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Abstract
Background. Research on brain-computer interfacing (BCI) has demonstrated that specific

brain activity patterns can be detected in the electroencephalogram (EEG) with multivariate

methods from machine learning and signal processing in real-time. Objective. This direct

access to the neural processes potentially provides an opportunity to learn about the users

of technical applications in a novel way. In this dissertation, it was explored how implicit,

user-related information can be decoded from the EEG. Approach and results. First, it was

demonstrated that BCI methods can uncover an imperceptible usability flaw of a technical

device. A neural workload, which is potentially uncomfortable on the long-term, was imposed

by the device on the brain of the user, but could not be noticed by test persons due to the

limits of human perception. The findings suggest a remedy, which may improve the ease of

use of the assessed device. In a second line of research, it was investigated how the subjective

relevance of viewed items can be estimated based on EEG and eye tracking signals. This

information renders it possible to map the relevance of the visual surrounding, and to infer

the current interest of the individual user in real-time. Significance. Signals originating in

the brain contain valuable information about the users of technical devices and applications.

It was demonstrated that the direct observation of the neural processes offers particular

benefits in comparison to standard methods for obtaining user-related information, such as

questionnaires. Multivariate methods proved to be essential for extracting information about

the complex neural activity from the recorded signals. The methods recognised patterns that

were distributed over the numerous dimensions of the EEG data and obscured by irrelevant

activity and noise.

Keywords: Brain-computer interfacing, electroencephalography, eye tracking, neuroergonomics,

neurotechnology, pattern recognition, relevance detection
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Zusammenfassung
Hintergrund. Forschung auf dem Gebiet der Gehirn-Computer-Schnittstelle hat gezeigt, dass

spezifische Gehirnaktivitätsmuster mit multivariaten Methoden des maschinellen Lernens

und der Signalverarbeitung im Elektroenzephalogramm (EEG) in Echtzeit erkannt werden

können. Ziel. Mit diesem direkten Zugang zu den neuronalen Prozessen kann man mögli-

cherweise etwas über die Nutzer technischer Anwendungen auf neuartige Weise erfahren. In

dieser Dissertation wurde untersucht, wie implizite, nutzerbezogene Information aus dem

EEG entschlüsselt werden kann. Ansatz und Ergebnisse. Zunächst wurde mit der Gehirn-

Computer-Schnittstelle ein Mangel der Nutzbarkeit eines technischen Gerätes aufgedeckt.

Das Gerät strengte das Gehirn des Nutzers auf nicht wahrnehmbare Weise an, was auf lange

Sicht unangenehm sein könnte. Testpersonen konnten den untersuchten Mangel aufgrund

der Grenzen der menschlichen Wahrnehmung nicht bemerken. Die Ergebnisse geben einen

Hinweis darauf, wie diese unnötige Beanspruchung möglicherweise vermieden werden könn-

te. Desweiteren wurde untersucht, wie die subjektive Relevanz von betrachteten Objekten

anhand des EEG und der Augenbewegungen eingeschätzt werden kann. Diese Information

erlaubt es, die Relevanz der visuellen Umgebung zu kartieren und in Echtzeit Rückschlüsse

auf das Interesse des individuellen Nutzers zu ziehen. Bedeutung. Messungen der Gehirnakti-

vität enthalten wertvolle Information über die Nutzer technischer Geräte und Anwendungen.

Es wurde gezeigt, dass die direkte Beobachtung neuronaler Prozesse besondere Vorteile im

Vergleich zu Standardverfahren zur Gewinnung nutzerbezogener Information bietet, wie etwa

Fragebögen. Multivariate Methoden erwiesen sich als wesentlich, um Information über die

komplexe neuronale Aktivität aus den Signalen zu extrahieren. Die Methoden erkannten

Muster, die über die zahlreichen Dimensionen der EEG Daten verteilt und durch irrelevante

Aktivität und Rauschen überlagert waren.

Stichwörter: Gehirn-Computer-Schnittstelle, Elektroenzephalographie, Augenbewegungen,

Neuroergonomie, Neurotechnologie, Mustererkennung, Relevanzerkennung
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1 Introduction

1.1 Overview

The brain is the centre of the nervous system, integrates the sensory impressions, gives rise to

the conscious perception of the world, plans actions, and sends commands to the muscles.

Technical applications and devices augment the human capacities for perception and action,

and are usually designed with the user in view for a smooth and efficient usage. Due to the

fundamental role of the brain for perception and action, also the mind of the user should be

taken into consideration – and not only the physical ergonomics. Straightforward access to

the mind is possible by introspection, subjective reports, user questionnaires, behavioural

observations, and by allowing for interaction with a device (e.g. with a computer via mouse

and keyboard). Yet, the most immediate access to the mind can arguably be achieved by

directly observing the neural processes that occur in the brain.

Through brain-computer interfacing (BCI), specific brain activity patterns, which correspond

to the mental processes of a person, can be recognised in the electroencephalogram (EEG) in

real-time. The detection of these patterns makes it possible to send volitional commands to

computers by the power of thought alone – without relying on any muscle movements. BCI

methods can potentially also open a novel ‘window on the mind’ of device users by detecting

user-related information hidden in the brain signals. Previous investigations have already

expanded the scope of BCI beyond volitional control and communication. It was shown that

BCI methods can serve for improving the ergonomics of devices and software, and it was

suggested that implicit information decoded online from brain signals can support vehicle

and machine operators (cf. section 2.2 for details and references).

In this dissertation, the benefits of inferring user-related information from non-invasive

recordings of brain activity were demonstrated in two lines of approach. First, it was demon-

strated that a usability flaw of a technical device can be uncovered with multivariate data

analysis methods employed in BCI. Test persons were not able to notice the deficiency under

investigation due to the limits of human perception. The device imposed an imperceptible

neural workload on the brain, which is potentially uncomfortable on the long-term. The

1



Chapter 1. Introduction

findings suggest a possible remedy, which may help to improve the ease of use of the assessed

device. In a second line of research, it was shown that the subjective relevance of viewed items

can be estimated based on EEG and eye tracking signals. The resulting relevance map of the

visual surrounding makes it possible to infer the current interest of the individual user in

real-time, which could be taken into account by novel types of adaptive, personalised software.

1.2 Outline of the dissertation

• In chapter 2, fundamentals and previous work related to the decoding of brain signals are

discussed. It is substantiated that neural processes in the human brain are complex and

can be observed only to a very limited extent. First, a brief primer on the human brain is

given, and it is detailed how neural activity can be measured non-invasively. Second,

previous investigations on brain-computer interfacing and mental state decoding are

introduced, which trace signatures of mental processes in brain signals in real-time.

Third, it is explained how information hidden in the signals can be uncovered with

methods from machine learning, which can recognise multivariate patterns that are

obscured by irrelevant activity and noise.

• In chapter 3, it is shown that BCI methods can provide an objective measure of the

workload that a technical device demands from the brain of the user. Crucially, the

BCI-based approach proved to be particularly sensitive and could uncover a usability

flaw that test persons did not notice, due to the limits of human perception. Traces of

an imperceptible (but avoidable) neural processing effort were detected in the brain

signals. Discovering such negative effects can turn out to be critical for the sustained

success of a product. Users may decide against a product, being unaware of the exact

reason, when they are exposed to an imperceptible neural strain on the long-term.

Specifically, the neural processing effort imposed by shutter glasses on the viewer of

stereoscopic television was quantified with electroencephalography as a function of

the shutter frequency. At low shutter frequencies, an annoying and fatiguing flicker is

perceived, which diminishes with increasing frequency and vanishes above a critical

frequency. For an optimal viewing comfort, the shutter glasses run at a frequency

above the perception threshold. Nevertheless, effects of the shutter glasses on the

brain were detected also for common shutter frequencies, and up to about 20 Hz above

the flicker perception threshold – but vanished at higher frequencies. Increasing the

shutter frequency accordingly can potentially prevent visual fatigue, by avoiding the

unnecessary neural workload.

• From chapter 4 onwards, it is demonstrated that the subjective relevance of the visual

surrounding can be mapped with information implicitly contained in EEG and eye

tracking signals. Specifically, it was demonstrated that it is possible to decode online

from the recorded signals which words were subjectively relevant for a reader. The

marking of relevant words in a text with a highlighter pen could be an analogy for

conveying the idea. Indicating which items in the visual surrounding are subjectively
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relevant is time-consuming and distracting, and can be distorted by a response bias,

which can potentially be circumvented with the BCI-based approach. The obtained

implicit relevance information can be aggregated in a user interest profile, that can be

updated in real-time. Novel types of adaptive software could take this information about

the user interest into account. In addition, time-resolved relevance maps of the field of

view can help to improve the usability of devices, websites, or stores.

• In chapter 5, a problem related to the inference of relevance maps from EEG and eye

movements was tackled. In typical BCI experiments, sequences of single stimuli are

flashed. The stimulus onset serves as reference time point for the extraction of feature

vectors from the continuously recorded EEG. Thus, it can be assumed that the infor-

mative neural activity is tightly time locked to the reference time point. In contrast,

time locked activity can not be taken for granted when several items are present in the

field of view at the same time, and not only a single stimulus. The eye gaze jumps with

saccades from one fixated position to the next. Thus, the saccades can serve as reference

time points for the feature extraction. However, the regular visual surrounding contains

diverse items of a variable salience, ranging from a subtle modesty to an eye-catching

flamboyance. This salience spectrum can be problematic for the estimation of relevance

maps for the following reason. Light entering the eye along the line of sight falls onto

the fovea where the retina provides a better resolution than peripheral retinal areas.

Therefore, an item of low salience may be recognised only when the centre of gaze

has ‘landed’ on the item, which is now captured in high-resolution by the fovea. In

contrast, a highly salient item can be recognised already in peripheral vision, i.e. before

or even without a saccade towards the item. For this reason, the timing of recognition

with respect to the saccades (used as reference time points) varies with the salience.

Accordingly, it was tested if this temporal jitter prevents the estimation of relevance

maps from EEG and eye gaze.

• In chapter 6, the generalisation properties of the BCI-based relevance detector were

inspected. ‘Relevance’ has to be artificially created in experiments, and an intrinsic

interest has to be mimicked with some mental task. For instance, the task could be given

to count all relevant items. Focusing the attention in this way is legitimate for a BCI

application for communication. However, the intended implicit relevance detection

would not be possible if the BCI merely detects effects of the specific mental task in the

brain signals. Accordingly, it was evaluated if the neural activity detected by the BCI is

task specific, or – alternatively – if the detector can generalise over different scenarios.

Good generalisation properties might indicate that the subjective experience of consid-

ering something as relevant is captured indeed, and not merely the performance of a

specific, artificial task.

• In chapter 7, the insights gained are summarised in a concluding discussion, limitations

are stated that have to be considered, and an outlook to possible future research is given.
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2 Fundamentals

In this chapter, it is explained how neural processes in the brain can be measured, previous

research on brain-computer interfacing is introduced, and it is specified how information

hidden in brain signals can be uncovered with multivariate methods from machine learning

and signal processing.

2.1 Measuring neural processes in the human brain

The human brain serves as control centre of the body, receives information from the sensory

organs and sends commands to the muscles via nerves. It comprises a network of about 86±8

billion neurons, supported by about the same number of non-neuronal cells [Azevedo et al.,

2009]. A typical neuron in the brain is a cell that branches into an axon and multiple dendrites

in order to connect via synapses with a large number of other neurons. Each neuron receives

information from approximately ten-thousand neurons, in some cases even from hundred-

thousand neurons, over synapses at its dendrites and cell body, and transmits information to

roughly thousand neurons, over synapses at its axon [Kandel et al., 2000, Part III, V and VI].

Within this network of neurons, information is transmitted and processed electro-chemically

[Kandel et al., 2000, Part II and III]. A typical neuron transmits information to a connected

neuron by releasing neurotransmitters into the synaptic cleft. The neurotransmitters float

towards the membrane of the connected (= postsynaptic) neuron and bind to receptors

that influence the permeability of ion channels in the cell membrane. As a consequence,

postsynaptic transmembrane currents and thus the voltage between interior and exterior of

the neuron temporary change (the electric potential inside and outside of a neuron differs

‘at rest’, due to proteins that pump ions through the cell membrane). The temporary voltage

changes originating at the single synapses spread over the cell membrane of the neuron, which

integrates the information received from all connected neurons [Koch and Segev, 1998]. If

the summary voltage at the origin of the axon surpasses a threshold, an action potential is

elicited and is actively transmitted avalanche-like along the axon, which leads to an emission

of neurotransmitters at the synapses, that again influence other neurons [Kandel et al., 2000;
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Hallez et al., 2007].

Very complex computations and learning are possible as a result of the intricate wiring of this

large network of connected neurons and of the plasticity of the synaptic connections [Abeles,

1991; Koch and Segev, 1998; Koch, 2004; Trappenberg, 2009].

The neural processes, very briefly outlined here, can be observed at different scales with a

wide variety of methods from inside and from outside of the skull. Invasive methods, such

as implantable microelectrodes or multielectrode arrays, patch or voltage clamping, electro-

corticography, optical imaging with voltage-sensitive dyes, calcium imaging, or optogenetics,

measure neural processes at close range but put the health at risk [e.g. Hubel and Wiesel, 1962;

Grinvald et al., 1988; Ulbert et al., 2001; Stosiek et al., 2003; Miller et al., 2007; Knöpfel, 2012].

Mass activity of large populations of neurons can be captured from outside of the skull with

non-invasive methods such as electroencephalography (EEG) and magnetoencephalography

(MEG), or, via related changes in the blood flow, with functional magnetic resonance imag-

ing (fMRI) and functional near-infrared spectroscopy (fNIRS). EEG offers some advantages

in comparison to other non-invasive methods, because it does not require huge, immobile

and very expensive instruments and shielded rooms like MEG and fMRI, and because it pro-

vides a higher temporal resolution than fNIRS (and fMRI) [Cohen et al., 1968; Cohen, 1972;

Hämäläinen et al., 1993; Logothetis, 2008; Ferrari and Quaresima, 2012].

Work on the EEG dates back to the nineteenth century with animal experiments of Richard

Caton and Adolph Beck [Caton, 1875; Beck, 1888, 1890]. Half a century later, Hans Berger

recorded the human EEG for the first time [Berger, 1929; Brazier, 1959, 1961]. For the EEG

recording, several electrodes are placed on the scalp, in a grid like arrangement, and electric

potential differences between electrodes are measured, amplified, (and nowadays) digitised,

and sent to a computer, where they are saved and processed. Until recently, EEG systems had

been inconvenient to use, because the conductivity between electrodes and scalp had to be

improved in a lengthy procedure with conductive gel, that had to be washed out later. Besides,

the bulky and cable-bound equipment had to remain stationary. However, usability and

mobility of the systems are being improved at fast pace with recent technological innovations

like mobile EEG systems [Stopczynski et al., 2014; De Vos et al., 2014; Mullen et al., 2015]

with gel-free [Popescu et al., 2007; Grozea et al., 2011; Zander et al., 2011; Guger et al., 2012],

miniaturized [Nikulin et al., 2010] electrodes that can be placed hardly visible in/on/around

the ear [Looney et al., 2014; Debener et al., 2015; Norton et al., 2015; Goverdovsky et al.,

2016a,b]. Moreover, large technology companies and customers are being interested more

and more in wearable physiological sensors [Piwek et al., 2016]. In-ear headphones with

different physiological sensors including EEG, which connect with a smartphone, are under

development (e.g., ‘The Aware’ from ’United Sciences’, Atlanta, USA). Deployable systems will

make EEG measurement during daily life more and more feasible, even though the signal

quality may remain limited (as well as the potential number and locations of the sensors on

the head).
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The measured EEG signal is generated by electric currents through the membranes of neurons

and other cells (cf. above in this section). The transmembrane currents dynamically change

the electric potential of the extracellular medium at each location within the brain. Syn-

chronous activity of a large number of adjacent and parallel oriented cells results in (primary

and secondary) currents that do not mutually cancel out but that are transmitted via volume

conduction through the tissue, and that can result in measurable electric potential differences

on the scalp. Postsynaptic transmembrane currents and related return currents dominate over

other sources such as action potentials in neurons or slow fluctuations in non-neuronal cells.

The most important contributors to the EEG signal are presumably postsynaptic transmem-

brane currents at the parallel oriented apical dendrites of the numerous pyramidal cells in the

cortex [Telenczuk et al., 2011; Buzsáki et al., 2012; Einevoll et al., 2013].

The large resistivity of skull and skin, in comparison to brain tissue and cerebrospinal fluid,

limits the possible spatial resolution of EEG [Malmivuo and Suihko, 2004]. Moreover, the

measured signal is disturbed by artefacts, because electric activity of muscles and movements

of the eyes, which constitute dipoles, result in large amplitude signals that interfere with the

neural signals [Urigüen and Garcia-Zapirain, 2015]. Besides, every source (e.g., a cortical

column receiving synchronous input) can affect the signal measured at different positions

on the scalp, due to volume conduction. In addition, many single sources can be active at

different locations within the brain at the same time and sum up to the signal measured

on the scalp [Parra et al., 2005]. Disentangling and localising the single sources is difficult

because numerous combinations of an unknown number of presently active sources can

potentially generate the signal on the scalp (cf. also the discussion of the linear generative

model of the EEG in section 2.3). The problem of source localisation can be tackled by

modelling the transmission of the signal from source to sensor through the biological tissue

(forward modelling) and by inferring the most probable source activity given the measured

data (backward modelling) [e.g., Darvas et al., 2004; Hallez et al., 2007; Grech et al., 2008].

In summary, non-invasive observation of the complex neural processes is possible only to

a rather limited extent. Accordingly, suitable experimental paradigms and appropriate data

analysis methods are required in order to make inferences about neural processes in the brain

in a meaningful way.

2.2 Brain-computer interfacing and mental state decoding

Every thought or mental process is presumably represented by the electro-chemical processes

in the brain. However, only a very limited view on these processes is possible with the available

measurement technology, as it was argued in the previous section 2.1. Research on brain-

computer interfacing and mental state decoding has taken up this challenge in order to detect

traces of the mental processes in the sensor data in real-time.
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Preprocessing

Pattern recognition

Effect

Signal acquisition

Feature extraction

Figure 2.1: The user sends commands to the computer by the power of thought, i.e. by
volitionally generating neural ‘signatures’. The brain-computer interface recognises neural
activity patterns, and translates the estimated intention of the user into a noticeable effect,
such as the selection of a letter or the movement of a robot arm. For pattern recognition, brain
signals are acquired and preprocessed, and feature vectors are extracted from the continuous
signals.

2.2.1 Brain-computer interfacing for communication and control

Brain-computer interfacing typically aims at providing a command signal under volitional

control that is only based on signals originating in the brain. Exemplary use cases are cursor

and prosthesis control, communication via speller applications, and switches that allow for

choosing from different options, most notably in applications intended for paralysed users

[Millán et al., 2010]. BCIs make control possible by the power of thought alone, usually without

involving any muscle movements or peripheral nerves (note that the ‘I’ in the abbreviation

‘BCI’ can stand both for ‘interfacing’ and ‘interface’, depending on the context). Extensive

research has established a (limited) set of experimental procedures that allow humans to

intentionally produce neural ‘signatures’ that can be detected in the measured signals, and

translated to an effect (cf. figure 2.1). A brief overview is given in the following.

Humans (and monkeys) can learn to control the firing pattern of single neurons or populations

of neurons. The patterns can be detected and translated to control signals that make it possible

to steer devices such as robot arms [e.g. Schmidt, 1980; Wessberg et al., 2000; Nicolelis, 2001;

Musallam et al., 2004; Carmena et al., 2003; Hochberg et al., 2006; Schwartz et al., 2006; Velliste

et al., 2008; Collinger et al., 2013]. Invasive measurement techniques are required in this case

and offer a comparably reliable control. Non-invasive methods such as EEG (cf. section 2.1)

have the advantage of presenting less risk to health. People can learn to volitionally regulate

slow cortical potentials measured with EEG [e.g. Elbert et al., 1980; Birbaumer et al., 1999], or

can learn to modulate the power of EEG oscillations in certain frequency bands by imagining

limb movements [e.g. Wolpaw et al., 1991; Kübler et al., 2005; Pfurtscheller et al., 2006; Höhne

et al., 2014; Vansteensel et al., 2016]. The modulation, detected by the BCI, can be used as

control signal. Learning is made possible or supported by biofeedback [cf. Sitaram et al., 2017,

and also figure 2.1]. Time and effort can be saved if the burden to learn is partly transferred to

the computer [Blankertz et al., 2002, 2007, 2008].
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D
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Figure 2.2: Exemplary stimulus sequence presented by a BCI (that is based on event-related
potentials). The options A, B, C and D are rapidly flashed on the screen in a repeated sequence.
The user can select an option by focussing on the corresponding stimulus (e.g. by silently
counting how often the stimulus appeared, which makes it easier to direct the attention). The
BCI infers the selection of the user (here: B, indicated by the arrows) from spatio-temporal
patterns present in the EEG [inspired by the ‘centre speller’ in Treder et al., 2011, where first a
group of letters and then a single letter can be chosen].

The BCI paradigm based on event-related potentials (‘ERPs’) exploits the phenomenon that

attention modulates the neural response to stimuli [e.g. Farwell and Donchin, 1988; Treder

et al., 2011; Acqualagna and Blankertz, 2013]. This paradigm will be of particular importance

in later chapters of this dissertation. Stimuli of interest can be discriminated from other

stimuli based on spatio-temporal patterns in the EEG [e.g. Sutton et al., 1965; Picton, 1992;

Polich, 2007]. The phenomenon applies to the different sensory domains of sight, hearing and

touch. Therefore not only visual, but also auditory or tactile stimuli can be employed, which is

crucial when the visual capacities are limited [Brouwer and Van Erp, 2010; Belitski et al., 2011;

Schreuder et al., 2011; van der Waal et al., 2012; Höhne and Tangermann, 2014]. Control is

provided by the ERP-based BCI as follows. Different stimuli represent different options, e.g.

letters or commands, and are presented in a sequence. The option of interest can be selected

by directing the attention towards the corresponding stimulus (cf. figure 2.2). Learning of the

human is not required. Instead, the computer learns to recognise spatio-temporal patterns in

the EEG based on labelled training data recorded during a calibration session. For calibration,

the user is told to focus on certain stimuli while ignoring other stimuli [Blankertz et al., 2011].

In the subsequent online application phase, the mentally selected option can be inferred from

the signals with the previously trained classification function. The repeated presentation of

the stimuli (e.g. in a randomised loop) allows for accumulating evidence and estimating the

selected option with greater confidence. The attention is typically directed by silently counting

how often the selected stimulus appeared among the other stimuli (cf. chapter 6).

Besides, neural activity patterns corresponding to different mental tasks [Millán et al., 2002;

Millán and Mouriño, 2003], and to making mistakes (‘error potential’) [Schalk et al., 2000;

Schmidt et al., 2012] can be detected in the EEG. Other approaches exploit ‘steady state’ or

‘code modulated’ visually or auditory evoked potentials that can be regulated by selective

attention [Sutter, 1984; Cheng et al., 2002; Farquhar et al., 2008; Bin et al., 2011; Hwang et al.,
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2012; Waytowich and Krusienski, 2015; Thielen et al., 2015; Tsoneva et al., 2015]. Also other

non-invasive measurement modalities such as near-infrared spectroscopy can be used instead

of – or in addition to – electrophysiology [e.g. Sitaram et al., 2007; Fazli et al., 2012; von

Lühmann et al., 2015, 2016].

A BCI system typically comprises a feedback loop of different components for (1) the acqui-

sition of the signals from the brain of the user, (2) preprocessing of the signals, (3) feature

extraction from the signals, (4) pattern recognition in order to estimate the intention of the

user, which is (5) translated to an effect that can be noticed by the user, e.g. the selection of a

letter or the movement of a robot arm [cf. figure 2.1 and van Gerven et al., 2009; Nicolas-Alonso

and Gomez-Gil, 2012, for a detailed treatise]. Roots of the investigations on brain-computer

interfacing can be traced back to the 1960s and 1970s [e.g. Sutton et al., 1965; Donchin, 1966;

Vidal, 1973, 1977; cf. also the introduction of Blankertz et al., 2016]. Overviews of the field of

research are given, e.g., in Wolpaw et al., 2002; Lebedev and Nicolelis, 2006; Dornhege et al.,

2007; Mak and Wolpaw, 2009; Wolpaw and Wolpaw, 2012 and Hwang et al., 2013.

2.2.2 Mental state decoding

EEG served for a long time as medical device in the clinic for monitoring sleep stages and

epileptic seizures [e.g. Campbell, 2009; Acharya et al., 2013]. Recently, EEG-based applications

for mental state monitoring gained increasing attention (cf. section 3 in Blankertz et al., 2010

and Müller et al., 2008; Zander and Kothe, 2011; Blankertz et al., 2016), that could expand

the scope of BCI beyond the provision of a communication channel for the paralysed (cf.

section 2.2.1). Mental states, e.g. related to alertness, arousal, attention, fatigue, mental

workload, task engagement, or to the preparation of movements, could be detected in real-

time, which is potentially useful for a wide range of purposes [Pope et al., 1995; Makeig et al.,

1996b; Gevins and Smith, 2003; Berka et al., 2007; Shen et al., 2008; Müller et al., 2008; Stikic

et al., 2011; Ayaz et al., 2012; Baldwin and Penaranda, 2012; Brouwer et al., 2012; Harrivel et al.,

2013; Treder et al., 2014; Mühl et al., 2014; Schultze-Kraft et al., 2016a]. Not only EEG, but also

fMRI [Haynes and Rees, 2006] and fNIRS [Ayaz et al., 2013] signals can be decoded in order to

continuously track covert mental states.

Brain state monitoring could support drivers, pilots, air traffic controllers, machine operators,

or computer users [Kohlmorgen et al., 2007; Müller et al., 2008; Haufe et al., 2011; Aricò et al.,

2016; Borghini et al., 2014; Schultze-Kraft et al., 2016b]. Human errors could be avoided by

issuing warnings when the person is inattentive in a safety critical moment, or by offering

assistance when the person is overwhelmed with the present situation. Moreover, the design of

cockpits and machines might be objectively quantified with respect to the ease of use, during

task execution and without the subjective bias of time-consuming questionnaires [Müller

et al., 2008], which can be subsumed under the term ‘neuroergonomics’ [Parasuraman, 2003;

Parasuraman and Rizzo, 2008; Parasuraman et al., 2012; Mehta and Parasuraman, 2013].

Certain usability flaws can not be detected with questionnaires, when the limits of human
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perception are crossed, but can potentially be revealed with EEG-based BCI methods [e.g.

Porbadnigk et al., 2011, in the case of lighting]. Imperceptible effects can turn out to be critical

for the success of a product, when the users are exposed to negative effects on the long-term.

In this case, the users may decide against the product, being unaware of the exact reason.

Not only the quality of hardware can be evaluated with EEG, but also the quality of software

[e.g. codecs for audio and video compression: Porbadnigk et al., 2010, 2013; Antons et al.,

2010, 2012; Creusere et al., 2012; Scholler et al., 2012; Arndt et al., 2012; Mehta and Kliewer,

2015; Acqualagna et al., 2015], or of stereoscopic visualisations [Frey et al., 2016], by directly

measuring neural processes related to perception.

Mental state detectors may facilitate the interaction between humans and machines, which is

unbalanced at present [Hettinger et al., 2003]. Devices can communicate rich information

about their current state to the operator. In contrast, the operator can only send limited

information to the machine via conventional controllers such as keyboard, mouse, buttons,

or sliders. Letting the device learn more about the individual user according to information

implicitly contained in the EEG, could balance and improve the interaction (cf. section 4 and

Parra et al., 2003; Vidaurre et al., 2011a,b; Pohlmeyer et al., 2011; Zander and Kothe, 2011;

Ušćumlić et al., 2013; Jangraw et al., 2014; Eugster et al., 2014, 2016; Kauppi et al., 2015; Finke

et al., 2016; Blankertz et al., 2016; Müller et al., 2017). Sensor data can be recorded in the

background and could augment conventional input devices.

Methods for mental state detection can exhibit a high sensitivity under constrained laboratory

conditions, where an isolated parameter is changed. Yet, the sensitivity can stand in contrast to

a low specificity to be expected in more realistic situations, where muscle and eye movements

interfere and constitute a confounding factor [Brouwer et al., 2015]. For instance, spectral EEG

features can be assessed in order to detect band power modulations that correlate positively

or negatively with cognitive workload. However, also lively movements can result in broad

band signals in the EEG.

The processing steps for mental state decoding are very similar to the steps employed in a BCI

for communication and control, but do not necessarily form a feedback loop (cf. figure 2.1),

because it is not required that the user learns about the outcome of the prediction.

2.3 Multivariate methods for detecting information in the EEG

Multivariate methods from machine learning and signal processing play a key role for BCI in

uncovering information that is hidden in the neural signals. The brain, as underlying signal

generator, is characterised by many processes happening at the same time (e.g., perception

in the different sensory domains with concurrent planning and execution of movements).

Moreover, each process is computed by a large number of cooperating neurons distributed

throughout the brain (cf. section 2.1), and different processes can occur in rapid succession.

The resulting rich spatio-temporal dynamics of the neural activity, however, is observed

only indirectly from outside of the head, at least in the case of EEG. Measurement noise
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Figure 2.3: Illustration of five dipole sources with different orientations and locations in the
cortex. Twelve EEG electrodes on the scalp measure different mixtures of the activity of the
five sources. Potentially far more sources can be active within the brain at the same time, in
contrast to this example, where the electrodes outnumber the sources. Cerebro-spinal fluid,
meninges, skull and scalp cover the brain (represented by layers of different luminance in the
illustration).

and artefacts, e.g. due to eye movements, deteriorate the signal quality. In order to capture

as much information as possible about the neural processes, signals are recorded at many

locations on the scalp in parallel with a high temporal resolution, resulting in high dimensional

data. Multivariate methods are particularly suited for making inferences about the neural

processes from the high dimensional data, because they can detect patterns that are potentially

distributed over different dimensions, and that are obscured by measurement noise and

‘irrelevant’ neural activity from the ‘background’.

2.3.1 Linear generative model of the EEG

Electrical potential differences measured at time t between M electrodes on the scalp and a

reference electrode can be represented by a vector x(t) = [x1(t), . . . , xM (t)]T . Due to volume

conduction, the potential measured at a single electrode does not only reflect the activity in

the cortex directly below the respective electrode position, but a mix of signals from different

cortical sources at different locations in the brain, as well as from other non-cortical sources

such as eyes or muscles (cf. section 2.1 and the illustration in figure 2.3).

The activity of each source s(t ) at time t contributes linearly to the measurement on the scalp

x(t ), according to the linear generative model of the EEG [cf. section ‘Linear model for EEG’ in

Parra et al., 2005]).

x(t ) = a s(t ) (2.1)
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2.3. Multivariate methods for detecting information in the EEG

The proportional factors in a = [a1, . . . , aM ]T depend on the source distribution and orientation,

on the physical properties of the body tissues, and on the electrode positions and contacts.

Multiple sources active at time t can be represented by a vector s(t ) = [s1(t ), . . . , sK (t )]T , with K

being the number of sources (that are modelled). The contribution of each source k ∈ {1, . . . ,K }

to the measurement at each electrode m ∈ {1, . . . , M } is given by element amk of the mixing

matrix A ∈RM×K , which is also referred to as ‘forward model’ (and results from concatenating

the proportional factors a from all K sources). At the electrodes on the scalp, a linear mixture

of the sources can be observed according to

x(t ) = A s(t ) (2.2)

The summary potential resulting from remaining sources, which are arbitrarily not included

in the model, can be summarised as ‘noise’ term n(t ) (cf. the discussion in [Parra et al., 2005],

where it is highlighted that measurement noise has/is a source, too).

x(t ) = A s(t )+n(t ) (2.3)

2.3.2 Demixing the EEG

Activity originating in the cortex of the brain is of interest when recording EEG. Thus, demixing

the signals measured on the scalp would be desirable in order (a) to remove interfering

signals from non-cortical sources, and (b) to inspect the activity of each cortical source

separately. However, solving equation 2.2 for s(t) is difficult, because only the mixture x(t)

can be measured, whereas the mixing matrix A and the number of sources K are unknown

(and thus the dimensionality of A and of s(t )). As mentioned at the end of section 2.1, source

localisation methods tackle this problem by modelling the signal transmission in the head

(forward modelling) and by estimating the most probable source activity according to the

recorded data (backward modelling) [e.g. Darvas et al., 2004; Hallez et al., 2007; Grech et al.,

2008].

A different approach to the problem can be taken with data-driven methods. Independent

component analysis (ICA) and other blind source separation methods can separate mixed

sources, based on statistical properties of the recorded multivariate data alone. The source

activity can be reconstructed to some degree, without prior information about the physical

properties of the head. Inspecting the characteristics of the obtained signal components

makes it possible to focus on the cortical activity of interest, and to drop components that

are assumed to reflect non-cortical sources. ICA projects the multichannel EEG time se-

ries to a new coordinate system where the component time courses are as independent as

possible [Hyvärinen and Oja, 2000; Hyvärinen et al., 2001]. The scalp potentials x(t) are lin-

early transformed with a demixing matrix W ∈RM×K , which maximises the mutual statistical
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independence of the resulting components ŝ(t ).

ŝ(t ) = WT x(t ) (2.4)

The demixing matrix W can be computed with different algorithms and criteria for statistical

independence [Hyvärinen and Oja, 2000; Parra et al., 2005; Winkler, 2015, which also give a

good overview on ICA and its application to EEG or MEG data]. ICA methods can consider

(a) higher order statistics such as skewness or kurtosis and/or (b) the temporal structure

of the signals [cf. section 2.2.2 in Winkler, 2015, for a comparison of (a) and (b)]. The ICA

method TDSEP, which stands for temporal decorrelation source separation, decorrelates the

component time courses over time and is particularly suited for demixing EEG signals due

to the large temporal autocorrelation of the EEG [Ziehe and Müller, 1998; Ziehe et al., 2000].

The demixing matrix W is estimated by diagonalising ‘several time-delayed second-order

correlation matrices’, simultaneously and in approximation [Ziehe and Müller, 1998]. Non-

Gaussianity of the sources is not assumed, unlike ICA methods exploiting higher order statistics

[Hyvärinen and Oja, 2000].

Recommended preprocessing steps for ICA are highpass-filtering, centering (here it is as-

sumed that the data have zero mean), and whitening, i.e. decorrelation of the dimensions and

ensuring unity variance [cf. Hyvärinen and Oja, 2000; Winkler, 2015]. Assumptions made by

ICA are independence and stationarity of the sources, instantaneous linear mixing without

delay, and the condition that the number of available sensors equals the number of active

sources [Makeig et al., 1996a; Winkler, 2015]. Especially the equality condition for the number

of sources and sensors can be problematic [Makeig et al., 1996a]. Even if the assumptions are

not fully met, ICA can separate the mixture to some degree. In any case, ICA can not extract

more sources than sensors are available. ICA can be applied not only in the temporal domain

to signals that are resolved in time and space, like here, but also in the spatial domain, which

can be especially interesting for neurophysiological recordings with a high spatial resolution

such as fMRI data [Petersen et al., 2000]. In contrast to independent component analysis, prin-

cipal component analysis merely decorrelates the component time courses, using orthogonal

basis vectors, determined with an eigenvalue decomposition of the covariance matrix of the

data.

2.3.3 Recognising patterns in the EEG

Volitional or unconscious modulations of neural activity can be reflected as patterns in the

EEG. Recognising these patterns with methods from machine learning [Bishop, 2007; Duda

et al., 2012] is essential for BCI and mental state decoding [Blankertz et al., 2002; Lotte et al.,

2007; Blankertz et al., 2007; Tomioka and Müller, 2010; Blankertz et al., 2011; Lemm et al., 2011].

For instance, in an attention-based BCI speller, letters are flashed in a sequence (cf. figure 2.2

in section 2.2.1). The user silently selects a letter, mentally focuses on the chosen letter in the

flashed sequence and ignores other letters. Thereby, the neural responses to the letters are
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Figure 2.4: A spatio-temporal feature vector is extracted from a short segment of the continu-
ously recorded multichannel EEG. Each square represents the measurement at one time point
at one EEG electrode. The measured potentials are illustrated by the luminance of the squares.
Actual feature vectors can include more EEG electrodes and time points, and are, therefore,
of a higher dimensionality than in this exemplary illustration. The extracted feature vector
captures the neural activity in the interval of interest (e.g. the neural response to a stimulus
flashed at the beginning of the temporal window).

modulated. The BCI infers the silent selection of the user from corresponding patterns in the

EEG.

2.3.3.1 Extracting spatio-temporal features from the EEG

For pattern recognition, feature vectors are extracted from the continuous multichannel EEG

time series. In this dissertation, spatio-temporal features were inspected that capture the

temporal evolution of the EEG potentials measured at several electrode positions on the scalp

(cf. illustration in figure 2.4).

Spatio-temporal features can be obtained by cutting out short (< 1s) temporal windows

from the multichannel EEG following the events of interest (such as the letter ‘flashes’ in the

case of a BCI speller). The resulting multichannel EEG epochs indirectly reflect the spatio-

temporal dynamics of the underlying neural activity (cf. section 2.3.1). Each EEG epoch can

be represented by a feature vector x = [x1, . . . , x(M ·T )]T , corresponding to M EEG channels and

T time points sampled within the chosen temporal window (cf. figure 2.4). A collection of N

feature vectors can be gathered in a matrix X ∈R(M ·T )×N .

Optionally, the signals can be preprocessed, for instance by temporal filtering, by spatial

filtering (e.g. with ICA; cf. section 2.3.2), by baseline subtraction, and by rejecting epochs

contaminated with artefacts – while avoiding certain pitfalls [cf. Table 1 in Lemm et al., 2011].

2.3.3.2 Training a classifier with labelled feature vectors

A classifier can learn to recognise multivariate patterns in the EEG based on training data.

Subsequently, the trained classifier can be applied to feature vectors extracted online from the
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EEG, or from a separate test set (cf. section 2.3.3.6). Supervised classifier training requires a

collection of feature vectors that are labelled with the classes of the corresponding patterns.

Such training data can be collected in an initial calibration session, where the classes are

known, e.g. by asking the BCI user to focus on certain stimuli in a stimulus sequence or to

imagine a movement of either the left or the right hand. Binary classifications between two

patterns are made in most BCI applications. Also the selection among multiple options can be

simplified to binary decisions, by estimating for each option if it was either selected or not

(e.g. multiple letters in a ‘mental typewriter’). Feature vectors of two classes can be labelled

with y ∈ {−1,+1}. All N single labels can be gathered in a label vector y with N elements. A

supervised learning algorithm can learn the relation between features and labels based on the

training data set (X, y). The relation can be expressed in a classification function that can label

a feature vector x that was not seen yet, and whose class membership is unknown.

2.3.3.3 Linear discriminant analysis

Classifying the feature vectors with a linear function is computationally less expensive than

more complex non-linear classifiers, and has the advantage of good generalisation properties

[Müller et al., 2003; Lemm et al., 2011]. A linear binary classifier bisects the feature space with

a separating hyperplane, located where

wT x+b = 0 (2.5)

Orientation and location of the separating hyperplane in the feature space of D dimensions

are determined by the weight (or normal) vector w = [w1, . . . , wD ]T , which is perpendicular to

the hyperplane, and the bias b. The classification function determines the class membership

y ∈ {−1,+1} of a feature vector x according to

y = sgn
(
wT x+b

)
(2.6)

Thus, the classifier checks if x is located in either one or the other section of the feature

space separated by the hyperplane (cf. illustration in figure 2.5). The parameters w and b of

the classification function are tuned based on labelled training data. The intention of the

parameter tuning is to label feature vectors, that are not part of the training data and whose

classes are not known yet, as correct as possible.

Linear discriminant analysis (LDA) is one possibility to tune the parameters and assumes that

the feature vectors of the two classes are drawn from two multivariate Gaussian distributions,

with different known means, and a common known covariance matrix [Fisher, 1936; Duda

et al., 2012]. Fortunately, LDA can perform well even if the assumptions are not fully met

[Duda et al., 2012]. Obviously, means and covariance can merely be estimated, and the true

distributions are unknown. Moreover, the neural responses consist of different components

whose timing can be variable. Thus, variations around the empirical means can not be
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x1

x2

w

Figure 2.5: Illustration of a linear classifier in two dimensions. Each point represents a feature
vector extracted from the EEG (cf. figure 2.4). Blue and red points correspond to two brain
states, which can be discriminated here with a linear classification function (with weight
vector w). Note that only the combination of the two dimensions makes the separation
possible – the two classes of feature vectors would overlap, when projected on either one or
the other axis. In this example, the feature vectors are only two dimensional, in contrast to
actual EEG feature vectors that are usually high dimensional. Covariance estimates of the
distributions of the two classes are illustrated by ellipses and the mean estimates by larger
black dots [code was adapted from Pedregosa et al., 2011, for this illustration].

explained only by a superimposed background activity, modelled by the common covariance

matrix. In addition, the distributions can be non-stationary, e.g. when the background activity

changes over time. Besides, the quality of the electrode contacts can shift over time. Whether

and to what extent the assumptions are fulfilled is discussed in detail in Blankertz et al. [2011].

Based on estimates of the common covariance Σ̂c and of the class-wise means µ̂+1 and µ̂−1,

the weight vector w of the classification function is determined by

w = Σ̂−1
c

(
µ̂+1 − µ̂−1

)
(2.7)

The dimensionality of the EEG feature vectors is usually large, whereas only few samples

are available for training (cf. section 2.3.3.1). In this case, the covariance matrix may be not

invertible. As remedy, the pseudoinverse can be applied [Penrose, 1955]. For the estimation of

Σ̂c and µ̂+1 and µ̂−1, the training samples of the two classes are split up. The class-wise means

µ̂+1 and µ̂−1 are respectively estimated by

µ̂= 1
n

n∑
i=1

xi (2.8)
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The corresponding empirical covariance matrices Σ̂+1 and Σ̂−1 are estimated each with

Σ̂= 1
n−1

n∑
i=1

(
xi − µ̂

)(
xi − µ̂

)T (2.9)

which results in the common covariance matrix Σ̂c by averaging

Σ̂c = 1
2

(
Σ̂+1 + Σ̂−1

)
(2.10)

The bias b can be chosen in different ways, e.g. as midpoint between the projections of the

class-wise means on the normal vector w of the separating hyperplane.

b =−wT

(
µ̂+1 + µ̂−1

)
2

(2.11)

2.3.3.4 Regularisation of the covariance matrix

Feature vectors extracted from the EEG are variable and are characterised by a high dimen-

sionality in comparison to a limited number of available training samples. In this setting, a

classification function, that is optimised only with respect to a minimal number of wrong

classifications of the training samples may not generalise well to unseen test data. The result-

ing problem is referred to as overfitting to the training data. Linear classifiers can be mislead

especially by outliers (but are less prone to overfitting due to an inappropriate complexity

of the separating hyperplane like non-linear classifiers) [Lemm et al., 2011]. Moreover, the

empirical covariance systematically deviates from the true covariance when only a small set of

high-dimensional feature vectors is available. In this case, large eigenvalues of the covariance

matrix are estimated to be larger than they actually are, and small eigenvalues are believed

to be smaller than they are in truth [Blankertz et al., 2011]. As a consequence, the weight

vector w of the classification function is suboptimal (cf. equation 2.7). Regularized linear

discriminant analysis can compensate for this systematic deviation by shrinking or stretching

the eigenvalues of the covariance matrix towards the average eigenvalue [Friedman, 1989;

Tomioka and Müller, 2010].

Σ̃(γ) := (
1−γ

)
Σ̂+γνI (2.12)

The shrinkage parameter γ blends between the empirical covariance matrix Σ̂ ∈RD×D of the

D-dimensional feature vectors, and a spherical covariance matrix characterised by ν, which is

the average eigenvalue of Σ̂. I is the identity matrix. The optimal shrinkage parameter γ? can

be determined with cross-validation, which is computationally expensive. An alternative is

the straightforward computation with an analytic method [Ledoit and Wolf, 2004; Schäfer and

Strimmer, 2005], that increases the value of γ?, the more the covariance estimate varies from
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sample to sample [Blankertz et al., 2011].

γ? = N

(N −1)2

∑D
i , j=1 var 〈(Zn)i j | n = 1, . . . , N〉∑D

i , j=1 s2
i j

(2.13)

For the computation, the following definitions are made. The covariance matrix of the n-th

feature vector xn (from the set of N feature vectors; cf. section 2.3.3.1) is defined as

Zn = (
xn − µ̂

)(
xn − µ̂

)T (2.14)

with µ̂ as average feature vector. The element in row i and column j of the matrix Σ̂−νI is

denoted by si j .

2.3.3.5 Feature selection

The high dimensionality of the feature vectors in comparison to the limited number of avail-

able training samples has adverse effects on the predictive performance, as discussed in

section 2.3.3.4. Regularising the covariance matrix can mitigate this disadvantage. In addition,

the dimensionality of the feature vectors can be reduced. For instance, the feature vectors

can be projected to a space of a lower dimensionality with principal component analysis, or a

subset of particularly informative features can be chosen according to univariate statistical

measures (cf. section 2.3.3.7). Besides, the EEG epochs – that build the basis for the spatio-

temporal feature vectors – can be downsampled to a lower temporal frequency, or subsampled

over specific temporal intervals. In any case, feature selection risks that information is dropped

which is potentially valuable for the prediction. Finally, care has to be taken to select features

not on the basis of test data for a correct evaluation of the predictive performance [Lemm

et al., 2011, and section 2.3.3.6].

2.3.3.6 Evaluating the classification performance

A classification algorithm learns the relation between features and labels from training data.

However, the objective of classifier training is to label feature vectors that have not been part

of the training data as correctly as possible. Accordingly, it is useful to evaluate how well the

generalisation to previously unseen feature vectors is possible (or in other words: to estimate

the test error). For instance, the classification performance, that can be expected during the

online application of a BCI, can be determined already during the calibration phase. Moreover,

the classification performance of different classification algorithms and model parameters can

be compared according to independent test samples. Based on this information, the classifier

and parameter combination can be chosen that is best suited for the particular problem at

hand (cf. the discussion of ‘nested cross-validation’ below).

Information about the training error is less important (‘how well can the classes be separated
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in the training set?’) in contrast to the test error. Tuning the classifier only with the objective

to minimise the training error can lead to overfitting to the training samples and to a weak

performance on independent test data. This applies especially to cases with only few but

high-dimensional feature vectors available for training. Then, the training samples can be

classified perfectly by various classification functions, even if they turn out to be incapable for

the classification of test samples.

For the evaluation, the entire data set is split in two complementary partitions. The classifica-

tion function is trained with the set of labelled (y) feature vectors (X) from one partition and

applied to feature vectors from the other partition. Then, the estimated labels are compared

with the corresponding true labels. The discrepancy between estimated and true labels is

referred to as classification loss that can be quantified with different metrics, most simply

with the 0-1 indicator function, which is 0 if the estimated label and the true label coincide

and 1 otherwise. The losses corresponding to all test samples can be summarised as average

loss. The true positive rate measures the number of correct classifications of samples from

class y =+1 in relation to the number of all samples of the class y =+1. Vice versa, the false

positive rate quantifies how many samples were wrongly labelled as class y =+1 in relation to

the number of all samples of the class y =−1.

Estimated and true labels will coincide with some probability also by random guessing. There-

fore, the measured classification performance has to be compared with the chance level that

can be expected by random classification. The chance level of the classification loss depends

on the class ratio of the samples. In contrast, the area under the curve of the receiver operating

characteristic (‘AUC ROC’) is a metric that is insensitive to class imbalances [Fawcett, 2006].

The chance level of the AUC ROC is 0.5 irrespective of the ratio of the samples from the two

classes. Perfect classification is indicated by an AUC ROC of 1. The curve of the receiver oper-

ating characteristic is generated by varying the bias in the classification function (cf. equation

2.6), comparing the respective estimated and true labels, and by plotting the true positive rate

versus the respective false positive rate.

The classification loss, AUC ROC, or other metric varies with the particular set of samples used

for training and testing. This variability can be reduced by repeating training and testing with

different partitions of the entire data set, and by averaging the obtained results. This approach

is referred to as ‘cross-validation’ and can be accomplished in different ways [cf. Müller et al.,

2001; Lemm et al., 2011], such as

• n-fold cross-validation: the entire data set is split into n partitions, one respective

partition is held out for testing, while all other n−1 partitions are used for training. This

procedure is repeated until each partition is tested once (and can be combined with one

or more additional shuffles of the samples and corresponding new splits).

• Leave-one-out cross-validation: each sample is tested once, all other respective samples

serve for classifier training.
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• Block-wise cross-validation: applicable to experiments where single instances of a class

are repeated in succession in a block. All samples per experimental block are always

tested together and are never separated. Block-wise cross-validation circumvents the

risk to report a spurious classification success due to non-stationarities in the EEG,

which are unrelated to the class, but which have the effect that the samples are not

independent and identically distributed [cf. Lemm et al., 2011].

• Chronological cross-validation: tests are performed only on samples acquired after the

training samples (or, at least, on samples from a continuous time period).

• Nested cross-validation: the entire data are split in a training set A and a test set B (with

one of the just presented schemes). The training set A is again split in Aa and Ab , which

allows for training different models and/or parameter combinations on Aa , choosing

the optimal model and/or parameters on Ab , and an independent evaluation on B . The

scheme can be repeated with different assignments of the samples to Aa , Ab and B .

2.3.3.7 Characterising the discriminative information

Insights into the underlying reasons for the classification outcome can be gained by character-

ising the discriminative information. Moreover, the information can be used to select a subset

of particularly discriminative features (cf. section 2.3.3.5).

Computing the correlation between each feature and the class labels is a univariate approach

to the problem. In the case of spatio-temporal features, the correlation indicates where

the univariate discriminative information resides in space and time (“Which electrodes on

the scalp and which time points in the EEG epochs are informative?”). The point biserial

correlation coefficient r is the measure of choice, because the class labels y are dichotomous

for binary classifications, whereas the features are continuous values [Lev et al., 1949]. The

square of the coefficient (r 2) reflects the explained variance. The sign of the original coefficient

can be retained, when squaring (signed r 2).

r =
√

N+1N−1
N

(
f̄+1 − f̄−1

)
[ ∑

i∈{+1,−1}

Ni∑
j=1

(
fi j − f̄

)] 1
2

(2.15)

The collection X ∈ RD×N contains N feature vectors of D dimensions (cf. section 2.3.3.1).

The correlation between each single feature, i.e. each row in X, and the class labels in y is

computed separately. Observations per feature corresponding to the class y =+1 are given

by f+1 j , j = 1, . . . , N+1, and by f−1 j , j = 1, . . . , N−1 for the class y = −1. The number of class

members are given by N+1 and N−1 respectively, and the total number by N = N+1 +N−1. The

mean value of a feature is denoted by f̄ and the class-wise means by f̄+1 for y =+1, and by f̄−1

for y =−1.
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Multivariate classifiers can detect patterns distributed over different features in combina-

tion, which goes beyond the just introduced univariate correlation between single features

and labels. Interpretation of the multivariate discriminative information requires to trans-

form the classifier weights w (not interpretable straightforwardly) to a corresponding pattern

(interpretable), as detailed in [Haufe et al., 2014].

2.3.3.8 Other possibilities

While the EEG is primarily examined in the time domain in this dissertation, also the frequency

domain carries valuable information for BCI. Multivariate statistics can improve the access to

this information. An example is the common spatial pattern algorithm [cf. Fukunaga, 1972;

Koles et al., 1990; Ramoser et al., 2000; Blankertz et al., 2008] that determines spatial filters

which emphasise amplitude modulations in specific frequency bands, e.g. due to imagined

limb movements or due to workload changes. The source power comodulation framework

and its derivatives decompose the multichannel EEG signal under consideration of the neural

oscillations and of internal or external target variables [Dähne et al., 2014a,b; Dähne et al.,

2015].

2.4 Lessons learned

• The complex neural processes of the human brain were briefly introduced. Non-

invasive observation of the processes is possible only to a very limited extent.

• Brain-computer interfacing and mental state decoding have the objective to detect

traces of mental processes in brain signals in real-time.

• Machine learning methods can uncover information hidden in the brain signals, by

recognising multivariate patterns obscured by irrelevant activity and noise.

24



3 EEG-based usability assessment of
stereoscopic displays

3.1 Introduction

It is a critical success factor for any product that it can be used easily and with good comfort

and, therefore, new devices are extensively tested for their usability during the development

process. Neurotechnology can contribute to the usability evaluation by providing objective

measures of the demanded neural workload without a potential bias in the subjective judge-

ment. Moreover, usability impediments can be uncovered that are not consciously perceived

by test subjects. Previous studies demonstrated that analysis techniques based on the elec-

troencephalogram (EEG) can obtain a higher sensitivity than behavioural measures in the

assessment of audio quality [cf. Porbadnigk et al., 2010, 2013; Antons et al., 2012]. Similar

methods exist in the visual domain [e.g., Mustafa et al., 2012; Scholler et al., 2012; Arndt et al.,

2012; Lindemann et al., 2011; Acqualagna et al., 2015]. This relatively new approach draws

from the multivariate data analysis techniques that have been developed in brain-computer

interface (BCI) research (cf. chapter 2).

The specific problem addressed in this chapter is the neural processing effort imposed on the

viewer of 3D television by the shutter glasses. 3D TV creates a spatial impression by presenting

two images that are photographed from two slightly different perspectives separately to the

two eyes. Active shutter 3D TV is one of several methods to display 3D images and works as

follows. While the two stereo channels are shown alternately on the TV screen, the 3D shutter

glasses open and close correspondingly to guide each stereo channel only to the respective

eye.

Viewers can experience visual discomfort after prolonged watching of stereoscopic 3D content.

The vergence-accommodation conflict, crosstalk, flicker, misalignment of the stereo image

pair (such as a vertical disparity or a focus mismatch) or unnatural blur were suggested to

cause this insufficient ease of use [cf. Bando et al. 2012; Kooi and Toet 2004; Lambooij et al.

2007; Ukai and Howarth 2008; Tam et al. 2011; Woods 2010 for reviews about possible causes

for discomfort, and Huynh-Thu et al. 2010; Lambooij et al. 2011a,b about methods to assess

3D quality]. Visual fatigue caused by viewing stereoscopic stimuli was assessed in several
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recent physiological studies. The overall effect of 3D TV on visual fatigue was studied with

EEG comparing 3D versus 2D [e.g., Kim and Lee, 2011; Ting et al., 2011], before versus after

watching [Mun et al., 2012; Chen et al., 2013] and a short versus a long viewing duration [Li

et al., 2008]. The effects of the vergence-accommodation-conflict were investigated, which

can make stereoscopic images uncomfortable, and it was suggested that “EEG is likely to

enable the conception of adaptive systems, which could tune the stereoscopic experience

according to each viewer” [Frey et al., 2014]. With functional magnetic resonance imaging,

brain activity of subjects watching 3D and 2D films was compared [e.g., Gaebler et al., 2014]

and the relationship was investigated between binocular disparity, visual fatigue and the

visual system of the brain when watching stereoscopic stimuli [Kim et al., 2011, 2014; Jung

et al., 2013]. Furthermore, “viewer discomfort” was quantified “by measuring eye blinking

rates” [Cho and Kang, 2012].

Commercial shutter glass 3D systems typically run at 50 Hz to 60 Hz in order to avoid the

perception of an unpleasant flicker at lower frequencies, which are below the so called flicker

fusion threshold [De Lange Dzn, 1958; Shady et al., 2004]. Behavioural studies about visual

perception found that the flicker fusion threshold varies interindividually and depends on

physical properties of the stimulus, such as its brightness [Wilkins, 1995; Berman et al., 1991].

The binocular flicker fusion threshold is lower for an alternate (as it is the case for 3D shutter

glasses) than for a synchronous stimulation of the two eyes [Sherrington, 1904; Baker, 1970].

In classical neurophysiological studies, the eyes were stimulated with intermittent light and

brain activations were detected in the EEG that reflected the flickering light sources below

the flicker fusion threshold and beyond [Adrian and Matthews, 1934; Toman, 1941; Brundrett,

1974; Lyskov et al., 1998; Herrmann, 2001] – in single subjects up to 15 Hz above the flicker

fusion threshold [Porbadnigk et al., 2011]. In the electroretinogram (ERG), effects of flickering

stimuli were found up to 162 Hz [Berman et al., 1991], i.e. up to frequencies much higher

compared to the EEG. Apparently, the visual system consists of a series of temporal low-pass

filters [Shady et al., 2004] and, therefore, it is crucial to separate EEG from ERG signals.

Adding to these investigations, specifically the effect of 3D shutter glasses on neural processes

during image viewing was quantified in the study presented here. It was investigated to

which extent the visual cortex reflects the oscillations of the shutter glasses, in particular at

high frequencies, where a flicker is no longer consciously noted. This additional processing

effort is unnecessary and possibly causes visual fatigue on the long-term [Ukai and Howarth,

2008; Wilkins, 1995]. It was sought to determine the critical shutter frequency at which the

‘neural flicker’ vanishes, in order to give a recommendation to increase the shutter frequency

accordingly. In this way, neural workload and the risk of visual discomfort can potentially be

reduced and the usability be improved.

The following method to detect effects of 3D shutter glasses on the visual cortex is proposed.

Independent component analysis (ICA) and the selection of components according to their

spectral and topographic properties allows to focus on the visual cortex and to filter out

undesired artefacts from non-cortical sources, such as signals originating in the retina. Quan-
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tification of the impact of the shutter glasses is made possible by decoding the state of the

shutter from spatio-temporal EEG features. By employing this multivariate machine learning

technique on single-trial basis, the full spatio-temporal signature is exploited and allows to

better detect and quantify even subtle effects in the neural data than standard univariate

measures such as amplitude differences in class-wise averaged event-related potentials. This

applies also to mass-univariate approaches, which moreover have to be corrected for multiple

testing.

The remainder of the chapter is structured as follows. First, the experimental study is described

in the sections 3.2.1 to 3.2.5 and the proposed analysis method is detailed in section 3.2.6.

Then, the results of the study are presented in section 3.3, and, finally, discussed in section 3.4.

The chapter is based on the following publication:

Wenzel, M. A., Schultze-Kraft, R., Meinecke, F. C., Cardinaux, F., Kemp, T., Müller, K.-R., Curio,

G., and Blankertz, B. (2016d). EEG-based usability assessment of 3D shutter glasses. Journal of

Neural Engineering, 13(1):016003. doi: 10.1088/1741-2560/13/1/016003

© IOP Publishing. Reproduced with permission.

3.2 Material and methods

3.2.1 Experimental design

Twenty-three participants repeatedly viewed a single 2D image wearing 3D shutter glasses,

while EEG was recorded. The shutter frequency was varied at ten different frequencies that

had been selected based on the individual flicker fusion threshold (see sections 3.2.2 and 3.2.3).

The frequencies were presented twenty times each, in random order. After every stimulus

presentation for 10 s, the participants reported whether they had perceived a flicker or not

(see figure 3.1 for more details).

A 2D image was presented in order to avoid potential flaws in the 3D image itself as confound-

ing factor. In 2D images, the same image is presented to the left and to the right eye. In 3D

images, left and right eye image differ and are displayed alternately on the screen. Crosstalk is

a leakage between the stereo channels of 3D images [cf. Woods, 2010], leads to uncomfortable

“ghosting”, increases with the display refresh rate and hence with the shutter frequency and

thus would interfere with the investigation. By presenting a 2D image, the investigation was

narrowed down to the effect of the oscillations of the shutter glasses on the brain, while leaving

aside effects related to the display.

3.2.2 Selection of the shutter frequencies

Before the main experiment, ten shutter frequencies were selected for each participant, that

captured both the critical area around the individual flicker fusion threshold (see section 3.2.3)
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10 s 10 s

ft ft+1

......

Figure 3.1: Experimental design. In a single stimulus presentation, the image was presented
for 10 s, while the shutter glasses oscillated at ft . Then, the screen turned black and the
participants were requested to report with a key press if they had perceived a flicker or not.
Subsequently, the shutter frequency was changed, while the screen remained black for 2 s
more. Then, the next stimulus presentation with the new frequency ft+1 started and the image
reappeared. Note that the 2D image itself did not oscillate as it would be the case for a 3D
image. The image depicted a jungle (here represented by a green rectangle) and was chosen
because of the homogeneous distribution of spatial frequencies. [Figure from Wenzel et al.,
2016d, © IOP Publishing. Reproduced with permission. All rights reserved.]

as well as frequencies well below and above the threshold:

• Flicker fusion threshold: f4

• Subthreshold frequencies: f1,2,3 = 39 Hz+ i × ( f4 −39 Hz); i ∈ 0,0.4,0.7

• Suprathreshold frequencies: f5,6,...,10 = f4 + j × (97 Hz− f4); j ∈ 0.1,0.2,0.4,0.6,0.8,1

All frequencies were rounded to odd numbers for three reasons: (1) to avoid the 50 Hz power

line interference, (2) to avoid the overlap of a low frequency’s harmonic and a high frequency,

and (3) to limit the number of manual frequency settings that is restricted by the graphics

card.

3.2.3 Determination of the individual flicker fusion threshold

Initially, the individual flicker fusion threshold was determined with the staircase method [Levitt,

1971]. The stimulus was presented for 4 s at a test frequency f and the participants reported

whether they had perceived a flicker or not. In case of perception, the shutter frequency was

increased by 2 Hz, otherwise decreased by 2 Hz. Due to this rule, the frequency approaches the

flicker fusion threshold and traverses it repeatedly, while remaining close to it. The procedure

was repeated until the perception report had switched from ‘yes’ to ‘no’ (or vice versa) twenty

times. The initial shutter frequency was set to be 49 Hz (from prior knowledge this is close to

the flicker fusion threshold). To give a frame of reference, catch stimuli with either an easily

detectable flicker at a frequency of 41 Hz, or a non-detectable flicker at a frequency of 85 Hz
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Figure 3.2: Experimental setup. 1 Computer for experimental control and data acquisition. 2
LCD television. 3 Computer with infrared light emitter for shutter glasses control. 4 Cathode
ray tube monitor. 5 Shutter glasses with attached photodiodes. 6 EEG cap. 7 Amplifier and
analogue digital converter of EEG and photodiode signals. 8 Keyboard to enter if a flicker
was perceived or not. [Figure from Wenzel et al., 2016d, © IOP Publishing. Reproduced with
permission. All rights reserved.]

were presented with a chance of one in eight each. The flicker fusion threshold was obtained

by averaging all frequencies presented, discarding catch stimuli and stimuli before the first

‘yes’/‘no’ transition of the flicker report.

3.2.4 Data acquisition

Experiments with twenty-three participants with normal or corrected to normal vision and

no report of eye or neurological diseases were conducted in accordance with the local statu-

tory requirements. The subjects gave their informed written consent to participate in the

experiment. The age of the nine women and fourteen men ranged from 19 to 54 years and

was on average 29.2 ± 7.1 years (mean ± standard deviation). The participants gave their

informed written consent to take part in the study. EEG was recorded with 32 active electrodes

(‘actiCAP’, ‘BrainAmp’, ‘BrainVision Recorder’; Brain Products, Germany), the ground electrode

was located on the forehead and two electrodes on left and right mastoids served as references.

The electrode montage followed the international 10–20 system and had a high electrode

density over the visual cortex: Fp1, Fp2, F9, Fz, F10, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1,

CP2, CP6, P9, P7, P3, Pz, P4, P8, P10, PO7, PO3, POz, PO4, PO8, O1, Oz, O2. Photodiodes were

mounted behind the shutter glasses and luminance time-series were recorded to track the

timing of the opening and closing of the shutter.

3.2.5 Experimental setup

The experimental setup allowed for remotely adjusting the various shutter frequencies (see

figure 3.2): A computer displayed the image on a LCD TV monitor (101.7 cm x 57.2 cm, 1920 px
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x 1080 px; Bravia KDL-46HX805; Sony, Japan) and recorded the EEG and the flicker report

entered on the keyboard. A second computer controlled with an infrared emitter the 3D

shutter glasses (3D Vision Kit 2; NVIDIA, USA) and changed the shutter glasses’ frequency,

after receiving a command from the first computer.

The functioning of the shutter glasses was enabled by the program Stereoscopic Player (3dtv.at,

Austria) and the shutter glasses’ frequency was adjusted using the program QRes (Engelbrecht,

the Netherlands). Because the image was displayed in 2D and not in 3D, a synchronization

of shutter glasses and TV was not necessary. For mere technical reasons, a cathode ray tube

monitor (Iiyama, Japan) was connected to the second computer (because it allowed to adjust

arbitrary and high screen refresh rates and, thus, shutter frequencies).

Beforehand, the proper functioning of the shutter glasses was checked with an oscilloscope.

The close viewing distance of 1 m ensured that the TV screen covered a large part of the visual

field, such that the especially motion-sensitive peripheral areas of the retina were stimulated,

too [Hartmann et al., 1979]. The visual angle subtended by the screen was 54◦ in horizontal

and 32◦ in vertical direction. During the experiment, the windows of the room were darkened,

lights were switched off, and the screen of the recording computer was covered with a piece of

fabric in order to avoid light sources other than the display screen.

3.2.6 Data analysis

Neural correlates of the flicker were extracted from the EEG using ICA, and the impact of the

flicker on the brain was quantified for each frequency by decoding the state of the shutter

glasses from the neurophysiological data. The individual steps of the analysis procedure are

explained in the following:

Preprocessing. Raw data sampled at 1000 Hz were re-referenced to the linked mastoids. Slow

drifts were removed by subtracting a moving average over 1500 ms. The EEG data recorded

during epochs of stimuli presentation were assembled.

ICA to extract neural correlates of the flicker. Each cortical source is not measured in a single

EEG electrode, but exhibits a characteristic field pattern, which superimposes linearly and

leads to the complex dynamics of the measured EEG. In addition, the ERG and undesired

artefacts interfere with the signals that originate in the cortex. ICA is a statistical technique

for extracting both the source signals and the corresponding field patterns from the recorded

EEG data and thereby allows for separating visually evoked cortical signals that are of interest

here from all other cortical and non-cortical signals (cf. section 2.3.2).

The source separation algorithm TDSEP [Ziehe and Müller, 1998; Ziehe et al., 2000] was applied

along the temporal dimension of the multichannel EEG data of each participant, including

epochs of all shutter frequencies. Spectra were computed for each component, separately for

periods of each shutter frequency. One to five components were selected manually whose

spectra revealed prominent peaks corresponding to the shutter frequencies or their harmonics.
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left

right

Figure 3.3: Epochs of the class ‘left’ aligned to the opening of the left shutter glass, epochs
of the class ‘right’ aligned to the opening of the right shutter glass. The length of each epoch
corresponded to the respective wave length of the shutter. [Figure from Wenzel et al., 2016d, ©
IOP Publishing. Reproduced with permission. All rights reserved.]

Criterion for exclusion was if the field pattern had large weights at frontal electrode locations

such that the source could not be attributed to occipital or parietal brain areas where the

visual cortex is situated.

Quantification of the ‘neural flicker’ with classification. The impact of the flicker on the

brain was quantified for each shutter frequency f by classifying short epochs of the selected

independent component(s). The epochs were as long as the shutter wavelength T and were

aligned either to the shutter of the left or the right glass (see figure 3.3). In the next section, it

is explained how the epochs were extracted. Classifiers were trained with linear discriminant

analysis (LDA; cf. section 2.3.3.3) in order to discriminate the epochs of the two classes. The

classification performance was evaluated for every shutter frequency with a 10-fold cross-

validation (cf. section 2.3.3.6).

Notably, ICA was not used to increase classification performance, but to ensure that only

information from cortical sources is used, see the discussion in section 3.4.4 below.

Extraction of the samples of the two classes. The samples used for the classification detailed

in the previous section were extracted as follows: The selected independent component(s)

were split into time intervals recorded during single stimulus presentations. Markers were set

every half the shutter wavelength T /2 = 1/(2× f ), such that they were alternately aligned to

the left and the right shutter. Each shutter frequency was presented twenty times (compare

section 3.2.1). However, the phase of the shutter was different in these twenty repetitions.

Hence, the phase was set to the same value beforehand: for each stimulus presentation,

the delay between the signal of the left photodiode (see section 3.2.4) and a sine wave of

the respective frequency was determined by cross-correlation and the markers were shifted

according to the delay. After every marker, an epoch as long as the shutter wavelength T was

cut out (see figure 3.3) and all epochs from the twenty stimulus presentations of one frequency

were assembled.

Assessing the classification performance. The area under the curve (AUC) of the receiver

operating characteristic (ROC) was computed to assess the performance of the binary clas-

sification [Fawcett, 2006]. The AUC indicates the discriminability of the short epochs after

opening the left versus opening the right glass and reflects the effect of the shutter glasses on
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Table 3.1: The ten selected shutter frequencies averaged over all participants [Hz]. f4 corre-
sponds to the flicker fusion threshold. The small difference between f4 and the threshold
results from the rounding to odd numbers as motivated in section 3.2.2.

f1 f2 f3 f4 f5

39.0±0 42.2±1.2 44.7±2.3 47.7±3.2 52.5±2.5

f6 f7 f8 f9 f10

57.2±2.5 67.2±1.8 77.3±1.5 87.1±0.4 97.0±0

the neural processes. The more the AUC differs from the chance level of 0.5, the larger is the

impact of the oscillations of the shutter glasses on the brain.

Classification of the original EEG data without ICA. In an additional analysis, the ICA step was

skipped and the original EEG data were used for the classification to identify the effect of the

neural source extraction. All other analysis steps remained unchanged.

Event-related potentials ‘left’ versus ‘right’. In order to demonstrate that the extraction of

the source of the ‘neural flicker’ with ICA is essential for this analysis, bi-serial correlation

coefficients (cf. section 2.3.3.7) of EEG epochs and class labels (left=1, right=-1) were computed

for 39 Hz and for 97 Hz and averaged over the first and the second half of the epochs, i.e. [0,T /2]

and ]T /2,T ].

3.3 Results

3.3.1 Flicker fusion thresholds and shutter frequencies

The flicker fusion thresholds, determined before the main experiment, ranged from 42.6 Hz to

52.3 Hz with an over all average of 47.4 ± 3.0 Hz (mean ± standard deviation). The ten selected

shutter frequencies are presented in table 3.1.

3.3.2 ICA to extract neural correlates of the flicker

ICA revealed for twenty of the twenty-three participants at least one independent component

with prominent peaks in the power spectrum at frequencies corresponding to the shutter

frequencies used in the experiment. The peaks were found in particular at lower frequencies.

Components with this spectral property, typically had scalp patterns that showed the most

distinctive values over occipital and parietal scalp locations (see figure 3.4).

3.3.3 Quantification of the ‘neural flicker’ with classification

The results of the classification of selected independent components using LDA are depicted

in figure 3.5 (single participants) and in figure 3.6 (averages across participants). It can be
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Figure 3.4: The independent component selected as neural flicker correlate based on its
spectral and topographic properties (representative participant VPjau). Left: Colour-coded
scalp topography (nose up) of the component’s mixing weights. Large absolute values are
prominent at electrodes close to the visual cortex. Right: The component’s frequency spec-
trum was estimated separately for the ten shutter frequencies. Each arrow indicates with its
horizontal position the shutter frequency relevant for the spectrum of its colour. Spectral peaks
corresponded to the respective shutter frequency up to 67 Hz. The gaps between the arrows at
77 Hz, 87 Hz, and 97 Hz and the spectra illustrate the absence of corresponding spectral peaks.
[Figure from Wenzel et al., 2016d, © IOP Publishing. Reproduced with permission. All rights
reserved.]

observed that the AUC decreases with increasing shutter frequency. On average, the AUC was

significantly better than the chance level for frequencies up to f7 = 67.2±1.8 Hz (Z = 3.83,

p < 0.05, one-tailed Wilcoxon signed-rank test).

As a control analysis, a permutation test was performed which showed that the AUC was not

significantly better than chance when the labels were randomly shuffled (p > 0.05).

While the lengths of the epochs decreased with the shutter frequency, the number of available

samples increased. Hence, an additional classification procedure was performed using an

equal set size and epoch length for all frequencies. Although the AUC showed a small de-

crease in comparison to the procedure with a variable set size and epoch length, it remained

significantly above chance up to frequency level f7 (Z = 3.71, p < 0.05).

3.3.4 Behavioural data

The proportion of experimental stimuli for which the participants reported to have perceived

a flicker is represented by the grey line in figure 3.6. For frequencies higher than the flicker

fusion threshold ( f4), the flicker detection rate dropped rapidly and was merely 9.6 % at f6.
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Figure 3.5: Classification of short epochs of selected independent components. The AUC-
scores of the twenty participants are presented for the different shutter frequencies. Error
bars represent the standard deviation. Coloured discs indicate the individual flicker fusion
thresholds determined before the experiment. The individual classification performances
of neighbouring shutter frequencies were significantly correlated up to the pair of f7 and f8

(r = 0.49, p < 0.05). [Figure from Wenzel et al., 2016d, © IOP Publishing. Reproduced with
permission. All rights reserved.]

3.3.5 Classification of the original EEG data without ICA

In a parallel analysis, the ICA step was skipped and short epochs of the original EEG data were

classified. On average, classification better than chance was possible at all ten frequency levels

including f10 = 97 Hz (cf. figure 3.7 and also section 3.3.6 with figure 3.8).

3.3.6 Event-related potentials ‘left’ versus ‘right’

The difference between the two classes (‘left’ and ‘right’) was assessed with bi-serial correla-

tion coefficients of EEG epochs and class labels. The resulting values are displayed as scalp

topographies in figure 3.8. They illustrate that the two classes differed for shutter frequencies

of 39 Hz at occipital and parietal electrodes close to the visual cortex, but for 97 Hz at frontal

electrodes close to the eyes and the shutter glasses.

3.3.7 Critical frequencies 67 Hz and 77 Hz

Effects of the shutter glasses on the brain were detected up to f7 = 67.2±1.8 Hz in contrast

to higher shutter frequencies starting with f8 = 77.3±1.5 Hz (cf. section 3.3.3, figure 3.5 and
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Figure 3.6: Averages across participants. Black: Classification of short epochs of selected
independent components. AUC-scores were averaged across participants separately for each
shutter frequency level. Stars indicate AUC-scores significantly above chance level (p < 0.05,
one-tailed Wilcoxon signed-rank test). Classification results were significant up to frequency
level f7 = 67.2 Hz, and thus around 20 Hz above the flicker fusion threshold of 47.4 Hz. Grey:
Average flicker detection rates during the experiment, i.e. the proportions of experimental
stimuli for which the participants reported a flicker.
Error bars represent the standard error of the mean. Although the exact frequency values
depend on the participant-specific flicker fusion thresholds, error bars along the x-axis were
omitted due to the small variations (see table 3.1). [Figure from Wenzel et al., 2016d, © IOP
Publishing. Reproduced with permission. All rights reserved.]

figure 3.6). To inspect the individual sensitivities at these apparently critical frequencies

in more detail, the results of the single subjects for f7 were compared with those for f8 in

figure 3.9.

3.4 Discussion

3.4.1 Effects of the shutter glasses on the visual cortex and the human perception

Twenty of the twenty-three participants featured (an) independent component(s) with charac-

teristic spectral and topographic properties that can be considered as neural correlates of the

flicker, i.e. neural activity that reflects the oscillations of the shutter glasses and that probably

originates in the visual cortex (compare figure 3.4). By decoding the state of the shutter glasses

from these components, the impact of the shutter on the visual cortex was quantified.
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Figure 3.7: Classification results for the original EEG data without ICA. [Figure from Wenzel
et al., 2016d, © IOP Publishing. Reproduced with permission. All rights reserved.]
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Figure 3.8: Bi-serial correlation coefficients of EEG epochs and class labels (left=1, right=-1)
were computed for 39 Hz and for 97 Hz and averaged over the first and the second half of the
epochs, i.e. [0,T /2] and ]T /2,T ] (participant VPjav). [Figure from Wenzel et al., 2016d, © IOP
Publishing. Reproduced with permission. All rights reserved.]

Neural correlates of the flicker were traced up to a shutter frequency of 67.2 Hz, which is about

20 Hz over the perception threshold of the participants. For higher frequencies – the next

tested frequency was around 77.3 Hz – no ‘neural flicker’ was detected in the data. The results

suggest that at this frequency the neural processing of the flicker decreases significantly and

that an unnecessary workload can be avoided by setting the shutter to frequencies of 77.3 Hz

and above. The risk of visual discomfort could thereby be reduced and the usability of 3D

shutter glasses improved. The analysis of neurophysiological data proved to be more sensitive

than directly asking the participants, which shows the additional benefit of employing BCI-

based usability assessment tools on top of test person reports. This observation was made

before with respect to other application areas [e.g. Porbadnigk et al., 2011, and Kohlmorgen

et al., 2007]. Note that the class labels were derived from optical measurements of the left and

the right shutter, and not from behavioural responses of the participants, which could result

in a ‘systematic label noise’ [Porbadnigk et al., 2015].
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Figure 3.9: Individual classification results for the critical frequencies f7 (grey) and f8 (ma-
genta). Lines and shades illustrate the respective mean and standard deviation for all partic-
ipants. The dashed black lines indicate the 95 % confidence interval of a random classifier
estimated from the results of classifications with shuffled labels (cf. section 3.3.3). The results
of two participants for f8 (blue circles) were comparably high, they surpassed the upper confi-
dence limit of the random classifier and were close to the average result for the lower frequency
f7. [Figure from Wenzel et al., 2016d, © IOP Publishing. Reproduced with permission. All
rights reserved.]

The critical frequencies f7 = 67.2 Hz and f8 = 77.3 Hz were inspected in more detail (cf.

section 3.3.7 and figure 3.9). Two participants featured comparably high classification results

for f8 that were close to the average result for the lower frequency f7. This finding can either

be explained by mere random variations of the individual values around the population mean

or because there are indeed individual variations in the flicker sensitivity. The latter case

is supported by a significant correlation of the individual classification performances for

neighbouring shutter frequencies up to the pair of f7 and f8 (r = 0.49, p < 0.05; cf. figure 3.5).

Apparently, some persons are particularly sensitive and require higher shutter frequencies

than the majority to avoid the ‘neural flicker’. The found inter-subject variability matches the

reports in the literature [e.g., Brundrett, 1974; Lyskov et al., 1998; Porbadnigk et al., 2011].

3.4.2 Behavioural flicker fusion threshold

When the frequency of an oscillating light source crosses the flicker fusion threshold, the

perception passes from ‘flickering’ to ‘continuous’ or vice versa. The threshold was determined

to be 47.4 ± 3.0 Hz with the staircase method that estimates the stimulus level where the
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detection rate is 0.5 [Levitt, 1971]. However, the average rate of behavioural report at f4 was

with 0.71 higher than the expected value of 0.5, which shows that the participants were more

sensitive towards the detection of the flicker during the main experiment, as compared to the

prior determination of the flicker fusion threshold. Nevertheless, the difference is negligible,

because a detection rate of 0.5 was reached approximately at 49.8 Hz (interpolation between

f4 and f5) and at f5, ...,10 the detection rates were significantly below 0.5 (Z =−3.51, p < 0.05,

one-tailed Wilcoxon signed-rank test).

3.4.3 Why ICA is essential for this analysis

The selection of the source of the ‘neural flicker’ with ICA is a crucial step in the proposed

analysis procedure, even though skipping the ICA step leads to significant classification results

at all ten frequency levels including f8,9,10 (cf. section 3.3.5 and figure 3.7). The correlation of

EEG epochs and class labels (see figure 3.8) clearly demonstrates that classifying the original

EEG data would not reflect cortical processes and cannot be regarded as a measure for the

‘neural flicker’. At high shutter frequencies, signals at frontal electrodes that probably originate

in the retina or in the shutter electronics are informative about the classes. Electroretino-

graphic investigations have shown that the human retina can reproduce a rhythm of up to

162 Hz [Berman et al., 1991]. Using ICA, it was possible to specifically extract those EEG

components that could be attributed to neural activity in the visual cortex, and discard signals

originating at other locations (cf. figure 3.4).

3.4.4 Assumption and limitation

The assumption was made that the neural sources that process the flicker remain the same for

all shutter frequencies. Thus, ICA was applied to the whole data set of a participant containing

all ten shutter frequencies and before the cross-validation procedures – even though the latter

violates the complete separation of test and training set [cf. Lemm et al., 2011]. Again, it

should be pointed out that ICA was used to restrict the analysis to cortical sources and not to

improve the classification performance. Quite the contrary, classifiability diminished when

ICA was used. A limitation of the presented approach is that the classification is only based on

lateralised effects (left vs. right eye signals).

3.4.5 Relation between neurally-detectable flicker and long-term user satisfac-
tion

A basic question that concerns all investigations, where neurophysiological techniques achieved

results more sensitive than behavioural methods, is: does the detectable cortical effect have a

relevant impact on the problem addressed? Therefore, it is important to investigate the effect

of an increased shutter glasses frequency on the prevalence of visual discomfort and on the

long-term user satisfaction in future studies. While a shutter frequency as high as possible is
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desirable to avoid unnecessary neural workload, possible side-effects of an increased shutter

frequency, e.g., stronger crosstalk or a higher price have to be taken into account to find the

frequency with the optimal trade-off.

3.4.6 Conclusion

The problem was addressed of the neural processing load imposed on the viewer of stereo-

scopic television by the shutter glasses. It was demonstrated that methods from BCI can

contribute to the usability assessment by providing objective measures of the neural effort.

Usability impediments were revealed that were not detected by the test subjects because of the

limits of human perception. Finally, the assessment made it possible to recommend changes

to optimise the usability and, ideally, the long-term user satisfaction.

3.5 Lessons learned

• BCI methods provided an objective and particularly sensitive measure of the work-

load that a device demands from the brain of the user. Usability flaws were discov-

ered that test persons could not notice due to the limits of human perception.

• The neural processing effort imposed by shutter glasses on the viewer of stereo-

scopic television was quantified as a function of the shutter frequency. At low

shutter frequencies, an annoying and fatiguing flicker is perceived, which vanishes

above a critical frequency. For optimal viewing comfort, shutter glasses run at a

frequency above the perception threshold.

• The impact of the shutter glasses on the brain was quantified with multivariate data

analysis techniques applied to the EEG. Independent component analysis made

it possible to focus on the visual cortex. The effect on the brain was quantified by

decoding the state of the shutter from the EEG with linear discriminant analysis.

• Effects of the shutter glasses on the brain were detected also for common shutter

frequencies, and up to about 20 Hz above the flicker perception threshold.

• Increasing the shutter frequency can potentially avoid an imperceptible neural

strain and prevent visual fatigue.
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4 Real-time inference of word relevance
from EEG and eye gaze

4.1 Introduction

Electromagnetic fields of the brain and eye movements may carry information about the

subjective relevance of the single items present in the visual surrounding. This implicit

information can potentially be decoded in real-time in order to infer the current interest of

the individual person. Previous research on brain-computer interfacing (BCI) has shown that

it can be estimated which stimuli aroused the interest, when a stimulus sequence is viewed –

by detecting multivariate patterns in non-invasive recordings of the brain activity.

However, familiar stimuli are typically presented again and again in BCI, and can therefore be

easily recognised, regardless of whether they are letters, pictures of faces, geometric shapes

or merely colours [e.g. Farwell and Donchin, 1988; Kaufmann et al., 2011; Treder et al., 2011;

Acqualagna et al., 2013; Acqualagna and Blankertz, 2013; Seoane et al., 2015]. In contrast, the

regular visual environment contains items that have to be interpreted with respect to their

meaning, most notably words in the case of written text. The interpretation of the semantics

goes beyond the simple recognition of a previously known letter, picture, or shape that is

repeatedly flashed.

Accordingly, the question was addressed if the relevance inference from the electroencephalo-

gram (EEG) can be also applied in settings where semantic content has to be interpreted.

Readers looked for words belonging to one out of five semantic categories, while a stream of

words passed at different locations on the screen (cf. figure 4.1). The words were dynamically

replaced (when they had been fixated with the eye gaze) by new words fading in. It was

estimated in real-time during the experiment which words and thus which semantic category

interested the reader, based on information implicitly contained in the EEG and eye tracking

signals. The estimates were visualised for demonstration purposes on the edge of the screen,

and were updated as soon as a new word had been read. In this way, the reader could learn

about the current estimates (for each of the five categories), and could observe how evidence

was accumulated over time. Prior to the online inference (cf. section 4.2.2), a classifier had to

be trained to estimate the word relevance based on the signals (cf. section 4.2.1).
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Figure 4.1: Looking for words (left) related to one out of five semantic categories (right). The
current estimates are represented by the luminances of the five category names. [Figure from
Wenzel et al., 2017, © IOP Publishing. Reproduced with permission. All rights reserved.]

In contrast to recent investigations with similar objectives [Geuze et al., 2013, 2014; Eugster

et al., 2014, 2016], several words were displayed at the same time on the screen. The par-

ticipants could scan the words without restrictions on the eye movements. Neural activity

was related with eye tracking to the respective word looked at, like in studies on reading [e.g.

Baccino and Manunta, 2005; Dimigen et al., 2011, 2012; Kliegl et al., 2012; Kornrumpf et al.,

2016] and on visual search, which have shown that sought-for items evoke a detectable neural

response when they are fixated with the eye gaze [cf. Kamienkowski et al., 2012; Brouwer

et al., 2013; Kaunitz et al., 2014; Kauppi et al., 2015; Golenia et al., 2015; Wenzel et al., 2016c;

Ušćumlić and Blankertz, 2016; Finke et al., 2016].

The subjective relevance of the visual surrounding can be mapped with this approach by

assigning relevance scores to the single items in view. The obtained information can potentially

be exploited for the optimisation of websites or stores, or for the usability evaluation of

aircraft or car cockpits. Besides, BCI-based relevance maps make it possible to conduct

new kinds of experiments in basic research. Furthermore, the obtained information can be

aggregated in order to estimate the current interest of the individual person. The resulting

dynamic user interest profile would render possible novel types of adaptive software and

personalised services, that enrich the interaction between human and computer by adding

implicit information to the explicit interaction [cf. Eugster et al., 2014, 2016; Kauppi et al.,

2015; Finke et al., 2016; Pohlmeyer et al., 2011; Zander and Kothe, 2011; Ušćumlić et al., 2013;

Jangraw et al., 2014; Blankertz et al., 2016]. Less obtrusive and more convenient EEG systems

with sufficient signal quality are prerequisite for the application in practice [cf. Nikulin et al.,
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2010; Looney et al., 2014; Debener et al., 2015; Norton et al., 2015; Goverdovsky et al., 2016a,b].

The chapter is based on the following publication.

Wenzel, M. A., Bogojeski, M., and Blankertz, B. (2017). Real-time inference of word relevance

from electroencephalogram and eye gaze. Journal of Neural Engineering. doi: 10.1088/1741-

2552/aa7590

© IOP Publishing. Reproduced with permission.

4.2 Materials and methods

4.2.1 Calibration

Labelled EEG and eye tracking data were recorded in order to train a classifier that could

predict the relevance of the single words in the subsequent online phase (cf. section 4.2.2).

The participants selected one out of five given semantic categories. Subsequently, twenty-

two words were drawn randomly from the five categories, with a contribution of 20 % per

category on average. Words faded in on the screen at predefined positions in random order (cf.

figure 4.1), and were faded out when they had been fixated with the eye gaze (with a delay of

one second).

Examples of the categories and words are:

• Astronomy: orbit, galaxy, universe, meteorite.

• Time: future, seconds, hourglass, minute.

• Furniture: bathtub, closet, stool, bed.

• Transportation: taxi, canoe, tractor, helicopter.

• Visual art: palette, pencil, sculpture, crayon.

The participants were requested to remember the words that belonged to the chosen category.

When the participants had looked at all words, they were asked to recall the relevant words

from their memory. For this purpose, the words reappeared truncated (to about 40 % of the

original number of letters) at shuffled positions. Relevant words had to be selected with the

mouse. Subsequently, the accuracy of the recall was checked and reported. This procedure

helped to involve the participants in the task, but avoided interference of motor activity during

the acquisition of the EEG data.

For the study, a corpus had been generated of seventeen semantic categories with twenty

words each, both in English and German depending on the language skills of the participant (cf.

section 4.3.1). The seventeen categories were: animals, furniture, transportation, body parts,

family, food, literature, country names, astronomy, music, finance, buildings and structures,
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healthcare, sports, time, clothes, and visual art. The calibration phase consisted in seventeen

blocks with four repetitions each. At the beginning of each block, a semantic category (out

of five options) could be chosen. The categories offered for selection changed during the

course of the experiment, such that each of the seventeen categories could serve once as

category of interest. During the recording, it was tracked which category had been chosen by

the participant and thus which single words were relevant.

Feature vectors were extracted from the recorded EEG and eye tracking data with the intention

to capture processes related to word reading and categorisation (details below). The feature

vectors were labelled depending on whether the word fixated at this moment was relevant

or irrelevant to the chosen category of interest. Subsequently, a classification function was

trained with regularized linear discriminant analysis [Friedman, 1989] to discriminate the

feature vectors of the ‘relevant’ and the ‘irrelevant’ class [Blankertz et al., 2011]. The shrink-

age parameter was calculated with an analytic method [Ledoit and Wolf, 2004; Schäfer and

Strimmer, 2005].

4.2.1.1 Feature extraction

The multi-channel EEG signal was re-referenced to the linked mastoids and low-pass filtered

(with a second order Chebyshev filter; 42 Hz pass-band, 49 Hz stop-band). The continuous

signal was segmented by extracting the interval from 100 ms to 800 ms after the onset of

every eye fixation. Slow fluctuations in the signal were removed by baseline correction (i.e.

by subtracting the mean of the signal within the first 50 ms after fixation onset from each

epoch). The signal was downsampled from the original 1000 Hz to 20 Hz in order to decrease

the dimensionality of the feature vectors to be obtained (14 values per channel). A low dimen-

sionality in comparison to the number of available samples is beneficial for the classification

performance, because the risk of overfitting to the training data is reduced [Blankertz et al.,

2011]. The multi-channel signal was vectorised by concatenating the values measured at the

62 scalp EEG channels at the 14 time points resulting in a 62∗14 = 868 dimensional vector per

epoch. The fixation duration was concatenated as additional feature to the EEG feature vector.

Note that other eye tracking features, e.g. the gaze velocity, could not be exploited, because

they are not provided in real-time by the application programming interface of the device,

and that two additional EEG electrodes, which were not situated on the scalp and served for

re-referencing and electrooculography, were excluded from the set of 64 electrodes in total.

4.2.2 Online prediction

The subjective relevance of words to a semantic category was inferred online with the previ-

ously trained classifier. Again, the participants read words and were asked to look for words

related to one out of five semantic categories. The words faded in and out similar to the

calibration phase but vacant positions were replaced by new words fading in. In this way, all
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hundred words of the five involved categories were shown. Usually, several words were present

on the screen at the same time. The classifier predicted online for each fixated word if it was

relevant to the category of interest or not, based on the incoming EEG and eye tracking data.

The class membership probability estimates for the single words were assigned to the corre-

sponding semantic category and all estimates obtained so far were averaged per category. The

resulting five-dimensional vector indicated how likely each category was of interest. The vector

was normalised to unit length, determined the font size and luminance of the visualisation

of the five category names on the right side of the screen (cf. figure 4.1), and was updated

when a new word had been fixated with the eye gaze. It was initialised with neutral values for

the initial period when only few words had been read and not every category was captured.

The participants were informed about the predictive mechanism underlying the adaptive

visualisation in order to foster task engagement. A recall task like in the calibration phase (cf.

section 4.2.1) was not included in view of the objective to exploit only implicit information.

The procedure was repeated seventeen times with new combinations of five categories. At the

beginning of each repetition, the participants indicated the selected category of interest for

later validation, and the previously collected relevance estimates were cleared.

Remark for the sake of completeness: the classifier output was dichotomised to zero or one

in the actual visualisation during the experiment. In contrast, class membership probability

estimates ranging between zero and one were employed for the figures presented here.

4.2.3 Experimental setup

An apparatus was developed that allowed for making inferences from combined EEG and eye

tracking data in real-time and displaying this information in an adaptive graphic visualisation.

4.2.3.1 Key constituents of the system

The system comprised an EEG device, an eye tracker, two computers and a screen that the test

person was looking at (cf. figure 4.2). EEG was recorded with 64 active electrodes arranged

according to the international 10–20 system (ActiCap, BrainAmp, BrainProducts, Munich,

Germany; sampling frequency of 1000 Hz). The ground electrode was placed on the forehead

and electrodes at the linked mastoids served as references. An eye tracker, connected to a com-

puter (PC 1), detected eye fixations in real-time (RED 250, iView X, SensoMotoric Instruments,

Teltow, Germany; sampling frequency of 250 Hz). A second computer (PC 2) acquired raw

signals from the EEG device (with the software BrainVision Recorder, BrainProducts, Munich,

Germany), and obtained preprocessed eye tracking data from PC 1 over network using the

iView X API and a custom server written in Python 2.7 (https://python.org). EEG and eye

gaze data were then streamed to in-house software written within the framework of the BBCI-

Toolbox (https://github.com/bbci/bbci_public) running in Matlab 2014b (MathWorks, Natick,

USA). The graphic visualisation was computed with custom software written in Processing 3
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Figure 4.2: The apparatus allows for making inferences from EEG and eye tracking signals
in real-time and displaying the obtained information in an adaptive graphic visualisation.
[Figure from Wenzel et al., 2017, © IOP Publishing. Reproduced with permission. All rights
reserved.]

(https://processing.org) and displayed on the screen (60 Hz, 1680 x 1050 pixel, 47.2 cm x

29.6 cm).

4.2.3.2 Synchronisation of EEG and eye tracking signals

When the data acquisition started, the Python server sent a sync-trigger into the EEG signal and

transmitted the current time stamp of the eye tracker to the BBCI-Toolbox. These simultaneous

markers allowed for synchronising the two measurement modalities.

4.2.3.3 Workflow of the system

The experiment included several phases, which could be switched by the visualisation software

with messages sent over a TCP connection. During the calibration phase, EEG and eye tracking

data were recorded to train a model (cf. section 4.2.1) that was supposed to predict the

relevance of each word read by the subject in the subsequent online phase (cf. section 4.2.2).

Feature vectors were extracted from the ongoing EEG and eye tracking signals, every time

the eye tracker had detected a new eye fixation (cf. section 4.2.1). The visualisation software

checked if the eye fixation was situated on a word displayed on the screen, according to the

received x-y-coordinates. During the calibration phase, the feature vectors were labelled,

depending on whether the word belonged to the category of interest or not. Labels and feature

vectors were matched according to a unique identifier (ID) of each eye fixation. During the
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online phase, the graphic visualisation adapted according to the incoming predictions. The

architecture of the system is modular and the visualisation module can easily be replaced

by other software for novel applications that depend on making real-time inferences from

EEG and eye tracking signals. The communication protocol that enables the visualisation

module to interact with the other parts of the system offers three types of interactions. The

visualisation module can (a) switch between calibration and online phase and an initial

adjustment of the eye tracker, (b) can receive relevance estimates from the BBCI-Toolbox, and

(c) can mark events and stop data acquisition by sending markers into the EEG.

4.2.4 Data acquisition

Experiments with three female and twelve male participants with normal or corrected to

normal vision, no report of eye or neurological diseases and ages ranging from 21 to 40

years (median of 28 years) were conducted, while EEG, eye tracking and behavioural data

were recorded. Ten people performed the experiment in their mother tongue of German

and five people with other first languages accomplished the task in English, which was not

their mother tongue. The subjects gave their informed written consent (a) to participate in

the experiment and (b) to the publication of the recorded data in anonymous form without

personal information. The study was approved by the ethics committee of the Department of

Psychology and Ergonomics of the Technische Universität Berlin (reference BL_03_20150109).

4.3 Results

4.3.1 Calibration

The participants recalled the words that were relevant to the category of interest with an

average accuracy of 80 %, ranging from 72 % to 84 % in the individuals. Classifiers were trained

individually for each participant to detect relevant words with EEG and eye tracking data

recorded during the calibration phase (cf. section 4.2.1). In the subsequent online phase, the

classifiers were applied to the data incoming in real-time (cf. section 4.2.2).

Additionally, the performance of the classifiers was assessed in ten-fold cross-validations using

only the data recorded during the calibration phase. The area under the curve (AUC) of the

receiver operating characteristic served as performance metric [Fawcett, 2006]. An AUC of 0.63

± 0.01 (mean ± standard error of the mean) was measured for the single-trial classifications

with EEG feature vectors from the calibration phase, which was significantly better than the

chance level of 0.5 (Z = 3.37, p < 0.05). Adding the fixation duration as extra feature did not

improve the results, the AUC remained at the same level (significantly better than chance;

Z = 3.37, p < 0.05). When only the fixation duration served as feature, an AUC of 0.51 ±0.01

was obtained, which was not significantly better than chance (Z = 1.05, p > 0.05, Bonferroni

corrected for the three Wilcoxon signed rank tests on the population level).
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Figure 4.3: Patterns in the EEG differed when the word read was relevant to the category of
interest or irrelevant (calibration phase). Top: EEG time series for relevant and irrelevant
words (for all channels sorted from front to back and from left to right, and for two selected
channels). Centre: Difference. Bottom: Topographies of the difference. [Figure from Wenzel
et al., 2017, © IOP Publishing. Reproduced with permission. All rights reserved.]

Furthermore, the EEG patterns corresponding to relevant and irrelevant words were charac-

terised in order to understand on which processes the classification success was based on

(cf. figure 4.3). The EEG signal was inspected that followed the landing of the eye gaze on the

words. The onset of the eye fixation was situated at t = 0 ms. Early components (until about

150 ms) were related to the saccade offset (respectively the fixation onset) and occurred equally

in both conditions. Later components differed depending on whether the word was relevant

or irrelevant. Relevant words evoked a left lateralised posterior negativity in comparison to

irrelevant words and a positivity that shifted from fronto-central to parietal sites on both

hemispheres. For this analysis, all EEG epochs of all participants were averaged separately for

relevant and irrelevant words (cf. figure 4.3, top) and the difference between the two classes

was assessed with signed squared biserial correlation coefficients (cf. figure 4.3, centre and

bottom). Each time point measured at each EEG electrode was treated separately in order to

characterise the spatio-temporal evolution. A significance threshold was not applied in order

to show also subtle differences that can potentially be exploited by a multivariate classifier.

Relevant words were fixated for about 227.4 ms ± 8.7 ms and irrelevant words for about

216.8 ms ± 7.8 ms during calibration (mean ± standard error of the mean). A paired t-test
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phase (combined EEG and gaze features). Tubes indicate the standard error of the mean.
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detected a significant difference between the two classes on the population level; t(14) =
4.3, p < 0.05.

4.3.2 Online prediction

The previously trained classifiers were applied during the online phase to the incoming data

and it was predicted for each word if it was relevant to the category of interest or not. The class

membership probability estimates were averaged per semantic category and the obtained

five-dimensional vector was normalised to unit length (cf. section 4.2.2). Figure 4.4 displays

the evolution of the resulting scores corresponding to the category of interest and to the four

other categories, which were sorted according to the respective final score (combined EEG and

gaze features; average over all participants). With more words being read by the participant,

the score of the category of interest grew in comparison to the other categories. Note that the

splitting of the four ‘other’ categories is a selection effect.

Figure 4.5 shows the evolution of the rank of the category of interest among the five semantic

categories (combined EEG and gaze features; average over all participants). The category of
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interest started with an average rank of three and moved towards the top of the ranking with

more words being read (note the direction of the y-axis).

Table 4.1 lists the average final rank of the category of interest for each single participant

(i.e. when all hundred words per repetition had been read; cf. section 4.2.2). The predictions

were based on feature vectors including either the EEG data or the fixation duration, or a

combination of the two measurement modalities (columns in the table). The final rank was

below three in every single participant when only EEG features were used and even smaller

when the fixation duration was added as extra feature. Deploying the fixation duration as

single feature resulted in a comparably large final rank. On the population level, the final rank

was significantly below three for all feature types (ZEEG&Gaze = −3.38, ZEEG = −3.38, ZGaze =
−2.41, p < 0.05, Bonferroni corrected for the three Wilcoxon signed rank tests).

Figure 4.6 displays the EEG patterns during the online phase for relevant and irrelevant words.

The spatio-temporal patterns evolve in the online phase (cf. figure 4.6) similar to the calibration

phase (cf. figure 4.3) until about 500 ms. Relevant words evoked a posterior negativity and

a central positivity in comparison to irrelevant words. In the online phase, a negativity on

the left hemisphere started at 500 ms, in contrast to the calibration phase where the central

positivity continued.

Relevant words were fixated for about 239.5 ms ± 12.4 ms and irrelevant words for about

208.2 ms ± 7.0 ms during the online phase (mean ± standard error of the mean). The two

classes differed significantly on the population level according to a paired t-test; t(14) =
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Table 4.1: Final ranks of the online phase when respectively hundred words had been read
(averages over the seventeen repetitions per participant, as well as over all participants). The
combined and the single modalities are listed separately.

Participant EEG & Gaze EEG Gaze
1 1.29 1.35 2.59
2 1.12 1.12 1.18
3 1.53 1.65 4.59
4 1.53 1.47 2.00
5 2.12 2.47 2.24
6 1.76 1.76 2.53
7 1.06 1.12 1.76
8 1.53 1.53 2.41
9 1.47 1.47 2.76

10 1.65 1.65 2.00
11 1.88 1.88 3.29
12 1.76 2.06 1.47
13 2.00 2.00 1.88
14 1.65 1.71 2.82
15 1.88 1.94 1.53

Mean ± SEM 1.62 ± 0.08 1.68 ± 0.09 2.34 ± 0.22

4.7, p < 0.05.

4.4 Discussion

4.4.1 Calibration

All participants complied with the task instructions because they recalled the words that

were relevant to the selected semantic category with an accuracy of at least 72 % (giving

random answers would result in an expected accuracy of about 20 % due to the five possible

categories). EEG and eye tracking signals recorded during the calibration phase were used

to train classifiers (individually for each participant) to discriminate relevant words from

irrelevant words.

The trained EEG-based classifiers were able to generalise to unseen data, because the cross-

validation results with calibration data were significantly better than it can be expected from

random guessing (cf. section 4.3.1; please note that the AUC served as straightforward metric

here, in contrast to the online phase where the ranking of the categories provided a more

descriptive metric). Classification was apparently possible because relevant words evoked a

different neural response than irrelevant words (cf. section 4.3.1 and figure 4.3). In previous re-

search on brain-computer interfacing, the stimuli of interest evoked a similar neural response

with a left lateralised negativity and a central positivity (cf. figure 2, right panel, in Treder et al.,

2011), even though the stimuli used in the cited study were not words but geometric shapes
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Figure 4.6: EEG patterns during the online phase. Top: EEG time series for relevant and
irrelevant words (for all and for two selected channels). Centre: Difference. Bottom: Topogra-
phies of the difference. [Figure from Wenzel et al., 2017, © IOP Publishing. Reproduced with
permission. All rights reserved.]

flashed on the screen while the eyes did not move. Hence, it was shown with the present

investigation that the methods developed for brain-computer interfacing can be employed for

inferring the relevance of words under unrestricted viewing conditions.

Concatenating the fixation duration to the feature vectors did not improve the predictive

performance. Relevant words could not be detected in single-trial, when the fixation duration

served as only feature for the classifications (using data from the calibration phase). Neverthe-

less, a small but significant difference of the fixation duration between the two classes was

found on average (cf. section 4.3.1).

4.4.2 Online prediction

It was predicted in real-time which words were relevant for the reader, who was looking for

words related to a semantic category of interest. The five categories were ranked according to

the normalised five-dimensional average score vector. Perfect prediction of the category of

interest would have resulted in a score of 1 and a rank of 1 for the category of interest. If each

word was classified randomly as relevant or irrelevant, an average score of 0.2 and an average
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rank of 3 can be expected. The score and the rank of the category of interest started at this

chance level, as it can be assumed. With more words being read, the score grew and the rank

decreased (cf. figures 4.4 and 4.5). Apparently, evidence could be accumulated by integrating

information over the incoming single predictions.

The combination of EEG and fixation duration resulted in the best predictive performance

(cf. table 4.1). The gaze did not contribute much to the relevance estimate because features

from the EEG alone were more informative than when the fixation duration was used as single

feature (while it has to be considered that information about the eye gaze is required for the

EEG feature extraction, because the EEG signals had to be related to the corresponding words

looked at; cf. section 4.2.1).

The successful transfer of the classifiers from the calibration phase to the online phase is

reflected in the underlying data. The EEG patterns evolved similarly in the calibration and

in the online phase up to about 500 ms after fixation onset (cf. figures 4.3 and 4.6). The later

discrepancy is presumably a result of the different tasks, because the relevant words had to be

memorised only in the calibration phase (cf. sections 4.2.1 and 4.2.2).

4.4.3 Conclusion

The study demonstrates that the subjective relevance of words for a reader can be inferred

from EEG and eye gaze in real-time. The methods employed are rooted in research on brain-

computer interfacing based on event-related potentials, where stimulus recognition is usually

sufficient, and where sequences of single stimuli are typically flashed. In contrast, the investi-

gation presented here is characterised by the requirement to interpret words with respect to

their semantics, and by the presentation of several words at the same time. Neural activity was

related with eye tracking to the respective word read. The typically employed counting task

was avoided because it would not be sensible for implicit relevance detection [cf. Wenzel et al.,

2016b]. The task instruction during the online phase was merely to look for (and not to count)

words relevant to the category of interest. Task engagement was additionally fostered by

explaining the predictive mechanism underlying the adaptive visualisation. The experiment

exploits a situation that allows for integrating implicit information across several single words.

In a next step, the methods could be applied to a situation where sentences or entire texts

are being read, which will entail a number of new challenges for the data analysis. While this

study serves as a proof-of-principle, the methods can potentially be used in the future for

mapping the subjective relevance of the field of view in different applications (cf. section 4.1).

In summary, this study represents a further step towards inferring the interest of a person

from information implicitly contained in neurophysiological signals.
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4.5 Lessons learned

• By combining information from neural activity and eye movements, it was decoded

online which words were subjectively relevant for a reader

• For this purpose, high dimensional feature vectors were extracted from the recorded

EEG and eye tracking signals in real-time, and were classified with regularized linear

discriminant analysis.

• Subjective relevance maps of the visual surrounding can give insights into the

interest of a person in real-time.

• Limitations: The relevance estimates come with a considerable uncertainty, and

evidence had to be accumulated over time. The words read were not syntactically

interrelated.
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5 Variable salience challenges the infer-
ence from EEG and eye gaze

5.1 Introduction

The salience of the items present in the field of view has to be considered for the inference

of relevance maps from EEG and eye gaze for the reasons set out below. Single stimuli are

typically flashed in sequence in brain-computer interfacing. Therefore, the timing of stimulus

recognition is precisely known. In contrast, our regular visual environment consists of various

elements present at the same time (exemplified in figure 5.1). For instance, computer users

operating a web browser view numerous words and pictures displayed side by side on the

screen. The single items are not flashed one by one but are fixated sequentially with the eye

gaze. For this reason, eye tracking is required for estimating if an item was either relevant or

irrelevant to the objectives of a person. First, it is necessary to know the position of the eye

gaze for relating the ongoing neural activity to the respective item looked at. Second, BCIs

based on event-related potentials require time markers of reference for extracting features

from the continuous EEG signal [cf. Blankertz et al., 2011, and chapter 2.3.3.1]. The eye gaze

jumps with saccades from one fixated position to the next, which can serve as time marker of

reference (cf. chapter 4).

D
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B

A

Figure 5.1: Single stimuli are typically flashed in sequence in ERP-based BCIs (left). The regular
visual environment consists of various elements present at the same time (exemplified on the
right). The measured neural activity can be related with eye tracking to an item looked at.
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Figure 5.2: The example illustrates that the timing of recognition depends on the salience.
The discs represent elements of the visual surrounding (e.g. pictures or words shown on a
computer screen) and have a mixed salience of discriminative information. The blue disc
clearly stands out (high salience) in comparison to all other discs. Yet, one of the white
discs differs also from all other discs, which becomes apparent only at the second glance (low
salience; the white disc on the right is blurred).

However, the visual environment is diverse and can contain items of a mixed salience of

discriminative information (exemplified in figure 5.2). Light entering the eye along the line of

sight falls onto the fovea where the retina has the highest visual acuity. Peripheral retinal areas

provide a lower spatial resolution [Wandell, 1995]. Accordingly, items of a low salience may be

recognised only after the landing of the eye gaze on the item, which is now captured in high-

resolution by the fovea. In contrast, highly salient items can be recognised already in peripheral

vision, i.e. before or even without a shift of the gaze towards the item. As a result, people can

classify eye-catching items immediately as relevant or irrelevant, but inconspicuous items

only at a later time point. For this reason, the timing of the corresponding neural processes

varies with respect to the saccades that serve as time markers of reference. The resulting

jitter can be problematic for the intended relevance detection, because state-of-the-art BCI

methods were developed for sequences of flashed stimuli and assume that the discriminative

EEG activity is tightly time locked to the reference time point.

Hence, it was tested if relevance maps can be inferred from EEG and eye gaze even when the

salience of the items present in the field of view is mixed. The participants of an experimental

study performed a search task where the salience of the target items was varied. EEG and

eye movements were recorded and it was estimated from the signals which items attracted

the particular attention because they were targets and thus task relevant. Simple geometrical

shapes represented the variable components of our real visual environment. The shapes

were designed with a pronounced variation of salience in order to achieve a large jitter of

recognition with respect to the eye movements (cf. figure 5.2 and section 5.2.1).
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PTD FT

Figure 5.3: Distractor (D), foveal target (FT) and peripheral target (PT). [Figure from Wenzel
et al., 2016c, reproduced with permission.]

The results of the study show that the BCI-based detection of the stimuli of interest is also

possible when the stimulus salience is mixed, and when eye movements serve as time markers

of reference. The methods were apparently able to cope with the variable timing of the neural

activity. Information contained in EEG and eye tracking data was found to be complemen-

tary and neural signals were captured despite of the unrestricted eye movements that can

potentially interfere with the EEG signals. In summary, it was demonstrated how EEG and

eye tracking data can provide implicit information about the relevance of items that feature a

pronounced variation of salience and that are displayed side by side at the same time on a

screen.

This chapter is based on the following paper:

Wenzel, M. A., Golenia, J.-E., and Blankertz, B. (2016c). Classification of eye fixation re-

lated potentials for variable stimulus saliency. Frontiers in Neuroprosthetics, 10(23). doi:

10.3389/fnins.2016.00023.

5.2 Materials and methods

5.2.1 Experimental design

The sixteen participants of the study performed a gaze contingent search task while the

electroencephalogram was recorded and the eye movements were tracked. Twenty-four items

situated at random positions on the screen had to be scanned and the number of targets among

the distractors had to be reported. The salience of target discriminative information was varied

by using two types of targets, which could be either recognised already in peripheral vision or

only in foveal vision. Peripheral targets (PT) featured a blue disc and could be discriminated

from the white discs of the distractors (D) already in peripheral vision (cf. figure 5.3). In

contrast, foveal targets (FT) featured a white blurred disc and could be discriminated from the

similar distractors only in foveal vision. Accordingly, they had to be fixated for target detection

(cf. section 5.4.4).

Fixations were not necessary for target detection (cf. section 5.4.4) but were nevertheless

required for task accomplishment (cf. last paragraph in this section 5.2.1). The eye movements
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Figure 5.4: Illustration of the gaze contingent search task. The current point-of-gaze controlled
the disclosure of the items. Left: The arrangement of the items was predefined. Center and
right: Only items within a certain radius (yellow) around the current point-of-gaze (red) were
dynamically disclosed. [Figure from Wenzel et al., 2016c, reproduced with permission.]

were not restrained (e.g. by demanding slow movements). Foveal targets and distractors

were presented in the experimental condition F and peripheral targets and distractors in the

condition P. Both types of targets and distractors were shown in the mixed condition M, which

modelled the variation of salience that can be expected in realistic settings.

The dice were rolled for each of the 24 items displayed on the screen to decide if it is a

target or a distractor (repeated for every repetition of the search task). Each item had the

independent chance of being a target with a probability of 25% (allocated to 12.5% foveal

and 12.5% peripheral targets in the mixed condition M). On average, there were 5.9 ± 2.2

(mean ± std) targets presented ranging from 1 to 12. The layout of the 24 items was predefined

for each repetition of the search task (cf. last paragraph of this section). The items were

initially hidden and were disclosed area by area, depending on the eye gaze (cf. figure 5.4).

All items within a radius of 250 pixels (visual angle of 6.7◦) around the current point-of-gaze

were uncovered. When moving the gaze, previously hidden items appeared at the boundary

of this circle. Thus, all items appeared in peripheral vision. The gaze contingent stimulus

presentation was updated with 30 Hz based on the continuous eye tracker signal sampled

with 250 Hz. After leaving the radius of 250 pixel, the items disappeared again 1.5 seconds

later. This gaze contingent disclosure impeded the detection of all peripheral target items

more or less at once by an unfocused ‘global’ view on the whole screen. Moreover, it allowed

for studying the neural response to the stimulus appearance in peripheral vision.

Every item could disappear and reappear again in the gaze contingent stimulus presentation.

However, as soon as an item was directly fixated (detected by the online algorithm of the

eye tracker), it disappeared 1.5 seconds later and did not reappear again. Note that it was

not necessary to fixate the item for 1.5 seconds. This behaviour forced the participants to

discriminate between targets and distractors upon the first fixation of an item and impeded the

careless gaze on items, which would presumably attenuate components of the event-related

potential (ERP) that are related to target recognition.

The three conditions of the search task were repeated 100 times each resulting in 300 repeti-

tions in total. Before the beginning of each repetition of the search task, a fixation cross had to

be fixated until it disappeared after two seconds. As soon as all target items had been fixated,
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the stimulus presentation ended and the question was asked to enter the number of targets.

Finally, the participant was informed if the answer was correct or not by a “happy” or a “sad”

picture to enhance task engagement. Ten subsequent repetitions of one condition built one

block. The blocks of the three conditions were interleaved and the participants were informed

about the respective condition at the beginning of each block.

5.2.2 Experimental setup

The participants were seated in front of a screen at a viewing distance of sixty centimetres and

entered the counted number of targets with a computer keyboard. An eye tracker (RED 250,

SensoMotoric Instruments, Teltow, Germany; sampling frequency of 250 Hz) was attached

to the screen and a chin rest gave orientation for a stable position of the head. The gaze

contingent stimulus presentation was updated with 30 Hz. The screen itself had a refresh rate

of 60 Hz, a resolution of 1680 x 1050 pixels, a size of 47.2 cm x 29.6 cm and subtended a visual

angle of 38.2◦ in horizontal and of 26.3◦ in vertical direction. The target and distractor items

had a diameter of 50 pixels, subtended a visual angle of 1.3◦, and had a minimal distance of

70 pixels or 1.9◦ between each other and of 100 pixels or 2.7◦ from the border of the screen. An

item was considered as fixated if the fixation position was situated within a radius of 75 pixels

or 2.0◦ from the centre of the item and no other item was closer.

EEG signals were recorded with 64 active electrodes (BrainAmp, ActiCap, BrainProducts,

Munich, Germany; sampling frequency of 1000 Hz). The ground electrode was placed on the

forehead, the reference electrode on the left mastoid and one electrode on the right mastoid

for later re-referencing (see section 5.2.3). One of the electrodes was stuck below the left eye

for electrooculography. The vertical electrooculogram (EOG) was computed by subtracting

the electrode Fp1 from the electrode below the left eye. The horizontal EOG was yielded by

subtracting the electrode F9 from the electrode F10.

To accomplish the dynamic stimulus presentation and multimodal data acquisition, Matlab

and Python code was written. The following software programs were running on two comput-

ers and interacting: Pyff for stimulus presentation [Venthur et al., 2010], BrainVisionRecorder

(BrainProducts, Munich, Germany) for EEG data acquisition, iView X (SensoMotoric Instru-

ments, Teltow, Germany) for eye tracking and online fixation detection and the iView X API to

allow for communication between the computers (see figure 5.5 for a schematic representa-

tion).

5.2.3 Data acquisition

Sixteen persons with normal or corrected to normal vision and no report of eye or neurological

diseases participated in the experiments. The age of the four women and twelve men ranged

from 18 to 54 years and was on average 30.7 years. One recording session included giving

an informed written consent to take part in the study, vision tests for visual acuity and eye
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Figure 5.5: Schematic representation of the experimental setup. Arrows indicate the data flow
between the devices. [Figure from Wenzel et al., 2016c, reproduced with permission.]

dominance, preparation of the sensors, eye tracker calibration and validation, introduction to

the task and to the gaze contingent stimulus presentation, training runs, the main experiment

(with a duration of about two hours) and standard EEG measurements [eyes-open/closed,

simple oddball paradigm, see Duncan et al., 2009]. The proper calibration of the eye tracker

was re-validated and – if necessary – re-calibrated in the middle of the experiment and in the

case that the subject reported that the items did not disappear after fixation. The study was

approved by the ethics committee of the Department of Psychology and Ergonomics of the

Technische Universität Berlin (reference BL_01_20140120).

The start times of the first fixations of targets and distractors were determined from the eye

tracker signal sampled at 250 Hz with the software of the eye tracker (IDF Event Detector,

SensoMotoric Instruments, Teltow, Germany; event detection: ‘high speed’, peak velocity

threshold: 40◦/s, min. fixation duration: 50 ms). The synchronously recorded EEG and eye

tracking signals were aligned with the help of the sync triggers, which had been send via

parallel port interface (LPT) to the EEG system every second during the experiment, and the

time-stamps of the eye tracker logged at the same time. The parameters of the function that

mapped eye-tracking-time to EEG-time were determined with linear regression. The EEG data

were low-pass filtered with a second order Chebyshev filter (42 Hz passband, 49 Hz stopband),

down-sampled to 100 Hz, re-referenced to the linked-mastoids and high-pass filtered with a

finite impulse response filter at 0.1 Hz.

5.2.4 Data analysis

5.2.4.1 Compliance check

The compliance of the participants with the instructions was checked by assessing the perfor-

mance in the search task. For this purpose, the percentage of correct responses was computed

as well as the absolute differences between response and true number of targets. It was

tested whether the experimental conditions differed in these respects with one-way repeated

measures analyses of variance.
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5.2.4.2 Target estimation with EEG and eye tracking features

Based on EEG and eye tracking data, it was estimated which items displayed on the screen

were targets, and accordingly relevant for the person to solve the search task, and which were

distractors. For this purpose, feature vectors were extracted from EEG and eye tracking signals,

labelled either as target or as distractor depending on the corresponding item, and classified.

EEG feature extraction. The continuous multichannel EEG time-series were segmented in

epochs of 0 ms to 800 ms relative to the onset of the first fixation of each item. Each epoch was

channel-wise baseline corrected by subtracting the mean signal within the 200 ms before the

fixation-onset. The EEG signal measured at each channel was then averaged over 50 ms long

intervals and the resulting mean values of all channels and all intervals were concatenated

in one feature vector per epoch (that represents the spatio-temporal evolution of the neural

processes, as observed at the electrodes). Improved classification performance is intended

goal of this step – via a reduction of the dimensionality of the feature vectors in comparison to

the number of samples [cf. the section ‘Features of ERP classification’ in Blankertz et al., 2011].

Eye tracking feature extraction. From the eye tracking data, the duration of the first fixation

of each item and the duration and distance of the respective previous and following saccade

were determined and used as features.

Classifications. EEG and eye tracking features were classified both separately (’EEG’, ’ET’)

and together (’EEG & ET’) – by appending the eye tracking features to the corresponding

EEG feature vectors – with regularized linear discriminant analysis. The shrinkage parameter

was calculated with an analytic method [see Friedman, 1989; Ledoit and Wolf, 2004; Schäfer

and Strimmer, 2005, for more details]. More information about this approach to single-trial

ERP classification is provided in Blankertz et al. [2011]. The classification performance was

evaluated in 10x10-fold cross-validations with the area under the curve (AUC) of the receiver

operating characteristic, which is applicable for imbalanced data sets [more distractors than

targets; Fawcett, 2006]. The better the classification performance, the more the AUC differs

from 0.5. The classifications were performed separately for each combination of participant,

experimental condition (F, P, M) and modality (’EEG’, ’ET’, ’EEG & ET’). Per condition and

modality, it was assessed with one-tailed Wilcoxon signed-rank tests whether the median

classification performance of all participants was significantly better than the chance level of

an AUC of 0.5.

Electrooculogram. The classifications were additionally performed using only the horizontal

and the vertical electrooculogram (’EOG’). The same feature extraction method was employed

for the EOG channels as for the EEG. The aim was not to get the best possible classification

from the EOG, but to check whether the performance of the EEG-based classification is in part

based on EOG signals and, therefore, can be explained to a certain extent by eye movements

as confounding factor.

Subsequently, it was tested with a two-way repeated measures analysis of variance, if the
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experimental conditions (F, P, M) and the modalities (’EEG’, ’ET’, ’EEG & ET’, ’EOG’) had an

effect on the classification performance.

Two additional analyses of the EEG data of the mixed condition M were conducted, where

there were both peripheral and foveal targets present as well as distractors:

• A combined classifier consisting of a combination of two classifiers was designed. One

classifier was trained to discriminate foveal targets from distractors and another clas-

sifier learned to discriminate peripheral targets from distractors – both using fixation-

aligned EEG epochs from condition M. The two classifiers were then applied to the

respective test-subset of a 10x10 crossvalidation, where the salience of the target items

(foveal or peripheral) was not unveiled. The posterior probabilities yielded from the two

classifiers were averaged for each EEG epoch to predict if it was a target or a distractor

epoch [Tulyakov et al., 2008]. It was tested if the combined classifier was better able

than the standard classifier to cope with the temporal variability of the neural response

in relation to the eye movements, which was present in the mixed condition M, and,

which can be expected in realistic settings.

• A reference case for the achievable classification performance would be represented by

a split analysis, where peripheral and foveal targets are treated separately. This models a

situation (which usually can not be expected in the application case) where the salience

of each item is known and, accordingly, a situation where it is known whether the item

can be recognised in peripheral vision or not. For this purpose, the EEG data of the

mixed condition M were split and either foveal or peripheral targets were classified

against distractors using fixation-aligned EEG epochs. The distractor data were split

arbitrarily in halves.

Appearance-aligned EEG features. Furthermore, it was tested if information was present in the

EEG data already when the items appeared in peripheral vision, i.e. even before fixation-onset

(cf. the description of the gaze-contingent stimulus presentation in section 5.2.1). For this

purpose, the EEG time-series were segmented in epochs aligned to the first appearance of

each item on the screen. Baseline correction of the 800 ms long epochs was performed using

the 200 ms interval before the appearance. Features were extracted and classified as described

above for the fixation-aligned EEG epochs.

5.2.4.3 Characteristics of target and distractor EEG epochs

The EEG data were further characterised to provide insights into the underlying reasons for

success or failure of the classifications and into the neural correlates of peripheral and foveal

target recognition.

EEG epochs aligned to item appearance and fixation. The EEG time-series were segmented in

epochs aligned to the first appearance of each item on the screen (caused by gaze movements,
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cf. section 5.2.1) and in epochs aligned to the first fixations of the items (cf. section 5.2.4.2).

Each 1000 ms long epoch started 200 ms before the appearance or fixation, was channel-

wise baseline corrected by subtracting the mean signal within the 200 ms interval before

the respective event and was labelled as target if the corresponding item was a target and

otherwise as distractor.

Class-wise averages. Single EEG epochs contain a superposition of different components

of brain activity, including non-phase locked oscillatory signals. Averaging the EEG epochs

attenuates the non-phase locked components. The average is referred to as the event-related

potential, which is abbreviated as ERP. To single out the phase locked brain activity, target

and distractor EEG epochs of all participants were class-wise averaged. The two types of

events (appearance, fixation-onset) and the three experimental conditions (F, P and M) were

assessed separately. Before averaging, artefacts were rejected with a heuristic: channels with a

comparably small variance were removed as well as epochs with a comparably large variance or

with an absolute signal amplitude difference that exceeded 150 µV (only the interval of 800 ms

after the appearance or fixation was considered for artefact rejection). Artefact rejection was

used for the visualization in order to obtain clean event-related potentials. The challenge was

taken on for single-trial classification of dealing with trials that are corrupted by artefacts as

this is beneficial for online operation in future use cases. Due to the usage of data-driven

multivariate methods, many types of artefacts can indeed be successfully projected out. The

influence of eye movements on the EEG data are discussed in the sections 5.4.2 and 5.4.5.

Statistical differences between classes. Target and distractor EEG epochs were compared with

univariate statistics. Differences between the epochs of the two classes were quantified per

subject, for each channel, and each time point with the signed squared biserial correlation

coefficient (signed r 2) between each univariate feature and the class label (+1 for targets and

−1 for distractors). A signed r 2 of zero indicates that feature and class label are not correlated

and a positive value indicates that the feature was larger for targets than for distractors and

vice versa. In an across-subject analysis, the individual coefficients were aggregated into one

grand average value for each univariate feature. The p-value related to the null hypothesis

that the signed r 2 across all subjects is zero was derived.

Classifications with either spatial or temporal EEG features. While spatio-temporal EEG fea-

tures served for the actual classification purpose (cf. section 5.2.4.2), the classification with

either temporal features or spatial EEG features made it possible to specify where the dis-

criminative information resided in space and time [see Blankertz et al., 2011]. In the case of

temporal features, the time-series were classified separately for each EEG channel, using the

interval of 800 ms post-event. The AUC-scores obtained for each channel were averaged over

participants and displayed as scalp maps. In the case of spatial features, the EEG epochs were

split in 50 ms long (multichannel) chunks, which were averaged along time. The resulting

feature vectors were classified separately for each chunk and the mean AUC-scores of all

participants were displayed as time courses.
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5.2.4.4 Eye gaze characteristics

The eye movements of the participants were characterised with the average fixation duration

of each item type in each experimental condition. In addition, the fixation frequency was

computed, i.e. the number of the fixations on each item type in comparison to the total

number of fixations on all item types. Besides, the average duration and distance of the first

saccades to the items and of the respective following saccades were calculated. Moreover, the

average latency between the first appearance of each item and its fixation were determined.

Re-fixations of items were not considered because, then, the identity of the item had been

already revealed.

5.3 Results

5.3.1 Compliance check

The participants gave correct responses in condition F in 70.6 %, in P in 81.3 % and in M in

75.1 % of the cases. The absolute differences between response and true number of targets were

0.370 in F, 0.255 in P and 0.350 in M. These two performance measures differed significantly

between conditions (one-way repeated measures analyses of variance, F (2,30) = 11.7, p ≤ 0.01

and F (2,30) = 5.88, p ≤ 0.01).

5.3.2 Target estimation with EEG and eye tracking features

It was estimated which items displayed on the screen were targets of the search task based on

EEG and eye tracking data. The results of the classifications are listed in table 5.1. The two

modalities were either classified together (‘EEG & ET’) or separately (‘EEG’, ‘ET’). Additionally,

features only from the electrooculogram (‘EOG’) were used to investigate to which degree eye

movements might have confounded the classifications with EEG features. The classification

performance was better than chance in all experimental conditions and for all modalities

except for the EOG features (one-tailed Wilcoxon signed-rank tests, p ≤ 0.01, Bonferroni

corrected for the twelve comparisons).

The modalities as well as the experimental conditions had a significant effect on the classifica-

tion performance (two-way repeated measures analysis of variance, F (3,165) = 203, p ≤ 0.01

and F (2,165) = 14.6, p ≤ 0.01).

Using EEG and eye tracking features in combination resulted in classification performances

that were significantly better than when either eye tracking or EEG features were used alone.

Significantly better results were obtained with eye tracking features than with EEG features

(one-tailed Wilcoxon signed-rank tests, p ≤ 0.01, Bonferroni corrected for the three compar-

isons). The individual classification performances ranged from 0.556 to 0.828 in the case of

‘EEG & ET’, from 0.529 to 0.765 in the case of ‘EEG’, and from 0.543 to 0.862 in the case of ‘ET’

(averages and standard deviations are listed per condition in table 5.1). The individual results
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Table 5.1: Classification results are listed for the different modalities and the three experimental
conditions. ‘EEG & ET’ denotes the multimodal classification of EEG and eye tracking features,
‘EEG’ and ‘ET’ stand for the separate assessments with either one or the other modality and
‘EOG’ for the classifications with features from the electrooculogram only. In the table, AUC-
scores are presented as averages over participants together with the corresponding standard
deviations. Asterisks mark results significantly above the chance level 0.5 (one-tailed Wilcoxon
signed-rank tests, p ≤ 0.01, Bonferroni corrected for the twelve comparisons).

F P M

EEG & ET 0.726* ± 0.054 0.714* ± 0.070 0.678* ± 0.060
EEG 0.672* ± 0.060 0.633* ± 0.055 0.620* ± 0.047
ET 0.677* ± 0.044 0.718* ± 0.084 0.652* ± 0.061
EOG 0.516 ± 0.020 0.536 ± 0.033 0.514 ± 0.020

for ‘EEG’ and ‘ET’ did not correlate significantly (p > 0.01).

The ranking of the three experimental conditions according to the classification performance

was F > P > M in the case of ‘EEG & ET’ and ‘EEG’ and P > F > M in the case of ‘ET’ (cf. table 5.1).

The classification performance was significantly better in condition F than in condition M

in the cases of ‘EEG & ET’ and of ‘EEG’ and significantly better in P than in M in the case

of ‘ET’ (one-tailed Wilcoxon signed-rank tests, p ≤ 0.01, Bonferroni corrected for the three

comparisons).

Per participant, condition and modality, about 544 target versus 1181 distractor samples were,

on average, available for the classification. These numbers result from the about 24∗0.25∗
100 = 600 targets and 24∗0.75∗100 = 1800 distractors presented in total and the fact that not

all items were fixated by the participant (cf. section 5.3.4 and table 5.3).

The results of the two additional analyses of the fixation-aligned EEG epochs from condition M

are listed in table 5.2. For the combined classifier, one classifier had been trained to discrimi-

nate foveal targets from distractors and a second classifier to discriminate peripheral targets

from distractors. Both classifiers were applied to the test data in combination by averaging

the posterior probabilities yielded per epoch. The combined classifier performed, on average,

slightly better than the standard EEG-based classifier (cf. table 5.1, row ‘EEG’, column ‘M’),

however not significantly (p > 0.01). In the split analysis, either foveal or peripheral targets

were classified against distractors. The performance of the classification of foveal targets ver-

sus distractors (‘FT vs. D’) was significantly better than the standard EEG-based classification

of condition M (p ≤ 0.01) and comparable to the result of condition F (cf. table 5.1, row ‘EEG’,

columns ‘M’ and ‘F’).

Appearance-aligned EEG features. Classification performance was better in condition P than in

the conditions F and M (F: 0.518 ± 0.018, P: 0.637 ± 0.044, M: 0.547 ± 0.023). In all conditions,

the performance was significantly better than the chance level (one-tailed Wilcoxon signed-

rank tests, p ≤ 0.01, Bonferroni corrected for the three comparisons).
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Table 5.2: Results of the combined classifier and the split analysis in condition M (averages
and standard deviations of the sixteen participants of the study). All classification results were
significantly above the chance level of an AUC of 0.5 (one-tailed Wilcoxon signed-rank tests,
p ≤ 0.01, Bonferroni corrected for the three comparisons). For the split analyses, the distractor
data were split arbitrarily in halves (denoted as D1/2 and D2/2).

Method Classes [AUC]

Combined classifier PT, FT vs. D 0.627 ± 0.042
Split analysis FT vs. D1/2 0.666 ± 0.065
Split analysis PT vs. D2/2 0.590 ± 0.036

5.3.3 Characteristics of target and distractor EEG epochs

5.3.3.1 Class-wise averages

The class-wise averages of the EEG epochs are presented in figure 5.6. The two types of events

(appearance of an item on the screen and onset of the eye fixation, cf. section 5.2.4.3) and the

three experimental conditions (F, P, M) were assessed separately. Electrode Pz was chosen for

the presentation as time course, because it is well suited to capture the P300 wave [Picton,

1992]. Note that information regarding all electrodes and all time points is presented in the

next section 5.3.3.2 with figure 5.7.

5.3.3.2 Statistical differences between classes

The statistical differences between target and distractor EEG epochs aligned either to item

appearance or fixation are shown in figure 5.7. Significant differences (p ≤ 0.01, Bonferroni

correction for multiple comparisons due to the number of channels, time-points, conditions

and event types) occurred mainly at central, parietal and occipital electrodes close to the

midline of the head. Across-subject signed r 2 values that were not significantly different from

zero were set to zero and remain white in the figure.

5.3.3.3 Classifications with either spatial or temporal EEG features

The results of the classifications of target versus distractor EEG epochs, using either spatial or

temporal features are presented in the figures 5.8 and 5.9 respectively. The EEG epochs were

aligned either to item appearance or fixation. The three experimental conditions F, P and M

were assessed separately.

Spatial EEG features (i.e. data from separate time-intervals at all channels) of target versus dis-

tractor epochs were classified to characterise where the information resided in time. Figure 5.8

depicts the time courses of the classification performance averaged over subjects. In condi-

tion P, classification performance started to surpass the chance level of an AUC of 0.5 at about

200 ms after item appearance and reached the maximum at about 500 ms post-appearance
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Figure 5.6: Left: Event related potentials aligned to appearance and fixation of targets
(coloured) and distractors (gray) at the exemplary electrode Pz in the experimental conditions
F, P and M. Right: The scalp maps depict the head from above with the nose on top and show
the potentials averaged over 50 ms long intervals centred at 100 ms and 400 ms after the target
appearance (left) and fixation (right). Please note that the positivity (‘yellow/orange/red’) at
central, parietal and occipital electrodes was discriminative between targets and distractors in
contrast to the negativity (‘blue’) at prefrontal and anterior frontal electrodes (cf. figure 5.7).
Every figure throughout this section summarises the data of all sixteen participants of the
study. [Figure from Wenzel et al., 2016c, reproduced with permission.]

with an AUC of about 0.6. In the conditions F and M, only a slight increase over time was

observed after item appearance. In contrast, classification performance increased clearly in

all three conditions in response to the fixation-onset. The maximum was reached faster in

condition P, at about 150 ms, than in the conditions F and M, at about 300 ms. In condition P,

the AUC values exceeded the chance level even before fixation-onset.

Temporal EEG features (i.e. the entire time-series of separate channels) were used to classify

between target and distractor epochs to learn where the discriminative information resided

in space. Figure 5.9 depicts the classification results as scalp maps (AUC-scores for each

channel, averaged over participants). Channels situated at central, parietal and occipital

positions showed the largest AUC-values and were, accordingly, most informative about the

class membership.

5.3.4 Eye gaze characteristics

The fixation durations of the two or respectively three types of items differed significantly from

each other in all experimental conditions (cf. figure 5.10; one-way repeated measures analyses

of variance; F: F (1,15) = 28.9, P: F (1,15) = 14.6, M: F (2,30) = 17.3; p ≤ 0.01 respectively,
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Figure 5.7: Statistical differences between target and distractor EEG epochs aligned to item
appearance and fixation in the conditions F, P and M (across-subject signed r 2 values). The
channels are ordered from the front to the back of the head (top to bottom in the figure).
[Figure from Wenzel et al., 2016c, reproduced with permission.]

Bonferroni corrected for the three comparisons). On average, distractor items (D) were fixated

shorter than target items (PT and FT).

The items were dynamically disclosed on the screen and could be subsequently fixated (cf.

section 5.2.1). The latencies between the first appearances and the first fixations of the two or

respectively three types of items differed significantly in all conditions (cf. figure 5.11, one-way

repeated measures analyses of variance, condition F: F (1,15) = 29.3, p ≤ 0.01, condition P:

F (1,15) = 76.5, p ≤ 0.01, condition M: F (2,30) = 12.6, p ≤ 0.01, Bonferroni corrected for the

three comparisons). On average, peripheral (PT) targets were fixated with a shorter latency

after the appearance than distractors (D) and than foveal targets (FT).

The average fixation frequency of each item type in each experimental condition is listed

in table 5.3. Fixation frequency refers here to the number of fixations on each item type

in comparison to the total number of fixations on all item types. If each single item was

visited with the same probability, the fixation frequency would be 0.75 for distractors and

0.25 for targets (0.25 in the conditions F and P and 2*0.125 in the mixed condition M, cf.
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Lines indicate the mean AUC-scores of the sixteen participants of the study and shaded areas
stand for the standard error of the mean. [Figure from Wenzel et al., 2016c, reproduced with
permission.]

Table 5.3: Fixation frequencies, averaged over participants, for foveal (FT) and peripheral
targets (PT) and distractors (D) in the three experimental conditions.

FT PT D

Condition F 0.289 0.711
Condition P 0.404 0.596
Condition M 0.143 0.141 0.716

section 5.2.1). Yet, the fixation frequency differed significantly from this chance level in all

three conditions (two-tailed Wilcoxon signed-rank tests, p ≤ 0.01, Bonferroni corrected for

the seven comparisons). However, the effect in terms of the difference between mean value

and chance level was relatively large in condition P and comparably small in condition F and

M. In condition P, more peripheral targets and less distractors were fixated than what could

be expected by chance, in contrast to the conditions F and M, where the fixation frequencies

reflect approximately the ratio of presented foveal targets to distractors.

The duration and distance of the first saccades towards foveal (FT) vs. peripheral targets (PT)

vs. distractors (D) differed significantly in the conditions F and P but not in M (cf. table 5.4).

The duration and distance of the respective following saccades starting at the three item types

(FT/PT/D) differed significantly in the conditions F and M but not in P. The statistics were

calculated with one-way repeated measures analyses of variance and Bonferroni corrected for

the three (F, P and M) tests each.
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Figure 5.9: EEG classification with temporal features (entire time-series of separate channels).
Average AUC-scores of the sixteen participants are presented in colour code as scalp maps.
[Figure from Wenzel et al., 2016c, reproduced with permission.]

5.4 Discussion

5.4.1 Compliance check

The comparably large percentages of correct responses and the small absolute differences

between response and true number of targets document that the participants were able to

complete the task. The task performance was better in the experimental condition P than in

condition F, where the targets were less salient and apparently missed more likely. The result

of the mixed condition M, where both types of target items were presented, was situated in

between the results of P and F (cf. section 5.3.1).

5.4.2 Target estimation with EEG and eye tracking features

Spatio-temporal patterns present in the neural data and features of the eye gaze were exploited

to estimate which items displayed on the screen were relevant (targets) in this search task with

unrestrained eye movements. Both EEG and eye tracking data contained information that

made it possible to discriminate targets and distractors in all three experimental conditions

(cf. table 5.1 in section 5.3.2). Crucially, the classification performance was significantly better

than chance also in condition M, which modelled the more realistic scenario of a mixed item

salience. Mixed salience leads to a variable timing of target recognition (cf. section 5.4.3), which

is a possible reason for the lower classification performance in condition M in comparison to

the conditions F and P, where target items of only one type were presented respectively. The

multimodal classification of EEG and eye tracking features resulted in a better performance

than when either one or the other modality was used alone (cf. section 5.3.2). Thus, the two

modalities apparently contain complementary information for relevance estimation.
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targets (PT) and distractors (D) in the three experimental conditions. [Figure from Wenzel
et al., 2016c, reproduced with permission.]

Eye movements are often avoided or at least constrained in EEG experiments because they

can result in artefacts that deteriorate the data quality of EEG recordings [Plöchl et al., 2012]

and/or constitute a confounding factor. Eye movements at a slow pace were required in recent

investigations on EEG and eye tracking in search tasks [Kaunitz et al., 2014] or only long fixa-

tions were included [Brouwer et al., 2013] in order to avoid contaminations by eye movements

during the interval of the late positive component. In a third study, the eye movements were

otherwise constrained because the subjects had to press a key on the keyboard while fixating

on the target, or to maintain the fixation on the target for at least one second [Dias et al.,

2013]. Yet, restricting the eye gaze would be impractical for most real applications. For this

reason, the present experimental setting was as close as possible to an application scenario.

The subjects could look around without any constraints. In order to check if neural signals

were indeed the basis of the previously presented EEG classification results, the classifications

were additionally performed with features from the electrooculogram only. In this way, it

could be tested whether the EEG results can be explained alone by the differences in the eye

movements for targets and distractors, conveyed by eye artefacts to the EEG data. The EOG

classification results did not exceed the chance level significantly (cf. table 5.1). Hence, neural
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Table 5.4: Average duration in milliseconds (a) and distance in pixels (b) of the saccades
towards foveal (FT) and peripheral targets (PT) and distractors (D). The duration (c) and
distance (d) of the respective following saccades are given below. The results of the statistical
comparisons between FT vs. PT vs. D are listed in the columns F, df and p (one-way repeated
measures analyses of variance). Some fields of the table remain empty because FT were absent
in condition P, and PT were absent in condition F.

Condition FT PT D F df p

a) F 47.5 48.2 16.3 (1,15) ≤ 0.01
P 47.2 50.3 52.7 (1,15) ≤ 0.01
M 47.5 47.5 47.9 1.38 (2,30) > 0.01

b) F 189 197 24.5 (1,15) ≤ 0.01
P 178 208 27.4 (1,15) ≤ 0.01
M 189 189 194 1.87 (2,30) > 0.01

c) F 46.6 48.3 15.3 (1,15) ≤ 0.01
P 49.5 50.4 4.48 (1,15) > 0.01
M 46.3 46.5 48.1 8.04 (2,30) ≤ 0.01

d) F 179 198 23.4 (1,15) ≤ 0.01
P 200 210 3.71 (1,15) > 0.01
M 177 178 198 17.5 (2,30) ≤ 0.01

signals provided presumably the information to classify between target and distractor EEG

epochs. Compare also the discussion in section 5.4.3 and 5.4.5. Classification results using

EOG and eye tracking data differ presumably because the features for the EOG classification

were extracted in the same way like for the EEG classification. The fixation durations were not

estimated from the EOG signal.

Visual recognition could happen both in foveal and in peripheral vision in the mixed condi-

tion M. Two additional analyses of this condition were conducted (the results are listed in

table 5.2):

• Combined classifier. Letting two classifiers learn the patterns of foveal and peripheral

recognition individually, and applying them in combination, slightly improved the aver-

age performance in comparison to the standard classification (compare table 5.2, first

row, with table 5.1, row ‘EEG’, column ‘M’). However, this improvement was not signifi-

cant, and, therefore, it can not be stated that the combined classifier was better suited

to cope with the temporal variability of neural processes related to target recognition (cf.

figure 5.7, column ‘Fixation’) than the standard classifier, which did not take the vari-

able stimulus salience into special consideration. Both parts of the combined classifier

used features from fixation-aligned EEG epochs – even though appearance-aligned EEG

epochs seem to be particularly suited for peripheral target detection (cf. figure 5.6 and

5.7). Yet, fixation-aligned features were almost equally suited for classification in the ex-
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perimental condition P (table 5.1, row ‘EEG’, column ‘P’) as appearance-aligned features

(cf. last paragraph of section 5.3.2) and fixation-aligned EEG epochs are presumably

available more frequently in an application scenario, while the popping up of items in

peripheral vision is rather specific for the experiment presented here.

• Split analysis. Either foveal or peripheral targets were classified against distractors using

fixation-aligned EEG epochs from condition M only. This approach can serve as upper

bound reference of what could be achievable, if it was known whether a target can be

recognised in peripheral vision or not. This knowledge can not be expected in a realistic

setting. For foveal targets, classification performance improved in comparison to the

standard analysis (compare table 5.2, second row, with table 5.1, row ‘EEG’, column ‘M’)

– probably due to the reduced temporal variability of the neural response (cf. figure 5.7,

column ‘Fixation’). The result was comparable to the classification of fixation-aligned

EEG epochs in condition F (cf. table 5.1, row ‘EEG’, column ‘F’). However, classifying only

peripheral targets versus distractors did not result in an improvement in comparison to

the standard analysis.

Appearance-aligned EEG features. Information was present in the EEG data about whether a

target or a distractor item had just appeared in peripheral vision, in all experimental conditions.

Classification performance was presumably better in condition P than in the conditions F and

M, because in condition P peripheral detection was facilitated by the stimulus design. This

type of prediction is relatively specific for the gaze contingent stimulus presentation (where

items appeared in peripheral vision, cf. section 5.2.1). In contrast, the prediction based on

fixation-aligned EEG epochs can be more widely applied in a human-computer interaction

setting and was, therefore, main focus of the target estimation presented here. Yet, the analysis

of appearance-aligned EEG epochs made it possible to check if peripheral versus foveal target

recognition was experimentally induced indeed (compare also the next section 5.4.3).

Please note that AUC-scores based on the predictions of single EEG epochs can not be directly

compared with the class selection accuracies which are typically reported in the literature

about brain-computer interfaces. A ‘Matrix-’ or ‘Hex-O-Speller’, for instance, usually combines

several sequences of several classifications for letter selection, which leads to an accumulation

of evidence [cf. figure 7 and, respectively, figure 4 in Treder and Blankertz, 2010; Acqualagna

and Blankertz, 2013].

5.4.3 Characteristics of target and distractor EEG epochs

Target and distractor EEG epochs were class-wise averaged and differences between the two

classes were statistically assessed in order to understand the underlying reasons for the results

of the classifications and to gain insight into the neural correlates of peripheral and foveal

target recognition. Characteristic patterns were present in the neural data depending on

whether a target or a distractor was perceived (cf. figure 5.6 and 5.7 in section 5.3.3). Their

spatio-temporal dynamics suggest that the presence of the P300 component (also called P3)
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differed between the two classes. This component is a positive deflection of the ERP at around

300 ms (or later) after stimulus presentation and is known to be expressed more pronounced

for stimuli that are being paid attention to (here: targets) than for non-relevant stimuli (here:

distractors) [Picton, 1992; Polich, 2007]. The findings of other studies with search tasks could

be reproduced, where a late positive component, probably the P300, differed between fixations

of targets and distractors [Brouwer et al., 2013; Kaunitz et al., 2014; Devillez et al., 2015].

The salience of target discriminative information was varied in the experiment. Accordingly,

target recognition could happen either immediately after item appearance in peripheral vision,

or not until the item was fixated and in foveal vision, which was reflected in the neural data as

follows:

• Clear differences between appearance-aligned target vs. distractor EEG epochs were

found in condition P in contrast to condition F (cf. figure 5.6 and 5.7, column ‘Appear-

ance’) because only peripheral targets could be recognised directly after their appear-

ance in peripheral vision. The mixed condition M was designed with the objective to

model the uncertainty of a more realistic setting where recognition can happen both

in foveal and in peripheral vision. Here, both types of targets were presented and,

consequently, a superposition was found of the effects from condition F and P.

• Peripheral targets could be recognised already before fixation onset in contrast to foveal

targets. For this reason, differences between target and distractor EEG epochs were

found in condition P at earlier time points, with respect to the fixation-onset, than in

condition F (cf. figure 5.6 and 5.7, column ‘Fixation’). As it can be expected, condition M

represents a mixture of the effects from condition F and P.

These findings match the results of the classifications with spatial features, which had the

objective to learn how the neural correlate of target recognition evolves over time after item

appearance or fixation, while exploiting the multivariate nature of the multichannel EEG data

(cf. figure 5.8).

Midline electrodes, mainly at central, parietal and occipital positions, were most discrimina-

tive (cf. figures 5.7 and 5.9). Hence, the results indicate that classification is not based on eye

movements or facial muscle activity. These would cause higher classification performances in

channels at outer positions, which are not observed here.

For figure 5.7, the EEG signals were analysed independently for all electrodes and time points.

The resulting multiple testing problem was addressed with Bonferroni correction. Even though

this correction is a rather conservative remedy (considering the large number of electrodes

and time points), it was suited to show that the timing of the neural responses was different

between conditions. The multiple testing problem could be avoided, e.g., with a general linear

model with threshold free cluster enhancement [cf. Ehinger et al., 2015].
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5.4.4 Eye gaze characteristics

Targets were fixated longer than distractors (cf. figure 5.10) and saccades to/from targets were

quicker and shorter then those to/from distractors (cf. table 5.4). Apparently, target prediction

based on eye tracking features (cf. table 5.1) was therefore possible. The longer fixation

duration for targets was presumably caused by the task, because the count had to be increased

by one upon the detection of a target in contrast to the recognition of a distractor that allowed

the participant to directly pursue the search for the next target (cf. also the implications for

the use case in the last paragraph of section 5.4.6).

The results of the eye movement analysis demonstrate that the experimental conditions

effectively induced the intended effect of peripheral versus foveal target detection for the

following reasons:

• Peripheral targets were fixated earlier after their first appearance than foveal targets and

distractors – probably because they could be recognised as targets already in peripheral

vision (cf. figure 5.11). Besides, the saccades to peripheral targets were quicker and

shorter than to distractors (cf. section 5.3.4).

• The increased fixation frequency of peripheral targets in condition P (cf. table 5.3)

suggests that peripheral targets could be discriminated from distractors indeed in pe-

ripheral vision. Apparently, target detection in peripheral vision resulted in saccades to

targets while leaving aside distractors. In contrast, fixation frequencies almost equalled

the actual percentages of targets and distractors in condition F and M. In those con-

ditions, each item had to be fixated to determine whether it is a target (the small but

significant differences between the mean fixation frequencies and the chance levels

were presumably caused by the rule to early stop a repetition as soon as all targets had

been fixated, cf. section 5.2.1).

5.4.5 Interference of eye movements with the EEG

The classification with EEG data (cf. section 5.4.2) was presumably successful because a late

positive component, evoked by cognitive processes, differed between targets and distractors

(cf. section 5.4.3). However, the hypothesis can be proposed that not cognitive processes but

eye movements were responsible for the classification results. The fixation durations were

shorter than the EEG epochs and shorter for targets than for distractors (cf. sections 5.4.4 and

5.2.4.2). Accordingly, the following saccade occurred still during the EEG epoch and at earlier

time points in the case of targets in comparison to distractors. Saccades can interfere with the

EEG because the eye is a dipole, due to activity of the eye muscles and via neural processes in

the visual or motor cortex: the presaccadic spike affects the EEG signal immediately before

the saccade and the lambda wave about 100 ms after the end of the saccade – both resulting

in a positive deflection in particular at parietal and, respectively, parieto-occipital electrodes

[Blinn, 1955; Thickbroom and Mastaglia, 1985; Thickbroom et al., 1991; Dimigen et al., 2011;
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Figure 5.12: Statistical differences between target and distractor (fixation-aligned) EEG epochs
with a corresponding fixation duration shorter/longer than 500 ms. The rows show the results
of the experimental conditions F, P and M. Compare with figure 5.5, column ‘Fixation’, in the
main text. Note that only a small proportion of the EEG epochs remained with the criterion of
> 500 ms because the items were inspected quicker in the majority of the cases. [Figure from
Wenzel et al., 2016c, reproduced with permission]

Plöchl et al., 2012]. This interference can not be avoided in unconstrained viewing.

Nevertheless, potentials related to cognitive processes were likely the predominant factor for

the classification results and not potentials related to the following saccade for the reasons set

out below. The time shift of the discriminative information (in fixation-aligned EEG epochs)

between the experimental conditions F and P (cf. figure 5.7, right column) can not be explained

by differences in the eye movements because the fixation durations in F and P were similar

(cf. figure 5.10). A cognitive EEG component (such as the P300) is a more likely reason for

the time shift because recognition was possible in condition P in peripheral vision, i.e. before

fixation-onset, but only after fixation-onset in condition F.

In order to examine if the found difference patterns (cf. figure 5.7, right column) are related to

a cognitive EEG component and to assure that they were not caused by the following saccade,

a further test was performed and EEG epochs were selected with a corresponding fixation

duration longer than 500 ms. The resulting difference patterns between target and distractor

EEG epochs were similar to the case where the fixation duration was less or equal than 500 ms

and to the case where all EEG epochs were used. The differences appeared again before 500 ms

and thus before the following saccade (cf. figure 5.12).
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Furthermore, if presaccadic spike and lambda wave were indeed responsible for the difference

between target and distractor EEG epochs, a discriminative pattern could be expected, which

was not observed here (cf. figure 5.7): the next saccade is expected on average 260 ms after

fixation-onset for distractors and after 440 ms in the case of targets (cf. section 5.3.4 with

figure 5.10). The presaccadic spikes can be assumed to occur just before these time points

and the corresponding lambda waves about 150 ms later (including 50 ms for the duration

of the following saccade). Both presaccadic spike and lambda wave are known to result in a

parietal positivity (see above). Accordingly, the difference of target minus distractor related

potentials is expected to be negative roughly at around 260 ms (distractor spike) and 410 ms

(distractor λ) accompanied by a positivity at around 440 ms (target spike) and 590 ms (target

λ). However, such a pattern was not observed (signed r2 values in figure 5.7, column ‘Fixation’).

Instead, a P300-like pattern was predominant, which occurred earlier when target recognition

in peripheral vision was possible than when foveal vision was necessary (cf. section 5.4.3).

Moreover, it was shown that EEG contains information complementary to the information

from the eye tracker (cf. section 5.4.2) – even if the eye tracker measures the fixation durations

very accurately in contrast to the indirect measurement with EEG. Still, EEG added information

– presumably because cognitive processes were captured on top of mere effects due to the eye

movements. Furthermore, the results of the individual classifications with EEG features were

not correlated with the results using eye tracking features. Finally, the classification of feature

vectors from the electrooculogram, which were extracted just like the EEG features, was not

possible. The findings mentioned contradict the hypothesis that the difference in the fixation

duration made an important contribution to the EEG classification. The long-term aim is

relevance detection for tasks that are cognitively more demanding than the simple search task

used here. Then, eye movements might not be sufficiently informative about the relevance

any more, but accessing information about cognitive processes might be required.

5.4.6 Limitations

In view of its practical application, it has to be considered that the implicit information

provided by the classifier based on EEG and eye tracking data comes with a non-negligible

uncertainty. The classification performance remained considerably below an AUC of 1, which

does not suffice for a reliable relevance estimation of each single item after a single fixation.

This issue can be overcome by combining information derived from several uncertain pre-

dictions. Persons make several saccadic eye movements per second and, thus, EEG epochs

aligned to the fixation-onsets provide a rich source of data. While the information added with

each single saccade might be only a small gain, the evidence about what is relevant for a per-

son is accumulating over time. The same strategy is followed in (ERP-based) brain-computer

interfacing where typically several classifications are combined for selecting an option (e.g. a

letter in a speller application).

The discriminability between targets and distractors based on EEG and eye tracking data may
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to a substantial degree depend on the particular stimuli in use. Although a step towards reality

was made and constraints regarding the stimuli were relaxed, there are more parameters to

be considered. In this study, the salience of the target items was varied on two levels only

and the presentation style was always the same (the items popped up and remained at the

original position). Besides, the decision about whether an item was target or not was easy

and of invariant difficulty. However, in real visual environments, a salience continuum can

be expected, the presentation style can be diverse [items can move or fade in; Ušćumlić and

Blankertz, 2016] and more cognitive effort can be required to evaluate the relevance of a

stimulus. Thus, even more temporal variability is expected, with corresponding implications

for classification. In this context, it can be noted that the temporal variability of neural

responses in “real-world” environments is a problem recently addressed in the EEG literature,

albeit in other respects [Meng et al., 2012; Marathe et al., 2013, 2014].

While here only effects related to the stimulus salience were examined, it is known that the

task has a large influence on the visual attention [cf. Kollmorgen et al., 2010; Tatler et al., 2011].

In this experiment, target items were task relevant because they had to be counted by the

subject. However, the question can be posed whether the classification algorithm learned to

detect neural correlates of target recognition indeed or merely the effects of counting, which

was not required for distractors (cf. chapter 6).

5.5 Conclusion

It was demonstrated that EEG and eye tracking can provide information about which items

displayed on the screen are relevant in a search task with unconstrained eye movements. The

specific problem addressed is that the components of the regular visual environment are

typically diverse. As a consequence, the salience of target discriminative information can be

variable and recognition can happen in foveal or in peripheral vision. Therefore, a variable

timing – relative to the fixation-onset – of corresponding neural processes can be expected.

The classification algorithm was able to cope with this uncertainty and target prediction

was possible even in an experimental condition with mixed salience. Interestingly, EEG and

eye tracking data were found to be complementary and neural signals related to cognitive

processes were apparently captured despite of the unrestricted eye gaze. In summary, the

study represents a further step for estimating the subjective relevance of items looked at, by

combining methods from brain-computer interfacing and eye tracking.
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5.6 Lessons learned

• The salience of the items present in the field of view has to be considered for the

inference of relevance maps from EEG and eye gaze.

• BCI methods assume that the informative EEG activity is tightly time locked to the

onset of single stimuli flashed in sequence.

• When several items are displayed at the same time, eye tracking can be used to

relate the neural activity to the respective item looked at. The saccades (jumps of

the eye gaze from one fixated position to the next) can be used as reference time

points for extracting feature vectors from the continuously recorded EEG.

• The regular visual surrounding contains diverse items of a mixed salience. This

salience spectrum results in a variable timing of recognition with respect to the

saccades.

• The experimental results show that this temporal jitter does not prevent the rele-

vance inference from EEG and eye gaze with state-of-the-art BCI methods.
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6 Generalisation properties of the BCI-
based relevance detector

6.1 Introduction

Methods from brain-computer interfacing can potentially infer from the electroencephalo-

gram whether an item looked at is relevant for the individual or irrelevant. The resulting

information could be used for a wide range of applications (cf. section 4.1). EEG-based

relevance detection can reasonably enhance standard procedures, such as questionnaires

or input with keyboard and mouse, only if the detection is performed unobtrusively in the

background and exploits information that is implicitly contained in the signals. Inference

from the EEG is not sensible if items of interest would have to be marked intentionally by a

specific mental task, like silent counting in the ERP-based BCI paradigm, because this could

be done as well but more reliably, economically and conveniently with a questionnaire or with

the computer mouse. It is legitimate to direct the attention with a counting task towards the

option of interest in a BCI writing application for paralysed people (cf. section 2.2.1 and BCI

studies employing the silent counting task such as Farwell and Donchin, 1988; Sellers and

Donchin, 2006; Kanoh et al., 2008; Guger et al., 2009; Brouwer and Van Erp, 2010; Treder et al.,

2011; Schreuder et al., 2011; Liu et al., 2011; Manyakov et al., 2011; Acqualagna and Blankertz,

2013; An et al., 2014). However, people usually do not perform a specific mental task every

time they recognise something as relevant to their respective objectives. For this reason, it

was investigated if the patterns in the EEG that enable the BCI to detect relevant stimuli are

closely linked to a specific task. In this case, ERP-based BCIs could be employed only for the

volitional selection from different options. The alternative outcome may hold promise that

the BCI can serve as a more general, implicit relevance detector.

The participants of an experimental study performed a silent counting, an arithmetic and a

memory task. The tasks required the subjects to pay particular attention to certain stimuli

presented on the screen. The stimulus presentation was the same in all three tasks, which

allowed a direct comparison of the experimental conditions. Classifiers were trained to detect

the stimuli of interest in one task, according to patterns present in the EEG signal, and were

applied to data recorded when the person performed a different task. Classifiers trained with
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data of one task could detect the stimuli of interest also in other tasks (irrespective of some

task-related differences in the EEG). The neural activity used for the relevance prediction is

apparently not strictly task specific, but likely reflects the attention allocated to the stimuli of

interest.

The chapter is based on the following paper:

Wenzel, M. A., Almeida, I., and Blankertz, B. (2016b). Is neural activity detected by ERP-

based brain-computer interfaces task specific? PLoS ONE, 11(10):1–16. doi: 10.1371/jour-

nal.pone.0165556.

6.2 Materials and methods

6.2.1 Experimental design

Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks

required the subject to pay particular attention to target stimuli of a colour that was randomly

changed after each task repetition. The stimulus presentation was the same in all three tasks,

which allowed a direct comparison of the experimental conditions. Squares in the colours

magenta, yellow, red, blue and green flashed one by one for 500 ms each, interleaved by 500 ms

blank screen, in a five-times-five grid in pseudo-random order and arrangement (cf. figure 6.1).

The probability of the appearance of each colour was the same, such that the ratio of the

random target colour to the other colours was approximately one to four, resulting in eight to

thirteen targets among the 47 to 50 coloured squares in total per stimulus sequence.

Condition C constitutes the original version where stimuli of the target colour had to be

counted while stimuli of other colours – the distractors – could be ignored. In the arithmetic

task of condition A, ‘ten’ had to be added for targets and ‘one’ for the more frequent distractors.

In condition M, the position of the targets on the screen had to be memorised. The target colour

magenta appeared twice among four distractors in the short exemplary stimulus sequence

given in figure 6.1. The correct result would be 1+1 = 2 for condition C, 1+1+10+1+1+10 = 24

for condition A and ‘row 1, column 3’ and ‘row 3, column 5’ for condition M.

The task and the random target colour were introduced before each stimulus sequence. After

the presentation of the stimulus sequence, the result had to be entered with keyboard (num-

bers) or mouse (coordinates) and, finally, the correct answer was shown on the screen. The

three tasks took turns and were repeated twenty times each (cf. figure 6.1).

Stimuli of the target colour did not stand out systematically, e.g., with respect to salience or

frequency. Targets distinguished themselves only due to the preceding definition as target

for the present task repetition, because each colour appeared with equal probability and the

target colour was frequently changed.
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6.2. Materials and methods

Task  C
Target color 
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Figure 6.1: Short exemplary stimulus sequence (left), experimental tasks C, A and M (centre)
and sequence of the tasks and random target colours (right). The participants looked at a
random stimulus sequence, where 47 to 50 squares of five colours flashed (with equal proba-
bilities) in a grid for 500 ms each, interleaved by 500 ms blank screen. Before each stimulus
sequence, the task and a random target colour were assigned. The respective target colour
required a particular mental operation, depending on the task. Every participant performed
task C (counting targets), A (arithmetic for targets and distractors), and M (memorizing target
positions) twenty times each. The result had to be entered after the stimulus sequence. [Figure
from Wenzel et al., 2016b, reproduced with permission.]

6.2.2 Experimental setup

Participants sat at a viewing distance of approximately eighty centimetres from the screen

(refresh rate 60 Hz, resolution 1920 x 1200 pixels, size 52 cm x 32.5 cm, visual angle 33◦ in

horizontal and 22◦ in vertical direction) and had access to a keyboard and a mouse. EEG

signals were recorded with 64 active EEG electrodes arranged according to the international

10–20 system (ActiCap, BrainAmp, BrainVision Recorder, BrainProducts, Munich, Germany;

sampling frequency of 1000 Hz). The ground electrode was placed on the forehead, the

reference electrode on the left mastoid, one of the regular EEG electrodes on the right mastoid

for later re-referencing to the linked-mastoids and another electrode below the left eye for

electrooculography (EOG). Electrode impedance was set at values of 5 kΩ or less, which was

possible in more than 95 % of the cases. If an optimal impedance between an electrode and

the scalp could not be achieved despite considerable effort, this non-optimal impedance was

accepted and the experiment was started. Maximum impedance at start time was 7 kΩ at the

ground electrode, 9 kΩ at the reference electrode and 26 kΩ at a scalp electrode. Stimuli were

presented with in-house software written in Processing (version 2.2.1, https://processing.org)

controlled by Matlab (MathWorks, Natick, USA).

6.2.3 Data acquisition

Five female and eight male subjects with normal or corrected to normal vision, no report

of eye or neurological diseases and ages ranging from 18 to 65 years (mean of 31.2 years)

participated in the study. The tasks were introduced and trained at the beginning of the

experiment of two hours. The participants gave their informed written consent to take part

in the experiment. The study was approved by the ethics committee of the Department of

Psychology and Ergonomics of the Technische Universität Berlin (reference BL_02_20140520).
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The EEG data were re-referenced to the linked mastoids and band-pass filtered between

0.5 Hz and 40 Hz with an infinite impulse response forward-backward filter. The continuous

multichannel data were segmented in one second long epochs aligned to the flashing of targets

and distractors, starting at 100 ms before the respective stimulus onset. Baseline correction

was applied using the data within the 100 ms long interval before stimulus onset.

The participants repeated each task twenty times and viewed 47 to 50 stimuli per task rep-

etition. The first eight markers per repetition that indicated the stimulus onset had to be

discarded due to a jitter, i.e. an imprecision, in the stimulus presentation. As result, there

were 165 ± 5 target and 648 ± 13 distractor epochs (mean ± std) available per participant and

experimental condition.

6.2.4 Data analysis

6.2.4.1 Single-trial classification

The question was addressed if the neural response to target stimuli is specific to the silent

counting task or if it can be also evoked by other tasks. The problem was approached by

asking the subjects to perform three tasks that required to pay attention to certain stimuli. The

stimuli were classified either as targets or distractors based on the immediate neural response

to them. The classifiers were trained with data recorded when the subject performed one

of the three tasks and tested on separate data acquired when a different task was requested.

Classifiers trained in one experimental condition should be able to detect targets in different

experimental conditions if the target-related neural activity is not task specific. Training

and testing was performed on all possible pair-wise combinations of the three conditions.

As additional reference level, every condition was inspected separately and served both for

training and testing. In this case, the classification performance was assessed by splitting the

data in test and training sets in a ten-fold cross-validation [Lemm et al., 2011].

Spatio-temporal features for the classifications were extracted from each EEG epoch within the

interval from 100 ms to 800 ms. The EEG signal was downsampled to 20 Hz in order to improve

classification performance via a reduction of the dimensionality of the features [Blankertz et al.,

2011]. A 930 dimensional feature vector was obtained for each EEG epoch by concatenating the

EEG potentials measured at all 62 scalp EEG channels and 15 time points within the 700 ms

long epoch. Classifications were performed with regularized linear discriminant analysis

where the shrinkage parameter was determined analytically [Friedman, 1989; Ledoit and Wolf,

2004; Schäfer and Strimmer, 2005]. Performance was assessed with the area under the curve

(AUC) of the receiver operating characteristic [Fawcett, 2006].

Single-trial classifications were performed with all samples including trials potentially cor-

rupted by artefacts. Accepting this challenge is expected to be useful for online operation in

prospective applications. Moreover, the employed multivariate methods are able to project

out artefacts of various kinds.
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The previously introduced classifications were conducted separately for each participant

(within-participants). Besides, an across-participants classification scheme was employed in

order to investigate if a transfer of the predictor is possible between subjects, which would

allow to skip a time-consuming individual calibration session (cf. section 6.4.1). For this

purpose, classifiers were trained on the data of all participants but one and tested on the

data of the respective withheld participant. The procedure was iterated such that the data

of every participant were tested. Again, all combinations of training and testing condition

were assessed. Moreover, the effect of the number of training subjects on the classification

performance was determined. The data of one to twelve subjects were used to train a classifier

(to discriminate between targets and distractors) that was tested on the data of each withheld

participant. In this analysis, all experimental conditions were merged for the sake of concise-

ness and in view of the envisaged application case where the users are expected to perform

various tasks. The training subjects were drawn at random if there existed several possibilities.

6.2.4.2 Spatio-temporal dynamics

Additionally, the spatio-temporal dynamics of the neural responses to the flashing of target

and distractor stimuli were inspected. While the main hypothesis under investigation was

tested with the classification approach detailed above, this inspection allows for a better

understanding of the underlying reasons for success or failure of the classifications. The

measured potentials were averaged over the single EEG epochs of all participants, separately

for each experimental condition, class (targets/distractors), channel and time point.

The difference between the two classes was assessed by computing the correlation between

the potentials of the single EEG epochs and the class label, 1 for targets and 0 for distractors,

separately for each channel and time point. The yielded correlation coefficients were squared

while retaining the original sign (signed r2 values). Again, averages across participants were

calculated. The coefficients were Fisher z-transformed before averaging to make them approx-

imately Gaussian distributed, which was reversed after averaging to bring them back to the

original unit [Silver and Dunlap, 1987]. A significance threshold was not employed in order to

keep the full spatio-temporal pattern including potentially subtle differences that might be

exploited by the multivariate classifier, which was introduced above.

In order to ensure a clean and undisturbed visualization of the neural responses, artefact

epochs had been rejected beforehand based on a maximum-minimum criterion of 100 µV

for the EEG channels and of 200 µV for the EOG channel, within the post-stimulus interval.

Around 133 ± 30 target (mean ± std) and 489 ± 150 distractor epochs remained per participant

and experimental condition.
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6.2.4.3 Behavioural performance

It was checked that every participant complied with the instructions and performed the tasks.

For this purpose, the numbers entered and the positions clicked at were compared with

the correct numbers and positions and it was statistically assessed whether the results were

more accurate than it can be expected if the participants answered randomly. The distances

between the correct and the entered numbers were calculated in the conditions C and A. It

was assessed with Mann-Whitney U tests if the resulting distances were significantly smaller

than random distances, which had been generated by shuffling the relations between correct

and entered numbers a thousand times. In the condition M, the accuracies of selecting the

correct target positions were computed. Mann-Whitney U tests checked if these accuracies

were significantly greater than random accuracies, which had been determined by moving the

targets to random positions a thousand times.

Analysis and visualization of the EEG and behavioural data were performed with Python

(version 3.5.2, http://www.python.org), the MNE-Python software, pandas, scikit-learn and

seaborn [Gramfort et al., 2013, 2014; McKinney, 2011, 2010; Pedregosa et al., 2011; Waskom

et al., 2015].

6.3 Results

6.3.1 Single-trial classification

Fig 6.2 displays the results of the within-participant classifications of target versus distrac-

tor EEG epochs. The classification performance was assessed with the AUC. This metric

represents both the sensitivity and the specificity of the classifier and is insensitive to class

imbalances [Fawcett, 2006]. An AUC of 0.5 constitutes the chance level of the classification.

For all combinations of training and testing conditions and for every participant, the AUC

was consistently better than it can be expected from random guessing. Wilcoxon signed-rank

tests showed that the results were on the population level significantly above an AUC of 0.5

(p ≤ 0.05, Bonferroni corrected for the nine combinations of training and testing conditions).

The cross-validation results (values on the diagonal of the matrix in figure 6.2) might not be

directly compared with the results obtained by training on one condition and testing on a

different condition (on the off-diagonal of the matrix in figure 6.2).

Fig 6.3 displays the results of the classifications across-participants. Classification perfor-

mance was on the population level significantly better than chance in all cases but one (C →
M, Wilcoxon statistic as above).

Data of more participants used for the classifier training resulted in a better performance

when transferred to a different participant (cf. figure 6.4; the three conditions were merged for

this analysis as motivated in section 6.2.4.1). The number of training subjects was significantly
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Figure 6.2: Average (left) and single participant (right) results of the classifications within-
participants for all combinations of training and testing condition, measured as area under the
curve of the receiver operating characteristic. All results were on the population level signifi-
cantly better than random guessing (p ≤ 0.05). [Figure from Wenzel et al., 2016b, reproduced
with permission.]

correlated with the AUC (correlation coefficients were calculated for every subject, average:

ρ = 0.50, t-test: p ≤ 0.05). Nevertheless, a ceiling effect can be observed for n ≥ 6.

6.3.2 Spatio-temporal dynamics

The spatio-temporal dynamics of the neural responses to the flashing of target and distractor

stimuli are visualised in figure 6.5, 6.6 and 6.7. Averages across participants are displayed

separately for the conditions C, A and M. Figure 6.5 shows the time course of the EEG potential

measured at frontal, central and parietal positions along the midline of the head. Figure 6.6

depicts the time courses at all electrodes in colour code, separately for targets (top) and

distractors (centre). The lower row shows the difference between the two classes. Figure 6.7

presents the data as scalp topographies.

6.3.3 Behavioural performance

Every participant entered numbers and clicked at positions that were significantly more

accurate as it can be expected by chance (p ≤ 0.05).
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Figure 6.3: Average (left) and single participant (right) results of the classifications across-
participants. The results were on the population level significantly better than chance, except
in one case (C → M). [Figure from Wenzel et al., 2016b, reproduced with permission.]

6.4 Discussion

6.4.1 Single-trial classification

EEG epochs that were either aligned to targets or to distractors could be discriminated signifi-

cantly better than it can be expected by chance (AUC of 0.5) for all combinations of training

and testing conditions (within-participant classifications; cf. figure 6.2). Discrimination based

on EEG data was not only possible in the classic counting variation (C) but also when both

targets and distractors required arithmetic (A) or when the positions of the targets had to be

memorised (M).

Each classifier could predict targets in every experimental condition and not only in the

condition where it had been trained. This successful transfer suggests that a substantial

part of the neural activity evoked by targets is neither specific to the silent counting, nor to

the arithmetic, nor to the memory task. Both the target recognition itself, as a result of the

attention allocation, and the augmented cognitive effort are equally plausible causes for the

findings, because targets required a more demanding task than distractors (at least in the

condition C and M where distractors could be simply ignored).

Tailoring the classifier to each individual person, as it is typically done in BCI experiments,

would be a hindering factor for the application in human-computer interaction. A time-

consuming calibration session constitutes a hurdle for the users to adopt EEG-based technol-

ogy for the every-day interaction with a computer. Interestingly, however, it was possible to

skip the individual classifier training and predict the task-relevant stimuli with a classifier that

was trained on the data of other participants (across-participants classifications; cf. figure 6.3)
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Figure 6.4: Performance (AUC) of the classification across-participants depending on the
number (n) of participants used to train the classifier. The three experimental conditions
were merged for this analysis (cf. section 6.2.4.1). Bootstrapping, a resampling method, was
used to estimate the 68 % confidence intervals (equivalent to ±1 standard deviation in the
Gaussian case) of the mean across participants [Efron, 1979]. [Figure from Wenzel et al., 2016b,
reproduced with permission.]

even if the performance was significantly inferior (p ≤ 0.05, Wilcoxon signed-rank test) to the

classification within-subjects (cf. figure 6.2). Acquiring data of more participants improved

the predictive performance until a ceiling level was reached for n ≥ 6. (cf. figure 6.4). Transfer

learning methods could further improve the transferability between subjects [Lu et al., 2009;

Fazli et al., 2009, 2011, 2015; Kindermans et al., 2014; Jayaram et al., 2016; Koyamada et al.,

2015].

6.4.2 Spatio-temporal dynamics

The patterns in the neural data that allow for differentiating between targets and distractors

were inspected in order to uncover the reason for the successful classifications. Targets evoked,

in all experimental conditions, an augmented late positive component in comparison to

distractors in particular at the midline centroparietal and parietal electrodes (cf. figure 6.5,

6.6, 6.7), which is typical for the P300 wave [Sutton et al., 1965; Picton, 1992; Polich, 2007].

Some differences between the conditions can be noted (cf. figures 6.5, 6.6 and 6.7): condition C,

the classic variation with silent counting, featured a comparably large difference between

the potentials evoked by targets and distractors. Condition A shows a comparably large

late positive deflection for distractors. In this condition, all stimuli including the distractors

required arithmetic and, thus, a certain amount of attention and neural processing. Finally,

the discriminative neural activity lasted longer in A and M than in C (cf. figure 6.7). Presumably,

the memory encoding was more variable in time in these two conditions.
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6.4.3 Behavioural performance

The behavioural results show that all participants complied with the instructions and per-

formed the tasks.

6.4.4 Limitations

Single stimuli popped up in succession in this experiment. However, it can be expected that

several words or pictures are shown in parallel in a more realistic setting. The combination of

EEG with an eye tracker would make it possible to relate the neural activity to each picture or

word (cf. chapters 4 and 5, and Brouwer et al., 2013; Kaunitz et al., 2014; Kauppi et al., 2015;

Wenzel et al., 2016c; Ušćumlić and Blankertz, 2016; Finke et al., 2016). Eye movements towards

the items could be used as time points of reference for the EEG segmentation in epochs,

instead of the onset of stimuli popping up on the screen. With this approach, a relevance score

could be assigned to every item displayed.

It was demonstrated that the detectable neural activity evoked by targets is not specific to any

of the three well-defined tasks employed in the experiment. However, it still has to be shown

that relevance information can be collected implicitly in the background during the ‘natural’

interaction with a computer in the absence of precisely defined tasks.

Moreover, the stimuli used here were squares and differed only in their colour. The decision if

a stimulus was a target was simple and could be performed immediately. In contrast, various

pictures and words can be presented on the screen in a realistic scenario (cf. chapters 4 and

5). The decision if a picture or a word is of interest can need sometimes less and sometimes

more time. Accordingly, a variable latency of the neural response can be expected, which

makes relevance estimation based on neurophysiological data more difficult [cf. chapter 5

and Wenzel et al., 2016c; Ušćumlić and Blankertz, 2016].

All stimuli were similar with respect to their salience in this experiment. Yet, in a more realistic

scenario, particularly salient but not necessarily relevant stimuli could elicit a passive P300,

which would result in false positive estimates (even though the passive P300 is evoked rather

by auditory stimuli than by visual stimuli) [Squires et al., 1975; Bennington and Polich, 1999;

Jeon and Polich, 2001].

6.5 Conclusion

Based on EEG data, screen content could be classified as task relevant or irrelevant, even

when different mental operations were performed than during classifier training. The results

suggest that the neural activity detected by the classifiers is not strictly task specific, at least

under the controlled conditions of this experimental study. This outcome may hold promise

for expanding the range of application of BCI methods towards a more general detection

of relevance in situations where the people do not perform a specific task each time they
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recognise something which attracts their attention.

6.6 Lessons learned

• ‘Relevance’ has to be artificially created in experiments. For this purpose, an intrin-

sic interest can be mimicked with a mental task (e.g. counting all relevant items).

• Focusing the attention in this way is legitimate for a BCI application for communi-

cation, but not for the intended implicit relevance detection. Potentially, neural

activity is detected that merely corresponds to the specific mental task, but not to

the subjective experience of considering something as relevant.

• It was evaluated if the neural activity detected by the multivariate classifiers in the

EEG is task specific, or – alternatively – if generalisation over different scenarios is

possible.

• The BCI-based relevance detector demonstrated good generalisation properties.

This result may indicate that the BCI does not rely on a specific mental task, which

is promising for the intended relevance detection.
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Chapter 6. Generalisation properties of the BCI-based relevance detector

Figure 6.5: Time courses of the EEG responses to targets and distractors at the midline elec-
trodes Fz, Cz and Pz in the experimental conditions C, A and M (averages over all epochs
of all subjects). The respective stimulus-onset is situated at t = 0 ms. The 68 % confidence
intervals were calculated with bootstrapping. [Figure from Wenzel et al., 2016b, reproduced
with permission.]
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Figure 6.6: Spatio-temporal EEG activity in the three experimental conditions (mental tasks C,
A and M). EEG responses to target and distractor stimuli and the corresponding differences
are visualised separately (top, centre, bottom). [Figure from Wenzel et al., 2016b, reproduced
with permission.]
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Chapter 6. Generalisation properties of the BCI-based relevance detector

Figure 6.7: Spatio-temporal EEG activity in the three experimental conditions (mental tasks
C, A and M) depicted as scalp topographies (head from above with the nose on top, average
values over 50 ms long intervals around 100 ms, 200 ms,. . . , 800 ms post-stimulus-onset).
Responses to target and distractor stimuli, and the corresponding differences, are visualised
separately (left, centre, right). [Figure from Wenzel et al., 2016b, reproduced with permission.]
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7 Discussion

7.1 Summary

Signals from the brain contain valuable user-related information. In this dissertation, it

was explored how this implicit information can be accessed with BCI methods. First, it was

demonstrated that BCI methods can uncover a usability flaw, which could not be noticed

by test persons. The results of the study suggest a remedy that can potentially improve the

ease of use of the assessed device (cf. chapter 3). Second, it was shown that the subjective

relevance of the elements of the visual surrounding can be estimated based on brain activity

and eye movements. The resulting relevance map of the field of view makes it possible to infer

the current interest of the individual person in real-time (cf. chapter 4). A variable salience

does not prevent the relevance mapping with state-of-the-art BCI methods (cf. chapter 5).

The BCI-based relevance detector can generalise over different objectives (tasks) of a person.

This result may indicate that the captured neural activity is related indeed to the subjective

experience of considering something as relevant (cf. chapter 6).

The direct observation of the neural processes in the brain offers particular benefits in com-

parison to standard methods for obtaining user-related information, such as introspection,

subjective reports, user questionnaires, behavioural observations, or making interaction with

the device or application possible (e.g. via mouse and keyboard with computer software).

First, uncovering the usability flaw and suggesting a possible remedy would have not been

possible with the mentioned standard methods due to the limits of human perception (cf.

chapter 3). Second, the subjective relevance mapping with EEG and eye tracking may circum-

vent time-consuming and distracting questions concerning the individual current interest, as

well as a possible response bias. Websites, devices, vehicle cockpits, or stores can potentially

be optimised with the obtained relevance maps. The implicit relevance information could

be aggregated in dynamic user interest profiles. Novel types of adaptive, personalised soft-

ware could take the estimated user interest into account, which would enrich the standard

interaction between human and computer [cf. section 4.1 and Müller et al., 2008; Blankertz

et al., 2010, 2016; Eugster et al., 2014, 2016; Kauppi et al., 2015; Finke et al., 2016; Pohlmeyer
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et al., 2011; Zander and Kothe, 2011; Ušćumlić et al., 2013; Jangraw et al., 2014; Blankertz et al.,

2016].

Multivariate methods from machine learning and signal processing were essential for extract-

ing information hidden in the EEG signals. As discussed in the sections 2.1 and 2.3, various

processes are computed in the brain at the same time and in rapid succession, by large dis-

tributed networks of single neurons, but can be measured only indirectly on the scalp, while

measurement noise and artefacts corrupt the signal quality. For an optimal coverage of the

complex neural activity, EEG is recorded with several electrodes at a high temporal resolution.

Information present in the resulting high dimensional data can be extracted best by multivari-

ate methods that consider the different dimensions in combination. Independent component

analysis made it possible to focus specifically on the visual cortex (cf. chapter 3). Neural

activity – that the test persons themselves were unaware of – was detected in the recorded

signals with pattern classification (cf. chapter 3). With regularized linear discriminant analysis,

the subjective experience of relevance was inferred from high dimensional, spatio-temporal

EEG feature vectors (cf. chapters 4, 5 and 6). Inspecting the informative EEG patterns was

important in order to avoid ‘black box’ classification. In this way, the characteristics that the

models had learned could be interpreted. It was demonstrated that neural activity from the

cortex was captured indeed, and not retinal activity (cf. section 3.4.3), or interfering effects

from eye movements (cf. section 5.4.5).

7.2 Limitations

Several limits have to be faced when decoding user-related information from brain signals.

First, it is worth emphasising that the presented neurophysiology-based usability assessment

(cf. chapter 3) is specific for the objective of this investigation. The approach can not serve

as instrument for measuring neural workload in general, but is restricted to the frequency-

dependent quantification of the effect of stereoscopic shutter glasses on the brain. The

evaluation of other applications or devices will require different approaches or may not be

accessible for an assessment with neurotechnology at all. Importantly, it remains an open

question if there is a causal relation between the detectable effect of the shutter on the

brain and the prevalence of visual discomfort, which can affect some viewers of stereoscopic

television. The results of the study merely suggest a possible remedy for the problem under

investigation. Nevertheless, further experiments are necessary for testing whether an increased

shutter frequency can – in fact – reduce the prevalence of visual discomfort. Note that the

question, whether detectable cortical effects are relevant for the problem solution, applies to

all neurophysiology-based investigations that turn out to be more sensitive than behavioural

methods.

Second, the BCI-based relevance mapping of the field of view comes with a considerable

uncertainty, which can not be neglected in practice (cf. chapters 4, 5 and 6). The single

estimates are rather vague, and therefore care was taken to accumulate evidence over time (cf.
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chapter 4). Fortunately, humans move the eyes several times per second, which makes rapid

data collection possible. However, evidence accumulation is not possible in any use case. For

this reason, it is important to select appropriate use cases in the first place, and to consider

the uncertainty of the relevance estimates during the development process of an application.

The potential of the BCI-based relevance detector in realistic settings, outside of the laboratory,

still has to be shown – most notably, because an intrinsic interest was mimicked with mental

tasks that artificially made certain stimuli (task-)relevant. By assessing the generalisation

properties of the approach, it could be excluded that mere task-specific neural activity was

captured (cf. chapter 6). Nevertheless, this study can serve only as a proxy to the question

whether the subjective experience of considering something as relevant can be decoded from

the EEG indeed. Furthermore, it has to be considered that only few parameters are typically

varied in experimental investigations. Under realistic conditions, the neural dynamics may

be far more variable, various effects can potentially interfere, and the approach may turn out

to be not specific enough. Simplifying assumptions were made, e.g. by directly contrasting

relevant versus irrelevant stimuli, without a fluent transition. The presented stimuli were

artificial, appeared suddenly on the screen and did not move [cf. Ušćumlić et al., 2013]. The

words read and items looked at were considered as independent (cf. chapters 4, 5 and 6).

However, single words in sentences are syntactically interrelated, and several sentences can

build a text. Likewise, realistic visual scenes contain elements that have to be interpreted in

combination. Such composite concepts can not be fully captured by evaluating each element

of the field of view independently. Besides, the experiments had a comparably short duration.

Over longer periods, non-stationarities can be expected, e.g. due to changes in physiology

or mental strategy, which can affect the brain activity patterns. The classifier learns these

patterns in a calibration phase, but does not adapt to the changes, and might be misled after

some time.

At present, the BCI-based relevance detector has to be recalibrated for each single person

before every usage, which should be overcome for better acceptance in practice. Likewise,

current EEG systems require a lengthy preparation, and the equipment is bulky, obtrusive and

expensive, at least when no compromises on the signal quality are accepted. Nevertheless,

recent hardware innovations and the increasing interest in wearable sensor technology may

change the game (cf. section 2.1). Most certainly, not everybody is ready to consent to

personalised interest profiles inferred from brain signals. Accordingly, data privacy must be

guaranteed and the expected benefits must be substantial.

7.3 Outlook

The method for uncovering an imperceptible neural workload (cf. chapter 3) could be applied

to similar problems, e.g. to flickering lighting systems. In this context, the sensitivity could be

compared with corresponding BCI-based approaches [Porbadnigk et al., 2011; Acqualagna

et al., 2015]. Furthermore, it should be assessed if the implications of the experimental findings
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can indeed reduce the prevalence of visual discomfort.

In this dissertation, the foundations were laid of a BCI-based relevance detector of the field

of view (cf. chapters 4, 5 and 6). In future work, it should be evaluated to what extent the

relevance detector turns out to be applicable in practice. Reality could be captured more

closely with novel experimental paradigms, where an intrinsic interest in an ecologically

valid visual surrounding is present indeed. EEG classification with state-of-the-art methods

was successful in the studies presented here. Nevertheless, the predictive performance can

potentially still be improved. Curve registration methods from functional data analysis might

help for better coping with the variability of the neural dynamics [Ramsay and Silverman,

2005; Marron et al., 2015, and chapter 5]. New techniques could be developed which can adapt

to confounding factors to be expected in realistic settings. The impact of misleading non-

stationarities in the signals could be cushioned with techniques that find ‘stationary subspaces

in multivariate time series’ [von Bünau et al., 2009]. The research-grade EEG system and eye

tracker used in the laboratory could be replaced with mobile equipment such as in-ear EEG

and mobile eye tracking glasses. Artefact rejection [Urigüen and Garcia-Zapirain, 2015] and

robust algorithms [Samek et al., 2014] could be tailored to mobile recording situations, where

movement artefacts interfere, and where measurement noise can substantially deteriorate

the signal quality. Transfer learning methods could render possible subject independent

classifiers that circumvent the time-consuming individual calibration sessions [Lu et al., 2009;

Fazli et al., 2009, 2011, 2015; Kindermans et al., 2014; Jayaram et al., 2016]. Finally, information

distributed over space and time (e.g. when reading words in sentences) could be integrated in

dynamic models that make it possible to infer user-related information on a higher level.
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