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It is demonstrated numerically that by using Pyragas' method of chaos self-control a stable 
semiconductor oscillator can be designed based on driven real-space transfer oscillations in a 
modulation-doped heterostructure. By application of a small time-continuous delayed feedback 
voltage control signal, different unstable periodic orbits embedded in the chaotic attractor can be 
stabilized. Thus different modes of self-generated periodic voltage oscillations can be selected by 
choosing an appropriate delay time. This provides tunability to different discrete frequencies.

PACS numbers: 05.45.+ b, 72.20 Ht.

1. Introduction

Recent theoretical and experimental efforts to con­
trol chaos in physical systems, that is, to convert 
chaotic behaviour to a periodic time dependence, have 
shed a new light on the role of chaotic dynamics in 
view of practical applications. It turns out that the 
presence of chaos, when controllable, can be advanta­
geous. We demonstrate this for the case of electrical 
instabilities in the regime of nonlinear hot carrier 
transport [1-3], which can be used in semiconductor 
devices as microwave oscillators [4]. By applying a 
small self-control, we achieve stable and tunable regu­
lar oscillations. Our underlying principle is based 
upon the observation that any chaotic attractor of a 
nonlinear dynamic system contains an infinite dense 
set of unstable periodic orbits (UPO). As shown by 
Ott, Grebogi and Yorke (OGY) [5], any of these UPOs 
may be stabilized by applying a small time-dependent 
perturbation to the control parameter of the system 
such that the trajectories are thrown onto the stable 
manifold of the particular UPO. Thus the inherent 
chaotic dynamics create a flexible situation in which it 
is possible to choose between quite different periodic 
orbits using only a small control.

A disadvantage of the OGY method is that the 
feedback control is applied only at discrete points of 
time given by the return times of the Poincare map of 
the dynamic flow, which has to be computed for this

Reprint requests to Prof. E. Schöll.

purpose. The method can thus stabilize only those 
UPOs whose largest Lyapunov exponent is small 
compared to the reciprocal time interval between the 
parameter changes. A novel, powerful method of 
chaos control by a small time-continuous perturba­
tion which does not require on-line computations has 
been proposed by Pyragas [6]. The stabilization of 
UPOs is achieved by adding a delayed self-controlled 
feedback to one of the dynamic equations. Here we 
numerically demonstrate that a simple and stable tun­
able semiconductor oscillator can be built on this 
principle.

2. Model

We consider nonlinear charge transport parallel to 
the layers of the modulation-doped GaAs/Al^Gaj _^As 
heterostructure schematically shown in Figure 1 (a). 
In experiments the system displays N-shaped negative 
differential conductivity (NNDC) [7], ac-driven cur­
rent oscillations [8] and spontaneous oscillations un­
der dc bias [9-12]. The heterostructure consists of a 
GaAs layer of width L x and an Al^Ga^^As layer of 
width L2. At the layer interface the conduction band 
displays a discontinuity AEc as shown in Figure 1 (b). 
The Al^Ga! _xAs layer is heavily n-doped with donor 
density ND. In thermodynamical equilibrium the 
donors are ionized, and the valence electrons, sepa­
rated from their parent donors in the AlxGa1 _xAs 
layer, fall into the lower potential of the GaAs well. 
There they experience strongly reduced impurity scat-
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Fig. 1. (a) The modulation doped GaAs/AlxGa1_;cAs het­
erostructure in an external circuit with load resistance RL 
and bias voltage (70. and L2 are the heterolayer widths, 
(b) Energy-band diagram versus the vertical coordinate x. 
The conduction band has a discontinuity AEc at the inter­
face, and band bending in the Al^Ga! _xAs layer results in the 
potential <DB.

tering and the mobility is high. The resulting space 
charge in the Al^Ga^^As gives rise to band bending 
and the interface potential barrier Ob.

Application of an electric field parallel to the layer 
interface induces carrier heating, and for a field 
<f|l > 2 k V/cm thermionic emission of electrons across 
the barrier into the Al^Ga! _xAs is possible. This leads 
to an increased carrier density n2 in the Al^Ga^^As, 
where the electron mobility n2 is much lower due to 
strongly enhanced impurity scattering, and a reduced 
density n1. Thus for the longitudinal current, increas­
ing the voltage results in a reduced average mobility, 
and there exists a regime of negative differential con­
ductivity. The current-voltage characteristic has the

shape of an N, which is in analogy to the Gunn effect, 
where the underlying physical mechanism is the trans­
fer of electrons from a state in momentum space with 
high mobility to a state of low mobility (intervalley 
transfer in /c-space).

A physical mechanism for self-generated current os­
cillations under dc bias conditions has been proposed 
[13], based upon the coupled nonlinear dynamics of 
real-space electron transfer and of the space-charge in 
the doped Al^Gaj^As layer, which controls the po­
tential barrier The dynamics can be described by 
a set of nonlinear differential equations for the spa­
tially averaged carrier density in the GaAs layer, 
the parallel electric field and the potential barrier 
<i>b [14]-

The alteration in time of nl is expressed in the con­
tinuity equation

1
eL l (1)

with the transversal thermionic-emission current den­
sities given by Bethe's theory:

' Ex exp(
' 3A£C\

3nm* , 2 E j

1 E2 exp('  3 * B\
3nm* , 2 E J '

J 1-2 = ~ eni

1 = -  en2

where m* are the effective masses and E{ = § kB Tt are 
the mean carrier energies given by the carrier temper­
atures 7]. The mean energy as a function of the applied 
electric field is estimated at £, «  £ L + t £< e //, , with 
the thermal equilibrium mean energy EL = |  kB Th, 
where Th is the lattice temperature, and energy relax­
ation times zEj. Because of local charge neutrality, the 
carrier density n2 in the AlxGa1 _xAs layer can be elim­
inated as a dependant variable: n2 = ND — n1L 1/L2.

The dielectric relaxation of the parallel electric field 
is described by the equation

en1n l L1 + en2n2L2
£<fjj= - ( T L((f ||-<§o)----------- ,----------------- ©II (2)

L'l I

with = d/[h{L1 + L2)Rl] and = U/d. Here e is 
the permittivity and RL is the load resistance (see Fig­
ure 1).

The space charge in the Al^Gaj _xAs layer results in 
an internal electric field $ ± perpendicular to the layer, 
which is described by Poisson's equation £0<fx(x, t)/ 
dx = e (Nd — n (x)) and the balance equation for the 
transverse current e ( x , t )  + ep2n(x,t)SL(x,t) = 0.
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For the dynamics of the potential barrier Ob =
Li

— e j (x, t) dx we obtain the equation 
o

<i>B = Hi Nd Ob + L\ . (3)

Together, (l)-(3) describe the dynamics of real space 
transfer in the heterostructure.

3. Numerical Results ni(10"cm3)
Eii(kV/cm)

We have numerically simulated the dynamics of the 
system using the parameters in Table 1. Apart from 
self-generated periodic oscillations [14], the semicon­
ductor can display chaotic oscillations if it is periodi­
cally driven by a bias voltage U (t) = U0 + Uac 
• sin (2 n f d r). Figure 2 shows a phase portrait and a 
Poincare section for the driven system. The strange 
attractor has the shape of a torus with a thickened, 
folded surface. In the Poincare section four "wings" 
are visible, each in a different stage of the nonlinear 
folding mechanism. This kind of structure is typical 
for nonlinear oscillators with a periodic driving force 
[17] and is sometimes referred to as a Birkhoff-Shaw 
attractor.

We will now apply time-continuous chaos control 
to the driven system. This involves coupling the per­
pendicular voltage drop within the Al^Ga^^As bar­
rier <l>B/e back to the dynamics of <DB, and may be 
realized by introducing a gate electrode on top of the 
GaAs layer to which the feedback signal 50B is ap­
plied. The perturbation 5<DB takes the specific form of 
the difference between the system output Ob (t) and 
the delayed output Ob (t — r) (delayed feedback con­
trol). The dynamics of the potential barrier is then 
given by

e e
Ob = -  - /z 2iVD0 B + //2 — L2 n2 

e V 2e

5OB(0 = [OB(t-T )-< D B(r)].

+ Kb<Pr (4)

(5)

Here t  is a suitably chosen delay time and K is an 
experimentally adjustable perturbation weight. If 
<i>b(r) is periodic with period t, the difference term 
vanishes, and the system dynamics have the unper­
turbed form (50b = 0). Therefore a UPO of the unper­
turbed system with period x remains a solution if the 
control is switched on. The stabilization of this UPO 
can be achieved by an appropriate choice of K. This 
method has the advantage that the UPO need not to

><D
e

(b) rij (1017cm~3 )

Fig. 2. The strange attractor of the driven real-space transfer 
oscillator. The numerical parameters are given in Table 1. 
(a) Phase portrait in the three-dimensional phase space of the 
dynamic variables (nt, ̂ n ,Ob). (b) Poincare section of the 
potential barrier <DB and the carrier density n1.

Table 1. Numerical parameters used in the simulation.

= 10 nm width of the GaAs layer [10]
l 2 = 20 nm width of the Al^Ga^As layer [10]
h = 1 mm height of the device [10]
d = 50 nm length of the device [10]

= 1017 cm-3 effective donor concentration [10]
Tl = 300 K temperature
e = 12e0 permittivity [13]
A E(. = 250 meV conduction band discontinuity
TEi = 1.8 • 10~12s energy relaxation time in GaAs [15]
xe2 = 6.4 • 10-12s energy relaxation time in

A^Ga^As [15]
m* = 0.067 m0 effective mass of the electrons in

GaAs [13]
m*2 = (0.067 + 0.3 effective mass of the electrons

• 0.083) m0 in Al^Gaj.j.As
hi = 8000 cm2/Vs electron mobility in GaAs [10]
hi = 50 cm2/Vs electron mobility in Al^Gaj _xAs [16]
r l = 824 Q load resistance
u0 = 51.2 V dc bias

= 2.5 V ac bias
h = 293.2 GHz driving frequency
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be known explicitly. Experimentally, only a simple 
delay line is necessary. The disadvantage is that two 
control parameters, x and K, have to be adjusted 
within a relatively small range to be determined em­
pirically. The amplitude of the feedback signals SOB (r) 
can be considered as a criterion for UPO stabilization. 
When the system moves along its UPO this amplitude 
is extremely small. We shall assume <D2 (t)> as a 
criterion for stabilization, defining the dimensionless 
control signal D (t) as follows:

D(t) = 5 o ,( t)  [OB(r + T ) -O B(0]
o* (6)

where «Dg = 11.7 meV has been chosen as reference 
value, and < ) denotes the temporal average.

Figure 3 shows the stabilization of a period-five 
limit cycle. After the control signal is switched on at 
tc = 80 ps, the amplitude D (t) of the perturbation 
rapidly decays after a transient process and the system 
moves into the periodic regime corresponding to an 
initially unstable orbit of the unperturbed system. The 
delay time of the controlling feedback signal is equal 
to the period of the limit cycle, which gives an oscilla­
tion frequency of /  = 58.6 GHz. This corresponds to 
1/5 of the driving frequency / d. Fig. 3(c) depicts the 
phase portrait for the post-transient regime. Compar­
ison with Fig. 2(a) shows that the stabilized limit cycle 
is indeed embedded in the chaotic attractor of the 
unperturbed system.

By choosing a different delay time for the feed­
back signal, a different UPO can be stabilized for the 
same driving frequency and amplitude. Figure 4 
shows the stabilization of a period-three UPO of 
the chaotic attractor, with an oscillation frequency of 
/  = 97.7 GHz, corresponding to 1 /3 of the driving 
frequency / d. Here the control signal D(t) does not 
run to zero but oscillates with a small amplitude. This 
effect is not expected in theory, and it is not yet well 
understood although it has been observed in numeri­
cal simulations of other systems [6, 18]. The fact that 
the effect is rather pronounced in this case may be due 
to the nature of the unperturbed system, which is 
periodically driven in time. However, the criterion for 
stabilization given above is satisfied.

Although the amplitude of perturbation becomes 
very small after a transient period, depending on ini­
tial conditions it can reach rather high values immedi­
ately after control is switched on. From the experi­
mental point of view, it is undesirable that the 
accessible system parameter to which control is ap­

n,(1017cm3)
e,|(kV/cm)

Fig. 3. Delayed feedback control: Stabilization of the period- 
five limit cycle. Time series for (a) the control signal, (b) the 
potential barrier. (Control is switched on at tc = 80 ps; con­
trol parameters are K = 0.1 ps~1 and t = 17.05 ps.) (c) Phase 
portrait of the stabilized period-five limit cycle. Transient 
processes are omitted.

plied should experience strong bursts as shown in the 
simulations. Therefore we introduce a restriction to 
the delayed feedback signal as follows:

( ~ D 0, when K ÖOB (t) < — D0, 
D(t)= <K5<DB(f), when -  D0 < K5OB(0 < D0, 

ID0, when K6cDB(t)> D 0. (7)
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(a)

(b)

200

200
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£ H (kV/cm)
n jü tfW )

Fig. 4. Stabilization of the period-three limit cycle: Time se­
ries for (a) the control signal, (b) the potential barrier. (Con­
trol is switched on at tc = 50 ps; control parameters are 
K = 0.08 ps-1 and t = 10.23 ps.) (c) Phase portrait of the 
period-three limit cycle.

Implementing this restriction in the physical system 
should be achieved by introducing some nonlinear 
electronic element in the feedback line so that the 
feedback signal reaches a saturation point at D0. The 
effect of the restriction can be seen in Fig. 5 for the 
stabilization of the period-five limit cycle. Here the 
perturbation is small at all times, but the transient

0.02 

0.01 

0.00 

Q -0.01 

-0.02 -1— i— i— i— i— i— i— i— i— i 
0 50 100 150 200 250

t (ps)

Fig. 5. Stabilization of the period-five limit cycle with re­
stricted perturbation: Control signal D (r) with | D (t) \ < D0 
= 0.016. Control is switched on at fc = 40ps. Control 
parameters as in Figure 3.

process is longer. The mean duration of the transient 
process increases with the decrease of D0.

In general, unstable orbits are stabilized by the con­
trol only if t  and K are chosen appropriately. For a 
systematic investigation we consider the variance 
<D2 (it)> of the control signal. When the system moves 
along a UPO, the amplitude of the feedback signal 
and hence <D2 (f)> is small. The variance <D2 (t)> has 
been determined as a function of the coupling con­
stant K for the two periodic orbits excluding transient 
processes in Figure 6. For both limit cycles a clear-cut 
interval for the value of K can be observed in which 
stabilization can easily be achieved. In both cases this 
interval is fairly wide and begins at rather low values 
for the coupling constant.

To further investigate the range in which K is suit­
able for stabilization of a given UPO, we have also 
calculated the largest non-zero Lyapunov exponent 
with respect to small deviations from the correspond­
ing UPO. In Figure 7 the leading Lyapunov exponent 
A is plotted as a function of the coupling constant for 
the period-five limit cycle. For Kmin = 0.10 ps~1 < K 
< Kmax = 0.19 ps"1, ^(K) is negative, i.e. the UPO is 
stabilized. If K is too small, the feedback is too weak 
for stabilization. If, on the other hand, K is too large, 
the controlled variable (d>B) changes so rapidly that 
the other (uncontrolled) dynamical variables cannot 
follow fast enough. Note that negative X does not 
always imply that the UPO can be stabilized with a 
reasonably small control signal, as is evident from a 
comparison of Figs. 6(b) and 7.

When plotted as a function of the delay time t, the 
variance <D2(f)> exhibits a typical resonance struc-
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Fig. 6. Variance of 
coupling constant 
(t = 10.23 ps) and 
(t = 17.05 ps).
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K: (a) for the period-three limit cycle 
(b) for the period-five limit cycle

ture (Fig. 8), with sharp minima at those values of t  
which coincide with the period of a UPO. The reso­
nance minimum of the period-five limit cycle is signif­
icantly deeper, corresponding to the better stabiliza­
tion and stronger decay of the control signal (compare 
Figure 3 (a)). Also we see a further minimum at 
t  = 2 • 10.23 ps.

In proximity of the resonance time t  = 17.05 ps of 
the period-five limit cycle, the controlled system dis­
plays multistable behaviour. Two different asymptotic 
periodic orbits can be found for the same delay time, 
depending on initial conditions. Both branches of the 
graph are displayed in Figure 8. The lower branch is 
the minimum curve associated with stabilization of 
the period-five limit cycle. The upper branch is associ­
ated with an asymptotic period-three orbit together 
with large (non-decaying) perturbations. The presence 
of multistability in the controlled system is undesir­
able, and the problem can be avoided by using a re­
striction for the amplitude of the perturbation signal 
as given by (7). Figure 9 shows the effect of restriction 
on the resonance structure of <D2 (0).

The plot is again made for different initial condi­
tions: However, the upper branch at t «  17 ps has 
vanished and multistability is eliminated.

4. Conclusion

0.06

0.04

0.02

0.00

-0.02

K (ps"')

Fig. 7. The maximum non-negative Lyapunov exponent as a 
function of coupling constant K, calculated for the period- 
five limit cycle (delay time t = 17.05 ps). The arrows mark the 
absolute boundaries for stabilization.

We have demonstrated that Pyragas' method of de­
layed feedback control represents an efficient and eas­
ily realizable method to turn undesired chaotic be­
haviour in nonlinear semiconductor oscillators into a 
stable mode of operation, which can be tuned in dis­
crete steps. By choosing an appropriate delay time of 
the control signal, corresponding to an integer multi­
ple of the driving period, quite different modes of self- 
generated periodic oscillations can be conveniently 
selected. Such flexibility cannot be achieved with a 
linear electronic oscillator, and we suggest that the 
occurrence of chaos thus offers useful applications in 
the field of hot electron devices. The same method has 
also been applied to control magnetic-field induced 
chaos [19] in a model of low-temperature impurity 
impact ionization breakdown in bulk semiconductors 
[20]. Here we have elaborated these ideas for an oscil­
lation mechanism applicable to modulation-doped 
semiconductor heterostructures, as proposed in [21]. 
From a practical viewpoint those semiconductor 
structures are much more flexible, and hence poten-
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Fig. 8. Variance of the control amplitude as a function of delay time t, 
plotted for different initial conditions. Multistability occurs around 
t = 17 ps. The coupling constant is K = 0.1 ps-1, perturbation is unre­
stricted.

X (ps)

Fig. 9. Same as in Fig. 8, but the control signal is restricted to 
\D(t)\<Do = 0A. The branch of multistability at x = 17 ps has disap­
peared. Further resonance points can be seen at integer multiples of 
10.23 ps and 17.05 ps, numbered in white and black, respectively.
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tially useful, than bulk material. Finally we note that 
the stabilization of UPOs can also give insight into the 
dynamic structure of the uncontrolled chaotic system, 
since the UPOs constitute the "building bricks" of the 
chaotic attractor. The method of delayed feedback 
control can also be used to stabilize a UPO in a 
non-chaotic regime, and thus visualize, e.g., an un­

stable orbit which has appeared in a saddle-node bi­
furcation of two limit cycles.
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