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Abstract
The sign characteristics of Hermitian matrix polynomials are discussed,

and in particular an appropriate definition of the sign characteristics asso-
ciated with the eigenvalue infinity. The concept of sign characteristic arises
in different forms in many scientific fields, and is essential for the stability
analysis in Hamiltonian systems or the perturbation behavior of eigenvalues
under structured perturbations. We extend classical results by Gohberg,
Lancaster, and Rodman to the case of infinite eigenvalues. We derive a
systematic approach, studying how sign characteristics behave after an
analytic change of variables, including the important special case of Möbius
transformations, and we prove a signature constraint theorem. We also
show that the sign characteristic at infinity stays invariant in a neighbor-
hood under perturbations for even degree Hermitian matrix polynomials,
while it may change for odd degree matrix polynomials. We argue that the
non-uniformity can be resolved by introducing an extra zero leading matrix
coefficient.
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1 Introduction
We study the sign characteristic of Hermitian matrix polynomials. The sign
characteristic is an invariant associated with particular eigenvalues of structured
matrices, matrix pencils, or matrix polynomials. Particular examples are Hamil-
tonian matrices, Hermitian, even/odd pencils, and their extensions to matrix
polynomials [26]. We formulate our results in terms of Hermitian matrices, pencils
or polynomials and eigenvalues on the real line, however, at least in the complex
case there are completely analogous results associated with Hamiltonian matrices,
even pencils or polynomials, which are obtained by replacing λ with ıλ, where
ı =
√
−1. The sign characteristic is very important for the understanding of

several physical phenomena, such as bifurcation of solutions in dynamical systems
or the perturbation behavior of eigenvalues under structured perturbations. This
perturbation theory is essential in the stability analysis of Hamiltonian systems
and in other applications in control theory, see [5]. The sign characteristic is also
closely connected to inertias of bilinear forms as well as other invariants, and
it comes in different forms and flavors in many scientific fields and applications.
For matrices and matrix pencils, the theory goes back to Krein, see, e.g. [21, 22]
and the recent survey [19], which also motivates the term Krein characteristic.
The first systematic treatment of the sign characteristic for Hermitian matrix
polynomials is given by Gohberg, Lancaster and Rodman in [9], where they present
three equivalent descriptions of the sign (see also [10, 11]). However, their theory
assumes matrix polynomials with nonsingular leading matrix coefficient1, i.e.,
regular matrix polynomials with only finite eigenvalues. A generalization to Her-
mitian matrix polynomial with singular leading coefficient should be independent
of specific representations of the matrix polynomial (coefficient expansions in
polynomial bases such as, e.g., monomials, Lagrange, Newton, Chebyshev, etc.)
and should be constructed in such a way that it allows a perturbation, so the
definition remains valid also in a small neighborhood. To achieve these goals,
we discuss an extension to general Hermitian matrix polynomials of Gohberg,
Lancaster and Rodman’s third description of the sign characteristic. We derive a
systematic approach which allows to show that a signature constraint theorem
still holds. We analyze in detail the consequences on the perturbation theory. We
show that in the case of odd degree matrix polynomials this does not lead to a
uniform treatment in the neighborhood of the eigenvalue infinity. This problem of
non-uniformity can be resolved by adding higher powers with zero coefficients to
the matrix polynomial. We also discuss the consequences of this procedure and
present several examples. Note that the first description of the sign characteristic
in [9, 10, 11] relies on a special linearization of the matrix polynomial expressed
in the monomial basis and does not easily extend to matrix polynomials with

1Assuming that the matrix polynomial is expressed in the monomial or other degree-graded
bases.
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singular leading matrix coefficient or to matrix polynomials expressed in non
monomial bases.

Our approach to study the sign characteristics is analytic rather than algebraic,
and hence, it is essentially basis-independent. However, for the sake of concreteness
and simplicity, we have decided to present our results on matrix polynomials
using the monomial basis. We note en passant that it would be straightforward
to present the theory employing any other basis. The only potential exception
is the notion of a leading coefficient, central in Section 3. This is only natural
in a degree-graded basis. Yet, the problem is easily overcome via the notion of
reversal, which is basis-independent: for the purposes of Section 3, in fact, the
leading coefficient could be defined as the reversal polynomial evaluated at 0.

Let us consider a few well known examples from [30] expressed in the framework
of Hermitian pencils, see also the survey [5].

Example 1.1. In the optimal H∞ control problem, see [3, 4, 38] one has (in the
complex case) to deal with parameterized matrix pencils of the form

x


0 ıE 0 0 0
−ıE∗ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 −A 0 0 −B1
−A∗ 0 C∗1 C∗2 0

0 C1 γ2Ip 0 D11
0 C2 0 0 D21
−B∗1 0 D∗11 DT

21 Im

 ,

where γ > 0 is a real parameter. In the so called γ iteration one has to determine
the smallest possible γ such that the pencil has no real eigenvalues and it is
essential that this γ is computed accurately. In the limiting situation when the
optimal γ is achieved, the sign characteristic of the eigenvalue(s) on the real axis
(and if E is singular the eigenvalue infinity) plays an essential role.

Example 1.2. Consider a control system

Ev̇ = Av +Bu, v(0) = v0,

w = Cv +Du, (1)

with real or complex matrices E, A, B, C, D of sizes n× n, n× n, n×m, p× n,
p×m, respectively. If all the finite eigenvalues of the pencil xE − A are in the
open left half complex plane, then the system is passive, i.e., it it does not generate
energy, if and only if the pencil

x

 0 ıE 0
−ıE∗ 0 0

0 0 0

−
 0 A B
A∗ 0 C∗

B∗ C D +D∗


has no real eigenvalues and the eigenvalue infinity has equal algebraic and geometric
multiplicity. In industrial practice, these systems arise from the discretization of
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partial differential equations, model reduction, realization or system identification,
and often they are non-passive even though the underlying physical problem is.
In this case one is interested in constructing small perturbations to E,A,B,C,D
such that the system becomes passive, see e.g., [2, 5, 6, 12], and this requires
explicit knowledge about the sign characteristic.

Example 1.3. The stability of linear second order gyroscopic systems, see [16,
24, 37], can be analyzed via the following quadratic eigenvalue problem

P (x)v = (−x2I + xı(2δG)−K)v = 0, (2)

where G,K ∈ Cn×n, K is Hermitian positive definite, G is nonsingular skew-
Hermitian, and δ > 0 is a parameter. To stabilize the system one needs to find
the smallest real δ such that all the eigenvalues of P (x) are real, which means
that the gyroscopic system is stable. For the system to be robustly stable it is
essential that multiple real eigenvalues do not have mixed sign characteristic.

In all these applications, and many others, see [5] for a recent survey, the
location of the real eigenvalues needs to be checked numerically at different
values of parameters or perturbations. In this perturbation analysis, the sign
characteristic plays a very essential role.

The paper is organized as follows. After some preliminaries, introducing the
sign characteristics and the sign feature in the following subsections, in Section 2
we discuss the effect of transformations. A signature constraint theorem and its
applications are discussed in Section 3. In Section 4 we discuss the behavior of the
sign characteristic under perturbations. A short summary concludes the paper.

1.1 Notation and preliminaries
In the following by R,C we denote the real and complex numbers and by Rm×n,
the set of m× n matrices with elements in a ring R. For an open interval Ω ⊆ R
we use the following sets: Cω

C(Ω), the ring of complex valued functions that are
analytic on Ω,M(Ω), the field of fractions of Cω

C(Ω), i.e., the field of functions
that are meromorphic on Ω, and An(Ω) := Cω

C(Ω)n×n, the ring of n× n matrices
with complex-valued Ω-analytic elements.

Furthermore, F[x] is the ring of univariate polynomials in x with coefficients
in the field F and F(x) is the field of fractions of F[x], i.e., the field of rational
functions in x. For A(x) ∈ An(Ω), we denote by A(x)∗ the complex conjugate
transpose of A.

One of the key ingredients of our approach to studying the sign characteristic
is a theorem of Rellich [32, 33], that is used in several classical monographs such
as, e.g., [11, 17].
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Theorem 1.4 (Rellich’s Theorem). Let H(x) ∈ An(Ω) be such that H(x) =
H(x)∗ for all x ∈ Ω. Then there exist V (x), D(x) ∈ An(Ω) such that for all x ∈ Ω,
H(x) has the decomposition

H(x) = V −1(x)D(x)V (x),

where D(x) = diag(d11(x), . . . , dnn(x)) is real and diagonal and V (x)−1 = V (x)∗.

Note that the nature of the proof in [11] for Ω = R is completely local, and
therefore, R can be safely replaced by any simply connected open subset of R, i.e.,
any open interval Ω. In the following we call a decomposition as in Theorem 1.4 a
Rellich decomposition. It is the analytic function analogue of the spectral theorem
for complex Hermitian matrices.

The normal rank of a polynomial matrix P (x) ∈ C[x]n×n, denoted by rankC(x) P (x),
is the rank of P (x) as a matrix over C(x). A finite eigenvalue of P (x) is an x0 ∈ C
such that the rank over C of P (x0) ∈ Cn×n is strictly less than the normal rank
of P (x), i.e.,

rankC P (x0) < rankC(x) P (x).
Similarly, the normal rank of an analytic matrix function A(x) ∈ An(Ω) is defined
as its rank over the fieldM(Ω).

The following proposition shows that the normal rank of a Hermitian matrix
function is equal to the number of nonvanishing diagonal elements of D(x) in the
Rellich decomposition.

Proposition 1.5. Let H(x) = H(x)∗ ∈ An(Ω) with normal rank r. Then n− r
is the number of diagonal elements of D(x) that are identically zero in any Rellich
decomposition H(x) = V ∗(x)D(x)V (x).

Proof. Any dii(x), i = 1, . . . , n is analytic on Ω. Let Zi ⊆ Ω be the set of zeros of
dii, i.e., Zi = {x0 ∈ Ω|dii(x0) = 0}. By the identity theorem [20, Corollary 1.2.7],
either Zi = Ω or Zi does not have a limit point in Ω. Hence, either Zi = Ω or Zi
is a countable set. Let z be the cardinality of the set

I = {i | 1 ≤ i ≤ n, there exists x0 ∈ Ω | dii(x0) 6= 0}, (3)

and define Z = ⋃
i∈I Zi (if z = 0, we set Z = ∅). Since I is constructed as the set

of indices i such that dii(x) 6≡ 0 on Ω, it suffices to show that z = r. Note that the
complement of Z, denoted by Ω\Z, is not empty. If z > r, then, for any x0 ∈ Ω\Z,
rankCH(x0) = rankCD(x0) = z > r, which is a contradiction. Conversely suppose
that z < r. Then for all x0 ∈ Ω, rankCH(x0) = rankCD(x0) ≤ z < r, which
again is a contradiction.

The Rellich decomposition naturally separates the invertible and non-invertible
parts of a Hermitian matrix function by means of a congruence transformation
with a unitary matrix function V (x) in An(Ω). The decomposition and the
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separation of the parts is actually numerically computable, see [23, Theorem
3.9], where an explicit differential equation for V (x) is derived and there exist
numerical methods that can be used to compute the decomposition [7, 29] . It
should be noted that, even if the matrix function is polynomial, usually the factors
V (x), D(x) are not polynomial.

We use the Rellich decomposition to define the sign characteristic and a related
property, the sign feature, of a real eigenvalue of a (possibly singular) analytic
Hermitian matrix function P (x) of normal rank r, by just considering the nonzero
elements of D(x).

Definition 1.6. Let H(x) = H(x)∗ ∈ An(Ω) have a Rellich decomposition
H(x) = V ∗(x)D(x)V (x) with D(x) = diag(d11(x), . . . , dnn(x)). Let λ ∈ Ω be a
real root of some dii(x) that is not identically zero on Ω, and consider a Taylor
expansion

dii(x) = ελi c
λ
i (x− λ)mλi + o((x− λ)mλi ), (4)

where mλ
i ∈ N, cλi ∈ R is positive and ελi ∈ {1,−1}. We say that mλ

i is the ith
partial multiplicity of the real eigenvalue λ of H(x) and that ελi is its ith sign
characteristic. Furthermore,

φλi = 1− (−1)mλi
2 ελi

is called the ith sign feature of λ.

Remark 1.7. If we express (4) as

dii(x) = (x− λ)mλi ν(x),

with ν(λ) 6= 0, then the ith sign characteristic of λ is given by sign(ν(λ)).

Remark 1.8. Usually, for a real analytic A(x), the partial multiplicities of an
eigenvalue are defined via the Smith normal form, which is possible since Cω

C(Ω)
is an elementary divisor domain [14], and hence, the Smith form exists. When a
Smith form exists, then also a local Smith form exists, a fact that can be shown
in a similar way as for the polynomial case in [11, Theorem S1.10]). However,
note that in the Rellich decomposition of a Hermitian H(x) = V ∗(x)D(x)V (x),
we have that V (λ) is nonsingular for any λ ∈ Ω. Therefore, the local Smith forms
at λ of H(x) and D(x) are the same, and hence, the partial multiplicities are also
equal.

The sign characteristics have the property of being invariant under analytic
congruence transformations.

Theorem 1.9 (Theorem 3.6 in [9]). Let H(x) = H(x)∗ ∈ An(Ω), and assume
that λ ∈ Ω is an eigenvalue of H(x). Let R(x) ∈ An(Ω) satisfy detR(λ) 6= 0.
Then H(x) and R∗(x)H(x)R(x) have the same sign characteristics at λ.
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One of the main goals of this paper is to extend the concept of sign characteristic
to the eigenvalue at infinity and thus to extend the classical results of Gohberg,
Lancaster and Rodman in [9] to matrix polynomials with singular leading matrix
coefficient. To do this in a systematic way, we need the concept of the grade of a
matrix polynomial. Consider a matrix polynomial

P (x) =
k∑
j=0

Pjx
j, Pj ∈ Cn×n, j = 1, . . . , k

of degree k, i.e., the leading matrix coefficient Pk is not the zero matrix. Then we
can associate with P an integer g ≥ k, called grade of P and express P as

P (x) =
g∑
j=0

Pjx
j, Pi ∈ Cn×n, j = 1, . . . , k, Pk+1, . . . , Pg = 0.

At first sight this looks artificial, but under some circumstances, and especially
for structured matrix polynomials, it is a very useful concept, see [27, 28]. In
particular, and this is the main reason for using the grade instead of the degree, it
has been shown in [27, 31] that Möbius transformations, which play an important
role in our analysis, are grade-preserving, but in general not degree-preserving.

Once the grade g of a matrix polynomial P (x) = ∑g
j=0 Pjx

j is fixed, the
reversal of P is given by

revg P (x) = xgP (x−1) =
g∑
j=0

Pjx
g−j,

and the ith partial multiplicity of the eigenvalue 0 of revg P (x) is defined to be
the ith partial multiplicity of the eigenvalue ∞ of P (x).

Using the reversal we can then also introduce the ith sign characteristic of the
eigenvalue ∞.

Definition 1.10 (Sign characteristic and sign feature of the eigenvalue infinity).
Let P (x) ∈ C[x]n×n be Hermitian, have grade g and let S(v) = − revg P (v). If
P (x) has an eigenvalue at infinity with ith partial multiplicity m∞i , then we
say that the sign characteristic of infinity, ε∞i , is the sign characteristic of the
eigenvalue 0 of S(v) having corresponding ith partial multiplicity. Furthermore,
we call

φ∞i = 1− (−1)g+m∞i
2 ε∞i

the ith sign feature at ∞ of P (x).

To see that this definition is reasonable, we first show that it does not depend
on the particular choice of the grade.
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Proposition 1.11. Let P (x) ∈ C[x]n×n be Hermitian, have grade g and degree k.
The definition of the sign feature at ∞ does not depend on the particular choice of
the grade, i.e., the ith sign feature φ∞i is the same for all g > k. For g = k, the
definition remains consistent provided that the corresponding partial multiplicity
does not become zero (in which case there is no sign feature because infinity is not
an eigenvalue anymore).

Proof. If g = k + g1, then S(v) = − revg(P ) = −vg1 revk(P )(v) = vg1S̃(v). Let
D̃(v) be the diagonal term in a Rellich decomposition of S̃(v), then we obtain that
D(v) = vg1D̃(v) is the diagonal term in a Rellich decomposition of S(v). Then,
since both the ith partial multiplicity of 0 and the degree k are increased by g1, it
is clear that the sign feature at infinity is independent of the choice of grade.

Remark 1.12. From the relation S(v) = vg1S̃(v) in the proof of Proposition 1.11,
the ith partial multiplicity m∞i of ∞ of P (x) with grade g corresponds to a
partial multiplicity m∞i − (g − k) of P (x) with grade k, i.e., grade equal to
degree. The use of grade (when g > k) introduces additional eigenvalues at ∞,
all with partial multiplicities g − k. This provides a simple way to distinguish the
“original” infinite eigenvalues from the “artificial” ones, the former having partial
multiplicities > g − k.

The motivation for the minus sign in the definition of S(v) and the presence of
g in the definition of the sign feature is that we aim to obtain an elegant signature
constraint theorem, as we will see in the next sections. This goal could have also
been achieved via the definition of an anti reversal, xgP (−x−1). It is not clear
which choice is better, but we prefer our definition, since it has been used in the
previous literature [1, 35].

2 Transformations and their effect on the sign
characteristics

In this section we study the effect of transformations of the form

H(x) 7→ E(y) = w(y)H(f(y)) (5)

on the sign characteristics and the sign features, where in (5) f(y) is a diffeomor-
phism and w(y) is a nonvanishing function. We restrict our attention to smooth
real-analytic transformations, as we want to preserve analyticity.

Definition 2.1. Let Ω ⊆ R be an open interval, and let f : Ω → f(Ω) be a
real-valued real-analytic diffeomorphism. We say that f is orientation-preserving
if f ′ := df

dy
> 0 while f is orientation-inverting if f ′ < 0.
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Observe that this definition makes sense, because any real diffeomorphism
must have a derivative of constant sign. Note that this is a simpler version (on a
one-dimensional Euclidean space) of the more general concept of an orientation-
preserving diffeomorphism [34, Definition 4.1.3].

Theorem 2.2. Let Ω ⊆ R be an open interval, and let f : Ω → f(Ω) be a real-
valued analytic diffeomorphism. Let H(x) ∈ An(f(Ω)) be an analytic Hermitian
matrix function, and suppose that x0 ∈ f(Ω) is an eigenvalue of H(x). Consider
the map defined via H(x) 7→ E(y) = H(f(y)). Then the following assertions hold.

1. If f is orientation-preserving, then the sign characteristics of y0 = f−1(x0)
as an eigenvalue of E(y) are equal to the sign characteristics of x0 as an
eigenvalue of H(x).

2. If f is orientation-inverting, then the sign characteristics of y0 = f−1(x0)
as an eigenvalue of E(y) are equal to the sign characteristics of x0 as an
eigenvalue of H(x) for the even partial multiplicities, and are equal to the
negatives of the sign characteristics of x0 as an eigenvalue of H(x) for the
odd partial multiplicities.

Proof. Since f is diffeomorphic, it is in particular an open map, and thus f(Ω)
is open and (simply) connected, i.e., it is an open interval. Moreover, H(x) is
self-adjoint and analytic for all x ∈ f(Ω) if and only if E(y) is self-adjoint and
analytic for all y ∈ Ω, using the fact that the composition of two analytic functions
is analytic. Therefore, H(x) has a Rellich decomposition H(x) = V (x)∗D(x)V (x)
for any x ∈ f(Ω), and analogously, E(y) has a Rellich decomposition for any
y ∈ Ω. It follows that V (x) is analytic and unitary for all x ∈ f(Ω) if and
only if V (f(y)) is for all y ∈ Ω, as f is locally analytic and invertible. This
implies that V ∗(f(y))D(f(y))V (f(y)) = E(y) is again a Rellich decomposition.
Suppose that dii(x) = (x − x0)m

x0
i ν(x) for some i = 1, . . . , n. Then dii(f(y)) =

(f(y)− f(y0))m
y0
i ν(f(y)), with mx0

i = my0
i , and ν(x0) = ν(f(y0)) 6= 0. Yet, using

a Taylor expansion, for any y ∈ Ω we can write f(y) = f(y0) + (y − y0)f ′(υ),
for some υ ∈ [y, y0] ⊂ Ω, or υ ∈ [y0, y] ⊂ Ω, according to whether y < y0 or
y > y0. Hence (f(y)−f(y0))m

y0
i ν(f(y)) = (y−y0)m

y0
i (f ′(υ))m

y0
i ν(f(y)). Therefore,

the sign characteristic does not change if f is orientation-preserving, while it is
multiplied by (−1)m

y0
i if f is orientation-inverting.

Theorem 2.2 emphasizes the intuitive fact that the orientation plays an im-
portant role, and that one needs to keep track of whether a change of variable is
orientation-preserving or orientation-inverting.

Remark 2.3. Note that the statement of Theorem 2.2 includes the special cases
Ω = R or f(Ω) = R, i.e., a diffeomorphism from the real line to an open interval,
or vice versa. This could be exploited to define the signs at infinity using, for
example, the map P (x) 7→ (sin θ)gP (cot θ). Note in fact that f(θ) = cot θ is
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analytic and diffeomorphic in (0, π), so that this approach is essentially equivalent
to the one via reversals (it excludes one point). However, we will not follow this
approach as we prefer to map polynomials to polynomials.

From Theorem 2.2, we can easily deduce as a corollary the effect of a
reparametrization on the sign feature.

Theorem 2.4. Under the assumptions of Theorem 2.2, the following assertions
hold.

1. If f is orientation-preserving, then the sign features of y0 = f−1(x0) as an
eigenvalue of E(y) are equal to the sign features of x0 as an eigenvalue of
H(x).

2. If f is orientation-inverting, then the sign features of y0 = f−1(x0) as
an eigenvalue of E(y) are the negatives of the sign features of x0 as an
eigenvalue of H(x).

As a second step we analyze the effect on the sign characteristic of multiplica-
tions by non-vanishing functions.

Theorem 2.5. Let H(x) = H(x)∗ ∈ An(Ω) and let E(x) = w(x)H(x), with an
analytic non-vanishing function w : Ω→ R. Then the sign characteristics (resp.,
features) of an eigenvalue x0 ∈ Ω of E(x) are equal to the sign characteristics
(resp., features) of x0 as eigenvalue of H(x) multiplied by sign(w(x0)).

Proof. With a Rellich decomposition H(x) = V ∗(x)D(x)V (x), we obtain a Rellich
decomposition of E by E(x) = V ∗(x)[w(x)D(x)]V (x) and dii(x) = (x−x0)m

x0
i ν(x)

if and only if [w(x)D(x)]ii = (x− x0)m
x0
i w(x)ν(x), from which the claim follows.

Example 2.6 (Effect of a Möbius transformation on the sign character-
istics and on the sign features). As an application of the discussed trans-
formations, we study the effect of a real Möbius transformation on the sign
characteristics of a Hermitian matrix polynomial. Suppose that P (x) ∈ C[x]n×n
is Hermitian and has grade g, and for α, β, γ, δ ∈ R let ∆ := det

[
α
γ
β
δ

]
6= 0. Then

with the Möbius transformation f(y) = αy+β
γy+δ we have that f ′(y) = ∆

(γy+δ)2 , and
hence, f is a diffeomorphism on (−∞,−δ/γ) and in (−δ/γ,+∞). It is either
orientation inverting or orientation preserving according to the sign of ∆.

Now consider the mapping

P (x) 7→ Q(y) = (γy + δ)gP
(
αy + β

γy + δ

)
.

Applying Theorems 2.2, 2.4, and 2.5, as well as Definition 1.10, we obtain the
following results.
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• A finite eigenvalue λ 6= α/γ of P is mapped to a finite eigenvalue µ = δλ−β
α−γλ

of Q.

• If λ has ith partial multiplicity mλ
i , sign characteristic ελi and sign feature

φλi , then one has the following cases:

– if mλ
i is even, then by definition both λ and µ must have sign feature 0;

– if mλ
i is even and g is even, then λ and µ must have the same sign

characteristic;
– if mλ

i is even and g is odd, then λ has sign characteristic ελi if and only
if µ has sign characteristic sign(γµ+ δ)ελi ;

– if mλ
i is odd and g is even, then λ has sign characteristic ελi (resp. sign

feature φλi ) if and only if µ has sign characteristic sign(∆)ελi (resp. sign
feature sign(∆)φλi );

– if mλ
i is odd and g is odd, then λ has sign characteristic ελi (resp. sign

feature φλi ) if and only if µ has sign characteristic sign(γµ+δ) sign(∆)ελi
(resp. sign feature sign(γµ+ δ) sign(∆)φλi ).

Let us now first assume that γ 6= 0. In this case, one has the following.

• The finite eigenvalue λ̃ = α/γ of P is mapped to the eigenvalue µ̃ =∞ of
Q.

• If λ̃ has ith partial multiplicity mλ̃
i , sign characteristic ελ̃i and sign feature

φλ̃i , then one has the following cases:

– if mλ̃
i is even and g is even, then λ̃ and µ̃ must have opposite sign

characteristic, and the sign feature of µ̃ is by definition equal to 0;

– if mλ̃
i is even and g is odd, then λ̃ has sign characteristic ελ̃i if and only

if µ̃ has sign characteristic − sign(γ)ελ̃i . Moreover, µ̃ has sign feature
− sign(γ)ελ̃i ;

– if mλ̃
i is odd and g is even, then λ̃ has sign characteristic ελ̃i (resp. sign

feature φλ̃i ) if and only if µ̃ has sign characteristic sign(∆)ελ̃i (resp. sign
feature sign(∆)φλ̃i );

– if mλ̃
i is odd and g is odd, then λ̃ has sign characteristic ελ̃i if and only

if µ̃ has sign characteristic sign(γ) sign(∆)ελ̃i . Moreover, µ̃ has sign
feature 0.

• The eigenvalue λ̂ =∞ is mapped to the finite eigenvalue µ̂ = −δ/γ.
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• If λ̂ has ith partial multiplicity mλ̂
i , sign characteristic ελ̂i and sign feature

φλ̂i , then one has the following cases:

– if mλ̂
i is even, then by definition µ̂ must have sign feature 0;

– if mλ̂
i is even and g is even, then λ̂ and µ̂ must have opposite sign

characteristic;
– if mλ̂

i is even and g is odd, then λ̂ has sign characteristic ελ̂i if and only
if µ̂ has sign characteristic sign(γ) sign(∆)ελ̂i ;

– if mλ̂
i is odd and g is even, then λ̂ has sign characteristic ελ̂i (resp. sign

feature φλ̂i ) if and only if µ̃ has sign characteristic sign(∆)ελ̂i (resp. sign
feature sign(∆)φλ̂i );

– if mλ̂
i is odd and g is odd, then λ̂ has sign characteristic ελ̂i if and only

if µ̂ has sign characteristic − sign(γ)ελ̂i . Moreover, µ̂ has sign feature
− sign(γ)ελ̂i .

Conversely, if γ = 0, then the eigenvalue infinity stay at infinity. Assuming that
∞, as an eigenvalue of P , has partial multiplicity m∞i , sign characteristic ε∞i , and
sign feature φ∞i , then one has the following (note that α 6= 0 6= δ since otherwise
∆ = 0):

- if m∞i and g are either both even or both odd, then ∞ has sign feature 0
both as an eigenvalue of P and as an eigenvalue of Q;

- if m∞i is even and g is even, then ∞ must have the same sign characteristic
when seen as an eigenvalue of P and when seen as an eigenvalue of Q;

- if m∞i is even and g is odd, then ∞ has sign characteristic ε∞i (resp. sign
feature φ∞i ) as an eigenvalue of P if and only if it has sign characteristic
sign(α)ε∞i (resp. sign feature sign(α)φ∞i ) as an eigenvalue of Q;

- if m∞i is odd and g is even, then ∞ has sign characteristic ε∞i (resp. sign
feature φ∞i ) as an eigenvalue of P if and only if it has sign characteristic
sign(∆)ε∞i (resp. sign feature sign(∆)φλ̂i ) as an eigenvalue of Q;

- if m∞i is odd and g is odd, then∞ has sign characteristic ε∞i as an eigenvalue
of P if and only if it has sign characteristic sign(δ)ε∞i as an eigenvalue of Q.

In this section we have studied the effect of transformations on the sign feature
and sign characteristic. These results will be used in the following section to
derive a global constraint for these quantities.
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3 A signature constraint theorem
In this section we discuss a conservation law for the sign feature and sign charac-
teristic, extending to possibly singular matrix polynomials the signature constraint
theorem [11]. Consider a Hermitian matrix polynomial P (x) of grade g. Then
P (x) is holomorphic on the whole complex plane C, so in particular its restriction
to the real line is real analytic, and the results of the previous section apply with
Ω = R.

Recall that the Sylvester inertia index, or simply inertia, of a Hermitian matrix
H is the triple (n+, n0, n−), where n+ (resp. n0, n−) is the number of positive
(resp. zero, negative) eigenvalues of H. Furthermore, the signature of H is defined
as sig(H) = n+ − n−.

To derive a signature constraint law, it is convenient to first discuss the case
where P (x) has no infinite eigenvalues. A sufficient condition for this is that P (x)
has nonsingular leading matrix coefficient Pg. In this case, the proof can be found
in [11, Proposition 10.12]. Note that [11, Proposition 10.12] is stated for a monic
matrix polynomial, but it is easily generalizable to any nonsingular leading matrix
coefficient using [10, Eqn. 12.2.12]. Our signature constraint result, Theorem 3.4,
is stronger, because it allows for a general Hermitian P (x), including the case
that the leading matrix coefficient Pg is singular. In the following we denote by
ΛR∗(P ) the set of all real eigenvalues of the matrix polynomial P including ∞,
and we use again the set I as defined in (3). For i ∈ I, λ ∈ ΛR∗(P ) we denote by
mλ
i , φλi (P ), respectively, the ith partial multiplicity and sign feature associated

with λ and P .

Theorem 3.1. Let P (x) = ∑g
j=0 Pjx

j be a Hermitian matrix polynomial of grade
g with no infinite eigenvalues. For λ ∈ ΛR∗(P ) and i ∈ I, let mλ

i be the partial
multiplicities, and let φλi (P ) be the corresponding sign features. Then

∑
λ∈ΛR∗ (P ), i∈I

φλi (P ) =

0 if 2 | g
sig(Pg) if 2 - g

Proof. Since there are no eigenvalues at infinity, it follows that rankPg = r =
rankC(x) P (x). Observe that this implies that either P (x) ≡ 0 or that g is equal to
the degree k of P . If P (x) ≡ 0, then the assertion holds trivially, so we consider
the case k = g and let (n+, n−, n0) be the inertia of Pg. Note that n+ +n−+n0 = n
and that n0 = n − r. Then the proof follows by a counting argument on the
number of zeros with odd multiplicity of dii(x), i ∈ I.

Indeed, for i ∈ I a root λ ∈ ΛR∗(P ) of dii(x) has odd multiplicity mλ
i if and

only if it is associated with an eigenvalue of nonzero sign feature. In other words,
the sign feature is −1 if dii(x) is positive to the left of the root and negative to
the right, and it is +1 if it is negative to the left and positive to the right. Now let
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β > 0 be larger than the largest (in absolute value) real eigenvalue of P (x). Then

sign(dii(β))− sign(dii(−β))
2

counts the sum of total sign features associated to that value of i. Summing over
all i ∈ I we get that the sum of all the sign features is

∑
i∈I

sign(dii(β))− sign(dii(−β))
2 =

∑
i∈I sign(dii(β))−∑i∈I sign(dii(−β))

2 .

Suppose first that g is even. Then P (β) and P (−β) both have the same inertia
as Pg, and therefore the right hand side is equal to

1
2(n+ − n− − n+ + n−) = 0.

If g is odd, then P (β) has the same inertia as Pg and P (−β) has the same inertia
as −Pg. Therefore, the right hand side becomes

1
2(n+ − n− + n+ − n−) = sig(Pg).

To extend the result to the case where P has infinite eigenvalues, it is convenient
to consider three auxiliary matrix polynomials. Let β > |λmax|, where λmax is the
finite real eigenvalue of P of maximal absolute value. Then introduce

Q(y) := (−y)gP
(
βy + 1
−y

)
, R(z) := zgP

(
βz − 1
z

)
. (6)

Observe that neither Q nor R has an infinite eigenvalue, so that we can apply
Theorem 3.1 to them. We have the following lemma.

Lemma 3.2. Let P (x) = ∑g
j=0 Pjx

j be a Hermitian matrix polynomial of grade
g. Let I be defined as in (3). If λ is a finite real eigenvalue of P (x) with partial
multiplicities mλ

i and sign features φλi (P ), i ∈ I, then −1
β+λ is a finite eigenvalue

of Q(y) with partial multiplicities mλ
i and sign features φλi (P ), i ∈ I, and in the

same way, 1
β−λ is a finite eigenvalue of R(z) with partial multiplicities mλ

i and
sign features φλi (P ), i ∈ I.

If λ =∞ is an eigenvalue of P (x) with partial multiplicities m∞i , i ∈ I, then
0 is an eigenvalue of both Q(y) and R(z) each with multiplicities m∞i , i ∈ I, and
furthermore, if g is even, then the sign features of 0 as an eigenvalue of Q and R
are the same, while if g is odd, then the sign features of 0 as an eigenvalue of Q
and R are opposite in sign.
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Proof. The conservation of the partial multiplicities follows immediately from
[28, Theorem 5.3] or [31, Theorem 4.1]. Thus, it suffices to prove the statements
on the sign features for which we apply Theorems 2.4 and 2.5, or equivalently
Example 2.6. We observe that both Möbius reparametrizations y = −1

β+x and
z = 1

β−x are orientation preserving (on the open intervals where they are a
diffeomorphism), because they have determinant 1. Therefore the sign features
of a finite nonzero real eigenvalue of Q (resp. R) can only differ from those of
the corresponding finite real eigenvalue λ of P if g is odd and 1

β+λ (resp. 1
β−λ) is

negative. But this happens if and only if λ < −β (resp. if and only if λ > β),
which is impossible by the definition of β.

Finally, by comparing the two Möbius transformations in (6), we see that
R(z) = (2βz− 1)gQ( −z

2βz−1). Using Theorem 2.4 we see that the reparametrization
has no effect because it is orientation preserving. However, by Theorem 2.5,
the global factor (−1)g comes into play, thus proving the assertions on the sign
features associated with the 0 eigenvalue of Q(y) and R(z).

A third matrix polynomial with eigenvalues at 0 is S(v) as constructed in
Definition 1.10. Comparing S(v) with Q(y) and R(z) we have the following
Lemma.

Lemma 3.3. Let P (x) = ∑g
j=0 Pjx

j be a Hermitian matrix polynomial of grade
g with eigenvalue λ =∞ and partial multiplicities m0

i , i ∈ I. Then we have the
following cases.

• If m0
i is odd and

– if g is odd then the associated sign characteristics ε0i of Q and S are
the same, and they are the opposite of those of R;

– if g is even then the sign characteristic ε0i of Q, R, and S are all the
same.

• If m0
i is even and

– if g is odd then the sign characteristics ε0i of R and S are the same,
and are the opposite of those of Q;

– if g is even then the sign characteristics ε0i of R and Q are the same,
and are the opposite of those of S.

Proof. The proof follows from the relations Q(y) = −(βy+1)gS( −y
βy+1) and R(z) =

−(βz − 1)gS( z
βz−1), and by repeated application of Theorems 2.4 and 2.5 (and of

the details in the proof of Theorem 2.4) analogous to the proof of Lemma 3.2.

Combining these results we have the following theorem.
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Theorem 3.4 (Signature Constraint Theorem). Let P (x) = ∑g
j=0 Pjx

j be a
Hermitian matrix polynomial of grade g. Then

∑
λ∈ΛR∗ (P ), i∈I

φλi =

0 if 2 | g,
sig(Pg) if 2 - g.

Proof. Suppose first that g is even. Applying Theorem 3.1 to Q(y) with real
eigenvalue set ΛR(Q) = Λ(Q) ∩ R, we get that

0 =
∑

0 6=λ∈ΛR(Q), i∈I
φλi (Q) +

∑
i∈I

φ0
i (Q).

By Lemma 3.2 we have∑
06=λ∈ΛR(Q), i∈I

φλi (Q) =
∑

∞6=λ∈ΛR∗ (P ), i∈I
φλi (P ),

whereas by Lemma 3.3 ∑
i∈I

φ0
i (Q) =

∑
i∈I

φ0
i (S),

using the fact that g is even and thatm0
i must be odd, because otherwise φ0

i (Q) = 0
does not contribute to the summation. The assertion follows, since by definition
φ0
i (S) = φ∞i (P ) as g is even.
The case of odd g requires some further discussion. Consider β as a parameter

varying in (|λmax|,+∞). Let A(β) (resp. B(β)) be the leading matrix coefficient
of Q(y) (resp. R(z)). From the formula in [31, Proof of Proposition 3.2, second
bullet] we get A(β) = (−1)gP (−β) and B(β) = P (β). Moreover, both A and B
are Hermitian matrices that depend analytically on the real parameter β, and
hence, by Theorem 1.4 and Proposition 1.5 we have that their eigenvalues are
analytic functions of β, of which n− r are constantly zero, where r is the normal
rank of P (x) and n is its size. In particular, since there is no eigenvalue of P (x)
in the interval (|λmax|,+∞), the number of positive and negative eigenvalues of
A(β) and B(β) must be independent of β. As a consequence, their signatures are
constant, and we may simply write sig(A) and sig(B), omitting β. Let b = β−1.
It is easy to check that β−gA(β) = −S(−b), while β−gB(β) = −S(b), and that
Pg = − limb→0+ S(−b) = − limb→0+ S(b).

Being polynomial, S(b) is analytic at 0, and hence, it admits a Rellich de-
composition. Setting γ = dim kerPg + r − n, such a decomposition is given
by

S(b) = V (b)∗
(

0n−r ⊕
r−γ⊕
j=1

(
α0
j + o(b0)

)
⊕

γ⊕
j=1

(
ε0jc

0
jb
m0
j + o(bm0

j )
))
V (b), (7)

where 0k is the k× k zero matrix, ⊕ denotes the direct sum, α0
j are some nonzero

constants, c0
j are positive constants, and ε0j (resp. m0

j) are the sign characteristics
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(resp. partial multiplicities) at 0 of S(b), which are, by definition, the sign
characteristics (resp. partial multiplicities) at ∞ of P (x). Clearly, the signature
of S(b) is the same as the signature of the diagonal matrix in (7).

When |b| > 0 is small enough, then only the lowest order terms in b matter.
Thus, there exists b0 > 0 such that for 0 < b < b0 we have that

sig(S(b)) =
r−γ∑
i=1

sign(α0
i ) +

γ∑
i=1

ε0i .

Similarly there exists b1 > 0 such that for −b1 < b < 0 it holds that

sig(S(−b)) =
r−γ∑
i=1

sign(α0
i ) +

γ∑
i=1

(−1)m0
i ε0i .

On the other hand

sig(Pg) = − sig lim
b→0+

S(b) = − sig(S(0)) = −
r−γ∑
i=1

sign(α0
i ).

Using that − sig(A) = − sig(β−gA) = sig(S(−b)) and − sig(B) = − sig(β−gB) =
sig(S(b)), we obtain

2 sig(Pg)− sig(A)− sig(B) = 2
∑

m0
i even

ε0i .

On the other hand, applying Theorem 3.1 twice, we get

sig(A)+sig(B) =
∑

06=λ∈ΛR(Q), i∈I
φλi (Q)+

∑
i∈I

φ0
i (Q)+

∑
06=λ∈ΛR(R), i∈I

φλi (R)+
∑
i∈I

φ0
i (R).

Using Theorem 3.1, Lemma 3.2 and Lemma 3.3 (with g odd), this is in turn equal
to

sig(A) + sig(B) = 2
∑

∞6=λ∈ΛR∗ (P ), i∈I
φλi (P ).

The result follows by observing that, when m0
i is even, ε0i is, by definition, the

sign feature at infinity of P (x).

Remark 3.5. Observe that, when g > k, the sum of the sign feature is always
zero for any g because Pg = 0. The difference occurs only when g = k. If k is
even the sum is still zero, but when k is odd, the sum is sig(Pk).

However, the proof of Theorem 3.4 shows that the sign characteristics asso-
ciated with partial multiplicities g − k (that are, by Remark 1.12, associated
with those infinite eigenvalues that are “artificial”) are the inertia indices of
−Pk. Moreover, their sign features are all zero if k is even and are their sign
characteristics if k is odd. Hence, the sum of the “extra” sign features at infinity
is zero when k is even and is −sig(Pk) is k is odd, making the whole picture
coherent.
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Remark 3.6. Observe that Theorem 3.4 can also be obtained by defining the
sign features at infinity as the sign features of the anti reversal T (z) = zgP (−z−1).
Indeed, it is immediate that T (z) = (−1)g+1S(−z), and hence, the sign character-
istic of a zero eigenvalue of partial multiplicity m0

i of T (z) is (−1)g+1+m0
i times

the sign characteristic of a zero eigenvalue of S(w), of the corresponding partial
multiplicity. In particular, when g +m0

i is odd, then these signs are unchanged.
But given Definition 1.10, the case of g + m0

i odd is precisely the one that is
relevant in Theorem 3.4.

3.1 Connection with the canonical form of Hermitian pen-
cils

In this section we discuss the connection of our results to the canonical form for
Hermitian pencils under congruence, see [25, 36] and the references therein.
Theorem 3.7 (Theorem 6.1 in [25]). Every Hermitian pencil A+xB is congruent
to a pencil of the form

0u×u ⊕
p⊕
i=1

x

 0 0 Fρi
0 0 0
Fρi 0 0

+G2ρi+1 ⊕
r⊕
i=1

δi[Fki + xGki ]⊕
q⊕
i=1

ηi[(x+ αi)F`i +G`i ]

⊕
s⊕
i=1

[
0 (x+ βi)Fmi

(x+ βi)Fmi 0

]
+
[

0 Gmi

Gmi 0

]
,

where u, ρi ≤ · · · ≤ ρp, k1 ≤ · · · ≤ kr, l1 ≤ · · · ≤ lq, and m1 ≤ · · · ≤ ms

are positive integers, αj are real numbers, βj are complex nonreal numbers,
δ1, . . . , δr, η1, . . . , ηq are equal to +1 or −1, and

Fn =


0 1

. .
.

1 0

 ∈ Rn×n, Gn =
[
Fn−1 0

0 0

]
. (8)

This canonical form is uniquely determined up to permutations of the blocks, and
up to replacing βj by βj inside the corresponding blocks.

We first give a technical lemma that is useful to compute the signature of the
leading matrix coefficient of a Hermitian pencil.
Lemma 3.8. The signatures of the coefficients of x in each diagonal block in the
canonical form of Theorem 3.7 are:

sig(0u×u) = sig


 0 0 Fρi

0 0 0
Fρi 0 0


 = sig

([
0 Fmi
Fmi 0

])
= 0,

sig(Gki) = 1 + (−1)ki
2 , sig(F`i) = 1− (−1)`i

2 .
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Proof. We just need to prove that sig(F`i) = 1−(−1)`i
2 , as all the other claims

follow immediately (recalling that
[

0
A
A
0

]
is similar to A ⊕ −A.) Suppose first

that `i = 2µi is even. Then, block-diagonalizing xI2µi − F2µi by an appropriate
permutation similarity, it is readily seen that det(xI2µi − F2µi) = (x2 − 1)µi ,
yielding sig(F2µi) = 0. The case of odd `i = 2µi+1 can be reduced to the previous
one, as by a Laplace expansion by the central row, we have det(xI2µi+1−F2µi+1) =
(x− 1) det(xI2µi − F2µi), and hence, sig(F2µi+1) = 1.

It turns out that the signs δ1, . . . , δr, η1, . . . , ηq in Theorem 3.7 determine the
sign characteristics associated with real and infinite eigenvalues, as the next results
show. Note that in the literature there is a minor incoherence in the description
of the exact relation between these signs and the sign characteristic, see e.g., [25].

Theorem 3.9. The analytic Hermitian matrix pencil (x+ α)F` +G`, where F`
and G` are as in (8), has a unique real eigenvalue at −α of partial multiplicity `
and sign characteristic (−1)`+1.

The analytic Hermitian matrix pencil Fk + xGk has a unique eigenvalue at
infinity of partial multiplicity k and sign characteristic (−1)k.

Proof. It suffices to prove the first statement, as together with Definition 1.10 it
immediately implies the second. Observe that by a simple change of variable we
may assume that α = 0. It is clear by direct inspection that A(x) = xF` + G`

has an eigenvalue at 0 of partial multiplicity ` and geometric multiplicity 1. It
remains to compute its sign characteristic.

By the definition of G`, A(0) has precisely one zero eigenvalue. Therefore,
using the Rellich decomposition (Theorem 1.4) of A(x) and Definition 1.6, it is
clear that the sign characteristic at 0 of A(x) is just

lim
x→0+

sig(A(x))− sig(A(0)).

By Lemma 3.8, sig(A(0)) = 1+(−1)`
2 . On the other hand, for any x > 0, A(x) is

congruent to xF`. Indeed, first one can take A(x) to x(F` + G`) by either the
simple diagonal congruence diag(. . . , x, 1, x−1, . . . ), for odd values of `, or the
simple diagonal congruence diag(. . . , x, , x 1

2 , x−
1
2 , x−1, . . . ), for even values of `.

To show that F` +G` and F` are congruent, let N` be the nilpotent Jordan block
of size ` and observe that G` = N`F` = F`N

T
` . It easily follows that for any

real polynomial p, p(I` + N`)F = Fp(I` + N`)T = Fp(I` + N`)∗. Let S` be the
principal square root of I` +N`, see [15], then S` is a real polynomial in I` +N`,
and S`FS∗` = S2

`F` = F` +G`, displaying the desired congruence.
Thus, again by Lemma 3.8, sig(A(x)) = 1−(−1)`

2 , and hence, the sign charac-
teristic of A(x) at 0 is (−1)`+1.

Hence, we may easily obtain an alternative proof of Theorem 3.4 for the special
case of pencils, i.e., g = 1. Indeed, observe that there is no less of generality in
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assuming that a pencil A+Bx is in the canonical form described in Theorem 3.7,
for if it is not, we may just apply Theorem 1.9 (specialized to the case where A(x)
is a pencil and R(x) is constant and nonsingular).

Then, since B is block diagonal, its signature is the sum of the signatures of
each block, i.e., by Lemma 3.8,

sig(B) =
∑

i : `i odd
ηi +

∑
i : ki even

δi.

But on the other hand, by Theorem 3.9, the sign feature of any finite real
eigenvalue αi is precisely 0 if `i is even and ηi if `i is odd, whereas the sign feature
of any infinite eigenvalue is 0 if ki is odd and δi if ki is even. Therefore, we have
verified that Theorem 3.4 is coherent with Theorem 3.7.

4 Perturbation theory and sign features: a local
conservation rule

Theorem 3.4 can be interpreted as a global conservation law. If the Hermitian
matrix polynomial P (x) is perturbed, then the sum of its sign features (for even g)
or the sum of its sign features minus the signature of its leading matrix coefficient
(for odd g) is preserved.

However, as we will discuss in this section, a stronger result can be proved,
that the sign features of a regular self-adjoint matrix function are locally preserved.
Related results are obtained in [9, Section 3.2] in the case of a polynomial with
nonsingular leading matrix coefficient. Here we give a more general statement
with our own proof. We will also explain why the result is false for singular
analytic matrix functions. Then, we will see some application to the perturbation
theory of regular Hermitian matrix polynomial, discussing the nontrivial role of
the grade.

4.1 Classical results on the smoothness of eigenvalues
Before considering the local conservation results, it is convenient to recall some
basic results about the smoothness of the eigenvalues of a matrix. It is known
that, for analytic perturbations, non-analyticity can only occur when eigenvalues
coalesce [17, Ch. II]. Clearly, the analysis can be reduced to the problem of
determining the smoothness of the roots of a polynomial for which we have the
following well-known result.

Theorem 4.1 (Theorem A in [13]). Let p(z) = zn + ∑n−1
i=0 aiz

i be a monic
polynomial with complex coefficients and with roots r1, . . . , rn. Moreover, denote
by ∼ the equivalence class on Cn defined by v1 ∼ v2 if and only if v2 is a
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permutation of v1. Then the function that maps the coefficients of p(z) to its roots
is a homeomorphism, when seen as a function from Cn to Cn/ ∼.

In [13, Theorem A] the Euclidian topology on Cn is used, whereas on Cn/ ∼
the quotient topology is employed [18, pp. 94–99]. An entirely different question
is whether one can obtain an inverse function theorem, i.e., whether one can
label n continuous functions ri(a0, . . . , an−1), i = 1, . . . , n, such that p(z) =∏n
i=1(z − ri(a0, . . . , an−1)). In general, the answer to this question is negative, as

shown by the example p(z) = z2 − x for a complex parameter x. Two important
exceptions are discussed in [17, Section II.5.2]. First, if all the coefficients of p(z)
depend continuously on a single real parameter t, then one can pick n continuous
functions of t to represent the roots [17, Theorem 5.2]. Furthermore, if the
coefficients of the polynomial depend analytically on t, then the n functions are
analytic as well. The second important exception is when all the roots are real,
or more generally, as our presentation will illustrate, when they lie on any set
where the topology induced by the Euclidean topology on C becomes an order
topology, e.g., a simple and open curve. Essentially, the key property is the ability
to continuously reorder an n-tuple. For this we introduce the reordering map:

v = {v1, . . . , vn} ∈ Rn/ ∼ 7→ χ(v) =
[
vσ(1) . . . vσ(n)

]T
∈ Rn,

where σ is any permutation of {1, . . . , n} such that vσ(1) ≥ · · · ≥ vσ(n).
Then we have the following theorem which is implicit in [17].

Lemma 4.2. The reordering map is continuous.

Proof. Let {vm} ⊂ Rn/ ∼ be any sequence satisfying limm→∞ vm = v ∈ Rn/ ∼.
Denote by ` the number of distinct entries in v, i.e., suppose that there exists
w1 > · · · > w` ∈ R are such that µk entries of v are equal to wk, with

∑`
k=1 µk = n.

Let δ = mini,j |wi−wj|. Then, since {vm} is a convergent sequence in the quotient
topology, given any 0 < ε < δ, for m large enough and for any k = 1, . . . , `, vm
has exactly µk components in the open interval Jk = (wk − ε, wk + ε). Then, for
any xi ∈ Ji, xj ∈ Jj , we have xi > xj if and only if i < j. This holds because the
intervals Jk are disjoint by construction, and because the Euclidean topology on
R is the order topology induced by <. (Note that this is not true, e.g., for C.)
Therefore, for m large enough, χ(vm) is such that its first µ1 components lie in
J1, the second µ2 components lie in J2, et cetera. Hence, limm→∞ χ(vm) = χ(v),
implying that χ is continuous.

By the above results, we have the following theorem, stated (without proof)
in [17, Section II.5.7].

Theorem 4.3. Let A(x, ζ) be a matrix whose elements depend (jointly) contin-
uously on the real parameters (x, ζ), and such that for any (x, ζ) in a certain
domain Ω ⊂ R2 all the eigenvalues of A(x, ζ) are real. Then there exist n jointly
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continuous functions fj(x, ζ), j = 1, . . . , n, that are the eigenvalues of A(x, ζ) for
all (x, ζ) ∈ Ω.

Proof. For the proof it suffices to compose two continuous functions: the map from
(x, ζ) to the real coefficients of the characteristic polynomial of A, and the map
from those coefficients to the (ordered) n-tuple χ(f1(x, ζ), . . . , fn(x, ζ)) ∈ Rn of the
eigenvalues of A(x, ζ), which is continuous by [13, Theorem A] and Lemma 4.2.

Remark 4.4. Another interesting question is whether in the case that the coeffi-
cients of a monic polynomial are jointly analytic functions of two real parameters
(x, ζ), we can find n jointly analytic functions f1(x, ζ), . . . , fn(x, ζ), that are the
roots of the polynomial at each point? The answer is again negative as the
example p(z) = z2 − 3xz + 2x2 − ζ2(x− 1)2 demonstrates, see [17, Section II.5.7]
for further remarks and examples.

Note that, by Rellich’s Theorem 1.4, for any fixed ζ and for any polynomial
whose coefficients depend jointly analytically on x and ζ, e.g., the characteristic
polynomial of an Hermitian matrix function, we can find two eigenvalue functions
that are analytic in x, and vice versa for any fixed x we obtain analytic eigenvalue
functions in ζ. Unfortunately, unlike for complex holomorphic functions, in the
real case this condition does not imply that we have n jointly analytic functions,
as the standard counterexample [20] f(x, ζ) = 2 x ζ

x2 + ζ2 , f(0, 0) = 0 shows. Indeed,

the latter function is separately analytic on R2, but not even jointly continuous
at (0, 0).

In the next subsection we will expand on this discussion and derive some
perturbation theory results for regular Hermitian functions.

4.2 Perturbation theory for regular self-adjoint matrix
functions

To derive our perturbation analysis for regular self-adjoint matrix functions, it
is convenient to introduce some further notation. Let λ ∈ Ω ⊆ R, and δ > 0 be
such that J := [λ − δ, λ + δ] ⊂ Ω. For any nonzero f(x), that is analytic in Ω
and such that f(λ− δ)f(λ+ δ) 6= 0, we define the local type of f in the interval
J to be the ordered pair(

sign f(λ− δ), sign f(λ+ δ)
)
.

Note that since J is compact, the function f(x) can only have finitely many
roots in J . Observe furthermore that, by continuity, the local type of a function
determines the parity of the number of roots of odd multiplicity that f(x) has in
J . It also determines the associated sign characteristics at such roots, i.e., the
sign of the first nonzero derivative evaluated at the roots of odd multiplicities.
More specifically we have the following result.
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Proposition 4.5. Consider a function f(x) that is analytic in the interval J .
Then, the following statements on the sign characteristics of the roots of f in J
with odd multiplicity hold.

1. If the local type of f in J is (+,+), then f has an even number of roots of
odd multiplicity in J . Moreover, the sign characteristics at such roots (if
any) alternate in sign starting with −1, i.e., they are −1, 1,−1, . . . , 1.

2. If the local type of f in J is (+,−), then f has an odd number (in par-
ticular, at least one) of roots of odd multiplicity in J . Moreover, the sign
characteristics at such roots alternate in sign starting with −1, i.e., they are
−1, 1,−1, . . . ,−1.

3. If the local type of f in J is (−,+), then f has an odd number (in par-
ticular, at least one) of roots of odd multiplicity in J . Moreover, the sign
characteristics at such roots alternate in sign starting with 1, i.e., they are
1,−1, 1, . . . , 1.

4. If the local type of f in J is (−,−), then f has an even number of roots of
odd multiplicity in J . Moreover, the sign characteristics at such roots (if
any) alternate in sign starting with 1, i.e., they are 1,−1, 1, . . . ,−1.

Proof. We only give a proof of item 1., as the other cases are analogous. The
argument can be best followed by considering Figure 1 below.

even mult.

s.c. +1

s.c. -1

f > 0 f > 0local type (+,+)

Figure 1: An analytic function f(x) having local type (+,+) in the interval J .

Since f is analytic, it is in particular continuous. Thus, each time that f has
a root of odd multiplicity at a point, say, x0 ∈ J , then it must have opposite signs
in an interval containing real numbers strictly smaller than x0 and in an interval
containing real numbers strictly larger than x0. Conversely, for any root of even
multiplicity, say, x1, there exists a neighborhood of x1 such that f is constant in
sign. Now suppose that f(x) has some roots of odd multiplicity in J , as otherwise
there is nothing to prove. Let r be the smallest one. Since f(x) > 0 at the left
endpoint of J , and since there are no roots of odd multiplicity smaller than r,
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we have f(x) > 0 in a left neighborhood of r, and hence, f(x) < 0 in a right
neighborhood of r. Therefore, expanding f(x) = ∑∞

k=m ck(x− r)k for some odd
m, we see that necessarily cm < 0, proving that the sign characteristic at r is −1.
Repeating the argument yields the fact the sign characteristics at the roots of odd
multiplicity must alternate in sign, whereas the fact that f(x) > 0 at the right
endpoint of J guarantees that the largest such root must have sign characteristic
+1, and hence, there are an even number of roots of odd multiplicity.

Note that, generally, from the local type nothing can be inferred about the
roots with even multiplicities. Nonetheless, using Proposition 4.5, we can associate
any local type with a specific value of the sum of the sign features over all the
roots of f that lie in the interval J . The cases are summarized in Table 1.

Table 1: Rules for the local sum of sign features according to the local type.

Local type of f in J sum of sign features of the roots of f in J
(+, +) 0
(+,−) −1
(−, +) 1
(−,−) 0

The following results illustrate why the local types are a useful tool for studying
the local sum of sign features on a given interval.

Proposition 4.6. Let H(x) ∈ An(Ω) be a regular self-adjoint matrix function,
and let ηj(x) be the zeros of the polynomial p(z) = det(H(x) − zI) considered
as functions of x. Let J = [a, b] ⊂ Ω be an interval with the property that
detH(a) detH(b) 6= 0. Let qi, i = 1, . . . , 4, be the number of ηj(x) that are, resp.,
positive at a, negative at a, positive at b, negative at b. Then the local sum of all
the sign features of H(x) in J is equal to q3 − q1 and to q2 − q4.

Proof. Clearly, the ηj(x) are the diagonal elements djj(x) in the Rellich de-
composition of H(x). Observe that by Rellich’s Theorem 1.4 the condition
detH(a) detH(b) 6= 0 implies ηj(a)ηj(b) 6= 0, for all j = 1, . . . , n. Denote by ν(·,·)
the number of ηj(x), j = 1, . . . , n that are of type (·, ·) in J . Observe that, by
definition, the qi are simply related to the local types by the following formulae,
subject to the constraints q1 + q2 = q3 + q4 = n:

q1 = ν(+,+) + ν(+,−), q2 = ν(−,+) + ν(−,−),

q3 = ν(−,+) + ν(+,+), q4 = ν(+,−) + ν(−,−).

By Table 1, the local sum of the sign features of H(x) in J is equal to the number
of ηj(x) that are of type (−,+) in J minus the number of ηj(x) that are of type
(+,−) in J . The statement follows immediately.
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Theorem 4.7. Let H(x) ∈ An(Ω) be regular and self-adjoint, let E(x) ∈ An(Ω)
be self-adjoint, and suppose that λ ∈ Ω ⊆ R is a real eigenvalue of H(x) with
geometric multiplicity ` ≤ n, partial multiplicities mλ

1 , . . . ,m
λ
` , and associated sign

features φλ1 , . . . , φλ` . For any ζ > 0 consider the function Ĥ(x) := H(x) + ζE(x) ∈
An(Ω). For a given interval J ⊂ Ω λ, denote by λ̂j the eigenvalues of Ĥ(x) lying
in J , each with partial multiplicities mλ̂j

i,j and sign features φλ̂ji,j. Then there exists
an interval J such that

(i) λ ∈ J ;

(ii) for sufficiently small ζ, the following conservation law holds:

∑
i,j

φ
λ̂j
i,j =

∑̀
j=1

φλj .

Proof. Denote by ηj(x) the zeros of the polynomial p(z) = det(H(x)− zI) con-
sidered as functions of x. Clearly these are the functions djj(x) in the Rellich
decomposition of H(x) and thus, the ηj(x) are analytic functions of x, and the
sign characteristics at λ are the signs of amλj in the series ηj(x) = ∑∞

i=mλj
ai(x−λ)i,

whenever mλ
j > 0, i.e., λ is an eigenvalue of H(x) of partial multiplicity mλ

j . We
denote these signs by ελj . Now consider the perturbed Hermitian matrix function
Ĥ(x) = H(x) + ζE(x), and let q(z) = det(H(x) + ζE(x)− zI).

By Theorem 4.3, we know that we can label n jointly continuous functions
fj(x, ζ) such that for any (x, ζ) in Ω × R they are the roots of q(z), i.e., the
eigenvalues of Ĥ(x, ζ). Rellich’s Theorem 1.4 and the uniqueness of the set of the
eigenvalues of a square matrix guarantee the following fact.
Remark 4.8. For any fixed ζ, there are n functions η̂j(x; ζ), analytic in x, with
η̂j(x; 0) := ηj(x); and for any x ∈ Ω, there exists a permutation σ (possibly
depending on x) such that fσ(j)(x, ζ) = η̂j(x; ζ).

Now suppose without loss of generality that ηj(λ) = 0 if and only if j ≤ `,
(this can be achieved via a relabeling of the n analytic functions ηj). Observe now
that there exist δ, δ′ such that, defining J := [λ − δ, λ + δ] ⊂ Ω, the following
conditions are satisfied.

1. For any j ≤ `,

• if mλ
j is odd and ελj = 1, then ηj(x) is of local type (−,+) in J ;

• if mλ
j is even and ελj = 1, then ηj(x) is of local type (+,+) in J ;

• if mλ
j is odd and ελj = −1, ηj(x) is of local type (+,−) in J ;

• if mλ
j is even and ελj = −1, then ηj(x) is of local type (−,−) in J .

2. For any j > `,
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• if ηj(λ) > 0, then ηj(x) is of local type (+,+) in J ;
• if ηj(λ) < 0, then ηj(x) is of local type (−,−) in J .

3. For any ζ < δ′, there are two permutations σ− and σ+ such that for any
j = 1, . . . , n the following conditions hold:

• sign fσ−(j)(λ− δ, ζ) = sign ηj(λ− δ), and
• sign fσ+(j)(λ+ δ, ζ) = sign ηj(λ+ δ).

That condition 2 can be satisfied follows by continuity in x: since for any j > `
ηj(λ) 6= 0, there exists a δj such that |x − λ| < δj ⇒ ηj(x)ηj(λ) > 0. Similarly,
that for a fixed j ≤ ` there exists a δj such that condition 1 can be satisfied
follows from the analyticity of ηj(x) and Definition 1.6. Note that we assume that,
for all j, λ is a root of finite multiplicity for ηj(x), i.e., ηj(x) 6≡ 0. If this is not
the case, then all the coefficients in the Taylor series are zero, and clearly no δ
can be found such that ηj(x) is of any local type. Thus, we can set δ := minj δj.

Finally, the existence of δ′ follows by continuity in ζ of the fj(x, ζ), by
Remark 4.8, that implies that there exist permutations σ− and σ+ such that
ηj(λ− δ) = fσ−(j)(λ− δ, 0) and ηj(λ+ δ) = fσ+(j)(λ+ δ, 0).

Let us now fix ζ0 ∈ [0, δ′). Let η̂j(x; ζ0) denote the zeros of det(H(x)+ζ0E(x)−
zI). By Remark 4.8, we know that for any fixed x ∈ J we can find a permutation
σ′ such that η̂j(x; ζ0) = fσ′(j)(x, ζ0).

Consider now the quantities qi, defined as in the statement of Proposition 4.6
on η̂j(x; ζ) with J = [λ− δ, λ+ δ]. Clearly, qi are integer-valued functions of ζ.
Observe that

q1(ζ) =
∑

j: η̂j(λ−δ;ζ)>0
1, q2(ζ) =

∑
j: η̂j(λ−δ;ζ)<0

1,

q3(ζ) =
∑

j: η̂j(λ+δ;ζ)>0
1, q4(ζ) =

∑
j: η̂j(λ+δ;ζ)<0

1.

Hence, by the argument above and by conditions 2 and 3, qi(0) = qi(ζ0) for any
0 ≤ ζ0 < δ′. Invoking Proposition 4.6 concludes the proof.

Remark 4.9. We stress once more that it is crucial here that any ηj(x) such
that ηj(λ) = 0 has a zero of finite multiplicity at λ, i.e., ηj(x) is not identically
zero. This is equivalent to the assumption that H(x) is regular and is used to
prove condition 2. in the proof of Theorem 4.7. If this does not hold, i.e., suppose
without loss of generality η1(x) ≡ 0, then η1(x, ζ) may assume an arbitrary sign
for all x ∈ Ω, suggesting that no local conservation laws are possible. Indeed,
this is illustrated by the following example which is a Hermitian variant of an
unstructured example that appeared in [8, Equation 2].
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Example 4.10. Let H(x) =
[
x
0

0
0

]
. Then η1(x) = x, η2(x) = 0. The only

eigenvalue is λ = 0, with geometric multiplicity 1, partial multiplicity 1 and sign
feature 1. Consider the perturbation E(x) =

[
0

x−1
x−1

0

]
. Then one can check that

2f1(x, ζ) = x +
√
x2 + 4ζ2(x− 1)2 and 2f2(x, ζ) = x −

√
x2 + 4ζ2(x− 1)2. For

any arbitrarily small ζ > 0 we see that neither f1(x, ζ) nor f2(x, ζ) have a root in
a neighborhood of x = 0. Moreover, f2(x, ζ) has a root of multiplicity 2 at x = 1.
Therefore, the sum of the sign features is not locally preserved at 0.

Remark 4.11. One may wonder if the sum of sign features associated with each
partial multiplicity is locally preserved. The answer is clearly negative, as is
illustrated by the Hermitian matrix function

[
0
x
x
0

]
, which has partial multiplicities

1, 1 at the eigenvalue 0, with sign features 1 and −1. We can perturb it to
[
ζ
x
x
0

]
which for any ζ > 0 has partial multiplicity 2 at the eigenvalue 0, with sign feature
0.

Finally, the subtleties described in Section 4.1 are key in arguing that, in a
sense made precise by Theorem 4.12, the geometric multiplicity of an eigenvalue
cannot locally increase by a small perturbation. Note that Theorem 4.12 is based
on Theorem 4.3, and hence, holds more generally for matrices (not necessarily
Hermitian) depending continuously on a parameter. However, for simplicity we
state it only for the special case that we need.

Theorem 4.12. With the notation of Theorem 4.7, denote by η̂j(x; ζ) the eigen-
value functions of H(x) + ζE(x). Then for small enough ζ there exists an interval
J (ζ) containing λ such that the number of η̂j(x; ζ) that have roots in J (ζ) is not
larger than `, where ` is the geometric multiplicity of λ as an eigenvalue of the
regular analytic matrix function H(x).

Proof. Using the notation of the proof of Theorem 4.7, suppose without loss of
generality that ηj(λ) = 0 if and only if j ≤ `. Let ρ := minj>` |ηj(λ)| > 0. By
Theorem 4.3, the eigenvalues of H(x) + ζE(x) are jointly continuous in ζ and x.
Hence, by Remark 4.8, we deduce that there exists δ > 0 such that, for all x, ζ
satisfying (x− λ)2 + ζ2 < δ2, and for all j > `, there is a permutation σ yielding
|fσ(j)(x, ζ)| > ρ/2.

It follows that for any ζ < δ there is an interval J (ζ) containing λ with the
property that at most ` eigenvalue functions of H(x) + ζE(x) can have roots in
the interval J (ζ).

We stress that the results in this section imply that, at a finite real point, a
set of real eigenvalues can be removed from the real line by a perturbation if and
only if the sum of their sign features is 0. This observation will be important in
the next subsection.
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4.3 Perturbation theory of infinite eigenvalues for regular
Hermitian matrix polynomials

In this section we discuss the local invariants at infinity for a regular Hermitian
matrix polynomial P (x). Assume that the perturbation E(x) is also polynomial.
Note that in this situation the most natural choice for the grade might not be
degP (x), but max(degP (x), degE(x)), see also [28].

By Theorem 4.7, we know that, for any λ ∈ R, there exists an interval J
containing λ such that, for ζ small enough, the sum of the sign features for all
eigenvalues of the perturbed polynomial P (x) + ζE(x) that lie in J is equal to
the sum of the sign features over all the partial multiplicities of λ seen as an
eigenvalue of P (x).

To simplify expressions, we rephrase this property as the sum is locally preserved
on R. The question is whether we can extend this statement to a neighborhood
of ∞, or at least whether we can find another local invariant at infinity.

If the grade is even, then this is straightforward. By Theorem 4.7 applied
to S(x) = − revg P (x), the sign features at 0 of S(x) are locally preserved. But
by Theorem 2.4 and Theorem 2.5, the sign features of small eigenvalues of a
perturbed S(x)− ζ revg E(x) are precisely the same of those of large eigenvalues
of P (x) + ζE(x). Hence, the sum of the sign features of P (x) is preserved in a
neighborhood of infinity, i.e., in (−∞,−M)∪ (M,∞) for sufficiently large M > 0,
and thus we have the following theorem.
Theorem 4.13. If P (x) is a regular Hermitian matrix polynomial of even grade,
then the sum of the sign features is locally preserved on R∪ {∞}, i.e., it is locally
preserved at any λ ∈ R and at λ =∞ as well.

On the other hand, if the grade is odd, it is hopeless to have a local conservation
of the sign features. Indeed, going to the reversal, what must be locally preserved
is the sum of sign characteristics (or sign features) associated with the odd
multiplicities corresponding to S(x). In particular, for the eigenvalue zero of S(x)
and the eigenvalue ∞ of P (x), the sign features corresponding to the former are
associated with odd partial multiplicities whereas those corresponding to the latter
are associated with even partial multiplicities. They are totally different. The
mapping laws of the sign characteristics prescribed in Theorem 2.4 and Theorem 2.5
depend on which neighborhood of infinity (left or right) one considers. The only
way to express a local conservation rule in a neighborhood of infinity is to go
back to the sign features of the reversal S(x). Unfortunately this does not yield a
statement as nice as in the case of even grade.
Theorem 4.14. Let P (x) be a regular Hermitian matrix polynomial of odd grade
and let the sign characteristic at infinity be defined as in Definition 1.10. Then in
a neighborhood of ∞ the sum∑

λ∈ΛR(P ),λ>0

∑
mλi odd

ελi −
∑

λ∈ΛR(P ),λ<0

∑
mλi odd

ελi +
∑

m∞i odd
ε∞i
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is locally preserved.
In other words, given any Hermitian polynomial E(x) of the same grade as

P (x), there exists M > 0 such that, for any small enough ζ, if ελ̂i are the sign
characteristics associated with the eigenvalue λ̂ arising from a small Hermitian
perturbation P̂ := P (x) + ζE(x) and ε∞i are the sign characteristics of P (x)
associated with the eigenvalue ∞, then we have∑

λ̂∈Λ(P̂ ),λ̂>M

∑
mλ̂i odd

ελ̂i −
∑

λ̂∈Λ(P̂ ),λ̂<−M

∑
mλ̂i odd

ελ̂i +
∑

m̂∞i odd
ε̂∞i =

∑
m∞i odd

ε∞i ,

where in abuse of notation ε̂∞i denotes the sign characteristics of the eigenvalues
of the perturbed problem that stay at ∞ and m̂∞i is the corresponding partial
multiplicity.

Proof. By definition, the sign characteristics at infinity of P (x) are those of
S(y) = −ygP (1/y) at 0. Applying Theorems 2.4 and 2.5, we see that for an
odd partial multiplicity m the sign characteristics of P (x) at a large λ are equal
to (resp. opposite to) those of S(y) at a small λ−1 if and only if λ > 0 (resp.
λ < 0). Applying Theorem 4.7 to S(y) and the appropriate neighborhood of 0
(that is mapped to a neighborhood of infinity for P (x)), and recalling that the sign
features correspond to the sign characteristics for the odd partial multiplicities
(and are 0 for the even partial multiplicities), the statement follows.

The presented analysis shows that our definition of sign features, that lead to
the global constraint of Theorem 3.4, fits well with the local conservation rule at
infinity if and only if the grade is even. When the grade is odd, things are more
complicated. This is not a defect of our definition, but a necessary consequence
of the fact that, for odd grade, the signature of the leading matrix coefficient is
involved in the signature constraint theorem. This makes it impossible to obtain
a definition that works well both globally and locally.

There are two possible ways out of this global/local dichotomy for odd grade
Hermitian matrix polynomials. Either one always forces the grade to be even by
adding another zero coefficient, at the price of allowing a larger set of perturba-
tions (including perturbation to the zero leading matrix coefficient), or one uses
Theorem 4.14, at the price of having a much less elegant and more complicated
rule. We give a few examples to illustrate these facts.

Example 4.15. Consider

P (x) =

x
3 0 0

0 1 0
0 0 x


of grade 3. Note that P (x) has an eigenvalue 0 of multiplicity 3 with sign feature
1, an eigenvalue 0 of multiplicity 1 with sign feature 1, an eigenvalue ∞ of
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multiplicity 3 with sign feature 0 and sign characteristic −1, and an eigenvalue ∞
of multiplicity 2 with sign feature −1. As shown in Theorem 3.4, the global sum
of the sign features is 1. However, any perturbation, however small, can change
the signature of the leading matrix coefficient. Suppose that there is a finite open
cover of the compactification of the real line such that in each open subset of
the cover there is a local conservation rule for the sum of the sign features. This
would violate Theorem 3.4: to see this, take a perturbation that changes the
signature of the leading matrix coefficient. Hence, there cannot be such an open
cover. On the other hand, by Theorem 4.7, the sum of sign features is locally
preserved on all R. Therefore, there must be a possible exception at infinity, i.e.,
there cannot be any open subset of infinity that allows for a local conservation
law of sign features. This is illustrated by

P̂ (x) =

x
3 0 0

0 1− ζ3x3 0
0 0 x− ζ2x3

 .
Note that neither the partial multiplicities nor the sign features of the zero
eigenvalue are changed by this particular perturbation. However, for any ζ > 0,
there exist two real eigenvalues 1

ζ
each of partial multiplicity 1 with sign feature

−1, and a real eigenvalue (−1
ζ
) of partial multiplicity 1 with sign feature −1. The

global sum of sign features is now −1, as expected, since the signature of the
leading matrix coefficient has changed. Yet, no matter how small ζ > 0, the sum
of sign features in a neighborhood of infinity is −3 6= −1. Note that this example
is coherent with Theorem 4.14, since −1

ζ
< 0 and hence we must multiply its sign

characteristics by −1 in the summation of the statement of Theorem 4.14.
If we had picked even grade, say, 4, for P (x) and P̂ (x), then we would have a

local conservation law at infinity of sign features, as predicted by Theorem 4.13.
Indeed with this choice of the grade, the sum of sign features at infinity for P is
−2, whereas P̂ (x) has three extra simple eigenvalues at infinity, with sign features
−1, 1, and 1, so that in a neighborhood of infinity the sum is still −2.

Example 4.16. Let p(x) = 1 have grade 1, i.e., it has a simple infinite eigenvalue
with sign feature 0, and sign characteristic −1. Then any perturbation p̂(x) =
1 + ζ0 + ζ1x must have a real eigenvalue. Note that the product of the sign of
the perturbed eigenvalue and its sign characteristic must be −1, coherently with
Theorem 4.14.

Suppose now that we take the grade to be 2, then P has a double infinite
eigenvalue with sign feature 0. It can be removed from the compactification of
the real line by a degree 2 perturbation such as p̂(x) = 1 + ζx2, ζ > 0. The
reason why a degree 1, but grade 2, perturbation cannot remove it is that such a
perturbation must still have a simple infinite eigenvalue, and hence, a complex
conjugate pair of eigenvalues cannot be produced, i.e., it must also have another
large real eigenvalue, of opposite sign feature.
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Example 4.17. Let p(x) = x of grade 3, then it has a double infinite eigenvalue
with sign feature −1 and a simple zero eigenvalue with sign feature 1. However,
the perturbation p̂(x) = x+ ζx3 (ζ > 0) has only one real eigenvalue at 0 and the
double infinite eigenvalue has been removed from the compactification of the real
line, in spite of having nonzero sign feature, but coherently with Theorem 4.14.
Considering the grade to be 4, then originally there was a triple infinite eigenvalue,
with sign feature −1. In this case it is impossible to remove all the three eigenvalues
(counting multiplicity), although of course we may remove two of them while still
locally preserving the sum of sign features: this is precisely what happens with
p̂(x).

4.4 Coalescence of simple real eigenvalues
An application of the discussed theory is the analysis of two nearby simple
eigenvalues colliding at a point, in particular the question whether they can be
removed from the compactification of the real line. Let us analyze the situation
when the point is infinity. When the grade is even, infinity is not special at
all, so the rule is as usual, that they can be removed if and only if the sum of
their sign features, or, equivalently in this case, their sign characteristics is 0, as
prescribed by Theorem 4.13. For odd grade, we can apply the more complicated
Theorem 4.14 to obtain the following cases.

• If both eigenvalues are finite, large and having the same sign, then they can
be removed if and only if the sum of their sign characteristics is 0;

• If both eigenvalues are finite and large, one being positive and the other
being negative, then they can be removed if and only if the sum of their
sign characteristics is nonzero i.e. either 2 or −2;

• If one eigenvalue is infinite and the other is finite, large and positive, then
they can be removed if and only if the sum of their sign characteristics is 0;

• If one eigenvalue is infinite and the other is finite, large, and negative, then
they can be removed if and only if the sum of their sign characteristic is
nonzero, i.e., ±2.

Note that in this case it is the sign characteristics at infinity, and not the sign
feature, that determines what happens. This is because with odd grade there is no
local conservation of the sign feature at infinity, and hence, one is forced to go to
the reversal, where the sign features at zero correspond to the sign characteristics
at zero.

Once again, the conclusion is that giving a simple local conservation law at
infinity is not possible. One must either always see things as even grade, or
alternatively, rely heavily on Theorems 2.4 and 2.5.
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5 Conclusions
We have studied a systematic extension of the definition of sign characteristic for
Hermitian matrix polynomials to the eigenvalue ∞. The goal was to achieve a
concept that is uniform with the one for finite eigenvalues and that stays valid
under small perturbations. For matrix polynomials of even grade (degree) we have
realized this goal, while for odd grade we have argued that the task seems to be not
possible, except if one resorts to increasing the grade to an even number. We have
studied the change of sign characteristics under analytic reparametrizations and
multiplication by scalar functions, and we have shown a sign constraint theorem
and studied the invariance of this result under perturbations.
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