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Abstract

Many diUerent kinds of manufacturing systems can be modeled by timed event graphs
(TEG), a sub-class of Petri nets. The main advantage of timed event graphs is their linear
representation in speciVc mathematical structures named dioids or idempotent semirings. For
linear systems in dioids, in turn, exists an established control theory, which can be used to
determine feedback and feedforward controllers. However, if the considered system shall be
operated with a re-entrant workWow, resulting in a nested schedule, i.e., a resource may be
occupied by the same part more than once and in between these resource allocations another
part is processed on this very resource, it is not possible to determine a TEG modeling the sys-
tem’s behavior. Furthermore, in standard Petri nets, and consequently in standard timed event
graphs, timing information is always considered to be the minimal time of a (sub-) process.
Nevertheless, often manufacturing systems are operated with time windows, i.e., a minimal
time is necessary to complete a (sub-) process but, at the same time, a maximal time is given,
at which the (sub-) process needs to be Vnished. Such time windows cannot easily be included
in timed event graphs. Similarly, it is rather straightforward to include maximum capacities of
(sub-) processes or resources, but not possible to include minimum capacities in timed event
graphs. While the issue of time windows has been addressed in various publications, an exten-
sion of timed event graphs to model systems with nested schedules or minimum capacities has
not been studied.

In this work, we propose an approach to model manufacturing systems with nested sched-
ules. This approach is based on an extension for timed event graphs which, in turn, results in
non-causal dioid representations with respect to the standard deVnition of causality for lin-
ear systems in dioids. Consequently, the causality issue for systems with nested schedules is
addressed. Eventually, the control theory developed for systems in a dioid framework can be
applied to determine suitable controllers. In the second part of this thesis, timed event graphs
with constraints are investigated. The constraints include time windows, i.e., minimal and
maximal time bounds for some (sub-) processes as well as minimum and maximum capacities.
Using results from residuation theory, an algorithm to determine linear systems for extended
timed event graphs is developed. Finally, a method is introduced to compute suitable con-
trollers for timed event graphs with the mentioned additional constraints. Using a real world
example from high-throughput screening, the applicability of our approach is demonstrated.
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Zusammenfassung

Viele Systeme in der Produktions- und Fertigungsindustrie können mit Hilfe von Synchro-
nisationsgraphen, einer Klasse von Petri Netzen, modelliert werden. Vorteil solcher Synchroni-
sationsgraphen ist die Möglichkeit, sie als lineares System in Dioidalgebren (auch idempotente
Halbringe genannt) abzubilden. Für solche linearen Systeme in Dioidalgebren existiert wieder-
um eine etablierte Theorie zur Bestimmung von Steuerungen und Regelungen. Es ist allerdings
nicht möglich Systeme mit einem verschachtelten Ablaufplan mit Hilfe von Synchronisati-
onsgraphen zu modellieren. Ein verschachtelter Ablaufplan zeichnet sich dadurch aus, dass
mehrere Teilprozesse eines Produkts ein und dieselbe Ressource belegen und diese Ressource
in der Zwischenzeit Produktionsschritte anderer Teile durchführt. Desweiteren beziehen sich
Zeitinformationen in Petri Netzen immer auf die minimale Zeiten, die Marken in einer Stelle
bleiben müssen. HäuVg werden in Produktionssystemen jedoch Zeitfenster angegeben, wo ne-
ben der minimalen Zeit auch eine maximale Zeit festgelegt wird, zu der der Produktionsschritt
abgeschlossen sein muss. Solche Zeitfenster können nicht in (standard) Synchronisationsgra-
phen modelliert werden. Ähnlich verhält es sich mit Kapazitäten von Teilprozessen. Während
maximale Kapazitäten relativ einfach durch Marken in Synchronisationsgraphen modelliert
werden können, ist es nicht möglich eine Mindestanzahl von Marken in einer Stelle zu garan-
tieren. Eine Erweiterung von Synchronisationsgraphen im Hinblick auf Zeitfenster ist bereits
in mehreren Publikationen untersucht worden. Es gibt jedoch noch keine Studien darüber, wie
man verschachtelte Ablaufpläne oder Mindestkapazitäten in Fertigungsanlagen bei der Model-
lierung berücksichtigen kann.

In dieser Arbeit stellen wir einen Ansatz vor, mit dem man Prozesse mit verschachtelten
Ablaufplänen durch eine Erweiterung von Synchronisationsgraphen modellieren kann. Das
Modell eines solchen Prozesses resultiert jedoch in einer akausalen Systembeschreibung in
Dioidalgebren. Da die modellierten Systeme jedoch kausal sind, wird der KausalitätsbegriU nä-
her untersucht und erweitert. Mit Hilfe der Regelungstheorie für lineare Systeme in Dioiden ist
es dann möglich, geeignete Regler zu entwerfen. Im zweiten Teil dieser Arbeit untersuchen wir
Synchronisationsgraphen mit zusätzlichen Nebenbedingungen wie maximalen Bearbeitungs-
zeiten und Mindestkapazitäten. Durch Nutzung der Residuentheorie ist es möglich, ein lineares
Dioidsystem für Synchronisationsgraphen mit Nebenbedingungen zu bestimmen. Schließlich
wird ein Algorithmus zum Entwerfen geeigneter Regler vorgestellt. Die Anwendbarkeit un-
serer Ergebnisse wird anhand realer Systeme aus dem Bereich des Hochdurchsatz-Screenings
demonstriert.
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Résumé

De nombreux systèmes, notamment manufacturiers, peuvent être modélisés par des graphes
d’événements temporisés, une classe particulière de réseaux de Petri. Un avantage majeur de
cette approche est l’existence d’une représentation linéaire dans certains dioïdes (ou semi-an-
neaux idempotents). Cette caractéristique a permis le développement d’une théorie du contrôle
dédiée aux graphes d’événements temporisés. Il n’est cependant pas possible de représenter
certains modes de fonctionnement, dits imbriqués, par des graphes d’événemts temporisés.
Par imbriqué, nous entendons qu’une ressource eUectue plusieurs tâches sur un même pro-
duit, mais, qu’entre certaines de ces tâches, elle peut être aUectée à la réalisation de tâches
sur d’autres produits. De plus, alors qu’il est facile de spéciVer dans les graphes d’événements
temporisés un temps minimal pour une tâche, il n’est pas possible de déVnir un temps maxi-
mal. Pourtant, dans de nombreuses applications, la durée d’une tâche doit être comprise dans
un intervalle. Ce type de spéciVcations ne peut donc pas être inclus dans les graphes d’événe-
ments temporisés classiques. Il en va de même pour le nombre de marques dans une place : le
nombre maximal de marques dans une place peut être modélisé, mais pas le nombre minimal
de marques. Contrairement au problème relatif au temps maximal pour une tâche, le problème
relatif au mode de fonctionnement imbriqué et au nombre minimal de marques dans une place
n’a pas encore été traité.

Dans ce mémoire, la modélisation de systèmes avec un mode de fonctionnement imbriqué
est abordée. Notre approche repose sur la présence dans le modèle d’éléments non causaux
selon la déVnition classique de la causalité pour les systèmes linéaires dans les dioïdes. De fait,
le problème de la causalité est traité pour les modes de fonctionnement imbriqués. L’automa-
tique dédiée aux graphes d’événements temporisés est étendue aux systèmes avec un mode de
fonctionnement imbriqué. Dans la deuxième partie de ce mémoire, la modélisation de graphes
d’événements temporisés avec contraintes (temps mininal et maximal et nombre minimal et
maximal de marques pour chaque place) est abordée. En utilisant la théorie de la résiduation,
une représentation linéaire est obtenue et une méthode est présentée pour étendre certaines
commandes aux graphes d’événements temporisés avec contraintes. Pour Vnir, l’intérêt de ce
travail est illustré au moyen d’un exemple industriellement pertinent : un système de test à
haut débit de produits pharmacologiques provenant de notre partenaire industriel.
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1
Introduction

A dynamical system is called discrete-event system (DES) if its behavior can be completely
described by discrete-valued signals, or sequences of discrete events. If timing information is
explicitly included, it is a timed discrete-event system. Otherwise, it is referred to as untimed,
or logical, DES.

Within the last decades many diUerent modeling approaches for DES have been developed.
Among the best studied approaches are Finite-State Automata (e.g., [6, 32]), Petri nets (e.g.,
[49, 55]), and Markov Chains (e.g., [5, 23]). A broad overview of diUerent modeling approaches
for discrete-event systems can be found in, e.g., [11]. Depending on the speciVc process or
system to be modeled an approach may be better suitable than another, but which approach is
eventually applied also strongly depends on the personal biases of the user.

According to speciVc features of the system, many extensions for the standard approaches
have been introduced. For example, colored Petri nets have been introduced to model and
validate concurrent and distributed systems [34]. Also timed Petri nets can be seen as an
extension of the original (logical) Petri nets.

In some cases, however, it is beneVcial to restrict oneself to a sub-class of a speciVc modeling
approach. If the characteristic properties of such a sub-class are suXcient to handle the systems
of interest, the restriction to this sub-class may simplify the modeling approach and increase
the applicability. One speciVc sub-class of Petri nets is, for example, the class of so-called state
machines. State machines cannot model synchronization eUects, but are perfectly suitable to
model conWicts or decisions [54]. The counterpart to state machines are the so-called marked
graphs or event graphs. Marked graphs constitute a sub-class of Petri nets that cannot model
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1 Introduction

conWicts but are a strong tool to model synchronization phenomena [16]. Many transporta-
tion networks, for example, can be modeled with event graphs. In such networks, diUerent
transportation devices are synchronized but due to the Vxed timetable no decisions have to
be made. Also manufacturing processes are often subject to synchronization, e.g., the welding
of two parts cannot start before both parts are available. Of course, usually time cannot be
regarded as negligible with respect to the modeling of transportation networks, manufacturing
systems, or other systems. Therefore, event graphs have been extended to timed event graphs
(TEG), which explicitly contain timing information for the diUerent events [12]. Of course,
timed event graphs can also be seen as a sub-class of timed Petri nets. A fundamental advan-
tage of TEG compared to general Petri nets is that TEG have a linear representation in speciVc
mathematical structures, namely, in idempotent semirings or dioids [2, 21]. Consequently, the
dynamical behavior of a TEG can be described by a linear system in a dioid framework, which
is very similar to linear systems well-known from classical systems theory. Furthermore, a
fundamental control theory for such linear systems in dioids is available and can be used to
determine feedforward and feedback controllers. Among the control approaches studied for
linear systems in dioids are optimal open loop control [2, 48], optimal input Vltering [20, 26],
state and output feedback control [17, 19, 20], disturbance decoupling and robust control in
case of uncertainties [39, 40, 41], and model predictive control strategies [58, 61]. By applying
a suitable controller, the corresponding system can be “steered” towards a desired behavior. In
manufacturing industries, for example, this desired behavior is often a just-in-time operation,
which minimizes the necessary stock while guaranteeing a certain throughput.

However, the time included in timed event graphs corresponds to the minimal time a token
has to spend in a certain place before it can contribute to the Vring of the output transition
of this place. This is oftentimes not suXcient to precisely model the behavior of the desired
system. Especially in chemical industries, an upper time bound, which, with respect to TEG,
corresponds to a maximal time a token may stay in a place, is essential to obtain an accurate
model of the underlying system. This issue has been addressed in [51, 52, 53], where a control
law for systems with sojourn time constraints is obtained by using residuated and dual resid-
uated mappings. Similar problems have recently been addressed in [1, 33, 42] where diUerent
approaches have been developed to handle TEG with additional temporal constraints.

Furthermore, due to the deVnition of timed event graphs, the number of tokens in a place
is non-negative at any time. This, however, means that a system operating with a re-entrant
workWow, i.e., a workpiece may be processed more than once at the same resource, cannot
be represented by a linear system in a dioid setting, if the resource performing two (or more)
processing steps on one part is occupied by another part in between these two processing
steps. Similarly, a system cannot be modeled by a TEG or, equivalently, by a linear system in
dioids, if a sub-process shall be executed (at least) a certain number of times more often than
another sub-process of the system. With respect to timed event graphs, such a behavior can be
modeled by a TEG which allows an integer number of tokens in a place, i.e., a negative number
of tokens may be present in some places. Negative tokens have been previously introduced in
[50] for the application to automated reasoning. The basic idea in [50] is that each place (of

2



a Petri net) represents a proposition and a positive (resp. negative) token in a place means
that the corresponding proposition (resp. the negative of the corresponding proposition) has
been deduced. Consequently, this notion of a negative token does not correspond to “our
idea” of a negative number of tokens. In [37, 38] the authors introduce negative places and
negative tokens to model time window constraints, i.e., negative tokens in negative places have
a negative holding time and basically model the upper time bound between the Vring of two
consecutive transitions. Similarly, maximal times have been modeled in [43, 44, 45], where
an algorithm to determine globally optimal schedules for cyclic systems with non-blocking
speciVcation and time window constraints has been introduced. Nonetheless, negative tokens
in [37, 38] are only used to model upper bounds of time windows, while our work proposes to
use a negative number of tokens to model the least number of tokens which have to be present
in a speciVc place of a TEG.

To model systems with minimal and maximal timing information as well as minimal and
maximal numbers of tokens in a place, an extension of timed event graphs is proposed in this
thesis. This extension includes the possibility to deVne time windows, in which the token has
to leave the place, as well as bounds on the number of tokens in places. It is shown how such
an extended timed event graph can be converted into a linear system in a dioid framework and
the deVnitions on causality, rationality, and realizability are adapted accordingly. Finally, an
algorithm to determine suitable feedforward and feedback controllers for the extended systems
is introduced and the described approaches are applied to real world examples of so-called
High-Throughput Screening (HTS) systems.

This thesis is structured as follows:

Chapter 2 provides a broad overview of the algebraic preliminaries used in this thesis. This
includes order relations and ordered sets as well as idempotent semirings, and results
from residuation theory. Furthermore, the dioid Max

in vγ, δw, an idempotent semiring of
formal power series, which is used throughout this thesis, is deVned.

Chapter 3 gives a brief introduction to timed event graphs and how a dioid model of such
timed event graphs can be obtained. Using a simple example, the necessity of an exten-
sion of timed event graphs is motivated and the notion of negative numbers of tokens
is presented. The concepts of causality, realizability, and rationality are re-deVned with
respect to integer numbers of tokens.

Chapter 4 shortly summarizes diUerent control approaches for linear systems in a dioid frame-
work. Since the standard deVnition of the dioid Max

in vγ, δw includes integer exponents
the mentioned approaches are identical for timed event graphs with and without nega-
tive numbers of tokens.

Chapter 5 describes how additional constraints, namely an upper bound on the time and
a minimal number of tokens (with respect to timed event graphs), can be included in a
dioid model. It is shown how a system matrix containing the information on all imposed
constraints can be derived and how suitable pre-Vlters and feedback controllers can be

3
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determined. Furthermore, several special cases for timed event graphs with constraints
are discussed.

Chapter 6 introduces high-throughput screening systems, which are mainly used in the phar-
maceutical industries. As HTS systems are often operated with nested schedules and
(bio-)chemical reactions play a major role, HTS is one example, where the described
constraints and extensions are frequently necessary. The applicability of our modeling
and control approach is demonstrated on a real world HTS system.

Chapter 7 draws conclusions of the introduced modeling and control methods for systems
with the aforementioned additional constraints and extensions.
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2
Mathematical Background

This section provides the algebraic preliminaries used in this thesis and has partially been
published in [8]. For a more exhaustive presentation of the mathematical matters please refer
to [2].

2.1 Order relation and ordered sets

DeVnition 2.1 (Equivalence relation). A binary relation� on a set C is an equivalence relation
if and only if it is reWexive, symmetric and transitive, i.e., @a, b, c P C:

– reWexivity: a � a
– symmetry: if a � b then b � a
– transitivity: if a � b and b � c then a � c

DeVnition 2.2 (Order relation). An order relation ¨ on a set C is a binary relation for which
the following properties hold @a, b, c P C:

– reWexivity: a ¨ a
– anti-symmetry: pa ¨ b and b ¨ aq ñ a � b
– transitivity: pa ¨ b and b ¨ cq ñ a ¨ c

DeVnition 2.3 (Ordered set). A set C endowed with an order relation¨ is said to be an ordered
set and denoted pC,¨q. If any pair of elements of C can be compared with respect to ¨, i.e.,
@a, b P C one can either write a ¨ b or b ¨ a, the ordered set pC,¨q is said to be a totally
ordered set. If, however, a pair of elements of C exists, for which one can neither write a ¨ b

5



2 Mathematical Background

nor b ¨ a, i.e., aªb and bªa, the order relation is said to be partial on C and pC,¨q is said
to be a partially ordered set.

Example 2.4 (Ordered sets). Classical examples of totally ordered sets are real and integer
numbers with respect to the classical ¤, i.e., pR,¤q and pZ,¤q. If, however, a set of vectors,
e.g., Z2�1, is considered, the resulting pZ2�1,¤q is only partially ordered (if the order relation
is applied element wise). This can easily be demonstrated, if one assumes two vectors v1 �
ra, bsT and v2 � rb, asT with a, b P Z and a � b. Clearly, it is not possible to relate these
to vectors with respect to the order relation ¤, i.e., one can neither write v1 ¤ v2 nor v2 ¤ v1.

DeVnition 2.5 (Bounds on ordered sets). Given an ordered set pC,¨q and a (non-empty) subset
S � C, an element a P C is called lower bound of S if @b P S : a ¨ b. Similarly, if an element
c P C exists, such that @b P S : b ¨ c, c is called upper bound of S . Given that a subset S
has a lower bound, its greatest lower bound (glb) is denoted

�S . Likewise, if an upper bound
exists, its least upper bound (lub) of a subset S is denoted

�S .

DeVnition 2.6 (Lattices). An ordered set pC,¨q is called a sup-semi-lattice, if @a, b P C there
exists a _ b. It is a complete sup-semi-lattice, if every subset S � C admits a least upper
bound, i.e.,

�S exists @S � C. Analogously, an ordered set pC,¨q is called an inf-semi-
lattice, if @a, b P C there exists a ^ b, and it is called a complete inf-semi-lattice, if every
subset S � C has a greatest lower bound, i.e.,

�S exists @S � C. An ordered set pC,¨q is
called a lattice, if it is both a sup-semi-lattice and an inf-semi-lattice and denoted pC,_,^q. It
is called a complete lattice if it is a complete sup-semi-lattice and a complete inf-semi-lattice.
A complete lattice is also called a bounded lattice and the bounds are denoted J (top element)
and K (bottom element). If an ordered set pC,¨q forms a lattice, the following properties hold
@a, b P C:

a ¨ bô a_ b � bô a^ b � a.

Furthermore, in a lattice pC,_,^q the operations_ and^ are associative, commutative, idem-
potent, and the absorption property, i.e., a _ pa ^ bq � a and a ^ pa _ bq � a, @a, b P C,
holds. A lattice is said to be distributive if ^ distributes over _. In general the following
inequalities hold for all lattices pC,_,^q:

a_ pb^ cq ¨ pa_ bq ^ pa_ cq

a^ pb_ cq © pa^ bq _ pa^ cq @a, b, c P C.

Example 2.7 (Lattices). The (totally) ordered set of integers pZ,¤q forms a lattice pZ,_,^q
but not a complete lattice. If, however, one “adds”�8 and�8 to the set, pZYt�8,�8u,¤q
forms a complete lattice.
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2.1.1 Mappings in ordered sets

DeVnition 2.8 (Isotone mapping). A mapping Π from an ordered set pC,¨q to an ordered set
pD,¨q, i.e., Π : C Ñ D is said to be order preserving or isotone if the following property holds

a ¨ bñ Πpaq ¨ Πpbq, @a, b P C.

DeVnition 2.9 (Antitone mapping). Similarly, a mappingΠ : C Ñ D is antitone if the mapping
“inverts” the order, i.e., the following property holds

a ¨ bñ Πpaq © Πpbq, @a, b P C.

DeVnition 2.10 (Monotone mapping). In general, a mapping Π is said to be monotone if it is
either isotone or antitone.

DeVnition 2.11 (Semi-continuous mapping). A mapping Π from a complete lattice pC,_,^q
to a complete lattice pD,_,^q is lower semi-continuous (l.s.c.) if for any S � C one can write

Π

�ª
aPS

a

�
�
ª
aPS

Πpaq.

Analogously, a mapping from a complete lattice to a complete lattice, Π : C Ñ D, is said to be
upper semi-continuous (u.s.c.) if one can write

Π

�©
aPS

a

�
�
©
aPS

Πpaq, @S � C.

DeVnition 2.12 (Continuous mapping). A mapping Π is said to be continuous if it is lower
semi-continuous as well as upper semi-continuous.

Furthermore, given two complete lattices pC,_,^q and pD,_,^q, it can easily be shown
that a l.s.c. mapping Π : C Ñ D is isotone by considering arbitrary a, b P C. If a ¨ b, then
a_b � b and since Π is l.s.c., Πpa_bq � Πpaq_Πpbq � Πpbq and therefore Πpaq ¨ Πpbq.
Additionally, it can be shown that an u.s.c. mapping Π : C Ñ D is also isotone. Considering
two arbitrary elements a, b P C with a ¨ b one can write a ^ b � a and since Π is u.s.c. it
is clear that Πpa^ bq � Πpaq ^ Πpbq � Πpaq and thus Πpaq ¨ Πpbq.

Remark 2.13. If a mappingΠ : C Ñ D is isotone, but neither lower nor upper semi-continuous,
the following inequalities hold @a, b P C:

Πpa_ bq © Πpaq _ Πpbq

Πpa^ bq ¨ Πpaq ^ Πpbq.
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2 Mathematical Background

2.2 Idempotent semirings

DeVnition 2.14 (Monoid). A monoid, pM, �, eq, is a set M endowed with an internal law �,
which is associative and with an identity element e. If the internal law � is commutative,
pM, �, eq is said to be a commutative monoid. If the internal law � is idempotent, i.e., a � a �
a@a PM, the monoid is said to be idempotent.

DeVnition 2.15 (Dioid). An idempotent semiring (also called dioid) is a set D, endowed with
two internal operations denoted ` (addition) and b (multiplication) such that pD,`, εq con-
stitutes an idempotent commutative monoid and pD,b, eq constitutes a monoid. Addition-
ally, multiplication is left- and right-distributive with respect to addition, i.e., a b pb` cq �
pab bq ` pab cq and pa` bq b c � pab cq ` pbb cq @a, b, c P D, and ε is absorbing
with respect to b, i.e., a b ε � ε b a � ε @a P D. The idempotent semiring is denoted
pD,`,bq and the neutral elements of addition and multiplication are often referred to as zero
and unit element, respectively. If multiplication is commutative, the corresponding idempotent
semiring is said to be commutative. Furthermore, if all elements of a dioid (except ε) have a
multiplicative inverse, the idempotent semiring forms an idempotent semiVeld.

Consequently, the following properties hold @a, b, c P D
– addition:

– associativity: pa` bq ` c � a` pb` cq
– commutativity: a` b � b` a
– idempotency: a` a � a
– neutral element: a` ε � a

– multiplication
– associativity: pab bq b c � ab pbb cq
– neutral element: ab e � eb a � a

Remark 2.16. As in standard algebra, the multiplication sign b is often omitted when unam-
biguous.

Example 2.17 (Max-plus algebra). One of the most widely known idempotent semirings is the
so-called pmax,�q-algebra denoted pZmax,`,bq. It is deVned on the set Zmax � ZYt�8u. In
pmax,�q-algebra, addition is deVned as the standard maximum operation and multiplication
is the standard addition, i.e., a ` b :� maxpa, bq and a b b :� a � b, respectively. The
zero element of pmax,�q-algebra is ε � �8 and the unit element is e � 0. Instead of writing
pZmax,`,bq this idempotent semiring is often denoted Zmax. Note that pmax,�q-algebra may
also be deVned on the set of real numbers, i.e., Rmax � RY t�8u.

Example 2.18 (Min-plus algebra). Similar to the pmax,�q-algebra is the so-called pmin,�q-
algebra. It is deVned on the set Zmin � Z Y t�8u and denoted pZmin,`,bq (or simply
Zmin). Min-plus addition is deVned as the standard minimum operation and multiplication in
pmin,�q-algebra is the standard addition, i.e., a`b :� minpa, bq and abb :� a�b @a, b P

8



2.2 Idempotent semirings

Zmin. The zero and unit element of pmin,�q-algebra are ε � �8 and e � 0, respectively.
Analogical to pmax,�q-algebra also pmin,�q-algebra may be deVned on real numbers instead
of integers, i.e., Rmin � RY t�8u.

DeVnition 2.19 (Sub-semiring). Given an idempotent semiring pD,`,bq and a subset S � D,
then pS,`,bq is called a sub-semiring of pD,`,bq, if:

– the zero and unit elements of pD,`,bq are included in S , i.e., ε P S and e P S ,
– S is closed for ` and b, i.e., @a, b P S , a` b P S and ab b P S .

Remark 2.20. According to this deVnition, it is clear that Zmax is a sub-semiring of Rmax and
Zmin is a sub-semiring of Rmin.

DeVnition 2.21 (Addition and multiplication of matrices with entries in dioids). As in classical
algebra, the operations of idempotent semirings can be extended to matrices of compatible di-
mensions with entries in dioids. Given an idempotent semiring pD,`,bq, two n�pmatrices
A,B, and one p�m matrix C with entries in D, i.e., rAsij P D, rBsij P D, rCsjk P D,@i, j, k,
addition and multiplication are deVned as follows

A` B : rA` Bsij � rAsij ` rBsij @i � 1, . . . , n;@j � 1, . . . , p;

Ab C : rAb Csij �
pà
k�1

rAsik b rCskj @i � 1, . . . , n;@j � 1, . . . ,m.

DeVnition 2.22 (Dioid of matrices). An idempotent semiring of square matrices is denoted
pDn�n,`,bq and addition and multiplication are deVned for A,B P Dn�n:

A` B : rA` Bsij � rAsij ` rBsij @i, j � 1, . . . , n;

Ab B : rAb Bsij �
nà
k�1

rAsik b rBskj @i, j � 1, . . . , n.

The unit element of pDn�n,`,bq, also called the identity matrix, is denoted I with rIsii � e
and rIsij � ε, if i � j. The zero matrix of the dioid is denoted E with rEsij � ε,@i, j �
1, . . . , n.

To include non-square matrices of diUerent dimensions in an idempotent semiring of ma-
trices, one has to consider the idempotent semiring of square matrices with the dimension
maxpn, p,mq�maxpn, p,mq and set all elements of the corresponding “additional” rows and
columns of matrices to ε.

2.2.1 Natural order in idempotent semirings

Due to the idempotent character of addition in idempotent semirings, they are naturally
equipped with an order:

a` b � bô a ¨ b @a, b P D.
It can be easily checked that ¨ is indeed reWexive, anti-symmetric, and transitive.
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DeVnition 2.23 (Complete dioids). An idempotent semiring is said to be a complete, if it is
closed for inVnite sums and if b distributes over inVnite sums, i.e., @a P D and @S � D:

ab

�à
bPS

b

�
�
à
bPS

pab bq and

�à
bPS

b

�
b a �

à
bPS

pbb aq .

Thus, a complete dioid admits a greatest element, the so-called top element J, which corre-
sponds to the sum of all elements in D, i.e., J �

À
xPD x and J P D.

Remark 2.24. With respect to lattice theory, a dioid constitutes an ordered set pD,¨q with
the structure of a sup-semi-lattice and with a ` b being the least upper bound of a and b. A
complete dioid has the structure of a complete sup-semi-lattice with J �

�D �
À

xPD x.
Moreover, since every dioid always admits ε P D as the bottom element, i.e., ε �

�D, a
complete dioid has the structure of a complete lattice pD,`,^q with

a` b � bô a ¨ bô a^ b � a.

Example 2.25 (Max-plus algebra). The natural order in pmax,�q-algebra pZmax,`,bq coin-
cides with the order relation deVned in classical algebra, e.g., 3` 4 � 4ô 3 ¨ 4. As deVned
above pZmax,`,bq does not constitute a complete dioid since J � �8 R Zmax. If, however,
one deVnes pmax,�q-algebra on the set Zmax � Zmax Yt�8u � ZYt�8,�8u, it becomes
a complete dioid and, therefore, pZmax,`,^q is a complete lattice.

Example 2.26 (Min-plus algebra). The natural order in pmin,�q-algebra pZmin,`,bq corre-
sponds to the “reverse” of the order relation in classical algebra, e.g., 3` 4 � 3ô 4 ¨ 3. Sim-
ilar to pmax,�q-algebra, pmin,�q-algebra does not constitute a complete dioid, when deVned
on the set Zmin. If, however, it is deVned on the set Zmin � Zmin Y t�8u � ZY t�8,�8u,
it becomes a complete dioid (with J � �8) and, therefore, pZmin,`,^q is also a complete
lattice.

DeVnition 2.27 (Rational closure [2, 15]). Given a complete dioid pD,`,bq and a subset S �
D, with S containing e and ε. The rational closure of S , denoted pS�,`,bq, is the smallest
sub-semiring of pD,`,bq containing all elements of S and all Vnite sums, products, and star
operations over its elements. The subset S is rationally closed if S � S�.

2.2.2 Mappings in idempotent semirings

As idempotent semirings constitute ordered sets, the properties of monotonicity introduced
in Sec. 2.1.1, also apply for mappings in dioids. For complete dioids (which form complete
lattices) also the concept of continuity can be applied, i.e., a mapping Π from a complete dioid
pD,`,bq to a complete dioid pC,`,bq is lower semi-continuous if @S � D:

Π

�à
aPS

a

�
�
à
aPS

Πpaq,
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2.2 Idempotent semirings

and upper semi-continuous if @S � D:

Π

�©
aPS

a

�
�
©
aPS

Πpaq.

DeVnition 2.28 (Homomorphism). A mapping Π : D Ñ C deVned on idempotent semirings
is a homomorphism if @a, b P D

Πpa` bq � Πpaq ` Πpbq and Πpεq � ε

Πpab bq � Πpaq b Πpbq and Πpeq � e,

where the same symbols are used for the zero and unit elements of D and C.

DeVnition 2.29 (Isomorphism). If the inverse of a homomorphism Π is deVned and is itself a
homomorphism the mapping Π is called an isomorphism.

DeVnition 2.30 (Image of a mapping). The image of a mapping Π : D Ñ C is denoted ImΠ
(sometimes also ΠpDq) is deVned by

ImΠ � tb P C |b � Πpaq, a P Du .

DeVnition 2.31 (Kernel of a mapping). The kernel of a mapping Π : D Ñ C is denoted kerΠ
and deVned by

kerΠ � tpa, bq P D �D : Πpaq � Πpbqu .

Remark 2.32. Please note that, while the deVnition on the image of a mapping in dioids
(Def. 2.30) is equivalent to the corresponding deVnition in conventional algebra, the kernel
of a mapping in dioids is not identical to the kernel of a mapping in conventional algebra.

DeVnition 2.33 (Identity mapping). A mapping Π : D Ñ D is called identity mapping and
denoted IdD , if it assigns to each element a P D the element a, i.e., Πpaq � a, @a P D.

DeVnition 2.34 (Closure mapping). A mapping from an idempotent semiring into the same
idempotent semiring, i.e., Π : D Ñ D is called a closure mapping, if it is

– extensive, i.e., Π © IdD , i.e., Πpaq © a @a P D
– idempotent, i.e., Π � Π � Π, i.e., Π pΠpaqq � Πpaq @a P D
– isotone, i.e., a ¨ bñ Πpaq ¨ Πpbq, @a, b P D.

2.2.3 Residuation theory

The product lawb in idempotent semirings does not necessarily admit an inverse. However,
the so-called residuation theory [3, 4] provides a pseudo inversion of mappings deVned over
ordered sets. Since dioids are deVned on (partially) ordered sets, it is possible to use residuation
theory to determine the greatest solution (with respect to the natural order of the dioid) of
inequality Πpaq ¨ b, if it exists.
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DeVnition 2.35 (Residuated mapping). An isotone mapping Π : D Ñ C with pD,¨q and
pC,¨q being ordered sets, is said to be residuated, if the inequality Πpaq ¨ b has a greatest
solution in D for all b P C.

Theorem 2.36 ([4]). For an isotone mapping Π : D Ñ C from one ordered set to another
ordered set, the following statements are equivalent:

(i) Π is residuated.

(ii) There exists an isotone mapping Π7 : C Ñ D such that

Π � Π7 ¨ IdC

Π7 � Π © IdD.

Mapping Π7 is said to be the residual of Π.

Theorem 2.37 ([2]). For a residuated mapping Π : D Ñ C the following equalities hold:

Π � Π7 � Π � Π

Π7 � Π � Π7 � Π7

An illustration of these properties is given in Fig. 2.1.

(D,�)

x

y

(C,�)

Π(x)

Π♯ (Π(x))

Π♯

Π♯(y) Π
(
Π♯(y)

)

Π

Π

Π♯

Π

Π♯

Figure 2.1: Properties of residuated mapping Π : D Ñ C and the corresponding mapping Π7 : C Ñ D.

DeVnition 2.38 (Canonical injection). An isotone mapping ΠS : S Ñ D, with S being a
sub-semiring of D and both S and D being complete dioids, is deVned by:

ΠSpaq � a @a P S.
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Theorem 2.39 (Projection [24]). According to the deVnition of a residuated mapping (Def. 2.35),
the canonical injection ΠS is a residuated mapping. The residual Π7S is a projector from the
dioid D to its sub-dioid S and denoted PrS . The following statements hold for PrS :

(i) PrS � PrS � PrS

(ii) PrS ¨ IdD

(iii) a P S ô PrSpaq � a.

DeVnition 2.40 (Projection on the image of a mapping [14]). Given a residuated mapping
f : D Ñ C, the mapping Pf � f � f7 is a projector, i.e., Pf � Pf � Pf, and Pfpcq with c P C is
the greatest element in Imf less than or equal to c.

It can be shown that two very elementary mappings in a complete dioid pD,b,`q, namely,
the left and right product with a constant, i.e.,

La : D Ñ D
x ÞÑ ab x pleft product with aq

Ra : D Ñ D
x ÞÑ xb a pright product with aq

are residuated mappings. The corresponding residual mappings are denoted:

L7apxq � a�zx pleft division by aq,

R7apxq � x�{a pright division by aq.

Consequently, a b x ¨ b has a greatest solution denoted L7apbq � a�zb �
À
tx|ax ¨ bu.

Analogously, the greatest solution of inequality xba ¨ b is R7apbq � b�{a �
À
tx|xa ¨ bu.

These solutions are called left and right residuals, respectively. In case the dividend or the
divisor are ε or J the following conventions apply for all a P D:

ε�za � a�{ε � J

J�za � a�{J �

#
J if a � J

ε else.

Remark 2.41. Depending on the literature diUerent notations may be used to refer to the resid-
ual mappings of the left and right product. In [2], for example, the following notation is used

L7a : x ÞÑ
x

a
� a�zx

R7a : x ÞÑ
x

a
� x�{a.
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Of course, residuation theory is not restricted to mappings in ordered set of scalars, but can
be extended to the matrix case. Given the matrices A P Dm�n, B P Dm�p, and C P Dn�p,
the greatest solution of inequalityAbX ¨ B is given byD � A�zB and inequality XbC ¨ B
admits E � B�{C as its greatest solution. The entries of D and E are determined as follows:

rDsij �
m©
k�1

prAski�zrBskjq

rEsij �
p©
k�1

prBsik�{rCsjkq .

Example 2.42 (Max-plus algebra). Considering the relation Ab X ¨ B with

A �

�
�� 1 5

ε 4

2 7

�
�
 and B �

�
�� 7

5

9

�
�


being matrices with entries in Zmax. As introduced above the product in pmax,�q-algebra
corresponds to the classical addition. Consequently the residuation in Zmax corresponds to the
classical subtraction, i.e., 2 b x ¨ 6 admits the solution set X � tx|x ¨ 2�z6u with 2�z6 �
6�2 � 4 being the greatest solution of this set. Applying the rules of residuation in pmax,�q-
algebra to Ab X ¨ B results in:

A�zB �

�
1�z7^ ε�z5^ 2�z9

5�z7^ 4�z5^ 7�z9

�
�

�
6

1

�
.

Matrix A�zB � p6 1qT is the greatest solution for X which ensures Ab X ¨ B, i.e.,

Ab pA�zBq �

�
�� 1 5

ε 4

2 7

�
�
b

�
6

1

�
�

�
�� 7

5

8

�
�
¨

�
�� 7

5

9

�
�
� B.

Remark 2.43. Note that in max-plus algebra, residuation theory achieves equality in the scalar
case, while this is in general not true for the matrix case. In general, one can say, that the
equation Ab X � B admits a solution if matrix B P Dm�p is in the image of A P Dm�n, i.e.,
there exists a matrix L P Dn�p such that B � Ab L.

Below, some properties of the left and right “division” are given. To get a more exhaustive
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list of properties and the corresponding proofs the reader is invited to consult [2, 20, 24].

a pa�zxq ¨ x px�{aqa ¨ x (2.1)

a�z paxq © x pxaq �{a © x (2.2)

a pa�z paxqq � ax ppxaq �{aqa � xa (2.3)

a�z pa pa�zxqq � a�zx ppx�{aqaq �{a � x�{a (2.4)

a�z px^ yq � a�zx^ a�zy px^ yq �{a � x�{a^ y�{a (2.5)

a�z px` yq © pa�zxq ` pa�zyq px` yq �{a © px�{aq ` py�{aq (2.6)

pa^ bq �zx © pa�zxq ` pb�zxq x�{ pa^ bq © px�{aq ` px�{bq (2.7)

pa` bq �zx � a�zx^ b�zx x�{ pa` bq � x�{a^ x�{b (2.8)

pabq �zx � b�z pa�zxq x�{ pbaq � px�{aq �{b (2.9)

pa�zxqb ¨ a�z pxbq b px�{aq ¨ pbxq �{a (2.10)

b pa�zxq ¨ pa�{bq �zx px�{aqb ¨ x�{ pb�zaq (2.11)

2.2.4 Fixed point equations

Theorem 2.44 (Fixpoint theorem). Every order preserving mapping of a complete lattice into
itself has a Vxpoint [59]. Furthermore, the set of Vxpoints of an order preserving mapping of
a complete lattice pC,¨q into itself, forms a complete lattice with respect to the ordering of
pC,¨q.

This theorem is essentially due to Knaster [35] and Tarski [60]. Formally, for an isotone
mapping Π : C Ñ C with pC,_,^q being a complete lattice and Y � tx P C|Πpxq � xu being
the set of Vxed points of Π, one can write [36]

1.
©
yPY

y P Y, and
©
yPY

y �
©

tx P C|Πpxq ¨ xu .

2.
ª
yPY

y P Y, and
ª
yPY

y �
ª

tx P C|x ¨ Πpxqu .

Theorem 2.45 (Smallest Vxed point). Let pD,`,bq be a complete dioid, Π : D Ñ D be a
lower semi-continuous mapping in this dioid, and Y � tx P D|Πpxq � xu the set of Vxed
points of Π. The smallest Vxed point of Π is [2]

©
yPY

y � Π�

�©
xPD

x

�
� Π�pεq

with Π� �
�8à
i�0

Πi, Πi�1 � Π � Πi, and Π0 � IdD.
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2 Mathematical Background

Theorem 2.46 (Greatest Vxed point). Let pD,`,bq be a complete dioid, Π : D Ñ D be an
upper semi-continuous mapping in this dioid, and Y � tx P D|Πpxq � xu the set of Vxed
points of Π. The greatest Vxed point of Π is [2]

à
yPY

y � Π�

�à
xPD

x

�
� Π�pJq

with Π� �
�8©
i�0

Πi, Πi�1 � Π � Πi, and Π0 � IdD.

DeVnition 2.47 (Kleene star). The Kleene star is a mapping denoted �. In a complete dioid
pD,`,bq it is deVned @a P D by:

a� �
8à
i�0

ai with ai�1 � ab ai and a0 � e.

Remark 2.48. Of course, the Kleene star can also be applied to (square) matrices in the corre-
sponding complete dioid. In [2] the algorithm for a matrix with four blocks, i.e., A P Dn�n
with

A �

�
a11 a12

a21 a22

�
,

where a11 and a22 are square matrices of dimensionn1 andn2, respectively, withn1�n2 � n,
is given by

A� �

�
a�11 ` a

�
11a12pa21a

�
11a12 ` a22q

�a21a
�
11 a�11a12pa21a

�
11a12 ` a22q

�

pa21a
�
11a12 ` a22q

�a21a
�
11 pa21a

�
11a12 ` a22q

�

�
.

Example 2.49 (Solution of x � ax`b). According to theorem 2.45, the least Vxed point of the
lower semi-continuous mapping Π : x ÞÑ ax ` b in a complete dioid pD,`,bq is x � a�b.
This can be shown by computing Π�, i.e.,

Π0pxq � x

Π1pxq � ax` b

Π2pxq � apax` bq ` b � a2x` ab` b

Π3pxq � a2pax` bq ` ab` b � a3x` a2b` ab` b

...

Πkpxq � ak�1pax` bq ` ak�2b` . . .` ab` b
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2.2 Idempotent semirings

and according to the deVnition of Π�:

Π�pxq �
�8à
i�0

Πipxq

� x` ax` a2x` a3x` . . .` b` ab` a2b` a3b` . . .

�
�
e` a` a2 ` a3 ` . . .

	
x`

�
e` a` a2 ` a3 ` . . .

	
b

� a�x` a�b.

Finally, the least Vxed point of Π : x ÞÑ ax` b is equal to Π�pεq, i.e.,

Π�pεq � a�ε` a�b � a�b.

This is also the least solution of inequality x © ax` b.

Remark 2.50. According to Def. 2.47 the mapping La� : x ÞÑ a�x in a complete dioid
pD,`,bq is a closure mapping, i.e., the following equivalence holds

x � a�xô x P ImLa� .

The Kleene star in a complete dioid pD,`,bq has the following properties @a, b P D:

pa�q� � a�

a pbaq� � pabq� a

pa` bq� � pa�bq� a� � b� pab�q� � pa` bq� a� � b� pa` bq�

a�a� � a�

pab�q� � e` a pa` bq� .

For the proofs and a more extensive list of properties of the Kleene star, the reader is invited to
consult [20, 24]. Additionally, some nice properties of the Kleene star in combination with the
residual mappings of the left and right product can be derived [20, 24]:

a � a� ô a � a�za a � a� ô a � a�{a (2.12)

a��zx � a��z pa��zxq x�{a� � px�{a�q �{a� (2.13)

a�x � a��z pa�xq xa� � pxa�q �{a� (2.14)

a��zx � a� pa��zxq x�{a� � px�{a�qa�. (2.15)

Moreover,

a�za � pa�zaq� a�{a � pa�{aq� .

Furthermore, in [13] and [19] it has been shown that this property also holds for matrices
A P Dp�n and A�zA P Dn�n, i.e.,

A�zA � pA�zAq� . (2.16)
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2 Mathematical Background

Theorem 2.51 (Greatest solution of x� ¨ a� [39]). Let pD,`,bq be a complete dioid and
a, x P D. The greatest solution of x� ¨ a� is x � a�.

Proof. By considering the deVnition of the Kleene star the following equivalence has to hold

x� � e` x` x2 ` . . . ¨ a� ô

$''''&
''''%

e ¨ a�

x ¨ a�

x2 ¨ a�

...

The Vrst inequality of the right hand side holds due to the deVnition of a�. The second in-
equality obviously holds as well for x � a�. According to the properties of the Kleene star
in complete dioids, pa�q2 � a�a� � a� which indicates that a� is also the solution for the
following inequalities. Consequently, x � a� satisVes all inequalities on the right hand side
and since x ¨ a�, x � a� is indeed the greatest solution of x� ¨ a�.

Lemma 2.52 ([2]). Given a matrix A P Dn�n and a matrix x P Dn�p, the following equiva-
lences hold

x ¨ A�zxô x © Axô x � A�xô x � A��zx,

where the order relations ¨ and © are applied element wise.

Lemma 2.53 ([53]). For two matrices A,B P Dn�n with pDn�n,`,bq being a complete
dioid, the following statements are equivalent

A� © B� ô A�B� � B�A� � B��zA� � A��{B� � A�.

Remark 2.54. Given two closure mappings LA� : x ÞÑ A�x and LB� : x ÞÑ B�x, such that
LA� © LB� , i.e., A� © B�, the following equivalence holds:

LA� © LB� ô LA� � LB� � LB� � LA� � LA� ô ImLA� � ImLB� .

2.2.5 Dual residuation

In Sec. 2.2.3 it has been shown how residuation theory can be applied to determine the
greatest solution of inequalities like Πpaq ¨ b. However, it is of course also possible to
determine the least solution of inequalities such as Πpaq © b. The deVnitions for the so-called
dual residuation are analogous to the deVnitions for the previously introduced residuation.

DeVnition 2.55 (Dually residuated mapping). An isotone mapping Π : D Ñ C with pD,¨q
and pC,¨q being ordered sets, is said to be dually residuated, if inequality Πpaq © b has a
least solution in D for all b P C.
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2.2 Idempotent semirings

Theorem 2.56 ([2]). For an isotone mapping Π : D Ñ C from one complete dioid to another
complete dioid, the following statements are equivalent:

(i) Π is dually residuated

(ii) ΠpJq � J and Π is upper semi-continuous

(iii) There exists an isotone lower semi-continuous mapping Π5 : C Ñ D, such that:

Π � Π5 © IdC

Π5 � Π ¨ IdD.

Mapping Π5 is said to be the dual residual of Π.

Theorem 2.57 ([53]). For a dually residuated mapping Π : D Ñ C the following equalities
hold:

Π � Π5 � Π � Π

Π5 � Π � Π5 � Π5.

Dual multiplication

In this section we are interested in determining a “pseudo inverse” of a particular operation
denoted d, which is the so-called dual multiplication. This operation is not included in the
standard deVnition of idempotent semirings.

DeVnition 2.58 (Dual multiplication). For two matrices A P Dp�n and B P Dn�q in a com-
plete dioid the dual multiplication Ad B is deVned by

rAd Bsij �
n©
k�1

�
rAsik d rBskj

	
@i � 1, . . . , p; @j � 1, . . . , q

with the following convention in the scalar case:

ad b � ab b @a, b P DzJ
xdJ � Jd x � J @x P D.

Furthermore this dual product is assumed to distribute with respect to ^ of inVnitely many
elements.

In particular, this implies that εdJ � J, while εbJ � ε.

DeVnition 2.59 (Dual Kleene star). The dual Kleene star is a mapping denoted �. In a complete
dioid pD,`,bq it is deVned for A P Dn�n as:

A� �
8©
k�0

Adk,
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2 Mathematical Background

where Ad0 � Id and Adk � AdAdpk�1q, with Id being the identity of the dual multiplica-
tion, i.e.,

�
Id
�
ij
�

#
e if i � j

J else.

DeVnition 2.60 (Dual closure mapping). In a complete dioid pD,`,bq an isotone mapping
h : D Ñ D is said to be a dual closure mapping, if h � h � h ¨ IdD .

Remark 2.61. According to the previous deVnitions the mapping ΛA� : x ÞÑ A� d x in a
complete dioid is a dual closure mapping, i.e., the following equivalence holds

x � A� d xô x P ImΛA� .

DeVnition 2.62. An element a P D with pD,`,bq being a complete dioid, admits a left
inverse (respectively a right inverse), if there exists an element b (respectively c), such that
bb a � e (ab c � e, respectively).

Lemma 2.63 ([2]). Given a scalar a P D, with pD,`,bq being a complete dioid, admitting a
left inverse b and a right inverse c, the following statements hold:

– b � c and both are denoted a�1

– @x, y P D, a px^ yq � ax^ ay.

Lemma 2.64 ([53]). Given a matrix A P Dp�n and the set X of elements in Dn�q. If every
entry of A admits an inverse, the mapping ΓA : x ÞÑ Ad x is upper semi-continuous, i.e.,

ΓA

�©
xPX

x

�
�
©
xPX

ΓApxq.

Of particular interest is the dual left product, i.e., given the scalars a, x P D and a admits an
inverse denoted a�1, then mapping Γa : x ÞÑ ad x is dually residuated and the dual residual
is denoted:

Γ 5a : x ÞÑ a
zx

with

a
zx � a�1 b x

under the conventions that

J
zx � ε, ε
zx � J, and ε
zε � ε.
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2.2 Idempotent semirings

This can be easily extended to the matrix case, i.e., given two matrices A P Dn�n and X P
Dn�n and every entry in A admits an inverse, then mapping ΓA : X ÞÑ A d X is dually
residuated and the dual residual is denoted:

Γ 5A : X ÞÑ A
zX

with

rA
zXsij �
nà
k�1

�
rAski 
z rXskj

	
�

nà
k�1

�
rAs�1ki b rXskj

	

under the conventions that

J
zx � ε, ε
zx � J, and ε
zε � ε.

Remark 2.65. An important thing to realize is that

a © bñ a
zx ¨ b
zx @, a, b, x P D.

Furthermore, given that b admits an inverse and due to the associativity of multiplication in
dioids, the following statement is true

b
z pab cq � pb
zaq b c.

This can easily be shown by rewriting the equation, i.e.,

b
z pab cq � b�1 b pab cq �
�
b�1 b a

	
b c.

Remark 2.66. Of course residuation theory can also be applied to determine the dual residual
of the mapping Λa : x ÞÑ xd a, with a, x P D. It is denoted

Λ5
a : x ÞÑ x
{a

with

x
{a � xb a�1

with the conventions that

x
{J � ε, x
{ε � J, and ε
{ε � ε.

In the matrix case, the dual residual of the mapping ΛA : X ÞÑ X d A, with A,X P Dn�n,
is denoted

Λ5
A : X ÞÑ X
{A
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with

rX
{Asij �
nà
k�1

�
rXsik 
{ rAsjk

	
�

nà
k�1

�
rXsik b rAs�1jk

	

with the conventions that

x
{J � ε, x
{ε � J, and ε
{ε � ε.

The dual left and right “division” have the following properties [53]:

a
zpx` yq � a
zx` a
zy px` yq
{a � x
{a` y
{a (2.17)

a
zpx^ yq ¨ a
zx^ a
zy px^ yq
{a ¨ x
{a^ y
{a (2.18)

px` yq
za ¨ x
za^ y
za a
{px` yq ¨ a
{x^ a
{y (2.19)

ad pa
zxq © x px
{aq d a © x (2.20)

a
zpad xq ¨ x pxd aq
{a ¨ x (2.21)

ad pa
zpad xqq � ad x ppxd aq
{aq d a � xd a (2.22)

a
z pad pa
zxqq � a
zx ppx
{aq d aq 
{a � x
{a (2.23)

pad bq
zx � b
zpa
zxq x
{pbd aq � px
{aq
{b (2.24)

pa
zxq
{b � a
zpx
{bq b
zpx
{aq � pb
zxq
{a (2.25)

Lemma 2.67 ([7]). Similar to Lem. 2.52 it is possible to show that the following equivalences
hold for two matrices A P Dn�n and x P Dn�p

x ¨ Ad xô x © A
zxô x � A�
zxô x � A� d x,

where the order relations ¨ and © are applied element wise.

Proof. p1q ñ p2q According to Def. 2.55 mappingΛ5
A is order preserving, hence x ¨ Adxñ

A
zx ¨ A
zpA d xq, furthermore the same deVnition implies A
zx ¨ A
zpA d xq ¨ x. Hence
x ¨ Ad xñ A
zx ¨ x.
p2q ñ p3q According to Eq. 2.24 A
zpA
zxq � Ad2
zx, furthermore mapping Λ5

A is order
preserving, then

x © A
zxñ A
zx © A
zpA
zxq � Ad2
zx,

hence

x © A
zx © Ad2
zx © . . .ñ x © pId
zxq ` pA
zxq ` pAd2
zxq ` . . .

Furthermore, according to [2] and to Def. 2.59,

pId
zxq ` pA
zxq ` pAd2
zxq ` . . . � pId ^A^Ad2 ^ . . .q
zx � A�
zx,
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2.2 Idempotent semirings

then, x © pA
zxq ñ x © A�
zx. On the other hand A� ¨ Id then A�
zx © x, hence x ©
pA
zxq ñ x � A�
zx.
p3q ñ p4q From Theorem 2.56 the following inequality holds: A� d pA�
zxq © x, hence,

x � A�
zxñ A� d x � A� d pA�
zxq © x,

but the deVnition of a dual closure mapping (Def. 2.60) yields A� d x ¨ x, hence

x � A�
zxñ A� d x � x.

p4q ñ p1q According to Def. 2.58 and Def. 2.59,

A� d x � pId ^A^Ad2 ^ . . .q d x � px^Ad x^Ad2 d x^ . . .q,

hence x � A� d xñ x ¨ Ad x.

Lemma 2.68 ([7]). Given three matrices A P Dn�p, X P Dp�q, and B P Dn�r. If every entry
of B admits an inverse the following property holds

B
z pAb Xq � pB
zAq b X. (2.26)

Proof.

rB
z pAb Xqsij �
nà
l�1

rBsli
z rAb Xslj

�
nà
l�1

rBsli
z

�
pà
k�1

prAslk b rXskjq

�

�
nà
l�1

pà
k�1

rBsli
z prAslk b rXskjq
�
Γ 5B is lower semi-continuous

	

�
nà
l�1

pà
k�1

rBs�1li b prAslk b rXskjq prBsli admits an inverseq

�
nà
l�1

pà
k�1

�
rBs�1li b rAslk

	
b rXskj pb is associativeq

�
nà
l�1

pà
k�1

prBsli
zrAslkq b rXskj

�
pà
k�1

rB
zAsik b rXskj � rpB
zAq b Xsij .
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2.2.6 Idempotent semirings of formal power series

DeVnition 2.69 (Formal power series). A formal power series in p (commutative) variables,
denoted z1 to zp, with coeXcients in a semiring D, is a mapping s deVned from Zp into D:
@k � pk1, . . . , kpq P Zp, spkq represents the coeXcient of zk11 . . . z

kp
p and pk1, . . . , kpq are the

exponents. Another equivalent representation is

spz1, . . . , zpq �
à
kPZp

spkqzk11 . . . z
kp
p

DeVnition 2.70 (Support, degree, and valuation of a formal power series). The support of a
formal power series is deVned as

supppsq � tpk1, . . . , kpq P Zp|spk1, . . . , kpq � εu .

The degree degpsq (respectively valuation valpsq) is the least upper bound (respectively greatest
lower bound) of supppsq in the complete lattice pZ,_,^q, where Z � ZYt�8,�8u. A series
with a Vnite support is called a polynomial and a monomial if there is only one element in the
support.

DeVnition 2.71 (Idempotent semiring of series). The set of formal power series with coeX-
cients in an idempotent semiring D endowed with the following sum and Cauchy product

s` s1 :
�
s` s1

�
pkq � spkq ` s1pkq

sb s1 :
�
sb s1

�
pkq �

à
i�j�k

spiq b s1pjq,

is an idempotent semiring denoted D vz1, . . . , zpw. If D is complete, D vz1, . . . , zpw is com-
plete. The greatest lower bound of two series is given by

s^ s1 :
�
s^ s1

�
pkq � spkq ^ s1pkq.

DeVnition 2.72 (γ-transform). The γ-transform of a signal s̃pkq is deVned by

spγq �
à
kPZ
s̃pkq b γk.

Remark 2.73. The γ-transform is analogous to the z-transform in classical systems theory,
which allows to describe a discrete signal by a formal power series.

Remark 2.74. Since s 1pγq � spγq b γ �
À

kPZ s̃pkq b γ
k�1 �

À
kPZ s̃

1pkq b γk, it is clear
that s̃ 1pkq � s̃pk� 1q and therefore, γ can be seen as a shift operator.

DeVnition 2.75 (Idempotent semiring Zmax vγw). The set of formal power series in γ with ex-
ponents in Z and coeXcients in Zmax is an idempotent semiring and is denoted Zmax vγw.
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2.2 Idempotent semirings

The zero element is the series εpγq �
À

kPZ εγ
k, where ε � �8, the zero element of

pZmax,`,bq. The unit element is the formal series epγq � eγ0, where e � 0 is the unit
element of pZmax,`,bq. The sum and product in Zmax vγw are deVned by

s1pγq ` s2pγq �
à
kPZ

ps̃1pkq ` s̃2pkqqγ
k

s1pγq b s2pγq �
à
kPZ

à
k1�k2�k

ps̃1pk1q b s̃2pk2qqγ
k.

Example 2.76. Given two formal power series in Zmax vγw, e.g., the monomial s1pγq � 3γ2

and the polynomial s2pγq � 0γ1 ` 2γ2, their sum and product are

s1pγq ` s2pγq � 3γ
2 ` 0γ1 ` 2γ2 � 0γ1 ` p3` 2qγ2 � 0γ1 ` 3γ2

s1pγq b s2pγq � 3γ
2 b

�
0γ1 ` 2γ2

	
� p3b 0qγ3 ` p3b 2qγ4 � 3γ3 ` 5γ4.

Remark 2.77. In general, we will only write the terms of a power series which have a non-zero
coeXcient, e.g., s1pγq � . . .` εγ0 ` εγ1 ` 3γ2 ` εγ3 ` εγ4 ` . . . � 3γ2.

DeVnition 2.78 (δ-transform). Analogously to the γ-transform, the δ-transform of a signal
ŝptq is deVned by

spδq �
à
tPZ
ŝptq b δt.

DeVnition 2.79 (Idempotent semiring Zmin vδw). The set of formal power series in δwith expo-
nents in Z and coeXcients in Zmin has a dioid structure and is denoted Zmin vδw. The zero and
unit element are εpδq �

À
tPZ εδ

t, with ε � �8, and epδq � eδ0, with e � 0, respectively.
Addition and multiplication in Zmin vδw are deVned by

s1pδq ` s2pδq �
à
tPZ

pŝ1ptq ` ŝ2ptqq δ
t

s1pδq b s2pδq �
à
tPZ

à
t1�t2�t

pŝ1pt1q b ŝ2pt2qq δ
t.

Example 2.80. Given two formal power series in Zmin vδw, e.g., the monomial s1pδq � 2δ3

and the polynomial s2pδq � 1δ0 ` 2δ2, their sum and product are

s1pδq ` s2pδq � 2δ
3 ` 1δ0 ` 2δ2 � 1δ0 ` 2δ2 ` 2δ3

s1pδq b s2pδq � 2δ
3 b

�
1δ0 ` 2δ2

	
� p2b 1q δ3 ` p2b 2q δ5 � 3δ3 ` 4δ5.

DeVnition 2.81 (Idempotent semiring B vγ, δw). The dioid of formal power series in two com-
mutative variables γ and δ with Boolean coeXcients, i.e., B � tε, eu, and exponents in Z is
denoted B vγ, δw. A series s P B vγ, δw is represented by

spγ, δq �
à
k,tPZ

spk, tqγkδt,
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with spk, tq P B. B vγ, δw is a complete and commutative dioid. The zero and unit element are
εpγ, δq �

À
k,tPZ εγ

kδt and epγ, δq � γ0δ0, respectively.

Example 2.82. One possible series in B vγ, δw is spγ, δq � γ1δ0`γ2δ1`γ3δ3`γ4δ3. Please
remember that according to remark 2.77, we only write the elements of the power series whose
coeXcients are equal to e. Then, a series can graphically be represented in the Z2-plane, with
the exponents of γ on the horizontal axis and the exponents of δ on the vertical axis, by
drawing a black dot for all elements with non-zero coeXcient. The corresponding graphical
representation of the series s1pγ, δq is given in Fig. 2.2.

1 2 3 4

1

2

3

4

γ0

δ

Figure 2.2: Graphical representation of the series spγ, δq � γ1δ0 ` γ2δ1 ` γ3δ3 ` γ4δ3 P B vγ, δw.

Quotient dioids

DeVnition 2.83 (Congruence). In a dioid pD,`,bq, a congruence relation is an equivalence
relation denoted �, which satisVes @a, b, c P D:

a � bñ

#
a` c � b` c

ab c � bb c.

DeVnition 2.84 (Equivalence class). Given a dioid pD,`,bq equipped with an equivalence
relation �. The equivalence class represented by an element a P D is denoted ras� and is
deVned as

ras� � tx P D|x � au .

Thus, an equivalence class ras� is the set of all elements which are equivalent to a with
respect to the equivalence relation �.

Lemma 2.85 (Quotient dioid). The quotient of a dioid pD,`,bq with respect to a congruence
relation � is itself a dioid. It is called quotient dioid and is denoted D{�. For addition and
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multiplication the following properties hold [2]

ras� ` rbs� � ra` bs�
ras� b rbs� � rab bs� .

DeVnition 2.86 (Idempotent semiring Max
in vγ, δw). The quotient dioid of B vγ, δw with re-

spect to the congruence relation in B vγ, δw:

a � bô γ�
�
δ�1
	�
a � γ�

�
δ�1
	�
b,

is denoted Max
in vγ, δw, i.e., Max

in vγ, δw = B vγ, δw{γ�pδ�1q� , where � refers to the Kleene
star. Max

in vγ, δw constitutes a complete dioid and the zero and unit elements are εpγ, δq �À
k,tPZ εγ

kδt and epγ, δq � γ0δ0, respectively.

Remark 2.87. In the following, the dioid Max
in vγ, δw will be used to describe how often an

event can occur within a speciVc time. For example, the monomial γkδt is to be interpreted as:
“The pk� 1q-st occurrence of the event is at time t at the earliest.”

Graphically, a monomial γkδt P Max
in vγ, δw cannot be represented as a point in the Z2-

plane (as it was the case for γkδt P B vγ, δw). This is due to the fact that in Max
in vγ, δw

γkδt � γkδt b γ�
�
δ�1
��

. Rewriting the right hand side of this equivalence results in

γkδt � γkδt

�
8à
i�0

γi

�
loooomoooon

γ�

�
8à
j�0

�
δ�1
	j�

looooooomooooooon
pδ�1q�

� γkδt

�
8à
i�0

γi

��
8à
j�0

δ�j

�

�
8à
i�0

8à
j�0

γk�iδt�j.

Consequently, the monomial γkδt P Max
in vγ, δw represents the set tγnδm P B vγ, δw |n ¥

k,m ¤ tu. Graphically speaking, every monomial γkδt P Max
in vγ, δw represents all points

in the Z2-plane that are “south-east” of the point pk, tq. Consequently, a polynomial in
Max

in vγ, δw is graphically represented as the union of south-east cones of the single mono-
mials composing the polynomial.

Example 2.88. A possible series in Max
in vγ, δw is spγ, δq � γ1δ0 ` γ2δ3 ` γ4δ4. Its corre-

sponding graphical representation is given in Fig. 2.3.

Remark 2.89. The graphical representation allows for a straightforward visualization of the
partial order ¨ in Max

in vγ, δw. Namely, s1 ¨ s2, if the graphical representation of s1 is con-
tained in the respective representation of s2. Consequently, the zero element of Max

in vγ, δw
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2 Mathematical Background
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Figure 2.3: Graphical representation of the series spγ, δq � γ1δ0 ` γ2δ3 ` γ4δ4 PMax
in vγ, δw.

needs to be the “bottom right” element and the top element the “top left” element. There-
fore (and for simplicity reasons), these elements are often denoted ε � γ�8δ�8 and J �
γ�8δ�8, respectively.

Remark 2.90 (Minimal representation). As mentioned before, two series s1 and s2 in Max
in vγ, δw

belong to an equivalence class if s1bγ�
�
δ�1
��
� s2bγ

�
�
δ�1
��

. Graphically speaking this
means all series of an equivalence class “cover” the same area in the Z2-plane. For example,
the series

s1 � γ
1δ0 ` γ2δ3 ` γ4δ4

s2 � γ
1δ0 ` γ2δ3 ` γ3δ2 ` γ4δ4

s3 � γ
1δ0 ` γ2δ3 ` γ3δ2 ` γ4δ4 ` γ6δ4

are all equivalent with respect to the congruence relation γ�
�
δ�1
��

. However, series s1 is the
so-called minimal representation, as its support consists of a minimal number of elements. In
the following the minimal representation is (always) used to denote an equivalence class. Note
that every equivalence class has one unique minimal representation.

For monomials in Max
in vγ, δw the following rules apply for addition, multiplication and the

greatest lower bound:

γkδt ` γlδt � γminpk,lqδt

γkδt ` γkδτ � γkδmaxpt,τq

γkδt b γlδτ � γpk�lqδpt�τq

γkδt ^ γlδτ � γmaxpk,lqδminpt,τq
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2.2 Idempotent semirings
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(b) γ1δ1 b γ3δ2 � γ4δ3
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(c) γ1δ2 ^ γ2δ4 � γ2δ2

Figure 2.4: Graphical representation of operations in Max
in vγ, δw.

Graphically, for monomials in Max
in vγ, δw

– addition: γkδt ` γlδτ refers to the union of south-east cones of pk, tq and pl, τq
– multiplication: γkδt b γlδτ refers to the south-east cone of pk� l, t� τq
– greatest lower bound: γkδt ^ γlδτ refers to the intersection of the two south-east cones

of pk, tq and pl, τq, i.e., the south-east cone of pmaxpk, lq,minpt, τqq.
The graphical representation of these operations is given in Fig. 2.4.

29





3
Model of Discrete-Event Systems

As mentioned before, there are many diUerent modeling approaches for discrete-event sys-
tems. Among them are Vnite state automata (FSA), Markov chains, and queueing systems (see
[11] for an overview). In this thesis Petri nets are used for the modeling of discrete-event sys-
tems. This modeling approach is named after Carl Adam Petri, who documented speciVc nets
as a part of his PhD thesis in the early 1960s [56]. A standard Petri net consists of a Petri net
graph (or Petri net structure) and its initial marking. The Vrst part of this chapter is mainly
based on [8, 9] and [30].

DeVnition 3.1 (Petri net graph [11]). A Petri net graph is a directed bipartite graph

N � pP, T,A,wq

where
P � tp1, . . . , pnu is the Vnite set of places
T � tt1, . . . , tmu is the Vnite set of transitions
A � pP � Tq Y pT � Pq is the set of directed arcs from places to transitions and from
transitions to places
w : pP � Tq Y pT � Pq Ñ N0 is a weight function.

In general, events are associated with transitions and conditions for events to occur are
associated with places. In the sequel, the following notation is used for Petri net graphs:

Iptjq � tpi P P|ppi, tjq P Au
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3 Model of Discrete-Event Systems

p2

t2

t1

p3

p1
2

Figure 3.1: Simple Petri net graph for Example 3.2.

is the set of all input places for transition tj, i.e., the set of places with arcs to tj. Similarly,

Optjq � tpi P P|ptj, piq P Au

denotes the set of all output places for transition tj, i.e., the set of all places with incoming arcs
from tj. Analogously, the sets of input and output transitions for place pi are denoted

Ippiq � ttj P T |ptj, piq P Au

Oppiq � ttj P T |ppi, tjq P Au.

Obviously, pi P Iptjq if and only if tj P Oppiq, and tj P Ippiq if and only if pi P Optjq.
Graphically, places are represented by circles, transitions by bars, arcs by arrows, and weights
by numbers at the corresponding arrows. Usually, weights are only displayed explicitly if
they are diUerent from one. Furthermore, if there is no arc from place pi to transition tj, i.e.,
pi R Iptjq and tj R Oppiq, the corresponding weightwppi, tjq � 0. Similarly, if there is no arc
from transition tj to place pi, i.e., tj R Ippiq and pi R Optjq, the weight wptj, piq � 0.

Example 3.2 (Petri net graph). A (rather simple) Petri net graph is deVned by

P � tp1, p2, p3u, T � tt1, t2u, A � tpp1, t1q, pt1, p2q, pt1, p3q, pp2, t2q, pt2, p2qu

wpp1, t1q � 1, wpt1, p2q � 1, wpt1, p3q � 2, wpp2, t2q � 1, wpt2, p2q � 1.

The corresponding graphical representation is given in Fig. 3.1. Please note that, as in this
example, a transition tj may be an input and an output transition of the same place pi, e.g.,
t2 P Ipp2q and t2 P Opp2q.

DeVnition 3.3 (Petri net system). A Petri net system (or Petri net) is a pair pN,m0q, where
N � pP, T,A,wq is a Petri net graph andm0 P Nn0 with n � |P| is a vector of initial markings.

In graphical representations the vector of initial markings is indicated by black dots, also
called tokens in the corresponding places, i.e., place pi contains m0

i tokens. A Petri net can
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(a) Petri net at the initial state.
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t1
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(b) Petri net after Vring transition t1.

Figure 3.2: Petri net before and after the Vring of transition t1 (Example 3.4).

then be interpreted as a dynamical system with a state signal m : N0 Ñ Nn0 and an initial
state mp0q � m0 and mpkq is the state after the k-th Vring of a transition. Its dynamics is
governed by the so called Vring rules:

(i) In state mpkq, a transition tj can occur (or “Vre”) if and only if all of its input places
contain at least as many tokens as the weight of the arc connecting the input place with
the transition tj, i.e.,

mipkq ¥ wppi, tjq,@pi P Iptjq.

(ii) When a transition tj Vres, the number of tokens in all its input places is decreased by the
weight of the connecting arc and the number of tokens in all its output places is increased
by the weight of the arc connecting transition tj with the corresponding place, i.e., the
state signal changes according to

mipk� 1q � mipkq �wppi, tjq �wptj, piq, i � 1, . . . , n,

wheremipkq andmipk� 1q represent the numbers of tokens in place pi before and after
the Vring of transition tj, respectively.

Example 3.4 (Petri net). Given the Petri net graph introduced in Example 3.2 is endowed
with the initial marking mp0q � m0 � r1, 0, 0sT . The corresponding Petri net is given in
SubVg. 3.2(a). At this (initial) state only transition t1 is enabled to Vre. Firing this transition
changes the state to mp1q � r0, 1, 2sT , which is shown in SubVg. 3.2(b). At this state, transi-
tion t2 is enabled to Vre. Firing transition t2, however, does not aUect the overall marking, i.e.,
mp2q � mp1q � r0, 1, 2sT .

It should also be noted that a transition enabled to Vre might not actually do so. In fact, it
is well possible that, in a certain state, several transitions are enabled simultaneously, and that
Vring one of them will disable the other ones. The corresponding transitions are said to be in
conWict. In this thesis, however, the focus is on non-conWicting Petri nets. More precisely, only
so called event graphs (or synchronization graphs) are considered.
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3 Model of Discrete-Event Systems

p2
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Figure 3.3: Simple event graph (Example. 3.6).

DeVnition 3.5 (Event graph). A Petri net pN,m0q is called an event graph, if each place has
exactly one input transition and one output transition, i.e.,

|Ippiq| � |Oppiq| � 1, @pi P P,

and if all arcs have weight 1. As mentioned above, an event graph cannot model conWicts (or
decisions), but it does model synchronization eUects.

Example 3.6 (Event graph). Obviously, the Petri net introduced in Example 3.4 is not an event
graph, because place p1 does not have an input transition, place p2 on the other hand has two
input transitions, and the arc connecting transition t1 with p3 has a weightwpt1, p3q � 2. An
example of a simple event graph is given in Fig. 3.3.

3.1 Timed event graphs

Standard Petri nets (and also event graphs) only model the possible ordering of Vrings of
transitions, but not the actual Vring times. However, in many applications the speciVc Vring
times or the earliest possible Vring times are of particular interest. Therefore, standard logical
event graphs have been equipped with timing information. Two diUerent approaches have
been developed to include timing information, i.e., time can either be associated with transi-
tions (representing transition delays) or with places (representing holding times). Equipping
an event graph with either transition delays or holding times provides a so called timed event
graph (TEG). If every transition in a timed event graph, associated with a transition delay, has
at least one input place, the transition delays can always be converted into holding times (by
simply shifting each transition delay to all input places of the corresponding transition). How-
ever, in general, it is not possible to convert every TEG with holding times into a TEG with
transition delays. Therefore, we will only consider timed event graphs with holding times.

In a TEG with holding times, a token entering a place pi has to spend vi time units before
it can contribute to the Vring of the output transition of pi. The graphical representation of a
part of a timed event graph with holding times is given in Fig. 3.4. The earliest time instant
when place pi receives its kth token is denoted πipkq, and the resulting earliest time instant
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3.1 Timed event graphs

pitr tj

vi

Figure 3.4: Part of a general timed event graph with holding times.

that the output transition tj can Vre for the kth time is denoted τjpkq and can be determined
by

τjpkq � max
piPIptjq

pπipkq � viq , (3.1)

i.e., a transition can Vre for the kth time as soon as all its input transitions received their kth

token and the corresponding holding times have elapsed. Similarly, the (earliest) time instants
when place pi receives its pk�m0

i q
th token can be determined by the earliest kth Vring time

of the respective input transition tr, i.e.,

πipk�m
0
i q � τrpkq, tr P Ippiq. (3.2)

Since every place in a TEG has exactly one input transition, it is possible to replace πi in Eq. 3.1
with Eq. 3.2. Therefore, recursive equations for the (earliest) Vring times of transitions in TEG
can be obtained.

Remark 3.7 (Earliest Vring rule). In the following it is assumed that transitions in timed event
graphs always Vre as soon as they are enabled.

Example 3.8 (Simple transportation network). Obviously, the earliest Vring instants of transi-
tions describe the dynamical behavior of a TEG. To illustrate this, a small example is introduced
(borrowed from [10]).

Imagine a train network consisting of two stations and three lines, one inner loop and two
outer loops. The inner loop has two rail tracks (one for each direction) and the outer loops have
one rail track each. At the stations passengers are able to change lines. The basic structure of
this train network is outlined in Fig. 3.5.

Initially, it is assumed that the train company operates a total of four trains, i.e., one train
on each track. A train needs 3 time units to travel from station 1 to station 2 and 5 time units
for the reverse travel. For the outer loop of station 1 (resp. station 2) the train needs 2 time
units (resp. 3 time units). The aim is to implement a passenger-friendly timetable, where trains
wait for each other at the stations to allow passengers to change from the inner to an outer
loop or vice versa, i.e., the departure times of trains in each station shall be synchronized. As
mentioned before, timed event graphs are suitable to model synchronization phenomena, and
indeed it is rather straight forward to model the described train network as a TEG with holding
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3 Model of Discrete-Event Systems

travel time: 2 travel time: 5

travel time: 3 travel time: 3

Station 1 Station 2

Figure 3.5: Simple transportation network taken from [10].

3

3

p2

p4

p3

t1

5

t2

p1

2

Figure 3.6: Timed event graph of the transportation network.

times (see Fig. 3.6). The tokens in places p1 to p4 represent trains on each of the four tracks
and the transitions t1 and t2 represent the departure of trains from station 1 and station 2,
respectively. The holding times associated to the places are equivalent to the corresponding
travel times on the tracks. The earliest possible departure times for trains, i.e., the earliest Vring
instants for transitions t1 and t2 can be determined according to Eq. 3.1:

τ1pkq � max pπ1pkq � 2, π4pkq � 5q

τ2pkq � max pπ2pkq � 3, π3pkq � 3q

and the earliest time instants of tokens entering places p1 to p4 are

π1pk�m
0
1q � π1pk� 1q � τ1pkq

π2pk�m
0
2q � π2pk� 1q � τ1pkq

π3pk�m
0
3q � π3pk� 1q � τ2pkq

π4pk�m
0
4q � π4pk� 1q � τ2pkq.
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3.2 Dioid model of timed event graphs

Therefore, the recursive equations for the Vring instants of transitions t1 and t2 can be deter-
mined by

τ1pk� 1q � max pτ1pkq � 2, τ2pkq � 5q

τ2pk� 1q � max pτ1pkq � 3, τ2pkq � 3q .

Now, given initial departure times, i.e., the departure times for the Vrst trains, τ1p1q � τ2p1q �
0, the following timetable can be achieved:�

0

0

�
,

�
5

3

�
,

�
8

8

�
,

�
13

11

�
,

�
16

16

�
, � � �

Thus, on average trains are leaving station 1 and 2 every four time units. The obtained
timetable is so-called 2-periodic. The train company, however, would most probably prefer
a 1-periodic timetable, i.e., a train departs every 4 time units. This can be achieved by consid-
ering diUerent initial departure times. If, for example, the departure times for the Vrst trains is
changed to τ1p1q � 1 and τ2p1q � 0. The resulting new timetable is�

1

0

�
,

�
5

4

�
,

�
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8

�
,

�
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�
,

�
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16

�
, � � �

Clearly, a timed event graph is a suitable tool to model systems, in which synchronization
of speciVc events plays a major role and decisions are not an issue.

3.2 Dioid model of timed event graphs

Taking a look at the recursive equations for the transition Vring times of Example 3.8, it is
easy to recognize that addition and the maximum operation are necessary to determine the
desired timetable. Due to the max-operation, these equations are non-linear in conventional
algebra, however, recalling Example 2.17 it is possible to rewrite such equations in pmax,�q-
algebra, i.e., in the idempotent semiring pZmax,`,bq. The recursive equations for τ1 and τ2
are:

τ1pk� 1q � 2b τ1pkq ` 5b τ2pkq

τ2pk� 1q � 3b τ1pkq ` 3b τ2pkq

which can be rewritten in matrix-vector form

xpk� 1q �

�
2 5

3 3

�
b xpkq

xpk� 1q � Ab xpkq (3.3)

37



3 Model of Discrete-Event Systems

with xpkq � pτ1pkq τ2pkqq
T . Obviously, Equation 3.3 is linear. It is also called “max-plus

linear system”. Within the framework of pmax,�q-algebra it is then possible to determine
initial Vring times for the transitions such that the system evolves in a 1-periodic manner. In
conventional algebra this means that the following equation shall be satisVed

τipk� 1q � λ� τipkq,
k � 1, 2, . . .

i � 1, 2, . . . , n.

Rewriting this requirement in pmax,�q-algebra provides

xipk� 1q � λxipkq,
k � 1, 2, . . .

i � 1, 2, . . . , n

or, equivalently

xpk� 1q � λxpkq, k � 1, 2, . . .

with xpkq P Znmax. This yields the max-plus eigenproblem. If, for a given matrix A P Z
n�n
max ,

there exists ξ P Z
n
max and a scalar λ such that

Aξ � λξ,

λ is called eigenvalue and ξ eigenvector of matrix A. Consequently, choosing the initial Vring
times as an eigenvector, i.e., xp1q � ξ, results in

xp2q � Axp1q � λxp1q

xp3q � Axp2q � A2xp1q � λ2xp1q

...

xpkq � Axpk� 1q � A2xpk� 2q � . . . � Apk�1qxp1q � λpk�1qxp1q,

which is the desired 1-periodic behavior with a period length of λ. There are several algorithms
to solve the max-plus eigenproblem, e.g., Howard’s algorithm and the power algorithm. How-
ever, the eigenproblem in pmax,�q-algebra or other idempotent semirings is not part of this
thesis. The interested reader may consult one of the many publications on this issue, e.g., [31].

Example 3.9 (Simple transportation network (continued)). Recalling the transportation net-
work introduced in Example 3.8, the max-plus system matrix is

A �

�
2 5

3 3

�
.

It turns out that ξ � p1 0qT is an eigenvector of matrix A, i.e., it satisVes Ab ξ � λb ξ. Not
surprisingly, this conVrms the observation of possible timetables. When the initial departure
times are set to xp1q � p1 0qT , the timetable has a 1-periodic behavior with a departure interval
of λ � 4.
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3.2 Dioid model of timed event graphs
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Figure 3.7: Simple timed event graph (Example 3.11).

Remark 3.10 (Eigenproblem in pmax,�q-algebra). A matrix A P Z
n�n
max is called reducible if

there exists a permutation matrix P, i.e., a square matrix that has exactly one 1-element in each
row and column and zeros elsewhere, such that Ã � PAPT is upper block-triangular. Other-
wise, A is called irreducible. While a reducible matrix may have more than one eigenvalue,
irreducible matrices have a unique eigenvalue but may possess several linearly independent
eigenvectors.

In general it is possible to convert any timed event graph (as deVned in this thesis) into a
linear system in pmax,�q-algebra. In such a max-plus linear system the variable xipkq refers
to the earliest possible time instant that event xi occurs for the kth time, i.e., transition ti Vres
for the kth time. Therefore, xpkq is also called a dater function, as it determines a speciVc
(earliest possible) time (or date) for the occurrence of every event. Another possible way to
describe timed event graphs is through so-called counter functions denoted xptq. These counter
functions determine the number of events that have occurred up to time t, i.e., xiptq refers to
the number of occurrences of event xi up to time t. Note that in this case time is assumed to
be discrete. Converting a timed event graph into a linear system of counter functions implies
modeling the timed event graph as a min-plus linear system.

Example 3.11 (Timed event graphs and pmin,�q-algebra). Given the timed event graph shown
in Fig. 3.7. The numbers of tokens in place pi at time t is denoted by πiptq and can be deter-
mined by

π1ptq � τ1ptq �m
0
1 � τ1ptq � 1

π2ptq � τ2ptq �m
0
2 � τ2ptq � 2

π3ptq � τ2ptq �m
0
3 � τ2ptq � 3

(3.4)

with τiptq being the number of Vrings of transition ti up to time t andm0 being the vector of
initial markings, i.e., the number of tokens in every place at time t � 0. Similar to Example 3.8,
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3 Model of Discrete-Event Systems

it is also possible to determine the number of Vrings of every transition up to time t:

τ1ptq � π3pt� 1q

τ2ptq � min pπ1pt� 1q, π2pt� 1qq .
(3.5)

Note that the number of Vrings at time t depends on the number of tokens that have been
present in the places at time t � 1. This is due to the fact that the holding time for every
place is equal to one and therefore, only tokens that have entered a place and have remained
(at least) one time unit in the corresponding place can contribute to the Vring of a transition.
Finally, replacing the πi in Eq. 3.5 with Eq. 3.4, one obtains the recursive equations for the
maximal number of Vrings of transition ti up to time t:

τ1pt� 1q � τ2ptq � 3

τ2pt� 1q � min pτ1ptq � 1, τ2ptq � 2q .

These equations can be rewritten as a min-plus linear system, i.e., in the idempotent semiring�
Zmin,`,b

�
:

xpt� 1q �

�
ε 3

1 2

�
b xptq

xpt� 1q � Ab xptq,

with xptq � pτ1ptq τ2ptqq
T .

Consequently, it is possible to model the dynamic behavior of a timed event graph as a max-
plus linear system as well as a min-plus linear system. As a matter of fact, it is also possible to
achieve linear models of TEG in other dioids, e.g., Zmax vγw and Zmin vδw. Which dioid is used
to model the dynamic behavior of a speciVc TEG depends on the system to be modeled itself
but also on the biases of the user who wants to describe the system. The Vrst issue becomes
clear, when looking at a slightly bigger example.

Example 3.12 (Manufacturing systems and dioids). Taking a look at the TEG given in Fig. 3.8,
which could possibly model a simple manufacturing system. The linear dynamical system in
pmax,�q-algebra, with xipkq, ujpkq, ypkq being the earliest time instants that the transitions
xi, uj, and y Vre for the kth time, is

x1pkq � 2u1pkq ` 1x2pk� 1q

x2pkq � 1x1pkq

x3pkq � 3u2pk� 1q ` ex4pk� 2q

x4pkq � 4x3pkq

ypkq � 2x2pk� 1q ` 1x4pkq
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Figure 3.8: TEG of a simple manufacturing system (Example 3.12).

Rewriting the linear system in matrix-vector form, one obtains

xpkq � A0xpkq `A1xpk� 1q `A2xpk� 2q ` B0upkq ` B1upk� 1q (3.6)

ypkq � C0xpkq ` C1xpk� 1q

with

A0 �

�
�����
ε ε ε ε

1 ε ε ε

ε ε ε ε

ε ε 4 ε

�
����
, A1 �

�
�����
ε 1 ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

�
����
, A2 �

�
�����
ε ε ε ε

ε ε ε ε

ε ε ε e

ε ε ε ε

�
����


B0 �

�
�����
2 ε

ε ε

ε ε

ε ε

�
����
, B1 �

�
�����
ε ε

ε ε

ε 3

ε ε

�
����
, C0 �

�
ε ε ε 1

	
, C1 �

�
ε 2 ε ε

	
.

Clearly, Eq. 3.6 is an implicit equation, however, according to Example 2.49, the least Vxed
point can be used to solve this equation, i.e., to rewrite it in explicit form. Formally, one can
write:

xpkq � A0xpkq `A1xpk� 1q `A2xpk� 2q ` B0upkq ` B1upk� 1q

� A�
0 pA1xpk� 1q `A2xpk� 2q ` B0upkq ` B1upk� 1qq

� A�
0A1xpk� 1q `A

�
0A2xpk� 2q `A

�
0B0upkq `A

�
0B1upk� 1q
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with

A�
0 �

8à
i�0

Ai0

�

�
�����
e ε ε ε

ε e ε ε

ε ε e ε

ε ε ε e

�
����
`

�
�����
ε ε ε ε

1 ε ε ε

ε ε ε ε

ε ε 4 ε

�
����
`

�
�����
ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

�
����
` . . .

�

�
�����
e ε ε ε

1 e ε ε

ε ε e ε

ε ε 4 e

�
����
.

Consequently,

xpkq �

�
�����
ε 1 ε ε

ε 2 ε ε

ε ε ε ε

ε ε ε ε

�
����
xpk� 1q `

�
�����
ε ε ε ε

ε ε ε ε

ε ε ε e

ε ε ε 4

�
����
xpk� 2q ` . . .

�
�����
2 ε

3 ε

ε ε

ε ε

�
����
upkq `

�
�����
ε ε

ε ε

ε 3

ε 7

�
����
upk� 1q.

Then, we can transform this second order system to a Vrst order system by suitably deVning a
state space, e.g., by deVning a state vector x̃pkq �

�
xpkqT xpk� 1qT upkqT

�T
. The resulting

Vrst order system is

x̃pkq � Ãx̃pk� 1q ` B̃upkq

ypkq � C̃x̃pkq
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3.2 Dioid model of timed event graphs

where

Ã �

�
��������������������

ε 1 ε ε ε ε ε ε ε ε

ε 2 ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε e ε 3

ε ε ε ε ε ε ε 4 ε 7

e ε ε ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε ε

ε ε e ε ε ε ε ε ε ε

ε ε ε e ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

�
�������������������


, B̃ �

�
��������������������

2 ε

3 ε

ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

e ε

ε e

�
�������������������


,

C̃ �
�
ε ε ε 1 ε 2 ε ε ε ε

	
.

Obviously, modeling a TEG as given in Fig. 3.8 in pmax,�q-algebra leads to a sparse matrix
and a rather large state space dimension. However, other idempotent semirings such as the
dioid Zmax vγw are well capable to describe such a TEG with a smaller state space. Another
advantage of using the smallest possible state space is that the physical meaning of each tran-
sition of the TEG is preserved in the resulting dioid model. The system equations in the dioid
Zmax vγw can be achieved by applying the γ-transform (see Def. 2.72) to Eq. 3.6. Formally, we
get

xpγq � A0xpγq `A1γxpγq `A2γ
2xpγq ` B0upγq ` B1γupγq

ypγq � C0xpγq ` C1γxpγq

or equivalently

xpγq �
�
A0 ` γA1 ` γ

2A2

	
loooooooooooomoooooooooooon

Apγq

xpγq ` pB0 ` γB1qlooooomooooon
Bpγq

upγq

ypγq � pC0 ` γC1qlooooomooooon
Cpγq

xpγq

with

Apγq �

�
�����
ε 1γ ε ε

1 ε ε ε

ε ε ε γ2

ε ε 4 ε

�
����
, Bpγq �

�
�����
2 ε

ε ε

ε 3γ

ε ε

�
����
, Cpγq �

�
ε 2γ ε 1

	
.
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3 Model of Discrete-Event Systems

In the remainder of this thesis timed event graphs will be described in the idempotent semi-
ring Max

in vγ, δw, which is an eXcient way to model any TEG. Therefore, from this point on,
all dioid operations and system descriptions are meant to be in Max

in vγ, δw unless otherwise
indicated.

Example 3.13 (Manufacturing systems in Max
in vγ, δw). The example of the manufacturing

system given as a TEG in Fig. 3.8 can be written as a linear system in Max
in vγ, δw. Formally,

we get

xpγ, δq � Apγ, δqxpγ, δq ` Bpγ, δqupγ, δq

ypγ, δq � Cpγ, δqxpγ, δq

with

Apγ, δq �

�
�����
ε γδ ε ε

δ ε ε ε

ε ε ε γ2

ε ε δ4 ε

�
����
, Bpγ, δq �

�
�����
δ2 ε

ε ε

ε γδ3

ε ε

�
����
,

Cpγ, δq �
�
ε γδ2 ε δ

	
.

3.2.1 Causality, Periodicity, Realizability, Rationality

As mentioned in Chapter 2 the elements in the dioid Max
in vγ, δw are formal power series.

When it comes to modeling real system, the question on causality, periodicity, realizability,
and rationality of periodic power series in Max

in vγ, δw has to be addressed.

DeVnition 3.14 (Causality of a series in Max
in vγ, δw[2]). A series s P Max

in vγ, δw is causal if
s � ε or if both valγpsq ¥ 0 and s © γvalγpsqδ0, where valγpsq refers to the valuation in γ of
series s.

Consequently, the exponents of all monomials composing a causal series s are greater or
equal to zero and all series composed of monomials with exponents greater or equal to zero
are causal. The set of causal elements of Max

in vγ, δw has a complete semiring structure and is

denoted Max��
in vγ, δw. Obviously, Max��

in vγ, δw is a complete sub-dioid of Max
in vγ, δw.

Remark 3.15 (Causality of a matrix in Max
in vγ, δw). A matrix A with entries in Max

in vγ, δw is
causal, if all its entries are causal.

Remark 3.16 (Causal projection [17]). The canonical injection Π
Max��
in vγ,δw

: Max��
in vγ, δw Ñ

Max
in vγ, δw is residuated and its residual is denoted Pr

�
�
caus : Max

in vγ, δw Ñ Max��
in vγ, δw.

Formally, the series Pr
�
�
causpsq is the greatest causal series less or equal to series s PMax

in vγ, δw.
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Figure 3.9: Causal projection of a (non-causal) series s PMax
in vγ, δw.

Example 3.17 (Causal projection of a series). Given a non-causal series s � γ�4δ�1`γ�2δ1`
γ2δ2 ` γ4δ4 P Max

in vγ, δw. Its causal projection s�� � Pr
�
�
causpsq � γ0δ1 ` γ2δ2 ` γ4δ4 P

Max��
in vγ, δw. Graphically, the causal projection of a series is the series that covers the same

area in the Vrst quadrant but is devoid of any points on the left hand side of the Cartesian
system. In Fig. 3.9 the series s and its causal projection Pr

�
�
causpsq is given.

DeVnition 3.18 (Periodic series in Max
in vγ, δw [15]). Often systems modeled in Max

in vγ, δw
have a periodic behavior, which can be represented by a periodic series. A series s PMax

in vγ, δw
is said to be periodic if it can be written as s � p` qb r�, where p is a polynomial referring
to a transient phase, e.g., start-up of the system, q is a polynomial representing the periodical
behavior, i.e., the pattern that will be repeated periodically, and r � γνδτ is a monomial de-
scribing the periodicity. Then, the ratio ν{τ is the throughput, i.e., once the periodic regime is
reached an event occurs ν times every τ time units. Accordingly, the inverse ratio τ{ν is the
asymptotic slope of the series.

Remark 3.19 (Periodic matrices in Max
in vγ, δw). A matrix A P Max

in vγ, δw is said to be peri-
odic, if all its entries are periodic series.

Example 3.20 (Periodic series in Max
in vγ, δw). Considering the series s PMax

in vγ, δw

s � e` γδ` γ2δ4 ` γ4δ5 ` γ5δ6 ` γ6δ7 ` γ8δ9 ` γ9δ10 ` γ11δ12 ` γ12δ13 ` . . .

This series is a periodic series and can be written

s � e` γδ` γ2δ4 ` γ4δ5loooooooooooomoooooooooooon
p

`
�
γ5δ6 ` γ6δ7

	
loooooooomoooooooon

q

�
γ3δ3

	�
looomooon

r�

.
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Figure 3.10: Graphical representation of a periodic series in Max
in vγ, δw.

The graphical representation of this series is given in Fig. 3.10.

DeVnition 3.21 (Realizability of a series in Max
in vγ, δw [15]). A series s P Max

in vγ, δw is said
to be realizable if there exist two square pn � nq matrices A1 and A2 with Boolean entries
and two pn � 1q respectively p1 � nq matrices B and C with Boolean entries such that s �
C pγA1 ` δA2q

� B.

Remark 3.22. This deVnition implies that a series s P Max
in vγ, δw is realizable if there exists

a timed event graph with single input and single output which has a transfer relation depicted
by this series.

Example 3.23 (Realizable series in Max
in vγ, δw). The series s � e ` pγδ2 ` γ2δ4qpγ2δ5q� is

realizable according to Def. 3.21. A possible timed event graph with single input and single
output whose transfer relation is depicted by this series is given in Fig. 3.11. This TEG can be
“expanded” to the TEG given in Fig. 3.12. The single input single output transfer function of
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Figure 3.11: Timed event graph with transfer relation s � e` pγδ2 ` γ2δ4qpγ2δ5q�.
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Figure 3.12: Expanded timed event graph with transfer relation s � e` pγδ2 ` γ2δ4qpγ2δ5q�.
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this expanded TEG can then be written in the form s � CpγA1 ` δA2q
�B with

γA1 ` δA2 �

�
�����������������

ε δ ε ε ε ε ε ε γ

ε ε γ ε ε ε ε ε ε

δ ε ε ε ε ε ε ε ε

δ ε ε ε ε ε ε ε ε

ε ε ε δ ε ε ε ε ε

ε ε ε ε δ ε ε ε ε

ε ε ε ε ε δ ε ε ε

ε ε ε ε ε ε δ ε ε

ε ε ε ε ε ε ε γ ε

�
����������������


B �
�
ε e ε ε ε ε ε ε ε

	T
C �

�
ε e ε ε ε ε ε ε ε

	
and indeed s � CpγA1 ` δA2q�B � e` pγδ2 ` γ2δ4qpγ2δ5q�.

Remark 3.24 (Realizability of a matrix in Max
in vγ, δw). A matrixAwith entries in Max

in vγ, δw
is said to be realizable if all its entries are realizable.

DeVnition 3.25 (Rationality of a series in Max
in vγ, δw [15]). A series s P Max

in vγ, δw is said
to be rational if it belongs to the rational closure of the subset T � tε, e, γ, δu, i.e., it can be
written with a Vnite number of operations t`,b, �u on elements of the set T .

Remark 3.26 (Rationality of a matrix in Max
in vγ, δw). A matrix A P Max

in vγ, δw is said to be
rational if all its entries are rational.

Theorem 3.27 (Causality, Periodicity, Realizability, Rationality). Given a series s PMax
in vγ, δw,

the following statements are equivalent [2, 15]:
– s is causal and periodic
– s is realizable
– s is rational.

3.3 “Extended” timed event graphs

As mentioned before, timed event graphs are a suitable tool to model discrete event systems
characterized by synchronization and delay phenomena. Among the systems that can be mod-
eled by TEG are traXc systems, computer communication systems, production lines, and Wows
in networks.
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3.3 “Extended” timed event graphs

In general, many diUerent properties of real systems can be modeled using TEG. Apart
from the TEG’s basic structure, one can use the holding times to model the minimal time
that has to elapse between the Vring of two transitions, i.e., between the occurrence of two
events. Furthermore, tokens play a major role in modeling diUerent characteristics of the
system. If tokens represent an entity of the real system (as they did in the transportation system
of Example 3.8), they can be used to model the number of entities, e.g., trains in the railway
network, and their corresponding position within the network. However, tokens cannot only
be used to model entities moving through the system, but also other characteristics such as the
capacity of a resource in a production line, or similarly, the maximal number of items in a part
of the system.

Nonetheless, despite the vast variety of properties that can be modeled by (standard) TEG,
there are some speciVc features of real systems, that cannot be included in a (standard) TEG.
In automated manufacturing systems, for example, the processing of a part on a resource may
have to be performed within a time interval also called time window. Thus, there exists not
only a minimal time that a token has to stay in a place but also an upper bound for the time,
by which the token has to be removed from the place by its output transition. Similarly, while
it is possible to model the maximal number of tokens in a part of the TEG, it is not possible to
model a minimal number of tokens that have to be present in this part of the TEG. This means
that a transition Vres at least a certain number of times more often than another transition.

While the issue of timed event graphs with time window constraints has been handled in
several publications, e.g., [37, 38, 53], the latter issue concerning a minimum number of tokens
between two transitions has, to our knowledge, not yet been addressed.

3.3.1 Motivating example

Example 3.28 (Nested schedules in manufacturing systems). Given a simple manufacturing
system which consists of a single resource. However, each part is processed twice on this
resource. The processing times for the two processing steps, also called activities, are 2 time
units and 1 time unit, respectively. In between these two activities the part is moved to a buUer
of inVnite size and has to rest there for 3 time units. Now the company wants to produce these
parts in an eXcient way. A rather naive approach would be to start producing one part after the
other. The corresponding TEG of such a system is given in Fig. 3.13. In this Vgure, transition u
is the input of raw material, transition y refers to the Vnishing of a part and transitions x1 and
x2 (resp. x3 and x4) model the start and Vnish events of activity one (respectively activity two).
The activities are indicated by the dashed boxes and the buUer is represented by the place in
between the two activities. The places containing a token model the capacity of the resource –
the resource can handle one activity at a time, i.e., activity act1 may not start before act1 of
the previous part has been Vnished and act2 of the previous part has been Vnished. Similarly,
act2 may only start if the same activity of the previous part has been Vnished. Modeling the
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Figure 3.13: TEG of a simple manufacturing system.

dynamic behavior of the TEG as a linear system in Max
in vγ, δw results in

x �

�
�����

ε γ ε γ

δ2 ε ε ε

ε δ3 ε γ

ε ε δ ε

�
����


looooooooooomooooooooooon
A

x`

�
�����
e

ε

ε

ε

�
����


loomoon
B

u

y �
�
ε ε ε e

	
loooooooomoooooooon

C

x.

The smallest solution of the implicit equation is

x � A�Bu

�

�
�����

�
γδ6
��

γδ4
�
γδ6
��

γδ
�
γδ6
��

γ
�
γδ6
��

δ2
�
γδ6
�� �

γδ6
��

γδ3
�
γδ6
��

γδ2
�
γδ6
��

δ5
�
γδ6
��

δ3
�
γδ6
�� �

γδ6
��

γδ5
�
γδ6
��

δ6
�
γδ6
��

δ4
�
γδ6
��

δ
�
γδ6
�� �

γδ6
��

�
����


�
�����
e

ε

ε

ε

�
����
u

�

�
�����

�
γδ6
��

δ2
�
γδ6
��

δ5
�
γδ6
��

δ6
�
γδ6
��

�
����
u

And the input-output behavior of the system is

y � Cx � CA�Bu

� δ6
�
γδ6
	�

loooomoooon
H

u,
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(b) Gantt chart of a nested schedule.

Figure 3.14: Gantt chart of possible schedules of the manufacturing system.

with H being the input-output relation. Looking at the input-output relation one can easily
see, that six time units after the input has Vred, the Vrst part is Vnished. Furthermore, given
that enough raw material is available, i.e., u Vres such that it does not slow the system down,
the throughput of the system is

�
γδ6
��

, i.e, one part will be Vnished every six time units.
Often the operation of a manufacturing system is visualized by a so called Gantt chart. The
Gantt chart of this example is given in Fig. 3.14(a). Using a Gantt chart makes it quite easy
to get a feeling about the eXciency of a system’s operation. Looking at the Gantt chart of the
example it is obvious, that the capacity utilization of resource R1 is rather low. In fact, the
capacity utilization is 50 per cent, i.e., only 50 per cent of the time the resource is busy (and
consequently, 50 per cent of the time the resource is idle). To increase the eXciency of the
manufacturing system, the user may want to try to reduce the idle time by using a diUerent
schedule. For example, the idle time between the execution of act1 and act2 of part k may
be used to execute act1 of the next part, i.e., part k � 1, and consequently act2 of part k
will be executed between act1 and act2 of part k� 1. A schedule where at least one activity
of part k � 1 is “squeezed” in between activities of part k is said to be a nested schedule.
Clearly, the resulting Gantt chart of the manufacturing system shown in Fig. 3.14(b) is a nested
schedule, as two activities (one of part k � 1 and one of part k � 1) are executed in between
the activities of part k. It can easily be seen that the capacity utilization is increased to 100
per cent, i.e., the proposed nested schedule is an optimal schedule, as it is impossible to Vnd
a schedule with a greater throughput. The question is how the proposed nested schedule can
be modeled as a TEG or a linear system in Max

in vγ, δw. To answer this question, one has to
Vnd the dependencies for the Vring of transitions in the system. First of all, it is clear, that the
(minimal) timing information for the production of a single part remains unchanged, i.e., in
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Max
in vγ, δw one gets:

x2 © δ
2x1 processing time of act1

x3 © δ
3x2 resting time between act1 and act2

x4 © δx3 processing time of act2.

Furthermore, as the capacity of the resource does not change, an activity for part k can still
only start if the same activity for part k� 1 has been Vnished, i.e., one gets

x1 © γx2

x3 © γx4.

Thus, to this point nothing has changed with respect to the dependencies of the simple sched-
ule. What changes are the dependencies of diUerent activities executed on diUerent parts to be
processed. Looking at the Gantt chart of the nested schedule, one can easily determine, that
act2 of part k� 1 can start as soon as act1 of part k has been Vnished. Similarly, act1 of part
k� 1 cannot start until act2 of part k� 1 has been Vnished. Formally, this means

x3 © γ
�1x2

x1 © γ
2x4.

Furthermore, the input and output dependencies do not change, i.e.

x1 © u

y � x4

Combining all dependencies results in

x1 © γx2 ` γ
2x4 ` u

x2 © δ
2x1

x3 © δ
3x2 ` γx4 ` γ

�1x2 �
�
δ3 ` γ�1

	
x2 ` γx4

x4 © δ
1x3

or, equivalently, in vector-matrix form

x ©

�
�����

ε γ ε γ2

δ2 ε ε ε

ε δ3 ` γ�1 ε γ

ε ε δ1 ε

�
����


looooooooooooooooomooooooooooooooooon
A

x`

�
�����
e

ε

ε

ε

�
����
u (3.7)

y �
�
ε ε ε e

	
x.
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x2 x3 x4 yx1u

act1 act2

2

0

0

0

1 00 3

0

Figure 3.15: “Extended” timed event graph of the nested schedule.

Looking at the system matrix one realizes that element A32 � δ3 ` γ�1 is diUerent from all
other entries. First of all, its a polynomial and not a monomial, but that just indicates that
there should be two diUerent places between transition x3 and transition x2 of the correspond-
ing timed event graph. The second thing that is unusual is the negative exponent in γ. With
respect to timed event graphs, this basically means that there is a negative number of tokens
in a place between transitions x2 and x3. In the standard deVnition of TEG, however, negative
numbers of tokens are not allowed as they would represent a non-causal behavior of the sys-
tem. The corresponding “extended” timed event graph, i.e., with a negative number of tokens
represented by the corresponding number of white bullets is given in Fig. 3.15. Ignoring the
non-causality with respect to the number of tokens for now, it is possible to obtain the smallest
solution of Eq. 3.7 using the star algorithm, i.e.,

x � A�Bu

�

�
�����

�
γδ3
��

γδ
�
γδ3
��

γ2δ
�
γδ3
��

γ2
�
γδ3
��

δ2
�
γδ3
�� �

γδ3
��

γ2δ3
�
γδ3
��

γ2δ2
�
γδ3
��

γ�1δ2
�
γδ3
��

γ�1
�
γδ3
�� �

γδ3
��

γδ2
�
γδ3
��

γ�1δ3
�
γδ3
��

γ�1δ
�
γδ3
��

δ
�
γδ3
�� �

γδ3
��

�
����


�
�����
e

ε

ε

ε

�
����
u

�

�
�����

�
γδ3
��

δ2
�
γδ3
��

γ�1δ2
�
γδ3
��

γ�1δ3
�
γδ3
��

�
����
u

y � Cx � CA�Bu

� γ�1δ3
�
γδ3
	�
u.
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x1u
20

0

1

0
x2 y

Figure 3.16: Simple TEG with negative token.

Clearly, the input output behavior of this system is non-causal. Applying the causal projection
Pr

�
�
caus results in

y
�
� � Pr

�
�
causpyq.

Comparing this result with the result obtained for the simple schedule, it becomes clear that
the Vrst part is Vnished after 6 time units in both schedules, i.e., the processing time for a single
part cannot be reduced. However, while for the simple schedule one part is Vnished every 6
time units, the nested schedule allows to Vnish one part every 3 time units (after the Vrst part
has been Vnished). Thus, operating the system with the nested schedule is evidently more
eXcient than with the simple schedule. Obviously, these behaviors are also represented in the
Gantt charts of the two diUerent schedules (see Fig. 3.14).

3.3.2 Negative number of tokens

As mentioned before, negative numbers of tokens are not allowed in standard Petri nets or
timed event graphs as the state signal, i.e., the number of tokens,m : N0 Ñ Nn0 (see Def. 3.3).
In general, a negative number of tokens represents a non-causal behavior. Given that tokens
represent physical entities moving through the system, e.g., trains in a transportation network,
this deVnitely makes sense. In this case the number of -1 tokens would represent one train less
than no train, which obviously is not possible. Looking, however, at the motivating example,
where tokens do not solely represent physical parts moving through the system, a negative
number of tokens may not be “as non-causal” as in the train example. Clearly, the nested
schedule given in Fig. 3.14(b) is causal with respect to time. To further investigate the issue of
negative numbers of tokens another small example is introduced.

Example 3.29 (Simple TEG with a negative number of tokens). Taking a look at a timed event
graph with a negative number of tokens given in Fig. 3.16. The corresponding dependencies for
x PMax

in vγ, δw are

x1 © γ
2δx2 ` u

x2 ©
�
γ�1 ` δ2

	
x1.
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3.3 “Extended” timed event graphs

With respect to the TEG, this means that x1 should (after an initial phase) always Vre once
more often than x2. Despite the fact that this is modeled with -1 token, this clearly represents
a possible behavior of the system. In Max

in vγ, δw the complete system description is

x © Ax` Bu

x ©

�
ε γ2δ

γ�1 ` δ2 ε

�
x`

�
e

ε

�
u (3.8)

y � Cx �
�
ε e

	
x

According to the TEG and given an input u � e ` γδ4 ` γ2δ5 ` γ3δ6 ` pγ4δ7qpγδ3q�, the
resulting system state satisVes:

x ©

�
e` γδ4 ` γ2δ5 ` γ3δ7 ` γ4δ8 ` pγ5δ10qpγδ3q�

δ4 ` γδ6 ` γ2δ7 ` γ3δ9 ` pγ4δ10qpγδ3q�

�
(3.9)

Important to note is that the Vrst possible Vring of x2 cannot be earlier than 2 time units after
the Vrst and 0 time units after the second Vring of x1. Consequently, the Vrst Vring of x2 is at
time 4.

The interesting question is, how can we determine this evolution in Max
in vγ, δw? First of all,

looking at inequality 3.8 it is clear that matrix A is non-causal w.r.t. Def. 3.14. Applying the
causal projection Pr

�
�
caus the following (causal) system is obtained

x̂ ©

�
ε γ2δ

δ2 ε

�
looooooomooooooon

Pr
�
�
causpAq

x̂`

�
e

ε

�
u,

which basically means that the place with -1 tokens is removed. Then, applying the Kleene star
we get the least solution

x̂ �
�

Pr
�
�
causpAq

	�
Bu

�

�
pγ2δ3q� γ2δpγ2δ3q�

δ2pγ2δ3q� pγ2δ3q�

��
e

ε

�
u

�

�
pγ2δ3q�

δ2pγ2δ3q�

�
u.

Inserting the given input u the system state can be determined

x̂ �

�
e` γδ4 ` γ2δ5 ` γ3δ7 ` γ4δ8 ` pγ5δ10qpγδ3q�

δ2 ` γδ6 ` γ2δ7 ` γ3δ9 ` γ4δ10 ` pγ5δ12qpγδ3q�

�
.
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Obviously, x̂   x, where x represents the right hand side of inequality 3.9, i.e., the obtained
system state is not equivalent with the desired state. Especially, when looking at the Vrst
Vring of x2 one notices that it Vres earlier than expected. This is not surprising as the causal
projection removed the place with the -1 token which means that the Vrst Vring of x2 is not
dependent on the second Vring of x1.

Another option would be to Vrst compute A� and then apply the causal projection as A� is
also not causal w.r.t. Def. 3.14. This results in

x̃ � Pr
�
�
causpA

�qBu

� Pr
�
�
caus

��
pe` γδqpγ2δ3q� pγ2δ` γ3δ2qpγ2δ3q�

pγ�1 ` δ2qpγ2δ3q� pe` γδqpγ2δ3q�

���
e

ε

�
u

�

�
pe` γδqpγ2δ3q� pγ2δ` γ3δ2qpγ2δ3q�

pδ2 ` γδ3qpγ2δ3q� pe` γδqpγ2δ3q�

��
e

ε

�
u

�

�
pe` γδqpγ2δ3q�

pδ2 ` γδ3qpγ2δ3q�

�
u.

Inserting the given input u the system state can be determined

x̃ �

�
e` γδ4 ` γ2δ5 ` γ3δ7 ` γ4δ8 ` pγ5δ10qpγδ3q�

δ2 ` γδ6 ` γ2δ7 ` γ3δ9 ` γ4δ10 ` pγ5δ12qpγδ3q�

�
.

Comparing the x̃ with the desired state x we get

x̃ � x̂   x.

Thus, also this approach does not cover the correct system behavior. The same result can be
obtained, if the causal projection of A�B is considered, i.e., x̃ � Pr

�
�
causpA

�Bqu.
If we, however, do not apply the causal projection, i.e., use the apparently non-causal system

matrix A, we get

x̆ � A�Bu

�

�
pe` γδqpγ2δ3q� pγ2δ` γ3δ2qpγ2δ3q�

pγ�1 ` δ2qpγ2δ3q� pe` γδqpγ2δ3q�

��
e

ε

�
u

and applying the given input u results in

x̆ �

�
e` γδ4 ` γ2δ5 ` γ3δ7 ` γ4δ8 ` pγ5δ10qpγδ3q�

γ�1 ` δ4 ` γδ6 ` γ2δ7 ` γ3δ9 ` pγ4δ10qpγδ3q�

�
,
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3.3 “Extended” timed event graphs

which, obviously, is not causal. Applying the causal projection we get

Pr
�
�
causpx̆q �

�
e` γδ4 ` γ2δ5 ` γ3δ7 ` γ4δ8 ` pγ5δ10qpγδ3q�

δ4 ` γδ6 ` γ2δ7 ` γ3δ9 ` pγ4δ10qpγδ3q�

�
.

Clearly, the obtained result Pr
�
�
causpx̆q is equivalent to the desired output given in Eq. 3.9.

Summarizing, we have seen that an obviously possible behavior of a system may have a
non-causal representation w.r.t. Def. 3.14 in Max

in vγ, δw. Applying the causal projection on this
system representation results in a causal linear system in Max

in vγ, δw, but does not model the
desired system behavior. However, using the non-causal system representation, it is possible
to determine a system state which is also non-causal and applying the causal projection to this
non-causal system behavior results in the desired system behavior.

Consequently, as the obviously causal behavior of the system can only be represented by
a non-causal linear system in Max

in vγ, δw, the deVnition of causality has to be reconsidered.
Basically, the causality of a series in Max

in vγ, δw has to be conVrmed, if the series represents the
dynamical behavior of a speciVc event or in terms of TEG the Vring of a transition. In this case
negative exponents in γ or δ are non-causal since it would mean that there are negative events
or negative time. If, however, a series describes the relation between two diUerent events,
i.e., the Vring instants of two diUerent transitions in TEG, a negative exponent in γ may be
causal, as this simply means that one of these transitions has to Vre a certain number of times
more often than another transition. Negative exponents in δ, on the other hand, are non-
causal even if the corresponding series models the relation of occurrences of diUerent events.
Such a negative exponent in δ means that one of these events occurs a certain time before the
occurrence of the other event, which indicates that according to the Vring instant of the second
transition the past Vring instant of the Vrst transition may have to be adjusted.

Regarding to this, a new deVnition of causality for series and matrices of series representing
the transfer relation between two events has to be introduced. In the following we will call
such a series transfer function.

3.3.3 Causality, Periodicity, Realizability, Rationality

DeVnition 3.30 (Causality of a transfer function in Max
in vγ, δw). A transfer function s P

Max
in vγ, δw is causal if s � ε or if s © γvalγpsq, i.e., the exponents of δ in all monomials com-

posing the transfer function s are greater or equal to zero. The set of causal transfer elements
of Max

in vγ, δw has a complete semiring structure and is denoted Max	
in vγ, δw. Obviously,

Max	
in vγ, δw is a complete sub-dioid of Max

in vγ, δw.

Remark 3.31 (Transfer matrices in Max
in vγ, δw). A matrix A with entries in Max

in vγ, δw is
called transfer matrix if it describes the relation between two vectors, e.g., y � Ax.

DeVnition 3.32 (Causality of a transfer matrix in Max
in vγ, δw). A transfer matrix A with en-

tries in Max
in vγ, δw is causal, if all its entries are causal w.r.t. Def. 3.30.
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DeVnition 3.33 (Causal projection of transfer function). The canonical injection ΠMax	
in vγ,δw :

Max	
in vγ, δw Ñ Max

in vγ, δw is residuated and its residual is denoted Pr	caus : Max
in vγ, δw Ñ

Max	
in vγ, δw. Formally, the series Pr	causpsq is the greatest causal transfer function less or

equal to series s PMax
in vγ, δw.

DeVnition 3.34 (Rationality of a transfer function in Max
in vγ, δw). A transfer function s P

Max
in vγ, δw is rational if it belongs to the rational closure of the subset T 	 � tε, e, γ�1, γ, δu.

Remark 3.35 (Rationality of a transfer matrix in Max
in vγ, δw). A transfer matrixAwith entries

in Max
in vγ, δw is rational if all its entries are rational transfer functions w.r.t. Def. 3.34.

DeVnition 3.36 (Realizability of a transfer function in Max
in vγ, δw). A transfer function s P

Max
in vγ, δw is said to be realizable if there exists three square pn � nq matrices A1, A2, and

A3 with Boolean entries and two pn� 1q respectively p1�nq matrices B and C with Boolean
entries such that s � CpγA1 ` δA2 ` γ�1A3q�B.

Remark 3.37. According to this deVnition, a transfer function s P Max
in vγ, δw is realizable, if

there exists a timed event graph (possibly with a negative number of tokens) with single input
and single output, whose transfer relation can be depicted by the series s.

Remark 3.38 (Realizability of a transfer matrix in Max
in vγ, δw). A transfer matrix A with

entries in Max
in vγ, δw is said to be realizable if all its entries are realizable transfer functions

w.r.t. Def. 3.36.

DeVnition 3.39 (Periodicity of a transfer function in Max
in vγ, δw). A transfer function s P

Max
in vγ, δw is said to be periodic if it can be written as s � p`qbr�, where p is a polynomial

referring to a transient phase, q is a polynomial representing the periodic behavior, and r is a
monomial describing the periodicity.

Remark 3.40 (Periodicity of a transfer matrix in Max
in vγ, δw). A transfer matrixAwith entries

in Max
in vγ, δw is said to be periodic if all its entries are periodic transfer functions.

Remark 3.41. The deVnition of periodic transfer functions coincides with the deVnition of
periodic series as given in Def. 3.18.

Theorem 3.42 (Causality, Periodicity, Realizability, Rationality). Given a transfer function s P
Max

in vγ, δw, the following statements are equivalent:

(i) s is realizable

(ii) s is rational

(iii) s is causal and periodic.

Proof. The proof of this theorem is strongly based on the proof of Theorem 3.27 given in [2, 15].
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The implication (i) ñ (ii) is straightforward, i.e., if s � CpγA1 ` δA2 ` γ
�1A3q

�B with
all entries in A1, A2, A3, B, and C are either ε or e, then s is in the rational closure of T 	 �
tε, e, γ�1, γ, δu.

The converse implication (ii) ñ (i) follows from the fact that the rational closure of the set
T 	 coincides with the set of elements ξ which can be written as

ξ � CξA
�
ξBξ

where Aξ is a nξ � nξ matrix with entries in T 	, and Cξ and Bξ are 1 � nξ and nξ � 1
matrices with entries in C and B, with C and B being subsets of T 	 which contain ε and e,
and nξ is an arbitrary but Vnite integer number [2, 15]. Setting B � C � tε, eu, it remains to
split up matrix Aξ into γA1 ` δA2 ` γ�1A3, which is straightforward.

The implication (iii) ñ (ii) is also quite obvious. If s can be written as s � p` qb r� with
p and q being polynomials in Max	

in vγ, δw and r being a monomial in Max	
in vγ, δw, then it is

evident that s is an element of the rational closure of T 	.
The implication (ii) ñ (iii) follows from the fact that, since Max

in vγ, δw is a commutative
dioid (in the scalar case), a rational series s can be written as [2, 15]

s �
à
iPI

γαiδβi

�à
jPJi

γνjδτj

��

, (3.10)

where I and Ji, i P I, are Vnite sets, αi and νj are integers and βi and τj are non-negative
integers. Since s PMax

in vγ, δw and Max
in vγ, δw is a complete commutative dioid, (3.10) can be

written as

s �
à
iPI

γαiδβi
â
jPJi

pγνjδτjq� . (3.11)

To complete the proof, it is necessary to show that (3.11) can be written as s � p ` q b r�,
which basically means that we have to show that a single monomial pγνjδτjq�, with τj{νj
representing the maximal asymptotic slope of the series, “absorbs” all other similar terms in
sums and products. For positive integers νj and τj, this has been shown in [15].

For terms with negative integers νj, two diUerent cases have to be considered.
(I) If there exists a term γνjδτj with νj   0 and τj ¡ 0, the corresponding Kleene star is
pγνjδτjq� � J, and J dominates all other terms on which the star operation is applied,
i.e., Jb a� � a� bJ � J, @a PMax	

in vγ, δw.
(II) If such a term (with νj   0 and τj ¡ 0) does not exist but there exists at least one term

with νj   0 and τj � 0, other terms with positive exponents in γ have to be considered.
More precisely, if there exists j P Ji with νj   0 and τj � 0 and k � j, k P Ji with
νk ¥ 0 and τk ¥ 0, two further cases have to be considered:
(II.i) If there exists j P Ji with νj   0 and τj � 0 and a k � j, k P Ji with νk ¥ 0 and
τk � 0, i.e., pγνjδτjq� b pγνkδτkq� � pγνjδ0q� b pγνkδ0q� � pγνjq� b pγνkq�, then,
since γνj © γνk and according to Lem. 2.53, pγνjq�bpγνkq� � pγνjq�. Consequently,
for this case, pγνjq� � γ�8 “absorbs” all other terms.
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(II.ii) If there exists j P Ji with νj   0 and τj � 0 and a k � j, k P Ji with νk ¥ 0 and
τk ¡ 0, then pγνjq� b pγνkδτkq� � J. This can easily be shown by reconsidering the
deVnition of the Kleene star (see Def. 2.47), i.e., since νj   0, pγνjq� � γ�8 and

pγνjq� b pγνkδτkq� � γ�8 b pγνkδτkq�

� γ�8 b pe` γνkδτk ` γ2νkδ2τk ` . . .q

� γ�8 ` γ�8δτk ` γ�8δ2τk ` . . .

� γ�8δ8 � J.

Thus, also in this case the dominating term is J.
Consequently, if there exists at least one term with a negative exponent in γ, i.e., νj   0, the

dominating term is either J or (in the special case that all exponents of δ are equal to 0) γ�8.
Otherwise, the term which represents the maximal asymptotic slope of the series “absorbs” all
other terms as shown in [15].

One additional issue, which has to be considered when dealing with TEG with negative
numbers of tokens, is the issue of blocking. Clearly, if a transition shall Vre a certain number
of times more often than another transition but is itself dependent on the Vring of this other
transition, there are some cases where the system may be blocked. Note that, in this work,
a system is said to be blocked if there are constraints between the Vrings of transitions such
that these transitions wait for each other to Vre and therefore never do so. Further note that a
system may also “run” into a blocking situation after the corresponding transitions have Vred
for a certain number of times. To illustrate the issue of blocking, a few small examples are
considered in the following.

Example 3.43. Given a simple TEG with negative and positive numbers of tokens as displayed
in Fig. 3.17. Counting the number of tokens in the loop we get the loop token weight which in

x1u
0

1

0
x2 y

0

Figure 3.17: TEG with negative and positive numbers of tokens and a loop token weight of 0.

this example is �1� 1 � 0. The corresponding system in Max
in vγ, δw is

x © Ax` Bu

with least solution

x � A�Bu
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with

A �

�
ε γδ

γ�1 ε

�

A� �

�
e ε

ε e

�
`

�
ε γδ

γ�1 ε

�
`

�
δ ε

ε δ

�
`

�
ε γδ2

γ�1δ ε

�
` . . .

. . .`

�
δ2 ε

ε δ2

�
`

�
ε γδ3

γ�1δ2 ε

�
`

�
δ3 ε

ε δ3

�
` . . .

�

�
δ8 γδ8

γ�1δ8 δ8

�

and

A�B �

�
δ8 γδ8

γ�1δ8 δ8

��
e

ε

�

�

�
δ8

γ�1δ8

�

Multiplying any reasonable input signal u ¡ ε to this transfer relation results in some x where
all entries xi are of the form γmiδ8, with mi being an integer number. With respect to timed
event graphs this corresponds to a blocking behavior as the earliest possible occurrence of the
pmi � 1q-st Vring of transition xi is at time t � 8, i.e., at the “end of time”.

Example 3.44. Given a very similar TEG with a loop token weight of 0 but without any delays
within the loop (see Fig. 3.18). The corresponding system in Max

in vγ, δw is

x1u
0 0

x2 y
0

0

Figure 3.18: TEG with a loop token weight of 0 and without delays.

x © Ax` Bu

with least solution

x � A�Bu

61



3 Model of Discrete-Event Systems

with

A �

�
ε γ

γ�1 ε

�

A� �

�
e ε

ε e

�
`

�
ε γ

γ�1 ε

�
`

�
e ε

ε e

�
`

�
ε γ

γ�1 ε

�
` . . .

�

�
e γ

γ�1 e

�

and

A�B �

�
e γ

γ�1 e

��
e

ε

�

�

�
e

γ�1

�

Thus, for any reasonable input signal u ¡ ε the system state will result in x1 � u and
x2 � γ�1u � γ�1x1. Consequently, independent of the input signal the time instant of the
pk� 1q-st Vring of transition x1 coincides with the time instant of the k-th Vring of transition
x2. With respect to the system in Max

in vγ, δw the system is not blocked.

Remark 3.45 (Special case loop token weight of 0). Looking at Ex. 3.44 we have shown that,
with respect to the system in Max

in vγ, δw, blocking is not an issue. The only constraint is that
the time instants of the pk � 1q-st and the k-th Vrings of transitions x1 and x2 coincide, i.e.,
x1 � γx2. Looking at the corresponding TEG (see Fig. 3.18), blocking clearly is an issue. In
TEG a transition is enabled as soon as all its Vring conditions are fulVlled. In Ex. 3.44 transition
x2 is enabled to Vre for the k-th time as soon as transition x1 has Vred for the pk� 1q-st time,
transition x1, however, is enabled to Vre for the pk � 1q-st time as soon as transition x2 has
Vred for the k-th time. Consequently, the Vrings of these transitions depend on each other and
since it is not possible to fulVll either Vring condition prior to the Vring of the corresponding
transition, the TEG is blocked. In Max

in vγ, δw, on the other hand, it is not necessary to fulVll
the Vring condition prior to the Vring but it is suXcient to fulVll the Vring condition at the
very moment of the Vring and, therefore, the transitions can Vre as long as their Vring instants
coincide.

The TEG in Ex. 3.43 (see Fig. 3.17) also has a loop token weight of 0, however, within this
loop there are delays and, consequently, the corresponding Vring instants of the transitions can
not coincide. Therefore, the TEG given in Fig. 3.17 is blocked.

Example 3.46. Given a TEG with only a negative number of tokens (see Fig. 3.19). The loop
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x1u
0

1

0
x2 y

0

Figure 3.19: TEG with a negative number of tokens and a loop token weight of �1.

token weight in this example is �1 and the corresponding system in Max
in vγ, δw is

x © Ax` Bu

with least solution

x � A�Bu

with

A �

�
ε δ

γ�1 ε

�

A� �

�
e ε

ε e

�
`

�
ε δ

γ�1 ε

�
`

�
γ�1δ ε

ε γ�1δ

�
`

�
ε γ�1δ2

γ�2δ ε

�
` . . .

. . .`

�
γ�2δ2 ε

ε γ�2δ2

�
`

�
ε γ�2δ3

γ�3δ2 ε

�
`

�
γ�3δ3 ε

ε γ�3δ3

�
` . . .

�

�
γ�8δ8 γ�8δ8

γ�8δ8 γ�8δ8

�
�

�
J J

J J

�

and

A�B �

�
J J

J J

��
e

ε

�

�

�
J

J

�

Multiplying any reasonable u ¡ ε to this transfer relation results in a state x with xi � J �
γ�8δ8. This, however, means that the �8 occurrence of transition xi occurs at the earliest
at time t � 8, i.e., the “beginning of the evolution” occurs at the earliest at the “end of time”.
Thus, the corresponding timed event graph is blocked.
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x1u
0 0

x2 y
0

0

Figure 3.20: TEG with a negative number of tokens, a loop token weight of �1 and without delays.

Example 3.47. In another example a TEG is considered which has a loop token weight of �1
but without any delays. The considered TEG is shown in Fig. 3.20). The corresponding system
in Max

in vγ, δw is

x © Ax` Bu

with least solution

� A�Bu

with

A �

�
ε e

γ�1 ε

�

A� �

�
e ε

ε e

�
`

�
ε e

γ�1 ε

�
`

�
γ�1 ε

ε γ�1

�
`

�
ε γ�1

γ�2 ε

�
` . . .

. . .`

�
γ�2 ε

ε γ�2

�
`

�
ε γ�2

γ�3 ε

�
`

�
γ�3 ε

ε γ�3

�
` . . .

�

�
γ�8 γ�8

γ�8 γ�8

�

and

A�B �

�
γ�8 γ�8

γ�8 γ�8

��
e

ε

�

�

�
γ�8

γ�8

�

Multiplying any reasonable u ¡ ε to this transfer relation results in a state x with xi �
γ�8δti , with ti being an integer number. This indicates that this system is also blocked.

64



3.3 “Extended” timed event graphs

Looking at the examples it becomes clear that to avoid blocking of the system the loop token
weight has to be larger than 0. Systems with a loop token weight smaller than 0 are blocking
and systems with a loop token weight equivalent to 0 are blocking if the corresponding loop
contains any delays.

A system with more than one loop is non-blocking if every loop has either a loop token
weight larger than 0 or a loop token weight of 0 but without any delays.

Once a causal model has been determined the question is, how a controller can be computed
to manipulate the system such that a predeVned goal will be achieved. In the following chapter
some results from control theory in the dioid setting will be recalled.
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4
Control of Systems in a Dioid Setting

Within the last two decades an extensive theory for control of systems in a dioid setting has
been established. Among the developed approaches are feedforward control, state feedback
control, output feedback control, but also an approach for model predictive control and feed-
back control based on the results of an observer. In this chapter, the basics of control theory
for systems in a dioid setting are recalled.

In general, it is assumed that a linear model in a dioid framework is given. The considered
model is of the form

x © Ax` Bu

y � Cx
(4.1)

with A P Dn�n, B P Dn�p, C P Dq�n, the state vector x P Dn, the output vector y P Dq,
and the input vector u P Dp. According to Theorem 2.45 the smallest solution for this system
is

x � A�Bu

y � CA�Bu
(4.2)

where H � CA�B is the input-output relation of the system.
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x

A

B C
y

uPv

Figure 4.1: System structure with pre-Vlter.

4.1 Feedforward control

4.1.1 Optimal open-loop control

In this approach, the desired output z of a given linear system in a dioid setting is given
a priori and the goal is to Vnd the optimal input uopt to achieve this output. The input is
supposed to be optimal in terms of a just-in-time criterion, i.e., every input shall occur as late
as possible while ensuring that the corresponding output satisVes the constraints given by z.
First results for this approach have appeared in [15] and some extensions have been proposed
in [47, 48].

Formally, the approach consists of computing the greatest u of the system given in Eq. 4.2
such that y ¨ z. Recalling that the mapping LA is residuated (see Def. 2.35) the following
equivalence holds

y � CA�Bu ¨ zô u ¨ pCA�Bq �z z

and consequently, the greatest control uopt achieving that yopt ¨ z is

uopt � pCA�Bq �z z.

4.1.2 Optimal input Vltering

In some cases, however, it is not possible or not reasonable to determine a desired output, but
rather a reference model (which is given as a linear system in a dioid setting). The considered
linear model of the system to be controlled shall then be as large as possible but not larger
than the reference model Gref. This can be achieved by adding an open loop pre-Vlter (in the
literature often called pre-compensator) to the input of the system (4.2). The structure of the
system with pre-Vlter is given in Fig. 4.1.

Formally this means for any input v and u � Pv

CA�BPv ¨ Grefv

which is equivalent to

CA�BP ¨ Gref.
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4.2 Feedback control

Thanks to residuation theory the admissible pre-Vlters can be determined by

P ¨ pCA�Bq �zGref,

and the greatest pre-Vlter is

Popt � pCA�Bq �zGref. (4.3)

Remark 4.1 (Causality of the optimal pre-Vlter). The optimal pre-Vlter determined by Popt �
pCA�Bq �zGref may be non-causal. In this case the causal projection Pr	caus can be applied
since the pre-Vlter matrix describes the transfer between v and u. Thus, the optimal causal
pre-Vlter is

P	opt � Pr	caus pPoptq .

Remark 4.2 (Neutral pre-Vlter). Often a manufacturing system shall operate at its highest
possible throughput while the internal stocks are minimized. This can be achieved by applying
a so-called neutral pre-Vlter, which does not reduce the performance of the overall system. In
such a case the reference model to be considered isGref � CA�B, which represents the fastest
behavior of the underlying system. Consequently, the optimal (neutral) pre-Vlter is

Popt � pCA�Bq �z pCA�Bq

and the resulting system operates as fast as possible while all inputs occur as late as possible.

4.2 Feedback control

Up to now, all mentioned control approaches are feedforward strategies, i.e., changes in the
system during runtime are not considered. However, as such unforeseen deviations may (more
or less frequently) occur, a closed loop, i.e., feedback, control approach is necessary.

4.2.1 State feedback control with optimal pre-Vlter

One possible feedback control approach is state feedback control with an optimal pre-Vlter.
In this approach all the states are assumed to be measured or estimated thanks to an observer
(see e.g., [28]). For the Vrst case, the resulting structure of the system to be controlled is given
in Fig. 4.2. Then, the linear system (4.1) changes to

x © Ax` Bu

� Ax` B pFx` Pvq

� pA` BFq x` BPv

y � Cx
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4 Control of Systems in a Dioid Setting

x

A

B C
y

u

F

Pv

Figure 4.2: System structure with state feedback controller and pre-Vlter.

and the smallest solution is

x � pA` BFq�BPv

y � CpA` BFq�BPv.

The aim is to Vnd an optimal (i.e., maximal) pre-Vlter P and an optimal feedback controller F,
with respect to P, such that the controlled system is for any input v as large as possible but less
or equal to a given reference model Gref for the same input v. Formally,

CpA` BFq�BPv ¨ Grefv @v

which is equivalent to

CpA` BFq�BP ¨ Gref. (4.4)

According to the properties of the Kleene star

pa` bq� � pa�bq�a�

and

pabq�a � apbaq�

the left hand side of Ineq. 4.4 can be written

CpA�BFq�A�BP ¨ Gref (4.5)

CA�BpFA�Bq�P ¨ Gref. (4.6)

According to the deVnition of the Kleene star

pFA�Bq� � I` FA�B` pFA�Bq2 ` . . .

which implies that, independent of the controller F, the pre-Vlter has to meet the following
constraint

CA�BP ¨ Gref,
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4.2 Feedback control

which is equivalent to

P ¨ pCA�Bq�zGref � Popt. (4.7)

Clearly, the resulting optimal pre-Vlter Popt is equivalent to the pre-Vlter given in Eq. 4.3.
Considering this optimal pre-Vlter in Eq. 4.6, we get

CA�BpFA�Bq�Popt ¨ Gref

which is according to residuation theory equivalent to

pFA�Bq�Popt ¨ pCA�Bq�zGref � Popt

and

pFA�Bq� ¨ pCA�Bq�zGref�{Popt � Popt�{Popt. (4.8)

According to Eq. 2.16 the right hand side of this inequality can be written

pCA�Bq�zGref�{Popt � Popt�{Popt � pPopt�{Poptq
� � ppCA�Bq�zGref�{Poptq

� .

Then, (4.8) can be rewritten (see Theorem 2.51)

FA�B ¨ ppCA�Bq�zGref�{Poptq
� � pCA�Bq�zGref�{Popt.

Thus, using residuation theory we get

F ¨ pCA�Bq�zGref�{Popt�{pA
�Bq

which is equivalent to

F ¨ pCA�Bq�zGref�{pA
�BPoptq

and the optimal (greatest) controller Fopt achieves equality, i.e.,

Fopt � pCA�Bq�zGref�{pA
�BPoptq.

However, in order to be realizable, the optimal pre-Vlter and the optimal feedback controller
need to be causal. The optimal causal pre-Vlter and feedback controller can be obtained by
applying the causal projection Pr	caus:

P	opt � Pr
	
causpPoptq (4.9)

and

F	opt � Pr
	
caus ppCA

�Bq�zGref�{pA
�BPoptqq

� Pr	causpFoptq. (4.10)
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4 Control of Systems in a Dioid Setting

Example 4.3 (State feedback of a simple manufacturing system). Reconsidering the simple
manufacturing system of Ex. 3.12. Its TEG representation is given in Fig. 3.8. The correspond-
ing linear system in Max

in vγ, δw is

x � Ax` Bu

�

�
�����
ε γδ ε ε

δ ε ε ε

ε ε ε γ2

ε ε δ4 ε

�
����
x`

�
�����
δ2 ε

ε ε

ε γδ3

ε ε

�
����
u

y � Cx

�
�
ε γδ2 ε δ

	
x.

The aim is to Vnd the optimal pre-Vlter and state feedback controller such that the system
operates at its highest possible throughput while minimizing the internal stock. Thus, the
reference model is set to the fastest possible model, which is the uncontrolled model, i.e.,

Gref � CA
�B

�
�
γδ5

�
γδ2
��

γδ8
�
γ2δ4

�� 	 .
According to Eq. 4.7 the optimal pre-Vlter can be determined by

Popt � pCA�Bq�zGref

�

� �
γδ2
��

δ
�
γδ2
��

δ�3
�
γδ2
�� �

γ2δ4
��
�
.

Then the state feedback controller Fopt is

Fopt � pCA�Bq�zGref�{pA
�BPoptq

�

�
δ�2pγδ2q� δ�3pγδ2q� γ�1δ�2

�
γδ2
��

γ�1δ�6
�
γδ2
��

δ�5
�
γδ2
��

δ�6
�
γδ2
��

γ�1δ�3
�
γ2δ4

��
γ�1δ�7

�
γ2δ4

��
�
.

Obviously, the obtained pre-Vlter Popt as well as the state feedback controller Fopt are non-
causal transfer matrices. Applying the causal projection Pr	caus the greatest causal pre-Vlter
and feedback controller can be determined

P	opt � Pr	causpPoptq

�

� �
γδ2
��

δ
�
γδ2
��

γ2δ1
�
γδ2
�� �

γ2δ4
��
�
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4.2 Feedback control

and

F	opt � Pr	causpFoptq

�

�
γ
�
γδ2
��

γ2δ
�
γδ2
�� �

γδ2
��

γ2
�
γδ2
��

γ3δ
�
γδ2
��

γ3
�
γδ2
��

γδ
�
γ2δ4

��
γ3δ

�
γ2δ4

��
�
.

Given an input, e.g.,

v �

� �
γδ3
��

e

�

the uncontrolled (meaning F � E , P � I) and controlled (F � F	opt, P � P
	
opt) state xu and xc

as well as the uncontrolled and controlled output yu and yc can be compared

xu � A
�Bv �

�
�����

δ2
�
γδ3
��

δ3
�
γδ3
��

γδ3
�
γ2δ4

��
γδ7

�
γ2δ4

��

�
����


xc � pA` BF	optq
�BP	optv �

�
�����

δ3 `
�
γδ5
� �
γδ3
��

δ4 `
�
γδ6
� �
γδ3
��

γδ3 ` γ3δ7 ` γ5δ11 `
�
γ6δ13

� �
γδ3
��

γδ7 ` γ3δ11 ` γ5δ15 `
�
γ6δ17

� �
γδ3
��

�
����


yu � Cxu � γδ
8 ` γ3δ12 `

�
γ4δ14

	�
γδ3
	�

yc � Cxc � γδ
8 ` γ3δ12 `

�
γ4δ14

	�
γδ3
	�

Clearly, the output of the controlled system is equivalent to the output of the uncontrolled sys-
tem. Thus, the performance is not reduced due to the controller. What has changed, however,
is the evolution of the internal state. In the uncontrolled case the slow input v1 (one occur-
rence every three time units) has an eUect on the dynamics of x1 and x2, while x3 and x4 occur
at a faster rate (two occurrences every four time units). In terms of TEG this means that x3
and x4 Vre more frequently than x1 and x2 and consequently, there will be an accumulation
of tokens in the system in the place between the transitions x4 and y, which represents an
increasing internal stock. In the controlled case, however, the information of the slow input is
also passed to x3 and x4, which after a short transient phase have the same Vring rate as x1
and x2. Thus, there will be no accumulation of tokens. As, by deVnition, the controlled input
u � P	optv ` F

	
optx is the greatest input such that the output is not reduced; this implies that

the internal stock is minimized.
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x
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B C
y

u

F

Pv

Figure 4.3: System structure with output feedback controller and pre-Vlter.

4.2.2 Output feedback control with optimal pre-Vlter

In some cases, e.g., when the internal state of the system is unknown, an output feedback
control strategy with an optimal pre-Vlter may be considered. The corresponding system struc-
ture is given in Fig. 4.3.

The linear system describing the output controlled behavior is

x © Ax` Bu

� Ax` B pFy` Pvq

y � Cx.

Replacing y in the equation by Cx, one can write

x © Ax` B pFCx` Pvq

� pA` BFCq x` BPv,

which has least solution

x � pA` BFCq� BPv,

and corresponding output

y � C pA` BFCq� BPv.

As in state feedback control, the aim is to Vnd for any input v an optimal pre-Vlter P and an
optimal output feedback controller F such that the controlled system is as large as possible but
smaller or equal to a given reference modelGref. Formally, we want to determine the maximal
F and P such that

C pA` BFCq� BPv ¨ Grefv @v,

which is equivalent to

C pA` BFCq� BP ¨ Gref.
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4.2 Feedback control

Similar to the procedure for a state feedback controller with optimal pre-Vlter, using properties
of the Kleene star, this equation can be rewritten as

C pA�BFCq�A�BP ¨ Gref

CA�B pFCA�Bq� P ¨ Gref.

By deVnition

pFCA�Bq� � I` FCA�B` pFCA�Bq2 ` . . .

which implies that, independent of the controller F, the pre-Vlter has to be chosen such that

CA�BP ¨ Gref.

Consequently, the optimal pre-Vlter, independent of the feedback controller F, is

Popt � pCA�Bq�zGref.

Furthermore, similar to the determination of a state feedback controller, it can be shown that
the optimal output feedback controller can be computed by

Fopt � pCA�Bq�zGref�{pCA
�BPoptq. (4.11)

Example 4.4 (Output feedback of a simple manufacturing system). Reconsidering, once again,
the simple manufacturing system of Ex. 4.3 withGref � CA�B. The optimal (causal) pre-Vlter
P	opt is equivalent to the pre-Vlter determined for system with state feedback control. The
optimal output controller is

Fopt � pCA�Bq�zGref�{pCA
�BPoptq

�

�
γ�1δ�7

�
γδ2
��

γ�1δ�8
�
γ2δ4

��
�

and the optimal causal output controller is

F	opt � Pr	causpFoptq

�

�
γ3δ1

�
γδ2
��

γ3
�
γ2δ4

��
�
.

For the given input v �
� �

γδ3
��

e

	T
the state evolution with output feedback is equiva-

lent to the state evolution with state feedback.

As a matter of fact, for a given input v and the reference model Gref � CA�B, the system
with optimal feedback control – both state and output feedback – will behave equivalently
to the system solely equipped with the open loop optimal pre-Vlter. However, unforeseen
disturbances, which have not yet been considered, can only be taken into account if feedback
control strategies are applied. Such unforeseen disturbances can be modeled as uncontrollable
inputs [40].
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4 Control of Systems in a Dioid Setting

4.3 Optimal control with disturbances

4.3.1 State feedback control with optimal pre-Vlter and disturbances

The considered disturbances act on the state of the system, such that they can delay the
occurrence of certain events. The structure of such a disturbed system with state feedback
controller and pre-Vlter is given in Fig. 4.4. The corresponding linear system in Max

in vγ, δw is

x

A

B C
y

u

q

v

F

P

S

Figure 4.4: System structure with state feedback, pre-Vlter and disturbances.

x © Ax` Sq` Bu

� Ax` Sq` BpFx` Pvq

� pA` BFqx` BPv` Sq

y � Cx

where q is a disturbance signal and S is the disturbance matrix. This system can be rewritten

x © pA` BFqx`
�
B S

	
loooomoooon

B̃

�
P ε

ε I

�
looooomooooon

P̃

�
v

q

�
loomoon

ṽ

with least solution

x � pA` BFq�B̃P̃ṽ

and output

y � CpA` BFq�B̃P̃ṽ.

Assuming that a reference model Gref is given and that the controlled system shall be as large
as possible but not larger than the reference model, the following problem has to be solved:
Find maximal F and P̃ such that

CpA` BFq�B̃P̃ ¨ G̃ref
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4.3 Optimal control with disturbances

with

G̃ref �
�
Gref CA�S

	
.

The structure of G̃ref is due to the uncontrollability of q. Independent of the feedback con-
troller F the pre-Vlter P̃ has to meet the following constraint

CA�B̃P̃ ¨ G̃ref

and, thus, for admissible pre-Vlters

P̃ ¨ pCA�B̃q�zG̃ref

has to hold. Additionally, it has to be ensured that the pre-Vlter does not modify q. Formally,
the optimal pre-Vlter can be determined by

P̃opt � P̃ ^

�
pCA�Bq�zGref ε

ε I

�

with

P̃ � pCA�B̃q�zG̃ref.

Taking a closer look at the equation for the optimal pre-Vlter and using a generalization of the
left residual of block matrices, one obtains

P̃opt � pCA�B̃q�zG̃ref ^

�
pCA�Bq�zGref ε

ε I

�

�
�
CA�B CA�S

	
�z
�
Gref CA�S

	
^

�
pCA�Bq�zGref ε

ε I

�

�

�
pCA�Bq�zGref pCA�Bq�zpCA�Sq

pCA�Sq�zGref pCA�Sq�zpCA�Sq

�
^

�
pCA�Bq�zGref ε

ε I

�

and with ε being the greatest lower bound of a dioid and with a�za © e the optimal pre-Vlter
results in

P̃opt �

�
pCA�Bq�zGref ε

ε I

�
.

Using this optimal pre-Vlter, the greatest controller F can be determined by

CpA` BFq�B̃P̃opt ¨ G̃ref, i.e.,

CpA�BFq�A�B̃P̃opt ¨ G̃ref
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with

B � B̃

�
e

ε

�

this is equivalent to

C

�
A�B̃

�
e

ε

�
F

��

A�B̃P̃opt ¨ G̃ref,

or using the equality pabq�a � apbaq�,

CA�B̃

��
e

ε

�
FA�B̃

��

P̃opt ¨ G̃ref

��
e

ε

�
FA�B̃

��

¨

�
CA�B̃

	
�zG̃ref�{P̃opt. (4.12)

Assuming that the right hand side of the last inequality is a Kleene star, i.e., pCA�B̃q�zG̃ref�{P̃opt ��
pCA�B̃q�zG̃ref�{P̃opt

	�
, one can write

�
e

ε

�
FA�B̃ ¨

�
CA�B̃

	
�zG̃ref�{P̃opt

and, consequently, the following inequality has to hold for a controller F

F ¨

�
e

ε

�
�z
�
CA�B̃

	
�zG̃ref�{P̃opt�{

�
A�B̃

	

¨

�
CA�B̃

�
e

ε

��
�zG̃ref�{

�
A�B̃P̃opt

	

¨ pCA�Bq �zG̃ref�{
�
A�B̃P̃opt

	
.

The greatest controller Fopt achieves equality

Fopt � pCA�Bq �zG̃ref�{
�
A�B̃P̃opt

	
. (4.13)

One open issue at this point is the question whether the right hand side of (4.12) is a Kleene
star. In the following theorem we show that for a speciVc reference model Gref the term
pCA�B̃q�zG̃ref�{P̃opt is always a star.
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4.3 Optimal control with disturbances

Theorem 4.5. For a linear system in a complete dioid deVned by

x � pA` BFqx`
�
B S

	
loooomoooon

B̃

�
P ε

ε I

�
looooomooooon

P̃

�
v

q

�
loomoon

ṽ

� pA` BFq�B̃P̃ṽ

y � CpA` BFq�B̃P̃ṽ

and a given reference model

Gref � CA
�B

and

G̃ref �
�
Gref CA�S

	
�
�
CA�B CA�S

	
such that

CpA` BFq�B̃P̃opt ¨ G̃ref

with

P̃opt �

�
pCA�Bq�zGref ε

ε I

�
�

�
pCA�Bq�zpCA�Bq ε

ε I

�
(4.14)

the following equivalence holds

pCA�B̃q�zG̃ref�{P̃opt �
�
pCA�B̃q�zG̃ref�{P̃opt

	�
.

Proof. Taking a closer look at the optimal pre-Vlter given in (4.14), it can be observed that P̃opt
is a Kleene star, i.e., P̃opt � P̃�opt. Furthermore, the term pCA�B̃q�zG̃ref can be written as

pCA�B̃q�zG̃ref �
�
CA�B CA�S

	
�z
�
Gref CA�S

	
and with Gref � CA�B this is equivalent to

pCA�B̃q�zG̃ref �
�
CA�B CA�S

	
�z
�
CA�B CA�S

	
,

which is obviously a Kleene star as well. Consequently one can write

pCA�B̃q�zG̃refloooooomoooooon
Φ

�{ P̃optloomoon
Ψ

� Φ��{ Ψ�.
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Moreover, comparing Φ�

Φ� � Φ �
�
CA�B CA�S

	
�z
�
CA�B CA�S

	

�

�
pCA�Bq�zpCA�Bq pCA�Bq�zpCA�Sq

pCA�Sq�zpCA�Bq pCA�Sq�zpCA�Sq

�

with Ψ�

Ψ� � Ψ �

�
pCA�Bq�zpCA�Bq ε

ε I

�

it is obvious that

Φ� © Ψ�,

since Φ22 � pCA�Sq�zpCA�Sq is a star, i.e., pCA�Sq�zpCA�Sq � ppCA�Sq�zpCA�Sqq� and by
deVnition of the Kleene star ppCA�Sq�zpCA�Sqq� © I. Then, according to Lem. 2.53 one can
write

Φ� © Ψ� ô Φ��{ Ψ� � Φ�,

and, therefore,

pCA�B̃q�zG̃ref�{P̃opt � Φ
��{ Ψ� � Φ�

� pCA�B̃q�zG̃ref

�
�
CA�B CA�S

	
�z
�
CA�B CA�S

	
which obviously is a Kleene star.

4.3.2 Output feedback control with optimal pre-Vlter and disturbances

Of course, also output feedback control strategies can be applied when disturbances are
explicitly modeled. The structure of such a disturbed system with output feedback controller
and pre-Vlter is given in Fig. 4.5. The corresponding linear system describing the behavior of
the controlled system is

x © Ax` Sq` Bu

� Ax` Sq` BpFCx` Pvq

� pA` BFCqx` BPv` Sq

y � Cx
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4.3 Optimal control with disturbances

x

A

B C
y

u

q

v

F

P

S

Figure 4.5: System structure with output feedback, pre-Vlter and disturbances.

Similar to the state feedback control approach we can write

x © pA` BFCqx`
�
B S

	
loooomoooon

B̃

�
P ε

ε I

�
looooomooooon

P̃

�
v

q

�
loomoon

ṽ

� pA` BFCq�B̃P̃ṽ

y � CpA` BFCq�B̃P̃ṽ.

The aim is to Vnd controllers F and P such that the controlled system is as large as possible but
not larger than a given reference model Gref. Formally, we want to Vnd the largest F and P,
such that,

CpA` BFCq�B̃P̃ ¨ G̃ref, i.e.,

CpA�BFCq�A�B̃P̃ ¨ G̃ref

with

G̃ref �
�
Gref CA�S

	
.

Clearly, independent of the choice of the state feedback controller F, the pre-Vlter P̃ has to
fulVll the following constraint

CA�B̃P̃ ¨ G̃ref

and applying residuation theory one obtains

P̃ ¨ pCA�B̃q�zG̃ref
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4 Control of Systems in a Dioid Setting

which is equivalent to the pre-Vlter in the state feedback control approach. The optimal pre-
Vlter can be determined by

P̃opt � pCA�B̃q�zG̃ref ^

�
pCA�Bq�zGref ε

ε I

�

�

�
pCA�Bq�zGref ε

ε I

�
.

Very similar to the determination of the state feedback controller the optimal output feedback
controller with the determined optimal pre-Vlter can be obtained

CpA�BFCq�A�B̃P̃opt ¨ G̃ref

C

�
A�B̃

�
e

ε

�
FC

��

A�B̃P̃opt ¨ G̃ref

CA�B̃

��
e

ε

�
FCA�B̃

��

P̃opt ¨ G̃ref

��
e

ε

�
FCA�B̃

��

¨ pCA�B̃q�zG̃ref�{P̃opt.

If the right hand side of the last inequality is a Kleene star, which is, for example, the case if
Gref � CA

�B (see Thm. 4.5 for details), we can write�
e

ε

�
FCA�B̃ ¨ pCA�B̃q�zG̃ref�{P̃opt

and applying residuation theory results in

F ¨

�
e

ε

�
�zpCA�B̃q�zG̃ref�{P̃opt�{pCA

�B̃q

¨ pCA�Bq�zG̃ref�{pCA
�B̃P̃optq.

Consequently, the optimal output feedback controller is

Fopt � pCA�Bq�zG̃ref�{pCA
�B̃P̃optq.
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5
Control of extended TEG with Constraints

As shown in the previous chapters, timed event graphs and their linear representation in
dioids are suitable tools for the modeling and control of discrete event systems subject to delay
and synchronization phenomena. However, despite the vast variety of systems that can be
modeled by (standard) TEG, some speciVc features of many real systems cannot be included.
For example, the processing of a part on a resource may have to be performed within a Vxed
time interval, also called time window. Thus, with respect to TEG, there exists not only a
minimal time a token has to spend in a place but also an upper bound for the time, by which
the token has to be removed from the place by its output transition. Similarly, while it is
easily possible to model the maximal number of tokens within a certain part of a TEG, e.g.,
the capacity of a resource determines the maximal number of parts being processed in this
resource simultaneously, it is not possible to model the minimal number of tokens that have
to be present in a certain part of a TEG. This means that a transition Vres a certain number of
times more often than another transition.

While the issue of timed event graphs with time window constraints has been handled
in several publications, e.g., [37, 38, 53], the latter issue concerning the minimal number of
tokens in a place is closely related to the notion of negative numbers of tokens in extended
TEG as introduced in Section 3.3, and has, to our knowledge, not yet been addressed. In the
following, one possible way of including time window constraints as well as constraints on
the minimal number of tokens in TEG and their corresponding linear representation in dioids
will be discussed. The presented approach is based on the work by Iteb Ouerghi [53] and has
partially been published in [7, 8].
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5 Control of extended TEG with Constraints

[1, 4]

[3, 5]

x1

x2

x3

Figure 5.1: Part of a timed event graph with time window constraints.

Example 5.1 (Manufacturing system with time window constraints). Considering a (part of a)
manufacturing system which combines two parts A and B to a Vnal product C. Before the
production of C can start, parts A and B have to spend a minimum of 3 (resp. 1) time units
but not longer than 5 (resp. 4) time units. The corresponding (part of the) TEG is given in
Fig. 5.1. In this TEG transition x1 (resp. x2) represents the provision of part A (resp. part B)
and x3 models the start of combining A and B to produce C. Between the Vrings of x1 and x3
there is a time window with a lower bound of 3 time units and an upper bound of 5 time units.
Additionally, there is a time window between the Vrings of x2 and x3 with a lower and upper
bound of 1, respectively 4, time units. The lower bounds of these time windows represent the
holding times as deVned for standard TEG. Consequently, these dependencies can easily be
modeled in Max

in vγ, δw. For our example we get

x3 © δ
3x1

x3 © δx2

which is equivalent to

x3 © δ
3x1 ` δx2. (5.1)

The upper bounds of the time windows can be modeled in Max
in vγ, δw in a similar manner.

Basically, x3 has to Vre at the latest 5 time units after the Vring of x1 and no later than 4 time
units after x2 has Vred. In Max

in vγ, δw this can be written

x3 ¨ δ
5x1

x3 ¨ δ
4x2

(5.2)

which is equivalent to

x3 ¨ δ
5x1 ^ δ

4x2. (5.3)
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Equations (5.1) and (5.3) can be written in matrix-vector form with x � px1 x2 x3q
T

x ©

�
�� ε ε ε

ε ε ε

δ3 δ ε

�
�
b x (5.4)

x ¨

�
�� J J J

J J J

δ5 δ4 J

�
�
d x. (5.5)

It is important to note that the dependencies of the upper bounds of the time window have to
be written with the dual multiplication and that the zero element of this operation is J.

Thus, there are two diUerent kinds of constraints and without further ado it is not possible
to merge them to obtain a linear system representation in Max

in vγ, δw (or any other dioid).

Remark 5.2. Of course the constraints (5.2) could also be handled in the form

x1 ©δ
�5x3

x2 ©δ
�4x3.

This, however, would result in non-causal system descriptions with respect to Max
in vγ, δw and,

therefore, such constraints are handled as described in the previous example.

Example 5.3 (Manufacturing systems with minimal and maximal number of parts in process).
Given a (part of a) manufacturing system, in which a process p1 provides raw parts for two
subsequent processes p2 and p3. For structural reasons, there are, however, constraints on the
minimal and maximal parts in process. More precisely, after some initial period (e.g., after a
start-up process) there should be at least 1 raw part but due to capacity reasons not more than
2 parts available for p2. Similarly, at least 2 but at most 4 raw parts should be available for p3
once the system has been started-up. The corresponding TEG is given in Fig. 5.2. Transition
x1 in this Vgure represents the provision of raw parts by process p1, transitions x2 and x3
represent the start of processes p2 and p3, respectively. The minimal and maximal numbers of
allowed tokens in the place between x1 and x2 (resp. x3) are indicated by the tokens below the
places. In terms of TEG, this means that at any time (after some start-up period) x1 has to Vre
at least once more often than x2 and at least twice more often than x3, but at the same time x1
shall Vre at most twice more often than x2 and at most four times more often than x3. With
respect to Max

in vγ, δw this can be written

x1 © γ
2x2

x1 © γ
4x3,
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5 Control of extended TEG with Constraints

x1

x2

x3

Figure 5.2: Part of a timed event graph with minimal and maximal numbers of tokens.

which can be written

x1 © γ
2x2 ` γ

4x3. (5.6)

and

x1 ¨ γx2

x1 ¨ γ
2x3,

(5.7)

which is equivalent to

x1 ¨ γx2 ^ γ
2x3 (5.8)

Just as for Ex. 5.1 the dependencies depicted in equations (5.6) and (5.8) can be written in matrix
vector form with x � px1 x2 x3q

T

x ©

�
�� ε γ2 γ4

ε ε ε

ε ε ε

�
�
b x (5.9)

x ¨

�
�� J γ γ2

J J J

J J J

�
�
d x. (5.10)

Clearly, equations (5.9) and (5.10) are very similar to equations (5.4) and (5.5) of Ex. 5.1.

Remark 5.4. Similar to the upper bounds of time windows the constraints on minimal number
of parts (given in (5.7)) could also be handled by

x2 ©γ
�1x1

x3 ©γ
�2x1,
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5.1 Modeling extended TEG with constraints

which, according to Def. 3.30, results in a causal system description. However, since upper
bounds of time windows are handled in the form (5.5), constraints on the minimal number of
tokens can be modeled either by a negative number of tokens or in form of (5.10).

Looking at the last two examples the question on how to Vnd a linear system in Max
in vγ, δw,

which includes lower and upper bounds on time or number of tokens, arises.

5.1 Modeling extended TEG with constraints

Formally, the internal behavior of the considered systems with constraints is determined by
two types of constraints, i.e.,

x © Ab x (5.11)

x ¨ Ad x (5.12)

where A represents the standard timed event graph including the holding times, i.e., the min-
imal time durations a token has to spend in each place, and the maximally allowed tokens in
places, e.g., when modeling the capacity of a resource. The elements in matrix A represent
additional constraints on the upper bound of possible time windows and the minimal number
of tokens which has to be present in the places. Using the Kleene star (resp. the dual Kleene
star) a solution of (5.11) and (5.12) must, according to Lem. 2.52 and Lem. 2.67, fulVll

x � A� b x (5.13)

x � A� d x. (5.14)

Consequently, the aim is to Vnd an x which respects both constraints, which is equivalent to
require that x is in the image of LA� and in the image of ΛA� (see Rem. 2.50 and Rem. 2.61).
Formally,

A� b x � x � A� d xô x P ImLA� X ImΛA� . (5.15)

According to Lemma 2.67, Eq. 5.14 is equivalent to

x � A�
zx.

Inserting (5.13) in this equation results in

x � A�
z pA
� b xq

which according to Lem. 2.68 is equivalent to

x �
�
A�
zA

�
�
b x.
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5 Control of extended TEG with Constraints

Theorem 5.5 ([7]). Given two matricesA,A PMax
in vγ, δw

n�n and a vector x PMax
in vγ, δw

n.
If @x, the equality A�
z pA

� b xq �
�
A�
zA

�
�
b x holds, then the mapping

P : x ÞÑ
�
A�
zA

�
��
�zx,

is a projector in ImLA� X ImΛA� and Ppxq � y is the greatest element in ImLA� X ImΛA�
less or equal to x. Formally

Ppxq �
ª!

y|y ¨ x and y P ImLA� X ImΛA�

)
.

Proof. First of all, according to Def. 2.40 it is clear that P is a projector on the image of
L
pA�
zA�q� , and Ppxq ¨ x. Then, by deVnition (Def. 2.59) A� ¨ I

d and consequently,

A�
zA
� © Id
zA� � A�

and

pA�
zA
�q� © pA�q� � A�,

which according to Rem. 2.54 implies that ImL
pA�
zA�q� � ImLA� , hence Ppxq P ImLA� .

Thus, we have shown that Ppxq is a projector in the image of LA� . Now, we have to show that
it is also a projector in the image of LA� . Since Ppxq P ImL

pA�
zA�q� one can write

Ppxq � pA�
zA
�q�Ppxq,

which according to Lem. 2.52 is equivalent to

Ppxq © pA�
zA
�q b Ppxq.

Due to the assumption that

pA�
zA
�q b Ppxq � A�
zpA

� b Ppxqq

and the already obtained result that Ppxq P ImLA� , which implies that A�Ppxq � Ppxq, one
can write

Ppxq © pA�
zA
�q b Ppxq

© A�
zpA
� b Ppxqq

© A�
zPpxq.

Furthermore, as mentioned before A� ¨ I
d, which implies that

A�
zPpxq © I
d
zPpxq � Ppxq.
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5.1 Modeling extended TEG with constraints

Consequently, equality holds, i.e.,

Ppxq � A�
zPpxq,

which according to Lem. 2.67 implies

Ppxq � A�
zPpxq � A� d Ppxq.

This also implies (considering Rem. 2.61) that Ppxq P ImΛA� . Thus, it has been shown that

Ppxq P ImLA� X ImΛA� .

Last but not least, it has to be shown that Ppxq is the greatest element in ImLA� X ImΛA� less
or equal to x. We know that Ppxq � y ¨ x and y P ImLA� X ImΛA� . Consequently the
following equalities hold

y � A� b y

� A� d y

� A�
zy

� A�
z pA
� b yq

�
�
A�
zA

�
�
b y.

Lem. 2.52 implies that

y �
�
A�
zA

�
�
b yñ y ¨

�
A�
zA

�
�
�zy,

which is equivalent to (see Lem. 2.52)

y � pA�
zA
�q��zy.

Since mapping L7
pA�
zA�q�

is an isotone mapping, the following implication holds for z P

ImLA� X ImΛA�

z ¨ xñ pA�
zA
�q��zz ¨ pA�
zA

�q��zx

which also means that if z ¨ x then z is also less or equal to Ppxq, i.e., z � pA�
zA
�q��zz ¨

Ppxq � y. Hence Ppxq � y is the greatest element in ImLA� X ImΛA� less or equal to x.

Remark 5.6. Theorem 5.5 and the corresponding proof show that the mapping P : x ÞÑ
pA�
zA

�q��zx is a projector in ImLA� X ImΛA� and Ppxq is the greatest element in ImLA� X
ImΛA� less or equal to x. According to Lem. 2.52 mapping P is equivalent to

P̃ : x ÞÑ pA�
zA
�q�loooomoooon

A
�

b x.
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x1 x2

Figure 5.3: Simple TEG with constraints on the minimal and maximal number of tokens.

For a vector x, being a solution of the equation x � A
�
bx, it is guaranteed that the constraints

x © Ab x

x ¨ Ad x

are always met. Thus, matrix A
�

includes time window constraints as well as constraints on
the minimal (and maximal) number of tokens.

Example 5.7. Given a part of a TEG with minimal and maximal numbers of tokens shown
in Fig. 5.3. The constraints indicate that a minimum of one but never more than three tokens
shall be present in the place between transition x1 and x2. In Max

in vγ, δw this can be modeled
by the constraints

x1 © γ
3x2 (5.16)

x1 ¨ γx2. (5.17)

Using the introduced approach the matrices A�, A�, and A
�

can be determined and result in

A� �

�
e γ

J e

�
, A� �

�
e γ3

ε e

�
, and A

�
�

�
e γ3

γ�1 e

�
.

However, it is also possible to rewrite constraint (5.17), i.e.,

x2 © γ
�1x1.

Thus, the behavior of the system can also be modeled in terms of a negative number of tokens.
The corresponding representation as a timed event graph is given in Fig. 5.4. and the resulting
matrices A and A� are

A �

�
ε γ3

γ�1 ε

�
and A� �

�
e γ3

γ�1 e

�
.

Clearly, the matricesA
�

andA� are identical, which indicates the close relationship of negative
numbers of tokens and constraints on the minimal number of tokens. Consequently, one can
either model the behavior of a system with a negative number of tokens or add constraints on
the corresponding states of a system.
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x1 x2

Figure 5.4: TEG with a negative number of tokens representing the behavior of the TEG given in Fig. 5.3.

5.2 Control of extended TEG with constraints

The aim of control in this section is to Vnd a state feedback controller and a pre-Vlter such
that the controlled system is the greatest system possible which is less or equal to a given ref-
erence model Gref for any input v and at the same time the controlled system shall respect
all imposed constraints including time window constraints and constraints on the number of
tokens. Determining the greatest possible system which is less or equal to a given reference
model by adding a pre-Vlter and a state feedback controller corresponds to the standard ap-
proach of state feedback control in a dioid setting (see Sec. 4.2). The controlled state of the
system then evolves according to the equation

x � pA` BFq�BPv,

where A is the system matrix of the standard timed event graph. Furthermore, it has to be
guaranteed that the controlled system respects all imposed additional constraints for all inputs
v. Thus, the state vector x has to be a solution of the equation x � A

�
x (see Rem. 5.6), where

A
�

is the system matrix which contains all constraints. Formally, this can be written in two
dependencies

CpA` BFq�BP ¨ Gref (5.18)

pA` BFq�BP � A
�
pA` BFq�BP. (5.19)

(5.18) basically means that, with respect to the output, the controlled system should be at least
as fast as the reference model for any input. A feedback controller and pre-Vlter fulVlling
Eq. 5.19 guarantee that all additional constraints modeled in matrix A are met, or formally,
that the controlled system is in the image of matrix A

�
(see Rem. 2.50), i.e.,

ImpA` BFq�BP � ImA
�
.

Using residuation theory, (5.18) can be rewritten

pA` BFq�BPlooooooomooooooon
Hxv

¨ C�zGref,
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5 Control of extended TEG with Constraints

where Hxv is the transfer relation between the input of the pre-Vlter and the corresponding
system state. According to Eq. 5.19 every column of Hxv has to be in the image of matrix A

�
.

Consequently, the aim is to Vnd the greatest Hxv ¨ C�zGref such that ImHxv � ImA
�
, which

is equivalent to

Ĥxv � A
�
�zC�zGref

� pCA
�
q�zGref.

Therefore, the objectives (5.18) and (5.19) can be reformulated

pA` BFq�BP ¨ Ĥxv (5.20)

pA` BFq�BP � A
�
pA` BFq�BP. (5.21)

As in Sec. 4.2, inequality 5.20 can be written as

A�BpFA�Bq�P ¨ Ĥxv.

Therefore, any pre-Vlter has to satisfy

A�BP ¨ Ĥxv.

Using residuation theory this can be rewritten

P ¨ pA�Bq�zĤxv.

Furthermore, it has to be ensured that the pre-Vlter P fulVlls objective (5.21), this implies that,
independent of F,

A�BP � A
�
A�BP (5.22)

Since, by deVnition (Def. 2.59), A� ¨ I
d, it can easily be veriVed that

A�
zA
� © Id
zA� � A�

and consequently,

pA�
zA
�q�loooomoooon

A
�

© pA�q� � A�.

Furthermore, according to Lem. 2.53, (5.22) is equivalent to

A�BP � A
�
BP
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5.2 Control of extended TEG with constraints

which is identical to require that

A
�
BP © A�BP (5.23)

AND

A
�
BP ¨ A�BP. (5.24)

Property (5.23) can easily be veriVed as A
�
© A�. For property (5.24) residuation theory can

be applied, which results in

P ¨ pA
�
Bq�zpA�BPq ô P � P ^ pA

�
Bq�zpA�BPq.

Furthermore, this pre-Vlter has to be causal in order to be realizable (see Def. 3.30). This means
that P has to satisfy the following equality

P � Pr	causpPq ô
P © Pr	causpPq

P ¨ Pr	causpPq

According to Def. 3.30, Pr	causpPq ¨ P and, consequently, we are looking for a pre-Vlter P such
that,

P ¨ Pr	causpPq ô P � P ^ Pr	causpPq.

To summarize, we are looking for a pre-Vlter such that

P � P ^ pA
�
Bq�zpA�BPq ^ Pr	causpPq ^ pA�Bq �zĤxv,

and the optimal pre-Vlter can then be determined by

Popt �
à!

P |P � P ^ pA
�
Bq�zpA�BPq ^ Pr	causpPq ^ pA�Bq �zĤxv

)
. (5.25)

Clearly, the mapping ΠpPq � P ^ pA
�
Bq�zpA�BPq ^ Pr	causpPq ^ pA�Bq �zĤxv is isotone and

non-increasing. Then, if a solution exists, the following Vxed point algorithm will converge to
the greatest solution (see e.g., [22, 27]):

Pp0q � pA�Bq�zĤxv

do Ppi�1q � ΠpPpiqq

while Ppi�1q � Ppiq.

Taking a closer look at the starting point

Pp0q � pA�Bq�zĤxv

� pA�Bq�zpCA
�
q�zGref

� pCA
�
A�Bq�zGref

and since A
�
© A� this is equivalent to

Pp0q � pCA
�
Bq�zGref.
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5 Control of extended TEG with Constraints

Remark 5.8. Obviously, if Pp0q � pCA
�
Bq�zGref is causal and pCA

�
q�zGref P ImA�B then it

is a solution. Indeed in this case Pr	causpP
p0qq � Pp0q and pCA

�
q�zGref P ImA�B then

pCA
�
q�zGref � A

�B
�
pA�Bq�zpCA

�
q�zGref

	
� A�B

�
pCA

�
Bq�zGref

	
hence,

pA
�
Bq�zpA�BPp0qq � pA

�
Bq�z

�
A�B

�
pCA

�
Bq�zGref

		
� pA

�
Bq�z

�
pCA

�
q�zGref

	
� pCA

�
Bq�zGref � P

p0q

which leads to

Popt � P
p0q.

The obtained optimal pre-Vlter Popt fulVlls the necessary requirements

A�BPopt ¨ Ĥxv (5.26)

A�BPopt � A
�
BPopt. (5.27)

Once an optimal pre-Vlter has been determined, the aim is to Vnd a feedback controller F
that preserves the properties of the pre-Vltered system and respects all additional constraints
modeled in matrix A. Formally, the feedback controller F must meet the following require-
ments

A�BPopt ¨ pA` BFq�BPopt ¨ A
�BPopt (5.28)

pA` BFq�BPopt � A
�
pA` BFq�BPopt. (5.29)

Clearly, by deVnition of “`” the left hand side of (5.28) can easily be veriVed, i.e., A�BPopt ¨

pA ` BFq�BPopt, @F. Furthermore, it can easily be recognized that F � E (the zero matrix)
is a (trivial) solution, i.e., A�BPopt ¨ pA ` BEq�BPopt � A�BPopt ¨ A�BPopt and (5.29)
reduces to (5.27).

To determine feedback controllers F © E , residuation theory is applied to the right hand
side of (5.28)

pA` BFq�BPopt ¨ A
�BPopt

pA�BFq�A�BPopt ¨ A
�BPopt

pA�BFq� ¨ pA�BPoptq�{pA
�BPoptq.
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5.2 Control of extended TEG with constraints

Obviously, the right hand side of the last inequality is a Kleene star. Therefore, the controller
F can be determined by

F ¨ pA�Bq�zpA�BPoptq�{pA
�BPoptq

and the greatest solution of this inequality achieves equality, i.e.,

Fmax � pA�Bq�zpA�BPoptq�{pA
�BPoptq.

However, Fmax may not be causal. The greatest causal feedback controller is given by

Fopt � Pr	causpFmaxq � Pr	caus ppA
�Bq�zpA�BPoptq�{pA

�BPoptqq . (5.30)

Furthermore, it is known that E ¨ Fopt and, by deVnition of the causal projection Pr	caus,
Fopt ¨ Fmax. Then

A�BPopt ¨ pA` BEq�BPopt ¨ pA` BFoptq
�BPopt ¨ pA` BFmaxq

�BPopt ¨ A
�BPopt

and consequently, the greatest causal feedback controller Fopt achieves equality in (5.28), i.e.,
Fopt is such that

pA� ` BFoptq
�BPopt � A

�BPopt,

which, according to Eq. 5.27, is equivalent to

pA� ` BFoptq
�BPopt � A

�
BPopt

ó

A
�
pA` BFoptq

�BPopt � A
�
A
�
BPopt � A

�
BPopt

and which then ensures the requirement of (5.29). Thus, the optimal controller Fopt determined
by (5.30) meets the requirements (5.28) and (5.29) and, therefore, it can be guaranteed that the
initial constraints (5.18) and (5.19) are fulVlled.

Example 5.9 (System with Constraints). Consider a system represented by the extended TEG
given in Fig. 5.5. This system contains time window constraints as well as constraints on the
minimal number of tokens. Namely, the place between x2 and x5 shall contain at least one
token but never more than two. Furthermore, a token entering the place between transition x4
and x5 has to stay at least one time unit in the place but has to be removed at the latest after
four time units. The corresponding dependencies in Max

in vγ, δw can be written

x2 © γ
2x5

x5 © δx4
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Figure 5.5: Extended TEG with time window constraints and constraints on the minimal number of
tokens.

and

x2 ¨ γx5

x5 ¨ δ
4x4.

The system matrices A and A in Max
in vγ, δw are

A �

�
����������

ε γ2 ε ε ε ε

δ6 ε ε ε γ2 ε

ε ε ε γ ε ε

ε ε δ2 ε ε ε

ε e ε δ ε γ

ε ε ε ε δ3 ε

�
���������

, A �

�
����������

J J J J J J

J J J J γ J

J J J J J J

J J J J J J

J J J δ4 J J

J J J J J J

�
���������
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and consequently, the matrix A
�

capturing all constraints is

A
�
�
�
A�
zA

�
��

�

�
������

�
γ2δ6

��
γ2

�
γ2δ6

��
γ4δ3

�
γδ3

��

δ6
�
γ2δ6

�� �
γ2δ6

��
γ2δ3

�
γδ3

��

δ2
�
γδ3

��
δ�4

�
γδ3

��
e` γδ2 ` γ2δ4 ` γ3δ6 `

�
γ4δ8

� �
γδ3

��

γ�1δ2
�
γδ3

��
γ�1δ�4

�
γδ3

��
δ2 ` γδ4 ` γ2δ6 `

�
γ3δ8

� �
γδ3

��

γ�1δ6
�
γδ3

��
γ�1

�
γδ3

��
δ3

�
γδ3

��

γ�1δ9
�
γδ3

��
γ�1δ3

�
γδ3

��
δ6

�
γδ3

��

� � �

� � �

γ4δ
�
γδ3

��
γ4

�
γδ3

��
γ5

�
γδ3

��

γ2δ
�
γδ3

��
γ2

�
γδ3

��
γ3

�
γδ3

��

γ` γ2δ2 ` γ3δ4 `
�
γ4δ6

� �
γδ3

��
γδ�4

�
γδ3

��
γ2δ�4

�
γδ3

��

e` γδ2 ` γ2δ4 `
�
γ3δ6

� �
γδ3

��
δ�4

�
γδ3

��
γδ�4

�
γδ3

��

δ
�
γδ3

�� �
γδ3

��
γ
�
γδ3

��

δ4
�
γδ3

��
δ3

�
γδ3

�� �
γδ3

��

�
�����
.

Furthermore, according to the TEG shown in Fig. 5.5 the matrices B and C are

B �

�
����������

e ε ε

ε ε ε

ε e ε

ε ε ε

ε ε e

ε ε ε

�
���������


and C �
�
ε ε ε ε ε e

	
.

Aim is to Vnd a pre-Vlter P and a feedback controller F such that the constraints (5.18) and
(5.19) with the given reference model

Gref �
�
δ12pγδ4q� δ6pγδ4q� δ3pγδ4q�

	
.

are fulVlled. Note that this example (and all the following ones) were computed with the C++
library MinmaxGD [18], which has been developed by Prof. Hardouin’s group at Université
d’Angers, France. For this thesis, the original library has been equipped with additional al-
gorithms for the dual Kleene star, the dual left residuation, and for the causal projection of
transfer series Pr	caus. Using this software and according to the described approach, a suitable
pre-Vlter is determined by a Vxed point algorithm. In this case the Vxed point algorithm con-
verges in one step, i.e., Popt � Pp1q � ΠpPp0qq � Pp0q ^ pA

�
Bq�zpA�BPp0qq ^ Pr	causpP

p0qq ^
pA�Bq�zĤxv, and results in

Popt �

�
�� γδ3pγδ4q� γ2δpγδ4q� γ3δ2pγδ4q�

δ6pγδ4q� pγδ4q� γδpγδ4q�

δ9pγδ4q� δ3pγδ4q� pγδ4q�

�
�
.
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In a second step the optimal feedback controller can be determined and results in

Fopt � Pr	caus ppA
�Bq�zpA�BPoptq�{pA

�BPoptqq

�

�
�� pγδ4q� γ2δ2pγδ4q� γ2δpγδ4q�

γ�1δ3pγδ4q� δpγδ4q� pγδ4q�

γ�1δ6pγδ4q� γ�1pγδ4q� δ3pγδ4q�

. . .

. . .

γ3δ3pγδ4q� γ3δ2pγδ4q� γ4δ3pγδ4q�

γδ2pγδ4q� γδpγδ4q� γ2δ2pγδ4q�

δpγδ4q� pγδ4q� γδpγδ4q�

�
�
.

The optimal pre-Vlter and feedback controller fulVll constraints (5.18) and (5.19). More pre-
cisely, in this speciVc example, we get equality also for the Vrst constraint, i.e.,

CpA` BFoptq
�BPopt �

�
δ12pγδ4q� δ6pγδ4q� δ3pγδ4q�

	
� Gref.

5.3 Unfeasible constraints

An important issue not mentioned so far is related to unfeasible constraints, e.g., when the
upper bound of a time window constraint is smaller than the lower bound of this time window
or the time window is not feasible with respect to overall TEG. Formally, the Vrst case means
that there are two constraints

xj © δ
txi

xj ¨ δ
txi

with t ¡ t. The corresponding TEG is given in Fig. 5.6. The resulting system model of this
TEG with unfeasible time window constraints is x � A

�
x, with

A
�
�
�
A�
zA

�
��

�

��
e J

δt e

�

z

�
e ε

δt e

���

and x � pxi xjq
T . Since all elements of A� are either ε,J, or have a multiplicative inverse,

matrix pA�
zA
�q can be computed by

pA�
zA
�q �

��
e J

δt e

�

z

�
e ε

δt e

��

�

�
δpt�tq δ�t

δt e

�
,
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[t, t] xjxi

Figure 5.6: Simple TEG with unfeasible time window constraints, i.e., t ¡ t.

x3x1 [1, 4]

x2

3 2

Figure 5.7: TEG with unfeasible time window constraints.

and since t� t ¡ 0 matrix A
�

results in

A
�
� pA�
zA

�q� �

�
δ8 δ8

δ8 δ8

�
.

This result means, the only way to guarantee that the time window constraints are not violated
is to never start the system, i.e., all events Vre for the Vrst time at the earliest at time t � 8.

In the following an example with time window constraints is introduced. The time window
itself is feasible, i.e., the lower bound of the time window is less (or equal) to its upper bound.
However, with respect to the overall TEG the time window is not feasible.

Example 5.10 (TEG with unfeasible time window constraints). Consider the TEG given in
Fig. 5.7. Clearly, the time window itself models a possible behavior, however, even if transition
x2 Vres as soon as it is enabled, i.e., 3 time units after the Vring of x1, transition x3 can Vre
at the earliest 2 time units after the Vring of x2 and consequently 5 time units after the Vring
of x1, which makes it impossible to meet the upper bound of the time window between x1
and x3. The matrices A and A describing the behavior of the TEG in Max

in vγ, δw and their
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corresponding Kleene stars are

A �

�
�� J J J

J J J

δ4 J J

�
�
, A� �

�
�� e J J

J e J

δ4 J e

�
�


A �

�
�� ε ε ε

δ3 ε ε

δ δ2 ε

�
�
, A� �

�
�� e ε ε

δ3 e ε

δ5 δ2 e

�
�
.

As all entries in A� are monomials, the matrix pA�
zA
�q can be determined

pA�
zA
�q �

�
�� δ δ�2 δ�4

δ3 e ε

δ5 δ2 e

�
�
,

and applying the Kleene star one obtains

A
�
� pA�
zA

�q� �

�
�� δ8 δ8 δ8

δ8 δ8 δ8

δ8 δ8 δ8

�
�
.

Once again, the result indicates that all constraints can only be fulVlled if the system never
starts at all.

Hence if the user, modeling a system with time window constraints, makes a mistake and
asks for unfeasible constraints with respect to a time window, the resulting linear model in
Max

in vγ, δw will “tell” the user to check his or her constraints once more.
A similar eUect can be observed if unfeasible constraints with respect to the number of

tokens are examined. Consider, for example, the constraints

xi © γ
kδτxj

xi ¨ γ
kxj,

i.e., at any time t transition xi may Vre at most k times more often than xj has Vred at time
t� τ and xi shall Vre at least k times more often than xj at time t. The corresponding matrix
pA�
zA

�q is

pA�
zA
�q �

�
e γkδτ

γ�k γpk�kqδτ

�
,

100
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and with k� k   0 and τ ¡ 0 the corresponding Kleene star results in

A
�
� pA�
zA

�q� �

�
J J

J J

�
.

Not surprisingly, this result shows that the only way to guarantee fulVllment of all constraints
is to block the system, i.e., to never start it at all.

Of course, a TEG may contain time window constraints as well as constraints on the number
of tokens. However, it is not possible to have a time window constraint as well as a constraint
on the minimal and maximal number of tokens for a simple TEG comprised to two transitions
as shown in Fig. 5.6. Consider, for example, the time window constraints

xj © δ
txi (5.31)

xj ¨ δ
txi, (5.32)

with t ¤ t and the constraints on the number of Vrings, e.g.,

xi © γ
kδτxj (5.33)

xi ¨ γ
kxj, (5.34)

with k ¥ k and τ ¡ 0. Clearly, constraints (5.31) and (5.32) by themselves as well as con-
straints (5.33) and (5.34) by themselves are feasible. The resulting matrices A and A and their
corresponding (dual) Kleene star are

A �

�
ε δt

γkδτ ε

�
A� �

� �
γkδpt�τq

��
δt
�
γkδpt�τq

��
γkδτ

�
γkδpt�τq

�� �
γkδpt�τq

��
�

A �

�
J δt

γk J

�
A� �

�
γ8δ0 γ8δt

γ8δ0 γ8δ0

�
.

Then, matrix pA�
zA
�q results in

pA�
zA
�q �

�
J J

J J

�
� pA�
zA

�q� � A
�
.

Consequently, even though the constraints by themselves are feasible, it is not possible to
combine these constraints as the resulting matrix A

�
indicates that the constraints can only be

met if the system is prevented from Vring at all. Taking a closer look at matrix A, one can see
that there is a loop, i.e., transition xi is connected with xj, which is again connected with xi.
By computing the dual Kleene star of matrix A, i.e., A� �

�8
k�0A

dk, this loop is repeated
inVnitely often. Therefore, the exponent of γ in this loop increases for increasing k and since
γk1δt1 ^ γk2δt2 � γmaxpk1,k2qδminpt1,t2q, we obtain the dual Kleene star of A as given above.
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6
High-Throughput Screening Systems

6.1 Introduction to HTS systems

Among the vast variety of real systems which can be modeled and controlled with the
approaches mentioned and introduced in this thesis are the so called high-throughput screening
systems. High-throughput screening (HTS) has become an important technology to rapidly test
thousands of biochemical substances [25, 57]. In pharmaceutical industries, for example, HTS
is often used for a Vrst screening in the process of drug discovery. This Vrst screening helps
to reduce the almost unlimited number of possible combinations of active ingredients to a
reasonable number of compounds, on which further screening methods are applied.

In general, high-throughput screening plants are fully automated systems containing a Vxed
set of devices performing, e.g., liquid handling, storage, reading, and incubation processes. An
example of a HTS plant, developed and produced by CyBio AG, Jena, is given in Fig. 6.1.

All operations necessary to analyze one set of substances are combined in a so-called batch.
The testing vessel, i.e., the carrier of the substances to be tested, is called a microplate. Such a
microplate features a grid of up to 3456 wells. The number of wells is always a multiple of 96,
which is the number of wells on the microplates of the Vrst HTS systems [46]. A batch may
incorporate several microplates conveying reagents or waste material. A screening deVnition
in HTS is called assay. It consists of a limited or unlimited number of batches and the single
batch time scheme, i.e., the deVnition and sequence of worksteps (also called activities) that
have to be performed on a single batch and their timing. During the operation of a HTS
system several batches may be processed at the same time. Furthermore, the system usually
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6 High-Throughput Screening Systems

Figure 6.1: High-throughput screening plant (CyBio AG, Jena).

works with a re-entrant work Wow, i.e., several activities of a single batch may be performed on
the same resource, and a single batch may occupy two (or more) resources simultaneously. The
deVnition of a single batch contains the speciVc (logical) sequence of activities to be performed
and the minimal and maximal processing times. For comparison reasons the single batch time
scheme needs to be identical for all batches to be analyzed.

6.2 Model of HTS processes

For a more comprehensible presentation of HTS processes in general as well as their model-
ing in terms of timed event graphs, a small HTS example is considered. A single batch in this
example consists of four activities, which are executed on three diUerent resources. A graph
model the single batch time scheme is given in the upper part of Fig. 6.2. In such a graph
model, nodes represent events, arcs represent the connection between events, and the num-
bers connected to arcs are the corresponding minimal durations between the events. In our
example, every node labeled oi or ri represents the start event or release event, respectively,
of activity i. Furthermore, double arcs each attached with 0 correspond to the synchronization
of two events belonging to diUerent activities. The minimal durations associated with the arcs
connecting node a and b are marked with a � and one of these durations is a negative num-
ber. This indicates that there is a time window for the corresponding events. In our example,
at least 10 time units have to pass between the occurrence of event a and the occurrence of
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Figure 6.2: Graph model and Gantt chart for a single batch.

event b, but event b has to occur at the latest 12 time units after the occurrence of event a.
In HTS systems time windows are often given for the incubation, i.e., the process in which
the compounds undergo possible biochemical reactions. Fig. 6.2 also shows a Gantt chart that
corresponds to the given graph model. In this Gantt chart it can be seen that the three diUerent
activities are executed on three resources. Furthermore, all durations considered in the Gantt
chart are minimal, i.e., all activities are as short as possible and, consequently, it represents the
fastest processing scheme of a single batch.

Looking at Fig. 6.2, it becomes clear that the (discrete-event) model of a single batch is
subject to synchronization phenomena but devoid of any conWicts or decisions. Furthermore,
minimal and maximal duration times play an important role. Consequently, it is possible to
convert the graph model into an (extended) timed event graph with time window constraints.
The corresponding TEG of our example is given in Fig. 6.3. In this TEG, transitions x1 and
x3 correspond to the nodes o1 and r1 of the graph model in Fig. 6.2. Similarly, transitions
x4 and x7, x8 and x11, and x12 and x14 correspond to nodes o2 and r2, o3 and r3, and o4
and r4, respectively. The minimal and maximal duration time between nodes a and b in
the graph model is represented by the time window constraint between transition x5 and x6.
Consequently, the TEG in Fig. 6.3 represents the behavior given by the graph model in Fig. 6.3.
As described in the previous section, extended timed event graphs can easily be converted
into linear models in idempotent semirings, e.g., Max

in vγ, δw. Consequently, it is possible to
determine a linear model of a single batch in Max

in vγ, δw.
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Figure 6.3: TEG of the single batch.

However, a single batch does only deVne the processing steps for one set of compounds. To
be able to compare diUerent compound sets, many batches have to be processed. Since the
operation of HTS plants is rather costly, a scheduling problem to Vnd the optimal schedule
with the highest possible throughput has to be solved. Due to the fact that a single batch may
be processed more than once on the same resource, the resulting optimal schedule may be
nested, which increases the complexity of the scheduling problem. One possible scheduling
algorithm to determine globally optimal schedules for HTS processes has been developed in
[43]. In this approach, the graph model in Fig. 6.2 and the resource allocation of every activity
is formulated as a mixed integer non-linear optimization problem (MINLP). Applying a certain
transformation, this MINLP can be rewritten as a mixed integer linear optimization problem
(MILP). To solve large MILPs is computational expensive and time consuming. Therefore,
the optimal schedule is calculated prior to the beginning of the HTS run. Consequently, the
resulting schedule is a static one, which is not meant to be altered during the course of a
screening run.

For our example, the globally optimal schedule is shown as a Gantt chart in Fig. 6.4. In the
globally optimal schedule with the highest possible throughput, the time necessary to process
one single batch has increased compared to the optimal single batch given in the lower part of
Fig. 6.2. However, by delaying and extending some of the activities it is possible to “squeeze”
activities of batches in between activities of other batches executed on the same resource, i.e.,
the activities on some resources may be nested.

In general, the globally optimal schedule with the highest possible throughput can be de-
scribed by the exact timing of one single batch and the corresponding cycle time Θ, i.e., every
Θ time units a new batch has to be started. Consequently, this also means that, once the cyclic
regime has been reached, i.e., after a start-up phase, one batch will be Vnished every Θ time
units. As it can be easily observed in Fig. 6.4, the optimal schedule of our example has a cycle
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Figure 6.4: Gantt chart of the optimal schedule including the start-up phase.

time of 30 time units and the exact timing of the Vrst batch is

τ �
�
0 10 13 9 10 22 23 21 22 45 50 43 45 60

	T
(6.1)

where the ith element of vector τ corresponds to the time of the occurrence of event xi. Using
this vector it is easy to determine that 12 time units pass between the occurrence of events x5
and x6 and, therefore, the constraint of the time window is fulVlled.

At this point it is necessary to clarify that our approach does not provide a solution to
the original mixed integer linear optimization problem. Our approach rather uses the solu-
tion of the MILP to determine an optimal feedback strategy, which can respond to possible
disturbances during runtime. More precisely, to determine an optimal feedback strategy, it
is necessary to have the information on the optimal sequence of activities for every resource.
Furthermore, the solution of the MILP also provides information on the exact timing of a single
batch and the corresponding optimal cycle time. This information, however, is not necessary
for our approach. Basically, the timing information needed is already included in the TEG of
the single batch (see Fig. 6.3). Even though the TEG contains the minimal durations and time
windows instead of the exact timing of a single batch in the optimal schedule, the combina-
tion of this TEG with the sequence of the activities executed on every resource in the optimal
schedule is suXcient to specify an optimal schedule. Using our example, we will describe our
approach in more detail. In Fig. 6.5 a section of the globally optimal schedule of our example
is given. The numbers in this Vgure indicate the diUerent activities, e.g., for batch k activities
1, 2, 3, and 4 are displayed. Note that the optimal schedule of our example is strictly 1-cyclic,
i.e., every event of every activity occurs exactly once every Θ � 30 time units. Taking a look
at the sequence of activities executed on every resource, it is clear that activity 3 of batch k,
executed on Res. 3, is preceded by activity 3 of batch k � 1 and is followed by activity 3 of
batch k � 1. The same behavior can be observed for activity 2, which is executed on Res. 2.
Such a “sequence” of activities, i.e., an activity is followed by the same activity of the succeed-
ing batch, is the standard behavior if the corresponding resource processes a single activity
for every batch. Interesting is the sequence of activities executed on Res. 1. Taking a look at
Fig. 6.5 one can observe, that activity 1 of batch k is preceded by activity 4 of batch k� 2 and
succeeded by activity 4 of batch k� 1. Consequently, we can also say that activity 4 of batch
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Figure 6.5: Section of the Gantt chart describing the optimal schedule.

k� 1 is succeeded by activity 1 of batch k� 1. Summarizing we get the following constraints
for the sequence of activities on Res. 1.

(i) Activity 1 of batch k may start after activity 4 of batch k� 2 has been Vnished.

(ii) Once activity 1 of batch k has been Vnished, activity 4 of batch k� 1 may start.

Considering the start and Vnish events of every activity given in the TEG in Fig. 6.3, these
constraints can be rewritten as constraints in Max

in vγ, δw.

(i) x1 © γ
2x14

(ii) x12 ¨ γx3

Similarly, the constraints (in Max
in vγ, δw) for the sequences of activities executed on Res. 2

and Res. 3 are

x4 © γx7 pRes. 2q

x8 © γx11. pRes. 3q

Finally, the information of the TEG of a single batch depicted in Fig. 6.3 and the constraints
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on the sequence of activities can be merged to a model in Max
in vγ, δw. For our example we get

A �

�
������������������������������

ε ε ε ε ε ε ε ε ε ε ε ε ε γ2

δ10 ε ε ε e ε ε ε ε ε ε ε ε ε

ε δ3 ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε γ ε ε ε ε ε ε ε

ε e ε δ1 ε ε ε ε ε ε ε ε ε ε

ε ε ε ε δ10 ε ε ε e ε ε ε ε ε

ε ε ε ε ε δ1 ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε γ ε ε ε

ε ε ε ε ε e ε δ1 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε δ10 ε ε ε e ε

ε ε ε ε ε ε ε ε ε δ5 ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε
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J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J γ J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J δ12 J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

J J J J J J J J J J J J J J

�
�����������������������������


.

Then, matrix A
�
� pA�
zA

�q� can be determined.
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6.2 Model of HTS processes

Given an input and an output matrix

BT �

�
�����
e ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε e ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε e ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε e ε ε

�
����


C �
�
ε ε ε ε ε ε ε ε ε ε ε ε ε e

	
the behavior of the system in Max

in vγ, δw can be computed. Note that the start event of every
activity is an input, i.e., the start of every activity can be delayed, and the output is the last
event of a single batch. Since matrix A

�
is the system matrix which contains all constraints

on the system, the corresponding fastest output ymax of the system, i.e., the output when the
system operates with maximal throughput, can then be determined by

ymax � CA
�
Bumin,

where umin corresponds to an instantaneous Vring of all inputs, i.e., umin � e. Once ymax
has been determined, the input of the just-in-time behavior can be computed by

ujit � pCA
�
Bq�zymax,

and the just-in-time behavior with respect to the system state x is

xjit � A
�
Bujit.

For our example we get

ymax � γ
�1δ30pγδ30q�

ujit �
�
pγδ30q� δ9pγδ30q� δ21pγδ30q� γ�1δ13pγδ30q�

	T
xjit �

�
e δ10 δ13 δ9 δ10 δ22 δ23 δ21 δ22 . . .

. . . γ�1δ15 γ�1δ20 γ�1δ13 γ�1δ15 γ�1δ30
	T
pγδ30q�,

and the corresponding causal projections are

y
�
�
max � δ

60pγδ30q�

u
�
�

jit � Pr
�
�
causpujitq

�
�
pγδ30q� δ9pγδ30q� δ21pγδ30q� δ43pγδ30q�

	T
x
�
�

jit �
�
e δ10 δ13 δ9 δ10 δ22 δ23 δ21 δ22 . . .

. . . δ45 δ50 δ43 δ45 δ60
	T
pγδ30q�.
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6 High-Throughput Screening Systems

Clearly, the determined just-in-time behavior xjit is equivalent to the information on the opti-
mal schedule given by the optimization algorithm. More precisely, the element pγδ30q� in xjit
describes the throughput and, therefore, the cycle time of the system, i.e., every event occurs
once every 30 time units, and the “vector” in xjit represents the timing of the occurrence of any
event in the Vrst batch given by τ in (6.1). Consequently, our model in Max

in vγ, δw describes
the optimal operation of the underlying HTS system.

6.3 Control of HTS systems

Once the globally optimal schedule of a speciVc HTS process has been determined the re-
sulting optimal operation can be modeled in Max

in vγ, δw. This model includes information on
the single batch as well as on the optimal sequence of activities of the schedule with the highest
possible throughput. As described in Sec. 5.2 it is possible to determine an optimal feedback
controller in combination with an optimal pre-Vlter. The pre-Vlter and feedback controller are
able to react in case of unforeseen disturbances and to alter the timing of future events during
the course of a screening run.

Formally, the pre-Vlter and feedback controller are determined as described in 5.2, i.e., we
search for a pre-Vlter and controller such that the dependencies

CpA` BFq�BP ¨ Gref

pA` BFq�BP � A
�
pA` BFq�BP

are fulVlled for a given reference model Gref. Consequently, the control problem of an HTS
operation is a control problem of extended timed event graphs. The optimal pre-Vlter Popt can
be determined by a Vxed point algorithm and the optimal state feedback controller is

Fopt � Pr	caus pFmaxq � Pr	caus ppA
�Bq�zpA�BPoptq�{pA

�BPoptqq .

Given the reference model Gref � CA
�
B, i.e., the system shall operate with the highest

possible throughput, the optimal pre-Vlter can be determined as

Popt �

�
�����
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6.3 Control of HTS systems

The corresponding maximal feedback controller Fmax and its causal projection Fopt are
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.

By design, the controlled system operates at the highest possible throughput. If an unfore-
seen disturbance, with respect to the optimal throughput regime, occurs, the feedback con-
troller delays all future events as much as possible without reducing the throughput more than
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6 High-Throughput Screening Systems

it is already reduced by the disturbance itself. Therefore, the controller guarantees that all fu-
ture batches are started just in time after a possible disturbance, which may reduce the number
of batches aUected by the disturbance. More precisely, if a disturbance occurs, the time scheme
of some batches may diUer from the pre-deVned optimal single batch time scheme. Conse-
quently, these batches cannot be considered for the screening result as every single batch has
to follow the exact same time scheme. By starting single batches just in time (after a dis-
turbance), it is possible to return to the pre-deVned time scheme more quickly than in the
uncontrolled case, and thus, it is possible to reduce the number of “waste batches”. Formally,
in case of an unforeseen disturbance, the following statements hold:

time to return to the optimal
throughput regime with control

¤
time to return to the optimal
throughput regime without control

number of waste batches with control ¤ number of waste batches without control

6.4 Example of a real HTS operation

The example of an HTS operation introduced in the previous section is relatively small
compared to real HTS operations. Nonetheless, it is hard to display the 14 � 14 matrix A

�
,

as every entry of this matrix is a formal power series in Max
in vγ, δw. Real world HTS systems

diUer in their size depending on the speciVc screening problem. One (not necessarily large)
single batch of a real world HTS operation, provided by CyBio AG 1, a company developing
and producing HTS plants, consists of 22 activities which are executed on 7 diUerent resources.
The deVnition of a single batch contains 140 events, i.e., the corresponding system matrix
A
�
P Max

in vγ, δw is of dimension 140 � 140. The graph model of this single batch is given
in Fig. 6.6 and the Gantt chart of the associated globally optimal schedule is given in Fig. 6.7.
The cycle time of the optimal schedule is 324 time units, i.e., every 324 time units a new batch
enters the system, while the processing time of a single batch is 754 time units. Clearly, it is not
possible to display the corresponding matrices A, and A

�
here. The only elements of matrixA

diUerent from J are

rAs5,136 � γ
2 rAs33,130 � γ

2 rAs97,118 � γ

rAs81,76 � δ
17 rAs59,54 � δ

9.

Thus, there are three pairs of transitions with a minimal number of tokens in between and
two time windows. Given a reference model, e.g., Gref � CA

�
B (of dimension 1 � 22),

the optimal pre-Vlter Popt and state feedback controller Fopt have dimensions 22 � 22 and
22 � 140, respectively. Consequently, also Popt and Fopt are too large to be displayed. In the

1. http://www.cybio-ag.com

114

http://www.cybio-ag.com


6.4
Exam

ple
ofa

realH
TS

operation

���������

	
���
�����
�

�������

	
���
�����
�

�������

�������


�����
��

�������

���������

�������

	
���
�����
�

�������

���������

	
���
�����
�

�������


�����
��

�������

���
�������
���

�������

����������
��
�

�������

���������

�� ��
��

��
 

�!
!

���

 

��
 

���

 

�" 

 

�" �#
� 

�$
 

�%
!

���

 

�� 
 

��!

 

��#
 

���
 

 

!

 

��!
�

���
!

���

 

��"
 

��"

 

��$

 

��$
� 

��%
 

�� 
!

��%

 

���
 

�� 

 

�#�

 

���
 

 

!

 

���
$

��"
!

��$

 

��#
 

��%

 

�"�

 

 

 

!

 

���
�

���
!

�!�

 

���
 

�!�

 

��!
 

��!
�

 

!

 

��#
 �

 

!

 

�! 
 �

 

!

 

�!�
 

�!!
!�

�!�
 

�!"
!

���

 

�!#
�

��"

 

�!$
 

�!%
!

�""

 

�� 
�

�"#

 

���
 

���
!

�##

 

���
��

�#$

 

�%$

��

 

 

!

 

��#
�

��$
!

�"�

 

��%
 

�"�

 

�#"

 

 

 

!

 

�"�
 

�"!
��

�$�

 

 

 

!

 

�"$
�

�"%
!

�#�

 

�# 
 

�#�

 

� 

 

!

 

�#!
 

�#�
�

�$#

 

 

 

!

 

�#%
%

�$ 
!

�$$

 

�$�
 

�$%

 

�%�
 

�$�
��

�$!
 

�$�
!

�%�

 

�$"
 

�%!

 

���"
 

� 

 

!

 

�% 
 

�%�
 

 

 

!

 

�%�
�

�%"
!

�%%

 

�%#
 

��  

 

�� "
 

�

 

!

 

�� �
 

�� �
��

�� �
 

�� !
!

�� #

 

�� �
 

�� $

 

 

 

!

 

�� %
�

��� 
!

����

 

����
 

���!

 

���$
 

����
�

 

!

 

����
� "

���"
!

���%

 

���#
�

��� 

 

 

 

!

 

����
�

����
!

����

 

����
 

���"

 

��� 
 

���!
"

 

!

 

���#
���

���$
!

����

 

���%
"

����

 

 

 

!

 

����
�

���!
!

���#

 

����
 

���$

 

 

 

!

 

���%
 

��! 
��

Figure 6.6: Graph model of a single batch of a real world HTS operation (provided by CyBio AG).

Figure 6.7: Gantt chart of the real world HTS operation with the optimal schedule (provided by CyBio AG). Activities belonging to the same
single batch are indicated by the same color.
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6 High-Throughput Screening Systems

disturbance-free case the optimal (pre-Vltered and feedback controlled) input u
�
�

opt is

u
�
�

opt �
�
e δ106 δ195 δ715 δ35 δ49 δ101 δ115 δ230 δ253 δ568 δ710 . . .

. . . δ35 δ108 δ37 δ233 δ25 δ39 δ103 δ118 δ255 δ567
	
pγδ324q�.

Clearly, the controlled system is not slowed down, i.e., the throughput of the system is still one
batch every 324 time units. Furthermore, the input is delayed as much as possible while main-
taining this throughput. If an unexpected disturbance occurs during run-time, the feedback
controller Fopt will take this disturbance into account and, if necessary, change the input u

�
�

opt.
According to CyBio AG, a “normal” HTS example usually involves up to 250 events. How-

ever, recently, “new” HTS techniques were developed, resulting in single batches including
more than 1000 events. Consequently, the corresponding system description increases signiV-
cantly. Of course, our approach is also valid for systems of this size. Nonetheless, computing an
optimal pre-Vlter and feedback controller for systems of that size may be quite time consuming
and computationally complex. Especially, the computation of the Kleene stars of A and A

�

and the dual Kleene star of matrix A is time consuming. The computation of the optimal pre-
Vlter Popt and feedback controller Fopt of the real world HTS operation given in Fig. 6.7 was
performed using the C++ library MinmaxGD [18] equipped with additional algorithms for the
dual Kleene star, the dual left residuation, and for the causal projection for transfer series, i.e.,
Pr	caus. The computer used was running the Ubuntu 10.04 (lucid) operating system on a Intel®

Core™2 Duo E8400 3.00 GHz processor. The machine was equipped with 2 GB of RAM and
the overall computation time for the pre-Vlter and feedback controller took about 60 minutes.

The issue of computation time and computational complexity is not crucial as these com-
putations can be performed oU-line, i.e., prior to the screening run. Nonetheless, it may be
necessary to implement highly eXcient algorithms for the computation of the Kleene star to
be able to cope with systems of more than 1000 events in reasonable time. These algorithms
could, for example, take the sparse character of the matrices A and A into account.
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7
Conclusion

This work proposes an extension to linear systems and control theory in dioid algebras.
Using the established (standard) systems theory in dioids, it is possible to model a large class of
(discrete-event) systems, which is characterized by synchronization phenomena but devoid of
any decisions. Belonging to this class are, for example, systems from manufacturing industries,
communication technologies, and traXc networks. In general, the considered systems which
have a linear representation in dioids can be represented as timed event graphs, a class of
Petri nets. In such timed event graphs the timing information is usually considered to be the
minimal time, i.e., the least time necessary to execute a speciVc (part of a) process or operation.

Once a dioid model of a system of interest has been derived, a well-established control theory
is available to compute various strategies, i.e., controllers, to achieve a desired system behavior.
Among the developed strategies are approaches for optimal feedforward control, i.e., optimal
input Vltering [20, 26], optimal feedforward control based on a desired reference output [2, 48],
and optimal feedback control, i.e., state and output feedback [17, 19, 20], disturbance decoupling
and robust control in case of uncertainties [39, 40, 41], and model predictive control [58, 61].
Recently, also concepts for observers for partially observable (linear) systems in dioids have
been investigated [28, 29]. It is important to mention that control in this framework is restricted
to delaying the system, as the timing information given in the model is the fastest possible
behavior of the uncontrolled system. Consequently, possible controllers cannot speed up the
system but only delay speciVc events. This, however is suXcient to design controllers which
guarantee a just-in-time behavior, i.e., everything is started as late as possible without delaying
a pre-deVned desired output. In case of feedback strategies, the controlled system is “robust” to
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7 Conclusion

unforeseen disturbances, i.e., if an unforeseen disturbance delays the desired output, everything
is delayed as much as possible to achieve the disturbed output.

As mentioned before, the timing information in timed event graphs and consequently also
in their linear representation in dioids is usually the least time to perform the corresponding
modeled task. For many systems these minimal times are suXcient to determine a correspond-
ing model of their behavior. Sometimes, however, it is crucial to include not only minimal
times of processes or between processes but also maximal times to correctly represent spec-
iVcations. This is, for example, the case, for many systems from chemical or bio-chemical
industries, where reactions may not exceed a maximal reaction time.

Furthermore, while it is easily possible to model the maximal number of entities within
a (part of a) process, it is not straightforward to model processes which require a minimal
number of parts to be present during operation. Considering, for example, a manufacturing
system with a minimal stock of one part between processA and B, this would mean that before
B can start processing the k-th part, processA has to be Vnished with the pk�1q-st part. Such
a behavior is very similar to the operation of interleaving manufacturing systems, in which
some processing steps on the next part may be executed prior to the Vnishing of a previous
part. In general, in such interleaving manufacturing systems the time necessary to Vnish one
part is greater than the cycle time of the system, i.e., the time interval in which parts enter the
system. However, there is a signiVcant diUerence in “allowing” to start processing the next part
prior to releasing the previous part and the requirement to start (and Vnish) processing steps
prior to the start of other processing steps of a previous part.

To model such a requirement in terms of timed event graphs, the notion of negative numbers
of tokens has been introduced in this thesis. A negative number of tokens in a place basically
represents a minimal number of additional Vrings that the place’s input transition has to per-
form compared to its output transition. However, by deVnition only non-negative numbers of
tokens in places are permitted in (standard) timed event graphs. Therefore, we have introduced
extended timed event graphs to resolve this issue. Furthermore, negative numbers of tokens in
(extended) timed event graphs correspond to negative powers in γ with respect to the idem-
potent semiring Max

in vγ, δw. Mathematically this is not an issue as the powers in Max
in vγ, δw

are by deVnition integer numbers. However, the idea of causality, realizability, and rationality
of a series in Max

in vγ, δw as deVned in [2] is based on the deVnition of standard timed event
graphs. More precisely, a series s P Max

in vγ, δw is realizable if it corresponds to the transfer
relation of a (standard) timed event graph [15, 30] and according to Theorem 3.27 a realizable
series is also causal and periodic. Consequently, we have extended the notion of causality and
realizability for series corresponding to the transfer relations of extended timed event graphs.

Using negative numbers of tokens and their corresponding representation in dioids it is
possible to model the minimal number of entities within a process. Analogously, it might be
possible to model the maximal time a token may stay in a place by a negative time. However,
while it is relatively straightforward to argue that a negative number of tokens between two
transitions in timed event graphs may well represent a causal behavior, it is hard to do the
same for negative times.
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To incorporate maximal times a diUerent approach has been investigated. This approach
is mainly based on the dual operations, namely the dual multiplication and its corresponding
dual residuation, of idempotent semirings. Using these dual operations it is possible to model
two diUerent kinds of inequalities, i.e., x © Ab x and x ¨ Ad x. With respect to timed event
graphs, the Vrst inequality refers to holding times, i.e., minimal times tokens have to spend in
places, and positive tokens, while the latter inequality includes maximal times tokens have to
spend in places. Additionally, it is possible to include constraints on the minimal number of
tokens in places in the second inequality. By applying the dual product, these negative numbers
of tokens, however, are modeled by positive exponents in γ, e.g., a © γ�1 b b corresponds to
b ¨ γ�1 d a.

In other words, the inequality using the standard multiplication b corresponds to the part
of the system that can be modeled with standard timed event graphs and the inequality con-
taining the dual multiplication d refers to the part of the system which can only be modeled
by extended timed event graphs. This includes lower bounds on the number of tokens in places
and upper bounds for the time tokens may spend in places.

We have shown how matrices A and A can be used to determine a general system matrix
A of extended timed event graphs. If the constraints modeled in A and A are not feasible, the
corresponding system matrix A will indicate such conWicts of constraints. Once a “feasible”
system matrix has been obtained, it can be used to design controllers such that the controlled
system meets all constraints imposed. If, however, a unforeseen disturbance occurs during
runtime, the constraints on the maximal time between the Vring of two consecutive transitions
may not be guaranteed. As mentioned before, a controller in a dioid framework may only delay
the occurrence of events, i.e., the Vring of transitions. If, for example, a transition is delayed
by a disturbance, the controller cannot force the transition to Vre, even though a possible
constraint on the maximal time between this and another transition may be violated. In such
a case the controlled system returns to the desired system behavior as soon as the disturbance
is resolved.

The introduced approach has been tested on so-called high-throughput screening (HTS) sys-
tems. Such systems are used in the pharmaceutical industries to detect unknown combinations
of active bio-chemical ingredients, which may serve as a basis for new drugs. Due to the fact
that in HTS systems bio-chemical reactions take place it is not surprising that maximal times
for some of these reactions may be an issue. Furthermore, the operation of HTS systems is very
expensive. Therefore, HTS companies have a great interest in operating their systems with the
highest possible throughput. As a microplate, i.e., the physical entity of a HTS system, may
be processed several times on the same resource, the optimal schedule providing the highest
possible throughput may be nested. Nested schedules are characterized by the phenomenon
that some processing steps of a previous entity are executed after processing steps of a current
entity. Such a behavior can be modeled with a negative number tokens. Consequently, high-
throughput screening systems are suitable to test our modeling and control approach. Through
an established cooperation with CyBio AG, a company developing and manufacturing HTS
plants, real HTS examples were available for testing. The applicability of our approach has
been shown on such a real HTS example.
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