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ABSTRACT

The auralization of measured room impulse responses (RIRs) is
traditionally bound to the directivity of the source as well as of the
receiver. For the comparability of room acoustical measurements
ISO 3382 requires the source and the receiver to be of an omni-
directional directivity. Other source directivity patterns cannot be
auralized using RIRs obtained this way.

In order to include the spatial information the room impulse re-
sponse has either to be measured with a sound source of the desired
directivity or - assuming the room to be a linear time-invariant sys-
tem - it can be generated by superposing a set of measurements
with a source of known directivity. The advantage of the latter
method is that it generates a set of RIRs that can be used to de-
rive the RIR for an arbitrary directivity up to a certain spherical
harmonic order in post processing.

This article describes a superposition method and a special-
ized measurement source for the measurement of room impulse
responses for an arbitrary source directivity and discusses their ca-
pabilities and the limitations. The measurement source was de-
veloped using an analytical model. The directivity patterns used
for the post processing originate from high-resolution measure-
ments of the actual device. The deviation compared to the ana-
lytical model is analyzed regarding the radiation pattern and the
achievable synthesis accuracy.

1. INTRODUCTION

The results of room impulse response measurements are inextri-
cably linked with the directivity of the employed sources and re-
ceivers. To ensure the comparability of measured standardized
room acoustical parameters, ISO 3382 requires the sources and
receivers to have an omni-directional directivity [1]. By excluding
the influence of any directivity it neglects important information
for realistic auralizations and room acoustical analysis besides the
standardized parameters [2].

A sequential synthesis method employing an optimized mea-
surement source was developed in previous research [2, 3, 4]. The
method allows for the synthesis of room transfer functions of

sources with an arbitrary directivity in hindsight of an extensive
measurement. It complies with the requirements of the ISO 3382
and simultaneously gathers all source directivity related informa-
tion about the room.

Conventional measurement sources such as dodecahedron
loudspeakers are not well suited for the required measurements
[4]. The optimized measurement source was developed to provide
the required radiation features and to speed-up the measurement
process. During the development of the optimized source its di-
rectivity was simulated using an analytical model of a vibrating
cap on a sphere [5].

For room acoustical applications the synthesis method and
source are described in [6]. This article focuses on the compara-
bility of the real source with the analytical model used during the
development.

2. SYNTHESIS OF ROOM TRANSFER FUNCTIONS

The target room transfer function for a source with a certain target
directivity can be synthesized by superposing single room trans-
fer functions obtained in several physical orientations with a mea-
surement source of known directivity [2, 3]. Using a large set of
orientations greatly enhances the spatial resolution of the possible
target directivity patterns. The weights for the superposition can
be derived from the known target directivity and the measurement
source directivity in the spherical harmonics domain. The required
computational steps have to be executed separately for every fre-
quency. To enhance the readability of the equations the frequency
dependence is omitted in this article.

2.1. Spherical Harmonics

In all further considerations, ϑ and ϕ are the elevation and the
azimuth angle of a spherical coordinate system with r being its ra-
dius. Two-dimensional square-integrable functions f(ϑ, ϕ) on the
surface of a unit sphere in <3 can be represented using spherical
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harmonics. The complex functions

Y mn (ϑ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
· Pmn (cosϑ) · ejmϕ (1)

span the space of scalar functions on the unit sphere [5]. Herein,
Pmn is the associated Lengendre function of the first kind of the
mth degree in the nth order [7].

The functions Y mn can be weighted with individual coeffi-
cients f̂mn and superposed to yield the shape of the directional
function f(ϑ, ϕ) in an operation called spherical harmonic expan-
sion [5]

f(ϑ, ϕ) =

∞∑
n=0

n∑
m=−n

f̂mn · Y mn (ϑ, ϕ). (2)

To obtain the coefficients for a function the spherical harmonic
transform

f̂mn =

∮
S2

f(ϑ, ϕ) · Y mn (ϑ, ϕ) dΩ (3)

has to be performed [5].
The coefficients can be stored consecutively in a coefficient

vector f̂ , the spherical harmonics in the function matrix Y and
the sampled values of the spatial function in a value vector f . The
expansion and transform are simplified to matrix multiplications

f = Y · f̂ (4)

f̂ = Y+ · f , (5)

with Y+ being a generalized inverse of Y resulting in a not gen-
erally unique and exact result for the transform.

A spherical harmonic transformed function can be rotated by
an angle α about the z-axis by multiplication with the Euler rota-
tion term e−jmα. Rotations about the y-axis require a full Wigner-
D rotation [8].

Spherical harmonics offer a unified description of a sound
source directivity regardless of the distribution of the measurement
points. Combined with its efficient rotation, this makes spheri-
cal harmonics the calculation method of choice for the synthesis
method presented here.

2.2. Synthesis Method

The single room transfer functions obtained with the measurement
source in all physical orientations O in a specific acoustical envi-
ronment are stored in the frequency response vector

h = [h1, h2, . . . , hO] . (6)

The goal is to synthesize the room transfer function for the tar-
get directivity. Therefore, the single room transfer functions are
superposed applying a weighting vector gT resulting in the room
transfer function

hT = h · gT , (7)

for the desired target directivity. The directivity of the measure-
ment source can be described in a directivity matrix

D̂ =
[
d̂1 d̂2 · · · d̂O

]
, (8)

containing the respective SH-coefficients of the directivity of the
measurement source in all physical orientations O as column vec-
tors. A synthesized directivity coefficient vector

d̂ = D̂ · g (9)

can be generated by weighting and superposing the single direc-
tivity columns of the directivity matrix. For a given target direc-
tivity d̂T the weighting vector

gT = D̂
+ · d̂T (10)

can be found by multiplication with the generalized inverse of the
directivity matrix D̂. These weights can be applied in Eq. (7) to
obtain the room transfer function of the desired target directivity.

3. SOURCE DEVELOPMENT

The weighting vector gT in Eq. (10) is calculated from the spher-
ical harmonics transformed directivity pattern of the measurement
source. The directivity pattern has to contain sufficiently large
coefficients in every spherical harmonic order to generate valid
weights.

The spherical harmonic coefficients of the directivity of any
electro-acoustical source are determined by the size of the entire
source and the aperture angle of the transducer in its enclosure [5].
This suggests the design of a new source for the synthesis method.

Eq. (10) projects spherical harmonic coefficients into weights
for spatial orientations. This is an analogy to the discrete spherical
harmonic expansion. Several spatial sampling strategies have been
introduced to efficiently perform this operation [9]. The physical
orientations of the source should be selected according to one of
these strategies.

3.1. Simulation Model

A suitable measurement source can virtually be of any shape. Here,
the shape is chosen to be spherical, allowing for rapid prototyping
applying an analytical simulation model. In this model a trans-
ducer on a sphere is simplified as a radially vibrating cap [5]. It
has to be noted that this model does not take into account partial
modes or the physical interaction of transducers in a common vol-
ume. Based on the model it is possible to successively calculate
the squared aperture magnitude and the radiated sound pressure.

3.2. Aperture Magnitude

The aperture function

a(ϑ, ϕ) = a(ϑ) = 1− ε (ϑ− α/2) (11)

of a single membrane on the north pole of a sphere spanning the
aperture angle α can be formulated as a continuous function on the
sphere. ε(x) is the Heaviside function (or unit step function). The
spherical harmonic coefficients of this function can be expressed
as [10]

âmn =

{√
π(2n+ 1)

∫ 1

cos(α/2)
Pn(x) dx if m = 0

0 otherwise
. (12)

Pn(x) is the Legendre polynomial of the order n. The aperture can
be rotated to any orientation applying the Wigner-D rotation [8].

Ea(n) =

n∑
m=−n

|âmn |2 (13)

describes the frequency independent squared magnitude of the aper-
ture per spherical harmonic order n created by a specific aperture
[11].
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The squared aperture magnitude features a distinct maximum
and several minima due to the Legendre polynomial Pn(x). Re-
ducing the aperture angle shifts the extremes towards higher or-
ders n while simultaneously decreasing the absolute squared mag-
nitude.
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Figure 1: Squared magnitude of the aperture functions of three
transducer types on a sphere with radius r = 0.2 m.

The radiation of a spherical harmonic order depends on the
frequency and the size of the source (see 3.3). Thus, the squared
magnitude depicted in Figure 1 describes the theoretical squared
magnitude of each aperture, which is also a subject to an order-
dependent low pass during the radiation. The squared magnitude
in orders above 10 for the 5 inch transducer has to be neglected due
to its frequency range, motivating the use of the 3 inch transducer.

3.3. Spherical Radiation

With the speed of sound c and the membrane displacement ξ, the
aperture coefficient vector â can be converted into a surface ve-
locity coefficient vector [10]

v̂sphere = j kc · ξ · â. (14)

The wave number k introduces a frequency dependence. The sur-
face velocity v̂sphere can be transformed into the radiated sound
pressure

p̂(robs) = ρ0c
2k · hn(k robs)

h′n(k rsphere)
· ξ · â (15)

at an arbitrary observation distance robs by multiplication with the
acoustic impedance and the radial wave propagation [5]. The func-
tions hn and h′n are the spherical Hankel function of the second
kind in the nth order and its derivative, respectively. Due to their
properties, a sound source of a certain size can only radiate a lim-
ited range of orders at a particular frequency.

3.4. Source

The radius of the optimized source is r = 0.2 m. Due to the min-
ima of the associated Legendre function in Eq. (11) a combination
of three different transducer sizes (2, 3 and 5 inch) is used to gener-
ate a sufficiently large squared aperture magnitude in a wide range
of spherical harmonic orders.

The 2 inch and 3 inch transducers are placed in a way that ap-
proximates a Gaussian sampling strategy of the order 11. The
5 inch transducers are placed accordingly in an order of 3. The
physical locations are chosen to cover all required elevations for
each transducer type. All azimuthal sampling points are reached
by rotating the measurement source to 24 positions around the z-
axis. A measurement for a source directivity of a spherical har-
monic order of 11 generates 672 room impulses.

An additional tilt of the source to a second elevation and a
rotation of the source to 48 positions in both elevations generates
an approximation of a Gaussian sampling strategy of the order 23.
This measurement generates 2688 room impulse responses.

The real behavior of the transducers such as membrane modes
and deviations in the effective membrane area is expected to change
the directivity of the real source compared to the simulated direc-
tivity.

3.5. Periphery

A turntable is used for the azimuthal rotation of the measurement
source. To allow for an additional tilt the sphere is suspended on
an axis piercing its eastern and western sides. The tilt is controlled
by a step motor inside the sphere. The frame construction as seen
in Figure 2 might have an impact on the directivity of the source.

Figure 2: Optimized measurement source.

4. DIRECTIVITY OF THE MEASUREMENT SOURCE

The calculation of the weighting vector gT in Eq. (10) uses the di-
rectivity matrix D̂ in Eq. (8). The directivity of the transducers in
a fixed orientation is measured in an anechoic chamber. The sound
pressure at the measurement points is transformed into the spheri-
cal harmonic domain according to Eq. (5). The coefficient vectors
for other source orientations are generated by multiplication with
the Euler rotation term, as defined in 2.1.

It is crucial to choose a suitable sampling strategy for the mea-
surement of the directivity. Quadrature samplings allow for a fast
and exact spherical harmonic transformation of the sound pressure
p at the sampling points into the directivity vector

d̂ = YH · diag(w) · p (16)

using the quadrature weights w, as long as the spherical functions
are order limited [12].

The measurement has to be done for a sufficiently high sam-
pling order to prevent aliasing due to a violation of the required

58



Proc. of the EAA Joint Symposium on Auralization and Ambisonics, Berlin, Germany, 3-5 April 2014

order limitation. Different sampling strategies require different
total numbers of spatial sampling points for a certain spherical
harmonic order. The Gaussian quadrature sampling is easily us-
able and has a relatively high efficiency [9]. It is also quite robust
against aliasing and useful for applications where rectangular sam-
plings (a set of points at both constant azimuths and elevations) are
beneficial [9].

All measurements are done using a Gaussian sampling strat-
egy of the order n = 82. The elevation angle ϑ = 0◦ indicates an
upward orientation in the spherical coordinate system, ϑ = 180◦

a downwards orientation, respectively.
The optimized source is placed on top of a turntable, allow-

ing for a full 360◦ rotation in the azimuth angle ϕ. A swivel arm
with a microphone is used to measure the sound pressure along
one arc of sampling points down to ϑ = 90◦. This way, the up-
per hemisphere of the source radiation pattern is measured. Using
the internal step motor to tilt the source by 180◦ allows for the
subsequent measurement of the lower hemisphere. The directivity
of each loudspeaker is measured separately, using an interleaved
sweep measurement signal.

5. DEVIATION ANALYSIS

The directivity of the real source deviates from the simulated di-
rectivity simulated with the spherical cap model. For the synthesis
method it is of interest to identify the deviation of the real directiv-
ity and to analyze its impact on the synthesis performance. For the
directivity measurement it is necessary to gain knowledge about
the radiated orders of the source to prevent aliasing effects in the
directivity matrix D̂.

5.1. Directivity

Figure 3(a) exemplary shows the simulated and the respective mea-
sured directivity of a 5 inch transducer on the optimized measure-
ment source at a frequency of 400 Hz. The transducer is orientated
upwards at an angle of about 45 degrees. At this frequency the
simulation and the measurement match quite well. An impact of
the frame construction on the directivity cannot be identified.

Figure 3(b) shows the same comparison at a frequency of
6400 Hz. Here, the measurement deviates clearly. Especially in
angles below 90 degrees the radiation is changed. This effect can
be explained with the measurement procedure. As described in
section 4, the spherical body of the optimized source is tilted by
180◦ for the measurement of the lower hemisphere. In this posi-
tion, the radiation of the regarded transducer is obstructed by the
frame construction. Thus, the directivity can only be considered
as measured correctly for the upper hemisphere and the measure-
ment method introduces an additional error to the computation of
the superposition weights in Eq. (10).

It is of interest to analyze the similarity of the simulated and
measured directivity over the whole frequency range. The similar-
ity of two spherical functions can be quantified using the spherical
correlation [13]

C(f, g) =

∮
S2

f(ϑ, ϕ) g(ϑ, ϕ) dΩ. (17)

The continuous integral can be expressed by a weighted summa-
tion of the quadrature sampling points as normalized correlation

C̃ =

∑N
i=1 f(ϑi, ϕi)g(ϑi, ϕi)wi√

EfEg
, (18)
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(a) Frequency of 400 Hz
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(b) Frequency of 6400 Hz

Figure 3: Simulated (left) and measured (right) directivity of a 5
inch transducer of the optimized measurement source. Center of
membrane marked with a black cross.

with the energy of the two spherical functions f and g sampled at
N points, Ex =

∑N
i=1 |x(ϑi, ϕi)|2wi and wi being the weights

for the Gaussian quadrature sampling.
The correlation between simulation and measurement for the

same transducer as shown in Figure 3(a) and Figure 3(b) is de-
picted in Figure 4. The correlation is high for low frequencies,
which confirms the general validity of the simplified analytic model.
For frequencies above 4 kHz the correlation drops, confirming that
a measured directivity should be used for the computations of the
weights in Eq. (10).

Changes of the effective membrane area and membrane modes
introduce effects which render the simplified consideration of a
radially vibrating cap on a sphere invalid. Furthermore, the con-
structive frame of the measurement source cannot be considered
acoustically transparent in these frequency ranges and changes the
radiation, especially due to the explained measurement error in-
duced by tilting the source.

5.2. Radiation

For the synthesis it is important that the measurement source is
capable of radiating all required spherical harmonic orders for the
computation of the synthesis weights as shown in Eq. (10). Alias-
ing effects during the directivity measurement would additionally
distort the directivity matrix D̂. Therefore it is also important to
know about the maximum spherical harmonic order radiated by
the measurement source.

The radiation can be simulated with the spherical cap model.
Eq. (15) yields the radiation of a transducer on a spherical sound
source in spherical harmonics. To look at the radiation of more
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Figure 4: Correlation between the simulation and measurement of
a 5 inch transducer on the optimized measurement source.

than one transducer, the magnitude of the coefficients of the radi-
ation patterns can be summed up. Figure 5(a) shows the sum of
the maximum magnitudes of each transducer in each order over
the frequency. Since the absolute magnitude is of no interest, the
data is normalized to the global maximum. The figure indicates
the spherical harmonic orders that are radiated by the source. By
rotating the source, the magnitude can be shifted to all coefficients
within the respective order. The figure also indicates which orders
have to be expected during the directivity measurement.

Orders up to 80 at a frequency of 20 kHz are expected to be
excited by the optimized measurement source. In certain orders
the radiation is minimal, coinciding with the effects explained in
3.2.The order limitation at each frequency is determined by the
size of the source, as explained in 3.3. A sampling strategy with
an order of 82 should be sufficient to prevent aliasing during the
directivity measurement.

Figure 5(b) depicts the equivalent to Figure 5(a) for the mea-
sured directivity of the optimized source. The measurement has
been done for one physical source orientation with a Gaussian
sampling strategy of an order of 82. The data is normalized its
global maximum.

A maximum order of 40 is radiated by the real source up to a
frequency of 12 kHz. With the rotations to the measurement posi-
tions described in 3.4 this allows for the planned synthesis up to
an order of 23.

The slope of the maximum sum of the measurement is not as
steep as in the simulation. A parallel slope of higher order and
lower magnitude can be observed, indicating a virtual source of a
larger radius. This effect is most probably caused by reflections at
the frame construction which lead to a virtual enlargement of the
source. Aliasing effects can be expected starting at 5 kHz.

6. CONCLUSIONS

In this article the design of a specialized measurement source for
room acoustical measurements with arbitrarily given source direc-
tivity is addressed. The parameters of the source geometry are
defined using an analytical model of a vibrating spherical cap in a
perfect spherical housing. The source is designed to be mounted
on a computerized turntable enhancing the spatial resolution with

(a) Simulation result, maximum values.

(b) Measurement result, maximum values.

Figure 5: Radiation in spherical harmonic orders, limited to a dy-
namic range of 60 dB.

a sequential measurement of different azimuthal orientations. Fur-
thermore, the measurement source can be rotated around a hori-
zontal axis, to increase the resolution in the elevation.

High-resolution directivity measurements of the actual proto-
type are used to confirm the results of the analytic calculation. The
same measurements are used as a more realistic directivity D̂ for
the synthesis of room impulse responses of arbitrary directivity
patterns.

The device is expected to enhance the auralization of rooms
for directive sound sources. Since a superposition approach is
used, the desired directivity pattern can be synthesized in a post
processing procedure. Even if room impulse responses with om-
nidirectional sources in accordance to ISO 3382 are desired, the
presented measurement procedure can be used to enhance the re-
sult by synthesizing an even more omnidirectional sound source
up to higher frequencies.

The prototype of the measurement source shows its capability
of synthesizing directivity patterns up to a spherical harmonic or-
der of about 23 for frequencies up to 12 kHz. This suggests great
potential to improve auralizations of directive sound sources in
measured acoustic environments. The measured directivity of the
source is used for the computation of the synthesis weights. It has
to be taken into account that for frequencies above 5 kHz this di-
rectivity contains errors due to the current frame construction and
measurement procedure.
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