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Abstract 

 

In the last decades, a new class of materials with outstanding properties at the nanometric scale 

was presented to the world along with promising advances in various areas of technology. 

Such materials showed great electrical and thermal conductivity, and remarkable mechanical 

properties. Among these nanoscale materials, the nanofibers were promptly foreseen as great  

reinforcement substitutes for macroscale particles in composite materials, especially where 

lightweight plays a decisive role. However, areas of research concerned with the impact of 

these materials on the environment began to shed light on the consequences of nanofibers that 

are released to the atmosphere at the manufacture or at the disposal phase, for example. These 

studies showed that free airborne biopersistent nanofibers having certain dimensional 

characteristics can provoke serious health issues when they reach the deep airways of the 

respiratory system through inhalation. Furthermore, the harm caused by biopersistent 

nanofibers was directly related to their flexural rigidity. Thus, knowing the mechanical 

behavior of these materials became crucial not only for the potential application in structural 

components, but also to control the spread of rigid nanofibers before the potential risks are 

assessed.  

The presented work proposes a novel method to evaluate the flexural rigidity of nanofibers by 

employing a non-complex experimental setup using the Dynamic Scanning Electron 

Microscopy technique. In this method, the Young’s modulus of cantilevered nanofibers was 

obtained through mechanical excitation and resonance detection experiments based on the 

Euler-Bernoulli beam theory. Upon deriving the Young’s modulus experimentally, the flexural 

rigidity was calculated and discussed.  

Multi-walled carbon nanotubes and silicon carbide nanowires were investigated. The results 

showed scattered values of Young’s modulus from 15 to 161 GPa and 105 to 340 GPa, 

respectively. The nanotubes exhibited a curvilinear morphology, which is not exactly in 

accordance with the Euler-Bernoulli principle. However, it was important to examine this 

material since it became a benchmark for toxicological studies. For that, an alternative model 

to determine the Young’s modulus based on the vibration of curved beams was proposed and 

compared to Euler-Bernoulli. In addition, the curvy shape of the nanotubes was noticed to 

increase uncertainties on the length measurements performed via SEM images, because it 

produces a projected length different from the fiber’s true length. This effect can cause error 

deviations in average up to 59% on the Young’s modulus. To minimize these errors, a parallax 

method to reconstruct the 3D model of the fiber based on the 2D images with different tilt 

angles is recommended. On the other hand, the silicon carbide nanowires were very straight, 

showing a vibration behavior very approximate to the theoretical values for perfect linear 

elastic beams, and an average error of 18.6% on the Young’s modulus.  

Both nanofibers showed flexural rigidity values above the critical rigidity threshold of 10-19 

N·m2, which is the maximum permitted to prevent damages in defense cells of lungs. 

Therefore, these fibers were classified as potential hazard for humans.  The method described 

is applicable to nanofibers and nanowires with known material density, exhibiting a beam-like 

shape and electrically conductive or semiconductive.  

  



  



Zusammenfassung 

In den letzten Jahrzehnten wurde der Welt eine neue Klasse von Materialien mit 

herausragenden Eigenschaften im nanometerbereich vorgestellt, die vielversprechende 

Fortschritte in verschiedenen Technologiebereichen ermöglicht. Diese Materialien weisen eine 

hohe elektrische und thermische Leitfähigkeit sowie bemerkenswerte mechanische 

Eigenschaften auf. Unter diesen nanoskaligen Materialien wurden die Nanofasern sofort als 

großartiger Verstärkungsersatz für makroskopische Partikel in Verbundwerkstoffen 

vorhergesehen, insbesondere dort, wo das Gewicht eine entscheidende Rolle spielt. 

Forschungsbereiche, die sich mit den Auswirkungen dieser Materialien auf die Umwelt 

befassen, begannen jedoch, die Folgen von Nanofasern zu beleuchten, die z. B. bei der 

Herstellung oder bei der Entsorgung in die Atmosphäre abgegeben werden. Diese Studien 

haben gezeigt, dass frei in der Luft schwebende biopersistente Nanofasern mit bestimmten 

Abmessungsmerkmalen ernsthafte Gesundheitsprobleme hervorrufen können, wenn sie 

durch Einatmen in die tiefen Atemwege gelangen. Die durch biopersistente Nanofasern 

verursachten Schäden standen außerdem in direktem Zusammenhang mit ihrer 

Biegesteifigkeit. Daher ist die Kenntnis des mechanischen Verhaltens dieser Materialien nicht 

nur für die potenzielle Anwendung in Strukturbauteilen von entscheidender Bedeutung, 

sondern auch, um die Verbreitung von starren Nanofasern zu kontrollieren, bevor die 

potenziellen Risiken bewertet werden.  

In der vorliegenden Arbeit wird eine neuartige Methode zur Bewertung der Biegesteifigkeit 

von Nanofasern vorgeschlagen, bei der ein unkomplizierter Versuchsaufbau unter 

Verwendung der dynamischen Rasterelektronenmikroskopie-Technik verwendet wird. Bei 

dieser Methode wurde der Elastizitätsmodul von freitragenden Nanofasern durch 

mechanische Anregung und Resonanzdetektionsexperimente auf der Grundlage der Euler-

Bernoulli-Theorie ermittelt. Nach der experimentellen Ableitung des Elastizitätsmoduls 

wurde die Biegesteifigkeit berechnet und diskutiert.  

MWCNTs und SiC NWs wurden untersucht. Die Ergebnisse zeigten verstreute Werte des 

Elastizitätsmoduls von 15 bis 161 GPa bzw. 105 bis 340 GPa. Die CNTs wiesen eine gekrümmte 

Morphologie auf, die nicht genau mit dem Euler-Bernoulli-Prinzip übereinstimmt. Dennoch 

war es wichtig, dieses Material zu untersuchen, da es als Maßstab für toxikologische Studien 

diente. Die gekrümmte Form der CNTs erhöhte die Unsicherheiten bei den Längenmessungen, 

die mittels SEM-Bildern durchgeführt wurden. Dieser Effekt kann zu Fehlerabweichungen 

von durchschnittlich bis zu 59 % beim Elastizitätsmodul führen. Um diese Fehler zu 

minimieren, wird ein 3D-Rekonstruktionsmodell der Faser auf der Grundlage der 2D-Bilder 

empfohlen. Andererseits waren die SiC NWs sehr gerade und zeigten ein 

Schwingungsverhalten, das einem perfekten linearen elastischen Balken sehr nahe kam, und 

einen durchschnittlichen Fehler von 18,6 % beim Elastizitätsmodul. Beide Nanofasern wurden 

als potenzielle Gefahr für den Menschen eingestuft, da ihre Biegesteifigkeitswerte über der 

kritischen Steifigkeit von 10-19 N·m2 lagen. Die beschriebene Methode ist auf Nanofasern mit 

bekannter Dichte anwendbar, die eine balkenartige Form aufweisen und elektrisch leitfähig 

oder halbleitend sind.  
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1. Introduction 

1.1 Motivation 

One of the greatest achievements of Materials Science has been the discovery and 

development of nanomaterials and the unique properties brought up by the arrangement of 

atoms in well-defined structures at the nanometric scale. Many nanomaterials with the shape 

of nanofibers such as nanotubes and nanowires present remarkable electrical and thermal 

conductivity characteristics, and outstanding mechanical properties.  These attributes 

combined with their lightweight make them very promising to be used as reinforcement in 

composites. However, for the application as structural components, one needs to have a full 

knowledge of their mechanical behavior starting, for example, with their Young’s modulus � 

and their flexural rigidity. Until the present date, the available technology capable of reaching 

the nanometric scale to measure the mechanical properties of materials is still limited, and 

there are so far no reference standards for such tests. For this reason, many researchers are 

working on the development of different methods to be able to describe the properties of these 

materials, either theoretically by using computational simulations or by experimental 

approaches [1].  Among the experimental procedures, techniques involving microscopy are 

essential since the object of analysis is of very small dimensions. The most common tests use 

atomic force microscopy or electron microscopy and are combined with various principles of 

mechanical testing like bending, uniaxial loading, nanoindentation and resonance frequencies 

detection. 

Among the nanomaterials discovered in the last decades, one special class has been 

drawing considerably the attention of researchers due to its extraordinary characteristics, 

boosting the search for techniques to evaluate the mechanical properties of nanofibers. This 

class of materials are the carbon nanotubes (CNTs), which consist of carbon atoms bonded 

together in repeated hexagonal shapes forming a tube of a graphene sheet with very high 

aspect ratio. Such microstructures provide this material with many important properties like 

great electrical and thermal conductivity and a tensile strength even higher than that of steel. 

Some researchers tested the mechanical properties of MWCNTs and found values from 0.1 to 

1.28 TPa for its Young’s modulus [2-11]. Such high modulus and other promising properties 

led many research institutions to support projects involving the investigation of new 

techniques to synthesize nanotubes in a more optimized way and to deepen the knowledge 

about its behavior. An example of that was seen in 2000, when the US government raised the 

National Nanotechnology Initiative to investigate primarily CNTs and it has invested almost 

$29 billion in nanotechnology-related research over the last twenty years.  

Parallel to the increase of projects aiming at better understanding the properties and 

behavior of carbon nanotubes and the possible applications for them, many researchers from 

health and environment areas began to shed light on the potential risks brought up by the 

direct contact of these nanofibers with humans. In 2002, Gorman published a work 

highlighting the needs for further studies concerning the impacts of new materials in the health 

and environment before they were established as an industrial product. In her work, she refers 
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to the wide usage of harmful chemicals discovered in the 20th century, like chlorofluorocarbons 

and dichlorodiphenyltrichloroethane (CFCs and DDTs, respectively), which were later 

withdrawn from the market after the confirmation of serious damages to the atmosphere and 

to the human health [12]. Similarly happened with asbestos fibers that, after being extensively 

used in many applications were found to cause lungs cancer upon inhalation [13]. These fibers 

have chemical characteristics of a durable fiber, meaning that human cells are not able to 

decompose them to absorb their constituent parts. The biopersistence aspect combined with a 

length higher than 20 µm, a thickness under 3 µm and the aspect ratio above 3 make these 

materials particularly pathogenic [14, 15]. Even if the stiffness is not taken into consideration 

(asbestos’ Young’s modulus ~ 165 GPa [16]). Based on studies concerning pathogenic fibers, 

the World Health Organization (WHO) defined that potentially rigid and biopersistent fibers 

with length > 5 µm, thickness < 3 µm and aspect ratio > 3 may pose harm to lungs [17]. 

Considering its very small dimensions, nanomaterials can easily be carried away in 

different mediums until it reaches the body of humans or animals without being noticed. If it 

reaches groundwater, it can be incorporated into the food chain, or if it stays on the air, it can 

be inhaled. For being very lightweight, resistant, and having the characteristics of a fine 

powder, CNTs can be released into the air during production, use or disposal. During 

manufacture and handling, CNTs may undergo some mechanical processes like powder 

milling, agitation, and pulverization, which increase the chances of fine particles to become 

airborne respirable dust leading to occupational hazards. To avoid that workers involved in 

these processes are not exposed to contamination risks, production facilities with modern and 

advanced hygiene standards are required. And consequently, the costs of production tend to 

be higher [18]. CNTs have become commercially available and started to be used in large scale 

in distinct types of products, but there is still the question of how this material behaves upon 

abrasion and deterioration and if it breaks contact with its original matrix, would it be released 

into the atmosphere joining pollution? The same concept can be applied for general waste 

containing these and other nanofibers. Without the proper selective disposal, these particles 

can be dispersed into the air and water and return to human or nature contact [19, 20]. 

With so many signs that carbon nanotubes may pose risks for humans and for the 

environment as airborne particles, many researchers started to investigate the effects of CNTs 

in contact with the main parts of the respiratory system and the parameters involved in their 

pathogenicity. The conclusion from these studies was that rigid and long carbon nanotubes 

cause indeed strong inflammation in defense cells (macrophages) and necrosis in the lungs of 

mice, possibly leading to cancer, but no significant inflammation was observed for short nor 

flexible and tangled carbon nanotubes. Furthermore, the harm that CNTs provoke in 

macrophages was associated with their bending response and with their flexural rigidity, 

being denominated as “frustrated phagocytosis” [13, 21-25].  

Carbon nanotubes and other nanofibers are very promising materials, that can bring 

significant progress to science and technology, and it would be a throwback not to incorporate 

these materials into the industry and society. On the other hand, these materials may be 

harmful to humans, depending on how rigid they are and how they are handled. Therefore, 

knowing accurately the mechanical properties of nanomaterials is beneficial not only for the 
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application in all suitable and possible ways, but also to prevent that some advances in the 

Materials Science jeopardize the health of people and the environment. 

 

1.2 Objective 

This work was carried out in the Bundesanstalt für Materialforschung und -prüfung 

(BAM Berlin) in cooperation with the Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 

(BAuA Berlin), with the aim to develop a routinely applicable method to investigate the 

rigidity of nanofibers. To achieve this, the resonance frequencies of commercial multi-walled 

carbon nanotubes (MWCNTs) and silicon carbide nanowires (SiC NWs) were experimentally 

detected using the Dynamic Scanning Electron Microscopy [DySEM] technique [26, 27]. To 

evaluate the stiffness of the nanofibers, the corresponding Young’s modulus were obtained by 

applying the Euler-Bernoulli beam theory, followed by the calculation of the flexural rigidity. 

For the testing setup, the fibers were fixed standing free on the edges of a piezoelectric quartz 

crystal drive through which mechanical excitation was transmitted. Critical points of this 

project were the measurement of the fiber’s dimensions, the shape compatibility of the 

MWCNTs with the Euler-Bernoulli theory, and the effect of the fiber clamping on the boundary 

conditions. The method proposed can be implemented for nanofibers and nanowires that 

present a beam-like shape, have known density, and are electrically conductive or semi-

conductive. The term “nanofibers” refers to all types of nanomaterials with a fiber-like 

morphology, such as nanowires and nanotubes. 

The study presented here is a continuation of the master thesis “Mechanische 

Eigenschaften Nanoskaliger Fasern” of Jan Troeltsch, concluded in 2014 . Most of the project’s 

activities took place in the laboratories of the BAM, however in the initial phase, microscopy 

analysis and a few experiments were carried out in the Zentraleinrichtung 

Elektronenmikroskopie at the Technische Universität Berlin (ZELMI TU Berlin), and at BAuA. 

 

1.3 Thesis Structure 

The next chapter comprises the fundamentals regarding the linear elasticity of materials, 

the introduction to the Euler-Bernoulli beam theory, and a state of the art of the testing 

techniques used to study the elastic properties of nanofibers. Chapter 3 and 4 describe the main 

materials used in the project, the procedures employed in the sample preparation step to fix 

cantilevered nanofibers, and how the DySEM technique is applied to detect the resonance 

frequencies of nanofibers. The chapter 5 contains the results of the excitation tests performed 

with the MWCNTs and the SiC NWs, the discussions about the critical aspects of the method, 

the acquisition of the flexural rigidity of the nanofibers, and an evaluation of the boundary 

conditions impact on the first natural frequencies. In chapter 6, additional analysis on certain 

aspects of the method formulation are provided, such as the effect of the boundary conditions 

on the natural frequencies. The chapter 7 summarizes the results obtained in this project and 

recalls the toxicology perspective of rigid nanofibers. Finally, chapter 8 presents key points of 

this method that could potentially be improved in further studies. 
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2. Fundamentals 

2.1 Linear Elasticity of Materials 

2.1.1 The engineering approach 

In all kinds of structural applications, a component is designed to respond to a specific 

level of stress within its elastic regime, where deformation is reversible. Contrary to the elastic 

regime, the plastic regime is avoided since any permanent modification of its shape or 

microstructure might start a series of unpredictable and undesirable behaviors, leading to 

failure. In this way, to build safe engineering structures and components subjected to 

unidirectional loading, one of the first technical limiting parameters to be verified is the 

Young’s modulus of materials and the related yield strength.  For this reason, the majority of 

works related to the mechanical properties of nanofibers and nanomaterials in general 

involves an investigation of their elastic properties. In addition, this coefficient represents a 

response in the macroscopic scale of the amount of energy required to move the atoms 

constitutive of the material apart without breaking their chemical bonds. In this sense, the 

elastic modulus is a very reliable coefficient that express the resistance of materials from an 

atomic scale to the conduct in the bulky form.  

Most of the crystallographic engineering materials present an elastic linear regime 

during the initial phase of loading, and a subsequent plastic regime. This means that when a 

component is subjected to a force, it starts to deform presenting a linear strain rate with the 

increase of the load applied. In practice, there is also the onset of a non-linear elastic regime 

shortly before plasticity starts. Once the load is removed, the material returns to its original 

form. Upon increase of the load beyond the elastic phase, the material reaches the yield point, 

from which the deformation becomes plastic and the strain rate changes to a nonlinear regime. 

This nonlinearity is a consequence of deformation mechanisms that take place at the 

microscopic scale, such as dislocations in metals. At the plastic phase, the deformation is 

permanent, and it ceases when at a higher load the material fails, leading to fracture. This 

behavior of materials under axial stress is represented by the stress-strain curve. In some cases, 

the exact point at which the material starts to yield may not be clearly seen in the stress-strain 

curve. For this reason, a convention was adopted in which the yield stress is obtained through 

a straight line drawn parallel to the elastic phase graph, positioned at an offset of 0.002 on the 

strain axis. The intersection of this offset line with the stress-strain curve gives the engineering 

yield stress value. Figure 1 shows a typical engineering stress-strain curve that represents the 

behavior of a crystallographic material under tensile testing. The relationship between stress 

(�) and strain (�) during the elastic regime of materials under tensile loading is described by 

Hooke’s law (Equation 2.1 ). The Young’s modulus or modulus of elasticity (�) is the parameter 

used to quantify the elasticity, or the stiffness of materials and it is obtained from the slope of 

the linear section of the plot of stress versus strain of a material submitted to a tensile test.  
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Figure 1: simplified stress - strain curve for a crystallographic elastic material under tensile loading. Within 

the elastic region, the material can undergo loading until the yield point with no permanent deformation. From 

that point on, the nonelastic region starts, and an irreversible plastic deformation is formed. Image adapted from 

[28]. 

� = �� (2.1) 

 

The macroscopic elastic response of a material under loading is displayed at the atomic 

scale by the variation of the distance between atoms. In other words, when the material is 

subjected to a force below the yield point, the atomic bonds are being stretched and the atoms 

are moving apart from one another, without breaking the bonds apart. Or, in the case of 

compressive loading, the atoms are being brought together to a minimum permissible distance 

to each other. When the load is released, the atoms return to their original equilibrium state 

and the deformation disappears. Here, it is clear that the modulus of elasticity � is directly 

proportional to the forces of attraction and repulsion between the atoms, which is represented 

by the slope of the force (�) versus interatomic separation plot at the equilibrium distance �� 

(Figure 2) and it is represented by the following equation:  

� ∝ �
��

��
�

��

 (2.2) 
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Figure 2: plot of Force versus interatomic separation (�) for atoms with weak bonds (blue) and atoms with 

strong bonds (red). Interatomic distances above the values where the peak of the curve is defined are 

irreversible. Image extracted from [29]. 

 

When low levels of load are applied generating shear stresses, the material presents an 

elastic response similar to the behavior under tensile loading, which can be described by the 

equation  

� = �� (2.3) 

 

where � is the shear stress, � is the shear modulus and � is the  shear angle. Similar to the 

Young’s modulus, the shear modulus is obtained from the slope of the linear elastic region of 

the shear stress-strain curve.  

During a tensile test for an isotropic material, while an elastic elongation and strain occur 

in the direction of the applied stresses, a shrinkage of the specimen perpendicular to the 

direction of loading takes place. From this contraction, the compressive strains can be 

accounted and the Poisson’s ratio � can be derived. Considering that the load is applied in the 

� direction and ��  is the corresponding strain, the lateral strains �� and �� will be equal and 

from opposite signs, according to the relation 

 

 

 

� = −
��

��
= −

��

��
 (2.4) 
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Furthermore, for isotropic elastic materials the shear and elastic moduli are related to the 

Poisson’s ratio as follows 

� = 2�(1 + �) (2.5) 

 

 For materials that are anisotropic, the characterization of their elastic properties will 

require more than two elastic constants, depending on how the change of the crystal 

orientation affects their response. For the fact that most of the engineering materials are 

isotropic, the analysis of the stresses and strain in three-dimensional state is very often 

formulated considering isotropic conditions. 

 

2.1.2 The stress-strain relationship for three dimensional isotropic materials 

In a deeper analysis of a continuous three-dimensional material based on the references 

[30-32] , external forces � acting on its surfaces generate the stresses that can be measured by 

analyzing the physical state on an infinitesimal part of the whole volume, which is represented 

in Figure 3 . 

 

 

Figure 3: stress state of an infinitesimal part of a material showing the orthogonal and the tangential 

stresses. 

The effect of the stress and the strain on the region around the point of application of the 

force is represented by the stress tensor ��� and the strain tensor ��� (Equation 2.6). 

     

��� = �

��� ��� ���

��� ��� ���

��� ��� ���

� ��� = �

��� ���� ���

��� ��� ���

��� ��� ���

� (2.6) 

 

where ��� are the normal stresses and ��� are the shear stresses. 
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Thus, considering a material with a linear elastic response, the Hooke’s Law presented in 

Equation 2.1 can be rewritten as 

��� = �������� (2.7) 

 

where ����� is the elastic or stiffness tensor. Since ��� and ��� are second-order tensors, ����� is a 

fourth-order tensor with 81 terms. For symmetric conditions, ��� = ���, ��� = ���, and ����� =

����� = ����� = �����, and the number of terms of the elastic tensor reduces from 81 to 36, which 

is the general form of the stress-strain relation for anisotropic materials. Furthermore, using 

Voigt notation, the stiffness tensor can be simplified to the matrix notation by replacing �� or 

�� by � or �, where �, �, �, � = 1,2,3 and �, � = 1,2,3,4,5,6, according to Table 1. 

 

Table 1: Voigt matrix notation  

��or �� � or � 

�� 1 
�� 2 
�� 3 

�� or �� 4 

�� or �� 5 

�� or �� 6 

 

With Voigt notation, Equation 2.7 can be rewritten in detail as follows: 

 

��� = �������� + �������� + �������� 

        +�������� + �������� + �������� 

        +�������� + �������� + �������� 
�, � = 1,2,3 (2.8) 

 

As stated before, ��� = ���, and ����� = ����� = ����� = �����, for symmetric conditions, thus 

Equation 2.8 can be rearranged as 

 

��� = �������� + �������� + �������� + 2�������� + 2�������� + 2�������� �, � = 1,2,3 (2.9) 

 

Now, applying Voigt notation as well, the above equation can be expressed in matrix form as 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
���

���

���

���

���

���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

���

���

���

2���

2���

2���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.10) 

 

 which can be simplified as 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
���

���

���

���

���

���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
��� ��� ��� ��� ��� ���

��� ��� ��� ��� ���

��� ��� ��� ���

��� ��� ���

���. ��� ���

���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

���

���

���

2���

2���

2���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.11) 

 

 

An additional representation of the stiffness tensor for isotropic materials is using the 

Kronecker delta ��� and the Lamé constants, � and �, as follows: 

 

����� = ������� + �������� + ������� (2.12) 

 

The Kronecker delta is defined as 0 for � ≠ � and 1 for � = �; being �, � = 1,2,3. The Lamé 

constants are material constants related directly to the Young’s modulus and the shear 

modulus, as given 

 

� =
��

(1 + �)(1− 2�)
,             � = � =

�

2(1 + �)
,             � =

�

2(� + �)
 (2.13) 

 

Consequently, the stress-strain relationship can be expressed in terms of the Lamé 

constants, as well: 

 

��� = �(��� + ��� + ���) + 2���� (2.14) 

��� = �(��� + ��� + ���) + 2���� (2.15) 
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��� = �(��� + ��� + ���) + 2���� (2.16) 

��� = 2���� = ���� (2.17) 

��� = 2���� = ���� (2.18) 

��� = 2���� = ���� (2.19) 

 

And the corresponding stiffness matrix � is  

 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
� + 2� � � 0 0 0

� + 2� � 0 0 0

� + 2� 0 0 0

� 0 0

���. � 0

�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2.20) 

 

In the same way, the strain-stress relation can be expressed by 

 

� = �� (2.21) 

 

where � is the compliance matrix and � = ���. Therefore, the matrix representation of � 

for isometric materials is 

 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 �⁄ −� �⁄ −� �⁄ 0 0 0

1 �⁄ −� �⁄ 0 0 0

1 �⁄ 0 0 0

2(1 + �) �⁄ 0 0

���. 2(1 + �) �⁄ 0

2(1 + �) �⁄ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2.22) 

 

Finally, it has been demonstrated that, for uniform materials whose properties are the 

same independently of the orientation and yet present linear elastic behavior, the stress-strain 

relationship is defined in terms of the two elastic constants, Young’s modulus � and the Shear 

modulus �.  
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2.2 The Euler-Bernoulli Beam Theory 

The Euler-Bernoulli beam theory, also known as classical beam theory, describes the 

elastic behavior of a static or a dynamic beam submitted to axial forces and bending. In an 

excited beam, the corresponding stresses and displacements may be dependent on the applied 

force function. Furthermore, in the case of free vibrations, two important parameters of the 

system are the natural frequencies and the corresponding mode shapes, which relate directly 

to the Young’s modulus of materials, as will be presented next. If the frequency of excitation 

matches a natural frequency, large vibration amplitudes result (resonance). 

This theory considers the type of material (Young’s modulus, density), the deformation 

pattern of the beam (nodes of vibration), the geometry of the beam and its internal equilibrium. 

In systems where a material is being subjected to flexural deformations as a result of forces 

that produce bending, the inner arc experiences compressive stresses while the outer arc 

experiences tensile stresses. In this case the stress-strain relationship in the linear elastic region 

is similar to the case of axial forces. 

 

2.2.1 Flexural vibrations of a beam 

To represent the forces acting on a beam vibrating under bending, let’s first consider a 

beam with a rectangular cross-section �(�), with height ℎ�, thickness ��, and length � [33]: 

 

 

Figure 4: model of an Euler-Bernoulli beam under vibration (top), and a free-body diagram of a 

infinitesimal element of the beam under bending forces. 
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Where �(�, �) and �(�, �) are respectively the transverse force and the transverse  

displacement (or bending displacement) of the beam in space and time, �(�, �) is the shear 

force and �(�, �) is the bending moment, which is described in detail in section 9.3 of reference 

[34] and is defined by the relation: 

� (�, �) = ���

���(�, �)

���
  (2.23) 

 

The product of the Young’s modulus � and the cross-sectional area moment of inertia 

�� about the � axis represent the flexural rigidity of the beam, and the second derivative of 

�(�, �) represents the rate of variation of the displacement with the change in the position �. 

According to Newton’s Second Law the sum of the forces acting on the direction of the 

� axis is equal to mass times acceleration, which yields : 

��(�, �) +
��(�, �)

��
 ��� − �(�, �) +  �(�, �)�� = ����� 

���(�, �)

���
  (2.24) 

  

where �(�, �) is the shear force, and the term on the right side of the equation is the inertial 

force of the element. The product ��� is the linear density of the beam. For beams where 

� ℎ� ≥ 10⁄  and � �� ≥ 10⁄ , or with an aspect ratio it can be assumed that the shear deformation 

is much smaller than the transversal deformation �(�, �), meaning that there is no bending on 

the sides of the element ��.  

 Next, the summation of the moments on �� about the point � is described as 

��(�, �) +
��(�, �)

��
 ��� − �(�, �) +  ��(�, �) +

��(�, �)

��
��� �� + [�(�, �)��]

��

2
= 0  (2.25) 

 

that can be simplified as  

�
��(�, �)

��
+ �(�, �)� �� + �

��(�, �)

��
+

�(�, �)

2
� (���) = 0  (2.26) 

 

As �� is infinitesimal small, the term ��� can be approximate to zero, thus 

 

�(�, �) = −
��(�, �)

��
  (2.27) 
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and replacing this expression in Equation (2.24) yields 

−
��(�, �)

��
−

� �
��(�, �)

��
�

��
�� +

��(�, �)

��
+ �(�, �)�� = ��(�)��

���(�, �)

���
 

(2.28) 

 

−
���(�, �)

���
�� + �(�, �)�� = ��(�)��

���(�, �)

���
 (2.29) 

 

�(�, �) = ��(�)
���(�, �)

���
+

���(�, �)

���
 (2.30) 

 Now, replacing Equation 2.23 into Equation 2.30: 

�(�, �) = ��(�)
���(�, �)

���
+

��

���
���(�)

���(�, �)

���
� (2.31) 

 

which for a uniform and homogeneous beam, the equation of motion results in 

��
���(�, �)

���
 +   ��

���(�, �)

���
= �(�, �)   (2.32) 

 

 

For a free vibration beam, �(�, �) = 0, and Equation 2.32 can be rewritten as   

 

��
���(�, �)

���
 +   

���(�, �)

���
= 0 (2.33) 

 

 

where 

� = �
��

��
 (2.34) 
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The equation of motion (Equation 2.32) contains a fourth-order derivative with respect to 

� and a second-order derivative with respect to time. Thus, to calculate the solution for �(�, �), 

beside the four boundary conditions, two initial conditions, one for the lateral displacement 

(��(�)) and one for the velocity (�̇�(�)) are specified at � = 0: 

 

�(�, � = 0) = ��(�) 
��(�, � = 0)

��
= �̇�(�) (2.35) 

 

  

The boundary conditions to solve the equation with respect to � in a separation of 

variables solution are described by analyzing the following parameters at each end of the 

beam: 

 

the deflection �(�, �) (2.36) 

 

the slope of the deflection 
��(�, �)

��
 (2.37) 

 

the bending moment 
�����(�, �)

���
 (2.38) 

 

and the shear force 
�

��
���

���(�, �)

��� � (2.39) 

 

For a cantilevered beam (clamped-free), the deflection and the slope are unrestricted at 

the free end, but the bending moment and the shear force are null:   

 

��
���

���
= 0 (2.40) 

 

�

��
���

���

���
� = 0 (2.41) 

 

Additionally, 

�(0, �) = 0 
��(0, �)

��
= 0 (2.42) 
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Separating the variables and substituting in (2.33) leads to: 

 

�(�, �) = �(�) �(�) (2.43) 

 

��

�(�)

���(�)

���
= −  

1

�(�)

���(�)

���
= �� (2.44) 

 

 

where � = �� is a positive constant. Equation (2.44) can be simplified into two equations: 

 

  
���(�)

���
− ���(�) = 0 (2.45) 

 

���(�)

���
+ ���(�) = 0 (2.46) 

 

where 

�� =
��

��
=

����

��
 (2.47) 

  

 

The solution of Equation (2.46) follows: 

 

�(�) = � cos �� + � sin �� (2.48) 

 

where A and B are constants from the initial conditions. For the solution of Equation (2.45), it’s 

assumed that: 

 

�(�) = ���� (2.49) 

 

where � and � are constants and  
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�� + �� = 0 (2.50) 

 

 

��,� = ±�,           ��,� = ±�� (2.51) 

 

 

Thus, the solution of Equation (2.45) becomes 

 

�(�) = ����� + ������ + ������ + ������� (2.52) 

 

where ��, ��, �� and �� are different constants. The equation above can also be expressed 

as: 

  

�(�) = �� cos �� + �� sin �� + �� cosh �� + �� sinh �� (2.53) 

or 

 

�(�) = �� (cos �� + cosh ��) + ��(cos �� − cosh ��) + ��(sin �� + sinh ��)
+ ��(sin �� − sinh ��) 

(2.54) 

 

The function �(�) is the mode shape or characteristic function of the beam and ��, ��, �� and 

�� are constants that can be found from the boundary conditions. For a fixed-free beam, the 

boundary conditions are: 

 

��(�) = ��[sin ��� − sinh ��� − ��(cos ��� − cosh ���)] (2.55) 

 

where  

�� = �
sin ��� + sinh ���

cos ��� + cosh ���
� (2.56) 

 

and  

cos ��� ∙ cosh ��� = −1 (2.57) 

 

 

Further, the equation of the natural frequency of vibration of the beam is � and can be 

derived from Equation 2.47: 
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� = ���
��

��
=  (��)��

��

����
 (2.58) 

 

and � = 2��. Thus, for the flexural natural frequencies of cantilever beams with a free 

end, Equation (2.58) can be generally written as: 

�� =
(���)�

2�
�

��

����
 (2.59) 

 

The Equation (2.57) has infinitely many solutions, from which the Euler-Bernoulli 

coefficients �� ∶= ��� of the individual eigenmodes � are derived. For a free end cantilevered 

beam, the first four coefficients are �� = 1.8751, �� = 4.6941, �� = 7.8547, �� = 10.9956 [35].  

The nanofibers studied here have a cylindrical shape with inner diameter �� and outer 

diameter � (in the case of the nanotubes), or only an outer diameter � (for the nanowires). 

Thus, the cross-sectional area moment of inertia � and the cross-sectional area � are described 

as [36]: 

 

� =
�

64
 ��� − ��

��     
�≫��
�⎯⎯�     � ≈

�

64
 �� (2.60) 

 

� =
���

4
 (2.61) 

 

Thus, from Equation (2.59) the natural frequencies of cantilevered nanofibers can be 

defined as:   

 �� =
��

�

8���
��

�

�
 (� = 1, 2, … ) (2.62) 

 

where � is the length of the nanofiber from the fixation point to its tip, � is the Young’s 

modulus. Figure 5 illustrates the natural frequencies and the mode shapes for the first four 

eigenmodes. 
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Figure 5: resonance frequencies and mode shapes of the first four eigenmodes with the exact position of 

the nodes along the beam length. Image extracted from [37].  

 

To obtain the Young’s modulus �, the equation 2.62 can be written as: 

 � =
64��

��
� ⋅

�� � ��
�

��
 (� = 1, 2, … ) (2.63) 

 

 

2.3 Flexural Rigidity of a beam 

Physically, the flexural rigidity � of a fiber is defined as the product of Young’s modulus 

� and second moment of axial area � [36]: 

 � = � ⋅  �  (2.64) 

and the cross-sectional area moment of inertia for a beam with the shape of a cylinder is 
�

��
 �� 

(Equation 2.60). Thus, Equation 2.64 can be written as: 

 � = � ⋅  
�

64
 ��  (2.65) 

2.4 In situ investigation of the elastic properties of nanofibers 

Having the dimensions in the nanometric scale makes it a challenge for researchers to 

measure the elastic behavior of nanomaterials in the same way that it is made with the bulky 
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counterpart, due to the limitations in manipulating such small samples. In addition, the 

physics prevailing in the nanoworld not always is the same as the one governing the materials 

at the macroscopic scale, making the results in some cases unpredictable or very complex to 

assess. Thus, to help predicting the behavior of materials where the eyes and the technology 

cannot yet reach, the scientific community has been applying the principles of mechanics of 

materials to test nanofibers with the aid of several microscopy techniques and advanced 

scientific instruments, occasionally combined with computational simulations. The most 

established experimental techniques rely on procedures to manipulate the nanomaterials 

using atomic force microscopy (AFM), scanning electron microscopy and transmission 

electron microscopy (SEM and TEM, respectively). Much of the research to investigate the 

properties of nanofibers has been made with carbon nanotubes, since its discovery almost 

thirty years ago. Their promising and remarkable properties triggered the development of 

techniques to test and to investigate in detail such materials and other nanofibers of interest. 

Because of the large number of reported works concerning CNTs, and for the fact that this 

material was investigated in this thesis, many of the techniques that are going to be listed next 

were implemented during the investigation of these materials. 

2.4.1 Tests with atomic force microscopy  

The atomic force microscope is an instrument that provides as main function 

topographical imaging through the deflections response of a cantilever that scans over the 

surface of a material. In this principle a laser beam is focused on the cantilever’s top surface, 

and the changes on the direction of the reflected beam are monitored reproducing the surface 

of the material. In addition to the surface characterization feature, the AFM is capable of 

providing mechanical information of the sample being tested by simultaneously recording the 

force applied on a probe and the resulting displacement with very high resolution, or by 

detecting the resonance frequencies of nanowires and applying the elastic beam theory. The 

force versus displacement measurement usually is made via bending tests where a transversal 

load is applied through the cantilever tip on the suspended nanofiber, which is clamped onto 

a substrate on one end or on both extremities (Figure 6a and b, respectively). As the load 

increases, the nanofiber is further deflected and the changes in the elongation of the fiber is 

recorded producing a Force (�) vs. displacement (�) curve. In the published works [3, 7, 38, 

39], for static cases and general boundary conditions, the elasticity modulus � has been 

obtained with the formula : 

 � =
���

���
  (2.66) 

 

where � is the length from the clamping point to the loading point, � is the applied force, � is 

3 for a free end beams and 192 for beams clamped on both sides, � is the nanofiber deflection, 

and � is the cross-sectional area moment of inertia, which for a cylinder is ��� 64⁄ . 
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Figure 6: schematic examples of force vs. displacement bending tests in an atomic force microscope. In (a), 

the nanowire is clamped on one side and the force applied by the cantilever tip is applied at the end of the wire; 

and in (b) the scheme of a doubly-clamped nanowire, where the force is applied at the center and both 

extremities are fixed. Image extracted from the article [40].  

The clamping of the nanofibers can be accomplished by deposition on a well-polished 

porous membrane made of alumina, or polycarbonate, in a way that a certain amount of fibers 

will end up suspended over the pores of the membrane. The section of the nanofiber hanging 

over the pore will then receive the load exerted from the cantilever tip. Another alternative to 

prepare nanofibers for the force vs. displacement test is by dispersing and depositing them on 

a cleaved substrate, and then laying a grid of square pads on them to later test the suspended 

ones [3, 7, 38, 39, 41]. Examples of these types of clamping can be seen in the figure below. 

 

 

Figure 7: Illustration of clamping techniques used in AFM to test the mechanical properties of nanowires: 

the image on the left shows how SiC nanowires or carbon nanotubes were pinned on a substrate by square 

pads [41]; the two images on the right show nanotubes suspended over a membrane to receive the vertical 

force exerted by the AFM cantilever tip [3, 38]  

Another configuration of bending test in the AFM was reported by Song et al. during the 

mechanical characterization of zinc oxide (ZnO) nanowires [42].  Vertically aligned ZnO 

nanowire arrays were scanned by a cantilever in contact mode, as illustrated in Figure 8. To 

extract the elastic modulus of the nanofibers, the lateral force required for the cantilever tip to 

bend the top of the nanowire is recorded and inserted into Equation 2.66. The length � is 

derived by analyzing the geometry of the bent fiber in the stage of maximum deflection and 

extracting the values of vertical and lateral displacement.  
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Figure 8: the AFM cantilever tip scans over a vertically aligned ZnO nanowire in contact mode producing 

a deflection on the nanowire. The images from (a) to (e) show the different stages of the bending test with the 

correlating lateral force recording [42] 

 

AFM can also be used to extract the mechanical properties of nanofibers by detecting their 

resonance frequencies and applying the frequency calculations for mode resonances from the 

Euler-Bernoulli beam theory. In [8], the authors used a side gate electrode with oscillating 

voltages to electrostatically excite a doubly clamped carbon nanotube, while the vibration of 

the nanotube was sensed by a cantilever in tapping mode, and measured by a lock-in amplifier. 

The resulting resonance frequencies were inserted in the Euler-Bernoulli formula, and the 

Young’s modulus were then obtained. Despite the quality factor � of this type of experiment 

being in the range from 3 to 20, which is an indication of high energy dissipation in the test 

setup, this method presents an additional alternative to measure the elastic properties of 

nanofibers with atomic force microscopy. In vibration experiments, commonly the quality 

factor is used to describe the damping present in the system, and the relation between quality 

factor and damping ratio � is as follows: 

 

 � ≡
1

2�
=
√��

�
  (2.67) 

 

where � is the stiffness, � is the mass and � is the damping coefficient. Thus, the smaller is the 

damping ratio, the higher is the quality factor, meaning that the system does not present 

significant energy losses.  

In the force vs. displacement tests performed with the AFM the error of the Young’s 

modulus can vary from 20 – 50% for MWCNTs [3, 7, 39]. This is often associated with 

uncertainties in the selection of the exact point to measure the distance � and especially with 

the diameter to be considered in cases where it varies along the length of the fiber. Both 

parameters have a significant influence on the value of the modulus, since � is to the 3rd power 

and � is to the 4th power (Equation 2.66), for the static case. In addition, the data regarding the 

force and the displacement obtained from different sources may vary, due to the different 

conventions adopted on how the data is displayed. Therefore, for AFM bending tests to 

represent a reliable approach to evaluate the elastic properties of nanofibers, the distance to 
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the load point and the diameter should be accurately determined. Moreover, it would be a 

more powerful tool if the microstructure of the specimens could be observed in detail during 

the elastic deformations, which is better accomplish with electron microscopy. 

  

2.4.2 Tests with electron microscopy 

Using an electron microscope to perform tests in nanofibers and nanowires brings 

significant advantages in terms of observation and assessment of the mechanisms that 

integrate the dynamics of nanomaterials. This class of instruments permit the recording of the 

nanofiber’s direct response to mechanical loading and vibration, such as displacement 

variations, the onset of deformation patterns, the change of the morphology of the fiber, and 

other unknown phenomena. Other important aspects of electron microscopes are the close 

examination of the fiber fixation point, and the measurement of the shape dimensions with 

high resolution. In addition, considering that microstructure features, such as rippling of 

multi-walled carbon nanotubes and stacking faults of SiC NWs do have influence on the 

mechanical response of nanomaterials, more and more the assistance of a scanning or a 

transmission electron microscope to deeply investigate and understand the elastic and plastic 

properties of these materials is becoming indispensable. Furthermore, the advances in 

microscopy techniques, with the development of ultra-sensitivity manipulation tools capable 

of handling nanofibers individually, place these instruments on a preferred spot when it comes 

to nanomechanical testing.  

In mechanical tests performed within SEM and TEM there is a variety of ways in which 

researchers have carried out the sample preparation of nanofibers to be tested. In most of the 

cases, a nanomanipulation tool present inside of the chamber is employed to select an 

individual nanowire from a substrate and then transfer it to the testing device where it is going 

to be integrated. Depending on the method applied for testing, the fixation of the nanowire to 

micromechanical devices can be made with solid carbonaceous deposit, with a layer of silver-

epoxy glue, with a conductive carbon tape, or welded with electron beam-induced deposition 

or with platinum.  

One of the pioneer methods to test the elastic properties of nanofibers within electron 

microscopes was first reported by Poncharal et al. in 1999 with the transmission electron 

microscope [2]. This method consists of exciting the nanofiber with electrostatic forces to detect 

its resonance frequencies. In principle, the nanofiber is assembled as a cantilever on the tip of 

a nanomanipulator or a special holder at a direct current voltage ��� with respect to the 

ground. An anode tip is placed near the nanofiber with an alternate current voltage ��� with 

respect to the ground. The nanofiber and the tip become polarized by the two voltages, 

producing electrical forces between them. The natural mechanical excitations of the fiber can 

be observed when the voltage ��� match with its resonance frequency and the elastic modulus 

� is derived from the Euler-Bernoulli beam theory (Figure 9). This method was subsequently 

reproduced by other researchers in the TEM [4, 6, 43], and in the SEM as well [44-48]. The 

advantage of this in situ test within the TEM is the possibility of observing the bended 

microstructure of the fiber upon excitation and to be able to track down structural defects. This 
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is especially favorable for multi-walled carbon nanotubes, as the onset of deformation patterns, 

such as rippling, may negatively affect the elasticity [2, 11]. 

 

 

 

Figure 9: TEM images of the experimental setup and testing of CNTs via electrostatic deflections. The 

upper figure shows a scheme of the electrode and counter electrode on opposite sides with an applied voltage. 

Below, there is a series of images of one CNT being tested: (a) at stationary mode; (b, c) at the first mode of 

resonance and (d) at the second mode of resonance [43]. 

 

Other common methods to measure the elasticity modulus of nanofibers employ 

microelectromechanical systems (MEMS). These devices are composed of microfabricated load 

sensors and actuation mechanisms to perform mechanical tests in nanomaterials with good 

precision. Normally, they are adopted to perform tensile tests of doubly clamped nanowires 

and can be integrated into a SEM and a TEM [46, 49-51]. The MEMS stage used during in situ 

testing can present a thermal, an electrostatic or a piezoelectric actuator on one side, where the 

load originates and on the other side there is a differential capacitive load sensor that measures 

the applied force (Figure 10). The extremities of the specimen are clamped on each side across 

a gap that separates both parts of the MEMS. The test occurs by applying a force through the 

actuator and acquiring a series of images of the fiber elongation, which will be then analyzed 

to extract the fiber strain. In more advanced MEMS, a displacement sensor is built on the 

MEMS chip enabling the displacement to be electronically acquired [52]. The mechanical 
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behavior of the nanowire is represented by the stress vs. strain curved computed from the 

force-displacement data recorded during the tests and the cross-sectional area of the nanowire. 

 

Figure 10: (a) SEM image of a MEMS with thermal actuator used to test carbon nanotubes; (b) a high 

magnification SEM image of a MWCNT suspended in the gap between the actuator (left side) and the load 

sensor of the MEMS [53]. 

 

A variation of the MEMS operates with a “push-to-pull” technique, where an external 

quantitative nanoindenter actuates the micromechanical device (Figure 11). A compression 

load is applied by the tip of an external nanoindenter onto the mobile part of the device, 

causing an expansion of the central gap where an individual nanowire is clamped and 

ultimately converting the compressive force into tensile force. The corresponding stress vs. 

strain curve is calculated from the force data recorded by the nanoindenter and the 

displacement obtained via image acquisition during the tests [49, 54, 55].  

 

  

Figure 11: SEM image of a “push-to-pull” micromechanical device used to test nanowires with the view of 

the nanoindenter in the lower part of the image, and a close-up of the specimen under tension at the central part 

of the device (right) [55]. 

 

   Another possibility to test nanofibers and nanowires within SEM and TEM is by 

integrating AFM cantilevers or nanomanipulation tools with the immediate detailed 

observation of the samples upon testing, done with the acquisition of electron microscopy 

images. In this scenario, both tensile and bending tests can take place according to the desired 
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experimental setup. For the realization of simple bending tests, usually one extremity of a 

nanowire is fixed on a tip of a nanomanipulator and the free end receives the bending load 

through a cantilever tip or through another microscopic tool that is connected to a force sensing 

instrument [56, 57]. The increase of the bending force exerted by the microscopic loading tool 

on the nanowire is recorded and the displacement is obtained through the image correlation 

analysis of the specimen while deflected (Figure 12). With the slope of the force vs. 

displacement curve the spring constant � is derived and next the Young’s modulus � is 

calculated according with the Equation 2.66. A disadvantage of this method is the inaccuracy 

of the exact position at which the tip is exerting the force, and difficulty to evaluate if the tip is 

acting fully perpendicular to the fiber, or if it is slipping to the side upon application of the 

force. 

 

 

Figure 12: SEM image of a molybdenum dioxide (MoO2) nanowire being deflected by a tungsten tip and 

the image correlation to obtain the resulting displacement � [57]. 

 

A three-point-bending test can also be done by clamping the nanowire on both extremities 

to a fixed substrate and exerting a force through a nanoindenter tip at the middle length of the 

nanowire, as reported by Ma et al. [58]. In this case, the Young’s modulus is calculated using 

Equation 2.66. 

Tensile tests can be performed in SEM using two AFM cantilevers with different stiffness 

placed in opposite sides of one another, with the nanowire fixed at the tip of each cantilever 

[5, 59]. The tensile test occurs when the stiffer cantilever moves upward creating tension in the 

nanowire and in the softer cantilever, which consequently bends upwards (Figure 13). The 

resulting force acting on the nanowire is determined by recording images of the deflection of 

the softer cantilever and using its spring constant �. The change in the length of the nanowire 

is measured as well. This way, the resulting stress-strain curve is obtained.  

A study published by Zhang et al. presented the comparison of the Young’s modulus 

obtained for SiC nanowires submitted to tensile tests and resonance frequency detection in a 

scanning electron microscope. For the tensile tests, the nanowires were clamped using a 

nanomanipulation tool on the tip of two opposite AFM cantilevers, as described in the 
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previous paragraph. For the resonance frequency detection, the nanowires were individually 

clamped on the tip of an AFM cantilever, and two types of excitation tests were performed 

separately. One was the electrical excitation, where a counter electrode approached the AFM 

probe and an electric field was established with the onset of an alternative current signal. Once 

the frequency of the ac signal matched the natural frequency of the nanowire, its vibration 

amplitude was observed in the SEM. In the other test, the ac current was applied to a 

piezoelectric device, which provided a mechanical excitation to the AFM probe attached. The 

nanowire attached to the AFM tip vibrated at resonance once the frequency of the piezo 

matched its natural frequency. For both the resonance tests, the Young’s modulus was derived 

from the Euler-Bernoulli beam theory. At the end, the authors showed that the average 

Young’s modulus obtained from the three different experimental setups were very 

approximate, reinforcing the reliability of the techniques employed [60].  

Although tensile tests in nanowires are relatively fast, in the range of a couple of minutes, 

this type of technique in SEMs with AFM cantilevers is very time demanding and has a very 

complex setup. This approach combines SEM with nanomanipulators, with AFM cantilevers, 

with TEM. There is the need to use nanomanipulators to fix the nanowires on the cantilever 

tips, the two AFM cantilevers are employed to perform the tensile tests and, the SEM monitors 

the change in position and shape of the parts involved, and yet there is a last step to verify 

with accuracy the dimensions and the microstructural changes in the TEM, when desired. 

 

 

Figure 13: SEM images of a single MWCNTs being tested with AFM cantilevers. In (a) a lower 

magnification view of the two cantilevers setup and in (b) a closer look of the nanotube clamping on each tip 

[5]. 

 

Even though the in situ nanomechanical tests within TEMs compared to SEMs have the 

advantage of observing and measuring the microstructure of the samples with very high 

resolution, there are a few drawbacks in employing this type of microscope. Due to the very 

complex design and configuration of the TEM, its chamber has very limited room, restricting 

the use of especial sample holders with the purpose of executing mechanical tests in nanofibers 

and nanowires. As a matter of fact, TEMs in general admit only miniature components to 
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access the chamber. The SEM, on the other hand, allows enough space for more robust devices 

that present dimensions in the range of some millimeters, which makes it possible to be 

fabricated without nanomanipulation tools. Both TEM and a nanomanipulation tool increase 

considerably the costs of setting up a nanomechanical testing laboratory. Furthermore, TEM 

requires very high-skilled operational abilities. In the short future, any experimental setup that 

is configured to perform tests in nanofibers and nanowires with high reproducibility will take 

a lead in characterizing nanomaterials for industrial applications.  

The methods that use resonance detection to determine the Young’s modulus of 

nanofibers need a good signal-to-noise ratio, since they rely on imaging. To be able to achieve 

that, and to identify vibrations smaller than the noise amplitude, a lock-in technique is 

required. Additionally, these methods demand experiments with long time intervals to find 

the exact frequency, if ever, because for every change in the frequency, the image has to be 

checked. The long exposure of the specimen can cause degradation and overheating, which 

changes the resonance frequencies. In the method proposed in this work, the frequencies are 

scanned, and a straightforward protocol of the sweep in the form of amplitude and phase are 

obtained. This way, the long exposure of the fiber is avoided, relatively short time intervals 

experiments are carried out, and potentially multiple fibers can be tested simultaneously.  

 

2.4.3 Other techniques  

Another technique to characterize the elastic properties of nanofibers and nanowires is the 

laser Doppler vibrometry (LDV). In this technique a laser beam of the laser Doppler vibrometer 

is focused on an oscillating object and the frequency and amplitude of this object is extracted 

from the Doppler shift of the reflected laser beam frequency [10, 61-63]. The object of study can 

be excited thermally, by electrostatic forces, or by the laser Doppler vibrometer itself. Thus, in 

the case of cantilevered nanofibers, the laser Doppler vibrometry records the resonance 

vibration spectra of their flexural modes and the corresponding Young’s modulus is obtained 

using the Euler-Bernoulli beam theory (Equation 2.62). However, it is necessary to analyze the 

samples in the scanning electron microscope in order to extract the length and diameter, 

needed for the calculation of the Young’s modulus. This technique presents a relatively simple 

experimental setup, but it has to be used in combination with the SEM to assess the 

morphology of the nanofiber, acquire its dimensions, and it has the disadvantage of not 

allowing the observation of the sample during the excitation tests.  

Nanoindentation employs a process similar to the tests in the AFM to measure the elastic 

modulus, except that the nanowire is laid on a flat substrate and the force is being applied 

through a sharp nanoindenter perpendicular to the nanowire, penetrating its surface. The 

nanowire has to be strongly clamped on both extremities to avoid shifting in the fixation point 

during the loading. The elastic modulus is obtained by recording a force versus displacement 

curve and applying the data analysis method developed by Oliver et al. [64]. Although 

nanoindentation is a straightforward method with simple sample preparation requirements, 

it has been reported that the substrate can influence the response of the nanowire to the applied 

load, due to the short distance between the point of loading and the contact of nanowire to the 
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substrate. The space restrictions that impair the transfer of load throughout the entire cross-

section of the nanowires result in elastic modulus smaller than the material truly has [65-67]. 

It can be noticed that a standard test protocol is needed, in order to improve the reliability of 

the results acquired via nanoindentation method. 

 

3. Materials 

3.1 Carbon Nanotubes 

Carbon nanotubes are a relatively new class of materials that led the nanotechnology 

revolution with its discovery a few decades ago. The unique combination of their properties 

strongly attracted the engineering and scientific community due to the vast field of potential 

applications for them. The ability of carbon nanotubes to have an unprecedented aspect ratio 

exhibiting a tubular nanometric structure with up to centimeters long renders these materials 

remarkable possibilities. For instance, the high mechanical strength together with high 

electrical and thermal conductivity enables the creation of enhanced composites where both 

mechanical performance and high conductivity are desired. From the structural applications 

point of view, CNTs are of great interest in the aerospace industry and in sports equipment. In 

electronics, carbon nanotubes present exceptional field electron-emission characteristics, 

which combined with their high melting point, make them good candidates for electron guns 

in cathode ray tube. Other applications in electronics are integrating lithium-ion batteries, or 

as electrodes in supercapacitors and fuel cells, and as building blocks in electric circuits. 

Researchers have presented the use of this material in medicine as well, as a potential support 

for the reproduction of neurons [68].   

The development of such materials was prompted by the discovery of a new allotrope 

of carbon called fullerene, in 1985. A fullerene was first identified in the form of a C60 molecule, 

which consists of sixty atoms of carbon linked by single and double bonds, arranged in a closed 

hollow cage (Figure 14a). A couple of years later in 1991, Iijima reported in Nature the growth 

of a fullerene into a cylindrical graphitic structure with opened extremities, which became then 

widely known as carbon nanotubes [69]. They were formed from an arc-discharge synthesis 

method and were described as a “finite carbon structure consisting of needle-like tubes”. These 

microtubes structures with one graphitic sheet (or graphene) were denominated single-walled 

carbon nanotubes, and the multiple coaxial tubes of graphitic sheets were denominated as 

multi-walled carbon nanotubes. 
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Figure 14: (a) model of the fullerene C60 molecular structure [70]; (b) Carbon allotropes: a fullerene on the 

left, a single-wall nanotube at the center, and a graphene sheet on the right [71]. 

 

The arrangement of the graphene lattice that is transformed into a nanotube varies 

according to the translation angle formed by the covalent bonds between the carbon atoms. 

This feature is called chirality and is defined by the so-called chiral vector (�⃗�) described by 

the formula �� = ��� + ���. Depending on the value of the angle � between the vectors �� 

and ��, the chirality of the nanotube can be armchair, zigzag, or chiral type (Figure 15). In 

addition, the possible variations of the chiral vector and the integers (�, �) reflect on the 

electronic structure of carbon nanotubes, making them either semiconducting or metallic. 

 

 

 

 

Figure 15: scheme showing the three different types of carbon nanotubes according to the chirality: (a) 

armchair; (b) zigzag; (c) chiral; and the representation of the chiral vector on a graphene sheet (right) [72]. 
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3.1.1 Synthesis of Carbon Nanotubes through catalytic chemical vapor deposition 

 

The three major methods to synthesize carbon nanotubes are arc-discharge, laser ablation 

and catalytic chemical vapor deposition (CCVD). The CCVD has important advantages 

compared to the other two methods, such as the synthesis at relatively low temperature and 

ambient pressure and the possibility of large-scale production. The crystallinity of MWCNTs 

produced by CCVD is inferior to CNTs produced by arc-discharge or laser ablation, however, 

in purity and yield, the method has a better outcome, and the control of the final architecture 

of the nanofibers is better achieved with the CCVD synthesis. This method allows the CNTs to 

grow in different forms, varying the diameter from thin to thick, or grouping the fibers in 

aligned or tangled configurations. Since it is the method through which the MWCNTs used in 

this work were produced, in the next paragraphs, the CCVD will be emphasized and described 

in detail. 

In the catalytic chemical vapor deposition, a tubular reactor at atmospheric pressure with 

temperatures between 600 °C and 1200 °C is filled with a hydrocarbon vapor in the presence 

of a metal catalyst (Figure 16). The catalyst is important to permit that the hydrocarbon 

decomposes at a temperature below its original decomposition temperature. During the 

process, the hydrocarbon vapor is thermally split into hydrogen sub-products and carbon. The 

hydrogen species are carried away and the carbon dissolves into the metal nanoparticles. Next, 

when the carbon reaches its solubility limit, it starts to precipitate and crystallizes in the form 

of energetically stable cylindrical networks that will grow forming the nanotubes. The 

hydrocarbon decomposition is an exothermic reaction, that releases heat to the system and 

thus to the metal catalyst exposed zone. Meanwhile, the crystallization of the carbon atoms on 

the metal nanoparticles is an endothermic process that absorbs the heat from the catalyst metal. 

In this way, a heat gradient is created inside the metal and keeps the entire reaction cycle going. 

The most common CNT precursors are carbon monoxide, methane, ethylene, acetylene, 

benzene and xylene, and the most used catalysts are nanoparticles of iron, cobalt and nickel. 

 

Figure 16: Schematic model of a catalytic chemical vapor deposition process showing in (a) the tubular 

reactor in which the chemical processes occur and in (b) the growth mechanism of a CNT [73]. 
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The formation of single- or multi-walled CNTs depends on the size of the catalyst particle. 

If the particle is in the order of a few nanometers, it is more likely that SWCNTs will be formed. 

For bigger catalyst particles of a few tens of nanometers, the formation of MWCNTs is favored. 

The temperature also plays a role in the formation of each type of nanotubes, as lower 

temperatures (600 °C – 900 °C) yield MWCNTs, and higher temperatures (900 °C – 1200 °C) 

result in the synthesis of SWCNTs. This is one of the reasons why MWCNTs are more suitable 

for industrial production. Furthermore, the synthesis of single-walled CNTs leaves a metal 

residue of 20-30% by weight [74], while the synthesis of multi-walled CNTs lead to 1-10% by 

weight of impurities [75], which can be eliminated by purification in an argon/hydrogen 

plasma stream with transit times in the plasma between 7 and 15 ms [76]. 

 

3.1.2 Elastic behavior of MWCNTs 

Since their discovery, many researchers have studied the mechanical properties of carbon 

nanotubes with the assistance of various microscopy instruments such as AFM, SEM, TEM, 

and laser Doppler vibrometry (LDV), in combination with tensile tests, force vs. displacement 

tests, and resonance frequency detection. The first reported experimental investigation to 

obtain the Young’s modulus of multi-walled carbon nanotubes was made by Treacy et al. in 

1996 [77]. In this work, the nanotubes were anchored and excited in a TEM. Upon measuring 

the resonance frequencies of the thermally induced oscillations, the Young’s modulus for each 

nanotube was derived. Remarkably high values of Young’s modulus up to 4.15 TPa were 

found, however for the group of eleven nanotubes tested, individual values ranged from 0.4 

to 4.15 GPa, reflecting the inhomogeneity of the samples or the difficulty of accuracy in the 

parameters, such as the measurement of the nanotube’s dimensions. 

 Among the works that describe the investigation of the Young’s modulus � of carbon 

nanotubes by measuring their resonance frequencies, Poncharal et al. introduced a technique 

to detect the resonance frequencies of electrically excited MWCNTs in the transmission 

electron microscope (TEM). By applying an alternating voltage to a CNT fixed to an electrode, 

the fiber became electrically charged and started to oscillate towards or against a second 

electrode. In this way, the resonance frequencies were directly obtained and consequently the 

bending behavior of the nanotubes analyzed [2]. Young’s modulus values from 100 to 1000 

GPa were found for MWCNTs synthesized by arc-discharge with diameters ranging from 8 to 

40 nm. An important remark made by these authors was the acknowledgement of a decrease 

of � with the increase of the nanotubes thickness, which was associated with a rippling effect 

of the inner walls by the compression under bending. In similar studies, it was observed that 

thinner MWCNTs tend to exhibit larger modulus values (1000 GPa), whereas thicker 

nanotubes exhibited considerably smaller modulus values (200 GPa) [2, 4, 6], confirming what 

was proposed in [2].  Using the same technique mentioned above, other authors reported 

investigations of the mechanical properties of single-walled and multi-walled carbon 

nanotubes synthesized by the catalytic chemical vapor deposition. Gao et al. found dynamic 

Young’s modulus for MWCNTs with diameters between 30 and 70 nm considerably smaller 
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(30 GPa) than the values described by Poncharal et al. [4]. In this case, the nanotubes were 

thicker than the ones studied by Poncharal et al., and the synthesis method was different. Other 

studies also showed reduced values of Young’s modulus (~28 GPa) for MWCNTs with around 

45 nm of diameter [10, 11]. Lower Young’s modulus values were observed for MWCNTs 

synthesized by CCVD, tested with distinguished techniques and in various instruments, as 

can be seen in Table 2. The authors associated the low modulus values to the significant 

presence of defects in the nanotubes structure, the misalignment of the planes and lower 

degrees of crystallinity for MWCNTs originating from CCVD. An exception of high elasticity 

for MWCNTs originated from CCVD was seen in the work of Yamamoto et al. [78]. In their 

investigation, a group of nanotubes were submitted to a series of  annealing treatments with 

the purpose of removing structural defects and enhancing the degree of crystallization. As a 

result, the treated nanotubes presented very high ��, comparable to the CNTs produced by 

arc-discharge.  

Although multi-walled carbon nanotubes produced by CCVD have been showing elastic 

properties below the levels announced for these materials, it is crucial to deepen the 

understanding of their mechanical properties, since such materials are most relevant for 

industrial applications.  
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Table 2: Previous studies of the Young’s modulus of MWCNTs with different diameters, produced by the 

most common synthesis methods as reported by other authors. The Young’s (��) and the Young’s modulus (�) 

values are approximated to the values given in the literature. “F vs. δ“ stands for force-versus-deflection testing. 

MWCNTs 

Synthesis  � (nm) � (GPa) Testing Method Detection Ref. 

Arc discharge > 30 � = 200 resonance detection TEM [4] 

Arc discharge < 10 � = 300 resonance detection AFM [8] 

Arc discharge 5 - 40 � = 140 - 780 bending test **FEG - SEM [11] 

Arc discharge 12.5 � = 800 bending test TEM [79] 

Arc discharge 5 - 10 � = 810 bending test AFM [3] 

Arc discharge 13 - 36 � = 270 - 950 tensile test SEM [5] 

Arc discharge < 25 � = 400 - 1060 resonance detection TEM [77] 

Arc discharge 2 – 50 � = 990 - 1105 tensile test TEM [53] 

Arc discharge 10 � = 620 - 1200 tensile test SEM [9] 

Arc discharge < 8 � = 1200 resonance detection TEM [2] 

Arc discharge 26 – 76 � = 1280 bending test AFM [41] 

Arc discharge 5 – 25 � = 400 - 4150 resonance detection TEM [77] 

*CCVD 30 � = 27 bending test AFM [3] 

CCVD 30 - 70 � = 20 - 30 resonance detection TEM [4, 6] 

CCVD 160 - 180 � = 20 - 60 resonance detection ***LDV [10] 

CCVD 5 - 20 � = 40 - 80 
bending test 

**FEG - SEM [11] 

CCVD 10 - 80 � = 10 - 100 bending test AFM [7] 

CCVD 20 – 50 � = 350 
bending test 

AFM [38] 

CCVD 10 – 25 � = 6 – 700 bending test AFM [39] 

CCVD 33 – 124 � = 50 - 1360 tensile test SEM [78] 

*CCVD – catalytic chemical vapor deposition; **FEG – Field emission gun; ***Laser Doppler vibrometry 
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3.1.3 Multi-walled carbon nanotubes studied 

In this project large diameter individual multi-walled carbon nanotubes type NM-401 

were used (Figure 17). The samples were provided by the European Joint Research Center 

(JRC) Repository for Representative Test Nanomaterials together with information about the 

characterization of the nanotubes. According to the JRC, the NM-401 MWCNTs present an 

average outer diameter of 64 ± 24 nm, a small inner diameter of maximum 10 nm and a high 

degree of graphitization. For the mean diameter of 64 ± 24 nm  a �� smaller than 10 nm would 

contributes less than 3% to the difference term (�� − ��
�) [80]. The contribution of the inner 

diameter to Equation 2.62 was therefore neglected. The density of these nanotubes was 

assumed to be (1.8 ± 0.1) ∙ 103 kg/m3 [81]. This type of MWCNTs has been extensively used for 

toxicological tests and became a reference in this field of research. For this reason, it has been 

selected to be tested in this work. 
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Figure 17: High resolution SEM images of a set of the NM-401 MWCNTs samples used in this project. The 

nanotubes  in these images are fixed on a PEDOT:PSS film standing free on piezoelectric quartz crystal units. 

High resolution SEM Hitachi SU8230 from BAuA. 

 

 

3.2 Silicon Carbide Nanowires 

 

Another type of nanofibers with great potential to be incorporated into the industry and 

into objects of everyday life are the silicon carbide nanowires. These nanowires present high 

thermal conductivity, good semiconducting characteristics, chemical stability, and radiation 

resistance. Apart from these features, SiC NWs have remarkable mechanical properties, such 

as high stiffness and elevated strength. Due to their superior properties these NWs can 

potentially be applied in distinct areas. In electronics, it can potentially be used in sensors, flat 

screen displays, in microwave tubes, as these material shows improvement on the electron 
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field emission by tailoring the band gap of the NWs. They are good candidates for that, as they 

are chemically and thermally stable, and present favorable mechanical behavior, allowing 

them to withstand harsh environments [82]. Another application for these nanowires is 

integrating microelectromechanical systems (MEMS), since they can operate as 

nanoresonators for high frequencies with large Q factors, combined with the endurance to 

severe temperatures [83]. Furthermore, SiC NWs become hydrophobic and increase the water 

barrier when grown aligned, being very suitable for the use in self-cleaning coating films, 

which could be applied as protection on glasses or metallic surfaces [84]. Regarding their 

remarkable mechanical properties, SiC NWs exhibit high Young’s modulus and tensile 

strength, which makes them appropriate to be used as reinforcement in ceramic or polymeric 

matrixes, improving the mechanical behavior of the whole composite [85]. In addition to 

improving the mechanical properties of composites, these nanowires are able to enhance their 

electrical response as well [86]. 

The lattice structure of bulk SiC is composed by four atoms of silicon strongly bonded to 

one atom of carbon in a tetrahedral geometry. Its crystal structure, however, can vary 

considerably, as it presents polymorphism. The polytypes of SiC are classified according to the 

arrangement of stacking layers, which are denominated by the letters A, B and C in a sequence 

(Figure 18). The NWs used in this work have the polytype 3C – SiC, which corresponds to the 

sequence ABC and is also denominated β-SiC. This polytype is isotropic and is the only cubic 

crystalline structure of SiC. 

 

Figure 18: examples of polytypes of SiC [87]. 

 

SiC NWs also present several kinds of morphology configurations, as can be seen in Figure 

19. Each type of configuration is obtained by varying the parameters of the synthesis, such as 

cooling temperature, pressure, catalyst material, precursor material, and carrier gas. The 

morphologies observed in the SiC NWs from this work were the cylinder nanowire (Figure 

19a), the bamboo-like (Figure 19d) and the twinned type (Figure 19e). However, the resonance 

frequencies were detected only with the twinned and nanowire shapes. 
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Figure 19: some examples of the most common morphologies: (a) Typical nanowire, (b) hierarchical, beaded 

nanochains, (d) bamboo-like, (e) twin, (f) bicrystalline, (g1) SiC core-based nanocables, (g2) nanochains, (g3) SiC 

shell-based nanocables, (h) nanoarrays [88]. 

 

The most common synthesis route to produce SiC NWs is the chemical vapor deposition 

(CVD), described in section 3.1.1, with the remark that in this case also a source of Si has to be 

added as a precursor. The main mechanisms applied for the growth of the nanowires are often 

referred to as vapor-liquid-solid (VLS) or vapor-solid (VS), which allow the fabrication of large 

amounts of nanowires. The VLS mechanism makes use of a metal catalyst, similar to the 

growth of CNTs. During this process, the precursor species in the gas phase form a liquid 

eutectic mixture with the catalyst, until the system is supersaturated and nucleation occurs, 

followed by the formation of the solid phase. At the end of the growth, metal nanoparticles 

from the catalyst are attached on the tip of the nanowire or become incorporated into the 

growth. In the VS mechanism, no catalyst is used, and the growth of the nanowires is governed 

by a direct condensation of the vapor into the solid phase. In this mechanism, the nanowire 

has no impurities from the catalyst and a uniform growth and the desired morphology can be 

achieved by altering the temperature of the reaction [89].  

The SiC NWs used in this work were obtained from ASC Material, LLC (Pasadena, 

California, US) with a range of diameters from 100 to 400 nm, lengths varying from 7 to 45 µm 

and a density of 3.21 ∙ 103 kg/m3. These nanowires were synthesized by chemical vapor 

deposition, which for SiC NWs is referred to as VSL mechanism of growth. Figure 20 shows 

images of different types of SiC nanofibers observed within the samples. 
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Figure 20: SEM images of different morphologies of SiC nanofibers observed during the qualitative 

analysis of the samples prepared for the resonance detection tests [90]. 

 

3.2.1 Elastic properties of SiC NWs 

In the last years, many works have been focusing on the mechanical properties of SiC 

NWs, as this material shows promising structural behavior. To investigate the elastic 

properties of these nanowires, researchers have been using techniques such as tensile and 

bending tests, nanoindentation and resonance frequency detection. These tests are normally 

performed in situ with atomic force microscopy, scanning electron microscopy or transmission 

electron microscopy, integrated with the nanomanipulation tool that provides the loading or 

the excitation source, depending on the principle applied. The values of Young’s modulus of 

SiC NWs encountered by the researchers in the last years vary from 60 to 1270 GPa. This large 

disparity is related to the different allotropic states or crystallinity levels of the samples tested, 

which not always has been clarified in the reported works. In addition, the presence of stacking 

faults in nanowires of the same crystalline structure can strongly affect the elastic response, as 

reported by Cheng et al. [49]. Table 3 presents a summary of the Young’s modulus values and 

the techniques used in previous research that investigated the elastic properties of SiC NWs. 
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Table 3: Previous results of Young’s modulus of SiC NWs and the testing methods used to characterize the 

mechanical properties 

SiC NWs 

Synthesis  � (nm) � (GPa) Testing Method Detection Ref. 

CVD 102 – 350 � = 60 – 160 tensile test SEM [60] 

CVD 148 - 596 � = 23.5 – 169 resonance detection SEM [60] 

Not mentioned 200 � = 203 tensile test SEM [46] 

CVD 40 – 200 � = 250 tensile test TEM [50] 

CVD 270 � = 470 resonance detection SEM [44] 

CVD 215 – 400 � = 540 – 576 nanoindentation SEM/*SPM [47] 

CVD 20 - 23 � = 610 – 660 bending test AFM [41] 

CVD 17 - 143 � = 230 – 750 resonance detection SEM/**FEM [45] 

CVD 17 – 45 � = 166 – 1270 tensile test SEM [49] 

*Scanning probe microscopy; **Field emission microscopy 

 

 

3.3 Piezoelectric Actuators 

To excite the nanofibers during the in situ SEM experiments, mass-produced tuning 

fork quartz crystal units of type CA-301 with 18 pF capacity and resonance frequency of 12 

MHz  ± 30 ppm (Seiko Epson Corporation, provided by Mouser Electronics Inc., Munich, 

Germany) were used. Thin electrodes plates adhered onto the quartz surface produce the 

electric field on both sides of the quartz, allowing this device to be used as piezoelectric 

actuator with a high quality factor. For the resonance detection experiments, these units were 

mostly operated well below the specified resonance of 12 MHz, since the nanofibers tested 

presented natural frequencies lower than this value. Their cylindrical steel enclosure of 3 mm 

diameter and 9 mm length was carefully carved on a lathe and removed manually to lay bare 

the rod-shaped quartz crystal (Figure 21).  
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Figure 21: a tuning fork quartz crystal unit as purchased (right) and after the removal of the metallic 

cover. These piezoelectric quartz units were used as actuators for the excitation of the fibers. The fibers were 

fixed standing free on the tip of these units, and the ones standing out on the edges could be analyzed. 

After the sample preparation described next in Section  4.1, the electrical wires of the 

piezo quartz (tuning fork crystal units) were soldered to a coaxial SubMiniature version B 

connector (SMB—straight jack for PCB mounting, Figure 22). For the in-situ experiments, the 

quartz was mounted on the scanning electron microscope (SEM) stage and connected to a 

Belling-Lee connector/SubMiniature version B (BNC/SMB) vacuum chamber feedthrough. 

Reliable detection of fiber resonances required a driving voltage amplitude of about 10 V for 

the piezo crystal. 

The SMB connector (golden connector soldered to the wires of the piezo quartz in 

Figure 22) was carefully adjusted in a way that the quartz surface where the nanofibers were 

standing free (black mark on the tip of the quartz) would be facing upwards in front of a non-

metallic background. This was important to ensure a good contrast for the nanofibers to stand 

out from the surroundings, improving the image quality and decreasing the signal-to-noise 

ratio. 

Figure 22. A closer look of the piezo quartz unit soldered to the SMB connector (left); the complete configuration 

of the piezo quartz containing multi-walled carbon nanotubes: the piezo is connected to a SMB adaptor and to 

the vacuum chamber electric feedthrough. This setup was then fixed on an aluminum stub and mounted on the 

SEM stage for the experiments (right).  
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4. Methods 

4.1 Preparation of Free-Standing Nanofibers 

4.1.1 Fixation of nanofibers using PEDOT:PSS polymer 

To accomplish the fixation of nanofibers by the base on the surface of an oscillatory and 

conductive device, the following procedure was applied: the tip of a piezoelectric quartz 

crystal unit was first metallized at one side using a Leica EM ACE600 sputter coater (Leica 

Microsysteme Vertrieb GmbH, Wetzlar, Germany) through a mask that selectively prevented 

metal deposition on the electrical contact area of the quartz. This way, the upper quartz-

driving metal electrode was extended towards the tip of the quartz rod. Up to 17 quartz units 

were placed in a special 3D-printed mask and first coated with 10 nm of iridium, followed by 

30 nm of gold. The iridium has the function of promoting a better adhesion of gold on quartz. 

Subsequent adhesion tests were performed with a light scratching metallic tool, and an 

adhesive tape. No damage occurred on the film, neither the gold layer was removed. Thus, the 

resulting thin film coating showed to be effective. 

The tip of the gold-coated quartz was then dip-coated in an ethanol solution with 50 mM 

of a thiol (9-Mercapto-1-nonanol, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) for 

48 h and rinsed with ethanol afterwards. The thiol formed self-assembled monolayers (SAM) 

on clean gold surfaces, creating stable gold-thiol bonds with one end of the molecule. The polar 

hydroxyl group at the other end of the molecule improved the wettability of gold and served 

as adhesion-promoting layer for a subsequent PEDOT:PSS (poly(3,4-ethylenedioxythiophene)) 

polymer coating. The polymer was applied by dip-coating the quartz tip for 10 s in an aqueous 

PEDOT:PSS suspension (3.0%-4.0% in H2O, Sigma-Aldrich). The suspension was soft and 

sticky in wet state but dried to a solid conductive polymer within a few 10 min at room 

temperature. The polymer served first to electrostatically embed and then to immobilize the 

ends of nanofibers and to connect them electrically to ground potential. This prevented the 

charging of the nanofibers during SEM and DySEM analysis. 

The nanofiber deposition procedure followed dip-coating after a brief initial PEDOT:PSS 

drying period of 5 min. These 5 min were not sufficient to let the coating dry completely but 

left it in a viscous state suitable for the nanofiber penetration upon fiber deposition. Impaction 

of the viscous polymer film with fibers that were vertically oriented with respect to the quartz 

surface was achieved by electrostatic precipitation of nanofiber-containing aerosols. 

Subsequent PEDOT:PSS suspension drying led to the immobilization of immersed fiber ends. 

Figure 23 presents the resulting piezo quartz units with the nanofibers deposited on the tip. 

https://en.wikipedia.org/wiki/Poly(3,4-ethylenedioxythiophene)
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Figure 23: Examples of the piezo quartz units presenting the nanofibers at the tip (black spot). 

 

The setup used for aerosol preparation and precipitation is shown in Figure 24. It 

consisted of three parts: an aerosol generation chamber, a sedimentation chamber and a 

nanoparticle aerosol sampler (NAS) of type TSI 3089 (TSI GmbH, Aachen, Germany)[91]. The 

aerosol generation chamber was filled with a mixture of glass beads (Swarcoflex glass beads, 

diameter 400–600 μm, roundness ≥ 80%, SWARCO M. Swarovski GmbH, Germany) and 

nanofiber powder with 2 mass percent of fibers. The aerosol chamber was mounted on a 

laboratory vortex shaker MS 3 digital (IKA ®-Werke GmbH and CO. KG, Staufen, Germany) 

operated at 2000 rpm. Actuated by the vibration, the glass beads performed a milling process 

upon collision with nanofibers agglomerates. The break-up of the nanofiber’s agglomerates 

generated an aerosol containing also individual fibers that was carried by an airflow of 2 slm. 

Larger agglomerates and glass bead debris settled in the intermediate sedimentation chamber 

before the aerosol entered the NAS inlet. Inside the NAS, an electric potential difference of 10 

kV between inlet and NAS electrode generated a field strength of 1.2 kV/cm. It attracted and 

accelerated charged aerosol particles in the airflow towards the conductive, semi-dried 

PEDOT:PSS layer of the quartz crystal on the NAS electrode. The anisotropic morphology of 

fibers in combination with natural and during milling triboelectrically induced charges on the 

fiber led to their alignment along the applied electric field. This way, the nanofibers were 

impacted fiber-end onwards into the polymer layer. After layer drying, the fibers were 

immobilized mostly in erected orientation, as required for resonance measurement, cf. Figure 

25. 
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Figure 24. Schematic of the electrostatic nanofiber aerosol precipitation setup: Aerosol generation chamber 

supplied with carrier gas (left); sedimentation chamber (center); electrostatic precipitator (right). Image extracted 

from the article [92]. 

 
Figure 25. SEM images of the configuration of the nanofibers standing free on the edges of the piezos, 

fixed by the PEDOT:PSS polymer film: (left column) MWCNTs used in this work, and (right column) silicon 

carbide nanowires tested. 

Particle 
counter 

+ 
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4.1.2 Fixation of nanofibers using the focused ion beam scanning microscope 

In the initial phase of the project, an attempt to individually select the nanofibers and place 

them on the piezo quartz substrate was made using a focused ion beam deposition in 

cooperation with the Center for Electron Microscopy (ZELMI – Technische Universität Berlin). 

The goal here was to test an alternative method of clamping the nanofibers on the piezo to 

compare the quality of the samples with the ones obtained through adhesion with PEDOT:PSS. 

In the focused ion beam scanning electron microscope (FEI/Thermofischer HELIOS NanoLab 

600 with dual beam Gallium ions), the device containing a microscopic needle collected a 

single MWCNTs from a field of nanotubes of the same kind that were placed on a metallic 

substrate and then carried it by electrostatic forces to a pre-determined position on the piezo. 

Next, the CNT was fixed at the base on the desired location by electron beam-induced 

deposition of Pt, in a process similar to soldering. At the end of the operation, the length and 

the exact location of the fiber were well known, and the fiber clamping was made in a 

controlled manner. In this way, the fiber could potentially be used as a reference for the initial 

tests. A sequence of images illustrating the step-by-step of the FIB procedure performed for 

the MWCNTs is shown in Figure 26.  
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Figure 26: sequence of FIB-SEM images showing the step-by-step of the attempt to select one single CNT to be 

fixed onto a piezo via Pt deposition; in the first row, a long and straight MWCNT is collected from a substrate 

with many others MWCNTs. The nanotube attaches to the microscopic needle though electrostatic forces; in the 

second row, the needle brings the nanotube to the piezo and places it in a pre-defined position, where the Pt 

deposition will next occur; in the third row, a block of solidified Pt is formed at the basis of the nanotube, fixing 

it on the piezo. Next, after the needle releases the CNT, it is possible to notice an accumulated mass of Pt from 

the base until the middle length of the fiber.  

 

At the end of the operation however, the material used for the deposition and fixation of 

the fiber on the piezo solidified beyond the bottom area and was incorporated onto the surface 

of the nanotube along its length rather than only at the base. This way, the overall mass of the 

nanotube was altered, changing consequently its average density. Thus, the Euler-Bernoulli 

equation could no longer be applied to this fiber upon detection of resonances, invalidating 
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the nanotube for the tests. Besides that, the fixation of CNTs with FIB required a much longer 

period of time to clamp one single CNT, while the method described previously with 

PEDOT:PSS produces multiple piezos with many CNTs in a faster way in a single batch. Since 

it was not possible to restrict the amount of Pt that solidifies at the base of the nanotube, nor 

impede that certain mass of Pt reaches higher areas of the fiber, the preparation of free-

standing fibers using the FIB technology was discarded and the method with PEDOT:PSS was 

then applied during the entire course of the project.  

 

4.2 The Dynamic Scanning Electron Microscopy technique 

The Dynamic Scanning Electron Microscopy Technique (DySEM) was developed by 

Schröter et al. [26, 27, 93] and it was first applied to atomic force microscopy cantilevers 

presenting high contrast circular shaped structures on its surface. By using this configuration, 

the basic principle was to convert the physical information contained in mechanical signals, 

such as a shift in the frequency, or in the amplitude and phase into data about the mechanical 

properties of a material, like bending behavior for example. This technique also enables the 

control and detection of a change in a system variable, such as mass, by monitoring the 

frequency of an oscillating device. This is particularly important to acquire reliable information 

about the dynamics of micro- and nano-electromechanical systems (MEMS/NEMS), whose 

functionality depends on resonance frequencies  and are widely used as sensors in the 

chemical industry. In addition, the sensitivity of sensoring systems can be significantly 

improved by optimization of the vibrating structures. With the aid of the Euler-Bernoulli beam 

theory, this technique can potentially be extended to describe the bending properties of 

nanometric oscillating beams, with known density and that are electrically conductive 

materials. 

The DySEM technique comprises of four main devices: a scanning electron microscope, a 

piezoelectric drive, a function generator and a lock-in amplifier (LIA). The scanning electron 

microscope has a high voltage electron beam gun that launches accelerated electrons on the 

surface of the object to be analyzed. The interaction of electrons with the sample generates a 

variety of signals, such as secondary electrons. These electrons are collected with the aid of a 

detector during the scanning along the surface of the sample, forming an image mixing the 

information of the morphology and the topography of the sample. The piezoelectric holder 

placed inside of the SEM is driven by an external function generator, which provides 

sinusoidal excitation over a range of frequencies inducing vibration. Combining 

simultaneously the imaging and the search of the resonance modes of the specimen by 

scanning the frequency requires one more device to complete the DySEM operation cycle. This 

device is the lock-in amplifier, which is synchronized to the sinusoidal voltage and though is 

able to detect those components of the secondary electrons detector signal of the vibrating 

fiber. As a result, the trio frequency, amplitude and phase can be recorded. In other words, the 

lock-in amplifier is responsible for demodulating the analog signal from the secondary 

electrons detector, strongly suppressing the noise and other non-synchronous signal 

components. The signal-to-noise ratio and sensitivity depends on the chosen integration time.  
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4.2.1 Electron microscopy imaging and lock-in amplifier analysis 

For the dynamic imaging during the experiments on the course of this work, mainly a 

tungsten thermionic emitter SEM of type EVO MA 10 (Carl Zeiss Microscopy GmbH, Jena, 

Germany) from BAM was used. This SEM was satisfactory for the entire SiC NWs 

investigation, but for a better assessment of the multi-walled carbon nanotubes, an ultra-high-

resolution SEM of type SU8230 with in-lens detector (Hitachi High-Tech Europe GmbH, 

Krefeld, Germany) was also employed. A SEM must provide sufficient resolution to image the 

fiber under excitation and to measure its shape and diameter. For accurate diameter 

measurement, the achievable pixel resolution of both SEMs was better than 1/10 of the fiber 

diameter. It reached 3 nm for the Zeiss and 1 nm for the Hitachi instrument. It is essential that 

the vacuum chambers of the SEM provided a BNC/SMB electrical feedthrough to input the 

piezo driving voltage supplied by a lock-in amplifier. The SEM also must permit to connect to 

the analogue output signal of the secondary electrons (SE) detector (type Everhart-Thornley) 

to the LIA using a signal splitter. In this work, a HF2LI 50 MHz with a built-in oscilloscope 

lock-in-amplifier (Zurich Instruments AG, Zurich, Switzerland) was used for the signal 

modulation. 

The morphology of nanofibers was assessed in detail with a transmission electron 

microscope (TEM) of type JEM-2200FS (JEOL Ltd., Akishima, Japan) equipped with an in-

column energy filter (Omega-type). Zero-loss conventional bright field imaging (BF-TEM) was 

conducted at acceleration voltages of 80 and 200 kV, with an energy window of 35 eV. To 

analyze the same samples that had been tested standing free on the top edges of the quartz 

crystals, the piezo unit had to be adapted to the size-restricted sample holder of the TEM. 

The used CA- 301 resonator crystal is used in integrated circuits as a clock generator, for 

this it is operated either in the fundamental mode or the third mode. The corresponding 

frequencies are never reached in our application (12 MHz, ~ 50MHz) and on the contrary they 

would possibly be harmful for piezo and fiber bonding. Because of higher current 

consumption in the resonance, it would come to a temperature rise, which is only badly 

dissipated in the vacuum of the SEM. The piezoelectric material itself, as far as it can be 

deduced from data sheets of the vendors, moves around some picometers per volt of excitation 

voltage, in this work for example, around 10-20 pm for the 10 V used. The resonances not used 

for operation as a clock are determined by the geometry of the blank, less by the material itself. 

Not operating the piezo in resonance has several advantages. First, power consumption would 

increase greatly for a deflection that is not needed. In doing so, the piezo would become warm 

and would lead to thermal drift in the SEM, at the very least. In addition, the resonant modes 

of operation are very small in frequency and fibers already bonded might have to be rebuilt if 

the resonances of the piezo and the fiber do not match. This approach accommodates an 

important idea derived from the method itself: for the determination of bending stiffness, 

knowledge of the excitation amplitude is as unimportant as knowledge of the response 

amplitude. Only the frequency counts. 

Reliable detection of fiber resonance modes by image signal analysis requires sufficiently 

high signal-to-noise ratios. This was achievable for fibers standing free on an edge of the quartz 

imaged in front of a dark background. For fast and sensitive frequency sweeps with the LIA, 
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necessary for reaching frequencies as high as 5 MHz, only the tip of a fiber was imaged with a 

reduced frame image mode presenting an average scan line time of 35 ms.  That permitted 

SEM frame rates above 30 Hz. The SE detector output signal of these image frames was 

submitted to the LIA analysis. A schematic diagram of the experimental setup is shown in 

Figure 27. 

 

 

Figure 27: . Experimental setup of the dynamic scanning electron microscopy (DySEM) technique used to 

measure the resonance frequencies of nanofibers. 

 

4.2.2 Estimation of resonance frequencies and Young’s modulus 

In order to provide supplementary data regarding the behavior of the nanotubes, which 

were the first samples to be tested, a theoretical approach was implemented.  Prior to the 

experimental search of the fiber’s resonance with the DySEM, the selection of the frequency 

range to use in the first experiments was estimated by our project partners from BAuA with 

the help of two-dimensional parameter plots. The values of resonance frequencies were 

estimated for the first and second mode of a MWCNT with a fixed length of 10 µm, having the 

Young’s modulus and the diameter as variables (Figure 28a and b). For the other category, the 

frequency values were dependent on the length and diameter of a MWCNT with a fixed 

Young’s modulus of 60 GPa (Figure 28c and d). The resonance frequency range was illustrated 

with a color spectrum. 
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Figure 28. Examples of the theoretical estimations for the resonance frequency ranges of the carbon 

nanotubes. The color spectrum shows the range of resonance frequencies and Young’s modulus �� for carbon 

nanotubes (CNTs) 10 µm long at: (a) first and (b) second modes; and resonance frequency ranges for CNTs with 

a predefined Young’s modulus of 160 GPa at: (c) first and (d) second modes (d). Image extracted from the paper 

[92, 94]. 

With the aid of such study, the time used in the initial experiments was significantly 

optimized. Since most of the evaluated MWCNTs presented an average length of around 10 

µm with diameters above 50 nm, a piezoelectric crystal with a resonance frequency of 12 MHz 

could be operated mostly below its resonance for detecting the resonance modes of the 

nanofibers. For a free-standing fiber in the SEM focus, the length and thickness were roughly 

determined to estimate the range at which the frequency of its first mode was located. For this 

first estimation, a modulus of 60 GPa was assumed. For the resonance search, frequency 

sweeps were performed from lower to higher frequencies around this frequency, having a low 

resolution of data points. Once the signal of the first resonance mode was identified by the LIA 

analysis, the number of data points of the frequency sweep was increased to enhance the 

precision of the detected resonance. Next, the dimensions of the fiber were verified, followed 

by the calculation of the Young’s modulus using Equation 2.63. To estimate the resonance 

frequency for further modes, the calculated modulus was used directly in Equation 2.62 in 

order to estimate the resonance frequencies for further modes. For a perfect linear elastic beam, 

the Young’s modulus is constant. Another possible measure to obtain the further mode is by 

using the ratio �� ��⁄ = 6.27. Finally, the frequency sweeping range was adjusted and refined. 

This procedure was then conducted to each individual freestanding fiber fixed at the edges of 

the driving piezo. 



50 

 

4.2.3 Error estimation 

The measurement error of the fiber length (�) within the SEM depends on the pixel 

resolution but will be dominated by the geometric length determination error for a fiber of 

arbitrary orientation in three-dimensional space from two orthogonal SEM views (projections). 

If we consider independent individual errors, the error Δ�� of the Young’s 

modulus � approximated for small inner diameters �� in Equation 2.63 can be written as the 

quadratic mean of relative errors, as follows: 
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For the flexural rigidity, the error Δ� can be similarly calculated as:  

 

Δ� =  
2��

��
� ⋅ �� � ��

�  ��

�����������
�

⋅ ��
Δ�

�
�

�

+ �2 
Δ��

��
�

�

+ �2 
ΔD

�
�

�

+ �4 
ΔL

�
�

�

 (4.2) 

 

5. Results and Discussion 

5.1 Fiber clamping 

For fiber length measurement and interpretation of resonance frequencies, it was 

important to localize the immobilization point of a fiber where it penetrates the PEDOT:PSS 

layer. For fibers at rest, the footing point was not always easy identifiable by SEM inspection. 

Fiber resonances helped to track the fiber down to the immobilization point, where no 

displacement must be observable. For high accuracy measurements, improper clamping to the 

piezo actuator must be ruled out. Shaky movements of only loosely attached fibers do not 

allow interpretation in the Euler–Bernoulli framework. A good indication of the stability of the 

clamping is the constancy of the measured vibration response, which was present in all cases. 

The electrical conductivity of the PEDOT:PSS polymer was found to be sufficient for 

electrostatic precipitation and SEM imaging. It showed good wetting behavior for CNTs [95], 

as is required for embedding and mechanical fixing the fiber base. The rigidity of the 

PEDOT:PSS film supposedly affects the damping of fiber oscillations, resulting in reduced 

amplitudes by dissipation for a soft polymer. Mechanical properties of PEDOT:PSS were still 

satisfactory when dried. With 1.7 GPa, PEDOT:PSS reached only about 50% of the stiffness of 

commercial epoxides [96, 97]. The mechanical loss tan δ (the ratio between the loss modulus 

E’’ and the storage modulus E’ for polymers) of PEDOT:PSS – which is also a measure for 
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damping -  for low frequencies at room temperature is 0.06, before the polymer is completely 

dried under ambient conditions. Assuming that adsorbed water is removed in vacuum, tan δ 

will drop to 0.03 [98]. The highest loss factor of tan δ = 0.14 was observed at 65 °C and can be 

considered as the worst case under wet conditions. Heating the surface and the fiber during 

beam exposure could remove water and lower tan δ further to a value of 0.04, which is not 

high, but still the intrinsic loss in the polymer contributes to the damping in the system. The 

effect of the clamping conditions on the natural frequencies detected upon the excitation 

experiments is discussed in Section 5.5. 

Using a more rigid metallic material to fix the fibers on the piezo would reduce the 

dissipation of the mechanical vibration. For this reason, an attempt to test the resonance 

frequency of a carbon fiber (Tenax®-E HTS45, produced by Tojo Tenax; specification in Table 

4) was made using a 12 MHz piezo with a layer of Field’s metal. The Field’s metal is an alloy 

composed of bismuth:indium:tin (32.5:51:16.5 wt%) with a melting point of 61 °C, and Young’s 

modulus of ~ 10 GPa [99, 100]. This way, it worked as a conductive film that remained 

sufficient viscous in a relatively low temperature, enabling the attachment of the fibers before 

it solidifies. Once solid, it would provide a stiffer clamping than the PEDOT:PSS polymer. The 

high electrical and thermal conductivity together with high mechanical stiffness of alloys could 

be beneficial for imaging fiber oscillations with SEM. The carbon fiber was selected for this 

trial, as it can be handled macroscopically and with simple personal protective equipment, 

differently than with nanotubes., which requires special chamber configurations and cannot 

be individually selected in a macroscale operation setup. A similar test was performed with 

gallium as well (melting point at 29 °C), however it was noticed that at ambient conditions the 

film was still viscous and remained viscous during the DySEM analysis, not being suitable for 

the resonance detections.  

 

Table 4: Specification of the carbon fibers Tenax®-E HTS45 

� 7 μm 

� 1770 kg/m3 

� 240 GPa 

 

For the fixation of a carbon fiber, the Field’s metal was heated over 62 °C with hot air and 

then applied on a piezo surface. While it was still viscous, a carbon fiber was carefully placed 

on the Field’s metal surface having most of its length projected outside of the piezo over the 

edge. Next, the piezo was let at rest for 5 hours under ambient conditions in order for the metal 

to solidify entirely. After the complete solidification, the piezo with the carbon fiber was 

subjected to the excitation tests. The first and the second mode of the carbon fiber were 

detected, and the results are shown in Table 5. The point at which the fiber connected to the 

solidified metal film is shown in detail in Figure 29 (a) and (b). The vibration of the fiber at the 

first mode is shown in Figure 29 (c).  
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Table 5: Experimental (����) and theoretical (���) values of the resonance frequency measurements of one 

carbon fiber on a Field’s metal film. The theoretical values were calculated using � and � from the fiber 

specification and the diameter (����) and length (�) were measured during the experiment. The Young’s 

modulus found experimentally is described as ����. The error in the Young’s modulus was calculated as 15.4%. 

���� (µm) � (mm) ����� (kHz) ���� (kHz) ����� (kHz) ���� (kHz) ����� (GPa) ����� (GPa) ���� (GPa) 

6.365 1.511 3.817 4.541 23.462 28.460 167 ± 44 163 ± 7 240 

 

 

Figure 29: SEM images of a carbon fiber fixed on a solidified Field’s metal film. Image (a) shows a detailed 

front view of the connection of the base of the fiber to the alloy, and image (b) shows a side view of the base of 

the fiber, where it is possible to notice the exact point at which the fiber is embedded in the film. In image (c), 

the carbon fiber is vibrating at the first mode of resonance.  
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The values of experimental Young’s modulus found at first and second modes are similar, 

which shows that the carbon fiber acted like a beam with a linear mechanical behavior. 

However, the differences between the experimental and the theoretical values of E are related 

to errors in the projected length of the fiber, the presence of impurities along its length, which 

changes the mass and the density of the fiber, the quality of the fixation point, and especially 

the high amount of mass from the Field’s metal deposited on the piezo, which impairs the 

amplitude of vibration of the piezo and implies in dissipation of energy. For a more accurate 

measurement of the fiber length and a deeper evaluation of the condition of the fixation point, 

the piezo was tilted ninety degrees from horizontal to vertical position and a better view of the 

exact first contact point was obtained (Figure 29b). As can be seen in Figure 29a and b, the base 

of the fiber is not fully covered by the metal and this leads to vibration damping, because of 

free areas where the vibration can dissipate right on the base of the fiber. In addition to the 

damping, an effect that can occur is a softer stiffness compared to “rigid” clamping. A stronger 

clamping is achieved when the fiber has its base completely embedded in the metal film.  

From this experiment, it was concluded that Field’s metal could be used as an alternative 

to the PEDOT:PSS and to the gallium, for fixing nanofibers on the piezo in an atmosphere 

above 60 °C, as long as only a thin film of metal covers the piezo. The Field’s metal has a low 

melting point, it solidifies rapidly at ambient conditions, and it has good wettability on the 

piezoelectric quartz. As the fibers to be tested are in nanometric scale, a small contact point on 

the film would result in a desirable strong clamping for the excitation measurements. In 

addition, a controlled deposition of a thin layer of the metal on the surface of the piezo would 

be sufficient for the fibers to attach and would not cause much counterweight on the amplitude 

of vibration of the piezo.  

 

5.2 MWCNTs 

5.2.1 Determination of the dimensions of the nanotubes 

The commercial NM-401 used in this work are characterized in the technical report as 

straight-wall MWCNT material. However, all of the nanotubes samples investigated showed 

a bended and slightly curved morphology, rather than rigid and straight configurations, as 

can be seen in Figure 17 from Section 3.1.1 and in Figure 30 below.  
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Figure 30: MWCNTs type NM-401 used in this work standing on the edge of a piezo fixed by the 

PEDOT:PSS polymer film. Image published in [92] 

  

This made it a challenge to obtain accurate dimensions by SEM metrology, especially of 

the length �. Since the calculation of the Young’s modulus � from Equation 2.63 depends on 

the 4th power of the length, it is crucial to determine this value as exact as possible to minimize 

errors of the Young’s modulus in Equation 2.63. For this task, an ultra-high-resolution SEM 

SU8230 with in-lens detector was used. However, the images obtained only showed the 

apparent fiber length in a two-dimensional projection. For a curved fiber oriented in three-

dimensional space, a second, orthogonal view was required to determine the true fiber length. 

The two orthogonal projections were obtained by tilting the sample holder in approximately 

ninety degrees so that the fiber could be imaged from the side. Figure 31 (a – f) shows examples 

of the two orthogonal projections for three different MWCNTs. The highest length acquired 

from the two projections was then selected as the fiber “official” length. 
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Figure 31. High resolution SEM images of the length determined from two different projections of the three 

different MWCNT: (a) the front view gives a value of 6.77 µm and (b) the side view shows a visibly higher length 

of 7.38 µm; (c) the front view image shows 4.56 µm of length and (d) the side view presents the same fiber with 

6.21 µm of length; (e) the front view length is 5.64 µm and (f) the side view length is 5.83 µm. The SEM images 

were obtained at BAuA with a High resolution SEM Hitachi SU8230 and the in-image measurements were 

performed with the software Olympus IMS at ZELMI – TU Berlin. Images a and b were published in [92] 

The measurements of the MWCNTs diameter were made on the course of the experiments 

with the ultra-high-resolution SEM SU8030 (Hitachi), using the fiber width measurement tool 

from the SEM software. The diameters were determined from the mean value of four selected 

points along the length of the nanotubes, since their thickness was irregular (Figure 32). The 

accuracy of these measurements is as important as the accuracy in determining correct values 

of the length because the flexural rigidity (�) is directly dependent on the diameter to the 4th 

power (Equation 2.64). In addition, the diameter value impacts on the Young’s modulus, as 
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well. Therefore, imprecise measurements of the diameters would impact considerably on the 

reliability of the rigidity data collected. 

The MWCNTs presented an average diameter of 98 nm, while the NM-401 from the 

European JRC were characterized with an average diameter between 70 and 80 nm. Thicker 

nanotubes are obtained when the catalytic chemical vapor deposition is made at higher 

temperatures (from 750 °C on), as described by Kumar and Ando [101]. However, since we 

did not have access to the technical details through which our samples were produced, it is 

not possible to confirm why the MWCNTs tested were considerably thicker than the NM-401 

specified. 

 

Figure 32. SEM image of a MWCNT showing the thickness collected at four different points of the fiber 

for the determination of the average diameter (SEM Hitachi, SU8030). 

 

5.2.2 Young’s modulus measurements of MWCNTs 

The resonance frequencies for a set of MWCNTs were successfully detected using the 

dynamic scanning electron microscopy technique and the corresponding Young’s modulus 

were determined via the Euler-Bernoulli formula. These nanotubes presented assorted � from 

15 to 161 GPa with an average error of 13% (Figure 34a). The values of resonance frequencies, 

the dimensions of the nanotubes and the Young’s modulus obtained with the experiments are 

presented in Table 6. For half of the nanotubes tested, both first and second modes of resonance 

were detected. For the other half, only the resonance at first mode was identified. For these 

cases, most likely the resonances of the nanotubes deviate slightly from the theoretical values 

and in order to identify further modes it would be necessary to perform experiments with 

longer periods of time. Images showing the vibration of MWCNTs at the first and at the second 

mode of resonance are shown in Figure 33.  
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Table 6: Young’s modulus of MWCNTs produced by chemical vapor deposition. ��  is the Young’s 

modulus determined from the first mode and ��  is the bending determined from the second mode, according 

to Equation 2.63. The estimated experimental errors are ± 3 nm for �, ± 200 nm for � and ± 1 kHz for �� and ��. 

We neglect the inner diameter ��  for its contribution is very small for the MWCNTs studied here due to the 4th 

power dependence in the second moment of area: (�� �⁄ )� ≪ �. The theoretical ratio between the non-

dimensional resonance frequencies ��
� ��

�⁄  equals �� ��⁄ = �. ��� (see Section 2.2.1). � specifies the weighted 

average of ��  and ��. 

MWCNT � (nm) � (µm) �� (MHz) �� (MHz) ��/�� �� (GPa) �� (GPa) � (GPa) 

1 85 6.00 1.563 - - 40 ± 6 - 40 ± 6 

2 89 6.42 2.862 - - 161 ± 25 - 161 ± 25 

3 90 14.09 0.583 3.434 5.89 152 ± 16 135 ± 14 143 ± 15 

4 91 17.99 0.198 1.298 6.56 46 ± 4 50 ± 5 48 ± 5 

5 95 10.78 0.867 4.699 5.42 103 ± 12 77 ± 9 90 ± 10 

6 96 14.17 0.404 - - 66 ± 7 - 66 ± 7 

7 97 5.89 2.422 14.521 6.00 69 ± 11 63 ± 10 66 ± 11 

8 100 7.38 0.750 4.755 6.34 15 ± 2 16 ± 2 15.5 ± 2 

9 107 8.76 1.287 - - 79 ± 10 - 79 ± 10 

10 127 8.24 1.655 - - 73 ± 9 - 73 ± 9 
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Figure 33: DySEM images of two different MWCNTs under excitation, one nanotube is shown on the left 

column and the other on the right column; (a, d) the nanotubes are at stationary mode; (b, e) the nanotubes 

are vibrating at the first mode and (c, f) the nanotubes are vibrating at the second mode. Images from the 

left column were published in [92] 
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Figure 34: Graphs of the Young’s modulus values � vs. diameter � for the NM-401 MWCNTs tested in this 

work. Graph (a) shows all the results presented in Table 6, and Graph (b) highlight the nanotubes that exhibited 

resonance at first and at second mode of vibration.  

 

For the nanotubes tested in this work no correlation between the dimensions of the 

nanotube and the value of the Young’s modulus was observed, since for the thinnest 

nanotubes, a variation of low and high modulus were obtained and the same occurred for the 

shortest ones. The assorted and relatively low values of Young’s modulus have been observed 

by other authors that investigated MWCNTs produced by catalytic chemical vapor deposition 

as well. In previous studies, differences in Young’s modulus values for the same batch of 

nanotubes have been related to several structural and morphological characteristics including 
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structural inhomogeneity such as the presence of defects, curved vs. straight fiber shape, non-

uniform mass distribution and irregular nanotube dimensions [2, 3, 7, 10, 11, 102, 103]. These 

characteristics were observed for the nanotubes tested here and can be seen in detail in the 

transmission electron microscope images (Section 5.2.4). The remarkable high values of 

Young’s modulus that made carbon nanotubes very popular have been reported for straight 

uniform nanotubes produced by arc-discharge and mainly with diameters smaller than 50 nm 

(Table 2). Besides presenting regular shape characteristics, the nanotubes produced by arc-

discharge have a higher degree of crystallization, granting more rigidity to these tubes. 

In [6], Wang et al. found a remarkably low Young’s modulus of 2.2 GPa for a MWCNT 

that, although it was produced by arc-discharge, exhibited volume defects along its body, 

impairing considerably its stiffness. In [104], the authors showed that volume defects and 

attached masses affect the Young’s modulus less or more, depending on the position of them 

on the nanotube length and also argue that curly shapes also contribute to the decrease of the 

stiffness. Jackman et al. [11], compared the Young’s modulus of MWCNTs produced by arc-

discharge and CCVD and associated the distinct bending behaviors of the two types of 

nanotubes to the difference in crystallinity, which is higher for arc-discharge produced 

MWCNTs.  

 

5.2.3 Influence of an extra mass on the detected resonance frequencies 

Most of the nanotubes investigated presented highly evident attributes of heterogeneity, 

such as the MWCNT of Figure 35. Discarding these fibers was not taken into consideration, 

due to the limited number of samples to test. As discussed above, the heterogeneity on the 

morphology of the fibers, and the presence of defects lead to a high scatter and especially low 

values of �. The non-uniformity of mass distribution along their bodies and accumulations of 

extra masses at particular positions along the fiber length are considered critical for applying 

the continuum mechanics theory of Euler–Bernoulli. As Equation 2.59 is based on a perfect 

uniform and straight beam, it is important to analyze the consequences of imperfections of the 

shape on the resonance frequencies and consequently on the Young’s modulus (Figure 35). 

Therefore, a finite elements simulation of a hypothetical fiber was performed by our partners 

at BAuA to evaluate how the presence of a spherical mass would influence the vibration 

behavior of a nanofiber similar to a carbon nanotube. 
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Figure 35: A SEM image of a MWCNT from the group of nanotubes tested, which presents a volume 

defect in a region proximate to a vibration node. This nanotube is vibrating at the second mode of resonance. 

For such simulation, a carbon nanotube 1 µm long and 75 nm thick was considered. The 

Young’s modulus was fixed at 60 GPa and the attached matter was simulated in at half the 

length and at the tip of the tube (Figure 36b, and Figure 36c, respectively).  

 

       

Figure 36: The red fiber represents the nanotube under excitation. The first column is at null excitation, the 

second column refers to the first mode and the last column to the second mode. (a) a perfect straight and uniform 

carbon nanotube; (b) with a spherical mass at half the length of the nanotube’s body; (c) and at the tip. The 

simulation showed that an extra mass located at the center of the tube has a smaller impact on the resonance 

frequencies than a mass at the tip. Image created by Dr. Asmus Meyer-Plath from BAuA and published in [92]. 

 

The simulation showed that the vibration behavior of a nanotube is strongly affected by 

an extra mass present along its length. At the first mode of excitation, the resonance frequency 

is reduced in ~62% for a mass at the tip and in ~29% for a mass in the middle . This is attributed 

to the fact that the influence of extra masses depends on the dynamic shape of the vibrating 

fibers, which again depends on the type of excited mode. The resonance frequency at the 

second mode is less affected by the extra mass, with deviations of ~1% and ~27%, for the mass 

in the center and on the tip, respectively (Table 7). This is an important reason why it is 

necessary to identify further modes. This phenomenon occurs because most of the energy in 

the system is transferred to the tip during the excitation at the first mode, therefore, a mass 

deposited in the region close to the tip will significantly impair the natural excitation. For the 
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excitation at second mode, the extra mass attached at the center is possibly close to a region of 

almost null amplitude of vibration, such as for example approximate to a node. For this reason, 

the resonance is altered by only 0.8%.  

 

Table 7: Values of resonance frequencies at first and second mode obtained from finite elements 

simulation for a CNT. The second column shows the frequencies of a pristine CNT; the third column presents 

the resonances of a CNT with an extra mass in the middle length; and the last column shows the resonances for 

a CNT with a mass at the tip. The percentage values refer to the frequencies of the pristine CNT. 

Eigenmode No Extra Mass Mass in the Middle Mass on the Tip 

1st mode 64 MHz 45.6 MHz (−28.8%) 24.6 MHz (−61.6%) 

2nd mode 394 MHz 391 MHz (−0.8%) 288 MHz (−26.9%) 

 

The Figure 37 below represents a simplified overview of the consequences of defects on 

the detected resonance frequencies. Considering a defect with a constant mass: 

 

 

Figure 37: Graph showing the importance of the detection of further modes of vibration upon exciting 

nanofibers that are likely to exhibit volume defects along their length.  

 

5.2.4 Characterization of the MWCNTs with transmission electron microscopy 

In order to analyze the morphology of the nanotubes in detail, some samples of MWCNTs 

were observed in a transmission electron microscope (TEM) of type JEM-2200FS (JEOL Ltd., 

Akishima, Japan) at BAM, equipped with an in-column energy filter (Omega-type). Zero-loss 

conventional bright field imaging (BF-TEM) was conducted at acceleration voltages of 80 and 

200 kV, with an energy window of 35 eV. To analyze the same samples that had been tested 

standing free on the top edges of the quartz crystals, the piezo unit had to be adapted to the 

size-restricted sample holder of the TEM. For that, the brittle piezo quartz crystal was carefully 
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cut on the bottom, in a location distant to the area where the nanotubes were fixed. This way, 

the ring that connects the electrical wires to the electrodes on the piezo quartz was detached 

and the remaining part, i.e., the tip of the piezo quartz containing the nanotubes to be analyzed, 

could then be placed on the TEM sample holder and characterized (Figure 38). 

 

  

Figure 38: regular camera photographs taken through the lenses of an optical microscope showing two 

steps of the sample holder configuration. On the left image, the cut piezo was placed onto the TEM sample 

holder and on the right image, the area designated to be analyzed in the TEM is fixed with the TEM clamping 

tool. 

 

The NM-401 nanotubes studied in this project are considered a benchmark material for 

toxicology studies. For this reason, it was important to test the samples provided by BAuA. 

Even though these nanotubes were tested via the method presented here and relevant data 

about their mechanical behavior was obtained, for the Euler-Bernoulli beam theory however, 

these nanotubes are not the most appropriate material to test, since their shape is not a perfect 

beam-like format. Nevertheless, the values of Young’s modulus obtained for these nanotubes 

in this project are in accordance with the Young’s modulus reported by other researchers for 

MWCNTs produced by catalytic chemical vapor deposition and tested via different types of 

methods (Table 2). The CCVD method renders nanotubes with non-regular diameters, less 

crystallinity, defects such as branching and misalignment of walls and some unknown 

structures, as shown in the TEM images in Figure 39.  As can be seen in the bright field TEM 

images of different nanotubes from the same batch of the ones used in this work, our nanotubes 

had a wavy form (Figure 39a), presented defects such as branching (Figure 39b, c and d) and 

a disturbed structure (indicated by the dark areas in Figure 39d), and misalignment of walls 

(Figure 39e),. These aspects modify the rigidity of the fibers, since they generate weak points 

and are present in different ways from fiber to fiber, which explains the assorted values of �. 
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Figure 39: Examples of bright field TEM images of MWCNTs type NM-401 used in this project; (a) shows 

a curved nanotube; (b), (c) and (d) show some irregularities on the morphology, such as branches and non-

uniformity of diameter; (e) shows the misalignment of the multiple walls. 

5.2.5 Energy dissipation 

In systems containing mechanical resonators, there are multiple potential sources of 

energy dissipation that are not always easily identified. Energy losses during the oscillation 

cycles in the system composed by the piezoelectric actuator, the polymer film and the CNTs 

would lead to the detection of damped resonance frequencies, which means that for very small 

amplitudes, the accuracy of the real resonance frequency value could become compromised, 
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and, in cases where the damping is significantly high, it could even impair the detection of 

resonance frequencies by the lock-in-amplifier. This occurs mainly when the vibration 

amplitude originated on the piezo is not fully transmitted to the nanotubes, because of several 

sources of energy dissipation. One is the presence of the gas pressure in the SEM chamber that, 

especially for nanoscale materials, increases the resistance to motion by aerodynamics effects. 

However, in a SEM, these effects are negligible. Another is the total mass deposited on the 

piezo, consisted by the layers of iridium, gold and PEDOT:PSS. The mass of the nanofibers is 

not taken into consideration here because of their miniscule dimensions. Other sources of 

energy dissipation are related to intrinsic mechanical losses of the components, as for example 

inner frictional processes between the walls in MWCNTs. Other factors can strongly affect the 

dissipation of energy in the system, such as the stiffness of the PEDOT:PSS and how much the 

fiber was embedded in the polymer film. Qin et al. demonstrated the effect of the clamping on 

the resonance frequency of a cantilevered nanowire by exciting it with different amounts of 

deposited material for clamping. As a result, the detected resonance frequency increased as 

the clamp area increased, until the clamp reached the optimum fixation condition [105]. In 

addition, it has been questioned in the course of the experiments, whether the damping has 

influence only on the vibration amplitude with which the nanofiber is excited, or if it impairs 

the detection of the true natural frequencies of the fiber as well. This has been very 

appropriately clarified in [105], where the authors showed that both the frequency and the 

amplitude increase when the damping is reduced in the system.  

 In this work, the quality factor � was used to describe the damping related to the 

excitation of the nanofibers, and it was obtained experimentally during the resonance 

detection. The �-factor is the ratio between the resonance frequency �� and the full width at 

half maximum (FWHM) �� from the Lorentzian fit of the frequency response function (FRF) 

of a single MWCNT resonance measurement [105-107]. A wide amplitude peak means that the 

vibration movement of the fiber was limited, not releasing most of the energy to the resonance 

vibration, dissipating it to other components of the system. And in this case, the quality factor 

is low, indicating higher energy dissipation. The higher and narrower is the peak, the greater 

is the quality factor because a very high amplitude of vibration was reached.  

For the resonance detection of the MWCNT tested, � = 85 (Figure 40). This value is within 

the range of quality factors reported by other authors for MWCNTs [2, 4, 10, 105, 108, 109]. 

However, for oscillatory systems, it is treated as a low performance process. This value of �-

factor might as well be associated with the position of the clamp along the fiber’s length. This 

happens because during the oscillation cycles, the resonator might exert forces on the fixation 

point, which depending on the dimensions can become a source for energy loss. The ideal case 

to reduce damping is that the anchoring is made exactly on a vibration node. This way, the 

vibration is not impaired because the resonator can move freely. If the area of the fiber covered 

by the PEDOT:PSS film reaches higher points away from the base, it would invade a section of 

the fiber that takes part in the amplitude of vibration. If we would quantify the quality factor 

of the clamping itself as a function of the length � and the thickness � of the nanofiber, 

��������� ≈ 2.17 �� ��⁄ , as shown in [107]. For nanometric oscillators with high aspect ratio, 

���������  becomes exceptionally high, showing that the energy losses arising on the anchoring 

point between the nanotube and the substrate can be for some cases negligible. 
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Figure 40: resonance frequency curve of a MWCNT: (left) Lorentzian fit of amplitude vs. frequency for the 

resonance frequency of a MWCNTs with � = 102 nm, � = 12 µm, �� = 82.1 ±16.4 and �� = 651.1 kHz, where � =
��

��
= 85; (right) demonstration of the quality factor derivation Applied voltage of 10 V. 

 

Analyzing the data points shown in the graph of amplitude vs. frequency from Figure 40 

left, two peaks of resonance were observed. These peaks can be associated to two hypothetical 

causes: one is the existence of real and very close resonance frequencies in different directions, 

and the other is the hypothesis that the peaks were created as a result of noise and interference 

effects. To verify the existence of approximate resonance frequencies in two distinguished 

directions, more carbon nanotubes would need to be tested. However, these double peeks 

were not often observed in the group of nanotubes tested, and due to the poor variety of the 

samples and limitations on the resolution of the microscope, a deeper investigation on this 

matter was not possible on the course of this project. Therefore, here the presence of 

interference and noise were taken into consideration and for this reason the Lorentzian 

interpolation was applied.  

Estimating the damping in an Euler-Bernoulli continuum system is a very complicated 

task. Thus, to be able to theoretically evaluate how a �-factor of 85 affects the detected 

resonance frequency of a nanofiber, a simplified model is applied. In this model, the fiber is 

considered as a mass on a translational spring placed in a viscous fluid, as shown in Figure 41. 

In this approach, the whole model is reduced to a damped single-degree-of-freedom (SDOF) 

oscillator and only the first mode needs to be analyzed.  
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Figure 41: simplified model of the oscillating fiber as a single-degree-of-freedom system. 

 

Here, the damped natural frequency �� can be described as 

 

 �� ≡ ���1− �� (5.1) 

 

where ω� is the undamped natural frequency and � is the damping ratio, which is 

described as 

 � ≡
1

2�
 (5.2) 

   

Thus, Equation (5.1) can be rewritten as: 

 �� ≡ ���1− �
1

2�
�

�

 (5.3) 

 

If � = 85, the equation above becomes 

 

 �� ≡ ��
�1− �

1

170
�

�

 (5.4) 

 

Since the term to the square in Equation 5.4 is very small , the damped frequency 

practically equals the undamped natural frequency, thus for the MWCNT tested, according to 

this theoretical approach the energy dissipation is minimal. The reason for such a low energy 

loss system is likely associated with the nanoscale dimensions of the oscillator and the high 

vacuum present in the SEM chamber (below 10−2 Pa).  
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5.2.6 The compatibility of the MWCNTs with the Euler-Bernoulli beam theory   

In many works reported by other researchers, carbon nanotubes present very high 

Young’s modulus. However, it has been shown in this work that thicker multi-walled carbon 

nanotubes originated from the catalytic chemical vapor deposition are less resistant than very 

thin MWCNTs produced by arc-discharge. Apart from the structural and morphological 

characteristics that arise in the synthesis method, the high diameters of the MWCNTs analyzed 

here also play a key role in the mechanical response of these fibers, possibly contributing for 

the low modulus observed. This is explained by the onset of deformation patterns, such as 

rippling and buckling, which negatively affect the mechanical behavior of the fiber, leading to 

a decrease in the Young’s modulus. These deformation patterns emerge when the fiber is 

under vibration at high amplitudes. However, during the resonance detection tests, it was not 

possible to control the onset of such deformation, due to the SEM resolution limitations. To 

search for changes on the microstructure of the nanotubes, it is necessary to use a very high 

magnification to observe closely the configurations of the walls during the vibration motion. 

Poncharal et al. used a TEM to detect the emergence of ripples in MWCNTs with diameters 

greater than 12 nm, which presented significant lower modulus (100 GPa) in comparison to 

thinner nanotubes from their study (1 TPa) [2]. In [11], the authors demonstrated that rippling 

caused a reduction of 50% on the Young’s modulus of MWCNTs produced by CVD.  

Further studies have deepened the knowledge regarding rippling and buckling as the 

scientific community observed the negative effects of such deformations on the Young’s 

modulus of CNTs [41, 110, 111]. It was observed that buckling occurs with different 

morphologies under bending and both deformations invalidate the use of classical linear 

theories to describe the mechanics of nanotubes [112]. To investigate in detail the performance 

of nanotubes after the onset of rippling and buckling, many authors have applied 

computational models and have proposed non-linear theories as a more appropriate way to 

describe this behavior. Using molecular dynamics, Sumpter and Noid published a work 

reporting nonlinear resonance in carbon nanotubes [113], and other authors confirmed 

through numerical simulations the hypothesis that an increase of diameter leads to a decrease 

in E�, due to the emergence of rippling. Additionally, it was shown that the appearance of 

ripples specifically at the inner radius during bending leads to a non-linear regime [114, 115]. 

In [112], the authors complemented the Euler–Bernoulli beam theory with additional models 

and emphasized that non-linear regime is inevitable for CNTs under bending. They showed, 

without accounting for the effects of deformation patterns, that the nanotubes could present 

complex nonlinear dynamics behaviors such as hysteresis, hardening and softening on the 

fundamental and second modes. 

Nevertheless, in practical experiments many authors were able to present coherent results 

using a linear elasticity theory to describe the mechanical properties of the MWCNTs studied. 

In [8], the authors applied the linear elasticity theory for MWCNTs with maximum diameters 

of 20 nm and obtained experimental resonance frequency values very close to the theoretical 

ones. They concluded that buckling had little effect on the resonances of their MWCNTs. In [6, 

56], the authors reported a linear bending behavior for MWCNTs even after the 

acknowledgement of rippling and buckling deformations. In [104] however, the authors 
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suggested an adjustment to the Euler–Bernoulli theory by adding more parameters to � to 

account for the effects of defects on the nanotubes body. 

In the present investigation, for part of the nanotubes tested mostly only the first mode of 

resonance was detected, thus it was not possible to precisely infer whether they were governed 

by a linear or nonlinear regime . It could be the case that the second mode for such nanotubes 

was distant from the theoretical value and the pursuit for further modes would require more 

time-consuming experiments with higher spatial resolution and very slow frequency scans. 

Although the detection of nonlinearity is possible by varying the amplitude of excitation, for 

these cases, this procedure was not very effective due to signal instabilities caused by lower 

image contrast of the nanotube during excitation at high magnifications, above fifty thousand 

times, for example. Thus, the carbon nanotubes were excited mostly at 10 V, the maximum 

amplitude of excitation provided by the lock-in-amplifier. Another possible reason for the 

identification of only fundamental modes may be a weak contact between the base of the tube 

and the PEDOT:PSS film, which would not withstand vibrations in higher frequencies, due to 

more energy losses. However, for the cases where the nanotubes presented both first and 

second modes (Figure 33), one can evaluate their behavior by comparing the ratio �� ��⁄  

obtained experimentally with the theoretical value of 6.27 for perfect straight cantilevered 

beams. MWCNTs 4, 7 and 8 from Table 6 have �� ��⁄  ratios proximate to the theoretical one 

and close values of Young’s modulus at the first and at the second modes, indicating that these 

fibers vibrated in a linear regime. Here it might be the case that the beam model is acceptable, 

as our MWCNTs have a high aspect ratio and the resonance frequencies and amplitudes of the 

vibration are low [104]. In addition, it is possible that during the excitation frequency of the 

MWCNTs, the force necessary to produce bending deformation at the resonance frequencies 

is not high enough to produce rippling or buckling. Since the bending moment is proportional 

to the second moment of area �� (Equation 2.23) and the latter is proportional to the diameter 

(�) of the tube �� ≈ (� 64⁄ )  ×  ��, a stronger force would be required to bend thicker 

nanotubes to the point of causing rippling. 

Nonetheless, the Euler-Bernoulli beam theory is a principle that describes the bending 

vibration of a straight, high aspect ratio beam, and as presented in previous sections of this 

work, the MWCNTs investigated here have a significant curvilinear morphology. For this 

reason, it is important to acknowledge other principles of continuous systems vibration that 

could characterize the bending behavior of curved beams accordingly.  

 

5.2.7 Vibration of Curved Beams 

The Euler-Bernoulli beam theory is a very consolidated principle that has been used to 

investigate the elastic properties of many types of nanofibers and was used to evaluate the 

Young’s modulus of the MWCNTs tested in this project as well. These nanotubes have indeed 

a high aspect ratio, which is a pre-requisite for this theory, however their curvilinear 

morphology generates mechanical responses that may deviate from the Euler-Bernoulli 

concept, calling for the necessity to analyze their vibration behavior through other formulation 

principles. Such principles are developed specifically for curved beams and arches under 
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vibration and might give a better assessment of the dynamics and the deformation response 

of such systems. 

The vibration of curved beams theory takes into consideration a curved beam with a 

constant radius of curvature �, an angle of bending � and a thickness ℎ, as presented in Figure 

42. The equilibrium diagram originates in its middle surface, defined by the polar coordinate 

�, where 

 � = �� (5.5) 

 

and the tangential and radial displacements of the middle surface are designated as � and �, 

respectively [116]. 

 

Figure 42: curved beam geometry and coordinates. 

 

For an in-plane vibration, the middle surface strain �� and the curvature change � are 

described by  

 �� =
��

��
+

�

�
,          � = −

���

���
+

�

�

��

��
 (5.6) 

 

Moreover, the free-body diagram of a differential element �� of the curved beam from 

Figure 42 is represented as 
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Figure 43: a free-body diagram of a small element of the curved beam  

 

where �� and �� are the components in the tangential and radial directions, respectively, � is 

the shear force resultant, � is the resultant axial force and � is the rotary inertia. From the free-

body diagram, the resulting equations of motion can be written as: 
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where � is the density and � is its cross sectional area of the beam. It can be seen in Equation 

5.9 that the rotary inertia is neglected in this case. Substituting this equation into Equations 5.7 

and 5.8, gives: 
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Now, the formulation approach developed by Baxy and Sarkar will be applied here in order 

to present an approximate solution for the natural frequencies of non-rotating curved beams 

[117].  

Knowing that the harmonic time dependence of the transverse displacement1 is 

�(�, �) = �(�)���� �, the governing equation of motion for the curved beam can be described 

as: 

   

 
��

��
�

���

���
+

2

��

���

���
+

�

���−���� = 0 (5.12) 

 

where � is the Young’s modulus, � is the moment of inertia, � is the beam density, � is the 

cross-sectional area of the beam, and �� is the transversal natural frequency of the curved beam. 

The corresponding equation for the Euler-Bernoulli beam is obtained from Equation 

2.44, which in terms of the transverse displacement � and the polar coordinate � can be 

rewritten as: 

 

 
��

��
�

���

��� �− ��� = 0 (5.13) 

 

 Comparing the Equations 5.12 and 5.13, it can be noticed that the curved beam equation 

presents two additional terms that account for the shape effect, described by the curvature �. 

this means that � for a curved beam tends to be smaller and the curvature contributes to a 

stiffening effect.   

The boundary conditions for a fixed-free beam implicate in null displacement and null 

slope at the clamped end (� = 0), and null moment and shear force at the tip of the beam (� =

�), as used for the Euler-Bernoulli beam theory in Section 2.2. Here, it is represented in terms 

of �(�) as follows: 

�(0) = 0, 
��(0)

��
= 0 (5.14) 

 

���(�)

���
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�(�)

��
= 0, 

���(�)

���
+

1

��

��(�)

��
= 0  (5.15) 

 

 
1 According to the authors of this paper, this solution of the equation of motion of a curved beam 

in terms of the transverse displacement was based on the formulation proposed by Werner Soedel    

[118. Soedel, W., Vibrations of Shells and Plates. 3rd Edition ed. 2004, Boca Raton: CRC Press.  
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For macroscale beams with small curvature, 1 �⁄ → 0, thus Equation 5.12 and 5.15 

approximate to the Euler-Bernoulli theory. However, in the case of nanofibers, the curvature 

is much smaller than 1 and for this reason the term with � cannot be neglected. 

Now, the equation of motion in terms of �(�) is 

 
��

���� �
���

���
+ 2

���

���
+ �� −���� = 0 (5.16) 

 

 Simplifying �
��

���� = Φ, the equation above can be rewritten as 
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and the general solution for the equation above is 

 �(�) = � cos(��) + � sin(��) + � cosh(��) + � sinh(��) (5.18) 

 

where A, B, C and D are constants related to the boundary conditions and � = �
��

�
+ 1 and � =

�
��

�
− 1. 

Applying the boundary conditions described above and solving the matrix for the 

constants A, B, C and D, the final equation for the determination of natural frequencies and 

the mode shapes �(�) can be written as follows: 
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Next, to propose an approximate solution, the curvature parameter  �� = (� �⁄ )� = �� 

(remembering that � �⁄ = �) is considered small, and as a consequence of this, the natural 

frequencies of a curved beam are obtained as a disturbance over the natural frequencies of a 

straight beam. Thus, the natural frequencies for a curved beam can be formulated as: 

 

 ���
� =  ��

� + ��Λ��
� (5.22) 

  

where �� is the natural frequencies for the analogous straight beam and Λ�� accounts for the 

curvature. Applying a non-dimensional term in each component of the equation above leads 

to 

 

 ���
� =  ��

� + �����
� (5.23) 

 

where ���
� and ��

� are the non-dimensional natural frequencies for a curved and a straight beam, 

respectively. Upon extensive mathematical resolution ���
� was obtained and can be described 

as 

 

 ���
� =

�� + ���

�� + ���
 (5.24) 

 

where � =
���

�
  (� is the cross-sectional area, � is the beam length and � is the moment of inertia) 

and the values of the coefficients �� to �� for the first to the fourth mode of vibration are listed 

in the table below, according to Baxy and Sarkar [117]: 

Table 8: values of coefficients �� to �� to insert into Equation 5.24  

 Vibration mode 

Coefficient First Second Third Fourth 

�� 0.7365 176.7 2107.06 9785.06 

�� -0.5017 112.2 352.71 736.41 

�� 1.215 85.59 260.89 538.59 

�� -1 -1 -1 -1 
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5.2.8 Determination of the Young’s modulus using the curved beams theory 

Now, to compare the Young’s modulus obtained via Euler-Bernoulli beam theory with 

the curved beam theory, the MWCNT number 8 from Table 6 was used. This nanotube is a 

good representation of a slender beam with a regular intrinsic curvature (see Figure 31b). 

Although, the radius of curvature is not constant for the entire length of this nanotube, which 

is a criterion for the application of this approach. Nonetheless, the following case is presented, 

as an example of an alternative analysis for curved nanofibers with constant radius. 

To calculate the natural frequency of a curved beam at the first mode of vibration ���
� 

(Equation 5.23), the curvature parameter �� = (� �⁄ )� needed to be calculated. Thus, a post 

processing step was required, where the fiber was analyzed, and a fictitious circumference was 

drawn on the fiber in order to extract a radius value from the pronounced arc along the body 

of the nanotube. The image below illustrates this post processing: 

 

 

Figure 44: example of a post processing performed on a SEM image of MWCNT 8, where a circumference 

is drawn over the fiber and the radius is an approximate value obtained based on the scale bar. 

 

In this image, the radius was obtained by using the scale bar as a reference 

measurement. The diameter was placed on top of the scale bar to be compared with the 4.00 

µm defined during the experiment. In this way, it was noticed that the diameter was a fraction 

longer than 4.00 µm. Next, the extra portion of the diameter length was reproduced in color 

red and placed on top of the scale bar. This extra portion was observed to be approximately 1 

µm. This way, a value of 5 µm was defined for the diameter and 2.5 µm for the radius. This 

measurement would be better performed in situ during the experimental tests within the SEM, 

along with the length measurements. A circumference would be drawn over the curvature of 

the nanotube and the diameter can be directly measured with the microscope metrics tools. 

This way, the value of the diameter, and therefore the radius is more accurate.  

For a beam with a large radius �, the value of �� would tend to zero and the formulation 

presented here would correspond to the Euler-Bernoulli principle for straight beams. 
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Therefore, for this approach to be applied, the radius must be small and constant. For the 

nanotube in question, the curvature parameter �� equals 8.71, which is above zero and 

significant enough to affect the rigidity properties of the fiber.  

After ���
� was obtained, the Young’s modulus � could be derived using Equation 2.63 

and replacing ��
� by ���

�. For the MWCNT 8, the Young’s modulus found was 11 GPa, which is 

27% smaller than the Young’s modulus derived via the Euler-Bernoulli beam theory (Table 6). 

In this case, the difference between the Young’s modulus extracted from the Euler-Bernoulli 

principle and the curved beam theory is not very dramatic because this fiber does not deviate 

strongly from a perfect linear beam, despite its curvature. This can be confirmed by the ratio 

�� ��⁄  obtained experimentally, which for this nanotube equals 6.34 (theoretical �� ��⁄ = 6.27). 

However, it shows the effect of stiffening caused by the curvature, and therefore there is a 

significant difference between the two methods to analyze the Young’s modulus of vibrating 

beams and apparently, the curved beam theory is an adequate method proposed to describe 

the motion of arched beams. For nanotubes that present more than one curvature along their 

length, the vibration behavior is much more complex and cannot be described by the curved 

beam theory.  

A similar method to extract the Young’s modulus of curved nanofibers was proposed 

by Calabri et al. [119]. In their work, an approach based on the classical Rayleigh-Ritz method 

was implemented to derive a corrected value of Young’s modulus, neglecting the effects of 

adverse non-ideal boundary conditions, and focusing on the effect of the intrinsic curvature of 

the fiber. For the corrected modulus �������, the authors obtained the expression 

 ������� = ��������� �1 +
��

25��� (5.25) 

 

where � is the length obtained from a 3D reconstruction of the nanowire (more details in 

Section 6.2), � is the intrinsic curvature radius, 
��

�� is the intrinsic curvature of the nanofiber (��), 

and 
�

��
 is a constant multiplying factor �� defined by a numerical procedure compatible with 

the tested nanowires. The ��������� was calculated using the Euler-Bernoulli beam theory, 

using the resonance frequencies obtained experimentally. The authors found an average 

difference of ~2.7% between ��������� and the corrected �������. In the article, it was not 

described how the authors extracted the curvature radius from different nanowires.  

 

5.3 Silicon Carbide Nanowires 

5.3.1 Young’s modulus measurements of SiC NWs 

BAuA prepared  the samples of SiC NWs standing free on tuning fork crystal units via the 

same procedure used previously to fix MWCNTs (the detailed description of the preparation 

of the samples can be found in Section 4.1). The quality of the first SiC NWs samples provided 

by BAuA was very satisfactory, containing many single nanowires fixed by the base at the 
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edges of the piezo, which is one of the main conditions for a successful resonance detection. 

When there are many non-agglomerated clean nanofibers properly positioned on the edges of 

the piezo units, the number of nanofibers tested increases considerably and the chances of 

acquiring more volume of data and therefore, more results, are higher. Another factor that 

contributes positively for the detection of resonance frequencies and for the applicability of the 

Euler-Bernoulli (E-B) beam theory is a beam-like shape nanofiber, and the SiC NWs used here 

had indeed a very straight and bulky configuration. Roughly 90% of the fibers selected to be 

tested had their resonance frequency at the first mode successfully detected. 

A group of twelve SiC NWs was tested with the Dynamic Scanning Electron Microscopy 

technique in an EVO MA 10 SEM (Carl Zeiss Microscopy GmbH, Jena, Germany) from BAM. 

The results are presented in Table 9 and in Figure 45(a) and (b). 

 

Table 9: Young’s modulus of the SiC NWs tested. D is the diameter of the nanowires, L is their length, �� 

is the resonance frequency, ��  is the Young’s modulus at the first mode, ��  is the Young’s modulus at the 

second mode and �� is the Young’s modulus at the third mode. The estimated experimental errors are ± 3 nm 

for �, ± 800 nm for � and ± 1 kHz for ��,  ��, and ��. The average error for � is 18.6% and the error associated to 

each � is presented in Table 10. 

SiC 

nanowire 
D (nm) 

L 

(µm) 

ν1 

(MHz) 

ν2 

(MHz) 

ν3 

(MHz) 
ν2/ν1 ν3/ν2 

E1 

(GPa) 

E2 

(GPa) 

E3 

(GPa) 

E 

(GPa) 

1 104 7.36 1.847 - - - - 152 - - 152 

2 104 11.1 0.948 - - - - 207 - - 207 

3 116 18.0 0.346 2.541 - 7.34 - 153 210 - 181.5 

4 128 31.3 0.122 0.760 - 6.23 - 143 141 - 142 

5 152 9.8 1.656 - - - - 182 - - 182 

6 183 18.1 0.735 - - - - 294 - - 294 

7 218 19.5 0.613 3.779 - 6.16 - 186 180 - 183 

8 258 44 0.166 1.064 - 6.41 - 255 266 - 260.5 

9 265 54.0 0.083 0.467 1.314 5.63 2.81 137 111 112 120 

10 304 27.5 0.486 2.985 - 6.14 - 240 226 - 233 

11 312 31.6 0.355 2.201 - 6.20 - 211 206 - 209 

12 371 29.3 0.630 - - - - 340 - - 340 
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Figure 45: Graphs of the Young’s modulus values � vs. diameter � for the SiC NWs tested in this work. 

Graph (a) shows all the results presented in Table 9, graph (b) indicates which results belong to which type of 

SiC morphologies: nanowire or twinned. 

The SiC NWs presented � between 105 and 340 GPa with 18.6% of average error. These 

results are within the range found in the literature for thick SiC NWs (Table 3), however higher 

values of Young’s modulus were found by other researchers for SiC NWs with considerably 

smaller diameters, or with morphologies different from the ones presented here. For example, 

in [49], Cheng et al. reported Young’s Modulus around 1270 GPa for SiC NWs with diameters 
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of 17 nm and very low defect density. In general, SiC nanowires present several kinds of 

configurations that are obtained depending on the parameters of synthesis such as cooling 

temperature, system pressure, catalyst material, etc. And each type of structural configuration 

has a different mechanical response. During the experiments, two types of SiC morphologies 

were tested, the regular nanowires and the twinned shaped. The twinned SiC had higher 

diameters, but their Young’s modulus were as assorted as the Young’s modulus of the 

nanowires, exhibiting low and high values of � (number 9 and 12, respectively in Figure 45b).  

The SiC NWs showed scattered values of Young’s modulus with no direct correlation between 

the modulus and the diameter nor the length. Compared to the MWCNTs tested previously, 

the SiC NWs are stiffer, which is reflected by the differences observed in their morphologies, 

as the nanowires exhibited a bulky straight shape and the nanotubes were thinner and curved, 

showing more flexibility. 

For most of the SiC NWs the resonances at first and at second modes were detected (Figure 

46). Among these, the results found experimentally were approximate to the theoretical values, 

which can be seen by the ratio between the frequency detected at the second mode and at the 

first mode (�� ��⁄ ) of vibration. This ratio is 6.27 for perfect linear elastic beams, or 2.8 (�� ��⁄ ) 

in the case where a third mode was also detected (SiC NW number 9). In these cases, the 

Young’s modulus was calculated as the average between the modulus obtained at each mode. 

The nanofibers that presented only the first mode of vibration likely deviate more from the 

theoretical value, which makes it more difficult to predict the further modes, calling for 

experiments with longer periods of time. This may be a consequence of an extra mass on the 

body of the nanofiber since the nanofibers tested here are not impurity-free material and the 

variations on the thickness, making their mechanical behavior less predictable. These factors 

also influence the deviation of the experimental frequency from the theoretical value for �� ��⁄  

and for �� ��⁄ . 
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Figure 46: DySEM images of three different SiC NWs at stationary mode (column a); vibrating at first mode 

(column b); and vibrating at second mode (column c). 

 

5.3.2 Length and diameter measurements of SiC nanowires 

In the equation used to obtain the Young’s modulus � from the Euler-Bernoulli theory 

(Equation 2.63) , the length (�) is to the fourth power, thus to avoid large errors in the Young’s 

modulus value it was important to measure the lengths of the nanowires with accuracy.  The 

length used in the E-B equation is defined from the fixation point of the nanofiber on the piezo 

until its tip. The nanowires tested here were very erect, which contributes for a reliable 

measurement of their lengths, however, to assure that the right length is being measured, the 

entire fiber has to be in the same horizontal plane. This can be validated by first focusing the 

beam on one end of the nanowire, and next observing the other extremity without changing 

the scanning conditions. If the entire fiber is focused, it means that the projected image is 

essentially the same as the real three-dimensional material, and the measured length is the 

correct one.  However, some of the nanowires were leaning toward the back planes, or the 

front planes rather than being aligned with the piezo plane, producing a projected length that 

is altered in relation to the true length. An example of this occurrence can be found in Figure 

47. 
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Figure 47: a SEM image of a silicon carbide twinned type illustrating how the focus can be an auxiliar tool 

to indicate that the length measured in the observed projection is not the true length. At the fixation point, the 

image of the fiber is sharp, however, it becomes unsharp at the tip, signalizing that the fiber is leaning towards 

other planes, and that the displayed length of  11.76 µm is smaller than the real fiber length. 

 

 For this reason, during the investigation of the SiC NWs, their length was verified twice 

by tilting the piezo unit in approximately 60° (Figure 48). This was the maximum tilt degree 

possible to be reached while still being able to identify the correct nanowire, maintaining a 

satisfactory background contrast. This procedure was made for the nanowires standing free at 

the right edge of the piezo substrate. It is worth mentioning that the majority of the 

experiments and the measurements of the fibers’ dimensions was made with the piezo drive 

at the default tilt of 0°. At this angle, the fibers can be better assessed due to the high contrast 

of the fiber with the background. The highest value of the fiber length obtained from both 0° 

and 60° of piezo tilt was then chosen to be used in Equation 2.63. In special cases, where the 

fiber was oriented towards the background of the SEM chamber, the tilt had to be adjusted 

step-by-step until a sharp image of the entire fiber was acquired. Unfocused spots on the fiber 

length indicate that the fiber is not entirely on the same plane, thus the measurement of the 

length in this case would not be adequate. Examples of the length measurements of the SiC 

NWs with two different viewing angles are shown in Figure 49.  
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Figure 48: Diagram showing the direction of tilt of the piezoelectric device unit inside of the SEM chamber 

to evaluate the length from another perspective (for the nanowires on the right edge). The circular gray region 

indicates the area where the fibers were deposited. 

  

 
Figure 49: a series of SEM images showing the length measurement for a set of SiC NWs from two 

different perspectives: the images on the left column are at 0° piezo tilt and the images on the right column 

are at 60° piezo tilt. 

 

Apart from the concern to define the correct length values, the diameter measurement also 

required an extra step, as the thickness of most of the nanowires varied along their length. 

Thus, to obtain an approximate value of the diameter, the thickness of a nanowire was 
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measured in four different points so that an average value was extracted (Figure 50). The 

diameter was then obtained by the averaged thickness measured, in a procedure similar to the 

one used for the MWCNTs. 

 

Figure 50: SEM images of the measurement of the diameter of a SiC nanowires in four different points. 

The diameter used in the Euler-Bernoulli formula was defined as the average of the values obtained from these 

SEM images. This procedure was applied to all the nanowires tested (Zeiss EVO MA 10) 

 

5.3.3 Error estimation for the Young’s modulus of SiC NWs 

After performing the verification of length for half of the NWs tested by tilting the piezo 

in 60° from the initial position, it was observed that the difference between the length of the 

nanowire obtained at 0° and at 60° was in average 3.2%. To estimate a general length deviation 

for all the samples (considering that some fibers were not possible to be observed at 60° tilt), 

this value was applied to the lengths of all twelve SiC NWs tested and the result was an 

average length of ± 800 nm. Therefore, for a deviation on the length of 800 nm, the 

corresponding average error value for the Young’s modulus was 18.6%. The error associated 

to the Young’s modulus for each SiC nanowire tested is presented in Table 10. The estimated 

error associated with the diameter is ± 3 nm and 1 kHz for the resonance frequencies. 

Table 10: Young’s modulus of SiC NWs from Table 9 with the associated error values.  

 

 

 

 

 

 

 

 

 

SiC NW E (GPa) Error (%) 

1 152 ± 66.8 44.0 

2 207 ± 61.2 29.6 

3 181.5 ± 34.1 18.8 

4 142 ± 16.7 11.7 

5 182 ± 60.1 33.0 

6 294 ± 53.7 18.3 

7 183 ± 31 16.9 

8 260.5 ± 21.7 8.3 

9 120 ± 8.7 7.2 

10 233 ± 28.5 12.2 

11 209 ± 22.5 10.8 

12 340 ± 39 11.5 
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5.3.4 Energy dissipation in the excitation tests of SiC NWs 

 Since the SiC nanowires studied here have shown to be a very adequate type of nanofiber 

for the mechanical excitation experiments presented, a deeper investigation on the damping 

existing in the system was performed. One of the parameters to be analyzed was the quality 

factor for some nanofibers during frequency sweeps with high resolution of data acquisition, 

and the effect of the nanowire thickness on the quality factor values. For that, four NWs with 

different diameter sizes were selected and retested. These are SiC NWs numbers 6, 7, 11 and 

12 in Table 9. In order to investigate more closely the energy dissipation in the experimental 

setup, the resonance was detected by collecting a higher number of points with a resolution of 

10 Hz (which means that a data point was computed at every 10 Hz) and at a voltage of 7 V. 

To obtain the quality factor � of the nanowires mentioned, the Lorentzian fit of the 

amplitude versus frequency curve of each of the nanowires was obtained (Figure 51). The 

detailed description of the relation between the �- factor and the resonance frequency can be 

found in Section 5.2.5. The four NWs presented a relatively high value of quality factor in the 

range from 2800 to 5200, which is comparable to the remarkable results of �=3500 and �=5000 

reported by Perisanu et al. [44, 45]. When excitation experiments are performed in air, one 

significant source of extrinsic energy dissipation is the air damping. These experiments were 

executed in a high vacuum chamber (below 10-2 Pa), thus the energy losses are attributed 

mostly to intrinsic characteristics, such as stacking faults and defects that could cause inner 

friction. Thermoelastic losses due to the transfer of heat caused by the movements of expansion 

and compression during the high amplitude oscillation can increase the dissipation as well. 

The other possible source of damping is the quality of the clamping, which was evaluated by 

observing closely the clamped end of the nanofiber during the oscillation period. A more 

detailed characterization specifically on the condition of the clamping point using other tools 

was not executed on the course of this project, although is suggested for future investigations. 

It is worth mentioning that very high values of �-factor are crucial when the main application 

of the oscillator is in MEMs, and the values encountered here for the SiC NWs are very 

satisfactory for the extraction of resonance frequencies and ultimately the elastic modulus. 

In Figure 51, the Lorentzian fit of the amplitude vs. frequency curves of the four SiC NWs 

are disposed from the thinner to the thicker nanowire, as it has been reported for other types 

nanowires that the quality factor increases proportionally with the increase of the fiber 

diameter [120]. In this case however, this tendency was not observed for the group of 

nanowires tested. As a matter of fact, the lowest value of  �-factor was observed for the 

nanowire with the highest diameter (371 nm; bottom right graph of Figure 51). 
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Figure 51: Lorentzian fit of amplitude vs. frequency curves and the correspondent quality factors for four 

SiC NWs. The letter d in each graph stands for the diameter of the nanowires. The disposition of the graphs in 

clockwise order represents the data of NWs 6, 7, 11 and 12 from Table 9 respectively. 

 

5.4 Flexural rigidity of nanofibers 

Knowing the bending stiffness of nanomaterials is surely crucial for their application as 

structural components, and for this reason there is a wide space for the research and 

development of new techniques capable of characterizing with accuracy the mechanical 

behavior of such materials. Especially taking into consideration that a great amount of 

nanometric fibers present remarkable resistance to tensile and bending stresses, making them 

promising candidates to integrate lightweight performance systems. Alongside with being a 

prerequisite to constitute consumer and industrial products, the classification of the flexural 

rigidity of nanofibers plays an important role also at the manufacture, due to implications on 

occupational health, and at the disposal phase, with the release of particles to the atmosphere. 

As it has been proved by researchers concerned about the impacts of biopersistent nanofibers 

in human lungs (Section 1.1), stiff airborne nanofibers that reach the deep airways of the 

respiratory system can cause serious damages to the defense cells. For this reason, in this work 

we have presented a promising method to extract the elastic behavior of nanofibers with the 

main purpose of providing information about their rigidity.   

Recalling the fiber toxicology paradigm, the hazard posed by biopersistent nanofibers to 

defense cells called macrophages is directly dependent on the fiber’s dimensions and on the 

flexural rigidity. To indicate approximately to which extent the macrophages are able to fight 

nanofibers, Broßell et al. presented the maximum compressive force that a macrophage is able 
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to exert on a substance to perform a successful phagocytosis [121].  By making an analogy to a 

slender column being compressed, resulting on its deflection,  Euler’s critical load ��� is 

translated as the compressive load being applied on the fiber axis by the macrophage, and this 

force results in 10 nN. Thus, for the fiber to overcome this compression state, it needs to satisfy 

the condition: 

 ��� =
���

(��)�
=

����

(��)�
 (5.26) 

 

where � is the flexural rigidity, � is the length of the fiber, and � is the column effective length 

factor, considered 1.2 for a clamped-free fiber. The critical rigidity value ��� associated with 

the critical load is ~10-19 N·m2. This means that fibers presenting a flexural rigidity lower than 

10��� N·m2 are classified as flexible, and can be removed from the body during the 

phagocytosis. The fibers with rigidity in the order of 10��� N·m2 or higher are likely harmful 

and stiff enough to cause damages on the macrophages, posing hazard to defense cells of 

lungs. 

After obtaining the Young’s modulus for a group of MWCNTs and SiC nanowires, their  

flexural rigidity was then determined according to Equations 2.64 and 4.2. The resulting 

rigidity profile of the nanofibers is displayed in the graph of the flexural rigidity vs. diameter, 

presented in Figure 52. As it can be seen in the graph, all the nanofibers tested in this work 

showed values of rigidity above the critical rigidity threshold of 10��� N·m2, identified by the 

horizontal red line. In addition, the data points demonstrate a tendency of proportional 

increase of flexural rigidity with the increase of the fiber thickness, although the nanofibers 

studied here haven’t presented a regular increase of Young’s modulus with the increase of 

diameter. This means that in regard to the bending behavior, the diameter has clearly a 

remarkable impact. This exemplifies that flexural rigidity is considered a more accurate 

parameter to assess potential fiber hazards than diameter or Young’s modulus alone. 

To group the rigid and flexible fibers from this study by the diameter values though, one 

could define a thickness of ~ 75 nm as the threshold of safety for fibers that have an � maximum 

of 160 GPa, which corresponds to the type of MWCNTs used in this work. This means that the 

nanotubes from this batch, that are thicker than 75 nm, can be defined as rigid and harmful 

and the ones with diameters smaller than 75 nm are flexible and harmless, prior to any 

mechanical testing. The critical diameter of 75 nm was defined from the graph of flexural 

rigidity vs. diameter (Figure 52).  
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Figure 52: Plot of the rigidity data of silicon carbide nanowires and multi-walled carbon nanotubes tested 

in this work. The rigidity data is displayed in the logarithmic scale, highlighting the rigidity threshold of 10-19 

Nm2. All the fibers presented are potential hazard agents during phagocytosis 

 

Analyzing closely the rigidity of the ten multi-walled carbon nanotubes in Figure 53 

below, it can be noticed that the rigidity does not increase uniformly with the increase of the 

diameter, which can be explained by pronounced variations on the Young’s modulus, 

combined small thickness differences among the nanotubes. However, since the flexural 

rigidity scales with the 4th power of the diameter, nanotubes that presented low values of 

Young’s modulus, but had the highest diameters (MWCNTs 9 and 10) turned out to be the 

most rigid ones, followed by nanotubes 2 and 3, that had in fact the highest Young’s modulus. 

In addition, the nanotubes 9 and 10 were considerably thicker than most of the other 

nanotubes. The tendency of increasing the rigidity with the increase of the diameter is 

observed when a representative group of samples is analyzed, as in the graph from Figure 52. 
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Figure 53: Graph of the flexural rigidity of the MWCNTs tested. The nanotubes are organized according 

to the sequence presented in Table 6, i.e., from the thinnest to the thickest nanotube. 

The flexural rigidity of SiC nanowires and the associated error are shown separately as 

well, in the bar graph from Figure 54. The graph shows that these nanowires presented high 

values of rigidity, all above 10-19 N·m2. These high values of rigidity are consequences of both 

their high thickness (between 100 and 400 nm), and the fact that most of these nanowires 

showed high values of Young’s modulus. Although a tendency of increasing the Young’s 

modulus with the increase of diameter was not significantly pronounced, the flexural rigidity 

showed to increase quasi proportionally with the diameter. 

 

Figure 54: Graph showing the variations on the rigidity of the twelve SiC NWs tested. 
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Since all the SiC NWs tested have flexural rigidity values far above the threshold of 10-19 

N·m2, in the order of 10-18 N·m2, it is not adequate to define a critical diameter for these fibers. 

Thus, the type of silicon carbide nanowires investigated in this work are defined as potentially 

hazardous for defense cells of the lung’s tissues. 

 

5.5 Analysis of the effect of the boundary conditions on the first natural 

frequencies and on the rigidity of the nanofibers studied. 

In the method proposed in this work, the fixation of the nanofibers on the surface of 

the piezo is accomplished with the use of a PEDOT:PSS polymeric film, which works as a glue 

during its viscous state, and is sufficiently conductive to be submitted to the electron beam of 

the microscope without interfering in the scanning analysis. As it has been discussed in Section 

5.1, the ideal material to be used as a clamping tool should be stiff and conductive, which are 

common characteristics found in metallic materials. However, the clamping material should 

be viscous enough at ambient temperature in order to receive and incorporate the base of the 

fibers in its matrix. This feature cannot be easily achieved with a metallic alloy or pure metal, 

as proved in Section 5.1, therefore the choice of a conductive polymer.  

The use of a polymeric film that is not very stiff as clamping material may influence the 

natural frequencies detected, impacting on the Young’s modulus obtained through the 

resonance method. This occurs when the clamping conditions are not optimal, meaning that it 

does not represent with fidelity the fixed-free boundary conditions state described in Section 

2.2.1.  

An example of the clamping conditions impact on the resonance frequencies of 

nanowires was illustrated in the work of Qin et al. . The authors investigated the Young’s 

modulus of  ZnO nanowires via the resonance method in a scanning electron microscope. In 

their work, the nanowires were clamped using electron-beam-induced-deposition of residual 

hydrocarbon. This method permits a controlled local deposition of clamping material at the 

base of the fiber to the substrate. In addition, the hydrocarbon is considered a stiff material 

with a Young’s modulus ranging from 30 to 60 GPa, depending on the acceleration voltage of 

the electron beam [122]. The resonance frequencies of the nanowires increased proportionally 

with the increase of the clamp size, until reaching the true stable resonance frequencies at a 

certain amount of deposited clamping material, as shown in Figure 55 [105]. At this point, the 

system becomes indeed compatible with the fixed-free boundary conditions and Equation 2.62 

can be applied. 
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Figure 55: image of the nanowire’s fixation point covered with the deposition material at the base (left); 

approximate data points showing the tendency of increasing the resonance frequency with higher dimensions 

of clamp material, until reaching a stable resonance value (at around 780 kHz) with an optimal clamp width. 

Image and data extracted from [105]. 

  

 

Analysis of the first natural frequencies and rigidity for a beam presenting a rotational 

spring at the base 

Considering that the PEDOT:PSS is a much less stiff material (Young’s modulus ~2 GPa 

[95, 96]), it may be the case that the fixed-free boundary condition does not apply, even with 

the increase of material deposited. For this reason, another approach2 for determining the 

natural frequencies, and the rigidity of the oscillating nanofibers is going to be described next 

[123]. In this approach, the beam is supported by a rotational spring at the base, instead of a 

clamp, and free at the end, as shown in Figure 56.  

 

   

Figure 56: Euler-Bernoulli beam supported by a rotational spring 

 
2 This approach was developed by Prof. Dr.-Ing. Kerstin Kracht, 2021. 
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For a Euler-Bernoulli beam with a length � and a flexural rigidity �� = ��, the analysis 

begins using the Hamilton’s principle: 

  

 � � � − ���
��

��

+ � ���� = 0
��

��

  (5.27) 

 

where � is the kinetic energy, � is the potential energy, and � is work. Now, knowing that 
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 (5.28) 
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and 

 �� ≅ 0 (5.30) 

where � is the density of the beam, � is its Young’s modulus, � is the cross-sectional area 

moment of inertia, and �� is the rotational spring stiffness, the Hamilton’s principle can be 

then rewritten as: 
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Solving and rearranging each term of the Equation 5.31, results in: 

 

� �� �−����� − ��̈����� + (����� − ����)���|
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(5.32) 
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Now, knowing that the equation of motion is:   

− ����� − ��̈ = 0 (a) 

 

The geometric boundary conditions are: 

�(� = 0, �) = 0 (b) 

And the dynamic boundary conditions are: 

�����|
 
 

� = 0
− ����|

 
 

� = 0
= 0 (c) 

 

−�����|
 
 

� = �
= 0 (d) 

 

������|
 
 

� = �
= 0 (e) 

 

To evaluate the ratio in question, and its effect on the first natural frequency of the system, 

(c) is calculated as follows: 

 

 �����(� = 0, �) − ����(� = 0, �) = 0|
 

∶ ��

 
 (5.33) 

 

And �� = ��, thus 

 

 �����(� = 0, �) − ����(� = 0, �) = 0 (5.34) 

 
��

��
��(� = 0, �) − ���(� = 0, �) = 0  (5.35) 

 

The equations for �′ and �′′ arise from the solution of the differential equation of motion: 
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 −����� − ��̈ = 0 (5.36) 

 

Considering that �(�, �) = �(�) ∙ �(�), the equation above can be rewritten as: 

 

−���(�) ∙ ��(�)− ��̈(�) ∙ �(�) = 0    ⇒  

⟹−
��

�

���(�)

�(�)
=

�(�)̈

�(�)
= −��

� (5.37) 

 

 

 

Concerning the deflection mode: 

 (1)     
��

�

���

�
= ��

� (5.38) 

 

being 

 ��� =
��

��

��
∙ � (5.39) 

 

where 

 
��

��

��
=: �� (5.40) 

 

Thus, 

��� − ��� = 0 (5.41) 

Now, considering that 

 

�(�) = � sin �� + � cos �� + � sinh �� + � cosh �� (5.42) 
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And adjusting from the boundary conditions: 

 

(�):      �(� = 0) = 0  →   � + � = 0   →   −� = � (5.43) 

 

 

(�):      ���(� = �) = � sin �� + �(cos �� − cosh ��) − � sinh �� = 0 (5.44) 

(�):      ����(� = �) = −��� cos �� + ��� sin �� + ��� cosh �� + ��� sinh �� (5.45) 

knowing that ����(�) = 0 and � = −�, the equation above becomes  

⇒ −� cos �� + � sin �� + � cosh �� + � sinh �� = 0 (5.46) 

 

And the boundary condition (c): 

 

(�):   �� ∙ �(� cos(� ∙ 0) + (−�) sin(� ∙ 0) + � cosh(� ∙ 0) + � sinh(� ∙ 0))
+ ����[� sin(� ∙ 0) + � cos(� ∙ 0) − � sinh(� ∙ 0) + � cosh(� ∙ 0)] = 0 

 

⇒ ���(� + �) + ����(2�) = 0|
 
 

 ∶ (����)
 

 

⇒   
��

2���
(� + �) + � = 0 (5.47) 

 

Since � = �� ��⁄ , the solution in matrix notation is represented as follows: 

 

�

0 1 0 1
sin �� cos �� − sinh �� − cosh ��

−cos �� sin �� cosh �� sinh ��

� 2�⁄ 1 � 2�⁄ 0

�

���������������������������
�

�

�
�
�
�

� = 0 

 

(5.48) 

 

The solution of ���� = 0 is presented in the graph of Figure 57 for the ratio � equal to 0, 

1, 10, 100 and 1E+6. This range of � values represents the cases of a simply supported beam 

(� → 0),  a beam supported by rotational springs with different magnitudes of stiffness  (� =
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1, � = 10, � = 100), and a hypothetical case when the rigidity of the rotational spring is so high 

that the system can be considered as fixed-free (� → ∞).  

 

   

Figure 57: plot of the characteristic equation for the result of ���� = �. Graph obtained in Microsoft 

Excel, which has a numeric precision of 15 significant digits that may affect the accuracy of the data collected. 

The color sequency blue, yellow, green, red, magenta illustrates the plots of functions of � equals to 

�, �, ��, ���, ∞, respectively. 

 

 Now, by analyzing the plot of the determinant function, a few points can be discussed, 

considering that the stiffness of the beam is constant. Starting with the hypothetical case for 

the ratio � = 0 (graph in blue), where the stiffness of the rotational spring supporting the beam 

is practically insignificant, it can be observed that �� is zero for the first and the second 

eigenmodes. This means that the beam here would exhibit no bending behavior, only a generic 

motion of rigid bodies. Next, for a rotational spring having the same rigidity as the beam (� =

1; graph in yellow), the system demonstrates characteristics of bending vibration with the first 

and the second eigenmodes �� ≅ 1.2 and �� ≅ 4.1, respectively. With the increase of the spring 

stiffness (� = 10 and � = 100), assuming that the beam is the same, the first eigenfrequency 

become very close to 1.5 for both these cases, and the second eigenfrequencies are �� ≅ 4.4 and 

�� ≅ 4.6, respectively for a spring ten and for a spring one hundred times stiffer than the beam. 

These are represented by the green and red plots. Here, it is noticed that even with a ten times 

stiffer spring, the natural frequencies do not differ considerably, meaning that the motion 

behavior of the beam is not strongly affected by the increase of the spring rigidity by a factor 

of 10 at the first and the second eigenmodes. However, apparently there is a tendency for �� to 

differ more and more at each eigenmode �, for higher eigenfrequencies of the conditions where 

� = 10 and � = 100. Although, this was not further verified by the analysis presented here, as 

only the first and the second eigenfrequencies are being assessed.  

Finally, for the case where the spring stiffness is extremely high in relation to the beam 

(� = 1 ∙ 10�), and the system is approaching a fixed-free state, the eigenvalues are �� ≅ 1.72 
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and �� ≅ 4.74, which approximate to the first and the second Euler-Bernoulli fixed-free 

eigenfrequencies of 1.87 and 4.69, respectively. This case is described by the plot in magenta. 

It can be inferred from the results of the determinant function that the presence of a 

rotational spring implies that the eigenfrequencies for the first and the second modes are lower 

than the corresponding eigenfrequencies for a fixed-free boundary condition, independently 

of the magnitude of the spring’s stiffness. In addition, the eigenvalues tend to decrease with 

lower values of the rotational spring stiffness (or lower values of the ratio �). In other words, 

the less stiff the rotational spring is, the lower the eigenfrequencies. 

Applying the boundary conditions proposed above to calculate the Young’s modulus of 

the vibrating beam will lead to higher values of �, and consequently higher flexural rigidities 

in comparison with the fixed-free condition. This occurs because the Young’s modulus is 

inversely proportional to the eigenfrequency �� (see Equation 2.63). A concrete example can be 

given using the SiC nanowire number 4 from Table 9, which was evaluated experimentally in 

this project, based on the fixed-free boundary condition. This nanowire was selected for 

comparison as it showed a behavior very close to that of a perfect elastic beam, confirmed by 

the experimental data in Table 9. The Young’s modulus of this nanowire was calculated for the 

three cases described above, � = 1, � = 10, and � = 100, using the resonance frequency 

detected experimentally at the first mode, and the �� obtained with the plot from Figure 57. 

The resulting modulus are presented in Table 11 and in the graph of Figure 58. The flexural 

rigidity � was not included in this analysis since it is obtained with the average Young’s 

modulus from all the modes detected for each nanowire. However, it is known that  � = ��, 

thus the flexural rigidity increases proportionally with �.  

 

Table 11: Young's modulus of one individual SiC nanowire calculated according to each value of the ratio 

�, at the first mode of resonance. The error associated to � is 11.7% (Table 10). 

 

 

 

 

 

Boundary 

condition 
�� 

E (GPa) 

� = 1 1.2 853 

� = 10 1.5 349 

� = 100 1.52 331 

Fixed-free 1.875 143 
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Figure 58: data showing the Young's modulus of an individual SiC nanowire (number 4 from Table 9) 

calculated for each boundary condition from � = � to the fixed-free state � → ∞. 

Despite the difference of the �� values not being very high, the Young’s modulus for each 

state of the boundary condition varies considerably, especially when the ratio � increases from 

1 to 10. This is explained by the effect of the term ��  to the fourth power in the equation to 

calculate the modulus (Equation 2.63). This way, small changes in the values of the natural 

frequencies �� will impact strongly on the Young’s modulus derived. 

The graph above shows clearly the variation of the modulus values for each configuration 

of boundary conditions. This highlights the importance of defining the appropriate boundary 

conditions that are being applied to the system. And, in the case of a beam supported by a 

rotational spring, if the stiffness of the spring is well-known compared to the magnitude of the 

stiffness of the beam, there are good chances of acquiring more accurate values of �. 

 

6. Remarks 

6.1 Recalculation of the error estimation for the MWCNTs 

The SiC nanowires presented physical characteristics that were more compatible with 

the Euler-Bernoulli beam theory than the nanotubes tested in a previous phase of the project. 

For this reason, an additional step to determine the length deviation of the nanowires was 

implemented, aiming at increasing the accuracy on the error estimation of their Young’s 

modulus (Section 5.3.3). This procedure was created during the investigation of the SiC NWs, 

after the error estimation of the MWCNTs was studied. Therefore, here an analysis of a more 

realistic approach to evaluate the error associated to the Young’s modulus of MWCNTs is 

presented, using the same principle applied for the nanowires. 

 To define a more authentic value of the error deviation for the length of the MWCNTs, 

the differences encountered during the length measurements obtained with the two 
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perspectives of the fiber, 0° and 90° of tilt on the piezo drive (Figure 31), were compared and 

an average value of 12.7% was observed. This means that the length measured with 90° of tilt 

on the specimen presented in average an amount 12.7% larger than the value previously 

measured. Next, this value was applied to the lengths of all the ten MWCNTs tested, and an 

average value of 1.266 µm was obtained. It was not possible to measure the dimensions of 

every nanotube from both perspectives because in some cases, the contact point of the fiber 

with the piezo was located in a cavity of the piezo surface, invisible for observation. Thus, the 

error associated to the Young’s modulus was recalculated with the updated length deviation 

of ±1.266 µm, and an average value of 59.1% was obtained. The new error values of the Young’s 

modulus for each MWCNT are presented in Table 12. 

Table 12: Young’s modulus of the MWCNTs  from Table 6 with the updated error values 

 

 

 

 

 

 

 

 

As can be seen in Table 12, the nanotubes 1, 2, 7, 8 and 10 presented significantly high 

values of error estimation with the correction on the length deviation. This occurred because 

these nanotubes are considerably shorter than the others, thus a length deviation of 1.266 µm 

strongly affected their error estimation. For example, for the nanotube 1, whose length is 6 µm, 

the length deviation represents 21.1% of its entire length, while for the nanotube 4 it is only 

7%. By using an average value of the length deviation for a group of samples with large 

variations on the dimensions, it is expected that the results of the shorter ones will be more 

negatively affected.  

Since the aim of this work is to evaluate the final stiffness of the nanofibers, an 

evaluation was made to verify how much an error of 59.1% affects the rigidity calculation. 

Thus, the flexural rigidity was recalculated using �� ± 59.1%, and as a result, the order of 

magnitude of half the nanotubes indeed changed to either below or above the critical rigidity 

(��������� ~ 10-19 N·m2). Naturally, a length deviation of 1.266 µm and 59.1% of error in the 

Young’s modulus are remarkably high values that should not be incorporated into a routinely 

applicable rigidity measurement technique. Therefore, it is essential to implement a dimension 

characterization tool that allows the acquisition of the fiber true length, producing therefore 

quality results. 

 

MWCNT E (GPa) Error (%) 

1 40 ± 34 85.0 

2 161 ± 127.8 79.4 

3 143.5 ± 53 37.0 

4 48 ± 14.2 29.5 

5 90.5 ± 43.2 47.7 

6 66 ± 24.2 36.7 

7 66 ± 57 86.4 

8 15.5 ± 10.8 69.4 

9 79 ± 46.1 58.4 

10 73 ± 45.2 61.9 
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6.2 Three-dimensional reconstruction of curved nanofibers 

The problem of obtaining the right dimensions of curved nanowires has been the work 

focus of some researchers, aware of the large impact of measurements mistakes on the Young’s 

modulus obtained via resonance frequencies. To overcome this issue, a technique based on the 

parallax method has been developed by Huang et al. [124]. The parallax method is a well-

known principle commonly used in astronomy to measure the distance between stars. It 

consists of determining the coordinates of an object having different apparent positions by 

obtaining images from distinguished viewpoints angles. Similarly, this principle was applied 

in the SEM to form a three-dimensional representation of nanowires. In [124], the authors 

reconstructed a 3D model of a nanowire by tracing its length on two SEM images acquired 

from different viewpoint angles, and using epipolar geometry in a MATLAB program 

developed by them. To estimate the length of the nanowire from the three-dimensional model, 

the total of pixels of the three-dimensional curve was integrated and divided by the total 

magnification in the MATLAB program. The larger the tilt or rotation angle, the more accurate 

was the image reconstruction and consequently the length.  

This method for estimating the length of nanowires has been applied by other 

researchers that investigated the mechanical properties of nanowires with resonance 

frequencies detection. Zhang et al. characterized the mechanical behavior of silicon carbide 

nanowires through a nanoscale tensile testing and two different resonance detection tests, via 

electrical and mechanical excitation. The aim of the study was to compare the Young’s 

modulus obtained from the three different types of tests. To increase the accuracy of the results 

especially of the excitation tests, the technique developed by Huang et al. was implemented to 

extract the length of nanowires clamped on the tip of an AFM cantilever (Figure 59). The 

authors obtained very similar values of Young’s modulus from the three testing 

configurations, which largely was achieved by the certainty on the length value estimated [60].  

 

 

Figure 59: SEM images of a silicon carbide nanowire fixed at the tip of an AFM cantilever, used for the 3D 

reconstruction of the nanowire: (a) the sample has 0° of tilt; (b) a side view with 90° tilt. (c) 3D model of the 

nanowire created with the parallax method from Huang et al. [60]. 

 

In another study, the authors applied the parallax method from [124] to study the 

elastic properties of curved boron nanowires by detecting their resonance frequencies as well 
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[119]. The nanowires were individually attached to the tip of an AFM probe, and mechanically 

excited with a piezo actuator. To account for the shape deviation from the Euler-Bernoulli 

beam theory, a correction procedure was proposed based on the vibration of curved beams, 

using a finite element simulation. The 3D reconstruction of the nanowire was important to 

permit a reliable correlation of the results obtained experimentally with the results pointed by 

the numerical analysis.  

For future resonance tests using the DySEM technique, and method presented in this 

work, it is recommended to incorporate this procedure into the routine to define correct 

dimensions of the nanofibers, before extracting their Young’s modulus. For that, a high 

sensitivity stage tilt needs to be implemented into the Zeiss EVO MA10 SEM to provide high 

accuracy in the tilt angle control. Upon obtaining SEM images with reliable parameters, and 

applying the MATLAB source code to obtain the dimensions of the fiber, the modulus can be 

calculated with the certainty that experimental errors were mitigated.  

 

7. Conclusion 

This work sheds light on the fiber toxicological paradigm associated with the possible 

health risks posed by rigid biopersistent nanofibers. Several types of nanofibers present 

remarkable properties, being very attractive for commercialization, without having a reliably 

known Young’s modulus characterization. Upon being largely applied in consumer and 

industrial goods, the nanofibers can be lost into the environment as a consequence of chemical 

and mechanical degradation processes of their matrices. This could lead to an uncontrolled 

spread of these materials, becoming a potential hazard subject for nature and society. 

Therefore, being able to evaluate the rigidity of nanofibers prior to their large-scale 

commercialization is absolutely essential to promote the development of advanced materials, 

without compromising the well-being of humans and the balance of ecosystems. For this 

reason, the focus of this work has been to propose a routinely applicable method to study the 

rigidity of nanofibers and provide a qualitative analysis of such property. 

 The proposed method to evaluate the flexural rigidity of nanofibers relies on the detection 

of resonance frequencies of cantilevered nanofibers via the so-called Dynamic Scanning 

Electron Microscopy technique. Upon obtaining the resonance frequencies and measuring the 

fiber’s dimensions, the dynamic Young’s modulus can be derived using the Euler-Bernoulli 

beam theory. The flexural rigidity is determined using the Young’s modulus value and the 

second moment of area. This methodology is applicable to nanofibers and nanowires with 

known material density, exhibiting a beam-like shape and electrically conductive or 

semiconductive. 

The fixation of the nanofibers with a polymeric and not highly stiff material allows for the 

consideration of another boundary condition rather than the fixed-free to represent the beam 

supporting state. For this reason, the approach with a rotational spring was presented in 

Section 5.5, and has demonstrated that if the clamping material is not extremely stiff in 

comparison to the beam, the values of the non-dimensional resonance frequencies are lower 
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than the ones used in the fixed-free condition. This leads to the calculation of greater values of 

Young’s modulus, and consequently higher flexural rigidities as well. This means that this 

approach could be more conservative regarding the evaluation of the flexural rigidity of 

nanofibers for health and safety purposes. It would detect higher rigidities for nanofibers, and 

therefore classifying them according to the critical rigidity threshold in a safer way. However, 

specifically for the carbon nanotubes and the silicon carbide nanowires studied here, this 

approach would not impact significantly, since the flexural rigidity values obtained through 

the fixed-free boundary conditions are already above the harmful threshold limit. Nonetheless, 

for more accurate evaluation of nanofibers stiffness, it is crucial to identify the adequate 

boundary conditions that are being applied to the excitation system. 

The necessity to develop reference methods for nanomechanical testing has been 

discussed in Section 2.4, as well as the advantages and disadvantages of the existing laboratory 

established procedures. Here, the mechanical characterization of nanofibers has been 

presented employing a scanning electron microscope that requires non-sophisticated 

operational requirements. Compared to other microscopy techniques, the SEM provides a 

satisfactory range of information during the experimental tests, and it is an alternative to TEM-

based tests. The transmission electron microscope is in general a complex and delicate 

instrument with reduced space for design modifications of the sample holder, limiting the 

possibilities for innovation. It requires special sample preparation, and a profound electron 

microscopy know-how, especially to avoid damage of imaged fibers resulting from high beam 

energies. In addition, it is a highly costly equipment. The SEM instruments used in this work 

facilitated the experimental set up and did not demand high levels of operational skills. 

However, it was beneficial to use an ultra-high-resolution SEM for reliable shape measurement 

and observation of structural details and defects of the MWCNTs investigated. To decrease the 

errors associated with dimensions measurements, for arched or curvilinear nanofibers 

particularly, it is recommended to analyze the three-dimensional shape of the fiber. This can 

be achieved in the SEM by integrating into the experimental routine a procedure to reconstruct 

a 3D model of the fibers from its stereo-pairs images, obtained with different tilt or rotation 

angles, combined with and a numerical formulation. For nearly perfect straight fibers, the 

length measurement from two images with a tilt difference of approximate to 90° is sufficient 

to result in acceptable error margins. 

With the method presented here, the Young’s modulus of multi-walled carbon nanotubes 

and silicon carbide nanowires were successfully obtained. The modulus values obtained for 

the MWCNTs ranged from 15 to 161 GPa, which is in agreement with the reported data. The 

literature, however, covers a very wide range of nanotubes diameters and Young’s modulus 

from 5 to 1360 GPa. The reported modulus values appeared to strongly depend on the 

synthesis technique, which impacts on the fiber diameter, the presence of structural defects, 

and on the crystallinity. The data suggests that MWCNTs from cCVD synthesis tended to 

exhibit lower Young’s modulus values and were thus in-line with our results. For half of the 

nanotubes only the fundamental mode of frequency was detected, and for the other half, the 

ratio ��/�� slightly deviate from the theoretical value of 6.27 for perfect linear elastic beams. 

Since the nanotubes revealed a curvilinear morphology, the principle of vibration of curved 

beams was proposed as an alternative to the Euler-Bernoulli beam theory, which applies 
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exclusively to straight beams. The Young’s modulus of one single nanotube calculated via the 

curved beams theory was 27% smaller than the value obtained via E-B. This theory can be 

applied for curved nanofibers in the future, provided that the fiber has one uniform arc that 

permits the extraction of the curvature radius.  

The silicon carbide nanowires investigated have shown to be a very appropriate material 

for the method proposed here. It has a very bulky straight configuration, and its 

semiconducting properties renders high quality images in the SEM without charging effects. 

For most of the nanowires, both first and second modes of resonance were detected, with a 

��/�� ratio very close to the theoretical one. For one fiber, the third mode was reached, as well. 

The Young’s modulus for these fibers ranged between 105 and 340 GPa, which is in accordance 

with the literature values. However, a wide variety of Young’s modulus has been reported for 

SiC nanowires, due to their innumerous nanostructured morphologies. The nanowires 

presented an average Young’s modulus error of 18.6%, after a detailed investigation of the 

length measurement, which strongly affects the Young’s modulus calculation. This error is 

relatively low, compared to other reported techniques, such as force versus displacement tests 

in the atomic force microscope, as described in Section 2.4. The damping during the resonance 

detection of the SiC NWs was significantly low, as the quality factors encountered were 

between 2800 and 5200. 

Finally, the flexural rigidity of both nanofibers was calculated, and characterized 

according to the rigidity threshold of 10-19 N·m2, which is the critical value that has to be 

overcome by the macrophages to perform a successful phagocytosis in the presence of 

nanofibers. All the fibers tested here presented flexural rigidity in the order of 10-19 N·m2 or 

above, which classifies them as potentially hazardous agents if inhaled by humans. The data 

obtained for the MWCNTs, showed a threshold diameter of ~ 75 nm, suggesting that 

nanotubes of the same type, and thinner than 75 nm can be considered harmless for the lung’s 

cells. Although flexural rigidity scales only linearly with the Young’s modulus but with the 

4th power of fiber diameter, in a specific diameter range, MWCNTs of a larger diameter may 

not necessarily be of higher toxicological relevance than thinner ones, since the Young’s 

modulus may increase with decreasing diameter due to microstructure-related reasons. 

Therefore, further progress appears necessary in routinely and reliably measurement of the 

Young’s modulus of nanofibers. 

For the case of CNTs specifically, an acceptable path towards large-scale application is by 

fabrication of ultra-long CNTs that reach centimeters in length by developing the techniques 

of horizontally aligned CNTs [125] or by the fabrication of CNTs bundles [126]. When the 

nanofibers are manipulated to become longer, they would not pose harm to the lungs, because 

bigger particles are trapped in the upper airway before they reach the lungs. 

MWCNTs are a very unique material with outstanding properties and with much 

potential to enable the development of advanced materials and bring solutions that could push 

society towards a new era, and the same applies to other nanofibers such as silicon carbide 

nanowires. Therefore, it would be a significant throwback for science and technology if these 

materials could not be vastly applied in distinguished areas of electronics and engineering due 

to the harm they may cause to humans and to the environment. Hence, it is crucial to establish 
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reliable and accurate testing methods, which allow a controlled evaluation of the mechanical 

properties of nanofibers and that can be implemented for large scale procedures. This is what 

was intended during this work, to implement a procedure that extracts the elasticity 

information of multiple fibers by submitting them to resonance frequencies detection. 

 

8. Research Prospects 

One of the most critical points in resonance detection tests of cantilevered specimens is to 

obtain accurate length and diameter values. As emphasized previously, uncertainties in the 

values of length lead to unreliable results of the elastic properties. Hence, the three-

dimensional metrology of a fiber’s shape and orientation must be further improved. This could 

be done by applying eccentric SEM stage rotations to obtain fiber images at defined viewing 

angles, and using the parallax method as mathematical model described in Section 6.2. 

Additionally, secondary electrons detectors at different viewing angles or a segmented back-

scattered electron detector may help to obtain improved fiber shape and orientation 

information [127]. Furthermore, dynamic structural changes like the onset of elastic bending 

deformations during excitation deserve further microscopic analysis since they imply 

deviations from the assumed simplistic beam mechanics, as well as parametric resonances.  

It would be desirable to further reduce the time required to find fiber resonances. One 

approach could be not to perform continuous frequency sweeps but to use bandwidth-filtered 

noise to excite fiber oscillations in non-overlapping frequency ranges. By halving the interval 

size and comparing the fiber response, the resonance frequency range could by narrowed 

down. Alternatively, or in addition, more than one fiber could be analyzed simultaneously. 

This would require a fast “fiber-tip-hopping” SEM imaging algorithm that, during a frequency 

sweep, sequentially images several fiber tips at predetermined locations to monitor their 

oscillation and demultiplexes the resulting lock-in-amplifier signal. 

To improve detection of resonances requires one to enhance oscillation amplitudes. For 

this, the energy dissipation at the contact point between a nanofiber and its base-embedding 

layer must be reduced by increasing the layer stiffness. For this purpose, hardened PEDOT:PSS 

that was crosslinked with glycerol could be studied [128]. Alternatively, a low melting point 

metal alloy used as the embedding layer could reduce dissipation even further. The 

preparation of free-standing nanofibers on an alloy-coated piezoelectric actuator by 

electrostatic precipitation (Section 4.1), however, would require designing a heating unit to 

keep the alloy melted at a high electrostatic potential, necessary to attract and embed charged 

nanofibers. 

Calibration of routinely applicable rigidity measurement techniques will require the 

development of reference fiber materials. The silicon carbide nanowires studied here have 

favorable properties to be employed as a reference fiber. 
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