. The total number of product alternatives was 125. The 

numerical values for each split-line attribute and the respective manipulation level are presented 

in Table 15. 
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Table 15. Levels and the translation and rotation manipulations. 

Area Attribute Perfect Slight Medium High Drastic 

Fuel 

Flap 

Gap 

(mm) 

�⃗�𝑃1

= (
1.005
1.005
1.005

) 
�⃗�𝑃1 = (

1.0025
1.0025
1.0025

) �⃗�𝑆1 = (
1
1
1

) �⃗�𝑃1 = (
0.9975
0.9975
0.9975

) �⃗�𝐵1 = (
0.995
0.995
0.995

) 

Flush 

(mm) 
�⃗�𝑃1 = (

0
0
0

) �⃗�𝑃1 = (
0

0.73
0

) �⃗�𝑆1 = (
0

1.45
0

) �⃗�𝑃1 = (
0

2.18
0

) �⃗�𝐵1 = (
0

2.9
0

) 

Parallelism 

(°) 
�⃗⃗�𝑃1 = (

0
0
0

) �⃗⃗�𝑃1 = (
0

0.6
0

) �⃗⃗�𝑆1 = (
0

1.2
0

) �⃗⃗�𝑃1 = (
0

1.8
0

) �⃗⃗�𝐵1 = (
0

2.4
0

) 

Doors 

Gap 

(mm) 
�⃗�𝑃2 = (

−4
0
0

) �⃗�𝑃2 = (
−2
0
0

) �⃗�𝑆2 = (
0
0
0

) �⃗�𝑃2 = (
2
0
0

) �⃗�𝐵2 = (
4
0
0

) 

Flush 

(mm) 
�⃗�𝑃2 = (

0
0
0

) �⃗�𝑃2 = (
0.035
0.829
1.559

) �⃗�𝑆2 = (
0.069
1.658
3,117

) �⃗�𝑃2 = (
0.1035
2.487
4.676

) �⃗�𝐵2 = (
0.138
3. 316
6.234

) 

Parallelism 

(°) 
�⃗⃗�𝑃2 = (

0
0
0

) �⃗⃗�𝑃2 = (
0

0.145
0

) �⃗⃗�𝑆2 = (
0

0.29
0

) �⃗⃗�𝑃2 = (
0

0.44
0

) �⃗⃗�𝐵2 = (
0

0,58
0

) 

Front 

Flap 

Gap 

(mm) 

�⃗�𝑃3

= (
3.08
3.51

−0.58
) 

�⃗�𝑃3 = (
1.54

1.755
−0.29

) �⃗�𝑆3 = (
0
0
0

) �⃗�𝑃3 = (
−1.54

−1.755
0.29

) �⃗�𝐵3 = (
−3.08
−3.51
0.58

) 

Flush 

(mm) 
�⃗�𝑃3 = (

0
0
0

) �⃗�𝑃3 = (
−1.536
0.132
0.189

) �⃗�𝑆3 = (
−3.072
0.263
0.377

) �⃗�𝑃3 = (
−4.608
0.395
0.566

) �⃗�𝐵3 = (
−6.144
0.527
0.753

) 

Parallelism 

(°) 
�⃗⃗�𝑃3 = (

0
0
0

) �⃗⃗�𝑃3 = (
0
0

0.18
) �⃗⃗�𝑆3 = (

0
0

0.36
) �⃗⃗�𝑃3 = (

0
0

0.54
) �⃗⃗�𝐵3 = (

0
0

0.72
) 

The realization of the perceptual study was supported by using a browser-based application 

related to the presented method in Appendix B. The study structure was divided into a general 

section and a study-related section. Within the general section, the age, the gender, the current 

automobile, and segment were questioned. The study-related section was clustered concerning 

the three areas, the fuel flap, the doors, and the front flap. The order of these three areas 

remained similar between the participants. The photorealistic visualizations within the three areas 

were randomly varied to avoid sequence errors within the data. Like the conjoint study, the 

second step for designing the browser-based application needed to be customized for the 

perceptual study. The second step is considered the measurement technique of the study. Each 

product alternative was assessed by using a seven-point Likert scale (Joshi et al. 2015). The 

Likert scale is metric and ranges traditionally between strongly disagree to strongly agree (Joshi 

et al. 2015). This scale was adapted within the study. The seven-point scale Likert scale levels 

were ranged between extremely likely and not likely at all. The assessment of a product 

alternative within the study is presented Figure 54. 
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The study was conducted for each participant separately. In the beginning, information about 

the study was provided within the browser-based application. A participant needed 

approximately 25 minutes to complete the study. The used monitor size was 17’’ with full HD 

(19201080 pixels) and a 16:9 aspect ratio. 

8.2.3. DATA ANALYSIS 

The collected data was proceeded by using descriptive-statistical methods. For each 

investigated area, the mean value and the standard derivation was calculated for each product 

alternative. The formula for the calculation of the mean value 𝑚𝑎 per product alternative a is  

𝑚𝑎 =
1

𝑛
(∑ 𝑏𝑖

𝑛

𝑖=1

), (22) 

Where n is the number of participants, 𝑏𝑖 is the resulting assessment of a product alternative 

related to the 7-point likert scale. Based on the mean value 𝑚𝑎 calculation, the standard 

derivation 𝑠𝑑𝑎 for each product alternative a is calculated using following formula, 

𝑠𝑑𝑎 = √
1

𝑛
∑(𝑏𝑖 − 𝑚𝑎)2

𝑛

𝑖=1

. (23) 

 

Please assess the perceived quality of the split-lines at the fuel flap. 

Page 1 of 126 

Next Previous 

1 2 3 4 5 6 7 

1. Please assess (1: extremely likely, 7: not likely at all). 

Figure 54. Visualisation of the browser-based study design for assessing the split-line quality 
and considering split-line attribute relations. 
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8.3. RESULTS 

The results were presented in the following section related to each investigated area. For each 

area, the best and worst assessed product alternative and the mean value of the results were 

calculated. Additionally, the assessment ranges of single attributes by a constant perfect level of 

the other attributes is presented. 

8.3.1. FUEL FLAP 

Within the area of the fuel flap, the assessment scale of the results ranged from 6.2 to 1.7. The 

best assessed attribute variants at the fuel flap were images 2 and 7, the worst image was 

number 124. A summary of the best and the worst combinations is followed:  

• Image 7: gap  slight 

flush  perfect 

parallelism perfect 

• Image 2: gap  slight 

flush  slight 

parallelism perfect 

• Image 124: gap  high 

flush  drastic 

parallelism drastic 

These attribute variants reached a mean value of 6.2 and a standard derivation of 1.1 for image 

2 and 1.0 for image 7. The worst assessed image reached a mean value of 1.7 and a standard 

derivation of 1.2. The assessment range of the single attribute gap by a constant perfect level of 

flush and parallelism was between 6.2 and 5.3 of the mean value. For the attribute flush and a 

constant perfect level of gap and parallelism, the mean values ranged between 5.9 and 3.4. The 

mean value of the attribute parallelism and constant perfect levels of gap and flush variated 

between 5.9 and 2.1. The widest range within the assessment and of a variation in the single 
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attribute demonstrated the attribute parallelism. The results of all 125 attribute variants are 

presented in Figure 55. 

 

 

 

 

 

a) 

b) 

c) 

d) 

e) 

Figure 55. Resulting split-line quality assessments of the area fuel flap. 
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8.3.2. DOORS 

At the area doors the assessment range was between 6.0 and 1.9. The best assessed attribute 

variants were image 26 and 27. The worst assessed image was image 122. Following the 

attribute combinations were: 

• Image 26: gap  slight 

flush  perfect 

parallelism perfect 

• Image 27: gap  slight 

flush  slight 

parallelism perfect 

• Image 122: gap  high 

flush  drastic 

parallelism drastic 

The standard derivations of the best-assessed images were 1.4 for image 26 and 1.1 for image 

27. Image 122, with the worst ranking, had a standard derivation of 1.3. The single attribute gap 

with a constant perfect level of the attributes flush and parallelism variated between 5.9 and 3.0. 

The attribute flush assessment range by a constant perfect level of the attributes gap and 

parallelism was between 5.9 and 2.2. The third attribute parallelism by constant perfect gap and 

flush levels variated between 5.9 and 3.2. Figure 56 presents the different results of the 125 

attribute variants. 
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a) 

b) 

c) 

d) 

e) 

Figure 56. Resulting split-line quality assessments of the area doors. 
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8.3.3. FRONT FLAP 

At the area front flap, the best and worst assessed attribute variants were represented in image 

51 and image 19 and the attribute levels were: 

• Image 51: gap  perfect 

flush  perfect 

parallelism medium 

• Image 19: gap  high 

flush  high 

parallelism perfect 

Image 51 was assessed best with a mean value of 6.0 and a standard derivation of 1.6. In 

contrast, image 19 was assessed worst with a mean value of 1.8 and a standard derivation of 1.0 

regarding the PQ impression. The single-level variation of the attribute gap with constant level 

flush and parallelism was 5.8 and 2.0. A single variation of the attribute flush and constant gap 

and parallelism resulted in an assessment range of 5.8 to 4.8 for the mean value. Considering 

the variation range of the attribute parallelism with a constant level of gap and flush resulted 

between 6.0 and 5.8. Figure 57 illustrates the results of the 125 attribute variants at the area of 

the front flap. 
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a) 

b) 

c) 

d) 

e) 

Figure 57. Resulting split-line quality assessments of the area front flap. 
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8.4. SUMMARY AND CONTRIBUTION OF RESEARCH QUESTION 3 

The results of the previous two chapters reflected the third research question, which considered 

effects on the assessment of perceived quality based on the global product context and relations 

between split-line attributes. Therefore, two studies were performed, which investigated both 

the global product context and relations between attributes. For both studies, three different 

automobile areas were analyzed: the fuel flap, the doors, and the front flap. As stimuli, the split-

line attributes gap, flush, and parallelism were variated in three levels in the first study and five in 

the second study. The first study was a conjoint analysis, which investigated effects on perceived 

quality regarding the product context. Based on the study results, the three attributes were 

differently perceived (the first question of the third research question). At the fuel flap, the 

attribute parallelism was perceived dominantly. At the doors, the attribute flush was dominant 

and worse assessed. At the front flap, the third attribute, the gap, was dominantly perceived and 

assessed worse (the second question of the third research question). In the second study, the 

relations between attributes were investigated. The second study results confirmed partially the 

results of the conjoint study (the sixth question of the third research question). In the fuel flap 

area, the attribute parallelism and the combination of the attributes parallelism and flush were 

poorly assessed. The attribute flush had bad results within the levels medium, high, and drastic 

at the doors. The attribute gap was dominantly perceived at the front flap and demonstrated by 

levels with medium, high, and drastic bad results in assessing the perceived quality level (the fifth 

question of the third research question). 

8.4.1. GLOBAL PRODUCT CONTEXT ON SPLIT-LINE ATTRIBUTES 

A central finding of the conjoint analysis was the varying prioritization of split-line tolerance 

attributes according to the importance ranking of customers, which resulted from the first 

question of research question three. The three considered attributes, gap, flush, and parallelism, 

achieved different importance values for each perspective and automobile area. An explanation 

for the different attribute prioritization regarding the area is the global product context. The global 

product context affects the appearance of split-lines, and therefore, different split-line attributes 

were important in different automobile areas (question three of the research question three). For 

example, design attributes such as the chromium-plated border influence the perception of 

tolerance attributes at the area of the doors, and the split-line attribute flush was highlighted. 

Additionally, the superordinate shape of particular split-lines was essential for product 

appearance and assessment. Following an example of the chromium-plated border on the doors: 

the chromium-plated highlighted the transition of the doors in z-dimension. When both doors 

were not optimally positioned and show a misalignment, this quality imperfection is directly and 

visually readable by the narrow line. Additionally, this imperfection is highlighted by the chromed 

border, which reinforces the poor visual quality impression. 

Another effect was the shape of split-lines, which were three-dimensionally designed and 

affected the global product design. The three-dimensional design of split-lines was included with 

the perspectives of fuel flap and front flap. The split line shape at the fuel flap was oval, its three-

dimensional orientation within the product shape was mostly in the z-axis of the automobile, and 

the side lengths of the split-line were relatively short. The short side length of this particular split-

line enabled a comparison of distances between two positions on the split-line. In conclusion 

and provided by the comparison, the split-line attribute parallelism was perceived dominant. 

Therefore, participants ranked parallelism with a high importance value. Besides, the split-line at 

the front flap had a complex shape, including a three-dimensional turn. This split-line was long 

and oriented in x-direction. Additionally, front light as a design characteristic influenced the global 

product structure. The long shape of the split-line complicated the assessment of the attribute 
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parallelism. Moreover, the selected perspective from the top impeded the assessment of the 

flush within the z-dimension. In conclusion, the attribute gap was highly rated due to the visual 

conspicuity. 

8.4.2. PERCEPTION OF SPLIT-LINE ATTRIBUTES 

With a focus on the influence of split-line attributes on perceived quality, the discussion is 

organized by the individual areas and followed by comparing the conjoint study results. The areas 

fuel flap, doors, and front flap are analyzed by the following four categories (question seven of 

research question four): 

(1) Dominant attribute, 

(2) conspicuousness of attribute levels 

(3) Effects of attribute combinations 

(4) Pattern in the result diagrams. 

Fuel flap 

The fuel flap area results demonstrated a decrease in the quality assessments within the high 

and drastic levels of the attribute parallelism. The results indicated a high-quality perception 

within the levels perfect and slight of the attributes parallelism and flush. By having the levels 

high and drastic of the attribute flush, the quality perception declined. Indeed, the most intense 

effect on quality perception has the attribute parallelism. A dominant character was identified in 

the results within the levels high and drastic of the attribute parallelism. Dealing with the high and 

drastic levels of parallelism, the attribute levels of gap and flush had almost no effects on the 

quality perception, and the mean values were between 3.3 and 1.7. Therefore, the dominant 

attribute within the area fuel flap was identified as parallelism. The level medium of parallelism 

demonstrated first deteriorations in the results and worse quality perception. This attribute is 

intensively perceived within the levels high and drastic. Thus, the attribute parallelism is identified 

as a dominant attribute with a strong influence on perceived quality. 

The effects of the attribute gap demonstrated conspicuousness. The attribute gap was often 

assessed better within the level slightly than within level perfect. Therefore, an assumption is 

that a slightly wider tolerance of the attribute gap is perceived in higher quality than a split-line 

with a narrow execution of the attribute gap. An explanation of this better assessment of a wider 

gap is the related opening function of the fuel flap. A tight execution of the function could assume 

an impairment of this function. Based on the results, the tolerance of the attribute gap can be 

expanded in the area of the fuel flap. 

The effects of attribute combinations were split into two cases. Firstly, the attribute combinations 

of gap and flush by a constant perfect to medium attribute level of parallelism. Secondly, 

combining all three attributes by having a constant high to drastic attribute level of parallelism. 

Within the first consideration, the effects of the attribute gap, combined with flush, demonstrated 

a decrease in quality perception. The decrease was continuous, whereby the effects of the 

attribute flush were more effective. The second consideration demonstrated dominant visual 

effects of the attribute parallelism in the levels high and drastic. 

The constant perfect to medium levels of the attribute parallelism was similarly perceived at the 

fuel flap. Additionally, the high to drastic levels of the attribute parallelism demonstrated a similar 

pattern. 

Within the conjoint analysis, the attribute parallelism was identified with the highest importance. 

This result is similar to the derivation of the dominant attribute in the perceptual study. Similarly, 

the attribute gap was identified within the conjoint analysis as the third essential feature. A result 
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of the perceptual study was the higher quality perception with a wider split-line attribute gap. In 

summary, the results of the conjoint analysis were confirmed by the perceptual study. 

Based on the discussion following design guidelines were derived at the fuel flap (question eight 

of research question three). The attribute parallelism demonstrated dominant and high influence 

on visual perception as of a drastic level. Therefore, this attribute is sensible, and the tolerance 

of this attribute needs to be strict. Otherwise, the attribute gap was perceived worse at the 

perfect level than at the slight level. Thus, the tolerance range of this attribute can be expanded. 

Doors 

At the area of the doors, the attribute flush demonstrated a dominant visual influence on the 

perceived quality level. Compared to the single attribute influences, the attribute flush 

demonstrated the most comprehensive assessment range between 5.9 and 2.2. An explanation 

for the intense perception and worse assessment of the attribute levels is the global product 

context. At the areas of the doors, the chromium-plated border highlighted the side windows. A 

flush of the doors was also transferred to the chrome border, and the flush was, therefore, more 

prominent. Besides the visual influence of the single attribute flush, the combination of flush and 

parallelism demonstrated worse assessment results. Therefore, a worse execution of the 

attributes flush and parallelism is additionally dominant perceived. 

Conspicuousness was identified for the attribute gap. Within several attribute combinations, e.g., 

image 77, 78, 87, a more robust distinct attribute level of gap was assessed better, and therefore, 

a more exhaustive execution of the attribute gap at the area doors was perceived with higher 

quality impression. This assessment of the attribute gap occurred frequently. This 

conspicuousness is explainable by the function of the doors, similar to the function of the fuel 

flap. A too narrow execution is perceived that the function of opening can no longer be fulfilled. 

Mainly, the combinations at the area doors were assessed worse. The combinations of the 

attribute flush and parallelism and the flush and gap combinations demonstrated a quality 

perception decrease. Otherwise, within a high level of the attribute flush, the quality perception 

was worse assessed, but both other attributes demonstrated almost no other effects.  

The results of the conjoint analyses presented flush as an essential split-line attribute. Within the 

perceptual study, this attribute was identified as being dominant perceived. However, a more 

specified result was the worse perception of flush combinations with gap and parallelism. Both 

the perceptual study results and the results of the conjoint study indicate a better assessment 

of a wide gap. In the conjoint study, this better assessment can be seen from the higher utility 

value of the medium gap level (utility value = 0.30, cf. Figure 51) than the utility value of the 

perfect gap level (utility value = 0.10, cf. Figure 51).  

In conclusion, the design of the split-line attributes at the area of the doors to realize a high level 

of perceived quality were the following ones (question eight of research question three). The 

attribute flush demonstrated a dominant visual effect, especially within the higher levels. 

Therefore, the split-line concept should strictly limit this attribute. Additionally, the combination 

of flush with gap or parallelism was perceived with low visual quality. These combinations need 

to be precisely limited. The attribute gap demonstrated a higher quality assessment within the 

levels of slight and medium. The perfect execution was assessed worse than the levels slight a 

medium. Therefore, this attribute limits can be widened in the split-line concept.  

Front flap 

Within the area front flap, the single attribute gap was assessed with wide range between 5.8 

and 2.0. The other attribute assessment ranges were between 5.8 and 4.8 for flush and 6.0 and 
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5.8 for parallelism. The assessment differences in the levels perfect to drastic of the attributes 

flush and parallelism were minimal and barely noticeable. Therefore, the attribute gap range was 

broad and indicated a dominant perception of the attribute gap. The best assessment result was 

demonstrated within image 51, which included a medium level of the attribute parallelism. This 

result suggests that the effects of parallelism are minimal. Additionally, the attributes flush and 

parallelism demonstrated in combination with the attribute gap no effects. The assessment 

results were almost identical between the perfect and drastic levels of the attributes flush and 

parallelism. 

The attribute gap was rated better at the drastic level than at the high level. This assessment 

result occurred in all attribute combinations independent of the levels. The function cannot 

explain the conspicuous feature as in the other two areas. Although the front flap also has an 

opening function, this conspicuousness occurred at both extreme levels high and drastic. 

Therefore, one possibility would be that the drastic execution of the attribute is regarded as 

necessary. Since the variation was correspondingly large, the observer assumes that such a 

design is necessary. 

The diagrams demonstrated a highly similar assessment pattern. The first five diagram bars were 

repeated in the different combinations and levels. The first five diagram bars represented the five 

levels of the attribute gap with perfect levels of the attributes flush and parallelism. The repletion 

of the five bars was independently noticeable of the other attribute levels and is, therefore, 

another indicator for the dominant visual perception of the attribute gap.  

Similarly, the conjoint analysis results presented the attribute gap at the front flap as the essential 

attribute. Within the perceptual study, the dominance of the gap attribute is explicitly noticeable. 

Within the conjoint study, the attribute gap was assessed by an importance value of 53%, which 

was the highest importance value of all areas and attributes. Therefore, the attribute gap was 

assessed as an essential attribute. 

Consequently, the front flap area is highly influenced by the attribute gap (question eight of 

research question three). Therefore, this attribute has to be strictly dimensioned and limited 

within the split-line concept. A recommendation is a limiting of this attribute between the perfect 

to the medium level. The levels high and drastic should be excluded related to the low-quality 

assessments. 

The results indicated a different dominant attribute per area. Additionally, the combinations of 

attributes demonstrated the worst assessment results, primarily in the area of the doors. These 

findings stand in contrast to present design approaches. Therefore, the results were presented 

in design guidelines, which are summarized in the following Figure 58 (question eight of research 

question three). 
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The conducted study presented detailed information regarding the perception and quality 

assessment of split-lines. Within the different areas, different attributes were perceived 

dominant. Furthermore, the consideration of attribute combinations indicated their importance 

and effects on perceived quality. Therefore, a recommendation is the consideration of attribute 

combinations within the split-line concept. The complexity and the multitude of possible 

combinations are problematic. Consideration of a complex assessment by applying the classic 

split-line concept turns out to be extremely difficult. Additionally, the subjective assessment 

within the study is recognizable in the standard derivation. The standard derivation includes 

information on the dispersion of the results. Therefore, a small standard derivation indicates a 

homogenous assessment, whereas a high standard derivation signifies diffuse assessments. A 

high standard derivation is an indicator of subjective perception. Within the results, the higher 

levels of the attributes often demonstrated a higher standard derivation. This higher standard 

derivation directed a disagreement on the results. Therefore, the development of a standardized 

and objective assessment tool is recommended. 

 

_ Parallelism is dominant perceived 
_ Tolerance limits of the attribute gap can be widened 
_ Flush demonstrates a linear perception, except the high and drastic 
levels of parallelism 

_ Flush and combinations with flush were dominant perceived 
_ Tolerance limits of the attribute gap can be widened 
_ independent of the other attributes, flush demonstrates worse quality 
assessments in drastic level 

_ Gap is dominant perceived 
_ Tolerance limits of the attribute gap can be widened 
_ Other attributes demonstrate less further effects on quality assessment 

Figure 58. Summary of important guidelines for designing and tolerating split-line attributes per 
considered area. 
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9. OBJECTIVE PERCEIVED QUALITY METHOD 

The use of neural networks in the industry for quality assessment was numerous (cf. chapter 

2.6). The presented methods were based in different industrial sectors, from textile seam 

production to the food and wood industry. Accordingly, these methods presented approaches 

to classify quality errors and to increase the process by, for example, faster detection times. Thus, 

a differentiation of these methods and the presented method is the level of complexity. The 

assessment of perceived quality and split-line quality is fuzzier than the current assessment 

tasks, i.e., detecting wood errors by Packianather and Drake (2000). 

Therefore, the fourth research question demands an objective assessment method for visual 

split-line quality. Based on perceived quality, the focus has to be an assessment method, which 

considers the entire product. The focus on the entirety of a product was an issue in the previous 

research hypotheses, and these results form the basis of the subsequent investigation. The 

fundamental assessment approach is a machine learning method. Therefore, this research 

section considers an entire process for developing a machine learning-based assessment 

approach. The development is supported questions: 

(1) How can a general machine learning approach for assessing visual quality features be 

defined? 

(2) How can the product complexity concerning human-related, product-related parameters, 

and relations between split-line attributes be considered in a method? 

(3) How can the results be evaluated due to the not observable algorithm of the machine 

learning method? 

(4) How flexible is the trained machine learning approach due to the database quality? 

The fourth research question was considered by developing a general approach. In the second 

step, the general approach was applied in the split-line assessment process. Data generation, 

data labeling, network architecture selection, implementation, and training were performed 

based on the developed approach. Additionally, the machine learning algorithm was evaluated 

using different explainable AI methods and was applied to a database with different image quality. 
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9.1. METHOD 

Various industry and research methods for the deduction of a machine learning-based 

assessment method are presented in section 2.6. These methods presented approaches for 

assessing quality in different industry sections. Most of these methods identified error patterns 

based on the occurrence of defects. This classification differs from the assessment of split-lines. 

The perceived visual quality of split-lines has a more fuzzy and complex classification factor. Due 

to the subjective perception of individuals, the classification of split-line quality can be 

inconclusive. Therefore, a new approach was developed. The new method's specification was 

the inclusion of the global product context, influences of split-line attributes, human- and 

product-related parameters needed. These requirements resulted in a high level of complexity, 

where rules and relations were unknown. Therefore, the application of machine learning methods 

was identified as a strategy for developing an assessment method. Figure 59 shows the 

developed approach. 

The developed method is divided into three sub-processes: the definition of a machine learning 

method and architecture, the data preparation, and the training of a model. The first step of the 

first sub-process considers the analysis and the clarification of the problem, which should be 

solved using a machine learning approach. This step is essential for selecting a machine learning 

type, whether supervised learning with the regression or classification or an unsupervised 

learning approach with clustering is suitable. Based on this selection, the type of machine 

learning method is defined in the second step. The kind of machine learning type already restricts 

the applicable method. Additionally, by using the method, the specification, whether a machine 

Based on the clarification the 
machine learning type: 
supervised (regression, 

classification) or 
unsupervised (clustering) is 

defined 

 Clarification of  
problem, context, scope 

1. 

Based on the type, a more 
specific method is selected: 

(convolutional) neural 
network, k-means, 

logistic/linear regression, 
decision trees, … 

Definition type of  
machine learning method 

2. 

The chosen method requires 
an architecture which suits 

the problem: individual 
architecture, literature-based 

architecture 

 Method architecture 
3. 

Collecting of data or 
generation of data 

Database 
4. 

The database requires a pre-
processing of the data in 

form of structuring, cleaning, 
etc. 

Data pre-processing 
5. 

If the labels are not existing, a 
labelling process has to be 

performed 

Data labelling 
6. 

Setting initial training 
parameters such as epochs 

or learning rate 

Training 
7. 

Analysing the training result 
using the accuracy and loss 

function 

Optimisation 
8. 

Evaluating the trained 
network using an unseen 

database 

Evaluation 
9. 

Figure 59. Derived method to apply machine learning methods for visual quality assessment. 
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learning or a deep learning approach is used, is more precisely. Based on the chosen method, 

the particular architecture of the model can be defined in the third step. Based on the analyzed 

problem in step one, the particular method architecture can be available, a new architecture, or 

a combination or a modification of an existing one. With defining this third step, the second sub-

process the data preparation starts. The first step of the second sub-process considers the 

database. The database is strongly influenced by the initial problem and the defined machine 

learning type, method, and architecture. For example, by using a convolutional neural network, 

the database consists typically of images. Within the industry, a database can often not be 

available, or the database is disordered. If the database is not available, the generation or 

reinforcement of a dataset must be performed using synthetical data. For example, synthetical 

data can be photorealistic visualizations generated by using the approach presented in section 

6.2. If a database is partially available or the database is not sufficient, synthetical data can 

reinforce the base. The following step two of the second sub-process considers a pre-

processing of the data. Thus, the database can be disordered, or incorrect or unimportant data 

can be included; the database needs to be structured and cleaned. An advantage of using 

synthetical data can be reduced conduction of this step. The third step of the data preparation 

sub-process is the labeling of the data. The labeling step is essential and directly affects the 

training results. A lousy quality database or a badly labeled database can hardly obtain a good 

training result and an excellently trained machine learning algorithm. Additionally, the labeling is 

dependent on the machine learning type and the chosen method. A clustering method does not 

need labeling because it is an unsupervised approach. The supervised learning methods 

regression and classification require labeling, but the label differs between both methods. 

Whereas a regression method needs a continuous variable, a classification method needs a 

discrete variable as a label. Subsequently to this step, the second sub-process is completed, and 

the sub-process of training the model is performed. The first step of the third sub-process is to 

define the training. Therefore, the database needs to be divided into three bundles: training set, 

test set, and validation set. The training and test set is used for the training epochs, and the 

validation set is used for the evaluation of the trained model. 

Additionally, training parameters, such as the number of epochs or learning rates, are initially 

defined. The second step considers the training output and analyses the accuracy, the loss 

function, and progress within the epochs. Based on this analysis, the training parameters are 

redefined, and new training is performed. This loop is executed until the training results fit the 

expectations, or no further improvement is achieved. The trained model is evaluated within the 

third step of the third sub-process. The evaluation is performed by using the validation set and 

by using explainable AI methods. By using the validation set, the confusion matrix is derived. This 

matrix displays the true labels towards the predicted labels of the network. With the aid of this 

matrix, the prediction accuracy can be derived and analyzed. The explainable AI methods can 

visualize the essential characteristics for a prediction within the data.  

Approach 

The classification of the visual split-line quality by using a machine learning approach is 

procedure by using the presented method. Therefore, the three sub-processes with the nine 

steps are presented in the following sections. 

9.1.1. CLARIFICATION OF MACHINE LEARNING TYPE AND DEFINITION OF METHOD 

 The problem definition in this thesis was a visual assessment of split-line quality. The 

assessment context was split-lines within the product context. The chosen machine learning 

method was supervised learning with a classification method. The supervised classification task 
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was binary and differentiated the split-line quality in high and low visual quality. Based on the 

complex rules and relations of the visual assessment of split-lines, a convolutional neural network 

was chosen as a machine learning approach. The advantage of choosing a deep learning method 

was the automatic extraction of features by the neural network. For analyzing and implementing 

a convolutional neural network, an investigation area of the automobile was identified. For 

continuous consideration, the BMW 5 series sedan was investigated. Based on the deduction of 

the human-related parameters (Striegel and Zielinski 2018), the most frequently assessed area 

was the a-pillar at the driver and co-driver side. Based on the high assessment interest of the a-

pillar, this area was chosen as an assessment example for the convolutional neural network. By 

choosing the a-pillar, a specialty within the assessment occurred. A finding of the empirical study 

for analyzing human-related parameters was assessing the a-pillar by using two different 

viewpoints (cf. Figure 35). The first viewpoint was at the side of the automobile, and the second 

viewpoint was at the front. Both viewpoints had a distance of 0.8 m and a height of 1.6 m, derived 

by human-related parameters (Striegel and Zielinski 2018),  and were chosen as camera settings. 

The perspective was a small angle and focused on details related to the local assessment scope 

of the a-pillar. Additionally, based on the investigation of product-related parameters (section 

6.4), the parameters color and reflection were defined by grey and metallic. Since the 

assessment of the split-line included further design details, the metallic grey parameter was 

chosen. Examples of the resulting images are presented in Figure 60. 

9.1.2. NETWORK ARCHITECTURE 

The training of the neural network was a supervised approach with binary image classification. 

The basic architecture of the convolutional neural network was a VGG-16. The architecture was 

developed by Simonyan and Zisserman (2014). The major development within this network 

architecture was small convolutional filters, or receptive fields, which realize 33 filters. By using 

such small receptive fields in succession without having a subsampling layer, two main 

advantages arose. For example, to realize a 77 receptive field, three 33 filters in a row had to 

be executed. As a result, three non-linear layers instead of one non-linear layer were formed, 

which results in more representations of the input. Secondly, the number of parameters by 

implementing a 33filter was decreased related to a 77 filter. The concept of small receptive 

fields was realized by various numbers of weighted layers, having 11, 13, 16, and 19 (Simonyan 

and Zisserman 2014). Figure 61 presents VGG-16 network architecture, which demonstrates 

16 convolutional layers. 

Side viewpoint Front viewpoint 

Figure 60. Resulting perspectives for the deep learning-based assessment of visual split-line 
quality at the a-pillar. 
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The input is an image with 224×224 pixels in three channels, having RGB. This image was firstly 

proceeded by a convolutional block. This block had two convolutional layers with 3×3 receptive 

fields and 64 channels and a pooling layer using maxpool. The second convolutional block had 

the same layers with the same receptive fields but with 128 channels. The third convolutional 

block had three convolutional layers with 3×3 receptive fields and a maxpool layer, with each 

layer having 256 channels. The fourth and fifth convolutional block had similar layers and 

receptive fields like the third block but with 512 channels. By concluding the fifth convolutional 

block, a flatten layer resulted. 

Since two viewpoints were relevant for the quality assessment at the a-pillar (cf. Figure 60), the 

VGG-16 network was extended to two input branches. For this extension, the concept of 

Siamese networks was adapted. Thus, the network architecture had two input branches, which 

were converged at the end for an overall assessment. Each input branch had an image with a 

side view or a front view. The aim was to achieve a robust assessment by extending the system 

to two strands. The resulting architecture is presented in Figure 62. 

Due to the successful application of the ReLU activation function within similar problems, this 

activation function was chosen for the hidden layers. The Siamese branches were concentrated 

after their 512 channels flatten layer in a concentration layer of 1024 channels. The 

concentration layer was followed by two dense layers and a dropout layer. Afterward, a dense 

and dropout layer was repeated two times. By using a dense layer with one channel, the final 

output was calculated. Since the network was implemented to predict two classes, the output 

         

INPUT BRANCH 1 

INPUT BRANCH 2 

 

Figure 62. Developed network architecture for visual quality assessment of split-lines. 
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Figure 61. Architecture of a VGG-19 network (Simonyan and Zisserman 2014). 
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layer was realized by a sigmoid function. As optimizer, “Adam” with a binary crossentropy loss 

function was chosen. For avoiding overfitting three dropout layers were manually implemented 

(Hinton, Sutskever, and Salakhutdinov 2014) in conclusion of the dense layers. 

9.1.3. DATABASE AND PRE-PROCESSING 

The basis for training neural networks is large amounts of data. For implementing a supervised 

learning approach, neural networks require much data in the form of an input and a 

corresponding output in the form of a label. Thereby, the input data format can differ between 

single values, vectors, images, or videos. 

The database, including the images and labels, needed to be generated within the thesis. 

Therefore, two strategies for generating a database existed: (1) using photos of automobiles or 

(2) using virtual generated images based on renderings or ray tracings. Using photos of 

automobiles was complicated due to three aspects. Firstly, the data acquisition took a long time 

related to the number of images and the long production period of an automobile. Secondly, the 

pictured split-line quality was difficult to reproduce. The split-line quality was presented by the 

combination of split-line attributes gap, flush, and parallelism. For presenting different split-line 

qualities, the single opportunity was to manipulate the components of automobiles, which was 

effortful and cost intense. Thirdly, the feature extraction, on which the neural networks are based, 

was very complicated and sensitive to variables. Disturbing variables, such as example reflection 

or the environment, were difficult to control by using photos. The disturbing variables should first 

be controlled and not variated to focus the neural network on the split-line attributes. The 

approach of using virtual generated images included the advantages of manageable image 

generation duration, flexible manipulation of components, and, therefore, quality and reasonable 

control of disrupting factors. Therefore, the database was generated by using photorealistic 

visualizations. The generation of these visualizations was based on the method presented in 

chapter 6.1.1. The first two sub-processes were identical to the presented method. The data 

acquisition and conversion and the data preparation were performed by using the presented 

steps. The third sub-process of the data generation method was modified. The camera settings 

were defined due to Striegel and Zielinski (2018), which were a distance of 0.8 m and a height 

of 1.6 m. 

For generating various split-line situations, the attributes gap, flush and parallelism were 

automatically and randomly variated. Therefore, the components were translationally and 

rotationally manipulated. Figure 64 illustrates the components which effected the split-line 

attributes. 



 125 

The considered components for the manipulation were the front flap, the side panel, the side 

frame, and the front door. Therefore, three split-lines were influenced by translation and rotation 

of the four components. In doing so, the split-line attributes gap, flush, and parallelism were 

defined. The manipulation of the components was randomly and automatically created. 

Therefore, the Blender integrated node function was used for a script-based automatization 

(Blender Foundation 2019a). Each component manipulation represented a split-line situation, 

with different tolerance derivations and combinations of the split-line attributes. For every split-

line situation, a specific and unique identification number was generated. The identification 

number, the translation, and rotation manipulation information were saved in a CSV file to identify 

and reproduce the images in a later stage. For each split-line situation, two different visualization 

qualities were generated. The first quality was a full HD resolution with a photorealistic rendering. 

These visualizations were used for the labelling. The second quality type was images with a 

resolution of 224224 pixels and a rendering quality. These images were used for network 

training. The differences between both qualities are illustrated in Figure 63. 

On the left side are the full HD quality visualizations for subsequent labelling presented. For each 

split-line situation, both images were generated. On the right side, the training data quality is 

represented. The reduced resolution was implemented due to the used network architecture, 

which had a maximal resolution of input data of 224224 pixels. The training data set was 

augmented and multiplied. In order to get the necessary amount of data, a multiplication was 

implemented in the data generation. Therefore, one split-line situation was visualized 100 times. 

With the 100 resulting visualizations, the camera position and the focus point varied. The camera 

position moved within 10 images from the side view to the front view. The camera moved down 

one centimeter after 10 visualizations and then again started from the side view and ended at 

the front view. The focus point of the camera was slightly varied between the individual 

visualizations to achieve further data augmentation. Accordingly, one split-line situation was 

visualized 102 times. Two images were rendered for the data labeling, and 100 visualizations 

were rendered for the network training. In summary, 1.001 different split-line situations were 

simulated and subsequently rendered. Consequently, the labeling database included 2.002 

Front 
flap 

Side 
panel 

Front door 

Sideframe 

Full HD resolution – labelling quality 224×224 resolution – training quality 

Figure 64. Component manipulation regarding translation and rotation for defining and 
generating the deep learning database. 

Figure 63. Comparison of labelling and training visualisation quality. 
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images, and the training database included 100.100 images. The process of data generation is 

presented in the following Figure 65. 

Based on the synthetically generated dataset, a pre-processing in form of cleaning or sorting the 

dataset was not necessary. The pre-processing of the data was performed by dividing the 

dataset in three data bundles: training, test and validation. 

9.1.4. DATA LABELLING 

Subsequently to the generation of the dataset, the data labeling followed. Therefore, the 1.001 

split-line situations, which included two images per situation, had to be assessed. For fast and 

easy labeling, an application was developed. The labeling application was designed for Mac OS, 

with a 15-inch and full HD resolution display. Within the application, the rendered images were 

randomly uploaded. The images were assessed using the arrow buttons. By using the space 

key, the perspective switched to the second viewpoint per split-line situation. The image order 

between the assessments was randomly variated to prevent sequence effects in the results. 

Additionally, between two split-line situations, a short interruption by a black screen was 

implemented. This short interruption prohibited the direct comparison of two split-line situations. 

The assessment of the participant represented a cumulated label for both perspectives of a split-

line situation, which was automatically downloaded. Following Figure 66 illustrates the images 

within the application and the assessment. 

Virtual geometry of 
the automobile 

Definition of split-
line situations 

New split-line situation 

Image generation Downloading 

Random translational 
& rotational 
manipulation of the 
components, front 
flap, side panel and 
front door 
→ Resulting 
combinations of 
different split-line 
attributes 

A-Pillar of the BMW 5 
series 
→ Two perspectives: 
side and frontal 
perspective 

1. Labelling quality 
Two perspectives 
Full HD resolution 
Photorealistic 
visualisation 
 
2. Training quality 
100 perspectives 
224×224 resolution 
Rendering 
visualisation 

1. Unique Id 
2. Manipulation 
information 
(Translation & 
Rotation) 
3. Images in 
labelling quality 
4. Images in 
training quality 

Figure 65. Derived method for an automatized data generation process. 
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The whole data set was assessed by five experts in the field of split-line quality assessments. 

These experts were supposed to reflect customer opinion. Based on their expertise, a more 

consistent labeling result was assumed. An essential aspect of the labeling was that the first 

impression of the split-line quality had to be assessed. 

The deduction of the final labels was the mean value of the assessments of the five experts. For 

example, one situation was assessed in high visual quality three times, and in low visual quality 

two times, the resulting label was high visual quality. In conclusion, the data set included 281 

split-line situations of high visual split-line quality and 720 situations of low visual split-line quality. 

Since a balanced data set was necessary for successful network training, this in-balance was 

corrected with 441 new split-line situations of high visual split-line quality. In conclusion, in 1442 

different split-line situations with 100 visualizations per situation were simulated and rendered. 

The entire data set was 144.200 images large. 

9.1.5. TRAINING AND OPTIMIZATION 

The training iterations were performed on a remote system running with Ubuntu 16.04.5 LTS 

(GNU/Linux 4.4.0-116-generic x86 64). The environment included Python version 3.6, and Keras 

(Chollet 2018) was running on top of TensorFlow (Abadi et al. 2016). As support for the coding, 

Jupyter notebooks (Kluyver et al. 2016) were used. 

For all training iterations the data basis was split into three bundles: train, test and validation. The 

train dada set included 80% of the database, the test and the validation set respectively included 

10% of the database. The data splitting in the three bundles is illustrated in Figure 67. 

Additionally, a pre-processing of the train data was performed to enlarge the data basis and to 

remain a robust network. To not influence the form and quality of the split-lines, only the following 

three methods were used: zooming, flipping, shifting. Methods such as sheering were avoided. 

Two strategies performed the training of the network. One strategy included the whole database 

with the above-illustrated data slitting (version 1). A second strategy was data cleaning. 

Therefore, the labels with triple labeling by the experts were soft and could confuse the network 

prediction. The second strategy was removing the triple labeled data to remain a more significant 

data set. In doing so, the data set was reduced to 460 split-line situations in high visual quality 

and 460 split-line situations in low visual quality. In summary, the whole database included 920 

split-line situations and per situation 100 images (version 2). Thus, the database was reduced by 

36,2 % related to the initial data set. Within the training of the deduced network architecture, 

Assessment result Navigation 

Data basis 

Train 80% Test 10% Valid 10% 

Figure 66. Labelling application for the high and low visual quality levels. 

Figure 67. Data splitting ratio for training the neural network. 
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both data set versions were separately used. Finally, the following data volumes resulted for each 

database version: 

• Version 1:  Train (80%) 1154 split-line situations → 115.400 images 

Test (10%) 144 split-line situations → 14.400 images 

Valid (10%) 144 split-line situations → 14.400 images 

• Version 2:  Train (80%) 736 split-line situations → 73.600 images 

Test (10%) 96 split-line situations → 9.600 images 

Valid (10%) 96 split-line situations → 9.600 images 

Both database versions were trained by using following trainings approach illustrated in Figure 

68. 

The train dataset was used for the training loop. Within the training loop per each epoch the 

following three steps were executed (Chollet 2018): 

(1) Run the network based on the generated images to obtain the predictions in form of 

labels. 

(2) Calculate the loss function in form of the mismatch between the true and the predicted 

labels. 

(3) Update all trainable parameters by using the gradient of the loss function 

(backpropagation). 

The first step was performed to train the parameters by using the training dataset, including the 

labels. After the training, the resulting network performance was tested by using the test dataset. 

Therefore, the images were predicted to gain a label. This predicted label was compared to the 

true label in step two. For the comparison of both labels, a loss function was calculated. Based 

on the gradient of the loss function, the parameters changes were estimated and through a 

backpropagation in step three applied. This training loop was iterated per epoch. After the 

defined number of epochs, the training loop was interrupted. A learning rate of 0.00001 was 

chosen for the training. The result of the training loop was a trained network model. Within the 

evaluation loop, the performance of the trained network was computed by deriving the confusion 

matrix. 

Train 80% Test 10% Valid 10% 

Backpropagation 

10%  
images 

80% images 
+ label 

Training  
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Evaluation 
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Output Hidden 
Layer 

Input 
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Siamese network: VGG-16 

Trained 
network 
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matrix 

True 
labels 
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Figure 68. Visualised training and validation approach using the VGG-16 network with a 
Siamese network architecture for assessing the visual split-line quality. 
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9.1.6. EVALUATION 

The developed network architecture was trained by using two data set versions. Therefore, the 

results are presented for version 1 and subsequently for version 2. For verification of the trained 

network, three methods were applied: traditional variables, explainable AI, and the transferability 

of the trained network. Firstly, for each network, traditional variables were considered. These 

were training iterations and parameters, and the results, which were presented by the accuracy, 

the error function, and the confusion matrices. The accuracy and the model loss function 

illustrate the performance of a model during the training process at the end of each epoch. The 

confusion matrices of both networks were derived by new and unseen data included in the 

validation data set. Thereby, the new and unseen data quality complied with the training data 

quality. For the deduction of the confusion matrices, the trained neural network model was 

tested, regarding how well the feature extraction and classification worked with new data. The 

comparison of the predicted label and the true label was visualized in the form of a matrix. The 

structure of a confusion matrix is presented in Figure 69. 

The confusion matrix structure was 22 categories: true positive, true negative, false positive, 

and false negative. The true positive predictions were those, which were correctly predicted as 

the true label. Within the study, the true positive predictions were those, which were initially and 

predicted by the network as low visual quality. The true negative predictions were the predictions 

that were correctly predicted as negative. Within the thesis, these predictions were the initial and 

predicted images with a high visual quality label. The false-positive category defined those labels 

which truly negative but predicted by the network as positive. Within the thesis, this category 

included truly high visual quality images but by the network wrongly classified as low visual 

quality. Finally, the fourth category was false negative predictions. Within the thesis, this category 

was formed by the images, which were truly low visual quality, but predicted by the network as 

high visual quality. 

The second verification method was Explainable AI. These methods were presented in section 

2.5.9. and represented methods for visualizing decision-relevant features in images. The 

approach of explainable AI methods is presented in Figure 20. Within this thesis, the trained 

networks were verified by using five of these methods. The five methods were Deep Taylor, 

Layer-wise Relevance Propagation, SmoothGrad, Integrated Gradient, and Guided 

Backpropagation. These five methods represented selecting the most popular methods from 

attribution-, signal- and function-based explainable AI approaches. These methods were applied 
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False 
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Figure 69. Concept of the confusion matrix for evaluating the trained model. 
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For both trained networks with random images from both classes. The approach to apply these 

methods are presented in Figure 70. 

Within the first step, the necessary libraries, the network variables, and the image were imported. 

A necessary library was the innvestigated library, which includes the different explainable AI 

methods and was provided by (Alber et al. 2018). Additionally, the import included the trained 

network, the trained classes, and the image which needs to be analyzed. The second step was 

to apply the explainable AI methods to the trained network and image. The application was 

supported by the innvestigated library (Alber et al. 2018) and enabled an application by merely 

defining the method and the network. The resulting heatmaps were visualized and plotted within 

the third step, which was downloaded in the fourth step. For each trained network or each image, 

this method needed to be restarted. Based on the resulting heat maps of the five methods, the 

relevant features of a network for predicting the classes were identified. Based on these features, 

differences between the classes and the trained networks were recognized. 

The third verification method, the trained network with database 2 was tested regarding its 

transferability to photorealistic images and real photos. The database for both images and photos 

were collected. A database for the photorealistic visualizations was the already generated 

labelling data set used. The database for real photos was collected within the plant. The photos 

were taken inside and outside the plant to verify different kinds of reflections. The transferability 

of the network was evaluated by comparing the predicted label and the real label. Besides, the 

explainable AI method Deep Taylor was applied to the trained network with the photorealistic 

visualizations and the real photos. Therefore, the method described in Figure 70 was applied by 

using as import image either the photorealistic visualization or the real photo, the trained network 

with database version 2, and the Deep Taylor explainable AI method. 

1. Import  
Libraries: innvestigate, 
matplotlib, numpy, os, 
keras, scipy, pillow 
Network: utils, trained 
model, trained classes 
Image: for verification 

2. Explainable AI  
Using the library investigation for 
applying the five methods: Deep 
Taylor, Layer-wise Relevance 
Propagation, SmoothGrad, 
Integrated Gradient and Guided 
Backpropagation   

3. Plotting the 
results 
Visualising the 
heatmaps due to 
the applied 
explainable AI 
method 

4. Saving 
Automatized 
saving of the 
heatmaps 

Figure 70. Method for verification the trained neural network by using explainable AI methods. 
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9.2. RESULTS 

The results of the developed method for classifying the visual split-line quality are presented in 

this chapter. Therefore, the results are introduced by presenting traditional variables of database 

versions 1 and 2 and by presenting the heatmaps of the explainable AI methods. Additionally, 

the trained models were tested regarding their transferability to photorealistic visualizations and 

real photos. 

9.2.1. RESULTS OF DATABASE VERSION 1 

For each training iteration, the input image size was 224224 pixels, and a triple channel for RGB. 

The batch size was 64 and the training was implemented by having check-files after each training 

epoch. The number of trained epochs was 50, 70, and 80. The following Table 16 presents for 

each training iteration the confusion matrix.  

Table 16. Training results for database version 1 by variating the training epochs. 

Image size, 

channels 

Batch size Epochs 
Confusion matrix 

Ranking 

224224,  

3 

64 50 

 

3 

224224,  

3 

64 70 

 

2 

224224,  

3 

64 80 

 

1 

The confusion matrix result of the training with 50 epochs demonstrated a prediction of 51 % 

for true positives and 49 % for the prediction of true negatives. This result of the confusion matrix 

indicated a poor performance of the trained network. The confusion matrix of the network with 

70 epochs demonstrated a similar result of the confusion matrix. Related to the confusion matrix 

of 50 epochs, the true positives and the true negatives were approximately 50. In the third 
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training iteration with 80 epochs, the results demonstrated a confusion matrix for the true 

positives and the true negatives above 50 %. Thus, this training iteration was further considered. 

In doing so, the accuracy and the loss function was analyzed. Figure 71 illustrated the training 

progression of the network with 80 epochs. 

The model loss function and the model accuracy demonstrated a tendency for overfitting as of 

epoch 53. Overfitting is indicted by a derivation of the train and test curve. Within both diagrams, 

the derivation is identifiable. By implementing the check-files the training results of the previous 

epochs were saved. Therefore, the trained model from epoch 53 was available. The accuracy, 

model loss function and confusion matrix for this iteration are presented in Table 17. 

Table 17. Best trained model with database version 1. 

Image size, 

channels 

Batch size Epochs Confusion matrix. Loss function, 

accuracy 

224224,  

3 

64 53 

 

0.51,  

0.79 

 

9.2.2. RESULTS OF DATABASE VERSION 2 

The training parameters of the second data set, which was defined as version 2, were similar to 

the version 1 data set: image size was 224224 pixels, a triple channel for RGB, batch size was 

64 and check-files after each training epoch. The training epochs were 30, 40, and 80 epochs. 

Table 18 presents the training results. 
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Figure 71. Model results of the training, test loss function and accuracy per epoch for database 
version 1. 
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Table 18. Training results for database version 2 by variating the training epochs. 

Image size, 

channels 

Batch size Epochs 
Confusion matrix 

Ranking 

224224,  

3 

64 30 

 

1 

224224,  

3 

64 40 

 

3 

224224,  

3 

64 60 

 

1 

The model was trained by using 40 epochs demonstrated a confusion matrix with true positive 

predictions of 43 % and true negative predictions of 56 %. On contrary, the training results of 

epoch 30 and 60 were very similar related to the confusion matrices. Both confusion matrices 

demonstrated a true positive prediction between 81 % and 86 % and a true negative prediction 

between 79 % and 82 %. Therefore, both trained models were further investigated. The detailed 

investigation of both training iterations included the training diagrams based on the model loss 

and accuracy. Both diagrams for both training iterations were presented in Figure 72. 
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Figure 72 a) visualize the model loss, and the model accuracy of 60 epochs is presented. The 

model loss of 60 epochs was 1.32, and the accuracy was 0.82. The results present a high 

accuracy but with an additionally high loss function. Within successfully trained models, the loss 

function is low. Furthermore, the diagram shows a discrepancy between the train and test curves. 

Therefore, the overfitting of the model is recognizable. In summary, the trained model of 60 

epochs demonstrated a good performance of the confusion matrix, but the loss function was 

high, and overfitting of the model was identified. Figure 72 b) shows the training results in model 

loss function and model accuracy with 30 epochs. The resulting value of loss function was 0.41 

and is therefore low. Also, the accuracy was similar high as the accuracy of 60 epochs and 

reached a value of 0.82. The training and testing curves were close to each other in the diagram, 

which represents a well-fitted model. In summary, the model with 30 training epochs indicated 

a well-trained network, based on the results. Accuracy, loss function, diagram, and confusion 

matrix confirmed a well-trained model. Therefore, the model with the 30 training epochs was 

further considered. 

After the results of the data sets of versions 1 and 2 were presented, a comparison of the best 

trained models for each version follows in Table 19.  

 

 

 

Figure 72. Model results of training, test loss function and accuracy per epoch for database 
version 2. 

a) 60 training epochs 

b) 30 training epochs 
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Table 19. Comparison of best trained models of data set version 1 and 2. 

Data set version 1, 53 epochs Data set version 2, 30 epochs 

Accuracy Loss 

function 

Confusion matrix Accuracy Loss 

function 

Confusion matrix 

0.79 0.51 

 

0.82 0.41 

 

The network with data set version 1 trained most successfully with 53 epochs. Thereby, the 

model accuracy was 0.79, and the model loss was 0.51. In contrast, the training results of the 

data set version 2 demonstrated a model accuracy of 0.82 and a model loss function of 0.41. 

Both model accuracy and loss confirmed a better training result for the data set of version 2. The 

model accuracy increased by 3 % points between version 1 to 2. Additionally, the loss function 

result decreased by 0.1 from the data set version 1 to 2. Moreover, the confusion matrices of 

both versions demonstrated a better-trained model of the data set version 2. The true positive 

values were 0.81 by training with the data set version 1 and 0.86 by training with data set version 

2. Consequently, within the model of data set version 2, the prediction of the true positives was 

improved by 5 %. The true negatives were predicted with the trained model of the data set 

version 1 by 0.78. The model trained with the data set of version 2 predicted the true negative 

by 0.79, which signified an increase of 1%. In addition to the accuracy and model loss results, 

the confusion matrix demonstrated a better prediction of new data for the data set of version 2. 

In conclusion, the data set version 2 performed better training and resulted in a well-fitted model. 

In this regard, it should be noted that the data set of version 2 had 36.2 % less data than version 

1. Nevertheless, the training result was better than that of version 1 in all four factors considered.  

9.2.3. EXPLAINABLE AI METHODS 

Within this section, the explainable AI methods were applied to verify both trained models. 

Therefore, images of the high visual quality and low visual quality class were analyzed by using 

different explainable AI methods. The applied explainable AI methods were Deep Taylor, Layer-

wise Relevance Propagation, SmoothGrad, Integrated Gradient, and Guided Backpropagation. 

Due to the Siamese network architecture, two images each for one branch were tested by the 

five methods. The two images differ in the camera settings related to the camera distance, 

height, and focus point. The several explainable AI results are firstly presented regarding the data 

basis and the class. Secondly, the results of both trained models are compared and discussed. 

Figure 73 illustrates the applied explainable AI methods for the data basis version 1 and the class 

of high visual quality. 
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The applied explainable AI methods demonstrate for the trained network of data set version 1, 

for the most part, the same highlighting of the relevant areas. Input image one, displayed on top, 

shows a similar highlighting of the split-lines at the side frame and side panel in the methods 

Deep Taylor, LRP, and Guided Backpropagation. Smoothgrad and Integrated Gradient methods 

highlighted the split-line of the front flap and the side panel. Compared to the first image, the 

second input image reveals a different heatmap of the area per applied method. This input 

highlights the same split-line between the side panel and front flap as a relevant area. In 

summary, the resulting heatmaps of the input branch one and input branch two differed. The 

methods highlighted per branch similar areas. The relevant areas were the split-line between the 

front flap and side panel and the split-line between the side frame to the side panel. 

The second class of low visual quality for the trained network with the data split of version 1 is 

presented in Figure 74. 

Input branch of image one demonstrates similar heat maps for all five methods. The highlighted 

areas are the split-lines between the front flap and side panel, between the side frame and side 

panel, and between the side panel and front door. The resulting heatmaps of the second input 

branch of the low visual quality class demonstrate similar heatmaps of Deep Taylor, LRP, and 

guided backpropagation. The highlighted area within these heatmaps is limited on the split-line 

between the side panel and side frame. The heatmaps of the methods smoothgrad and 

integrated gradient illustrate highlights at the split-lines between the side panel and side frame 
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Figure 73. Visualized heatmaps of the Explainable AI methods for the high visual quality class of 
trained network with data set version 1. 

Figure 74. Visualized heatmaps of the Explainable AI methods for the low visual quality class of 
trained network with data set version 1. 
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and additionally, between the front door and side panel and between front flap and side panel. 

Compared to the explainable AI heatmaps of the high visual quality class, more areas were 

highlighted with a higher intensity. The visualizations of the different explainable AI methods 

indicate that the learned feature of the neural network between the high visual quality class and 

the low visual quality class was the area's intensity. This feature is also consistent with a classical 

split-line assessment. A strongly varying split-line pattern, characterized by high levels of the 

attributes gap flush and parallelism, reflects the low visual quality. 

Subsequently, the trained network with the data basis version 2 was investigated by the five 

explainable AL methods. Therefore, a representative image of both high and low visual quality 

categories was tested in combination with the trained model. The resulting heatmaps of the 

explainable AI methods for the data basis version 2 and the first class, the high visual quality, are 

presented in Figure 75. 

The resulting heatmaps of the first input branch demonstrate a similar impression for all applied 

explainable AI methods. The highlighted areas were the split-lines at the side frame and between 

the side panel and the front door. The windscreen wiper is slightly highlighted within the 

heatmaps of the methods Deep Taylor, LRP, and guided backpropagation. Thus, the relevance 

for the network contrasts with the actual learning objective of the split-line assessment. Since 

this area is not exclusively marked, the relevance is to be seen in combination with the other 

highlighted areas. The heatmaps of the second input branch display similar prediction-relevant 

areas: These areas were the split-lines between the side frame and the side panel and between 

the front door and the side panel. Additionally, in the heatmaps of the methods smoothgrad and 

integrated gradient, the split-line between the front flap and the side panel was highlighted in 

combination with the previous ones. The windscreen wiper was not highlighted in the heat maps 

of the five applied methods in this input branch. Therefore, the second input branch did not 

extract the windscreen wiper as a relevant feature. In summary, the heatmaps of the input 

branches one and two were slightly different. In the first input branch, the side frame split-lines 

and the split-line between the front door and the side panel were relevant. Whereas, the 

heatmaps of the second input branch illustrated the split-lines of the side panel as relevant 

features for the high visual quality class. 

In a fourth step, the trained model of data basis version 2 and the second class of low visual 

quality were examined using the five explainable AI methods. The resulting heatmaps are 

illustrated in Figure 76. 
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Figure 75. Visualized heatmaps of the Explainable AI methods for the high visual quality class of 
trained network with data set version 2. 

D
a
ta

 b
a
s
is

 v
e

rs
io

n
 2

,  
H

ig
h

 v
is

u
a
l q

u
a
lit

y
 c

la
s
s  



 138 

The heatmaps of the five explainable AI methods illustrate similar visualizations of the first input 

branch. The five methods highlight the windscreen wiper, the side frame split-lines, and slightly 

the split-line between the side panel and side frame. The area of the windscreen wiper stands 

out. Compared to the previous heatmaps of the high visual quality class, the wiper is even more 

highlighted. Therefore, the relevance of the windscreen wiper for the classification of the low 

visual quality category is even stronger than for the high visual quality category. In addition to the 

strong marking of the windshield wiper, split-lines at the side frame and side panel are also 

relevant. The comparison with the previous high visual quality class also reveals a similar 

highlighting of the areas, but with a stronger intensity. The applied explainable AI methods to the 

second input branch show very similar heat maps between each other. Highlighted as highly 

relevant is the split-line between the side frame and the side panel. In addition to this strongly 

marked area, the split-line from the front door to the side panel is also marked. A comparison of 

these heatmaps to the heatmaps of the high visual quality class presents that similar areas were 

marked. The difference between the classes is also the intensity of the highlighting. The high 

visual quality class illustrates slighter highlights of the areas than the low visual quality class. 

Therefore, this trained network implies that the extracted and learned features are different 

variations and combinations of the split-line attributes gap, flush, and parallelism. Thus, the 

developed heatmaps suggest that the right features have been recognized and trained by the 

network. 

The explainable AI methods which were applied to both trained models, with data basis version 

1 and data basis version 2, demonstrated the relevance of the split-lines for the classification 

related to the two categories high and low visual quality.  

The visualized heatmaps presented that the intensity of the variation of the three split-lines was 

necessary for the classification. In both networks, the split-lines were marked more intense and 

more comprehensive in the class of low visual quality. In heatmaps of the trained network with 

the data basis version 2, the windscreen wiper was also marked and, therefore, classification 

relevance. This feature extraction was not expected or wanted and should, therefore, be 

eliminated. A strategy is a variation of the windscreen wiper position to simulate the 

unimportance. Also, the heat maps developed are a point image of individual images. By further 

investigation of input images using the explainable AI methods, the verification can be reviewed 

again.  
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Figure 76. Visualized heatmaps of the Explainable AI methods for the low visual quality class of 
trained network with data set version 2. 
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9.2.4. TRANSFERABILITY TO PHOTOREALISTIC RENDERINGS 

Both trained models of data set versions 1 and 2 were tested towards their transferability to 

photorealistic renderings of different split-line situations. Two images represented each split-line 

situation. The renderings were created by using the Software Blender and were inspired by the 

labelling image quality. Compared to the visualizations for the labelling, the pixels were reduced 

to 224224 pixels based on the network input format. Both trained models were tested by using 

four split-line situations in photorealistic visualizations. The true class of these four images were 

based on expert labelling. The visualizations and their true class are presented in Figure 77. 

These four split-line situations were given as input sizes to both trained models. The 

classification predictions of both models were presented in Table 20. 

Table 20. Prediction results of trained models with data set version 1 and 2. 

Network model Situation 1: low 

visual quality 

Situation 2: high 

visual quality 

Situation 3: high 

visual quality 

Situation 4: low 

visual quality 

Data basis 

version 1, 53 

epochs 

Low visual 

quality  

Low visual 

quality  

High visual 

quality 

High visual 

quality 

Data basis 

version 2, 30 

epochs 

Low visual 

quality 

Low visual 

quality 

High visual 

quality 

High visual 

quality 

Both trained networks predicted a similar class for each split-line situation in photorealistic 

quality. Situation 1 was predicted as low visual quality, which corresponds with the true label. 

The second situation was predicted as low visual quality by both trained networks. This 

prediction contrasts with the true label, which was high visual quality. Both trained networks 

correctly predicted the third split-line situation. The true and the predicted label was high visual 

quality. Finally, the fourth split-line situation was wrongly predicted by the networks. The true 

label was low visual quality, and both networks predicted the class as high visual quality.  

In conclusion, the prediction of the trained networks demonstrated 50 % correct predictions. 

However, this percentage reflects only a sample. The four situations tested indicate 

transferability, but the study should be expanded to increase research potential. Additionally, the 

photorealistic data represented a new data format, which was unseen and unknown by the 

trained model. A transferability to the new image quality is difficult for the network because now 

disturbing factors like reflection or background are added. For a deeper understanding of both 

model predictions, the Deep Taylor explainable AI method is applied each of the four split-line 

situations (cf. Figure 78). 

Situation 1: LVQ Situation 2: HVQ Situation 3: HVQ Situation 4: LVQ 

Figure 77. Visualisation of the photorealistic image rendering quality for testing the model 
transferability. 
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The explainable AI heatmaps of the trained model with data set version 1 demonstrated similar 

results. For each split-line situation, the right image was more informative. The low visual quality 

class predictions identified the split-line between side frame and side panel and the area above 

the front flap as necessary. Similar areas were highlighted within the low visual quality class within 

the heatmaps, but with less intensity. The left image per split-line situation illustrated similar 

highlighted areas with low intensity. Therefore, the split-lines between the side panel and front 

flap and side panel and front door were important. The resulting heatmaps by using the Deep 

Taylor method for the network trained with data basis 2 illustrated different important areas 

compared to the heatmaps of the network trained with data basis 1. The left images of all split-

line situations highlighted the split-lines between the front flap and the side panel and the side 

panel and the front door with high intensity. The windscreen wiper was also identified as an 

essential area, similar to the heatmaps of the tested renderings. Additionally, the split-line 

between the side panel and the side frame was highlighted. The right images demonstrated a 

low intensity of the split-line between the front flap and the side panel. A second intensely 

highlighted area was the split-line between the door and the side mirror. Based on the different 

highlighted areas of both networks, a conclusion is that the networks extracted different features 

for the split-line quality classification. Nevertheless, the differences within the heatmaps between 

the two classes high and low visual quality were slight for both trained networks. The derived 

heatmaps of the renderings showed a difference in the intensity but show a very similar pattern. 

9.2.5. TRANSFERABILITY TO REAL IMAGES 

Based on the better training results of the network with data basis version 2, this network was 

investigated regarding the prediction performance of real automobile images. For consideration, 

two data sets were used. The first data set include the automobile model, which was in the 

training data set. The second data set included other automobile models. The camera positing 

was readjusted in the same way the rendering camera position was placed. In doing so, the 

images of actual cars and their split-lines in two situations are presented in Figure 79 resulted. 

Situation 1: LVQ Situation 2: HVQ Situation 3: HVQ Situation 4: LVQ 

Prediction 1: LVQ Prediction 2: LVQ Prediction 3: HVQ Prediction 4: HVQ 

Prediction 1: LVQ Prediction 2: LVQ Prediction 3: HVQ Prediction 4: HVQ 

Figure 78. Resulting heatmaps of the Explainable AI method Deep Taylor for evaluating the 
transferability of the photorealistic renderings. 
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All displayed images correspond to a high visual quality class. The images demonstrate the 

different illustration quality of the automotive images. Compared to the renderings and the 

photorealistic images, an increase of reflections and high variance of product-based parameters 

is identifiable. Besides, the geometry of the two new automobile models is another unknown 

factor for the trained model. In summary, these illustrations represent a high complexity and new 

variables for the trained model. In this evaluation, the focus was more on principle transferability. 

The trained model identifies split-lines as a relevant feature in these input images with the new 

display quality. Nevertheless, the prediction results of the trained network with data basis version 

2 were for the images of situation 1 for all three automobiles high visual quality. Therefore, the 

trained model predicted the situation 1 images independent of the automobile model correctly. 

The situation 2 images of the three automobile models were predicted as low visual quality, 

which represents a wrong prediction. For a better understanding, the explainable AI method 

Deep Taylor was applied for the real images. The resulting heatmaps are presented in Figure 80. 

The resulting heatmaps are illustrated per automobile and image type, situation 1 and 2, different 

heatmaps. The 5 series' heatmaps, which was analogical to the training data set, illustrated 

similar visualizations for both image situations. Based on the left images of situation 1, the focus 

of the network was the chromium-plated border at the front door and the side mirror. Slightly 

highlighted areas were available at the split-line between the front door and the side panel. The 

right heatmap of the 5 series model had slightly marked the split-line between the side panel 

and the front door. Between the situation 1 and 2 heatmaps, a small difference in the highlighting 

intensity is noticeable. The heatmaps of the 7 series highlighted different areas and features 

between the inside and the outside images. Within the situation 1 images, the reflections were 

intensely marked in both heatmaps. Within the situation 2 images, slight highlights were marked: 

the split-line between the front door and the side panel on the left image. On the right image, the 

Figure 79. Images of different automobile models for testing the transferability capabilities of 
the trained model regarding real images. 

Figure 80. Resulting heatmaps of the Explainable AI method Deep Taylor of the trained 
model by testing the transferability regarding real images. 
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chromium-plated border was slightly highlighted. Despite the strong reflections, the situation 1 

image was correctly classified by the trained model. Nevertheless, it is not entirely conclusive 

whether the correct characteristics were used for the classification. The heatmaps of the BMW 

8 series illustrated differences between the situation 1 and 2 images. Within the situation 1 

images, the left heatmap marked the split-line between the front door and the side panel as a 

relevant area. On the right image, the split-lines were as well marked as important. Within the 

situation 2 image, the reflections and the split-lines were intensely highlighted. Similar to the 

inside image of the 7er series, the reflections were selected as a relevant feature. 

The results of the real images classification of the trained model are as expected. Correct 

classification was only partly possible. By applying the explainable AI method Deep Taylor, the 

relevant features could be identified. The split-lines were always of importance. The recognition 

and the focus on the split-lines shows a first transfer possibility of the network to real data. 

Additionally, the applied explainable AI method shows that the reflections influence the 

classification of the trained model. 
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9.3. SUMMARY AND CONTRIBUTION OF RESEARCH QUESTION 4 

The fourth research question focused on an objective assessment method for the level of 

perceived quality. Therefore, an objective assessment method was deduced to implement 

convolutional neural networks for visual assessments of perceived quality (the first question of 

the fourth research question). Based on the high subjective character of assessing perceived 

quality, the developed convolutional neural network dealt with a more sophisticated classification 

task (the second question of the fourth research question). The developed method was a 

convolutional neural network with a supervised classification task, having two classes: high and 

low visual quality. As network architecture, a VGG-16 model with a Siamese approach was 

chosen. The database and labeling of both classes were synthetically generated within the 

method by using product ray tracings and a self-developed labeling tool. The convolutional 

neural network training was performed iteratively, and the best performance of the network was 

realized by having 30 epochs and a learning rate of 0.00001. With these parameters, the network 

realized accuracy of 0.82, and it was able to predict correctly 79 % of the high visual quality class 

and 86 % of the low visual quality class (the third question of the fourth research question). 

Additionally, evaluations using explainable AI methods were used to comprehensively visualize 

the extracted features by the convolutional neural network (the third question of the fourth 

research question). The heatmaps were derived by five different explainable AI methods: Deep 

Taylor, Layer-wise Relevance Propagation, SmoothGrad, Integrated Gradient, and Guided 

Backpropagation. The derived heatmaps illustrated the split-lines as a decision important feature 

for both trained networks. In a further investigation, the trained network was tested regarding the 

prediction results of images with a different visualization quality, which was in photorealistic 

visualizations and real photos. Their results imply that a trained network transfer regarding this 

image quality was hardly possible (the fourth question of the fourth research question). 

A related approach was developed by Pan et al. (2017). They presented a sophisticated 

approach using a generative adversarial network for an exclusive assessment of automobile 

designs regarding the character. This method used synthetic data, which was created by the 

neural network. The network then evaluates the generated data. This procedure is not feasible 

with this split-line evaluation. According to perception basics, a synthetic generation of the split-

line data without additional labeling can result in a falsified database. Also, there is a risk that the 

data generated by the network will not correspond to the split-line variations that occur during 

production. Therefore, the presented method does not apply to data generation, labeling, used 

network architecture, and classification scope. 

As convolutional neural networks can perform the human-related task of recognizing images and 

assign them to a category, this similarity between a convolutional neural network for classification 

and human perception was used in the thesis. Scientific findings indicated that the layers of the 

neural network perform different functions. Whereas the first hidden layers recognized points or 

lines, the deeper layers recognized connections and abstract general concepts. For example, the 

Velocipedia (Gimini 2016a, 2016b; Gregory 2005)  was cited to explain the data proceeding of 

convolutional neural networks (Chollet 2018) compared to human perception. Similarities 

between human perception and the classification of a convolutional neural network were 

identified because humans and neural networks recognize the global concept in images (Chollet 

2018). Individual elements were filtered in perception, making it, for example, difficult for many 

people to sketch a bicycle from memory. The process of identifying objects or images is called 

recognition (cf. chapter 2.4.1). By applying a convolutional neural network, following process 

improvements in the visual assessment of split-lines regarding perceived quality were derived 

(the second question of the fourth research question): 
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(1) handling attribute complexity, 

(2) global quality assessment, 

(3) visual quality assessment without product decomposition, 

(4) constant and reproducible assessment result and 

(5) objective assessment through accumulated subjective assessments. 

Since convolutional neural networks can handle image data representing any split-line attribute 

combinations, including the global automobile context and relations to other split-line attributes, 

the method is suitable for capturing and handling greater quality complexity. The visual 

assessment was also based on images, which were represented on a global level without further 

processing effort. Therefore, the assessment using a convolutional neural network is authentic 

and direct. Additionally, using a labeling method unfiltered, and direct customer assessment can 

be included in the assessment method. Further, a product decomposition, like other methods is 

using, is irrelevant, which leads to a process simplification. Furthermore, a successfully trained 

algorithm reflects a continuous and reproducible assessment process. Assessments are no 

longer subject to any individual emotions, experience, or situations and were hence a stable basis 

for a split-line perceived quality assessment. The fifth improvement potential was an objective 

assessment process. A more objective process is established through a multi-stage quality 

assessment and the derivation of a label concerning the average assessment result. 

An often-discussed disadvantage of neural networks as a quality assessment tool is the 

prediction model, which is a black box. Within the model, the weights and parameters were 

defined. Nevertheless, the definition of parameters and weights of a network layer cannot be 

viewed or influenced due to the automated process. An approach to decode this black box is 

explainable AI methods. These methods displayed network-relevant pixels through a heat map. 

This visualization offered the possibility to check whether an algorithm had extracted the decisive 

features for each class. These methods were used as an evaluation method of the trained 

models within the thesis. The limitations of the thesis regarding the application of a neural 

network are: 

(1) transferability to photorealistic and real images, 

(2) transferability to further automobiles, 

(3) transferability to further quality attributes, 

(4) the number of training classes, 

(5) the network architecture. 

As presented in chapters 9.2.4 and 9.2.5, a transfer and a prediction of the visual split-line quality 

with photorealistic and real images was partially possible with the trained model. The databases 

consisted of CAD-quality images that exclude factors like reflection, color, and background 

information about the automobile. In comparison, the photorealistic and real images display 

these factors. Using a trained model based on CAD-quality images, a prediction of photorealistic 

and real images is difficult. The factors affect the images on a high level, which prevents a robust 

classification. For a robust application of a trained model for photorealistic or real images, the 

database needs to include these kinds of images. Another limitation of the trained model is the 

transferability regarding other automobile types. The trained area was the a-pillar of a BMW 5 

series sedan. The design of the a-pillar is different in different automobiles. This great variety of 

the design of a-pillars needs to be included in the database for realizing a robust classification 

model. Also, the transfer of the trained model for further attributes, such as, i.e., the design of 

front lights, is not possible. For realizing such a model, the database needs to be filled up with 

examples: In all three transfer tasks, the database must be established according to the 

classification task. The realized model has a narrow stage, which is, by definition, an expert model 



 145 

in one domain but cannot translate to further tasks (Davenport et al. 2019). Based on the narrow 

level of the neural network, a transfer is limited possible. The number of trained classes is flexible 

and can be increased by splitting the database or completing the database with additional 

classes. Therefore, the derived approach of using a neural network for quality assessments can 

be used. A fifth limitation is the network architecture. By using two input branches, the flexibility 

regarding the input perspectives is reduced. Optimization of the network would be the reduction 

to one input branch. In doing so, the input perspectives would be reduced and separately 

considered. By having one input branch of the neural network, the training of different split-lines 

is more flexible. 

State-of-the-art methods in research considering and assessing the perceived quality of 

products were often using a product decomposition. Complex products were segmented into 

individual attributes, and the considerable scope was contracted until an attribute was 

assessable with standard quantification methods, e.g., ranking methods. By summarizing the 

results of individual attributes, a result of the entire perceived quality value was generated. 

Comparing these methods to the definition of perceived quality, a disregard attracts: the product 

context, relations were neglected. Also, influencing parameters were partly included but current 

methods, but they lacked in a consistent approach. The state-of-the-art assessment process is 

presented in Figure 28. 

An approach that attends to use an implementation of this traditional assessment is presented 

by Stylidis, Wickman, and Söderberg (2018). The deduced framework was based on a definition 

of perceived quality (Stylidis, Wickman, and Söderberg 2015b) and an attribute structuring using 

the definition (Stylidis et al. 2015). This approach presented a holistic method to investigate any 

product. Accordingly, these methods aimed to model and correctly represent the rules and 

relationships of single product attributes concerning perceived quality. Due to the high product 

complexity and the sophisticated perception process, the modeling is difficult, and the risk of 

incorrectly modeled attribute relationships arises. 

The idea of machine learning methods, equally neural networks, is to extract rules and 

relationships using data. With the background of the subjective assessment character of 

perceived quality and the unknown rules and relationships between the perception of attributes, 

machine learning methods have potential. The idea of using a neural network-based assessment 

process is presented in Figure 21. 

An approach that attends to use an implementation of this traditional assessment is presented 

by Stylidis, Wickman, and Söderberg (2018). The deduced framework was based on a definition 

of perceived quality (Stylidis, Wickman, and Söderberg 2015b) and an attribute structuring using 

the definition (Stylidis et al. 2015). This approach presented a holistic method to investigate any 

product. Accordingly, these methods aimed to model and correctly represent the rules and 

relationships of single product attributes in relation to perceived quality. Due to the high product 

complexity and the sophisticated perception process, the modeling is difficult, and a risk of 

incorrectly modeled attribute relationships arises. 

The idea of machine learning methods, equally neural networks, is to extract rules and 

relationships by using data. With the background of the subjective assessment character of 

perceived quality and the unknown rules and relationships between the perception of attributes, 

the application of machine learning methods has potential. The idea of using a neural network-

based assessment process is presented in Figure 81. 
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Accordingly, the presented process rules and relationships were extracted by the neural network 

in an algorithm. In a second step, the new data can be classified by using the algorithm. The 

critical success factor for implementing a neural network is to classify categories by using trained 

features correctly. Features represent characteristics that are significant for a category. For 

example, for a neural network classifying cats and dogs, a cat's whiskers are a distinguishing 

feature between both categories and a significant characteristic for the category cat. 

Consequently, a neural network trained to classify perceived quality categories of split-lines 

deduces from the available input data significant characteristics for each category, which 

significantly distinguishes from other categories. Thus, the data has to represent any class, and 

characteristic features have to be maintained. The feature extraction is an uncertainty in the 

training of neural networks. Indeed, the extracted features per category are not observable. A 

feature investigation of convolutional neural networks is possible in the form of a test data set or 

in the form of explainable AI methods. 

Figure 81. Traditional perceived quality assessment process versus machine learning based 
perceived quality assessment. 
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10. DISCUSSION  

Due to industrial and scientific interest, the research discipline of perceived quality gained in 

importance. Various methods and approaches to assess the level of perceived quality of a 

product were developed. The thesis developed a new method for assessing the perceived 

quality level of a product by addressing four research hypotheses, which were: 

I. To improve perceived quality, the process of assessing split-lines needs to be 

investigated and expanded to an assessment of visual requirements. 

II. Identification and definition of parameters that affects the visual assessment of split-line 

attributes. 

III. The global product context and relations between split-lines and their attributes are 

important for the perception of split-lines regarding their visual quality. 

IV. The application of machine learning approaches offers an improved assessment method 

of the global product and relations between attributes equally pursuing the definition of 

perceived quality. 

The discussion focuses on five aspects: the advantage of the underlying approach, the inclusion 

of psychological aspects, the complementary aspect of the individual research results, the level 

of automatization, standardization and reusability of the method, and the limitation of the method. 

The first aspect discusses the advantage of the research approach. A literature review deduced 

the research gap of a method for assessing the perceived quality of products by respecting its 

definition. Based on the derived research gap, the general need was divided into four research 

questions. In doing so, the first advantage is the flexibility of the method and the results. The 

approach is usable as a holistic method, or the individual results can be implemented separately 

in various applications. For example, a possible application lies within the early stage of the 

product development process. Using the holistic approach, product features, which have a 

perception-based assessment character, can be designed and limited by including relevant 

psychological basics and an objective assessment method. Nevertheless, another application is 

the consideration of individual research results. For example, the derived human- and product-

related parameters can be applied in different assessments of perceived quality attributes. Their 

validity is independent of the application of a split-line assessment. The second advantage is the 

consistency of the approach. Within all four research questions, the investigation object was 

similar. Additionally, the results of previous questions were included in subsequent proceedings. 

As mentioned above, the general approach is independent of the split-line consideration and can 

be applied to further visual quality attributes or further investigation objects. For example, the 

fitness of different automobile materials or the split-line assessment of a phone could also be 

the initial problem for applying the developed method. Therefore, the third advantage is the 

independence of the developed method regarding the investigation object or the visual 

assessment topic. 

The second aspect, which is discussed, is the inclusion of psychological aspects. A disregard of 

perception in product assessments was discussed by Carbon (2019) within the Psychology of 

Design. Eleven conceptual moves were deduced, which support the design of products with a 

high level of satisfaction. The derived method of the thesis is discussed regarding a supporting 

character to some of the conceptual moves. Using a neural network for assessing visual quality, 

the derived method accompanies the sixth and eleventh conceptual move. The sixth conceptual 

move demonstrated the importance of including the psychological context within product design 

(Carbon 2019). The trained neural network was based on images showing the split-line in the 

context of the a-pillar and different design features, for example, the side mirror. Also, the global 
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product context regarding a visual assessment of split-lines was investigated within the third 

research question. The results of this consideration were included in the neural network-based 

assessment method. The eleventh conceptual move was evolved based on the Gestalt theory 

(Carbon 2019). Therefore, this conceptual move deduced the necessity of considering the 

Gestalt theory within the product design. By using convolutional neural networks, the entirety of 

a product can be captured and assessed. Therefore, Gestalt principles can be regarded within 

the use of neural networks for visual quality assessment. Conceptual moves which were critical 

realized within the thesis were primarily conceptual move two and ten. The second conceptual 

move considered the understanding of how design affects prediction (Carbon 2019). By using 

neural networks, these relations and rules were modeled by the algorithm but remain unknown. 

Therefore, the application of neural networks does not support a consideration of the process 

between designs and the predictions they trigger, and this conceptual move is not promoted by 

using the thesis approach. The tenth conceptual move demonstrated the importance of a 

multisensory view on product design (Carbon 2019). Using convolutional neural networks 

causes an isolated consideration regarding visual quality features. Additionally, current applied 

neural networks were defined as narrow AI (Kaplan and Haenlein 2019). Within a narrow AI level, 

trained features and relation cannot be transferred by the neural network to other similar 

problems. For example, visual and optical requirements regarding product design are not easily 

grasped using standard machine learning methods. A cross-disciplinary application for 

measuring product design in a multidimensional view requires additional research effort. A 

conceptual move that was not realized by the current neural network of the thesis but is possible 

to model using machine learning is the third move. Within this move, the consideration of 

Zeitgeist within product design is mentioned. A possible task using machine learning could be 

predicting future design by representing the Zeitgeist of former design within the training data 

for the machine learning algorithm. The developed method using a neural network for a visual 

assessment of split-lines regarding perceived quality considers the sixth and eleventh 

conceptual moves but demonstrated limitations regarding the second and tenth move. 

The third discussion aspect addresses the complementary function of individual research results 

or the entire method. The developed machine learning-based assessment method can support 

various existing approaches based on the mainly decompositional methods for assessing 

perceived quality in research and industry. For example, the PQF method of Stylidis et al. (2015); 

Stylidis, Wickman, and Söderberg (2015a, 2018); Stylidis et al. (2015) demonstrates a holistic 

approach for assessing the entire perceived quality level of a product. The applied method has 

a decompositional character and could be validated using the developed machine learning-

based method in this thesis. This application would have an additional advantage. In applying 

two different approaches, the resulting perceived quality results of a similar product can be 

compared. Based on this comparison, the direct impact of unknown rules and relations within 

the product is identifiable. The derived method does not need to replace the traditional definition 

of split-lines and can have a supportive function. A combination of the machine learning-based 

method within the traditional definition and assessment process of split-lines is related to derived 

process improvement of the first research question. A result of this process improvement was 

the need of an assessment method for the Refinement level besides the solid toolbox for 

assessing the Producible Quality level. A reinforcement of the Refinement level using the 

machine learning assessment method demonstrates such a combination of different 

assessment methods. Therefore, the derived approach and the generated results can either be 

radically applied or gently integrated within existing processes. 

The fourth discussion aspect focuses on the automatization, standardization, and reusability level 

of the derived approach and the results. The possibility to reduce manual operations in the 



 149 

method is considered as an automatization level. The standardization aspect considers the new 

method for assessing perceived quality. The reusability of the method discusses how different 

results can be transferred to other problems. Automatization of the method is hardly possible. 

The conducted surveys need manual design and conduction. The analysis of the collected data 

and the calculation of various descriptive key values can be partly automated. Similarly, the 

automatization of the machine learning approach is problematic; thus, the identification of a 

suitable machine learning approach, a suitable model, or the training and optimization needs 

human intelligence. The new method for assessing the split-line quality using a neural network 

has the advantage of a standardized process and assessment result. Expert’s assessment 

supported the traditional process of assessing split-line quality. These assessments fluctuated 

between one expert based on the current situation and between several experts based on 

different expertise levels. The developed method, which supported the split-line assessment 

process by a neural network, enables repeatability of assessment results, and the assessment 

results do not longer differ between several experts. Therefore, a standardized assessment 

process with a consistent and repeatable assessment approach is realized by the developed 

method. The level of reusability of the results depends on the question. The used approach of 

the first research question is reusable for further process improvements, whereas the results are 

split-line specific, and the process is partly dependent on the company. The same applies to 

identified parameters, the global product context, the relations between split-lines, and the 

developed machine learning-based assessment method. For example, the human-related and 

product-related parameters are reusable within further automobile assessments. A transferability 

of the parameters to further products is partly possible if the product is comparable. 

Nevertheless, the developed methods are generally reusable for further investigations. 

The last discussion aspect is the limitation of the research results. The developed machine 

learning algorithm is related to the narrow AI level. Machine learning algorithms are defined as 

narrow AI if they are an expert system for one specific task (Kaplan and Haenlein 2019). Narrow 

AI systems are not able to transfer knowledge or lessons learned to a new task. Every machine 

application, which is deduced in the last years, is a narrow AI system. Therefore, applying the 

trained model of the thesis is an expert for assessing the split-line quality at the specific area of 

the a-pillar. A direct transfer of this knowledge to another automobile area or another product is 

not possible. Additionally, the more sophisticated task to transfer the knowledge of a high-quality 

split-line level into spoken words is not possible. Indeed, there are machine learning algorithms 

that understand spoken words, and there are algorithms to classify quality, but both systems 

cannot communicate with each other without human intelligence. A realization of such a system 

with a human-related intelligence level is called general AI (Kaplan and Haenlein 2019). 
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11. CONCLUSION 

The thesis focused on the development of new approaches for assessing the visual split-line 

regarding perceived quality. By focusing on one quality attribute, the perceived quality 

assessment process was comprehensively analyzed, and potentials in the form of 

standardization and objectivation were deduced. Due to the standardization and implementation 

of a neural network-based assessment of split-lines, a possibility for a more objective 

assessment of split-lines was introduced. Based on these findings, four further research 

potentials were derived regarding the application of neural networks or different machine learning 

approaches: 

(1) Training with virtual images and predicting real images, 

(2) Transferability of quality 

(3) Further product attributes 

(4) Further network architectures 

The first research potential exists in the field of transfer learning. An application in the design 

process is the definition and training of split-line quality in the concept phase and applying the 

trained algorithm in production. The advantage is the consistent use of machine learning in 

defining objectives and the verification of the objectives. A problem is the data format. In the 

concept phase, the data exists in a virtual format. Nevertheless, in production, the data would be 

real images of the automobile. Transfer learning methods would be a possible solution to enable 

the neural network to predict real images. The primary training has to be done with the virtual 

training data in the concept phase. Additionally, when having the hardware prototypes, these 

data could be added to the training data set. 

A second research potential lies in the optimization of the training effort. The training of a neural 

network required many resources. For industrialization, the process has to be optimized. 

Therefore, transfer learning is as well a solution. The acquired knowledge of a neural network 

has to be extended by adding new split-line categories. To this end, already trained primary layers 

of the network can be reused in transfer learning. The effort of training new quality categories of 

split-line attributes is reduced. The parameters, such as data quantity, had to be identified to 

implement the transfer learning. Additionally, a fitting network architecture had to be deduced. 

The third research potential is a consideration of using a neural network to assess further product 

attributes. The feature extraction needs to be investigated. Similar to the split-lines, the attribute 

must differ within the categories so that the network can extract the category-relevant features. 

Furthermore, it has to be investigated which attributes can be classified with a neural network. 

For example, acoustic quality features, such as squeak and rattle, can be assessed by a 

classification of the frequencies. The modeling of the design process has to be considered with 

caution. Thus, this process is characterized by creativity. The research of neural networks is 

currently not, in the long run, to transfer the human creative process to a machine. Such a 

challenge requires a much more complicated process. Pan et al. (2017) have shown the first 

possibility of using neural networks. They were able to classify the appearance of an automobile 

into the categories “sporty”, “appealing”, “innovative,” or “luxurious”. 

The implemented network was a VGG-16 architecture with Siamese input branches. Besides 

applying different automobile areas for a split-line quality assessment, the presented area of the 

a-pillar could be validated using another network architecture, for example, using the AlexNet 

(Krizhevsky, Sutskever, and Hinton 2012) or new network architecture. 
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The neural network-based assessment method for visual quality features can be implemented 

within an early phase of the product development process. Based on this method, quality 

standards and visual quality features can be defined and objectively measured by the neural 

network. By transferring the trained network into the production of a product, a standardized and 

consistent assessment process of visual quality features can be realized. The advantage of using 

the trained network are reduction of assessment effort, consistent assessment results, and an 

assessment of each product. 

The use of neural networks demonstrated an increase in process standardization and automation 

in various industrial areas. The present thesis results presented the possibility of objectifying a 

strongly perception-based assessment process and including the entirety of a product 

appearance. Thus, these investigations hopefully enable further research in the use of neural 

networks in the area of perceived quality. 
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A. APPENDIX A 

The applied three-dimensional translation matrix was: 

(

𝑥′

𝑦′

𝑧′

1

) = (

1 0 0 𝑡𝑥

0 1 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

) ∗ (

𝑥
𝑦
𝑧
1

) (4) 

The applied three-dimensional rotation matrix around the x-axis was: 

(

𝑥′

𝑦′

𝑧′

1

) = (

1 0 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 0 1

) ∗ (

𝑥
𝑦
𝑧
1

) (5) 

The applied three-dimensional rotation matrix around the y-axis was: 

(

𝑥′

𝑦′

𝑧′

1

) = (

𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽 0
0 1 0 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽 0
0 0 0 1

) ∗ (

𝑥
𝑦
𝑧
1

) (6) 

The applied three-dimensional rotation matrix around the z-axis was: 

(

𝑥′

𝑦′

𝑧′

1

) = (

𝑐𝑜𝑠𝜇 −𝑠𝑖𝑛𝜇 0 0
𝑠𝑖𝑛𝜇 𝑐𝑜𝑠𝜇 0 0

0 0 1 0
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𝑥
𝑦
𝑧
1

) (7) 
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B. APPENDIX B 

The studies in chapter 6.3, 7.3, 8.2 were conducted using a browser-based application. This 

application was implemented by using HTML and JavaScript. Additionally, the SurveyJS library 

(OÜ and Baltic 2020) was used for the basic study design and operating elements within the 

study. For each study, the general approach for preparation is shown in Figure 82. 

The central document for the browser-based study application was the HTML script. Within this 

script, the appearance and the study functionalities were included. The approach for defining a 

manipulating, the HTML script was supported with elements from the library SurveyJS (OÜ and 

Baltic 2020) and these functions were based in JavaScript code. The functionality of the 

JavaScript code was divided in five steps. The first step described the structure of the study. 

Within this step, different study structure was defined. The structure of both studies were a 

general question and a study related section. The second step was the selection of a 

measurement technique. This step was closely related to the chosen scale level in the study. 

This step was a different in the studies related to the research hypotheses: the perception study 

of product-related parameters used a slide bar, the conjoint study used a drag-and-drop feature 

to rank the product alternatives and the perceptual study used a seven point Likert scale level 

(Joshi et al. 2015). The third step in the JavaScript code considered a random variation of the 

image order in both study types and with both measurement techniques. This step was 

performed to avoid sequence effects within the data. Within the fourth step of the JavaScript 

code, the generated photorealistic visualizations (cf. chapter 6.2) were integrated into the study. 

The integration was performed by using a unique image description. The fifth step considered 

an automated export of the study results. Within the JavaScript code, the download of the results 

was performed after each participant and by answering the last study question. The results were 

saved in the download folder of the computer. 

The design of the general HTML application was that all required documents, the html script, 

the visualizations, the elements of the SurveyJS library and the JavaScript code needed to be 

stored in one folder. 

 

 

Elements and basics from 
the library SurveyJS 

Structure of 
the study 

HTML/Browser-based 
application 

Functionality of the study in 
JavaScript 

Export of study results 

Selection of 
measurement 

Integration 
photorealistic 
visualisation 

Automatic 
export function 

Variation of 
assessment 
order 

1 4 2 3 5 

Figure 82. Method for creating a browser-based study application by using html, javascript and 
css. 
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