
Philipp Habermann, Chi Ching Chi, Mauricio Álvarez-Mesa, Ben Juurlink

Optimizing HEVC CABAC decoding with a
context model cache and application-
specific prefetching

Conference Object, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-5749.

Suggested Citation
Habermann, Philipp; Chi, Chi Ching; Álvarez-Mesa, Mauricio; Juurlink, Ben: Optimizing HEVC CABAC
decoding with a context model cache and application-specific prefetching. - In: 2015 IEEE International
Symposium on Multimedia : ISM. - New York, NY [u.a.]: IEEE, 2015. - ISBN: 978-1-5090-0379-2. - pp.
429–434. - DOI: 10.1109/ISM.2015.97. (Postprint version is cited, available at
http://dx.doi.org/10.14279/depositonce-5749, page numbers differ.)

Terms of Use
© © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Optimizing HEVC CABAC Decoding with a Context Model Cache
and Application-specific Prefetching

Philipp Habermann, Chi Ching Chi, Mauricio Alvarez-Mesa and Ben Juurlink
Embedded Systems Architecture Group

Technische Universität Berlin
Berlin, Germany

Email: {p.habermann, chi.c.chi, mauricio.alvarezmesa, b.juurlink}@tu-berlin.de

Abstract—Context-based Adaptive Binary Arithmetic Cod-
ing is the entropy coding module in the most recent JCT-
VC video coding standard HEVC/H.265. As in the predecessor
H.264/AVC, CABAC is a well-known throughput bottleneck
due to its strong data dependencies. Beside other optimizations,
the replacement of the context model memory by a smaller
cache has been proposed, resulting in an improved clock
frequency. However, the effect of potential cache misses has
not been properly evaluated. Our work fills this gap and
performs an extensive evaluation of different cache configura-
tions. Furthermore, it is demonstrated that application-specific
context model prefetching can effectively reduce the miss rate
and make it negligible. Best overall performance results were
achieved with caches of two and four lines, where each cache
line consists of four context models. Four cache lines allow a
speed-up of 10% to 12% for all video configurations while two
cache lines improve the throughput by 9% to 15% for high
bitrate videos and by 1% to 4% for low bitrate videos.

Keywords-HEVC, H.265, CABAC, Cache, Prefetching

I. INTRODUCTION

High Efficiency Video Coding (HEVC/H.265, [1]) is the
most recent video coding standard developed by the Joint
Collaborative Team on Video Coding (JCT-VC). It allows
the compression of videos with the same perceptive quality
as its predecessor H.264/AVC ([2]) while requiring only
half the bitrate. Context-based Adaptive Binary Arithmetic
Coding (CABAC, [3], [4]) has been a throughput bottleneck
in AVC due to its sequential nature, and it still is in HEVC.
CABAC operates on the bitstream and decodes binary sym-
bols (bins) which are connected to form syntax elements that
are used to control the remaining decoding steps. If possible,
context models are used to estimate the probabilities that
bins have a specific value. Context-coded bins are associated
with context models to exploit statistical properties and
thereby increase the compression rate. However, sometimes
the probabilities cannot be accurately predicted. Because of
that, the decoding of these so called bypass-coded bins goes
without context models.

Strong bin-to-bin dependencies make low-level paral-
lelization of CABAC decoding very challenging. Although
high-level parallelization is possible in HEVC, it has to
be enabled in the encoder which is not mandatory. Beside

many other optimizations, the replacement of the context
model memory in the data path by a smaller cache has been
proposed [5], [6]. This aims to shorten the critical path and
increase the clock frequency and throughput. Unfortunately,
the effect of potential cache misses has not been properly
evaluated. Cache misses result in a performance degradation
that might nullify a lot of the throughput improvements
reached by the introduction of the cache. Prefetching has
been proposed to address this issue [7], but a quantitative
evaluation is also missing. In this paper we evaluate both,
cache miss rate without and with prefetching, to justify if
these are gainful optimizations.

Our work makes the following contributions:
• an optimized cache architecture (as a result of an

extensive evaluation of different configurations)
• an efficient context model memory layout regarding

spatial locality and prefetching efficiency, as well as
the corresponding prefetching algorithm

• an evaluation of prefetching efficiency for different
cache configurations

The remaining paper is structured as follows. An overview
of related work is provided in Section II. The proposed
decoder architecture with a context model cache and a
prefetching module is described in Section III. Afterwards,
Section IV quantitatively evaluates the cache miss rate and
prefetching efficiency for different cache configurations.
Finally, our work is concluded in Section V.

II. RELATED WORK

Many implementations of CABAC hardware decoders
have been proposed. Although most of them cover AVC, the
general ideas are also applicable for HEVC. Additionally,
HEVC CABAC is designed to allow higher throughput by
various optimizations in the standard, such as a reduced
fraction of context-coded bins, grouping of bypass-coded
bins, a reduction of the total number of bins as well as more
relaxed parsing and context selection dependencies [4].

Two architectural optimizations have proven themselves
to be effective and at least one of them can be found in
almost every proposed CABAC hardware decoder. The first
one is the parallel decoding of multiple bins per clock cycle



Context Model Selection Binary Arithmetic Decoding

Next State CS Cache AD DB
bin(s)

updated context model

MemoryPrefetching
Unit

Context
Model

tags
cache
lines

cache line request syntax elements

Figure 1: Two-stage pipeline of the proposed decoder architecture.

[8], [9], [10]. It is well-suited for bypass-coded bins because
their decoding process is simple and does not require con-
text models. The second optimization is pipelining which
is used to overlap the decoding of consecutive bins and
thereby increase the throughput. Most proposals agree on a
conceptual four-stage pipeline for CABAC decoding: context
selection (CS) → context load (CL) → arithmetic decoding
(AD) → de-binarization (DB). However, often neighboring
stages are merged because the efficient implementation of
deep pipelining is very complex for CABAC due to strong
bin-to-bin dependencies. For example, CS depends on the
results of AD and DB, which might lead to a flush of
the complete pipeline. Decoders with three pipeline stages
include [5] and [9]. Yu-Hsin Chen et al. [8] propose a
very deep pipeline. A fifth pipeline stage is added at the
beginning to compute a binary decision tree that is used
for state prefetching in the remaining stages and thereby
reduces pipeline stalls. Additionally, their implementation
decodes up to two bypass-coded bins per cycle, resulting in
a throughput of up to 2 Gbin/s which represents the state-
of-the-art.

The CL stage can be shortened when the context model
memory is replaced by a small cache. The stage might be
even removed when the cache fits into an adjacent stage.
The shorter pipeline might result in less pipeline stalls.
Cached designs have been proposed [5], [6], [7], however
the potential performance degradation due to cache misses
has not been evaluated. Prefetching was used to reduce the
cache miss rate [7], but results for this optimization were
also not provided. Our work evaluates both, the cache miss
rate and the effectiveness of prefetching.

III. ARCHITECTURE

The proposed decoder architecture is implemented with
a two-stage pipeline (see Figure 1). The Context Selection
Stage computes the next state of the decoder control state
machine, calculates the index of the required context model
(CS) and accesses the context model cache. The cache is
clocked with a phase-shifted clock signal to allow the access
in the end of the pipeline stage. In the Binary Arithmetic

Decoding stage one context-coded bin or up to two bypass-
coded bins are decoded by the arithmetic decoder (AD). The
decoded bins are fed back to the first stage and the context
model is updated and written back to the Cache. Finally,
de-binarization (DB) is performed to build syntax elements
from the decoded bins.

A. Context Model Cache

A non-cached version of the decoder has been imple-
mented as a reference where the context model memory is
directly accessed. The memory contains sixteen memory sets
of context models and is capable of fast in-memory copies.
This allows the maintenance of multiple context model
memory sets and thus supports efficient CABAC decoding
when high-level parallelization tools (wavefront processing,
tiles) are used. A cache can be used to replace the context
model memory in the critical path and thereby allow a
higher clock frequency. The cache fetches context model
sets (CMS’s) from the memory and writes them back when
they have to be replaced. In our implementation a cache
miss results in a miss penalty of two clock cycles while the
missing CMS is loaded from memory. CMS replacement is
handled by a least recently used (LRU) policy. The cache
is fully-associative and contains a generic number of cache
lines (1 to 64) each storing one CMS.

Table I shows the optimized context model memory
layout. Mostly, context models for the same type of syn-
tax element are grouped to exploit spatial locality, e.g.
last sig x/y prefix (ll. 0-9), sig flags (ll. 16-27) and
absG1 flags (ll. 32-37). However, in some cases context
models that are not logically connected are put in the same
CMS (e.g. ll. 10, 11, 29). The purpose is to have the required
context model for sure if the decoder state machine can go
to different states. A CMS contains four context models
(4 × 7 bit) because in most cases not more than four
different context models are needed to decode a syntax
element or a group of consecutive syntax elements of the
same type. There are only five cases where more than four
context models are needed (last sig x prefix Y 32x32,
last sig y prefix Y 32x32, inter pred idc, sig Y 4x4,



0 last sig x prefix Y 4x4 1 last sig x prefix Y 4x4 2 last sig y prefix Y 4x4 1 last sig y prefix Y 4x4 2
1 last sig x prefix Y 4x4 3 transform skip flag Y last sig y prefix Y 4x4 3 sig DC Y
2 last sig x prefix Y 8x8 1 last sig x prefix Y 8x8 2 last sig y prefix Y 8x8 1 last sig y prefix Y 8x8 2
3 last sig x prefix Y 8x8 3 last sig x prefix Y 32x32 5 last sig y prefix Y 8x8 3 last sig y prefix Y 32x32 5
4 last sig x prefix Y 16x16 1 last sig x prefix Y 16x16 2 last sig y prefix Y 16x16 1 last sig y prefix Y 16x16 2
5 last sig x prefix Y 16x16 3 last sig x prefix Y 16x16 4 last sig y prefix Y 16x16 3 last sig y prefix Y 16x16 4
6 last sig x prefix Y 32x32 1 last sig x prefix Y 32x32 2 last sig y prefix Y 32x32 1 last sig y prefix Y 32x32 2
7 last sig x prefix Y 32x32 3 last sig x prefix Y 32x32 4 last sig y prefix Y 32x32 3 last sig y prefix Y 32x32 4
8 last sig x prefix Cb/Cr 1 last sig x prefix Cb/Cr 2 last sig y prefix Cb/Cr 1 last sig y prefix Cb/Cr 2
9 last sig x prefix Cb/Cr 3 transform skip flag Cb/Cr last sig y prefix Cb/Cr 3 sig DC Cb/Cr

10 csb Y 1 csb Y 2 absG2 Y other 1 absG2 Y other 2
11 csb Cb/Cr 1 csb Cb/Cr 2 absG2 Cb/Cr 1 absG2 Cb/Cr 2
12 absG2 Y top-left 1 absG2 Y top-left 2
13 cbf chroma 1 cbf chroma 2 cbf luma 1 cbf luma 2
14 split transform flag 1 split transform flag 2 split transform flag 3 rqt root cbf
15 cbf chroma 3 cbf chroma 4 cu qp delta abs 1 cu qp delta abs 2
16 sig Y 8x8 diag top-left 1 sig Y 8x8 diag top-left 2 sig Y 8x8 diag top-left 3
17 sig Y 8x8 diag other 1 sig Y 8x8 diag other 2 sig Y 8x8 diag other 3
18 sig Y 8x8 hor/ver top-left 1 sig Y 8x8 hor/ver top-left 2 sig Y 8x8 hor/ver top-left 3
19 sig Y 8x8 hor/ver other 1 sig Y 8x8 hor/ver other 2 sig Y 8x8 hor/ver other 3
20 sig Y 4x4 1 sig Y 4x4 2 sig Y 4x4 3 sig Y 4x4 4
21 sig Y 4x4 5 sig Y 4x4 6 sig Y 4x4 7 sig Y 4x4 8
22 sig Y 16x16/32x32 top-left 1 sig Y 16x16/32x32 top-left 2 sig Y 16x16/32x32 top-left 3
23 sig Y 16x16/32x32 other 1 sig Y 16x16/32x32 other 2 sig Y 16x16/32x32 other 3
24 sig Cb/Cr 4x4 1 sig Cb/Cr 4x4 2 sig Cb/Cr 4x4 3 sig Cb/Cr 4x4 4
25 sig Cb/Cr 4x4 5 sig Cb/Cr 4x4 6 sig Cb/Cr 4x4 7 sig Cb/Cr 4x4 8
26 sig Cb/Cr 8x8 1 sig Cb/Cr 8x8 2 sig Cb/Cr 8x8 3
27 sig Cb/Cr 16x16 1 sig Cb/Cr 16x16 2 sig Cb/Cr 16x16 3
28 cu skip flag 1 cu skip flag 2 cu skip flag 3 pred mode flag
29 part mode 1 part mode 2 merge flag merge idx
30 inter pred idc 1 inter pred idc 2 inter pred idc 3 inter pred idc 4
31 mvp l0/1 flag inter pred idc 5 part mode 3 part mode 4
32 absG1 Y top-left 1.1 absG1 Y top-left 1.2 absG1 Y top-left 1.3 absG1 Y top-left 1.4
33 absG1 Y top-left 2.1 absG1 Y top-left 2.2 absG1 Y top-left 2.3 absG1 Y top-left 2.4
34 absG1 Y other 1.1 absG1 Y other 1.2 absG1 Y other 1.3 absG1 Y other 1.4
35 absG1 Y other 2.1 absG1 Y other 2.2 absG1 Y other 2.3 absG1 Y other 2.4
36 absG1 Cb/Cr 1.1 absG1 Cb/Cr 1.2 absG1 Cb/Cr 1.3 absG1 Cb/Cr 1.4
37 absG1 Cb/Cr 2.1 absG1 Cb/Cr 2.2 absG1 Cb/Cr 2.3 absG1 Cb/Cr 2.4
38 sao merge flag sao type idx prev intra luma pred flag intra chroma pred mode
39 split cu flag 1 split cu flag 2 split cu flag 3 cu transquant bypass flag
40 abs mvd greater0 flag abs mvd greater1 flag ref idx l0/1 1 ref idx l0/1 2

Table I: Context Model Memory Layout (Y: luma, Cb/Cr: chroma, SAO , coding quadtree , CU and intra PU ,
inter PU , transform tree , last sig coeff x/y prefix , significance flags (sig: sig coeff flag, csb: coded sub block flag) ,
coefficient level flags (absG1/2: coeff abs level greater1/2 flag , transform skip flags .

sig Cb/Cr 4x4). In all other cases the required context
models fit in a CMS. With a smaller CMS size, the re-
quired context models for 4×4 transform sub-blocks do
not fit because at least three sig coeff flags and four
coeff abs level greater1 flags are potentially needed.
This is a critical issue as transform block decoding contains a
high fraction of the decoded bins. Bigger CMS sizes require
that context models for different types of syntax elements
are merged to keep the memory overhead small. Unfortu-
nately, the context models that are used for the decoding of
consecutive groups of equal syntax elements often depend
on different parameters. For example, sig coeff flags
depend on the transform block size and scan pattern while
coeff abs level greater1 flags depend on the decoded
bins in the previous 4×4 sub-block.

B. Context Model Prefetching
Application-specific context model prefetching can signif-

icantly reduce the miss rate in HEVC CABAC. Admittedly,
the required context model often depends on the results of
the previously decoded bin and cannot be prefetched early
enough. However, most of the time one can be sure that
the required context model is contained in a specific set of
context models. If this set is available in the cache, it is not
necessary to know the exact context model, but a hit is still
guaranteed.

The prefetching module reads the current state of the
control state machine, the decoder settings, some decoded
syntax elements and the currently decoded bin. Based on
this information, it selects up to two CMS candidates that
are likely to be needed soon. As the module keeps track



of the CMS’s in the cache, it can see if they are already
present. If one is not, a read request is sent to the context
model memory. The first candidate has a higher priority than
the second, so the second is only fetched when the first is
already available. Unfortunately this can lead to a behavior
where the first line is available and will be replaced by the
second because it is the next to be replaced according to
LRU. A refresh mechanism is implemented to avoid this
behavior. This is done by resetting the LRU index of the first
context model set candidate if it is already in the cache. As a
result, it will not be replaced next. The prefetching strategy
depends on the number of available cache lines (CLs). The
strategy for at least four CLs fetches CMS’s that are likely
to be used soon, while for smaller caches only the CMS’s
are fetched that will be used for sure. Prefetching with one
CL can only be used when no CMS is currently in use or if
it is known when it will not be needed anymore. Also the
second candidate is not used by the strategy for one CL.

IV. EVALUATION

A hybrid HEVC decoder has been realized as hardware-
software co-design on the Xilinx Zynq-7045 SoC to validate
the functionality of the proposed CABAC hardware decoder.
The CABAC decoder is implemented in the FPGA while
the remaining parts are executed on the ARM CPU. The
highly optimized HEVC software decoder developed by the
Embedded Systems Architecture Group at TU Berlin is used
[11]. Five test sequences from the JCT-VC class B test
set (1080p) serve for evaluation. They are encoded in all-
intra (AI) and random-access (RA) mode with quantization
parameters (QP) of 14, 22, 30 and 38. Wavefront Parallel
Processing is enabled so that the same context models are
used for a row of thirty CTUs. In the remaining paper
the arithmetic mean of the results for the test sequences
is shown.

The remaining evaluation section is structured as follows.
First, the impact of different cache sizes on the clock
frequency is shown to provide an upper boundary for the
overall speed-up. Afterwards, the cache miss rate without
prefetching is presented to illustrate that a cache does not
improve the overall throughput without further measures.
Finally, it is demonstrated that the miss rate can be sig-
nificantly reduced when application-specific context model
prefetching is used, resulting in different overall speed-ups
depending on the cache size.

A. Clock Frequency

The purpose of replacing the context model memory in
the data path by a smaller cache is to shorten the critical
path and thereby increase the achievable clock frequency
and throughput. The proposed design has been synthesized
with Xilinx Synthesis Technology 14.6 (optimization goal:
speed). Both, the memory and the cache, are forced to be
synthesized with the same FPGA resources to get a fair

1CL 2CL 4CL 8CL 16CL 32CL 64CL
0MHz
20MHz
40MHz
60MHz
80MHz
100MHz

non-cached

Decoder clock frequency

Figure 2: Decoder clock frequency for a different number of
cache lines. The horizontal line shows the clock frequency
for the non-cached design.

comparison that is not only valid for FPGAs. The influence
of the cache size on the maximum clock frequency of the
decoder can be seen in Figure 2. It is increased by 20.1%
for a single CL, by 17.3% for two CLs and by 12.3%
for four CLs. While there is no significant improvement
for eight CLs (2.8%), the clock frequency is reduced for
bigger caches. The rapid clock frequency reduction comes
from the LRU implementation and CL selection which are
not well suited for bigger caches with full associativity. It
should also be noted that these results can vary for different
implementations, e.g. shorter pipeline stages can lead to
greater relative improvement.

While the improved clock frequency accelerates the de-
coding of all bins, only context-coded bins can result in
cache misses. The fraction of context-coded bins in the test
sequences varies from 64% to 77%. However, as up to two
bypass-coded bins can be decoded in parallel, the decoding
time fraction for context-coded bins is slightly increased
(74% to 83%).

B. Performance without Prefetching

Unfortunately the improved clock frequency comes at the
cost of potential cache misses. They lead to stalls in the
decoder pipeline and thereby reduce the overall throughput.
Figure 3 (top) presents the cache miss rate for different cache
sizes and video modes. In general, the miss rate grows with
higher QPs. This is due to the fact that smaller QPs result in
more bins because of less quantization. As bins of the same
syntax elements are grouped, temporal and spatial locality
can be better exploited when accessing the required context
models in the cache. A significant miss rate reduction can
be observed for all video modes when the number of CLs
is increasing. However, there is no noticeable improvement
with 64 CLs where all required context models for the
decoding of a specific CTU fit in the cache. This means
that all resulting cache misses are cold misses during the
first access. Often not all context models are used during the
decoding of a CTU, especially if only few bins are decoded
as in the RA QP38 configuration. In this case 32 CLs are
also sufficient and lead to the same results as 64 CLs.



AI QP14 AI QP22 AI QP30 AI QP38 RA QP14 RA QP22 RA QP30 RA QP38
0%

10%

20%

30%

40%

50%

m
is

s
ra

te

1CL 2CL 4CL 8CL 16CL 32CL 64CL

AI QP14 AI QP22 AI QP30 AI QP38 RA QP14 RA QP22 RA QP30 RA QP38
0%

10%

20%

30%

m
is

s
ra

te

1CL 2CL 4CL 8CL 16CL 32CL 64CL

Figure 3: Cache miss rate without prefetching (top) and with prefetching (bottom).

As there are high miss rates for few CLs and reduced
clock frequencies for more than eight CLs, an overall perfor-
mance improvement cannot be reached without prefetching.
For example with an AI QP14 video and two CLs (74%
context-coded bin cycle fraction, 17.3% higher clock fre-
quency, 22.6% miss rate) the overall performance is only
88% of a non-cached decoder.

C. Performance with Prefetching

Our prefetching algorithm significantly reduces the cache
miss rate (see Figure 3 (bottom)). The miss rate with only
one CL is still not acceptable as it is greater than 20% for all
configurations because of the restricted prefetching opportu-
nities. Two CLs already result in significant improvements
that depend on the video mode. For all AI modes and for the
low QP RA modes the miss rate is less than 5%, but it almost
reaches 10% for the high QP RA modes. With four and
more CLs the miss rate is less than 1.5% for all modes. As
a result the decoder performance is not noticeably affected
by the cache miss rate anymore (less than 2.5% performance
reduction) and almost the full gain of the clock frequency
improvement remains.

Figure 4 shows the speed-up over the non-cached design,
but only for the cache sizes where an improvement was
achieved. The miss rate for a single CL is too high to result
in an overall speed-up (10% to 23% reduction depending on
the video mode) while more than eight CLs cannot improve
the throughput due to the reduced clock frequency. 16, 32
and 64 CLs result in a throughput reduction of 8%, 17%
and 21%. The cache with eight CLs combines a miss rate
of at most 1% and a small clock frequency improvement of
2.8%, leading to a 1.0% to 2.5% throughput improvement.

AI QP14

AI QP22

AI QP30

AI QP38

RA QP14

RA QP22

RA QP30

RA QP38
0%

5%

10%

15%

sp
ee

d-
up

2CL 4CL 8CL

Figure 4: Speed-up with prefetching (compared to non-
cached decoder).

AI RA
QP 14 22 30 38 14 22 30 38
2CL 105.0 100.3 93.7 88.4 97.4 90.7 84.3 78.4
4CL 101.7 98.1 92.9 87.7 95.5 91.7 88.3 83.8

Table II: Decoder throughput in Mbins/s.

Four CLs allow a consistent speed-up of 9.7% to 11.7% as
the miss rate is only negligibly higher than with eight CLs
but the clock frequency allows up to 12.3% speed-up. Two
CLs allow even higher throughput, but only for AI modes
(10.3% to 15.3%) and RA QP14 mode (13.4%). For the
other RA modes the miss rate is too high and leads to an
overall improvement of 1.2% to 8.9%. However, CABAC
throughput is not critical for the decoding of high QP videos
as only few bins are processed. That is why the configuration
with two CLs can still be the preferred option for a general
hardware decoder. Table II presents the absolute throughput
for the designs with two and four CLs. It can be seen that
the designs are capable of decoding 90 to 105 Mbins/s for
high bitrate bitstreams.



Design Registers LUTs BRAMs DSPs
non-cached

(area opt)
3,055

0.23%
7,542

1.15%
15

2.75%
1

0.11%
cached 2cl
(area opt)

3,240
0.25%

8,070
1.23%

15
2.75%

1
0.11%

cached 4cl
(area opt)

3,391
0.26%

8,280
1.26%

15
2.75%

1
0.11%

cached 2cl
(speed opt)

3,234
0.25%

8,819
1.34%

15
2.75%

1
0.11%

cached 4cl
(speed opt)

3,398
0.26%

8,811
1.34%

15
2.75%

1
0.11%

available 1,311,600 655,800 545 900

Table III: Resource utilization on the Xilinx Zynq-7045 SoC.

D. Resource Utilization

Table III compares the resource utilization of the non-
cached CABAC decoder with the cached designs with two
and four CLs. Synthesis has been performed with area
optimization to get meaningful results for a comparison be-
tween the different designs. Results with speed optimization
are also provided to allow a fair comparison with other
implementations. Two main conclusions can be drawn from
the results. First, the cached designs (2CL and 4CL) require
only 6% and 11% more Registers, as well as 7% and 10%
more LUTs compared to the non-cached design. Second, less
than 3% of the FPGA resources are needed to implement the
CABAC decoder including the processor interface.

V. CONCLUSIONS

A quantitative performance analysis of an HEVC CABAC
decoder has been conducted in this paper. We focused on the
evaluation of the miss rate when the context model memory
is replaced by a smaller cache. While this replacement
results in significant clock frequency improvements for small
cache sizes, the emerging cache misses nullify the effect.
However, the cache miss rate can be effectively reduced
with a well-designed context model memory layout and the
corresponding prefetching strategy.

The configurations with two and four CLs are most
promising. Four CLs result in a speed-up of 10% to 12%
due to effective prefetching and a solid clock frequency
improvement. Two CLs allow even higher clock frequencies
but the miss rate is also higher, especially for high QP RA
videos. As a result the design with two CLs outperforms the
design with four CLs for high bitrate videos (9% to 15%
speed-up) but not for low bitrates (1% to 4% speed-up).
However, as CABAC throughput is not critical for the latter,
the design with two CLs can still be the preferred option.

Despite the direct throughput improvement due to the
enhanced clock frequency, other designs might remove the
pipeline stage that performs the context model memory
access when the cache can be shifted to an adjacent stage.
The shortened pipeline might also significantly improve the
throughput as the strong dependencies in CABAC decoding
make deep pipelining inefficient.

ACKNOWLEDGEMENTS

This work has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 645500 (Film265).

REFERENCES

[1] G. J. Sullivan, J. Ohm, W.-J. Han and T. Wiegand, ”Overview
of the High Efficiency Video Coding (HEVC) Standard”, IEEE
Transactions on Circuits and Systems for Video Technology,
Volume 22, Issue 12, pp. 1649-1668, September 2012

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra,
”Overview of the H.264/AVC Video Coding Standard”, IEEE
Transactions on Circuits and Systems for Video Technology,
Volume 13, Issue 7, pp. 560-576, July 2003

[3] D. Marpe, H. Schwarz and T. Wiegand, ”Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC Video
Compression Standard”, IEEE Transactions on Circuits and
Systems for Video Technology, Volume 13, Issue 7, pp. 620-
636, July 2003

[4] V. Sze and M. Budagavi, ”High Throughput CABAC Entropy
Coding in HEVC”, IEEE Transactions on Circuits and Systems
for Video Technology, Volume 22, Issue 12, pp. 1778-1791,
October 2012

[5] Y. Yi and I.-C. Park, ”High-Speed H.264/AVC CABAC Decod-
ing”, IEEE Transactions on Circuits and Systems for Video
Technology, Volume 17, Issue 4, pp. 490-494, April 2007

[6] Y.-C. Yang and J.-I. Guo, ”High-Throughput H.264/AVC High-
Profile CABAC Decoder for HDTV Applications”, IEEE Trans-
actions on Circuits and Systems for Video Technology, Vol-
ume 19, Issue 9, pp. 1395-1399, September 2009

[7] Y. Hong, P. Liu, Z. Hang, Z. You, D. Zhou and S. Goto,
”A 360 Mbin/s CABAC Decoder for H.264/AVC Level 5.1
Applications”, 2009 IEEE International SoC Design Confer-
ence (ISOCC 2009), pp. 71-74, Busan, South Korea, Novem-
ber 2009

[8] Y.-H. Chen and V. Sze, ”A Deeply Pipelined CABAC Decoder
for HEVC Supporting Level 6.2 High-tier Applications”, IEEE
Transactions on Circuits and Systems for Video Technology,
Volume 25, Issue 5, p. 856-868, May 2015

[9] C.-H. Kim and I.-C. Park, ”High Speed Decoding of Context-
based Adaptive Binary Arithmetic Codes using Most Probable
Symbol Prediction”, IEEE International Symposium on Cir-
cuits and Systems (ISCAS 2006), pp. 1707-1710, Island of
Kos, Greece, May 2006

[10] P.-C. Lin, T.-D. Chuang and L.-G. Chen, ”A Branch Selection
Multi-symbol High Throughput CABAC Decoder Architecture
for H.264/AVC”, IEEE International Symposium on Circuits
and Systems (ISCAS 2009), pp. 365-368, Taipei, Taiwan,
May 2009

[11] C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, T. Schierl,
”SIMD Acceleration for HEVC Decoding”, IEEE Transactions
on Circuits and Systems for Video Technology, Volume 25,
Issue 5, p. 841-855, May 2015


	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. ARCHITECTURE
	IV. EVALUATION
	V. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

