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Abstract 
The automotive industry has been following the objective of increasing assistance for improved usability and 

safety over the past decades. Currently, the focus of automotive development concentrates on implementation 

of automation, promising the possibility of vehicles holding temporary responsibility of the driving task, while 

the driver is free to focus on other tasks. However, especially in Level 3 automated driving, the human has to act 

as a fallback, if technical systems fail or reach limits. This transferal of responsibility in any direction can cause 

miscommunication, incomplete driver mental models and accidents if mismanaged. 

Therefore, a number of questions regarding the human-machine-interaction have to be addressed, in order to 

guarantee safe transitions between humans and vehicles. Firstly, the spectrum of human capabilities demands 

definition in the context of Level 3 driving. For empirical investigation, this requires monitoring systems for 

vehicles in order to identify factors influencing driver capability. Secondly, humans need assistance in the 

transition phases between automation and manual control. Based on the available information for an automated 

vehicle, a prediction of driver reactions is necessary to understand how a driver can be assisted, to reduce 

mismanagement of information. This is relevant for individuals as well as all varieties of driver types. Especially 

professional drivers, e.g. truck drivers, will experience long exposures to automation. Through extensive driving 

experience, possibly leading to other interaction than non-professional drivers, assistance needs to cater to their 

requirements. This dissertation focuses on the evaluation of professional driver capabilities in the context of 

Level 3 take-over. It proposes different computational models that offer the possibility of predicting driver 

behaviour, in order to improve usability and offer adaptive assistance during transition phases for automated 

driving. Thereby, assistance is improved and communication between the driver and vehicle is enhanced, to 

reduce accidents. 

In order to examine driver behaviour and capability for Level 3 automation, two highway scenario studies were 

directed, analysed and utilised for predictive computational driver models. The first study was conducted in a 

high-fidelity moving-base simulator, displaying critical take-over situations. Amongst others, analysis of the 

empirical data showed that premature visibility of take-over situations generated significantly quicker reaction 

times. The data gathered of 88 participants was later utilised to analyse different data-driven computational 

models to predict reaction times of drivers. Based on remote eye-tracking data, vehicular environmental 

information and non-driving related task interaction, four different machine learning algorithms were compared 

in a four-class classification problem. Information was obtained from 238 features, reaching a misclassification 

rate of 38% for support vector machines. 

The empirical data of the simulator study was later validated in a test track study with a prototypic Level 3 vehicle. 

As premature visibility was a determining factor in the capacity of drivers to react quickly, expectancy was 

assigned as an independent variable. The statistical analysis displayed no significant effect of expectancy of 

different take-over situations on the reaction time. Overall, the 3-interval of time to first reaction of the 

simulator study ranged from 0 to 2.82 seconds, while the test track study displayed slightly quicker reactions up 

to 2.34 seconds. 

Finally, based on the findings of the two studies, an adaptive assistance during automation was developed. This 

system is designed to monitor the surroundings of any automated vehicle through vehicular sensors. The system 

relates environmental metrics to situations in which individual drivers self-initiate take-over. Thereby, it acts as 

an example for a seamless assistance system that is capable of individualisation and learning to enrich the driving 

experience and safety of drivers. 
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Zusammenfassung 
In den vergangenen Dekaden hat die Automobilindustrie stets das Ziel verfolgt, nutzerorientierte Fahrerassistenz 

weiterzuentwickeln, um eine verbesserte Usability und erhöhte Sicherheit zu ermöglichen. Derzeit verspricht 

dabei ein Technologiesprung zum automatisierten Fahren diese Aspekte weiter auszubauen. Dabei soll 

Fahrzeugen eine temporäre Verantwortung über die Fahraufgabe zugeteilt werden, während der Fahrer seine 

Aufmerksamkeit auf andere Tätigkeiten lenken kann. Speziell in Level 3, dem hochautomatisierten Fahren, muss 

der Fahrer allerdings als Rückfallebene fungieren, falls technische Systemgrenzen erreicht werden. Die Übergabe 

der Verantwortung kann dabei zu Missverständnissen, unvollständigen mentalen Modellen des Fahrers oder 

Unfällen führen. 

Aus diesem Grund, ist die Adressierung verschiedener Fragen zur Mensch-Maschine-Interaktionen essenziell, um 

eine Steigerung der Sicherheit in Level 3 Übernahmesituationen zu ermöglichen. Erstens, muss das Spektrum von 

Fahrerfähigkeiten im Rahmen des hochautomatisierten Fahrens erforscht und definiert werden. Zur empirischen 

Erforschung sind hierzu an das Fahrzeug angebundene Sensoren notwendig, um einflussreiche Faktoren zu 

erkennen und Informationen dem Fahrzeug zur Verfügung zu stellen. Zweitens, kann auf Basis dieser 

Erkenntnisse eine Fahrerassistenz entwickelt werden, die Fahrer in Übernahmesituationen unterstützen. Dabei 

können die sensorisch erfassten Informationen dazu dienen, eine prädiktive Aussage über Fahrerreaktionen zu 

generieren und somit Assistenz zur Verringerung von Missverständnissen zwischen Fahrer und Fahrzeug 

anzubieten. Dies ist sowohl individualisiert als auch generalisiert für verschiedene Fahrergruppen anwendbar. 

Unterschiedliche Fahrergruppen unterliegen dabei möglicherweise unterschiedlichen Einflüssen, z.B. LKW-

Fahrer, die lange Automatisierungsphasen erleben könnten. Durch diese unterschiedlichen Ansprüche an eine 

Automatisierung zwischen Privatpersonen und professionellen Fahrern, kann sich auch der Anspruch an die 

Assistenz ändern. Diese Dissertation untersucht speziell die Fahrerfähigkeiten von professionellen LKW-Fahrern 

im Rahmen des hochautomatisierten Fahrens. Verschiedene rechnergestützte Modelle werden entwickelt, die 

die Möglichkeit einer Fahrervorhersage untersuchen, um die Usability adaptiv in Übernahmesituationen zu 

verbessern. Dabei wird stets das Ziel verfolgt, den Informationsaustausch zwischen Fahrer und Fahrzeug zu 

verbessern, um Übergangsphasen sicherer zu gestalten. 

Diese Inhalte werden im Rahmen des hochautomatisierten Fahrens auf Basis von zwei empirischen Studien zu 

Autobahnfahrten untersucht. Die erste Studie fand in einem Fahrsimulator statt. Die Daten von 88 Probanden 

wurden anschließend zum Vergleich von vier verschiedenen rechengestützten Algorithmen genutzt. Hierzu 

wurden die Daten aus einer Blickerkennung, der Umgebungsinformationen und Interaktion des Fahrers mit 

Nebentätigkeiten in vier Machine Learning Algorithmen eingespeist, um ein Klassifikationsproblem zur 

Vorhersage von Reaktionszeiten mit vier Klassen zu lösen. Mit 238 verschiedenen Features als Eingangsdaten in 

eine Support Vector Machine, wurde eine minimale Misklassifikationsrate von 38% erreicht. 

Die empirischen Daten aus dem Fahrsimulator wurden anschließend auf einer Teststrecke mit einem 

prototypischen hochautomatisierten LKW validiert. Als unabhängige Variable wurde der Faktor der Erwartung 

einer Übernahmesituation untersucht. Die statistische Auswertung ergab hierfür keinen signifikanten Effekt. 

Insgesamt ergab das 3-Intervall der Time to first reaction eine Reaktionszeit von 0 bis 2.82 Sekunden in der 

Simulatorstudie und 0 bis 2.34 Sekunden auf der Teststrecke.  

Auf Basis der empirischen Daten entstand zusätzlich eine neuartige Ausführung eines Assistenzsystems. Die 

Betrachtung verschiedener Umweltvariablen durch Fahrzeugsensorik ermöglicht es hierbei Fahrsituationen zu 

identifizieren, die den Fahrer zu einer unaufgeforderten Übernahme verleiten. Das System identifiziert 

Situationen in denen der Fahrer Unsicherheiten durch speziell diese unaufgeforderten Übernahmen an den Tag 

gelegt hat, um frühzeitig die Entstehung dieser Situationen zu erkennen und den Fahrer vor unkontrollierten 

Handlungen zu schützen. Hierdurch wird eine kontinuierliche Assistenz dargestellt, die individualisierbar und 

selbstlernend sich an verschiedene Fahrer- und Umgebungssituationen anpassen kann und so eine neue 

Ausprägung von Assistenz zum hochautomatisierten Fahren darstellt. 
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1 Synopsis 
Automation has been introduced into many professions over the past century, causing humans to 

adapt to technological advances. While some tasks have been completely replaced by automation 

solutions, other work areas currently rely on new collaboration schemes between humans and 

machines (Romero, et al., 2017). Rudimentary benefits of substituting human interaction in a task with 

automation include the benefits of reducing repetition of monotonous tasks, increasing safety and 

precision. 

However, some monotonous tasks have not been tackled, due to system complexity and superior 

human performance to adapt to new and dynamic situations. Driving is a prime example of such a task, 

where thus far human performance has exceeded technical possibility. Nevertheless, automation can 

potentially improve comfort and reduce human error, even in the driving domain through 

collaboration (Nyholm & Smids, 2018). This is especially the case in situations where long periods of 

driving cause a reduction of driver ability or driving situations induce fatigue, e.g. highway travel. 

However, some driving situations are difficult to automate technically and regardless of current 

technical maturity, humans exhibit higher performance. Especially in the distinction of human-

machine-interaction during automation, a variety of well-established research linking automation 

levels to human performance has been produced (Sheridan, et al., 1978; Parasuraman, et al., 2000). 

Multiple factors need to be considered in order to differentiate which driving subtasks can benefit 

from automation with current technical systems. 

In long-haul logistics, truck drivers operate the vehicle in highway scenarios for extensive periods. The 

truck domain thereby combines the unique aspects of professionals handling vehicles for multiple 

hours a day, possibly benefitting from automation. At the same time, novel European regulations 

address the ambitious goal of lowering traffic fatalities by 50% in ten years (European Commision, 

2018). Through the development of advanced assistance systems, both the individual driver and 

societal benefit could be achieved. However, technical and usability questions regarding such 

assistance systems offering automation need to be investigated to ensure these global benefits. 

On highways or federal roads the variability of situations, which an automation function needs to 

handle, is the most confined compared to other road types. Automation on highways therefore 

displays the highest potential of technical feasibility. Examples of automation functions being 

introduced into the market for this scope, include Audi’s AI traffic jam pilot (Audi, 2017) and Daimler 

Trucks Active Drive Assist (Daimler AG, 2019). By assisting drivers in this spectrum of their work, 

especially truck drivers, their behaviour will inevitably adapt to the new handling of the vehicle. Truck 

drivers could benefit from automation for long periods every workday if collaboration is managed 

correctly. 

Although benefits seem to outweigh the disadvantages by introducing automated driving functions 

into vehicles, it also bears risks. Especially if automation cannot handle all facets of driving, driving 

situations will arise that require human input. This leads to the accepted theoretical concept of the 

ironies of automation (Bainbridge, 1983), in which humans are relied upon in situations in which peak 

performance is difficult. The driver, who at the most had to previously monitor the driving task, now 

has to act, to assist automation in decisions and/or task execution, without complete human overview 

over the task. This interpretation of automated driving is defined as Level 3 (SAE J3016). Short-term 

transitions between automation and human control are required, as the human functions as a fallback 

entity. Short-term requirements can induce the possibility of novel unaligned handling errors, which 

would not occur without automation available. Therefore, while automation might reduce errors due 

to inattention or drowsiness when automation functions are activated, new handling errors can occur 
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in transition phases. This is especially the case, if the system is designed outside of the scope of human 

capability. The automation function should therefore be designed in a fashion to optimally incorporate 

the human in all automation phases. This especially includes those situations in which automation itself 

reaches technical limits. Ideally, the function should also assist in any transition, even if automation 

has reached its limitations. 

Through the integration of automation in the driving domain, driver behaviour during automation and 

in the transition back to manual control will adapt compared to pure manual driving. Requiring a driver 

to transition between manual and automated vehicle control when automation fails, can have a 

profound influence on the way this behaviour is adapted with automation. Based on experience, daily 

exposition of situations, vehicle type and other influences, this behaviour might change differently for 

individuals. While the main goal of automated driving is to increase safety and comfort, ill-advised 

transition protocols can decimate all of these benefits and cause accidents. Depending on the human, 

the situation in which take-over is requested as well as external environmental factors, transition 

behaviour will differ (Vogelpohl, et al., 2016). Only by gathering information of driver behaviour during 

automated driving, transition protocols can be improved to accommodate individual driver’s transition 

capability. This may include the current driver attention and interaction with tasks other than the 

driving task. Therefore, a good system design should always consider human variability, as strengths 

and weaknesses are never constant for any human. This follows the design guideline towards the 

question how to get the human and the machine to work together successfully (Dekker & Woods, 

2002). 

Three main aspects have to be considered when designing the transition phases between 

automation and manual driver control. What is a driver capable of managing physically and 

cognitively? What does a driver have to do? What does a driver optimally want or how should 

transition be designed for the driver? In order to consider different driver states and intentions, a 

method of generating this information is required. 

Especially for the third question, an understanding of the human is required. Previously, only the 

human was able to monitor the machine, with the machine having no data input on human status 

during automated driving in Level 3. By continuously monitoring the driver and generating driver 

capability predictions, time critical transition phases can potentially be deescalated based on these 

prognoses. The prediction models thereby function as basis for the machine’s understanding of the 

human, in order to adapt the transition phase and thereby maximize the collective human-machine 

output by reducing the risk of human error. The bilateral combination of human understanding of the 

machine and a machine’s understanding of the human, can improve the ability of both partners, 

especially in time critical take-overs of Level 3. This thesis will not concentrate on the adaptations of 

any automation system, but on the methodology of forming prototypic driver prediction models that 

can aid this decision. 

Two major empirical studies are conducted and presented in this thesis. They concentrate on the 

investigation of truck driver behaviour during time critical transition phases of Level 3 automation. By 

developing a driver monitoring system, physiological driver data is gathered during the course of these 

studies. There are different approaches that can result in methodologies allowing application of this 

knowledge to improve driver assistance in transition phases of automation. Based on the obtained 

empirical data, this thesis will investigate the application of data-driven computational modelling 

approaches. The predictions by the computational models shall function as a basis to predict driver 

behaviour in transition phases. Thereby, emerging from the first two abovementioned aspects 

regarding driver capability and transition demand, the third question addressing desired driver 

assistance can be developed. 
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The overall research question of this thesis combines all of these aspects into one elemental 

question. How can computational driver models improve the understanding of individual demand 

for assistance during automated driving transitions? 

This thesis will address the three rudimentary questions introduced above, with the aim of ultimately 

focusing on individual driver assistance during transition between automation and manual control. 

Fundamentally, understanding of the human-machine-interaction during all phases of automated 

driving is required. This especially includes experimental research on driver behaviour during critical 

transition phases, i.e. take-overs, of Level 3 automation. Therein, empirical data forms the basis to 

answer the abovementioned three main questions. Different computational driver models will be 

developed and evaluated, which are designed to predict human driver behaviour adaptively and learn 

depending on human adaptation. With the insight gained, it shall be discussed what type of assistance 

a driver requires for Level 3 automation and in what form assistance systems may alter throughout the 

task, to design safe and adequate transition phases during automation. Through the adaptation of 

these systems, it is the goal of incorporating drivers into a fluid and seamless human-machine-

interaction for automated driving. Thereby, the main objective is to increase the safety during 

automated driving transition, by understanding influences that reduce the transition capability of any 

driver. 

In order for the driver to be guided back to the driving task, possible influencing factors hindering or 

facilitating a transition require investigation. These factors need to be considered in the 

computation models in order to make adequate predictions of driver behaviour. What types of 

influencing factors are there and how do they affect drivers during transition? 

Multiple independent effects have been analysed in recent studies regarding automated driving, 

especially for self-driving passenger cars (Zhang, et al., 2019). The variety of influences range from 

vehicular to environmental as well as driver and human-machine-interface factors (Vogelpohl, et al., 

2016). The variety of factors within these groups characterizes the large spectrum of impacts, which 

require an adequate structure. The comparison of the plethora of studies is complex, as experimental 

setups and interaction effects can cause false conclusions and necessary detail is often not reported. 

In this context, it should also be noted that most of the abovementioned studies were conducted in 

simulator experiments. The comparability of simulator studies has been discussed in the literature with 

regard to risk perception (Carsten & Jamson, 2011; Bellem, et al., 2016). Actual highly critical take-over 

situations are extremely difficult to realize in empirical studies due to ethical restrictions, possible 

injuries and property damage. A comparison of take-over behaviour for Level 3 between a simulator 

and real-world study, in the truck context, is absent in current published research. The transferability 

between the virtual and real-world environment is another aspect, which requires investigation. It is 

important to consider the differences between simulators and real-world application to guarantee 

correct causality in the system design and validate empirical data. 

The investigation of all combinations of influencing factors is impossible in controlled experimental 

environments. Some individual isolated effects might not be consistent for all driving situations. This 

calls for a data-driven approach that introduces a methodology of collecting all this data of the 

different influencing factors in all situations and embedding predictions into the automation function. 

In order for a data-driven approach to function, sensors need to be implemented, to accomplish driver 

and situational monitoring. Based on these data inputs, the information needs to be aggregated, to 

ultimately assert driver take-over capability or not. Typically, driver take-over capability is expressed 

in quantitative driver reaction times. This addresses the first two abovementioned aspects of what a 

driver is physically and cognitively capable of managing in transition and what has to be done. It 

disregards what the driver wants during transition, as this is difficult to quantify in singular metrics. 

7



Data-driven computational models offer the possibility of accumulating different factors and 

analysing sensor data to consider underlying effects. All incoming data thereby needs to be 

referenced to an output value. Depending on which of the three abovementioned research aspects 

should be answered with such a model, different output values can be considered. When 

concentrating on the first two aspects, how can the driver manage and how transition is 

accomplished, the investigation of reaction times is a viable solution to express driver capability. The 

primary question that needs to be answered with regard to these two questions is, how much time 

does the driver require for take-over?  

This question examines what can be expected from a driver when a take-over warning is initiated and 

the driver has to commence with the driving task. Thereby, take-over requests are typically 

implemented with a multimodal approach of optical-acoustic warnings (Bellet, et al., 2019). This 

quantitative approach is interesting from an engineering perspective, as resulting information can be 

utilized for the system design of the automation function according to usability guidelines (DIN EN ISO 

9241, 2006). Interested in the measurable output a driver generates at take-over, the automation 

function needs to be designed according to human cantered guidelines. While keeping the technical 

applicability in mind, this technical solution for take-over should always be controllable by human 

drivers. Therefore, reaction times are essential. Subjective perception of take-over criticality and their 

effect on driver workload (Wickens, 2008) are not considered in this approach. However, such abstract 

psychological constructs apply and might affect reaction times subliminally. A first set of computational 

models should focus on driver take-over capability based on reaction times. This has been widely 

adapted in the literature to express influences of different factors to better understand the 

mechanisms of these effects on human cognition (Petermann-Stock, et al., 2013; Feldhütter, et al., 

2016; Gold, et al., 2016; Zeeb, et al., 2016). 

In any take-over situation characterized through system limits, the criticality can vary immensely 

through variation of interface, environment, driver and vehicle parameters. Depending on the 

environment and current trajectory, criticality of the situation depends on the time to collision with 

any object in the surrounding (Damböck, 2013). Therefore, situations can be extremely critical, if 

objects in the current trajectory path are imminently in front of the vehicle at the point in time when 

a warning is initiated, i.e. request to intervene. These take-overs become particularly difficult and 

reduce the amount of time drivers have to react, forcing them to act at peak performance. While not 

all take-over situations in Level 3 automation will reach these levels of criticality, the investigation of 

such situations can quickly frame the limitations of human capability. By analysing these situations 

specifically, the range of human actions can be described, which in turn affect human-machine-

interaction for all take-over situations. 

It should also be noted that non-driving related tasks during automation are allowed according to the 

definition of Level 3 automated driving. This thesis will limit all investigation to tasks on fixed digital 

screens in the vehicle, disregarding tasks executable on handheld devices. Research has shown that 

cognitive load, glance behaviour and take-over performance deteriorates with handheld devices 

(Owens, et al., 2011). 

If research of the considered affecting factors reveals that safe transition between the self-driving 

vehicle and driver is not possible for a subset of situations, alternative solutions need to be 

implemented in the technical systems. This can include safe state mitigation of the vehicle, e.g. parking 

at the side of the road. Alternatively, the transition phase can also be adapted to improve the flow of 

information between human and machine, to ultimately increase human take-over performance. 

Universally, miscommunication and ironies of automation need to be obverted for self-driving vehicles, 

as drivers and individuals in the environment could be harmed through inadequate take-overs. 
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So is it possible for computational models to find underlying interactions between driver behaviour 

and influencing factors? Especially in the context of this thesis, this can be summarized to the 

following research question. Can a system identify driver availability and take-over ability, in order 

to possibly predict human driver interaction? 

This would allow for an adaptive assistance system that considers individual and contextual 

differences. Thereby the third research question is addressed; what does the driver ideally want at 

take-over? By sharing the responsibility of the driving task, the driver assistance system also needs to 

adapt to these circumstances. Especially in situations in which a transition of responsibility is required 

due to technical system boundaries, information of the other partner handling the driving task is crucial 

for higher safety and usability.  

The most obvious possibility of allowing the vehicle to form an understanding of the driver is by fitting 

it with sensors monitoring the driver (Braunagel, et al., 2017). By combining different intrusive and 

non-intrusive sensors, a driver monitoring system can be implemented to gather information during 

critical take-over situations. In the scope of this thesis, only remote sensors will be utilized for driver 

monitoring. 

The approach of classifying take-over reaction times based on features generated from vehicular 

environmental data and non-intrusive remote driver monitoring cannot explain the causation of 

human behaviour. This methodology is inherently different to computational models enabling 

cognitive modelling, such as ACT-R (Anderson, et al., 2004). Deng et al. (2019) give an example of 

modelling take-over reaction times with a derivative of ACT-R (QN-ACTR) as a possible solution of 

generating knowledge on the causation of driver behaviour. A disadvantage of utilizing a cognitive 

architecture during the analysis of driver behaviour in new scope of driving is that the solution would 

not be scalable to other situations. Therefore, an explanation as to the reasoning behind the driver 

behaviour is not given in this thesis. Rather, the empirical data collected serves as the basis for future 

research of cognitive modelling. Without this data, experienced modellers of cognitive architectures 

will not have the basis to validate their models. If different effects are identified, different models can 

be tested against each other to describe possible behaviour causation. Data-driven approaches are 

more compatible in scalability while utilizing the same methodology and only adjusting data inputs and 

outputs. Although human cognition is not explained explicitly in the presented computational models, 

their validity is based on the capability to predict outcomes based on driver behaviour. Explanations 

on driver behaviour are therefore discussed and inferred, based on empirical data of this thesis.  

A final discussion point of this thesis regards predictive assistance systems. Based on a vehicle 

enabling Level 3 automated driving, what information does a driver need during critical take-over? 

How should an advanced driver assistance system be configured, to assist the driver during 

automated driving? 

The prime objective of a model-based prediction is to generate information allowing the adaptation of 

a system, based on validated information. Prediction functions are ideally based on data and can 

increase safety and/or usability. While there are multiple models predicting driver behaviour to 

improve aspects of the driving task, e.g. fuel efficiency (Bender, et al., 2014), Level 3 systems have the 

added difficulty of trying to predict measures that influence driver’s safety. Ideally, systems would be 

capable of adapting their assistance based on the driver’s needs. However, high accuracy is paramount 

for such assistance systems, to reduce the possibility of generating a situation that is worse than 

without adaptive assistance. Therefore, this thesis also investigates the possibility of a new type of 

assistance system, with the objective of predictively warning a driver individually based on individual 

interpretation of driving situations. This can improve collaboration between human and machine 

during automated driving and progress individualized advanced driver assistance.  
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Summary of papers 
Four papers are included in this dissertation, three of which have previously been published (Paper 

No. 1: Lotz, Russwinkel & Wohlfarth (2019); Paper No. 2: Lotz & Weissenberger (2019); Paper No. 3: 

Lotz, Russwinkel & Wohlfarth (2020); Paper No. 4: Lotz, Russwinkel, Wagner & Wohlfarth (2019)). An 

overview of the contents of these four publications are introduced in the following, demonstrating 

how the publications address the previously introduced research questions. 

Paper No. 1: Lotz, A., Russwinkel, N. & Wohlfarth, E. (2019). Response Times and Gaze 

Behavior of Truck Drivers in Time Critical Conditional Automated Driving Take-overs. 

Transportation Research Part F, 64, pp. 532-551. 

Paper No. 1 presents results of a driving simulator study on conditional automated driving (Level 3; 

SAE J3016, 2018), conducted in a moving based simulator with professional truck drivers. The emphasis 

of the paper is to investigate critical take-over situations with the focus of identifying the influence of 

learning, non-driving related tasks, automation duration and type of take-over situation on 

behavioural driver reactions. 

When considering Level 3 driving, an automation function is defined with certain system boundaries 

in which a driver needs to regain control. The paper accentuates that there are two possible 

approaches to specify systems in order to adequately consider driver reaction times for warning times. 

The first approach consists of globally warning times, which do not consider individual driver reaction 

times that can depend on influencing factors. A second approach proposes individualized reaction 

times that are considered based on influencing factor types. This can lead to an adaptive automation 

function based on influencing factors. In order to realize the possibility of such a driver assistance 

system, the effects different influencing factors cause need to be identified. This is the primary aim of 

Paper No. 1. 

The paper explores two main aspects. Firstly, what type of behavioural reactions do professional truck 

drivers exhibit in critical take-over situations? Secondly, how quick are said reactions? This closes the 

gap between large quantities of research on take-over scenarios in the passenger car context to the 

truck context. Comparisons and explanations for variations are also drawn to results in the car context. 

As outlined above, the paper limits the investigation to critical take-over situations. Through longer 

times to collision in take-over investigation, drivers are not forced to react close to their maximal 

capabilities. The expectation is formed that if longer times to collision were allowed, the driver would 

organize this time in any way they see fit. By presenting difficult take-over situations, the professional 

drivers should act at peak performance to circumvent critical situations. This allows the investigation 

of minimum reaction times and permits to identify what capability is to be expected of professional 

truck drivers in such situations. The gathered information is extremely valuable, as an adaptive 

automation function could identify which criticality would exceed driver capabilities and alternative 

strategies could be engaged promptly by a system, to increase safety. 

A total of 88 professional truck drivers generated 768 take-overs. Two different non-driving related 

tasks are presented. One task consists of a video where no motoric interaction is required, while the 

other is a game requiring declarative knowledge and motoric interaction. Through the presentation of 

nine take-over scenarios, learning between the trails is also addressed. Gaze behaviour shortly before 

and after take-over is considered to investigate driver behaviour in critical take-overs. 

The empirical results expose that the type of non-driving related task and automation duration have 

no significant effect on take-over times within the limited duration considered. Learning between trails 

is observed, especially in the first three take-overs. Without respect to the considered independent 
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variables, the reaction times of this study are lower than those of published passenger car studies. The 

differences in take-over situation types is also discussed, finding that premature visibility of situations 

causes exceptionally quicker reaction times.  

The analysis of gaze behaviour at take-over also shows that glances to the rear were delayed in critical 

take-over situations, even though lane switching was required in one situation. It seems that take-over 

situations were successfully designed as highly critical, as some drivers did not achieve safe 

manoeuvring between lanes. However, basic success criteria such as obverting accidents were handled 

correctly.  

This comprehensive study forms the basis for the analysis of predicting driver take-over capability 

through data-driven computational models. Statistical analysis of the abovementioned independent 

study variables allows the in-depth discussion of these well-established influencing factors, compared 

to published Level 3 studies. However, the data holds further features that can be analysed in data-

driven computational models to investigated different approaches of modelling driver take-over 

capability. The data obtained from this study serves as the input data for Paper No. 2. A total of 755 of 

768 take-overs were utilized for Paper No. 2, as explained in further detail in the following section. 

Paper No. 2: Lotz, A. & Weissenberger, S. (2019). Predicting take-over times of truck 

drivers in conditional autonomous driving. In: N. Stanton, (Ed.) Advances in Human 

Aspects of Transportation. AHFE 2018. Advances in Intelligent Systems and Computing, 

786, pp. 329-338. 

Based on the data gathered in Paper No. 1, Paper No. 2 presents a comparison of machine learning 

mechanisms to predict take-over reaction times. Data considered consist of features generated from 

eye-tracking, user interaction with non-driving related tasks and vehicular data during Level 3 

automation. A total of 238 different features serve as input for the algorithm comparison. 

Paper No. 2 specifically explores if machine learning methods generate beneficial predictions of 

reaction times based on the abovementioned data. A main aim of this paper is to investigate the ability 

to classify how quickly a truck driver will react based on features and information perceivable through 

remote sensors. This specifically addresses the two research questions regarding driver ability to 

manage take-over and the extent of successfully handling take-over. The focus is strictly based on 

remote driver monitoring data and environmental vehicular data from Paper No. 1. By exploring this 

research question and finding promising prediction methods, automated vehicles could generate a 

prediction of human-machine-interaction based on remote sensors. This would again make an 

adaptive automation function possible. Thus, assisting a driver in the complex and difficult transition 

phase of regaining control of the vehicle would possibly cause less human error. Alternatively, if human 

reactions were to be too slow, based on the prediction method, fallback strategies could be initialized 

promptly. The analysis of the computational models thereby also addresses the differences in accuracy 

of an online and offline prediction system, having different features available during or after take-over. 

A clear limitation of analysing machine learning algorithms in this publication is the available dataset. 

Typically, data-driven approaches require a large dataset for the definition of any prediction model. 

The results of this comparison are limited to this extent. A total of 755 take-over situations were 

utilized from the study presented in Paper No. 1. Four different machine learning algorithms are 

compared in Paper No. 2. Included in this selection are two methods that allow weighting of input 

features, while two methods are rigid in their weighting scheme. It is examined how information that 

is available after take-over improves predictability of driver take-over reaction times through offline 

prediction. Apart from the investigation of fundamental machine learning methodology for this applied 
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problem, the influence of singular features on the accuracy of reaction time prediction are 

investigated. The spectrum of reaction times is partitioned into four classes.  

The results display a clear benefit of the offline dataset, which consists of additional information 

generated after take-over. Due to more information being available after take-over, accuracy of all 

algorithms improve. This benefit mostly stems from behavioural eye-tracking data that bears a lot of 

information in the take-over process. Eye movements towards the driving scene are generated at take-

over and thereby can only be calculated after a take-over request is initiated, making the feature part 

of the offline dataset. At the same time the data gathered in Paper No. 1 did not suffice for the 

definition of clear reaction time classes. Inter- and intra-individual differences were too large for clear 

identification of influencing factors by all machine learning algorithms. 

This leads to the conclusion that either more information is required to achieve an accurate application 

of the presented algorithms or that the features generated do not offer enough information for precise 

prediction. Methodologically, the algorithms presented in this paper would not need to be altered in 

order for more empirical data to be analysed and reach a conclusion on this question. This highlights 

the main benefit of scalability of data-driven computational models for driver take-over prediction. 

The complete efficiency of the models can, however, only be precisely defined with more data that are 

available. 

Paper No. 3: Lotz, A., Russwinkel, N. & Wohlfarth, E. (2020). Take-over expectation and 

criticality in Level 3 automated driving: a test track study on take-over behavior in semi-

trucks. Accident Analysis & Prevention. doi: 10.1007/s10111-020-00626-z 

The purpose of Paper No. 3, in the scheme of this thesis, is to validate the data gathered in the study 

of Paper No. 1 outside of a simulator. A prototypic vehicle was fitted with an automation function, 

allowing the application of non-driving related tasks during driving on a test track. Thereby, a 

prototypic Level 3 vehicle was developed, to investigate further influencing factors with reduced 

criticality, to ensure safe operation. The driver monitoring sensor setup of Paper No. 1 is reutilized for 

this experiment. All participants are professional truck drivers and the experiment is conducted on a 

private test track with limited unregulated traffic. 

Two primary research questions are addressed. Firstly, is the data gathered in the driving simulator 

environment of Paper No. 1 comparable to real-world environments? Secondly, how does the 

expectation of a take-over situation influence the driver in a real-world critical take-over situation? 

To guarantee a high familiarity with the vehicle, i.e. automation function and optical-acoustic warning 

signal at take-over, a prolonged training phase is introduced. Drivers complete five laps (2 training, 3 

experimental) of a 12 km round circuit, during which multiple take-overs are experience. Parallel, this 

procedure reduces the possibility of recording a similar learning effect in the first few trials, as 

experienced in the study conducted in Paper No. 1. Three types of take-over situations with varying 

criticality and expectancy are compared. With the possibility for drivers to predict take-over for one of 

these situations, the effect of take-over expectancy is investigated. Additionally, take-over criticality is 

examined. 

The experimental procedure on the test track requires the additional consideration towards 

uncontrollable environmental factors such as weather and daytime. Each driver drove a distance of 

60 km on a high speed oval test track (ATP Automotive Testing Papenburg GmbH, 2018). The drives 

were conducted continuously between early morning hours 8:00 and night time 19:00 in December. 

This caused a small group of drivers to drive during the night-time. No effect towards reaction times 

was found for this uncontrolled group of drivers. Similarly, precipitation caused no significant 

difference in reaction times. 
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Results display that the two levels of criticality present a low significant effect. This could be caused by 

a kinaesthesia reaction, as criticality was induced through lateral acceleration of the steering. Finally, 

the overall expectancy a driver can hold towards a take-over resulted in no significant quicker reactions 

of time to first reaction nor time to hands on steering.  

Finally, the comparability of simulator data and test-track data from real-world driving are associated. 

Limitations of both scenarios are discussed, focusing on the application of a Level 3 system on public 

roads. 

Paper No. 4: Lotz, A., Russwinkel, N., Wagner, T. and Wohlfarth, E. (2020). An adaptive 

assistance system for subjective critical driving situation: understanding the relationship 

between subjective and objective complexity. In: D. de Waard et al. (Eds.), Proceedings of 

the Human Factors and Ergonomics Society Europe Chapter 2019 Annual Conference. 

Nantes, France. 

Paper No. 4 presents an adaptive driver assistance system that continuously monitors the surrounding 

environment of an ego-vehicle in which a driver has a Level 3 automation activated. It provides a 

framework and conceptual simulation model that offers an answer to how drivers can be assisted in 

driving situations, which they subjectively find too complex for an automation function to handle. This 

type of assistance system relies on the prediction of subjective perception of the driving environment 

and trust in automation, an inherently different aspect than previous reaction time metrics. The 

concept forms a new type of driver assistance system, warning not of technical malfunction or system 

boundaries, but providing a suggestion on subjective perception of the environment. Notably, the 

introduced conceptual model only functions in situations in which the driver does not hold control of 

the lateral and longitudinal driving task and self-initiates take-over. Paper No. 4 discusses how such a 

driver assistance system gathers information on drivers and infers their subjective awareness of the 

environment, without the necessity of sensors monitoring the driver. 

A second major aim of Paper No. 4 is to provide a platform for future investigation of perceived driving 

complexity. The differentiating concept of objective and subjective complexity is introduced in this 

paper. Objective complexity is thereby defined as the mathematical description of a driving 

environment in which the ego-vehicle forms the origin of the coordinate system and metrics such as 

distances, velocities and collision times are referenced between objects. Paper No. 4 defines subjective 

complexity as the perceived complexity of a human driver, including psychological influences such as 

workload, fatigue and situation awareness.  

The complexity prediction system introduced in Paper No. 4 utilizes vehicular sensor data to monitor 

the direct periphery of an ego-vehicle. Through a signal filtering and subsequent calculation of 

kinematic variables for each object in the environment, a mathematical description of the environment 

is determined. Based on this description, critical objects are identified and compared to previous traffic 

situations at take-over. When a driver intervention occurs the system records the kinematic 

environmental variables of the critical objects and thereby learns driving situations, which the driver 

feels the need to take-over control. A feature of this methodology is the possibility of having a fully 

adaptive assistance system catering to subjective and environmental variation. The complexity 

prediction system intrinsically captures these traits. 

The conceptual assistance system is evaluated with a rudimentary database, simulating driver request 

for assistance when sideswipe manoeuvres occur during Level 3 automation. A qualitative analysis of 

the introduced assistance system displays a preliminary high functionality of the concept based on a 

training set of 105 and test set of 13 sideswipe manoeuvres. Further data of self-initiated take-overs is 

required for a comprehensive analysis of the functionality. 
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Assistance introduced in Paper No. 4 presents a possibility of collecting data on what a driver wants 

during take-over. The level of assistance a driver wants is not defined, however, when assistance is 

relevant from a driver’s point-of-view is documented through the system. This is important, as 

different assistance models can then be developed to improve usability and support drivers in these 

situations. Ultimately, this offers the human-machine-interaction to be adapted towards individual 

assistance and thereby reduce errors occurring at self-initiated take-over. 
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a b s t r a c t

The desire to enable conditional automated driving (CAD) in the near future, entails the
challenge to manage drivers’ safe transitions from automation back to manual control.
Several factors have been considered in recent years in the passenger car context, while
the truck has largely been disregarded. For the first time take-over behavior of heavy-
duty truck drivers in time critical take-overs is considered in CAD research. This study ana-
lyzes the effect of non-driving related tasks, CAD duration, take-over situations and num-
ber of take-overs on reaction times of truck drivers. Gaze behavior was tracked with a
remote eye-tracker; reaction times and driver interaction during CAD drives was recorded
and analyzed. Two different non-driving related tasks were presented in nine unique take-
over situations, while also controlling for the duration of CAD. Contrary to assumption, no
influence of non-driving related tasks or CAD duration on reaction times is found. Notably,
different reaction times are recorded due to the nine unique take-over situations. Finally, it
is shown that our take-over times decrease over the course of the experiment and are far
lower than other published reaction times (M = 1.35 s) in the passenger car context. The
findings are discussed and implications with regard to other published studies are drawn.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Current advanced driver assistance systems (ADAS) generate the possibility of automated driving. While the vehicle is
assigned to safely navigate through the environment for this driving scenario, conditional automated driving (Level 3;
SAE J3016, 2018) requires the driver to transition back to full control of the vehicle once system limits are reached. Due
to the complexity of sharing the driving task, car manufacturers are currently investigating the implementation of Level 3
on highway and interstate roads. Although driving on a highway may occur at much greater average speeds, the roads
and behavior are extremely regulated, making the technical controllability simpler than in urban scenarios. Higher automa-
tion levels (Level 3 & 4) allow drivers to shift their attention away from the driving task (Gasser, Arzt, Ayoubi, Bartels, Bürkle,
& Lotz, 2012) and potentially focus on non-driving related tasks (NDRT). This transition phase between the driving and non-
driving related task creates a time and safety critical challenge. Generally, the human perception of the environment and
relevant factors requires time and can cause higher error rates (Allport, Styles, & Hsieh, 1994). Prolonged reaction times have
also been identified specifically for increased automation levels in vehicles (Young & Stanton, 2007). The question that arises
when designing a Level 3 system is; howmuch time does the driver need to process information in Level 3 and regain control
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of the vehicle safely (Gold, Damböck, Lorenz, & Bengler, 2013)? Different aspects of take-over behavior have recently been
investigated for the qualitative and quantitative description of take-overs. These aspects can broadly be categorized into four
classes, driver, environment, vehicle and human–machine interaction (HMI), according to Vogelpohl, Vollrath, Kühn, Hummel,
and Gehlert (2016), which will be described in Section 1.1.

Typically, if the Level 3 technical system is unable to solve a driving situation and the vehicle is travelling with any speed,
take-over is time critical due to obstacles in its path. At higher speeds, obstacles or humans in the environment and/or dan-
gerous roads also makes situations safety critical. Two different approaches can be adopted to define adequate take-over
times. Either a globally valid fixed time is chosen for all take-over situations, or conditional times depending on the above-
mentioned factors driver, environment, vehicle and HMI are assigned. For the second approach, the driver and environment fac-
tors have to be monitored continuously to adjust the adequate take-over time accordingly, as vehicle and HMI factors usually
remain constant within one vehicle. This is a paradigm shift in the traditional human-machine relationship in which the
human no longer needs to monitor the state of the vehicle or machine, but the vehicle has to monitor the environment
and the driver, roles are reversed. Some of the driver factors can be measured through remote measurement systems, while
most cognitive factors cannot or require on-body sensors. Such determinable factors incorporate gaze behavior, physical
movements of the driver and NDRT interaction (Ohn-Bar, Martin, Tawari, & Trivedi, 2014). Since understanding of the influ-
encing factors on the driver’s reaction is needed, better measurement techniques and algorithms are required that poten-
tially predict the right time interval for secure human behavior (Lotz & Weissenberger, 2019). The second approach for
the definition of adequate take-over times is a more elegant, however, technically more complex due to additional sensors
and algorithms necessary for driver observation.

The aims of the study are to investigate influencing factors which possibly cause varying behavioral driver reactions. The
independent variables chosen for this study are categorized as environmental factors and incorporate the temporal duration
of automation and type of NDRT. In addition, it is our goal to identify if learning behavior can be established in the obtained
data. The study aims also include the analysis with regard to take-over quality in temporal critical take-over situations. Gaze
behavior during take-over will be consulted for the determination of visual reaction times as well as the construction of sit-
uation awareness as a measure of take-over quality. Within this study situation awareness refers to the perception, compre-
hension and projection of environmental objects according to Endsley (1995). Based on the findings, applicability of the
abovementioned second approach is discussed.

Notably, ‘‘driver availability is not just an absolute description of the current driver state but a relative assessment that is
influenced by the situational demands” (Marberger, Mielenz, Naujoks, Radlmayr, Bengler, & Wandtner, 2017). The underly-
ing question that needs to be answered when defining take-over time reserves is, which factors influence reaction times, as
previously stated by Gold (2013). While a global fixed take-over time might cause safety issues due to extensive complex
situations, variable take-over times could also have a negative effect, by warning too late or misjudging situations leading
to safety critical take-over. The identification of relevant factors to allow for variable warning times is paramount. Addition-
ally, this study should reproduce some of the findings regarding the influencing factors automation duration and NDRT from
the passenger car for the truck domain, closing the gap of research between domains. Strongly differentiating NDRT (e.g.
reading on a fixed screen in the cockpit and playing an instrument) surely present different reaction times, due to different
modalities being required for both tasks and objects causing physical hindrance in the take-over behavior. Due to the
amount of possibilities, conducting validation of each feasible NDRT and its influence on take-over is impossible. It would
be favorable if observation of temporal short behavioral driver operations, e.g. cascade of fixations or movements, before
take-over situations exhibit evidence about take-over times. These smaller behavioral operations would increment to a large
NDRT with operations being exchangeable between different tasks, i.e. fixation of a screen and touching the surface. Previous
work has shown that information is present in the data, however, misclassification rates are too high for safe predictions of
take-over times (Lotz & Weissenberger, 2019).

To investigate the four groups of factors by Vogelpohl et al. (2016), a simulator study was designed to determine if behav-
ioral factors can be identified for differences in take-over behavior. Three relevant take-over times according to Damböck
(2013) will be reported in the following sections. The take-over procedure typically incorporates the shift of visual attention
towards the driving scene, formingmotor readiness and showing a reaction at the steering wheel and/or ac-/decelerator ped-
als. This study presents results from the analysis of the four main influencing factors; NDRT, situation type, trial and CAD dura-
tion, to investigate the possibility of designing variable warning times. Eriksson and Stanton (2017) give an overview of 25
publications investigating take-over behavior in automated vehicles. Reaction times at the steering wheel or pedals vary
between 1.14 and 15 s, with the majority of reaction times measuring between 2 and 3.5 s. Vogelpohl et al. (2016) cite a reac-
tion time bandwidth of 3–8 s. These references will be consulted for comparison to the results obtained in this study to draw
the bridge between the truck and passenger car domain. Table 1 holds acronyms utilized in this study.

1.1. Factors influencing take-over behavior

As mentioned previously, Vogelpohl et al. (2016) define four classes of influencing factors on take-over behavior that will
be introduced and discussed in the following.
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1.1.1. Driver factors
Firstly, driver factors are a prime subject matter when analyzing Level 3. Included in this factor class are behavioral reac-

tions drivers demonstrate while driving or engaging in NDRT. The driver factors entail all driver knowledge and personal
characteristics that can vary over long- or short-term. Fatigue or situational awareness are part of this first class. Most of
these characteristics are limited to internal abstract psychological constructs, e.g. trust in automation, or anthropological
measures that can influence take-over. These factors are difficult to measure and manipulate objectively due to their level
of abstraction. Several studies have investigated widely accepted constructs in the passenger car context. Specifically, fatigue
does not seem to negatively affect the drivers’ take-over capabilities (Weinbeer, Muhr, Bengler, Baur, Radlmayr, & Bill, 2017).
Although task-related fatigue can be induced through NDRT and measured through eye closure and head movement changes
(Jarosch, Kuhnt, Paradies, & Bengler, 2017; Schmidt, Braunagel, Stolzmann, & Karrer-Gauß, 2016), recent findings also pre-
sent results in which engaging and activating NDRT can manage and reduce driver drowsiness (Weinbeer, Muhr, & Bengler,
2019). Typically, the train of thought when conducting a Level 3 experiment, is to have very few take-over situations to
exclude the possibility of learning. Instead of trying to exclude any possibility of learning, this study will present multiple
take-over situations. Therefore, learning effects are expected to reduce the time to first reaction, as defined in Section 2.1
(Hypothesis 1).

1.1.2. Environmental factors
The second class, environmental factors, are widely considered by previous published studies regarding take-over behavior

during Level 3, e.g. Damböck (2013), Merat, Jamson, Lai, Daly, and Carsten (2014), Gold, Körber, Lechner, and Bengler (2016).
These factors are primarily investigated as they are easily manipulated in experimental designs and can be measured objec-
tively. Included in this class are factors such as type of driving environment, criticality of take-over situations, CAD duration
and NDRT. As the effects of a NDRT may influence a driver, but are induced through the environment, we chose to define
NDRT as an environmental factor, altering the original definition of Vogelpohl et al. (2016). Most current Level 3 studies
are limited to highway scenarios and Gold et al. (2016) find a negative influence of higher traffic densities on take-over per-
formance in the passenger car context. Also, higher complexities of take-over situations seem to elongate take-over times
(Damböck, 2013). Prolonged take-over times for high situation complexity can be explained cognitively through the multi-
tude of objects that need to be perceived and processed, leading to more complex planning processes and reactions as pro-
posed by Endsley (1995). While cognitive processing of the environment cannot be monitored objectively, the surroundings
that are processed by the driver can be measured and described through camera systems, radars and lidars in a mathematical
sense. However, a clear description method of vehicle surroundings in take-over situations has not been generated thus far
(Schneider, 2009), making it difficult to assign environmental complexities to differentiating take-over performance.

Feldhütter, Gold, and Bengler (2016) examined CAD durations of five and twenty minutes, findings showed temporal dif-
ferences in reaction times of first gaze movement. Typically CAD durations in current publications focus on times lower than
five minutes, extremely quick CAD durations being only a few seconds (Louw, Merat, & Jamson, 2015). CAD duration seems
to have a negative effect on take-over as glances to the driving scene shorten (Feldhütter et al., 2016) as well as leading to
fatigue (Neubauer & Matthews, 2012). This effect is explained through the loss of situational awareness, leading to higher
effort and time necessary to perceive the environment. Additionally, autonomous driving appears to have an effect on the
quality of take-over after motoric, visual and cognitive control has been obtained (Brandenburg & Skottke, 2014). Multiple
studies also address the effect of different NDRT as independent variables, as drivers tend to reallocate attention away from
driving-related activities and focus on a NDRT variant (Naujoks, Purucker, & Neukum, 2016). Typically, these studies require
participants to perform standardized abstract NDRT [i.e. n-back task, Surrogate Reference Task (Radlmayr, Gold, Lorenz,
Farid, & Bengler, 2014), Tracking Task (Damböck & Bengler, 2012), Twenty-Question-Task (Petermann-Stock, Hackenberg,
Muhr, & Mergl, 2013)]; entertainment NDRT [i.e. watching video, playing games, listening to music (Zeeb, Buchner, &
Schrauf, 2016)]; vehicle related NDRT,[i.e. interaction with navigation system (Wulf, Zeeb, Rimini-Döring, Arnon, &
Gauterin, 2013) and speaking on the phone (Naujoks & Neukum, 2017)]. The abstract tasks of the abovementioned list of
NDRT can be scaled and controlled in their complexity, e.g. n-back task by increasing the ‘n’ (Kirchner, 1958). Findings
display contradicting results when analyzing the effect of NDRT on reaction times, sometimes displaying an effect of type
of NDRT (Petermann-Stock, 2013) and sometimes not (Gold et al., 2016; Radlmayr et al., 2014). Comparison between the

Table 1

Acronyms within publication for further reference.

Acronym Definition

ADAS Advanced Driver Assistance System
CAD Conditional Automated Driving (Level 3)
HMI Human-machine interaction
NDRT Non-Driving Related Task
RtI Request to Intervene (a.k.a. Take-over Request TOR)
TTC Time to Collision
TTEoR Time to Eyes on Road
TTFR Time to First Reaction
TTHoS Time to Hands on Steering
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studies is difficult, as other parameters are varied throughout the experimental setup between studies. It seems that the exe-
cution of NDRT in general lead to longer take-over times as opposed to take-overs in which drivers continuously monitor the
driving task (Vogelpohl et al., 2016). Zeeb, Buchner, and Schrauf (2015) find no effect of visual distraction on motor readiness
of hands at the steering wheel. Nomadic handheld devices are not examined by Zeeb et al. (2015), as neither this study will,
due to the fact that these devices can reduce motor readiness if the hands are not free and take-over warnings are difficult to
synchronize on nomadic devices.

As environmental factors are the prime group of influencing factors being analyzed in current studies, this generates a
large network of complexity. For the truck context none of these factors have been investigated and a comparison to the pas-
senger car context should be formed. The present study will consider two different NDRT which are expected to generate
differences in take-over times as presented by Petermann-Stock (2013) (Hypothesis 2). Three different CAD durations are
also examined while keeping traffic densities constant. It is expected that different CAD durations have an effect on reaction
times (Hypothesis 3). To examine the possibility of different take-over situation types, multiple highly temporal situations
will be explored to exclude the possibility of learning reactions for one specific situation when repeated. A study fromWalch,
Lange, Baumann, andWeber (2015) presented results in which reaction times were investigated with regard to warning time
criticality as well as take-over situations, however, with only a significant effect between some warning types and situations.
Take-over situations in the present study are categorized in three groups, i.e. obstacle avoidance, stabilization and braking &
stabilization scenarios. Resulting from these three groups and the variation in driver responses needed to perceive and plan
the take-over reaction, significantly different take-over times will be observed for different take-over situations (Hypothe-
sis 4). A hypothesis with regard to which type of situation generates the quickest take-over times is not postulated.

1.1.3. Vehicle factors
The third factor class, vehicle factors, include technical ADAS versions, fallback systems, and visual field of view from the

cockpit within a vehicle. These factors have not been explicitly regarded as independent variables in the abovementioned
publications, but are inherently different between experiments. Therefore, a comparison between the scientific discoveries
needs to consider the difference in vehicle parameters. It is unrealistic to compare all of the vehicles utilized in the listed
publications regarding take-over behavior in Level 3, however, especially fallback systems possibly affect behavior consid-
erably. To the best of the authors’ knowledge no current study compares different reaction types in different vehicles. This
class of factors is held constant in this experiment and no hypotheses are generated. By utilizing only one truck, i.e. vehicle
factors are held constant, the abovementioned environmental factors can be analyzed and a comparison can be drawn
between the group of all passenger car studies which also had constant vehicle factors

1.1.4. Human-machine interaction factors
The fourth class, human-machine interaction factors, regards the warning modalities, interaction design and NDRT layout

within the vehicle (Naujoks & Neukum, 2017). This set of parameters is not investigated explicitly in the present study and is
held constant throughout experimentation. While iteration of these parameters can affect take-over behavior (Naujoks, Mai,
& Neukum, 2014), vehicle interior design always needs to be taken into account when arranging a HMI. As HMI concepts are
different among different vehicles of one automobile manufacturer and are changed with new models, influencing factors
also vary. To reduce any effect of HMI factors, this study will only regard one HMI setup and keep all interaction identical
between participants.

1.2. Truck context

Predominantly driven by a trained group of professionals, as opposed to occasional drivers in the car context, truck dri-
vers are responsible for vehicles with a higher mass that potentially cause higher safety critical situations if mismanaged.
German legislation passed a law forcing new trucks with a mass greater than eight tons to have an emergency brake assist
as of 2015, reducing the current speed by 10 km/h (Bundestag, 2016), similar actions are discussed within the European
Union. Automation in the truck context thus far always incorporates a human in-the-loop, who is assisted in certain situa-
tions through specific ADAS, e.g. lane departure warning systems or automatic transitions.

When considering reactions in take-over behavior between truck and car contexts, behavior may vary between drivers of
the two vehicle types. Accordingly, a multitude of factors of truck driving may influence the take-over behavior differently
when compared with drivers of passenger cars. Firstly, driver factors, e.g. experience or trust in vehicle, and intrinsic driving
motivation are essentially different. In Germany and Britain an average of roughly 39 min are spent in passenger cars
(Department for Transport, 2015; Streit, Chlond, Weiß, & Vortisch, 2014), while professional truck drivers are allowed to
drive up to ten hours according to German law. This effect is also recorded by the total distance passenger cars and trucks
cover annually in Germany; cars: 13,341 km, trucks: 98,809 km (Kraftverkehrsstatistik, 2016). Similar statistical differences
are documented in other countries (Foundation, 2017; U.S. Department of Transportation Federal Highway Administration,
2014). In addition, a larger portion of time is spent on highways by truck drivers, 50% of annual mileage in Germany
(Bueringer, 2007; Bundesamt, 2013). This allows professional truck drivers to practice and learn driving maneuvers over
an extensive period of time with a higher reoccurring frequency. Secondly, the environmental factors are largely similar
for truck drivers compared to passenger car drivers. A difference being, that the situations truck drivers experience are dif-
ferent as a majority of their travel is limited to the right lane on highways. An additional hypothesis is therefore generated,
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truck drivers will take back control quicker than passenger car drivers due to more experience and training (Hypothesis 5).
Thirdly, when regarding vehicle factors, depending on the truck model, drivers have a field of view approximately two meters
higher above tarmac than those of passenger cars. Vision is more confined for close ranges in trucks, due to a large blind spot
imminently in front of the bumper and to the rear of the cabin. Accelerations and velocities are lower, however, sharp decel-
erations must be avoided to reduce the risk of damaged cargo or rear-ending of following vehicles. Fourthly, different vehi-
cles also present different HMI factors,which may influence drivers differently in the two vehicle types. Without a controlled
experimental comparison between different setups and interaction modalities a comparison is difficult and has thus far not
been conducted.

When taking all four factor classes into account, Vogelpohl et al. (2016) conclude that complexity of take-over situations,
warning modalities and the warning times before take-over affect take-over behavior predominantly. All current published
studies conducted on time critical take-over behavior of Level 3 automated driving, i.e. CAD, were performed in the passen-
ger car context, investigating different environmental and HMI factors as independent variables (Damböck, 2013; Feldhütter
et al., 2016; Louw et al., 2015; Radlmayr et al., 2014; Vogelpohl et al., 2016). Take-over behavior in the truck context has thus
far been investigated by Zhang, Wilschut, Willemsen, and Martens (2017) in platooning scenarios with no time criticality.
Different reaction times were measured by controlling for the interaction with the truck and allowing for an NDRT. Unfor-
tunately these findings are not comparable to our scope, as no time criticality was introduced. Similarly the workload and
trust in automation has been investigated in platooning scenarios (Hjälmdahl, Krupenia, & Thorslund, 2017). Interestingly,
Hjälmdahl et al. (2017) found that drivers tend to overestimate their situational awareness in platooning scenarios. Further
research focusing on the design of an HMI in the truck context has been conducted by Richardson, Flohr and Michel (2018)
and for military vehicles by Baltzer, Rudolph, López, and Flemisch (2016). Socio-economic factors and the scope of NDRTs on
drivers and hauliers was investigated by Janson and Lindqvist (2017). The lateral partial automation of a truck was tested by
Schermers, Malone, and Van Arem (2004), identifying that drivers assisted were less likely to change lanes compared to man-
ual drivers in critical take-over situations which required braking. While the truck context has been regarded in several
aspects of automated driving, research focusing on time critical take-over scenarios in Level 3 with NDRT has not been
addressed.

1.3. Hypotheses

The scope of this study is to record behavioral data of truck drivers currently operating a semi-truck with an activated
Level 3 automation function, SAE Level 3. This incorporates the data collection of reaction times and eye-tracking data.
The measurements of the body posture are not included in this publication but are considered in Lotz and Weissenberger
(2019). A moving-based simulator will be used to manipulate environmental factors, while HMI and vehicle factors are kept
constant (see Fig. 1). The variation of said factors will be measured through different camera-based systems and referenced
on reaction times. This type of experimental setup is thus far novel within the truck context and will present data on take-
over behavior for highly trained drivers that can be compared to established Level 3 research. The comparison can thus far
only be generated superficially to other publications in the field. Two different NDRT are chosen which are hypothesized to
distract drivers over longer periods of time, making it easier to compare trials in the beginning and end of the experiment as
attention should be held almost constant. When presenting many take-overs, drivers will likely display attentive behavior
towards the driving task after multiple take-over repetitions and will try and uphold higher situation awareness, with less
attention being allocated towards NDRT. Typically, studies with Level 3 only present between one to four take-overs which
bears the danger of learning behavior influencing reaction times in early trials. In order to observe learning behavior, short

Fig. 1. Influencing factors for the current experimental setup including measurement techniques.
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CAD durations were chosen for this study which is coherent with typical CAD durations of less than five minutes (Nilsson,
Laine, & Jacobson, 2017).

To exclude the possibility of participants recognizing identical take-over situations and learning situation specific behav-
ior, nine different take-over situation types were defined for each of the nine take-overs in the experimental study.

Based on the description of previous research within the Level 3 domain, five primary hypotheses are generated. The first
four hypotheses are expected to have a direct effect on reaction times for time critical take-over situations. If an influence is
found, this could lead to the possibility of adaptive warning times.

(1) Learning behavior will be observed due to first time use of the automation function. Reaction times will decrease as
interaction for first time users of the automation function will adapt behavior.

(2) NDRT game will prolong take-over times compared to video, as definite visual attention is required to successfully
solve tasks. The video presents information in two modalities (auditory and visual), while the game can only be solved
if visual and motoric modalities is allocated. Both tasks require cognitive resources additionally.

(3) Longer CAD durations will prolong take-over times for TTEoR as well as TTHoS and TTFR, as argued by Feldhütter et al.
(2016).

(4) Due to the complexity of the surrounding and the take-over situations different take-over times are expected.
(5) Average reaction times will be lower than those reported of passenger car drivers. This hypothesis can only be com-

pared quantitatively to published studies as no pure passenger car drivers were examined. Additionally, the driver,
environmental, HMI and vehicle factors of published studies may differ to this study.

2. Materials & methods

2.1. Reaction time definition

The following reaction times are defined for a comparison of independent variables (Damböck, 2013).
TTEoR: The Time To Eyes on Road is a measure for cognitive processing, as a visual and auditory request to intervene (RtI)

has to be processed by subjects and eyes have to be moved towards the road. Times can vary significantly due to the visual
path subjects choose to address. Theoretically, if information regarding take-over is searched for in the instrument cluster
before the environment is focused on, TTEoR rises drastically due to the additional saccade and fixation towards the instru-
ment cluster.

TTHoS: Time To Hands on Steering expresses the motoric reaction time necessary for subjects to regain lateral control of
the vehicle. It is not possible to distinguish whether subjects begin with motoric reaction after eyes fixate the road or if
motoric reaction is initialized simultaneously with eye movement.

TTFR: Time To First Reaction measures the time between RtI and a steering wheel input greater 1 Nm or 5% accelerator/
decelerator pedal position change. At RtI the trajectory and speed of the automation function was kept constant until one of
the abovementioned thresholds were activated. This caused the automation function to deactivate. It could be possible, that
the TTFR is lower than TTHoS, as reactions at the pedals are also an input for TTFR.

2.2. Participants

The sample size for this experiment consisted of 95 participants, four female and 91 male. This gender distribution is sim-
ilar to the German truck driver population, with 1.7% professional female drivers employed in Germany (Statista, 2017). Age
distribution was controlled for in the sampling and reflects the demographic distribution of truck drivers in Germany. A total
of 88 participants completed the course and were considered for statistical analysis, no one was involved in a crash. Exclu-
sion of 7 participants occurred due to technical synchronization failures of sensors. The primary vehicle driven in everyday
use by 71 of the 88 participants was a Mercedes truck. Mean age of the participants (n = 88) was M = 42.6 years
(SD = 9.61 years) with a range from 23 to 62 years. All participants had an annual minimal mileage of 20,000 km/year and
a mean of M = 73,823.8 km/year (SD = 45,378.5 km). A total of 38 participants had corrected vision, wearing contact lenses
or glasses, participants with progressive lenses did not take part in the experiment. Overall, 55% of participants were familiar
and used speedometers daily (Adaptive Cruise Control = 34%). As personal preferences of ADAS usage varies, even for profes-
sional drivers, this factor could not be considered during sampling. To improve controllability for the Level 3 automation
function, interaction was identical to that of Mercedes-Benz speedometers. An influence of Mercedes familiarity was not
found in the data, as the automation function was completely new for all participants. Physical wellbeing was addressed
and queried prior to the start of the experiment and monitored during procedure.

2.3. Experimental design

All participants were presented with nine different take-overs (trials). Each trial consisted of one of the nine situation
types, which required either an obstacle avoidance (i.e. Fog &Warning Triangle, Stranded Vehicle, Lost Cargo, Lane Narrowing
and Construction), stabilization of the vehicle (i.e. Loss of Lane) or braking (i.e. Cut in Left, Cut in Right and Lead Braking), the
situations types can be found in Fig. 2. Ten different variants of the sequence of situation types were designed, of which each
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participant drove one, see Fig. 3. In each variant the nine take-over situations were divided into three blocks. Within each
block the trials had a CAD duration of each 30, 120 or 240 s, levels were randomized within each block. Two different tasks,
video or game were presented during the experiment. During one of the three blocks (3 take-over situations) the video was
shown, during the other two blocks (6 take-over situations) a geography gamewas played, which is described in Section 2.4.3.
Procedure requires all participants that are involved in a collision to terminate the experiment. In order to reduce the
amount of take-over collisions, we chose to keep the left lane immediately before and during take-over idle to reduce crash
risk at RtI.

This results in an experimental design with the unbalanced within-subject factors CAD duration [30, 120, 240 s] and NDRT
[video, game] as well as the balance within-in subject factors trial [1–9] and situation types [9 different situations]. The com-
paratively high amount of independent variables and factors were chosen to address the study aims of identifying influenc-
ing factors on the take-over behavior. This resulted in a non-orthogonal experimental design. A full iteration of all variants
would have required 9! = 362,880 variants and comparability is limited to this extent.

Each of the nine trials started when the automation function of the vehicle was activated through the driver and the Level
3 commenced. Due to individual temporal activation of the automation function, CAD duration was not fixed, but was
distributed around 30 s (M = 37.0 s; SD = 7.0 s), 120 s (M = 121.4 s; SD = 7.5 s) and 240 s (M = 243.6 s; SD = 8.4 s). Simultane-
ously, the NDRT was activated on the mounted tablet in the central console. Due to the occurrence of one of nine take-over
situations, a take-over signal was displayed for three seconds after which the tablet was blackened and locked. This take-
over signal or RtI consisted of visual and auditory warnings in the instrument cluster and tablet. The visual icon displayed
the outline of a set of hands holding a steering wheel colored red with the text ‘‘Hands On” written beneath. Simultaneously,
a sound was triggered at 1200 Hz and 200 bpm until a TTFR was measured. During manual driving, after the RtI, the display

Fig. 2. Nine different take-over situations categorized into three basic maneuvers that were required to circumvent a crash. Times to collision (TTC) are
displayed above each situation.

Fig. 3. Experimental procedure of the experiment with three exemplary variants. Nine trials were driven by each participant that had different factors of
the independent variables.
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was locked and darkened. The vehicle held the current steering angle and speed at the RtI until driver took back control. After
take-over a 50 s manual drive commenced until drivers were asked to activate the automation function again, initiating the
next trial. Within this manual drive, after 20 s, a verbal question was presented to the participants through loudspeakers in
the cabin with regard to the perceived temporal criticality of the prior take-over. The experiment was designed to verbally
inquire criticality in temporal proximity to the RtI. In order to shape the query as non-invasive and simple as possible, sub-
jects were asked in regard to the temporal effect of the RtI. The additional aspect of non-fluent native speakers was also taken
into account and the question was phrased with regard to take-over time. The question requested a categorization of tem-
poral criticality: ‘‘Was the time for take-over sufficient, short or much too short?” Graphical representation of the experimental
design can be found in Fig. 3.

Dependent variables consisted of take-over times on the basis of Damböck (2013), time to eyes on road (TTEoR), time to
hands on steering (TTHoS) and time to first reaction (TTFR). The TTFR is the main measure of reaction as it represents the first
oversteering of the automation function by the driver.

2.4. Apparatus

2.4.1. Driving simulator and track
Venue of this experiment was the Mercedes-Benz Moving-Base-Simulator, allowing 360� simulation of driving related sit-

uations with realistic forces and accelerations of complete vehicles. A Mercedes Benz Actros truck cabin was mounted within
the simulator dome, which was connected to a hexapod on a carriage enabling translatory motion as well as limited pitch,
yaw and roll. All human-machine-interaction and actuator inputs fromwithin the cabin are translated with a realistic engine
to movements of the composite dome, carriage and visual display of the 360� projection screens. The interior of the cabin
was equipped with a capacitive steering wheel designated to record the TTHoS.

The activation of the Level 3 system was managed through the SET-button on the right-hand side of the steering wheel.
Through activation with the SET-button on the steering wheel the automation function and therefore Level 3 was initiated,
this was displayed at all times in the instrument cluster with a blue icon. During Level 3 the driver could overrule lateral or
longitudinal control at any time without deactivation of the automation function. As soon as overruling was completed and
all controls were let go, automation reactivated itself. An exception being if the brake pedal was pressed, in these instances
the automation needed resetting.

2.4.2. Eye-tracker
A Smart Eye Pro eye-tracker was used as a means to record gaze behavior and was mounted on the dashboard of the truck

cabin. Four lenses were dispersed within the cockpit along the top of the dashboard to allow a large field of view in which the
eye-tracker is capable to record data. The eye-tracking cameras were calibrated in an automated procedure for each partic-
ipant prior to the drive. Data obtained was utilized for the calculation of TTEoR and for the analysis of visual attention during
and immediately after take-over.

2.4.3. Non-driving related tasks (NDRT)
Two different NDRT were analyzed, however, experimental design dictated which NDRT was available. The NDRT was

presented in blocks of three trials with each trial within these blocks consisting of a different CAD durations. Rather than
choosing NDRT that are abstract and could lead to a loss of attention over time, it was decided to present tasks that were
common for everyday use, at best for longer periods of time and would allow comparison between early and late trials. Data
analysis showed a constant visual attention over all trials towards the NDRT and confirms the hypothesis, that engagement
through realistic tasks was constant.

The experimental block in which the video was shown allows comparability to published studies with this NDRT, e.g.
(Carsten, Lai, Barnard, Jamson, & Merat, 2012). Theme of our video was a short documentary about truck driving. This NDRT
presented auditory and visual information to participants.

The second NDRT was available during two of the three experimental blocks. This task was an interactive geography quiz
also presented on the fixed tablet in the central console. Participants could see a contour map of Germany on the tablet and
were asked to locate certain cities. By touch the participants could set a point on the map and received feedback as to the
actual location of the city. Feedback consisted of a distance measure between the participants’ guess and the actual position.
An analysis of the game was not conducted. The only measures drawn were the number of taps on the tablet and their coor-
dinates. The task was chosen due to the hypothesis that professional truck drivers have obtained a high geographical knowl-
edge and are motivated to perform well in such a quiz. Notably, if no NDRT is available or the task is mundane,
disengagement can lead to a state of passive fatigue (Marberger et al., 2017). Demonstrating typical tasks that could be
allowed by legislation and offer comparability to other studies in which video NDRT was examined (Naujoks & Neukum,
2017). Visual attention and motoric manipulation was necessary to successfully execute this task, as no acoustic interaction
was required. All text was written in German.

2.4.4. Take-over situations
Nine independent non-reoccurring take-over situations in the environment caused the event of nine RtI. Prior to RtI the

automation function followed a leading convoy of five trucks with a distance of 55 m to the last truck in the convoy.
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Participants were instructed to set the speed of the automation function to 80 km/h during Level 3. Due to the requirement
of manual driving after RtI and natural speed variation through drivers, the convoy could drive away, however, speed of the
convoy decreased in these instances to assure that participants would catch up again.

Time to collision (TTC) represents the time drivers are given between the RtI and a collision with the object causing take-
over. Take-over situations were presented within a near proximity of the ego-vehicle to guarantee quick take-over behavior.
If situations were to be presented with TTC of larger magnitude, participants’ reactions would not need to be as quick. Full
observation of the environment and updating of situation awareness could occur before an input at the steering wheel or
accelerator/brake pedals would be necessary. This is also a prime aspect that makes comparability of publications with dif-
ferent TTC difficult. The take-over situations all required a rapid reaction from the driver in order to overt an accident by
either holding the lane, changing the lane or holding the lane and decelerating, see Fig. 2 and Appendix B. The TTC varied
due to the fluctuation of surrounding traffic needed to initiate take-over, see Fig. 2, especially in take-over situations in
which moving objects caused take-over (i.e. Cut in Right, Cut in Left). For take-over situation Fog & Warning Triangle TTC
was less than four seconds, however, the warning triangle was not situated in the path of the truck’s trajectory. Furthermore,
for take-over Lane Narrowing TTC is calculated to the beginning of the cones, actual lane narrowing commenced after an
additional two seconds. Further conditions in Appendix B.

2.5. Procedure

Participants were welcomed by an experimenter and were asked to fill out consent forms, bank details to receive their
financial compensation and a demographic questionnaire. A written description of the experiment was presented in which
the automation function was explained. The occurrence and explicit investigation of take-over behavior was not mentioned,
however, take-over functionality for RtI was explained during the detailed explanation of the automation function. The
experimenter additionally explained the activation and display of the Level 3 ADAS after participants had read instructions.
This was to ensure that all participants had understood basic functionality, as some participants were not fluent in German.
It was never mentioned to the participants, that take-overs were the focus of the study, rather user feedback on the new
ADAS automation function was being evaluated.

Following the introduction, participants were led to the Actros cabin through a gangway without visually seeing the
dome. It was explained, that functionality of the truck was identical to any truck on the road and that all German road traffic
rules apply. The automation buttons on the steering wheel were revised and the calibration of the eye-tracker was con-
ducted. An introductory drive including a verbal tutorial of the automation function (activation, overriding of functions,
take-over and deactivation) was driven for 10 min after which the experimental drive started by activation of the tablet.
The acclimatization phase was conducted to ensure, that participants could control the Level 3 ADAS and were not instructed
to react in any way. Participants were asked to follow a leading convoy (five trucks) at 80 km/h during manual and auto-
mated drive without overtaking. A total of 38 km were driven within approximately 28.5 min after the acclimatization
phase. Additionally, the tutorial was conducted within the first section of highway of approximately 12 km length. Each trial
consisted of a phase in which the Level 3 automation function was activated (CAD duration 30, 120 or 240 s) with availability
of an NDRT. Following RtI a 50 s long manual drive phased was performed during which a verbal question was presented to
participants asking for a subjective rating of the amount of time given for take-over.

3. Results

3.1. Reaction times - Hypotheses 1, 2, 3, 4

A total of 768 take-overs were successfully conducted by the 88 participants. Due to early identification of take-over sit-
uations by the participants, 24 take-overs were not regarded. TTFR displayed a positively skewed distribution with a mean of
1.35 s (SD = 0.49 s). Visual representation of mean TTFR for the independent variables CAD duration and NDRT are displayed
in Fig. 4, with the slowest reaction of TTHoS and TTFR at 6.3 s. On average a take-over was conducted sequentially by focus-
ing the eyes on the road followed by taking control of the vehicle and finally showing a first reaction. Due to movement of the
driver and possible loss of the cornea, quality of the gaze direction data is not constant. To classify eye-tracking as conclusive
a qualitative comparison of TTEoR, TTHoS and TTFR was conducted. If the sequence of reaction times did not match a video of
the participants during take-over, eye-tracking was ruled inconclusive for the period of the take-over. Reaction times for all
three dependent measures were: TTEoR = 0.34 s (SD = 0.43) (291 trials of TTEoR were disregarded due to inconclusive eye-
tracking data during take-over, leading to 477 trials for TTEoR); TTHoS = 1.20 s (SD = 0.48); TTFR = 1.35 s (SD = 0.49). Due to
frequent control glances at the road, in 217 of 477 regarded TTEoR trials, drivers were in the midst of a control glance leading
to short TTEoR. This aspect will be discussed in more detail in Section 3.2. The formulated hypotheses are investigated
through statistical procedure leading to an adjusted alpha-level of aadj = 0.002, see Table 2. Three full-factorial within-
subject ANOVA were calculated with the four abovementioned independent variables, i.e. CAD duration, NDRT, trial and
situation type on TTFR (3 [30, 120, 240 s] � 2 [video, game] � 9 [1–9] � 9 [9 different situations, see Fig. 2]). Due to the
experimental design, some combinations are non-existent and factor-levels are not considered. A full-factorial ANOVA
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was chosen for statistical analysis, as the calculation is mathematically identical to multiple one-way ANOVA and
additionally offers the possibility of analyzing interactions.

Two main effects of trial F(8,710) = 22.381, p� 0.001, see Fig. 5, and of situation type F(8,710) = 11.91, p� 0.001, see
Fig. 6, were identified, while no interaction was determined for TTFR. Therefore, our results are in accordance with

Fig. 4. Reaction times Time To Eyes on Road (TTEoR), Time To Hands on Steering (TTHoS) and Time To First Reaction (TTFR) for independent variables CAD
duration (left) and secondary task (right).

Table 2

ANOVA of dependent variable TTFR and TTHoS.

Dependent Variable Measure Sum of Squares df Mean Square F Pr (>F) Partial g2

Time To First Reaction NDRT 0.09 1 0.091 0.52 0.471 0.000732
Trial 31.23 8 3.904 22.381 <2e-16 0.201000

Situation Type 16.62 8 2.077 11.910 4.44e-16 0.118000

CAD Duration 0.73 2 0.367 2.103 0.1229 0.005890
NDRT * Trial 1.57 8 0.196 1.124 0.3449 0.012500
NDRT * Situation Type 2.18 8 0.273 1.562 0.1325 0.017300
Trial * Situation Type 3.41 11 0.310 1.778 0.0540 0.026800
NDRT * CAD Duration 0.84 2 0.418 2.396 0.0918 0.006700
Trial * CAD Duration 0.96 6 0.161 0.921 0.4788 0.007730
Situation Type * CAD Duration 0.75 1 0.752 4.313 0.0382 0.006040
NDRT * Trial * Situation Type 0.25 2 0.126 0.723 0.4859 0.002030

Time To Hands on Steering NDRT 0.07 1 0.0678 0.368 0.5444 0.000518
Trial 23.12 8 2.8894 15.67 <2e-16 0.150000

Situation Type 8.26 8 1.0325 5.600 6.7e-07 0.059400

CAD Duration 0.76 2 0.3794 2.058 0.1285 0.005760
NDRT * Trial 3.03 8 0.3788 2.054 0.0381 0.022600
NDRT * Situation Type 4.12 8 0.5149 2.793 0.0048 0.030500
Trial * Situation Type 2.93 11 0.2664 1.445 0.1481 0.021900
NDRT * CAD Duration 0.77 2 0.3871 2.099 0.1233 0.005880
Trial * CAD Duration 1.67 6 0.2784 1.510 0.1721 0.012600
Situation Type * CAD Duration 1.47 1 1.4745 7.997 0.0048 0.011100
NDRT * Trial * Situation Type 0.30 2 0.1486 0.806 0.4472 0.00227

Time To Eyes on Road NDRT 1.06 1 1.0591 6.611 0.0105 0.015500
Trial 6.93 8 0.8668 5.411 1.69e-06 0.093600

Situation Type 4.92 8 0.6153 3.841 0.0002 0.068300

CAD Duration 0.22 2 0.1120 0.699 0.4977 0.003320
NDRT * Trial 1.48 8 0.1851 1.155 0.3251 0.021600
NDRT * Situation Type 2.29 8 0.2858 1.784 0.0783 0.033000
Trial * Situation Type 2.38 11 0.2165 1.351 0.1937 0.034300
NDRT * CAD Duration 0.09 2 0.0427 0.267 0.7660 0.001270
Trial * CAD Duration 0.77 6 0.1280 0.799 0.5713 0.011300
Situation Type * CAD Duration 0.10 1 0.0992 0.619 0.4318 0.001480
NDRT * Trial * Situation Type 0.06 2 0.0311 0.194 0.8237 0.000926

Bold signifies that the adjusted alpha-levels were below the threshold.
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Hypothesis 1 and Hypothesis 4. The classification of take-over situations according to Fig. 2 was not aligned with results of
TTFR. All take-over situations exhibit learning behavior, even if different average reaction times were observed as seen in
Fig. 5. The results of the ANOVA also leads to a rejection of Hypothesis 2, F(1,710) = 0.520, p = 0.471 and a rejection of
Hypothesis 3, F(2,710) = 2.103, p = 0.123.

The second full-factorial within-subject ANOVA is calculated on TTHoS. Again two main effects are identified for trial F
(8,710) = 15.67, p� 0.001 and of situation type F(8,710) = 5.60, p� 0.001. The results also present a high correlation
between the two dependent measures of TTFR and TTHoS (r = 0.817). While statistical significant differences were observed
for the independent variable situation types which shows accordance of the results with Hypothesis 4, Section 3.2. will dis-
play reasoning why this conclusion is false.

A full-factorial within-subject ANOVA on TTEoR, see Table 2, for the reduced dataset was calculated and two main effects
for trial F(8,419) = 5.41, p� 0.001 and of situation type F(8,419) = 3.841, p = 0.0002 were identified. In combination with the
results of the full-factorial ANOVAs for TTHoS and TTFR, this leads to a rejection of Hypothesis 3.

3.2. Take-over situation comparison – Hypothesis 4

To have a more accurate look at different behavioral reaction times, the dataset of 477 trials with conclusive eye-tracking
was divided into two parts, see Table 3. The first subset in Table 3 contains only those 217 trials in which the eyes were fix-
ated at the road at RtI. The primary cause for these fixations were control glances. Naturally, the TTEoR equaled 0 s while

Fig. 5. Chronological visualization of reaction times Time To Eyes on Road (TTEoR), Time To Hands on Steering (TTHoS) and Time To First Reaction (TTFR).
For each of the abovementioned reaction times all trials are displayed from left to right (first to last).

Fig. 6. Reaction times Time To Eyes on Road (TTEoR), Time To Hands on Steering (TTHoS) and Time To First Reaction (TTFR) for all take-over situations as
displayed in Fig. 2.
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TTHoS = 0.94 s (SD = 0.51) and TTFR = 1.10 s (SD = 0.52). The second subset contains all other trials in which the eyes were
not fixated on the road at RtI. The values of Subset 2 were calculated as TTEoR = 0.62 s (SD = 0.40), TTHoS = 1.29 s (SD = 0.34)
and TTFR = 1.44 s (SD = 0.37). If the temporal difference between TTFR and TTHoS are compared within the two subsets, both
values equal 160 ms and 150 ms. Therefore, almost no difference is made between the motoric response once hands are
place on the steering wheel in dependence to visual information at RtI. Similarly, when comparing TTHoS and TTFR between
the subsets, both values are almost identical with 350 ms and 340 ms, confirming the findings of Zeeb et al. (2015) that
motoric readiness is isolated from visual information. This means, that visual information of the take-over cause at RtI gen-
erates a benefit in motoric response prior to hands touching the steering wheel, without altering the temporal action
sequence once hands or feet are placed on controls for the first reaction.

Minimal reaction times (lower whiskers) are an indication for premature visibility of take-over situations, if participants
chose to observe the driving situation in these instances through control glances. As seen in Fig. 6 three take-over situations
(Fog &Warning Triangle, Lane Narrowing and Cut in Right) are mainly responsible for TTEoR = 0 s. Subset 1 and 2 are therefore
subdivided further to differentiate between situation types that display the possibility of premature visibility. Premature vis-
ibility is defined in this context as the possibility of observing objects in the environment that can be identified as causing a
take-over prior to any warning. When comparing the second subset (all trials where no eyes were on the road at RtI) with the
fourth and sixth subset (partition of Subset 2 with regard to different situation types), similarity of the mean times of the data
is apparent. As the eyes were not on the road at RtI for these three subsets, behavioral procedure at take-overs seems to be
identical. However, the third dataset representing take-over situations with the three distinct situations (Fog & Warning Tri-
angle, Lane Narrowing and Cut in Right) and TTEoR = 0 s, displays much quicker TTHoS and TTFR. This benefit can be attributed
to the timely perception of the take-over situation. Trials of Subset 3 made it possible for the driver to perceive and plan a
reaction prior to RtI, generating the identical benefit as long TTC would, with the difference that immediate action was
required in the situations presented in this study. The fifth subset entails the take-over situations (Lost Cargo, Construction,
Loss of Lane, Cut in Left, Lead Braking and Stranded Vehicle) at which TTEoR = 0 s, TTHoS = 1.19 s (SD = 0.50) and TTFR = 1.38 s
(SD = 0.50) were calculated. A comparison of Subset 3 and Subset 5, under the assumption that situations were perceived
equally beginning at TTEoR = 0 s, displays the benefit premature perception generates. The benefit of 530 ms for TTFR was
observed in the data. The results of the ANOVAs calculated in Section 3.1. regarding the significant results for situation type
are not confirmed by the results in Table 3. As the comparison by means of a one-way ANOVA of Subset 4 with Subset 5 and 6
displays, the different situations do not cause differences in TTHoS F(1,361) = 0.347, p = 0.556, partial g2 = 0.00006 or TTFR F
(1,361) = 0.021, p = 0.885, partialg2 = 0.001 as found by the ANOVAs in Section 3.1. Significant results obtained in Section 3.1.
are due to the fact that Subset 3 is included in the data. The conclusions drawnwith regard to Hypothesis 4 are contradictory.
Taking all aspects into account, Hypothesis 4 is rejected.

3.3. Manipulation check

A manipulation check was not conducted during the experimental procedure to validate engagement in the NDRT. How-
ever, for the game the amount of tablet taps were monitored during the experiment. Of the 517 trials in which the game was
presented, 459 participants had touched the tablet at least once within 10 s prior to RtI. On average participants tapped the
tablet M = 2.85 times within 10 s, M = 1.40 times within 5 s and M = 0.54 times prior to RtI. A one-way ANOVA was con-
ducted on all trials in which the game was presented. The boolean independent variable whether a tap occurred within
10 s prior to RtI was investigated for the dependent variable TTFR, no significant effect was found F(1,515) = 0.29,
p = 0.59, partial g2 = 0.00056. Investigation of engagement with the video NDRT is more difficult as no motoric response

Table 3

Comparison of reaction times for all situations.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6

Situation types All All Fog & Warning
Triangle
Lane Narrowing
Cut in Right

Fog & Warning
Triangle
Lane Narrowing
Cut in Right

Lost Cargo
Construction
Loss of Lane
Cut in Left
Lead Braking
Stranded
Vehicle

Lost Cargo
Construction
Loss of Lane
Cut in Left
Lead Braking
Stranded
Vehicle

Number of take-overs 217 260 114 65 103 195
Sum take-overs

P
477

P
477

Eyes on Road at RtI? Yes No Yes No Yes No
Time To Eyes on Road [sec] 0 0.62

(SD = 0.40)
0 0.59

(SD = 0.36)
0 0.63

(SD = 0.42)
Time To Hands on Steering

[sec]
0.94
(SD = 0.51)

1.29
(SD = 0.34)

0.71
(SD = 0.39)

1.29
(SD = 0.36)

1.19
(SD = 0.50)

1.30
(SD = 0.33)

Time To First Reaction [sec] 1.10
(SD = 0.52)

1.44
(SD = 0.37)

0.85
(SD = 0.40)

1.43
(SD = 0.32)

1.38
(SD = 0.50)

1.45
(SD = 0.39)
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was necessary. Control glances directed at the driving task were measured during the complete experiment with respect to
the frequency and duration of gazes within the windscreen. The average frequency of control glances occurred every 2.46 s
(SD = 3.44), having a duration of 0.43 s (SD = 0.20) and last occurrence prior RtI being 4.63 s (SD = 11.99). Control glances at
the road can be compared between the two NDRT with three one-way ANOVAs. A total of 23 observations were disregarded
due to no control glances being performed and set to the CAD duration in these instances. No significant differences were
found for the time since the occurrence of the last control glance F(2,451) = 1.83, p = 0.161, partial g2 = 0.008 average control
glance duration F(2,451) = 0.252, p = 0.778, partial g

2 = 0.0011 or average control glance frequency F(2,451) = 3.886,
p = 0.021, partial g2 = 0.0169.

3.4. Quality of take-over

A central question regarding take-over from a highly automated vehicle is whether drivers had enough time to conduct
the take-over safely. This is based on the introduced discussion how warning times have to be designed, fixed or variable, to
allow for adequate take-over times see Section 1. Taking back control from an automated vehicle always brings with it an
aspect of safety criticality, due to the temporal facet of the vehicle being in motion. As warning times during Level 3 should
never provoke drivers to safety critical behavior, different measures can be consulted to investigate the quality of take-over,
such as accelerations (Petermann-Stock, 2013). Therefore, a full-factorial ANOVA was conducted for the maximum acceler-
ation in longitudinal and lateral direction in the 10 s after RtI, to identify if safety critical behavior was promoted through
certain factors of the independent variables. No significant main or interaction effects were found, see Appendix C. With
regard to Hypothesis 4 no significant effects of lateral and longitudinal accelerations were found for the independent variable
situation type. Therefore, even if different trajectories were required to circumvent obstacles, the situation itself didn’t cause
any difference in swerving as neither did any other independent variable.

As a further measure of take-over quality the subjective temporal criticality for each take-over situation was also
recorded by presenting a verbal question to the participants. Subjective temporal criticality decreased over the course of
the experiment (from first to ninth trial). Analogously to the reaction times, subjective temporal criticality was calculated
with a full factorial ANOVA displaying a main effect for trial F(8,710) = 7.48, p� 0.001, see Table 4. This shows that partic-
ipants learned how to react in critical situations and possibly became more familiar with the human–machine-interaction
(HMI) over the course of the experiment.

As a final measure of take-over quality we analyzed the Percentage Gaze into the left rear-view mirror immediately after
RtI. de Winter, Happee, Martens, and Stanton (2014) argue, that ‘‘for the shorter take-over request time of 5 s, the drivers
were less likely to gaze into the mirrors and over the shoulders [. . .]”. The environment behind the ego-vehicle is generally
addressed with less visual attention in take-over situations, as obstacles are typically presented in front of participants. Fig. 7
displays the gaze percentage towards the left mirror within a timeframe of one, two and five seconds after RtI. While keeping
in mind that average take-over times (TTFR) was calculated as 1.35 s, we can see only a few instances in which gaze behavior
towards the rear was recorded in this timeframe. This behavior is presented even though a lane switch was required for cer-
tain situations and participants reacted within 1.35 s on average, oncoming traffic on the left lane was only considered
between 2 and 5 s. Additionally, merely take-over situations requiring a lane change and orientation towards the left lane,
as seen in Fig. 2, present elongated visual attention towards the rear within 5 s. The overall analysis of quality measures
shows that the independent variables caused no significant different steering or braking behavior. However, gaze allocation
towards the rear was delayed when compared to the reaction times. Drivers did not assign visual attention towards the rear
view mirror on average, even if a prompt analysis of the oncoming traffic was relevant for certain situations. A conclusion
drawn from this data could be, that due to temporal criticality, the drivers had not enough time to safely manage the situ-
ation even if reaction times were very quick. Self-reported subjective temporal criticality decreased over the course of the
drive significantly, substantiating the results on reaction times of Hypothesis 1

Table 4

ANOVA of dependent variable Subjective Criticality.

Dependent Variable Measure Sum of Squares df Mean Square F Pr (>F) Partial g2

Subjective Criticality NDRT 0.30 1 0.304 0.696 0.405 0.00098
Trial 26.14 8 3.268 7.486 1.29e-09 0.07785

Situation Type 3.60 8 0.450 1.031 0.4107 0.0115
CAD Duration 1.32 2 0.661 1.514 0.2208 0.0043
NDRT * Trial 2.16 8 0.270 0.617 0.7637 0.0069
NDRT * Situation Type 8.03 8 1.004 2.300 0.0195 0.0252
Trial * Situation Type 7.39 11 0.672 1.538 0.1131 0.0233
NDRT * CAD Duration 0.08 2 0.039 0.090 0.9143 0.0002
Trial * CAD Duration 3.14 6 0.523 1.199 0.3047 0.0100
Situation Type * CAD Duration 0.01 1 0.006 0.013 0.9096 2e-05
NDRT * Trial * Situation Type 0.33 2 0.166 0.380 0.6839 0.0011

Bold signifies that the adjusted alpha-levels were below the threshold.
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4. Discussion

Focus of this simulator study was to investigate the impact of NDRT, CAD duration, situation types and effect of trials (mul-
tiple take-overs) on the take-over behavior of professional truck drivers. A generic automation function was implemented in
a commercially available semi-truck cabin, allowing participants to activate Level 3 under controlled conditions of a moving-
base simulator. Insights were gained for our hypotheses:

(1) Learning behavior will be observed due to first time use of the automation function.
o Our results are in accordance with this hypothesis, with learning behavior found for the first three trials and a sig-

nificant main effect. Reaction times converged after the third trial.
(2) NDRT game will prolong take-over times compared to video.

o Our results did not support this hypothesis, as no significant differences in reaction times were found.
(3) Longer CAD durations will prolong take-over times.

o Our results did not support this hypothesis, as no significant differences in reaction times were found.
(4) Due to the complexity of the surrounding different take-over times are expected.

o Our results did not support this hypothesis, due to the results in Section 3.2. for situation type.
(5) Average reaction times will be lower than those reported of passenger car drivers.

o Without the respect of independent variables, the reaction times of this study are lower than those of reported pas-
senger car publications.

4.1. Learning – Hypothesis 1

Learning behavior is observed in our data with reaction times approximately 0.5 s slower in the first trial compared to the
quickest trial (eight), see Fig. 5. Petermann-Stock (2013) also find that reaction time reduces between the first and second
trial in their results. Due to the fact that nine take-overs took place in the present study, convergence is detected. It is likely,
that this time reduction is caused by the effect of practice, leading to the proceduralization of knowledge (Anderson, 1982).
Which reaction is desired when take-over signals are presented and the reduction of scan-paths, can lead to significant time
savings that account for the experienced reduction of reaction times. Due to the large number of take-over situations a com-
plete balanced iteration at each chronological trial was not possible. Each take-over situation was, however, presented at
least at two different positions in the trial sequence. General learning behavior is observed for each take-over situation type
within the first three trials. Reaction times seemingly increase for certain trials, specifically the ninth trial, this is however a
misconception as the take-over situation ‘Loss of Lane’ was presented in half of all instances in the ninth trial, resulting in
longer take-over times.

4.2. NDRT – Hypothesis 2

The null hypothesis of Hypothesis 2 is rejected. This finding of no NDRT effect on TTFR correlates with those of Radlmayr
et al. (2014) and Gold et al. (2016) raising the question if this is a universal finding for the car and truck context or whether

Fig. 7. Percentage of Gaze towards left mirror for each take-over situation and NDRT. (Top) Within a timeframe of 1 s. (Middle) Within a timeframe of 2 s.
(Bottom) Within a timeframe of 5 s.
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certain NDRT on non-nomadic devices show reactional differences as reported by Petermann-Stock (2013). A possibility for
the different findings is that the take-over scenario was implemented during a traffic congestion at 35 km/h. A plethora of
NDRT could have been investigated in the present study. While telephoning, social media interaction and similar NDRT
might provide a realistic test case for professional drivers, we considered these NDRT not engaging enough over multiple
trials or assumed difficulties in controllability (social media). Additionally, visual tasks were required to initiate visual inat-
tention towards the driving task.

The visual attention towards the NDRT as well as the frequency, last occurrence and duration of control glances remained
constant throughout the experiment, showing that visual behavior was not adapted and was not influenced by the learning
effect. Furthermore, the duration of inattention towards the road did not affect the reaction time (TTFR).

4.3. CAD duration – Hypothesis 3

The data displayed in Section 3 Results does not confirm a correlation between TTFR and CAD duration. The null hypothesis
is rejected. The results in Fig. 4 (left) exhibit that duration effects of automation do not affect our results in this specific exper-
imental setting, this finding confirms the finding of Feldhütter et al. (2016) in the truck context. A possible reason that no
effect was found can relate to the fact that CAD duration did not exceed four minutes. While Feldhütter et al. (2016) did
not find a significant effect for reaction times of short and longer drives (20 min), other research suggests that fatigue influ-
ences take-over significantly. Vogelpohl and Vollrath (2017) find that Level 3 should not exceed 15 minwithout NDRT, as fati-
gue influences drivers’ take-over as if drivers were heavily distracted. The excitement of driving in a moving-based simulator
and being monitored during driving may have influenced our participant sample with regard to concentration and involve-
ment. Again, internal driver factors as discussed in the introduction, cannot be monitored with sufficient meaningfulness and
are a prerequisite for many drowsiness experiments and herein a limitation (c.f. Goncalves, Happee, & Bengler, 2016). When
comparing the participant samples on experience, truck driversmay have a higher tolerance for task induced drowsiness com-
pared to the non-professional drivers. Investigating short timeframes is by far not trivial, as it is not possible to guarantee that
a Level 3 system will run for multiple minutes before generating a RtI. Unexpected environmental situations, which the tech-
nical automation function is not design for can arise at any instance. Another possible reason for missing variation in reaction
times due to CAD duration could be that the decay of situation awareness had no effect on take-over, as situations were sud-
den and surrounding vehicleswere not in direct periphery. Gold (2013) also draw this conclusion stating, ‘‘[w]ith shorter TOR-
time, the subjects come to a decisionmore quickly, reacting faster, but the quality is generally worse”. Under this assumption,
the influence of reduced situation awareness could be investigated if correct reactions of participants would bemore confined
and the possibility of crashing were higher. Within this proposed approach drivers with a higher situation awareness would
not be prone to crashing as much as those whose situation awareness has decayed more rapidly.

4.4. Situation types – Hypothesis 4

The null hypothesis of Hypothesis 4 is rejected, see Section 3.2. Different situation types generated significantly different
TTFR although traffic density was held constant. We have concluded that the combination of situational complexity and pre-
mature visibility during control glances seems to affect take-over times massively. As the analysis in Section 3.2. shows, the
significant effects on TTFR and TTHoS are due to situations in which drivers observed the environment during RtI leading to
quicker take-overs. A quicker reaction time was only achieved for three situation types, while no effect was established for the
other six situations. The influence of these three situations generated significant results of ANOVAs in Section 3.1. This finding
is beneficial, as some environments with complexities similar to those investigated here might allow us to disregard factors
such as CAD duration and NDRT to some extent. Validity of this conclusion needs investigation in future work. An environ-
mental model of the truck driver’s surrounding would potentially generate added value to the problem, due to the possibility
of being able to model visual attention to relevant objects. Such a model expressing the continuous complexity of a situation
could allow drivers to engage inmore stimulating tasks if low environmental complexities would preside, without the need of
systems to monitor cognitive states. This would simplify the problem of guaranteeing adequate take-over times. Schneider
(2009) addresses the question that no clear definition of traffic situations exists. First attempts in this regard have been ini-
tiated, however, relying on subjective criteria for the description of situations and generic object frequencies (Gold, Naujoks,
Radlmayr, Bellem, & Jarosch, 2017; Ohn-Bar & Trivedi, 2016; von Benda, Hoyos, & Schaible-Rapp, 1983).

4.5. Comparing truck to passenger car drivers – Hypothesis 5

A quantitative comparison to literature on reaction times in the passenger car context is conducted for Hypothesis 5. On
average the time between RtI and time until eyes fixated within the windscreen (TTEoR) was 0.34 s. This time was, as stated
above, dependent on situations. When compared to similar published experiments, the reaction times published by
Damböck and Bengler (2012), i.e. approx. 0.8–1.2 s, are far slower than our TTEoR. If only those situations are taken into
account, in which participants were not in the midst of a control glance, our TTEoR increases to approximately 0.6 s, see
Table 3. This value is far closer to the reported times in the literature. Quickness in response could have been influenced
by professional experience of our participants, when comparing values to the previously reported 0.8 s (Damböck, 2013).
Our reaction times of TTHoS and TTFR were also at the lower end of the scale when compared to literature values analyzed
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(Eriksson & Stanton, 2017). The quickest reported TTFR by Zeeb et al. (2015), Radlmayr, Gold, Lorenz, Farid and Bengler
(2014) and Gold, Lorenz and Bengler (2014) range from 1.14 s to 1.67 s and are comparable to our findings. Parallel to other
studies, either the experimental setup or participant sample seems to have an influence on reaction times, as the average
reaction time in our study undercut the upper scale of reported reaction times of Level 3 scenarios of 10 s (Merat et al.,
2014). Gold et al. (2017) state, ‘‘when interested in the maximum driver performance within take-over situations, demand-
ing scenarios are needed”. Hence, some studies, e.g. Merat et al. (2014), in which uncritical take-over situations are not com-
parable to our data. Our findings also show, that the visual attention towards the road at RtI allowed drivers to react (TTHoS
and TTFR) circa 0.3 s quicker. The procedure of motoric readiness was not affected, confirming previous findings (Zeeb et al.,
2015). Two factors limit the applicability of these findings. Firstly, simulator studies are limited in their comparability to real
world driving due to underestimation of speed in virtual settings (Bellem et al., 2017). Secondly, drivers knew that they were
in a simulation setup and monitored, possibly intrinsically motivating participants to peak performance. However, based on
the limited comparison, Hypothesis 5 is failed to be rejected, as truck drivers seem to present quicker reaction times com-
pared to passenger car drivers. Future research will focus on a study in which truck drivers and passenger car drivers are
compared directly.

4.6. Generalization of reactions

A statistical evaluation of our reaction times showed that when calculating a 3r-interval for the TTFR, which depicts
99.7% of the data, we receive a reaction time interval of 0 s to 2.82 s. Reaction times of 0 s (n = 5) were achieved if partici-
pants directly engaged in take-over when RtI was presented. A total of six take-overs are not included in the 3r interval. Five
of these six take-overs occurred within the first trial, while one was the Loss of Lane situation, requiring no immediate reac-
tion as no obstacle needs to be obverted. It is likely that prolonged reaction times can be attributed to inexperience with the
warning cascade and not knowing how to react. The slowest reaction time out of all trials was 6.3 s, a first take-over. When
investigating TTFR for Level 3 on a general level, currently it is not possible to define a universal time reserve. This study
depicts a small subset of take-over scenarios for truck drivers on the multilane highway. While higher automation functions
are in discussion for urban driving areas, research on Level 3 is mainly limited to highways. Without taking the human driver
into account, modern radar systems allow for an environmental perception of up to 250 m on a straight road (Continental,
2017). When travelling at 80 km/h this provides information 11.25 s before a possible collision, without taking computation
and sensor fusion times into account. Therefore, from a technical standpoint the current maximal time available for a driver
to take back control of a vehicle is quite limited. Restricted to the take-over situations and NDRT on non-nomadic devices in
this study, this leaves enough time for drivers to regain control of the vehicle. However, inferring the cognitive state of the
drivers as well as stress was not investigated.

A quick take-over does not guarantee a safe take-over, as seen in Fig. 7. No effects of any independent variable on lateral
or longitudinal accelerations were found. We assume that the driving trajectory and evasion of an obstacle is based on a large
part on the strategy and experience of a driver. For future studies, a higher number of surrounding vehicles should be con-
sidered around the ego-vehicle. The estimation of distances with long vehicles is difficult through rearview mirrors, espe-
cially during take-over situations that require the perception of dynamic objects (Nilsson et al., 2017). Vehicles in direct
periphery would limit the amount of correct reactions, possibly leading to a higher collision rate, but also clarifying behav-
ioral differences between successful and unsuccessful take-overs. The data shows that within the first two seconds of take-
over drivers are not capable of reacting to the RtI, perceiving the forward environment as well as the rear environment, even
if this is required for a safe and adequate take-over, see Fig. 7. Although reaction times suggest that take-overs can be con-
ducted quickly and with a high consistency under three seconds, sufficient visual attention is not observed, leading us to
conclude that take-over was not safely managed on average.

4.7. Quality/validity of the experiment

All possible influencing factors cannot be mentioned or observed in such studies. It should be clear, however, that our
experiment presented highly critical take-over situations, TTC between 0.92 s and 5 s (M = 4.10 s), which left little time to
avoid obstacles. The results presented in this paper describe minimal reaction times to take-over situations for heavy duty
trucks in combination with NDRT, similarly to the declared objective of Damböck and Bengler (2012). Comparable published
studies of Level 3 within the truck domain do not exist to the best of our knowledge, leaving only room to speculate as to
how these participants would have reacted in a passenger car and if significant differences in reaction times would present
themselves. Lower speeds and accelerations, different fields of view and driver experiences are factors that can only be con-
sidered if a comparison study were to be conducted. When extrapolating the findings to the real world in which the profes-
sional driver is highly familiar with all vehicle factors, we hypothesize that similar TTFR would occur. However, no empirical
data is currently available of such critical take-overs in real world scenarios.

With regard to our study aim of identifying factors that enable a variable warning time for Level 3, the results show high
variance. Primary differences in TTFR occurred due to visibility of objects in the environment prior to RtI. Based on the results
collected the intra- and inter-individual differences in reaction times could not be pinpointed to controlled independent
variables. It is likely that the variance of reaction times would increase outside of the controlled experimental settings, as
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drivers would gain more trust in the system and be immersed within their known environment. However, based on the data
collected, it is not possible to allow for variable warning times.

5. Conclusions

A large empirical simulator study with professional truck drivers investigating Level 3 take-over behavior has not been
published thus far, as most studies focus on passenger car behavior or manual driving aspects of truck driving.

Results obtained lead us to conclude that multiple findings of influencing environmental factors in the passenger car con-
text are transferable to the truck context. This includes that different NDRT and CAD duration did not alter reaction times
significantly. It could be possible that the examined CAD durations were not long enough to induce significant differences
in behavior and that long-term effects of driving related inactivity are experienced after extensive periods of time, as sug-
gested in some publications (Brandenburg & Skottke, 2014). However, Level 3 systems in current development might require
take-overs more often than not, due to technical limitations, forcing drivers to regain control of the vehicle in short intervals.
Additionally, we observed clear learning behavior during our experiment leading to quicker reaction times. This is either due
to the fact that participants learned how to interact with the novel ADAS, or that they became more alert throughout the
drives. However, as the visual attention towards the NDRT did not reduce, it seems that the first explanation is more likely.
The in-depth analysis of the situation types presented that premature visibility of take-over situations allows the drivers to
react significantly quicker, see Table 3. An important factor that could have caused a major influence on the results of this
work is the effect of warning times, hence the TTC. Walch (2015) did not find any effect in these times, however, this was not
controlled for in this study and could have taken an influence.

An important finding of the present study is that take-over quality can only be investigated if take-over situations are
more confining. Allowing drivers to respond with a variety of reactions with minimal risk of crashing, as long as the obstacle
causing take-over is obverted, does not produce enough precise information on take-over quality. We found that although
drivers obverted critical obstacles with low TTCs, the gaze behavior analysis offered indications that the take-overs were not
of sufficient quality. In the future it could be possible to restrict the amount of correct responses to reduce the amount of
crash avoidance. This possibility would also allow for in depth analysis of gaze behavior and the reconstruction of situation
awareness at take-over.

Quick take-overs do not automatically guarantee a safe take-over, for which we found indicators such as missing mirror
gazes. This could cause severe accidents. It is possible that different strategies are in place if TTC are low, either leading dri-
vers to react quickly without respect for lane markings or safety, with higher percentage of braking maneuvers. Distinguish-
ing between strategies is difficult without subjective input from participants and has to be considered in future studies. In
general however, truck drivers seem to present the capability of showing quicker reaction times when compared to pub-
lished results on passenger car drivers. Based on these findings, a time in which the driver can safely regain control of a vehi-
cle could not be determined reliably. This leads us to question whether Level 3 can or should be made available for drivers.
Daimler Trucks recently announced that the benefits of Level 3 do not outweigh the costs of such a system and will skip
development of this level (Daimler, 2019).

The investigation of influencing factors on take-over behavior has shown that especially the external environment deter-
mines a large part on how quick a driver will react. As this environment can be monitored with sensors, our underlying ques-
tion regarding individual warning times based on influencing factors seems to be possible to some extent. Further research
will consider external traffic models and monitoring to implement a first prototypic varying warning time.
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Appendix A

Experimental Factor Value

Number of lanes 2 Lanes
Minimal radius of curves 500 m
Length of drive Approx. 50 km including tutorial
Width of lanes 3.5 m
Color of lane markings White

Take-over situation Lane narrowing - yellow on right boundary
Maximum speed of traffic 180 km/h
Minimal speed of traffic 65 km/h
Speed of ego-vehicle during Level 3 80 km/h

548 A. Lotz et al. / Transportation Research Part F 64 (2019) 532–551

35



Appendix A (continued)

Experimental Factor Value

Distance to lead vehicle 55 m
Number of vehicles in environment 14 vehicles/km randomly dispersed and appearing 500 m behind ego-vehicle
Time to Collision calculation From take-over request to collision object (including acceleration/

deceleration of objects e.g. Cut in Left)

Appendix B

Take-over
Situation

Description

Fog & Warning
Triangle

Weather gradually worsened starting 1 min before take-over until visibility was reduced to 60 m
at which a warning triangle was situated at the side of the road within ego lane. The warning
triangle was located on the right lane marking

Stranded Vehicle A stranded vehicle situated half on ego lane and half on the hard shoulder which was
circumnavigated by the lead truck abruptly only then making it visible. The lead truck was
traveling at 80 km/h and was 55 m ahead of the ego-vehicle

Lost Cargo Lost wooden box situated on the side of ego lane which was circumnavigated by lead truck
abruptly only then making it visible

Lane Narrowing Pylons and concrete barriers narrowing lane. Warning was display approx 1 s before first pylon
Construction Lead truck switched lane abruptly to give way to a construction site. Ongoing traffic gave way to

drivers who needed to perform a lane change
Stabilization Washed out lane markings in a curve representing a system boundary. TTC was calculated as the

time to which the vehicle would hit crash barriers if trajectory were kept. Note, the hard shoulder
was not present in this condition to reduce TTC

Cut in Left A vehicle cutting in from the left and decelerating immediately in front of ego vehicle
Cut in Right A vehicle cutting accelerating from the hard shoulder immediately in front of ego vehicle. Distance

to lead truck was increased gradually before take-over to 85 m
Lead Braking Abrupt deceleration of lead truck from 80 km/h to 45 km/h within 2 s

Appendix C

Dependent variable Measure Sum of squares df Mean square F Pr (>F)

Lateral Acceleration NDRT 1.10 1 1.077 0.492 0.483
Trial 15.2 8 1.898 0.866 0.545
Situation Type 11.7 8 1.460 0.666 0.721
CAD Duration 1.90 2 0.967 0.442 0.643
NDRT * Trial 13.3 8 1.657 0.756 0.642
NDRT * Situation Type 19.5 8 2.440 1.114 0.351
Trial * Situation Type 22.8 11 2.075 0.947 0.494
NDRT * CAD Duration 9.20 2 4.586 2.093 0.124
Trial * CAD Duration 19.9 6 3.309 1.510 0.172
Situation Type * CAD Duration 0.00 1 0.025 0.011 0.915
NDRT * Trial * Situation Type 0.80 2 0.398 0.182 0.834

Longitudinal Acceleration NDRT 0.33 1 0.326 1.103 0.294
Trial 1.57 8 0.196 0.662 0.726
Situation Type 0.66 8 0.083 0.280 0.972
CAD Duration 0.62 2 0.309 1.045 0.352
NDRT * Trial 1.54 8 0.192 0.650 0.735
NDRT * Situation Type 2.95 8 0.369 1.248 0.268

(continued on next page)
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Appendix C (continued)

Dependent variable Measure Sum of squares df Mean square F Pr (>F)

Trial * Situation Type 2.36 11 0.214 0.724 0.716
NDRT * CAD Duration 0.20 2 0.102 0.346 0.708
Trial * CAD Duration 2.51 6 0.419 1.417 0.205
Situation Type * CAD Duration 0.12 1 0.118 0.399 0.528
NDRT * Trial * Situation Type 0.18 2 0.091 0.307 0.736

Appendix D. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.trf.2019.06.008.
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Abstract. Conditional autonomous driving requires the description of sufficient

time reserves for drivers in take-over situations. The definition of this time

reserve has not been addressed for the truck context thus far. Through the

observation of physiological measures, the possibility of estimating reaction

times is considered. Driver data is collected with a remote eye-tracker and body

posture camera. Empirical data from a simulator study is utilized to train and

compare four machine learning algorithms and generate driver features. The

estimation of take-over times is defined as a classification problem with four

reaction time classes, leading to a misclassification rate of a linear support vector

machine (SVM) of 38.7%. Utility of driver features for reaction time estimation

are discussed.

Keywords: Conditional autonomous driving � Take-over prediction

Human factors � Machine learning � Control transition

1 Introduction

One of the prime interests of recent automotive studies is how attention, communi-

cation and responsibilities are allocated, when humans and machines share control of a

vehicle. While this surge prevails predominantly for passenger cars, the truck context

has not been regarded as intensely. Currently, the definition according to SAE J3016

[1] classifies six stages of autonomy for vehicles. Conditional autonomous driving

(CAD), which classifies as Level 3, and higher levels allow drivers to disengage from

the driving task and focus their attention on non-driving-related tasks (NDRT).

Thereby, possibly, the most critical stage is Level 3, in which drivers are required to act

as a fallback if system limits are met and accordingly only receive restricted time to

take back control. Following the definition of CAD, drivers are no longer required to

constantly supervise the vehicle when the automation function is activated. Adapting

the responsibility of constant monitoring of the truck would revolutionize logistics and

leave drivers to focus on different aspects of their work (e.g. paper work) and other

NDRT. At take-over, when the automation function can no longer handle the driving

situation, drivers are expected to perceive, address and solve given situations in limited

time. Due to the switch of control between driver and vehicle, human factors such as

the ironies of automation [2], have to be taken into account. Generally, the truck

context offers a more confined set of use cases with less variation in the type of driving
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situations that have to be managed by the advanced driving assistant system providing

autonomous driving. Long distance hauls by heavy duty trucks on motorways comprise

21% of freight traffic in Germany and professional drivers’ duties [3]. The imple-

mentation of a Level 3 system could entail the possibility for drivers to engage in

NDRT, improve average traffic flow rates and cause a change in legislation, currently

restricting operating times for drivers in some countries, e.g. Germany [4]. As take-over

situations vary and driver attention to NDRT is not an inter- or intra-individual con-

stant, the system has to allow for all drivers to transition back to the driving task. Time

reserves for an adequate transition have to either be defined globally, with a fixed time

reserve sufficient for all drivers, or individually. For individual time reserve definition,

ideally, reactions by the driver would be predictable through objective measures,

allowing the system to calculate take-over times. This definition of time reserves is far

more complex, as all or the most influential factors need monitoring and consideration.

Vogelpohl et al. [5] identify four groups of influencing factors on reaction times that

will be regarded in this study. (1) environmental parameters (e.g. traffic density,

weather, complexity of take-over situation), (2) human machine interaction

(HMI) parameters (e.g. warning modalities, interfaces), (3) driver parameters (e.g.

visual attention, demographics, individual driving style) and (4) vehicle parameters

(e.g. field of vision, advanced driver assistance systems).

1.1 Take-Over Times

A variety of take-over times are relevant in the take-over process and defined by

Damböck [6] at the occurrence of a “Request to Intervene” (RtI) in CAD. These times

include the time until visual attention is shifted back to road (time to eyes on road;

TTEoR), time until hands are placed on the steering wheel (time to hands on steering-

wheel; TTHoS) and time until a first reaction is given at the steering wheel or accel-

erator pedals (time to first reaction; TTFR). The measurement of said times allow the

evaluation of the take-over process, consisting of physiological attention allocation and

cognitive processing [7].

1.2 Prediction of Driver Reactions

Although driver assistance systems should reduce stress and accidents, an ill chosen

time reserve at take-over can paradoxically cause the opposite [8]. It is paramount to

guarantee this adequate time reserve. Wulf et al. [9] identify the cognitive and motoric

availability as essential for take-over readiness. Additionally, [10, 11] show that situ-

ation awareness [12] is decisive for take-over times and the quality. Therefore, the

implementation of a driver observation could offer relevant data to guarantee sufficient

take-over times, as one of the four influencing factors on reaction times. It is the goal of

this study to investigate the feasibility of training machine learning algorithms to

predict take-over times.

In order to predict take-over times, this study focuses on the recording of behavioral

driving data during CAD in heavy duty trucks and investigates the features generated

from these recordings. In the driving context of CAD, Braunagel et al. [13] show that

machine learning can be applied to identify four different NDRT, based on eye-
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tracking, with an accuracy of 82%. Apart from eye-tracking, Ohn-Bar et al. [14]

additionally investigates hand and head patterns to detect where drivers are interacting.

In an extension of their work, Braunagel et al. [15] present an architecture classifying

the driver readiness and considering traffic situations for CAD, reaching an overall

accuracy of 79%. None of these known architectures have been tested for trucks or the

prediction of reaction times.

2 Estimation Concept for Reaction Times

A concept to estimate reaction times at RtI during CAD with NDRT is be presented.

All necessary ground truth data for such a concept was collected during a simulator

study in the Mercedes-Benz Moving-Base-Simulator with professional truck drivers

(n = 88). The experimental setup was designed to generate multiple take-overs per

participant, producing data for our estimation approach. When considering the

abovementioned four groups of influencing factors on reaction times by [5], the

experimental setup was configured to have differentiating values for environmental and

driver parameters, while keeping HMI and vehicle parameters constant. During CAD,

participants were encouraged to interact with two NDRT, to allow for realistic dis-

traction. The available NDRT were either a geography game or a video.

Eye-tracking is a common method for collection of behavioral data, especially

important during the dynamic driving task [16]. In order to accumulate data distraction

free, i.e. non-invasive, a remote eye-tracker (Smart Eye Pro) collected gazes and head

position. Additional interaction by the driver with the environment was collected

through a fixed tablet (non-nomadic device) on which NDRT are presented.

A Microsoft Kinect gathered RGB-D pictures. These pictures were utilized to calculate

participants’ body posture during their CAD drive. The extraction of body posture is an

adaptation of [17], in which a pre-trained convolutional neural network is retrained for

the truck context. The second group of influencing factors, environmental parameters

[7] are taken into account through the simulator. Examples of these parameters are the

take-over situation and the time to collision (TTC), i.e. the lead time to obstacles at RtI.

2.1 Online and Offline Datasets

Two different datasets are generated from the eye-tracking, body posture and simulator

data. When considering 755 take-over procedures, each trial is divided into a time

series before the RtI in which the driver is not required to steer the vehicle and a time

series when manual control is necessary by the driver after the RtI. After an RtI is

issued, certain additional features can be calculated that depend on the occurrence of an

RtI and the time series in which the driver maintains manual control. This includes all

the reaction times such as time to eyes on road (TTEoR) and time to hands on steering

wheel (TTHoS) apart from TTFR, which is the desired estimation output. These fea-

tures may hold high contents of information that generate higher estimation results due

to temporal interrelation. However, such features are not applicable for the online

estimation of reaction times, as they can only be considered after the presentation of an

RtI. Therefore, two separate datasets are configured:
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• Online dataset: with features computable at any instance during CAD

• Offline dataset: all computable features for each trial.

2.2 Feature Generation

To allow the estimation of TTFR, features need to be generated holding preferably high

contents of information about driver and/or environment. Prior to training machine

learning algorithms with manually configured features, a selection according to cor-

relation is performed. All features are either static singular values or a time series for

each of the 755 take-over situations (trials). The time shortly before an RtI probably

holds the most information with regard to the take-over capability of a driver and will

be considered. To bypass the possibility of manually defining a time interval that may

not hold any relevant information, four different time intervals are considered; the

complete CAD trial duration, 10 s, five seconds and two seconds before an RtI. Sin-

gular values, such as average, standard deviation, minimum and maximum of the

abovementioned time intervals are calculated. This methodology is applied for the

feature generation of eye-tracking, body posture and simulator data.

The feature generation of eye-tracking and simulator data yields a total of 238. In

addition, the calculation of features from extracted body posture of 12 body joints

yields 135 further features.

2.3 Feature Evaluation and Selection

Reaction time TTFR is subdivided into four time classes for the application of

supervised machine learning classification algorithms. Figure 1 displays a graphic

representation of a frequency distribution of all 755 TTFR. The boundaries of the four

Fig. 1. Frequency distribution of time to first reaction (TTFR). Reaction times are categorized

according to the definition found in Table 1 by application of the clustering algorithm k-means

(k = 4).

332 A. Lotz and S. Weissenberger

43



TTFR classes are calculated by application of the k-means algorithm. The classes are

partitioned as presented in Table 1.

A filter approach is applied for the evaluation of all previously generated features.

A multivariate analysis of variances (MANOVA) is implemented to identify those

features that show the highest correlation between input and output. A total of 30

features with the highest congruence for TTFR are selected for the application of the

four different machine learning algorithms. Table 2 holds these features for the online

dataset. Notably, by analysis of the offline dataset only one feature is replaced in this

list. Time to hands on steering-wheel (TTHoS) holds the most information for the

estimation of TTFR in the offline dataset and is ranked first.

Table 1. The dataset of all 755 take-overs are subdivided into four classes through a k-means

algorithm.

Class Definition Number of Take-Overs

1 t ǫ [0 s; 1.1 s] 212

2 t ǫ [1.1 s; 1.75 s] 430

3 t ǫ [1.75 s; 2.3 s] 91

4 t ǫ [2.3 s; 6.3 s] 22

Table 2. The 30 most important features selected from the Online dataset through application of

MANOVA.

Rank Feature Rank Feature

1 Trial Number (# of take-overs) 16 Number of Blinks 10 s before RtI

2 Time to Collision 17 Avg. Head Heading

3 Blink Duration 18 Max Gaze Direction Change 5 s

before RtI

4 Avg. Head Heading 2 s before RtI 19 Head Roll 0.5 s before RtI

5 Take-over Situation type 20 Avg. Head Roll

6 Head Roll Average 2 s before RtI 21 Number of Blinks 5 s before RtI

7 Min Head Pos. Change X-Y-Z 22 Blink Duration 5 s before RtI

8 Head Pos. Change X 0.5 s before RtI 23 Max Head Pitch 2 s before RtI

9 Head Pos. Change Y 3 s before RtI 24 Head Pitch 1 s before RtI

10 Min Head Pos. Change X-Y-Z 10 s

before RtI

25 Min Head Pos. X-Y-Z 2 s before

RtI

11 Pupil Diameter 0.5 s before RtI 26 Min Head Pos. Change 2 s before

RtI

12 Gaze Pitch St. Dev. 5 s before RtI 27 Head Pitch 1.5 s before RtI

13 Sum of tablet taps 5 s before RtI 28 Min Head Pos. X-Y-Z 10 s before

RtI

14 Avg. Head Pos. X-Y-Z 2 s before

RtI

29 Max Head Pitch 5 s before RtI

15 Gaze Pitch St. Dev Total 30 Avg. Gaze Direction X
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2.4 Machine Learning Algorithm

Four different machine learning methods will be analyzed for this applied problem. For

the estimation of TTFR, which is defined as a classification problem, the following

machine learning algorithms are tested:

• k-Nearest Neighbors algorithm

• Bayes classifier

• Support Vector Machine

• MLP Neural Network

In terms of a machine learning problem, the dataset collected through this simulator

study with 755 instances is rather small. Complex algorithms with a high share of

hyper parameters are not suited for this problem as there is no abundance of data. An

interaction between many of the abovementioned different features is expected for the

estimation of the output variable, i.e. TTFR. Therefore, a trade-off between the com-

plexity of the algorithm and the size of the dataset has to be accepted. Two simple and

two more complex machine learning algorithms are chosen.

All tested algorithms are validated by means of a stratified n-fold cross-validation.

As proposed by [18], a 10-fold cross-validation is chosen. The complete dataset is

divided into a training and test dataset, with a distribution of 80% to 20% respectively.

3 Results

As a quality measure for the classification by all machine learning algorithms, mis-

classification rate is chosen. The misclassification rate hereby describes the proportion

of misclassified observations that were predicted into one of the four TTFR classes, see

Table 1 and Fig. 1.

As the estimation of the online dataset bears the most relevance for the CAD

context, detailed results are presented. A comparison between additional information

from body postures and to the offline dataset are produced.

3.1 Online Estimation

In the following, all four machine learning algorithms will be compared by means of

misclassification rates for the online dataset. Especially the third and fourth class are

not represented evenly in the data (C3: 12%; C4: 3%), see Table 1. While these times

are more seldom due to the Gaussian distribution of reaction times for this study,

especially in the context of take-over times these instances are the most relevant as they

represent critical take-overs due to slow reaction times. To compensate for the

unbalanced classes of the dataset, a cost matrix is introduced. This facilitates weighted

penalties for misclassifications.

k-Nearest Neighbours: For the definition of the optimal k-NN the hyper parameters

k and the distance function are iterated. The Mahalanobis distance function exceeded

the results of the Euclidean distance function. Best results were received for k = 8,

leading to a misclassification rate of 40.8%.
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Bayes classifier: Again, the Mahalanobis distance function provided the best results.

A feature scaling did not improve results. Minimal misclassification was achieved at

39.6%.

Support Vector Machine: Three different SVM types are tested, i.e. linear, Gaussian

and polynomial. Hereby, the linear and Gaussian SVM achieved a misclassification rate

of 38.7%, while the polynomial SVM performed 39.2%.

Neural Network: The optimal misclassification rate for the neural network of 40.0%

was achieved with one layer and five nodes.

Overall, the best results are obtained for the linear SVM with a misclassification

rate of 38.7%. Table 3 displays a comparison of the classification results of the tested

algorithms.

3.2 Offline Estimation

The following estimation on the offline dataset is obtained with TTHoS ranked first in

the list of 30 most relevant features, see Table 2. Similarly to Sect. 3.1, the SVM

obtains the lowest misclassification rate at 22.5% (Table 4).

3.3 Online Estimation with Body Posture

As the SVM delivered the lowest misclassification rate for online estimation without

body posture features, no comparison of machine learning algorithms will be provided.

Similar methodology as in Sect. 3.1 is applied. After application of a cost matrix the

linear SVM misclassification rate presented a value of 37.7%. The consideration of the

calculated 30 features shows that 18 new features (body posture features) are replaced in

Table 3. Comparison of the best classification results of four tested machine learning algorithms

on online dataset

Algorithm Misclassification rate [%]

k-NN 40.8

Bayes 39.6

SVM 38.7

NN 40.0

Table 4. Comparison of the best classification results of four tested machine learning algorithms

on offline dataset

Algorithm Misclassification rate [%]

k-NN 38.3

Bayes 32.6

SVM 22.5

NN 26.4
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the list presented in Table 2. The highest of these new features ranking in fourth position

and representing the maximal displacement of the right knee in the 10 s before RtI.

4 Discussion

Comparing the results of the online and offline classifications without body posture, see

Sects. 3.1 and 3.2, a large difference of 16% between both linear SVM exists. As first

ranked TTHoS is the only feature presented in the offline dataset not being available

during online estimation, it seems to hold a lot of relevant information. This is not

surprising, as TTFR partially depends on the motoric hand availability for adequate

reaction times. Overall 76% of TTFR are induced due to a motoric reaction at the

steering wheel in the data, while only 24% of first reactions were cause by braking or

accelerating. While the discrepancy of the algorithm comparison for the online dataset

were within 2.1%, this can be attributed to the absence of highly relevant features. In

other words, the features were similarly meaningful. TTHoS however does not hold

16% more information in the offline dataset, the algorithms SVM and NN can attribute

higher relevance to certain features by redistributing weights.

Based on the features calculated and due to the fact that the reaction time classes

were unequally distributed, the quality of the results obtained is not sufficient to safely

and reliably estimate reaction times of truck drivers. By placing a new observed

reaction time into the second class, 43% of these instances the estimation would

misclassify, (430 trials were in this class, see Table 1). Both the online and offline

classification achieved a lower misclassification rate, showing that some information is

drawn from the features calculated. There are multiple reasons why only a small

reduction in misclassifications was achieved. Firstly, the quality of the data may not be

sufficient enough. Either the static features calculated by hand or the variance in the

data can cause a reduction of the signal quality. Secondly, the problem may be too

complex for an analysis by the evaluation methods of this study. Thirdly, a major

problem when addressing such a problem is the generation of data. Production of

sufficient amounts of data needs time. Especially for problems in which the most

relevant data, i.e. slow reaction times, is sparse, calling for extensive data collection.

Lastly, human behavior may not be classifiable and features bear no consisted infor-

mation on reaction times.

To the best of the authors’ knowledge, no studies for CAD are published that

required nine or more take-overs within 30 min. The data shows, that the trial number

was categorized as a feature with high correlation to TTFR. When looking at this

variable separately, learning behavior is identified. Participants might have therefore

been cautious after the first couple of take-overs resulting in such quick and dense

reaction times (TTFR) as seen in Fig. 1.

The additional consideration of body postures, represented by the localization of 12

body joints showed only a minimal improvement of 1% in the misclassification rate of

a trained linear SVM for the online dataset. Although more than half the elements in the

features list were represented by body posture values, this new remote observation of

physiological signals showed minimal information gain. This could mean that body

postures before a take-over hold no relevant information. Another possible explanation
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would be that the experimental setup did not encourage a large variety of body pos-

tures. According to Fitts’ Law [19] movement is a function of target distance and target

size. Consequently, the motoric variation seems to have been minimal in this experi-

mental setup and did not cause for large time discrepancies. Finally, the body joint

estimation method could entail flaws and supply false coordinates leading to lower

signal quality.

Overall the results of this study were surprising, as times to first reactions were far

below those reported in current CAD publications. Neither of the independent vari-

ables, CAD duration and NDRT, presented significant differences and 99,7% (3r-

interval) of all take-overs were completed within 2.82 s. Our work shows that although

information can be drawn from static features from eye-tracking and body posture

analysis, no clear correlation between multiple features and reaction times can be

drawn. The improvement of measurement technology and feature calculation could

reduce the misclassification rate further; however, it is unlikely that full classification

can be achieve. Variance in drivers’ actions seems too high for a current mathematical

prediction method.

4.1 Future Work

This publication is limited to the analysis of take-over time through the implementation

of classification algorithms. In future work, the problem could be considered as a

regression problem, possibly leading to a better estimation. Secondly, a new classifi-

cation problem with balance reaction time classes and probabilities will be computed.

This, however, presents the drawback that classes with higher standard deviation from

the expected Gaussian value will become large. Thirdly, non-static features will be

considered for analysis. Distinct correlations between features that were not defined in

the generated feature list of this work could possibly provide a lower misclassification

rate.
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Abstract
With the introduction of advanced driving assistance systems managing longitudinal and lateral control, conditional auto-
mated driving is seemingly in near future of series vehicles. While take-over behavior in the passenger car context has 
been investigated intensively in recent years, publications on semi-trucks with professional drivers are sparse. The effects 
influencing expert drivers during take-overs in this context lack thorough investigation and are required to design systems 
that facilitate safe take-overs. While multiple findings seem to cohere in passenger cars and semi-trucks, these findings rely 
on simulated studies without taking environments as found in the real world into account. A test track study was conducted, 
simulating highway driving with 27 professional non-affiliated truck drivers. The participants drove an automated Level 3 
semi-truck while a non-driving-related task was available. Multiple time critical take-over situations were initiated during 
the drives to investigate four main objectives regarding driver behavior. (1) With these results, comparison of reaction times 
and behavior can be drawn to previous simulator studies. The effect of situation criticality (2) and training (3) of take-over 
situations is investigated. (4) The influence of warning expectation on driver behavior is explored. Results obtained displayed 
very quick time to hands on steering and time to first reaction all under 2.4 s. Highly critical situations generate very quick 
reaction times M = 0.81 s, while the manipulation of expectancy yielded no significant variation in reaction times. These 
reaction times serve as a reference of what can be expected from drivers under optimal take-over conditions, with quick 
reactions at high speed in critical situations.

Keywords Conditional automated driving · Truck drivers · Driver take-over · Test-track study · Warning expectancy

1 Introduction

The term ‘automated driving’ has become a global discus-
sion point in recent years, with political and social inter-
ests rising to develop vehicles enabling automation. While 
the progress has been significant within the past decade, 
complete automation of the driving task has not yet been 
achieved. Of late, new assistance systems are entering 
the market to support drivers in restricted scenarios such 
as Audi’s traffic jam pilot (Audi 2017), Tesla’s Autopilot 

(Tesla 2019) and the Mercedes Active Drive Assist for 
trucks (Daimler 2018). These systems rank as Level 2 partial 
automation and Level 3 conditional automated driving (SAE 
J3016 2018). Especially for Level 3, the difficulty of transi-
tions between machine and driver is an ongoing research 
field, in which the system reaches limits and the driver needs 
to regain control of the vehicle in short timeframes (Young 
et al. 2007). Research within the field of automation tran-
sitions has shown that human capabilities can deteriorate 
due to task switching (Bainbridge 1983; Wylie et al. 2000) 
and a lack of situation awareness (Endsley 1995; Young 
et al. 2002). These effects also apply to advanced assistance 
systems in vehicles (Brookhuis et al. 2001; de Winter et al. 
2014). If these theoretical constructs apply to the vehicles 
with advanced driver assistance systems, the question that 
is at the core of ongoing research is: how long do driv-
ers require to regain control of vehicles safely (Gold et al. 
2013)?

 * Alexander Lotz 
 rene_alexander.lotz@daimler.com

 Nele Russwinkel 
 nele.russwinkel@tu-berlin.de

1 Daimler Truck AG, Stuttgart, Germany
2 Technische Universität Berlin, Marchstr. 23, Sekr. MAR 3-2, 

10587 Berlin, Germany

51

http://crossmark.crossref.org/dialog/?doi=10.1007/s10111-020-00626-z&domain=pdf


 Cognition, Technology & Work

1 3

The truck context does not contain the amount of pub-
lications as the passenger car context does for Level 3, as 
studies of take-over are often limited to instances without 
high time–pressure (Zhang et al. 2017). The effect of learn-
ing take-over situations (Lotz et al. 2019b), the influence of 
accustoming to a new automation function in experimental 
contexts and reacting to a new warning are influcences that 
have been investigated sporadicly in recent years (Kantowitz 
et al. 2009) and will be the main topic of the present study. 
Recent research by the ADAS&ME project also addressed 
the specific issue of developing new driver monitoring sys-
tems to adjust human–machine interface content in the truck 
on the basis of driver needs (Axelson et al. 2018). This is 
important as most participants engage with the different 
automation functions for the first time in published research 
and in most studies only a handful of take-over situations are 
presented. Distinguishing underlying human capabilities that 
can or cannot adjust over time is paramount.

The aims of the present study are to investigate the 
behavior of semi-truck drivers in a prototypic vehicle in 
quasi real-world Level 3 automation on a test track. This 
will allow insight into driver behavior outside of simu-
lated environments and possibly generate other results as 
previously determined. Different take-over situations will 
be investigated that vary in criticality to determine possi-
ble differences in driver behavior at take-over when a non-
driving-related task (NDRT) is performed. The occasion of 
these take-overs will also be controlled, to investigate the 
effect of take-over expectancy. The following introductory 
sections focus on the current state of research of reaction 
times in critical take-over situation (Sect. 1.1), the effect of 
expected warnings (Sect. 1.2), the resulting aims of the study 
(Sect. 1.3), the definition of reaction times (Sect. 1.4) and 
hypotheses (Sect. 1.5).

1.1  Reaction times in critical take-over situations

Multiple studies have investigated reaction times in recent 
years, primarily in fixed and moving-base simulators 
(McDonald et al. 2019). Results indicate a large variation in 
reaction times ranging between 3 to 8 s according to Vogel-
pohl et al. (2016) and with an average reaction time until 
control is regained of M = 2.96 s (SD = 1.96 s) (Eriksson 
et al. 2017). As pointed out rightly by Zeeb et al. (2015), it 
does not seem as though reaction times are comparable due 
to the large variance in influencing factors that have been 
categorized into clusters by Vogelpohl et al. (2016): driver, 
environmental, vehicle and human–machine interaction fac-
tors. All of these studies mentioned were conducted within 
the passenger car context. A study of time critical take-overs 
during Level 3 driving in the truck context provided dis-
tinctly quicker reaction times with 99.7% (3σ-Interval) of 
755 take-overs ranging between 0 s and 2.82 s (Lotz et al. 

2019b). A possible explanation for these quick reaction 
times could be that within the truck context drivers are pro-
fessionals, with far more experience controlling a vehicle, 
higher mileage, and daily repetition. Surprising critical take-
over situations seem to reduce the reaction times also in the 
car context, as Diederichs et al. (2015) determine a reduc-
tion of 200 ms compared to expected take-overs. Previous 
work also investigated the possibility of predicting reaction 
times based on vehicle sensor data and a driver monitor-
ing system (Lotz et al. 2019a). Limited predictability was 
achieved due to restricted data and low variance between 
prediction classes. A comparison study between the pas-
senger car context and truck context investigating the dif-
ference in reactions has not been conducted to the best of 
the authors’ knowledge. The detailed analysis of current 
publications also presents the difficulty of comparability of 
results, as experimental design and measures vary through-
out all studies.

1.2  Expected warnings and impact of trained 
transitions

Research on advanced driver assistance systems of Level 2 
(SAE J3016 2018) has shown that reaction times to start a 
motoric response is influenced by the expectation of an event 
occurring (Ruscio et al. 2015). However, while an unex-
pected situation arose in the abovementioned experimental 
real-life study, differences in criticality were not investigated. 
In addition, repetition of unforeseen events has thus far not 
been conducted, eliminating the possibility of observing 
learning of such situations (Kantowitz et al. 2009). Melcher 
et al. (2015) investigate an identical take-over situation while 
varying integration of a NDRT and automated braking. Prior 
learning of requests to intervene (RtI) has displayed posi-
tive effects on take-over performance. Additionally, the trust 
in automation seems to increase after an adequate stage in 
which drivers can accustom to a new function (Hergeth et al. 
2016). Further research on false warnings has also shown 
that false warnings can affect subsequent reactions nega-
tively (Lees et al. 2007). Therefore, an unanswered research 
question that arises is ‘how learning of expected situations, 
not warnings, and the criticality of these take-overs may 
affect reaction times’? We thereby differentiate training from 
expectation. While we define the expectancy towards a take-
over situation as the current state of the driver anticipating a 
take-over situation will arise within a short timeframe. This 
assumption by the driver is formed based on the surround-
ing of the vehicle, explicitly the approaching towards a steep 
curve in this study as described in Sect. 2.2. The opposing 
construct of training is the effect of improving take-over 
procedure through learning. While this study entails aspects 
of task switching and the current identification of situation 
awareness, these constructs will not be measured explicitly.
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1.3  Scope of study

The scope of the present study can be categorized into two 
main aspects.

1. A test-track study in a prototype vehicle providing the 
possibility of Level 3 automation with critical take-overs 
is investigated. By allowing participants to drive on a 
high-speed oval test-track with traffic, highly realistic 
highway scenarios are investigated with a prototypic 
vehicle rather than utilizing a simulator. This allows 
a comparison to previous simulator results regarding 
driver behavior for critical take-over situations for truck 
drivers. Additionally, possible shortcomings of simula-
tor studies such as motion sickness and driving comfort 
as mentioned by Bellem et al. (2016) can be largely dis-
regarded for the results of this study. Finally, traffic on 
the test track increases comparability to real-world driv-
ing on highways, as driver’s are inclined to observe their 
surroundings during automation due to real rather than 
simulated vehicles. This generates important behavioral 
data regarding real-world take-over reactions. Due to 
safety regulations on the test track, no obstacles could 
be tossed in front of the vehicles at such high velocities 
with surrounding vehicles. Criticality, therefore, was 
induced through fictive malfunction of the automation 
function, i.e., by prompting a lateral steering swerve 
maneuver.

2. The test scenario intends to display two different take-
over warnings throughout the drive resulting in three 
different take-over situation types. While all warning 
types are introduced in a preparatory tutorial phase, only 
the take-over type with the lowest criticality, in which 
these warnings will be initiated, is trained. This will lead 
to a discrepancy between learned behavior for different 
warnings and the current take-over situation witnessed. 
It is to be expected that this discrepancy causes differ-
ences in reaction times as explained in Sect. 2.2.5 and 
to adjust due to learning throughout the drives.

1.4  Reaction time de�nition

The reaction times collected within this study are defined 
in accordance with the work of Damböck (2013). Common 
take-over quality measures such as lateral variance in trajec-
tory after take-over will not be reported, as precise localiza-
tion was not possible in the prototype vehicle.

Time to eyes on road (TTEoR): the time from the begin-
ning of the auditory and visual warning until the first fixation 
is started within the windscreen area of interest. This serves 
as a measure for cognitive processing and visual reaction.

Time to hands on steering (TTHoS): the time is defined 
from the beginning of the auditory and visual warning until 
hands touch the steering wheel for the first time. The meas-
ure expresses the motoric reaction time needed for the driver 
to regain the possibility of intervening in the lateral control 
of the vehicle.

Time to first reaction (TTFR): two thresholds are moni-
tored to define the minimal reaction time measure. The 
minimum of the time required for pressing the ac-/decel-
erator pedal more than 5% or applying more than 1 Nm at 
the steering wheel defines the TTFR. The metric allows for 
the interpretation of the time required by a driver to form a 
situation awareness and plan a route to circumvent possible 
obstacles in the trajectory of a vehicle.

1.5  Hypotheses

Based on the aims of the study in Sect.1.3, the following 
hypotheses are generated. While the data entail far more 
information, the study aims are reduced to the following 
four hypotheses.

1. Take-over situations of higher criticality will promote 
quicker first reactions (TTFR), see Sect. 1.4  for defini-
tion. This does not include the time to hands on steering 
(TTHoS) which will be constant for all take-over situa-
tions.

2. A reaction to expected situations will occur quicker than 
to unexpected situations, so long the criticality is similar. 
This is because reactions towards expected situations 
can be planned prior to the warning itself. Expected and, 
therefore, anticipated take-over situations will yield no 
difference in reaction times.

3. Reaction times will be within a similar scope to the 
results obtained in the previous simulator study (Lotz 
et al. 2019b). The magnitude of the average time to first 
reaction will be under 2 s for highly critical take-over 
situations with a NDRT.

4. The engagement in the NDRT will cause the TTFR to 
be slower if the NDRT is not addressed.

2  Methods

2.1  Participants

A total of 27 participants were recruited through direct 
inquiry at 60 hauler and logistic firms. Participation was 
voluntary; all participants were professional truck drivers, 
receiving a financial incentive. Seven participants were 
excluded from the data analysis due to technical synchro-
nization failures of the eye-tracker with the vehicle data 
and one participant mentioning discomfort driving with the 
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automated function. The experiment could be terminated 
at any point in time and all participants gave an informed 
consent to the experiment. It was explained in detail that 
the truck was fitted with a prototypic function and warn-
ings, which could arise at any moment in time. Physical 
wellbeing was addressed and queried prior to the start of 
the experiment and monitored during procedure. In addition, 
the experimental design underwent an internal audit by an 
ethical steering committee.

The remaining 20 participants were all male with a mean 
age of M = 47.1 years (SD = 12.0 years) and reached an aver-
age annual mileage of 63,770 km/year (SD = 38,732 km/
year). A self-estimated 32.3% of the annual mileage was 
spent on highways, 42.0% were driven on overland roads, 
and the remaining 25.7% was driving in urban settings. In 
the sample of this study, one participant was not familiar 
with speedometers or adaptive cruise control, while over 
90% used these systems daily.

2.2  Apparatus

2.2.1  Vehicle

A Mercedes-Benz Actros 1845 including a prototypic auto-
mation function enabling Level 3 on highways was provided 
for all drives. Controls of the automation function were iden-
tical to that of the series Active Drive Assist (Daimler 2018), 
on the right-hand side of the steering wheel. The automation 
function was engaged through the ‘Set’ button to the current 
speed and could be toggled to the desired speed through plus 
or minus controls. The second option of engaging the auto-
mation function was initiated through the ‘Resume’ button, 
reactivating the previously set speed, see Fig. 1. Automa-
tion could be terminated at any moment in time through the 
‘OFF’-button.

Once Level 3 driving was activated, the vehicle con-
trolled the lateral and longitudinal maneuvering, kept the 

vehicle within lane markings, and decelerated if obstacles 
appeared ahead. Lateral control required the input of lane 
markings to a camera and a radar provided objects in the 
surroundings, to brake accordingly. Braking was not nec-
essary within the experimental setting, as the truck was the 
slowest vehicle on the test track. All surrounding vehicles 
were steered by drivers with safety training.

2.2.2  Track

All participants were invited to the automotive testing 
ground in Papenburg, Germany (ATP Automotive Test-
ing Papenburg GmbH 2018) and instructed on all safety 
regulations. The testing ground includes a high-speed oval 
with a length of 12.3 km and five lanes for simulated high-
way driving. Due to regulations on the track, the minimal 
driving speed was 90 km/h, which all drivers followed 
during the drives. The Level 3 driving was only initial-
ized on the 4-km-long straights, while the steep curves 
were driven manually on the lowest lane. The study was 
conducted in December, which included quickly changing 
weather including sunshine, heavy rain, strong winds, and 
overcast skies.

2.2.3  Eye-tracker

Gaze behavior was tracked through a Smart Eye Pro eye-
tracker. Mounted on the dashboard, four lenses were dis-
persed around the driver to monitor gazes into the wind-
screen, onto the tablet, into the instrument cluster and 
towards both rear-view mirrors. The system was utilized to 
record the visual attention towards a non-driving-related task 
during procedure. The sampling rate was 60 Hz.

Fig. 1  (Left) Cockpit overview with Smart Eye Pro eye-tracker and mounted tablet. Right: details of automation controls on the steering wheel 
and the tablet providing the non-driving-related task (NDRT)
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2.2.4  Non-driving-related tasks (NDRT)

During activation of the automation function, interaction 
with NDRT was available. Participants were not encour-
aged to attend the NDRT, to allow them to allocate atten-
tion freely. This resulted in some drivers not attending the 
NDRT throughout Level 3 automation. The affected trails 
were handled separately during data analysis.

The NDRT was based on a previously developed interac-
tive geography quiz (Lotz et al. 2019b). A contoured map of 
Germany was displayed on a mounted tablet in the central 
console, see Fig. 1. The task consisted of locating cities on 
the map by setting coordinates through touch. Chosen spe-
cifically to engage participants for longer periods and allow 
non-fluent speakers to interact in a quiz, this task proved as 
highly engaging in previous studies. To interact with the 
NDRT, visual and motoric attention was required. Through 
the new environment, the possibility of driving a highly 
automated vehicle, the necessity to drive manually in the 
curves and the novel test track environment for each partici-
pant, we are confident that passive fatigue did not occur, as 
discussed by Marberger et al. (2018). However, this was not 
controlled and will not be addressed further.

2.2.5  Take-over situations and warnings

Three different take-over situations were investigated in the 
present study with varying time criticality. In each situation 
type, one of two optical–acoustic warnings was presented. 
One possible combination was not tested; this resulted in 
three take-over situations: (1) yellow warning with low situ-
ation criticality, (2) red warning with low situation critical-
ity, and (3) red warning with high situation criticality. A 
yellow warning was only presented at the end of a straight 
and red warnings could appear at any moment due to system 
limits being breached.

1. Yellow take-over situation: at the end of each straight, a 
yellow take control warning with a 10-s countdown was 
displayed in the instrument cluster. The warning con-
sisted of a periodical tone with 200 bpm at 1200 Hz with 
a yellow icon in the instrument cluster, see (4) in Fig. 2. 
As Level 3 was not available in the track’s steep turns, 
this automatic prompt was always displayed. To let the 
drivers accustom to the vehicle and surroundings, this 
warning was not displayed on Straight #1. The reason for 
the yellow warning due to the steep curves was provided 
to all participants. The yellow warning was, therefore, 
repetitive and could be expected by participants. The 
criticality was low, as there were more than 10 s until the 
steep curve began. Participants were instructed to turn 
off the automation function and continue driving manu-
ally when the yellow warning was displayed throughout 
the complete curve and reactivate automation on the fol-
lowing straight.

• Yellow warning: occurring at the end of straights as 
an indication to regain manual control with at least 
10 s headway. The vehicle continued on its trajectory 
with no perceivable increased criticality.

2. Red take-over situation: consisted of a red take control 
warning presented when the vehicle reached system 
limits and a continuous tone at 1200 Hz occurred, see 
(5) in Fig. 2. Participants were instructed to take back 
control of the vehicle as soon as possible when this sig-
nal appeared, as the system reached its limit. The red 
warning was presented multiple times during Level 3 
activation, see Fig. 3. The automation function regis-
tered the take-over at the steering wheel upon which the 
warning terminated instantly. Participants did not need 
to deactivate the function with the ‘OFF’-button. Addi-
tionally, the final yellow warning on Straight #9 was 
substituted with this red take-over warning, to investi-
gate the response towards switched warning types and, 

Fig. 2  Automation system warnings in the instrument cluster between 
speedometer and rev counter. Left to right: (1) automation available 
and ready for activation. (2) Automation function activated as sym-
bolized through blue ‘HP’ symbol. (3) Activation function passive 

due to oversteering by participants. (4) Yellow warning at the end of 
all straights with a 10-s counter. (5) Red warning advising immediate 
take control (color figure online)
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therefore, an unexpected warning signal with identical 
criticality

• Red warning: occurring anywhere on the straights 
with the instruction to regain control as quickly as 
possible. The vehicle continued on its trajectory with 
no perceivable increased criticality.

3. Lane twitch take-over situation: instead of warning with-
out seeming environmental reason and low criticality, a 
rapid trajectory change was induced to generate a take-
over situation with high criticality and the red warn-
ing was displayed. This warning was only induced on 
the straights without the need to regain manual control 
immediately in front of steep curve, due to safety rea-
sons. This take-over type is referred to as a lane twitch 
hereon.

• Red warning and lane twitch: occurring during auto-
mation anywhere on the straights with the instruction 
to regain control as quickly as possible. The vehicle 
trajectory changed rapidly to increase criticality.

The trajectory change induced resulted in a steering 
wheel angle change (M = 18.68°, SD = 2.81°) to the right, 
a track offset (M = 0.21 m, SD = 0.12 m) and lateral accel-
eration (M = 0.60 m/s2, SD = 0.25 m/s2). A safety engineer 
seated on the rear seat behind the participants observed traf-
fic in the rear-view mirrors and did not start the take-over if 
vehicles were within the proximity.

2.3  Procedure

After completing all safety introductions participants filled 
out a socio-demographic questionnaire, the automation func-
tion and NDRT were described and one lap on the test track 
as a passenger was completed. During all drives, one safety 
engineer was present in the vehicle and an additional experi-
menter guided the participants through the tutorial and drive. 
During the introductory lap, the automation function was not 
shown; however, the controls were clarified at the steering 
wheel and function-related questions were answered. The 
participants had no specific instructions for the drive other 

than to experience a prototypic automation function nov-
ices but with a professional background and high driving 
experience.

Participants were in control of the vehicle for five laps 
(Straight #0–#9), of which the first two laps consisted of a 
guided tutorial to accustom to the automation function. The 
automation function was initiated on Straight #1 for the first 
time, see Fig. 3. Drivers could overrule the function at any 
time by pressing the ac-/decelerator pedals or guiding the 
vehicle laterally with the steering wheel without turning the 
automation function off, see (3) in Fig. 2. While the automa-
tion function was being overruled, the function was passive 
and reinitiated itself upon terminating the overruling. Dur-
ing the first four straights, the participants experienced a 
total of seven take-overs (three yellow, four red), see Fig. 3. 
The first red take-over warning on each straight during the 
tutorial phase was always announced prior to the take-over. 
On Straight #3, the NDRT was activated the first time and 
the red warning symbol was displayed on the tablet during 
the request to intervene. The yellow take-over situation was 
announced in the tutorial phase to accustom participants to 
turn off the Level 3 automation when approaching the steep 
curves.

The actual experiment phase began with the approach 
onto Straight #4. The participants drove one of two sce-
narios in the experiment phase in which the red and lane 
twitch take-overs on Straight #4, #7 and #8 were reversed, 
see Fig. 3. The reversal of the two scenarios was aimed at 
investigating the influence of the tutorial phase on known 
take-over scenarios, red take-over, and unknown critical 
take-overs, lane twitch, directly after the tutorial phase. The 
order of the time critical take-overs is depicted in Fig. 3 for 
both scenarios (V1 and V2). The participants activated the 
automation function at the beginning of each straight and the 
NDRT was unlocked. The five laps were completed within 
approximately 45 min. Due to the fact that sunset was at 
16:15 (4:15 pm); it was possible to collect data in the early 
phases of night as two drives started after 16:30 (4:30 pm) 
each day.

Fig. 3  Overview of the procedure of participants with the chronology 
of take-over types during Level 3. Three different take-over situations 
were presented: yellow, red and twitch (lane twitch) scenarios. The 

procedure was completely identical except for the take-over situations 
on Straight #4, #7 and #8 in which each driver drove either variant V1 
or V2 (color figure online)
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3  Results

The study design is a within-subject design with repeated 
measures resulting in 356 take-overs. The vehicle data, 
eye-tracking and video recordings were synchronised 
and analyzed with respect to the formulated hypotheses 
of Sect. 1.5. Due to the fact that the prototypic vehicle 
was not fitted with a capacitive steering wheel, the time 
to hands on steering (TTHoS) were evaluated from a syn-
chronised video of the drives. For the time to first reaction 
(TTFR), the threshold of 1 Nm at the steering wheel or 
5% ac- or decelerator pedal position change was defined.

Figure 4 depicts TTFR for both phases of the drive 
(tutorial/experimental) for each take-over situation type, 
when drivers had their hands off the steering wheel. For 
the experimental phase, all reaction times are documented 
in Table 1. On average during the experiment phase, this 
resulted in a TTFR (M = 1.087 s, SD = 0.417 s), TTHoS 
(M = 0.727 s, SD = 0.253 s), and TTEoR (M = 0.364 s, 
SD = 0.425 s) for a total of 162 take-overs in which the 

hands were off the steering. An analysis of all take-overs 
through a full factorial ANOVA with factor phase (tuto-
rial, experiment), situation type (yellow, red, lane twitch), 
hands on steering (true, false), and daytime (day, night) 
was conducted for TTFR and TTHoS. The results of 
both ANOVA are presented in Table 2. An overview of 
the quickest and slowest reaction times is also given in 
Table 1. For some considered take-over situations of situ-
ation type yellow and red, TTEoR and TTFR of 0 s were 
recorded. This displays take-over situations in which the 
driver had their eyes on the road and was not engaging 
in the secondary task. For the yellow situation types this 
TTEoR was 0 s in 33 take-overs, while in the red situa-
tion types this only occurred once, displaying anticipation 
of a take-over situation. Even the maximal outliers dis-
play very quick reaction times for all take-over situations. 
Notably, the maximum TTEoR are slower than TTFR and 
TTHoS. This can be attributed to drivers focusing on the 
instrument cluster with the hands already being placed on 
the steering. The analysis of both the TTFR and TTHoS 
portrays that there is a significant effect of drive phase in 

Fig. 4  Left: time to first reaction (TTFR) in the tutorial and experi-
mental phase when hands were not guiding the steering wheel 
for each different warning type (i.e., yellow, red and red, and lane-

twitch). Right: time to first reaction (TTFR) for the two different ver-
sions with respect to the first take-over compared to all other take-
overs of the same situation type (color figure online)

Table 1  Time to first reaction, time to hands on steering and eyes on road in experiment phase

Minimum, maximum, and average times are reported

Situation type # of take-overs Time to first reaction (s) Time to hands on steering (s) Time to eyes on road (s)

Min Max Avg Min Max Avg Min Max Avg

Yellow 67 0 2.31 M = 1.222 (SD = 0.403) 0.06 1.65 M = 0.705 (SD = 0.300) 0 2.28 M = 0.324 (SD = 0.449)
Red 53 0 2.31 M = 1.109 (SD = 0.469) 0.36 1.56 M = 0.772 (SD = 0.244) 0 2.01 M = 0.496 (SD = 0.469)
Lane Twitch 42 0.36 1.58 M = 0.841 (SD = 0.233) 0.36 1.56 M = 0.705 (SD = 0.173) 0 0.78 M = 0.262 (SD = 0.267)
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the data, this is to be expected as drivers were instructed 
and novices in the tutorial phase. If the hands of the driver 
were on the steering, this resulted in a highly significant 
main effect for both reaction times. A small effect is regis-
tered for the factor criticality (yellow/red vs. lane twitch), 
while the expectancy (yellow vs. red) yielded no effect for 
TTFR. Three further mild interaction effects were identi-
fied for TTFR. These results lead to a rejection of Hypoth-
esis #1, as no clear indication of expectancy and critical-
ity is identified for TTFR. Contrarily, a highly significant 
main effect for expectancy (yellow vs. red warning) was 

identified for TTHoS, while the data did not display any 
significant differences for criticality, see Table 2.

As participants drove one of two versions, see Sect. 2.3, 
a version comparison was conducted for the first take-
overs in comparison to all other take-overs in the experi-
mental phase. The comparison aims to identify whether 
the novel situation lane-twich (M = 0.807, SD = 0.118) 
caused prolonged TTFR compared to all other lane-
twitches (M = 0.725, SD = 0.340), see Fig. 4. As the red 
warning was learned in the tutorial phase participants were 
familiar with this situation type. Due to unequal sample 

Table 2  Results of full-factorial ANOVA for TTFR and TTHoS

Dependent variable Measure Sum of squares df Mean square F Pr (> F) Partial �2

Time to first reaction Phase 12.59 1 12.59 43.43 1.69e-10 0.114167
Expectancy 0.93 1 0.93 3.203 0.07441 0.009414
Criticality 2.60 1 2.60 8.974 0.00294 0.025939
Hands on steering 34.91 1 34.91 120.5  < 2e16 0.263357
Daytime 0.00 1 0.00 0.016 0.90028 0.000047
Phase * expectancy 0.08 1 0.08 0.280 0.59711 0.000830
Phase * hands on steering 3.15 1 3.15 10.87 0.00108 0.031260
Expectancy * hands on steering 2.16 1 2.16 7.441 0.00671 0.021603
Criticality * hands on steering 0.03 1 0.03 0.106 0.74553 0.000313
Phase * daytime 0.29 1 0.29 0.998 0.31843 0.002954
Expectancy * Daytime 0.22 1 0.22 0.752 0.386601 0.002252
Criticality * Daytime 0.00 1 0.00 0.000 0.98561 9.67e-07
Hands on steering * daytime 3.84 1 3.84 13.25 0.00032 0.037824
Phase * expectancy * hands on steering 0.04 1 0.04 0.135 0.71391 0.000399
Phase * expectancy * daytime 0.00 1 0.00 0.006 0.93690 0.000019
Phase * hands on steering * daytime 0.36 1 0.36 1.243 0.26563 0.003676
Expectancy * hands on steering * daytime 0.21 1 0.21 0.716 0.39822 0.002119
Phase * expectancy * hands on S.* daytime 0.00 1 0.00 0.000 0.99852 1.02e-08

Time to hands on steering Phase 1.288 1 1.288 19.985 1.07e-05 0.055982
Expectancy 4.509 1 4.509 69.968 1.62e-15 0.171925
Criticality 0.013 1 0.013 0.204 0.6517 0.000605
Hands on steering 27.29 1 27.29 423.51  < 2e-16 0.556880
Daytime 0.339 1 0.339 5.260 0.0224 0.015368
Phase * expectancy 0.015 1 0.015 0.226 0.6347 0.000671
Phase * hands on steering 0.156 1 0.156 2.414 0.1212 0.007113
Expectancy * hands on steering 0.028 1 0.019 0.295 0.5132 0.001270
Criticality * hands on steering 0.010 1 0.010 0.162 0.6877 0.000480
Phase * daytime 0.003 1 0.003 0.040 0.8418 0.000118
Expectancy * daytime 0.009 1 0.009 0.143 0.7052 0.000425
Criticality * daytime 0.000 1 0.000 0.005 0.9463 0.000014
Hands on steering * daytime 0.062 1 0.062 0.956 0.3289 0.002828
Phase * expectancy * hands on steering 0.000 1 0.000 0.000 0.9988 7.04e-09
Phase * expectancy * daytime 0.028 1 0.028 0.439 0.5082 0.001300
Phase * hands on steering * daytime 0.001 1 0.001 0.012 0.9144 0.000034
Expectancy * hands on steering * daytime 0.001 1 0.001 0.011 0.9153 0.000034
Phase * expectancy * hands on S.* Daytime 0.004 1 0.001 0.056 0.8137 0.000165
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size homoscedasticity was tested through a levene test with 
factors situation type and the binary factor first take-over 
or all others for the dependent variable TTFR. As homo-
scedasticity was not achieved F(3,65) = 2.63, p = 0.058, a 
Welch test was performed displaying significance only for 
situation type F(1,65) = 17.617, p <  < 0.001. The results 
display no difference with respect to first appearance of 
take-over situations, showing that the highly critical lane 
twitch situation was attended unconditional of novelty. 
With respect to the red situation type, non-significant 
results strengthen the assumption that learning of take-
over procedure in the tutorial phase was effective.

Similarly, on the last straight of the experimental phase 
(Straight #9), drivers experienced a different expected 
warning, a red take-over warning was displayed instead 
of a yellow warning. Figure 5 (left) depicts the TTFR 
for all yellow warnings on Straight #8 compared to the 
novel red warning at the end of Straight #9. A two-way 
ANOVA for TTFR was calculated with the categorical 
variable whether hands were touching the steering or not 
and the situation type. This resulted in a significant effect 
for hands on steering F(1,36) = 18.67, p = 0.0002, par-
tial-�2  = 0.329, but not for situation type F(1,36) = 0.349, 
p = 0.558, partial-�2  = 0.0091.

Also in Fig.  5 (right), TTFR is presented for the 
three different situation types and whether participants 
engaged in the NDRT within 2 s prior to RtI. Engage-
ment was determined through eye-tracking data and if 
the tablet was touched within this timeframe. A one-way 
ANOVA for NDRT engagement was calculated for TTFR 
with no significant effect, F(1,162) = 0.004, p = 0.948, 
partial-�2  = 0.00002.

4  Discussion

Multiple research questions are addressed in the present 
study concerning take-over behavior of professional truck 
drivers in Level 3 automation. Test track drives, simulating 
highway scenarios, with non-affiliated professional truck 
drivers were investigated to identify reactions towards dif-
ferent warning types and criticalities resulting in take-over 
situations. The information gathered is paramount to design 
future driver assistance systems, enhance usefulness (DIN 
EN ISO 9241-210:2010 2010) and apply a human-centered 
design approach (Cooley 1982). A positive byproduct of 
applying this knowledge to the design process of future sys-
tems is to achieve the goal of reducing workload on drivers 
and therein decrease accidents.

4.1  Take-over criticality

One of the prime focuses of this study was to identify 
driver behavior for varying critical take-over situations in 
a real vehicle. The statistical analysis of TTFR displayed a 
mildly significant effect of the two levels of take-over criti-
cality, while TTHoS was constant for this factor. Critical-
ity was manipulated by inducing a steering impulse in the 
high condition, causing the steering wheel to swerve to the 
right when drivers were occupied with a NDRT and hands 
were not on the steering wheel. However, no visual obsta-
cles caused the variation in criticality to bypass any risk 
of causing an accident for the participants. Driver interac-
tion depending on criticality seems to cause a quicker first 
reaction at the controls of the vehicle, see Fig. 4. However, 

Fig. 5  Left: time to first reaction (TTFR) for all expected yellow warning and expected red warning on Straight #9. Right: comparison of TTFR 
for all warning types and whether NDRT was played or not within 2 s prior to a take-over request (color figure online)
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this does not signify that route planning for the handling of 
the situation was quicker. The lane twitch situation in this 
study caused an acceleration to be perceived by the driver. 
Instinctive reaction to the kinaesthesia could have caused 
the quicker time to first reaction. Hypothesis 1 is therefore 
failed to be rejected, with necessary future investigations 
focusing on the causation of quicker reactions.

4.2  Warning expectancy

Two different warning types were presented in the three dif-
ferent take-over situations. The two take-over warnings con-
sisted of a yellow take control warning issued solely at the 
end of a straight and a red take control warning issued when 
system limits were met and drivers had to regain control 
immediately. These two take-over situations did not differ 
in criticality and were issued on the straights. In these situ-
ations, the system did not appear to mishandle the driving 
task; however, take-over was required (yellow and red). A 
yellow take-over warning was always presented at the end of 
a straight, allowing each participant to foresee (expect) this 
combination of situation type and warning when approach-
ing the steep curve. Solely on the last straight, the yellow 
warning was replaced with a red warning.

The comparison of the red and yellow warnings displayed 
no significant difference for TTFR. Interestingly, a highly 
significant effect for expectancy was identified for TTHoS. 
As the yellow warning could be expected at the end of the 
straights, take-over procedure could be anticipated at the end 
of the straights. This is also present in the data, as at roughly 
50% of all yellow take-over situations, the eyes were already 
focused on the road, demonstrating expectancy. The overall 
tendency of expectancy to have no effect on TTFR was also 
identified for the first and last take-overs in the experiment 
phase in which new and switched warnings were presented, 
respectively. The discrepancy between TTFR and TTHoS 
regarding expectancy can have multiple reasons. However, 
primarily only placing the hands at the steering caused the 
warning to terminate. The effect of expectancy on TTHoS 
is, therefore, anticipated. As a clear driver interaction based 
on obverting an obstacle at take-over was not necessary, the 
threshold for TTFR could have been set too high for the 
reaction to register similar to TTHoS.

An analysis of the final take-over warning at the end of 
Straight #9, which was switched from an expected yellow 
warning to a red warning, produced no significant effect for 
TTFR. However, reaction times did differ significantly in 
the yellow warning situation when hands were guiding the 
steering. A probable explanation is that some participants 
expected yellow warnings, while others trusted the automa-
tion function to warn them adequately possibly also verify-
ing the warning in the instrument cluster. With the appear-
ance of a different auditory–visual, warning was expected; 

however, the criticality was not and led to a reevaluation of 
the situation. The motoric response to unforeseeable take-
overs did not differ throughout the drives and averaged at 
0.727 s. A similar conclusion was drawn when explicitly 
investigating the hands-off times in partially automated traf-
fic jam scenarios with critical take-over situations (Naujoks 
et al. 2015). Therefore, based on the information gathered, 
Hypothesis #2 is failed to be rejected.

4.3  Comparability to simulator studies

Another research focus is to compare previously gathered 
information in a moving-base simulator to driver behavior 
in a real vehicle. Generally, current investigations in the 
Level 3 context are examined exclusively in simulators, to 
exclude the possibility of technical malfunctions or human 
error causing accidents. This is mainly because prototypes 
often are not as sophisticated as series technology and novel 
or extreme situations are investigated. While the possibili-
ties in simulated environments have excelled in recent years, 
unexpected influences might take an effect on results when 
trying to extrapolate results to a real-world context. Such 
influences could include the intrinsic trust of participants 
that no direct physical harm will occur in a simulator and the 
aspect of treating driving simulators as games (Bellem et al. 
2016). Overall, results obtained in simulators have to be vali-
dated in controlled and safe real-world scenarios to manifest 
conclusions drawn from the data. As previous experimental 
results in a truck simulator produced extremely quick TTFR 
(M = 1.35, SD = 0.49) for 755 highly time-critical take-overs 
(Lotz et al. 2019b), it was our motivation to validate these 
findings.

Results in Sect.  3 show that especially the motoric 
response time, TTHoS, was constant regardless the expected 
criticality. Learning was observed from the tutorial to the 
experimental phase, see Fig. 4. The TTFR reduced signifi-
cantly between the tutorial and experimental phase gener-
ating consistent results of learning behavior as observed 
previously (Lotz et al. 2019b). These near-constant motoric 
response times observed in the data cohere with the findings 
from Zeeb et al. (2015). Second, the different warning types 
yielded a significant effect for TTHoS in the experimental 
phase. This contradicts the results for TTFR, as only the 
most critical take-over situation generated a mildly signifi-
cant decreased reaction time. Overall, a TTFR of 1.08 s was 
observed for all take-over situations in which the hands were 
not guiding the steering wheel. A separate investigation of 
TTFR for NDRT engagement yielded no significant results.

For the consideration of reaction times in the present 
study the results of the descriptive and inferential analysis 
fail to reject Hypothesis 3 with a 3σ-interval of 0–2.343 s for 
164 take-overs, depicting 99.7% of the data. One drawback 
and possible explanation of the difference in TTFR could 
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be the low torque required to take-over the vehicle in the 
yellow and red warning conditions. Only in the lane-twitch 
condition was a strong steering wheel torque required. It 
should be noted that the present study did not present highly 
time critical situations due to environmental obstacles, but 
the steering was manipulated in the lane-twitch condition 
to induce criticality as a safe option to investigate take-over 
criticality.

4.4  Non-driving-related tasks (NDRT)

Multiple publications investigation the effect of NDRT dur-
ing Level 3 have been published recently (Merat et al. 2012; 
Petermann-Stock et al. 2013). In the present study partici-
pants could engage in a NDRT during Level 3 automation. 
As a measure of engagement the visual attention towards the 
NDRT and tablet interaction were consulted, see Fig. 5. The 
data reported shows no significant effect of NDRT on TTFR. 
This is unexpected and leads to a rejection of Hypothesis 4. 
While the results in published research show no significant 
effects amongst different NDRT (Radlmayr et al. 2014), a 
general negative effect of tasks is documented (Vogelpohl 
et al. 2016). In the present study, participants could choose 
freely if they wanted to attend the NDRT or not. It is possi-
ble that the self-motivated engagement was, therefore, lower 
than in studies in which direct task instruction was provided.

5  Conclusion

With little experience to lean on, as no studies addressing 
a standardized procedure of investigating take-over behav-
ior in critical take-over situations exists, this study presents 
novel insights into the experimental procedure and results 
of near real-world take-over behavior for Level 3. A total of 
292 take-overs in which hands were not guiding the steering 
wheel and 64 with hands on steering were examined. The 
information gathered allows for a better understanding of 
reaction times and behavior during take-overs to expected 
and unexpected events. Ultimately, this is valuable knowl-
edge to reduce accidents in critical take-over situations 
in which the machine and humans share responsibility of 
guiding vehicles safely. For optimal data comparability, 
we would welcome a definition of take-over situations and 
measures throughout the community.

Compared to previous results, the reaction times are in 
the lower spectrum of reported reaction times (Eriksson 
et al. 2017). As argued previously, professional truck drivers 
form a unique sample as experience and training are high. 
It should be clear, however, that no driver had previously 
driven on this test track, the automation function and vehicle 
was uncommon and drivers were inclined to act safely. The 
time to first reaction (M = 1.087 s, SD = 0.417 s), time to 

hands on steering (M = 0.727 s, SD = 0.253 s) and time to 
eyes on road (M = 0.364 s, SD = 0.425 s) are most likely as 
quick as possible for the presented scenarios.

As no obstacles were manipulated in the environment 
of the vehicles at take-over, the reaction times only display 
the cognitive and motoric response times required to react 
towards a take-over signal. Resulting trajectories or displace-
ments within the lane were not investigated. Primarily due to 
short distances on the test track straights and as participants 
reactivated the automation function within 10 s, an analysis 
of take-over quality is absent. In conclusion, the collected 
reaction times present the quicker spectrum of take-over 
capability by professional truck drivers. While the limit of 
take-over reaction times cannot be much quicker, slower 
reaction times due to long automation phases, higher dis-
traction and repetition are very likely and need thorough 
investigation in the future. The reaction times here present 
the minimum time an automation function needs to span 
to assist driver take-over behavior. This still disregards if 
the driver feels comfortable with these take-over times and 
is capable of delivering this high performance over longer 
periods of time.
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  Abstract 

Partial and conditional automated driving allows the driver to transfer responsibility 
to the vehicle. While assistance systems are designed to deal with aspects of the 
driving task, currently no assistance systems are available to predict driver behaviour 
for take-over when the vehicle is handling the driving task. This is important as drivers 
might interpret driving situations differently than an activated automation function. 
This can cause self-initiated take-overs leading to a reduction of trust in the system. 
In theory, if a prediction is robust, an assistance system could also adapt based on this 
prediction. A new subjective complexity model addressing these situations is 
introduced. The subjective complexity model learns situations in which individual 
drivers have previously self-initiated control of the driving task. Based on exemplary 
sideswipe manoeuvres, the system concept is explained and simulated with a training 
and test dataset. Upon introducing this system, a discussion is initated on the 
difference between objective and subjective situation complexity. A distinction is 
drawn between mathematical descriptions based on vehicular sensor data and human 
interpretation of the environment. The proposed system also functions as a carrier 
technology for further investigations between the differences of objective and 
subjective complexities. 

  Introduction 

The driving task consists of many short-term decisions, e.g. steering to hold vehicle 
in lane, and long-term decisions, e.g. route navigation. Different factors need to be 
considered in order for the driver to successfully solve these tasks. Therefore, it is 
important to understand which aspects are considered complex. This can help to 
include, enhance or adjust assistance accordingly. At the same time, humans are 
decisively influenced by the environment, which they encounter and thereby confined 
in their range of interactions. With various developments in the field of automated 
driving, possibilities of directing attention away from the driving task will become 
possible. In Level 3 (SAE J3016, 2018) the driver can focus on non-driving related 
tasks, but needs to regain control of the vehicle when warned. Recent research 
regarding take-over behaviour has shown that environmental factors such as traffic 
density and time-budget (distance to objects) play a crucial role in successful take-
over capability for Level 3 (Gold, et al., 2016; Lotz, et al., 2019; Zhang, et al., 2019). 
There is a large variety of definable environmental factors, making it difficult to 
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pinpoint isolated factors to varying driver take-over behaviour. When revisiting traffic 
density as an exemplary factor, other environmental factors such as time to collision, 
number of lanes and colour of vehicles can form interaction effects. Multiple isolated 
environmental factors can merge to form singular driving situations through the 
relation of several of these factors over time. Arbitrary measures, such as low or high 
traffic density, also make a comparison difficult. However, the driving environment 
can be measured with a variety of different sensors mounted on a vehicle. Based on 
the chosen sensor setup, this creates a representation with a sensor-specific degree of 
detail of environmental factors or higher-level situations. As a driver also perceives 
the environment with her/his senses and develops a representation of the situation, 
influences of environmental factors such as traffic density on the driver can be 
compared and deduced. If a certain driver reaction is linked to an environmental 
factor, based on the sensor representation of the environment an assistance system 
could possibly predict driver behaviour. This information would especially be 
valuable in the abovementioned take-over situations, in which responsibility shifts 
from the machine to the human. The mathematical description of the environment 
could be attributed to subjective complexities, identifying scenarios that cause higher 
workload and situations in which the driver needs assistance. As there are possibly 
also inter- and intra-individual differences in perceived subjective complexity, an 
ideal assistance system would adapt individually and specific to different driving 
situations. This could lead to a better usability, correct allocation of assistance and 
acceptance of automated driving function. 

Sensors such as cameras, radars and lidars collect data that describe an abstraction of 
their perceived environment and allow interpretation either through humans or 
computational algorithms. In a simplistic form, this data collection is similar to the 
cognitive processing for the first perception phase towards building situation 
awareness (Endsley, 1995). In what terms does environmental complexity differ 
mathematically (objective complexity) to an individual perceived situation 
complexity (subjective complexity) and how can this be measured? The second part 
of this question will be addressed in this paper and a solution will be developed to 
enable the investigation of the first part of the question in future work. 

It is worth defining our interpretation of these two different versions of complexity, 
explicitly regarding driving environments. Objective complexity is the mathematical 
describable driving situation in which all objects within a predefined area are 
continuously referenced to an ego-vehicle. This mathematical description includes 
metrics such as the distances, velocities (relative and absolute) and the time to 
trajectory intersections. The mathematical composure of the factors can vary and yield 
different values of objective complexity depending on the interpretation of the 
mathematical description. In a practical example, the data would be obtained from 
singular or combinations of sensors, capturing information of environmental objects. 
This differs from general global descriptions of complexity such as the number of 
vehicles in the environment (Gold, et al., 2016), in which no references to an ego-
vehicle and driver are drawn. The problem with global descriptions, without reference 
to the driver in the environment, is that the dispersion of vehicles is not evident from 
the point of view of the driver. When listing the amount of vehicles surrounding the 
ego-vehicle, no information is given where all these vehicles are (front, behind, lane 
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etc.). Subjective complexity is the perceived complexity of a driving situation from the 
human’s perspective. This includes all stationary and moving objects relevant to the 
driving task. Abstract cognitive and psychological constructs such as driving situation 
familiarityaffect this complexity and are not measureable with similar accuracy as the 
metrics of objective complexity. This is mainly because measurements from 
designated sensors such as electroencephalography, skin conductance or any other 
psychophysiological measurement are not unambiguously linked to any of these 
constructs and quantification of human response is not possible. A scale for the 
subjective complexity is also arbitrary, relative to the psychological constructs and 
subject to individual differences. 

Previous research has focused on describing environmental factors specifically for the 
driving environment, such as the time to resume control and the quality of the 
transition depend on driver-vehicle-environment factors (Gold, et al., 2016). Early 
work resulted in a classification scheme of driving situations with three million unique 
situations (von Benda, 1977). This classification scheme was later simplified to 
incorporate only four major aspects; horizontal course, traffic density, special weather 
and hazards (Fastenmeier, 1995). Due to the high complexity of factors, different 
types of models have been introduced to predict driver transition behaviour. The first 
class of models utilizes mathematical models, e.g. regression models, to extrapolate 
data based on empirical findings post-hoc and explain correlations in the data 
(McDonald, et al., 2019; Zhang, et al., 2019). A second class of models provides 
online prediction based on data obtained through driver and environment monitoring 
(Nilsson et al., 2015; Braunagel et al., 2017; Lotz & Weissenberger, 2019). However, 
subjective driver interpretation is missing as input data. The problem with all of these 
models is that defined factors can interact, e.g. traffic density or driver experience, 
effects that cannot be investigated in isolation within one study. Therefore, the 
investigation of differences between objective and subjective complexity, as defined 
above, has been difficult in the past. The investigation was especially difficult as 
drivers continuously needed to control the vehicle, always generating a response at 
steering. This has now changed through automated driving. 

Subjective relevance is an important factor to predict individual behaviour. Ohn-Bar 
and Trivedi (2016) conducted research on the subjective relevance of objects in the 
driving environment, stating that spatio-temporal reasoning is needed to identify 
relevance by the driver. Therefore, the context of space and time in the driving 
situation of any automation level should be regarded when investigating 
environmental effects on the driver. 

Through recent technical advances of automated driving, it is possible for the driver 
to take their hands off the steering wheel and observe the environment. Automated 
driving, specifically Level 2 and Level 3, is an ideal enabling technology suited for 
the investigation of differences between objective and subjective complexity. 
Therefore, it is possible to gather data on subjectively perceived critical complexity 
where previously the driver continuously generated responses at the steering and the 
data were open for interpretation. A distinction of intended interventions was difficult, 
because drivers constantly had their hands on the steering wheel.  
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This paper introduces a conceptual advanced driver assistance system. The system is 
designed to learn situations in which the driver takes back control of the self-driving 
vehicle, when no request to intervene is issued. The assistance system thereby 
registers situations based on current objective complexity from the vehicular sensors 
and associates it with subjective complexity. The moment drivers reclaim control 
through self-initiated take-over, the objective complexities gathered by vehicle 
sensors can be identified in which no automated driving is desired. Thereby, the 
assumption is formed that the drivers consider the environment as subjectively 
complex. Hence, the automated vehicle can learn when the automation function itself 
can suggest take-over predictively.  

  Subjective Complexity Model 

The proposed subjective complexity model relies on the fact that the vehicle has a 
driver assistance system capable of simultaneous lateral and longitudinal control, i.e. 
without the need of having the hands on the steering wheel. Typically, this approach 
is only possible with advanced Level 2 or Level 3 systems. The objective of the 
proposed model is to make predictions when the surrounding driving complexity 
reaches a point in which the driver feels intervention is necessary. Thereby, a 
relationship between objective and subjective complexity can be investigated. The 
hypothesis is followed that the driver subjectively decides that complexity of the 
driving environment is too complex and external vehicular sensory data is recorded at 
intervention. Other reasons for self-initiated take-over are also possible, e.g. low 
satisfaction with vehicle control, and intention cannot be differentiated. It is worth 
noting, that the trust in the automated vehicle is affected by driving experience (Gold, 
et al., 2015). To show the functionality of the model, sideswipe manoeuvres were 
recorded with an advanced Level 2 automated truck and divided into a training and 
test dataset. These sideswipe manoeuvres were limited to vehicles crossing onto the 
ego-lane from the fast lane (left). 

 

Figure 1. Workflow of adaptive assistance system. Sensor data are split into regions of interest 
(left, ego, right). Kinematics of all perceived objects in these regions are calculated upon which 
the most critical objects is identified (see Figure 2). Output criticality is calculated based on 
previously recorded data. 
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  Concept 

The functionality of the subjective complexity model is presented in Figure 1. The 
model is split into four major components. First, the perception of vehicles in the 
periphery of an ego-vehicle are identified, including the calculation of kinematic 
relationships. Secondly, the most critical object is determined based on the previously 
calculated kinematics. Thirdly, situations in which the driver intervenes with the 
vehicle without a take-over warning being displayed, are recorded and saved in a 
database. Fourthly, the criticality of current driving situations is calculated based on 
the conformity parameter of current kinematics with saved situation kinematics. 

  Sensory perception and kinematics 

Sensory data of the surrounding vehicles are gathered and split into three possible lane 
positions. This includes the ego-lane as well as the lanes directly to the left and right. 
The raw data received from the sensors includes the lateral 𝐷𝑖𝑠𝑡𝑦 and longitudinal 
𝐷𝑖𝑠𝑡𝑥 position as well as the speed of each object relative to the ego vehicle 𝑅𝑒𝑙𝑆𝑝𝑑 
and object width 𝑊𝑖𝑑𝑡ℎ𝑦. This allows the calculation of lateral 𝑆𝑝𝑑

𝑦
 and longitudinal 

𝑆𝑝𝑑
𝑥
 speed of each object. Additionally, a safety corridor is defined through the width 

of the variable 𝐵𝑢𝑓𝑓𝑒𝑟, see Figure 2. In this version of the proposed model, a 
maximum of six vehicles could be perceived around the ego-vehicle, with a maximum 
of two objects per lane. It should be noted that different sensor setups can alter the 
outcome of the system dramatically. By adding different sensors, e.g. cameras for 
object classification, additional data can offer subsequent critical object identification. 
Based on available radar data with the current sensor setup, the following kinematic 
variables were calculated.  

𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 = (
|𝐷𝑖𝑠𝑡𝑦| − (

1

2
(𝑊𝑖𝑑𝑡ℎ𝑦) + 𝐵𝑢𝑓𝑓𝑒𝑟)

𝑆𝑝𝑑
𝑦

)  (1) 

𝑇𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 =
𝐷𝑖𝑠𝑡𝑥

𝑅𝑒𝑙𝑆𝑝𝑑
                                                                  (2) 

𝑇𝑇𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 − 𝑇𝑇𝑐𝑟𝑜𝑠𝑠𝑏𝑜𝑟𝑑𝑒𝑟
                                     (3) 

𝐷𝑖𝑠𝑡𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 = 𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 ∗ 𝑅𝑒𝑙𝑆𝑝𝑑                              (4) 

In total, ten kinematic variables are taken into account with the available sensors, see 
Table 1. Every relevant object on any of the three lanes has a separate set of these ten 
variables. Further variables in following implementation versions could include 
crossing angles, further crossing times, trajectory predictions. 

  Identification of most critical object 

In the case of a self-initiated driver take-over, i.e. no request to intervene, either the 
complete constellation of the surrounding vehicles or a single object causing the driver 
to intervene needs to be identified. Here an assumption needs to be formulated, to 
differentiate between these two options. The proposed model assumes that one object 
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is the most critical in the environment and it can be defined as the object that would 
enter the safety corridor first, if all vehicles maintain their trajectory. This assumption 
corresponds to the smallest 𝑇𝑇𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, see equation (3), of any of the six surrounding 
objects. Previous development versions of the adaptive model also incorporated 
multiple critical objects. However, as there is always one object which is hit prior to 
all the others, the assumption was made that the driver reacts primarily towards this 
object. If the constellation of all vehicles were to be recorded, a higher amount of 
constallations would be possible with less likelihood of reoccuring.  

  Recording self-initiated take-over situations 

If a driver intervenes with the automation function controlling the ego-vehicle, the 
currently most critical object is recorded to a database. Simultaneously, the model 
identifies where this most critical object was located for a certain amount of time 
previously to the take-over. The time is an adjustable parameter as well as the size of 
the search region, defined by a lateral and longitudinal measure. The two sets of ten 
kinematic variables, current and delayed, are saved with object lane positions resulting 
in 22 mathematical variables. Every time the driver regains control of the vehicle, the 
current situation with its delayed prior position is recorded to the database. As the 
driving environment can vary dramatically based on the type of road or national 
restrictions, the data and type of driving culture are completely adaptable. Similarly, 
the driver’s interpretation of situations may vary over time and compared to other 
drivers. As more and more data is recorded the model adapts over time, this enables 
learning of personalized self-initiated take-over. 

Table 1. Kinematic variables calculated from sensor data. 

Variable Name Definition 
𝑫𝒊𝒔𝒕𝒙 Longitudinal distance from front of ego-vehicle to rear of object. 
𝑫𝒊𝒔𝒕𝒚 Lateral distance from front of ego-vehicle to rear of object. 

𝑺𝒑𝒅𝒙 Longitudinal speed of object relative to the longitudinal axis of the ego-
vehicle. 

𝑺𝒑𝒅𝒚 Lateral speed of object relative to the lateral axis of the ego-vehicle. 
𝑬𝒈𝒐𝑺𝒑𝒅𝒙 Speed of the ego-vehicle along its longitudinal axis. 
𝑹𝒆𝒍𝑺𝒑𝒅 Difference of longitudinal speed between the object and the ego-vehicle 

𝑻𝑻𝒄𝒓𝒐𝒔𝒔_𝒃𝒐𝒓𝒅𝒆𝒓 The time required for the object to cross into the safety corridor. Only 
considered if the trajectories of the vehicles cross. 

𝑻𝑻𝒉𝒆𝒂𝒅𝒘𝒂𝒚 The time required for the ego-vehicle to bridge the longitudinal distance 
to the object. 

𝑻𝑻𝒄𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 

The time required for the ego-vehicle to reach the point where the object 
crosses into the safety corridor minus the time required to reach that 
point. This measure considers the time to collision once the safety border 
is breached. 

𝑫𝒊𝒔𝒕𝒄𝒓𝒐𝒔𝒔_𝒃𝒐𝒓𝒅𝒆𝒓 The longitudinal distance the object is from the ego-vehicle once the 
safety corridor is breached. 
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  Continuous Criticality Output 

Upon identifying a most critical object, the model relies on fuzzy logic (Ross, 2010) 
to compare current situations with previous unforced take-over situations from the 
abovementioned database. All kinematic variables are taken into account for the 
prediction method and a majority voting mechanism determines comparability of 
saved situations with the current driving environment. It is possible to adapt to this 
mechanism in the future. The model searches through all previous situations, 
comparing current kinematic variables to the saved situations. As it is highly unlikely 
that the exact situation appears twice during an self-initiated take-over, a confidence 
percentage in form of a conformity parameter is introduced. The definition of this 
confidence percentage has a profound influence on the precision of the model as 
discussed in the conclusion. 

 

 

Figure 2. Overview of distances and variables for kinematic calculations. The vehicle on the 
left lane requires ∆𝑇 time, corresponding to 𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟, to cross into the safety corridor on 
the ego-lane in front of the ego-vehicle. 

  Data Collection 

To present the functionality of the subjective complexity model, a small number of 
manoeuvres were recorded on a German two-lane federal road with speed restrictions. 
This dataset is too small to investigate the full potential of the system. However, first 
indications of the functionality can be examined. The sensors were mounted to a 
prototype Mercedes-Benz Actros with an Active Drive Assist (Daimler AG, 2019). 
Over the course of two hours, sideswipe manoeuvres from the left lane towards the 
ego-lane were recorded. This manoeuvre was an exemplary situation, which our 
fictive driver was uncomfortable in and chose to take-over. It can be expected that 
real-world traffic situations in which a driver intervenes with the automation function 
are seldom and would not deliver adequate data. The dataset was divided into a 
training and test dataset with proportions of approximately 90% to 10% respectively. 
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This resulted in a total of 105 training sideswipe manoeuvres, see Figure 3, and 13 
test manoeuvres. 

  Results 

The model is evaluated based on the self-initiated test manoeuvres that are examined 
qualitatively. These 13 test manoeuvres are not limited to sideswipes, they consist of 
take-overs due to a construction site, one sideswipe in a traffic jam at low speeds, five 
delayed take-overs due to sideswipes and six sideswipes from motorway entry-ramps, 
i.e. right side. A qualitatively comparison of vehicular signals synchronised with a 
dashcam video was realized for the model proof of concept. A quantitative analysis 
was not meaningful, as the data are limited. The complete model was simulated in 
MATLAB/Simulink, see Figure 4 and Figure 5, which depict the prediction value of 
the most critical object currently and delayed as well as the hands-on signal when the 
driver intervened. 

 

Figure 3. Exemplary sideswipe manoeuvres recorded in the training dataset. 
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Figure 4. Two exemplary self-initiated take-over situations that were not trained in the training 
set. Predicted sideswipe manoeuvres never reach a confidence greater 80%. 

Figure 5 displays the qualitative comparison of the five sideswipe manoeuvres, which 
the driver initiated with a varying delay. As shown in the graphs portraying the current 
similarity prediction, delayed similarity prediction of 0.5 sec and when the take-over 
was initiated (top to bottom), the snapshot of the actual sideswipe was predicted very 
accurately (vertical blue line). Overall, in four of the five delayed take-overs, the 
model correctly identifies a sideswipe manoeuvre with 100% confidence. The third 
depicted sideswipe take-over in Figure 5 with a delayed response shows a low 
prediction quality. It can also be seen, that sensor dropout appears quite frequently 
throughout the drives. 

The self-initiated take-overs that were not included in Figure 5 and consisted of the 
six take-overs from sideswipes at motorway entry-ramps, displayed a poor quality of 
prediction and are not depicted. Overall take-over prediction value by the model in 
these other eight situations never reached over 80%. Two of these eight exemplary 
situations are depicted in Figure 4. 
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Figure 5. Five sideswipe manoeuvres with delayed driver response. Trace data depicts 
confidence values for current and delayed most critical objects in the environment. The hands-
on signal generated by the driver is also depicted. The blue line indicates the point in time, to 
which the video-snapshot corresponds. 

  Conclusion 

The introduction of our subjective complexity model is an innovative solution of a 
learning and adaptive assistance system. By recording driver self-initiated unforced 
take-overs during automated driving, it is possible to monitor take-overs without 
interpretation of intent and behaviour. If proven reliable and beneficial, this system 
can predict preferences in which the driver does not trust the self-driving vehicle or 
feels the need to manage the driving situation. Trust is an essential component in the 
human-machine-interaction during automation, as drivers should be able to anticipate 
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system behaviour. If this is not possible, self-initiated take-overs are likely and the 
model offers assistance. Through continuous learning of relevant situations in which 
the driver wishes to control the vehicle, the vehicle itself can suggest take-over 
predictively. This offers different configurations of predictions for different drivers 
and roads. The functional layout of the model also allows the adjustment of sensors, 
where the effect on the predictability of take-over can be tested. 

Apart from being an adaptive driver assistance system, the model can function as a 
carrier technology for the investigation of objective and subjective complexity. 
Thereby, a solution for the second part of our research question is proposed. One of 
the main obstacles is that sufficient data are difficult to record for this theoretical 
comparison. On the brink of introducing automated driving to vehicles, previously the 
driver continuously held control of the vehicle. This made a differentiation difficult 
between instances, in which the driver considered the environment to be complex. 
Self-initiated take-overs are valuable for the interpretation of subjective complexity. 
These situations show that meaning of the temporal and spatial characteristics of 
surrounding objects from the drivers’ perspective was complex enough to motivate a 
take-over. It should be mentioned that self-initiated take-overs could also occur due 
to uncritical situations, e.g. terminating automation. In order to truly investigate the 
differences of subjective and objective complexities, the first part of the research 
question, a long-term data collection of individual drivers is required that needs 
documentation of driver intent. 

The results of the prediction accuracy of the model shows satisfactory results. While 
the sideswipe manoeuvres in the test dataset were identified prior to delayed take-over 
in four of the five instances, one unlearned situation was not identified, see Figure 5. 
However, there are several reasons and possibilities to improve prediction and the 
validation of the model. A filtering of the signal is required for subsequent versions 
to bypass sensor dropout and smooth the prediction value signals. Another 
shortcoming in our proof of concept are the high number of false positives. It should 
be investigated whether these false positives occurred, due to the low distinction 
between a sideswipe manoeuvre being initiated and vehicle continuing in their lane. 
Furthermore, the point in time in which the driver initiates take-over can vary 
dramatically, making it difficult for the system to reference the correct critical object 
to the situation. Reaction times of a driver must possibly be taken into account. 
Finally, the system can never abstract the data to new situations. Each situation has to 
have happened similarly in order for the model to predict the situation in the future. 
However, based on the introduced conformity parameter, see Figure 1, the model can 
parameterise to achieve different levels of generalisation. 

The model shows that this type of assistance system has promising applications in the 
driving context as well as research. An applied subject complexity assistance would 
require larger datasets, a higher variance of critical unrequested take-overs as well as 
seldom occurrences. The model could also be realized with a machine learning 
approach, however, the presented solution has the added benefit of clearly showing 
how and why the system functioned with specific predictions. In the future, a large 
dataset will be utilized as a basis for a parametrization of all variables as well as the 
expansion of vehicular sensor for further kinematic description of the environment.  
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Discussion 
The following discussion is organized into two main sections. Firstly, a summary of Paper No. 1 – 4 is 

presented. This includes drawbacks of concepts, methods, results and general weaknesses. Secondly, 

a comprehensive discussion on the overall findings with regard to the introduced research questions 

of this dissertation is given. This includes an outlook on future research aspects within the domain of 

this dissertation. 

Summary of papers 
Paper No. 1 (Lotz, Russwinkel & Wohlfarth, 2019) presents empirical research of an extensive moving-

based simulator study with 88 professional truck drivers. Each participant experiences nine critical 

take-over situations during Level 3 automated driving. The paper presents the evaluation of reaction 

times with regard to the independent variables automation duration, type of take-over situation and 

non-driving related task. Additionally, learning behaviour for new interactions with a previously 

unknown automation function is investigated. 

The obtained data of Paper No. 1 is utilized in Paper No. 2 (Lotz & Weissenberger, 2019) to investigate 

the possibility of predicting reaction times with data-driven computational models for individual 

assistance. A classification problem was defined, with four reaction time classes of varying width and 

uneven weighting. Four different machine learning algorithms (k-nearest neighbour, Bayes classifier, 

support vector machine and a multilayer perceptron neural network) were analysed with regard to 

their suitability and accuracy. The results show that for limited amounts of data, support vector 

machines offer the lowest misclassification rate. Overall, eye-tracking data and vehicular sensor data 

was not sufficient to accurately classify take-overs into the correct reaction time classes with 

satisfactory accuracy. Rather, no clear correlation was determined between physiological and 

environmental features to reaction times. This is attributed to the high intra- and inter-individual 

differences drivers present during Level 3 automation and due to the confined experimental setup. 

The focus of the study presented in Paper No. 3 (Lotz, Russwinkel & Wohlfarth, 2020) was to validate 

the reaction times obtained in the simulator study of Paper No. 1 in real-world conditions. The 

empirical study of Paper No. 3 was conducted with a prototypic semi-truck, enabling the driver a 

Level 3 automation function on a test track. The effect of expectancy of take-over situations was 

investigated. Reaction times calculated from the empirical data presented very quick reaction times 

compared to the literature, similar to Paper No. 1. Expectancy of take-over situations did not generate 

significant differences in reaction times by the professional truck drivers. 

Paper No. 4 (Lotz, Russwinkel, Wagner & Wohlfarth, 2020) introduces a prototypic advanced driver 

assistance system. Its aim is to predict environmental driving situations in which the driver feels take-

over is necessary and self-initiates control, although no warning is initiated. The paper provides a 

description of the conceptual function of the system. On the basis of sideswipe manoeuvers, the 

potential accuracy of the system is discussed. Additionally, the theoretical constructs of objective and 

subjective driving complexity are introduced. The conceptual assistance system thereby also functions 

as a carrier technology, to enable the future investigation of differences between objective and 

subjective complexity. 
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Limitations/Improvements 

Paper No. 1 

The extensive moving-base simulator study of Paper No. 1 was designed to investigate professional 

truck driver behaviour in critical take-over situations. In parallel, the long-term goal of generating 

usable data for the investigation of computational models for driver predictability was pursued. The 

experimental methodology of the study in Paper No. 1 had to be adapted, to also serve this secondary 

objective, see Paper No. 2. Especially the generation of multiple take-overs by each participant was 

paramount to gather enough data, to train data-driven computational models. Naturally, this causes 

certain drawbacks, which are discussed in the following. 

The study was comprised of a complex test scenario with many different groups and variants. A 

complete balanced design was not possible, due to the independent variables; automation duration, 

non-driving related task, take-over situation and trial. A complete balanced design would have 

required nine factorial (9!) variants. In sum, 768 take-overs were successfully recorded. 

The experimental design was also arranged to only incorporate take-over situations that were highly 

critical, with times to collision of 2.4 sec to 5.8 sec. It was reasoned during the design that by presenting 

short times to collision, the drivers would be more inclined to react quickly. This seems to be the case, 

with the statistical evaluation of the reaction times showing a 3-interval of 0 sec to 2.82 sec. The 

downside of only presenting take-over situations that force the driver to react quickly, is that a broader 

variance and therefore a broader picture of the drivers’ reactions was not formed. In hindsight, it 

would have also been valuable to gather data of take-overs with higher times to collision by identical 

drivers. This would have probably caused a higher variance in reaction times and possibly produced a 

different predictability of the investigated machine learning algorithms of Paper No. 2. However, due 

to the previous exclusion of take-over without high time criticality, this was not considered. 

A restricting factor of the presented study is the choice of take-over situations or rather when the 

optical acoustic warning occurred. As discussed in Paper No. 1, some of the take-over situations were 

identifiable prior to an optical acoustic warning. Through the continuous or sporadic observation of 

the driving environment, three take-over situations (Fog & Warning Triangle, Lane Narrowing and Cut 

in Right) were identifiable prematurely. This resulted in significantly quicker reaction times for these 

take-over situations. If a participant did not identify one of these three situations prior to the warning, 

the reaction times were statistically identical to those of the other six take-over situations.  

After each take-over situation, the drivers were presented with a question regarding the perceived 

subjective criticality. The investigation revealed that especially the subjective criticality had a negative 

correlation with trials, yielding lower subjective criticality after more observed take-over situations 

(trials). Due to language limitations of some of the participating truck drivers, a simple question was 

formulated, to query the subjective experience of each take-over. “Was the time for take-over 

sufficient, short or much too short?” The question was asked verbally 20 sec after a request to 

intervene, through a standardized auditory query. To ensure that all participants could understand the 

question, the question was referenced towards the available time to react. A standardized Likert-scale 

(Likert, 1932) was not utilized, to ensure understanding of the participants and the possibility of 

answering verbally. During questioning, the drivers were continuously driving manually and should not 

be distracted through complex interaction. In this regard, it should be noted that the subjective 

criticality construct was not defined adequately as a trade-off for non-native speakers. A large variety 

of different factors could have influenced drivers to respond to one of the three answers of the verbal 

question after take-over. Instead of defining and identifying subjective criticality, it should be pointed 

out that the results could also be summarized as subjective experience of take-over not criticality.  
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An important point needs to be raised regarding the quality of take-over. Data recording was aimed at 

recording reaction times, while an identification of take-over quality was determined on the 

occurrence of a crash. This binary consideration of take-over quality does not portray the complexity 

of identifying safe and unsafe take-overs. More research on the techniques and approaches of 

classifying the safety of take-overs is required. In retrospect, take-over quality should incorporate 

further facets. This could include whether the reaction of the driver would cause other drivers around 

the ego-vehicle to react, setting off a chain reaction of driver responses. Following vehicles should be 

excluded from this concept, as a braking automatically requires a reaction of vehicles behind any 

decelerating object. A high take-over quality thereby would include measures such as the initiation of 

interaction with other vehicles situated laterally to the ego-vehicle and safety critical behaviour to 

which the ego-driver subjects themselves. 

Based on the premise of gathering a large variety of data on multiple independent variables, the 

experimental design provided the desired knowledge. As critical take-over situations thus far had not 

been investigated in the truck context, the experiment closed a vital knowledge gap in the research 

field. It addressed the research question, focusing on the cognitive and physical capability of truck 

drivers. As discussed, the data was utilized for Paper No. 2 and the predictability of driver take-over 

reaction times. 

Paper No. 2 
The quality of the data decisively influences the quality of the results presented in Paper No. 2. No 

concrete measure was formed of data quality prior to investigating the classification of reaction times. 

The complete sensor data available from the study presented in Paper No. 1 was utilized for the 

classification task in Paper No. 2. Especially eye-trackers are known for their susceptibility to external 

factors such as lighting and subject positioning (Nyström, et al., 2013). As a main model input, eye-

tracking data could have a major influence on the results of the classification task. Although 291 trails 

were disregarded in the calculation of the time to eyes on road of Paper No. 1, the complete dataset 

was utilized for the machine learning classification. A distinction of data conclusiveness at take-over, 

as argued in Paper No. 1 (section 3.1) was not conducted. This had two major reasons. Firstly, data 

prior to take-over was also considered for the classification task and could render information, 

although at take-over data was corrupt. Secondly, even with partially inconclusive data, a 

computational algorithm should be able to conduct a meaningful predictive classification. 

The results presented in Paper No. 2 only regard the gaze behaviour and interaction with a secondary 

task for driver-centre features. The body posture estimation, which was also recorded, was not 

submitted in the publication. After publication, a calculation for the offline dataset revealed a further 

decreasing of the misclassification rate for the support vector machine to 32.6%. Specifically, the 

position of the left and right knees were identified as a major contributing feature for misclassification 

reduction. Further data that could be introduced to future investigations of this classification problem 

include personal data such as age, yearly mileage and daily wake-up times. 

Regardless of the quality of input data, the main shortcoming of Paper No. 2 is the reduced dataset 

that was utilized for the reaction time prediction. Based on the fact that the reaction times presented 

a positively skewed distribution, classes for the classification problem were either unevenly weighted 

with data tuples or with varying class widths. As wide classes would not yield a precise estimation of 

reaction times, the former approach was chosen. This meant that a large amount of data was clustered 

between the mean of the distribution. At random, the misclassification rate for a four class problem 

would lie at 75%. However, as the second class held the majority of data tuples, by placing all test take-

overs into this class, misclassification would be as low as 43%. The results of 38.7% (post-publication 

with body posture 32.6%) therefore show only a slight improvement in the misclassification rate. 
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Consequently, driver monitoring did benefit the predictive accuracy of the four class problem. It was 

still much too high for a system considering safety critical take-overs. Other problem definitions such 

as designing the prediction method into a regression problem, could potentially improve predictability. 

Only six trials were outside of the 3-interval. Unfortunately, especially these six take-overs are the 

most interesting from a human-machine-interaction perspective, as communication between the 

driver and system was not ideal. The lack of occurring relevant take-overs is common in testing (Winner 

& Wachenfeld, 2013). An adequate dataset of relevant take-overs over the 3-interval, with similar 

size to the data received of the study in Paper No. 1, would require testing of 585.000 km in the 

moving-base simulator. This is equivalent to 7315 hours of testing, a highly implausible feat. 

It would be ideal to fit multiple vehicles with driver-facing sensors capturing data during conditional 

automation and thereby generating more data for the introduced computational data-driven models. 

Regardless of the technical capabilities of such an automation, without clear strategies how to predict 

driver interaction during critical take-overs, this is not possible. The results seem to be disconcerting 

and leading research towards a chicken-and-egg problem. Without sufficient data, such a predictive 

system, analysing the driver and executing informed forecasts on their reaction during Level 3, is not 

acceptable. 

As the data analysis of Paper No. 1 and 2 revealed a correlation between premature visibility of take-

over situations and the reaction times, this was analysed further in Paper No. 4. Although driver 

monitoring did not produce a predictive system capable of higher accuracy based on the available data, 

a detailed investigation of environmental factors could contribute to a higher accuracy in the 

prediction of driver behaviour. Based on the available data of Paper No. 1, it seems that the 

identification of driver availability and take-over predictability in critical take-over situations can 

improve marginally based on driver monitoring. As pointed out, critical take-over situations only form 

a subset of all take-over situations and the introduced models can potentially function with higher 

accuracy in other types of take-overs. 

Paper No. 3 

The study presented in Paper No. 3 displays the results of a test track experiment with a vehicle 

enabling Level 3 automation. Due to the restricted driving environment, the results are not fully 

comparable to public roads. Drivers experienced a steep banked curve after a 4 km straight, which 

concedes that they were on testing grounds. The amount of traffic was also unusual when compared 

to public roads, as vehicles regularly reached 250 km/h and the traffic density was quite low. A 

maximum of 20 vehicles were allowed on the test track. The truck was typically the slowest vehicle on 

the circuit, with occasionally another slow vehicle in the periphery. Additionally, it was required that 

the truck drove 90 km/h to meet the track requirements. This speed exceeds the maximum allowed 

speed on highways in most of Europe, where the limit is 80 km/h. The experimental design also 

required that one experimenter and one safety engineer was present at all times in the truck. This is 

uncommon for a semi-truck scenario, as drivers are typically alone in the vehicle. 

Contrary to the moving-base simulator study of Paper No. 1, the real-world study had an extensive 

training phase for safety measures. In addition, no critical objects were presented during the drive, 

due to track regulations and as a safety measure to avoid accidents. Criticality was induced without a 

critical object either by an unforeseen warning or due to a rapid impulse on steering wheel. The 

hypothesis was established that criticality would be perceived equally as high as in the moving-based 

simulator experiment due to these two events. A validation of this hypothesis could not be conducted 

as no comparison was possible. The participants were not identical for the studies. 
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A measure of take-over quality was not generated. In the paper, the argument is made that motivation 

and strategy plays a major role how a take-over is interpreted. Again, the interpretation of driver 

responses, especially the take-over quality, is difficult without the clear identification of intentional 

and unintentional actions. As an example, if a driver chooses to drive closely to another object as 

opposed to barely missing it through an unexpected reaction, typical take-over quality measures fail 

to differentiate. This calls for a new definition of quality measures including driver strategy and 

intention. This identified missing link in the research field would greatly benefit the discussion of take-

over behaviour in future research. 

Overall, a similar investigation with a vehicle in real-world conditions has not been published 

previously. Multiple health and safety regulations of the test track narrowed down the investigation 

possibilities. Due to the weather conditions, a large portion of eye-tracking data did not yield sufficient 

results or could not be synchronized.  

Paper No. 4 

Paper No. 4 discusses the possibility of exploring the differences of subjective and objective 

complexities. While this is a relevant and interesting research field, the paper is limited to focusing on 

the introduction of a new assistance system. A study investigating the two abstract concepts is not 

included. Rather, the assistance system of Paper No. 4 can function as a system for the investigation 

of the differences between objective and subjective complexity. By learning situations in which the 

driver regains control of the vehicle through self-initiated take-over, the objective data of the 

situations can be gathered. This allows the statistical analysis of a binary subjective complexity rating 

to kinematic metrics describing the environment objectively. 

The prototypic assistance system introduced in Paper No. 4 currently only takes a limited amount of 

kinematic metrics into account. This is mainly because only radar data was utilized in the exemplary 

analysis presented in Paper No. 4. Additionally, it should be investigated whether or not the 

interpretation of raw camera data benefits the predictive model towards higher accuracy or 

redundancy of signals. Future development stages will also consider crossing trajectories of all vehicles 

when exiting the safety corridor, as introduced in the publication. The classification of objects 

according to attributes such as type is not incorporated in the proposed version and could possibly be 

beneficial. Such additional attributes unknown to the system currently could be the cause for 

differences between subjective and objective complexities. 

The sideswipe data available for a preliminary investigation of functionality is limited. A total of 118 

sideswipe manoeuvres were not enough to train the complexity prediction system adequately. Further 

investigation should address the reasoning of failed situation recognition. As the system summarizes 

all kinematic metrics, the failure of singular kinematic metrics still allows high prediction rates. 

However, the investigated situations often had a high baseline of predicted occurrence. This can either 

be caused by input data being inaccurate or the investigated sideswipe manoeuvres being indecisive 

with the chosen kinematic metrics. A weighting function could address both of these effects in future 

development. In parallel, the application of filters and signal pre-processing could improve prediction 

accuracy.  

A major shortcoming of the introduced system is the fact that it learns based on previous situations. 

Therefore, it can never truly predict a new situation that is unique from previous situations. The 

introduced assistance system considers variance in the input signals; however, a completely new 

situation cannot be identified by such a system. Therefore, a threshold amount of training is required 

in order to have a functioning system. This training will certainly almost always exclude situations due 

to the lack of occurrence. Similarly, this highlights the main shortcoming of data-driven computational 

models and the current approach of realizing automated driving. 
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Overall experimental limitations 

In all studies, the same vehicle was utilized with an automation function that did not change in 

configuration or layout. The vehicle also never changed in appearance. Therefore, the results obtained 

are limited to the vehicle and human-machine-interface factors the system displayed, as defined by 

Vogelpohl et al. (2016). 

All data evaluated in the studies introduced in Paper No. 1 and No. 3 included 108 participants. 

Although all drivers held a semi-truck driver’s license, driving experience varied. Especially in the test 

track study, the variance of experience was higher. Due to the location of the test track in a rural area, 

the amount of applicants was lower than in the previous simulator study. All data and conclusions 

drawn are limited to this selection of participants with generalizations drawn on this dataset. 

While the time to first reaction was measured based on steering angle and steering torque, the other 

two metrics relied on remote sensors, making the signals not as robust. Especially the time to eyes on 

road relied on an eye-tracker that was prone to external influences, such as lighting, reducing the 

accuracy. Finally, the time to hands on steering was recorded with four capacitive sensors integrated 

into the steering wheel in the study of Paper No. 1. If drivers kept their hand close to the steering 

wheel without interacting, or if the hands touched areas that were not covered by the sensors, the 

time was not recorded accurately. Regions that were especially problematic included the spokes 

connecting the inner and outer regions of the steering wheel. 

Overall 

Reaction times in critical take-over situations 

This thesis investigated the behavioural reactions of professional drivers in semi-trucks in Level 3 

automated driving. The recorded reaction time metrics consisted of the time to eyes on road, time to 

hands on steering and the time to first reaction, as defined (Damböck, 2013) and presented in in Paper 

No. 1, No. 2 and No. 3. In the passenger car context, large collections of investigations have been 

published in recent years. Most of these studies aim at referencing environmental factors to reaction 

times and inferring psychological effects, e.g. (Ruscio, et al., 2015; Hergeth, et al., 2016; Jarosch, et al., 

2017). In their meta-study, Zhang et al. (2019) investigate universal effects found in 129 studies. One 

of the main findings is the strong effect of time budget (time to collision), with less time budget 

resulting in lower reaction times. As argued in Paper No. 1, by permitting larger time budgets drivers 

seem to utilize this time to observe the driving environment. Quick reactions are necessary with lower 

time budgets, in order to obvert accidents and safely navigate the vehicle through the situation. There 

seems to be a minimal time budget required to form a situational awareness (Endsley, 1995), where 

physical constraints of the drivers and misconception of the environment cause higher accidents. This 

time is extremely difficult to determine, as drivers have the possibility of readjusting their reaction 

after initial interaction. Hence, in current experimental studies examining situation awareness, 

situations are dynamic and can affect the initial composition of situation awareness. A continuous 

updating of situation awareness occurs, possibly also improving reactions. As both studies of this thesis 

primarily addressed research questions regarding behavioural reactions, a focused investigation of 

situation awareness was not possible. 

A universal comparison of effects between the truck and passenger car context was partially possible. 

The results of Paper No. 1 and Paper No. 3 indicate that truck drivers can present extremely controlled 

and quick reactions. Especially with cargos of permissible 44 tons for drivers in many European 

countries, swerving and confined lateral control is paramount. When comparing the reaction times of 

the samples of the presented studies in this thesis with published results in the passenger car context, 
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it seems that truck drivers react quicker. However, a valid statement can only be made in a controlled 

comparison with limiting independent variables and participants of varying experience. Generally, 

truck drivers do experience travel on the highway more frequently and the critical situations 

encountered are limited by road restrictions affecting the scope of permissible driving. Therefore, a 

confined set of situations can arise on the highway that is certainly broader for the less experienced 

passenger car drivers. 

Throughout both the simulator and test-track study, the times to collision were below six seconds. 

Nevertheless, no accidents occurred. This could signify that the maximum capabilities of the drivers 

were not demanded. However, in both studies dramatic consequences due to ill-informed actions at 

take-over had minimal effect. As no vehicles were within the direct periphery of the ego-vehicle, the 

only objective for the driver was to obvert the object causing take-over. As discussed in Paper No. 1, 

more confined take-over situations would have certainly generated more accidents. However, this 

would have filtered the drivers into three classes based on their take-overs. Firstly, those who reacted 

poorly and caused an accident with near vehicles. Secondly, drivers who had enough situational 

awareness to lead the vehicle through the take-over situation successfully with intent. Thirdly, drivers 

choosing the correct route by chance. A differentiation between the second and third group would be 

difficult. Therefore, this methodology was not adopted, to allow all drivers to complete the experiment 

and ensure that enough data would be generated for Paper No. 2.  

Apart from time budgeting, other influencing factors were investigated. A clear correlation between 

singular factors and reaction times does not seem to exist. Influences of driver and environmental 

factors as well as vehicular and HMI configurations interact. Therefore the data-driven approach of 

Paper No. 2 could possibly work to some extent, if enough data were available. A first successful 

application was presented in Paper No. 2. 

Overall times to first reaction below three seconds seem highly plausible and relevant for a large 

amount of critical take-over situations. However, this does not consider take-over quality. Depending 

on the visual information perceived by the driver before or at a request to intervene, this threshold 

could be far lower. Similarly, the empirical studies also portrayed situations in which the driver 

capabilities would not yield sufficient safe transitions.  

Therefore, it is important to consider take-over quality when analysing reaction times or any metric 

describing take-overs in automated driving. Typically, different mathematical metrics are consulted 

when quantifying the take-over quality such as minimal time to collision, lateral acceleration (Gold, et 

al., 2016) and mean longitudinal accelerations (Radlmayr, et al., 2014). Based on the data gathered in 

Paper No. 1, these metrics do not paint the picture fully, as all of the abovementioned units disregard 

driver strategy and intent. Additionally, the intensity of these metrics describing an adequate take-

over may vary due to situational demands. As an example, consider a lane change task. Here the ego-

vehicle has a stationary object in front of it, dictating the lane change. While there is still a large 

distance to the object, the other lane is occupied and a free space is apparent after the vehicles pass 

that are currently occupying the overtaking lane. By continuing to approach the object on the ego-

lane, the metric time to collision reduces. However, due to the drivers’ strategic decision and 

experience, this reaction is desired and intended. Depending on the driver preference, the lateral and 

longitudinal acceleration can also vary when merging into the intended lane. Hence, current metrics 

for the description of take-over quality are imperfect and should not be considered dogmatically. 

Ideally, the quality metrics should be complemented by expert ratings, similarly to the way a passenger 

can interpret driver competence. The combination of expert rating concerning the calmness (strategic 

planning) and quality metrics could be hugely beneficial in avoiding incorrect causal reasoning of take-

over quality and predicting driver capability. 
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Prediction of driver behaviour with computational models 

The algorithms and computational models inferring driver state, based on sensory driver monitoring 

systems, have to be reliable, robust and accurate. Therefore, recent research has addressed how 

sensor setups need to be configured to guarantee valuable information of the driver (Ruff, 2017). In 

the context of this thesis, an analysis of eye-tracking setup was developed (Fuhl, et al., 2019). 

Misunderstanding of the state can cause the system to initiate communication in ill-fit moments and 

sharing of the driving task in situations is requested, which are not suitable for a driver. This can lead 

to situations, which are far worse than if no automation were ever available.  

Different types of models and algorithms can serve as a foundation for driver state predictions. This 

thesis focuses on a data-driven approach, by utilizing machine learning algorithms to predict take-over 

reaction times in critical situations. A problem that can result from this approach is the unaccounted 

psychophysiological effect on the human. By only matching results with input data, human decisions 

generating the resulting take-over are disregarded. It should also be noted that computational models 

such as those generated by cognitive architectures, also offer a possibility of predicting take-over 

behaviour that is not data-driven (Prezenski, 2018). This type of computational model relies on 

behavioural data and the interpretation by an experience modeller. However, data-driven models offer 

a scalability with regard to input and output data that cognitive architectures due not. Especially in the 

context of an applied approach for large quantities of vehicles and drivers, this allows data-driven 

models to adapt more fluidly.  

As investigated in this thesis, take-over can either be required by an automation function or self-

initiated by a driver. Depending on these two types of take-over variants, assistance needs to vary. For 

both variants a safe and easy take-over is the optimal outcome. When comparing a system-generated 

with a self-initiated take-over, one deciding factor differs. For most self-initiated take-overs an internal 

goal, due to interpretation of the driving environment, causes the driver to launch take-over 

procedure, while the human can completely be out-of-the-loop during a system-generated request to 

intervene. It should be noted that trust in the system might not be the sole deciding factor for an 

unforced or self-initiated take-over. Other factors such as surprise or false interpretation of the driving 

situation can motivate the driver to take-over. Nevertheless, in both take-over variants the human 

needs to be assisted in regaining manual control and full sensory perception of the situation. 

Therefore, the goal of a computational prediction differs slightly for these two cases. For a self-initiated 

take-over, the goal of a computational prediction aims at identifying the driver’s correct sensory 

perception of the environment. A representation of current situations in the environment is highly 

relevant. For a system-generated take-over, the goal of a computational prediction focuses on the 

prediction of the correct driver state. Instead of environmental cues, the current driver interaction 

with non-driving related tasks holds a higher importance. 

Based on the findings of both introduced computational models, a limited prediction of take-over 

readiness and ability can be made. There is no computational model that can accurately describe driver 

behaviour, as non-intrusive sensors cannot measure internal thoughts or reasoning. However, 

tendencies could be identified in the work of this thesis. Herzberger et al. (2018) present an interesting 

concept that could be constructive in the objective of predicting take-over behaviour. Instead of 

searching for a possibility of computing models of successful take-over behaviour, missing take-over 

capability might be easier to detect. An adaptation of this approach is implemented by the assistance 

system in Paper No. 4, which specifically tries to assist in situations that were identified as critical by 

the driver. 

In the case of self-initiated take-over prediction, it should be possible to statistically analyse the data 

that is generated by the system post hoc, to cluster situations and identify underlying environmental 
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reasons for take-over. Research has shown interesting correlations between environmental criticality 

and uncertainty to correct reactions (Stoll, et al., 2019). Thereby, it could be possible to determine 

kinematic thresholds, which allow the recognition of those situations that enforced a self-initiated 

take-over. This information would also be vital for the application of cognitive models as cognitive 

architectures, such as ACT-R (Anderson, et al., 2004), rely on rules to compute human behaviour. By 

identifying kinematic relationships in perceived criticality during take-over, human-machine-

interaction could also be modelled with this approach. 

Predictive driver assistance system 

Overall, the prediction of driver behaviour through computational models is always prone to error. As 

most computational models rely on statistical analysis of large data, this makes the adaptation for 

individuals difficult. This is not only the case for data-driven models. Rather, trade-off of false-positive 

and true-positive results in model predictions has to be accounted for in the design of future assistance 

systems. While information might improve human-machine-interaction in take-over scenarios, false 

prediction can also reduce take-over capability of drivers or cause low acceptance of assistance 

systems. 

In a preliminary study, Wiese, Lotz & Russwinkel (2019) address a possibility of connecting ACT-R with 

vehicular data. By introducing a new visual module in ACT-R based on the SEEV approach (Wickens, 

2015); this bids the possibility of including bottom-up and top-down processes and semantically 

annotating real-world scenes. The combination of this research with the assistance system of Paper 

No. 4 should allow the consideration of environmental factors on a cognitive model, simulating driver 

interaction. Future research should investigate if this combination can reduce the amount of false 

positives the complexity prediction system of Paper No. 4 exhibits. 

It is clear from the research conducted that for a predictive system to function at peak performance, 

information is required of the driver. However, inter- and intra-individual differences in behaviour are 

too great for a system to rely on generic models. By making it possible for assistance systems to 

monitor a driver, false conclusions can be evaded partially. However, complexity of human behaviour 

will not allow for precise prediction of drivers in near future. Especially in situations in which 

responsibility is shifted between human and machine in Level 3, the research conducted in this thesis 

explains some of the underlying influences. In addition, a system is introduced that addresses a 

problem previously ignored during the operation of an automation function. By predicting self-

initiated take-overs, adaptive assistance is enhanced in phases in which previously drivers presented 

discomfort due to misaligned interpretation of the environment compared to automation. This can 

further improve the human-machine-interaction during Level 3 automation due to perceived 

subjective complexity in the environment. Assistance will not diminish shortcomings in human driver 

behaviour in the future. With the approach of developing assistance systems for automated driving, 

the goal should be to adaptively and situationally assist drivers. At the same time, as humans and 

machines switch their roles of observer to controller, prediction will fail in some cases. This has to do 

with the definition of Level 3 automated driving rather than with application of assistance systems. 
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