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Abstract

The recent rise of two-dimensional materials attracted a tremendous amount of interest
in the fields of photonics and optoelectronics, as they are promising candidates for next-
generation devices. Materials, which are under extensive investigation, are graphene and
monolayer transition-metal dichalcogenides (TMDC). While graphene is a semi-metal, certain
monolayer TMDCs are semiconductors exhibiting tightly bound electron-hole pairs – excitons,
which dominate their optical response to a large extent. The light-matter interaction of two-
dimensional materials composes the footing of their excitation dynamics. This incorporates
the excitation of excitons in the visible range of the electromagnetic spectrum. Because of
exciton-phonon interaction a subsequent transfer from optically excited coherent to incoherent
excitons occurs. For molybdenum-based TMDCs calculations and optical experiments suggest
that the excitons at the optical active K± points form the global minimum. In contrast, for
tungsten-based TMDCs it seems that momentum-indirect dark excitons with electron and hole
at different valleys in the Brillouin zone are the energetically lowest lying states. Time and
angle resolved photoemission spectroscopy (tr-ARPES) is a method to measure the ultrafast
electron dynamics directly in momentum space. In case that tr-ARPES is also able to access
Coulomb-correlated two-particle states this experimental method might be the smoking gun to
proof the presence of the momentum-indirect states. In this thesis, we develop a microscopic
description of the temporal dynamics of excitonic time and angle resolved photoemission
spectroscopy with the focus on phonon-mediated relaxation of optically excited excitons. We
show that tr-ARPES is able to access excitons and quantify the spectroscopic signatures
of coherent and incoherent excitons in tr-ARPES. Additionally, we suggest coherent pump
Fourier transform ARPES to measure the exciton coherence lifetime with great accuracy.
Here, we combine a coherent tr-ARPES experiment with a second pump pulse and investigate
the tr-ARPES signal as function of the time delay to the second pump pulse.

Moreover, van der Waals materials enable the construction of heterostructures of different
atomically-thin materials. Here, after excitation of the distinct materials different interfacial
energy and charge transfer mechanisms occur. In particular, we investigate a WSe2-graphene
stack and study the coupling mechanisms of Förster, Dexter, and phonon-assisted tunneling.
In addition, we propose a new energy transfer mechanism: interlayer Meitner-Auger energy
transfer. Here, a non-radiative exciton recombination leads to intraband transitions in
graphene and therefore to a hot hole distribution deep in the valence band.

Besides intralayer excitons, van der Waals heterostructures exhibit also interlayer excitons,
where electron and hole are in different materials. We propose that interlayer excitons in
certain hybrid inorganic/organic systems might form a new many-body excitonic ground state.
Therefore, semiconductors functionalized by organic molecules might be the ideal candidate
for the experimental realization of the elusive excitonic insulator. Using a proper description
for the new many-body ground state based on a Bogoliubov description, we calculate the
excitonic phase diagram of a WS2-F6TCNNQ stack as function of the relevant experimental
parameters band gap (tunable by applied voltage), temperature, and dielectric environment.
We show that all excitonic phases, namely semi-metal, semiconductor, and excitonic insulator
have unique optical signatures in the far-infrared to terahertz (THz) regime.

Besides monolayer TMDC excitons excited by visible wavelengths and intraexcitonic
transitions, present in excitonic insulators, and excited by long wavelength radiation, also
core electrons can be excited by X-ray radiation. X-ray absorption spectroscopy is divided
into X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine
structure spectroscopy (EXAFS). The former constitute transitions of core electrons into
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unoccupied conduction band states and is typically described by Fermi’s golden rule. The
latter accounts for ionization of core electrons from the material and is typically described
in a high-order multiple-scattering theory. Here, we aim for a consistent description of both
processes within a Maxwell coupled spatio-temporal Bloch formalism. Within this formalism
we describe the polarization dependence of core transitions, the radiative and Meitner-Auger
recombination channels of core electrons and give microscopic insights into the spectral
signatures observed in EXAFS beyond point scattering theory. Moreover, the correct inclusion
of the Bloch character of solid state core electrons allows us to assign so far uninterpreted
features in the Fourier transformed EXAFS spectrum of graphene.
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Deutsche Zusammenfassung

Die Möglichkeit der Herstellung vielfältiger zweidimensionaler Materialien hat enormes In-
teresse in den Feldern der Photonik und Optoelektronik hervorgerufen. Materialien, welche
unter großflächiger Untersuchung stehen, sind Graphen und Übergangsmetall-Dichalgenoide
(TMDC). Während Graphen ein Semimetall ist, besitzen halbleitende TMDCs Exzitonen mit
sehr großen Bindungsenergien, welche die optischen Eigenschaften des Materials bestimmen.
Diese Exzitonen werden im sichtbaren Bereich des elektromagnetischen Spektrum angeregt.
Folgende Exziton-Phonon Wechselwirkung führt zu einem Transfer von optisch induzierten
kohärenten zu inkohärenten Exzitonen. Für molybdänbasierte TMDCs legen Rechnungen und
optische Experimente nahe, dass Exzitonen an den optisch aktiven K± Punkten das globale
Minimum bilden. Im Gegensatz scheinen in wolframbasierten TMDC impulsindirekte Exzito-
nen mit Elektron und Loch an verschiedenen Orten in der Brillouin Zone das energetische
Minimum zu bilden. Zeit und Winkel aufgelöste Photoemissionsspektroskopie (tr-ARPES) ist
eine Methode um die ultraschnelle Dynamik von Elektronen direkt im Impulsraum zu messen.
Im Falle, dass tr-ARPES auch Coulomb-korrelierte Zweiteilchenzustände abbilden könnte,
würde dieses Verfahren den unwiederlegbaren Beweis für die Präsenz dieser Zustände geben.
Wir entwickeln daher eine mikroskopische Beschreibung von impuls- und energieaufgelöster
exzitonischer Photoemission und berücksichtigen dabei die phononvermittelte Relaxation
von optisch induzierten Exzitonen. Wir zeigen, dass tr-ARPES in der Tat Exzitonen direkt
abbilden kann und quantifizierten die spektroskopischen Signaturen von kohärenten und
inkohärenten Exzitonen im tr-ARPES. Außerdem schlagen wir vor mittels kohärentem Pump
fouriertransformiertem ARPES die Exzitonkohärenzlebenszeit mit großer Genauigkeit zu
messen. Hierbei kombinieren wir ein kohärentes ARPES mit einem zweiten Pumppuls und
betrachten das ARPES signal als Funktion der Zeitverschiebung zu dem zweiten Pumppuls.

Einen Vorteil den van der Waals Materialien haben, ist dass sie zu Heterostrukturen
gestapelt werden können. Nach der optischen Anregung der konstituierenden Materialien
kommt es zu Energie- und Teilchentransfer zwischen den Materiallagen. Wir untersuchen
im speziellen eine WSe2-Graphen Heterostruktur und berechnen den Förster, Dexter und
phononassistierten Tunnel zwischen den Lagen. Weiterhin schlagen wir einen neuen Energi-
etransfermechanismus vor: Den Interlagen Meitner-Auger Energietransfer. Hier rekombiniert
ein TMDC Exziton nichtradiativ und regt Intrabandübergänge im Graphen an. Dies führt zu
heißen Lochverteilungen im Graphen.

Neben Intralagenexzitonen gibt es in Heterostrukturen auch Interlagenexzitonen. Hier
sind Elektron und Loch in verschiedenen Materialien. Wir schlagen vor, dass Interlagenexzito-
nen in gewissen Hybridstrukturen aus inorganischem Halbleiter und organischen Molekülen
einen neuen exzitonischen Vielteilchengrundzustand bilden könnten. Damit sind diese Hy-
bridstrukturen der ideale Kandidat für die experimentelle Realisierung eines exzitonischen
Insulators. Wir verwenden eine angemessene Beschreibung des Vielteilchengrundzustandes
mittels eines Bogoliubovformalismuses und berechnen das exzitonische Phasendiagramm
einer WS2-F6TCNNQ Heterostruktur als Funktion der experimentell relevanten Parameter
Bandlücke (verstellbar durch ein angelegtes elektrisches Feld), Temperatur und dielektrischer
Umgebung. Wir zeigen, dass alle exzitonischen Phasen, nämlich Semimetall, Halbleiter und
exzitonischer Insulator, einzigartige optische Signaturen im Infrarot- bis Terahertzbereich
aufweisen.

Neben einzellagen TMDC-Exzitonen, anregbar mit sichtbaren Wellenlängen, und In-
terlagenexzitonen, ansprechbar mit langwelliger Strahlung, können auch Kernelektronen
mittels Röntgenstrahlung angeregt werden. Röntgenabsorptionsspektroskopie is unterteilt in
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Röntgenabsorption nahe der Kante (XANES) und erweiterter Röntgenabsorptionsfeinstruktur-
spektroskopie (EXAFS). Ersteres besteht aus Kernelektronübergängen in unbesetzte Leitungs-
bandzustände und wird üblicherweise mittels Fermi’s goldener Regel beschrieben. Letzteres
betrachtet die Ionisierung von Kernelektronen in das Vakuum und wird in einer Multistreuthe-
orie höherer Ordnung beschrieben. Wir zielen in dieser Arbeit darauf ab eine gemeinsame
Beschreibung beider Prozesse zu geben. Dafür nutzen wir einen gekoppelten Formalismus aus
den Maxwell Gleichungen und zeit- und raumaufgelösten Blochgleichungen. In diesem Formal-
ismus beschreiben wir die Polarisationsabhängigkeit von Kernübergängen, die radiativen und
Meitner-Auger Rekombinationskanäle von Kernelektronen und geben mikroskopische Einblicke
in die spektroskopischen Signaturen von EXAFS über Punktstreutheorie hinaus. Darüber
hinaus ermöglicht uns die korrekte Berücksichtigung des Blochcharakters von Kernelektronem
im Festkörper bisher uninterpretierte Signaturen im fouriertransformiertem EXAFS von
Graphen zu bestimmen.
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Chapter 1

Introduction

In 1959 Richard Feynman asked in his famous lecture „There’s plenty of room at the bottom“:
„What could we do with layered structures with just the right layers?“ [1]. Since the synthesis
of graphene [2], the monolayer limit of graphite, in 2004 a new branch of solid state physics
and material science opened investigating exactly the answers to this question.

Quickly after the discovery of graphene many other layered materials were found and
reduced to their monolayer limit as was previously done for graphene. A very prominent
family, which attracted keen attention over the last decade, are monolayer transition-metal
dichalcogenides (TMDC) [3, 4]. It turned out that, when going from bulk to monolayer,
semiconducting TMDCs undergo an indirect to direct band gap transition at the edges of the
Brillouin zone, namely the K+ and K− points [5–7]. Because of the two-dimensionality of
the material, monolayer TMDCs exhibit a low dielectric environment screening leading to
exceptionally strongly bound electron-hole pairs or excitons with binding energies of hundreds
of meV [8–10]. At the same time, the material exhibits a strong light-matter interaction that
excitons can absorb about 10% of the irradiated light in the visible range of the electromagnetic
spectrum [3,4, 11]. This makes the material of special interest for optoelectronic applications.
Interestingly, monolayer TMDCs have even more fascinating properties. Their strong spin-
orbit interaction [12,13] leads to splitting of the optical transition at the K± points into A
and B exciton transition. A time-reversal symmetry leads to the fact that the K+ and K−
point are non-equivalent causing opposite spins in the energetically same bands at both high
symmetry points [12,14]. Paired with a valley selective circular dichroism [15–17] this gives
rise to interesting spin-valley exciton physics [12,18,19].

This work investigates optical excitations of two-dimensional materials such as monolayer
TMDCs from low-energy light as terahertz up to high-energy X-ray radiation. Figure 1.1 draws
the examined part of the electromagnetic spectrum with investigated scenarios. The excitation
energy of optically bright excitons at the K± points corresponds to red light. Moreover,
the complex quasi-particle band structure of monolayer TMDCs with different side valleys
influences the excitonic properties of the optically injected excitons at the K± points. These
side valleys can lead to momentum-indirect excitons, where electron and hole are at different
points in the Brillouin zone, and are of extensive discussion in the literature [20–25]. Here,
we aim to finally end the discussion about momentum-indirect excitons by combining the
theoretically expected exciton dynamics of monolayer TMDCs with an excitonic theory for
time and angle resolved photoemission spectroscopy (tr-ARPES). Tr-ARPES is a spectroscopic
technique, which possesses time, momentum, and energy resolution and enables direct access
to the single-particle Brillouin zone [26]. Here, electrons are photoemitted from the sample
with extreme ultraviolet light, cf. Fig. 1.1. If tr-ARPES has also access to bound two-particle
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Exciton ionization
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Figure 1.1: Investigated part of the electromagnetic spectrum with studied optical excitations.
Low-energy light excites intraexcitonic transitions, in the visible range of the electromagnetic
spectrum we find exciton and free electron-hole pair formation, and high-energy light induces
exciton and core electron ionization. All those scenarios are discussed in the following chapters.

states not only the existence of momentum-indirect excitons can be proven but it will also
trigger new experiments and boost the understanding of exciton physics in monolayer TMDCs
and other two-dimensional materials.

An advantage of layered materials is that they can be combined and stacked in desired way
forming van der Waals heterostructures with totally different properties than their single-layer
parts [27–30]. A promising heterostructure are TMDC and graphene stacks since they combine
strongly bound excitons and their high light-matter interaction with the high carrier mobility
of graphene [31–33]. Therefore, we investigate the different possible interfacial energy and
charge transfer mechanisms coupling the two layers. We study in detail Förster and Dexter
energy transfer, phonon-assisted tunneling of electrons and holes and find a new energy
transfer mechanism, which we term as interlayer Meitner-Auger energy transfer.

A different type of heterostructure are hybrid inorganic/organic systems (HIOS). Here, an
inorganic semiconductor is functionalized by a layer of self-assemble organic molecules. Such
heterostructures are a grand hope in device research [34–36]. We predict that they are the ideal
candidate to form a new phase of matter, namely the excitonic insulator [37]. This intriguing
phase was first predicted in the 1960’s and since then searched. The phase is characterized
by spontaneous formation of excitons since their binding energy exceeds the single-particle
band gap. Although spectroscopic signatures were observed over the time [38, 39] compelling
evidence are still missing. With the appearance of monolayer TMDCs with exciton binding
energy of hundreds of meV and the possibility to built van der Waals heterostructures the
interest in the excitonic insulator skyrised in recent years [40–42]. We investigate in detail
the heterostructure WS2-F6TCNNQ, which we predict to have a many-body ground state
of excitonic nature. The fundamental excitations are addressed by far-infrared to terahertz
wavelengths, which correspond to intraexcitonic transitions, cf. Fig. 1.1.

The last part of the thesis puts a larger emphasis on a proper theoretical description
of the spectroscopic technique of X-ray absorption spectroscopy (XAS). X-ray absorption
spectroscopy is a technique, which played an important role at the beginning of the 20th
century in the establishment of the atomic energy level model [43,44] and the discovery of
rare-earth elements [45]. XAS is situated at the opposite end of the electromagnetic spectrum,
cf. Fig. 1.1, and uses X-ray light of several hundred up to thousands of eV to probe the
core electrons of the investigated material. Core electronic transitions in the material (atom,
molecule, or crystalline solid) constitute the X-ray absorption near edge spectroscopy (XANES)
and is comparable to typical absorption experiments but involving core electrons. When
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the core electrons are photoemitted from the sample we talk of extended X-ray absorption
fine structure (EXAFS). In case of molecules or solids here the absorption cross section is
modulated by oscillations [46–49]. First theoretical attempts to explain this phenomenon
were performed in 1931 and 1932 by R. de L. Kronig [50, 51]. But it took further 40 years to
relate these oscillation with the local geometry of the irradiated material. This breakthrough,
achieved by D. E. Sayers and coworkers [52, 53], promoted XAS from a spectroscopic to a
structural technique and gave a rebirth to XAS experiments. Within a point scattering theory
D. E. Sayers et. al. interpret the oscillation as interferences of scattered X-ray waves. However,
the derived formalism, which is the standard of EXAFS analysis nowadays, does not fulfill
the Bloch theorem. Although this might be appropriate for the analysis of molecules, for
crystalline solids the basis functions need to satisfy the Bloch theorem, which was not included
so far. Therefore, we aim to derive a self-consistent Maxwell-Bloch formalism for X-ray
absorption, which gives a unified description of XANES and EXAFS, so far missing in the
literature. Within this framework we can extend the accomplishments of atomic and molecular
XAS investigations concerning recombination channels [54, 55] or polarization dependent core
transitions [56,57] to solid states. Further, we find that the oscillations, although correctly
related to the local structure of the material, stem from interference of electronic Bloch waves
of neighbored atoms, which gives rise to additional so far uninterpreted features in the Fourier
transformed EXAFS spectra. Such an analysis is performed in the last chapter for graphene.
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Chapter 2

Exciton dynamics in tr-ARPES

2.1 General solid state Hamiltonian
A crystal consists of atoms arranged in a regular lattice. As consequence, we find an
underlying repeating structure, which minimal repeating unit is called the unit cell. The
crystal symmetries are represented by the space group, which contains all symmetry operations
leaving the crystal invariant, such as translations, rotations, inversion, or combinations. The
unit cell is spanned by a basic set of primitive lattice vectors {ai}. Translation in the space
group are represented by linear combinations of these lattice vectors connecting all lattice
points {Rn}.

The neutral atoms forming the crystal can be separated into atomic nuclei and the
electrons. As starting point for a quantitative investigation of solid state properties we use
the Hamiltonian. The Hamiltonian describing a perfect crystal, with nuclei, electrons, and
their mutual interaction reads [58,59]

H = −
∑︂

i

ℏ2∇2
i

2mi
−
∑︂

j

ℏ2∇2
j

2Mj
+ e2

4πϵ0

∑︂
j<j′

ZjZj′

|Rj − Rj′ |
− e2

4πϵ0

∑︂
i,j

Zj

|ri − Rj |

+ e2

4πϵ0

∑︂
i<i′

1
|ri − ri′ |

+
∑︂
i,j

ℏ
4c2m2

i

(∇V (ri, Rj) × pi) · σ . (2.1)

The indices i and j denote the electrons and nuclei, respectively. The electrons in an atom
see a magnetic field because of their own orbital motion, which gives rise to a spin-orbit
interaction. In a non-relativistic limit v ≪ c, the spin-orbit coupling is described by the last
term of the Hamiltonian acting on the spin wave function. The momentum operator and the
Pauli spin matrices are denoted by pi and σ, respectively. Since the effect depends on the
gradient of the potential generated by the nuclei and felt by the electrons, corresponding to
the fourth term of the Hamiltonian and abbreviated by V (ri, Rj), it scales with the atomic
number Z of the crystal compounds. The complex Hamiltonian can be simplified by a variety
of largely valid approximations. Often the electrons are separated into two groups: core
and valence electrons. The former are electrons occupying the filled orbitals being mostly
localized at the nuclei. In most optical spectroscopic experiments these electrons do not
contribute in contrast to the valence electrons of incompletely filled shells. In consequence,
the core electrons can be treated together with the nuclei [60, 61]. This reduces the sum
i over all electrons only to the valence electrons. However, experiments involving extreme
ultraviolet (XUV) light with excitation energy around 100 eV or X-ray radiation can access
the core electrons. Therefore, this typical approximation is not performed. A widely valid
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Chapter 2. Exciton dynamics in tr-ARPES

approximation is the Born-Oppenheimer approximation [62]. Because of the heavy weight of
the nuclei compared to the electrons, the latter react much faster to an external perturbation
than the nuclei. Therefore, the nuclei may be regarded as fixed in space on the time scale of
electronic interactions. The response time of ionic vibrations in solids are typically on the
order of 1012 s [58]. To estimate the electron response time we consider the external excitation
of electrons. For semiconductors at least the band gap energy has to be fed. For an energy
of 1 eV we can estimate the frequency of electronic motion to the order of 1015 s−1 [58]. We
see that with increasing energy of the excitation light the adiabatic approximation becomes
better. Within the Born-Oppenheimer approximation we can express the Hamiltonian in Eq.
(2.1) as

H = Hnuc(Rj) + Hel(ri, Rj0) + Hel-nuc(ri, δRj) . (2.2)

The nucleus motion under the influence of the atomic potential is described by Hnuc. The
Hamiltonian for the electron motion with the nuclei in their equilibrium position Rj0 and
electron-electron interaction is described by Hel, which absorbs also the spin-orbit interaction.
Since in this work the spin plays only a secondary role, the spin-orbit coupling is neglected
from now on. Finally, Hel-nuc describes the change of electronic energy due to the displacement
Rj of the nuclei from their equilibrium position, which is known as electron-phonon interaction.
At last, we will assume that every electron experiences the same average potential V (r) =∑︁

j V (r − Rj). The potential is by construction lattice periodic, i.e. V (r) = V (r + R) with
lattice vector R. Thus, the Schrödinger equation, describing the motion of the electrons in
the potential landscape of the nuclei background, reads

HelΨα(r) =
(︄

−ℏ2∇2

2m
+ V (r)

)︄
Ψα(r) = εαΨα(r) , (2.3)

where Ψα(r) and εα denote the wave function and energy of an electron in the eigenstate α.
After having introduced the fundamentals of solid state physics, we see that the solution of
the Schrödinger equation is the basic task of quantum theory in solids. To tackle the solution
of the Schrödinger equation it is convenient to exploit the symmetry of the crystal.

2.2 Bloch theorem
In a crystal a periodic potential appears because the ions are arranged with the periodicity
of their Bravais lattice. Usually, the problem is simplified by assuming a very large crystal,
where the precise form does not affect the physical description. We may then choose periodic
or Born-von Karman boundary conditions, where the value of any wave function is the same
at equivalent points on opposite sites of the crystal. Counting along the direction of each
primitive translation brings us to a point not only physically but also mathematically identical
to the original point. In the case of two-dimensional materials the assumption of an infinite
extended crystal can only be performed within the plane. In normal direction to the plane
translation invariance is broken. Consequently, also the unit cell is semi-infinite in direction
normal to the surface. Since the Schrödinger equation can be restricted to a fixed finite
volume described by a single primitive cell of the crystal we expect to find an infinite family
of solutions with discretely spaced eigenvalues. They are labeled by a band index λ and the
corresponding wave function is denoted by Ψλ(r).

We define a translation operator TR acting in the crystal plane that TRΨλ(r) = Ψλ(r +
R). Note that R is two-dimensional. Since the lattice potential shows the same lattice
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2.2. Bloch theorem

periodicity, the translation operator and the Hamiltonian commute. This implies that any
function obtained by applying the translation operator to an eigenfunction Ψλ will also be an
eigenfunction with the same energy as the original one. If we assume that the eigenenergy
ελ is lλ-fold degenerate, we may choose a set of lλ orthonormal eigenfunctions Ψκ

λ with
κ = 1, 2, . . . , lλ belonging to ελ. In other words, the lλ degenerate functions form basis vectors
of a subspace of the entire Hilbert space of the Hamiltonian. We can therefore construct a
matrix, which executes the effect of the translation operator as [63,64]

TRΨν
λ =

lλ∑︂
κ=1

Ψκ
λΓ(λ)

κν (R) , (2.4)

where Eq. (2.4) holds for a one-dimensional translation. The sum includes all lλ degenerate
eigenfunctions Ψκ

λ having the same energy ελ as Ψν
λ with ν labelling the degeneracy and

Γ(λ)
κν (R) is an irreducible representation matrix, which defines the linear combination. We

know that all eigenfunctions of the Hamiltonian with the translation symmetry of the lattice
must transform according to some representation of the group. Since we assume periodic
boundary conditions for the crystal description, the cyclic group of order N is the symmetry
group of the Hamiltonian. N corresponds to the number of unit cells along one axis forming
the crystal. We can then write for the solutions from the pth representation

Ψp
λ(r + R) = TRΨp

λ(r) = Γ(px)(Rx)Γ(py)(Ry)Ψp
λ(r) = e2πipx/N e2πipy/N Ψp

λ(r) . (2.5)

We used that the crystal is periodic within the plane and the well known representation of
the cyclic group Γ(p)(R) = exp(2πip/N) with p = 1, 2, . . . , N [63]. If we introduce the crystal
length Li = RiN with i = {x, y}, relate ki to pi by ki = 2πpi/Li, and relabel the function
with equivalent index we obtain

Ψλ,k(r + R) = eik·RΨλ,k(r) , (2.6)

which is the fundamental Bloch condition. We see that both functions just differ by a phase
factor. Consequently, physical quantities such as the probability distribution |Ψλ,k|2 are
conserved. Introducing a lattice periodic function uλ,k(r), the electronic wave function can be
written as Bloch wave function

Ψλ,k(r) = 1√
A

eik·r∥uλ,k(r) (2.7)

constituting the solution of the Schödinger equation Eq. (2.3). The normalization constant
carries the unit cell area A. The quantization volume in z-direction is merged into the periodic
lattice function, which includes also the orbital out-of-plane extension often described in
an envelope function approximation [65, 66]. We see that the electronic wave function can
be written as a plane wave modulated by a lattice periodic function uλ,k(r + R) = uλ,k(r).
The Bloch waves are normalized since the periodic functions are orthogonal over a single
unit cell of volume VUC : ⟨uλ,k|uλ′,k⟩ = VUCδλ,λ′ . Bloch’s theorem follows solely from the
translation symmetry of the crystal, holding true for any particle in a periodic lattice without
any assumption about the strength of the potential. The two-dimensional wave vector k can
be regarded as quantum number of translation. In a broader sense, the wave vector could also
be seen as a crystal momentum. Finally, the electronic state is characterized by the quantum
numbers band and wave vector {λ, k}. The corresponding energy levels ελ,k vary in k forming
the electronic dispersion. Note that the wave vector lies within the 1st Brillouin zone. Thus,
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Chapter 2. Exciton dynamics in tr-ARPES

if we consider a vector in the extended zone k + G, the appropriate phase factor in Bloch’s
theorem is

ei(k+G)·R = eik·R (2.8)

since G · R = 2πn, n ∈ N. Similar to the lattice vector R connecting identical sites in real
space, the reciprocal lattice vector G connects identical sites in reciprocal space. To have
further insights into the Bloch function, we can express it in terms of a discrete plane wave
basis, whose wave vectors are the reciprocal lattice vectors of the crystal because the Bloch
function has the same periodicity as the direct lattice. The electronic wave function can then
be expanded in terms of a linear combination of plane waves

Ψλ,k(r) = 1√
A

∑︂
G

ξλ,k+Gei(k+G)·r∥ . (2.9)

This approach takes explicitly the extended nature of Bloch waves into account. The coefficients
ξλ,k+G are obtained from the Schrödinger equation. An advantage of solving the Schrödinger
equation for the coefficients of Eq. (2.9) over solving Eq. (2.3) directly is that the reciprocal
space representation of the kinetic energy is diagonal and the potential can be described in
terms of their Fourier components.

For photoemitted electrons leaving the sample we use the free kinetic energy ℏ2k2/2m0 with
free electron mass m0. Correspondingly, the electronic wave function should be describable by
a plane wave. However, for pure plane waves the orthogonality to the material wave functions
would be violeted. One possibilty to overcome this problem is to use orthogonalized plane
waves (OPW) [67–69]. Here, the plane wave is orthogonalized to the bound electronic wave
functions Ψλ,k(r) exploiting the Gram-Schmidt procedure:

Ψk⊥,k(r) = 1√
V

eikr∥eik⊥z −
∑︂

λ

ηλ,k,k⊥Ψλ,k(r) . (2.10)

For the photoemitted electrons, the wave vector is now three-dimensional. We choose
as notation that the out-of-plane component k⊥ is used additionally as band index for
the unbound states. Then, k still describes a two-dimensional in-plane wave vector. The
band sum runs over all states within the material and ηk⊥,λ,k = ⟨k⊥, k|Ψλ,k⟩ denotes the
orthogonalization coefficient with the notation ⟨r|k⊥, k⟩ = exp(ik · r∥ + ik⊥z)/

√
V stemming

from the unorthogonalized plane wave character of the final state.
However, the crystal potential is not perfectly cut at the surface that a plane wave

description can also be to simple. For instance, approximating the final states by plane waves
certain effects such as circular dichroism vanish [70, 71]. Alternatively, we construct the final
states, such that they are Bloch states with respect to the in-plane wave vector and obey
time-reversed LEED asymptotic boundary conditions in the out-of-plane direction. A time-
reversed LEED approach is most commonly used in theoretical descriptions of photoemission
spectroscopy [72–75]. LEED stands for low energy electron diffraction and denotes a technique
from surface science. Here, electrons in the energy range from 20-50 eV are sent to the material
surface, where they interact with matter, that a diffraction pattern can be measured. We can
therefore consider in LEED an electron coming from a detector, arriving at the surface, where
they will be reflected and transmitted, matching the free wave function at the surface [76].
Now, considering that state to be time-reversed we obtain a free electron propagating from
the material towards a detector referred to as time-reversed LEED [77,78]. We expand the
final states as

Ψk⊥,k(r) =
∑︂
G

ei(k+G)·r∥ξk⊥,k,G(z) . (2.11)
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2.3. Electronic Hamiltonian

The expansion coefficients in Eq. (2.11) are fixed by [70]

Ψk⊥,k(r) → eik·r∥ +
∑︂
G

RGe−i(k+G)·r∥ (z → ∞)

Ψk⊥,k(r) →
∑︂
G

TG → ei(k+G)·r∥ (z → −∞)
(2.12)

where RG and TG are reflection and transmission coefficients, respectively. This description
of photoemitted electronic waves can be seen in comparison to an electron wave passing a
potential step. At the finite barrier the wave is elastically scattered and diffracted. Such a
behavior is absorbed into the coefficients RG and TG, whereby the potential step corresponds
to the sample surface. The coefficients of the final states Eq. (2.11) are determined by the
Schrödinger equation Eq. (2.3):

∑︂
G′

[︄(︄
−ℏ2∂2

z

2m
+ ℏ2(k + G)

2m

)︄
δG,G′ + VG−G′(z)

]︄
ξk⊥,k,G′(z) =

(︄
ℏ2k2

2m
+ ℏ2k2

⊥
2m

)︄
ξk⊥,k,G(z) .

(2.13)

Here, we see the earlier discussed diagonality of the kinetic energy and the Fourier transformed
Coulomb potential. It would now be necessary to solve Eq. (2.13) together with the boundary
conditions (2.12), which requires computational expensive methods [79].

2.3 Electronic Hamiltonian

Generally, the modes of the electromagnetic field and a simple harmonic oscillator satisfy the
same classical equations. This fact suggests that it is possible to quantize both in the same
way. By defining annihilation and creation operators for each wave vector k and integrating
over them yields a Hamiltonian for the free theory [80]. This procedure is known as second
quantization. Within this framework the Hilbert space is forwarded to the Fock space. A
direct sum of the Hilbert spaces of n-particle states at each time constitutes the Fock space [81].
We can define field operators, which are constructed from creation and annihilation operators
for each momentum. The second quantized electronic Hamilton operator can be calculated
from a Hamiltonian density, which is a functional of field and their conjugate momenta [80,82].

Knowing the complete set of eigenstates from the stationary single-particle Schrödinger
equation, the electronic field operators can be expanded by

Ψ̂(†)(r, t) =
∑︂
λ,k

Ψ(∗)
λ,k(r)λ(†)

k (t) (2.14)

with the single-particle wave function Ψλ,k(r) and the electronic annihilation (creation)
operator λ

(†)
k (t). For the sake of readability, we introduce the notation λ

(†)
k annihilating

(creating) an electron in band λ with in-plane wave vector k. The creation and annihilation
operators fulfill the fundamental commutation relations of fermions[︂

λk, λ′†
k′

]︂
+

= δλ,λ′

k,k′ ,
[︂
λ

(†)
k , λ

′(†)
k′

]︂
+

= 0 . (2.15)

This ensures the antisymmetry of the many-particle wave function and that a state cannot be
occupied by more than one particle.
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Chapter 2. Exciton dynamics in tr-ARPES

Free Hamiltonian: With the expansion we obtain the single-particle Hamiltonian in
second quantization

H =
∑︂

λ,λ,k,k′

∫︂
d3r Ψ∗

λ,k(r)
(︄

−ℏ2∇2

2m
+ V (r)

)︄
Ψλ′,k′(r)λ†

kλ′
k′ =

∑︂
λ,k

ελ,kλ†
kλk , (2.16)

where we used the orthogonality of the wave functions bringing the Hamiltonian into diagonal
form. The dispersion of the electrons in band λ is described by ελ,k.

Carrier-light coupling: On the same footage, we include the interaction of solid state
electrons with an external classical light field. The radiation acts as a source for the investigated
excitation dynamics. Further, we are interested in the description of spectroscopy, which refers
to the study of matter through its interaction with light fields. We will treat the interaction
semi-classically, where the light presents only a time-dependent interaction potential that acts
on the matter. The electric dipole Hamiltonian reads [66,83]

H = −
∑︂

λ,λ′,k,k′

dλλ′

k,k′ · E(t)λ†
kλ

′
k′ . (2.17)

The Hamiltonian describes the transition from a band λ into the band λ′, optically induced by
an electric field E(t). The electric field is assumed to propagate perpendicular to the sample.
Consequently, the polarization vector of the incident light is parallel to the sample plane. The
dipole matrix element [84,85] reads formally

dλλ′

k,k′ = e⟨Ψλ,k|r|Ψλ′,k′⟩ (2.18)

with elementary charge e. The dipole matrix element describes the strength and selection
rules of the optical transitions. The latter is determined by the crystal symmetry and the
symmetry of the involved initial and final states. In order to derive the used dipole matrix
element, we insert the Bloch wave functions for the bands λ and λ′. Then we substitute
r∥ exp(ik · r∥) = −i∇k exp(ik · r∥). The integral is shifted into the first unit cell and summed
over all unit cells. A detailed derivation is shown in the appendix A.2. Finally, we obtain the
dipole matrix operator

dλλ′

k,k′ = −ie⟨uλ,k|
(︄

∇k

iz

)︄
|uλ′,k′⟩ δλ′,λ̄

k,k′ − ieδλ,λ′

k,k′ ∇k . (2.19)

Generally throughout this thesis, integrals in this notation involving the periodic lattice
functions uλ,k(r) or atomic orbitals extend over the 1st Brillouin zone. The first term
describes interband transitions from one band λ into a different band λ̄. The second term
is band conserving and specifies therefore intraband transitions, where the gradient acts
onto the creation operator in Eq. (2.17). The intraband term describes an acceleration of
carriers and polarization by the external electric field. The motion of the carriers induces a
macroscopic current, which contributes in addition to the macroscopic polarization to the
optical response [86, 87]. The external field of the laser changes the crystal momentum of
electrons according to the acceleration theorem [88]. Usually, exciting light in the near infrared
and of higher excitation energy is used to probe the optical response of a material. Due to
the fast oscillation of the electric fields, the wave vector changes are small compared to the
electronic wave vector [86, 89]. Therefore, the optical response is not strongly altered and the
intraband source is usually neglected. Besides restrictions for the band indices, we find also
a selection rule for the wave vectors. In Eq. (2.17) we see that the spatial extension of the
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Figure 2.1: An atomically-thin material of finite thickness d0 with substrate and supstrate
characterized by the dielectric constants ϵ1 and ϵ2, respectively.

electric field is neglected. In more detail, the spatial phase is expanded in orders of r∥ around
the nuclei position, which yields a series of multipole moments of increasing order [90]. Due to
its dominating contribution only the zeroth order is kept, i.e. exp(iQ · r∥) ≈ 1 with light wave
vector Q. The underlying reason is that for light in the visible and XUV (here considered up
to 20 eV) regime the wavelength λ = 2π/k is largely smaller than the extension of the unit
cell lying in the range of the lattice constant. Therefore, for the first order holds r∥ · Q ≪ 1
compared to the zeroth order. Consequently, the electric field can be considered constant
throughout the unit cell. This explains also why the dipole Hamiltonian is diagonal in the
wave vector and describes only vertical transitions within the Brillouin zone with conserving
wave vector. Inserting the dipole matrix operator into Eq. (2.17) we recognize that the minus
sign cancels.

Carrier-carrier coupling: As third, the interaction between carriers is investigated. In
principle, intra- and interband Coulomb interaction is possible described by

H = 1
2

∑︂
λ,λ′,ν,ν′

k,k′,q

V λλ′ν′ν
k,k′,q λ†

k+qλ′†
k′−q

ν ′
k′νk (2.20)

with the Coulomb matrix element [91]

V λλ′ν′ν
k,k,q = Vq

∑︂
G

⟨uλ,k+q|eiG·r∥ |uν,k⟩⟨uλ′,k′−q|e−iG·r∥ |uν′,k′⟩ . (2.21)

To obtain the presented matrix element, we shifted the integrals into the 1st Brillouin zone and
summed over all unit cells. Equation (2.21) describes the probability of a Coulomb-induced
transition between the states (λ, k + q) and (λ′, k′ − q) to (ν, k) and (ν ′, k′). The momentum
transfer q corresponds to the distance in momentum space between the interacting carriers.
Vq denotes the Fourier transform of the Coulomb potential. It can be derived by solving the
Poisson equation for a three layer model [92–95], as sketched in Fig. 2.1. While the substrates
are approximately described by dielectric constants [96], the investigated atomically-thin
material is described by a non-local dielectric function [97]. The screened Coulomb potential
reads

Vq = Vq

ϵq
. (2.22)
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It constitutes of the bare Coulomb potential [98]

Vq = e2

ϵ0Ad0|q|2
(︃

1 − 1
d0|q|

(︂
1 − e−d0|q|

)︂)︃
(2.23)

with dielectric vacuum permittivity ϵ0 and unit cell area A. Vq corresponds to a quasi two-
dimensional Coulomb potential including the finite thickness d0 of the investigated material.
Interestingly, for qd0 ≪ 1 the expression recovers the ideal two-dimensional Coulomb potential
Vq = e2/ϵ0A|q|. In contrast, for qd0 ≫ 1 we obtain the three-dimensional Coulomb potential
Vq = e2/ϵ0A|q|2. Therefore, the quasi two-dimensional potential interpolates between the
strict two-dimensional and three-dimensional case [99]. The Coulomb potential is statically
screened by the dielectric environment. The corresponding macroscopic dielectric function
ϵq includes a non-linear wave vector dependence, which is in agreement with ab initio
calculations [98,100–102], and reads [96]

ϵq =
ϵmat
q ϵ̃q

(︂
d0|q| − 1 + e−d0|q|

)︂
d0|q|ϵ̃q + 2ϵ1ϵ2 (1 − cosh(d0|q|)) − ϵmat

q (ϵ1 + ϵ2) sinh(d0|q|) (2.24)

with the abbreviation

ϵ̃q = ϵmat
q (ϵ1 + ϵ2) cosh(d0|q|) + (ϵ1ϵ2 + (ϵmat

q )2) sinh(d0|q|) . (2.25)

Here, the dielectric function of the material appears, which includes a non-linear wave vector
dependence instead of being treated locally. It reads [98]

ϵmat
q = 1 + 1

1
ϵmat

∥ −1 + α |q|2
q2

F
+
(︂

ℏ2q2

2m0Epl

)︂2 (2.26)

and requires the in-plane susceptibility ϵmat
∥ of the material as well as the plasmon peak energy

Epl associated with the parental bulk material. Additionally, we find a dimensionless fitting
parameter α. For monolayer transition-metal dichalcogenides, which are introduced in the
next section as material, we use α = 1.55 [98]. The Fermi wave number qF in Eq. (2.26) is
defined as [96]

qF =

⌜⃓⃓⎷ e2
0m0

π2ϵ0ℏ2

(︄
3π2ϵ0m0E2

pl

e2
0ℏ2

)︄1/3

. (2.27)

Again, we can investigate the limiting case of ideally two-dimensional materials. We apply
d0 → 0 together with the assumption of small wave vector, that d0q can be linearized. Then
the dielectric function ϵq reduces to the well-known Rytova-Keldysh screening [92,93]

ϵq = ϵ1 + ϵ2
2 (1 + r0|q|) (2.28)

with screening length r0.
In this thesis we focus mainly on the long range interaction. Long range interaction is

attributed to transfer of small momenta. This simplifies the matrix element since we can
use ν = λ and ν ′ = λ′ and take G = 0. We treat only carriers located in the vicinity of the
relevant points in the Brillouin zone, corresponding to the high symmetry points. In this case
a locally defined wave vector can be set to approximately zero. Within this low wave number
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approximation, the Bloch functions can be treated perturbatively in q that the intraband
cross-section are close to unity: ⟨uλ,k+q|uλ,k⟩ ≈ 1. Consequently, the intraband Coulomb
matrix element is determined solely by the statically screened quasi-two-dimensional Coulomb
potential.

Carrier-phonon coupling: The last contribution to the electronic material Hamiltonian
includes phonons and their interaction with electrons. The Hamiltonian reads [91]

H =
∑︂
α,K

ℏΩα
Kb†α

K bα
K +

∑︂
λ,α,k,K

gλα
k+K,k,Kλ†

k+Kλk

(︂
bα

K + b†α
−K

)︂
(2.29)

including the free phonon energy by the first term and the electron-phonon interaction with the
second term. The operators b

(†)α
K denote phonon annihilation (creation) operators following

bosonic commutation relations:[︂
bα

K , b†α′

K′

]︂
−

= δα,α′

K,K′ ,
[︂
b

(†)α
K , b

(†)α′

K′

]︂
−

= 0 . (2.30)

They are characterized by the phonon mode α and a two-dimensional wave vector K. The
phonon dispersion of mode α is described by ℏΩα

K . We include two acoustic phonons,
namely longitudinal acoustic (LA) and transversal acoustic (TA), and three optical modes,
namely longitudinal (LO), transversal (TO) optical and the optical A1 mode. Around
the Γ-point, building the center of the Brillouin zone, the optical phonons are treated in
Einstein approximation, i.e. ℏΩα

K = ℏΩα = const. The acoustic phonons are treated in Debye
approximation, i.e. ℏΩα

K = ℏcα|K|, where cα denotes the velocity of sound for the given
phonon mode. Zone-edge phonons are treated in Einstein approximation [103–105].

The second contribution to the Hamiltonian describes phonon-induced scattering from
(λ, k + K) to (λ, k) under wave vector transfer K. Since the phonon energies considered in
this thesis are smaller than the band gap of the materials, the phonon scattering is band
conserving [103–105]. However, we have to distinguish between intravalley scattering and
intervalley scattering between different high symmetry points of the Brillouin zone. The
electron-phonon matrix element corresponds to a change of the self-consistent potential created
from electrons and nuclei, due to a perturbation, whereby the perturbation corresponds to a
phonon [106]. The electron-phonon matrix element reads

gλα
k+K,k,K =

√︄
ℏ

2ρΩα
KA

Gλα
k+k,k,K =

√︄
ℏ

2ρΩα
KA

⟨uλ,k+K |δV α
K |uλ,k⟩ (2.31)

with the derivative δV α
K of the potential between carrier and nuclei due to atomic displacements

associated with a certain phonon mode. The mass density of the unit cell is denoted by ρ.
We distinguish between two kinds of electron-phonon coupling: polar and non-polar

coupling. The latter is described by a deformation potential interaction. Here, the carriers
interact with the local change in the crystal potential, which is associated with lattice
vibrations [107]. In contrast, for polar coupling mechanisms, such as Fröhlich or piezoelectric
coupling, the charged carriers couple to an internal polarization of the lattice stemming
from a displacement field associated with phonons [108]. Acoustic phonons couple equally in
deformation potential and piezoelectric coupling [109]. In contrast the TO and A1 phonon
mode couple mainly in deformation potential and the LO couples in Fröhlich [103]. We can
split the integral as [103,104,108](︂

Gλα
k+K,k,K

)︂
ac

=
(︂
Gλα

k+K,k,K

)︂DP

ac
+ i

(︂
Gλα

k+K,k,K

)︂PE

ac
(2.32)(︂

Gλα
k+K,k,K

)︂
op

=
(︂
Gλα

k+K,k,K

)︂DP

op
+ i

(︂
Gλα

k+K,k,K

)︂Fr

op
, (2.33)
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Chapter 2. Exciton dynamics in tr-ARPES

where the imaginary unit ensures that the coupling mechanisms are out of phase and do
not interfere [109]. As we will see, important for the exciton-phonon coupling are the signs
of the coupling integrals. However, first-principle calculations yield only the absolute value
of the scattering integrals. Therefore, a more detailed look onto the scattering mechanisms
is necessary. Polar phonon coupling mechanisms, such as Fröhlich or piezoelectric, depend
on the charge of the involved carrier, which is involved in the scattering event. Therefore,
the signs of the integrals for valence and conduction band coincide [108]. The signs for the
scattering integrals for deformation potential coupling can be extracted from the direction
of band shifts occuring when the unit cell is deformed by the respective phonon mode [107].
A possible tool are strain measurements or calculations [110–112]. In the case of monolayer
transition-metal dichalcogenides it is found that valence and conduction band deformation
potential coupling elements have different signs. We can write(︂

G
c/vα
k+K,k,K

)︂
ac

= ±
⃓⃓
G

c/vα
k+K,k,K

⃓⃓DP
ac + i

⃓⃓
G

c/vα
k+K,k,K

⃓⃓PE
ac (2.34)(︂

G
c/vα
k+K,k,K

)︂
op

= ±
⃓⃓
G

c/vα
k+K,k,K

⃓⃓DP
op + i

⃓⃓
G

c/vα
k+K,k,K

⃓⃓Fr
op . (2.35)

The deformation potential matrix elements are treated by an analytical model described by
the deformation potential approximation. Here, the matrix element is expanded in orders
of the phonon wave vector, with the zeroth order (D0) and first order (D1|K|) deformation
potential. Optical phonon interaction and intervalley scattering are treated in zeroth order.
Interaction of acoustic phonons is evaluated in first order [113].

2.4 Photoemission Hamiltonian
So far, we formulated the Hamiltonian for crystal electrons and intrinsic material interactions
such as electron-electron and electron-phonon interaction. The electronic structure within
the thermal energy range around the Fermi level determines a wide range of phenomena. We
can even go that far that the electronic band structure constitutes the macroscopic basis of
the material’s physical properties. For example, we can classify materials in semiconductor,
insulators, and metals depending on their band structure. Also classical properties such as
thermal conductivity or heat capacity are determined by the band structure. Or the materials
optical properties such as if the material is colorful or transparent. Therefore, to understand
and engineer new materials microscopic investigations of the electronic structure are necessary.
When neglecting the spin, two quantities are important for the investigation: energy and wave
vector. Photoelectron spectroscopy is a tool with the possibility to access these quantities.

Photoelectron spectroscopy is a collective term for all spectroscopic techniques exploiting
the photoelectric effect, which was first observed by H. Hertz [114] at the end of the 1880s
and later explained by A. Einstein [115]. When a material is irradiated by light and the
excitation energy is larger than the ionization energy of the material, then an electron,
called photoelectron, is emitted from the sample. The kinetic energy of the photoelectron is
determined by the difference of the light’s excitation energy and the ionization energy of the
material. Therefore, photoelectron spectroscopy is an experimental technique to determine
the relative energies of electrons in atoms, molecules or solids and the measured intensity is
proportional to the electronic density of states [116]. Depending on the source of the ionizing
radiation, photoelectron spectroscopy is divided into ultraviolet and X-ray photoelectron
spectroscopy. The former probes valence, while the latter core electrons.

A highly advanced technique is angle resolved photoemission spectroscopy (ARPES)
[117, 118]. When the high-energy light strikes the sample and initiates the photoemission
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process, the photoelectrons leave the sample under a certain angle. The emission angle, which
is measured by a hemispheric detector [26], can be traced back to the initial wave vector
of the photoelectron within the sample. Using the wave vector |k| =

√︂
k2

x + k2
y in spherical

coordinates and the relation k =
√

2m0E/ℏ for the kinetic energy of a free particle, the
relation to the emission angle is

k =
√︁

2m0E sin θ/ℏ . (2.36)

Besides the connection of wave vector and emission angle θ, we see from Eq. (2.36) that the
magnitude of the measured wave vector depends on the kinetic energy. To access the complete
Brillouin zone with ARPES, it is therefore necessary to use high energy radiation sources
such as extreme ultraviolet (XUV) or X-ray. With the simultaneous measurement of kinetic
energy and wave number the complete quantum state of the electron within the sample is
known. Therefore, not only the electronic band structure but even fingerprints of electronic
correlations are observable, which for example can constitute the basis of superconducting
properties [116, 119]. Hence, ARPES is the most direct method to probe valence electrons
in material systems [120–122]. The mean free path of UV photons is on the order of a
few Ångström [123,124], that ARPES is a surface sensitive method. Equation (2.36) shows
also that only the in-plane momentum can be easily related to the emission angle. Thus,
two-dimensional materials, where electronic states are delocalized in two directions and well
localized in perpendicular direction, are ideal candidates to be investigated by ARPES.

A limitation of ARPES is that the method accesses only the occupied density of states.
An extension of ARPES is time resolved ARPES (tr-ARPES), which adds a time resolution
to the experiment. A common problem of many optical experiments is the indirect nature
of the measurement. In pure optical experiments many possible excitation and relaxation
pathways can contribute to the measured transients, which makes the identification of transfer
and relaxation channels difficult [125]. Tr-ARPES can provide this information in many cases
as it is capable of directly imaging the excited electron dynamics in k-space [125,126].

To describe the photoemission process we formulate now the underlying Hamiltonian.
It consists of the unperturbed vacuum Hamiltonian and the XUV-matter interaction. The
free kinetic energy is described by a manifold of three-dimensional parabolas starting at the
ionization energy of the material. The transition probability of the optical excitation, where a
valence or conduction band electron is elevated by the XUV light to the ionization continuum
is described by the matrix element dλk⊥

k = −ie⟨uλ,k|∇k|ξk⊥,k⟩ − ie⟨uλ,k|iz|ξk⊥,k⟩êz with the
Cartesian unit vector êz. Born-von Karman plane waves are an orthogonal set of functions.
Since Bloch waves and tr-LEED states fulfill the Born-von Karman condition within the
plane they have to be orthogonal. Since the bound states λ can by definition not equal the
ionization continuum, dλk⊥

k is a pure interband dipole element without intraband contribution.
For the photoemission we use a XUV excitation energy of 20 eV. Also for such soft XUV
light the wave number is comparable small to the electronic wave vector. For example, the
momentum of a zone edge electron is about 1000 times larger than that of a 20 eV photon. In
the reduced zone scheme the photoemission transition is therefore wave vector conserving and
can be seen as vertical [127]. Here lies also the reason for the momentum resolution of the
ARPES measurement. The photoemission contribution to the Hamiltonian describing the
emission process of electrons into the ionization continuum initiated by a XUV pulse, reads

H =
∑︂
k,k⊥

εk⊥,kk†
⊥,kk⊥,k −

∑︂
λ={c,v},k,k⊥

(︂
dλk⊥

k · E(t)λ†
kk⊥,k + H.c.

)︂
. (2.37)
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Chapter 2. Exciton dynamics in tr-ARPES

Figure 2.2: (a) A sketched top view of a monolayer TMDC with drawn symmetry axes. Blue
dots denote transition-metal and green dots chalcogen atoms. (b) Side view of a monolayer
TMDC displaying the σh symmetry. (c) Sketch of the hexagonal Brillouin zones with high
symmetry points and symmetry axis. The first Brillouin zone is highlighted in gold.

We introduce the fermionic operator k
(†)
⊥,k, which acts as band index and perpendicular

momentum and describes creation or annihilation in the three-dimensional ionization states
of the vacuum.

Based on the distinct symmetry properties of the crystal bands certain bands are ruled
out by the photoemission matrix element. The final state continuum wave function should
be symmetric with respect to all mirror planes of the surface. The product of polarization
vector and dipole operator e · r is even if the polarization is parallel to the plane but odd if
the polarization is perpendicular to the plane [128]. Therefore, different polarizations probe
different states. In our case, for a perpendicular irradiation the polarization vector is parallel
to the plane. The material, which we are going to investigate by tr-ARPES are monolayer
transition-metal dichalcogenides.

2.5 Monolayer transition-metal dichalcogenides

2.5.1 Real and reciprocal lattice

Since the exfoliation of graphene from a bulk graphite crystal, many other two-dimensional
materials were identified. A very prominent family of layered two-dimensional materials are
transition-metal dichalcogenides (TMDC). TMDCs are layered materials with general chemical
formula MX2, where M stands for a transition-metal and X for a chalcogen atom. Each
monolayer is composed of a covalently bonded trilayer, consisting of metal atoms sandwiched
by two chalcogen atom sheets. The most widely studied polytypes are the trigonal prismatic
2H-types. Here, two trilayers in a trigonal prismatic coordination (H) are required to form
the bulk primitive unit cell [129]. Adjacent trilayers of the bulk crystal are held together
by weak van der Waals interactions. Especially, semiconducting TMDCs are of significant
interest because their band gap lies in the optical range of the electromagnetic spectrum,
which is favorable for optoelectronic devices [130,131]. The majority of attention focuses on
the molybdenum- and tungsten-based constituents: MoS2, MoSe2, WS2, and WSe2. These
four materials are also the subject of this thesis. As exemplary candidates for their class we
focus on WSe2 and MoSe2.

It has been demonstrated that the band structure drastically changes, when going from bulk
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to monolayer samples: The originally indirect semiconductor turns into a direct semiconductor
making them even more interesting for device applications [3, 4]. Such monolayer TMDCs
host many intriguing electronic and physical properties [132].

To access mono- or few-layer structures from bulk crystals an adhesive force of skotch tape
is used, referred to as mechanical cleavage. This method produces large flakes of high quality
with few defects. However, the production rate is low and thickness and size are hard to
control [133]. Therefore, currently intense efforts to grow large-area TMDC monolayers with
low-defects from chemical vapor deposition are performed. Such an industrial manufacturing
is important for future implementation into technological applications [134,135].

The investigated molybdenum- and tungsten-based TMDCs appear in a 2Hc stacking,
where every transition-metal atom is situated on top of two chalcogen atoms. From a top view
the composing atoms of the monolayer TMDC arrange in a hexagonal lattice, as is shown in
Fig. 2.2(a) and (b). The basis vectors of the real two-dimensional lattice are

a1 = a0
2

(︄ √
3

1

)︄
, a2 = a0

2

(︄
−

√
3

1

)︄
(2.38)

and span the planar unit cell, which contains 3 atoms. a0 denotes the lattice constant.
From a linear combination of these two vectors we can construct any translation vector R.
The trigonal prismatic geometry gives rise to the crystallographic point group D3h. The
included point symmetry operations are the 3-fold C3 rotation, the 2-fold C2 rotation along
the monolayer plane, the horizontal reflection σh with its plane passing the transition-metal
atom, a S3 mirror-rotation, a σv vertical reflection plane, and obviously the identity. Figure
2.2 draws the symmetry axes.

The uniquely defined unit cell in reciprocal space is described by

g1 = 2π

a0

(︄ √
3

3
1

)︄
, g2 = 2π

a0

(︄
−

√
3

3
1

)︄
, (2.39)

which fulfill the necessary condition: ai · gj = 2πδij . Similar to real space, we find a hexagonal
structure of the 1st Brillouin zone in momentum space, which is sketched in Fig. 2.2(c)
together with the reciprocal high-symmetry points. At the center lies the Γ-point, while at
the edges are the K+ and K− points. Monolayer TMDCs show at the zone edged K+ and K−
points an advantageous direct band gap, forming the optical relevant points in the lattice.
This situation is different compared to the classical III-V or II-IV semiconductors, such as
GaAs, where the optical band gap lies at the Γ-point [136].

The K+ and K− points are connected by time-reversal symmetry. We can define a time-
reversal operator that T Ψ(r) = Ψ∗(r) holds. This action can be verified by inserting the time
evolution operator for T . Inserting a Bloch wave we obtain the identity T Ψk(r) = Ψ−k(r) =
Ψ∗

k(r). Investigating the action at the K+ point, i.e. k = K+, we see that time-reversal
symmetry ensures a valley degeneracy since T flips the Bloch factor as (eiK±·r∥)∗ = eiK∓·r∥

and swaps therefore the eigenstates at K+ and K− [137]. This follows from the fact that the
K+ and K− coordinates are related by a sign change. If we include the spin the time-reversal
operator needs to be redefined as T σy with the Pauli spin operator σy to ensure time-reversal
symmetry of the Hamiltonian Eq. (2.3) [138]. Now, not only k → −k but also the spin s → −s
is exchanged under time-reversal operation, i.e. T Ψλ,k↑(r) = Ψλ,−k↓(r) with time-reversal
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Chapter 2. Exciton dynamics in tr-ARPES

conjugate states Eλ,k↑ = Eλ,−k↓. We obtain at the K+ point

T Ψλ,k↑ = T
(︄

eiK+·r∥uλ,K+,↑

(︄
1
0

)︄)︄
= e−iK+·r∥

(︄
iu∗

λ,K+,↑

(︄
0
1

)︄)︄

= eiK−·r∥uλ,−K↓

(︄
0
1

)︄
, (2.40)

which is the Bloch state at K− with spin s =↓ and the corresponding energy Eλ,K+↑ = Eλ,K−↓.
We see that wave functions connected by conjugation have the same energy, namely the
spin-up state in the K+ valley and the corresponding spin-down in the K− valley have the
same energy. Important for this relation is the lack of inversion symmetry Eλ,k = Eλ,−k,
present in monolayer TMDCs, which would restore the two-fold spin degeneracy. Therefore,
the absence of the inversion symmetry in monolayer TMDCs is of essential importance for the
rich coupled spin-valley physics of monolayer TMDCs [12,138,139]. The band splitting by the
intrinsic spin-orbit coupling is lifted at the time-reversal invariant points M and Γ [140]. The
M point is situated between the K+ and K− points and finally we introduce the Λ± points,
which lie between the Γ and the K± points, cf. Fig. 2.2(c). It is found that the spin-orbit
coupling splits the conduction band by a few tens of meV. But in contrast, the valence band
splitting is about a few hundred meV [140]. This can be traced back to the orbital composition
of the bands. Ab initio calculations reveal that the bands around the Fermi level are formed
predominately by d orbitals of the heavy transition-metal atoms. Around the K± points the
valence bands are mainly formed by the linear combination dx2−y2 ± idxy. The conduction
band is constituted by the dz2 orbital [141, 142]. At the K± points not all symmetries of
the lattice are preserved, cf. Fig. 2.2(c). Here, only the three-fold rotational symmetry
axis (C3) and the horizontal mirror plane (σh) are valid symmetry operations. For the dz2

orbital, constituting the conduction band, when rotated around at the lattice site no phase
contribution occurs since the dz2 orbital has no azimuthal phase. In contrast, for the valence
band the atomic orbitals themself induce an orbital angular momentum since they exhibit an
azimuthal phase winding around the transition-metal nuclei. This large, and at the nuclei
localized, angular momentum originates the large spin-orbit splitting [143]. To describe the full
microscopic character of the electronic wave functions and the electronic dispersion also the
minor contribution of the chalcogen p orbitals needs to be included. However, their influence
on the symmetry of the wave functions is negligible [143]. This rich orbital contribution to
the relevant bands makes a construction of a tight binding model, valid in the whole Brillouin
zone, a cumbersome task. Here, we apply an effective mass approximation and treat the band
structure as parabolas around each high symmetry point. The parabolic approximation is
valid up to 300 meV [6,103] and reads for the bands λ = {c, v}

Eλ,k = ±ℏ2k2

2mλ
± EG

2 . (2.41)

The effective masses of valence and conduction bands are denoted by mλ and EG corresponds
to the band gap. An exemplary electronic TMDC dispersion is sketched in Fig. 2.3. Since the
spin plays only a minor role in the investigated scenarios, we will focus on the spin up bands.

2.5.2 Selection rules

Now that we have defined the orbital basis functions and investigated the TMDC crystal
symmetries we can revisit the previously formally formulated matrix elements. For the optical

18



2.5. Monolayer transition-metal dichalcogenides

K+ K-
k

Figure 2.3: TMDC dispersion in effective mass approximation. For a complete picture of
monolayer TMDCs, the spin bands are included.

valence-conduction band transition we know that the periodic Bloch factor uλ,k(r), involving
the periodic sequence of atomic orbitals, transforms according to the point group C3h at the
K± points. Thus, the Bloch functions at the Brillouin zone edges are eigenstates of the C3
operator, which describes a 2π/3 rotation with eigenvalue exp(i2πmλ/3). For the bands hold
mc = 0 and mv = ±2 due to the dz2 and dx2−y2 ± idxy contribution, respectively. The dipole
matrix element transforms upon two cancelling rotations as [144]

⟨uv,k|r|uc,k⟩ = ⟨uv,k|C−1
3 C3rC−1

3 C3|uc,k⟩ = e−i 2π
3 (mv−mc∓1)⟨uv,k|r|uc,k⟩ . (2.42)

We used that the C3 operator, acting on the dipole operator, induces a phase exp(i2πm/3)
with m = ±1 for circular polarized light σ± and m = 0 for linear polarized light. For a
possible transition the matrix element should not change since we inserted a one. Therefore,
we find the condition (mv − mc ∓ 1)mod3 = 0. We see immediately that the K+ point is only
excited by σ+ light and the K− point only by σ−. Furthermore, we see that the transition in
the respective valley does only occur if ⟨uv,k|r|uc,k⟩ ̸= 0, i.e. the integral must be even. In
other words: The product of irreducible representation Γ∗

v ⊗ Γr ⊗ Γc must contain the fully
symmetric representation [138]. At the K± points the dx2−y2 ± idxy hybridized orbital of the
valence band transforms according to the irreducible representation E’ and the dipole vector
according to E’+A”. With the help of the reduction formula for Γv ⊗ Γr we can check that
the optical transition is allowed into final states with irreducible representation A’ (and A”),
having the dz2 orbital as basis function. Therefore, the investigated optical transition from
highest valence band into lowest conduction band is dipole allowed. A detailed derivation is
given in the appendix A.1.

In a similar way, we can investigate the photoemission selection rules from the relevant high
symmetry points K± and Λ±. For the final states we know that they should be symmetric with
respect to all mirror planes of the surface [145–147]. We find that the final state transforms
according to A’ and E’. We can then check for the perpendicular excitation geometry with
in-plane parallel polarization that transitions from valence and conduction band are dipole
allowed. A similar result can be obtained for the Λ±, which are associated with the point
group C1h. The appendix A.1 shows the derivation for the TMDC photoemission selection
rules.

We introduced monolayer TMDCs, their electronic dispersion and the electronic optical
selections. But the low excitation properties of monolayer TMDCs are determined by excitons.

19



Chapter 2. Exciton dynamics in tr-ARPES

2.6 Excitons

2.6.1 Excitonic Bloch equations

The two-dimensional character of atomically-thin materials entail among others also a weak
dielectric screening. Therefore, the semiconducting monolayer transition-metal dichalcogenides
exhibit an enhanced Coulomb interaction, which gives rise to strongly bound electron-hole
pairs or excitons [10]. These quasi-particles dominate the optical properties of monolayer
TMDCs [3]. In the following we are going to investigate Coulomb-correlated electron-hole
pairs in terms of the semiconductor Bloch equations. Due to the incredible importance of
excitons in the linear and perturbatively nonlinear limit over quasi-free electrons or exciton
plasmas an excitonic description of these two-body quasi-particles is desirable [91,148,149].

To investigate excitons, we start from the interband transition defined as

pkv ,kc ≡ pvc
kv ,kc

= v†
kv

ckc
. (2.43)

For the interband transitions we assume near-resonant excitation conditions. Therefore, for a
better readability the band indices are dropped, cf. Eq. (2.43). Within a Heisenberg equation
of motion formalism we derive the semiconductor Bloch equation for the interband transition.
From the Hamiltonian defined in Sec. 2.3 we obtain

iℏ
d

dt
pk = (εc,k − εv,k) pk + (fv,k − fc,k)

(︄
ℏΩcv

k (t) −
∑︂

q

V vc
q pk+q

)︄
+ iℏ∂tpk|coll (2.44)

for the microscopic polarization pk = ⟨v†
kck⟩. The first term, referred to as gap dispersion,

describes the oscillation of the interband transition, or microscopic polarization, and corre-
sponds to the difference between the single-particle energies. The second term corresponds
to the source term stemming from the exciting light. We see that the optical transition
is driven by the valence band occupation and blocked by the conduction band occupation,
which corresponds to Pauli-blocking [150]. As already discussed in Sec. 2.3 the optically
induced transition is wave vector conserving. Consequently, also the valley is conserved. For
monolayer TMDCs this implies that electron and hole are, depending on the polarization
of the electric field, either both at the K+ or K− point. The Rabi-frequency is defined as
Ωcv

k = dcv
k · E(t)/ℏ. Finally, we included to the derivation also Coulomb interaction. When

incorporating many-body interaction to a single-particle element such as pk this leads to a cou-
pling to higher-order terms. They describe the correlation between the carriers. Troublesome
is that we obtain an infinite hierarchy of equations with increasing number of carriers. To
close the arising set of equations, the infinite hierarchy needs to be systematically truncated,
which is achieved by the correlation expansion [151–153]. In case of Coulomb interaction the
factorization of the obtained 4-operator quantity is called Hartree-Fock factorization. The
energy renormalizing terms are absorbed into the single-particle energies ελ,k. Additionally,
we find the last term of Eq. (2.44), which describes a Coulomb-induced renormalization of the
Rabi-frequency. It can be interpreted as local field contribution and gives rise to the formation
of excitons. The correlated part of the factorization gives rise to many-body interaction [154]
and scattering-induced dephasing [155], and is schematically included in ∂tpk|coll. At this point
electron-phonon interaction is neglected. Note, that the wave vector k is defined throughout
the Brillouin zone and addresses implicitly the different valleys.

So far the equation of motion is expressed in the electron-hole pair picture. We see that the
Coulomb interaction couples every wave vector to all other wave vectors making a numerical
treatment fairly difficult. To circumvent this problem we transform from the electron-hole
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K+ K- M K

Figure 2.4: (a) Electron-hole band structure with spin up and down at the K± points and the
possible electron-hole pairs. (b) Corresponding exciton band structure. Blue dashed denotes
the molybdenum-based TMDCs and violet solid tungsten-based TMDCs. In the former
materials the Γ-exciton forms the global minimum and in the latter the momentum-indirect
states are energetically more favorable.

pair into the exciton picture. The transformation is achieved by performing a coordinate
transformation. Since we need to treat a two-body system, we define

q = αkv + βkc, and Q = kc − kv (2.45)

as relative q and center-of-mass momentum Q. The mass factors are defined as ratios of
electron or hole mass to the excitonic mass according to

α = mc

mv + mc
, and β = mv

mv + mc
. (2.46)

With the transformation, the pair operators carry relative and center-of-mass momentum. By
projecting the pair operators onto a complete basis relative and center-of-mass motion can be
separated. Denoting the pair operator in exciton basis by Pq,Q we can write

Pq,Q =
∑︂

µ

φµ,qPµ,Q . (2.47)

By these means, the exciton depends solely on the center-of-mass momentum. As basis
function we choose the exciton wave function φµ,q, which determines the relative motion of
the exciton of state µ. They are obtained as solution of the Wannier equation. In the linear
limit, i.e. neglecting Pauli blocking, it reads [91,156,157]

ℏ2q2

2m
φµ,q −

∑︂
k

V vc
k φµ,q+k = Eµ

Bφµ,q . (2.48)

The first term describes the kinetic energy with reduced exciton mass m. The second term
takes into account the electron-hole intraband Coulomb interaction, which gives rise to the
exciton binding. Besides the exciton wave function as eigenfunction we obtain also the
corresponding exciton binding energy Eµ

B with exciton quantum number µ as eigenvalue. The
Wannier equation depends on the electron and hole valleys and can be applied to all kinds of
excitons possible in a complex multivalley band structure. We can transform the electronic
dispersion with electron-hole pairs into an excitonic dispersion as is sketched in Fig. 2.4.
Excitons with electron and hole at the K+ (or K−) points form the excitonic Γ point since
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it includes the vanishing center-of-mass momentum Q. Γ excitons with electron and hole of
spin up form the A exciton. The spin down exciton is referred to as B exciton. Since we
focus on spin up (A exciton is the energetically lowest lying), and if not other stated, we drop
the A and just write exciton. Additionally, also momentum indirect excitons are possible
such as Λ± excitons, where the hole is at the K+ point and the electron at the Λ± point
or K excitons with hole at the K+ and electron at the K− point. An alternative labeling
of excitons is K+K+, K+Λ+, or K+K− depending where the electron is situated. Generally,
the K+ is exchangeable by K−, which yields the same excitonic configurations. To reduce
the clumsy notation we drop the plus sign K+ → K when addressing the excitonic states.
Interestingly, when numerically solving the Wannier equation, we find that Γ excitons form the
global minimum for molybdenum-based TMDCs but momentum-indirect Λ and K excitons
are energetically more favorable in tungsten-based TMDCs, cf. Fig. 2.4(b). The equation of
motion for the exciton in the limit of negligible Pauli blocking reads

iℏ
d

dt
Pµ,Q = Eµ,QPµ,Q + ℏΩµ(t) δQ,0 + iℏ∂tPµ,Q|coll . (2.49)

Compared to Eq. (2.44), the equation of motion is now in a diagonal form and corresponds to
a simple driven harmonic oscillator with the exciton kinetic energy Eµ,Q = ℏ2Q2/2M + Eµ,
where M = mh + me denotes the exciton mass and Eµ = EG + Eµ

B the exciton energy.
The driving term is the excitonic Rabi frequency Ωµ(t) =

∑︁
q φ∗

µ,qΩcv
q . We see that only

excitons with vanishing center-of-mass momentum can be excited, which corresponds to
vertical transitions at the K± points in the electronic picture.

We have discussed the complex quasi-particle band structure. But, because of the optical
selection rules, the excitons in Eq. (2.49) are restricted to the optically active Γ excitons within
the light cone. The possibility for the formation of momentum-indirect excitons is given by
exciton-phonon interaction, which is included in Eq. (2.49) only schematically by ∂tPµ,Q|coll.
In the following, exciton-phonon interaction is briefly investigated. Therefore, we include
electron-phonon interaction to the semiconductor Bloch equation Eq. (2.44) and transform
the additional contribution into the exciton picture. The exciton-phonon contribution to the
excitonic Bloch equation reads

iℏ
d

dt
Pµ,Q|phon =

∑︂
α,K

gα
µµ′,K

(︂
Sα

µ′,Q−K,K + S̃
α
µ′,Q−K,−K

)︂
. (2.50)

We find that the exciton transition couples to the phonon-assisted transitions
(∼)
Sα

µ,Q−K,K =
⟨Pµ,Q−Kb

(†)α
K ⟩. The sum over the phonon quantum numbers include not only intra- but also

intervalley scattering of excitons. Important is that the hole scattering can be neglected
due to a large energetic separation of excitonic states, which are addressable by intervalley
scattering of holes. The exciton-phonon matrix element is defined as

gα
µµ′,K =

∑︂
q

(︂
φ∗

µ,qgcα
K φµ′,q+βK − φ∗

µ,qgvα
K φµ′,q−αK

)︂
. (2.51)

Here, we see the earlier claimed substraction of conduction and valence band electron-
phonon matrix element. For electrons and holes with similar effective mass the form factors,
constituting of the product of the exciton wave functions, are comparable. As consequence,
the exciton-phonon interaction vanishes if the electronic matrix elements have equivalent sign
and add up for opposite sign. The phonon-assisted transitions are coupling back to the exciton
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transition via the phonon population nα
K , which is treated in bath approximation:

iℏ
d

dt
Sα

µ,Q,K = (Eµ,Q + ℏΩα
K) Sα

µ,Q,K +
∑︂
µ′

(︂
gα

µµ′,−KPµ′,Q+K

)︂
(1 + nα

K) + iℏ∂tS
α
µ,Q,K |coll ,

(2.52)

iℏ
d

dt
S̃

α
µ,Q,K = (Eµ,Q − ℏΩα

K) S̃
α
µ,Q,K +

∑︂
µ′

(︂
gα

µµ′,−KPµ′,Q+K

)︂
nα

K + iℏ∂tS̃
α
µ,Q,K |coll . (2.53)

The first equation describes phonon emission while the second equation describes phonon
absorption. The phonon-assisted transitions can be solved in a Markov approximation.
As consequence we find a self-consistent expression for the non-radiative phonon-induced
dephasing, determining the exciton coherence lifetime [158]. In contrast, solving the phonon-
assisted transitions by Fourier transformation leads to a complex and frequency-dependent
self-energy of the excitonic transition. The real part describes a red-shift of the exciton
resonance, referred to as polaron shift. The frequency-dependent imaginary part of the
self-energy leads to an asymmetric lineshape of the absorption line, which can be attributed
to phonon sidebands [159–162].

By investigating only the optically prepared exciton transition with vanishing center-of-
mass momentum we considered only the coherent limit. The quantity |Pµ,Q=0|2 is called
coherent exciton. Due to exciton-phonon interaction the coherent excitons decay and form
the source of incoherent excitons Nµ,Q = δ⟨P †

µ,QPµ,Q⟩, where the δ denotes the correlated
quantity. The equation of motion reads

iℏ
d

dt
Nµ,Q = 2i

∑︂
µ′,α,K

gα
µµ′,Kℑm

[︂(︂
S∗α

µ,Q,KPµ′,Q−K + S̃
∗α
µ,Q,−KPµ′,Q−K

)︂]︂
+ 2i

∑︂
µ′,α,K

gα
µµ′,Kℑm

[︂(︂
Oα

µµ′,Q,Q−K,K + Õ
α
µµ′,Q,Q−K,−K

)︂]︂
. (2.54)

We see that the phonon-assisted decay of the coherent excitons (first line) are the source
of the incoherent excitons with finite center-of-mass momentum. The formed incoherent
excitons can then scatter with phonons. The second line describes exactly the process of
exciton relaxation and thermalization. The mediating quantities are the phonon-assisted
densities

(∼)
Oα

µµ′,Q,Q−K,K = δ⟨P †
µ,QPµ′,Q−Kb

(†)α
K ⟩. Deriving equations of motions for the phonon-

assisted densities and by inserting their Born-Markov solutions together with the Born-Markov
solutions for the phonon-assisted polarizations we obtain an excitonic Boltzmann equation.
The numerical solution was performed by Malte Selig and published in reference [163].

The incoherent excitons are also the source of photoluminescence – excitonic recombination
under photon emission. In the coherent limit we briefly discussed that the coupling of exciton
coherence to the phonon-assisted coherence gives rise to phonon sidebands in linear absorption.
In comparable matter, the coupling of exciton density to the phonon-assisted density via an
exciton-phonon-photon correlation gives rise to phonon sidepeaks in the luminescence spectra,
which are discussed in detail in reference [164].

2.6.2 Self-consistent Maxwell-excitonic Bloch equations

The easiest method to investigate excitons is a linear absorption measurement. The absorption
of a material is determined by its reflection and transmission regarding the irradiating light.
Obviously, the excitation triggers a response of the material, which influences the light
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Chapter 2. Exciton dynamics in tr-ARPES

waves [156]. To obtain a self-consistent coupling between light and material, we need to couple
the excitonic Bloch equations with the Maxwell equations. From the coupling, we can derive
an expression for the absorption coefficient and identify the radiative dephasing of the exciton.
For a normal incidence of the exciting light, the field varies only in propagation direction and
the polarization is orthogonal to the z-axis. As consequence, the in-plane divergence of the
electric field vanishes and we can use the one-dimensional wave equation [156,165]

∂2

∂z2 E(z, t) − n2

c2 E(z, t) = −µ0
∂2

∂t2 P (z, t) . (2.55)

We assume a constant uniform background refraction index n. The vacuum speed of light
and the vacuum magnetic permeability are denoted by c and µ0, respectively. The source of
the wave equation corresponds to the macroscopic polarization P (z, t). The solution of the
wave equation reads [65,166,167]

E(z, t) = E0(z, t) − µ0
c

2n

∂

∂u
P (u)

⃓⃓⃓⃓
u=t−|nz|/c

. (2.56)

The incoming light is divided into reflected and transmitted part

ER(z, t) = −µ0
c

2n

∂

∂u
P (u)

⃓⃓⃓⃓
u=t−|nz|/c

z ≤ 0 , (2.57)

ET (z, t) = E0(z, t) − µ0
c

2n

∂

∂u
P (u)

⃓⃓⃓⃓
u=t−|nz|/c

z ≥ 0 . (2.58)

The excitation geometry is sketched in Fig. 2.5(a). Already at this level, we see that the
reflected and transmitted light are influenced by the material response. The equations can be
solved by Fourier transformation. Assuming an infinite thin sample at z = 0 the electric fields
read

ER(ω) = iµ0
c

2n
ωP (ω) , (2.59)

ET (ω) = E0(ω) + iµ0
c

2n
ωP (ω) . (2.60)

The derived expressions hold for linear and nonlinear excitation conditions. In linear optics the
field is directly proportional to the electric field at the materials position: P (ω) = ϵ0χ(ω)ET (ω)
with the scalar susceptibility χ(ω). Combining the definition of the linear polarization with
the calculated electric fields we can derive the self-consistent reflected and transmitted fields

ER(ω) =
i ω

2ncχ(ω)
1 − i ω

2ncχ(ω)E0(ω) , (2.61)

ET (ω) = 1
1 − i ω

2ncχ(ω)E0(ω) . (2.62)

The transmission and reflection coefficients can now easily be calculated from the definitions
t(ω) = |ET (ω)/E0(ω)|2 and r(ω) = |ER(ω)/E0(ω)|2, respectively [65]. On the other side, we
can also calculate the frequency-dependent self-consistent absorption coefficient [166], which
reads

α(ω) = 1 − r(ω) − t(ω) =
ω
ncℑm(χ(ω))

|1 − i ω
2ncχ(ω)|2 . (2.63)
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Figure 2.5: (a) Perpendicular irradiation of a sample with the electric field E0(z, t). The light
is reflected (ER(z, t)) and transmitted (ET (z, t)) alternated by the response of the material.
(b) A exciton series of the WSe2 exciton. Clearly observable is the 1s to 3s exciton and the
continuum starting at the band gap.

The absorption coefficient is determined by the imaginary part of the susceptibility. The
denominator is renormalizing the absorption due to the radiation coupling in the sample. The
denominator gains importance with increasing radiation coupling [166].

A second quantity, which we obtain from the coupling of Maxwell’s equations and the
excitonic Bloch equations is the radiative lifetime of the exciton. As discussed, the source of
the wave equation is the macroscopic polarization, which is determined by the microscopic
polarization P (ω) =

∑︁
µ dµPµ(ω) with excitonic dipole element dµ. On this level, we can

combine the Maxwell equations and the excitonic Bloch equations. By plugging the electric
field together with the definition of the macroscopic polarization into the Fourier transformed
excitonic Bloch equation Eq. (2.49) for a fixed exciton number µ we obtain

ℏωPµ(ω) = EµPµ(ω) + dµ ·
(︃

E0(ω) + i
ω

2ncϵ0
dµPµ(ω)

)︃
. (2.64)

From the above equation we can identify the radiative dephasing [158]

γrad = ω

2ncϵ0
|dµ|2 , (2.65)

which is determined by the square of the excitonic dipole matrix element satisfying Fermi’s
golden rule.

Figure 2.5(b) displays the absorption spectrum of WSe2 for the A excitons broadened
by a radiativ and non-radiative dephasing [158]. We observe a s-like Rydberg series. The
strongest bound 1s exciton exhibits also the highest oscillator strength, which is decreasing
with increasing exciton number. At last, the spectrum enters the continuum. The energy
difference between 1s peak and the start of the continuum marks the band gap.

2.7 Excitons in tr-ARPES

2.7.1 Excitonic tr-ARPES theory

As already introduced, photoemission spectroscopy accesses only the occupied density of
states. To access excited states and add a time resolution, a pump process is preceding the
photoemitting XUV pulse. Typically, in tr-ARPES, the excitation energy of the pump pulse
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Chapter 2. Exciton dynamics in tr-ARPES

corresponds to the band gap energy or slightly larger. This injects a non-equilibrium carrier
distribution in the unoccupied conduction band, which then can be accessed by the probe
pulse. By varying the time delay between pump and probe pulse the dynamics of the excited
carriers can be traced directly in momentum space [126]. Two-dimensional semiconductors,
such as monolayer transition-metal dichalcogenides, exhibit strongly bound excitons, which
dominate the optical properties of these materials. Consequently, we want to address the
question, whether excitons do appear in time-resolved ARPES. In this case, the power of
tr-ARPES would even increase, since it could not only access quasi-free electrons but also
correlated two-particle states and image directly the excitonic Brillouin zone.

The time-resolved photoemission signal is proportional to the total number of electrons
per solid angle and energy interval [168,169]

Ik(E, τ) = dNk(E, τ)
dΩkdE

, (2.66)

where τ denotes the time delay between pump and probe pulse. J. K. Freericks and coworkers
derived an expression for the photoemission signal solely exploiting the sudden approximation
[170]. This approximation assumes that the photoelectrons do not interact with the sample
anymore. J. K. Freericks et al. find that the signal depends on the matrix element and the
one-particle lesser Green’s function of the photoelectrons. Therefore, we use the Heisenberg
equation of motion to develop a microscopic description of the time and momentum resolved
photoemitted vacuum electron distribution fk⊥,k = ⟨k†

⊥,kk⊥,k⟩ [171,172]. Assuming that the
photodetector collects all emitted photoelectrons, we define the tr-ARPES signal as

Ik,εk,k⊥
(τ) = lim

t→∞

∫︂ t

−∞
dt′ ∂t′fk⊥,k(t′, τ) . (2.67)

The equation of motion of the vacuum electron occupation reads

d

dt
fk⊥,k = −2ℑm

(︂
Ωvk⊥ξv

k P vk⊥ξv

k + Ωck⊥ξc

k P ck⊥ξc

k

)︂
. (2.68)

We find that the sources of the vacuum electrons are the photoemission amplitudes of valence
and conduction band with the corresponding Rabi frequencies Ωvk⊥ξv

k = dvk⊥ξv

k · E(t)/ℏ
and Ωck⊥ξc

k = dck⊥ξc

k · E(t)/ℏ, respectively. The photoemission amplitudes are defined as
P vk⊥ξv

k = ⟨v†ξv

k k⊥,k⟩ and P ck⊥ξc

k = ⟨c†ξc

k k⊥,k⟩. For easier insights into the equations with
respect to the complex quasi-particle band structure of monolayer TMDCs and the origin of
the photoemission, we include at this point a valley index ξλ to the fermionic operators. This
quantum number indicates the valley location of the electron and k is then defined locally
around the corresponding valley. The total wave vector is given by ξλ + k.

Because of the sharp excitation pulse, we can perform a rotating wave approximation for
the photoemission amplitudes

P λk⊥
k (t) = P̃

λk⊥
k (t)e−iωxuvt (2.69)

and split off the the rapid carrier frequency pulse oscillation from the XUV pulse. The quantity
P̃

λk⊥
k is now a slowly varying envelope. In the following all equations are presented in rotating

wave approximation and for the sake of readability the tilde is dropped.
In Eq. (2.68) the vacuum population is determined by the photoemission of uncorrelated

valence and conduction band electrons. The procedure to take into account the electron-hole
Coulomb coupling for the electrons is based on the unit operator method. This formalism was
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originally introduced by A. L. Ivanov and H. Haug to describe exciton-exciton scattering. They
suggested a transcription to transfer electron operators to electron-hole pair operators [149,173].
Exploiting the completeness relation of the Fock space [149,173–175] we define a unit operator

11 = |0⟩⟨0| +
∑︂

ξv ,kv

vξv

kv
v†ξv

kv
+
∑︂
ξc,kc

c†ξc

kc
cξc

kc
+

∑︂
ξc,ξv ,kc,kv

c†ξc

kc
vξv

kv
|0⟩⟨0|v†ξv

kv
cξc

kc

+
∑︂

ξc1 ,ξc2 ,kc1 ,kc2

c
†ξc1
kc1

c
†ξc2
kc2

|0⟩⟨0|cξc2
kc2

c
ξc1
kc1

+
∑︂

ξv1 ,ξv2 ,kv1 ,kv2

v
ξv1
kv1

v
ξv2
kv2

|0⟩⟨0|v†ξv2
kv2

v
†ξv1
kv1

+ 1
2

∑︂
ξc1 ,ξc2 ,ξv ,kc1 ,kc2 ,kv

c
†ξc1
kc1

vξv

kv
c
†ξc2
kc2

|0⟩⟨0|cξc2
kc2

v†ξv

kv
c

ξc1
kc1

+ 1
2

∑︂
ξv1 ,ξv2 ,ξc,kv1 ,kv2 ,kc

v
ξv1
kv1

c†ξc

kc
v

ξv2
kv2

|0⟩⟨0|v†ξv2
kv2

cξc

kc
v

†ξv1
kv1

+ O(nXa2
X)2 (2.70)

where nX denotes the pair (surface) density and aX the exciton Bohr radius. The conventional
semiconductor ground state |0⟩ consists of a completely filled valence and empty conduction
band. The expansion of c†ξc

k k⊥,k in Eq. (2.68) yields

c†ξc

k k⊥,k =
∑︂

ξv ,kv

c†ξc

k vξv

kv
|0⟩⟨0|v†ξv

kv
k⊥,k

+ 1
2

∑︂
ξv1 ,ξv2 ,ξc2 ,kv1 ,kv2 ,kc2

c†ξc

k v
ξv1
kv1

c
†ξc2
kc2

v
ξv2
kv2

|0⟩⟨0|v†ξv2
kv2

c
ξc2
kc2

v
†ξv1
kv1

k⊥,k + O(na2
X)3 . (2.71)

Note that the expansion has to be performed on the operator level before taking the expectation
values. From this procedure the conduction band electron operators are expressed uniquely by
electron-hole pair operators. Since we consider a weak optical excitation below the free-particle
band gap of an undoped semiconductor only the second contributions to the unit operator
needs to be taken into account, which yields the first term of Eq. (2.71). However, to illustrate
the method and its power we display also the second order, which stems from the eighth term
in Eq. (2.70). In the next step, we need to replace the projection operator. From Eq. (2.70)
we obtain |0⟩⟨0| = 11 −

∑︁
ξv ,ξc,kv ,kc

c†ξc

kc
vξv

kv
|0⟩⟨0|v†ξv

kv
cξc

kc
+ O(na2

x)2. At this point, the projection
operator still depends on itself. Therefore, we insert the expression infinitely often into itself
and obtain

|0⟩⟨0| = 11 −
∑︂

ξv ,ξc,kv ,kc

c†ξc

kc
vξv

kv

(︂
11 + O(na2

X)
)︂

v†ξv

kv
cξc

kc
. (2.72)

By combining Eq. (2.71) and Eq. (2.72), we find the final expression of the electron
photoemission amplitude in terms of electron-hole pairs:

c†ξc

k k⊥,k =
∑︂

ξv ,kv

c†ξc

k vξv

kv
v†ξv

kv
k⊥,k

− 1
2

∑︂
ξv1 ,ξv2 ,ξc2 ,kv1 ,kv2 ,kc2

c†ξc

k v
ξv1
kv1

c
†ξc2
kc2

v
ξv2
kv2

v
†ξv2
kv2

c
ξc2
kc2

v
†ξv1
kv1

k⊥,k + O(na2
X)3 . (2.73)

Since we restrict ourself to the low excitation regime only the first term is relevant and the
second contribution neglected from now on. In a similar way we expand the valence band
electrons in v†ξv

k k⊥,k of Eq. (2.68), which yields in lowest order

v†ξv

k k⊥,k =
∑︂
ξc,kc

v†ξv

k c†ξc

kc
cξc

kc
k⊥,k = v†ξv

k k⊥,k −
∑︂
ξc,kc

v†ξv

k cξc

kc
c†ξc

kc
k⊥,k . (2.74)
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Here, the situation is different. We find that the electron-hole Coulomb interaction leads
to corrections of v†ξv

k k⊥,k. Due to the weak excitation the valence band occupation satisfies
f ξv

v,k ≈ 1 for all investigated scenarios. As consequence the term v†ξv

k k⊥,k is dominating
compared to the many-body correction justifying the neglect of the Coulomb correction to
the valence band electrons. To treat the quantum mechanical hierarchy problem arising from
the many-particle interaction we exploit the cluster expansion scheme [151–153].

In the lowest order the equation of motion Eq. (2.68) becomes

d

dt
fk⊥,k = −2ℑm

⎛⎝Ωvk⊥ξv

k P vk⊥ξv

k + Ωck⊥ξc

k p∗ξvξc

k P vk⊥ξv

k e− 1
iℏ εvist +

∑︂
ξv ,kv

Ωck⊥ξc

k δ⟨p†ξvξc

kv ,k P vk⊥ξv

kv
⟩

⎞⎠ .

(2.75)

The first term describes photoemission of the filled valence band. The second and third term
stems from the photoemission amplitude of the conduction band electrons. In the former
we identify the interband transition p∗ξvξc

k , which couples to the photoemission amplitude of
valence band electrons. The interband transition is driven by the VIS pump laser and strongly
off-resonant to the XUV pulse. Therefore, the valence-conduction band transition is written
in rotating wave approximation with decoupled fast oscillation with frequency of the exciting
pump laser pulse εvis/ℏ. The last term corresponds to the Coulomb-correlated photoemission.

First we turn our attention to the kinetics of the photoemission amplitude of valence band
electrons:

iℏ
d

dt
P vk⊥ξv

k =
(︂
εk⊥,k − εξv

v,k − εxuv

)︂
P vk⊥ξv

k + iℏ∂tP
vk⊥ξv

k |coll

+ ℏΩk⊥vξv

k f ξv

v,k + ℏΩk⊥cξc

k pξvξc

k e
1
iℏ εvist . (2.76)

The free oscillation carries the kinetic energy of the photoelectron, the valence band dispersion
and the excitation energy of the XUV pulse. The second term summarizes higher-order
correlations from electron-electron and electron-phonon interaction, which lead to a dephasing
of the transition. The last two terms are the sources. First of all, the transition is driven by
the valence band occupation but couples also to the interband transition both mediated by
the XUV pulse.

The correlated photoemission reads

iℏ
d

dt
δ⟨p†ξvξc

kv ,k P vk⊥ξv

kv
⟩ =

(︂
εk⊥,k + εξv

v,kv
− εξv

v,kv
− εξc

c,k − εxuv

)︂
δ⟨p†ξvξc

kv ,k P vk⊥ξv

kv
⟩

+ iℏ∂tδ⟨p†ξvξc

kv ,k P vk⊥ξv

kv
⟩|coll

+
∑︂

q

V cvξcξv
q

(︂
f ξv

v,kv+q − f ξc

c,k+q

)︂
δ⟨p†ξvξc

kv+q,k+qP vk⊥ξv

kv
⟩

+ ℏΩk⊥cξc

k δ⟨p†ξvξc

kv ,k pξvξc

kv ,k⟩ . (2.77)

Again, we find a free oscillation with the single-particle energies and a collision term simulating
a dephasing. The attractive Coulomb interaction attacks the electron-hole pair constituting
the photoemission transition (third line), which is optically driven by the interband Coulomb
correlations (last line). Generally, the vacuum occupation is assumed to be small compared
to the valence band and electron-hole occupations and therefore neglected as Pauli-blocking
factor, which was also done in Eq. (2.76).
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Figure 2.6: (a) Sketch of the possible transitions in tr-ARPES for a two-band semiconductor
with an excitonic state (grey dashed). The VIS pump pulse excites an excitonic transition
and the XUV probe pulse can photoemit either valence or conduction band electrons. (b)
Photoemission sketch from a complex excitonic band structure. The optically excited excitonic
transition in the light cone decay into incoherent Γ excitons due to intravalley phonon
scattering. Additionally, also intervalley phonon scattering is possible leading to momentum
indirect excitons with electron and hole at different high symmetry points. The XUV pulse
can photoemit electrons, which are bound into Γ excitons but also electrons, which form the
momentum-indirect intervalley excitons. Figure is similarly published in Ref. [125]

Transforming to the exciton picture, we find an expression for the photoemission signal
Eq. (2.75)

d

dt
fk⊥,k = −2ℑm

⎛⎝Ωvk⊥ξv

k P vk⊥ξv

k +
∑︂

µ

Ωck⊥ξc−
µ,k P ∗ξvξc

µ,0 P vk⊥ξv

k +
∑︂

µ,ξv ,Q

Ωck⊥ξc

µ,k,Qδ⟨P †ξvξc

µ,Q P vk⊥ξv

k−Q ⟩

⎞⎠
(2.78)

with the coupling elements Ωck⊥ξc−
µ,k = Ωck⊥ξc

k φ∗ξvξc

µ,k e− 1
iℏ εvist and Ωck⊥ξc

µ,k,Q = Ωck⊥ξc

k φ∗ξvξc

µ,k−αξc
ξv

Q
.

Within the low excitation limit, we find three different sources for the photoemission signal.
Obviously, we find the photoemission of valence band electrons contributing to the

photoemission signal. It will lead to an image of the occupied valence band. In term two
we identify the exciton transition with vanishing center-of-mass momentum, described by
Eq. (2.49), which couples to the photoemission amplitude of valence band electrons. Since
the exciton transition is restricted to the K± points, the second term will only contribute at
these high symmetry points to the tr-ARPES signal. The corresponding matrix element is
determined by the exciton wave function and carries a rapidly oscillating phase stemming from
the pump-driven transition. And finally, the last term can be identified as exciton-assisted
photoemission including a finite center-of-mass momentum. The latter is described by

iℏ
d

dt
δ⟨P †ξvξc

µ,Q P vk⊥ξv

k−Q ⟩ =
(︂
εk⊥,k − εξv

v,k−Q − Eξvξc

µ,Q − εxuv

)︂
δ⟨P †ξvξc

µ,Q P vk⊥ξv

k−Q ⟩

+ iℏ∂tδ⟨P †ξvξc

µ,Q P vk⊥ξv

k−Q ⟩|coll + ℏ
∑︂

λ

Ω̃k⊥cξvξc

µ,λ,k,Q N ξvξc

λ,Q (2.79)
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with Ω̃k⊥cξvξc

µ,λ,k,Q = Ωk⊥cξc

k |φξvξc

λ,k−αξc
ξv

Q
|2φξvξc

µ,k−αξc
ξv

Q
. We see that in the gap dispersion the exciton

energy explicitly appears. Further, the exciton-assisted photoemission is directly driven by
incoherent excitons. We can therefore expect that the information on the bound TMDC
excitons and their incoherent scattering dynamics is encoded in this quantity. Finally, we give
also the photoemission amplitude for valence band electrons in exciton basis:

iℏ
d

dt
P vk⊥ξv

k =
(︂
εk⊥,k − εξv

v,k − εxuv

)︂
P vk⊥ξv

k + iℏ∂tP
vk⊥ξv

k |coll

+ ℏΩk⊥vξv

k f ξv

v,k + ℏ
∑︂
µ,ξc

Ωk⊥cξc+
µ,k P ξvξc

µ,0 δξc,K± (2.80)

with Ωk⊥cξc+
µ,k = Ωk⊥cξc

k φξvξc

µ,k e
1
iℏ εvist. We see that the second source with appearing exciton

transition is counter-rotating to the second contribution of the tr-ARPES signal Eq. (2.78).
Consequently, source two of the tr-ARPES signal is slowly oscillating and contributes to
the signal. Figure 2.6 (a) displays a sketch of the tr-ARPES transitions for a two-band
semiconductor, for example by restricting the Brillouin zone to the K+ point. The sketch
shows the possible induced optical transitions namely the below band gap interband transition
and the photoemission amplitudes from two-dimensional electronic states into the three-
dimensional ionization continuum. Figure 2.6(b) transforms into the excitonic picture and
extends to a multivalley situation. Excitons are optically injected in the light cone. Subsequent
exciton-phonon interaction leads to a transfer to incoherent excitons with finite center-of-mass
momentum, which form the source of the correlated photoemission amplitude Eq. (2.79).

2.7.2 Exciton dynamics in tr-ARPES

In the following, we investigate in detail the material WSe2 as exemplary material for tungsten-
based TMDCs. Afterwards, we compare with MoSe2 representing the molybdenum-based
TMDCs. We focus on the 1s exciton justified by the large energetic 1s-2s separation compared
to the thermal energy. In terms of equations, the exciton number can be dropped. While the
pump pulse is chosen to excite resonantly the exciton, i.e. εvis = E1s, the XUV probe pulse
has an excitation energy of 20 eV. The pulses are assumed to be Gaussians with intensity
widths of 35 fs and 20 fs for VIS and XUV, respectively. The temperature is fixed to 77 K. At
room temperature we can expect a similar behavior but with more efficient exciton-phonon
scattering.

We start with a pump-probe delay of 25 fs corresponding to the coherent limit with slightly
overlapping pump and probe pulses. Figure 2.7(a) displays the calculated tr-ARPES signal.
Note that the k-axis lies at the K point. At 0 eV we obtain a direct image of the valence
band, which curvature is determined by its effective mass, and is described by the first term
in Eq. (2.78). In principle, a reduced intensity at the maximum could reflect the excited hole
occupation. However, since in the low-excitation limit this contribution is vanishing small, a
fingerprint of the holes is not observed. Second, we observe a strong signal at the exciton
energy clearly lying below the free-particle band gap shown as grey dashed line. The excitonic
signal has two contributions: from coherent and incoherent excitons described by source two
and three of Eq. (2.78), respectively. Figure 2.7(b) and (c) display the tr-ARPES signal in
case of artificially turned off incoherent (b) or coherent (c) excitons. Comparing to the full
signal we recognize that the tr-ARPES signal at such short time delays is mainly dominated
by the coherent exciton, described by the second term in Eq. (2.78). Since it consists of a
product of exciton coherence and photoemission of valence band electrons, it contributes only
as long as the exciton transition does not vanish. Consequently, this signal directly reflects

30



2.7. Excitons in tr-ARPES

Figure 2.7: (a) Calculated tr-ARPES signal at 25 fs delay time imaging the completely filled
valence band and a signal at the exciton energy below the free-particle band gap (grey dashed).
The excitonic signal displays a shadow of the valence band (white dashed). (b) Tr-ARPES
signal from the coherent source. (c) Tr-ARPES signal from the incoherent source. Figure is
similarly published in Ref. [125]

the coherence lifetime of the exciton, sometimes referred to as T2-time. Interestingly, we see
that the excitonic signal at k = 0 exhibits a shadow of the valence band. To clarify this, we
plot the valence band dispersion as white dashed line and see a perfect match between signal
and dispersion. This intriguing signal stems from the fact that the photoemission amplitude
of valence band electrons couples to the exciton transition, which has vanishing center-of-mass
momentum. In terms of an assisted-transition picture, we can regard the photoemission
process of excitons as a recombination of an exciton with immediate photoemission of the
created valence band electron. This picturesquely describes, why we see a signal at the exciton
energy, which was gained during the annihilation, and which exhibits a valence band shape.
However, this picture suggests a two-step process, which is not necessary. Since the signal is
driven by the exciton transition, which is bound to the K± points, it exists only at these high
symmetry points. Further, we see that the signal’s intensity decreases for increasing wave
number.

To obtain more analytical insights into the coherent tr-ARPES signal, we can formally
integrate the equations Eq. (2.78), (2.80), and (2.49), assuming exponentially shaped pulses
of the form exp(−|t − τ |/σ) with width σ. In the limit of σ → 0 we find for the coherent
tr-ARPES signal

Ik(εk⊥,k) ∝ |φk|2δ (εk⊥,k − εxuv − E1s − εv,k) . (2.81)

From the delta-function, we clearly see that the signal lies at the exciton energy with a
valence band dispersion contribution stemming from the hole left in the sample during the
photoemission of the Coulomb-bound electron to ensure energy conservation. In experiments
it is now possible to first pump strongly far above the band gap to excite a non-equilibrium
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electron distribution and in a second experiment pump around the exciton energy. From
the energy difference between the tr-ARPES signals the exciton binding energy can be
measured [176]. Additionally, we see in Eq. (2.81) that the signal is directly proportional to
the exciton wave function squared. This suggests that the decrease of the intensity along the
valence band shadow could be related to the exciton wave function. To gain more insights, we
plot in Fig. 2.8(a) the tr-ARPES signal with artificially turned off valence band and vanishing
incoherent excitons N ξvξc

Q = 0. Here, the valence band artifact can be observed even better
since the contribution of the strongly overshining valence band is absent. From this signal, we
plot in Fig. 2.8(a) the momentum distribution curve (MDC), which is defined as

Ik(τ) =
∫︂ ∞

−∞
dεkz Ik,εk,kz

(τ) (2.82)

and integrates over the energy axis. We clearly see in the inset of Fig. 2.8(a), how the
MDC is overlapping with the exciton wave function squared obtained as solution of the
Wannier equation. Therefore, we conclude that in the ultrafast coherent limit tr-ARPES
is a technique to image the exciton wave function and measure the exciton Bohr radius in
momentum space [125,177]. Via a two-dimensional Fourier transform of the MDC it is even
possible to visualize the electron-hole distribution in real space [176,178]. Important is that
the square root of the MDC is Fourier transformed since the tr-ARPES signal is proportional
to the wave function squared. A direct Fourier transformation of the MDC would correspond
to a convolution of the real space wave function with itself. In Fig. 2.8(b) we show the
Fourier transform of the MDC, the real space exciton wave function, and the obtained radial
distribution, which forms the traditional definition of the Bohr radius of a two-dimensional
hydrogen model. Because of the non-hydrogenic character of the TMDC excitons we define
the spatial extension of an exciton via the root mean square defined as

√︁
⟨φ1s|r2|φ1s⟩ [179].

We find a root mean square of 1.6 nm, which differs from the peak of the radial distribution
and extents over multiple unit cells.

Finally, we discuss the weak incoherent contribution to the signal, cf. Fig. 2.7(c). It
stems from incoherent KK excitons localized at the exciton energy. Since they form due to
exciton-phonon scattering of optically excited coherent excitons, a certain built up time is
necessary. Therefore, at 25 fs the number of formed incoherent excitons is low compared to
coherent excitons and contributes only weakly to the signal. Compared to the coherent signal,
the incoherent signal is blurred out and does not show the clear valence band shadow anymore.
The reason is that in the incoherent limit thermally distributed excitons are present with finite
center-of-mass momentum. The signal is now determined by a convolution of the valence
band with the exciton dispersion, distribution and exciton wave function, cf. Eq. (2.78) last
term and Eq. (2.79).

After having investigated the tr-ARPES signal at short delay times around the K point,
we extent the study to large delay times including all high symmetry points of the hexagonal
Brillouin zone. First, we choose a pump-probe delay time of 400 fs being much larger than
the typical exciton-phonon scattering times in monolayer TMDCs [163]. In Fig. 2.9(a) we
recognize a strong signal at the Λ valley, which stems from momentum-indirect KΛ excitons
with hole at the K and electron at the Λ valley. As already discussed for the coherent limit,
one could expect also at the Λ valley an artifact of the hole. Since it remained at the K
point the curvature would correspond to the effective hole mass at the K instead of the Λ
valley. However, since the signal is convoluted with the thermally distributed excitons it not
observable anymore and difficult to extract as already discussed at the K point. In Fig. 2.9(a),
a weaker intensity remains at the K point, which has its origin in momentum-indirect KK−
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Figure 2.8: (a) Excitonic tr-ARPES signal with artificially turned off valence band. The
inset shows the MDC of the tr-ARPES signal and the squared exciton wave function in
momentum space. We see that both quantities perfectly coincide. (b) Also in real space, the
Fourier transformed tr-ARPES signal and the squared exciton wave function perfectly match.
Additionally, we show an analogue of the radial distribution function defined as r|I(r)|2, which
forms the traditional Bohr radius definition. The peak and the root mean square value differ
by about a factor of two.

excitons. Note, that we show the tr-ARPES signal as function of absolute value of the in-plane
wave vector. Therefore, all three Λ valleys contribute equally to the observed signal at the
Λ point in Fig. 2.9(a). Additionally, since KK− excitons have a center-of-mass momentum
of Q = K they are refolded to the K-point. Comparing the intensities suggests that the KK
excitons scatter about equally into KΛ and KK− excitons, where they thermalize. The reason
is that these momentum-indirect excitons lie energetically below the optically excited KK
excitons. At last, we want to stress that if the tr-ARPES signal is investigated as cut through
the Brillouin zone along the high symmetry traces all valleys and corresponding excitons could
be resolved individually.

To trace the exciton dynamics, we show in Fig. 2.9(b)-(e) the energy distribution curves
(EDC) for different time delays. The EDC is defined as cut of the tr-ARPES signal at a
constant wave number. Generally, the first peak stems from the valence band at the K-point
and is independent of the delay time. Since the valence band at the Λ valley lies energetically
far away and plays no role for the exciton dynamics it is neglected. The peaks around 1.8 eV
can be related to the excitons. We can nicely see, for increasing delay time, the relaxation into
the momentum-indirect exciton states. Only recently, it has been successful to access excitons
in tr-ARPES experimentally and resolve the predicted momentum-indirect excitons [176,180].

At the end, we briefly discuss the influence of the Coulomb corrections to the valence band
electrons, which has been neglected. The excitonic correction reads

P vk⊥ξv

k = P vk⊥ξv

k −
∑︂
µ,ξc

φξvξc

µ,k P ξvξc
µ,0 P ck⊥ξc

k −
∑︂

µ,ξc,Q
φξvξc

µ,k+βξc
ξv

Q
δ⟨P ξvξc

µ,Q P ck⊥ξc

k+Q ⟩ . (2.83)

The correlated two-particle quantity is driven by the incoherent bound excitons and would
lead to an excitonic satellite at the exciton binding energy above the valence band. The
second term couples the excitonic transition with an unbound electron-hole plasma. This
contribution would lead to a shadow of the conduction band above the valence band at the
exciton binding energy [181]. However, these signals should be rather small compared to the
dominant signal from the valence band, especially in the case of low excitation density.
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Figure 2.9: (a) Calculated WSe2 tr-ARPES signal at 400 fs pump-probe delay. The momentum-
indirect KΛ excitons are directly resolved. The remaining signal at the K point stems from
momentum-indirect KK−. (b)-(e) EDCs of WSe2 and MoSe2 at the K and Λ point for
different delay times resolving the phonon-induced exciton scattering. WSe2 is characterized
by exciton-phonon scattering into momentum-indirect states. Note the logarithmic scale.

So far, we investigated in detail the tr-ARPES signal of WSe2 after resonant exciton
excitation. Now, we compare the EDCs of the tr-ARPES signal at different time delays between
WSe2 and MoSe2, shown in Fig. 2.9(b)-(e). Based on the exciton relaxation dynamics, which
we resolve by tr-ARPES, we find a crucial difference in the excitonic band structure between
both materials. For tungsten-based TMDCs, the KΛ and KK− excitons lie energetically
below the optically excited KK exciton. In contrast, for molybdenum-based TMDCs the
KK excitons form the global minimum. While for WSe2 the relaxation and thermalization
is mediated by intervalley phonons providing the necessary momentum to access the lower
lying momentum-indirect exciton states, the scattering dynamics in MoSe2 is determined
by intravalley scattering. Optical excitation, phonon-mediated formation, and subsequent
relaxation and thermalization is restricted mainly to the K valley.

2.7.3 Non-resonant exciton excitation

So far, we excited the 1s exciton perfectly resonant. Next, we investigate the EDCs when the
pump excitation energy is slightly detuned to the 1s exciton resonance. The first consequence
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Figure 2.10: (a) Energy distribution curve of coherent tr-ARPES at 25 fs pump-probe delay for
detuned excitation. We observe an energetic shift of the EDC corresponding to the detuning.
(b) Energy distribution curve at 25 fs pump-probe delay for detuned excitation solely taking
incoherent excitons into account. The signal is energetically independent of the excitation
condition.

is, that the phonon-assisted transitions can not be solved in a Born-Markov approximation
anymore. Instead they have to be solved dynamically together with the exciton formation
and relaxation. Generally, the detuned excitation leads to smaller injection of excitons in the
sample.

For the investigation of the tr-ARPES signal, we split the signal into its coherent and
incoherent contribution. Figure 2.10(a) displays the obtained EDCs. Generally, from Fig. 2.10
we can see that the coherent signal shifts energetically depending on the excitation energy
of the pump pulse. The reason is that the exciton transition P0 oscillates with the pump
excitation energy. Comparing with Eq. (2.78), we see that this determines the energetic
position of the tr-ARPES signal. In contrast, the incoherent signal is independent of the
excitation condition. Therefore, the signal lies always at the exciton energy. We can conclude,
when exciting the exciton slightly detuned, the tr-ARPES signal lies first at the pump energy
and shifts energetically with time to the real exciton energy.

2.8 Coherent-pump Fourier transform ARPES

We developed an excitonic tr-ARPES theory, which shows that the tightly bound excitons
contribute to the photoemission signal and that their dynamics can be resolved over the
Brillouin zone. In principle, the coherent signal, which leads to a weak valence band signal
at the exciton energy reflects the coherence lifetime of the exciton. The coherence lifetime
is directly related to the exciton linewidth measured in absorption experiments. However,
since the simultaneous formation of incoherent excitons contributes to the same signal, it is
difficult to extract directly the coherence lifetime from tr-ARPES. We suggest, together with
Michele Puppin from the École polytechnique fédérale de Lausanne, a slightly different setup
by combining a coherent tr-ARPES experiment with a second VIS pulse. The interference
of both pump pulses should enable the extraction of the coherence lifetime. Figure 2.11(a)
sketches the setup. The coherent tr-ARPES consists of a simultaneuous VIS and XUV pulse
(τ = 0) at a fixed time. A second VIS pulse irradiates the sample at time delay T with respect
to the coherent tr-ARPES. The tr-ARPES signal is then investigated as function of time delay
T . For T > 0 the second VIS pulse arrives before the tr-ARPES pulses, while for T < 0 the
second VIS pulses arrives afterwards.
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Chapter 2. Exciton dynamics in tr-ARPES

The equation of motion for the excitonic transition in rotating wave approximation and
driven by two exciton resonant pump pulses reads

iℏ
d

dt
P0(t, T ) = −iγP0(t, T ) + ℏΩ(t) + ℏΩ(t − T )eiωXT (2.84)

where the second pump pulse arrives at t − T compared to the first one. The pulse width
and intensity of both pumps are identical. The exciton frequency corresponds to E1s/ℏ ≡
EX/ℏ = ωX . From the developed tr-ARPES theory, we know that the excitonic transition
enters the coherent tr-ARPES signal and drives the photoemission amplitude of valence band
electrons. Since we are only interested in coherent processes and we have previously seen
that the amount of incoherent excitons is very low for small VIS-XUV delays, we neglect the
incoherent contribution. Additionally, we take the tr-ARPES signal at k = 0. To obtain first
insights, we can formally integrate all equations and obtain

f(T ) =
∫︂ ∞

−∞
dt ∂tf(t, T ) (2.85)

d

dt
f(t, T ) = −2ℑm

[︂
i|Ω|2|Ωxuv|2Exuv(t)e(iEX−i∆ε−γ)t/ℏ

×
(︃∫︂ t

−∞
dt′ eγt′/ℏE(t′) + eiωXT

∫︂ t

−∞
dt′ eγt′/ℏE(t′ − T )

)︃
×
∫︂ t

−∞
dt′ e(i∆ε−iEX+γ)t′/ℏExuv(t′)

(︄∫︂ t′

−∞
dt′′ e−γt′′/ℏE(t′′) + eiωXT

∫︂ t′

−∞
dt′′ eγt′′/ℏE(t′′ − T )

)︄]︄
.

(2.86)

We define the Rabi-frequencies Ω and Ωxuv now as the dot product of dipole element and
polarization vector and E(t) and Exuv(t) denote the pulse envelopes. EX denotes the exciton
energy and ∆ε = εk⊥ −εv −εxuv. The tr-ARPES signal in time domain is a difficult expression
consisting of multiple convolutions of pulse envelops and exponential functions carrying the
exciton dephasing γ. For Gaussian pulses the integral has no analytical solution. Therefore,
as first attack, we assume delta-sharp pulses for pump and probe. Then, we can solve the
above integrals and obtain for the tr-ARPES signal

f(T ) = −4|Ω|2|Ωxuv|2 cos(ωXT )e−γT/ℏΘ(T ) . (2.87)

First of all, we see that the signal exhibits a fast oscillation with the exciton frequency, which
stems from the interference of the two time delayed pump pulses. For T > 0 the envelope
corresponds to an exponential decay determined by the exciton dephasing constant. We can
expect that the suggested method indeed might be able to directly extract the T2-time, at
least for short enough pulses compared to the lifetime. For T < 0 the signal drops to zero.
Figure 2.11(b) displays the numerical result with a VIS pulse width of 5 fs. As the analytical
solution suggests, for T > 0 the envelope of the tr-ARPES signal follows an exponential decay
with the dephasing constant γ. For T < 0, as we expect from Eq. (2.87), the signal rapidly
decreases to zero. Since we have no infinite thin pulse, but a finite width of 5 fs, the tr-ARPES
signal follows the pulse, which is drawn in grey dashed. For the resonant excitation, the
underlying fast oscillation corresponds to the exciton frequency.

After having discussed the underlying equations and investigated the limiting case of
infinite short pulses, we present the numerical results for Gaussian pulses with realistic widths.
We choose an intensity pulse width of 40 fs for the two VIS pulses and 20 fs for the XUV pulse.
Figure 2.12 presents the results for three different dephasing constants. Figure 2.12(a) shows
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Figure 2.11: (a) Sketch of the coherent pump Fourier transform ARPES. Two VIS pump
pulses with delay T are combined with a photoemitting XUV probe pulse with time delay
τ to one of the VIS pulses. We choose as convention τ = 0 and vary T with respect to the
coherent tr-ARPES experiment. (b) Tr-ARPES signal as function of delay T for 5 fs short
pump pulses. The left tail quickly decreases to zero, while the right tail decreases exponentially
with exp(−γT/ℏ) shown by the fit. Additionally, we display the Gaussian pump pulse as grey
dashed.

the result with the microscopically calculated dephasing of γ = 22 meV at room temperature.
Figure 2.12(b) and (c) display the results for a twice and four times larger dephasing constant
at unchanged pulse widths. By artificially tuning the dephasing we can check the limits of
the suggested method.

Generally, looking at Fig. 2.12(a)-(c), we conclude that their is no strong difference in
the time domain. We add in red dashed the exponential decay around T = 0. We find no
matching for any γ. In violet dash we try to fit the exponential decay away from T = 0. Also
here the agreement is generally bad but becomes better with smaller γ. For completeness we
add also the Gaussian pulse to the plots.

To further analyze the results we transform the signal from time domain to frequency
space by Fourier transformation. Figure 2.12(d)-(f) show the obtained results. The fast
oscillation yields a signal at the exciton energy. Since the fast oscillation is determined by
the laser excitation frequency the peak shifts depending on the detuning to the exciton.
As already discussed in the previous section, a detuned excitation would also lead to an
energetic shift of the curve related to the detuning. We see that for pulses short enough or
in comparable magnitude to the dephasing time, the Fourier transformed spectra accurately
yield the dephasing constant. For γ = 22 meV a Lorentzian almost perfectly fits and yields the
dephasing constant from its full width half maximum. When the pulse width is comparable to
the dephasing time (Fig. 2.12(d)), the curve is best described by a Voigt profile corresponding
to a convolution of Gaussian and Lorentzian, as has already been discussed from Eq. (2.86).
Also here, the dephasing is obtained in convincing accuracy. When the pulse is long compared
to the lifetime, the Fourier transformed spectrum simply corresponds to the Gaussian pump
pulses. We conclude that a growing γ leads to the fact that the pulse becomes spectral short
compared to γ, which is unfavorable for the method. However, as long as the dephasing and
the spectral pulse broadening are comparable the method yields the exciton T2-time with
great accuracy.
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Figure 2.12: (a)-(c) Tr-ARPES signal in time domain for three different dephasings. Added
are exponential functions around T = 0 and shifted to the signal’s tail with a = 34 fs, a = 85 fs,
and a = 65 fs, respectively, with exp(−γ(T − a)/ℏ). The grey solid line displays a Gaussian
with 40 fs width. (d)-(f) Corresponding Fourier transformed tr-ARPES signals together with
Gaussian and Lorentzian with corresponding width σ and γ, respectively. As long as the
dephasing is comparable to the spectral pulse width the Fourier transform yields accurately
the exciton linewidth.

2.9 Conclusion
This chapter introduced monolayer transition-metal dichalcogenides as material system, whose
optical properties are dominated by tightly bound excitons. The optically excited interband
transition exhibits a renormalization of the Rabi-frequency, due to Coulomb interaction,
which is identified as the formation of excitons. The many-body problem is circumvented by
introducing the exciton basis. Optically excited are exciton transitions with vanishing center-of-
mass momentum. Subsequently, exciton-phonon interaction induces a transfer from coherent to
thermally distributed incoherent excitons with finite center-of-mass momentum. We addressed
the question if excitons do appear in time and angle resolved photoemission spectroscopy,
which naively seen corresponds to a one-particle experiment. To answer the question, we
derived an excitonic description of tr-ARPES by exploiting the unit-operator method and
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expanding the photoemitted valence and conduction band electrons after electron-hole pairs.
We find indeed, that strongly bound excitons, although being two-particle complexes, can
be resolved by photoemission spectroscopy [125, 177, 182]. The momentum resolution of
tr-ARPES enables access to relaxation and thermalization of excitons throughout the Brillouin
zone. We find that excitons in tungsten-based TMDCs relaxe in momentum-indirect excitons,
where the hole remains at the K point but the electron is either at the Λ or K− point due
to their energetic favorable position compared to Γ excitons. In contrast, the Γ exciton in
molybdenum-based TMDCs forms the global minimum. Therefore, the exciton dynamics is
restricted to intravalley scattering. The possibility to access excitons by tr-ARPES might
open new perspectives in exciton physics [183–187].

For short time delays between pump and probe pulse the tr-ARPES signal shows at
the exciton energy a shadow of the valence band reflecting the hole left in the material.
Interestingly, the intensity along this intriguing signal reflects the exciton wave function
squared in momentum space. We conclude that tr-ARPES is a method to directly image
the envelop of the exciton wave function. A Fourier transformation of the signal enables a
transcription to real space and direct access to the electron-hole separation. This signal is only
present as long as the exciton transition is finite. Since the exciton transition oscillates with
the excitation energy of the laser pulse a detuned excitation first yields a tr-ARPES signal
differing by the detuning from the exciton energy. With ongoing time incoherent excitons
form, which lie at the exciton energy. Therefore, when investigating the EDC over time of a
detuned excitation the tr-ARPES signal shifts in time to the real exciton energy.

Since coherent and incoherent excitons contribute to the same signal it is rather complicated
to extract the exciton lifetime (T2-time) from tr-ARPES. We suggest coherent-pump Fourier
transform ARPES as method to access the lifetime. We combine a coherent tr-ARPES
experiment of simultaneous pump and probe pulse with a second VIS pulse. The tr-ARPES
signal is investigated as function of time delay between the second VIS and the coherent
tr-ARPES. A Fourier transformation of the obtained interference spectrum yields a Voigt-
profile from which the dephasing constant can be obtained. The method depends strongly on
the relation of the exciton lifetime to the pulse width. For short or comparably pulse width
compared to the exciton lifetime the method yields accurately the T2-time.
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Chapter 3

WSe2-graphene energy and charge
transfer in tr-ARPES

In the last chapter we focused on monolayers of atomically-thin materials. We turn now our
attention to van der Waals heterostructures. Since the exfoliation of graphene the number
of atomically-thin materials with different intriguing properties is constantly growing. Van
der Waals heterostructures are synthetic quantum materials composed of stacks of different
two-dimensional layered materials [27, 28]. The idea is to design materials based on the
desired properties. Since the heterostructure electrons are exposed to interlayer coupling, the
material properties are not only defined by the monolayers but also by interactions between
them [29, 30]. In the last chapter, we have seen that the properties of monolayer TMDCs
in the low excitation regime are dominated by exceptionally strongly bound excitons. In
contrast, the prototype two-dimensional material graphene exhibits totally different properties.
Graphene is composed of an atomically-thin honeycomb sheet of carbon atoms and is a
semi-metal. As for semiconductors the valence band is completely filled and the conduction
band empty but the band gap is vanishing, that the two bands touche at the so called Dirac
point, situated at the K points. For low energies around the K point, which is the most
relevant region for many optical and electronic properties of graphene, the electronic dispersion
is linear. Therefore, electrons at the Dirac point have zero effective mass and are referred to
as Dirac electrons [188]. A comparison of graphene with conventional materials as silicon or
copper shows graphene’s exceptional standing: The carrier mobility is hundred times larger,
than in silicon, the electrical conductivity is 13 times better than in copper, and also the
heat conductivity is twice as large as copper’s [189,190]. Therefore, there is at the moment
great interest in combining the properties by building a TMDC-graphene heterostructure and
studying the coupling mechanisms [191–195]. In the following, we will investigate different
energy and charge transfer mechanisms in a WSe2-graphene stack.

3.1 Förster coupling

A prominent energy transfer mechanism is Förster transfer [196,197]. A detailed analysis of
Förster transfer in a WSe2-graphene stack was given by Malte Selig in reference [198]. To
have a complete overview of the different possible energy and charge transfer mechanisms, we
give in the following a brief summary of the derived Förster results.
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To investigate the Förster coupling, we start from the Hamiltonian

H =
∑︂

λ,λ′,ν,ν′

k,q,k′,q′

V λνν′λ′

k,q,q′,k′λ
†
kν†

qν ′
q′λ′

k′ . (3.1)

To dispense a layer index, we use as convention (λ(′), k(′)) for WSe2 quantum numbers and
(ν(′), q(′)) denote the graphene band and wave vector. The matrix element reads

V λνν′λ′

k,q,q′,k′ =
∫︂
R3

d3r

∫︂
R3

d3r′ Ψ∗
λ,k(r)Ψ∗

ν,q(r′)V (r, r′)Ψν′,q′(r′)Ψλ′,k′(r) (3.2)

with electronic Bloch waves Ψλ/ν,k/q in WSe2 and graphene integrated over the complete space.
The Coulomb potential takes into account the dielectric environment of the heterostructure.
Both materials are separated by a distance z with a dielectric constant ϵ. The interlayer
potential can be derived by solving the Poisson equation for a five layer model: substrate,
TMDC, spacing, graphene, and supstrate with appropriate boundary conditions [199]. If the
spacing is sent to zero, the used interlayer Coulomb potential, displayed in the appendix A.3.1,
recovers the well-known Rytova-Keldysh potential with summed layer thicknesses [199]. By
Fourier transformation of the Coulomb potential and k · p expansion [154] of the integral the
matrix element can be evaluated [198]. Together with an exciton basis we find

H =
∑︂

µ,Q,q

Fµ,Q(z)P †
µ,QRq

Q + H.c. , (3.3)

where P †
µ,Q denotes the exciton transition in WSe2 and Rq

Q = c†
q+ 1

2 Q
v

q− 1
2 Q

stands for a pair
operator in graphene. For Förster coupling an excitonic transition couples to an inverse
interband transition in graphene, as sketched in Fig. 3.1(a). The matrix element reads [150]

Fµ,Q(z) = 1
e2

√
A

VQ(z)φµ(r = 0)Q · d∗
W Q · dG . (3.4)

The matrix element is characterized by the dot product of the dipole elements dW/G of
both materials (W for WSe2 and G for graphene), which shows that Förster coupling is a
dipole-dipole interaction. Besides finite dipole elements, the coupling mechanism requires a
non-vanishing center-of-mass momentum of the exciton. Otherwise, for Q = 0 the coupling
mechanism directly vanishes. From the Hamiltonian Eq. (3.3) and the Heisenberg equation
of motion formalism we can derive equations of motion for exciton transition PQ and Rq

Q.
Restricting the discussion to 1s excitons, the exciton number µ is dropped:

iℏ
d

dt
PQ = EQPQ +

∑︂
q

FQRq
Q , (3.5)

iℏ
d

dt
RQ = Eq

QRq
Q + FQPQ . (3.6)

The first term describes the free energy of the transition amplitude and the second term the
Förster coupling. The formal solution of the graphene transition reads

Rq
Q = 1

iℏ
FQ

∫︂ t

−∞
dt′ e

1
iℏEq

Q(t−t′)PQ(t′) = 1
iℏ

FQ

∫︂ t

−∞
dt′ e

1
iℏEq

Q(t−t′)e
1
iℏEqt′

P̃ Q(t′) , (3.7)

where the tilde index denotes a slow oscillating amplitude. The graphene transition can be
solved within a Markov approximation and plugged back into the equation of motion for
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Figure 3.1: (a) Förster coupling between TMDC and graphene. (b) Förster transfer rate for
different interlayer distances. A close stacking of 0 nm yields the highest transfer rate. Figure
is similarly published in Ref. [200].

the exciton transition. The Markov approximation is good as long as the Förster interlayer
coupling is smaller than the spectral bandwidth provided by the broad electronic energy
distribution in graphene. We substitute t − t′ = s and obtain

Rq
Q = 1

iℏ
FQ

∫︂ ∞

0
ds e

1
iℏ (Eq

Q−EQ)se
1
iℏEQtP̃ Q(t − s) = 1

iℏ
FQPQ(t)

∫︂ ∞

0
ds e

1
iℏ (Eq

Q−EQ)s , (3.8)

where in the second step we performed the Markov approximation and assumed that the
envelope of the amplitude does depend only weakly on s and can be taken out of the integral.
Performing the integration yields

Rq
Q = −iπFQδ(Eq

Q − EQ)PQ , (3.9)

which can be inserted in Eq. (3.5). Then it is possible to read off the Förster induced transition
rate

ΓQ(z) = 4π
∑︂

q

|FQ(z)|2δ
(︂
Eq

Q − E1s
Q

)︂
, (3.10)

where we included a factor 4 to account for the electron spin and valley in graphene. The
graphene dispersion is linear in the investigated q region for coherent or even thermalized
TMDC excitons. Paired with the assumption that typically |q| ≪ |Q| we can assume
that the graphene electron energy is independent of the center-of-mass momentum Eq

Q =
ℏvF (|q + Q/2| + |q − Q/2|) ≈ 2ℏvF |q|, with the Fermi velocity vF . The summation over the
delta function can be treated analytically. Together with an average over the angle dependence
of |FQ(z)|2 we finally find [198]

ΓQ(z) =
|VQ(z)|2|φ1s(r = 0)|2d2

T d2
GE1s

Q Q4

8ℏ2v2
F e2 . (3.11)

Figure 3.1(b) displays the Förster rate as function of center-of-mass momentum for different
layer distances. Since the Förster coupling is directly proportional to the center-of-mass
momentum it vanishes at the origin. Therefore, Förster coupling has no influence on the
linewidth of the exciton transition [198]. For increasing momentum we observe a monotonous
increase followed by an exponential decay. The behavior results from an interplay of the Q4

dependence and the momentum dependence of the Coulomb potential. Because the Coulomb
potential enters the scattering rate we can also expect a strong influence of the dielectric

43



Chapter 3. WSe2-graphene energy and charge transfer in tr-ARPES

environment to the transfer rate. For a silicon carbide substrate we find that the transition
rate peaks at 0.08 meV even for a close stacking of z = 0. Since for close stackings the
Förster rate drops with distance as exp(−z) the transfer rate quickly decreases for larger
layer distances [198]. We conclude that Förster coupling is a slow coupling mechanism on a
picosecond time scale.

3.2 Dexter coupling
Besides Förster transfer, a second prominent energy transfer mechanism is Dexter transfer.
In contrast to Förster transfer, which is a dipole-dipole interaction, Dexter relys on a wave
function overlap of the involved states [201, 202]. The Dexter transfer is described by the
following Hamiltonian with matrix element

H =
∑︂

k,q,k′,q′

V cvvc
k,q,k′,q′c

†
kv†

qv
k′cq′ + H.c. (3.12)

V cvvc
k,q,k′,q′ =

∫︂
R3

d3r

∫︂
R3

d3r′ Ψ∗
c,k(r)Ψ∗

v,q(r′)V (r, r′)Ψv,k′(r′)Ψc,q′(r) (3.13)

and sketched in Fig. 3.2(a). While for a Förster transfer the carriers stay in their respective
layer, Dexter coupling is characterized by a layer exchange of valence and conduction band
electrons. The notation is equivalent to the previously discussed Förster transfer. Because of
the in-plane translation invariance of the Coulomb potential, we can Fourier transform the
Coulomb potential with respect to the in-plane component. Inserting the Bloch waves and
by shifting the integral into the first common unit cell r∥ → r∥ + Rn, we can decompose the
spatial integrals to obtain

V cvvc
k,q,k′,q′ = 1

A

∑︂
K

∫︂
UC

dz

∫︂
UC

dz′ χc(z)χv(z′)VK(z, z′)δk,q′+Kδq,k′−K . (3.14)

We introduced the abbreviation χλ(z) = ⟨uλ,W |uλ,G⟩/VUC , where the dependence on the
orbital overlap becomes apparent. The indices W and G are layer indices denoting WSe2
and graphene. In the following, we assume a close stack with zero interlayer distance. The
z-integrals can be decomposed into two integrals, one over WSe2 and one over graphene. For
an atomically-thin material we can assume that the Coulomb potential varies only weakly
with each layer, that the z/z′-dependence of the Coulomb potential can be replaced by the
positions of the layers. Additionally, we assume that the integration in both layers contribute
equally to the wave function overlap between WSe2 and graphene in conduction and valence
band, that we can write χλ,W = χλ,G = χλ/2 [200]. After a projection onto the excitonic
wave function, we obtain the Dexter Hamiltonian

H = −
∑︂

µ,K,q

Dµ,KP †
µ,KRKG+q

K + H.c. (3.15)

with

Dµ,K = 1
4
√

A
χcχvφ∗

µ(r = 0)V Dex
KW −KG

, (3.16)

where V Dex
K corresponds to the sum of the Coulomb potentials at each material position,

cf. App. A.3.1. We observe that the Dexter coupling element depends on the momentum
distance between the K points in TMDC and graphene, which originates from the different
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Figure 3.2: (a) Dexter coupling between TMDC and graphene. (b) The Dexter transfer rate
is increasing with increasing orbital overlap but remains exceedingly small. Figure is similarly
published in Ref. [200].

lattice constants. The distance is about |KG − KW | ≈ 3.6 nm−1, which is large compared to
the valley local relative and center-of-mass momenta. Therefore, we neglected the relative
and center-of-mass momentum in the Coulomb potential as a first approximation. A more
detailed derivation of the Dexter coupling element is given in the appendix A.3.1.

Analogously to the Förster case, we calculate the Dexter-induced scattering of WSe2
excitons to graphene, which reads

ΓQ = 2π
∑︂

q

|DQ|2δ(Eq
Q − E1s

Q ) =
|DQ|2AE1s

Q

4ℏ2v2
F

, (3.17)

where we evaluated the momentum sum. As long as the center-of-mass momentum Q is
much smaller than the K point distance of both materials, the Dexter rate is independent of
the center-of-mass momentum. Figure 3.2(b) displays the Dexter rate as function of wave
function overlap. We see that for reasonable overlap, the transfer rate is in the magnitude of
a millionth meV. Therefore, Dexter energy transfer can be ruled out for a WSe2-graphene
heterostructure.

3.3 Phonon-assisted tunneling
So far, we discussed the transfer rates for two energy transfer processes. Apart from energy
also charge transfer mechanisms can occur. We present now a microscopic calculation of
the interlayer phonon-assisted tunneling process. Due to the strongly different dispersions
of WSe2 and graphene, the phonons are indispensable to ensure energy and momentum
conservation during the tunneling process. We keep the derivation as general as possible,
such that it can be applied also to different processes as phonon-assisted Dexter transfer for
example. Additionally, we will see that the derivation does not distinguish between fermionic
and bosonic operators. The presented formalism can therefore also be used to an excitonic
Hamiltonian [149]. We introduce the compound indices a, b accounting for layer, band, and
momentum of carriers and c carrying the phonon quantum numbers. The Hamiltonian reads

H =
∑︂

a

εaa†
aaa +

∑︂
c

ℏΩcb
†
cbc +

∑︂
a,b

taba
†
aab +

∑︂
a,b,c

gabca
†
aab

(︂
bc + b†

−c

)︂
= H0 + H1 . (3.18)

The first two terms correspond to the dispersion of carriers and phonons and are abbreviated
as the free Hamiltonian H0. The third and fourth term constitute the interaction Hamiltonian
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H1. The third term describes tunneling from state a to b and the last term represents
phonon-assisted scattering of carriers. After specifying the necessary Hamiltonian for the
investigated process, we apply a canonical transformation [108]

H ′ = e−SHeS = H0 + (H1 + [H0, S]) + 1
2[H1, S] . (3.19)

The collected terms in the middle constitute the first order and the last term corresponds to
second order contributions. Since we are interested in the second order process of phonon-
assisted tunneling we claim that the first order in the interaction vanishes [108]. Therefore,
we choose

S =
∑︂
a,b

αabtaba
†
aab +

∑︂
a,b,c

gabca
†
aab(βabcbc + γabcb

†
−c) , (3.20)

with the coefficients

αab = 1
ϵb − ϵa

, βabc = 1
ϵb − ϵa + ℏωc

, γabc = 1
ϵb − ϵa − ℏωc

. (3.21)

The notation −c denotes that the phonon wave vector is negative. By inserting the operator
S into Eq. (3.19) we can verify that the first order cancels with H0. The transformed
Hamiltonian reads

H ′ = 1
2[H1, S] (3.22)

carrying only second order processes. The Hamiltonian includes higher-order tunneling terms,
two-phonon processes, phonon-mediated attractive electron-electron interaction but also the
desired phonon-assisted tunneling. Restricting ourself only to the last contribution of the
Hamiltonian we obtain

H ′ = 1
2
∑︂

a,b,c,d

tdbgadca
†
aab((

1
ϵb − ϵd

− 1
ϵd − ϵa + ℏωc

)bc + ( 1
ϵb − ϵd

− 1
ϵd − ϵa − ℏω−c

)b†
−c)

− 1
2
∑︂

a,b,c,d

tadgdbca
†
aab((

1
ϵd − ϵa

− 1
ϵb − ϵd + ℏωc

)bc + ( 1
ϵd − ϵa

− 1
ϵb − ϵd − ℏω−c

)b†
−c) .

(3.23)

Up to this point, we derived a general and exact expression for the phonon-assisted tunneling
process. As a next step we can insert the compound indices for electrons a/b = (λa/b, ka/b, la/b),
where l stands for the layer, and for the phonons c = (Kc, lc, αc) with α denoting the phonon
mode as introduced in Sec. 2.3. Then, we can apply the selection rules from the matrix
elements and use material specific approximations. For the tunneling we apply that the process
changes the layer index but band and momentum are conserved. For the phonon scattering the
layer and band index are conserved but the momentum changes. Then, we explicitly see that
the first line of Eq. (3.23) describes the process of tunneling followed by phonon scattering,
while the second line includes phonon scattering proceeded by tunneling. The processes are
sketched in Fig. 3.3(a). The energy window is opened by phonons. Executing the sum over
the layers, we can divide the Hamiltonian into one part involving WSe2 phonons and a second
part with graphene phonons. Additionally, we evaluate the coefficients. For this purpose, we
fix the momenta in WSe2 to the vicinity of the K+ point. Together with energy conserving
scattering processes, this fixes the energy and momentum range of the involved carriers. Since
we restrict the analysis to the K+ point, we obtain αG−W

c,k≈KW
= 1/eV and αW −G

c,k≈KG
= 1

250meV
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read out from DFT calculations [200]. For the other two coefficients βlα
λ,k,K and γlα

λ,k,K , which
involve the phonon energies of the materials, we find that the single-particle energy difference
is always extensively larger than the phonon energy. Consequently, we can neglect the phonon
energy and obtain the Hamiltonian

H =
∑︂

k,K,λ,α

[︄
tG−W
λ gW α

λ,K

εW
KG

− εG
KG

(︂
bW α

K + b†W α
−K

)︂
+

tW −G
λ gGα

λ,K

εG
KW

− εT
KW

(︂
bGα

K + b†Gα
−K

)︂]︄
λ†W

k+KλG
k + H.c.

=
∑︂

k,K,λ,α

hW α
K λ†W

k+KλG
k

(︂
bW α

K + b†W α
−K

)︂
+

∑︂
k,K,λ,α

hGα
K λ†W

k+KλG
k

(︂
bGα

K + b†Gα
−K

)︂
+ H.c. , (3.24)

where we abbreviated in the second step the matrix elements as hlα
K . Assuming that the

electron-phonon matrix element changes only weakly with K close to the K+ point we can
approximate the functions hlα

K as constants. A detailed derivation of the phonon-assisted
tunneling matrix element can be found in the appendix A.3.2. From the Hamiltonian we can
derive the relaxation rate of graphene carriers to WSe2

ΓG
k = 2π

∑︂
±,K,α,l

|hlα
K |2

(︃1
2 ± 1

2 + nlα
K

)︃
δ(εG

k − εW
k+K ∓ ℏωlα

K)

= A
∑︂

l,α,±

mW

ℏ2 |hl|2
(︃1

2 ± 1
2 + nlα

)︃
1εG

k
∓ℏωlα−εW

0 >0 , (3.25)

where we approximated hlα
K ≈ hlα and ℏωlα

K ≈ ℏωlα. We recognize that the rate is constant for
graphene electrons with minimum conduction band energy plus phonon energy. This results
from the constant density of states in WSe2. As the carriers can tunnel from graphene to
WSe2, also the inverse process is possible. We obtain

ΓW
k = 2π

∑︂
±,K,α,l

|hlα
K |2

(︃1
2 ± 1

2 + nlα
K

)︃
δ(εW

k − εG
k+K ∓ ℏωlα

K) (3.26)

= A
∑︂

l,α,±

εk ∓ ℏωlα

ℏ2v2
F

|hl|2
(︃1

2 ± 1
2 + nlα

)︃
. (3.27)

For the tunneling, we take the ionization energy of WSe2 as potential barrier and approximate
the tunneling element as t = χEIon [199], with χ being the wave function overlap and EIon the
ionization energy of the material. For the numerical evaluation, we include two optical phonon
modes for both materials. For graphene the phonon energy is 200 meV with a coupling strength
of g = 200 meV [203]. For WSe2 we use 30 meV and a coupling strength of 10 meV [105]. Figure
3.3(b) displays the electron scattering rates as function of wave function overlap. We find a
quadratic behavior. The difference between both scattering rates stems from the different
final density of states of the two materials.

Similar to the conduction electrons also the valence electrons can tunnel between the
materials. The phonon energies and coupling strength are similar but we have to take into
account the different dispersion of the valence band. Figure 3.3(c) displays the results for the
valence band electron tunneling, where we find a qualitative similar behavior and strength.
However, the tunneling of holes from WSe2 to graphene is more likely compared to the
electrons. The reason is the larger density of states of graphene for the involved final states.
This originates from the fact that the Fermi energy is closer to the conduction band minimum
compared to the valence band maximum of WSe2.
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Figure 3.3: (a) Phonon-assisted electron tunneling. TMDC and graphene phonons open a
window for tunneling between the TMDC and graphene necessary because of the different
material dispersions. (b) Tunneling rate for WSe2 and graphene conduction band electrons
is increasing with wave function overlap. (c) Analogously, the tunneling rate for WSe2 and
graphene valence band electrons is increasing with wave function overlap. Figure is similarly
published in Ref. [200].

3.4 Meitner-Auger-like energy transfer

At last, we discuss a very interesting and unusual coupling mechanism, which we will refer to
as Meitner-Auger-like interlayer transfer. A schematic illustration is shown in Fig. 3.4(a): A
TMDC exciton recombines non-radiatively and excites graphene electrons deep in the valence
band to valence band states close to the Dirac point. From a Pauli-blocking argument, this
works only if the excited valence band states are vacant for example due to p-doping or during
laser excitation. We can therefore see this coupling mechanism as a conversion of optically
excited TMDC excitons into graphene plasmons.

Starting point for the investigation of this coupling mechanism is the Coulomb Hamiltonian

H =
∑︂

λ,λ′,ν,ν′

k,q,k′,q′

V λνν′λ′

k,q,q′,k′ λ†
kν†

qν ′
q′λ′

k′ . (3.28)

As for the description of the Förster and Dexter processes we use as convention (λ(′), k(′)) for
WSe2 quantum numbers and (ν(′), q(′)) for graphene band and wave vector to dispense a layer
index. The matrix element reads

V λνν′λ′

k,q,q′,k′ =
∫︂
R3

d3r

∫︂
R3

d3r′ Ψ∗
λ,k(r)Ψ∗

ν,q(r′)V (r, r′)Ψν′,q′(r′)Ψ
λ′,k′(r) . (3.29)

To describe the sketched mechanism, we restrict the graphene bands to the valence band
ν = ν ′ = v and the TMDC bands to an interband transition λ ≠ λ′. The integral can be
evaluated within a k · p expansion as shown in the appendix A.3.3. Transforming the TMDC
interband transition into the exciton picture we obtain

H =
∑︂

µ,k,Q

Wµ,Q P †
µ,Qv†

k−Qvk + H.c. (3.30)
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Figure 3.4: (a) Meitner-Auger energy transfer couples a TMDC interband transition with a
graphene intraband transition. (b) Meitner-Auger energy transfer as function of center-of-mass
momentum for different transient chemical potentials. An increasing chemical potential leads
to an increased transfer rate but requires also higher center-of-mass momentum to ensure
momentum conservation. Figure is similarly published in Ref. [200].

with the coupling element

Wµ,Q = 1
e

VQd · Qφ∗
µ(r = 0) . (3.31)

Since we assume a resonant exciton excitation the exciton number is restricted to the lowest
1s exciton and the corresponding index can be dropped. The matrix element is determined
by the excitonic dipole matrix element, the interlayer Coulomb potential, and scales directly
with the center-of-mass momentum. Therefore, this coupling mechanism corresponds to a
dipole-monopole type. At this point we can already state that coherent excitons, which
exhibit a zero center-of-mass momentum, do not contribute to this kind of energy transfer
mechanism. From Heisenbergs equation of motion we can derive the equations of motion for
TMDC exciton occupation NQ and graphene valence band electron occupation fk = ⟨v†

kvk⟩:

d

dt
NQ = 2π

ℏ
∑︂

k

|WQ|2 (fk(1 − fk−Q) − NQ(fk−Q − fk)) δ(εk − εk−Q − EQ) (3.32)

d

dt
fk = 2π

ℏ
∑︂
Q

|WQ|2 (fk−Q(1 − fk) − NQ(fk − fk−Q)) δ(εk−Q − εk − EQ)

+2π

ℏ
∑︂
Q

|WQ|2 (NQ(fk−Q − fk) − fk(1 − fk−Q)) δ(εk − εk−Q − EQ) . (3.33)

In the Boltzmann equation Eq. (3.32) we find first an in-scattering rate, which is proportional
to the graphene electron occupation and checks, whether the state k − Q is empty. Secondly,
we can identify a decay rate of WSe2 excitons, which we express by

ΓQ = 8π
∑︂

k

(fk−Q − fk)δ(ϵk − ϵk−Q − EQ) . (3.34)

The additional factor of 4 takes into account the valley and spin degree of freedom in graphene.
The linear graphene valence band is described by εk = −ℏvF k. Consequently, we can identify
the state at k as close lying to the Dirac point. Electrons with k − Q are located deep in
the valence band. We can exploit this observation by assuming that electrons close to the
Dirac point have much smaller momentum, i.e Q ≪ k, than electrons deep in the valence
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Figure 3.5: (a) Γ exciton occupation as function of kinetic energy for above exciton energy
pumping. Larger detuning leads to a smaller exciton injection. (b) Exciton occupations
normalized to one value. With larger detuning the excitons populate higher energy states. (c)
Also below resonance pumping leads to a smaller amount of excitons. (d) Also below resonance
pumping leads to a substantial hot exciton distribution. Figure is similarly published in
Ref. [200].

band, where k + Q ≈ k should hold in that case. This greatly simplifies the expression of
the decay rate since we can evaluate the momentum sum with the Dirac function. We obtain
analytically for the exciton decay

ΓQ = |WQ|2 4
ℏvF

(︃
Q − EQ

ℏvF

)︃(︄
fQ − f

Q−
EQ
ℏvF

)︄
θ

(︃
Q − EQ

ℏvF

)︃
. (3.35)

We see that the strength of the rate depends on the Meitner-Auger matrix element and the
density of states of graphene. The occupation difference in graphene between the involved
states describes Pauli blocking. The Heaviside function accounts for the fact that a certain
minimal momentum is necessary to fulfill the momentum and energy conservation of the
interlayer transfer. With an exciton energy of about 1.6 eV, this mechanisms leads to hot
hole distributions deep in the graphene valence band. In more detail, the simultaneous
photoexcitation of both materials leads to a resonant WSe2 exciton excitation and prepares
the required hole vacancies in graphene below the Dirac point. In order to allow this transition
a certain center-of-mass momentum is necessary, which stems from exciton-phonon interaction
leading to the formation of incoherent excitons NQ. Figure 3.4(b) displays the Meitner-Auger
interfacial energy transfer rate as function of center-of-mass momentum for different scenarios
of transient photoinduced chemical potential. We observe that the transfer time, inversely
determined by the decay rate, depends on the chemical potential and requires a momentum
of about 1.3 nm−1. The obtained transfer rates lie in the range of 270 fs (µ = −0.3 eV) to
175 fs (µ = −0.5 eV) and therefore could dominate over the previously discussed energy and
charge transfer mechanisms. However, a necessary center-of-mass momentum of ∼ 1.3 nm−1

corresponds to a kinetic energy of 100 meV, which is fairly large. Even the mean exciton
kinetic energy of 25.6 meV at room temperature is not enough to explain the required energy.
Therefore, we investigate the energy- and momentum resolved exciton occupation for detuned
excitation. To have an increased excess energy of the excitons, the pump photon energy is

50



3.5. Tr-ARPES signatures in experiment

chosen above the excitonic transition energy. The equation of motion for the detuned excitonic
transition in the rotating frame reads

iℏ
d

dt
P0 = (E1s − εvis − iγ)P0 + ℏΩ(t) . (3.36)

The first term describes the detuning between the exciton energy and the light excitation
energy εvis. The dephasing constant γ includes radiative and non-radiative decay. The second
term describes the optical excitation. The incoherent exciton occupation follows

d

dt
NQ = ΓForm

Q |P0|2 +
∑︂
K

Γin
Q,KNK −

∑︂
K

Γout
Q,KNQ (3.37)

with a formation rate of incoherent excitons due to phonon-induced dephasing of coherent
excitons. The last two terms with in- and out-scattering rates ΓQ,K describe the thermalization
of incoherent excitons. To investigate an analytical formula for a better understanding, we
solve the phonon-assisted transitions adiabatically, that we can write the formation coupling
element as

ΓForm
Q = 2

ℏ
∑︂
±,α

|gα
Q|2

(︃1
2 ± 1

2 + nα
Q

)︃
γ

(EQ − εvis ∓ ℏΩα
Q)2 + γ2 . (3.38)

The phonon energy and occupation are described by ℏΩα
Q and nα

Q, respectively. The ±
summation takes into account phonon emission and absorption processes.

Figure 3.5(a) displays the room temperature exciton occupation as function of kinetic
energy at the time of the pump pulse maximum for different excitation energies. Obviously,
the number of injected excitons decreases with increasingly non-resonant pumping but the
excitons occupy larger energies due to the pump excess energy paired with acoustic and optical
phonon scattering. A closer look at the occupations at larger detuning reveals two peaks. The
higher lying peak stems from exciton formation supported by acoustic phonons. The lower
maximum originates from the exciton formation with optical phonons and exciton relaxation
from the higher lying maximum via optical phonon emission [200]. This becomes even more
apparent, when investigating the normalized exciton occupation as shown in Fig. 3.5(b).

The second scenario, which we investigate is pumping below the exciton resonance. Again,
the number of injected exciton decreases with increased detuning, cf. Fig. 3.5(c). But
interestingly, the formed excitons broaden over the dispersion, that we find a substantial
amount of excitons at high kinetic energy. The reason is that the imaginary part of the exiton-
phonon self-energy, which enters the formation rate Eq. (3.38), broadens with increasing
detuning and therefore enables occupations of hot excitons at large kinetic energy [200].

In summary, near-resonant excitation leads to a hot exciton formation at large kinetic
energy, even above 100 meV. Therefore, under the right excitation conditions the interlayer
Meitner-Auger interfacial energy transfer can occur and majorly determine the transfer rate
in WSe2-graphene stacks.

3.5 Tr-ARPES signatures in experiment

A tr-ARPES experiment, which investigated the interlayer energy and charge transfer processes
in a WSe2-graphene stack was performed by Shuo Dong from the Fritz-Haber Institut of
the Max Planck society and published in Ref. [200]. Their experiment measured the four-
dimensional photoemission intensity I(E, kx, ky, τ) from the heterostructure. The in-plane

51



Chapter 3. WSe2-graphene energy and charge transfer in tr-ARPES

Figure 3.6: (a) Experimental tr-ARPES signal at the K points of graphene and WSe2 under
photoexcitation of 1.2 eV. Only the graphene component is excited and a subsequent interlayer
charge transfer (ICT) from the excited graphene electrons to the WSe2 layer is observed.
The EDC shows that the WSe2 final state lies almost 0.7 eV above the Fermi level. (b)
Experimental tr-ARPES signal at the K points of graphene and WSe2 under photoexcitation
of 1.55 eV. Here, both materials are excited. The WSe2 signal lies about 100 meV below the
signal obtained from the ICT (see EDC) emphasizing the excitonic nature of the signal. (c)
Differential spectrum of (b) and a spectrum for negative pump-pulse delay. We find strong
signals at the WSe2 valence bands (ROI2), WSe2 exciton (ROI1), graphene excited electrons
(ROI3) and hot holes in graphene (ROI4). Figure is similarly published in Ref. [200].

wave vector components are kx and ky. The tr-ARPES experiment investigates two scenarios:
1) A pump excitation energy of 1.2 eV corresponding to an excitation below the optical band
gap of WSe2 and 2) an excitation close to resonance of the exciton with 1.55 eV.

For a 1.2 eV pump solely the graphene component of the heterostructure at the K point
KG is excited. Time delayed to the hot carrier population in graphene a population of the
K and Λ valleys in WSe2 is observable, cf. Fig. 3.6(a), due to a charge transfer. As shown
previously, to ensure momentum and energy conservation the carrier tunneling is accompanied
by phonon scattering. The excited WSe2 electrons may scatter back to graphene and relax
towards the Fermi level. From the measured scattering rate of about 50 fs (Γ = ℏ/50 fs), we
can estimate the wave function overlap to lie around 4%, cf. Fig. 3.3(b).

The second excitation condition is in close resonance to the WS2 exciton, which entails
a simultaneous excitation of both materials. First, the tr-ARPES measurement Fig. 3.6(b)
shows a signal at the WSe2 K point, which lies about 100 meV below the signal, which is
obtained exclusively from the charge transfer from graphene. This emphasize that the signal
corresponds to an excitonic signature. The differential spectrum, which is shown in Fig. 3.6(c)
is obtained by substracting the spectrum for negative pump-probe delay. At the WSe2 K
point the figure shows the TMDC valence band (region of interest ROI2) and the TMDC
exciton (ROI1). Additionally, it shows besides an electronic modification around the Fermi
level (ROI3), also a strong peak at -1.8 eV (ROI4) in the graphene layer. The photoexcitation
and phonon-assisted tunneling can be ruled out as origin for the signature as the energetically
gap is to deep. However, the energy difference between the deep lying valence states at -1.8 eV
and the states close to the Fermi level at -0.2 eV corresponds well to the exciton energy (1.6 eV).
Consequently, this feature is explainable by the interlayer Meitner-Auger recombination, which
was previously introduced.

52



3.6. Conclusion

3.6 Conclusion
In this chapter, we investigated different interfacial energy and charge transfer mechanisms in
a WSe2-graphene heterostructure. We started by investigating the Förster coupling, which is a
dipole-dipole coupling. We find that the Förster transfer rate follows first a Q4 behavior before
decaying exponentially with Q. For coherent excitons with vanishing center-of-mass momentum
the Förster transfer does not occur. Additionally, the transfer rate decays exponentially with
the layer distance [198]. For a close stacked WSe2-graphene heterostrocture on a silicon
carbide substrate we find a maximum transfer rate of 0.08 meV.

As second energy transfer process we studied Dexter coupling, which depends of the wave
function overlap of the different layers. Due to a small overlap, the process is extremely
unlikely in a WSe2-graphene heterostructure.

Then we investigated phonon-assisted tunneling as possible charge transfer mechanism.
Due to the different dispersions of the materials phonons are necessary to enable energy and
momentum conservation. Both processes, tunneling and phonon scattering, were simultane-
ously included by a canonical transformation. We find transfer rates for electrons and holes in
the range of 20 meV. Therefore, phonon-assisted tunneling is a rather likely and fast process.

At last, we introduced interlayer Meitner-Auger energy transfer as new excitation transfer
mechanism. Here, an exciton decays non-radiatively and excites graphene intraband transitions.
The transfer rate lies around 3 meV. We conclude that tunneling and Meitner-Auger energy
transfer are two possible coupling mechanisms on comparable time scales. However, Meitner-
Auger energy transfer requires hot exciton distributions, for example achievable by non-resonant
exciton pumping. Second, Meinter-Auger energy transfer creates hot hole distributions deep
in the valence band, which are observable in tr-ARPES or optical pump-probe spectroscopy.
Consequently, Meitner-Auger energy transfer has a unique spectroscopic signature, which
allows to distinguish it from phonon-assisted tunneling.
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Chapter 4

THz spectroscopy of excitonic
phases in HIOS

Solid state materials are classified based on their band structure. Every text book distinguishes
between metal or semi-metal, semiconductor and insulator. Defined by the parameter of band
gap, metals have a negative band gap, meaning an overlap of valence and conduction band.
Consequently, an energy band in a metal is partially filled with electrons, which leads to a
high conductance. Metals are often described by the Drude model of a free electron gas [204].
For semi-metals the valence band is completely filled, however the band gap is zero that
valence and conduction band touche. Therefore, they are conductive but with slightly higher
resistance than metals. An archetype of semi-metals is graphene. Semiconductors have filled
valence and empty conduction bands, both separated by a band gap. The energetic width of
the band gap is of a magnitude that electrons can be lifted from valence to conduction band
by thermal or optical excitation. The optical response is given by a Lorentz response. The
insulator has a similar band structure as semiconductors but with larger band gap. Insulators
have therefore high resistances. The insulator family has many different members. Besides the
trivial band gap insulator, insulating states can also rise due to electron-electron interaction
or due to disorder coupled with quantum interference. For example in Anderson insulators the
electrons are localized by quantum interference [205]. P. W. Anderson suggested that strong
electron localization is possible if the degree of disorder in a lattice exceeds a certain limit,
which leads to a suppression of diffusion. As a result of Anderson localization one talks also of
a metal-to-insulator transition. In contrast, the Mott localization describes a transition from
metallic to insulating behavior due to strong mutual Coulomb repulsion of electrons [206].
Another example for an unconventional insulator are topological insulators. These materials
are insulators in the bulk but have metallic states at their surface, due to the topological
order [207].

In the 1960s, an exotic state was predicted named excitonic insulator (EI). The EI is a charge
neutral and strongly interacting phase that arises from spontaneous formation of excitons.
For semiconductors in thermodynamic equilibrium it is expected to appear when the exciton
binding energy naively exceeds the band gap. Among others, this concept was launched by R. S.
Knox, who expected this phase in indirect semi-metals [37]. Therefore, the excitonic insulator
separates the semi-metal from the semiconducting phase. A few years later L. V. Keldysh and
W. Kohn discussed the formation of an EI from a semiconductor [208,209]. This new phase
exhibits a correlated ground state of excitons, which shows formal analogy to the BCS ground
state of superconductivity. Since this new phase is expected to host many novel properties
such as superfluidity [210, 211] or high-temperature excitonic superconductivity [212, 213]
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(a) (b) (c)

Figure 4.1: (a) Molecule structure of F6TCNNQ. The molecule is a naphtoquinon derivative
with two dicyano compounds (nitrogen atoms in blue) and six fluorine (green) components.
(b) Freestanding HIOS constituting of a monolayer of WS2 and a thin film of periodically
arranged F6TCNNQ molecules. (c) HIOS dispersion close to the K+ point with direct band
gap. The excitonic ground state is built from interlayer excitons with hole in WS2 and electron
in the molecules. Figure appears similarly in Ref. [230].

this new class of insulators has attracted great attention over the last decades. However, as
the EI itself also its exotic properties are still under debate. Concerning the experimental
realization, although spectroscopic signatures of EIs have been reported, conclusive evidence is
still missing. There are a few materials, which are suspected to have excitonic insulator ground
states in a solid state, namely 1T-TiSe2, Ta2NiSe5 or TmSe0.45Te0.55 [214–221]. However, in
a solid state context it has been difficult to determine if the excitonic ground state has been
realized [222–225]. At the beginning, a lot of attention has focused on the realization of the EI
from the original idea of an indirect semi-metal, such as 1T-TiSe2. However, because of the
finite momentum transfer, the formation of a momentum-indirect exciton is accompanied by
charge density waves [224]. This makes it difficult to distinguish between excitonic insulator
phase transition or Peierls phase transition. Unfortunately, for direct materials, the competing
effect of band gap renormalization and exciton binding energy is present. A decreasing band
gap entails also a decreasing exciton binding energy. Therefore, simply diminishing the band
gap of a direct semiconductor is not doing the trick either.

In this chapter, we discuss the possibility of realizing the excitonic insulator in hybrids of
two-dimensional semiconductors and organic molecules exploiting spatial-indirect interlayer
excitons. The study of hybrid inorganic/organic systems (HIOS) is a growing field with
gaining technological importance since it combines the best of two worlds: Strong light-matter
interaction and easy tunability of the electronic orbitals of organic molecules with high carrier
mobility of inorganic semiconductors [226–228]. In the case of excitonic insulators, the low
dielectric constant of organic molecules [229] and the strong localization of their electrons
are ideal conditions for a large interlayer exciton binding energy. The plethora of organic
molecules allows to choose material combinations with appropriate level alignments and band
gap. The easy tunability of the molecular orbitals enables a comparably easy change between
the excitonic phases in contrast to TMDC heterostructures. With a direct heterostructure
dispersion we circumvent the problematic of possible rising Peierls charge density waves.
Moreover, the spatial separation of electrons and holes yields an exciton condensation that
may produce a dipolar superfluid [41].
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4.1 Hamiltonian

The expected heterostructure, which exhibits an excitonic ground state is a self-assemble layer
of F6TCNNQ molecules placed on top of a WS2 monolayer. The 1,3,4,5,7,8-hexafluoro-tetra-
cyano-naphthoquinodimethane (F6TCNNQ) molecule is a powerful electron acceptor [231],
which is known for strong interaction with various materials [91, 232, 233]. Experiments
observe mostly charge transfer from the host material to the acceptor molecules [234]. A large
number of F6TCNNQ molecules form a flat, quasi two-dimensional, film, which is weakly,
non-covalently, bound to the WS2 layer. Figure 4.1(a) and (b) display the molecule and
the investigated heterostructure. Figure 4.1(b) shows a free-standing heterostructure. In
order to built the EI and tune the excitonic phases we imagine a structure of the following
form: F6TCNNQ-WS2 stack encapsulated by hBN to separate the heterostructure from
the two outside situated graphene layers acting as electrodes. We use a TMDC-molecule
distance of 0.5 nm. Monolayer TMDCs exhibit a strong exciton binding energy due to their
two-dimensionality leading to a low dielectric environment screening. We combine the TMDC
monolayer with a F6TCNNQ film, which exihibts a low dielectric constant of ϵ = 3 [235].
Further, density functional theory (DFT) calculations reveal that the electronic dispersion of
a F6TCNNQ lattice corresponds to flat bands. Both properties favor large exciton binding
energies. Figure 4.1(c) displays the heterostructure dispersion at the K+ point. The valence
and conduction band of WS2 are described by parabolic dispersions. In contrast, the molecular
layer exhibits flat bands for highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO). Later, we will see that the naively calculated interlayer exciton
binding energy exceeds the heterostructure band gap. Therefore, the WS2 valence band
and the molecular LUMO will form the region of interest. First, we need to formulate the
underlying Hamiltonian, which reads

H =
∑︂
λ,k

ελ,kλ†
kλk +

∑︂
λ,λ′,k,k′,q

V W
q λ†

k+qλ′†
k′−q

λ
′
k′λk +

∑︂
ν,n

εν,na†
ν,naν,n

+
∑︂

na,nb,νa,νb

V m
na,nb,νa,νb

a†
na,νa

a†
nb,νb

anb,νb
ana,νa

+
∑︂

n,ν,k

Vn,λ,ν,k λ†
ka†

n,νan̄,ν λ̄k . (4.1)

The first two terms describe the single-particle energies and intraband Coulomb interaction
of TMDC electrons already defined in Sec. 2.3. The third term describes the single-particle
energies εν,n of the electrons in the molecule bands. The index n = {H, L} denotes the
HOMO (H) and LUMO (L) of the ν-th molecule. In the second line we find the intermolecular
Coulomb coupling between molecule νa with electronic state na ∈ {H, L} and molecule νb

in state nb ∈ {H, L}. The last term denotes interlayer Coulomb coupling Vn,λ,ν,k between
molecule ν and the TMDC.

The presented Hamiltonian treats the TMDC electrons in a lattice-periodic Bloch basis. In
contrast, the basis of the molecule electrons is localized and non-periodic. Since the molecules
form a periodic lattice it is possible to express both layers in a consistent description. The
TMDC unit cells are assumed to match the molecular unit cell, that the molecular lattice
vectors are integer multiples of the TMDC lattice vectors [236]. DFT calculation suggest
that the structure relaxes in the way that one molecule matches 16 WS2 unit cells. The
interlayer band gap between WS2 valence band and LUMO corresponds to EG = 0.12 eV.
The Kohn-Sham energy levels of F6TCNNQ and WS2 are obtained with the range-separated
HSE06 hybrid functional [237], as implemented in the FHI-aims program [238–240] and using
standard „intermediate“ settings [241,242]. Perturbative spin-orbit interaction is considered.
The DFT calculations were performed by Mariana Rossi from the Max Planck Institute for
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the structure and dynamics of matter. Within a Bloch basis the electronic operators are
expanded that

aν,n = 1√
Nm

∑︂
k

e−ik·Rν an,k, and an,k = 1√
Nm

Nm∑︂
ν=1

eik·Rν aν,n (4.2)

with two-dimensional wave vector k and the number of molecular unit cells Nm. The
normalization condition is chosen such that the fermionic commutation relation of the molecular
creation and annihilation operators are conserved. The introduced transformation corresponds
to the case of a tight-binding approach for the molecular field operators. The Hamiltonian in
Bloch basis reads

H =
∑︂
λ,k

ελ,kλ†
kλk +

∑︂
n,k

εn,ka†
n,kan,k +

∑︂
λ,λ′,k,k′,q

V W
q λ†

k+qλ′†
k′−q

λ
′
k′λk

+
∑︂

n,n′,k,k′,q

V m
q a†

n,k+qa†
n′,k−qa

n′,k′an,k +
∑︂

n,λ,k,k′,q

Vq λ†
k+qa†

n,k′−q
a

n̄,k′ λ̄k . (4.3)

Since the molecules form a periodic crystal with possible momentum transformation the
discrete molecular energy levels form bands. From this point on, we refer to HOMO and
LUMO as valence and conduction band. Generally, the wave vectors of TMDC and molecular
crystal life in different spaces. Because of the large extent of the molecules compared to the
TMDC unit cells, the molecular Brillouin zone is much smaller than the TMDC’s Brillouin
zone. However, the Brillouin zones overlap at the K+ points, where the wave vector in both
materials per definition coincide. Moving away from the K+ point, for example by including
also the Λ valleys, Umklapp processes need to be considered, to map the TMDC wave vector
back into the shared Brillouin zone. However, since we focus at the K+ point the wave
vector is well-defined and exchangeable. The Hamiltonian considers Coulomb interaction
with valence and conduction band electrons within the individual layers but also interlayer
Coulomb interaction. The Coulomb potentials V W

q , V m
q , and Vq are the intralayer potentials

of the TMDC, molecular crystal and the interlayer potential, respectively.
The heterostructure exhibits four different excitonic configurations: WS2 intralayer ex-

citons, F6TCNNQ intralayer excitons, and interlayer excitons. The latter can have either
an electron in WS2 and a hole in F6-TCNNQ, or a hole in WS2 and an electron in the
molecules. When naively solving the Wannier equation with full valence bands as ground
states we find that the interlayer excitons with electron in the TMDC and hole in F6-TCNNQ
lie energetically far away from all other states. In contrast, the binding energy of the exciton
with hole in WS2 and electron in the molecule exceeds the heterostructure band gap. This
suggests that this specific interlayer exciton forms a new ground state.

4.2 Excitonic ground state

Since the excitonic ground state is formed by an interlayer exciton we concentrate on the
region of interest highlighted in Fig. 4.1(c) by the dashed box. This means that the valence
band index v simultaneously refers to the TMDC layer and the conduction band index c
indicates concurrently the molecule layer. Since we focus on interlayer processes we neglected
in foresight Meitner-Auger or Dexter-like exchange processes in the Hamiltonian Eq. (4.3).
The reason is that their matrix elements require a wave function overlap, which is, due to the
spatial separation of electrons and holes, negligible small.
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To derive the new ground state, we start from the spatially homogeneous mean-field
Hamiltonian obtained from Eq. (4.3)

H =
∑︂
λ,k

ε̃λ,kλ†
kλk −

∑︂
k

∆k

(︂
v†

kck + c†
kvk

)︂
+ ie

∑︂
λ,k

E(t) · (∇kλ†
k)λk + ℏ

∑︂
k

Ωk(t)
(︂
v†

kck + c†
kvk

)︂
, (4.4)

which reproduces the semiconductor Bloch equations in Hartree-Fock limit. The single-particle
energies ε̃λ,k are renormalized by electron-electron, hole-hole, and electron-hole Coulomb
interaction and read

ε̃v,k = εv,k +
∑︂
k′

V W
0 fv,k′ +

∑︂
k′

V0fc,k′ −
∑︂
k′

V W
k−k′fv,k′ −

∑︂
k′

Vk−k′fc,k′ (4.5)

ε̃c,k = εc,k +
∑︂
k′

V m
0 fc,k′ +

∑︂
k′

V0fv,k′ −
∑︂
k′

V m
k−k′fc,k′ −

∑︂
k′

Vk−k′fv,k′ . (4.6)

They carry the valence and conduction band electron occupations fλ,k = ⟨λ†
kλk⟩ in TMDC and

molecular layer. The quantity ∆k =
∑︁

k′ Vk−k′pk′ takes into account the binding of excitons.
Additionally, we include light-matter interaction consisting of interband transitions described
by the Rabi-frequency Ωk = dk · E(t)/ℏ and intraband transitions. The former includes
interband transitions between the layers, which are therefore negligible small [243,244]. For the
latter the gradient acts onto the creation operator. Since the EI forms without any external
excitation, in the following only the field-independent part of the Hamiltonian Eq. (4.4) is
considered. It can be convenient to express the Hamiltonian in Nambu-Gor’kov basis [245,246].
It yields

H =
∑︂

k

Ψ†
k

(︄
ε̃c,k −∆k

−∆∗
k ε̃v,k

)︄
Ψk , (4.7)

where we cast the creation and annihilation operators into the Nambu-Gor’kov spinors

Ψ†
k = (c†

k, v†
k), and Ψk =

(︄
ck

vk

)︄
. (4.8)

So far, the Hamiltonian is non-diagonal, which means that the fundamental excitations of
the system are not just electrons or holes. The goal is to find a proper basis, which makes
the Hamiltonian diagonal. Finding a proper basis transformation corresponds to finding a
suitable combination of electrons and holes, which is a fundamental excitation of the system.
A hermitian matrix can be diagonalized by a unitary matrix, i.e. a matrix U such that
UU † = 11 = U †U . We insert the unitary operator as

H =
∑︂

k

Ψ†
kUkU †

k

(︄
ε̃c,k −∆k

−∆∗
k ε̃v,k

)︄
UkU †

kΨk . (4.9)

Every 2 × 2 hermitian matrices can be parametrized by two complex parameters u and w
with the condition |u2| + |w2| = 1. The Hamiltonian Eq. (4.9) can be diagonalized in terms
of new Bogoliubov fields. We choose a representation of the unitary matrix such that the new
quasi-particle operators are defined as(︄

αk

βk

)︄
= U †

kΨk =
(︄

−wk uk

u∗
k w∗

k

)︄(︄
ck

vk

)︄
. (4.10)
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Figure 4.2: (a) Coherence factors in the EI phase. We find a mixing of electron and hole
pair states. (b) Coherence factors in the semiconducting limit recovering the anticipated step
function.

Since the coefficients fulfill |uk|2 + |wk|2 = 1 the commutation relation is conserved and the new
operators satisfy the standard fermionic commutation relation. The complex parameters can
be taken as real without the loss of generality. A possible explanation yield the semiconductor
Bloch equations for microscopic transition pk and occupation fλ,k. Since we are interested
in the systems ground state, their dynamics vanishes. From the stationary limit we see
immediately that pk, and therefore also ∆k, is real. We find for the Hamiltonian

H =
∑︂

k

(α†
k, β†

k)
(︄

Rk Ck

Ck Tk

)︄(︄
αk

βk

)︄
(4.11)

with the coefficients

Rk = ε̃v,k|uk|2 + ε̃c,k|wk|2 + 2∆kukwk (4.12)
Tk = ε̃v,k|wk|2 + ε̃c,k|uk|2 − 2∆kukwk (4.13)
Ck = ∆k(|wk|2 − |uk|2) − (ε̃c,k − ε̃v,k)ukwk . (4.14)

We can diagonalize the Hamiltonian by forcing the coefficients of the off-diagonal entries α†
kβk

and β†
kαk to be zero. The Hamiltonian enters its diagonal form

H =
∑︂

k

Eα,kα†
kαk +

∑︂
k

Eβ,kβ†
kβk (4.15)

with the eigenenergies

Eα/β,k = 1
2(ε̃v,k + ε̃c,k) ∓

√︂
Σ2

k + ∆2
k . (4.16)

We see that the energies of the new quasi-particles are not only determined by the single-particle
energies ε̃c/v,k but also by the quantities Σk and ∆k. The term ±

√︂
Σ2

k + ∆2
k corresponds to

the energy to add or remove a particle-hole pair from the condensate with a vanishing total
momentum. The gap dispersion Σk reads

2Σk = εc,k − εv,k +
∑︂
k′

Vm
k−k′

(︂
u2

k′fβ,k′ + w2
k′fα,k′

)︂
−
∑︂
k′

VW
k−k′

(︂
u2

k′fα,k′ + w2
k′fβ,k′

)︂
, (4.17)

60



4.2. Excitonic ground state

where we define V l
k−k′ = V l

0 − V l
k−k′ − V0 + Vk−k′ , l ∈ {m, W} with molecular and TMDC

intralayer Coulomb potentials V m
k and V W

k , respectively [199]. The occurring difference of the
Coulomb potentials from the distinct materials shows the dipolar nature of the EI [41,247,248].
The difference of the single-particle energies in Eq. (4.17) is renormalized not only by intra-
and interlayer Coulomb potentials but also by the occupations of the hybridized pair states
fλ,k = ⟨λ†

kλk⟩ with λ ∈ {α, β}. Since the quasi-particles are fermions and the Hamiltonian
is in diagonal form the occupations follow Fermi functions with dispersion Eα/β,k. Another
quantity entering the new energies Eq. (4.16) is the ordering parameter ∆k. In Bogoliubov
basis the parameter ∆k is determined by the transcendental gap equation

∆k = 1
2
∑︂
k′

Vk−k′
∆k′√︂

Σ2
k′ + ∆2

k′

(︂
fα,k′ − fβ,k′

)︂
, (4.18)

which is obtained by inserting the Bogoliubov transformation into the definition of ∆k. In
the following, we will see that this quantity is of special interest and why referred to as
ordering parameter. The gap equation is determined by three quantities. The first is the
interlayer Coulomb potential. The second quantity are the occupations fα/β,k, which include a
temperature dependence to the gap equation. And finally, the denominator Ek =

√︂
Σ2

k + ∆2
k,

which we call Bogoliubov dispersion. The Bogoliubov dispersion describes the excitation
spectrum of the new pair states. Since the occupations fα/β,k = exp(−(Eα/β,k − µ)/kBT )
depend on the energies Eα/β,k, both equations for the ordering parameter ∆k and the gap
dispersion Σk are coupled and we need to solve Eq. (4.17) and Eq. (4.18) simultaneously,
which greatly increases the complexity of the system. This coupling stems from the fact that
we include all possible Coulomb renormalizations. The chemical potential µ is adjusted such
that the system is charge neutral.

Similar to ∆k we can specify the quantities pk = ⟨v†
kck⟩ and fk = ⟨v†

kvk⟩ − ⟨c†
kck⟩ by

inserting the Bogoliubov transformation. We find in equilibrium

p
(0)
k = 1

2
∆k√︂

Σ2
k + ∆2

k

(fα,k − fβ,k) (4.19)

f
(0)
k = fv,k − fc,k = Σk√︂

Σ2
k + ∆2

k

(fα,k − fβ,k) . (4.20)

Interestingly, for ∆k ≠ 0 we observe that the interband transition is non-vanishing what is
unexpected for an unexcited semiconductor. Also the inversion differs from one, which we
would not anticipate for a Hartree-Fock ground state. In case of ∆k = 0 the microscopic
polarization vanishes. Such an on-off switching of an intrinsic microscopic polarization suggests
that ∆k may serve as an ordering parameter. In case of a vanishing ∆k also the inversion
recovers to f

(0)
k = fv,k − fc,k = 1 because fα,k and fβ,k have as limit fv,k and fc,k for ∆k = 0.

Since for an excitonic ground state the microscopic polarization has a finite value and the
inversion differs from unity, we mark them as ground state distributions by the supscript (0).

From the diagonalization we obtained also the coefficients

|uk|2 = 1
2

⎛⎝1 + Σk√︂
Σ2

k + ∆2
k

⎞⎠ , and |wk|2 = 1
2

⎛⎝1 − Σk√︂
Σ2

k + ∆2
k

⎞⎠ . (4.21)

The coherence factors |wk|2 and |uk|2 describe that the pair states are occupied or unoccupied,
respectively. Figure 4.2(a) displays the coherence factors for an excitonic insulating phase.
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Chapter 4. THz spectroscopy of excitonic phases in HIOS

Figure 4.2(b) shows their limit by increasing the band gap and forcing therefore the ordering
parameter to zero. Here, the coherence factors correspond to step functions as expected for
a conventional semiconductor. The step lies at the Fermi vector kF . In contrast, in the EI
phase the coherence factors are smeared out, which is required for the pairing interaction. In
formal analogy to the BCS superconductivity theory [249] we can construct the EI ground
state wave function as [209]

|Ψ̃0⟩ =
∏︂
k

(︂
uk − wkc†

kvk

)︂
|Ψ0⟩ =

∏︂
k

α†
k|0⟩ (4.22)

with |Ψ0⟩ =
∏︁

k v†
k|0⟩ as the conventional semiconducting ground state constructed from the

vacuum state |0⟩. These new Bogoliubov quasi-particle operators create (or annihilate) an
electron in a linear combination of valence and conduction band. Finally, we discuss the
Hamiltonian and ground state wave function together. The mean-field Hamiltonian Eq. (4.4)
is U(1) gauge symmetric. This can be seen when applying the transformation λ

(†)
k → e

+
(−)iϕk ,

which corresponds to a U(1) group operation being analogue to a rotational symmetry. For
the Hamiltonian any phase is allowed and leaves Eq. (4.4) invariant. However, the new ground
state is not invariant under rotation:

|Ψ̃0⟩ =
∏︂
k

α†
k|0⟩ →

∏︂
k

(︂
e−iϕkukv†

k − e−iϕkwkc†
k

)︂
|Ψ0⟩ =

∏︂
k

e−iϕk

(︂
ukv†

k − wkc†
k

)︂
|Ψ0⟩ ̸= |Ψ̃0⟩ .

(4.23)

The Hamiltonian and its ground state are not sharing the same symmetry anymore and the
system undergoes a spontaneous symmetry breaking. This emphasizes the language of phase
transition and ordering parameter. To obtain some more analytical insights into the ordering
parameter, we can define the quantity φk = ∆k/

√︂
Σ2

k + ∆2
k and substitute in the gap equation

Eq. (4.18), which yields [209] √︂
Σ2

k + ∆2
kφk =

∑︂
k′

Vk−k′φk′ (4.24)

for the temperature limit of 0 K. When comparing to the Wannier equation

(Ek − EB)φk =
∑︂
k′

Vk−k′φk′ (4.25)

we can deduce that the gap equation is related to the Wannier equation. Consequently, the
ordering parameter is related to the exciton binding energy. When we neglect the Hartree-Fock
renormalizations in the gap dispersion and approximate ∆k ≈ ∆0, we can write for small ∆0(︄

ℏ2k2

2m
+ EG + 2∆2

0
EG

)︄
φk =

∑︂
k′

Vk−k′φk′ (4.26)

with the reduced mass m. If we assume that the gap energy is of the same order of magnitude
as the exciton binding energy, we can identify |EB| ≈ EG + 2∆2

0/EG by comparing Eq. (4.26)
with the Wannier equation Eq. (4.25). Resolving for the order parameter yields

∆0 = |EB|
√︄

1
2

(︃
1 − EG

|EB|

)︃
. (4.27)
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Figure 4.3: (a) Numerical solutions for ∆k, Σk, and Ek at 300 K. ∆k peaks at the origin
and decreases with the wave number. The Bogoliubov dispersion has a sombrero shape and
Σk is negative close to the origin due to Hartree-Fock renormalizations. (b) Ground state
distributions at 300 K showing a present microscopic polarization and intrinsic inversion. For
k → ∞, the ground state distributions go to the semiconducting limit because ∆k = 0. The
ground state distributions peak in the pockets of the Bogoliubov dispersion. Figure appears
similarly in Ref. [230].

We see that the ordering parameter is a continuous function of the band gap. For a binding
energy smaller than the band gap holds ∆0 = 0 (semiconductor limit) and increases continu-
ously with diminishing band gap compared to the binding energy. This result suggests, that
the EI phase transition is of second order.

Figure 4.3(a) displays the numerical results for the ordering parameter ∆k, gap Σk and
Bogoliubov Ek dispersion at room temperature. First of all, the ordering parameter is
non-vanishing and peaks at k = 0. A finite value accounts for a finite probability to create
electron-hole pairs, which designates the excitonic instability. The ordering parameter is
monotonously decreasing with the wave number. This behavior is in formal analogy to the
ordering parameter from s-wave superconductors [249–251]. The Bogoliubov dispersion Ek

has a sombrero shape, which peaks at k = 0 and exhibits two pockets close to k = ±2 nm−1.
The strength of the peak at the origin is related to the exciton binding energy and can be
understood as gap opening. The gap dispersion Σk has mainly a parabolic shape. Interestingly,
we see that around k = 0 the gap dispersion turns negative. If we artificially turn off the
Hartree-Fock Coulomb corrections, the gap dispersion corresponds to the band gap at the
origin. Then the gap dispersion is positive. For a positive gap dispersion we see from Eq.
(4.20) that for the inversion holds f

(0)
k > 0. In contrast, with a negative gap dispersion follows

f
(0)
k < 0. Therefore, by including all Hartree-Fock renormalizations, we find that the suggested

EI structure exhibits an intrinsic inversion close to the band extremum. Figure 4.3(b) plots
the ground state distributions. The ground state polarization and occupations peak in the
Bogoliubov pocket, which we can identify with a Fermi wave number kF . Away from the band
extremum the inversion goes to one and the polarization vanishes.

Two relevant parameters, which influence the ordering parameter are temperature and
band gap. The latter is tunable by an applied voltage. Depending on the choice of these
parameters we can expect three different excitonic phases: excitonic insulator, semiconductor,
and semi-metal. The excitonic insulator is determined by a finite value of ∆k, while the other
two phases exhibit a vanishing ∆k. However, they can be distinguished via the inversion
f

(0)
k . For a semiconductor the inversion is one in the Hartree-Fock ground state, but the

value is smaller for a semi-metal reflecting the presence of a free electron gas. Figure 4.4
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Figure 4.4: (a) Phase diagram of a WS2-F6TCNNQ on hBN and air surrounding. The
excitonic insulating phase separates the semiconducting and semi-metal phases. The numbers
show where the absorption spectrum is calculated at a later stage. Number 3 corresponds to
zero applied electric field. (b) Phase diagram for changing dielectric constant of the supstrate
up to hBN encapsulation. A low mean dielectric constant is necessary to keep the EI stable
at heigher temperatures. Figure appears similarly in Ref. [230].

shows the phase diagram of the WS2-F6TCNNQ heterostructure. For a guidance of the eye
we included the coexistence lines between the different phases. We see that the excitonic
insulator is stable up to a temperature of 350 K underlining the possibility of the system to
built a high-temperature excitonic insulator. Concerning the band gap, the EI appears in the
range of 0.04-0.38 eV. By increasing the band gap the system enters its semiconducting phase.
In contrast, by decreasing the band gap we approach the semi-metal case. Interestingly, there
is no coexistence of EI and semi-metal, but the heterostructure traverses the semiconducting
phase. This results from a fast decrease of the ordering parameter with decreasing band gap
and its vanishing prior to a negative band gap. The microscopic origin is the competing effect
between the band gap renormalization, which is included in Σk, and the strength of the exciton
binding energy. The separating area can be understood as excited semiconductor. The reason
for this interpretation is that ∆k = 0 and Σk = ε̃c,k − ε̃v,k > 0 as in the semiconducting phase
but with fc,k ̸= 0. To convert the band gap change into a value for applied voltage we use a
simple model by approximating the exciton as dipole in a plate capacitor. We use the materials
WS2 and F6TCNNQ directly as electrodes and apply the voltage between them. For the band
shift due to the Stark effect we assume a simple linear dependence: ∆ε = ER [244]. The band
shift ∆ε is determined by the electric field strength E and the layer separation R. For a plate
capacitor the electric field is related to the applied voltage by U = ER. To tune the band
gap over the full range shown in Fig. 4.4(a) a voltage of 0.5 V needs to be applied. Finally,
we recognize a sublimation line – a direct transition of semiconductor to semi-metal without
traversing the EI by just high enough temperature. Figure 4.4(b) displays the excitonic phases
as function of the two device relevant parameters temperature and dielectric environment
at the original band gap EG = 0.12 eV. The heterostructure is placed on an hBN substrate
and the dielectric constant of a supstrate is changed continuously. We see that a low mean
dielectric constant is necessary to keep the EI phase stable at high operating temperatures.
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4.3 Optical response
With the correct many-body ground state, we can now calculate the optical response of
the heterostructure. The frequency-dependent and self-consistent absorption coefficient
corresponds to Eq. (2.63) derived in Sec. 2.6.2. The linear absorption is determined by the
susceptibility. We know that the susceptibility is related to the macroscopic polarization,
which itself is determined by the microscopic polarization. However, we do not know exactly
how the macroscopic polarization looks for an excitonic insulator. Therefore, we derived the
equations of motion before defining the actual observable.

The equation of motion for the optical excitation derived from the Hamiltonian Eq. (4.4)
reads

iℏ
d

dt
pk = (2Σk + ieE(t) · ∇k) pk − ∆kfk + ℏΩk(t)fk , (4.28)

iℏ
d

dt
fk = 2iℑm (∆kpk) + eE(t) · ∇kfk (4.29)

with 2Σk = ε̃c,k − ε̃v,k. The terms carrying the product of electric field and momentum
gradient correspond to optical intraband transitions and terms with ∆k account for attractive
electron-hole Coulomb coupling. Optically induced interband transitions are described by the
Rabi-frequency Ωk(t). We expand the polarization and inversion into orders of the exciting
electric field [252,253]

pk = p
(0)
k + p

(1)
k + O(2) (4.30)

fk = f
(0)
k + f

(1)
k + O(2) , (4.31)

where we restrict ourself to the first order. The initial conditions arise from the ground state
(p(0)

k , f
(0)
k ). The dynamical correction to first order in the electric field is denoted by p

(1)
k and

f
(1)
k . The HIOS Bloch equations in first order of the electric field read

iℏ
d

dt
p

(1)
k = 2Σ(0)

k p
(1)
k − ∆(1)

k f
(0)
k + 2Σ(1)

k p
(0)
k − ∆(0)

k f
(1)
k + ℏΩk(t)f (0)

k + ieE(t) · ∇kp
(0)
k (4.32)

iℏ
d

dt
f

(1)
k = 2iℑm

(︂
∆(0)

k p
(1)
k + ∆(1)

k p
(0)
k

)︂
+ ieE(t) · ∇kf

(0)
k . (4.33)

Since p
(0)
k and f

(0)
k describe the ground state their dynamics vanish and we are left with the

first order. The first two terms of Eq. (4.32) correspond to the homogeneous semiconductor
Bloch equation producing the Wannier equation. The third and fourth term do not exist
in the conventional semiconductor Bloch equations and therefore generalize them to the
excitonic insulator. They describe a coupling of the polarization to occupations via the
ground state polarization. The last two terms correspond to the optical excitation due to
inter- and intraband transitions [254]. Analogous, in Eq. (4.33) the first term describes the
semiconductor Bloch equation limit, while the second term is specific to the EI. It corresponds
to a ground state polarization-assisted source [254]. The last term stems from optically-induced
intraband transitions. The static ground state distributions induce a coupling between the
linearized equations of the optical polarization p

(1)
k and inversion f

(1)
k . Both equations can be

decoupled by the transformation [253]

P
(1)
k = Ek + Σ(0)

k

Ek
p

(1)
k −

Ek − Σ(0)
k

Ek
p

∗(1)
k −

∆(0)
k

Ek
f

(1)
k (4.34)

F
(1)
k = ∆(0)

k

Ek

(︂
p

(1)
k + p

∗(1)
k

)︂
+ Σ(0)

k

Ek
f

(1)
k . (4.35)
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We obtain

iℏ
d

dt
P

(1)
k = 2EkP

(1)
k −

∑︂
k′

Vk−k′P
(1)
k′ + ℏΩk(t)f (0)

k + ieE(t) · ∇kp
(0)
k (4.36)

iℏ
d

dt
F

(1)
k = ieE(t) · ∇kf

(0)
k , (4.37)

where we can identify the linear Bogoliubov-Wannier equation

2Ekφµ,k −
∑︂
k′

Vk−k′φµ,k′ = Eµφµ,k . (4.38)

We can now treat the linearized equations of motion for the optical excitation of an EI
with the conventional exciton formalism, which we introduced in Sec. 2.6.1. We transform
to relative and center-of-mass momentum and project the interband transition onto the
Bogoliubov-Wannier wave functions, which yields the excitonic EI equations

iℏ
d

dt
P

(1)
µ,0 = EµP

(1)
µ,0 +

∑︂
k

f
(0)
k φ∗

µ,kℏΩk(t) + ieE(t) ·
∑︂

k

φ∗
µ,k∇kp

(0)
k (4.39)

iℏ
d

dt
F

(1)
k = ieE(t) · ∇kf

(0)
k . (4.40)

Besides the Bogoliubov-Wannier energy the equation of motion exhibit an interband source
scaled by the ground state inversion and an intraband source determined by the momentum
gradient of the ground state polarization. By knowing the equations of motion we can make
an educated guess for an excitonic light-matter Hamiltonian, which yields Eq. (4.39) and Eq.
(4.40). We choose a light-matter Hamiltonian of the form

Hint =
∑︂
µ,k

(︄
dk · E(t)f (0)

k φ∗
µ,k + ieE(t) ·

∑︂
k

φ∗
µ,k∇kp

(0)
k

)︄
P †

µ,0 + H.c

+ ieE(t)
∑︂
λ,k

(∇kλ†
k)λk . (4.41)

From the definition of the macroscopic polarization, being the functional derivative of the
light-matter Hamiltonian with respect to the electric field P (t) = −δHint/δE(t) we find for
the macroscopic polarization

P (t) = −
∑︂
µ,k

⎛⎝dkφµ,kf
(0)
k + ie

∑︂
µ,k

φµ,k∇kp
(0)
k

⎞⎠Pµ,0 + ie
∑︂
λ,k

(∇kλ†
k)λk . (4.42)

From the macroscopic polarization we can also calculate the optical current, which is defined
as time derivative of the macroscopic polarization

j(t) = d

dt
P (t) = −

∑︂
µ,k

(︂
dkφµ,kf

(0)
k + ieφµ,k∇kp

(0)
k

)︂ d

dt
Pµ,0(t) + e

∑︂
k

vkF
(1)
v,k(t) (4.43)

j(ω) = −
∑︂
µ,k

(︂
dkφµ,kf

(0)
k + ieφµ,k∇kp

(0)
k

)︂
iωPµ,0(ω) + e

∑︂
k

vkF
(1)
v,k(ω) , (4.44)

where we solved the time derivative by Fourier transformation. We defined the particle
velocity vk = ℏk/mv, which is obtained by shuffling the gradient from the operator to the
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corresponding eigenenergy. As consequence only the TMDC valence band occupation F
(1)
v,k

contribute to the optical response since the molecule electrons have infinite mass. Additionally,
we used that fk = f

(0)
k + F

(1)
k , whereby

∑︁
k k · f

(0)
k = 0 because f

(0)
k is even since it depends

only on the absolute value of the the wave vector and k being uneven. The first part of Eq.
(4.44) can be treated by inserting the Fourier transform of Eq. (4.39).

Some more work requires the second contribution to the optical current. Inserting the
Fourier transform of Eq. (4.40) yields for the intraband current

j(ω) = −e
∑︂

k

vk

ieE(t) · ∇kf
(0)
v,k

ℏω + iγ
=

⎛⎝− ie2

ℏ
∑︂

k

vk ⊗ ∇kf
(0)
v,k

ω + iγ/ℏ

⎞⎠ · E(t) . (4.45)

We added a phenomenological dephasing to the optically excited occupation. The expression
in front of the electric field can be identified as the conductivity tensor of a plasma. Equation
(4.45) can be seen as Ohm’s law, connecting the current and the electric field. With integration
by parts, we can move the gradient that instead of acting on the occupation it acts on the
particle velocity. The current is now in the form

j(ω) = i
e2

m

nel

ω + iγ/ℏ
E(ω) (4.46)

with electron number nel =
∑︁

k f
(0)
v,k . Comparing with the definition of the current j(ω) =

−iωϵ0χ(ω)E(ω), we can identify the susceptibility. Together with the interband contribution
of Eq. (4.44), we can identify the general susceptibility tensor

χ(ω) = − 1
ϵ0

∑︂
µ

dµ ⊗ dµ + jµ ⊗ jµ

ℏω − Eµ + iγ
+ e2

ϵ0ℏ
∑︂

k

vk ⊗ ∇kf
(0)
v,k

ω2 + iγω/ℏ
, (4.47)

where we added also a phenomenological dephasing γ to the excited microscopic polarization.
While the first term corresponds to a Lorentz response the last term corresponds to the
conductivity tensor of a free electron plasma and can be brought to the well-known Drude model
for a current density χDrude = −ω2

pl/(ω2 + iγω) with plasma frequency ω2
pl = e2∑︁

k f
(0)
v,k/ϵ0mv

by using Eq. (4.46). The matrix elements are defined as dµ = d
∑︁

k f
(0)
k φ∗

µ,k with electronic
dipole moment d and jµ = ie

∑︁
k φµ,k∇kp

(0)
k . In the following, we assume a perpendicular

excitation and project the optical matrix elements on the polarization vector e. We can now
discuss the optical selection rules included in the susceptibility. For an excitonic insulator
with s symmetric ground state the first excited state is of p symmetry. Therefore, excitonic
insulators exhibit intraexcitonic s to p transitions [156,255,256]. But due to the uneven parity
of p states, the interband source dµ vanishes. In contrast, the intraband source jµ is finite.
The matrix element can be investigated in more detail. From the gap equation Eq. (4.18) we
see that it corresponds to the Bogoliubov-Wannier equation with vanishing exciton binding
energy. This suggests that also the ground state polarization could be projected onto the wave
function acting as solution for Eµ = 0: p

(0)
k =

∑︁
µ,Eµ=0 φµ,kp

(0)
µ . Then the momentum-gradient

in the intraband matrix element acts onto the wave function. For a s-type ground state the
angular derivative vanishes. Together with an analytical treatment of the angle-sum we obtain
for the intraband source

jµ = eπe ·
∑︂
ν,k

φ∗
µ,k∂kφν,k

(︄
1

±i

)︄
, (4.48)
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Figure 4.5: Absorption spectrum of the WS2-F6TCNNQ stack in the far-infrared to terahertz
regime. (1) Semi-metal phase characterized by a Drude response. (2) First Lorentzian
signature due to rising intraexcitonic transitions. (3) EI phase exhibits a Drude response,
which is modulated by a p excitonic Rydberg series. (4) EI phase with wider gap showing a
blue shift of the resonances and a decreasing oscillator strength. (5) Semiconducting phase
shows no optical response due to vanishing small oscillator strength of the interlayer transition
and absent free electron gas. Figure appears similarly in Ref. [230].

where the sign stands for µ = p+ and µ = p− final states. These two final states exhibit a
circular dichroismic selection rule, comparable to KK and KK− excitons in monolayer TMDCs.

When entering the semiconducting phase, the Bogoliubov-Wannier equation turns into
the conventional Wannier equation, which yields the 1s exciton as first excited state. Then
the intraband source is zero and the interband source finite. However, since we investigate
interlayer transitions, the optical interband transition is expected to be small [257]. For a
negative band gap neither of the first two terms contribute. The response is solely given by
the last term, which corresponds to the plasma response in a Drude model for a free electron
gas. It stems from intraband transitions of the microscopic occupations with plasma frequency
ωpl.

Figure 4.5 shows the calculated absorption along the billiard line in Fig. 4.4(a). In the
semi-metal phase (1) we observe the well-known Drude response for the free electron gas.
Opening the gap (2), we see that an additional feature rises, which stems from the first
two sources. The slowly rising microscopic polarization is convoluted with the excitonic
wave function, which interpolates at this point between s and p state. Therefore, also the
interband source contributes in principle. However, the oscillator strength of the interlayer
exciton is weak and the contribution of the interband source is negligible. When entering the
excitonic insulating phase (3), we observe that the Drude response, which is still present due
to a finite f

(0)
k , is modulated by a p excitonic Rydberg series in the far-infrared to terahertz

regime. The resonances correspond to transitions from a 1s ground state to excited p states.
Since the transition is of intraband nature, it possesses sufficient oscillator strength to be
observed in optical experiments. For a further gap opening (4) we observe a blue shift of the
resonances accompanied by a decreasing oscillator strength since the ordering parameter and
the connected ground state distributions p

(0)
k and f

(0)
k decrease. For a band gap of 0.4 eV the

wave function of the lowest excited state changes to s symmetry. As consequence the intraband
source vanish and the heterostructure is in its semiconducting phase (5). However, due to
the weak hybridization of intra and interlayer exciton, the interlayer exciton has negligible
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oscillator strength. Since for the semiconductor also the inversion corresponds to unity, the
Drude response vanishes as well and no response at all is observed. The material becomes
transparent for large wavelengths. For higher temperatures a similar picture emerges but
characterized by generally weaker oscillator strength due to smaller ground state populations
and a faster change between the phases with band gap altering.

4.4 Conclusion
In this chapter, we introduced the functionalization of two-dimensional inorganic TMDC
semiconductors by organic molecules. The molecules form a flat periodic lattice. This enables
a transformation for the molecule electrons into a momentum Bloch basis. We suggest such
hybrids to be the ideal candidate to form excitonic insulators. The reasons are the large
amount of organic molecules with low dielectric constant from which a HIOS could be built.
Additionally, the flat bands of the organic layers are favorable for a large interlayer exciton
binding energy. Finally, the easy tunability of the molecular energy levels, compared to the
bands of inorganic semiconductors, by an applied electric field enables fine tuning of the
excitonic phases.

We developed a Bogoliubov description to properly describe the new many-body ground
state. We find that excitonic insulators exhibit an intrinsic non-vanishing polarization due to
a correlated 1s exciton ground state. Additionally, they exhibit a spontaneous formation of
inversion. We calculated the excitonic phase diagram as function of temperature and band
gap. The latter is tunable via the static Stark shift induced by an applied voltage. We see
that the excitonic insulating phase in WS2-F6TCNNQ is stable up to room temperature.
Since the ordering parameter is connected to the exciton binding energy its stability strongly
depends on the dielectric environment.

Due to the applied voltage we can choose between three different phases: semi-metal,
semiconductor and excitonic insulator. All show different optical signatures in the far-infrared
to terahertz regime measurable by linear absorption. The semi-metal is described by a Drude
model. The semiconducting phase shows no optical response due to a negligible small oscillator
strength of the interlayer exciton. Finally, for the excitonic insulator we find a Drude response
modulated by a p exciton Rydberg series, which is observable in linear absorption due to
optical intraband transitions.
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Chapter 5

X-ray absorption spectroscopy

X-ray experiments, such as X-ray absorption spectroscopy (XAS), have played a tremendous
role in the early times of atomic physics for the characterization of the electronic structure of
atoms and the search for new elements [43,44,258–260]. XAS is a local probe of the electronic
and geometrical structure of materials, which can likewise be applied to gases, liquids,
solids, and almost all kind of materials like catalysts, minerals or biological tissues [261–266].
This results in a wide application range of XAS in physics, chemistry, biology, or material
science [267, 268]. Today, synchrotron is used as source for the necessary intense tunable
X-rays. Prior, the continuous spectra of X-ray tubes had to be used and monochromatized,
which made measurements time consuming and difficult compared to related techniques as
X-ray photoemission spectroscopy or Auger electron spectroscopy [269]. XAS is a general
term including both X-ray absorption near edge structure (XANES) and extended X-ray
absorption fine structure (EXAFS). Figure 5.1(a) shows a schematic of the lattice periodic
potential in a solid state. Energetically, the solid possesses occupied core and valence bands,
unoccupied conduction bands, and the ionization continuum above the ionization threshold of
the material.

XANES, or alternatively near-edge X-ray absorption fine structure (NEXAFS), is consti-
tuted by transitions of inner-core shell electrons into unoccupied states below the ionization
level of the materials, cf. Fig. 5.1(a). Such X-ray induced transitions lead to sharp resonance
lines in the absorption spectrum, which are called absorption edges as sketched in Fig. 5.1(b).
In the existing literature [270–272], XANES is typically described by Fermi’s golden rule for
the transition probability from core electrons with wave vector k to unoccupied conduction
band states with wave vector k′ under illumination with a X-ray frequency ω:

P (ω) ∝
∫︂ ∫︂

dkdk′ |e · dk,k′ |2δ (Ek′ − Ek − ℏω) . (5.1)

The transition probability P (ω) is determined by the product of the dipole matrix element
dk,k′ projected on the polarization vector e and an energy conserving delta function.

When the absorption spectrum is measured over a large range of photon energy, after the
XANES part, starting from the ionization threshold, an oscillatory behavior of the absorption
coefficient is observed, cf. Fig. 5.1(b). This part of the spectrum is called EXAFS and
stems from transitions of core electrons into the ionization continuum above the ionization
threshold of the material, cf. Fig. 5.1(a). The characteristic oscillation were first observed in
the 1930’s and appears only for molecules and solids but not for single atoms. A quantitative
description of the oscillation was only given in 1970 by D. E. Sayers and coworkers [52,53].
The explanation of the oscillation is based on the theory introduced by R. de L. Kronig for
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Figure 5.1: (a) Sketch of a lattice periodic potential of a solid state with core, valence (VB),
conduction (CB) bands and the ionization continuum (IC). We additionally draw exemplary
XANES and EXAFS transitions. (b) Sketch of a typical X-ray absorption spectrum with
XANES part (green) exhibiting absorption edges and the EXAFS part (violet) showing the
oscillatory behavior. Figure appears similarly in Ref. [274].

small molecular gases [50,51]. The description interprets the oscillations in the spectrum as
interference effects emerging from secondary waves emitted by an X-ray absorbing atom and
waves back scattered by neighbored atoms [273]. The corresponding parametrization of the
absorption by D. E. Sayers et. al

αk = S2
0
∑︂

i

Ni
|fi(k)|
kR2

i

sin (2kRi + ϕi) e−2Ri/λke−2σ2
i k2 (5.2)

has become standard in describing EXAFS. The formula gives the absorption cross section as
function of the wave number of the photoelectron. For EXAFS the X-ray energy is higher than
the ionization energy EIon of the material and the excess energy is transferred to the excited
photoelectron in form of kinetic energy. Consequently, the X-ray excitation frequency ω, can
be related to the photoelectron wave number by k2 = 2m0(ℏω−EIon)/ℏ2 with the free electron
mass m0. The structural parameters are the number of equivalent scatterers Ni of type i,
the interatomic distances Ri, and the bond length σi. The discovery of the relation between
the oscillation and the interatomic bond length promoted XAS to a structural method. The
exponential factor exp(−2Ri/λk) accounts for the finite lifetime of the photoelectron, which
is only scattered elastically over a short distance. Here, λk stands for the X-ray wavelength.
The Debye-Waller factor accounts for thermally or disorder induced changes in the bond
length. The quantity |fi(k)| describes the back scattering amplitude, resulting from back
scattering of neighboring atoms, and S0 describes the reduction factor due to multielectron
processes. Finally, ϕi stand for phase shifts due to the initially excited and the back scattering
atom [53,273]. Although, the development of the Sayers formula is of paramount importance
and under extensive use for the analysis of all kind of EXAFS measurement it has one problem:
The utilized wave functions for the derivation of Eq. (5.2) do not fulfill the Bloch theorem and
are therefore no proper basis functions for solid states. Therefore, in this chapter we derive a
Bloch theory for X-ray absorption spectroscopy for atomically-thin materials. Moreover, we
aim for a combination of the Bloch formalism with the solution of the Maxwell equations to
construct a self-consistent spatio-temporal resolved XAS theory, which describes XANES and
EXAFS in one consistent description. The spatial resolution allows for local excitations of the
solid with high-energy X-ray light and the temporal resolution accounts for the description of
ultrafast phenomena accessible in time-resolved X-ray spectroscopy.
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The presented results and parts of the formulation were submitted for publication at
Physical Review Research.

5.1 Core electrons
Typically, electrons are separated into two categories: core and valence electrons. Core
electrons are strongly bound and often even added to the nucleus. The reason is that core or
inner-shell electrons remain largely unaltered when an atom is present in a molecule or crystal
whereas valence electrons rearrange and contribute to the bonding properties. An electronic
ground state of a solid state crystal is naturally described by Bloch waves – simultaneous
eigenstates of the periodic Hamiltonian and of the direct lattice translations and extensively
discussed in Sec. 2.2. Here, the electronic wave function is a product of a plane wave
and a lattice periodic function labelled by band index λ and wave vector k. Because of
their plane wave character Bloch waves are rather delocalized over the crystal, which makes
their description difficult for core electrons. However, since Bloch functions have different
envelope functions at different wave vectors, we can expect to build a localized wave packet by
superposing Bloch functions of different wave vectors [275]. A strongly localized wave packet
in real space is achieved from a broad k-space superposition

wλ,0(r) = 1√
N

∫︂
UC

d2k Ψλ,k(r) , (5.3)

where the integral is carried over the 1st Brillouin zone with normalization constant N
corresponding to the number of unit cells. The function wλ,0(r) denotes a Wannier function
located at the center atom of the crystal. We can insert into the integral a phase factor
exp(ik · R) with the real space lattice vector. This has the effect of translating the real-space
Wannier function by R and generates additional Wannier functions at different atom positions

wλ(r − R) = 1√
N

∫︂
UC

d2k e−ik·RΨλ,k(r) . (5.4)

Here, the Wannier function has the form of a Fourier transform. From inverse Fourier
transformation and transformation to a discrete grid we can construct the electronic wave
functions

Ψλ,k(r) = 1√
N

∑︂
R

eik·Rwλ(r − R) , (5.5)

which form a complete orthonormal set. The Wannier representation is essentially a real-space
picture of localized orbitals and assigns as quantum number the lattice vector R of the cell,
where the orbital is localized, together with the band index λ. The transition from Eq. (5.4)
to Eq. (5.5) constitute a unitary transformation between Bloch and Wannier states. Therefore,
both states are an equally valid description of the band subspace. We conclude that Wannier
functions provide an attractive option for representing the space spanned by a Bloch band in
a crystal, but being localized and still carrying the same information contained in the Bloch
functions. Similar to the Bloch functions uλ,k(r), Wannier functions require computationally
expensive methods. A practical solution is to expand the Wannier functions after atomic
orbitals, which yields the tight binding wave function approach [276,277]. We can write for
an electronic wave function of band λ

Ψλ,k(r) = 1√
N

∑︂
β,j,Rβ

Cλ
βj,keik·Rβ ϕλ

β,j(r − Rβ) . (5.6)

73



Chapter 5. X-ray absorption spectroscopy

The band at sublattice β consists of atomic orbitals ϕλ
β,j of type j. The atomic orbitals decay

spatially with an effective inverse length ζ = Z/aB simulating the screening of a many-electron
system. aB corresponds to the hydrogen Bohr radius and Z denotes the nuclear charge. The
phase factor ensures the lattice translation symmetry. The tight binding coefficient Cλ

βj,k

describes the weight of each orbital to the band. In the following, we will derive the matrix
elements formally with Bloch waves and afterwards within a tight-binding approximation.
However, a Wannier representation is achievable is desired by expressing the Bloch functions
in terms of Wannier functions. After having discussed the wave function, we quickly examine
the core dispersion. Because of the strong localization of the core states we can expect a
small orbital overlap of neighbored lattice sites. Consequently, the core bands can in good
approximation be described by flat bands.

5.2 XANES
As introduced at the beginning of this chapter, XANES consists of transitions of core electrons
into unoccupied bands below the ionization threshold of the material. We start with the
many-body Hamiltonian in second quantization, which reads

H =
∑︂
λ,k

ελ
kλ†

kλk −
∑︂

λ,λ′,k,k′,Q

dλλ′

k,k′(Q) · EQ(z0, t)λ†
kλ

′
k′ +

∑︂
λ,ν,λ′,ν′

k,q,k′,q′

V λνν′λ′

k,q,q′,k′λ
†
kν†

qν
′
q′λ

′
k′ . (5.7)

The first term describes the single-particle energy of the electrons in band λ with in-plane
wave vector k. Here, λ summarizes all bands within the material including core states.
The second contribution to the Hamiltonian describes the X-ray-matter interaction with
dipole matrix element dλλ′

k,k′(Q). In contrast to the definition in the second chapter we
explicitly include the spatial in-plane extension of the electric field via the Fourier transform
E(r, t) =

∑︁
Q EQ(z0, t) exp(iQ ·r∥) with the X-ray wave vector Q. The dipole matrix element

reads then

dλλ′

k,k′(Q) = e⟨Ψλ,k | r eiQ·r∥ | Ψλ′,k′⟩ . (5.8)

So far, for visible and extreme ultraviolet light up to 20 eV the spatial variation of the electric
field compared to the 1st Brillouin zone could have been seen as constant. As consequence the
spatial phase factor was approximated within a Taylor expansion to one. Here, we consider
X-ray energies up to 500 eV. This corresponds to a X-ray wave vector of about 10% of the 1st
Brillouin zone and might not be negligible anymore. Additionally, this formal definition makes
the theory scalable even up to the hard X-ray regime. Since we consider the interaction of
X-rays with atomically-thin materials, the dipole approximation can be made in the direction
perpendicular to the material. Therefore, the electric field is considered only at the position
z0 of the material.

The definition of the Coulomb matrix element is unaltered compared to the previous
chapters and includes all possible interaction pathways.

So far, the dipole matrix elements describes XANES and EXAFS. We start first by deriving
an expression for the XANES dipole matrix element.

5.2.1 Plane Bloch waves

XANES is characterized by transitions of core electrons into unoccupied conduction band
states below the ionization threshold of the material. Such transitions give rise to sudden
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absorption edges in the XAS spectrum. Apart from sufficient excitation energy the transition
requires a finite dipole matrix element. We restrict the final state band index to bands lying
below the ionization threshold and insert Bloch waves into the formal definition of the dipole
element. We obtain an expression for the dipole operator acting partly as a derivative on
a†

λ,ka
λ′,k′ of the form

Xλλ′
k+Q−G,k = − ie

VUC
⟨
(︄

∇k+Q−G

iz

)︄
uλ,k+Q−G | eiG·r∥ | uλ′,k⟩δλ′,λ̄ − ieδλ,λ′∇k+Q−G . (5.9)

An elaboration of the performed manipulations can be found in the appendix A.2. To
highlight that the dipole operator describes solely X-ray induced transitions from core bands
into final electronic states within the material (XANES) we introduce the labeling dλλ′

k,k′(Q) →
Xλλ′

k+Q−G,k. We see that the X-ray transition fulfills the momentum selection rule of k′ =
k − Q + G for the optical transition. The relaxed momentum conservation accounts for
a transfer of the in-plane field momentum to the optically excited electron. However, the
momentum is conserved up to a reciprocal lattice vector G. In case that the sum of k and Q
lies outside of the 1st Brillouin zone the reciprocal lattice vector G ≠ 0 accounts for Umklapp
processes [278].

In Eq. (5.9), the first term describes interband transitions between core and unoccupied
conduction band states. According to the Siegbahn notation, the absorption edges are
named after the main quantum number of the initially excited core electron. For example
K transitions involve 1s electrons, while excitation of 2s and 2p electrons occur at the L
edges. The enumeration continues similar to the atomic shell model. In case that the angular
quantum number is non zero the edges are indexed with consecutive numbers with increasing
total angular momentum. For example the L edge consists of the L1 (2s electrons), L2, and
L3 transition. The two latter involve the 2p electrons with total angular momentum J = 1/2
and J = 3/2, respectively.

As already discussed in the second chapter, the second term leads to a wave vector
gradient, which changes according to the acceleration theorem with a rate proportional to
the X-ray field [279] and describes the coupling strength of X-ray excitation to intraband
transitions [86,280]. The X-ray radiation has excitation energies from a hundred of eV up to
tens of keV. Consequently, the intraband dynamics do not significantly change the optical
response and the intraband effect can be neglected regarding X-ray radiation.

5.2.2 Tight binding description

For Bloch waves the orbital band composition, the character of the dipole transition, and
the lattice geometry are encoded in the lattice periodic function uλ,k(r). Their calculation
requires usually computational expensive methods. To bridge this gap we evaluate the matrix
element by using tight binding wave functions. This will give us also some analytical insights
into X-ray induced core transitions.

By inserting the tight binding wave function Eq. (5.6) for initial and final state into the
formal definition Eq. (5.8) and expanding the integral into a sum over unit cells at the lattice
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vector Rβ yields

Xλλ′
k+Q−G,k = −e

∑︂
α,β,i,j

∑︂
δβα

C∗λ
βj,k+Q−GCλ′

αi,keik·δβα⟨λ, β, j, 0 | r eiQ·r∥ | λ′, α, i, δβα⟩

− ie
∑︂

α,β,i,j

∑︂
δβα

C∗λ
βj,k+Q−GCλ′

αi,keik·δβα⟨λ, β, j, 0 | eiQ·r∥ | λ′, α, i, δβα⟩∇k+Q−G

(5.10)

providing the same momentum selection rule as previously, Eq. (5.9). A projection onto
atomic orbital basis yields ⟨r|λ, β, j, δβα⟩ = ϕλ

βj(r − δβα), where δβα = Rβ − Rα stands for
the next-neighbor vectors connecting the atoms. The sum over the sublattices α, β includes
neighboring atoms of arbitrary order. The matrix element is determined by the tight binding
coefficients and the phase factor exp(ik · δβα). The core orbitals are strongly localized and
their spatial extent decays quickly even compared to the X-ray wavelength of soft and medium
X-rays. Therefore, it reasonable to treat the transition integral in dipole approximation. In
the appendix A.5.3 we calculate the onsite transition integral, which forms the dominate
contribution, beyond the dipole approximation by including the full spatial phase of the
electric field. We find that the dipole approximation for the transition integral holds up to
X-ray energies of ∼ 4-5 keV. Since the spatial decay of atomic orbitals directly depends on
the atomic number Z the approximation becomes better the heavier the constituting atoms
are. Additionally, the dipole integral recovers the optical selection rules known from atomic
spectroscopy. However, thanks to the tight binding wave function we include solid state
properties, in particular the lattice periodicity. A second consequence of the smaller spatial
extent of core orbitals compared to valence orbitals is that the optical transitions are generally
weaker compared to optical transitions lying in the visible range of the electromagnetic
spectrum. Within a dipole approximation the integral in the second line turns into an overlap
integral. The overlap is generally small and we may assume that the chosen orbitals are
orthogonal to each other. Then the second line describes intraband transitions similar to Eq.
(5.9).

5.3 EXAFS

5.3.1 Plane Bloch waves

Up to now, we have described all transitions from core states into the conduction bands. Now,
we extend the model and include the ionization continuum (IC) starting at the ionization
energy of the material. Inserting the orthogonalized plane waves Eq. (2.10) and the Bloch
band states Eq. (2.7) into the definition of the dipole matrix element Eq. (5.8) yields

Yλk⊥
k,k′ (Q) = e⟨Ψλ,k | r eiQ·r∥ | k′⟩ + e

∑︂
λ′

ηλ′,k′,k⊥⟨Ψλ,k | r eiQ·r∥ | Ψλ′,k′⟩ (5.11)

with the notation ⟨r|k⟩ = exp(i(k · r∥ + k⊥z))/
√

V resulting from the unorthogonalized plane
wave character of the final state. The second term stems from the orthogonalization due to
the Gram-Schmidt procedure. To distinguish from the XANES matrix element we denote
the EXAFS dipole matrix element as dλk⊥

k,k′ (Q) → Y λk⊥
k,k′ (Q). The matrix element can be

calculated analogously to the XANES case with the difference that the wave vector of the
ionization continuum is three-dimensional. We obtain

Y λk⊥
k+Q−G,k = − ie√

VUC
⟨
(︄

∇k+Q−G

iz

)︄
uλ,k+Q−G | eiG·r∥eik⊥z⟩ +

∑︂
λ′

ηλ′,k,k⊥X
λλ′(inter)
k+Q−G,k . (5.12)
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As for the XANES dipole element, we find an interband term describing the optical transition
between a Bloch and a plane wave state. But in contrast to XANES no intraband interaction
is available because of the forced orthogonality of the ionization continuum to all band
states. Therefore, the appearing XANES matrix element in Eq. (5.12), stemming from the
orthogonalization, is restricted to its interband part.

5.3.2 Tight binding description

As for the XANES transitions, we evaluate the EXAFS matrix element for tight binding
wave functions. The starting point is the EXAFS dipole matrix element Eq. (5.11), now
with the initial state electronic wave function Ψλ,k(r) in the tight binding approach. First
we investigate the orthogonalization coefficients, which appear under a sum of all involved
bands. The electronic bands are constituted from atomic orbitals. Each atomic orbital is
determined by the main n, angular l and magnetic m quantum number and can be written
as product of radial function and spherical harmonics. We can then explicitly calculate the
orthogonalization coefficients, which read

ηλ,k,k⊥ = il
√︂

(2ζ)2n+1/(2n)!Jnl(k)Ylm(ϑk, φk)/2π2 (5.13)

with the spherical harmonics Ylm and the radial function Jnl(k) =
√︁

π/2k(ζ2+k2)−(n+1)/2Γ(n−
1 + l)P −l

n [ζ(ζ2 + l2)−1/2] with the associated Legendre polynomials P l
n(x). Generally, because

the 1s orbital has the smallest extent in real space, it determines the strength of the orthogo-
nalization contribution to the EXAFS dipole matrix element. The orthogonalization coefficient
to the 1s state is proportional to η1s,k,k⊥ ∝ (ζ2 + k2)−2. Here, η1s,k,k⊥ decreases to 10 % at
approximately k =

√
2ζ. We see that the orthogonalization coefficient depends on the atomic

number and gains importance with increasing atomic weight. With an exemplary effective
atomic number of Z = 5.7, stemming from the Slater rule for carbon [281], we obtain a wave
number of 140 nm−1 corresponding to an energy of 5 eV. Starting at the ionization threshold
we see that the coefficients decrease rapidly with increasing energy. The reason is that the
orthogonalization contributes only close to the surface. Since the coefficients ηλ,k,k⊥ decrease
rapidly to zero with increasing energy, we use in the following free electronic continuum states
for simplicity. The EXAFS matrix element constitutes now only of the first term of Eq. (5.11)
and reads

Yλk⊥
k,k+G = − e√

VUC

∑︂
β,j

C∗λ
βj,k⟨λ, β, j, 0 | r | k + G⟩ . (5.14)

However, the plane wave approximation has to be investigated carefully for each material
independently.

In the case of graphene the core bands constitute just of 1s electrons. Consequently, only
K-shell transitions are present. The calculation of the transition integral from a λ = 1s core
electron to the plane wave state is detailed in the appendix A.5.2. We obtain

Y1sk⊥
k,k+G = − e√

VUC

∑︂
β,n

C∗1s
β1s,k

32
√

πiζ5/2(k + G)n

(ζ2 + (k + G)2)3 ên (5.15)

with the unit vector ên in Cartesian coordinates. Equation (5.15) consists of the tight binding
coefficients, which carry the lattice periodicity, and the transition integral, which carries the
unit cell informations. The latter resembles a Laue condition for X-ray diffraction and peaks
at k = G. The magnitude and width of the form factor peaks are determined by the spatial
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electron distribution. Therefore, the form factor is weakened by the effective inverse Bohr
radius ζ = Z/aB, cf. Eq. (5.15) denominator. Further, we see that the optical transition
into the ionization continuum is unpolarized in contrast to transitions within the material.
Therefore, the optical transition into the vacuum are independent of the incident angle of the
light.

It is interesting to compare EXAFS to the two complementary techniques X-ray diffraction
and electron diffraction used to measure the structure of crystals. The difference between
EXAFS and X-ray diffraction lies in the choice of the observable. While for the EXAFS a
transmission or reflection setup is used, for X-ray diffraction also the spatially resolved signal
is collected. The latter is described by the unit cell contribution to Eq. (5.15), determined
by the Fourier transform of the electron distribution, which is often called form factor. As
consequence the X-rays are not very sensitive to light atoms with stronger localized and only
weakly screened inner shell electrons [282]. For electron diffraction the form factor can be
calculated from the X-ray form factor by the Mott-Bethe equation [283, 284], which takes
additionally to the elastic scattering at the electron clouds also nucleus scattering into account.
Then also crystals of lighter elements can be resolved and measured.

5.4 X-ray Bloch equations and Meitner-Auger recombination
The observable describing the X-ray response of the material is the detected X-ray field,
which is given as the incident light field interfering with the excited dipole density in the
sample in reflection or transmission geometry. As already discussed in the previous chapters,
the dipole density P (r, t) as a function of the electric field E(r, t) can be derived from
the light-matter interaction Hamiltonian. We can identify the two-dimensional macroscopic
polarization density

P 2D
Q (t) = 1

A

∑︂
λ1 ̸=λ2,G,k

dλ1λ2
k+Q−G,kpλ1λ2

k+Q−G,k(t) , (5.16)

which determines the X-ray response. Here, we explicitly exclude the intraband contribution
since it is not altering the X-ray response. As expected, the two-dimensional macroscopic
polarization is determined by the microscopic transition pλ1λ2

k+Q−G,k(t) = ⟨a†
λ1,k+Q−Gaλ2,k⟩(t),

which includes now all available bands of the solid, and can be excited if the corresponding
dipole matrix element dλ1λ2

k+Q−G,k does not vanish. Due to the spatial resolution of the X-ray
light the non-diagonal character of the microscopic transition and densities in momentum
space is included. For a better readability, we introduce the abbreviations k1 = k + Q − G
and k2 = k and derive the equation of motion for the microscopic polarization from the
Heisenberg’s equation of motion:

iℏ
d

dt
pλ1λ2

k1,k2
=
(︂
ελ2

k2
− ελ1

k1

)︂
pλ1λ2

k1,k2
+ iℏ∂tp

λ1λ2
k1,k2

⃓⃓
coll

−
∑︂

λ,Q′,G′

EQ′(t) ·
(︂
dλ2λ

k2,k2+Q′+G′σ
λ1λ
k1,k2−Q′+G′ − dλλ1

k1+Q′−G′,k1
σλλ2

k1+Q′−G′,k2

)︂
+

∑︂
λa,λb,λc
ka,kb,kc

(︂
V λ2λaλbλc

k2,ka,kb,kc
− V λ2λaλcλb

k2,ka,kc,kb

)︂
σλaλc

ka,kc
σλ1λb

k1,kb

−
∑︂

λa,λb,λc
ka,kb,kc

(︂
V λaλbλ1λc

ka,kb,k1,kc
− V λbλaλ1λc

kb,ka,k1,kc

)︂
σλbλc

kb,kc
σλaλ2

ka,k2
. (5.17)
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The first term incorporates the free oscillation of the transition amplitude with the single-
particle energies of initial and final state. The second line of Eq. (5.17) describes the coupling
to the X-ray field. Here, σλλ′

k,k′ = ⟨a†
λ,ka

λ′,k′⟩ describes a general transition amplitude. This
expectation value turns into an interband transition pλλ′

k,k′ for λ ̸= λ′ and into a non-local
occupation fλ

k,k′ for λ = λ′. The third and fourth line describe the Coulomb contribution.
The Coulomb interaction is divided in Hartree-Fock and collision pλ1λ2

k+Q−G,k

⃓⃓
coll contributions

including many-body interaction and scattering-induced dephasing beyond the Hartree-Fock
level. Depending on the band index combination of the Coulomb matrix element, the third
and fourth line implicitly includes band and field renormalization. The renormalizations lead
to a shift of the absorption peak. Restricting the equation of motion to the linear optics
limit sources of the microscopic transition being quadratic in the occupation can be neglected.
Generally, depending on the excitation conditions and band structure, one has to carefully
investigate, which terms contribute to the dynamics of the X-ray induced transition.

Investigating the transition between the bands λ1 and λ2, for example due to a spectral
sharp X-ray pulse, the band sums in Eq. (5.17) can be restricted exclusively to these bands.
Neglecting sources, which rotate with twice of the transition frequency the X-ray Bloch
equation reads

iℏ
d

dt
pλ1λ2

k1,k2
=
(︂
ελ2

k2
− ελ1

k1

)︂
pλ1λ2

k1,k2
+ iℏ∂tp

λ1λ2
k1,k2

⃓⃓
coll

−
∑︂

Q′,G′

EQ′(t) ·
(︂
dλ2λ1

k2,k2+Q′+G′f
λ1
k1,k2−Q′+G′ − dλ2λ1

k1+Q′−G′,k1
fλ2

k1+Q′−G′,k2

)︂
+
∑︂
k′,q

(︂
V λ1λ1λ1λ1

k1+q,k′,k′+q,k1
fλ1

k1+q,k′+q
pλ1λ2

k′,k2+q
− V λ2λ2λ2λ2

k2,k′−q,k′−q,k2
fλ2

k′+q,k2+q
pλ1λ2

k1,k′

)︂
+
∑︂
k′,q

(︂
V λ1λ2λ2λ1

k1+q,k′,k′+q,k1
fλ2

k′,k2
pλ1λ2

k1+q,k′+q
− V λ1λ2λ2λ1

k′+q,k2,k2+q,k′f
λ1
k1,k′p

λ1λ2
k′+q,k2+q

)︂
. (5.18)

From the second line we see that the X-ray transition is initiated by the core occupation
fλ1

k1,k2−q′+G′ and blocked by the final band occupation fλ2
k1+q′−G′,k2

. The two different indices
indicate the existence of spatial correlations in a spatially inhomogeneous system. The third
line describes an energy renormalization, due to intraband Coulomb interaction, which includes
the effect of core-holes [285]. The fourth line corresponds to the excitonic contribution as in
Eq. (2.49) but for an inhomogeneous system. Such core-hole excitons can play a considerable
role in the interpretation of X-ray spectroscopy [286–289]. For local excitations it can be
advantageous to transform into real space by exploiting the Wigner representation [290]. The
densities and polarization can be Fourier transformed with respect to their relative momentum.
Performing a gradient expansion of the Fourier phase factor and going beyond the zeroth
order yields spatially resolved Bloch equations for occupation and polarization [290]. Higher-
order contributions to the Coulomb interaction, which are included in the collision term,
need to be treated on the same level. It describes dephasing of polarization and relaxation
of carrier distribution to a local quasi-equilibrium [291]. In the following we present in a
first approximation the electron scattering contribution in a homogeneous system, where
fλ

k1,k2
→ δk1,k2fλ

k1
(R) and fλ

k1
depends only parametrically on R.

The contribution ∂tp
λ1λ2
k1,k2

⃓⃓
coll describes the many-particle scattering beyond the Hartree-

Fock interaction. The collision term contributes to diagonal γk1,k2 and off-diagonal Uλ1λ2
k1,k2
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Figure 5.2: (a) and (b) Sketch of possible impact ionization transitions involving the core
bands. (c) and (d) are drawing possible Meitner-Auger recombinations involving core states.
The dashed lines draw alternative transitions to the solid line. Figure appears similarly in
Ref. [274].

dephasing [292] of the microscopic polarization and acts as a first estimation for the dephasing:
d

dt
pλ1λ2

k1,k2
|coll = −γk1,k2(t)pλ1λ2

k1,k2
+ Uλ1λ2

k1,k2
(t) . (5.19)

The diagonal part is determined by the time- and momentum-dependent Coulomb scattering
rates

γk1,k2 = 1
2
(︂
Γin

λ1,k1 + Γout
λ1,k1 + Γin

λ2,k2 + Γout
λ2,k2

)︂
. (5.20)

The in and out scattering rates read

Γin
λ,kλ

(t) = 2π

ℏ
∑︂

λa,λb,λc
kc,q

V λλaλcλb
kλ,kc−q,kc,kλ−qṼ

λbλcλaλ
kλ−q,kc,kc−q,kλ

Rλaλbλc

kc,kλ,qδ
(︂
ελ

kλ
+ ελa

kc−q − ελb
kλ−q − ελc

kc

)︂
(5.21)

Γout
λ,kλ

(t) = 2π

ℏ
∑︂

λa,λb,λc
kc,q

V λλaλcλb
kλ,kc−q,kc,kλ−qṼ

λbλcλaλ
kλ−q,kc,kc−q,kλ

R̃
λaλbλc

kb,kλ,qδ
(︂
ελ

kλ
+ ελa

kc−q − ελb
kλ−q − ελc

kc

)︂
(5.22)

with Rλaλbλc

kc,kλ,q = (1−fλa
kc−q)fλb

kλ−qfλc
kc

and R̃
λaλbλc

kb,kλ,q = fλa
kc−q(1−fλb

kλ−q)(1−fλc
kc

), which explicitly
include Pauli-blocking terms [293]. In the scattering rates, we used the abbreviation Ṽ abcd =
Vabcd − Vbacd. The off-diagonal contribution couples to all coherences in the Brillouin zone
and reads

Uλ1λ2
k1,k2

=
∑︂

ka,kb

(︂
Vλ1λ2

k1,k2,ka,kb
pλ1λ2

ka,kb
+ c.c

)︂
. (5.23)

For the carrier relaxation processes the Coulomb interaction is treated up to second order
Born-Markov approximation and

Vλ1λ2
k1,k2,ka,kb

= π

ℏ
∑︂

λB ,λC
kB ,kC

∑︂
λ={λ1,λ2}

[︂
Ṽ

λ2λCλBλ2
k2,kC ,kB ,kb

Ṽ
λ1λBλCλ1
ka,kB ,kC ,k1T λλBλC

kλ,kB ,kC
δ+

−V λ2λ1λCλB
k2,ka,kC ,kB

Ṽ
λBλCλ1λ2
kB ,kC ,kb,k1 T̃

λλBλC

kλ,kBkC
δ−
]︂

(5.24)
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with T λλBλC
kλ,kB ,kC

= fλ
kλ

(1−fλB
kB

)fλC
kC

+(1−fλ
kλ

)(1−fλC
kC

)fλB
kB

and T̃
λλBλC

kλ,kB ,kC
= (1−fλ

kλ
)fλB

kB
fλC

kC
+

fλ
kλ

(1 − fλB
kB

)(1 − fλC
kC

). The delta functions read δ± = δ
(︂
ελ

kλ
+ σλ

λ1
ελ

kλ
− ελB

kB
± ελC

kC

)︂
, where

σλ
λ1

= 1 if λ = λ1, otherwise σλ
λ1

= −1. The efficiency of the scattering channels is determined
by the Coulomb matrix element and the occupation probabilities fλ

k of the involved states.
The scattering rates feature a sum over different band indices, which include all possible
Meitner-Auger relaxation channels, which fulfill momentum and energy conservation at the
same time [293,294]. The Meitner-Auger effect [54,295–297] as relaxation mechanism of the
core-hole is characterized by the filling of the inner-shell vacancy accompanied by the emission
of an electron into the unoccupied conduction band states and possibly even out of the sample
into the ionization continuum. Figure 5.2 visualize the possible Meitner-Auger processes
appearing in Eq. (5.20) and Eq. (5.23) as well as the inverse impact ionization processes.

Finally, we present the dynamics of the homogeneous occupations:

d

dt
fλ1

k1
= −2ℑm

(︂
Ωλ1λ2

k1,k2
pλ1λ2

k1,k2

)︂
− 2

ℏ
ℑm

(︂[︂
V λ1λ2λ2λ1

k1,k2,k2,k1
− V λ1λ2λ1λ2

k1,k2,k1,k2

]︂
pλ2λ1

k2,k1
pλ1λ2

k1,k2

)︂
+ Γin

λ1,k1

(︂
1 − fλ1

k1

)︂
− Γout

λ1,k1fλ1
k1

. (5.25)

The first term describes the excitation of a non-equilibrium electron distribution in the band
λ1. The second term describes the nonlinear Coulomb sources of the carrier population.
The last line expresses the Coulomb interaction described by a microscopic Boltzmann-like
scattering equation.

The last missing ingredient to calculate the X-ray absorption is the electric field. In the
following section we solve the wave equation to determine the electric field as self-consistent
observable.

5.5 Nonlocal absorption

5.5.1 Wave equation

The optical property, which is usually available directly from the experiment is the frequency-
dependent reflectance or transmittance. To relate to the experimental observable it is necessary
to investigate the wave equation for the optical exciting field. The fundamental equations
of electromagnetism are Maxwell’s equations [298–300]. In the presence of dielectric and
non-magnetic matter they read

∇ · D(r, t) = 0 , (5.26)
∇ · B(r, t) = 0 , (5.27)

∇ × E(r, t) = − ∂

∂t
B(r, t) , (5.28)

∇ × H(r, t) = ∂

∂t
D(r, t) . (5.29)

The electric displacement is defined as D(r, t) = ϵ0ϵ(r)E(r, t) + P (r, t) with electric field
E(r, t), the polarization of the material P (r, t), and the dielectric function ϵ(r) of a spatially
inhomogeneous medium [301]. The first partial differential equation is identical to Gaussian
law but written in a form that makes explicit the fact that the medium responds to the electric
field by becoming polarized. All charges that arises due to polarization are included to the
displacement field. With the assumption of no free charges the displacement has no sources, cf.
Eq. (5.26). Equation (5.29) corresponds to Ampere’s law. If an electric flux density changes in
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time it gives rise to a magnetic field that whirl around the displacement field. In non-magnetic
media the magnetization field is related to the magnetic field by B(r, t) = H(r, t)/µ0 with
the magnetic vacuum permittivity µ0. Equation (5.28) corresponds to Faraday’s law, which
states that changing a magnetic field in time induces an electric field circulating around it. If
we take the curl of Faraday’s law, insert the definition for the magnetization field and exploit
Ampere’s law we obtain

∇ × ∇ × E(r, t) = −µ0
∂2

∂t2 D(r, t) . (5.30)

By inserting the definition of the displacement field we obtain the general wave equation
[302–304]

∇ × ∇ × E(r, t) + ϵ(r)
c2

∂2

∂t2 E(r, t) = −µ0
∂2

∂t2 P (r, t) (5.31)

with the speed of light in vacuum c. Under the assumption of an uniform background we
can take ϵ(r) = ϵ as constant. Subsequently, we can use Eq. (5.26) to obtain a relation
for the divergence of the electric field of the form ∇ · E(r, t) = −∇ · P (r, t)/ϵ0ϵ. Rewriting
∇ × ∇ × E = ∇(∇ · E) − ∆E and inserting the expression for the divergence of the electric
field yields

∆E(r, t) − ϵ

c2
∂2

∂t2 E(r, t) = µ0
∂2

∂t2 P (r, t) − 1
ϵ0ϵ

∇ (∇ · P (r, t)) . (5.32)

In comparison to Sec. 2.6.2 the wave equation displays as an additional source the divergence
of the polarization of the material. Since we are interested in non-local phenomena and a
non-perpendicular excitation geometry this term does not vanish. The wave equation can be
solved with help of Green’s theorem [305,306] through

E(r, t) =
∫︂

d3r′
∫︂

dt′ G(r − r′, t − t′)Π(r′, t′) (5.33)

with the inhomogeneity Π(r, t) corresponding to the right hand side of Eq. (5.32). The
equation gives the solution in real and time space and is determined by a convolution of
the inhomogeneity and the Greens function tensor G(r, r′, t − t′). From the convolution
theorem we can expect a simple form in momentum and frequency space. Performing a
Fourier transformation yields

EQ(Qz, ω) = GQ(Qz, ω)ΠQ(Qz, ω) . (5.34)

By Fourier transforming the wave equation Eq. (5.32) in space and time allows us to identify
the scalar Green’s function(︄

ϵω2

c2 − Q2 − Q2
z

)︄
EQ(Qz, ω) = ΠQ(Qzω) (5.35)

EQ(Qz, ω) = 1
ϵω2/c2 − Q2 − Q2

z

ΠQ(Qz, ω) = GQ(Qz, ω)ΠQ(Qz, ω) .

(5.36)

82



5.5. Nonlocal absorption

Finally, we apply an inverse Fourier transform to the electric field with respect to Qz to obtain
a field propagating in z-direction [307,308], yielding

EQ(z, ω) =
∫︂

dz′ GQ(z − z′, ω)ΠQ(z′, ω) (5.37)

GQ(z − z′, ω) = 1
2π

∫︂
dQz e−iQz(z−z′)

(︄
ϵω2

c2 − Q2 − Q2
z

)︄−1

= 1
2π

∫︂
dQz e−iQz(z−z′)

(︂
κ2 − Q2

z

)︂−1
(5.38)

= i

2κ
e−iκ|z−z′| (5.39)

as final expression for the Green’s function and where κ2 = ϵω2/c2 − Q2. The integral was
solved with help of the residue theorem. The last missing piece to fully determine the electric
field is the inhomogeneity ΠQ(z, ω). Performing a two-dimensional Fourier transformation in
space and a Fourier transformation in time yields from the right-hand side of Eq. (5.32)

ΠQ(z, ω) = −µ0ω2P Q(z, ω) − 1
ϵ0ϵ

(︄
iQ
∂z

)︄[︃
iQ · P ∥Q(z, ω) + ∂

∂z
P⊥Q(z, ω)

]︃
, (5.40)

where P ∥Q(z, ω) and P⊥Q(z, ω) are the in- and out-of-plane component of the macroscopic
polarization. With this, the electric field Eq. (5.37) is known:

E∥Q(z, ω) = − iµ0ω2

2κ

∫︂
dz′ e−iκ|z−z′|P ∥Q(z′, ω)

+ Q

2κϵ0ϵ

∫︂
dz′ e−iκ|z−z′|

(︃
iQ · P ∥Q(z′, ω) + ∂

∂z′ P⊥Q(z′, ω)
)︃

(5.41)

E⊥Q(z, ω) = − iµ0ω2

2κ

∫︂
dz′ e−iκ|z−z′|P⊥Q(z′, ω)

− i

2κϵ0ϵ

∫︂
dz′ e−iκ|z−z′|

(︄
iQ · ∂

∂z′ P ∥Q(z′, ω) + ∂2

∂z′2 P⊥Q(z′, ω)
)︄

. (5.42)

To further evaluate the electric field, we assume an infinitely thin layer located at z = z0. The
material response is then described by the two-dimensional polarization P (r) = P 2D(r∥)δ(z −
z0). Inserting this into Eq. (5.41) and Eq. (5.42) and solving the z-integrals yields

E∥Q(z, ω) = i

2κ

(︃
Q ⊗ Q

ϵ0ϵ
− µ0ω2

)︃
P 2D

∥Q(ω)e−iκ|z−z0|

− iQ

2ϵ0ϵ
sgn(z − z0)e−iκ|z−z0|P 2D

zQ (ω) (5.43)

EzQ(ω) = i

2e−iκ|z−z0|P 2D
zQ (ω)

(︄
κ

ϵ0ϵ
− µ0ω2

κ

)︄

− i

2ϵ0ϵ
sgn(z − z0)e−iκ|z−z0|Q · P 2D

∥Q(ω) (5.44)

with the sign function, which is equal to +1 for z > z0 and −1 if z < z0. In the limit of a
vanishing wave vector Q we retrieve the result of a perpendicular incidence of the electric
field on a material, where the wave travels as a plane wave varying in propagation direction.
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5.5.2 Self-consistent Maxwell-X-ray Bloch formalism

As in Sec. 2.6.2, our goal is to obtain an absorption coefficient from a self-consistent coupling
of electric field and material equation, now extended by a spatial resolution. We start by
separating the equations Eq. (5.43) and (5.44) into their Cartesian coordinates and formulating
them in matrix form:

EQ(z, ω) = e−iκ|z−z0|

2i

⎛⎜⎜⎝
µ0ω2

κ − Q2
x

ϵ0ϵκ −QxQy

ϵ0ϵκ
Qx

ϵ0ϵ sgn(z − z0)
−QyQx

ϵ0ϵκ
µ0ω2

κ − Q2
y

ϵ0ϵκ
Qy

ϵ0ϵsgn(z − z0)
Qx

ϵ0ϵ sgn(z − z0) Qy

ϵ0ϵsgn(z − z0) µ0ω2

κ − κ
ϵ0ϵ

⎞⎟⎟⎠
⎛⎜⎝P 2D

xQ (ω)
P 2D

yQ (ω)
P 2D

⊥Q(ω)

⎞⎟⎠
+ E0

Q(z, ω) (5.45)

with the homogeneous solution E0
Q(z, ω) = E0 exp(−iκz) + r exp(iκz) and for a free standing

layer E0
Q(z, ω) = E0 exp(−iκz). If we name the appearing matrix as KQ(z, ω) then Eq. (5.45)

reads

EQ(z, ω) = KQ(z, ω)P 2D
Q (ω) + E0

Q(z, ω) = KQ(z, ω) (ϵ0χQ(ω)EQ(z0, ω)) + E0
Q(z, ω) ,

(5.46)

where we inserted the definition of the linear macroscopic polarization P 2D
Q (ω) = ϵ0χQ(ω)EQ(z0, ω)

at the position of the material in the second step. In the above equation, the incident electric
field E0

Q(z, ω) from the homogeneous solution of the wave equation, the linear susceptibility
χQ(ω) via the microscopic X-ray Bloch equations as well as the matrix KQ(z, ω) are known.
Missing is an expression for the electric field at position z0 of the material layer. Therefore,
we evaluate Eq. (5.46) at position z0:

EQ(z0, ω) = KQ(z0, ω) (ϵ0χQ(ω)EQ(z0, ω)) + E0
Q(z0, ω) (5.47)

EQ(z0, ω) = (11 − ϵ0KQ(z0, ω)χQ(ω))−1 E0
Q(z0, ω) (5.48)

and insert it back into Eq. (5.46) to obtain a self-consistent expression for the electric field of
the form

EQ(z, ω) = ϵ0KQ(z, ω)χQ(ω) (11 − ϵ0KQ(z0, ω)χQ(ω))−1 E0
Q(z0, ω) + E0

Q(z, ω) . (5.49)

Important to note is that the susceptibility is no scalar function anymore, but a second rank
tensor. The reason is that the polarization depends on the light wave vector. Therefore, it is
not independent of the orientation of the electric field. The dielectric is said to be anisotropic
and the polarization and electric field are not necessarily collinear anymore. Figure 5.3 sketches
the investigated geometry: An atomically-thin material irradiated by X-ray light under a
certain angle of incidence θ. The incoming electric field E0

Q(z, ω) is reflected (ER
Q(z, ω))

and transmitted (ET
Q(z, ω)), both described by Eq. (5.49), and induces a two-dimensional

polarization determining the response of the material to the X-ray radiation. The reflection is
defined by the reflected intensity of the left propagating field in front of the graphene sheet
rQ(ω) = IL

Q(ω)/I0
Q(ω) and the transmission by the intensity of the right propagating electric

field behind the graphene sheet tQ(ω) = IR
Q(ω)/I0

Q(ω). The intensities are determined by the
electric field Eq. (5.49).

From the self-consistent coupling of the Maxwell and X-ray Bloch equations we can derive
an expression for the radiative dephasing: Here, a core-hole recombines with an electron under
emission of a photon. Besides Meitner-Auger recombination this process contributes to the
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5.5. Nonlocal absorption

Figure 5.3: Atomically-thin material at z0 irradiated by X-rays under an angle of incidence
θ. The incident electric field E0

Q is reflected (ER
Q) and transmitted (ET

Q), and induces a
macroscopic polarization P 2D

Q of the material. Figure appears similarly in Ref. [274].

core-hole lifetime and forms the basis of, for example, X-ray fluorescence [309]. Inserting the
emitted electric field Eq. (5.43) and Eq. (5.44) into the X-ray Bloch equation Eq. (5.18)
yields

iℏ
d

dt
pλ1λ2

k1,k2

⃓⃓
rad = − i

2(fλ1
k1

− fλ2
k2

)
∑︂

k′,G′

[︄
µ0ω2

κ
d

∥λ2λ1
k2,k1

· d
∥λ1λ2
k′+Q−G′,k′

− 1
ϵϵ0κ

(︂
d

∥λ2λ1
k2,k1

· Q
)︂ (︂

Q · d
∥λ1λ2
k′+Q−G′,k′

)︂
+
(︄

µ0ω2

κ
− κ

ϵϵ0

)︄
d⊥λ2λ1

k2,k1
d⊥λ1λ2

k′+Q−G′,k′

]︄
pλ1λ2

k′+q−G′,k′ .

(5.50)

We see that the radiative interaction couples all X-ray induced transitions. The radiative
dephasing of the transition pλ1λ2

k+Q−G,k is implicitly included in Eq. (5.50). Since we do not
transform into the excitonic basis, the coupling cannot be resolved easily. However, to gain
more insights we can perform a rotating wave approximation together with a random phase
approximation and determine the main contribution to the dephasing from its diagonal part
k′ = k and G′ = G. For a plane wave excitation the term is imaginary, describing only a
dephasing and no renormalizations of the dispersion. The diagonal dephasing explicitly reads

γrad
k+Q−G,k = 1

2

(︄
ω2

ϵ0κc2 |d∥λ1λ2
k+Q−G,k|2 − 1

ϵϵ0κ
|q · d

∥λ1λ2
k+Q−G,k|2 +

(︄
ω2

ϵ0κc2 − κ

ϵϵ0

)︄
|d⊥λ1λ2

k+Q−G,k|2
)︄

.

(5.51)

For a vanishing Q only the first term of Eq. (5.51) survives. In accordance to a first order
perturbation theory, we obtain Fermi’s golden rule for the radiative broadening, where the
radiative dephasing is determined by the square of the dipole matrix element.

To the end of this section, we can compare with the current literature concerning the
core-hole recombination channels. With regard to the radiative recombination, the rate of
spontaneous emission WX between an initial band λ and the 1s-band for atoms is usually
described in dipole approximation by Fermi’s golden rule [310,311]:

WX ∝ ω3∑︂
β,j

|⟨1s, β, 1s, 0 | r | λ, β, j, 0⟩|2 , (5.52)
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Chapter 5. X-ray absorption spectroscopy

where ω stands for the transition energy between initial and final state. The rigorously
derived result from a self-consistent treatment of the Maxwell and X-ray Bloch equations for
two-dimensional semiconductors yields a ω-dependence for the radiative dephasing, cf. Eq.
(5.51) with inserted Q. However, for atoms a ω3-dependence is well known, cf. Eq. (5.52).
The difference originates from the different dimensionality. Investigating Eq. (5.52), for atoms
we can argue that the electronic wave functions have strongly contributing values only for
|r| < aB/Z and we can roughly approximate the transition integral to be proportional to
Z−1. From Moseley’s law [260] we know that the transition energy ω is proportional to Z2.
Consequently, we see that the spontaneous K-shell emission rate is proportional to Z4 [312].
It can be shown that for atoms the Meitner-Auger yield WA is almost independent of the
effective nuclear charge [313]. A semi-empirical expression for the X-ray yield is

wX = WX

WX + WA
(5.53)

which is proportional to Z4 [55]. Hence, for atomic systems with low Z the core-hole recombi-
nation is dominated by Meitner-Auger transitions. In contrast for atoms with higher nuclear
charge fluorescence is more likely to occur. Using the presented formalism for core electron
interactions, it might be possible to extent and establish similar statements for crystalline
solids. Moreover, the extension to core-electron phonon interaction is straightforward.

5.6 Graphene
The band structure properties of graphene form the basis of understanding the electronic
spectra of carbon-based allotropes. Graphene is a monolayer of carbon atoms arranged in a
two-dimensional hexagonal lattice. The free carbon atom has six electrons with an electronic
configuration 1s2, 2s2, 2p2. The 1s electrons form the core bands. In contrast, the 2s and
2p electrons constitute the valence (and conduction) bands around the Fermi level, which is
set to 0 eV. For the bonding of the carbon atoms, the 2s and the 2px/y electrons undergo a
sp2-hybridization with one electron left in the 2pz orbital. Because of the in-plane orientation
of the former they form σ bands, which are responsible for the covalent in-plane bonding
between the atom [166]. σ bonds are the strongest type of covalent bonding since they form by
the overlap of orbitals in an end-to-end fashion, with the electron density concentrated between
the nuclei of the bonding atoms. The 2pz electrons form the π bands, which are formed by
the overlap of orbitals in a side-by-side fashion with the electron density concentrated above
and below the plane of the nuclei of the bonding atoms.

The unit cell of graphene is spanned by the lattice vectors a1 and a2 and contains two
atoms, constituting the equivalent sublattices A and B, which are rotated by π/3. The lattice
vectors read

a1 = a0
2

(︄ √
3

2

)︄
and a2 = a0

2

(︄
−

√
3

1

)︄
. (5.54)

The vectors RA and RB denote the position of the corresponding atoms. In nearest-neighbour
approximation the constructed vectors δBA = RBi − RA ≡ δi connect the atoms on sublattice
A with the three surrounding atoms on sublattice B. A sketch of the graphene lattice is shown
in Fig 5.4(a), where white circles denote atoms on sublattice A and green circles stand for
atoms of sublattice B. As can be seen, the six second next-neighbors however lie again on the
same sublattice. The electronic and optical properties of graphene for low energies are mostly
determined by the π bands. Therefore, theoretical descriptions often include only this band.
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5.6. Graphene

However, for X-ray absorption, which goes over a large energy range of several hundred of eV,
also bands further away from the Fermi level need to be considered.

The energy dispersion and corresponding tight binding coefficients are obtained from the
Schrödinger equation Eq. (2.3). Therefore, we multiply the Schrödinger equation by the
complex conjugate of one Bloch basis function Φαi,k(r) =

∑︁
Rα

exp(ik · Rα)ϕν
αi(r)/

√
N (with

orbital i and sublattice α) and integrate over all space:∑︂
β,j

(︂
Hαi

βj,k − EkSαi
βj,k

)︂
Cβj,k = 0 . (5.55)

Here, we defined the Hamiltonian matrix Hαi
βj,k = ⟨Φαi,k|H0|Φβj,k⟩ and overlap matrix Sαi

βj,k =
⟨Φαi,k|Φβj,k⟩. Since the overlap matrix is generally small we approximate it by an identity
matrix. The Hamiltonian matrix for graphene reads

H(k) =
(︄

HAA(k) HAB(k)
HBA(k) HBB(k)

)︄
=
(︄

HAA(k) HAB(k)
H†

AB(k) HAA(k)

)︄
, (5.56)

where each entry is organized in 5×5 block matrices. In the second step we used the symmetry
of the equivalent sublattices due to identical carbon atoms in the unit cell. The diagonal
entries are onsite matrices. We calculate exemplary one entry:

H11
AA(k) = ⟨Φ1sA,k|H0|Φ1sA,k⟩ = ε1s⟨Φ1sA,k|Φ1sA,k⟩ = ε1s . (5.57)

The total diagonal on-site matrix becomes

HAA(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1sA 2pA
z 2sA 2pA

x 2pA
y

1sA ε1s 0 0 0 0
2pA

z 0 ε2p 0 0 0
2sA 0 0 ε2s 0 0
2pA

x 0 0 0 ε2p 0
2pA

y 0 0 0 0 ε2p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.58)

describing onsite hoppings between the basis functions with the energies ε1s = −283 eV,
ε2p = 0 eV and ε2s = 8.7 eV [314,315]. Next, we calculate the offsite matrix, which describes
hoppings between different sublattices. It reads

HAB(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1sB 2pB
z 2sB 2pB

x 2pB
y

1sA t1sξk 0 0 0 0
2pA

z 0 tπξk 0 0 0
2sA 0 0 H33(k) H34(k) H35(k)
2pA

x 0 0 H43(k) H44(k) H45(k)
2pA

y 0 0 H53(k) H54(k) H55(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.59)

An expression for the hopping between two 1s or two 2pz orbitals of different lattice sites were
already calculated and inserted in Eq. (5.59). The calculation is straightforward and reads

⟨Φ2pzA,k|H0|Φ2pzB,k⟩ = 1
N

∑︂
RA,RB

eik·(RA−RB)⟨ϕ2pz (r − RA)|H0|ϕ2pz (r − RB)⟩ = tπξk ,

(5.60)

where we shifted the spatial integral on top of RA by r∥ → r∥ + RA and used the
definition of the next-neighbor vector. Then we defined the hopping parameter tπ =
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Figure 5.4: (a) Honeycomb lattice of graphene with carbon atom on lattice site A (white) and
B (green). Shown are the basis vectors ai, the lattice vectors RA/B , the next-neighbor vectors
δi, and the angles ϑi of the bonding directions with respect to the y axis. (b) Calculated band
structure of graphene. Shown are the used unoccupied bands above the Fermi level (grey
dashed), the occupied π valence band below the Fermi level for orientation and the 1s core
band. XANES constitutes of core transitions into the unoccupied states below the ionization
threshold of the material and EXAFS of core transitions into the ionization continuum. Figure
appears similarly in Ref. [274].

⟨ϕ2pz (r)|H0|ϕ2pz (r − δ)⟩ and the next-neighbor form factor ξk =
∑︁

i exp(ik · δi). In the
same way we can calculate the entry for the core orbital. From the offsite matrix Eq. (5.59)
we can see that the 1s, 2pz and the in-plane hybridized orbitals decouple. The reason is that
for the core orbitals, we assume due to the spatial localization a negligible overlap with other
orbitals. For the other orbitals we have symmetry reasons. The Hamiltonian of graphene is
symmetric with respect to reflection in the x-y plane. Consequently, the π bands and the σ
bands decouple since the former have an odd symmetry and the latter are even with respect
to the reflection [272]. We can therefore diagonalize the core, π and σ bands individually. For
the π band we find analytically

επ,k = ±tπξk (5.61)

with the positive solution describing the valence and the negative solution corresponding to
the conduction band. The shape of the dispersion depends solely on the lattice symmetry
included by the form factor ξk. Because we neglected the influence of the overlap matrix, we
have an electron-hole symmetry for the π bands. The core band can be obtained as limiting
case for vanishing lattice site hopping tπ → 0: ε±

1s = ε1s. Because of the vanishing hopping
the bonding and anti-bonding core bands degenerate.

We turn now our attention to the σ bands. Here, the calculation of the matrix entries
are more complicated since the involved orbitals do not all point out of the plane as for
2pz orbitals. In contrast, they lie within the plane and are oriented along the bonding axis.
The matrix elements for the Bloch orbitals between the A and B atoms are obtained by
taking the components of the 2px and 2py orbitals in the σ and π basis. Such a type of
(orbital) decomposition is called Slater-Koster method [138]. By these means we obtain a
semi-empirical tight binding model, where the Slater-Koster parameters (corresponding to
the hopping parameters) are fitted to ab initio band structures. We start by calculating the
the matrix element for hoppings between two 2s orbitals at different lattice sites. Here we
can proceed analogously to the 2pz case and obtain H33(k) = Vssσξk. Next, we investigate
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hoppings including in-plane 2p orbitals. For this, we decompose the p orbital into a component
parallel |pδ⟩ and perpendicular |pn⟩ to the line joining two neighbored carbon atoms:

|p⟩ = cos ϑ|pδ⟩ + sin ϑ|pn⟩ . (5.62)

A sketch defining the nearest neighbour vectors δi and the corresponding angles ϑi is shown
in Fig. 5.4(a). For the hopping matrix element between 2s and 2px we find:

H34(k) = ⟨Φ2sA|H0|Φ2pxB⟩

= 1
N

∑︂
RA,RB

eik·(RA−RB)⟨ϕ2s(r − RA)|H0|ϕ2px(r − RB)⟩

=
∑︂

i

eik·δi⟨ϕ2s(r)|H0|ϕ2px(r − δi)⟩

=
∑︂

i

eik·δi cos ϑi⟨ϕ2s|H0|ϕ2px,δ⟩ +
∑︂

i

eik·δi sin ϑi⟨ϕ2s|H0|ϕ2px,n⟩

= Vspσ

∑︂
i

eik·δi cos ϑi . (5.63)

For the hopping integrals, we define ⟨ϕ2s|H0|ϕ2px,δ⟩ = Vspσ and from symmetry the second
hopping integral vanishes. For the other hoppings we find

H18(k) = ⟨Φ2sA|H0|Φ2pyB⟩ = Vspσ

∑︂
i

eik·δi sin ϑi , (5.64)

H27(k) = ⟨Φ2pxA|H0|Φ2pxB⟩ =
∑︂

i

(︂
Vppσ cos2 ϑi + tπ sin2 ϑi

)︂
eik·δi , (5.65)

H28(k) = ⟨Φ2pxA|H0|Φ2pyB⟩ =
∑︂

i

(Vppσ − tπ) cos ϑi sin ϑie
ik·δi , (5.66)

H38(k) = ⟨Φ2pyA|H0|Φ2pyB⟩ =
∑︂

i

(︂
Vppσ sin2 ϑi + tπ cos2 ϑi

)︂
eik·δi . (5.67)

We see that the hoppings are weighted by the bonding orientation. The signs of the exponential
form factors reflect the underlying triangular symmetry of the lattice. A more detailed
derivation of the decomposition of s and p orbitals in constituents parallel and perpendicular
to the bonding direction is shown in the appendix A.4. The Slater-Koster parametrized tight
binding Hamiltonian is diagonalized numerically exploiting the zgeev routine.

Figure 5.4(b) displays the calculated band structure along the high symmetry traces. For
the π band we show addiotnally to the unoccpied conduction band also the occupied valence
band below the Fermi level for a better orientation. The π band exhibits Dirac cone-like
minima at the K points, saddle points at the M points and a maximum at the Γ point. As
discussed in Sec. 5.1, the core dispersion is treated as a flat band ε1s = −283 eV [315]. The
tight binding coefficients in nearest-neighbor approximation for the unoccupied π and and
1s state read C

π/1s
A,k = −ξk/

√
2|ξk| and C

π/1s
B,k = 1/

√
2. Furthermore, Fig. 5.4(b) displays

the unoccupied σ bands, where we see that two of the σ bands cross the π band and lie at
the Γ point slightly below the π band. The coefficients of the σ bands are obtained from
the numerical diagonalization. The ionization continuum is treated as parabola and starts
artificially at the highest included band, which corresponds to the third σ band, cf. Fig.
5.4(b).

With the tight-binding coefficients Cλ
jβ,k we can calculate the XANES dipole matrix

element Eq. (5.10) for the core-conduction band transitions. We restrict the next-neighbor
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sum to the nearest-neighbors and obtain in dipole approximation for the K-edge dipole matrix
elements

X1sλ
k+Q−G,k = −e

∑︂
α,β,i

C∗1s
β1s,k+Q−GCλ

αi,k

×
(︂
⟨1s, β, 1s, 0 | r | λ, α, i, 0⟩ δα,β + eik·δβα⟨1s, β, 1s, 0 | r | λ, α, i, δβα⟩

)︂
. (5.68)

The first term of the dipole matrix element exhibits an onsite transition and the second
term corresponds to an offsite contribution. The band λ = π consists just of the i = 2pz

orbital. The λ = σ band is built by i = 2s, 2px, 2py orbitals. The offsite transition integral
between sublattices A and B can be calculated analytically by transforming the integral to
prolate spheroidal coordinates helping to handle the two-center nature of the integral. The
z-polarized π transition depends only on the absolute value of the next-neighbor vectors,
which is δi = 0.14 nm for the nearest-neighbors. The corresponding integral has a value of

⟨1s, A, 1s, 0 | r | π, B, 2pz, 0.14⟩ =

⎛⎜⎝ 0
0

0.14

⎞⎟⎠ pm . (5.69)

In contrast, the transition into the σ bands are in-plane polarized because of the mirror
symmetry of the graphene plane. The in-plane transitions are differently weighted for each
next-neighbor vector depending on its angular orientation ϑi to the y-axis, cf. Fig. 5.4(a).
We find

⟨1s, A, 1s, 0 | r | σ, B, 2px, δi⟩ =

⎛⎜⎝ cos2 ϑi sin2 ϑi 0
sin ϑi cos ϑi − sin ϑi cos ϑi 0

0 0 1

⎞⎟⎠
⎛⎜⎝−0.12

0.14
0

⎞⎟⎠ pm

⟨1s, A, 1s, 0 | r | σ, B, 2py, δi⟩ =

⎛⎜⎝sin ϑi cos ϑi − sin ϑi cos ϑi 0
sin2 ϑi cos2 ϑi 0

0 0 1

⎞⎟⎠
⎛⎜⎝−0.12

0.14
0

⎞⎟⎠ pm . (5.70)

In the δ → 0 limit the prolate spheroidal coordinates evolve into the spherical coordinates.
The onsite transitions for the 2px, 2py and 2pz-integrals are purely x, y and z-polarized,
respectively, and have the value of 4.00 pm. Finally, the 1s to 2s transition does not contribute
for vanishing connection vector because of there even symmetry and the uneven parity of the
dipole vector. For the offsite transition we obtain

⟨1s, A, 1s, 0 | r | σ, B, 2s, δi⟩ = −0.5

⎛⎜⎝cos ϑi

sin ϑi

0

⎞⎟⎠ pm . (5.71)

The result is negative because of the node of the 2s orbital. Obviously, offsite transition
integrals are smaller than onsite transition integrals because of the small overlap of the
core orbital with other orbitals. At last, we want to point out that we performed a dipole
approximation for the transition integral. However, transitions forbidden by the dipole
selection rule are accessible via higher-order terms in the exp(iQ · r∥) expansion. But their
intensity is usually much less than the intensity of the dipole allowed transitions.

5.7 X-ray absorption of graphene
We finally have all necessary quantities for the description of the X-ray absorption. For a
weak excitation density the homogeneous occupation in initial and final band can be set to
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one and zero, respectively. Then, in linear optics, the solution of the microscopic X-ray Bloch
equation Eq. (5.18) reads in frequency space

pλ1λ2
k+Q−G,k(ω) =

−Xλ2λ1
k+Q−G,k · EQ(ω)

ℏω − ελ2
k + ελ1

k+Q−G + iγ
(5.72)

pλk⊥
k+Q−G,k(ω) =

−Y k⊥λ
k+Q−G,k · EQ(ω)

ℏω − εk⊥
k + ελ

k+Q−G + iγ
(5.73)

divided into XANES and EXAFS transitions, respectively. In the case of λ1 = 1s core states,
the former equation will yield the sudden K absorption edges at the energy differences between
two-dimensional 1s and conduction bands λ2. The second equation yields the absorption of 1s
to vacuum transitions and should inhered the experimentally observed oscillations. Since the
core bands are flat bands, we shifted the momenta such that the vector addition is performed
in the flat band to be numerically exact. Additionally, we introduced a phenomenological
dephasing constant γ attributing to the finite lifetime of the electronic transition and leading
to a broadening of the absorption line. The dephasing consists of a Coulomb-induced and a
radiative dephasing. The radiative dephasing can be included by Eq. (5.51). The dephasing
depends on the position in the electronic Brillouin zone by k and the X-ray wave vector
Q. Generally, the calculated radiative lifetime is of a few picoseconds. Different studies
report a core-hole lifetime in graphite and carbon-based molecules of around 10 fs [316,317]
suggesting that other recombination mechanism are dominating. These relaxation channels
are considered phenomenologically by adjusting the dephasing rate γ. Together with the
definition of the two-dimensional macroscopic polarization, being proportional to the electric
field, we can identify the dyadic susceptibility

χQ(ω) =
∑︂

λ1,λ2,k,G

Xλ1λ2
k,k+Q−G ⊗ Xλ2λ1

k+Q−G,k

ℏω − ελ2
k + ελ1

k+Q−G + iγ
+

∑︂
λ,k,G,k⊥

Y λk⊥
k,k+Q−G ⊗ Y k⊥λ

k+Q−G,k

ℏω − εk⊥
k + ελ

k+Q−G + iγ
(5.74)

with the dyadic product of the vector-valued dipole matrix elements yielding a 3 × 3 matrix
for the susceptibility. The XANES dipole matrix element Xλ2λ1

k+Q−G,k is determined by Eq.
(5.68) and the EXAFS matrix element Y λk⊥

k,k+Q−G by Eq. (5.15). The X-ray wave number
and the excitation frequency are related by the relation Q2 = ω2 sin θ/c2, where θ denotes the
incident angle of the X-ray radiation. Consequently, we perform no further approximation and
include all Q over the full range of the absorption spectrum. The response of the material to
the weak excitation is investigated by calculating the absorption. Therefore, we introduce the
absorption coefficient αQ(ω) = 1 − rQ(ω) − tQ(ω) defined by reflection rQ and transmission
tQ.

Since the susceptibility is determined by a dyadic product all possible components of
the dipole matrix elements are coupled, which leads to a rather difficult expression for the
absorption suggesting a numerical treatment. We start by investigating the XANES spectrum,
i.e. the susceptibility in Eq. (5.74) is restricted to the first term. Figure 5.5(a) displays the
calculated XANES spectrum of graphene for different angles of incidence θ. The absorption
starts at 283 eV corresponding to the binding energy of the core electrons relative to the
Fermi surface of graphene. The first peak at 286 eV rises with increasing angle. It stems
from the transition of 1s electrons into the π band close to the M-point, which exhibits
a van Hove singularity due to a saddle point and therefore a large density of states. The
following three peaks at 293 eV, 298 eV, and 303 eV stem from transitions into the three σ
bands and are decreasing with increasing angle of incidence. All four peaks are observed in
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Figure 5.5: (a) XANES of graphene for different angles of incidence. The first peak stems
from absorption into the π bands, while the three succeeding peaks are transitions into the σ
bands. (b) The π peak shows a sin2 θ-behavior. The deviation at higher angles stems from the
fact that we assumed an infinite thin graphene layer. Figure appears similarly in Ref. [274].

experiment [318–321] and match with the here calculated energetic positions and spectral
structure. However, one difference between calculated and measured absorption spectrum
can be noticed, namely the appearance of a plateau after the second peak in the measured
absorption spectrum, which is absent in the calculated spectrum, cf. Fig. 5.5(a). This can
be traced back to the point that we limited our approach to orbitals up to the 2p orbitals.
Including more orbitals [322] leads to a continuum of close lying bands and should form an
almost continuous absorption.

Figure 5.5(b) shows the peak height of the π peak as a function of the angle of incidence.
We obtain that the absorption follows a sin2 θ-behavior before deviating from this trend at
about 60 ◦. The polarization-dependent absorption can be explained by the symmetry of the
orbital composition of the final band [272,318,323,324]. When considering only transitions into
the 2pz orbital we can exploit the z-polarization of the dipole transition due to the out-of-plane
character of the 2pz orbital. This greatly simplify the susceptibility tensor. Consequently,
we can find an analytical expression for the absorption into the π band. Without loss of
generality we assume for the in-plane incidence angle zero degree, such that Qy = 0. Then we
obtain for the absorption

αQ(ω) =
∆Q(ω)ℑm

(︂
χ33

Q (ω)
)︂

− Q2
x

2ϵ |χ33
Q (ω)|2

|1 − i
2∆Q(ω)χ33

Q (ω)|2
(5.75)

with ∆Q(ω) = ω2

c2κ
− κ

ϵ and χ33
Q (ω) as the zz-entry of the susceptibility tensor. The coefficient

∆Q(ω) stems from the matrix KQ(ω) carrying all prefactors. In particular, the denominator
arises from the self-consistent treatment of the Maxwell and Bloch equations and includes for
instance the radiative coupling in the sample. The in-plane light wave vector Q2

x is proportional
to sin2 θ. When inserting the definition for κ and express the X-ray wave vector as function
of the angle of incidence we obtain for the prefactor ∆(θ, ω) = ω2 sin2 θ/ϵc2

√
ϵ − sin2 θ. Now,

we explicitly see the sin2-dependence of the true absorption coefficient. For a perpendicular
irradiation of the sample (θ = 0◦) we immediately see that ∆Q(ω) and Qx vanish and
consequently also the absorption vanishes as expected from the z-polarized transition. On the
other side the derived absorption formula diverges for an incident angle of θ = 90◦ in the case
of ϵ = 1, explaining the observed deviation in Fig. 5.5(b). The fact that the singularity does
not explicitly appear anymore for ϵ > 1, suggests that the origin lies in the assumption of an
infinitely thin layer in a uniform background. The divergence might be lifted by starting with
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Figure 5.6: X-ray absorption spectrum of graphene for 30◦ irradiation. We obtain a dominating
XANES contribution stemming from transition between core and conduction bands. Also, the
weaker transitions into the ionization continuum, displayed in the inset, are obtained. The
absorption into the three-dimensional continuum is modulated by oscillations with maxima at
different energies. Figure appears similarly in Ref. [274].

a three layer model – supstrate, layer, substrate – all with finite thickness and by solving the
Maxwell equation for each region with corresponding continuity conditions [325].

After investigating the XANES contribution, we compute the full X-ray absorption
spectrum by including also the EXAFS part, described by the second line of Eq. (5.74). The
ionization threshold is set artificially to the maximum of the energetically highest lying σ
band. Figure 5.6 shows the full absorption spectrum (θ = 30◦) and a zoom into the EXAFS
part, corresponding to the absorption involving the three-dimensional electronic continuum
of vacuum states as final states. We recognize that the absorption curve is modulated with
oscillations. For the particular situation plotted here we recognize three maxima. Following
the pioneering work by D. E. Sayers et al. it is widely recognized that these wiggles could be
used to obtain quantitative information about the local structure of the lattice. The current
interpretation in literature is that these oscillations stem from a modulation of the absorption
cross section due to interference of the X-ray waves between neighboring atoms. Here, we
calculate the absorption using the susceptibility determined by the second term of Eq. (5.74),
which includes the full lattice symmetry. For a constant EXAFS dipole matrix element the
second line of Eq. (5.74) summed over the electronic wave vectors describes a square-root like
absorption into the three-dimensional continuum states of the vacuum electrons. However, this
simplified absorption line is modulated by the dyadic product of the EXAFS matrix elements,
cf. Eq. (5.74). To obain more insights we abbreviate the occurring form factor in the EXAFS
matrix element Eq. (5.15) as fn(k − G) = 8πiζ3/2(k − G)nên/(ζ2 + (k − G)2)3. Analytically,
we obtain for the squared dipole matrix element of the entry nm in the susceptibility tensor

|(C∗1s
A1s,k + C∗1s

B1s,k)|2fn(k − G)fm(k − G) =
(︄

1 + 1
|ξk|

∑︂
i

cos(k · δi)
)︄

fn(k − G)fm(k − G),

(5.76)

where we inserted the definitions for the tight binding coefficients. Similar to the work of D.
E. Sayers, we clearly find an oscillating behavior in k with the lattice vector frequency δi

comparable to Eq. (5.2). The prefactor fn(k − G), in conjunction with the reciprocal lattice
vector sum in the susceptibility, describes a train of Lorentzians peaking at multiples of the
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reciprocal lattice vector encoding the direct position of the atoms. However, because of the
small nuclear number, the broadening of the form factor fn is so strong that fn is almost
constant, i.e. fn(k−G) ≡ fn. Therefore, the reciprocal lattice geometry is not resolved and its
influence on αQ(ω) is negligible. Consequently, Eq. (5.76) is determined solely by the squared
tight binding coefficients (1 +

∑︁
i cos(k · δi)/|ξk|), which are responsible for the cosine-like

oscillations. From a physical point of view, the tight binding coefficients describe the orbital
contribution of a specific lattice site to the band composition. Due to the lattice periodicity,
the tight binding coefficients are a function of the wave vector k, which is determined by the
lattice geometry. We can therefore understand the absorption, which is proportional to Eq.
(5.76) and summing over all wave vectors (Eq. (5.74)), as showing the quantum interference
between orbital electronic wave functions, which can be constructive or destructive depending
on the sign of the coefficients.

Summarizing this discussion, we can conclude that the EXAFS oscillations stem from an
interference of standing electronic wave functions of the graphene sublattices A and B. In
contrast to current interpretations [53,273,326–328], the interference is spatially stationary,
since it is independent of the X-ray excitation.

This discussion rises the question why such oscillations are not observed also in XANES.
For XANES excitations the tight binding coefficients of the initial and final states are
multiplied and the XANES dipole matrix element consists of a sum of onsite and offsite
contributions, cf. Eq. (5.68). For diagonal transitions, where k1 = k2 = k, the lattice
geometry-dependent phase cancels for the onsite contribution due to the product of the tight
binding coefficients. However, the offsite contribution still carries a phase with included
lattice geometry:−X1sπ

k,k = don (|ξk| + 1) /2 + doff
∑︁

i cos(k · δi)/|ξk|, where don and doff stand
for the onsite and offsite dipole transition integrals occurring in Eq. (5.68). In the case of
non-diagonal transitions the phase is non-vanishing even for the onsite contribution. However,
due to the k-space restriction of the 1st Brillouin zone, the bandwidth is not large enough
that the oscillating behavior of the phase becomes visible in the absorption spectrum. This is
different for the ionization continuum since it lacks the translational invariance of the lattice.

EXAFS is often expressed in terms of wave number k. Since the X-ray light has an
excitation energy higher than the threshold energy we can express the energy of the free
electron as ω(k) = ℏk2/2m0 + EIon/ℏ. To discuss the spatial interference, we apply a Fourier
transform to the absorption coefficient, i.e.

∫︁
d2k αQ(k)(k) exp(ik · r∥), to real space with

respect to the wave number. Consequently, Eq. (5.76) exhibits maxima at the nearest-neighbor
distance. To increase the visibility and access more conveniently the oscillations at higher
k, the absorption spectrum as function of wave number is multiplied by km with typically
m ∈ [1, 2, 3] and a Fourier transform is applied subsequently [329–331]. In the following, we
discuss the Fourier transform of the absorption spectrum evaluated by our description, which
involves the Bloch theorem for solid states.

The blue curve in Fig. 5.7(a) displays the Fourier amplitude of the k-weighted and
background corrected EXAFS spectrum [332] in first neighbor approximation. The effective
radial distribution function clearly displays a peak at the distance of the first neighbor. The
second peak at 0.28 nm is the second harmonic lying at twice of the nearest-neighbor distance.
Higher harmonics are barely visible due to the overall decrease of the spectrum with increasing
r. The higher harmonics stem from the fact that the Fourier transformation is performed on
a limited space.

So far we have considered only the nearest-neighbor hoppings for the calculation of the
matrix elements. As a result we obtain a peak at the first neighbor distance and corresponding
peaks at the higher harmonics. However, calculating the matrix elements beyond the nearest-
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Figure 5.7: (a) Fourier amplitude of the EXAFS spectrum. The blue curve includes only
the first nearest-neighbor (nn). It peaks at the first nearest-neighbor distance and its higher
harmonics. The green curve includes also the second and third next-neighbors. The peaks
stem from the first three neighbors (black) and interferences among themselves (yellow). (b)
Comparison of Bloch theory, experiment (adapted from Ref. [319]) and point scattering theory
(Eq. (5.78)). Figure appears similarly in Ref. [274].

neighbor approximation should add additional features to the Fourier amplitude of the EXAFS.
To go beyond the nearest-neighbor hopping we introduce the second ξ

(2)
k = η2

∑︁9
i=4 exp(ik · δi)

and third ξ
(3)
k = η3

∑︁12
i=10 exp(ik · δi) next-neighbor form factors. For the free parameters

of second and third next-neighbor hoppings we reasonably choose η2 = 0.05 and η3 = 0.01,
respectively. The ratios of η2 and η3 with respect to the hopping parameter to the nearest-
neighbor are chosen such that they coincide with the relative deviation of the hoppings
between 2pz orbitals with increasing order of neighbors [333, 334]. By this assumption the
peak heights are uncertain, but the peak positions – which is of most importance in our study
– are unaffected by that. The tight binding coefficients up to the third neighbor hopping read

C1s
A1s,k = ξk + ξ

(3)
k√

2
(︂
|ξk + ξ

(3)
k | + ξ

(2)
k

)︂ , and C1s
B1s = 1√

2
, (5.77)

which now include 12 neighbors instead of three and enter the matrix element, described by
the left-hand side of Eq. (5.76). The green line in Fig. 5.7(a) displays the effective radial
distribution function including hoppings up to the third neighbor coupling in the EXAFS
matrix element. In contrast to the calculation with first neighbor hopping, we find additional
peaks at the second and third neighbor distance of 0.24 nm and 0.28 nm, respectively, as well as
the corresponding higher harmonics. For instance, the third peak at 0.28 nm is a combination
of the third neighbor and higher harmonic of the first neighbor. Interestingly, also peaks
appear, which do not correspond to next neighbor distances, but do correspond to interferences
of different next neighbor vectors. Exemplary, we obtain a peak at 0.38 nm corresponding to
the sum of the first and second neighbor distance. Since 0.38 nm also correspond to the fourth
neighbor distance in graphene, this peak could also be interpreted as the fourth neighbor in
experiments. At 0.05 nm we can resolve a peak, which arises from the difference of third and
second neighbor. So far, this peak has been explained via a phase shift stemming from a
difference between measured and geometrical interatomic distances and required a theoretical
or experimental correction [273]. In contrast, in our approach, we show that the peak can be
interpreted as a quantum interference between electronic Bloch wave functions of first and
second neighbor. The slight sideband of the first nearest-neighbor peak at 0.1 nm stems from
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the difference of the second and first neighbor. Further, we observe a peak at 0.42 nm, which
can be understood as interference of the first with third neighbor.

To manifest our interpretation, in Fig. 5.7(b) we provide a direct comparison of our full
computational result up to the third nearest-neighbor to experiment, adapted from Ref. [319],
and additionally display the outcome obtained from the point scattering theory [53]. In point
scattering theory the oscillatory part of the EXAFS is solely described by the matrix element
squared corresponding to Eq. (5.2). The Fourier transform yields the structure-related
function [53]

S(r) = 1
2
∑︂

i

Ni

R2
i

e−γRie−2(r−Ri)2/σ2
i (5.78)

displayed as dashed line in Fig. 5.7(b). The γ-factor accounts for the photoelectron scattering
range and leads to an overall decrease with increasing distance. The result is a sum of Gaussian
functions lying at the next-neighbor distances Ri.

The blue curve in Fig. 5.7(b) corresponds to the Fourier transform of a measured EXAFS
with an isolated soft X-ray pulse produced by high harmonic generation. The measurements
were performed by Barbara Buades and Jens Biegert from the Institute of photonic sciences
(ICFO) in Barcelona and published in reference [319], who provided us the data for a
comparison.

Prior to the Fourier transformation, the measured EXAFS data were background corrected.
This correction consists of an approximation of the EXAFS data by an adjustable smooth
function, which represents the absorption coefficient without neighboring atoms. The spline
function is then subtracted from the measured data. To achieve a fair comparison between
the two theories and the experiment we perform the same manipulations. Additionally, we
force the first neighbor peak to match the experimental one in height. The experimental curve
in Fig. 5.7(b) displays three major peaks: The first at 0.14 nm reflects the first neighbor. The
second peak around 0.26 nm consists of a sum of second and third neighbor. The reason for
that is the spectral resolution of the used table top water window X-ray laser, which is a
new technology [319,335]. With a broader spectral range of the laser it might be possible to
resolve both close-lying peaks individually. Lastly, the maximum at 0.38 nm can be interpreted
as fourth neighbor. All three peaks are well reproduced by our Bloch as well as the point
scattering theory. However, a close look to the experiment reveals clear additional spectral
features around 0.05 nm and at 0.42 nm, both distances that do not exist in the graphene lattice.
While those spectral features are absent in a point scattering theory, our theory reproduces
them in good agreement in position: Following the description above, these features rely on
the use of the Bloch theorem and can be explained as quantum interference between electronic
Bloch wave functions. Although the interference peaks are observed in experiment [319] they
have not been discussed so far and require a detailed solid state theory involving the full solid
state lattice symmetry to be interpreted. Thus the central result of our approach is a solid
state generalization of Eq. (5.2).

Summarizing, the EXAFS oscillations are encoded in the dipole matrix element, which
modulate the square root-like absorption line into the three-dimensional continuum. The
modulations can only be understood by a solid state specific theory that confirms the relation
between the EXAFS oscillations and the local real space configuration of the crystalline
material [53]. However, these oscillations does not originate from an interference of the X-ray
waves but from quantum interferences of electronic wave functions of neighbored atoms.
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5.8 Conclusion
X-ray absorption spectroscopy is a spectroscopic techniques, which probes the core electrons
of materials. XAS has played a tremendous role at the beginning of the 20th century by
investigating atomic energy levels and discovering new rare elements. XAS is usually divided
into two parts: The first corresponds to XANES and desribes the transition of core electrons
into unoccupied conduction band states in the material. Each transition gives rise to sudden
absorption edges in the spectrum. The current literature typically consults Fermi’s golden rule
to describe XANES. The second part is EXAFS, which stems from transitions of core-electrons
into the ionization continuum. Here, the absorption into the three-dimensional continuum is
modulated by oscillations. In the 1970s D. E. Sayers el. al. discovered that these oscillation
can be related to the local structure of the sample. Therefore, EXAFS oscillations appear only
in molecules or solid states. Problematic is that the basis functions of the Sayers formalism
does not fulfill the Bloch theorem and are therefore no appropriate basis for crystalline
materials. Therefore, we derived a solid state theory of X-ray absorption spectroscopy by
self-consistently coupling the Maxwell and X-ray Bloch equations. Here, we took into account
the in-plane wave vector of X-ray radiation and spatial variations in the unit cell, which give
rise to a non-local optical response of the material. Moreover, we show that the polarization
dependence of the electronic core transitions give rise to a strong dependence of the angle
of incidence of the light. For EXAFS, we find that the oscillations indeed give information
about the local structure of the material, but appear due to interference effects of Bloch waves
from neighbored atoms. Consequently, the Fourier transform does not show only peaks at the
neighbor distances but also at sums or differences of the distances. This demands a careful
analysis of X-ray measurements of solid states.

The self-consistent coupling of the Maxwell and X-ray Bloch equations enables a calculation
of the radiative dephasing of core-holes beyond Fermi’s golden rule. As second mechanism
for atomic recombination of core-holes the literature discusses Meitner-Auger recombination.
The X-ray Bloch formalism naturally incorporates such scattering channels. Moreover, the
formalism can treat all kind of Coulomb interaction and includes also core excitons and
core-hole effects.
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Conclusion

We discussed high energy spectroscopic techniques namely time and angle resolved photoemis-
sion spectroscopy and X-ray absorption spectroscopy.

In case of tr-ARPES we raised the questions whether excitons, as correlated electron-hole
quasi-particles, are visible in photoemission. Developing an excitonic photoemission theory
based on the unit operator method, which expands each electron after electron-hole pairs,
we can answer the question with yes. Additionally, after 40 years of tr-ARPES history the
experimental realization of this theoretical proposition has been realized [176,180]. We find
that the coherent excitons lead to an intriguing signal, namely a valence band replica, at
the exciton energy. The intensity distribution along this signal reflects the exciton wave
function squared in momentum space. Therefore, tr-ARPES can directly visualize the square
of the exciton wave function. Moreover, we can access also incoherent excitons and trace
their phonon-induced scattering throughout the Brillouin zone. We expect that the direct,
momentum resolved, access of tr-ARPES to excitons will give new insights into exciton physics
and material science. In this contribution, we focused on the low excitation regime linear in the
exciton density. However, the theory is scalable to higher excitation conditions. Unfortunately,
tr-ARPES experiment are to date limited by their energy resolution. Therefore, information
encoded in higher orders of the exciton expansion will be experimentally unresolved. But with
increasing energy resolution, in the future such theoretical studies might become necessary.

Secondly, we built a solid state conform self-consistent theory for X-ray absorption
spectroscopy by combining the Maxwell and X-ray Bloch equations. With this, we present the
first theory, which can describe XANES and EXAFS in a unified way. We applied the derived
theory to the exemplary material of graphene. We showed that XANES displays the density
of states of bound electronic states and how core transitions show a strong dependence on the
angle of incidence of the exciting X-ray light. EXAFS, which corresponds to unpolarized core
transitions into the ionization continuum, displays oscillations in the spectrum. We confirmed
the assumption of D. E. Sayers and coworker from 1970 that these oscillations are related to
the local geometry of the sample. However, we find that in case of crystalline solids these
oscillations stem from interference of core Bloch wave functions from neighbored atoms instead
of interfering X-ray waves. This leads to the fact that we can assign so far overlooked peaks
in the Fourier transformed EXAFS spectrum, which displays not only peaks at the neighbor
distances but also at interferences between them. Moreover, our XAS theory is compatible
with DFT methods, which are the main theoretical instrument in XAS theory. For example
all electronic parameters and matrix elements can be calculated with Quantum Espresso and a
Wannier90 interpolation and the results can be combined with the self-consistent XAS theory.
We believe that this new X-ray-matter theory will shed new light on the analysis of XAS
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experiments. One limitation of the presented theory is, although the solution of the wave
equation inherits linear and nonlinear excitations, that the derived self-consistent electric field
is restricted to the linear regime. Here lies a further possible extension of the theory, also to
nonlinear time-resolved XAS experiments on two-dimensional crystalline solids.

As third topic we investigated excitons in van der Waals heterostructures. For a WSe2-
graphene stack, we studied interfacial energy and charge transfer processes. We find that
Förster transfer acts on a long time scale, while Dexter transfer is extremely unlikely. In
contrast, phonon-assisted tunneling of electrons and holes happens on short time scales.
Additionally, we identify a new type of interlayer energy transfer mechanism, which we name
interfacial Meitner-Auger energy transfer. Here, a TMDC exciton recombines non-radiatively
and excites intraband transitions in graphene. This theoretical study was triggered by tr-
ARPES measurements, which found intriguing and inexplicable results [200]. In such a way,
the circle closes as we stated at the beginning that tr-ARPES will boost the amount of
new insights into exciton physics and material science. Secondly, we investigated hybrids of
inorganic semiconductors and organic molecules. We propose HIOS to be the ideal candidate
for the long time searched excitonic insulator built by interlayer excitons and uniquely provable
by far-infrared to terahertz spectroscopy. Recently, their has been a lot of studies on the
excitonic insulator in TMDC homobilayer and heterostructures, but compelling experimental
evidence is still missing. With HIOS we propose an additional promising candidate and showed
how to detect the phase transition. The excitonic insulator forms a new type of material phase
characterized by spontaneous formation of excitons. The excitonic insulating phase exhibits
an excitonic ground state, which requires a proper description, for example in a Bogoliubov
formalism. Within this framework we showed how to optically characterize excitonic phases,
which are tunable by an externally applied electric field. By these means we can switch between
(semi-) metallic phase, described by a Drude response, semiconductor phase, described by a
Lorentz response (vanishing small for interlayer excitons) and excitonic insulator exhibiting
a p-type Rydberg series from intraexcitonic transitions. The developed excitonic insulator
Bogoliubov theory is derived in a mean-field approximation. But an excitonic insulator exhibits
high electron-hole occupations and as in our case even an electronic inversion. Here, the
question rises about non-linear contributions, or even a biexcitonic ground state. Therefore, a
description beyond the mean-field limit might be interesting for future research.
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A.1 Optical selection rules from group theory
Table 1 displays the character table of the point group C3h. A single prime indicates that
a representation is symmetric with respect to a σh plane and a double prime indicates
its antisymmetry. This is comparable to the subscripts g (gerade) and u (ungerade) if an
inversion center is present. Checking the basis function in column of Tab. 1 we see that

Table 1: Character table of the C3 point group with ε = exp(2πi/3).

C3 E C3(z) C2
3 σh S3 (S3)5 quadratic function

A’ 1 1 1 1 1 1 x2 + y2, z2

E’ 1
1

ε
ε∗

ε∗

ε
1
1

ε
ε∗

ε∗

ε
(x2 − y2, xy)

A” 1 1 1 -1 -1 -1 -

E” 1
1

ε
ε∗

ε∗

ε
-1
-1

−ε
−ε∗

−ε∗

−ε
(xz, yz)

(dx2−y2i ± dz2)/
√

2 transforms according to the representation E′. The two rows consider
the plus and minus case. The dipole vector transforms in the C3h point group according to
E′ + A′′. Then the direct product reads

Γv ⊗ Γr = A′ ⊗ (E′ + A′′) = A′E′ + A′A′′ . (A.1.1)

The characters χA′ ⊗ χE′+A′′ is summarized in Tab. 2 We consider χA′ ⊗ χE′+A′′ as reducible

Table 2: Character table of the Γv ⊗ Γr

E C3(z) C2
3 σh S3 (S3)5

2 1+ε 1+ε∗ 0 ε-1 ε∗-1

representation of the group C3h. The decomposition formula reads [138]

n(i) = 1
h

∑︂
c

gcχiχr . (A.1.2)

It gives the amount of times a symmetry species occurs in the reducible representation n(i).
The sum runs over all symmetry operations c and h is the order of the group. The order
just corresponds to the total number of symmetry operations. The relevant numbers for the
decomposition are the number of symmetry operations gc, the character of the irreducible
representation χi and the character of the reducible representation χr. Together with the
character tables we obtain

n(A′) = 1
3
(︂
1 · 1 · 2 + 1 · 1 · (1 + e2πi/3) + 1 · 1 · (1 + e−2πi/3)

)︂
= 1 , (A.1.3)

n(E′) = 1
3
(︂
1 · 1 · 2 + 1 · e2πi/3 · (1 + e2πi/3) + 1 · e−2πi/3 · (1 + e−2πi/3)

)︂
= 0 . (A.1.4)

We see that transitions into final states transforming according to the irreducible representation
A’ are allowed, as is the case for the dz2 orbital, but optical transition into states transforming
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according to E’ forbidden. For the sake of completeness we provide also

n(A′′) = 1
3
(︂
1 · (−1) · 0 + 1 · (−1) · (e2πi/3 − 1) + 1 · (−1) · (e−2πi/3 − 1)

)︂
= 1 , (A.1.5)

n(E′′) = 1
3
(︂
1 · (−1) · 0 + 1 · (−e2πi/3) · (e2πi/3 − 1) + 1 · (−e−2πi/3) · (e−2πi/3 − 1)

)︂
= 0 .

(A.1.6)

Next, we investigate the photoemission selection rules. The final state continuum wave
function should be symmetric with respect to all mirror planes of the surface. The valence
band transforms according to E’ and the ionization continuum to A’ and E’. We obtain for
the character product E′ · A′ = 1 | ε | ε∗ | 1 | ε | ε∗. In order that the integral is symmetric
the polarization projected dipole vector needs to transform according to E’. To check

χE′χE′χA′ = 1 | 1 | 1 | 1 | 1 | 1 . (A.1.7)

In case that the polarization is perpendicular to the sample the final state needs to be
antisymmetric, which gives a contradiction and is therefore dipole forbidden.

A.2 Dipole matrix element

The general light-matter interaction Hamiltonian as defined in Chap. 5 with inserted Bloch
functions yields

H = − e

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t) ·
∫︂

d3r e−ik·r∥u∗
λ,k(r) r eiQ·r∥ eik′·r∥uλ′,k′(r) a†

λ,ka
λ′,k′ ,

(A.2.1)

where we pulled the quantization length lz in z-direction out of the lattice periodic Bloch
functions. Expanding the integral into a sum over elementary cells at the lattice vector Rn:
r → rn + Rn yields

H = − e

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t)

×
∑︂
Rn

ei(k′+Q−k)·Rn

∫︂
UC

d3r ei(k′+Q−k)·rn∥u∗
λ,k(rn) rn uλ′,k′(rn) a†

λ,ka
λ′,k′

− e

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t)

×
∑︂
Rn

ei(k′+Q−k)·RnRn

∫︂
UC

d3r ei(k′+Q−k)·rn∥u∗
λ,k(rn)uλ′,k′(rn) a†

λ,ka
λ′,k′

= −e
N

Alz

∑︂
λ,λ′

∑︂
k′,Q

EQ(z0, t) ·
∑︂
G

∫︂
UC

d3r eiG·rn∥u∗
λ,k′+Q−G(rn) rn uλ′,k′(rn) a†

λ,k′+Q−G
a

λ′,k′

− i
e

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t)

×
∑︂
Rn

(︂
∇kei(k′+Q−k)·Rn

)︂ ∫︂
UC

d3r ei(k′+Q−k)·rn∥u∗
λ,k(rn)uλ′,k′(rn) a†

λ,ka
λ′,k′
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A.2. Dipole matrix element

= −e
N

Alz

∑︂
λ,λ′

∑︂
k′,Q

EQ(z0, t) ·
∑︂
G

∫︂
UC

d3r eiG·rn∥u∗
λ,k′+Q−G(rn) rn uλ′,k′(rn) a†

λ,k′+Q−G
a

λ′,k′

− ie
N

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t)

×
∑︂
G

(︂
∇kδk′+Q−k,G

)︂ ∫︂
UC

d3r ei(k′+Q−k)·rn∥u∗
λ,k(rn)uλ′,k′(rn) a†

λ,ka
λ′,k′ , (A.2.2)

where we indexed rn to clarify that the vector is defined locally in the nth Brillouin zone.
Writing the k-sum as integral and transforming the Kronecker delta to a delta function, we
can exploit the product rule to obtain

H = −e
N

Alz

∑︂
λ,λ′

∑︂
k,k′,Q

EQ(z0, t) ·
∑︂
G

∫︂
UC

d3r eiG·rn∥u∗
λ,k′+Q−G(rn) rn uλ′,k′(rn) a†

λ,k′+Q−G
a

λ′,k′

− ie
N

Alz

∑︂
λ,λ′

k′,Q,G

EQ(z0, t)

×
∫︂

d2k ∇k

(︃
δ(k′ + Q − k − G)

∫︂
UC

d3r ei(k′+Q−k)·rn∥u∗
λ,k(rn)uλ′,k′(rn)

)︃
a†

λ,ka
λ′,k′

+ ie
N

Alz

∑︂
λ,λ′

k′,Q,G

EQ(z0, t)

×
∫︂

d2k δ(k′ + Q − k − G)
∫︂

UC
d3r

(︂
∇kei(k′+Q−k)·rn∥

)︂
u∗

λ,k(rn)uλ′,k′(rn) a†
λ,ka

λ′,k′

+ ie
N

Alz

∑︂
λ,λ′

k′,Q,G

EQ(z0, t)

×
∫︂

d2k δ(k′ + Q − k − G)
∫︂

UC
d3r ei(k′+Q−k)·rn∥

(︂
∇ku∗

λ,k(rn)
)︂

uλ′,k′(rn) a†
λ,ka

λ′,k′

+ ie
N

Alz

∑︂
λ,λ′

k′,Q,G

EQ(z0, t)

×
∫︂

d2k δ(k′ + Q − k − G)
∫︂

UC
d3r ei(k′+Q−k)·rn∥u∗

λ,k(rn)uλ′,k′(rn)
(︂
∇ka†

λ,k

)︂
a

λ′,k′ .

(A.2.3)

The second line vanishes at the boundaries and the results reads

H = ie
N

Alz

∑︂
λ,λ′

∑︂
k′,Q

EQ(z0, t)

×
∑︂
G

∫︂
UC

d3r eiG·rn∥

(︄(︄
∇k′+Q−G

iz

)︄
u∗

λ,k′+Q−G(rn)
)︄

uλ′,k′(rn) a†
λ,k′+Q−G

a
λ′,k′

+ ie
N

Alz

∑︂
λ,λ′

∑︂
k′,Q

EQ(z0, t)

×
∑︂
G

∫︂
UC

d3r eiG·rn∥u∗
λ,k′+Q−G(rn)uλ′,k′(rn)

(︂
∇k′+Q−Ga†

k′+Q−G

)︂
a

k′ . (A.2.4)
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Exploiting the periodicity of the Bloch factors in reciprocal space and their orthogonality
yields the Hamiltonian

H =
∑︂
λ,λ′

∑︂
k′,Q

EQ(z0, t) ·
∑︂
G

ie

VUC

[︄∫︂
UC

d3r eiG·rn∥

(︄(︄
∇k′+Q−G

iz

)︄
u∗

λ,k′+Q−G(rn)
)︄

uλ′,k′(rn)

+VUCδλ,λ′∇k′+Q−G

]︂
a†

λ,k′+Q−G
a

λ′,k′ . (A.2.5)

with the unit cell volume VUC = V/N . Taking the limit Q = G = 0 yields the Hamiltonian
shown Chap. 2.

A.3 Energy and charge transfer matrix elements

A.3.1 Dexter transfer

Before deriving the Dexter matrix element, we define the heterostructure Coulomb potential.
We introduce a layer index l. The Coulomb potential reads

V ll′
q = e2

0
2ϵ0A|q|ϵll′

q
; ϵll′

q =
{︄

ϵq, l ̸= l′

ϵi
q, l = l′ ≡ i

(A.3.1)

with i = {0, 1} for the two material layers. The dielectric functions read

ϵq = κg0
|q|g

1
|q|f|q| and ϵi

q =
κg1−i

|q| f|q|

cosh(δ1−i|q|/2)hi
|q|

(A.3.2)

for the intra- and interlayer Coulomb potential, respectively. The abbreviations read

fq = 1 + 1
2

(︃
(κ0

κ
+ κ

κ0
) tanh(δ0|q|) + (κ1

κ
+ κ

κ1
) tanh(δ1|q|) + (κ0

κ1

+κ1
κ0

) tanh(d0|q|) tanh(δ1|q|)
)︃

(A.3.3)

hi
q = 1 + κ

κi
tanh(δi|q|) + κ

κ1−i
tanh(δ1−i|q|/2) + κi

κ1−i
tanh(δi|q|) tanh(δ1−i|q|/2) (A.3.4)

gi
q = cosh(δi|q|)

cosh(δ1−i|q|/2)

(︃
1 + κ

κi
tanh(δi|q|/2)

)︃
. (A.3.5)

The parameters are κi =
√︂

ϵi
∥ϵi

⊥ as dielectric environment of the material and κ for the

dielectric background. Additionally, we define αi =
√︂

ϵi
∥/ϵi

⊥ and δi = αidi with the layer
thickness di.

For the Dexter matrix element, we start from Eq. (3.14). We decompose the z and z′

integration into two integrals over the two materials

V cvvc
k,q,k′,q′ = 1

A

∑︂
K

δk,q′+Kδq,k′−K

(︃∫︂
W

dz

∫︂
W

dz′ χc(z)χv(z′)VK(z, z′)

+
∫︂

W
dz

∫︂
G

dz′ χc(z)χv(z′)VK(z, z′) +
∫︂

G
dz

∫︂
W

dz′ χc(z)χv(z′)VK(z, z′)

+
∫︂

G
dz

∫︂
G

dz′ χc(z)χv(z′)VK(z, z′)
)︃

. (A.3.6)
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A.3. Energy and charge transfer matrix elements

Since the Coulomb potential varies only weakly in each layer, we take the Coulomb potential
directly at the position of the layer VK(z(′) = zl) and take the potential out of the integral.
Then, we write for the wave function overlap χλ,l =

∫︁
l dz χλ(z). When assuming that both

layers contribute equally to the wave function overlap we can use χλ,W = χλ,G = χλ/2 and
obtain for the matrix element

V cvvc
k,q,k′,q′ = 1

4A
χcχv

∑︂
K

δk,q′+Kδq,k′−KV Dex
K (A.3.7)

with

V Dex
K = VK(zW , z′

W ) + VK(zW , z′
G) + VK(zG, z′

W ) + VK(zG, z′
G) . (A.3.8)

When reinserting into the Hamiltonian and resolving the momentum Kronecker we obtain

H =
∑︂

k,q,K

1
4A

χcχv

∑︂
K

V Dex
K+k−qc†W

k+Kv†W
k vW

k cG
q + H.c. (A.3.9)

Here, we indexed the operators according to the layers since due to momentum conservation
the notation breaks down. At this point, the wave vectors are defined with respect to the
Γ point in WSe2 and graphene. We can shift the coordinate system on the K points by
k → KW + k, q → KG + q. Together with an exciton basis we obtain

H = −
∑︂
q,K

(︄
1

4
√

A
χcχv

∑︂
k

φ∗
µ,KW +kV Dex

KW −KG+K+k−q

)︄
P †

µ,KRKG+q
K + H.c. (A.3.10)

When neglecting the local wave vector sum K + k − q, which is way smaller than the distance
|KG − KW | we obtain the Dexter matrix element from the main text.

A.3.2 Phonon-assisted tunnel

We start from Eq. (3.23) and insert the compounds a/b = (λa/b, ka/b, la/b), and c = (Kc, αc, lc),
and use the selection rules

tλbλdlbld
kbkd

= tλbλdlbddδlb l̄d
kbkd

δλbλd
and gλaλdlaldlc

kakdKc
= gλaλdlaldlc

Kc
δlald

λaλd
δKc,ka−kd

. (A.3.11)

We obtain

H = 1
2

∑︂
λ,α,l,k,K

λ†l̄
k+Kλl

k

(︂
tλl̄lgλl̄α

K (αλll̄
k + γλl̄α

k,K)bl̄α
K + tλll̄gλl̄α

K (αλll̄
k + βλl̄α

k,K)b†l̄α
−K

)︂
− 1

2
∑︂

λ,α,l,k,K

λ†l̄
k+Kλl

k

(︂
tλll̄gλlα

K (αλll̄
k+K + γλlα

k,K)blα
K + tλl̄lgλlα

K (αλll̄
k+K + βλlα

k,K)b†l̄α
−K

)︂
(A.3.12)

with

αλij
k = 1

ελi
k − ελj

k

(A.3.13)

βλiα
k,K = 1

ελi
k+K − ελi

k + ℏΩiα
−K

(A.3.14)

γλiα
k,K = 1

ελi
k+K − ελi

k − ℏΩiα
K

(A.3.15)
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Carrying out the layer sum yields

H = 1
2

∑︂
λ,α,k,K

λ†W
k+KλG

k

(︂
tλGW gλW α

K (αλGW
k + γλW α

k,K )bW α
K + tλGW gλW α

K (αλGW
k + βλW α

k,K )b†W α
−K

)︂
− 1

2
∑︂

λ,α,k,K

λ†G
k+KλW

k

(︂
tλGW gλW α

K (αλW G
k + γλW α

k,K )bW α
K + tλGW gλW α

K (αλW G
k + βλW α

k,K )b†W α
−K

)︂
+ 1

2
∑︂

λ,α,k,K

λ†G
k+KλW

k

(︂
tλW GgλGα

K (αλW G
k + γλGα

k,K )bGα
K + tλW GgλGα

K (αλW G
k + βλGα

k,K )b†Gα
−K

)︂
− 1

2
∑︂

λ,α,k,K

λ†W
k+KλG

k

(︂
tλW GgλGα

K (αλGW
k + γλGα

k,K )bGα
K + tλW GgλGα

K (αλGW
k + βλGα

k,K )b†Gα
−K

)︂
.

(A.3.16)

We fix the momenta to the vicinity of the K point. The factor αcll̄
k≈Kl

can be read out from
DFT calculations. For the prefactors βλlα

k,K and γλlα
k,K we recognize that ∆EKG

appears when
WSe2 phonons are involved and ∆EKW

when graphene phonons are involved. The value
of ∆EKG

≈ 250 meV is large compared to the typical WSe2 phonon energy of 30 meV, and
∆EKW

≈ 1 eV is large compared to the graphene phonon energy of 200 meV. Therefore,
the phonon energies can be neglected in βλlα

k,K and γλlα
k,K . These approximations yield the

Hamiltonian in the main text.

A.3.3 Interlayer Meitner-Auger energy transfer

The Coulomb matrix elements reads

V ν1λ1λ2ν2
q1,k1,k2,q2

=
∫︂

d3r

∫︂
d3r′ Ψ∗

ν1,q1
(r)Ψ∗

λ1,k1(r′)V (r − r′)Ψλ2,k2(r′)Ψν2,q2(r)

=
∑︂

q

Vq

∫︂
d3r Ψ∗

ν1,q1
(r)eiq·r∥Ψν2,q2(r)

∫︂
d3r′ Ψ∗

λ1,k1(r′)e−iq·r′
∥Ψλ2,k2(r′) .

(A.3.17)

Vq corresponds to the interlayer Coulomb potential. First, we investigate the r-integral. For
the TMDC we know that ν1 ̸= ν2 due to the interband transition. We write

Iν1ν2
q,q1,q2

=
∫︂

d3r Ψ∗
ν1,q1

(r)eiq·r∥Ψν2,q2(r)

=
∑︂
R

eiR·(q−q1+q2)
∫︂

UC
d3r u∗

ν1,q1
(r)uν2,q2(r)eir∥·(q−q1+q2)

= δq−q1+q2,0
N

V

∫︂
UC

d3r u∗
ν1,q1

(r)uν2,q2(r)

= δq,q1−q2

1
e

dν1ν2(q1 − q2) (A.3.18)
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A.4. Slater-Koster tight binding method

with a k · p-expansion for ν1 ̸= ν2 in the last step. Next, we calculate the graphene integral,
where λ1 = λ2 holds. We find

Iλ1λ2
q,k1,k2

=
∫︂

d3r′ Ψ∗
λ1,k1(r′)e−iq·r′

∥Ψλ2,k2(r′)

=
∑︂
R

eiR·(−q−k1+k2)
∫︂

UC
d3r′ u∗

λ1,k1(r′)uλ2,k2(r′)eir∥·(−q+k1+k2)

= δ−q−k1+k2,0
N

V

∫︂
UC

d3r′ u∗
λ1,k1(r′)uλ2,k2(r′)

= δk2−k1,q , (A.3.19)

where we treated the integral for λ1 = λ2 in a low wave number approximation corresponding
to the zeroth order of the k · p expansion.

A.4 Slater-Koster tight binding method
For the Hamiltonian we need the electronic hopping between different atomic orbitals at
different interatomic distances. σ and π bondings are defined such that the axes of the involved
p orbitals are parallel and normal to the interatomic vector, respectively. The hopping integrals
for p orbitals are parameterized into parallel and normal component to the bonding directions.
We need to decompose the Cartesian p orbital into the bond-parallel and the bond-normal p
orbital.

We start with the projection of s-p integrals. Let δ̂ be the unit vector along the bond
from the first to the second atom. Let ê be the unit vector along the Cartesian axes. We first
decompose p orbitals along ê into two p orbitals that are parallel and normal to δ̂:

|pi⟩ = ê · δ̂|pδ⟩ + ê · n̂|pn⟩ (A.4.1)

with i ∈ {x, y, z}. The unit vector n̂ perpendicular to δ̂. The relation ⟨s|H|p⟩ = −⟨p|H|s⟩ is
simply obtained by inverting the direction of the bonding unit vector, i.e. changing the sign
of the directional cosines.

We continue with the projection of p-p integrals. This time we consider two unit vectors
for the coordinate system and the bond between two atoms. The p orbital along â1 can be
decomposed into two p orbitals that are parallel and normal to δ̂:

|pi⟩ = ê1 · δ̂|pδ1⟩ + ê1 · n̂1|pn1⟩ , (A.4.2)

where the unit vector n̂ normal to δ̂ within the plane spanned by δ and a1. We define the
origins of |pδ1⟩ and |pn1⟩ to be at the first atom. The second p orbital can be handled in a
similar manner. Then we obtain

⟨p1|H|p2⟩ = (ê1 · δ̂⟨pδ1 | + ê1 · n̂1⟨pn1 |)H(ê2 · δ̂|pδ2⟩ + ê2 · n̂2|pn2⟩)
= (ê1 · δ̂)(ê2 · δ̂)⟨pδ1 |H|pδ2⟩ + (ê1 · n̂1⟨pn1 |)H(ê2 · n̂2|pn2⟩) (A.4.3)

with the matrix element between orthogonal p orbitals as zero. We define ⟨pδ1 |H|pδ2⟩ = Vppσ

and write

(ê1 · n̂1⟨pn1 |)H(ê2 · n̂2|pn2⟩) = ((ê1 · n̂1)((ê2 · n̂2)⟨pn1 |H|pn2⟩ (A.4.4)
= (ê1 · n̂1)((ê2 · n̂2))(n̂1 · n̂2)tπ (A.4.5)
= ((ê1 · n̂1)n̂1) · ((ê2 · n̂2)n̂2) tπ (A.4.6)

=
(︂
ê1 − (ê1 · δ̂)δ̂

)︂
·
(︂
ê2 − (ê2 · δ̂)δ̂

)︂
tπ (A.4.7)
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(a)

=

(b) (c) (d)

Figure A.4.1: (a) Decomposition of a p-orbital. (b) Angle θ between the vectors δ and ê. (c)
Side view of vector δ. (d) Sketch of the used relation for hoppings between two p orbitals.

We end up with

⟨p1|H|p2⟩ = (ê1 · δ̂)(ê2 · δ̂)Vppσ +
(︂
ê1 − (ê1 · δ̂)δ̂

)︂
·
(︂
ê2 − (ê2 · δ̂)δ̂

)︂
tπ . (A.4.8)

For example, we can calculate now

⟨2px|H|2py⟩ = cos θ1 sin θ2Vppσ + (ê1 − cos θ1δ) · (ê2 − sin θ2δ)tπ

= cos θ1 sin θ2Vppσ + (ê1 · ê2 − ê1 · δ sin θ1 − ê2 · δ cos θ1 + cos θ1 sin θ2δ · δ)tπ

= cos θ1 sin θ2Vppσ + (− cos θ1 sin θ1 − sin θ2 cos θ1 + cos θ1 sin θ2)
= cos θ1 sin θ2Vppσ − cos θ1 sin θ2tπ

= (Vppσ − tπ) cos θ sin θ . (A.4.9)

The other integrals can be treated in similar manner.

A.5 Integrals

A.5.1 XANES offsite transition integral

We start by calculating the 1s-2pz transition:

doff =
∫︂

d3r ϕ1s

⎛⎜⎝ x
y
z

⎞⎟⎠ r ϕ2pz

⎛⎜⎝ x − δ cos ϑ
y − δ sin ϑ

z

⎞⎟⎠ . (A.5.1)

First, we shift the dipole moment between the atoms of sublattice A and B by r → r − δ/2

doff =
∫︂

d3r ϕ1s(r)

⎛⎜⎝ x − δ
2 cos ϑ

y − δ
2 sin ϑ
z

⎞⎟⎠ ϕ2pz

⎛⎜⎝ x − δ cos ϑ
y − δ sin ϑ

z

⎞⎟⎠ . (A.5.2)

Then, we rotate the coordinate system in direction of δ and shift x′ → x′ + δ/2, where the
prime indicates the new coordinate system. We obtain

doff =
∫︂

d3r ϕ1s

⎛⎜⎝ (x′ + δ
2) cos ϑ − y′ sin ϑ

(x′ + δ
2) sin ϑ + y′ cos ϑ

z

⎞⎟⎠
⎛⎜⎝ x′ cos ϑ − y′ sin ϑ

x′ sin ϑ + y′ cos ϑ
z

⎞⎟⎠
× ϕ2pz

⎛⎜⎝ (x′ − δ
2) cos ϑ − y′ sin ϑ

(x′ − δ
2) sin ϑ + y′ cos ϑ

z

⎞⎟⎠ . (A.5.3)
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A.5. Integrals

We define the radii r1 =
[︃(︂

x′ − δ
2

)︂2
+ y′2 + z′2

]︃1/2
and r2 =

[︃(︂
x′ + δ

2

)︂2
+ y′2 + z′2

]︃1/2
. Then,

we introduce the prolate spheroidal coordinates ξ = (r1 + r2)/δ and η = (r1 − r2)/δ. This
yields r1 = δ

2(ξ + η) and r2 = δ
2(ξ − η). Now ϕi(ξ, η) is defined. For our coordinate

system, the Cartesian coordinates as function of prolate spheroidal coordinates are z =
δ
2
√︁

(ξ2 − 1)(1 − η2) cos ϕ, y = δ
2
√︁

(ξ2 − 1)(1 − η2) sin ϕ and x = δ
2ξη. Inserting the hydrogen-

type orbitals we see that the angle-integral eliminates the x and y components. The z-
component of the integral reads in prolate spheroidal coordinates

d⊥
off = N1sN2pz

(︃
δ

2

)︃5 ∫︂ ∞

1

∫︂ 1

−1

∫︂ 2π

0
dξdηdϕ (ξ2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

× (ξ2 − 1)(1 − η2) cos2 ϕ

= N1sN2pz

(︃
δ

2

)︃5
π

∫︂ ∞

1

∫︂ 1

−1
dξdη (ξ2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4(ξ2 − 1)(1 − η2) ,

(A.5.4)

where N1s and N2pz are the normalization constants of the hydrogen-like orbitals. The left
integral is only a sum of integrals consisting of a product of exponential functions, which can
easily be evaluated. We find

doff =

⎛⎜⎝ 0
0

0.14

⎞⎟⎠ pm . (A.5.5)

After having shown the concept, we evaluate also the 1s-2px integral. The first steps are
identical. We shift the dipole moment into the center of the atoms, rotate the coordinate
system and introduce prolate spheroidal coordinates. We end up with

doff = N1sN2px

∫︂ ∫︂ ∫︂ 2π

0
dξdηdϕ

(︃
δ

2

)︃3
(ξ2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

×

⎛⎜⎝
δ
2ξη cos ϑ − δ

2
√︁

(ξ2 − 1)(1 − η2) sin ϕ sin ϑ
δ
2ξη sin ϑ + δ

2
√︁

(ξ2 − 1)(1 − η2) sin ϕ cos ϑ
δ
2
√︁

(ξ2 − 1)(1 − η2) cos ϕ

⎞⎟⎠
×
[︃(︃

δ

2ξη − δ

2

)︃
cos ϑ − δ

2

√︂
(ξ2 − 1)(1 − η2) sin ϕ sin ϑ

]︃
(A.5.6)

doff = N1sN2p

(︃
δ

2

)︃5
π

∫︂ ∞

1

∫︂ 1

−1
dξdη (ξ2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

×

⎛⎜⎝ 2ξη(ξη − 1) cos2 ϑ + (ξ2 − 1)(1 − η2) sin2 ϑ
2ξη(ξη − 1) sin ϑ cos ϑ − (ξ2 − 1)(1 − η2) sin ϑ cos ϑ

0

⎞⎟⎠ . (A.5.7)

Alternatively, we can write

doff = N1sN2p

(︃
δ

2

)︃5
π

⎛⎜⎝ cos2 ϑ sin2 ϑ 0
cos ϑ sin ϑ − sin ϑ cos ϑ 0

0 0 1

⎞⎟⎠
×
∫︂ ∞

1

∫︂ 1

−1
dξdη (ξ2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

⎛⎜⎝ 2ξη(ξη − 1)
(ξ2 − 1)(1 − η2)

0

⎞⎟⎠ (A.5.8)
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The last two integrals can again easily be evaluate, yielding the result Eq. (38). The integrals
involving the 2s and 2py can be calculated analogously.

A.5.2 EXAFS transition integral

Next, we calculate the remaining integral in Eq. (5.14) for j = 1s. We substitute (k + G) +
k⊥êz = p and write

I(p) =
∫︂

d3r ϕ1s(r) r eip·r . (A.5.9)

In spherical coordinates we can substitute for the x-component sin ϑ cos φ = −
√︁

2π/3(Y11(ϑ, φ)−
Y1−1(ϑ, φ)), for the y-component sin ϑ sin φ = i

√︁
2π/3(Y11(ϑ, φ) + Y1−1(ϑ, φ)), and for the

z-component cos ϑ =
√︁

4π/3Y10(ϑ, φ). We calculate exemplary the z-component:

Iz = 8π√
3

ζ3/2
∫︂

dr r3e−ζr
∑︂

l

l∑︂
m=−l

iljl(pr)Ylm(θ, ϕ)
∫︂ ∫︂

dϑdφ sin ϑ Y ∗
l′m′(ϑ, φ)Y ∗

lm(ϑ, φ)

= 8π√
3

ζ3/2
∫︂

dr r3e−ζr
∑︂

l

l∑︂
m=−l

(−1)miljl(pr)Ylm(θ, ϕ)
∫︂ ∫︂

dϑdφ sin ϑ Y ∗
l′m′(ϑ, φ)Ylm(ϑ, φ)

= 8π√
3

ζ3/2il′Yl′m′(θ, ϕ)
∫︂

dr r3jl′(pr)e−ζr , (A.5.10)

where we exploited in the last step the orthogonality of the spherical harmonics. Next, we
insert l′ = 1 and m′ = 0:

Iz = 8π√
3

ζ3/2iY10(θ, ϕ)
∫︂

dr r3j1(pr)e−ζr

= 8π√
3

ζ3/2iY10(θ, ϕ) 8ζp

(ζ2 + p2)3

= 32
√

πζ5/2i
kz

(ζ2 + (k + G)2)3 . (A.5.11)

The x and y-components can be obtained analogously.

A.5.3 Onsite transition integral beyond the dipole approximation

Here, we calculate the z-polarized optical onsite transition between 1s and 2pz orbital beyond
the electric dipole approximation:

d⊥
on(Q) =

∫︂
d3r ϕ1s(r)zϕ2pz (r)eiQ·r∥ . (A.5.12)

For reasons of simplicity, we drop the index β. First, we extend the integral into the
third dimension. We stress that k and G are now three-dimensional. Writing ϕ1s(r)z =
ϕ1s(r, ϑ, φ)r cos ϑ = R̃21(r)Y10(ϑ, φ) with R̃21(r) =

√︁
4/3ζ3/2r exp(−ζr) and using exp(iQ ·

r) = 4π
∑︁∞

l=0
∑︁l

m=−l iljl(Qr)Y ∗
lm(θ, ϕ)Ylm(ϑ, φ) we obtain generally

d⊥
on = 4π

∫︂ ∞

0

∫︂ π

0

∫︂ 2π

0
drdϑdφ r2 sin ϑ

∞∑︂
l=0

l∑︂
m=−l

iljl(Qr)Rn1l1(r)Rn2l2(r)Y ∗
l1m1(ϑ, φ)Yl2m2(ϑ, φ)

× Y ∗
lm(ϑ, φ)Ylm(θ, ϕ) , (A.5.13)
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A.5. Integrals

where θ and ϕ are the polar and azimuthal angles of the light wave vector. The angular
integral yields∫︂ ∫︂

dϑdφ sin ϑY ∗
l1m1(ϑ, φ)Yl2m2(ϑ, φ)Y ∗

lm(ϑ, φ) =
∫︂ ∫︂

dϑdφ sin ϑY ∗
lm(ϑ, φ)

×
l1+l2∑︂

L=|l1−l2|

L∑︂
M=−L

√︄
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

[︄
l1 l2 L
0 0 0

]︄ [︄
l1 l2 L

m1 m2 M

]︄
Y ∗

LM (ϑ, φ)

=
∫︂ ∫︂

dϑdφ sin ϑ(−1)mYl,−m(ϑ, φ)
l1+l2∑︂

L=|l1−l2|

L∑︂
M=−L

√︄
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

×
[︄
l1 l2 L
0 0 0

]︄ [︄
l1 l2 L

m1 m2 M

]︄
Y ∗

LM (ϑ, φ)

= (−1)m2
∑︂

L=|l1−l2|

√︄
(2L + 1)(2l1 + 1)(2l2 + 1)

4π

[︄
l1 l2 L
0 0 0

]︄ [︄
l1 l2 L

m1 m2 m1 − m2

]︄
δl,Lδm,m2−m1

(A.5.14)

where we used the orthogonality of the spherical harmonics and the Wigner 3j-symbols. We
have now

d⊥
on(Q, θ, ϕ) = (−1)m2

l1+l2∑︂
L=|l1−l2|

√︂
(2L + 1)(2l1 + 1)(2l2 + 1)

[︄
l1 l2 L
0 0 0

]︄ [︄
l1 l2 L

m1 m2 m1 − m2

]︄

× IL(Q)YL,m2−m1(θ, ϕ) (A.5.15)

with

IL(Q) = iL8
√

π
(ζ1ζ2)3/2

n2
1n2

2

√︂
(n1 − l1 − 1)!(n1 + l1)!(n2 − l2 − 1)!(n2 + n2)! ×

×
n1−l1−1∑︂

s1=0

n2−l2−1∑︂
s2=0

(−1)s1+s2(2ζ1/n1)l1+s1(2ζ2/n2)l2+s2ILω(γ, Q)
s1!(n1 − l1 − s1 − 1)!(s1 + 2l1 + 1)!s2!(n2 − l2 − s2 − 1)!(s2 + 2l2 + 1)!

(A.5.16)

with inserted radial functions and

ILω(γ, Q) =
∫︂ ∞

0
dr rω+2e−γrjL(Qr) =

√︃
π

2Q

Γ(L + ω + 3)
(γ2 + Q2)(ω+5/2)/2 P

−(L+1/2)
ω+3/2 [γ(γ2 + Q2)−1/2]

(A.5.17)

where P µ
ν (x) stands for the associated Legendre polynomial, γ = ζ1/n1 + ζ2/n2 and ω =

l1 + s1 + l2 + s2 ≥ L. Now, we have to insert the wave functions for the 2pz orbitals
ϕ2pz = R21(r)Y10(ϑ, φ) and obtain

d⊥
on = 1

2
√

π

(︂
I0(Q) + (3 cos2 θ − 1)I2(Q)

)︂
(A.5.18)

with I0(Q) =
√

π

12 (ζ1ζ2)5/2I02(ζ1/2 + ζ2/2, Q) and

I2(Q) = −
√

π

12 (ζ1ζ2)5/2I22(ζ1/2 + ζ2/2, Q) . (A.5.19)
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Note that ζ1 = 2Z/aB = 2ζ and ζ2 = Z/aB = ζ. We find

d⊥
on = 3

2
(2ζ2)5/2ζ

((3ζ
2 )2 + Q2)4

(︃9
4ζ2 − 2Q2 − 3Q2 cos(2θ)

)︃
. (A.5.20)

Going back to the two-dimensional case θ = π/2 and multiplying with a constant N =
4
√

6π/(3ζ) that Nϕ2pz = zϕ1s, we obtain finally

d⊥
on(Q∥) = 16

√
3πζ5(︃(︂

3ζ
2

)︂2
+ Q2

∥

)︃3 (A.5.21)

A.6 Parameters

Table 3: Electronic TMDC parameters and the free electron mass m0 = 5.68568 fs2eV/nm2.
The parameters stem from the references [140], [8], and [336].

Parameter Symbol WSe2 MoSe2 WS2 MoS2

Lattice constant a0/nm 0.332 0.332 0.318 0.319
Thickness d0/nm 0.347 0.344 0.315 0.312

Electron mass m↑K
c /m0 0.29 0.50 0.27 0.44

Electron mass m↑Λ
c /m0 0.56 0.71 0.62 0.81

Hole mass m↑K
v /m0 0.36 0.6 0.36 0.54

Dielectric constant ϵ 13.63 15.27 11.75 13.36
Plasmon energy peak Epl/eV 22.6 22.0 22.8 22.5

The phonon parameters can be found in the references [113], [104], and [105].

Table 4: Electronic parameters for graphene from the references [166], [315], [337], and [314].

Parameter Symbol Graphene
Lattice constant a0/nm 0.246
Fermi velocity vF fs/nm 1

Core binding energy ε1s/eV -283.0
2s onsite energy ε2s/eV 8.7
2p onsite energy ε2p/eV 0.0
2pz-2pz hopping tπ/eV -3.1
2s-2s hopping Vssσ/eV -6.7

2s-2px/y hopping Vspσ/eV -5.5
2px/y-2px/y hopping Vppσ/eV 5.1
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