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CHAPTER 1

INTRODUCTION

Directly modulated lasers (DML) have the advantage of low costs,
a small form factor and low power consumption compared to ex-
ternally modulated lasers. Therefore, directly modulated lasers
are widely used in metro systems at the OC-48 rate (2.488 Gb/s)
and below. However, at higher data rates in the conventional
wavelength range of metro networks (1550 nm), chromatic disper-
sion limits the maximum transmission distance of conventional
non return–to–zero (NRZ) modulated lasers to about 20 km. The
reason for this transmission limit is the laser chirp, which leads to
a strong broadening of the optical spectrum if the laser is modu-
lated. A few techniques such as dispersion supported transmission
(DST) [1] and the chirp managed laser (CML) [2] exist to overcome
this inherent transmission limit and allow transmission distances
of up to 250 km standard single mode fiber (SSMF).

For externally modulated lasers the standard technique to com-
pensate the effect of chromatic dispersion is the optical dispersion
compensation (ODC). Dispersion compensating fibers (DCF) are
used after a certain transmission length over SSMF, to compen-

1



1. Introduction

sate the accumulated fiber dispersion. Due to the losses in disper-
sion compensating fibers, additional fiber amplifiers are necessary,
which results in high costs.

Another approach to compensate chromatic dispersion in vec-
tor modulated transmission systems is the electronic predistortion
(EPD) [3, 4], where the dispersion compensation is done not in
the optical, but in the electrical domain. The idea of this tech-
nique is to imaginarily propagate a desired signal at the receiver
backwards through the fiber to the transmitter. A signal that is
predistorted in this way and modulated at the transmitter may not
be detectable in a back tot back case, but after the desired trans-
mission length. Without any optical dispersion compensation, the
predistorted signal may be transmitted over several thousand kilo-
meters [3].

In this work the electronic predistortion technique will be adopted
to a directly modulated laser system with the intention to over-
come the dispersion limit of a directly modulated laser system.
Even if the concept is the same, the implementation will be com-
pletely different, because direct modulation of a laser cannot mod-
ulate its optical intensity and optical phase independently, as it
is done with an IQ–modulator. The aim of the work is basically
to outperform existing transmission approaches for directly mod-
ulated lasers as dispersion supported transmission and the chirp
managed laser and thus to make directly modulated lasers appli-
cable for transmission systems which are so far reserved for exter-
nally modulated lasers. In order to achieve this, conventional and
less conventional approaches in the field of electronic predistortion
are studied.

The work is structured as follows: In Chapter 2 the laser diode
as a key component of the transmission system is introduced. Be-
side the general theoretical background of laser diodes, also the
modulation characteristics of the laser diode used in this work
are presented. Chapter 3 describes physical effects in optical
fibers, with emphasis on chromatic dispersion. Chapter 4 gives
an overview over existing modulation formats for directly modu-
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lated lasers. Beside the standard non return–to–zero modulation
format, also more advanced modulation formats such as dispersion
supported transmission and the chirp managed laser are reviewed.
In Chapter 5 mainly three different approaches for electronic pre-
distortion of directly modulated lasers are discussed: An analyt-
ical model, based on a small–signal approximation of the fiber
transfer function and the laser modulation characteristic, a finite
impulse response (FIR) filter based predistortion and a technique
that uses artificial neural networks to obtain the signal predistor-
tion. In Chapter 6 the most promising predistortion technique in
this work is combined with signal equalization techniques at the
receiver like maximum likelihood sequence estimation (MLSE) or
a feed forward / decision feedback filter (FFE/DFE).

3



1. Introduction

4



CHAPTER 2

LASER DIODES

In optical communication systems, light is used to transmit data
signals. Thus, an optoelectronic device to emit this light and a
modulator to imprint the telecommunication data onto the light
are needed. A laser diode fulfills both requirements as it can
directly modulate the light.

2.1. Basic Concept

The concept of a laser1 is mainly based on the effect of the stim-
ulated emission of light. In contrast to the spontaneous emission,
a previously excited electron returns to the ground state not ran-
domly, but due to an incident photon while emitting a photon.
The emitted photon has the same energy W and the same propa-
gation characteristic as the incident photon. To obtain laser oper-
ation population inversion is required. This means the occupation
probability of the conduction band is higher than the occupation

1Light Amplification by Stimulated Emission of Radiation
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2. Laser Diodes

probability of the valance band. At the p-n junction, which is a
connection of a p-type and an n-type semiconductor, a population
inversion can be obtained with an externally applied forward bias
voltage that leads to an electrical current due to carrier diffusion.
When the carrier density exceeds the transparency carrier density
N0, the optical power will be amplified. The power amplification
can be written as a differential equation:

dP

dz
= P · gst (2.1)

with gst being the gain coefficient due to stimulated emission and
P the optical power. The stimulated gain depends on the injected
carrier density N and the photon energy W = hν. It can be
linearized related to the carrier density N [5]:

gst = a(N −N0) (2.2)

where a is called differential gain or cross section. However, the
active layer in double heterostructure laser is relatively thin and
the optical field is only partially confined to the active layer. This
is characterized with the confinement factor Γ and the relation:
g = gst · Γ.

In addition to the stimulated emission, there is another impor-
tant concept for the laser: The optical feedback, which can be
provided by a Fabry–Perot (FP) cavity (that is why this laser is
called a Fabry–Perot laser). With assumed reflectivities R1, R2

of two mirrors that form the cavity, the normalized optical power
of the signal after one round trip can be described as (see Figure
2.1):

P = P0 exp(gstLd)
√
R1R2 exp(−αintLd) (2.3)

The first term represents the laser gain (in which Ld the laser
length), the second term represents the mirror losses and the third

6



2.1. Basic Concept

z

P(z)

R2R1

LD0

P (z) = P0 e(gstz−αintz)

Figure 2.1.: Optical power P of the electromagnetic wave inside
the laser cavity

term describes internal losses like scattering and free carrier ab-
sorption (with αint being internal losses).

In steady–state, the laser gain is the same as the laser losses
and with (2.3) follows:

gst(Nth) = αint +
1

2L
ln
(

1
R1R2

)
=

1
vgτp

(2.4)

with the threshold carrier density denoted by Nth, the photon life-
time τp and the group velocity of the light vg. This condition is
also called the lasing condition.

In telecommunication applications, the distributed feedback laser
(DFB) is more common than the Fabry–Perot laser described here.
In distributed feedback lasers, a refractive index grating close to
the active region provides an optical feedback and thus, no mir-
rors as in the Fabry–Perot laser are necessary. But even if the
concept of the distributed feedback laser differs from the concept
of a Fabry–Perot laser, the following description is also valid for
the distributed feedback laser.
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2. Laser Diodes

2.2. Modulation Characteristics

In order to describe the small signal modulation characteristics of
a laser diode, it is necessary to study the laser rate equation for
the photon number S and the carrier density N [5, 6]:

dS

dt
=
S

τp
(G− 1) +Rsp (2.5a)

dN

dt
=

I

eV
−R(N)− GS

τpV
. (2.5b)

In these equations, the normalized gain G = vgΓτpgst, the recom-
bination rate of the carrier R(N), the spontaneous emission rate
Rsp and the injection current I were introduced. V represents the
active volume and e the elementary charge.

To analyze the small signal modulation characteristics it is ap-
propriate to consider a sinusoidal modulation of the injection cur-
rent I around the mean current I0:

I(t) = I0 + <(∆I · exp(jωt)) (2.6)

with angular modulation frequency ω, the time t and a considered
small modulation amplitude |∆I| � I0. Following this approach,
also the photon number S and the carrier density N become sinu-
soidal with mean values S0, N0 and their modulation amplitude
|∆S| � S0, |∆N | � N0:

S(t) = S0 + <(∆S · exp(jωt)) (2.7a)
N(t) = N0 + <(∆N · exp(jωt)). (2.7b)

Before the rate equations can be linearized, some approximations
have to be done. At a high photon density in the active region,
gain compression has to be considered, thus the gain compression
factor related to the photon number κs for the nonlinear gain is
introduced:

G(N,S) = Gl (1− κSS) (2.8)
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2.2. Modulation Characteristics

where Gl relates to the linear gain. Here, it is appropriate to
expand the nonlinear gain (2.8) using the Taylor series:

G ≈ G(N0, S0) +
∂G

∂N
∆N +

∂G

∂S
∆S (2.9)

≈ 1 +
∂G

∂N
∆N − κS∆S. (2.10)

Neglecting the spontaneous emission Rsp in steady state, the rate
equation for the photon number (2.5a) can be linearized:

jωτp ∆S = S0

(
∂G

∂N
∆N − κS∆S

)
. (2.11)

In order to linearize the rate equation of the carrier (2.5b) as well,
the recombination rate R(N) will be expanded around the mean
value of the carrier density N0:

R(N) = R(N0) +
dR

dN
∆N (2.12)

=
I0
eV
− GS0

τpV
+

∆N
τe

. (2.13)

Where τe represents the carrier lifetime. Thus, a linearized rate
equation for the carrier can be obtained:

jω ∆N =
∆I
eV
− ∆N

τe
− S0

τpV

(
∂G

∂N
∆N − κS∆S

)
. (2.14)

Solving (2.14) for ∆N and then inserting in (2.11) yields the rela-
tion between the modulation current ∆I and the modulated pho-
ton number ∆S (with use of the relation (κSτp)/τe � (∂G/∂N)/V )

∆S
∆I

=
τp
e
·HLD(jω) (2.15)

=
τp
e

1(
jω
ωr

)2

+ jω
ωd

+ 1
(2.16)
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Figure 2.2.: Small signal laser modulation characteristic in rela-
tion to the laser bias current Ibias. The theoretical
results (a) are based on laser parameters that are used
throughout this work (see Appendix A), while the ex-
perimental results (b) are from Morton et al. [7].

where ωr denotes the circular relaxation resonance frequency

ωr =
1
τp

√
∂G

∂N

S0

V
, (2.17)

and ωd the damping frequency

1
ωd

=
K

(2π)2
+

1
τeω2

r

. (2.18)

K is a constant independent of the operating, also known as the
“modulation K–factor”:

K

(2π)2
= τp +

κSτpV

(∂G)/(∂N)
(2.19)

In Figure 2.2, theoretical and measured laser transfer functions
in relation to the laser bias current Ibias are shown. The theoret-
ical transfer functions (Fig. 2.2a) are based on laser parameters
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2.2. Modulation Characteristics

used throughout this work (for detailed parameters see Appendix
A). As indicated by (2.17), the relaxation frequency ωr depends,
among other things, on the mean photon number in the active re-
gion and therefore can be controlled by the bias current Ibias = I0.
For a bias current Ibias = 43 mA as used in Chapter 4.1 to modu-
late a non return–to–zero (NRZ) modulation, the 3 dB bandwidth
of the laser is about 9 GHz. A lower bias current Ibias leads to a
lower bandwidth. The measured transfer function is from Morton
et al. [7] and represents a 1.55µm GaInAsP multiquantum–well
laser with a 3 dB bandwidth of 25 GHz.

Another important aspect of directly modulated lasers is the
frequency modulation. Any modulation of the injection current
yields to a variation of the carrier density, which leads to a vari-
ation of the refractive index and therefore a modulation of the
emission frequency.

As for the intensity modulation, for the latter analysis in Chap-
ter 5.1 it is convenient to derive a linearized small signal modula-
tion characteristic of the frequency modulation. For this purpose
the rate equation of the frequency is a good starting point [5]:

(ν − νth) =
α

2π

(
d(lnS)
dt

+
1
τp

[
κSS −

nsp
S

])
(2.20)

with the laser chirp factor (linewidth enhancement factor) α and
(ν − νth) being the frequency shift of the optical signal. nsp =
Rsp/Rst with Rst the stimulated emission rate, is the inversion
factor Based on this equation, the spectral broadening due to the
laser modulation can be described. The first term in (2.20) is
also called the transient chirp, while the second term is called
the adiabatic chirp. As will be described later (Chapter 3), this
broadening of the optical laser spectrum results in a reduced trans-
mission reach of the optical signal due to pulse spreading induced
by chromatic dispersion. Therefore, in standard transmission sys-
tems using a directly modulated laser, the chirp factor α should
be as low as possible.

11



2. Laser Diodes

For a small signal approach, the frequency modulation may be
written as a sinusoidal signal:

ν = ν0 + < (∆ν · exp(jωt)) . (2.21)

Assuming S0 � ∆S, from (2.21) and (2.20) follows:

∆ν
∆S

=
α

4πS0
(jω + ωg) (2.22)

with the characteristic frequency

ωg =
κS
τp
S0 +

nsp
S0τp

. (2.23)

With equations (2.11),(2.14),(2.22), it is possible to calculate
the required injection current for a given frequency or intensity
modulation of a laser. In Chapter 5, these equations will be used
to generate a predistorted small signal to mitigate the chromatic
dispersion.

In Figure 2.3 a optical eye diagram (2.3a) and the correspond-
ing optical power and frequency modulation (2.3b) of the laser
used throughout this work is shown. The laser bias current is
Ibias = 32 mA and the laser modulation current is Imod = 19 mA.
In Figure 2.2a it can be seen, that the laser bandwidth at this bias
current Ibias is about 8 GHz. Due to the high modulation current
and thus the low level of the current for the a zero bit (which is
near laser threshold current Ith ≈ 10.6 mA), the eye diagram of
the laser signal shows significant overshoots.
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Figure 2.3.: Typical signal of the used directly modulated
laser,with Ibias = 32 mA and Imod = 19 mA.
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CHAPTER 3

TRANSMISSION IMPAIRMENTS IN
OPTICAL FIBERS

3.1. Overview

In this Chapter, optical fibers and the signal propagation in optical
fibers are reviewed. In particular, the linear effect of the chromatic
dispersion is explained, as it is the purpose of this work to present
a technique to compensate it. Nonlinear effects are only briefly in-
troduced, as there are less important for single wavelength system
with transmission distances of about 100 km to 300 km.

The simplest optical fiber consists of a cylindrical core of silica
glass with a refractive index n1 and a surrounding cladding with
a lower refractive index n2 than the core (Figure 3.1). This type
of fiber is called step–index fiber. With appropriate values for n1

and n2 with respect to the core diameter a the fiber supports only
one mode and is called single mode fiber (SMF) [8]. Such fibers
are typically used in optical transmission systems.

15
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core

cladding

n
1

n
2 
< n

2

Figure 3.1.: Schematical drawing of a step–index fiber. Not true
to scale.

3.2. Optical Losses

Fiber loss is one of the limiting factors in optical transmission
systems. At least a minimum amount of power at the receiver is
necessary to recover the signal. Changes in the average optical
power P of a signal propagating inside a fiber, can be described
with the following differential equation:

dP

dz
= −αfP (3.1)

where αf is the attenuation coefficient of the fiber. With Pin
being the launch power into the fiber the output power Pout at
fiber length L is given as:

Pout = Pin · e−αfL (3.2)

The fiber loss parameter is commonly expressed in units of dB/km:

αf [dB/km] = −10
L

log10

(
Pout
Pin

)
[1/km] ≈ 4.343 · αf [1/km] (3.3)

The fiber loss is typicaly caused by two processes: material
absorption and Rayleigh scattering. The reason for material ab-
sorption are resonances of electrons or molecules induced by the
incident light. For silica (SiO2) the electronic resonance occurs at

16



3.3. Chromatic Dispersion

wavelengths below 0.4µm (ultraviolet light), whereas the molec-
ular resonance occurs in the infrared region at wavelengths above
7µm. But even if the commonly used wavelength in optical trans-
mission systems is typically between 1.3µm and 1.6µm and there-
fore not in the mentioned regions of resonances, the resonance
tails extend into the used wavelength region and attenuate the
propagating light (see Figure 3.2). Beside these intrinsic absorp-
tion processes, there are also extrinsic absorption processes due to
fiber impurities. In particular, the OH impurities result in a sig-
nificant absorption at 1.39µm. Recently so called low water peak
fibers were introduced [9], where attenuation due to the resonance
of the OH–ion is considerably reduced.

Rayleigh scattering is based on density fluctuation in fused sil-
ica. The resulting fluctuations in the refractive index cause light
scattering in all directions. The fiber loss due to Rayleigh scat-
tering is [10]:

αs =
1
λ4
· 0.7 · · · 0.9 dB

km
µm4 (3.4)

depending on the constituents of the fiber.

3.3. Chromatic Dispersion

Based on the Maxwell equations, the propagation of light in an
optical fiber may be written as [10]:

∇×∇× ~E = − 1
c2
∂2 ~E

∂t2
− µ0

∂2 ~P

∂t2
(3.5)

where µ0 is the vacuum permeability, c = 1/
√
µ0ε0 is the speed of

light in vacuum and ε0 is the vacuum permittivity, ~E is the electric
field vector and ~P is the polarization induced by the electric field.
In general, the polarization ~P is nonlinear in the electric field ~E,
but in a first step it is sufficient to consider a linear polarization

17



3. Transmission Impairments In Optical Fibers

Figure 3.2.: Wavelength depending fiber loss (αUV – ultraviolet
absorption, αIR – infrared absorption, αs – Rayleigh
scattering, αOH – absorption due to OH impurities,
αtot – total fiber loss).

~P = ~PL:

~PL(~r, t) = ε

∞∫
−∞

χ(t− t′) · ~E(~r, t′) dt′, (3.6)

with the linear susceptibility χ, which in general is a second–rank
tensor that can be reduced to a scalar for an isotropic medium
such as silica glass and a position vector ~r. Now, the frequency
dependent dielectric constant ε(ω) can be introduced:

ε(ω) = 1 + χ(ω), (3.7)

where χ(ω) is the Fourier transform of χ(t). In general, ε(ω) is a
complex value, where its real part is related to the refractive index
n and its imaginary part is related to the absorption α. Due to

18



3.3. Chromatic Dispersion

low optical losses in silica glass, ε(ω) can be assumed to be real,
which means ε(ω) = n2(ω). In case of a step index fiber, which
is commonly used for single mode fibers, the refractive index is
independent of the spatial coordinates in both the core and the
cladding of the fiber, respectively. Now, (3.5) and (3.6) can be
written in the frequency domain:

∇2 ~E + n1,2(ω)2k2
0
~E = 0. (3.8)

with the free space wave number k0 = ω/c = 2π/λ, the vac-
uum wavelength λ and the refractive indices for the core and the
cladding n1,2, respectively. ~E(~r, ω) is the Fourier transform of
~E(~r, t), defined as:

~E(~r, ω) =

∞∫
−∞

~E(~r, t) exp(−jωt)dt. (3.9)

For a weakly guiding fiber at single mode conditions, with a pulse
spectrum ∆ω that is assumed to be much narrower than the cen-
ter frequency ω0, i.e., ∆ω � ω0 the solution of (3.8) are two
independent, orthogonal polarizations of ~E:

~E(~r, ω) = F (x, y)E(0, ω) exp(−iβ(ω)z)
(
~ex
~ex

)
. (3.10)

Here, F (x, y) describes the transversal distribution of the electrical
field, which is independent of the spatial coordinate z. E(0, t) is
the initial field amplitude and β(ω) is the propagation constant. ~ex
and ~ey are unit vectors in the x and y direction, respectively. It is
common to express β(ω) with the Taylor series expansion around
the carrier frequency, i.e. the frequency of the unmodulated light
ω0:

β(ω) = β0 + (ω − ω0)β1 +
(ω − ω0)2

2
β2 +

(ω − ω0)3

6
β3 + · · ·(3.11)

with

βm =
(
dmβ

dωm

)
ω=ω0

(3.12)
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3. Transmission Impairments In Optical Fibers

where β0 is a constant phase shift, β1 = 1/vg = τ is the inverse
group velocity (or the group delay per length), β2 is the group
velocity dispersion (GVD) and β3 is the dispersion slope. The
change of the group velocity (described with β2, β3) leads to sig-
nificant pulse distortions, which limits the maximum transmission
distance in optical transmission systems. The common dispersion
parameter D in units of ps/(km nm) is defined as:

D =
d

dλ

(
1
vg

)
= −2πc

λ2
β2 (3.13)

and consists of two parts, the material dispersion (DM ) and the
waveguide dispersion (DW ):

D = DM +DW (3.14)

The material dispersion occurs due to the frequency dependence
of the refractive index n(ω) of silica. The origin of the frequency
dependence is the same process as the one being responsible fiber
attenuation [11, 10]: Characteristic resonance frequencies of the
material at which the electromagnetic radiation is absorbed. With
the Sellmeier equation the characteristic of the material dispersion
can be expressed [10].

In contrast, the waveguide dispersion depends on the charac-
teristic of the waveguide. Parameters like the core diameter, the
difference of the refractive indices or the refractive index profile
can significantly change the total dispersion D (see Figure 3.3).
This means, depending on the fiber profile, it is possible to obtain
a positive, negative or even a fiber with zero dispersion at a given
wavelength. Also fibers with a flattened dispersion profile are de-
signed having a constant dispersion over a relatively wide range
from 1.3 to 1.6µm [8].

To analyze the signal propagation in a dispersive fiber, it is
common to separate the field of the slowly varying envelop A(z, t)
from the field E(z, t):

E(z, t) = A(z, t) exp (−jβ0z + jω0t) , (3.15)
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3.3. Chromatic Dispersion

Figure 3.3.: Wavelength dependency of the total dispersion D and
their relative contributors, material dispersion DM

and waveguide dispersion DW for a standard single
mode fiber. λZD – zeros dispersion wavelength (from
[8]).

Due to the fact that the group delay is mainly given by τz, the
retarded time T = t−τz can be introduced. Thus, with respect to
dT = dt and ∆ω = ω−ω0, the Fourier transform of the amplitude
A(z, t) is:

A(z,∆ω) =

∞∫
−∞

A(z, T + τz) exp(−j∆ωT ) dT (3.16)

= exp(j∆ω τz)

∞∫
−∞

A(z, t) exp(−j∆ωt) dt (3.17)

Because the lateral field distribution is independent of the spatial
coordinate z, the one dimensional signal propagation inside a fiber
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3. Transmission Impairments In Optical Fibers

can be given by (compare (3.10) and (3.11)):

E(z, ω) = E(0, ω) exp(−jβ0z − jβ1∆ωz − j/2β2∆ω2z). (3.18)

Taking (3.15) and (3.18) and considering that A(0,∆ω) = E(0, ω),
(3.17) can be rewritten as:

A(z,∆ω) = A(0,∆ω) exp(− j
2
β2∆ω2z), (3.19)

which is a solution of the following differential equation in the
time domain:

∂A(z, T )
∂z

=
j

2
β2
∂2A(z, T )
∂T 2

. (3.20)

Here, A is assumed to be normalized such that the optical power
is |A|2. This simple differential equation describes the pulse prop-
agation in a dispersive fiber, taking only chromatic dispersion into
account.

3.3.1. Chirped Gaussian Pulse

The broadening of a chirped pulse, and thus the transmission
limit, depends on the chirp factor α and the chromatic disper-
sion β2 of the transmission fiber. Based on the following analyt-
ical description of the pulse broadening of a Gaussian pulse, the
maximum transmission distance of a directly modulated laser will
be approximated. Additionally, different reported approaches to
overcome the dispersion limit for a chirped signals will be dis-
cussed analytically.

An initial Gaussian pulse may be described as follows:

A(z = 0, T ) =
√
P0 exp

(
−1

2

(
T

T0

)2

+ jφ(T )

)
, (3.21)

where P0 is the optical power and T0 is the half–width of the
optical power at the point 1/e, which is related to the full–width
half–maximum TFWHM = 2

√
ln(2) · T0.
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3.3. Chromatic Dispersion
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Figure 3.4.: Broadening of a chirped Gaussian pulse with β2 < 0
(SSMF). A negative chirp α < 0 results first in a
narrower pulse shape that becomes broader after a
specific transmission length. In case of a fiber with
β2 > 0, the same curves are obtained with a inverse
sign of the chirp α.

Every intensity modulation of a directly modulated laser leads
to a frequency modulation of the optical signal, as described in
section 2.2. Considering only a transient chirp (see (2.20)), the
phase modulation of the Gaussian pulse can be written as:

φ(T ) = −α
2

(
T

T0

)2

(3.22)

Using (3.20), the pulse after transmitting over a fiber with the
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3. Transmission Impairments In Optical Fibers

length z can be described as [10]:

A(z, T ) =
A0√

1 + (α− j)(β2z/T 2
0 )

· exp
(
−1 + iα

2
T 2

1 + (α− j)(β2z/T 2
0 )

)
(3.23)

This means, the initial Gaussian pulse remains Gaussian, even
with an initially modulated optical phase. Therefore, it is useful
to describe the broadening of the pulse shape with respect to the
initial pulse width T0 [12]:

T1

T0
=

√(
1± α z

LD

)2

+
(

z

LD

)2

(3.24)

with the half–width (at the power point 1/e) of the broadened
pulse T1 and the dispersion length LD = T 2

0 /|β2|, where an ini-
tially unchirped pulse is broadened by the factor

√
2. The ± sign

becomes positive if β2 < 0 and negative if β2 > 0.
In case of a 10 Gbit/s signal the full–width half–maximum at

the transmitter may be TFWHM = 60 ps and thus the dispersion
length LD ≈ 63 km (with D = 16 ps

km nm ). The same pulse with
chirp α = 2 is already broadened by the factor

√
2 after z = 0.2 ·

LD ≈ 13 km. This means that the maximum transmission length
for the directly modulated laser signal is 5 times shorter than
for an unchirped signal. In practice a directly modulated laser
does not generate a Gaussian pulse and the frequency modulation
consists not only of a transient chirp, but the analysis is still a good
approximation of the possible transmission length of a chirped
signal as it will be shown in section 4.1.

The behavior of a signal with a negative chirp (α < 0), which
can not be generated with a directly modulated laser, is quite dif-
ferent. As shown in Figure 3.4, a pulse with a chirp α = −2 first
becomes narrower before it broadens. After a transmission length
z = LD, it is broadened to the same width as an unchirped pulse.
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3.4. Kerr Effect
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Figure 3.5.: The curve shows the relative transmission length
z/LD, at which the signal is broadened by a factor√

2 as a function of chirp α for β2 < 0. For β2 > 0
the curve is mirrored at α = 0.

In Figure 3.5 it is shown that a pulse with a chirp α ≈ −0.7 can im-
prove the maximum transmission length by a factor 1.4 compared
to an unchirped pulse. Because the chirp of a directly modulated
laser is always positive, other modulators [13] or modulation tech-
niques have to be used [14, 15] to improve the dispersion limited
transmission length with a standard single mode fiber (SSMF)
where β2 < 0.

As can be seen in (3.24), if β2 > 0 and the chirp α < 0 the
behavior of a Gaussian pulse is the same as with β2 < 0 and α > 0.
Thus, using fibers like Cornings MetroCore with a dispersion β2 >
0 leads to much larger transmission distances even for directly
modulated laser signals at a wavelength of 1550 nm [16, 17, 18].

3.4. Kerr Effect

The main subject of this work is the precompensation of chromatic
dispersion. But to study the behavior of a predistorted signal in
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3. Transmission Impairments In Optical Fibers

a typical transmission system, the impact of fiber nonlinearities
will be considered in section 5.3.4. Therefore, the Kerr effect will
be briefly introduced.

In section 3.3 the polarization ~P was assumed to be linear. In
reality, all materials show a nonlinear behavior at high power den-
sities. It is common to define a nonlinear refraction index n′1,2 for
the core and the cladding, respectively[10]:

n′1,2 = n1,2 + n2(P/Aeff ). (3.25)

Here, n1,2 represents the linear part and n2 the nonlinear part
of the refractive index, Aeff is the effective mode area and P is
the optical power. In fact, the nonlinearity in silica is relatively
small, but due to the high power density in the fiber and the
long fiber length, the Kerr effect becomes relatively important
for optical transmission systems. A very common description of
the nonlinearities in optical fibers is the nonlinear Schrödinger
equation [10]:

∂A(z, T )
∂z

= j
β2

2
∂2A(z, T )
∂T 2

− αf
2
A(z, T )− jγ|A(z, T )|2A(z, T ) (3.26)

with the nonlinear coefficient γ:

γ =
n2ω0

cAeff
(3.27)

The nonlinear Schrödinger equation (3.27) also includes the effect
of chromatic dispersion as described in (3.20). Due to fiber loss,
the optical power of a signal decreases while propagating in a
fiber and thus the nonlinear effect becomes less important with
increasing propagating length. Hence, it is useful to introduce the
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3.4. Kerr Effect

effective length Leff

Leff =

L∫
0

exp(−αfz)dz (3.28)

=
1− exp(−αfL)

αf
, (3.29)

after which the influence of the nonlinearity of the signal can be
neglected. The Kerr effects can be divided mainly into three parts:

• Self Phase Modulation (SPM),

• Cross Phase Modulation (XPM) and

• Four Wave Mixing (FWM).

While XPM and FWM are mainly mportant for long–haul wave-
length division multiplexing (WDM) systems, SPM influences also
single channel systems and thus, it will be discussed briefly.

3.4.1. Self Phase Modulation

Unlike the chromatic dispersion, SPM itself only changes the phase
of the signal and not the pulse shape. The propagation constant
becomes power dependent and can be written as:

β′ = β +
k0n2

Aeff
|A|2 = β + γ|A|2. (3.30)

The induced phase shift may be written as:

∆φSPM =

L∫
0

(β′ − β) dz =

L∫
0

γPin exp(−αz)dz = γPinLeff .

(3.31)

This means, any variation of the optical power in time leads to
a phase modulation and thus a frequency modulation as shown in
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3. Transmission Impairments In Optical Fibers

Figure 3.6.: Phase shift φNL = φSPM induced by SPM and the
resulting frequency modulation δω for a Gaussian
(dashed line) and a super–Gaussian pulse (solid line)
(from [10]).

Figure 3.6. In presence of dispersion, the SPM induced phase shift
leads to FM–AM conversion1 and thus influences the transmission
behavior of a transmission signal.

1frequency modulation – amplitude modulation conversion
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CHAPTER 4

MODULATION FORMATS FOR
DIRECTLY MODULATED LASERS

Before different approaches are studied in Chapter 5 to predistort
the chromatic dispersion, different modulation techniques for a di-
rectly modulated laser are presented. The purpose is to compare
already known modulation techniques for a directly modulated
laser in terms of maximum achievable transmission distance and
complexity. In Chapter 5, these modulation techniques will also
be compared to the precompensation technique that will be intro-
duced later.

Using a directly modulated laser is the easiest way to imprint
data on an optical carrier. Here, the data is modulated onto the
laser injection current and the resulting modulation format is a
binary intensity modulation, also called On–Off–Keying (OOK).
Directly modulated lasers at 1550 nm are widespread for optical
transmission systems with data rates up to OC–48 (2.488 Gbit/s),
as they meet the demands for a low cost system. However, taking
the step to higher data rates like OC–192 (9.953 Gbit/s), the chirp
induced by the directly modulated laser makes it more difficult to
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4. Modulation Formats For Directly Modulated Lasers

achieve high transmission distances. Therefore different modula-
tion techniques are reported for 10 Gbit/s directly modulated laser
systems.

4.1. Non Return–to–Zero

DML
SSMF (linear)

D = 16 ps/km/nm

101... NRZ driver

AWGN

Rx

|!|2

OBP (Gaussian

2nd order, 20 GHz)

ELP (Bessel,

5th order, 5 GHz)

Figure 4.1.: Simulation setup for a directly modulated laser trans-
mission system. For the used laser parameters see
Appendix A.

The most common OOK modulation format for directly mod-
ulated laser is the non–return–to–zero (NRZ) modulation format.
Here, a binary bit–sequence of “0” and “1” is directly imprinted
in the optical intensity whereas between two adjacent “1” the sig-
nal does not return to zero level as with the return–to–zero (RZ)
format[19].

The simulation setup used to study the system behavior of the
NRZ format is schematically shown in Figure 4.1. The laser driver
(and a bias–T) adds a modulation Imod and a bias Ibias current
to the NRZ modulated binary bit sequence to obtain a laser in-
jection current. The bit sequence is a de Bruijn bit sequence with
210 bit [20]. The modulated optical signal, generated by the laser,
is then transmitted over a linear SSMF (nonlinearities of the fiber
are neglected) with a dispersion parameter D = 16 ps/(km nm).
In order to calculate the bit error ratio (BER) for a given opti-
cal signal to noise ratio (OSNR), white Gaussian noise is added
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4.1. Non Return–to–Zero
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Figure 4.2.: Contour plot of the (logarithmic) BER for different
bias and modulation (amplitude) currents of the laser
injection current with a laser chirp α = 2 (OSNR =
12 dB) in a back–to–back transmission scenario.

(AWGN) to the transmitted optical signal. The receiver consists
of an optical 2nd order Gaussian bandpass (OBP) with a band-
width of 20 GHz, an ideal photodiode and an electrical 5th order
Bessel lowpass (ELP) with a cut–off frequency of 5 GHz. The
maximum of the transfer function of the OBP matches with the
center frequency of the unmodulated (CW) laser signal. The BER
at the receiver is calculated using the Monte Carlo method with
at least 40 counted errors. In principle, this setup is used for any
simulation throughout this work with only a varying laser chirp
parameter α.

As described in Chapter 2, the modulation characteristics and
thus the BER for a given ONSR of the laser depend on the mean
injection current. Figure 4.2 shows the dependence of the BER of
the laser signal (back–to–back) from the bias Ibias and the mod-
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Figure 4.3.: Transmission behavior and optical power spectrum of
an NRZ signal. The bias and modulation current are
optimized for each laser chirp α for the back–to–back
signal .
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4.1. Non Return–to–Zero

ulation current Imod. The laser parameters that are used for the
results in Figure 4.2 can be found in Appendix A and are used
throughout this work with only a varying chirp parameter α (here
α = 2). The results show, that the bias and modulation current
have to be optimized (e.g. in a brute force manner) even for a
back–to–back transmission in order to obtain an optimal BER.

Additionally, the maximum transmission length of a directly
modulated laser signal is limited by the laser chirp (see section
3.3.1), and thus by the width of the optical spectrum. This means
for a NRZ modulated signal: The larger the laser chirp α, the
shorter the maximum transmission length of the signal. In Fig-
ure 4.3 the transmission behavior and the optical power spectrum
of three laser signals with different chirp factors α = 1, 2, 3 are
shown. The bias and modulation current of the signals are opti-
mized for the BER of the back–to–back signal and are shown in
table 4.1.

chirp α bias [mA] modulation [mA]

1 43 30
2 32 19
3 31 16

Table 4.1.: Optimized bias and modulation currents (amplitude)
of the laser driver for the back–to–back signal of dif-
ferent laser chirps

As can be seen in Figure 4.3a, the maximum transmission length
(with a required OSNR ≈ 20 dB) for a typical laser laser chirp of
α = 2 · · · 3 is between 20 km and 30 km. The corresponding optical
power spectra are shown in Figure 4.3b. Depending on the chirp
factor α, the spectral width is between 7.2 GHz for α = 1 and
12.6 GHz for α = 3. The spectral width is defined as the two sided
standard deviation (2σ) of the optical spectrum. The difference in
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4. Modulation Formats For Directly Modulated Lasers

the required OSNR for the back–to–back signal results from the
relatively small optical band–pass that is used for the simulations.
While the waveform of the low chirp signals (α ≤ 1 ) stays almost
unchanged, the signals with a high chirp change due to a wider
optical spectrum.

An even more restricted experimental result for the maximum
transmission distance is published by Morton et al. [21]. Using a
low chirp directly modulated laser (α ≈ 1), an error free transmis-
sion over 18.5 km SSMF was shown. In order to reduce the laser
induced signal chirp, and thus to narrow the optical spectrum, it
is reasonable to increase the laser bias current. As Mohrdiek et al.
[22] have shown, a prior back–to-back optimized laser signal can
enhance the maximal transmission distance by a factor of four if
the bias and the modulation current is adapted.

4.2. Dispersion Supported Transmission
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Figure 4.4.: Principle of dispersion supported transmission

To overcome the dispersion limit for directly modulated lasers
Wedding et al. [23, 1] proposed the dispersion supported transmis-
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4.2. Dispersion Supported Transmission

transmission low pass filter
distance [km] bias [mA] modulation [mA] bandwidth [GHz]

50 52 24 4
120 48 18 2
200 37 14 2
240 34 13 2

Table 4.2.: Optimized bias and modulation (amplitude) currents
of the laser driver and low pass filter bandwidth for the
dispersion supported transmission for different trans-
mission distances. Laser chirp α = 2.

sion (DST). The main concept of the dispersion supported trans-
mission is the conversion of the laser induced frequency modula-
tion into an amplitude modulation of the signal by the dispersion
of the transmission fiber.

The concept is shown in Figure 4.4. Assuming only an adia-
batic chirp, the pulse shape of the frequency modulation is the
same as the amplitude modulation. This means the pulse shape
of the “1” symbol has a higher amplitude with a higher frequency
than the pulse shape of the “0” symbol (Figure 4.4a). Because
of chromatic dispersion in the transmission fiber and the chirp of
the signal, the corresponding pulse shape for the “1” symbol is
propagating faster inside the fiber than the “0” pulse shape (Fig-
ure 4.4b). Thus the initially NRZ modulated signal becomes a
differential signal, which needs an integrator to be demodulated.
After direct detection of the signal, a first order low–pass filter as
an integrator and a decision unit are used to recover the original
data signal. Depending on the laser parameters such as the chirp,
and the transmission distance, the operating point (i.e. laser bias
and modulation current) and the electrical receiver filter have to
be optimized. This means, transmitter and receiver have to be
adjusted for every transmission distance.
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Figure 4.5.: The dispersion supported transmission expands the
dispersion limited transmission length by a factor of
ten. The chirp factor is α = 2 and nonlinear effects
are neglected.

The system parameters used to numerically analyze the disper-
sion supported transmission are the same as in section 4.1. The
only difference is the first order electrical low–pass filter at the
receiver. The chirp factor is α = 2 and fiber nonlinearities are
neglected. The optimized bias and modulation currents and the
bandwidth of the low pass filter are given in table 4.2 for different
transmission distances.

The simulation results in figure 4.5 show that the dispersion
supported transmission expands the transmission limit by a factor
of ten, compared to the back–to–back optimized standard NRZ
modulation. In the range from 0 km to about 40 km, the dispersion
supported transmission shows a similar system performance as a
standard NRZ directly modulated laser signal. In the range from
40 km to about 200 km, the FM–AM conversion, induced by the
chromatic dispersion of the transmission fiber, leads to a decrease
of the required OSNR. After 200 km transmission distance, the
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Figure 4.6.: Optical power spectrum of different DST signals.

required OSNR increases again. The range behind 40 km is called
the dispersion supported transmission range [23].

Figure 4.6 shows the optical power spectrum of different dis-
persion supported transmission signals. The spectral width (2σ)
of the dispersion supported transmission signal for 50 km is about
the same as for the NRZ signal (see section 4.1). With growing
transmission distance, the spectral width of dispersion supported
transmission signals becomes narrower. For 260 km transmission
distance, the spectral width of the dispersion supported transmis-
sion signal is only about 5.8 GHz, which leads to a much higher
dispersion tolerance. This means that the enhanced transmis-
sion distance of the dispersion supported transmission may also
be explained by the narrow optical power spectrum of optimized
dispersion supported transmission signals.

In addition to the binary dispersion supported transmission for-
mat, also multi–level dispersion supported transmission formats
for data rates of 20 Gbit/s and 40 Gbit/s are published [24, 25].
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4. Modulation Formats For Directly Modulated Lasers

In comparison to the standard NRZ modulation, the disper-
sion supported transmission significantly extends the transmission
length of a directly modulated laser without additional optical or
electrical components1, but with the disadvantage of having to
adjust the transmitter and the receiver for every different trans-
mission distance.

4.3. Chirp Managed Laser

Another approach to enhance the transmission distance of di-
rectly modulated lasers is the commercially available chirp man-
aged laser (CML) [2, 26]. The dispersion tolerance of the CML
results mainly from a high extinction ratio and a relative narrow
optical spectrum.

Due to the distinct frequencies of the “0” and the “1” bit wave-
form of a directly modulated laser, the laser signal is filtered by the
edge of an optical filter or optical spectrum reshaper (OSR) (fig-
ure 4.7), such that the energy of a “0” bit is reduced and thus the
extinction ratio of the signal is increased. Compared to a common
directly modulated laser signal, the extinction can be significantly
increased, even if the laser is driven high above threshold with a
low modulation current. This also means that the bias and mod-
ulation current of the laser can be assigned in a way such that the
frequency modulation between a “0” and a “1” bit is about 5 GHz
and is dominated by adiabatic chirp. In case of a 100 ps bit length
(i.e. 10 Gbit/s data rate) the phase shift of two “1” bits separated
by an odd number of “0” bit is then:

∆φ101 = ∆ω101t = 2π · 5 GHz · 100 ps = π. (4.1)

Thus, the obtained modulation format is line–coded and it is very
similar to the optical duobinary (DB) modulation format [27]. In
presence of chromatic dispersion, the energy of the “1” bits is
spread into adjacent “0” bits and would normally close the eye.

1The electrical low pass may be realized with a different biased photodiode
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4.3. Chirp Managed Laser

But due to the destructive interference of the “1” bits separated
by an odd number of “0” bits, the eye remains open and can
be easily detected. Additionally, the chirp managed laser signal
has a suppressed carrier and the optical power spectrum has only
half the bandwidth of the standard externally modulated NRZ
modulation format [28]. A transmission distance of up to 250 km
(4200 ps/nm) without dispersion compensation at 10 Gbits with
4,8 dB penalty is published by Mahgerefteh [2].

As shown in figure 4.8, the chirp managed laser has a similar
dispersion tolerance like the dispersion supported transmission.
Additionally, the chirp managed laser is applicable to a transmis-
sion system without adjusting the transmitter and the receiver for
different transmission distances. But in contrast to the dispersion
supported transmission the chirp managed laser requires an op-
tical filter to reshape the complex waveform of the laser, which
makes the concept more complex.
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4. Modulation Formats For Directly Modulated Lasers

Figure 4.7.: Principle of operation of a chirp managed laser (from
[26]).Fig. 3 BER performance of CML for positive and negative dispersion

compared to BB sensitivity of externally modulated LiNbO3 transmitter

Fig. 4 Sensitivity penalty against fibre dispersion

x indicates sensitivity of externally modulated LiNbO3 transmitter for
comparison

Conclusions: We have demonstrated a chirp-managed directly modu-
lated transmitter for 250 km (4200 ps=nm) in SSMF uncompensated
applications without using EDC or any dispersion compensation
elements. The CMLTM also showed high tolerance to negative
dispersion (!2150 ps=nm).
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CHAPTER 5

ELECTRONIC PREDISTORTION
CONCEPTS

The standard technique to compensate the effect of chromatic
dispersion is the usege of dispersion compensating fibers (DCF).
These DCFs have a negative dispersion parameter D (i.e. β2 > 0)
and thus, the DCF is able to compensates the dispersion, accu-
mulated by transmission over fibers with positive dispersion (i.e.
β2 < 0) such as a SSMF.

The approach in this work deals with replacing the inline DCF
with electronic signal processing in the transmitter. Due to the
fact that the chromatic dispersion is a linear operation on the op-
tical field, it is possible to calculate a predistorted complex optical
field Ain that compensates the chromatic dispersion for a certain
transmission length L and a given target signal Aout (i.e. complex
optical field). Using (3.20), the predistorted signal Ain(L,∆ω) is:

Ain(L,∆ω) = Aout(∆ω) exp(+
j

2
β2∆ω2L), (5.1)
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Figure 5.1.: Principle of signal predistortion for a vector modula-
tor (a) and a directly modulated laser (b).

This means that by using a vector modulator, which modulates the
complex optical field Ain, any amount of dispersion can be predis-
torted and thus very large transmission distances can be obtained
without inline compensation [4, 29]. McGhan et al. published
a transmission at 10 Gbit/s with a dual parallel Mach–Zehnder
modulator over 5120 km SSMF (ITU–T G.652) at the OFC1 2005
[29]. Systems with electronic predistortion are also commercially
available. Here the maximum transmission length at 10 Gbit/s is
more than 2000 km SSMF [30].

With respect to signal predistortion, the difference of between a
directly modulated laser system and a transmission system with a
vector modulator is schematically drawn in Figure 5.1. Due to the
fact that a directly modulated laser cannot independently mod-
ulate both the optical intensity and the optical phase (and thus
the complex optical field), the analytically estimated predistorted
signal from (5.1) cannot be generated by a directly modulated
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5.1. Small Signal Approximation

laser.
However, for direct detection systems, the information of the

optical phase at the receiver is irrelevant and can therefore be
used as a degree of freedom to deal with the phase dependence
of the intensity at the laser. The purpose is now to obtain the
predistorted intensity at the fiber input for a given target format
of the optical intensity and a specified relation of the intensity and
phase at the transmitter (e.g. the chirp). Once this predistorted
signal is estimated, the nonlinear behavior of the laser has to be
considered to obtain the corresponding laser injection current.

In this work different approaches are studied to obtain a signal
predistortion for a directly modulated laser system. Based on a
small signal approach, it is possible to calculate a predistorted
laser injection current analytically for signals with a small extinc-
tion ratio. Due to the restriction of the small signal approach
also two large signal approaches are studied. Linear and nonlin-
ear finite impulse response (FIR) filters will be used to prefilter
the laser injection current according to a desired target modula-
tion format. In addition, an artificial neural network is used to
estimate a laser injection current that leads to an optimum BER
after transmission.

5.1. Small Signal Approximation

In case of a small signal approximation a fiber transfer function for
the optical power and the optical phase can be obtained. With
that fiber transfer function it is possible to analytically calcu-
late the predistorted, dispersion compensating signal for a directly
modulated laser.

Considering the slowly varying envelope of the optical field

A(t) =
√
P (t) exp(jφ(t) + jω0t) (5.2)

1Optical Fiber Conference
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5. Electronic Predistortion Concepts

with the optical power P (t), the optical phase φ(t) and the angu-
lar carrier frequency ω0, the signal degradation due to chromatic
dispersion can be described in the frequency domain for the op-
tical intensity and the optical phase with a transfer matrix [31]
: (

∆Pout(jω)
2P0

φout(jω)

)
=
(

cos(ω2F ) − sin(ω2F )
sin(ω2F ) cos(ω2F )

)
·
(

∆Pin(jω)
2P0

φin(jω)

)
(5.3)

where Pin/out = ∆Pin/out + P0, ∆Pin/out � P0 is the small signal
approximation for the intensity at the fiber input and the fiber
output, respectively. ω is the angular frequency and F = β2L/2
is a dispersion parameter with L being the transmission distance.
In order to calculate a predistorted signal (i.e. to invert (5.3)), a
negative fiber length L has to be assumed. The relation between
Pin and φin is given by the laser parameters and is also called
the phase–to–intensity ratio PIR0 of the laser. The PIR changes
because of the chromatic dispersion with the transmission length
and can be expressed as:

PIR(L) =
φout

∆Pout/P0
(5.4)

=
∆Pin

(2P0) sin(ω2F ) + φin cos(ω2F )
∆Pin

(P0) cos(ω2F )− 2φin sin(ω2F )
(5.5)

=
1
2 sin(ω2F ) + PIR0 cos(ω2F )
cos(ω2F )− 2 PIR0 sin(ω2F )

(5.6)

with the initial PIR at the fiber input (see (2.22)):

PIR0 =
φin

∆Pin/P0
. (5.7)

Together with (5.3), the predistorted optical power ∆Pin may be
written as:

∆Pin(jω) = ∆Pout(jω)
1

H
(e)
f (L, jω)

(5.8)
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5.1. Small Signal Approximation

with the fiber transfer function for the optical power:

H
(e)
f (L, jω) =

1
cos(ω2F ) + 2PIR(L) sin(ω2F )

. (5.9)

It should be noted, that the fiber transfer function for the optical
power H(e)

f is related to the phase–to–intensity ratio PIR of the
laser and thus to the mean value of the optical power P0. In order
to obtain the required laser driver current ∆Iin for the predis-
torted intensity, the laser transfer function for the optical power
H ′LD(jω) (compare (2.16)) may be used:

∆Iin(jω) =
e

τph

1
H ′LD(jω)

1

H
(e)
f (L, jω)

∆Pout. (5.10)

Analyzing the capability of the small signal approximation to
predistort the chromatic dispersion, the predistorted injection cur-
rent ∆Iin is used to modulate a rate equation based laser model
as in Figure 5.2. The bias and modulation intensity of the target
format Pout (i.e. the desired signal after transmission) is opti-
mized for every transmission distance to fulfill the requirements
of the small signal approximation. The performance of the signal
predistortion is given in terms of the extinction ratio after trans-
mission, as it is the aim to proof the possibility to predistort the
chromatic dispersion with a directly modulated laser. Thus no
noise is added to the signal.

The numerical results in Figure 5.3 show that the optical eye
diagram remains open after up to 2000 km transmission (SSMF).
The inset in Figure 5.3 shows the optical eye after 2000 km fiber
transmission. This means that it is theoretically possible to cal-
culate a dispersion precompensating laser signal, but only in case
of signals with a very low extinction ratio. For practical systems
a much higher extinction ratio after transmission is required, and
thus a large signal approach has to be taken.
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Figure 5.2.: Simulation setup for the small signal predistortion.
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receiver.
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5.2. Finite Impulse Response Filter

5.2. Finite Impulse Response Filter

The small signal approximation in Section 5.1 leads to a transfer
function of the optical transmission system (i.e. the directly mod-
ulated laser and the optical fiber) for the optical power. Due to
the restricted scope of this approach, the transfer function can not
be used for a large signal. The Wiener filter theory [32] for FIR
filters instead may be used to identify the impulse response of an
unknown system (or the inverted unknown system) without the
restriction of a small signal. Therefore, FIR filters as a simple and
inherently stable class of filters [32] may be used to identify the
system transfer function related to the laser injection current Iin
and the target format Pout and thus to predistort the chromatic
dispersion.

Considering a vector modulated transmission system, Said et
al. [33] used two linear electrical FIR filters (for the inphase and
quadrature component of the optical signal) as pre-filters for a
duobinary modulated transmission system to precompensate the
chromatic dispersion. Due to the fact that the fiber transfer func-
tion of the complex optical signal H(o)

f (z, jω) = exp(− j2β2∆ω2z)
(see (3.18)) is linear, two linear FIR filters are capable to entirely
predistort the chromatic dispersion of the fiber. Transmission dis-
tances up to 800 km without inline compensation are published.

In case of a directly modulated laser system, chromatic disper-
sion will be predistorted in the electrical domain. This means the
optical signal is squared and the fiber transfer function related to
the optical power is nonlinear and depends on the optical signal at
the fiber input. Therefore, there are restrictions to the capability
of an FIR filter to invert the transmission system and a nonlinear
FIR filter will be introduced to estimate the fiber transfer function
of the optical power.

Before the system behavior of FIR filters will be studied, in the
following two sections linear and nonlinear FIR filters are intro-
duced in more detail.
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5.2.1. Linear FIR Filter

T

!

x(n)

y(n)

T T

h
0

h
1

h
i

h
N-1

Figure 5.4.: Linear finite impulse response (FIR) filter with a time
delay of T .

The following introduction to FIR filters is based on discrete–
time signals in contrast to continuos–time signals used in previous
chapters of this thesis. While a continuos–time signal is denoted
as y(t), a discrete–time signal is denoted as y(n) ≡ y(nT ), with
n ∈ Z and T the sampling interval.

Linear FIR filters are defined with their filter coefficients hi and
the number of filter coefficients N . The output of the filter y(n)
may be described as a convolution between the filter input x(n)
and the filter coefficients, as indicated schematically in Figure 5.4:

y(n) =
N−1∑
i=0

hi · x(n− i) (5.11)

As the coefficients hi describe the impulse response of the FIR
filter, it is the purpose to find coefficients which represent the im-
pulse response of the inverted optical transmission system. Before
the FIR filter will be used to predistort the signal, the Wiener
theory will be shortly introduced where the filter is used as an
post–filter after the system (Figure 5.5).
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FIR
optical transmission 

system
!

x(n)u(n) y(n)

d(n)

e(n)

Figure 5.5.: Block diagram of the filtering problem. Typically the
filter should invert the optical transmission system,
which means: u(n) = d(n) (ignoring any time delays
of the system or the filter).

The filtering problem regarding to Figure 5.5 may be depicted as
follows: Minimizing the summed mean–square error
e2(n) = (d(n)− y(n))2:

J(h) =
∞∑

n=−∞
e2(n) =

∞∑
n=−∞

(d(n)− y(n))2 (5.12)

where the desired signal d(n) may be the uncorrupted input signal
of the transmission system or the target signal after transmission.
Often d(n) is called the training signal of the filter. y(n) is the
filter output and corresponding to Figure 5.5 the equalized signal
after transmission. This also means that signal degradations due
to the laser modulation may be compensated as well. In order
to minimize the error function J , it is appropriate to define a
gradient vector, where the i–th element is the partial derivative
with respect to hi:

∇i =
∂

∂hi
. (5.13)

To minimize the error function min(J) means:

∇iJ(h) = 0 for i = 0, 1 · · ·N − 1 (5.14)
(5.15)
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and thus:

0 =
∞∑

n=−∞

∂e2(n)
∂hi

= −2
∞∑

n=−∞
e(n)

∂y(n)
∂hi

=
∞∑

n=−∞
e(n)x(n− i) (5.16)

Using e(n) = d(n) −
∑N−1
k=0 hkx(n − k), the equation (5.16) may

be rewritten as follows:

∞∑
n=−∞

N−1∑
k=0

hkx(n− k) x(n− i) =
∞∑

n=−∞
d(n)x(n− i) (5.17)

for i = 0, 1 · · ·N − 1

where the left and the right hand side of (5.17) are

• the autocorrelation function of the filter input: r(k − i) =
x(n− k)x(n− i) and

• the cross–correlation function between the filter input and
the desired filter output: p(−i) = d(n)d(n− i).

Equation (5.17) is know as the Wiener–Hopf equation [34]. Intro-
ducing the N ×N autocorrelation matrix

R =
∞∑

n=−∞
~x(n) ~xT (n) (5.18)

with the vectorized filter input ~x(n) = [x(n−0), x(n−1), · · · , x(n−
N − 1)]T , and the N × 1 cross–correlation vector

~p =
∞∑

n=−∞
~x(n)d(n) (5.19)
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5.2. Finite Impulse Response Filter

the Wiener–Hopf equation may be rewritten in the matrix form
[34]:

R ~h = ~p (5.20)

with the filter coefficient vector ~h = [h0, h1, · · · , hN−1]T . To solve
this equation, both sides of (5.20) may be multiplied by R−1:

~h = R−1~p (5.21)

With (5.21), it is possible to estimate the coefficients ~h for an
FIR filter that inverts the preceding optical transmission system
(Figure 5.5) and thus equalizes the chromatic dispersion after fiber
transmission. In section 5.2.3 this approach will be used to analyze
the performance of FIR filters to equalize chromatic dispersion at
the receiver. Thereafter, in section 5.2.4 an approach to use FIR
filters to precompensate the chromatic dispersion at the transmit-
ter will be introduced.

5.2.2. Nonlinear FIR filter (Volterrra Filter)

As already mentioned, the effect of chromatic dispersion in the
electrical domain is nonlinear due to the square of the optical sig-
nal and thus, a linear FIR filter can compensate it only partially.
The Volterra Filter, based on the Volterra series expansion, is
a nonlinear FIR filter that is used in a relatively wide range of
communication problems [35, 36, 37]. In optical communication
systems, Xia et al. used a Volterra FFE–DFE filter for equaliza-
tion of the received electrical signal [38].
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The Volterra series expansion may be written as [39]:

y(n) = h
(0)
1 +

∞∑
m1=0

h(1)
m1

x(n−m1)

+
∞∑

m1=0

∞∑
m2=0

h(2)
m1,m2

x(n−m1)x(n−m2)

+
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

h(3)
m1,m2,m2

x(n−m1)x(n−m2)x(n−m3)

+ · · · (5.22)

As can be seen in (5.22), the Volterra series expansion combines
the memory behavior of an ordinary FIR filter (second term) and
the nonlinearity of the Taylor series expansion. The coefficients
h

(p)
m1,m2,··· are known as the Volterra kernel. The structure of the

Volterra filter (based on a truncated Volterra series) is similar to
a linear FIR filter, but with the difference of a multiplication of
different delayed signals. Figure 5.6 shows a second order Volterra
filter with two delay elements (N = 2). As can be seen, not all co-
efficients of (5.22) are represented, which is due to the symmetric
behavior of coefficients of the Volterra series. However, the num-
ber of coefficients are growing with Np, where N is the number of
delay elements and p is the order of the truncated Volterra series.

As with an ordinary FIR filter, the vectorized Wiener-Hopf
equation (5.21) can be used to derive the Volterra filter coefficients
in an implementation like in Figure 5.5 [40]. For this purpose it
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9 filter coefficients.

is appropriate to write the filter coefficient vector as follows:

~h =[h(1)
0 , h

(1)
1 , · · · , h(1)

N−1, (5.23)

h
(2)
0,0, h

(2)
0,1, · · · , h

(2)
0,N−1, · · · , h

(2)
N−1,N−1,

...

h
(p)
N−1,···]

T

while for the filter input vector ~x(n) the nonlinearity may be de-
scribed:

~x =[x(n−0), x(n−1), · · · , x(n−1), (5.24)

x(n−0)x(n−0), · · · , x(n−0)x(n−N−1), · · · , x2(n−N−1),
...

xp(n−N−1)]T

In this way, the autocorrelation matrix R (5.18) and the cross–
correlation vector ~p (5.19) can be easily derived and thus the vec-
torized Wiener–Hopf equation may be solved to estimate the co-
efficients of a Volterra FIR filter.
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5.2.3. Post–Filter
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Figure 5.7.: Concept of a) pre- and b) post-filter.

The Wiener–Hopf equation makes it easy to equalize a transmis-
sion system at the receiver using a post–filter (see Figure 5.7), but
it does not help to achieve the coefficients of a pre–filter. Thus,
in a first step the ability to compensate signal distortions due
to chromatic dispersion with a FIR post–filter will be analyzed.
Then, in a second step, a technique to obtain a pre–filter will be
introduced.

Figure 5.8 shows the simulated transmission system to obtain
the coefficients of the post–filter. The purpose of that simulation
setup is to equalize the chromatic dispersion of the fiber (Figure
5.8a) and the chromatic dispersion together with the nonlinearity
of the laser (Figure 5.8b). That means in a first scenario the
FIR filter is trained with the back to back signal of the directly
modulated laser (Figure 5.8a) with a bias and modulation current
of the laser as shown in Table 4.1 for a laser chirp α = 2. In
a second scenario the FIR filter is trained with an NRZ target
format (Figure 5.8b) with a bias of 5.5 mW and a modulation
amplitude of 4.5 mW. As a training sequence for both scenarios,
a de Bruijn bit sequence of length of 211 is used. The FIR filter is
fractionally spaced, which means that the signal is sampled with
2 samples per bit. White Gaussian noise (AWGN) is added in the
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Figure 5.8.: Simulation setup for estimating the coefficients of a
post-filter for a directly modulated laser system.

transmission path (fiber path). In a first simulation (training run)
the filter coefficients for the actual setup (transmission length,
different FIR configurations) will be obtained. Then, in a second
simulation run (performance evaluation) the required OSNR for
the post-equalized transmission system will be estimated. In the
second simulation for the performance evaluation of the trained
FIR filter, a different noise seed is used than in the training run.
The delay–block in both setups may be set such that the FIR filter
will considers not only passed samples for equalizing of a sample
but also the samples in the “future”. This is important, as a
signal pulse spreads into both time directions due to chromatic
dispersion. The optimum delay will be estimated by simulations
with different delay values and depends on the transmission length
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and the modulation format (e.g. DML or NRZ).
The system performance is shown in Figure 5.9 for different

FIR Volterra filter orders including linear FIR filters2. As ex-
pected, with growing Volterra filter order, the achievable trans-
mission length increases. For the DML target format the max-
imum transmission length for a linear filter (1st order Volterra)
is about 40 km (at 22 dB req. OSNR). This doubles using a 3rd

order Volterra filter. Compared to the not equalized system, this
is a transmission enhancement of about 10 km and 50 km, respec-
tively. Using an NRZ signal as the training signal, the maximum
transmission length is between 50 km and 100 km. The different
performance between the DML target format and the NRZ target
format in the back–to–back case (≈ 2 dB) shows that a FIR filter
is also capable of equalizing a directly modulated laser.

In contrast, the influence of the filter memory length, indicated
with the number of taps3, is relatively low for a low Volterra filter
order. This means that due to the nonlinear behavior of chromatic
dispersion in the electrical domain, only a nonlinear approach can
significantly enhance the transmission length of a directly modu-
lated laser system. Here, it was only intended to show the impact
of a Volterra post–filter of a directly modulated laser system. The
maximum transmission length strongly depends on the operating
point of the laser, as was shown in Section 4.2 where the dispersion
supported transmission is analyzed.

5.2.4. Pre–Filter

Obtaining the filter coefficients for the pre–filtered system is not as
straight forward as for the post–filtered system. The Wiener–Hopf
equation (5.20), which estimates the optimum filter coefficients,

2first order Volterra filter means linear FIR filter like (5.11)
3A tap simply represents a delay line in the filter and thus the filter memory,

e.g. four taps are two bits.
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(e) 3rd order Volterra, DML target

0 50 100 150
10

13

16

19

22

25

28
)olterra Order3 3

transmission length [km]

re
q.

 O
SN

R 
[d

B]
 @

 B
ER

 =
 1

e!
3

 

 

(f) 3rd order Volterra, NRZ target

Figure 5.9.: Transmission behavior of a directly modulated laser
signal with a Volterra post–filter. The Volterra filter
is trained for two different signals: A back–to–back
directly modulated laser signal (a, c, e) and a biased
and modulated NRZ signal (b, d, f) (see Fig. 5.8).
The laser chirp is α = 2. NOTE: Different scales of
the X–axes. 57
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Figure 5.10.: Simulation setup for the indirect learning algorithm
to obtain a system pre–filter.

implies that the used FIR filter is “behind” the transmission sys-
tem. Obviously, this is not the case if a pre–filter is used.

For a commutative system, a simple approach would be to take
the optimum post–filter, estimated by the Wiener–Hopf equation,
without any changes as a pre–filter. In the optical domain the
chromatic dispersion is commutative and a DCF can be used be-
fore or after the SSMF. But in the electrical domain and thus with
respect to the directly modulated laser, the system is not commu-
tative. A post–filter that is optimal for equalizing the received
signal does not lead to a correct predistorted signal. This is due
to the fact that the fiber transfer function for the optical power
depends on the optical input signal (see Section 5.1).

Thus a different approach is taken. The indirect learning algo-
rithm presented by Eun et al. [41] was primarily used to linearize
amplifiers in transmission systems like satellite links. The princi-
ple of the indirect learning algorithm for an optical transmission
system is shown in Figure 5.10. First, an electrical target format
(illustrated by the NRZ–block) will be generated. This target sig-
nal can be ideal or biased and modulated as it is appropriate for
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the actual transmission system. The FIR (a) filter will be used as
the pre–filter, while the FIR (b) filter is only used to determine
the filter coefficients for the FIR (a). The FIR (b) will be trained
with the (predistorted) signal d(n) by minimizing (d(n)− o(n))2.
The copied coefficients may then lead to a minimized mean square
error (MSE) (x(n)− y(n))2.
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(a) bias 5.5 mA, modulation
4.5 mA
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(b) bias 7 mA, modulation 3 mA

Figure 5.11.: Electrical NRZ target signal for indirect learning al-
gorithm.

In a typical directly modulated transmission system, the laser
injection current d(n) is much different from the optical laser out-
put power. In order to use the system target format x(n) also as
the laser injection current (especially in the first iteration, where
no FIR (a) filter is used), it is appropriate to relate the target
signal to the laser injection current. This is done by the driver
block just in front of the directly modulated laser which considers
the laser threshold and the slope efficiency of the laser.

In fact, the approach of the indirect learning algorithm fails.
Taking a conventionally NRZ signal as the target signal such as
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Figure 5.12.: Indirect learning algorithm for pre–filter estimation.
Transmission length 200 km, 2nd order Volterra fil-
ter, target format: biased with low modulation NRZ
(Fig.: 5.11b), OSNR = 20 dB.

ilustrated in Figure 5.11a with a bias current Ibias = 5.5 mA and
a modulation current Imod = 4.5 mA, the originally positive in-
jection current of the laser becomes partly negative because of
the FIR (a) pre–filter. In the simulations, any negative injection
current will be set to zero and thus the system may change dra-
matically. This leads to an unstable, diverging indirect learning
algorithm. Additionally, higher order Volterra filters respond rel-
atively sensitive to small input changes. Small changes in their
input signals, as if happens if the filter is used as a pre– instead
of a post–filter, may lead to an unpredictable behavior of the fil-
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5.2. Finite Impulse Response Filter

ter. Thus, only for a few special configurations of the transmission
system and the Volterra filter, the indirect learning algorithm be-
comes stable.

For a biased target signal with a low modulation (Ibias = 7 mA,
Imod = 3 mA) as in Figure 5.11b and a second order FIR filter with
8 taps (4 bit memory), the algorithm is relatively stable. Figure
5.12a shows the error curve of the indirect learning algorithm for
a transmission length of 200 km. The OSNR is 20 dB. The mean
square error MSE of the first iteration reflects the non predistorted
system, as in the first iteration the FIR (b) will be estimated for
the first time and no FIR (a) is used. The MSE decreases up
to the 4th iteration by a factor of about 5. After that, the MSE
increases again and does not converge to a value lower than the
value at the 4th iteration.

In contrast, the BER does not decrease in the same way. In-
stead, after the 5th iteration, the BER increases, while the MSE
stays at a relatively low level, compared to the non predistorted
system (first iteration). An explanation for this behavior may be
found in Figure 5.13, where the received electrical eye diagrams for
different iteration steps are shown. The non pre–filtered system
shows a received electrical eye with significant overshoots. Due
to the predistortion, the received eye becomes more smooth, the
overshoots disappear. But unfortunately, the eye becomes more
closed with more iterations and does not open as it would be nec-
essary to reduce the BER.

In summary, the indirect learning algorithm is not capable to
estimate a FIR filter to predistort the chromatic dispersion in a
directly modulated laser system. The algorithm is stable only for
a few special configurations of the transmission system and thus
cannot be used to generate a predistorted signal for an arbitrary
target signal at the receiver.
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Figure 5.13.: Received electrical eye diagrams for different itera-
tion steps according to Fig. 5.12
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5.3. Artificial Neural Network

5.3. Artificial Neural Network

After the small signal approach in Section 5.1 and the Volterra
FIR filter approach in Section 5.2 failed to generate an applica-
ble electronic predistortion for a directly modulated laser system,
a novel technique for signal predistortion in optical transmission
systems will be introduced. The novel technique is based on an ar-
tificial neural network as a nonlinear filter and the particle swarm
algorithm as the optimization algorithm.

An artificial neural network (ANN) is a nonlinear system in-
spired by the biological nervous system. It consists of processing
elements, so called neurons, which are interconnected to solve spe-
cial problems like pattern recognition or signal processing [32]. In
contrast to the well defined Volterra filter, there are many differ-
ent neural networks, designed for many different applications and
thus, many different algorithms exist to train the neural network.
In the following two sections, the feed-forward neural network and
the particle swarm algorithm as the optimization algorithm will
be introduced.

5.3.1. Feed–forward Neural Network

! f 

b

w
1

w
M

Neuron

w
j ...

a[n]

x[n-1]

v[n]
x[n-j]

x[n-M]

Figure 5.14.: A neuron consisting of weights w, a bias b and a
typically nonlinear transfer function f
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5. Electronic Predistortion Concepts

The feed–forward neural network is the simplest type of an ar-
tificial neural network [32]. Like all artificial neural networks, it
is based on neurons. A typical neuron is shown in Figure 5.14.
Similar to a FIR filter, different inputs are added with a weight
factor w. The sum is then biased and typically fed into a nonlinear
transfer function f . The transfer function should be restricted, i.e
the output value of the neuron, or the complete neural network, is
never outside a specified range. This aspect of a neural network is
particularly interesting for the particle swarm algorithm later in-
troduced to train the neural network. A typical transfer function
is the so called sigmoid function:

f(x) =
1

1 + exp(−x · c)
(5.25)

!5 !2.5 0 2.5 5
0

0.5

1

f(x
)

x

(a)

!0.1 0 0.1 0.2
0
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0.04
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0.08

f(x
)

x

(b)

Figure 5.15.: Sigmoid functions: (a) In general by eq. (5.25) with
c = 1 and (b) the used customized function (5.26).

To adapt the function to the intended application, the sigmoid
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5.3. Artificial Neural Network

function is rewritten as follows:

f(x) =
(

1
1 + exp(−(cx− k))

· (dmax − dmin)
)

+ dmin (5.26)

with dmax being the upper and dmin being the lower bound of
the function, k being a parameter that represents the slope of the
function and the parameter c with the relation:

c = (− ln(
dmax − dcent
dcent − dmin

) + k)/dcent. (5.27)

with dcent the center point of the function (where f(dcent) =
dcent).

Figure 5.15 shows the general and the customized sigmoid func-
tion. The parameters for the customized sigmoid function used in
the later simulations are: dmax = 65 · 10−3, dmin = 7 · 10−3,
dcent = 35 · 10−3 and k = 1. As shown in Figure 5.15 the cus-
tomized sigmoid function restricts the output of the neural net,
and thus the predistorted injection current, to values between
7 mW and 65 mW.

Mathematically, the output of neuron a[n] may be described as
follows:

a[n] = f {v[n]} (5.28)

= f


M∑
j=1

(wj · x[n− j]) + b

 (5.29)

Fundamentally, an artificial neural network may consist of only
one neuron, but this would restrict the ability to approximate any
nonlinear system. The multi–layer feed–forward neural network,
shown in Figure 5.16 [32], consists of a number of neurons in three
layers, which are interconnected in a feed–forward manner. Thus,
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Figure 5.16.: Feed–forward neural network.

the information moves only in one direction, without any kind of
feedback. The three layers are the input layer, the hidden layer
and the output layer. In the input layer, each delayed sample
value of the input signal is fed to a very simple neuron without
weights, bias or transfer function. From that input layer, the input
neurons are interconnected to the hidden layer. The example in
Figure 5.16 has two neurons in the hidden layer, but the hidden
layer can consist of as many neurons as needed. The last layer
is the output layer, where all neurons from the hidden layer are
connected to one ore more neurons, as it is required for the special
application. In Figure 5.16, wkn,j refers to the kth layer, the mth

neuron in the depicted layer and the jth input for the neuron. The
neural network shown in Figure 5.16 may be described as follows:

66



5.3. Artificial Neural Network

y[n] = f
{
v2

1 [n]
}

(5.30)

= f

{
N∑
i=1

(w2
1,i · a1

j [n]) + b21

}
(5.31)

= f


N∑
i=1

w2
1,i · f


M∑
j=1

(
w1
i,j · x[n− j]

)
+ b1i


+ b21


(5.32)

where a[n] is defined in (5.29) for an arbitrary neuron in the neural
network, N is the number of neurons in the hidden layer and M
is the number of weights w of neurons in the hidden layer (i.e.
memory of the neural network).

The universal approximation theorem by Hornik [42] states that
any continuous function can be approximated arbitrarily close
with that kind of neural network and a finite number of neurons in
the hidden layer. This is valid only for a restricted class of transfer
functions, like the used sigmoid function. This means that the ar-
tificial neural network is able to generate any signal predistortion,
and the challenge is to find the most appropriate neural network
(and thus the coefficients) to predistort the chromatic dispersion
for a given optical transmission system.

In order to keep the effort of finding the right neural network
parameters low, the aim should be to use as few neurons in the
hidden layer as possible. The neural networks used in this work
have about three to five neurons in the hidden layer with about 6
to 10 weights w. Thus the total number of coefficients of the used
neural networks are about 20 to 60 4.

4for example: (3 neurons × (8 weights + 1 bias)) + (3 weights + 1 bias) =
31 coefficients

67



5. Electronic Predistortion Concepts

5.3.2. Particle Swarm Algorithm

One of the most important training algorithms for neural networks
is the so called backpropagation5 algorithm [32]. This algorithm
requires an imaginary teacher that knows the desired neural net-
work output for an arbitrary input. In case of a directly modulated
laser system, the predistorted signal that pre–compensates the
chromatic dispersion is unknown. In a more general approach for
the training, the coefficients of the neural network are not trained
for a given target signal and thus for a special predistorted sig-
nal. Instead, the optimization of the neural network should lead
to a good system performance, e.g. a low BER for a given OSNR.
Or more mathematically formulated: Minimize the system fitness
function (BER) with respect to the coefficients of the neural net.
For that purpose, a number of different algorithms exists.

The very famous gradient descent algorithm (steepest descent)
uses the negative gradient of the fitness function to “walk” in steps
from a starting point towards a local minimum. In case of fitness
functions with only one minimum, that algorithm may be a good
approach, as it can determine the local minimum relatively accu-
rate, depending on the step size of the algorithm. For nonlinear
fitness functions with many different local minima, as the predis-
torted system, the gradient descent algorithm fails. The algorithm
only finds a minimum close to the starting point. Furthermore, it
cannot be decided if the found minimum is local or global.

Finding the global minimum (or maximum) for a given prob-
lem is much more challenging. Some of the most important global
optimization algorithms are inspired by natural mechanisms like
evolution or swarm intelligence [43, 44], such as the particle swarm
optimization algorithm [45, 46]. The particle swarm algorithm is
based on the behavior of a bird flock. Most people know the fol-
lowing situation. Someone is sitting on a bench in a park and
is starting to feed a pigeon with bread–crumbs. After a while a
second pigeon is coming, and it does not take much time until a
5abbreviation for: backwards propagation of errors
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small pigeon flock is landing next to the bench and feed the bread–
crumbs from the ground. From a mathematical point of view, the
bird flock found the global maximum of the feed-function, which
is exactly what a global optimization should do. To find that
optimum, each pigeon of the flock orients itself towards its own
knowledge of the explored area (where most food is to be found)
and the knowledge of his neighbors. The particle swarm algorithm
is working the same way. Multiple particles, i.e. sets of neural net-
work coefficients, are flying around in a multidimensional space
with the objective to find the coefficients of the neural net that
lead to a minimum BER. In doing so, each particle has the knowl-
edge of two things:

• The place (i.e. the neural network coefficients) where it
gained the best system performance so far (local optimum).

• And the place where the whole swarm or just a few neigh-
boring particles gained the best system performance so far
(global optimum).

This information will be used to accelerate the particle ~P [n], which
represents the coefficients of one neural net, at each iteration of
the algorithm and thus to adjust the direction where the particle
is looking for a system optimum:

~v[n+ 1] =g ~v[n] + c1ξ1(~Pbest − ~P [n]) + c2ξ2(~Gbest − ~P [n])
(5.33)

Here, ~v[n + 1] is the new updated particle velocity, 0 ≤ g ≤ 1
is an inertia parameter, c1, c2 are cognitive and social parameters
similar to a step size, 0 ≤ ξ1, ξ2 ≤ 1 are random values and ~Pbest
and ~Gbest are the so far local and global optima, respectively. The
new particle is then:

~P [n+ 1] =~P [n] + ~v[n+ 1] (5.34)

The principle of the partical swarm optimization algorithm as it
is formulated in (5.33), (5.34) is graphically shown in Figure 5.17.
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Figure 5.17.: Graphical illustration of the particle swarm algo-
rithm.

Without the inertia parameter g in (5.33), the particle swarm
would not converge to an area of interest, where the global opti-
mum is assumed. Instead it would spread out and the algorithm
may not converge. But this also means, with a too small iner-
tia parameter, the swarm searches only in a relatively small area
compared to the predetermined optimization area, and thus may
only find a relatively poor system optimum. The so far global
optimum ~Gbest may be based on the optimum of a number of
neighbor particles or, as done in this work, may be based on the
whole swarm. The latter approach leads to a faster convergence
of the algorithm, which may be of note if the simulation of the
system takes much time. To prevent a too fast movement of the
whole swarm to the current global optimum of the optimization
process, in this work not only the so far swarm optimum is con-
sidered to calculate the movement of the single particles, but also
the current second, third etc. best particle of the swarm. This
approach converges much faster than the neighbor approach, but
leads to similar optimization results.
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Figure 5.18.: Optimization scheme for an artificial neural net and
the optical transmission system.

5.3.3. Optimization Setup

In Figure 5.18 the optimization setup for the neural network op-
timization is shown. An NRZ modulated signal is fed into the
neural network. The predistorted output of the neural net is used
to modulate the laser.

In order to apply the particle swarm algorithm to the neural
net, the coefficients of the neural net are a particle of the swarm
algorithm. As the particle swarm algorithm is based on a swarm,
or a group of different particles, in one iteration step of the algo-
rithm multiple different neural network coefficients (multiple par-
ticle) are used to estimate the BER of the system. For the next
iteration the coefficients will be changed by the particle swarm al-
gorithm, corresponding to the estimated BER. The optimization
terminates after a previously defined number of iterations. The
parameters for the optical transmission systems that will be pre-
distorted are given in section 4.1 with two differences: the BER
estimation and the used bit sequence.

To reduce the computational effort, the BER estimation is done
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distance [km] taps M neurons in the particles iterations
hidden layer N

50 6 3 70 120
100 6 3 70 120
150 6 3 70 120
200 8 3 100 150
250 8 4 150 200
300 10 4 150 200
350 8 5 150 300

Table 5.1.: Used neural network structure and particle swarm op-
timization parameters to obtain the best system per-
formance for different predistortion distances. Laser
chirp α = 2.

semi–analytically. With respect to the inter symbol interference
(ISI), the bit error probability is estimated with a noise distribu-
tion at the receiver assumed to be normal Gaussian shaped [47].
In fact, the noise distribution is gaussian only in the optical do-
main and becomes a non central χ2 distribution in the electrical
domain [48]. But for a fast estimation of the optimization crite-
rion of the system performance, the Gaussian assumption may be
accurate enough. When the optimization is terminated, the BER
will be estimated again with the found neural network coefficients
and the Monte Carlo method, as it is done for other simulations
in this work. The used bit sequence for optimization is a 27 or 28

de Brujin sequence with 128 (256) bit. For a transmission length
of up to 350 km, this bit sequence may be too short to consider all
signal degradations induced by the chromatic dispersion, but it is
adequate to estimate the optimization criterion. For the second
BER estimation after the optimization, a de Brujin sequence 211

(2048 bit) is used.
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distance [km] taps M neurons in the particles iterations
hidden layer N

50 8 3 100 150
100 8 3 100 150
150 8 3 100 150
200 8 3 100 150
250 8 3 150 200
300 10 3 150 200
350 10 4 150 200

Table 5.2.: Used neural network structure and particle swarm op-
timization parameters to obtain the best system per-
formance for different predistortion distances. Laser
chirp α = 3.

The used neural network consists of three to five neurons in
the hidden layer and 6 to 10 taps (delay lines), depending on the
transmission length of the system, as shown in Table 5.1 and in
Table 5.2 for a laser chirp α = 2 and α = 3, respectively. The input
signal (discrete–time) of the neural net is sampled with 2 samples
per bit. The transfer function (eq. (5.27)) is the same for all
neurons. As mentioned earlier, one advantage of a sigmoid transfer
function for the neural network is that it is restricted. This means
that no matter what the actual coefficients of the neural network
are during the optimization, the output is always in a prior defined
range. This makes the particle swarm optimization more stable
than it would be possible with a Volterra filter.

To start the particle swarm optimization algorithm, an initial
set of neural network coefficients has to be randomly chosen. Even
with a restricted neuron transfer function and a boundary area of
the coefficients, it may happen that the resulting predistorted laser

73



5. Electronic Predistortion Concepts

injection current is almost a DC signal. This DC laser injection
current without modulation leads to a BER ≈ 0.5 and a plateau
like area in the fitness function (BER) of the optimization sys-
tem. A small change of some coefficients of that signal does not
lead to a better system performance. But the optimization of a
plateau–like function is very difficult, as it is very hard to dis-
tinguish different system values and thus different input values of
the system. Therefore, only those initial coefficients for a neural
net are taken, which does not lead to an unmodulated injection
current.

As already described, the performance criterion of the particle
swarm optimization is the BER. This means, the optimization
does not predistort a given target format (e.g. a biased NRZ
format) but finds the the most predistortable target signal and thus
the predistorted laser injection current. This is a big advantage of
that approach, because the transmission performance of a directly
modulated laser depends strongly on the laser bias and modulation
conditions.

The settings for the particle swarm algorithm depend on the
transmission length. The longer the transmission distance, the
more particles and the more iterations are necessary for the algo-
rithm to converge. Typically, the number of particles is 70 to 200
and the number of iterations is between 120 and 400 as shown in
Table 5.1 and in Table 5.2 for a laser chirp α = 2 and α = 3,
respectively. The inertia parameter is g = 0.5 and the cognitive
and social parameters are c1 = c2 = 1.4.

In order to prove if the optimum found by the particle swarm
algorithm is at least a local optimum, the pattern search algo-
rithm6 [49] is used. Interestingly, almost every optimum found by
the particle swarm algorithm is a local optimum. If that is not
the case, the optimization result is very close to a local minimum.

6The pattern search algorithm is based on the gradient descent algorithm,
but does not calculate any derivative of the fitness function. A more
detailed description is given in [49].
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Figure 5.19.: Error function for five different optimizations of the
same predistorted system (300 km, α = 2, taps M =
10 and neurons N = 4 (49 coefficients), 150 particles,
).

Because the particle swarm algorithm is a non–deterministic op-
timization approach (and because the fitness function has many
different optima), each optimization may lead to a different result.
In Figure 5.19 five different error functions (BER) of the particle
swarm optimization for the same predistortion system are shwon.
As can be seen, the particle swarm algorithm converges, but leads
to five different results in five optimization runs . Thus, every
system is simulated about 3 to 8 times, in order to find the best
optimization results. Figure 5.20 shows optimization performance
for two predistorted signals for 150 km and 300 km transmission
distance. As the predistorted signal for 150 km converges rela-
tively fast, the predistorted signal for 300 km takes much more
iterations. The reason are the different numbers of neural net-
work coefficients (25 coefficients for 150 km transmission and 49
coefficients for 300 km transmission).
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Figure 5.20.: Error function (BER) of the particle swarm al-
gorithm for two predistorted signal (150 km and
300 km). Laser chirp α = 2.
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5.3.4. Optimization Results
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Figure 5.21.: Electronically predistorted transmission system
(EPD) in comparison to a dispersion supported
transmission system (DST).

Based on the optimization setup in Section 5.3.3 Figure 5.21
shows the optimization results for the predistorted directly mod-
ulated laser transmission system with two different laser chirp fac-
tors. The optimization is done for a transmission distance between
50 km and 350 km. A longer system transmission (≥ 400 km) leads
to a required OSNR > 30 dB (at BER = 10−3).

The system performance for the predistorted system shows a
considerable improvement not only compared to the NRZ system
(see section 4.1), but also compared to a dispersion supported
transmission system. The best system performance for a laser
chirp α = 2 is achieved at 200 km with a required OSNR = 11 dB
(BER = 10−3) (for α = 3 at 150 km also with OSNR = 11 dB).
Thus, the predistortion leads to a negative OSNR penalty com-
pared to the NRZ back–to–back signal of 0.5 dB (and 2 dB for
α = 3 ) (compare with Figure 4.3a).
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Figure 5.22.: Eye diagrams of the electrical signal for the pre-
distorted signals for different transmission distances
(laser chirp α = 2).
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The maximum transmission of the predistorted system is about
350 km, which is an improvement of the transmission distance
compared to the dispersion supported transmission of about 100 km.
Additionally, the required OSNR of the predistorted system is
always about 2 dB better than that of the dispersion supported
transmission system.

In a range between 50 km and 250 km, both predistorted sys-
tems (α = 2, 3) differ only slightly, with a better performance at
short transmission distances for the higher chirped system. The
performance of the predistorted system with a laser chirp α = 2 at
a distance ≥ 200 km is better than the predistorted system with
α = 3, with a considerable improvement for a distance ≥ 300 km.

Figure 5.22 shows the received electrical eye diagrams from
50 km to 350 km transmission distance (chirp α = 2). The re-
ceived eye diagrams are very different in terms of overshoot, jitter
and eye opening. That is not surprising, because the only opti-
mization criterion is the BER and not any signal shape.

Beside the eye diagrams of the received signals, it is interesting
to see the time signal of the predistorted signal and the received
signal after transmission. Figure 5.23a shows the predistorted
laser modulation current for a transmission distance of 200 km
and a laser chirp of α = 2. Figure 5.23b shows the optical power
signal of the laser output and the optical power signal after fiber
transmission. A relatively low modulation of the laser output in-
creases after fiber transmission due to FM–AM7 conversion by
chromatic dispersion (see Section 4.2). The electrical receiver sig-
nal, which is optically and electrically filtered, is much smoother
than the transmitted optical signal. In fact, without the receiver
filters, the predistorted signal would not lead to a good system
performance, as the filters are included in the optimization setup.

Table 5.1 and Table 5.2 show the used neural network config-
uration to achieve the best system performance. As the particle

7frequency modulation – amplitude modulation
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Figure 5.23.: Sample signals for a predistortion of 200 km. a)
predistorted laser injection current b) laser output
signal, optical signal after transmission and filtered
electrical signal at the receiver. Laser chirp α = 2.
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5.3. Artificial Neural Network

swarm optimization algorithm is not deterministic and the opti-
mization is time–consuming, there might be other more suitable
neural network configurations for certain transmission distances,
but the overall trend of the system should not change. Up to a
transmission distance of 350 km, a memory length of the neural
network of 4 to 5 bit is sufficient to achieve a superior system
behavior, and the higher the transmission distance, the more neu-
rons in the hidden layer are necessary.

Dispersion Tolerance

In addition to the maximum transmission length, the dispersion
tolerance of the predistorted signals is analyzed. Figure 5.24 shows
the dispersion tolerance around the optimized transmission length
for different predistorted signals without changing the optimized
coefficients of the neural network (laser chirp α = 2). The typical
dispersion tolerance with a penalty of 2 dB is about 100 km, for
long transmission distances a little bit lower. This is a remarkable
result, as the dispersion tolerance for the NRZ system (section
4.1) is only about 10 km.

The reason for the good dispersion tolerance and the high sys-
tem performance may also be found in the optical power spectrum.
Figure 5.25 shows the optical power spectrum for three different
predistorted signals. The inset in that figure shows the spectral
width (2 · σ). As described in section 4.1, for the NRZ directly
modulated laser system, the optical power spectrum spreads out
due to the chirp, and the spectral components of the “1” and “0”
symbols of the signal can be seen in the spectrum as two peaks
at about ±5 GHz. In case of the predistorted signals, the distance
between the peaks of the “1” and “0” symbols becomes smaller.
This may be due to a reduced modulation index of the predistorted
signal. As can be seen in the inset, the higher the transmission
distance, the narrower the optical power spectrum. Compared to
the NRZ laser system (Fig.: 4.3b), the spectral width is halved at
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Figure 5.24.: Dispersion tolerance for different predistorted signal.
Every line illustrates the dispersion tolerance of one
denoted predistorted signal (D = 16 ps/km/nm, α =
2)
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Figure 5.25.: Optical power spectrum of the predistorted signals.
The inset shows the spectral width for the predis-
torted signals. (Laser chirp α = 2.)

high transmission distances.

Impact of Fiber Nonlinearities

To analyze the signal predistortion together with single channel
fiber nonlinearities, the nonlinear Schrödinger equation has to be
used (3.26). For this purpose the SSPROP - Split Step Fourier
Propagation Software by the University of Maryland (USA) is
used. The program is based on the Split Step Fourier algorithm
[10] and can be invoked directly from Matlab, the simulation soft-
ware used for this work.

The simulation setup remains almost the same as for the pre-
vious simulations. The only differences are the nonlinear fiber
and the noise free fiber amplifier after every 100 km. The fiber
loss is 0.2 dB/km and the nonlinear coefficient of the fiber is γ =
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Figure 5.26.: Influence of single channel fiber nonlinearities for
different optical fiber launch powers. (Laser chirp
α = 2)

1.3144 W−1km−1. Figure 5.26 shows the simulation results for
different optical fiber launch powers between 0 dBm and 12 dBm.
A launch power of up to 6 dBm does not change the required
OSNR significantly compared to the linear system. However, a
higher launch power leads to a noticeably higher required OSNR.
With 12 dBm launch power the maximum transmission distance
is about 200 km and thus 150 km less than for the linear system.

While the predistorted system suffers from fiber nonlinearities,
the dispersion supported transmission system takes advantage of
the nonlinearities (SPM) [50]. This is due to the fact that the
predistorted system is optimized only for a linear system. Taking
instead a nonlinear system as the training system, which would
take significant more simulation time as available, the performance
of the predistorted system may increase.
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5.3.5. Experimental Results

AWG

3 dBm

50 GHz

SSMF

95 km

Bias-T VOA

Scope PC

VOA

PC

SSMF

95 km 3 dBm

2.5 Gbps Laser
@ 10 Gbps

Figure 5.27.: Experimental setup. The neural network and the
particle swarm algorithm is implemented in the PC.

For experimental verification of the signal predistortion, no di-
rectly modulated laser for 10 Gbit/s has been available and thus
a directly modulated laser for 2.5 Gbit/s had to be taken (Agere
D2555). A transmission system with that laser suffers from band-
width limitation and may not be representative for common 10 Gbit/s
transmission systems. Therefore, the aim of the experiments is to
prove the concept of signal predistortion of directly modulated
lasers.

The experimental setup is shown in Figure 5.27. As in the
simulations, the personal computer (PC) controls the optimiza-
tion algorithm (particle swarm optimization) to find the correct
neural network coefficients. The artificial neural network is also
implemented in the PC, such that the predistorted laser injection
current (output of the neural network) can be sent directly from
the PC to an arbitrary waveform generator (AWG). The AWG
works with 20 GSamples/s and a resolution of 8 bit and outputs
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5. Electronic Predistortion Concepts

transmitted predistorted OSNR [dB] BER errorslength length

95 km 95 km 33,6 8, 3 · 10−4 272
95 km 190 km 33,6 5, 6 · 10−4 182

190 km 95 km 33,0 2, 6 · 10−2 4940
190 km 190 km 33,0 9, 9 · 10−4 325

290 km 190 km 30,6 5, 0 · 10−2 9912

Table 5.3.: Measured BER for different predistorted signals.

the laser modulation current divided into a DC and an AC part.
The transmission line is based on one or two fiber spans, con-
sisting each of a 95 km fiber with about 18 dB attenuation and
1620 ps/nm dispersion and an EDFA8. The fiber input power is
3 dBm. At the end of the transmission link, the signal is optically
filtered by a 50 GHz band pass and detected by a p–i–n photodi-
ode. A 20 GSamples/s digital oscilloscope is used to sample the
received signal and to feed it to the PC for system optimization.
The oscilloscope averages the received electrical signal while the
particle swarm optimization is working in order to eliminate the
influence of the noise. For performance reasons of the optimiza-
tion, the bit error probability, beeing the fitness function of the
particle swarm algorithm, is calculated at the PC with a noise dis-
tribution at the receiver assumed to be normal Gaussian shaped
(compare Section 5.3.3).

After the neural network optimization is finished, the BER for
a given OSNR of the predistorted system is measured with the
digital oscilloscope. Thus, only a restricted number of errors can
be counted to estimate the BER. The OSNR is measured with an
optical spectrum analyzer.
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5.3. Artificial Neural Network

Table 5.3 shows the measured BER for a given OSNR. The max-
imum achieved transmission length with a predistorted signal is
190 km with BER = 9.9 · 10−4 at OSNR = 33.0 dB. That is more
than 20 dB worse than the simulation results. Unfortunately, a
transmission over 290 km could not be shown experimentally. The
considerable differences between experiment and simulation, may
be causes by the poor modulation bandwidth of the used laser.
But achieving a transmission distance of 190 km with a laser that
was specified for 2.5 Gbit/s is still remarkable. The predistorted
signal also shows a high dispersion tolerance towards shorter trans-
mission distances. Comparing the two signals transmitted over
95 km, the predistorted signal for 190 km shows a better system
performance than the signal predistorted for 95 km. This is due to
the non deterministic behavior of the particle swarm optimization
algorithm, which means the found predistorted signal for 95 km is
not the optimum.

However, compared to results by Papagiannakis et al. [51],
where a 2.5 GBit/s laser was also modulated at 10 Gbit/s, but
post–equalized with a FFE/DFE structure, a transmission dis-
tance of 190 km is an improvement of about 50 km.

Figure 5.28 shows the received eye diagrams for a non predis-
torted back–to–back signal and a predistorted signal for 190 km
(and also 190 km transmitted). As can be seen, the back–to–
back eye diagram 5.28a is relatively poor due to the limited laser
bandwidth. The predistorted signal found by the optimization al-
gorithm (Figure 5.28b) is highly biased, which may be due to the
increased bandwidth at highly biased lasers.

8erbium doped fiber amplifier
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Figure 5.28.: Measured received eye diagram for a 2.5 Gbit/s laser
at 10 Gbit/s. The signal is averaged for noise reduc-
tion.
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CHAPTER 6

SIGNAL PREDISTORTION COMBINED
WITH POST–PROCESSING

Electronic dispersion compensation at the receiver is a widespread
technique to overcome transmission restrictions due to chromatic
or modal dispersion. It is standardized by the IEEE for short
range multimode applications [52] and is also used in single mode
applications [53, 54].

There are mainly two approaches for the electronic dispersion
compensation using a direct detection receiver which are briefly
introduced in this chapter, before they are studied in conjunction
with signal predistortion.

6.1. FFE/DFE

The feed–forward / decision feed–back equalizer (FFE/DFE) [54,
55, 34] consists of a transversal filter structure, as described in
section 5.2. The feed–forward section (FFE) is able to compen-
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Figure 6.1.: Feed–forward - decision feed–back equalizer structure
(FFE/DFE).

sate linear distortions of the signal (figure 6.1). In this work, the
signal is delayed by the delay stage TC = 1/(2B), with a signal
bit B = 10 Gbit/s. The feed–back section (DFE) is also based on
a transversal filter, but with only one filter weight and a delay
TB of one bit. The input of the feed-back section is made up of
previously detected symbols. The idea of the feed–back section is
to subtract the inter–symbol interference produced by previously
detected symbols from the estimate of future symbols [34]. A very
important aspect of the FFE/DFE structure is the blind estima-
tion capability. According to the mean square error (MSE), based
on the error e[n] between an equalized and a detected symbol,
the structure coefficients are set up. Thus, no additional train-
ing sequence is necessary to train the DFE/FFE structure for a
given transmission system. The optimization algorithm used in
this work is the recursive least square algorithm (RLS) that is
based on a cumulative error [34]:

J [n] =
n∑
i=1

λn−i(e[i])2 (6.1)
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Here, J [n] is the fitness function, which is optimized by the RLS
algorithm, λ is a forgetting factor close to but less than one and
e[n] is the error as depicted in Figure 6.1. The forgetting factor is
λ = 0.999 for the numerical analysis of the DFE/FFE structure
in Section 6.3

6.2. MLSE

In addition to the DFE, the maximum likelihood sequence estima-
tion MLSE (or sometimes maximum likelihood sequence detection
MLSD called) is a very popular approach of an electrical equalizer
to reduce the effect of chromatic dispersion [56, 57]. Agazzi et al.
[58] showed that the MLSE outperforms the DFE especially due
to the ability to compensate nonlinear distortions.

The first task (demodulation) of the MLSE is to choose from a
received noisy sequence Z = {zk, zk+1, · · · } the most likely can-
didate sequence U = {uk, uk+1, · · · }, which is an ISI distorted
sequence but noiseless [59]:

p(Z|U (j′)) = max
j

p(Z|U (j)) (6.2)

with j = 1, 2, · · · , 2K the number of considered system states,
where K is the number of considered bits for a sequence. p is the
conditioned probability density function (conditioned pdf). Due
to the exponentially growing number of possible sequences {U (j)},
a brute force comparison attempt to find the most likely sequence
may take too much computational effort. Here, the Viterbi al-
gorithm [60, 61] is much more efficient, as it can quickly discard
sequences or trellis paths1 that are extremely unlikely to be the
wanted sequence/path U = {uk, uk+1, · · · }. The decision of the

1The concept of trellis will not be explained, as it can be found in various
publications like [59].
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maximum likely path is based on the summed branch metric of a
path, where the metric is based on logarithmic probabilities.

Another task of the MLSE is the decoding of the demodulated
signal. Due to chromatic dispersion, the transmitted signal is
smeared, which means the information from one bit is also trans-
fered to adjacent bits. Thus the transmitted optical signal is en-
coded by the chromatic dispersion of the optical fiber. Going
backwards through the states of the maximum likely path, an es-
timate of the transmitted bit sequence can be constructed.

The path metric of the used MLSE and thus the probability
density function is based on a prior estimated histogram of the
states. The histogram has a resolution of 6 bit. The tails of the
probability density function which can not be represented by the
histogram are approximated by a second order polynomial. The
input signal of the MLSE is sampled with 2 sample per bit.

6.3. Predistortion & Post–equalization

Figure 6.2 shows the system performance of a FFE / DFE with
6 taps at the FFE and one tap at the DFE part and an MLSE
with 4 and 16 states (no additional predistortion). The system
performance is compared with a standard system without post–
equalization. As already published [51, 62], the FFE/DFE struc-
ture may double the transmission distance of a directly modu-
lated laser which leads to a transmission distance of about 50 km.
The improved back–to–back performance of the FFE/DFE results
from the narrow optical receiver filter. Due to the chirp α = 2 the
back–to–back signal is slightly distorted by the optical filter and
can be improved by the FFE/DFE equalizer (see Section 4.1).

Compared to the results of the FFE/DFE equalizer, the max-
imum transmission distance of both MLSEs is larger. Even the
4 state MLSE (2 bit memory) outperforms the FFE/DFE struc-
ture. The maximum transmission distance of the 16 state MLSE
(4 bit memory) is about 140 km (req. OSNR ≈ 20 dB). Fludger
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Figure 6.2.: System performance of a directly modulated laser sys-
tem without equalizing (bulk) and with a FFE / DFE
and MLSE equalizer (no additionally signal predistor-
tion α = 2).

et al. [63] reported a simulated maximum transmission distance
of about 400 km with a 32 state MLSE. The difference is mainly
caused by (despite the more states) from the high bias current
and the smaller extinction ratio in [63].

In Figure 6.3 the simulation setup of a predistorted system with
post–equalization is shown. The previously optimized neural net
(optimized without post–equalization) is used to generate the pre-
distorted signal while the EDC block (FFE/DFE or MLSE) equal-
izes the received signal. In order to analyze the performance of
the post–equalization, the predistorted signal for a specific trans-
mission distance is transmitted over a length shorter and longer
than the target length.

The simulation results are shown in Figure 6.4 and are discussed
with respect to different aspects:
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Figure 6.3.: Simulation system with prior optimized neural net
and an EDC unit (FFE/DFE or MLSE).

• The EDC only slightly improves (≈ 1 dB) the req. OSNR
for the initially predistorted transmission distances for tar-
get distances of 50 km to 300 km. Only for a transmission
distance of 350 km with a predistortion for the same dis-
tance, the 16 state MLSE improves the performance by more
than 3 dB. This indicates that the predistortion for 350 km
may not be optimal, because an optimal predistorted signal
should be ISI free and therefore, an MLSE should not be
able to improve the performance further.

• The improvement by the FFE/DFE is only marginal for
most of the predistorted signals compared to the inherent
dispersion tolerance of the signal predistortion (but shows
similar performance as with a non predistorted system).

• The 4 state MLSE improves the maximum transmission dis-
tance by up to 100 km especially at lower initially predis-
torted distances, which is much more than in a non predis-
torted system.
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Figure 6.4.: System performance of different predistorted signals
in conjunction with an FFE/DFE or MLSE equalizer
at the receiver (BER = 10−3).
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• The 16 state MLSE also improves the maximum transmis-
sion distance for larger initially predistorted signals.

• The dispersion tolerance towards shorter transmission dis-
tances as it was predistorted for, is significantly improved
by the 16 state MLSE.

In conlusion, mainly the 16 state MLSE may improve the sys-
tem performance of the predistorted system, while the advantage
of the FFE/DFE is not significant. This result is not unexpected,
as the purpose of neural net optimization is to find the best pre-
distortion for a non post–equalized system. However, the MLSE
significantly improves the transmission performance of the predis-
torted system and increases the maximum transmission distance
by up to 100 km. An optimization of a post–equalized system may
further increase the system performance, but is not subject of this
work.
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CHAPTER 7

SUMMARY AND OUTLOOK

The aim of this work was to study predistortion strategies to over-
come the dispersion limit of conventional directly modulated lasers
of about 20 km. Calculating a predistorted signal that compen-
sates chromatic dispersion, can be simply done in the optical do-
main for a complex optical signal. For directly modulated lasers,
which are restricted in modulating an arbitrary complex optical
signal, the predistortion has to be estimated in the electrical do-
main and thus a more sophisticated approach is necessary.

Based on a small signal approximation of the optical fiber and
the directly modulated laser, it was shown that it is theoretically
possible to precompensate the chromatic dispersion with a directly
modulated laser. As the small signal approximation is restricted
to signals with a low extinction ratio, this approach is not suitable
for real optical transmission systems.

Another predistortion technique that was studied in this work
were FIR Volterra filters. To overcome the limitation of the lin-
ear small signal approximation, a nonlinear FIR Volterra filter is
used to compensate chromatic dispersion. It was shown, that a
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Volterra filter is capable of compensating the chromatic dispersion
at the receiver. In addition to that, the indirect learning algorithm
was applied to transfer the Volterra filter from the receiver to the
transmitter. Unfortunately, the algorithm was stable only for spe-
cial system parameters and thus a signal predistortion with FIR
Volterra filters could not be obtained.

For the third studied predistortion technique, artificial neural
networks as a nonlinear filter and the particle swarm optimization
algorithm were used to estimate a signal predistortion. Unlike
the first two techniques, the last technique does not estimate a
predistorted signal for a given target signal at the receiver, but
generates a predistorted signal that minimizes the bit error ra-
tio at the receiver for a given transmission distance. The max-
imum transmission length in simulations was more than 350 km
with an impressive dispersion tolerance of 100 km. Additionally,
in experiments with a 2.5 Gbit/s laser modulated at 10 Gbit/s a
transmission distance of up to 190 km was shown.

For practical applications it may not be appropriate to use a
neural network with dozens of coefficients. Instead it would be
suggested to use a look–up table for the predistortion. The ad-
vantage of a look–up table is, that any nonlinear system can be
easily modeled especially if the memory length is restricted.1

Beside the use of directly modulated DFB lasers, the use of
VCSEL laser for signal predistortion should be analyzed, as they
would help to further reduce the costs. A very promising ap-
proach was published by Duong et al. [64]. In an experiment
a 10 Gbit/s transmission over 100 km using a 2.5 Gbit/s VCSEL
with orthogonal frequency division multiplexing (OFDM) mod-
ulation was shown. Here the OFDM modulation is one of the
favorites for the challenge to overcome the dispersion limit of di-
rectly modulated lasers.

1The maximum memory length used for the neural net is 10 taps (5 bit).
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APPENDIX A

LASER PARAMETERS

parameter symbol value unit

length of the active area LD 250 · 10−6 m
width of the active area 1.8 · 10−6 m
height of the active area 0.06 · 10−6 m

refractive index n1 4
mirror reflectivity R1, R2 0.32

internal losses αint 2500 1/m
electron lifetime τe 1.6 · 10−9 s
differential gain a or dgst

dn 3 · 10−20 m−1

gain compression factor κs 2.2 · 10−7

confinement factor Γ 0.1
transparency carrier density N0 1.5 · 1024 m−3

slope efficiency η 0.2583 W/A
center frequency νth 193.4 · 1012 Hz

chirp (linewidth enhancement) factor αch 1, 2, 3
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APPENDIX B

ABBREVIATIONS

W energy
P optical power
E amplitude of electrical field
N carrier density
I laser injection current
S photon number
ν frequency of light
t time

h Planck constant
N0 transparency carrier density
Nth threshold carrier density
g gain coefficient, g = gstΓ
gst stimulated gain coefficien, gst = a(N −N0)
κS compression factor
Γ confinement factor
LD laser length
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B. Abbreviations

V volume of active region
a differential gain / cross section
R1, R2 reflectivity of the laser cavity
vg group velocity of light
tp photon lifetime
te electron lifetime
R recombination rate of the carrier
Rsp spontaneous emission
αint internal laser losses
α laser chirp
G normalized gain, G = vgΓτpgst
Gl linear normalized gain
ωg characteristic angular frequency
ωr relaxation resonance angular frequency
ωd damping angular frequency
K modulation K–factor
HLD(jω) laser transfer function

n1, n2 refractive index of the core and the cladding of a fiber
αfib fiber loss
αs losses due to Rayleigh scattering
L fiber length
µ0 vacuum permeability
ε0 vacuum permittivity
χ susceptibility
k0 free space wave number
λ wavelength
~r position vector
~E electrical field
~P electrical polarization
~ex, ~ey unit vectors in x, y direction
H ′LD(jω) laser transfer function for the optical intesity
H

(e)
f fiber transfer function for the optical power

H
(o)
f fiber transfer function for the complex optical signal

f neural net transfer function
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bkm neural net bias coefficient
wkm,j neural net coefficient

~v particle velocity
g inertia parameter
c1, c2 cognitive, social parameter
ξ1, ξ2 random values
~P particle (e.g. set of neural net coefficients)
~Pbest local optimal particle
~Gbest global optimal particle

J [n] fitness function
λ forgetting factor
e[n] error
p probability density function
Z received sequence
U candidate sequence
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