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Abstract

Each chapter of this dissertation touches upon subjects which at first glance may not
seem related. Upon subtle inspection, aspects of tropical geometry, cluster algebras, and
zonotopal algebra all relate to the combinatorics of the associahedra and are used to study
mirror symmetry, scattering amplitudes, and other aspects of quantum mechanics. This
dissertation is a collection of works which aim to strengthen the connections between the
mathematical fields of tropical geometry, cluster algebras, and zonotopal algebra, as well as
to strengthen their utility in the toolboxes of quantum mechanical studies.

We begin with cluster algebras. It has been established in recent years how to approach
acyclic cluster algebras of finite type using subword complexes. In chapter I, we continue
this study by showing that the extended part of the mutation matrix coincides with the root
configuration in the root space, and by starting to describe the Newton polytopes of the F -
polynomials in the weight space. This chapter is based on unpublished work with Christian
Stump.

Next we move on to where cluster algebras and tropical geometry meet; in chapter II, we
show that the number of combinatorial types of clusters of type D4 modulo reflection-rotation
is exactly equal to the number of combinatorial types of tropical planes in TP5. This follows
from a result of Sturmfels and Speyer which classifies these tropical planes into seven com-
binatorial classes using a detailed study of the tropical Grassmannian Gr(3, 6). Speyer and
Williams show that the positive part Gr+(3, 6) of this tropical Grassmannian is combinator-
ially equivalent to a small coarsening of the cluster fan of type D4. We provide a structural
bijection between the rays of Gr+(3, 6) and the almost positive roots of type D4 which makes
this connection more precise. This bijection allows us to use the pseudotriangulations model
of the cluster algebra of type D4 to describe the equivalence of “positive" tropical planes in
TP5, giving a combinatorial model which characterizes the combinatorial types of tropical
planes using automorphisms of pseudotriangulations of the octogon. This chapter is based
on work with Cesar Ceballos and Jean-Philippe Labbé [14].

Next we go a bit deeper into tropical geometry, and study the moduli space of metric
graphs that arise from tropical plane curves in chapter III. There are far fewer such graphs
than tropicalizations of classical plane curves. For fixed genus g, our moduli space is a stacky
fan whose cones are indexed by regular unimodular triangulations of Newton polygons with
g interior lattice points. It has dimension 2g + 1 unless g ≤ 3 or g = 7. We compute these
spaces explicitly for g ≤ 5. This chapter is based on joint published work with Michael
Joswig, Ralph Morrison, and Bernd Sturmfels [13].

Lastly, we touch upon zonotopal algebras in chapter IV, linking the machinery of zono-
topal algebra with two particular polytopes: the Stanley-Pitman polytope and the reg-
ular simplex Simn(t1, ..., tn) with parameters t1, ..., tn ∈ Rn+, defined by the inequalities∑n

i=1 ri ≤
∑n

i=1 ti, ri ∈ Rn+, where the (ri)i∈[n] are variables. Specifically, we will discuss
the central Dahmen-Micchelli space of the broken wheel graph BWn and its dual, the P-
central space. We will observe that the P-central space of BWn is monomial, with a basis
given by the BWn-parking functions. We will show that the volume polynomial of the the
Stanley-Pitman polytope lies in the central Dahmen-Micchelli space of BWn and is precisely
the polynomial in a particular basis of the central Dahmen-Micchelli space which corresponds
to the monomial t1t2 · · · tn in the dual monomial basis of the P-central space. We will then
define the generalized broken wheel graph GBWn(T ) for a given rooted tree T on n vertices.
For every such tree, we can construct 2n−1 directed graphs, which we will refer to as gen-
eralized broken wheel graphs. Each generalized broken wheel graph constructed from T will
give us a polytope, its volume polynomial, and a reference monomial. The 2n−1 polytopes
together give a polytopal subdivision of Simn(t1, ..., tn), their volume polynomials together
give a basis for the subspace of homogeneous polynomials of degree n of the corresponding
central Dahmen-Micchelli space, and their reference monomials together give a basis for its
dual. This chapter is based on unpublished work with Amos Ron.
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Zusammenfassung

Jedes Kapitel dieser Dissertation behandlet Themenbereiche welche auf den ersten Blick
unzusammenhängend erscheinen mögen. Bei genauerer Betrachtung jedoch stellt man fest,
dass tropische Geometrie, die Theorie der Cluster Algebren und Zonotopische Algebra enge
Verbindungen zur Kombinatorik von Assoziaedern vorweisen und das jene Gebiete Anwen-
dung in der Untersuchung von Spiegelsymmetrie, Streuamplituden und weiteren Aspekten
der Quantenmechanik finden. Diese Dissertation ist eine Sammlung von Arbeiten, deren Ziel
es ist einerseits die Zusammenhänge der mathematischen Gebiete der tropischen Geometrie,
der Theorie der Cluster Algebren und zonotopaler Algebra zu vertiefen und andererseits den
Nutzen genau dieser Gebiete als Werkzeuge der Quantenmechanik zu stärken.

Wir beginnen mit Cluster Algebren. In den letzten Jahren stellte sich heraus wie azykli-
sche Cluster Algebren endlichen Typs mit Hilfe von Teilwortkomplex is the literal translation
untersucht werden können. In Kapitel I führen wir diese Bemühungen fort, indem wir zeigen,
dass der erweiterte Teil der Mutationsmatrix mit der Wurzelkonfiguration im Wurzelraum
übereinstimmt und indem wir beginnen die Newtonpolytope der F -Polynome im Gewichts-
raum zu beschreiben. Dieses Kapitel basiert auf bisher unveröffentlichter Arbeit mit Christian
Stump.

Im nächsten Themenkomplex treffen sich Cluster Algebren und tropische Geometrie; in
Kapitel II zeigen wir, dass die Zahl der kombinatorischen Typen von Clustern des Typs D4

modulo Drehspiegelungen der Anzahl kombinatorischer Typen von tropischen Ebenen in TP5

entspricht. Dies folgt aus einem Resultat von Sturmfels und Speyer, welches – mittels einer
detaillierten Untersuchung der tropischen Grassmannschen Gr(3, 6) – diese tropischen Ebe-
nen in sieben kombinatorische Klassen einteilt. Speyer und Williams zeigten, dass der positive
Teil Gr+(3, 6) dieser tropischen Grassmannschen kombinatorisch äquivalent zu einer leichten
Vergröberung des Clusterfächers vom Typ D4 ist. Wir geben eine strukturelle Bijektion zwi-
schen den Strahlen von Gr+(3, 6) und den fast positiven Wurzel vom Typ D4 an, welche diese
Verbindungen präzisiert. Diese Bijektion erlaubt es uns das Pseudotriangulierungsmodell für
Cluster Algebren des Typs D4 zu nutzen, um die Äquivalenz

”
positiver“tropischer Ebenen

in TP5 zu beschreiben, womit wir ein kombinatorisches Modell erhalten, das die kombina-
torischen Typen tropischer Ebenen mittels Automorphismen von Pseudotriangulieren des
Oktagons charakterisiert. Diese Kapitel basiert auf gemeinsamer Arbeit mit Cesar Ceballos
und Jean-Philippe Labbé [14].

Als nächstes beschäftigen wir uns näher mit tropischer Geometrie und untersuchen in
Kapitel III den Modulraum der metrischen Graphen, die als tropische ebene Kurven auftreten.
Es gibt weit weniger Graphen dieser Form als Tropikalisierungen klassischer ebener Kurven.
Für festes Geschlecht g ist unser Modulraum ein stacky Fächer, dessen Kegel von regulären
unimodularen Triangulierungen von Newtonpolygonen mit g inneren Gitterpunkten indiziert
sind. Er hat Dimension 2g + 1, außer für g ≤ 3 und g = 7. Wir berechnen diese Räume
explizit für g ≤ 5. Dieses Kapitel basiert auf gemeinsamer Arbeit mit Michael Joswig, Ralph
Morrison und Bernd Sturmfels [13].

Zuletzt betrachten wir zonotaple Algebren in Kapitel IV, indem wir die Maschinerie zono-
tapler Algebren mit zwei speziellen Polytopen verknüpfen: Das Stanley-Pitman Polytop und
der reguläre Simplex Simn(t1, ..., tn) mit Parametern t1, ..., tn ∈ Rn+, definiert durch die Un-
gleichungen

∑n
i=1 ri ≤

∑n
i=1 ti, ri ∈ Rn+,, wobei (ri)i∈[n] Variablen sind. Insbesondere werden

wir den zentralen Dahmen-Micchelli Raum des Broken Wheel Graph BWn und dessen dualen
Graphen untersuchen. Wir werden sehen, dass der P-zentrale Raum von BWn monomial ist,
wobei die Basis gegeben ist durch die BWn-parking Funktionen. Wir werden zeigen, dass
das Volumenpolynom des Stanley-Pitman Polytops im zentralen Dahmen-Micchelli Raum
von BWn liegt und mit dem Polynom in einer gewissen Basis des zentralen Dahem-Micchelli
Raums übereinstimmt, welches zu dem Monom t1t2 · · · tn in der dualen monomialen Basis
des P-zentralen Raums korrespondiert. Wir werden den verallgemeinerten Broken Wheel
Graph GBWn(T ) für einen gegeben Baum T mit n Knoten definieren. Für jeden solchen
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ZUSAMMENFASSUNG 5

Baum können wir 2n−1 gerichtete Graphen definieren, welche wir verallgemeinerte Broken
Wheel Graphen nennen werden. Für jeden solchen verallgemeinerten Broken Wheel Graph
erhalten wir ein Polytop, sein Volumenpolynom und ein Referenzmonom. Die 2n−1 Polytope
gemeinsam betrachtet liefern eine polytopale Unterteilung von Simn(t1, ..., tn), ihre Volu-
menpolynome ergeben zusammen eine Basis des Unterraums der homogenen Polynome von
Grad n des korrespondierenden zentral Dahmen-Micchelli Raums und ihre Referenzmonome
ergeben zusammen eine Basis des Dualen. This Kapitel basiert auf unveröffentlichter Arbeit
mit Amos Ron.





Preface

The research presented in this dissertation lies in the fields of tropical geometry, cluster
algebras, and zonotopal algebras, and has the intention of making the boundaries between
theses fields more clear. I am interested in studying various aspects of these fields and how
they link together in relation to the work of Alexander B. Goncharov, Alexander Postnikov,
and others on scattering amplitudes and the positive Grassmannian [3]. Their work sets a
mathematical framework for understanding the movements of massless particles and their
potential for interacting with one another. The behaviour of massless particles is calculated
via directed graphs, called plabic graphs, with bicolors vertices, in which an integral system
is associated. These plabic graphs can be mapped into the positroid stratification of the
Grassmannian, with an inverse map given by L-diagrams of Postnikov [93]. The plabic
graphs of each fiber of this map are related by a set of particular moves which change the
vertex colors and directions of the edges; these moves are described by Postnikov in [93].
When a move is performed on a plabic graph, the coordinates of its associated integrable
system change. The relations describing these changes are exactly those of a cluster algebra.

Specifically, the cluster algebras which appear in the study of plabic graphs are those
which relate to the postive part of the Grassmannian. There are such cluster algebras of both
finite and infinite type whose underlying geometric structure is that of a Grassmannian. The
connection between certain cluster algebras of finite type and the Grassmannian was first
introduced by Sergey Fomin and Andrei Zelevinsky [42]. Speyer and Williams [102] were
the first to show a connection between certain cluster algebras of finite type and the positive
part of the tropical Grassmannian, suggesting that the tropicalization of the positive part of
the Grassmannian more accurately fits the combinatorial structure of the cluster algebras in
question. They provide a parameterization for the positive part of the tropical Grassmannian
as well as describe a fan which combinatorially captures the maximal cells of the positive part
of the tropical Grassmannian.

The box spline is a multivariate function Rd → R used widely in approximation and inter-
polation theory. The box spline is very much an object of “applied” mathematics, frequently
being used for problems such as surface modeling and multidimensional signal processing.
Behind this very practical mathematical object is a wealth of pure mathematics. Box splines
are piecewise polynomial functions of several variables which have many well-studied algeb-
raic and combinatorial objects associated to it: matroids, hyperplane arrangements, toric
arrangements, polytopes, and zonotopal spaces, which were introduced by Amos and Holtz
in [59].

These algebraic and combinatorial objects associated to box splines are also found, in
particular, in the study of Lie groups and cluster algebras. As every cluster algebra is also
related to a generalized associahedra, by working backwards and uncovering the zonotopal
structure of the associahedra, a connection between box splines and cluster algebras can be
made, thus establishing a potential link between box splines and the physics captured by
scattering amplitudes. This link could help physicists make measurements on the physical
spaces captured by cluster algebras they study and analyze probability distributions and
other data they associate to cluster algebras. Furthermore, some of the zonotopal spaces
associated to box splines capture certain solution sets to systems of differential equations.
Thus, this link could also shed some light on the differential equations needed to model the
physical behaviour modeled by scattering amplitudes.
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This dissertation is composed of four works whose motivation comes from the story just
told. They are more or less unchanged, with some modifications where appropriate.

Chapter I is based on an unpublished project with Christian Stump. My role in this
project was in working closely with Christian to prove the results presented in this chapter.

Chapter II is based on a project with Cesar Ceballos and Jean-Philippe Labbé [14] which
has been submitted to the journal Beiträge zur Algebra und Geometrie. My role in this
project was in working with Cesar and Jean-Philippe to prove the results presented in this
chapter as well as working with Jean-Philippe on all computations needed.

Chapter III is based on a project with Michael Joswig, Ralph Morrison, and Bernd
Sturmfels [13] which has been published in Research in the Mathematical Sciences. My role
in this project was to work closely with Michael Joswig on performing the computations
needed and documenting the computational methods used.

Chapter IV is based on an unpublished project with Amos Ron. My role in this project
was to work with Amos to prove and write-up all results presented in this chapter.
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and Carlos Améndola for always including me and making me feel welcome. Your kindness
made all the difference in the world to me.
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CHAPTER I

Cluster Algebras

Let (W,S) be a finite crystallographic Coxeter system of rank n with simple system S,
and let c ∈ W be a standard Coxeter element for (W,S); i.e. c = s1 · · · sn is the product of
all elements in S in some order. Let A = (ast)s,t∈S be a crystallographic Cartan matrix for
(W,S); i.e. an integral matrix (ast)s,t∈S such that ass = 2, ast ≤ 0, astats = 4 cos2( π

mst
) and

ast = 0⇔ ats = 0 for all s 6= t ∈ S where mst is the order of st in W , and let ∆ ⊆ Φ+ ⊆
Φ≥−1 ⊆ Φ ⊆ L = Z∆ be the resulting root system with simple roots ∆ = {αs : s ∈ S},
positive roots Φ+, and almost positive roots Φ≥−1 = Φ+ t −∆. For convinience, we also
set αi := αsi . As ast = 0 if and only if st = ts, we think of a the standard Coxeter element c
as an acyclic orientation of the Dynkin diagram by orienting an edge s→ t if s comes before t
in any given but fixed reduced word c = s1s2 · · · sn.

Associating an initial seed of a cluster algebra of finite type with principal coefficients to
this data is well established; we refer to [39] (and also to [37, 38]) for all needed background
on cluster algebras: for a given such orientation of the Dynkin diagram, define the skew-
symmetrizable matrix Mc = (bst)s,t∈S by

bst =


−ast if s→ t,

ast if s← t,

0 else.

The initial cluster seed is then given by
(
M̃c,x,y

)
where the (extended) exchange matrix M̃c is

the (2n×n)-matrix
[
Mc

11n

]
with principal part Mc and extended part 11n being an identity mat-

rix, x = (x1, . . . , xn) are the cluster variables (the cluster of the seed), and y = (y1, . . . , yn)
are the frozen variables (the coefficients of the seed). One should think of the variables xk
and yk as being indexed by αk for all 1 ≤ k ≤ n, so they are indexed in a way that is consistent
with the order of the simple reflections in the given Coxeter element c. Let A(W, c) := A(M̃c)
be the cluster algebra generated from this initial seed.

It is known that every cluster variable u(x,y) ∈ A(W, c) lives inside the ring

Z[x±1
1 , . . . , x±1

n ; y1, . . . , yn];

i.e. u(x,y) = p(x,y)/m(x) where p(x,y) is a polynomial in x,y with integer coefficients
and m(x) in a monomial in x, see [39, Proposition 3.6]. The d-vector d(u) of u(x,y) is
the exponent vector of the denominator monomial m(x), i.e., d(u) = (d1, . . . , dn) for m(x) =

xd1
1 · · ·xdnn and should be thought of as a vector in the basis ∆, i.e., d(u) = d1α1+. . .+dnαn ∈
L. Under this identification, it was shown in [38, Theorem 1.9], that the map u 7→ d(u) is
a bijection between all cluster variables in A(W, c) and the almost positive roots Φ≥−1, and
that furthermore, d(u) = −αi ∈ −∆⇔ u(x,y) = x−1

i . We will regularly use this bijection in
indexing objects. For example, set Fu(y) = Fβ(y) = u(1,y) = p(1,y) to be the F-polynomial
associated to u(x,y) ∈ A(W, c) and to β ∈ Φ≥−1 with d(u) = β. (As Fβ(y) = 1 for β ∈ −∆,
one often considers F -polynomials only associated to positive roots.)

We also think of any exchange matrix M̃ =

[
Mpr

Mex

]
of a cluster seed of A(W, c) with cluster

{u1, . . . , un} as being indexed as follows: Row and column i of Mpr are both indexed by the
almost positive root associated to ui. Equally, column i of Mex is indexed by this almost

13



14 I. CLUSTER ALGEBRAS

positive root, while row i ofMex is indexed by the simple root αi. The c-vector c(u) = c(β) ∈ L
with β = d(u) inside the cluster {u1, . . . , un} is then given by the column vector of Mex in
the column indexed by the almost positive root β, written as a linear combination of the
simple roots,

c(u) = c(β) = [Mex]α1,βα1 + . . .+ [Mex]αn,βαn,

where we emphasize that this not only depends on the variable u(x, y) but on the actual seed.

Every cluster seed is uniquely determined by its cluster, and the cluster complex ofA(W, c)
is the simplicial complex with ground set being the set of cluster variables, and with facets
being the clusters. Cluster complexes of finite type with the initial seed coming from a
bipartite Coxeter element (i.e., those where every vertex in the corresponding orientation of
the Dynkin diagram is a sink or a source) were studied and completely described in terms
of compatibility of d-vectors in [38]. Polytopal realizations of the cluster complex of type
A(W, c) were first obtained by F. Chapoton, S. Fomin, and A. Zelevinsky in [25] for bipartite
Coxeter elements, and by C. Hohlweg, C. Lange, and H. Thomas in [57] for general Coxeter
elements.

Despite the nice combinatorial descriptions of the cluster complex and its polytopal real-
ization in terms of the corresponding root system given by sending a cluster variable to its
denominator vector, to the best of our knowledge there has not been any successful attempt
to describe the numerator of the cluster variables from that perspective. In particular, no
explicit construction of the cluster variables for finite type cluster algebras is known that does
not use the defining iterative procedure (which we recall in Section 2).

The aim of this chapter is to start the program to describe the cluster variables
in finite types in terms of combinatorial data from root systems.

With this aim, we follow the recently introduced subword complex approach to finite type
cluster algebras. These subword complexes were introduced by A. Knutson and E. Miller in
the context of Gröbner geometry of Schubert varieties in [70, 69]. Their appearance in the
context of finite type cluster algebras was established by C. Ceballos, J.-P. Labbé, V. Pilaud,
and C. Stump in various collaborations. In particular, it was given

. a description of the cluster complex of the cluster algebra A(W, c) [18, Theorem 2.2],

. a new and rather simple description of its polytopal realization [89, Theorem 6.4],

. a proof that the barycenter of this realization equals the barycenter of the corres-
ponding permutahedron [90, Theorem 1.1],

. an explicit description of the principal parts of the exchange matrices of the clusters
[89, Theorem 6.20], and

. and an explicit description of the d-vectors with respect to any initial seed [19,
Corollary 3.4].

In the present chapter, we provide the following two constructions in terms of subword
complexes towards this aim. First, we show in Theorem 1.7 that the extended part of the
mutation matrices of the cluster algebra A(W, c) coincides with the root configuration, and
second, we start the development of understanding the F -polynomials for A(W, c) in The-
orem 1.10 and Theorems 1.11 and 1.12) by describing their (partially conjectured) Newton
polytopes.

Observe that the first part also implies that one obtains as well the g-vectors by consid-
ering the coroot configuration instead together with inverting the corresponding matrix. A
combinatorial description of the F -polynomials would therefore be the last step to provide
a complete description of the cluster variables as it is well known how to recover these from
the the g-vectors and the F -polynomials, see [39].

Two further remarks about previous work is in order:
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(i) As we will later use, R. Schiffler gave an explicit description of the cluster variables of
type An via T -paths on triangulations on the regular (n+ 3)-gon [99], and G. Musiker
and R. Schiffler generalized that description to cluster variables for cluster algebras
associated to unpunctured surfaces with arbitrary coefficients [86].

(ii) N. Reading and D. Speyer provide a general combinatorial framework for cluster algebras
to obtain information about exchange matrices, principal coefficients, and g-vectors
in [97], see Theorems 1.5 and 1.9 for further details. As we will see there, the two
approaches are closely related. The two main differences currently are that our approach
has not been extended beyond finite type, while their approach only uses (their versions
of) the root and the coroot configurations, while they do not use the complete (co-)root
and (co-)weight functions. We will (in parts conjecturely) see in Theorem 1.10 how one
can extract information about F -polynomials using the weight function.

To later see the close relationship between F -polynomials and the combinatorics of sub-
word complexes, we provide the following well understood running example of type A2.

Example 0.1. The cluster variables in the cluster algebra generated from the initial seed
of type A2 with principal coefficients and their d-vectors and F -polynomials are given by:

u(x,y) d(u) ∈ Φ≥−1 Fu(y)

x1 = 1
x−1

1

−α1 1

x2 = 1
x−1

2

−α2 1

x2+y1

x1
α1 y1 + 1

x1y1y2+x2+y1

x1x2
α1 + α2 y1y2 + y1 + 1

x1y2+1
x2

α2 y2 + 1

Any two cluster variables in cyclically consecutive rows form a cluster. The five cluster seeds
and the cluster complex are thus given by:

0 1
-1 0
1 0
0 1

{
x1, x2

}{
y1, y2

}
0 -1
1 0
-1 1
0 1

{x2+y1

x1
, x2

}{
1
y1
, y1y2

}0 -1
1 0
1 0
0 -1

{
x1,

x1y2+1
x2

}{
y1,

1
y2

}

0 1
-1 0
-1 0
0 -1

{x1y1y2+x2+y1

x1x2
, x1y2+1

x2

}{
1
y1
, 1
y2

} 0 -1
1 0
-1 0
-1 1

{x1y1y2+x2+y1

x1x2
, x2+y1

x1

}{
1

y1y2
, y2

}
Observe that between the two clusters

{x2+y1

x1
, x2

}
and

{x1y1y2+x2+y1

x1x2
, x2+y1

x1

}
, we switched

the position of the common variable in the sense that the two columns and the first two rows
of the mutation matrices switched. This is unavoidable and has to be done within this 5-
cycle; to better keep track of this, we prefer—as mentioned—to think of the columns and rows
being indexed by almost positive roots and simple roots rather than by the linear ordering
in which rows/columns of matrices usual thought of.
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1. Definitions and main results

We start with recalling several notions from finite roots systems and the theory of subword
complexes and their relations to the cluster algebra A(W, c). We refer to [89] for a detailed
treatment of these notions and further background.

Consider the finite crystallographic Coxeter system (W,S) acting essentially on a Euc-
lidean vector space

(
V, 〈 · | · 〉

)
of dimension n, with simple roots ∆ = {αs : s ∈ S} and simple

coroots ∆∨ = {α∨s : s ∈ S}. We then have that α∨s = 2αs/ 〈αs |αs 〉, and that the crystallo-
graphic Cartan matrix A = (ast)s,t∈S is given by ast = 〈αt |α∨s 〉. The fundamental weights
∇ = {ωs : s ∈ S} and fundamental coweights ∇∨ = {ω∨s : s ∈ S} are the bases dual to the
simple coroots and to the simple roots, respectively. This is, 〈ωs |α∨t 〉 = 〈αs |ω∨t 〉 = δs=t.
It is then easy to check that αs =

∑
t∈S atsωt and α∨s =

∑
t∈S astω

∨
t , and that moreover,

s(ωt) = ωt − δs=tαs for s ∈ S. Given the Coxeter element c with fixed reduced word
c = s1 · · · sn, we will often write αi = αsi , α∨i = α∨si , ωi = ωsi , and ω∨i = ω∨si for simpli-
city. Denote by Φ = W (∆) =

{
w(αs) : w ∈ W, s ∈ S

}
the root system for (W,S), by

Φ+ = Φ ∩R≥0∆ the positive roots, and by Φ≥−1 = Φ+ t −∆ ⊆ Φ the set of almost positive
roots. We will often write |Φ+| = N , so that |Φ≥−1| = n+N .

Now let Q be a word in the simple generators S and let ρ ∈ W . The subword com-
plex SC(Q, ρ) is the simplicial complex of subwords of Q whose complement contains a re-
duced expression of ρ (we refer to Theorem 1.6 for a detailed example). In this paper, we
are only interested in the case that ρ = w◦ is the unique longest element in W with respect
to the weak order, and Q being one specific word constructed from the Coxeter element c,
see below. We thus write SC(Q) for SC(Q, w◦) and assume that Q does indeed contain a
reduced expression for w◦. Define Ig and Iag to be the lexicographically first and last facets
of SC(Q), respectively. These are called greedy facet and antigreedy facet.

For Q = q1 · · · qm, associate to any facet I of the subword complex SC(Q) a root function
r(I, ·) : [m]→W (∆) and a weight function w(I, ·) : [m]→W (∇) defined by

r(I, k) = ΠQ[k−1]rI(αqk) and w(I, k) = ΠQ[k−1]rI(ωqk),

where ΠQX denotes the product of the simple reflections qx ∈ Q, for x ∈ X, in the order given
by Q. For later convenience, we as well define the coroot function r∨(I, ·) : [m] → W (∆∨)
and a coweight function w∨(I, ·) : [m]→W (∇∨) by

r∨(I, k) = ΠQ[k−1]rI(α
∨
qk

) and w∨(I, k) = ΠQ[k−1]rI(ω
∨
qk

).

The root function locally encodes the flip property in the subword complex: each facet
adjacent to I in SC(Q) is obtained by exchanging an element i ∈ I with the unique element j /∈
I such that r(I, j) ∈ {±r(I, i)}. If i < j such a flip is called increasing, and decreasing
otherwise. Observe moreover that the greedy facet and the antigreedy facet are the unique
facets such that every flip is increasing and decreasing, respectively.

After this exchange, the root function and the weight function is updated by a simple ap-
plication of sr(I,i), see Theorem 2.2. The root function is used to define the root configuration
of the facet I as the multiset

R(I) =
{{
r(I, i) : i ∈ I

}}
, (I.1)

and the coroot function is used to define the coroot configuration of the facet I as the multiset

R∨(I) =
{{
r∨(I, i) : i ∈ I

}}
. (I.2)

For later convenience, we denote by r(I, i)j =
〈
r(I, i)

∣∣∣ω∨j 〉 the coefficient of αj in the root
r(I, i).

On the other hand, the weight function is used to define the brick vector of I as

B(I) =
∑
k∈[m]

w(I, k),
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and the brick polytope of Q is defined to be the convex hull of the brick vectors of all facets
of the subword complex SC(Q),

B(Q) = conv
{
B(I) : I facet of SC(Q)

}
.

It was shown in [89] that the brick polytope B(Q) is the Minkowski sum of Coxeter matroid
polytope in the sense of [11].

Theorem 1.1 ( [89, Proposition 1.5]). For any word Q in S of length m containing a
reduced expression for w◦ we have that

B(Q) =
∑

k∈[m]
B(Q, k)

where B(Q, k) = conv
{
w(I, k) : I facet of SC(Q)

}
.

For the Coxeter element c with the fixed reduced word c = s1 · · · sn, the Coxeter sorting
word (or c-sorting word) c(ρ) of an element ρ ∈ W is given by the lexicographically first
subword of c∞ that is a reduced expression for ρ. Observe that the word c(ρ) depends on the
reduced expression and should thus thought of being associated to the Coxeter element c and
being defined up to commutations of consecutive commuting letter. This notion was defined
by N. Reading in [96] and plays an important role in the combinatorial descriptions of finite
type cluster algebras and in particular in the description of cluster complexes in terms of
subword complexes. In particular, the main results in [18] and [89] provide the following
description of the combinatorics of the cluster complex of A(W, c):

Theorem 1.2 ([18, Theorem 2.2]). The cluster complex of the cluster algebra A(W, c) is
isomorphic to the subword complex SC

(
cw◦(c)

)
.

We thus refer to SC
(
cw◦(c)

)
as the c-cluster complex (where we again abuse notation

and use the fixed reduced expression for c). One identifies positions in cw◦(c) and almost
positive roots by sending the kth letter sk of the initial copy of c to the negative simple root
−αsk , and the kth letter qk of c(w◦) to the positive root q1 · · · qk−1(αqk). See Theorem 2.2
that this indeed is a bijection, and observe that this equals the root function of the greedy
facet outside of it,

q1 · · · qk−1(αqk) = r(Ig, n+ k). (I.3)

This identification yields the isomorphism in Theorem 1.2 by sending a cluster to the
positions inside the word cw◦(c) corresponding to the almost positive roots of the d-vectors
of the cluster. To make this explicit, we use th following notations: Let I = {i1 < . . . < in}
be a facet of the cluster complex SC

(
cw◦(c)

)
. We then denote by S(I) =

(
M̃(I),u(I), f(I)

)
with

M̃(I) =

[
Mpr(I)
Mex(I)

]
u(I) =

(
ui1(I), . . . , uin(I)

)
f(I) =

(
fi1(I), . . . , fin(I)

)
the cluster seed of A(W, c) corresponding to I under the given isomorphism between cluster
variables, almost positive roots, and positions in the word cw◦(c). The columns of M̃(I) are
then also indexed by the positions i1, . . . , in as are the rows of Mpr(I), while the rows of
Mex(I) are indexed by the positions 1, . . . , n. We also denote by c(I, i) the c-vector coming
from column i ∈ I of Mex(I).

Polar polytopal realizations of the cluster complex were first obtained by F. Chapoton,
S. Fomin, and A. Zelevinsky in [25] for bipartite Coxeter elements, and by C. Hohlweg,
C. Lange, and H. Thomas in [57] for general Coxeter elements. As one obtains for type An
classical constructions of associahedra, such a polytopal realization is called c-associahedron.
The subword complex approach and the brick polytope construction provide a rather simple
construction.
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Theorem 1.3 ([89, Theorem 4.9]). The cluster complex is realized by the polar of the
brick polytope B(cw◦(c)). In other words, the brick polytope B(cw◦(c)) is a c-associahedron.

Indeed, this vertex description of a polytopal realization is equal to the construction
in [57] up to a translation, see [89, Corollary 6.10].

Theorem 1.4 ([89, Theorem 6.40]). Let I be a facet of SC
(
cw◦(c)

)
. The principal part

of the exchange matrix M̃(I) is then given by

Mpr(I)ij =


−
〈
r(I, j)

∣∣ r∨(I, i)
〉

if i < j〈
r(I, j)

∣∣ r∨(I, i)
〉

if i > j

0 if i = j

where Q = q1 · · · qn+N = cw◦(c) and i, j ∈ I.

The following remark starts to clarify the connection between the subword complex ap-
proach to finite type cluster algebras and the approach using N. Reading and D. Speyer’s
combinatorial frameworks [97].

Remark 1.5. The central structures in their combinatorial frameworks are the labels and
colabels. We have seen in [89, Proposition 6.20] that the labels in finite types are the root
configurations defined in (I.1), and we obtain by duality that the colabels in finite types are the
coroot configurations defined in (I.2). Given this connection in finite types, we immediately
obtain that Theorem 1.4 is the same description as given in [97, Theorem 3.25]. See also
Theorem 1.9 for the relation of the subword complex approach and [97, Theorem 3.26].

Before presenting the results of this paper, we would like to expain them in great detail
in the example of type A2, as we hope that this makes them easier to understand.

Example 1.6. This example shows the construction of the c-cluster complex SC
(
cw◦(c)

)
of type A2, and its close similarity to the type A2 cluster algebra in Theorem 0.1. Let W
be the symmetric group A2 = S3 with simple transpositions S = {s1 = (12), s2 = (23)},
Coxeter element c = s1s2 = (123), simple roots ∆ = {α1 = e1 − e2, α2 = e2 − e3}, and
fundamental weights ∇ = {e1, e1 + e2}. The word Q = cw◦(c) is then given by

q1q2 q3q4q5 = s1s2︸︷︷︸
c

s1s2s1︸ ︷︷ ︸
c(w◦)

,

and the facets of SC
(
cw◦(c)

)
are thus

{q1, q2}, {q2, q3}, {q3, q4}, {q4, q5}, {q1, q5}.
The following table records the root function of SC

(
cw◦(c)

)
indexed both by almost positive

roots and positions in the word Q:

−α1 −α2 α1 α1 + α2 α2

I 1 2 3 4 5

Ig = {q1, q2} (1,−1, 0) (0, 1,−1) (1,−1, 0) (1, 0,−1) (0, 1,−1)
{q2, q3} (1,−1, 0) (1, 0,−1) (−1, 1, 0) (1, 0,−1) (0, 1,−1)
{q3, q4} (1,−1, 0) (1, 0,−1) (0, 1,−1) (−1, 0, 1) (0,−1, 1)

Iag = {q4, q5} (1,−1, 0) (1, 0,−1) (0, 1,−1) (−1, 1, 0) (0, 1,−1)
{q1, q5} (1,−1, 0) (1,−1, 0) (1, 0,−1) (1,−1, 0) (0,−1, 1)

Observe that the root configuration of a facet I (indicated in grey) written in simple roots
coincides with the columns of the extended parts of the mutation matrices in Theorem 0.1.
E.g., the facet {q3, q4} corresponds to the cluster seed where the d-vectors are the almost
positive roots

(
α1, α1 + α2

)
. It has (ordered) root configuration

(
α2,−α1 − α2

)
which cor-

responds to the two columns c(α1) = (0, 1) and c(α1 + α2) = (−1,−1) in the extended part
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of the mutation matrix for that cluster (indexed by the cluster variables). This phenomenon
will be explained in all finite types in Theorem 1.7.

Similarly, the following table records the weight function of SC
(
cw◦(c)

)
:

−α1 −α2 α1 α1 + α2 α2

I 1 2 3 4 5 B(I)

Ig = {q1, q2} (1, 0, 0) (1, 1, 0) (1, 0, 0) (1, 1, 0) (0, 1, 0) (4, 3, 0)
{q2, q3} (1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 1, 0) (0, 1, 0) (3, 4, 0)
{q3, q4} (1, 0, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (0, 1, 0) (2, 4, 1)

Iag = {q4, q5} (1, 0, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (0, 0, 1) (2, 3, 2)
{q1, q5} (1, 0, 0) (1, 1, 0) (1, 0, 0) (1, 0, 1) (0, 0, 1) (4, 1, 2)

This yields that the brick polytope is given by

B(cw◦(c)) = conv
{

430, 340, 241, 232, 412
}

= conv{100}+ conv{110}+ conv{100, 010}
+ conv{110, 011, 101}+ conv{010, 001}.

There are multiple things to be observed in this table which will be explained in this
paper. Most importantly, one shifts all weights inside a column by the weight in the row of
the antigreedy facet Iag and expresses the result in terms of the simple roots to obtain in each
column the exponent vectors of the monomials in the F -polynomials for the corresponding
cluster variable:

−α1 −α2 α1 α1 + α2 α2 B(I)− B(Iag)

Ig = {q1, q2} (0, 0) (0, 0) (1, 0) (1, 1) (0, 1) (2, 2)
{q2, q3} (0, 0) (0, 0) (0, 0) (1, 1) (0, 1) (1, 2)
{q3, q4} (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 1)

Iag = {q4, q5} (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
{q1, q5} (0, 0) (0, 0) (1, 0) (1, 0) (0, 0) (2, 0)

1 1 1+ 1+ 1+
Fβ(y) y1 y1+ y2

y1y2 y2

We will prove this phenomenon in type An, while we will only conjecture generalizations
thereof in other types.

Nevertheless, the following properties of the columns perfectly match properties of F -
polynomials in general and hold for general finite type c-cluster complexes:
(i) Inside the columns the weight is constant within the entries inside the facets (the entries

in grey) and this weight also coincides with the weight in the row of the antigreedy facet.
(ii) When shifting all weights inside the columns by this entry, all entries inside the facets

become 0 and the first row coincides with the first row for the table of the root function
in the positions corresponding to the positive roots.

(iii) Every other entry is obtained from the entry in the first (last) row by subtracting
(adding) simple roots.

The second item corresponds to the facts that the F -polynomials have a constant term 1
and a monomial with exponent vector equal to the d-vector, and the third item corresponds
to the fact that this monomial is the unique monomial of hightest degree and is divided by
every other monomial in the F -polynomial.

The first result shows the close relationship between the extended part of the mutation
matrix in finite type cluster algebras and the root function of the corresponding subword
complex.
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Theorem 1.7. Let I be a facet of the c-cluster complex SC(cw◦(c)) corresponding to the
seed S(I) in the cluster algebra A(W, c). Then the columns of Mex(I) are given by the root
configuration, i.e.,

c(I, i) = r(I, i).

As a direct consequence, we get the following description of the frozen variables in terms
of the roof configuration. Recall that r(I, i)j =

〈
r(I, i)

∣∣∣ω∨j 〉 denotes the coefficient of αj in
r(I, i).

Corollary 1.8. In the situation of Theorem 1.7, we obtain

fi(I) = y
r(I,i)1

1 · · · yr(I,i)nn .

Proof. The theorem gives that [Mex]ji = r(I, i)j . The corollary will thus follow with
the well known Theorem 2.1 below. �

Remark 1.9. We have seen in Theorem 1.5 how the description of the mutation matrix
through subword complexes relates to the description through N. Reading and D. Speyer’s
combinatorial frameworks. Indeed, Theorem 1.7 is the subword complex counterpart of [97,
Theorem 3.26]. Our theorem above is exactly their Theorem 3.26(1), and their parts (2)–(5)
as well follow by the same arguments:
(i) Every c-vector is a root in the root system and thus has a definite sign.
(ii) The g-vectors are the basis vectors given by the dual basis of the coroot configuration,

as obtained from the fact that the c-vectors and the g-vectors are related this way.
(iii) The g-vectors form a basis for the weight lattice as the root configuration forms a basis

of the root lattice and the coroot configuration forms a basis for the coroot lattice, which
follows directly from their well-known recursive descriptions (see [89, Proposition 6.20].

(iv) all F -polynomials in finite type have constant term 1, as this follows from (i) via [39,
Proposition 5.6].

We have now seen how to obtain properties from the root and coroot configuration.
Indeed, we have not used the root and coroot functions outside of the facets to derive data.
This does not seem very surprising in light of Theorem 2.2 which recalls that the root function
on the complement of a given facet is always the complete set of positive roots.

Next, we look at properties of the cluster algebra that can be studied using the weight
function, this time both inside and also outside of a given facet. To state these, we define
(in the usual way) the Newton polytope of an F -polynomial Fβ(y) as the convex hull of its
exponent vectors in the root basis. This is,

Newton
(
Fβ(y)

)
= conv

{
λ1α1 + . . .+ λnαn : yλ1

1 · · · y
λn
n monomial in Fβ(y)

}
.

Conjecture 1.10. Let Fβ(y) be the F -polynomial associated to the positive root β for
the cluster algebra A(W, c). Let i be the index 1 ≤ i ≤ N associated to β in Equation (I.3).
Then

Newton
(
Fβ(y)

)
= conv

{
w(F, n+ i)− w(Iag, n+ i) : F facet of SC

(
cw◦(c)

)}
.

Theorem 1.11. Conjecture 1.10 holds for A(W, c) with W of type An.

This theorem will be proved in Section 3 by relating it to the combinatorial model of
type An cluster algebras of R. Schiffler [99] using its description given by G. Musiker and
R. Schiffler in [86]. Observe moreover that this property for the linear Coxeter element
c = (1, . . . , n+ 1) in An was indeed already found by A. Postnikov in [91], see Corollary 8.2
and the following two paragraphs, where he in particular showed that this Minkowski sum of
Newton polytopes is exactly the realization given by J.-L. Loday in [76].

Theorem 1.12. Conjecture 1.10 holds for A(W, c) and in all exceptional types.
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Proof. This was obtained via explicit computer explorations using various Sage packages
written by Christian Stump and his collaborators. �

This conjecture would have the following immediate corollary.

Corollary 1.13. If Theorem 1.10 holds for A(W, c), then the c-associahedron B(cw◦(c))
coincides up to translation with the Minkowski sum of the Newton polytopes of the F -polynomials
of A(W, c).

Proof. This then follows from the Minkowski decomposition of any brick polytope into
Coxeter matroid polytopes given in Theorem 1.1. �

Corollary 1.14. If Theorem 1.10 holds for A(W, c), then any F -polynomial Fβ(y) has
a unique monomial of maximal degree whose exponent vector equals β, and such that any of
its monomials divides this monomial of maximal degree.

Proof. This will follow from Theorem 2.7. �

2. Proof of 1.7

In this section, we prove Theorem 1.7 and also provide several auxillary results for general
finite type c-cluster complexes. These will be then used in Section 3 to show the close
relationship of the F -polynomial and the weight vectors.

We start with recalling cluster mutations on cluster seeds. Let S =
(
M̃,u, f

)
with M̃ =[

Mpr

Mex

]
be a cluster seed as above. Given that we have indexed colums of M̃ and the rows

of Mpr both by the d-vectors of the cluster variables u = (u1, . . . , un), we now mutate S at
β ∈ Φ≥−1 such that β = d(ui). The seed mutation µi = µβ in direction β defines a new seed
µi(S) = (M̃′,x′,y′) defined by the following exchange relations, written for better readability
in the indices {1, . . . , n} of {u1, . . . , un} rather than in their d-vectors:

(1) The entries of M̃′ = (b′k`) are given by

b′k` =


−bk` if k = i or ` = i

bk` + bkibi` if bki > 0 and bi` > 0

bk` − bkibi` if bki < 0 and bi` < 0

bk` otherwise.

(2) The cluster variables u′k of the cluster u′ = {u′1, . . . , u′n} are given by u′k = uk for
k 6= i and

u′i =
fi
∏
u

max{bki,0}
k +

∏
u

max{−bki,0}
k

(fi ⊕ 1)ui

(3) The frozen variables f ′` of the coefficients f = {f ′1, . . . , f ′n} are given by

f ′` =

{
f−1
i if ` = i

f`f
max{bi`,0}
i (fi ⊕ 1)−bi` if ` 6= i

.

As usual, we use in (2) and (3) the tropical notation ⊕ which is defined for monomials by
(
∏
i y
ai
i )⊕

(∏
i y
bi
i

)
=
∏
i y

min{ai,bi}
i .

Corollary 2.1 ([39, (2.13)]). The frozen variables are given by

fi = y
[Mex]1i
1 · · · y[Mex]ni

n .

To prove Theorem 1.7, we will show that the entries in the root configuration behave as
described in the matrix mutation in (1) for the c-vectors. In order to properly set this up,
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it will be convenient to use that one can extract the coefficient of αj in the root r(I, i) using
the inner product with the fundamental coweights, as we need to show that[

Mex(I)
]
ji

= r(I, i)j =
〈
r(I, i)

∣∣ω∨j 〉 .
The argument will follow the same lines as the proof of Theorem 1.4 in [89]. We will

frequenently make use of the following lemma:

Lemma 2.2 ([18, Lemma 3.3 & Lemma 3.6], [89, Lemma 3.3 & Lemma 4.4]). Let I and J
be two adjacent facets of the subword complex SC(Q) with I \ i = J \ j. Then

(1) The map r(I, ·) : k 7→ r(I, k) is a bijection between the complement of I and Φ+.
(2) The position j is the unique position in the complement of I for which r(I, j) ∈
{±r(I, i)}. Moreover, r(I, j) = r(I, i) ∈ Φ+ if i < j, while r(I, j) = −r(I, i) ∈ Φ−

if j < i.
(3) The map r(J, ·) is obtained from r(I, ·) by

r(J, k) =

{
sr(I,i)(r(I, k)) if min{i, j} < k ≤ max{i, j},

r(I, k) otherwise.

(4) The map w(J, ·) is obtained from w(I, ·) by

w(J, k) =

{
sr(I,i)(w(I, k)) if min(i, j) < k ≤ max(i, j),

w(I, k) otherwise.

(5) For k′ /∈ I, we have 〈 r(I, k′) |w(I, k) 〉 is non-negative if k′ ≥ k, and non-positive
if k′ < k.

The initial condition is satisfied by definition:

Lemma 2.3. Let Ig be the greedy facet of SC(cw◦(c)). Then[
Mex(Ig)

]
ji

=
〈
r(Ig, i)

∣∣ω∨j 〉 .
Proof. This is the case as both sides are clearly equal to

〈
αi

∣∣∣ω∨j 〉. �

Lemma 2.4. Let I, J be two faces of SC(cw◦(c)) with I \ i = J \ j, and let k ∈ I \ i and
` ∈ {1, . . . , n}. Then r(J, j) = −r(I, i) and

r(J, k)` =


r(I, k)` + r(I, i)` ·

[
Mpr(I)

]
ik

if r(I, i)` ≥ 0,
[
Mpr(I)

]
ik
≥ 0,

r(I, k)` − r(I, i)` ·
[
Mpr(I)

]
ik

if r(I, i)` ≤ 0,
[
Mpr(I)

]
ik
≤ 0,

r(I, k)` otherwise.

Proof. The property that r(J, j) = −r(I, i) holds in general for facets I \ i = J \ j in
subword complexes. It is a direct consequence of Theorem 2.2(2).

It thus remains to show that r(J, k)` is obtained from r(I, k)` as desired. For simplicity,
observe that we can assume that i < j as every facet of any subword complex SC(Q) can
be obtained from the greedy facet by a sequence of increasing flips. This implies, again by
Theorem 2.2(2), that r(I, i) ∈ Φ+ and thus r(I, i)` ≥ 0. The case of a decreasing flip i > j
could as well be computed in the exact same way.

The first case is i < k < j. It follows from [89, Lemma 6.43] that also
[
Mpr

]
ik
≥ 0. And,

as desired, we obtain

r(J, k)` =
〈

ΠQ[k]\J(αqk)
∣∣ω∨` 〉

=
〈

ΠQ[i]\I · qi
(
ΠQ[i,k]\I(αqk)

) ∣∣ω∨` 〉
=
〈

ΠQ[i]\I ·
(

ΠQ[i,k]\I(αqk)−
〈

ΠQ[i,k]\I(αqk)
∣∣α∨qi 〉αqi) ∣∣∣ω∨` 〉

=
〈

ΠQ[k]\I(αqk)
∣∣ω∨` 〉− 〈ΠQ[i,k]\I(αqk)

∣∣α∨qi 〉 · 〈ΠQ[i]\I(αqi)
∣∣ω∨` 〉

= r(I, k)` + r(I, i)` ·
[
Mpr(I)

]
ik
.



2. PROOF OF 1.7 23

The second equality is obtained as we do the flip from i ∈ I to j ∈ J , the third equality is
the definition of the application of the simple reflection qi to ΠQ[i,k]\I(αqk), and the fourth
equality is the linearity of the inner product.

The second case is k /∈ [i, j]. It follows from [89, Lemma 6.43] that
[
Mpr

]
ik
≤ 0, while

r(I, i)` ≥ 0. And indeed, the flip from i to j does not effect the root function at k, and we
obtain that r(I, k)` = r(J, k)`, as desired. �

We are now in the situation to deduce Theorem 1.7.

Proof of Theorem 1.7. It follows from (1) and Theorem 2.4 that[
Mex(I)

]
`k

= r(I, k)` =⇒
[
Mex(J)

]
`k′

= r(J, k′)`

for I \ i = J \ j and either k = k′ 6= i or k = i and k′ = j. As Theorem 2.3 provides the
equality for the initial mutation matrix, we obtain

[
Mex(I)

]
`i

= r(I, i)` for all i ∈ I, implying
the theorem. �

Lemma 2.5. Let I, J be two facets of SC(cw◦(c)) with k ∈ I ∩J . Then w(I, k) = w(J, k).

Proof. This is a direct consequence of Theorem 2.2(3) and the two observations that
. 〈 r(I, k) |w(I, k′) 〉 = 0 for k, k′ ∈ I (see [89, Proposition 6.6]), and
. all facets of SC

(
cw◦(c)

)
containing k are connected by flips (see [89, Corollary 3.11]).

Indeed, this property of the weight function was already used in the proof of [89, Proposi-
tion 6.8]. �

The following lemma is a direct consequence of Theorem 2.2(4) and (5).

Lemma 2.6 ([89]). Let I \ i = J \ j with i < j be two facets of SC
(
cw◦(c)

)
. For any

k ∈ [n+N ] we then have

w(J, k) = w(I, k)− λr(I, i) for λ ∈ R≥0 and r(I, i) ∈ Φ+.

The following lemma has not been considered before and will serve as the starting point
of understanding F -polynomials in terms of the weight function.

Lemma 2.7. For k ∈ {n+ 1, . . . , n+N}, we have that

w(Ig, k)− w(Iag, k) = r(Ig, k).

Observe that, as we have seen in Equation (I.3), this is also closely related to the bijection
relating cluster algebras and subword complexes.

Proof of Theorem 2.7. Starting with the greedy facet Ig, we flip the first position
k − n times without changing the weight function at k (as we do not pass position k) and
obtain, up to commutations of consecutive commuting letters,

w(Ig, k) = w({k − n, . . . , k − 1}, k).

We also obtain, up to commutations of consecutive commuting letters,

w(Iag, k) = w({k, . . . , k + n− 1}, k) = w({k − n+ 1 . . . , k}, k).

The first equality holds for the same reason as above as these N − k flips of the last position
starting with Iag do not pass position k. The second equality follows from Theorem 2.5 as k is
now contained in both facets. With these observations, we finally obtain for c(w◦) = q1 · · · qN
that

w(Ig, k)− w(Iag, k) = w({k − n, . . . , k − 1}, k)− w({k − n+ 1 . . . , k}, k)

= q1 · · · qk−1(ωqk)− q1 · · · qk(ωqk)

= q1 · · · qk−1(ωqk)− q1 · · · qk−1(ωqk − αqk)

= q1 · · · qk−1(αqk)

= r(Ig, k)

as desired. �
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(a) (b)

Figure 1. A path in a triangulation of the 7-gon.

3. Proof of 1.11

Before we start recalling the Musiker-Schiffler construction and prove the theorem, we
quickly set the needed notations for the reflection group of type An. In this type, we have
thatW is the symmetric group Sn+1 acting on Rn+1, whose generators S are the set of simple
transpositions S = {τ1, . . . , τn} for τi = (i, i+1). Thus, the Coxeter element c is given by the
product of all simple transpositions in some order. For consecutive simple transpositions, we
write τi < τi−1 if τi appears to the left of τi−1 in c, and τi > τi−1 if τi appears to the right
of τi−1. We will say that a sequence τik , . . . , τi1 is a suffix of c if there is a reduced word c
for c ending in τik , . . . , τi1 . If all τik , . . . , τi1 are inside the interval {τi, . . . , τj} for i < j, we
moreover say that it is a suffix of c restricted to the interval [i, j] if the suffix property holds
after removing all letters not in {τi, . . . , τj} from c. The simple roots are moreover given by
∆ = {ei − ei+1 : 1 ≤ i ≤ n}, the positive roots by Φ+ = {ei − ej : 1 ≤ i < j ≤ n+ 1} , and
the fundamental weights by ∇ = {e1 + . . .+ ei : 1 ≤ i ≤ n}.

3.1. F -polynomials from T -paths. R. Schiffler derived in [99] an explicit formula
for the cluster variables of type An via T-paths which are certain paths on the diagonals
of triangulations of a regular (n + 3)-gon. G. Musiker and R. Schiffler then extended that
description and obtained in [86] an explicit formula for cluster variables in a similar fashion
for cluster algebras associated to unpunctured surfaces with arbitrary coefficients. In this
section, we will review this construction for type An to establish the needed notions to relate
their description to the weight function in order to derive Theorem 1.11.

Let T be a triangulation of a regular (n + 3)-gon, with boundary diagonals (or edges)
labelled by B1, . . . , Bn+3 and with proper diagonals labelled by 1, . . . , n. (In examples, we use
A,B, . . . instead of B1, . . . , Bn+3 for convenience.) An example can be found in Figure 1(a).
Let γ /∈ T be another proper diagonal connecting non-adjacent vertices a and b, oriented
from a to b. Denote the intersection points of γ with the proper diagonals in T along its
orientation by p1, . . . , pd, and the corresponding diagonals in T by t1, . . . , td. Let γk denote
the segment of γ from point pk to point pk+1, where we use p0 = a and pd+1 = b. Each γk
lies in exactly one triangle 4k, and we orient the diagonal tk in T by the orientation induced
from the counterclockwise orientation of 4k.

A T -path ζ from a to b in T is a path ζ = (ζ1, . . . , ζ2d+1) in T which uses the diagonals tk
in the even positions. In symbols, ζ2k = tk for 1 ≤ k ≤ d. Observe that such a T -path is
uniquely determined by the directions in which the diagonals t1, . . . , td in the even position are
followed. If the direction of ζ coincides along the diagonal tk with the direction induced by the
counterclockwise orientation of the triangle4k, we write that ζ travels tk in positive direction,
and it travels tk in negative direction otherwise. It is not hard to see that there is always a
unique T -path that travels all tk’s in positive direction. We call this path the greedy T -path,
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and denote it by ζg. Similarly, we denote by ζag the antigreedy T -path that travels all tk’s in
negative direction. For instance, the greedy T -path in Figure 1(b) is (F, 2, 3, 3, 3, 4, B) and
the antigreedy T -path is (1, 2, 2, 3, 4, 4, A).

We say that a T -path ζ is flipped to a T -path ζ ′ if ζ and ζ ′ only differ in two odd positions
2k − 1 and 2k + 1 for some k. In other words, tk is the unique diagonal which is travelled
by ζ and ζ ′ in opposite directions, while all others are travelled in the same direction. We
thus also say that tk is flipped between ζ and ζ ′. In Figure 1(b), flipping t6 in the T -path
(F, 2, 3, 3, 3, 4, B) yields the T -path (F, 2, 3, 3, B3, 4, A).

To a T -path ζ = (ζ1, . . . , ζ2d+1), one associates the monomial m[ζ] given by the product
of variables yk such that ζ2k = tk is travelled in positive direction. For instance, the greedy
T -path ζg = (F, 2, 3, 3, 3, 4, B) yields the monomial m[ζg] = y2y3y4, while the antigreedy
T -path ζag = (1, 2, 2, 3, 4, 4, A) yields m[ζag] = 1. Moreover, all monomials obtained from
T -paths for the diagonal γ in the example are given by

ζ m[ζ]

(F, 2, 3, 3, 3, 4, B) y2y3y4

(F, 2, 3, 3, C, 4, A) y2y3

(1, 2, G, 3, 3, 4, B) y3y4

(1, 2, G, 3, C, 4, A) y3

(1, 2, 2, 3, 4, 4, A) 1

This combinatorial model now provides a description of the F -polynomials for the cluster
algebra where the initial datum is the fixed given triangulation T of a regular (n+ 3)-gon. It
is well-known that these F -polynomials are now indexed by diagonals γ /∈ T , see [86].

Theorem 3.1 ([99, Theorem 4.6]). Let T be a triangulation of the regular (n + 3)-gon,
and let γ /∈ T from a to b. Then

Fγ(y) =
∑

m[ζ],

where the sum ranges over all T -paths ζ from a to b.

Next, we recall how to associate a triangulation Tc of the regular (n+3)-gon to a standard
Coxeter element c in type An.

(1) Pick a fixed vertex of the (n+ 3)-gon, labelled v1, and draw an edge connecting the
two vertices adjacent to v1. Label the new edge by 1.

(2) Let i = 2.
(3) While i ≤ n:

If τi < ti−1, then label the vertex clockwise from vi−1 by vi, draw an edge
connecting the two vertices adjacent to vi which are not vi−1, and label the new
edge i. Let i = i+ 1.

If τi > τi−1, then label the vertex counter-clockwise from vi−1 by vi, draw
an edge connecting the two vertices adjacent to vi which are not vi−1, and label the
new edge i. Let i = i+ 1.

A simple example is given in the following figure in type A3 with c = (1234) = τ1τ2τ3:

We make the following elementary observation.
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Lemma 3.2. Let c be a Coxeter element in type An, and let 1 ≤ i ≤ j ≤ n. Then there
is a unique diagonal γ /∈ Tc that crosses exactly the diagonals labelled by i, i + 1, . . . , j, and
every diagonal not in Tc can be obtained this way.

Proof. The triangulations that can be obtained from a Coxeter element by the procedure
are exactly the triangulations that do not have inner triangles,i.e., no triangles for which all
three sides are proper diagonals. The statement follows. �

We have the following corollary of the above Theorem 3.1, which we will then use to
deduce Theorem 1.11.

Corollary 3.3. Let c be a standard Coxeter element in type An and let β = ei − ej be
a positive root. The F -polynomials for the cluster algebra A(W, c) are then given by

Fβ(y) =
∑

m[ζ],

where the sum ranges over all T -paths ζ from a to b where a and b are given such that the
path γ from a to b is the unique path that crosses exactly the diagonals labelled a, . . . , b− 1.

Proof. This follows from the well known connection between A(W, c) and the triangu-
lation Tc as described above. �

In order to prove our results in the following sections, we need the following proposition
regarding possible flips in triangulations with respect to a Coxeter element c:

Proposition 3.4. Let Tc be the triangulation associated to a Coxeter element c, and
let γ /∈ Tc be another proper diagonal from a to b which crosses exactly the diagonals {i, i +
1, . . . , i+d−1}. Then for any suffix (ik, ik+1), . . . , (i1, i1+1) of c restricted to {τi, . . . , τi+d−1},
one can flip the diagonals i1, . . . , ik in this order in the greedy Tc-path from a to b. Moreover,
every Tc-path from a to b is obtained this way.

Proof. We start with explicitly describing the four possible restrictions for directions in
which Tc-paths can travel. To this end, consider the situation that ti−1 and ti are oriented
towards their shared vertex in Tc, or, equivalently, that (i, i+ 1) < (i− 1, i). Then, a Tc-path
ζ from a to b

. that travels the diagonal ζ2i = ti in positive direction must also travel ζ2i−2 = ti−1

in positive direction, and
. that travels the diagonal ζ2i = ti in negative direction must also travel ζ2i = ti in
negative direction.

The situation where ti−1 and ti are oriented away from their shared vertex in Tc, or, equival-
ently, that (i, i+ 1) > (i− 1, i) is the same with the roles of positive and negative direction
interchanged.

But this is nothing else but saying that the Tc-path is obtained from the greedy Tc-path ζg
(which travels all the diagonals in positive direction) by flipping diagonals i1, . . . , ik in this
order for a suffix (ik, ik + 1), . . . , (i1, i1 + 1) of c, as desired. �

3.2. F -polynomials from subword complexes. The first step to use the above con-
struction to obtain the F -polynomials from the weight vectors of SC

(
cw◦(c)

)
, we provide a

property of the weight vectors of SC
(
cw◦(c)

)
which parallels Theorem 3.4. This is indeed the

heard of the proof.

Proposition 3.5. Consider a cluster algebra A(W, c) of type An. Given any index k and
facet I, the weight w(I, k) is obtained from w(Ig, k) by flipping an initial segment of c, up to
commutations.

Proof. Let c = q1 · · · qn. If the simple transposition si is to the left of si+1 in c, we will
write si < si+1 and if si is to the right of si+1 in c, we will write si > si+1.
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We know by lemma 2.7 that w(Ig, k) − w(Iag, k) = αk = ei − ej for some i, j ∈ [n + 1].
Together, we know that w(Ig, k) and w(Iag, k) are of the form

w(Ig, k) = (∗ ∗ ∗, 1, ∗ ∗ ∗, 0, ∗ ∗ ∗) and w(Iag, k) = (∗ ∗ ∗, 0, ∗ ∗ ∗, 1, ∗ ∗ ∗),
where the ith entry of w(Ig, k) and the jth entry of w(Iag, k) are 1, the jth entry of w(Ig, k)

and the ith entry of w(Iag, k) are 0, and the other entries of w(Ig, k) and w(Iag, k) are equal
and either 0 or 1.

First let us prove that for m < i and m > j, the mth entries of w(Ig, k) (and thus of
w(Iag, k)) are equal. Observing that cw(Ig, k) = w(Iag, k), we notice that if this wasn’t the
case, then when we apply c to w(Ig, k), there will exist an entry m, m < i or m > j, equal to
1 which will be flipped with an entry equal to 0. Then the mth entry of w(Ig, k) and w(Iag, k)
will not be equal, a contradiction.

For the entries m < i of w(Ig, k) (and thus of w(Iag, k)), we need to ensure that the swap
between the i − 1th and ith entry does not change the entry in position i − 1; this can only
be ensured if the entries m < i are equal to 0 if si−1 < si and are equal to 1 if si−1 > si.
Similarly, for the entries m > j of w(Ig, k) (and thus of w(Iag, k)) we need to also ensure
that the swap between the jth and j + 1th entry does not change the entry in position j + 1;
this can only be ensured if the entries m > j are equal to 0 if sj−1 > sj and are equal to 1 if
sj > sj−1.

For entries i < m < j of w(Ig, k) (and thus of w(Iag, k)), we need to ensure that a 1 is
moved into the jth position, a 0 is moved into the ith position, and that every entry i < m < j
is the same in Ig and Iag. Keeping in mind that every position is swapped exactly once, the
only way we can ensure such conditions is if each entry i < m < j is equal to 0 if sm−1 > sm
and equal to 1 if sm−1 < sm.

The conditions on each entry m we just described tell us that c dictates which entries are
0 and which are 1 in w(Ig, k) and w(Iag, k), and the order in which each simple transposition
must be applied so that w(Ig, k)−w(Iag, k) = αk. This order is exactly the order in which the
simple transpositions appear in c, up to commutation. Thus, every possible weight w(I, k)
must be obtained from w(Ig, k) by flipping an initial segment of c, up to commutations. �

With this, we are finally in the position to obtain the desired properties.

Proof of Theorem 1.11. We start with a cluster algebra A(W, c) of type An and
construct the triangulation Tc. We pick an almost positive root αi1 + αi2 + · · ·+ αid , which
we will identify with its corresponding d-vector d(u). Let γ /∈ Tc be the diagonal which
crosses the diagonals i1, . . . , id ∈ Tc.

The greedy Tc-path gives us the term yi1 · · · yid of Fu(y). Proposition 3.4 tells us that if
we start flipping from the greedy Tc-path in the order id, . . . , i1, up to commutations, then
we obtain every Tc-path. Starting with the greedy Tc-path, as we flip in the order id, . . . , i1,
up to commutations, we are effectively removing each variable from the term yi1 · · · yid one
at a time.

Let k be the index such that w(Ig, k)−w(iag, k) = d(u), which is the exponent vector of
yi1 · · · yid . Proposition 3.5 tells us that if we start flipping from the greedy facet in the order
id, . . . , i1, up to commutations, then we obtain every possible weight of index k. Starting with
the greedy facet, as we flip in the order id, . . . , i1, up to commutations, we are subtracting
αid , αid−1

, . . . , αi1 one at a time in this order, up to commutations, from w(Ig, k)−w(Iag, k).
Which is effectively the same as removing each variable from the term yi1 · · · yid one at a
time.

So flipping from the greedy Tc-path and flipping from the greedy facet yield the same set
of terms; i.e. the set {yi1 · · · yid , yi1 · · · yid−1

, . . . , yi1}, whose sum is the desired F -polynomial.
�





CHAPTER II

Where Cluster Algebras and Tropical Geometry Meet

Cluster algebras are commutative rings generated by a set of cluster variables, which
are grouped into overlapping sets called clusters. They were introduced by S. Fomin and
A. Zelevinsky in the series of papers [41, 42, 44, 45], and since then have shown fascinating
connections with diverse areas such as Lie theory, representation theory, Poisson geometry,
algebraic geometry, combinatorics and discrete geometry. One important family of examples
is the family of cluster algebras of finite type, which were classified in [42] using the Cartan–
Killing classification for finite crystallographic root systems. Among them are the cluster
algebras of type Dn which are one of the main objects of study in this chapter. We focus on
the cluster algebra of type D4 and the combinatorial structures related to its cluster complex.
Cluster complexes are simplicial complexes that encode the mutation graph of the cluster al-
gebra, i.e., the graph describing how to pass from a cluster to another. They were introduced
by Fomin and Zelevinsky [43] in connection with their proof of the Zamolodchikov’s peri-
odicity conjecture for algebraic Y -systems. One remarkable connection of cluster complexes
with tropical geometry was discovered by Speyer and Williams in [102]. They study the
positive part Gr+(d, n) of the tropical Grassmannian Gr(d, n), and show that Gr+(2, n) is
combinatorially isomorphic to the cluster complex of type An−3, and that Gr+(3, 6) and
Gr+(3, 7) are closely related to the cluster complexes of type D4 and E6. The tropical Grass-
mannian Gr(d, n) was first introduced by Speyer and Sturmfels [101] as a parametrization
space for tropicalizations of ordinary linear spaces. The tropicalization of an ordinary linear
space gives a tropical linear space in TPn−1 in the sense of Speyer [103, 104], but not all
tropical linear spaces are realized in this way in general. In the case Gr(3, 6), all tropical
planes in TP5 are realized by the Grassmannian [101]. Speyer and Sturmfels [101] explicitly
studied all tropical planes in TP5 and found that there are exactly 7 different combinatorial
types. On the other hand, one may also classify clusters of type D4 up to combinatorial
type, from which we deduce that there are exactly 7 different combinatorial types of clusters
modulo reflection and rotation. This leads to two natural questions:

(1) How are the 7 combinatorial types of tropical planes in TP5 and the 7 combinatorial
types of type D4 clusters related?

(2) Which of the 7 combinatorial types of tropical planes in TP5 are realized in the
positive part Gr+(3, 6) of the tropical Grassmannian Gr(3, 6)?

This chapter gives precise answers to these questions. Surprisingly, the 7 combinatorial
types of tropical planes and the 7 combinatorial types of clusters are not bijectively related
as one might expect. We show that only 6 of the 7 combinatorial types of tropical planes are
achieved by the positive tropical Grassmannian Gr+(3, 6), and use the pseudotriangulation
model of cluster algebras of type D4 to compare them with the combinatorial types of clusters
of type D4. In particular, we obtain that

if two pseudotriangulations are related by a sequence of reflections of the
octagon preserving the parity of the vertices, and possibly followed by a
global exchange of central chords, then their corresponding tropical planes
in TP5 are combinatorially equivalent.

The combinatorial classes of positive tropical planes are then obtained by taking unions
of the classes generated by this finer equivalence on pseudotriangulations.

29
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Section 1 recalls the notion of cluster algebras of type Dn and their cluster complexes, and
shows that the clusters of type D4 are divided into 7 combinatorial classes. Section 2 recalls
the necessary notions in tropical geometry, tropical Grassmannians and their positive parts,
as well as the Speyer–Sturmfels classification of tropical planes in TP5 into 7 combinatorial
classes. In section 3, we present a precise connection between the cluster complex of type D4

and the positive part Gr+(3, 6) of the tropical Grassmannian Gr(3, 6). We compute the
combinatorial types of tropical planes in TP5 corresponding to the clusters of type D4 in
section 4. Finally, in section 5 we describe the combinatorial types of tropical planes using
automorphisms of pseudotriangulations.

1. Cluster Algebras of type Dn

In this section, we present the cluster algebras of type Dn. Different models exist for these
cluster algebras: in terms of centrally symmetric triangulations of a 2n-gon with bicolored
long diagonals [43, section 3.5][42, section 12.4], in terms of tagged triangulations of a punc-
tured n-gon [40], or in terms of pseudotriangulations of a 2n-gon with a small disk in the
center [22]. We adopt the last model mentioned to deal with clusters combinatorially. The
automorphisms of pseudotriangulations allow us to define the combinatorial type of a cluster.
In this paper, we classify and compare clusters up these combinatorial types. We refer to
the original paper [22] for a more detailed study of cluster algebras of type Dn in terms of
pseudotriangulations, and briefly describe here their model.

Consider a regular convex 2n-gon together with a disk D placed at the center, whose
radius is small enough such that D only intersects the long diagonals of the 2n-gon. We
denote by Dn the resulting configuration. The vertices of Dn are labeled by 0, 1, . . . , n −
1, 0, 1, . . . , n− 1 in counterclockwise direction, such that two vertices p and p are symmetric
with respect to the center of the polygon. The chords of Dn are all the diagonals of the 2n-
gon, except the long ones, and all the segments tangent to the disk D and with one endpoint
among the vertices of the 2n-gon; see Figure 2.
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Figure 2. The configuration D4 has 16 centrally symmetric pairs of chords
(left). A centrally symmetric pseudotriangulation T of D4 (middle). The
centrally symmetric pseudotriangulation of D4 obtained from T by flipping
the centrally symmetric pair of chords {2l, 2

l} (right).

Each vertex p is incident to two such chords; we denote by pl (resp. by pr) the chord
emanating from p and tangent on the left (resp. right) to the disk D. We call these chords
central.

Cluster variables, clusters, cluster mutations and exchange relations in the cluster algebra
of type Dn can be interpreted geometrically as follows:

(1) Cluster variables correspond to centrally symmetric pairs of (internal) chords of the
geometric configuration Dn, as shown in Figure 2 (left). To simplify notations, we
identify a chord δ, its centrally symmetric copy δ̄, and the pair {δ, δ̄}.
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(2) Clusters correspond to centrally symmetric pseudotriangulations of Dn (i.e. max-
imal centrally symmetric crossing-free sets of chords of Dn). Each pseudotriangu-
lation of Dn contains exactly 2n chords, and partitions conv(Dn) rD into pseudo-
triangles (i.e. interiors of simple closed curves with three convex corners related by
three concave chains); see Figure 2.

(3) Cluster mutations correspond to flips of centrally symmetric pairs of chords between
centrally symmetric pseudotriangulations of Dn. A flip in a pseudotriangulation T
replaces an internal chord e by the unique other internal chord f such that (Tre)∪f
is again a pseudotriangulation of T . More precisely, deleting e in T merges the two
pseudotriangles of T incident to e into a pseudoquadrangle (i.e. the interior of a
simple closed curve with four convex corners related by four concave chains), and
adding f splits the pseudoquadrangle into two new pseudotriangles. The chords e
and f are the two unique chords which lie both in the interior of and on a geodesic
between two opposite corners of .

(4) As in type A, the exchange relations between cluster variables during a cluster
mutation can be understood in the geometric picture. This is illustrated for all
different kinds of flips in Figure 3.
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Figure 3. Different kinds of flips and exchange relations in type Dn

1.1. The Cluster Complex of Type D4. The cluster complex of type Dn can also
be described from the geometric model presented in [22]. We recall this description in the
particular case of cluster algebras of typeD4. Let {τ1, τ2, τ3, τ4} be the set of simple generators
of the Coxeter group of type D4 according to the labeling of the Dynkin diagram in Figure 4,
and let ∆ = {α1, α2, α3, α4} be the set of simple roots of the corresponding root system. We
denote by Φ = Φ+ tΦ− the set of roots partitioned into positive and negative roots, and by
Φ≥−1 = −∆ t Φ+ the set of almost positive roots.

τ2
τ1

τ3

τ4

Figure 4. The Dynkin diagram of type D4
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Figure 6. The seven combinatorial types of pseudotriangulations (or
clusters) of type D4 modulo reflections and τ rotation. The 50 pseudotri-
angulations are labeled with the numbers from 0 to 49 at the center of the
disk. Each pair of chords in a pseudotriangulation is labeled with the pseudo-
triangulation obtained when flipping it.

Corollary 1.4. The number of combinatorial types of clusters of type D4 is equal to the
number of combinatorial types of tropical planes in TP5.

We emphasize this as a corollary as it is our main motivation for establishing a relationship
between tropical planes in TP5 and clusters of type D4. Before making a precise connection
between clusters of typeD4 and tropical planes in TP5, we recall some preliminaries in tropical
geometry.
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2. Tropical Varieties and Their Positive Part

The min-plus, or tropical, semiring T := (R ∪ {∞},⊕,�) is defined with the following
operations:

x⊕ y = min{x, y} and x� y = x+ y,

where the zero element is ∞ and the one element is 0. A tropical monomial is an expression
of the form c�x�a1

1 � · · · �x�ann and a tropical polynomial is a finite tropical sum of tropical
monomials. Equivalently, a tropical polynomial is a piecewise linear concave function given
as the minimum of finitely many linear functions of the form

(x1, ..., xn) 7→ a1x1 + ...+ anxn + c.

A tropical hypersurface is the set of all points x̄ = (x1, ..., xn) in Rn such that its defining
tropical polynomial is not linear at x̄.

The tropical objects defined above are inherently tropical, in the sense that they are
defined over T. It is also possible to consider “classical” algebraic objects over a fixed field K
and construct their tropical analogues via a nonarchimedean valuation.

Let us consider the field

K := C{{t}} = {
∑

αrt
r/n : αr ∈ C, r ∈ Z, n ∈ Z+}

of Puiseux series over C. This field is of characteristic 0, is algebraically closed, and has a
natural nonarchimedean valuation val : K → T sending 0 to ∞ and, for a(t) 6= 0, sending
a(t) 7→ min{ rn : αr 6= 0}. Note that this valuation extends naturally to a valuation Val :
Kn → Tn on Kn via coordinatewise evaluation: (a1(t), ..., an(t)) 7→ (val(a1(t)), . . . , val(an(t)).
Let us consider the polynomial

f =
k∑
i=1

ai(t)x
bi1
1 · · ·x

bin
n ∈ K[x1, ..., xn].

We then define the tropicalization of f , obtained by replacing + with ⊕, · with �, and all
coefficients with their valuation. There is also a notion of tropical projective space,

TPn := Tn+1\{(∞, ...,∞)},

which is defined by the equivalence relation v ∼ v + λ(1, ..., 1). We then have that the
coordinate system (x1, ..., xn+1) on Tn+1 induces a tropical homogeneous coordinate system
[x1 : ... : xn+1] on TPn given by the natural embedding, Rn → TPn+1, (x1, ..., xn) 7→ [x1 :
... : xn : 0].

Picking a w ∈ Rn, the w-weight of a term ai(t)x
bi1
1 · · ·x

bin
n of a polynomial f is equal to

the dot product val(ai(t)) + 〈w, b̄〉, where b̄ = (bi1, ..., b
i
n). We then define inw(f) to be the

polynomial consisting of the sum of the terms of f with the smallest w-weight. A tropical
hypersurface can then be defined as

T (f) := {w ∈ Rn : inw(f) is not a monomial}.

It is straightforward to check that the “inherently tropical” definition of a tropical hypersur-
face given at the beginning of this section is equivalent to the one directly above. A root of a
tropical polynomial f in n variables x1, ..., xn is a point (b1, ..., bn) ∈ Rn such that the value
f(b1, ..., bn), is attained by at least two of the linear functions defining f .

A finite intersection of tropical hypersurfaces is called a tropical prevariety. Given an
ideal I ⊆ K[x1, ..., xn] and w ∈ Rn, we define the tropical variety T (I) to be the intersection
of tropical hypersurfaces

T (I) :=
⋂
f∈I
T (f)
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along with a weight function Ωw : K[x1, ...xn]→ R, sending

ai(t)x
bi1
1 · · ·x

bin
n 7→ val(ai(t)) + 〈w, b̄〉

for each monomial of a polynomial f =
∑k

i=1 ai(t)x
bi1
1 · · ·x

bin
n ∈ I, where b̄ = (bi1, ..., b

i
n).

Equivalently, the tropical variety T (I) can be defined as

T (I) := {w ∈ Rn : inw(I) has no monomials},
where inw(I) is the ideal generated by the set {inw(f) : f ∈ I}. It is important for us to note
that if we have a variety V (I), we can consider the closure of the image of V (I) under the
map

trop : Kn → Rn, x 7→ val(x)

and that we get T (I) = trop(V (I)).

2.1. The Positive Part of a Tropical Variety. Now that we have some idea as to
what a tropical variety is, we can define the positive part of a tropical variety. The positive
part of a tropical variety T (I) is defined to be

T +(I) := trop(V (I) ∩ (K+)n),

where

K+ := {α(t) ∈ K : coefficient of lowest term of α(t) is real and positive}.
The following theorems are useful for uncovering the positive part of a tropical variety:

Theorem 2.1 (Speyer and Williams [102]). A point w = (w1, ..., wn) lies in T +(I) if
and only if inw(I) does not contain any nonzero polynomials in K+[x1, ..., xn].

Theorem 2.2 (Speyer and Williams [102]). An ideal I of K[x1, ..., xn] contains a nonzero
element of K+[x1, ..., xn] if and only if (K+)n ∩ V (inw(I)) = ∅, for all w ∈ Kn.

In practice, the positive part of a tropical variety can be uncovered by identifying each
domain of linearity with the sign of its defining monomial and taking the components of the
tropical variety which separate regions of different signs to be the positive part. Let us see
what this means through an example:

Example 2.3. Let us consider the polynomial 1− x− y + t−1xy = 0. Its tropicalization

f = min{0, x, y, x+ y − 1}
can be represented as a partition of the plane into polygonal regions, as illustrated in Figure 7.
We want to find solutions in K+ to 1 − x − y + t−1xy = 0 and take the closure of the
tropicalization of this to get the positive part. Say (x, y) = (a0t

b0 + · · · , c0t
d0 + · · · ) is such

a solution, where a0 and c0 are the lowest terms. We then have that

1− (a0t
b0 + · · · )− (c0t

d0 + · · · ) + t−1(a0t
b0 + · · · )(c0t

d0 + · · · ) = 0,

and we can see that the only terms which have even the possibility of cancelling each other
out are terms with different signs (as a0 and c0 are real and positive). So the positive part of
our tropical variety is composed of the components of our tropical variety separating linear
regions defined by monomials of different signs, as seen in Figure 7.

We can then see that finding the positive part of a tropical variety by identifying linear
regions with the sign of their defining linear term works as a method for finding the positive
part of a tropical variety in general, meaning that the positive part of a tropical variety
recaptures the sign of each monomial, which is initially lost through the tropicalization process.

For this example specifically, we can identify the region in which f is equal to x+ y − 1
with a “+” sign, since the sign of t−1xy is “+”. Similarly, we identify the region in which f is
equal to x and the region in which f is equal to y with “−” signs and the region in which f
is 0 with a “+”. The positive part is the subset of our tropical variety below defined by the
components in bold as opposed to dashed.
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Figure 7. The tropical variety defined by f = min{0, x, y, x+ y− 1} on the
left, and its positive part on the right

2.2. The Dressian. As discussed in [103], a tropical linear space is a tropical variety
T (I) given by an ideal of the form

I = 〈ai1x1 + ai2x2 + · · ·+ ainxn : i = 1, 2, ..., n− d〉,

where the aij are the entries of any (n−d)×n-matrix of rank n−d with entries in K[x1, ..., xn].
The ideal I can be rewritten in terms of a vector in R(nd) whose entries are the Plücker
coordinates

pi1i2···id := (−1)i1+i2+···+id · det


a1,j1 a1,j2 · · · a1,jn−d

a2,j1 a2,j2 · · · a2,jn−d

...
...

. . .
...

an−d,j1 an−d,j2 · · · an−d,jn−d

 ,

where i1 < · · · < id, j1 < · · · < in−d and {i1, ..., id, j1, ..., jn−d} = {1, ..., n}. Explicitly, we
have

I = 〈
d∑
r=0

(−1)r · pi0i1···îr···id · xir : for all 1 ≤ i0 ≤ i1 < · · · < ir ≤ n〉.

Speyer gives the details on how to derive I in terms of Plücker coordinates in [103]. The
Dressian Dr(d, n) is the tropical prevariety which parametrizes (d − 1)-dimensional tropical
linear spaces, and is more explicitly the tropical prevariety consisting of the intersection of
the tropical hypersurfaces given by all 3-term Plücker relations. The Dressian can also be
defined as the polyhedral fan of those regular subdivisions of the (d,n)-hypersimplex which
have the property that each cell is a matroid polytope [56]. More specifically, let e1, ..., en be
the standard basis vectors for Rn and let eX :=

∑
i∈X ei for any subset X ⊆ [n]. Given a

matroid X ⊆
([n]
d

)
, we define its matroid polytope to be the polytope PX := conv{ex : x ∈ X}.

The (d, n)-hypersimplex 4(d, n) in Rn is defined as 4(d, n) := P([n]
d ). A matroid subdivision

of a polytope P is a polytopal subdivision of P such that each of its cells is a matroid
polytope. A weight vector λ on a polytope P assigns a real number to each vertex of P . A
given weight vector λ induces a polytopal subdivision of a polytope P by considering the
set conv{(v, λ(v)) : v vertex of P} in Rn+1 and projecting the lower (or upper) envelope
to the hyperplane (Rn, 0); a polytopal subdivision of this kind is called a regular polytopal
subdivision. The Dressian is shown in [56] to be a subfan of the secondary fan of 4(d, n):

Proposition 2.4. (Herrmann, Jensen, Joswig, and Sturmfels [55, Proposition 3.1]) A
weight vector λ ∈ R([n]

d ) lies in the Dressian Dr(d, n), seen as a fan, if and only if it induces
a matroid subdivision of the hypersimplex 4(d, n).

It is pointed out in [55] that the three term Plücker relations define a natural Plücker fan
structure on the Dressian: two weight vectors λ and λ′ are in the same cone if they specify
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the same initial form for each 3-term Plücker relation.

Remark 2.5. Tropical Plücker vectors (i.e. vectors of tropicalizations of Plücker coordin-
ates) can be viewed as valuated matroids [55, Remark 2.4]. A valuated matroid of rank d on
a set [n] is a map π : [n]d → R ∪ {∞} such that

(1) π(ω) is independent of the ordering of the sequence vector ω,
(2) π(ω) =∞ if an element occurs twice in ω,
(3) for every (d − 1)-subset σ and every (d + 1)-subset τ = {τ1, τ2, ..., τd+1} of [n] the

minimum of

π(σ ∪ {τi}) + π(τ\{τi}) for 1 ≤ i ≤ d+ 1

is attained at least twice.

Tropical planes are dual to regular matroid subdivisions of the hypersimplex4(3, n), thus
giving us another way to view Dr(3, n): The parameter space of tropical planes. A tropical
plane Lp in TPn−1, for some p ∈ Dr(3, n), is the intersection of the tropical hyperplanes⋂

{i,j,k,l}∈([n]
4 )

T (pijkxl + pijlxk + piklxj + pjklxi),

where the Plücker coefficients appearing in pijkxl + pijlxk + piklxj + pjklxi are entries of p
lexicographically indexed by the order i < j < k < l.

Just as planes in projective space Pn−1 correspond to arrangements of n lines in P2,
tropical planes in TPn−1 correspond to arrangements of n tropical lines in TP2. A tropical
line in TPn−1 is an embedded metric tree which is balanced and has n unbounded edges
pointing in the coordinate directions. Thus, we can use arrangements of trees to represent
matroid subdivisions of 4(3, n). We say trees, and not metric trees due to the following
result:

Proposition 2.6. (Herrmann, Jensen, Joswig, and Sturmfels [55, Proposition 4.1]) Each
metric tree arrangement gives rise to an abstract tree arrangement by ignoring the edge
lengths.

We then have that:

Lemma 2.7. (Herrmann, Jensen, Joswig, and Sturmfels [55, Lemma 4.2]) Each matroid
subdivision Σ of 4(3, n) defines an abstract arrangement T (Σ) of n trees. Moreover, if Σ is
regular then T (Σ) supports a metric tree arrangement.

For a definition of abstract tree arrangement , we refer the reader to [55, section 4]. The
bijection between tropical planes and arrangements of metric trees is studied in great detail
in [55], with their main theorem being:

Theorem 2.8. (Herrmann, Jensen, Joswig, and Sturmfels [55, Theorem 4.4]) The equi-
valence classes of arrangements of n metric trees are in bijection with regular matroid subdivi-
sion of the hypersimplex 4(3, n). Moreover, the secondary fan structure on Dr(3, n) coincides
with the Plücker fan structure.

2.3. The Tropical Grassmannian and its Positive Part. The tropical Grassman-
nian Gr(d, n) is a tropical variety which is a subset of the Dressian Dr(d, n). As fans, the
Grassmannian and the Dressian have the same n-dimensional lineality space and thus can
be viewed as pointed fans in R(nd)−n, one sitting inside of the other. Explicitly, the tropical
Grassmannian is T (Id,n), where Id,n is the Plücker ideal; i.e. the ideal generated by the
Plücker relations.

The tropical Grassmannian was first studied in Speyer and Sturmfels [101] and its positive
part was then studied in Speyer and Williams [102]. Speyer and Williams lay out the
first steps in studying the positive part of a tropical variety and explicitly outline a way of
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Figure 9. Speyer–Williams fan F3,6 (part 2)

correspond to clusters, with the exception of the two cones over a bipyramid, which correspond
to two clusters each, glued together on their common face.

The fan F3,6 is a 4-dimensional fan whose intersection with a 3-sphere is illustrated
in Figure 8 (left) and Figure 9. Each of the figures is a solid torus, and the two figures
glue together to form a 3-sphere. The two bipyramids have vertices {r1, r5, r7, r11, r13} and
{r4, r8, r10, r15, r16}. These figures are reproduced from Speyer and Williams original fig-
ures [102, Figures 7 and 8]. In addition, we include part of the Auslander–Reiten quiver
of type D4, formed by repeating 4 copies of a bipartite quiver of type D4. The 16 vertices
of this “repetition quiver" are labelled by the 16 almost positive roots as shown in Figure 8
(middle). We also include the corresponding 16 pairs of chords in the geometric model in
Figure 8 (right).

The labeling with almost positive roots in Figure 8 (middle) can be explained in two
different ways. The first, and perhaps more intuitive one, assigns the negative simple roots to
the vertices of the first copy of the D4 quiver on the top, and the other labels are determined
by rotation. Rotation sends a vertex in a copy of a D4 quiver to the same vertex in the next
copy directly below, if any. The last copy of the D4 quiver in the bottom is rotated to the first
copy on the top. The rotation on almost positive roots is the one induced by the τ rotation of
chords in the geometric model. Recall that this is given by counterclockwise rotation by π/4
together with the special rule of exchanging central chords pr and pl. A chord δ not in the
initial snake is labeled by the positive root obtained by adding the simple roots corresponding
to the chords of the snake that are crossed by δ. Figure 8 (right) illustrates this rotation
process together with the root labeling of the chords. Note that rotating one more time the
chords in the bottom picture recovers back the initial snake pseudotriangulation. The second
explanation of the labeling by almost positive roots can be done in terms of inversions of
a word P = τ2τ1τ3τ4|τ2τ1τ3τ4|τ2τ1τ3τ4. The word P is a reduced expression for the longest
element of the Coxeter group and its inversions give all positive roots. Moreover, it consists
of three copies of τ2τ1τ3τ4, and its letters are in correspondence with the vertices of the last
three copies of the bipartite quiver of type D4 in Figure 8 (middle). The labeling assigns
to the vertices of these last three copies the inversions of P , and to the vertices of the first
copy of the D4 quiver the negative simple roots. This second explanation is based in work
on subword complexes in [20], we refer to [21, section 2.2] for a concise and more detailed
presentation.

Let Ψ be the bijection from the rays of Speyer–Williams fan F3,6 and almost positive
roots given in Figure 10 (left and middle).

This bijection sends the vertices of the four bold D4 quiver in Figure 8 (left) to the
vertices of the four D4 quivers in Figure 8 (middle), and exchanges the two external vertices
of the second and fourth quiver as shown. Note that this special rule is similar to the rule of
exchanging the corresponding central chords when rotating. The induced bijection between
rays of the fan and centrally symmetric pairs of chords in the geometric model is illustrated
in Figure 11.
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Rays of F3,6 ←→ Φ≥−1 of type D4 ←→ Chords

r1 = (0, 0, 1, 0) ←→ −α1 ←→ 13
r2 = (0, 0,−1, 0) ←→ α1 + α2 ←→ 02̄
r3 = (1, 0, 0, 0) ←→ α3 ←→ 3r

r4 = (1, 0,−1, 0) ←→ α1 + α2 + α3 ←→ 2r

r5 = (−1, 0, 0, 0) ←→ −α3 ←→ 0l

r6 = (0, 0, 0, 1) ←→ α2 + α3 ←→ 1r

r7 = (−1, 0, 0, 1) ←→ α2 ←→ 01̄
r8 = (0, 0, 0,−1) ←→ α1 + α2 + α4 ←→ 2l

Rays of F3,6 ←→ Φ≥−1 of type D4 ←→ Chords

r9 = (0, 0, 1,−1) ←→ α4 ←→ 3l

r10 = (1, 0, 0,−1) ←→ α1 + α2 + α3 + α4 ←→ 23̄
r11 = (0, 1, 0, 0) ←→ −α4 ←→ 0r

r12 = (0, 1, 0,−1) ←→ α1 ←→ 02
r13 = (0, 1, 1,−1) ←→ −α2 ←→ 03
r14 = (0,−1, 0, 0) ←→ α2 + α4 ←→ 1l

r15 = (1,−1, 0, 0) ←→ α2 + α3 + α4 ←→ 13̄
r16 = (1,−1,−1, 0) ←→ α1 + 2α2 + α3 + α4 ←→ 12̄

Figure 10. A bijection from the rays of F3,6 to the almost positive roots of
type D4 and to centrally symmetric pairs of chords in the geometric model
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Figure 11. Bijection between rays of the fan F36 and centrally symmetric
pairs of chords in geometric model

Theorem 3.1. Under the bijection Ψ, the cones of the fan F3,6 correspond to clusters of
type D4, with the exception that the two cones over a bipyramid correspond to two clusters
each, that are glued together on their common face:
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{r1, r5, r7, r11, r13} {r4, r8, r10, r15, r16}

Proof. The proof of this result uses the description of cluster complexes in terms of the
compatibility degrees of Fomin and Zelevinsky in [43, section 3]. The compatibility degree
is a map

Φ≥−1 × Φ≥−1 −→ Z
(α, β) 7−→ (α ||β)

characterized by the two properties:

(−αi ||β) = bi, for all i ∈ [n] and β =
∑

biαi ∈ Φ≥−1, (II.1)

(α ||β) = (τα || τβ), for all α, β ∈ Φ≥−1, (II.2)

where τ is the rotation operation on almost positive roots defined in section 1.2. Two almost
positive roots are said to be compatible if and only if their compatibility degree is zero.
The cluster complex is the simplicial complex whose faces are sets of pairwise compatible
roots. This complex is completely determined by its edges (1-dimensional simplices), and so
it suffices to show that the edges in Figure 8 (left) and Figure 9 correspond exactly to the
compatible pairs of almost positive roots under the map Ψ. This can be checked by inspection
for the pairs involving a negative simple root, and by rotating the figures to obtain all other
pairs. For instance, −α1 is compatible with −α2,−α3,−α4, α2, α23, α24, α234, α3, and α4,
while r1 = Ψ−1(−α1) forms edges with the corresponding rays r13, r5, r11, r7, r6, r14, r15, r3,
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and r9. The pairs of compatible roots that do not appear as edges in Figure 8 (left) but do
(in bold) in Figure 9 are:

(−α1, α234) (−α3, α124) (−α4, α123) (α12, α1) (α23, α3) (α24, α4)
(r1, r15) (r5, r8) (r11, r4) (r2, r12) (r6, r3) (r14, r9)

Taking the clique complex of the compatibility relation finishes the proof. �

4. Tropical Computations

In this section, we compute the fan F3,6 of Speyer and Williams [102] and analyze which
tropical planes in TP5 are realized by Gr+(3, 6). We follow suit and compute F3,6 in the same
fashion as Speyer and Williams would in [102]. First we draw the web diagram Web3,6 and
label its interior regions as shown in Figure 12. This is the labeling implicitly used by Speyer
and Williams in their computations.

1

2

3

6 5 4

x4 x2

x3 x1

Figure 12. The labeling of the web diagram Web3,6

The fan F3,6 is the complete fan in R4 whose maximal cones are the domains of linearity
of the piecewise linear map

Trop Φ2 : R4 → Gr+(3, 6)/(Tropφ)(R6),

where Tropφ is the map sending (a1, ..., a6) to the
(

6
3

)
-vector whose (i1, i2, i3)-coordinate is

ai1 + ai2 + ai3 ; its image is the common lineality space of all cones in Gr+(3, 6). The map
Trop Φ2 is defined by the tropicalization of the maximal minors of the 3 × 6 matrix A3,6,
whose entries are given by

aij = (−1)i+1
∑
p

Prodp,

where we are summing over all paths p from i to j in Web3,6, and Prodp is the product of all
the variables xi appearing below a given path p. Specifically, the matrix we get is

A3,6 =

 1 0 0 1 x1x2 + x1 + 1 x1x2x3x4 + x1x2x3 + x1x3 + x1x2 + x1 + 1
0 −1 0 −1 −(x1 + 1) −(x1x3 + x1 + 1)
0 0 1 1 1 1

 .
The tropicalization of the maximal minors Pijk of A3,6 are the following:
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P123 = 0 P234 = 0
P124 = 0 P235 = min{0, x1, x1 + x2}
P125 = 0 P236 = min{0, x1, x1 + x2, x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4}
P126 = 0 P245 = min{x1, x1 + x2}
P134 = 0 P246 = min{x1, x1 + x2, x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4}
P135 = min{0, x1} P256 = min{x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4}
P136 = min{0, x1, x1 + x3} P345 = x1 + x2

P145 = x1 P346 = min{x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4}
P146 = min{x1, x1 + x3} P356 = min{x1 + x2 + x3, x1 + x2 + x3 + x4, 2x1 + x2 + x3 + x4}
P156 = x1 + x3 P456 = 2x1 + x2 + x3 + x4

We then have that each Pijk gives rise to a fan F (Pijk), and the simultaneous refinement
of all of these fans is F3,6. We compute this refinement using Sage [107] and get the rays:

r1 = (0, 0, 1, 0) r5 = (−1, 0, 0, 0) r9 = (0, 0, 1,−1) r13 = (0, 1, 1,−1)
r2 = (0, 0,−1, 0) r6 = (0, 0, 0, 1) r10 = (1, 0, 0,−1) r14 = (0,−1, 0, 0)
r3 = (1, 0, 0, 0) r7 = (−1, 0, 0, 1) r11 = (0, 1, 0, 0) r15 = (1,−1, 0, 0)
r4 = (1, 0,−1, 0) r8 = (0, 0, 0,−1) r12 = (0, 1, 0,−1) r16 = (1,−1,−1, 0)

Now that we have F3,6, we would like to see which combinatorial types of generic planes
in TP5 are realized by Gr+(3, 6). Speyer and Sturmfels [101] are the first to describe Gr(3, 6)
as the parameter space for tropical planes in TP5 and a recipe for computing which planes
in TP5 realized where in Gr(3, 6) is given by Herrmann, Jensen, Joswig, and Sturmfels in
[55]. We follow this recipe to compute which planes in TP5 are realized by Gr+(3, 6); for
each maximal cone C of F3,6, the recipe goes as follows:

(1) Choose an interior point λ of C.
(2) Compute its image Trop Φ2(λ).
(3) By Proposition 2.4, we know Trop Φ2(λ) induces a matroid subdivision of the hy-

persimplex 4(3, 6); Compute this subdivision using Polymake [48].
(4) Compare the computed matroid subdivision with the matroid subdivisions given in

[55] used to classify combinatorial types of generic tropical planes in TP5.
Step (4) of the recipe was done by computing the face lattices of each matroid polytope for

the matroids and the dimension of the intersections in the computed subdivision. Comparing
them to the face lattices of the matroid polytopes of the matroids in the subdivisions given
in [55] classifies the combinatorial types of generic tropical planes in TP5. The graphical rep-
resentation in Figure 1 of [55] shows the neighboring properties using edges and 2-cells. The
difference between EEFFa and EEFFb is as follows: in Type EEFFa, there are two matroid
polytopes that do not intersect, whereas in Type EEFFb, there are three 2-dimensional inter-
sections between the matroid polytopes. These computations were all made using Sage [107].
As the combinatorial type of plane does not change within a maximal cone [55], by following
the recipe above for each maximal cone of F3,6, we get all planes realized by Gr+(3, 6).

Theorem 4.1. Exactly six of the seven combinatorial types of tropical planes in TP5 are
realized by Gr+(3, 6). As named by Sturmfels and Speyer [101], the realizable combinatorial
types are EEEG, EEFFa, EEFFb, EEFG, EFFG, and FFFGG.

The partition into the combinatorial types is shown in Table 1.

5. Comparing Tropical Planes and Pseudotriangulations

Noting that Dr(3, 6) and Gr(3, 6) are equal as sets, Speyer and Sturmfels describe Gr(3, 6)
as the parameter space for tropical planes in TP5. Using Theorem 4.1, we can deduce how
the equivalence of tropical planes compares with equivalence of pseudotriangulations.
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Type EEEG: {r3, r9, r10, r12}, {r2, r6, r14, r16}, {r3, r9, r12, r13}, {r2, r6, r7, r14}

Type EEFFa: {r3, r4, r6, r15}, {r1, r3, r6, r11}, {r2, r5, r8, r12}, {r2, r5, r11, r12},

{r1, r3, r6, r15}, {r1, r5, r9, r14}, {r2, r4, r8, r12}, {r3, r4, r6, r11},

{r5, r8, r9, r14}, {r8, r9, r14, r15}, {r2, r4, r11, r12}, {r1, r9, r14, r15}

Type EEFFb: {r2, r5, r8, r14}, {r1, r3, r9, r15}, {r2, r4, r6, r11}, {r5, r8, r9, r12},

{r1, r6, r14, r15}, {r3, r4, r11, r12}

Type EEFG: {r5, r9, r12, r13}, {r3, r9, r10, r15}, {r3, r4, r10, r12}, {r3, r11, r12, r13},

{r1, r3, r9, r13}, {r6, r14, r15, r16}, {r1, r6, r7, r14}, {r2, r8, r14, r16},

{r2, r5, r7, r14}, {r8, r9, r10, r12}, {r2, r4, r6, r16}, {r2, r6, r7, r11}

Type EFFG: {r8, r9, r10, r15}, {r1, r5, r9, r13}, {r1, r5, r7, r14}, {r2, r4, r8, r16},

{r1, r3, r11, r13}, {r2, r5, r7, r11}, {r8, r14, r15, r16}, {r3, r4, r10, r15},

{r4, r6, r15, r16}, {r5, r11, r12, r13}, {r1, r6, r7, r11}, {r4, r8, r10, r12}

Type FFFGG: {r4, r8, r10, r15, r16}, {r1, r5, r7, r11, r13}

Table 1. The partition of the cone of the positive tropical Grassmannian
into the corresponding combinatorial type of plane. In type FFFGG, the
underlined rays represent the apexes of the splitted bipyramid to get the
cluster complex.

Theorem 5.1. The combinatorial types of tropical planes in TP5 and the combinatorial
types of pseudotriangulations of D4 intersect transversally as illustrated in Table 2.

Interestingly, although the equivalence relations are transversal, they intersect in a way
that respects the reflection and swapping equivalence of the pseudotriangulations. Using the
table, we prove the next theorem giving a sufficient condition for two positive tropical planes
to be combinatorially equivalent.

Theorem 5.2. If two pseudotriangulations of D4 are related by a sequence of reflections
of the octagon preserving the parity of the vertices (when labeled cyclically from 1 up to 8),
and possibly followed by a global exchange of central chords, then their corresponding tropical
planes in TP5 are combinatorially equivalent.

It turns out that this condition is necessary for types EEEG and FFFGG. The four
other positive types are obtained by taking unions of the classes generated by this finer
equivalence on pseudotriangulations.

Remark 5.3. It is possible to translate this finer equivalence of pseudotriangulations in
the language of subword complexes, see [20]. It would also be interesting to know if this
sufficient condition extends to tropical planes in TP6 when looking at the cluster complex of
type E6 as a subword complex.



44 II. WHERE CLUSTER ALGEBRAS AND TROPICAL GEOMETRY MEET
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Table 2. The combinatorial types of pseudotriangulations splitted into the
combinatorial types of tropical planes.



CHAPTER III

Moduli of Tropical Plane Curves

Before introducing this chapter, it is important to note that this chapter is based on pub-
lished work; the final publication is available at Springer via http://dx.doi.org/10.1186/s40687-
014-0018-1. Tropical plane curves C are dual to regular subdivisions of their Newton polygon
P . The tropical curve C is smooth if that subdivision is a unimodular triangulation ∆, i.e. it
consists of triangles whose only lattice points are its three vertices. The genus g = g(C) is
the number of interior lattice points of P . Each bounded edge of C has a well-defined lattice
length. The curve C contains a subdivision of a metric graph of genus g with vertices of
valency ≥ 3 as in [7], and this subdivision is unique for g ≥ 2. The underlying graph G is
planar and has g distinguished cycles, one for each interior lattice point of P . We call G
the skeleton of C. It is the smallest subspace of C to which C admits a deformation retract.
While the metric on G depends on C, the graph is determined by ∆. For an illustration see
Figure 13. The triangulation ∆ on the left defines a family of smooth tropical plane curves
of degree four. Such a curve has genus g = 3. Its skeleton G is shown on the right.

Figure 13. Unimodular triangulation, tropical quartic, and skeleton

For basics on tropical geometry and further references the reader is referred to [61, 80].
Let Mg denote the moduli space of metric graphs of genus g. The moduli space Mg is obtained
by gluing together finitely many orthants Rm≥0, m ≤ 3g−3, one for each combinatorial type of
graph, modulo the identifications corresponding to graph automorphisms. These automorph-
isms endow the moduli space Mg with the structure of a stacky fan. We refer to [12, 23]
for the definition of Mg, combinatorial details, and applications in algebraic geometry. The
maximal cones of Mg correspond to trivalent graphs of genus g. These have 2g − 2 vertices
and 3g − 3 edges, so Mg is pure of dimension 3g − 3. The number of trivalent graphs for
g = 2, 3, . . . , 10 is 2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172; see [8] and [23, Prop. 2.1].

Fix a (convex) lattice polygon P with g = #(int(P ) ∩ Z2). Let MP be the closure in Mg

of the set of metric graphs that are realized by smooth tropical plane curves with Newton
polygon P . For a fixed regular unimodular triangulation ∆ of P , let M∆ be the closure of
the cone of metric graphs from tropical curves dual to ∆. These curves all have the same
skeleton G, and M∆ is a convex polyhedral cone in the orthant R3g−3

≥0 of metrics on G.
Working modulo automorphisms of G, we identify M∆ with its image in the stacky fan Mg.

Now fix the skeleton G but vary the triangulation. The resulting subset of R3g−3
≥0 is a

finite union of closed convex polyhedral cones, so it can be given the structure of a polyhedral
fan. Moreover, by appropriate subdivisions, we can choose a fan structure that is invariant

45



46 III. MODULI OF TROPICAL PLANE CURVES

under the symmetries of G, and hence the image in the moduli space Mg is a stacky fan:

MP,G :=
⋃

∆ triangulation of P
with skeleton G

M∆. (III.1)

We note that MP is represented inside Mg by finite unions of convex polyhedral cones:

MP =
⋃

G trivalent graph
of genus g

MP,G =
⋃

∆ regular unimodular
triangulation of P

M∆. (III.2)

The moduli space of tropical plane curves of genus g is the following stacky fan inside Mg:

Mplanar
g :=

⋃
P

MP . (III.3)

Here P runs over isomorphism classes of lattice polygons with g interior lattice points. The
number of such classes is finite by Proposition 1.3.

This paper presents a computational study of the moduli spaces Mplanar
g . We construct

the decompositions in (III.2) and (III.3) explicitly. Our first result reveals the dimensions:

Theorem 0.1. For all g ≥ 2 there exists a lattice polygon P with g interior lattice points
such that MP has the dimension expected from classical algebraic geometry, namely,

dim(Mplanar
g ) = dim(MP ) =


3 if g = 2,
6 if g = 3,
16 if g = 7,
2g + 1 otherwise.

(III.4)

In each case, the cone M∆ of honeycomb curves supported on P attains this dimension.

Honeycomb curves are introduced in section 3. That section furnishes the proof of The-
orem 0.1. The connection between tropical and classical curves will be explained in section 2.
The number 2g+ 1 in (III.4) is the dimension of the classical moduli space of trigonal curves
of genus g, whose tropicalization is related to our stacky fan Mplanar

g . Our primary source
for the relevant material from algebraic geometry is the article [16] by Castryck and Voight.
Our paper can be seen as a refined combinatorial extension of theirs. For related recent work
that incorporates also immersions of tropical curves see Cartwright et al. [15].

We begin in section 1 with an introduction to the relevant background from geomet-
ric combinatorics. The objects in (III.1)–(III.3) are carefully defined, and we explain our
algorithms for computing these explicitly, using the software packages TOPCOM [94] and
polymake [4, 49].

Our main results in this chapter are Theorems 4.1, 5.3, 6.1, and 7.5. These concern
g = 3, 4, 5 and they are presented in sections 4 through 7. The proofs of these theorems rely
on the computer calculations that are described in section 1. In section 4 we study plane
quartics as in Figure 13. Their Newton polygon is the size four triangle T4. This models
non-hyperelliptic genus 3 curves in their canonical embedding. We compute the space MT4 .
Four of the five trivalent graphs of genus 3 are realized by smooth tropical plane curves.

Section 5 is devoted to hyperelliptic curves. We show that all metric graphs arising from
hyperelliptic polygons of given genus arise from a single polygon, namely, the hyperelliptic
triangle. We determine the space Mplanar

3,hyp , which together with MT4 gives Mplanar
3 . Section 6

deals with curves of genus g = 4. Here (III.3) is a union over four polygons, and precisely 13
of the 17 trivalent graphs G are realized in (III.2). The dimensions of the cones MP,G range
between 4 and 9. In Section 7 we study curves of genus g = 5. Here 38 of the 71 trivalent
graphs are realizable. Some others are ruled out by the sprawling condition in Proposition
7.3. We end with a brief discussion of g ≥ 6.
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1. Combinatorics and Computations

The methodology of this chapter is computations in geometric combinatorics. In this
section we fix notation, supply definitions, present algorithms, and give some core results.
For additional background, the reader is referred to the book by De Loera, Rambau, and
Santos [31].

Let P be a lattice polygon, and let A = P ∩ Z2 be the set of lattice points in P . Any
function h : A→ R is identified with a tropical polynomial with Newton polygon P , namely,

H(x, y) =
⊕

(i,j)∈A

h(i, j)� xi � yj .

The tropical curve C defined by this min-plus polynomial consists of all points (x, y) ∈ R2 for
which the minimum among the quantities i ·x+j ·y+h(i, j) is attained at least twice as (i, j)
runs over A. The curve C is dual to the regular subdivision ∆ of A defined by h. To construct
∆, we lift each lattice point a ∈ A to the height h(a), then take the lower convex hull of
the lifted points in R3. Finally, we project back to R2 by omitting the height. The maximal
cells are the images of the facets of the lower convex hull under the projection. The set of all
height functions h which induce the same subdivision ∆ is a relatively open polyhedral cone
in RA. This is called the secondary cone and is denoted Σ(∆). The collection of all secondary
cones Σ(∆) is a complete polyhedral fan in RA, the secondary fan of A.

A subdivision ∆ is a triangulation if all maximal cells are triangles. The maximal cones
in the secondary fan Σ(∆) correspond to the regular triangulations ∆ of A. Such a cone is
the product of a pointed cone of dimension #A− 3 and a 3-dimensional subspace of RA.

We are interested in regular triangulations ∆ of P that are unimodular. This means that
each triangle in ∆ has area 1/2, or, equivalently, that every point in A = P ∩Z2 is a vertex of
∆. We derive an inequality representation for the secondary cone Σ(∆) as follows. Consider
any four points a = (a1, a2), b = (b1, b2), c = (c1, c2) and d = (d1, d2) in A such that the
triples (c, b, a) and (b, c, d) are clockwise oriented triangles of ∆. Then we require

det


1 1 1 1
a1 b1 c1 d1

a2 b2 c2 d2

h(a) h(b) h(c) h(d)

 ≥ 0. (III.5)

This is a linear inequality for h ∈ RA. It can be viewed as a “flip condition”, determining which
of the two diagonals of a quadrilateral are in the subdivision. We have one such inequality for
each interior edge bc of ∆. The set of solutions to these linear inequalities is the secondary
cone Σ(∆). From this it follows that the linearity space Σ(∆) ∩ −Σ(∆) of the secondary
cone is 3-dimensional. It is the space Lin(A) of functions h ∈ RA that are restrictions of
affine-linear functions on R2. We usually identify Σ(A) with its image in RA/Lin(A), which
is a pointed cone of dimension #A − 3. That pointed cone has finitely many rays and we
represent these by vectors in RA.

Suppose that ∆ has E interior edges and g interior vertices. We consider two linear maps

RA λ−→ RE κ−→ R3g−3. (III.6)

The map λ takes h and outputs the vector whose bc-coordinate equals (III.5). This determ-
inant is nonnegative: it is precisely the length of the edge of the tropical curve C that is dual
to bc. Hence κ(λ(h)) is the vector whose 3g − 3 coordinates are the lengths of the bounded
edges of C.

Remark 1.1. The (lattice) length of an edge of C with slope p/q, where p, q are relatively
prime integers, is the Euclidean length of the edge divided by

√
p2 + q2. This lets one quickly

read off the lengths from a picture of C without having to compute the determinant (III.5).
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Each edge e of the skeleton G is a concatenation of edges of C. The second map κ adds up
the corresponding lengths. Thus the composition (III.6) is the linear map with eth coordinate

(κ ◦ λ)(h)e =
∑

bc : the dual of bc
contributes to e

λ(h)bc for all edges e of G.

By definition, the secondary cone is mapped into the nonnegative orthant under λ. Hence

Σ(∆)
λ−→ RE≥0

κ−→ R3g−3
≥0 . (III.7)

Our discussion implies the following result on the cone of metric graphs arising from ∆:

Proposition 1.2. The cone M∆ is the image of the secondary cone Σ(∆) under κ ◦ λ.

Given any lattice polygon P , we seek to compute the moduli space MP via the decom-
positions in (III.2). Our line of attack towards that goal can now be summarized as follows:

(1) compute all regular unimodular triangulations of A = P ∩ Z2 up to symmetry;
(2) sort the triangulations into buckets, one for each trivalent graph G of genus g;
(3) for each triangulation ∆ with skeleton G, compute its secondary cone Σ(∆) ⊂ RA;
(4) for each secondary cone Σ(∆), compute its image M∆ in the moduli space Mg via

(III.7);
(5) merge the results to get the fans MP,G ⊂ R3g−3 in (III.1) and the moduli space MP

in (III.2).
Step 1 is based on computing the secondary fan of A. There are two different approaches

to doing this. The first, more direct, method is implemented in Gfan [63]. It starts out with
one regular triangulation of ∆, e.g. a placing triangulation arising from a fixed ordering of A.
This comes with an inequality description for Σ(∆), as in (III.5). From this, Gfan computes
the rays and the facets of Σ(∆). Then Gfan proceeds to an adjacent secondary cone Σ(∆′)
by producing a new height function from traversing a facet of Σ(∆). Iterating this process
results in a breadth-first-search through the edge graph of the secondary polytope of A.

The second method starts out the same. But it passes from ∆ to a neighboring triangu-
lation ∆′ that need not be regular. It simply performs a purely combinatorial restructuring
known as a bistellar flip. The resulting breadth-first search is implemented in TOPCOM [94].

Neither algorithm is generally superior to the other, and sometimes it is difficult to
predict which one will perform better. The flip-algorithm may suffer from wasting time by
also computing non-regular triangulations, while the polyhedral algorithm is genuinely costly
since it employs exact rational arithmetic. The flip-algorithm also uses exact coordinates, but
only in a preprocessing step which encodes the point configuration as an oriented matroid.
Both algorithms can be modified to enumerate all regular unimodular triangulations up to
symmetry only. For our particular planar instances, we found TOPCOM to be more powerful.

We start Step 2 by computing the dual graph of a given ∆. The nodes are the triangles
and the edges record incidence. Hence each node has degree 1, 2 or 3. We then recursively
delete the nodes of degree 1. Next, we recursively contract edges which are incident with a
node of degree 2. The resulting trivalent graph G is the skeleton of ∆. It often has loops and
multiple edges. In this process we keep track of the history of all deletions and contractions.

Steps 3 and 4 are carried out using polymake [49]. Here the buckets or even the individual
triangulations can be treated in parallel. The secondary cone Σ(∆) is defined in RA by the
linear inequalities λ(h) ≥ 0 in (III.5). From this we compute the facets and rays of Σ(∆).
This is essentially a convex hull computation. In order to get unique rays modulo Lin(A),
we fix h = 0 on the three vertices of one particular triangle. Since the cones are rather small
the choice of the convex hull algorithm does not matter much. For details on state-of-the-art
convex hull computations and an up-to-date description of the polymake system see [4].

For Step 4, we apply the linear map κ ◦ λ to all rays of the secondary cone Σ(∆). Their
images are vectors in R3g−3 that span the moduli cone M∆ = (κ ◦ λ)(Σ(∆)). Via a convex
hull computation as above, we compute all the rays and facets of M∆.
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The cones M∆ are generally not full-dimensional in R3g−3. The points in the relative
interior are images of interior points of Σ(∆). Only these represent smooth tropical curves.
However, it can happen that another cone M∆′ is a face of M∆. In that case, the metric
graphs in the relative interior of that face are also realizable by smooth tropical curves.

Step 5 has not been fully automatized yet, but we carry it out in a case-by-case manner.
This will be described in detail for curves of genus g = 3 in sections 4 and 5.

We now come to the question of what lattice polygons P should be the input for Step 1.
Our point of departure towards answering that question is the following finiteness result.

Proposition 1.3. For every fixed genus g ≥ 1, there are only finitely many lattice poly-
gons P with g interior lattice points, up to integer affine isomorphisms in Z2.

Proof and Discussion. Scott [100] proved that #(∂P ∩Z2) ≤ 2g+ 7, and this bound
is sharp. This means that the number of interior lattice points yields a bound on the total
number of lattice points in P . This result was generalized to arbitrary dimensions by Hens-
ley [53]. Lagarias and Ziegler [62] improved Hensley’s bound and further observed that there
are only finitely many lattice polytopes with a given total number of lattice points, up to
unimodular equivalence [62, Theorem 2]. Castryck [17] gave an algorithm for finding all
lattice polygons of a given genus, along with the number of lattice polygons for each genus
up to 30. We remark that the assumption g ≥ 1 is essential, as there are lattice triangles of
arbitrarily large area and without any interior lattice point. �

Proposition 1.3 ensures that the union in (III.3) is finite. However, from the full list of
polygons P with g interior lattice points, only very few will be needed to construct Mplanar

g .
To show this, and to illustrate the concepts seen so far, we now discuss our spaces for g ≤ 2.

Example 1.4. For g = 1, only one polygon P is needed in (III.3), and only one trian-
gulation ∆ is needed in (III.2). We take P = conv{(0, 0), (0, 3), (3, 0)}, since every smooth
genus 1 curve is a plane cubic, and we let ∆ be the honeycomb triangulation from section 3.
The skeleton G is a cycle whose length is the tropical j-invariant [7, §7.1]. We can summarize
this as follows:

M∆ = MP,G = MP = Mplanar
1 = M1 = R≥0. (III.8)

All inclusions in (III.12) are equalities for this particular choice of (P,∆).

Figure 14. The triangulations ∆1, ∆′1, and ∆2

Example 1.5. In classical algebraic geometry, all smooth curves of genus g = 2 are hy-
perelliptic, and they can be realized with the Newton polygon P = conv{(0, 0), (0, 2), (6, 0)}.
There are two trivalent graphs of genus 2, namely, the theta graph G1 = and the dumbbell
graph G2 = . The moduli space M2 consists of two quotients of the orthant R3

≥0, one for
each graph, glued together. For nice drawings see Figures 3 and 4 in [23]. Figure 14 shows
three unimodular triangulations ∆1, ∆′1, and ∆2 of P such that almost all metric graphs in
M2 are realized by a smooth tropical curve C dual to ∆1, ∆′1, or ∆2. We say “almost all”
because here the three edges of G1 cannot have all the same length [15, Proposition 4.7]. The
triangulations ∆1 and ∆′1 both give G1 as a skeleton. If a ≥ b ≥ c denote the edge lengths
on G1, then the curves dual to ∆1 realize all metrics with a ≥ b > c, and the curves dual
to ∆′1 realize all metrics with a > b = c. The triangulation ∆2 gives G2 as a skeleton, and
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the curves dual to it achieve all possible metrics. Since our 3-dimensional cones are closed
by definition,(

M∆1 ∪ M∆′1

)
∪ M∆2 = MP,G1 ∪ MP,G2

= MP = Mplanar
2 = M2 = [23, Figure 3].

(III.9)

In section 5 we extend this analysis to hyperelliptic curves of g ≥ 3. The graphs G1 and G2

represent the chains for g = 2. For more information on hyperelliptic metric graphs see [24].

With g = 1, 2 out of the way, we now assume g ≥ 3. We follow the approach of Castryck
and Voight [16] in constructing polygons P that suffice for the union (III.3). We write Pint

for the convex hull of the g interior lattice points of P . This is the interior hull of P . The
relationship between the polygons P and Pint is studied in polyhedral adjunction theory [34].

Lemma 1.6. Let P ⊆ Q be lattice polygons with Pint = Qint. Then MP is contained in
MQ.

Proof. Every regular unimodular triangulation ∆ of P can be extended to a regular
unimodular triangulation ∆′ of Q. (This is a special property of planar triangulations: it
does not hold in higher dimensions.) This means that every tropical curve C dual to ∆ is
contained in a curve C ′ dual to ∆′, except for unbounded edges of C. The skeleton and its
possible metrics remain unchanged, since Pint = Qint. We conclude that M∆ = M∆′ . The
unions for P and Q in (III.2) show that MP ⊆MQ. �

This lemma shows that we only need to consider maximal polygons, i.e. those P that are
maximal with respect to inclusion for fixed Pint. If Pint is 2-dimensional then this determines
P uniquely. Namely, suppose that Pint = {(x, y) ∈ R2 : aix + biy ≤ ci for i = 1, 2, . . . , s},
where gcd(ai, bi, ci) = 1 for all i. Then P is the polygon {(x, y) ∈ R2 : aix + biy ≤
ci + 1 for i = 1, 2, . . . , s}. If P is a lattice polygon then it is a maximal lattice polygon.
However, it can happen that P has non-integral vertices. In that case, the given Pint is not
the interior of any lattice polygon.

The maximal polygon P is not uniquely determined by Pint when Pint is a line segment.
For each g ≥ 2 there are g+2 distinct hyperelliptic trapezoids to be considered. We shall see in
Theorem 5.1 that for our purposes it suffices to use the triangle conv{(0, 0), (0, 2), (2g+2, 0)}.

Here is the list of all maximal polygons we use as input for the pipeline described above.

Proposition 1.7. Up to isomorphism there are precisely 12 maximal polygons P such
that Pint is 2-dimensional and 3 ≤ g = #(Pint ∩ Z2) ≤ 6. For g = 3, there is a unique type,
namely, T4 = conv{(0, 0), (0, 4), (4, 0)}. For g = 4 there are three types:

Q
(4)
1 = R3,3 = conv{(0, 0), (0, 3), (3, 0), (3, 3)}, Q

(4)
2 = conv{(0, 0), (0, 3), (6, 0)},

Q
(4)
3 = conv{(0, 2), (2, 4), (4, 0)}.

For g = 5 there are four types of maximal polygons:

Q
(5)
1 = conv{(0, 0), (0, 4), (4, 2)}, Q

(5)
2 = conv{(2, 0), (5, 0), (0, 5), (0, 2)},

Q
(5)
3 = conv{(2, 0), (4, 2), (2, 4), (0, 2)}, Q

(5)
4 = conv{(0, 0), (0, 2), (2, 0), (4, 4)}.

For g = 6 there are four types of maximal polygons:

Q
(6)
1 = T5 = conv{(0, 0), (0, 5), (5, 0)}, Q

(6)
2 = conv{(0, 0), (0, 7), (3, 0), (3, 1)},

Q
(6)
3 = R3,4 = conv{(0, 0), (0, 4), (3, 0), (3, 4)}, Q

(6)
4 = conv{(0, 0), (0, 4), (2, 0), (4, 2)}.

The notation we use for polygons is as follows. We write Q(g)
i for maximal polygons of

genus g, but we also use a systematic notation for families of polygons, including the triangles
Td = conv{(0, 0), (0, d), (d, 0)} and the rectangles Rd,e = conv{(0, 0), (d, 0), (0, e), (d, e)}.

Proposition 1.7 is found by exhaustive search, using Castryck’s method in [17]. We
started by classifying all types of lattice polygons with precisely g lattice points. These are
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our candidates for Pint. For instance, for g = 5, there are six such polygons. Four of them
are the interior hulls of the polygons Q(5)

i with i = 1, 2, 3, 4. The other two are the triangles

conv{(1, 1), (1, 4), (2, 1)} and conv{(1, 1), (2, 4), (3, 2)}.

However, neither of these two triangles arises as Pint for any lattice polygon P .
For each genus g, we construct the stacky fans Mplanar

g by computing each of the spaces
M
Q

(g)
i

and then subdividing their union appropriately. This is then augmented in section 5
by the spaces MP where Pint is not two-dimensional, but is instead a line segment.

2. Algebraic Geometry

In this section we discuss the context from algebraic geometry that lies behind our com-
putations and combinatorial analyses. Let K be an algebraically closed field that is complete
with respect to a surjective non-archimedean valuation val : K∗ → R. Every smooth complete
curve C over K defines a metric graph G. This is the Berkovich skeleton of the analytification
of C as in [7]. By our hypotheses, every metric graph G of genus g arises from some curve
C over K. This defines a surjective tropicalization map from (the K-valued points in) the
moduli space of smooth curves of genus g to the moduli space of metric graphs of genus g:

trop : Mg → Mg. (III.10)

Both spaces have dimension 3g − 3 for g ≥ 2. The map (III.10) is referred to as “naive set-
theoretic tropicalization” by Abramovich, Caporaso, and Payne [1]. We point to that article
and its bibliography for the proper moduli-theoretic settings for our combinatorial objects.

Consider plane curves defined by a Laurent polynomial

f =
∑

(i,j)∈Z2

cijx
iyj ∈ K[x±, y±]

with Newton polygon P . For τ a face of P we let f |τ =
∑

(i,j)∈τ cijx
iyj , and say that f

is non-degenerate if for all faces τ of P , f |τ has no singularities in (K∗)2. Non-degenerate
polynomials are useful for studying many subjects in algebraic geometry, including singularity
theory [74], the theory of sparse resultants [50],and real algebraic curves in maximal condition
[83].

Let P be any lattice polygon in R2 with g interior lattice points. We writeMP for the
Zariski closure (inside the non-compact moduli space Mg) of the set of curves that appear
as non-degenerate plane curves over K with Newton polygon P . This space was introduced
by Koelman [71]. analogy to (III.3), we consider the union over all relevant polygons:

Mplanar
g :=

⋃
P

MP . (III.11)

This moduli space was introduced and studied by Castryck and Voight in [16]. That article
was a primary source of inspiration for our study. In particular, [16, Theorem 2.1] determined
the dimensions of the spaces Mplanar

g for all g. Whenever we speak about the “dimension
expected from classical algebraic geometry”, as we do in Theorem 0.1, this refers to the
formulas for dim(MP ) and dim(Mplanar

g ) that were derived by Castryck and Voight.
By the Structure Theorem for Tropical Varieties [80, §3.3], these dimensions are pre-

served under the tropicalization map (III.10). The images trop(MP ) and trop(Mplanar
g ) are

stacky fans that live inside Mg = trop(Mg) and have the expected dimension. Furthermore,
all maximal cones in trop(MP ) have the same dimension since MP is irreducible (in fact,
unirational).
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We summarize the objects discussed so far in a diagram of surjections and inclusions:

MP ⊆ Mplanar
g ⊆ Mg

↓ ↓ ↓
trop(MP ) ⊆ trop(Mplanar

g ) ⊆ trop(Mg)

⊆ ⊆ =

M∆ ⊆ MP,G ⊆ MP ⊆ Mplanar
g ⊆ Mg

(III.12)

For g ≥ 3, the inclusions between the second row and the third row are strict, by a wide
margin. This is the distinction between tropicalizations of plane curves and tropical plane
curves. One main objective of this paper is to understand how the latter sit inside the former.

For example, consider g = 3 and T4 = conv{(0, 0), (0, 4), (4, 0)}. Disregarding the hyper-
elliptic locus, equality holds in the second row:

trop(MT4) = trop(Mplanar
3 ) = trop(M3) = M3. (III.13)

This is the stacky fan in [23, Figure 1]. The space MT4 = Mplanar
3,nonhyp of tropical plane quartics

is also six-dimensional, but it is smaller. It fills up less than 30% of the curves in M3; see
Corollary 4.2. Most metric graphs of genus 3 do not come from plane quartics.

For g = 4, the canonical curve is a complete intersection of a quadric surface with a cubic
surface. If the quadric is smooth then we get a curve of bidegree (3, 3) in P1×P1. This leads
to the Newton polygon

R3,3 = conv{(0, 0), (3, 0), (0, 3), (3, 3)}.

Singular surfaces lead to families of genus 4 curves of codimension 1 and 2 that are supported
on two other polygons [16, §6]. As we shall see in Theorem 6.1, MP has the expected
dimension for each of the three polygons P . Furthermore, Mplanar

4 is strictly contained in
trop(Mplanar

4 ). Detailed computations that reveal our spaces for g = 3, 4, 5 are presented in
sections 4, 5, 6, and 7.

We close this section by returning once more to classical algebraic geometry. Let Tg
denote the trigonal locus in the moduli spaceMg. It is well known that Tg is an irreducible
subvariety of dimension 2g + 1 when g ≥ 5. For a proof see [46, Proposition 2.3]. A recent
theorem of Ma [77] states that Tg is a rational variety for all g.

We note that Ma’s work, as well as the classical approaches to trigonal curves, are based
on the fact that canonical trigonal curves of genus g are realized by a certain special polygon
P . This is either the rectangle in (III.16) or the trapezoid in (III.17). These polygons
appear in [16, section 12], where they are used to argue that Tg defines one of the irreducible
components of Mplanar

g , namely, MP . The same P appear in the next section, where they
serve to prove one inequality on the dimension in Theorem 0.1. The combinatorial moduli
space MP is full-dimensional in the tropicalization of the trigonal locus. The latter space,
denoted trop(Tg), is contained in the space of trigonal metric graphs, by Baker’s Specialization
Lemma [5, §2].

In general,Mplanar
g has many irreducible components other than the trigonal locus Tg. As

a consequence, there are many skeleta in Mplanar
g that are not trigonal in the sense of metric

graph theory. This is seen clearly in the top dimension for g = 7, where dim(T7) = 15 but
dim(Mplanar

7 ) = 16. The number 16 comes from the family of trinodal sextics in [16, §12].

3. Honeycombs

We now prove Theorem 0.1. This will be done using the special family of honeycomb
curves. The material in this section is purely combinatorial. No algebraic geometry will be
required.
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We begin by defining the polygons that admit a honeycomb triangulation. These polygons
depend on four integer parameters a, b, c and d that satisfy the constraints

0 ≤ c ≤ a, b ≤ d ≤ a+ b. (III.14)

To such a quadruple (a, b, c, d), we associate the polygon

Ha,b,c,d =
{

(x, y) ∈ R2 : 0 ≤ x ≤ a and 0 ≤ y ≤ b and c ≤ x+ y ≤ d
}
.

If all six inequalities in (III.14) are non-redundant then Ha,b,c,d is a hexagon. Otherwise it
can be a pentagon, quadrangle, triangle, segment, or just a point. The number of lattice
points is

#(Ha,b,c,d ∩ Z2) = ad+ bd− 1

2
(a2 + b2 + c2 + d2) +

1

2
(a+ b− c+ d) + 1,

and, by Pick’s Theorem, the number of interior lattice points is

g = #((Ha,b,c,d)int ∩ Z2) = ad+ bd− 1

2
(a2 + b2 + c2 + d2)− 1

2
(a+ b− c+ d) + 1.

The honeycomb triangulation ∆ subdivides Ha,b,c,d into 2ad+ 2bd− (a2 + b2 + c2 + d2) unit
triangles. It is obtained by slicing Ha,b,c,d with the vertical lines {x = i} for 0 < i < a, the
horizontal lines {y = j} for 0 < j < b, and the diagonal lines {x+ y = k} for c < k < d. The
tropical curves dual to ∆ look like honeycombs, as in Figure 15. The corresponding skeleta
G are called honeycomb graphs.

Figure 15. The honeycomb triangulation of H5,4,2,5, the tropical curve, and
its skeleton

If P = Ha,b,c,d then its interior Pint is a honeycomb polygon as well. Indeed, a translate of
Pint can be obtained from P by decreasing the values of a, b, c, d by an appropriate amount.
For instance, if P = H5,4,2,5 is the polygon in Figure 15 then its interior is Pint = H3,3,1,2 +
(1, 1).

Lemma 3.1. Let ∆ be the honeycomb triangulation of P = Ha,b,c,d. Then

dim(M∆) = #(Pint ∩ Z2) + #(∂Pint ∩ Z2) + # vertices(Pint) − 3.

Proof. The honeycomb graph G consists of g = #(Pint ∩ Z2) hexagons. The hexagons
associated with lattice points on the boundary of Pint have vertices that are 2-valent in G.
Such 2-valent vertices get removed, so these boundary hexagons become cycles with fewer
than six edges. In the orthant R3g−3

≥0 of all metrics on G, we consider the subcone of metrics
that arise from P . In addition to the nonnegativity constraints, this convex cone is defined by

(a) one linear inequality for each vertex of Pint;
(b) one linear equation for each lattice point in the relative interior of an edge of Pint;
(c) two linear equations for each lattice point in the interior of Pint.
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These inequalities and equations can be seen as follows. Let `1, `2, `3, `4, `5, `6 denote the
lengths of the edges (labeled cyclically) of a hexagon in a honeycomb curve. Then

`1 + `2 = `4 + `5, `2 + `3 = `5 + `6, and `3 + `4 = `6 + `1.

These three equations are linearly dependent, and they give rise to the inequalities in (a)
and to the equations in (b) and (c). The linear equations (b) and (c), when taken over all
hexagons, have a triangular structure. These linear equations are thus linearly independent.
This implies that the codimension of the cone M∆ inside the orthant R3g−3

≥0 equals

codim(M∆) =
(
#(∂Pint ∩ Z2) − # vertices(Pint)

)
+ 2 ·#(int(Pint) ∩ Z2).

(III.15)

This expression can be rewritten as

g + #(int(Pint) ∩ Z2) − # vertices(Pint) = 2g − #(∂Pint ∩ Z2) − # vertices(Pint).

Subtracting this codimension from 3g − 3, we obtain the desired formula. �

Proof of Theorem 0.1. For the classical moduli space Mplanar
g , formula (III.4) was

proved in [16]. That dimension is preserved under tropicalization. The inclusion Mplanar
g ⊆

trop(Mplanar
g ) in (III.12) shows that the right-hand side in (III.4) is an upper bound on

dim(Mplanar
g ).

To prove the lower bound, we choose P to be a specific honeycomb polygon with honey-
comb triangulation ∆. Our choice depends on the parity of the genus g. If g = 2h is even
then we take the rectangle

R3,h+1 = H3,h+1,0,h+4 = conv{(0, 0), (0, h+ 1), (3, 0), (3, h+ 1)}. (III.16)

The interior hull of R3,h+1 is the rectangle

(R3,h+1)int = conv{(1, 1), (1, h), (2, 1), (2, h)} ∼= R1,h−1.

All g = 2h lattice points of this polygon lie on the boundary. From Lemma 3.1, we see that
dim(M∆) = g + g + 4− 3 = 2g + 1. If g = 2h+ 1 is odd then we take the trapezoid

H3,h+3,0,h+3 = conv{(0, 0), (0, h+ 3), (3, 0), (3, h)}. (III.17)

The convex hull of the interior lattice points in H3,h+3,0,h+3 is the trapezoid

(H3,h+3,0,h+3)int = conv{(1, 1), (1, h+ 1), (2, 1), (2, h)}.
All g = 2h+1 lattice points of this polygon lie on its boundary, and again dim(M∆) = 2g+1.

For all g ≥ 4 with g 6= 7, this matches the upper bound obtained from [16]. We conclude
that dim(MP ) = dim(Mg) = 2g + 1 holds in all of these cases. For g = 7 we take P =
H4,4,2,6. Then Pint is a hexagon with g = 7 lattice points. From Lemma 3.1, we find
dim(M∆) = 7 + 6 + 6 − 3 = 16, so this matches the upper bound. Finally, for g = 3, we
will see dim(MT4) = 6 in section 4. The case g = 2 follows from the discussion in Example
1.5. �

There are two special families of honeycomb curves: those arising from the triangles Td
for d ≥ 4 and rectangles Rd,e for d, e ≥ 3. The triangle Td corresponds to curves of degree d
in the projective plane P2. Their genus is g = (d− 1)(d− 2)/2. The case d = 4, g = 3 will be
our topic in section 4. The rectangle Rd,e corresponds to curves of bidegree (d, e) in P1×P1.
Their genus is g = (d− 1)(e− 1). The case d = e = 3, g = 4 appears in section 6.

Proposition 3.2. Let P be the triangle Td with d ≥ 4 or the rectangle Rd,e with d, e ≥ 3.
The moduli space MP of tropical plane curves has the expected dimension inside Mg, namely,

dim(MTd) =
1

2
d2 +

3

2
d− 8 and codim(MTd) = (d− 2)(d− 4), whereas

dim(MRd,e
) = de+ d+ e− 6 and codim(MRd,e

) = 2(de− 2d− 2e+ 3).

In particular, the honeycomb triangulation defines a cone M∆ of this maximal dimension.
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Proof. For our standard triangles and rectangles, the formula (III.15) implies

codim(MTd) = 3(d− 3) − 3 + 2 · 1
2(d− 4)(d− 5),

codim(MRd,e
) = 2((d− 2) + (e− 2)) − 4 + 2 · (d− 3)(e− 3).

Subtracting from 3g − 3 = dim(Mg), we get the desired formulas for dim(MP ). �

The above dimensions are those expected from algebraic geometry. Plane curves with
Newton polygon Td form a projective space of dimension 1

2(d + 2)(d + 1) − 1 on which the
8-dimensional group PGL(3) acts effectively, while those with Rd,e form a space of dimension
(d + 1)(e + 1) − 1 on which the 6-dimensional group PGL(2)2 acts effectively. In each case,
dim(MP ) equals the dimension of the family of all curves minus the dimension of the group.

4. Genus Three

In classical algebraic geometry, all non-hyperelliptic smooth curves of genus 3 are plane
quartics. Their Newton polygon T4 = conv{(0, 0), (0, 4), (4, 0)} is the unique maximal poly-
gon with g = 3 in Proposition 1.7. In this section, we compute the moduli space MT4 , and we
characterize the dense subset of metric graphs that are realized by smooth tropical quartics.
In the next section, we study the hyperelliptic locus Mplanar

g,hyp for arbitrary g, and we compute
it explicitly for g = 3. The full moduli space is then obtained as

Mplanar
3 = MT4 ∪ Mplanar

3,hyp . (III.18)

Just like in classical algebraic geometry, dim(MT4) = 6 and dim(Mplanar
3,hyp ) = 5.
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Figure 16. The five trivalent graphs of genus 3, with letters labeling each
graph’s six edges

The stacky fan M3 of all metric graphs has five maximal cones, as shown in [23, Figure 4].
These correspond to the five (leafless) trivalent graphs of genus 3, pictured in Figure 16. Each
graph is labeled by the triple (`bc), where ` is the number of loops, b is the number of bi-edges,
and c is the number of cut edges. Here, `, b, and c are single digit numbers, so there is no
ambiguity to this notation. Our labeling and ordering is largely consistent with [8].

Although MT4 has dimension 6, it is not pure due to the realizable metrics on (111).
It also misses one of the five cones in M3: the graph (303) cannot be realized in R2 by
Proposition 7.3. The restriction of MT4 to each of the other cones is given by a finite union
of convex polyhedral subcones, characterized by the following piecewise-linear formulas:

Theorem 4.1. A graph in M3 arises from a smooth tropical quartic if and only if it is
one of the first four graphs in Figure 16, with edge lengths satisfying the following, up to
symmetry:

. (000) is realizable if and only if max{x, y}≤u, max{x, z}≤v and max{y, z}≤w,
where
? at most two of the inequalities can be equalities, and
? if two are equalities, then either x, y, z are distinct and the edge (among u, v, w)
that connects the shortest two of x, y, z attains equality, or max{x, y, z} is at-
tained exactly twice, and the edge connecting those two longest does not attain
equality.
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. (020) is realizable if and only if v ≤ u, y ≤ z, and w + max{v, y} ≤ x, and if the
last inequality is an equality, then: v = u implies v < y < z, and y = z implies
y < v < u.

. (111) is realizable if and only if w < x and

( v + w = x and v < u ) or ( v + w < x ≤ v + 3w and v ≤ u ) or
( v + 3w < x ≤ v + 4w and v ≤ u ≤ 3v/2 ) or

( v + 3w < x ≤ v + 4w and 2v = u ) or ( v + 4w < x ≤ v + 5w and v = u ).
(III.19)

. (212) is realizable if and only if w < x ≤ 2w.

To understand the qualifier “up to symmetry” in Theorem 4.1, it is worthwhile to read off
the automorphisms from the graphs in Figure 16. The graph (000) is the complete graph on
four nodes. Its automorphism group is the symmetric group of order 24. The automorphism
group of the graph (020) is generated by the three transpositions (u v), (y z), (w x) and the
double transposition (u y)(v z). Its order is 16. The automorphism group of the graph (111)
has order 4, and it is generated by (u v) and (w x). The automorphism group of the graph
(212) is generated by (u z)(v y) and (w x), and has order 4. The automorphism group of
the graph (303) is the symmetric group of order 6. Each of the five graphs contributes an
orthant R6

≥0 modulo the action of that symmetry group to the stacky fan M3.

Table 1. Dimensions of the 1278 moduli cones M∆ within MT4

G \ dim 3 4 5 6 #∆’s

(000) 18 142 269 144 573
(020) 59 216 175 450
(111) 10 120 95 225
(212) 15 15 30

total 18 211 620 429 1278

Proof of Theorem 4.1. This is based on explicit computations as in Section 1. The
symmetric group S3 acts on the triangle T4. We enumerated all unimodular triangulations
of T4 up to that symmetry. There are 1279 (classes of) such triangulations, and of these
precisely 1278 are regular. The unique non-regular triangulation is a refinement of [80,
Figure 2.3.9]. For each regular triangulation we computed the graph G and the polyhedral
cone M∆. Each M∆ is the image of the 12-dimensional secondary cone of ∆. We found
that M∆ has dimension 3, 4, 5 or 6, depending on the structure of the triangulation ∆. A
census is given by Table 1. For instance, 450 of the 1278 triangulations ∆ have the skeleton
G = (020). Among these 450, we found that 59 have dim(M∆) = 4, 216 have dim(M∆) = 5,
and 175 have dim(M∆) = 6.

For each of the 1278 regular triangulations ∆ we checked that the inequalities stated in
Theorem 4.1 are valid on the cone M∆ = (κ◦λ)(Σ(∆)). This proves that the dense realizable
part of MT4 is contained in the polyhedral space described by our constraints.

For the converse direction, we need to go through the four cases and construct a planar
tropical realization of each metric graph that satisfies our constraints. We shall now do this.

All realizable graphs of type (000), except for lower-dimensional families, arise from a
single triangulation ∆, shown in Figure 17 with its skeleton. The cone M∆ is six-dimensional.
Its interior is defined by x < min{u, v}, y < min{u,w}, and z < min{v, w}. Indeed, the
parallel segments in the outer edges can be arbitrarily long, and each outer edge be as close
as desired to the maximum of the two adjacent inner edges. This is accomplished by putting
as much length as possible into a particular edge and pulling extraneous parts back.

There are several lower dimensional collections of graphs we must show are achievable:
(i) y < x = u, max{x, z} < v, max{y, z} < w; (dim = 5)
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Figure 17. A triangulation that realizes almost all realizable graphs of type (000)

Figure 18. Triangulations giving all metrics in the cases (i) through (v) for
the graph (000)

(ii) y = x = u, max{x, z} < v, max{y, z} < w; (dim = 4)
(iii) z < y < x < v, u = x, w = y; (dim = 4)
(iv) z < y < x < u, v = x, w = y; (dim = 4)
(v) z < y = x = v = w < u. (dim = 3)

In Figure 18 we show triangulations realizing these five special families. Dual edges are
labeled

(1, 1)
x
− (1, 2)

y
− (2, 1)

z
− (1, 1).

Figure 19. A triangulation that realizes almost all realizable graphs of type (020)

Next, we consider type (020). Again, except for some lower-dimensional cases, all graphs
arise from single triangulation, pictured in Figure 19. The interior of M∆ is given by v < u,
y < z, and w + max{v, y} < x. There are several remaining boundary cases, all of whose
graphs are realized by the triangulations in Figure 20:

(i) v < u, y < z, w + max{v, y} = x; (dim = 5)
(ii) u = v, y < z, w + max{v, y} < x; (dim = 5)
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(iii) u = v, y = z, w + max{v, y} < x; (dim = 4)
(iv) u = v, v < y < z, w + max{v, y} = x. (dim = 4)

Figure 20. Triangulations giving all metrics in the cases (i) through (iv) for
the graph (020)

Type (111) is the most complicated. We begin by realizing the metric graphs that lie
in int(MT4,(111)). These arise from the second and third cases in the disjunction (III.19).

We assume w < x. The triangulation to the left in Figure 21 realizes all metrics on (111)
satisfying v+w < x < v+3w and v < u . The dilation freedom of u, y, and z is clear. To see
that the edge x can have length arbitrarily close to v+ 3w, simply dilate the double-arrowed
segment to be as long as possible, with some very small length given to the next two segments
counterclockwise. Shrinking the double-arrowed segment as well as the vertical segment of
x brings the length close to v + w. The triangulation to the right in Figure 21 realizes all
metrics satisfying v + 3w < x < v + 4w and v < u < 3v/2. Dilation of x is more free due to
the double-arrowed segment of slope 1/2, while dilation of u is more restricted.

u

z

v
w

y
x

Figure 21. Triangulations of type (111) realizing v + w < x < v + 2x and
v < u (on the left) and v+ 3w < x < v+ 4w and v < u < 3v/2 (on the right)

Many triangulations are needed in order to deal with low-dimensional case. In Figure 22
we show triangulations that realize each of the following families of type (111) graphs:

(i) v + w < x < v + 5w, v = u; (dim = 5)
(ii) v + w < x < v + 4w, 2v = u; (dim = 5)
(iii) v + w = x, v < u; (dim = 5)
(iv) x = v + 3w, v < u; (dim = 5)
(v) x = v + 4w, v < u ≤ 3v/2; (dim = 5)
(vi) x = v + 5w, v = u; (dim = 4)
(vii) x = v + 4w, 2v = u. (dim = 4)
All graphs of type (212) can be achieved with the two triangulations in Figure 23. The

left gives all possibilities with w < x < 2w, and the right realizes x = 2w. The edges u, v, y,
z are completely free to dilate. This completes the proof of Theorem 4.1. �



4. GENUS THREE 59

Figure 22. Triangulations of type (111) that realize the boundary cases (i)
through (vii) u

u

v

w
x y

z

Figure 23. Triangulations giving graphs of type (212) giving w < x < 2w
and x = 2w

The space MT4 is not pure-dimensional because of the graphs (111) with u = v and
v + 4w < x < v + 5w. These appear in the five-dimensional M∆ where ∆ is the leftmost tri-
angulation in Figure 22, butM∆ is not contained in the boundary of any six-dimensionalM∆′ .

We close this section by suggesting an answer to the following question: What is the
probability that a random metric graph of genus 3 can be realized by a tropical plane quartic?

To examine this question, we need to endow the moduli space M3 with a probability
measure. Here we fix this measure as follows. We assume that the five trivalent graphs G are
equally likely, and all non-trivalent graphs have probability 0. The lengths on each trivalent
graph G specify an orthant R6

≥0. We fix a probability measure on R6
≥0 by normalizing so that

u+ v + w + x+ y + z = 1, and we take the uniform distribution on the resulting 5-simplex.
With this probability measure on the moduli space M3 we are asking for the ratio of volumes

vol(Mplanar
3 )/ vol(M3). (III.20)

This ratio is a rational number, which we computed from our data in Theorem 4.1.

Corollary 4.2. The rational number in ( III.20) is 31/105. This means that, in the
measure specified above, about 29.5% of all metric graphs of genus 3 come from tropical plane
quartics.

Proof and Explanation. The graph (303) is not realizable, since none of the 1278
regular unimodular triangulations of the triangle T4 has this type. So, its probability is zero.
For the other four trivalent graphs in Figure 16 we compute the volume of the realizable edge
lengths, using the inequalities in Theorem 4.1. The result of our computations is the table

Graph (000) (020) (111) (212) (303)
Probability 4/15 8/15 12/35 1/3 0

A non-trivial point in verifying these numbers is that Theorem 4.1 gives the constraints
only up to symmetry. We must apply the automorphism group of each graph in order to obtain
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the realizable region in its 5-simplex {(u, v, w, x, y, z) ∈ R6
≥0 : u + v + w + x + y + z = 1}.

Since we are measuring volumes, we are here allowed to replace the regions described in
Theorem 4.1 by their closures. For instance, consider type (020). After taking the closure,
and after applying the automorphism group of order 16, the realizability condition becomes

max
(
min(u, v),min(y, z)

)
≤ |x− w|. (III.21)

The probability that a uniformly sampled random point in the 5-simplex satisfies (III.21)
is equal to 8/15. The desired probability (III.20) is the average of the five numbers in the
table. �

Notice that asking for those probabilities only makes sense since the dimension of the
moduli space agrees with the number of skeleton edges. In view of (III.4) this occurs for the
three genera g = 2, 3, 4. For g ≥ 5 the number of skeleton edges exceeds the dimension of
the moduli space. Hence, in this case, the probability that a random metric graph can be
realized by a tropical plane curve vanishes a priori. For g = 2 that probability is one; see
Example 1.5. For g = 4 that probability is less than 0.5% by Corollary 6.2 below.

5. Hyperelliptic Curves

A polygon P of genus g is hyperelliptic if Pint is a line segment of length g− 1. We define
the moduli space of hyperelliptic tropical plane curves of genus g to be

Mplanar
g,hyp :=

⋃
P

MP ,

where the union is over all hyperelliptic polygons P of genus g. Unlike when the interior hull
Pint is two-dimensional, there does not exist a unique maximal hyperelliptic polygon P with
given Pint. However, are only finitely many such polygons up to isomorphism. These are

E
(g)
k := conv{(0, 0), (0, 2), (g + k, 0), (g + 2− k, 2)} for 1 ≤ k ≤ g + 2.

These hyperelliptic polygons interpolate between the rectangle E(g)
1 = Rg+1,2 and the triangle

E
(g)
g+2. The five maximal hyperelliptic polygons for genus g = 3 are pictured in Figure 24.

Figure 24. The five maximal hyperelliptic polygons of genus 3

This finiteness property makes a computation of Mplanar
g,hyp feasible: compute M

E
(g)
k

for all
k, and take the union. By [66, Proposition 3.4], all triangulations of hyperelliptic polygons
are regular, so we need not worry about non-regular triangulations arising in the TOPCOM
computations described in section 1. We next show that it suffices to consider the triangle:

Theorem 5.1. For each genus g ≥ 2, the hyperelliptic triangle E(g)
g+2 satisfies

M
E

(g)
g+2

= Mplanar
g,hyp ⊆ Mchain

g ∩Mplanar
g . (III.22)

The equality holds even before taking closures of the spaces of realizable graphs. The spaces on
the left-hand side and right-hand side of the inclusion in ( III.22) both have dimension 2g−1.

Before proving our theorem, we define Mchain
g . This space contains all metric graphs that

arise from triangulating hyperelliptic polygons. Start with a line segment on g − 1 nodes
where the g − 2 edges have arbitrary non-negative lengths. Double each edge so that the
resulting parallel edges have the same length, and attach two loops of arbitrary lengths at
the endpoints. Now, each of the g− 1 nodes is 4-valent. There are two possible ways to split
each node into two nodes connected by an edge of arbitrary length. Any metric graph arising
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from this procedure is called a chain of genus g. Although there are 2g−1 possible choices in
this procedure, some give isomorphic graphs. There are 2g−2 + 2b(g−2)/2c combinatorial types
of chains of genus g. In genus 3 the chains are (020), (111), and (212) in Figure 16, and in
genus 4 they are (020), (021), (111), (122), (202), and (223) in Figure 33.

By construction, there are 2g − 1 degrees of freedom for the edge lengths in a chain of
genus g, so each such chain defines an orthant R2g−1

≥0 . We write Mchain
g for the stacky subfan

of Mg consisting of all chains. Note that Mchain
g is strictly contained in the space Mhyp

g of all
hyperelliptic metric graphs, seen in [24]. Hyperelliptic graphs arise by the same construction
from any tree with g − 1 nodes, whereas for chains that tree must be a line segment.

The main claim in Theorem 5.1 is that any metric graph arising from a maximal hyper-
elliptic polygon E(g)

k also arises from the hyperelliptic triangle E(g)
g+2. Given a triangulation

∆ of E(g)
k , our proof constructs a triangulation ∆′ of E(g)

g+2 that gives rise to the same collec-
tion of metric graphs, so that M∆ = M∆′ , with equality holding even before taking closures.
Before our proof, we illustrate this construction with the following example.

Example 5.2. Let ∆ be the triangulation of R4,2 pictured on the left in Figure 25 along
with a metric graph Γ arising from it. The possible metrics on Γ are determined by the slopes
of the edges emanating from the vertical edges. For instance, consider the constraints on v
and y imposed by the width w (which equals x). If most of the w and x edges are made up
of the segments emanating from v, we find y close to v + 2w. If instead most of the w and x
edges are made up of the segments emanating from y, we find y close to v−2w. Interpolating
gives graphs achieving v − 2w < y < v + 2w. This only depends on the difference of the
slopes emanating either left or right from the edges v and y: the same constraints would
be imposed if the slopes emanating from v to the right were 2 and 0 rather than 1 and −1.
Boundary behavior determines constraints on u and z, namely v < u and y < z.

u v

w

x

y z

u
v

w

x

y

z

Figure 25. Triangulations of R4,2 and E(3)
5 , giving rise to skeletons with the

same possible metrics.

Also pictured in Figure 25 is a triangulation ∆′ of E(3)
5 . The skeleton Γ′ arising from ∆′

has the same combinatorial type as Γ, and the slopes emanating from the vertical edges have
the same differences as in Γ. Combined with similar boundary behavior, this shows that Γ
and Γ′ have the exact same achievable metrics. In other words, M∆ = M∆′ , with equality
even before taking closures of the realizable graphs.

We now explain how to construct ∆′ from ∆, an algorithm spelled out explicitly in the
proof of Theorem 5.1. We start by adding edges from (0, 2) to the interior lattice points (since
any unimodular triangulation of E(3)

5 must include these edges), and then add additional edges
based on the combinatorial type of ∆, as pictured in Figure 26.

Next we add edges connecting the interior lattice points to the lower edge of the triangle.
We will ensure that the outgoing slopes from the vertical edges in the Γ′ have the same
difference as in Γ. For i = 1, 2, 3, we will connect (i, 1) to all points between (2i+ ai, 0) and
(2i + bi, 0) where ai is the difference between the reciprocals of the slopes of the leftmost
edges from (i, 1) to the upper and lower edges of R4,2 in ∆, and bi is defined similarly but



62 III. MODULI OF TROPICAL PLANE CURVES

Figure 26. The start of ∆′.

with the rightmost edges. Here we take the reciprocal of ∞ to be 0. In the dual tropical
curve, this translates to slopes emanating from vertical edges in the tropical curve having the
same difference as from ∆.

Figure 27. Several steps leading up to ∆′, on the right.

We compute a1 = 1
−1−

1
1 = −2 and b1 = 1

∞−
1
∞ = 0. Since 2 ·1+a1 = 0 and 2 ·1+b1 = 2,

we add edges from (1, 1) to (0, 0), to (0, 2), and to all points in between, in this case just
(0, 1). We do similarly for the other two interior lattice points, as pictured in the first three
triangles in Figure 28. The fourth triangle includes the edges (0, 1)− (1, 1) and (3, 1)− (4, 1),
which ensures the same constraints as from ∆ on the first and third loops of the corresponding
metric graph.

Figure 28. Several steps leading up to ∆′, on the right.

Proof of Theorem 5.1. The inclusion Mplanar
g,hyp ⊆ Mchain

g holds because every unimod-
ular triangulation of a hyperelliptic polygon is dual to a chain graph. Such a chain has 2g−1

edges, and hence dim(Mchain
g ) = 2g− 1. We also have dim(Mplanar

g,hyp ) ≥ 2g− 1 because Lemma
3.1 implies dim(MRg+1,2) = 2g − 1. Hence the inclusion implies the dimension statement.

It remains to prove the equality M
E

(g)
g+2

= Mplanar
g,hyp . Given any triangulation ∆ of a

hyperelliptic polygon E
(g)
k , we shall construct a triangulation ∆′ of E(g)

g+2 such that M∆ =
M∆′ . Our construction will show that the equality even holds at the level of smooth tropical
curves.

We start constructing ∆′ by drawing g edges from (0, 2) to the interior lattice points. The
next g− 1 edges of ∆′ are those that give it the same skeleton as ∆. This means that ∆′ has
the edge (i, 1)− (i+ 1, 1) whenever that edge is in ∆, and ∆′ has the edge (0, 2)− (2i+ 1, 0)
whenever (i, 1)− (i+ 1, 1) is not an edge in ∆. Here i = 1, . . . , g − 1.

Next we will include edges in ∆′ that give the same constraints on vertical edge lengths
as ∆. This is accomplished by connecting the point (i, 1) to (2i+ai, 0), to (2i+ bi, 0), and to
all points in between, where ai and bi are defined as follows. Let ai be the difference between
the reciprocals of the slopes of the leftmost edges from (i, 1) to the upper and lower edges of
E

(g)
k in ∆. Here we take the reciprocal of ∞ to be 0. Let bi be defined similarly, but with

the rightmost edges. These new edges in ∆′ do not cross due to constraints on the slopes
in ∆. Loop widths and differences in extremal slopes determine upper and lower bounds on
the lengths of vertical edges. These constraints on the g − 2 interior loops mostly guarantee
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M∆ = M∆′ . To take care of the 1st and gth loops, we must complete the definition of ∆′.
Let (n, 0) be the leftmost point of the bottom edge of E(g)

g+2 connected to (1, 1) so far in ∆′.
(i) If n = 0 then ∆′ includes the edge (0, 1)− (1, 1).
(ii) If n ≥ 2 then ∆′ includes (0, 1)− (1, 1) and all edges (0, 1)− (0,m) with 0 ≤ m ≤ n.
(iii) If n=1 and (0, 1)− (1, 1) is an edge of ∆ then ∆′ includes (0, 1)− (1, 1) and (0, 1)−

(1, 0).
(iv) If n=1 and (0, 1) − (1, 1) is not an edge ∆ then ∆′ includes (0, 2) − (1, 0) and

(0, 1)− (1, 0).
Perform a symmetric construction around (g, 1). These edge choices will give the same
constraints on the 1st and gth loops as those imposed by ∆. This completes the proof. �

We now return to genus g = 3, our topic in section 4, and we complete the computation of
Mplanar

3 . By (III.18) and Theorem 5.1, it suffices to compute the 5-dimensional space M
E

(g)
g+2

.

An explicit computation as in section 1 reveals that the rectangle E(3)
1 = R4,2 realizes precisely

the same metric graphs as the triangle E(3)
5 . With this, Theorem 5.1 implies Mplanar

3,hyp = MR4,2 .
To complete the computation in section 4, it thus suffices to analyze the rectangle R4,2.

Table 2. Dimensions of the moduli cones M∆ for R4,2 and E(3)
5

R4,2 E
(3)
5

G \ dim 3 4 5 #∆’s 3 4 5 #∆’s
(020) 42 734 1296 2072 42 352 369 763
(111) 211 695 906 90 170 260
(212) 127 127 25 25
total 42 945 2118 3105 42 442 564 1048

It was proved in [6] that MR4,2 and MT4 have disjoint interiors. Moreover, MR4,2 is not
contained in MT4 . This highlights a crucial difference between (III.13) and (III.18). The
former concerns the tropicalization of classical moduli spaces, so the hyperelliptic locus lies
in the closure of the non-hyperelliptic locus. The analogous statement is false for tropical
plane curves. To see that MT4 does not contain MR4,2 consider the (020) graph with all edge
lengths equal to 1. By Theorems 4.1 and 5.3, this metric graph is in MR4,2 but not in MT4 .
What follows is the hyperelliptic analogue to the non-hyperelliptic Theorem 4.1.

Theorem 5.3. A graph in M3 arises from R4,2 if and only if it is one of the graphs (020),
(111), or (212) in Figure 16, with edge lengths satisfying the following, up to symmetry:

. (020) is realizable if and only if w = x, v ≤ u, v ≤ y ≤ z, and
(y < v + 2w ) or (y = v + 2w and y < z )

or
(y < v + 3w and u ≤ 2v ) or (y = v + 3w and u ≤ 2v and y < z )

or
(y < v + 4w and u = v ) or ( y = v + 4w and u = v and y < z ).

(III.23)

. (111) is realizable if and only if w = x and min{u, v} ≤ w.

. (212) is realizable if and only if w = x.

Proof. This is based on an explicit computation as described in section 1. The hyperel-
liptic rectangle R4,2 has 3105 unimodular triangulations up to symmetry. All triangulations
are regular. For each such triangulation we computed the graph G and the polyhedral cone
M∆. Each M∆ has dimension 3, 4, or 5, with census given on the left in Table 2. For each
cone M∆ we then checked that the inequalities stated in Theorem 5.3 are satisfied. This
proves that the dense realizable part of MR4,2 is contained in the polyhedral space described
by our constraints.
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For the converse direction, we construct a planar tropical realization of each metric graph
that satisfies our constraints. For the graph (020), we consider eleven cases:

(i) y < v + 2w, u 6= v, y 6= z; (dim = 5)
(ii) y = v + 2w, u 6= v, y 6= z; (dim = 5)
(iii) ( y < v + 3w, v < u < 2v, y 6= z ) or ( y < v + 2w, u 6= v, y < z < 2y ); (dim = 5)
(iv) ( y < v + 3w, u = 2v, y 6= z ) or ( y < v + 2w, u 6= v, z = 2y ); (dim = 4)
(v) ( y < v + 3w, v < u < 2v, y = z ) or ( y < v + 4w, u = v, y < z < 2z ); (dim = 4)
(vi) ( y < v + 3w, u = 2v, y = z ) or ( y < v + 4w, u = v, z = 2y ); (dim = 3)
(vii) y = v + 3w, v < u < 2v, y 6= z; (dim = 4)
(viii) y = v + 3w, u = 2v, y 6= z; (dim = 3)
(ix) ( y < v + 4w, u = v, y 6= z ) or ( y < v + 2w, y = z, u 6= v ); (dim = 3)
(x) y < v + 4w, u = v, y = z; (dim = 3)
(xi) y = v + 4w, u = v, y 6= z. (dim = 3)

The disjunction of (i),(ii),. . . ,(xi) is equivalent to (III.23). Triangulations giving all metric
graphs satisfying each case are pictured in Figure 29. Next to the first triangulation is a
metric graph arising from it.

u v

w

x

y z

Figure 29. Triangulations giving all realizable hyperelliptic metrics for the
graph (020)

Next we deal with graph (111). Here we need two triangulations, one for u 6= v and one
for u = v. They are pictured in Figure 30. The left gives u 6= v, and the middle gives u = v.

Figure 30. Triangulations realizing hyperelliptic metrics for the graphs (111)
and (212)

Finally, for the graph (212), the single triangulation on the right in Figure 30 suffices. �

6. Genus Four

In this section we compute the moduli space of tropical plane curves of genus 4. This is

Mplanar
4 = M

Q
(4)
1

∪ M
Q

(4)
2

∪ M
Q

(4)
3

∪ Mplanar
4,hyp ,

where Q(4)
i are the three genus 4 polygons in Proposition 1.7. They are shown in Figure 31.

There are 17 trivalent genus 4 graphs, of which 16 are planar. These were first enumerated
in [8], and are shown in Figure 33. All have 6 vertices and 9 edges. The labels (`bc) are as
in section 4: ` is the number of loops, b the number of bi-edges, and c the number of cut
edges. This information is enough to uniquely determine the graph with the exception of
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Figure 31. The three non-hyperelliptic genus 4 polygons and a triangulation

(000), where “A” indicates the honeycomb graph and “B” the complete bipartite graph K3,3.

Up to their respective symmetries, the square Q(4)
1 = R3,3 has 5941 unimodular triangu-

lations, the triangle Q(4)
2 has 1278 unimodular triangulations, and the triangle Q(4)

3 has 20
unimodular triangulations. We computed the cone M∆ for each triangulation ∆, and we ran
the pipeline of section 1. We summarize our findings as the main result of this section:

Theorem 6.1. Of the 17 trivalent graphs, precisely 13 are realizable by tropical plane
curves. The moduli space Mplanar

4 is 9-dimensional, but it is not pure: the left decomposition
in (III.2) has components (III.1) of dimensions 7, 8 and 9. That decomposition is explained
in Table 3.

The four non-realizable graphs are (000)B, (213), (314) and (405). This is obvious for
(000)B, because K3,3 is not planar. The other three are similar to the genus 3 graph (303),
and are ruled out by Proposition 7.3 below. The 13 realizable graphs G appear in the rows in
Table 3. The first three columns correspond to the polygons Q(4)

1 , Q(4)
2 and Q(4)

3 . Each entry
is the number of regular unimodular triangulations ∆ of Q(4)

i with skeleton G. The entry is
blank if no such triangulation exists. Six of the graphs are realized by all three polygons,
five are realized by two polygons, and two are realized by only one polygon. For instance,
the graph (303) comes from a unique triangulation of the triangle Q(4)

3 , shown on the right
in Figure 31. Neither Q(4)

1 nor Q(4)
2 can realize this graph.

Our moduli space Mplanar
4 has dimension 9. We know this already from Proposition 3.2,

where the square Q(4)
1 appeared as R3,3. In classical algebraic geometry, that square serves

as the Newton polygon for canonical curves of genus 4 lying on a smooth quadric surface.
In Table 3, we see that all realizable graphs except for (303) arise from triangulations of
R3,3. However, only five graphs allow for the maximal degree of freedom. Corresponding
triangulations are depicted in Figure 32.

The last three columns in Table 3 list the dimensions of the moduli spaceM
Q

(4)
i ,G

, which is

the maximal dimension of any cone M∆ where ∆ triangulates Q(4)
i and has skeleton G. More

detailed information is furnished in Table 4. The three subtables (one each for i = 1, 2, 3)
explain the decomposition (III.1) of each stacky fan M

Q
(4)
i ,G

. The row sums in Table 4 are
the first three columns in Table 3. For instance, the graph (030) arises in precisely 23 of the

(000)A (010) (020) (021) (030)

Figure 32. Triangulations ∆ of Q(4)
1 with dim(M∆) = 9
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(000)A (000)B (010) (020) (021)

(030) (101) (111) (121)

(122) (202) (212) (213)

(223) (303) (314) (405)

Figure 33. The 17 trivalent graphs of genus 4. All are planar except for (000)B.

Table 3. The number of triangulations for the graphs of genus 4 and their
moduli dimensions

G #∆
Q

(4)
1 ,G

#∆
Q

(4)
2 ,G

#∆
Q

(4)
3 ,G

dim(M
Q

(4)
1 ,G

) dim(M
Q

(4)
2 ,G

) dim(M
Q

(4)
3 ,G

)

(000)A 1823 127 12 9 8 7
(010) 2192 329 2 9 8 7
(020) 351 194 9 8
(021) 351 3 9 7
(030) 334 23 1 9 8 7
(101) 440 299 2 8 8 7
(111) 130 221 8 8
(121) 130 40 1 8 8 7
(122) 130 11 8 7
(202) 15 25 7 7
(212) 30 6 1 7 7 7
(223) 15 7
(303) 1 7

total 5941 1278 20

1278 triangulations ∆ of the triangle Q(4)
2 . Among the corresponding cones M∆, three have

dimension six, twelve have dimension seven, and eight have dimension eight.
Equipped with these data, we can now extend the probabilistic analysis of Corollary

4.2 from genus 3 to genus 4. As before, we assume that all 17 trivalent graphs are equally
likely and we fix the uniform distribution on each 8-simplex that corresponds to one of the
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Table 4. All cones M∆ from triangulations ∆ of the three polygons in Figure 31

Q
(4)
1 Q

(4)
2 Q

(4)
3

G\dim 5 6 7 8 9 5 6 7 8 4 5 6 7
(000) 103 480 764 400 76 5 52 60 10 1 6 3 2
(010) 38 423 951 652 128 7 113 155 54 1 1
(020) 3 32 152 128 36 53 100 41
(021) 3 32 152 128 36 1 2
(030) 45 131 122 36 3 12 8 1
(101) 15 155 210 60 19 122 128 30 1 1
(111) 10 80 40 52 126 43
(121) 35 65 30 8 20 12 1
(122) 10 80 40 1
(202) 15 25
(212) 15 15 4 2 1
(223) 15
(303) 1

17 maximal cones in the 9-dimensional moduli space M4. The five graphs that occur with
positive probability are those with dim(M

Q
(4)
1 ,G

) = 9. Full-dimensional realizations were seen
in Figure 32. The result of our volume computations is the following table:

Graph (000)A (010) (020) (021) (030)
Probability 0.0101 0.0129 0.0084 0.0164 0.0336

In contrast to the exact computation in Corollary 4.2, our probability computations for
genus 4 rely on a Monte-Carlo simulation, with one million random samples for each graph.

Corollary 6.2. Less than 0.5% of all metric graphs of genus 4 come from plane tropical
curves. More precisely, the fraction is approximately vol(Mplanar

4 )/ vol(M4) = 0.004788.

By Theorem 5.1, Mplanar
4,hyp = M

E
(g)
g+2

. This space is 7-dimensional, with 6 maximal cones

corresponding to the chains (020), (021), (111), (122), (202), and (223). The graphs (213),
(314), and (405) are hyperelliptic if given the right metric, but beyond not being chain graphs,
these are not realizable in the plane even as combinatorial types by Proposition 7.3.

7. Genus Five and Beyond

The combinatorial complexity of trivalent graphs and of regular triangulations increases
dramatically with g, and one has to be judicious in deciding what questions to ask and what
computations to attempt. One way to start is to rule out families of trivalent graphs G that
cannot possibly contribute to Mplanar

g . Clearly, non-planar graphs G are ruled out. We begin
this section by identifying another excluded class. Afterwards we examine our moduli space
for g = 5, and we check which graphs arise from the polygons Q(5)

i in Proposition 1.7.

Definition 7.1. A connected, trivalent, leafless graph G is called sprawling if there exists
a vertex s of G such that G\{s} consists of three distinct components.

Remark 7.2. Each component of G\{s} must have genus at least one; otherwise G would
not have been leafless. The vertex s need not be unique. The genus 3 graph (303) in Figure 16
is sprawling, as are the genus 4 graphs (213), (314), and (405) in Figure 33.

Proposition 7.3. Sprawling graphs are never the skeletons of smooth tropical plane
curves.

This was originally proven in [15, Prop. 4.1]. We present our own proof for completeness.
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Proof. Suppose the skeleton of a smooth tropical plane curve C is a sprawling graph G
with separating vertex s. After a change of coordinates, we may assume that the directions
emanating from s are (1, 1), (0,−1), and (−1, 0). The curve C is dual to a unimodular
triangulation ∆ of a polygon P ⊂ R2. Let T ∈ ∆ be the triangle dual to s. We may
take T = conv{(0, 0), (0, 1), (1, 0)} after an appropriate translation of P . Let P1, P2, P3 be
the subpolygons of P corresponding to the components of G\{s}. After relabeling, we have
P1 ∩ P2 = {(0, 1)}, P1 ∩ P3 = {(0, 0)}, and P2 ∩ P3 = {(1, 0)}. Each Pi has at least one
interior lattice point, since each component of G\{s} must have genus at least 1.

α

β

γ

δ
T

P1

P2

P3

Figure 34. The triangle T with angles formed between it and the boundary
edges of P

Let α, β, γ, δ be angles between the triangle T and the boundary edges of P emanating
from the vertices of T , as pictured in Figure 34. Since P is convex, we know α + β ≤ 3π/4,
γ < π/2, and δ < 3π/4. As P1 contains at least one interior lattice point, and γ < π/2, we
must also have that α > π/2; otherwise P1 ⊂ (∞, 0] × [0, 1], which has no interior lattice
points. Similarly, as P2 has at least one interior lattice point and δ < 3π/4, we must have
that β > π/4. But we now have that α+ β > π/2 + π/4 = 3π/4, a contradiction. Thus, the
skeleton of C cannot be a sprawling graph, as originally assumed. �

Remark 7.4. If G is sprawling then Mplanar
g ∩MG 6= ∅ because edge lengths can become

zero on the boundary. However, it is only in taking closures of spaces of realizable graphs
that this intersection becomes nonempty.

We will now consider the moduli space of tropical plane curves of genus 5. That space is

Mplanar
5 = M

Q
(5)
1

∪ M
Q

(5)
2

∪ M
Q

(5)
3

∪ M
Q

(5)
4

∪ Mplanar
5,hyp ,

where Q(5)
1 , Q(5)

2 , Q(5)
3 , Q(5)

4 are the four genus 5 polygons in Proposition 1.7. They are shown
in Figure 35. Modulo their respective symmetries, the numbers of unimodular triangulations
of these polygons are: 508 for Q(5)

1 , 147908 for Q(5)
2 , 162 for Q(5)

3 , and 968 for Q(5)
4 .

Figure 35. The genus 5 polygons Q(5)
1 , Q(5)

2 , Q(5)
3 and Q(5)

4
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We applied the pipeline described in section 1 to all these triangulations. The outcome
of our computations is the following result which is the genus 5 analogue to Theorem 6.1.

Theorem 7.5. Of the 71 trivalent graphs of genus 5, precisely 38 are realizable by smooth
tropical plane curves. The four polygons satisfy dim(M

Q
(5)
i

) = 9, 11, 10, 10 for i = 1, 2, 3, 4.

All but one of the 38 realizable graphs arise from Q
(5)
1 or Q(5)

2 . The remaining graph,
realized only by a single triangulation of Q(5)

4 , is illustrated in Figure 36. This is reminiscent
of the genus 4 graph (303), which was realized only by the triangulation of Q(4)

3 in Figure 31.
The other 37 graphs are realized by at least two of the polygons Q(5)

1 , . . . , Q
(5)
4 , E

(5)
7 .

Figure 36. A genus 5 graph, and the unique triangulation that realizes it

Among the 71 trivalent graphs of genus 5, there are four non-planar graphs and 15
sprawling graphs, with none both non-planar and sprawling. This left us with 52 possible
candidates for realizable graphs. We ruled out the remaining 14 by the explicit computations
described in section 1. Three of these 14 graphs are shown in Figure 37. At present we do
not know any general rule that discriminates between realizable and non-realizable graphs.

Figure 37. Some non-realizable graphs of genus 5

The process we have carried out for genus g = 3, 4, and 5 can be continued for g ≥ 6. As
the genus increases so does computing time, so it may be prudent to limit the computations
to special cases of interest. For g = 6 we might focus on the triangle Q(6)

1 = T5. This is of
particular interest as it is the Newton polygon of a smooth plane quintic curve. This triangle
has 561885 regular unimodular triangulations up to symmetry.

Although T5 is interesting as the Newton polygon of plane quintics, it has the downside
that MT5 is not full-dimensional inside Mplanar

6 . Proposition 3.2 implies that dim(MT5) = 12,
while dim(Mplanar

6 ) = 13, and this dimension is attained by the rectangle R3,4 as in (III.16).
This might lead us to focus on full-dimensional polygons of genus g. By this we mean

polygons P whose moduli space MP has the dimension in (III.4). For each genus from 3
to 5, our results show that there is a unique full-dimensional polygon, namely, T4, R3,3, and
Q

(5)
2 . The proof of Theorem 0.1 furnishes an explicit example for each genus g ≥ 6: take the

rectangle in (III.16) or the trapezoid in (III.17) if g 6= 7, or the hexagon H4,4,2,6 if g = 7.
Preliminary calculations show that there are exactly two full-dimensional maximal polygons
for g = 6, namely, Q(6)

3 = R3,4 and Q(
46) from Proposition 1.7.

We conclude with several open questions.
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Question 7.6. Let P be a maximal lattice polygon with at least 2 interior lattice points.
(1) What is the relationship between MP and MP ? In particular, does the equality

dim(MP ) = dim(MP ) hold for all P?
(2) How many P with g interior lattice points give a full dimensional MP inside Mplanar

g ?
(3) Is there a more efficient way of determining if a combinatorial graph of genus g

appears in Mplanar
g than running the pipeline in section 1?



CHAPTER IV

Zonotopal Algebra

The theory of zonotopal algebras introduced by Holtz and Ron [59] gives a means of
associating some of the most fundamental objects in combinatorics to solution sets of dif-
ferential equations. Starting with a box-spline, the central Dahmen-Micchelli space can be
constructed: a space of polynomials which satisfies the same differential equations as the
polynomials locally describing the starting box-spline. The central Dahmen-Micchelli space
is the Macaulay inverse system of an ideal generated by powers of linear forms; these linear
forms are indexed by the cocircuits of the matroid whose ground set consists of the vectors
defining the underlying zonotope of the starting box-spline. Holtz and Ron [59] also define a
dual space to the central Dahmen-Micchelli space, the P-central space, which has the same
Hilbert polynomial as the central Dahmen-Micchelli space and can be associated to a hyper-
plane arrangement derived from a power ideal in which the P-central space is the Macaulay
inverse system of. There are also the internal and external Dahmen-Micchelli spaces and
their duals as well, leaving us with many algebraic objects to play with.

Having this strong bridge between approximation theory (via the box-spline) and com-
binatorics is powerful. But the question still remains, where can this powerful bridge be
applied? Here we link the machinery of zonotopal algebra with two particular polytopes,
showing that the zonotopal spaces derived from two particular graphs capture the volumes
of these polytopes, as well as the volumes of polytopes appearing in particular polyhedral
subdivisions of these polytopes.

The first of the two is the Stanley-Pitman polytope. The Stanley-Pitman polytope,
introduced by Stanley and Pitman [106], has a polyhedral subdivision whose chambers are
indexed naturally by rooted binary trees, giving us a representation of the associahedra. For
t ∈ Rn+, the Stanley-Pitman polytope is specifically the n-dimensional polytope Qn(t) defined
by the equations

Qn(t) := {r ∈ Rn+ :

n∑
i=j

ri ≤
n∑
i=j

ti, 1 ≤ j ≤ n},

where we define R+ := [0,∞). Stanley and Pitman study the volume of Qn(t),

qn(t) := vol(Qn(t)),

and show in [106] that qn(t) is a polynomial which is the sum of exactly Cn :=
(2n

n )
n+1

normalized monomials.

Proposition 0.1 (Pitman and Stanley, [106]). For each n ∈ N\{0}, we have that

qn(t) =
∑
k∈Kn

n∏
i=1

tkii
ki!

=
1

n!

∑
k∈Kn

(
n

k1, ..., kn

)
tk1
1 · · · t

kn
n ,

where

Kn := {k ∈ Nn :

j∑
i=1

ki ≥ j for all 1 ≤ i ≤ n− 1 and
n∑
i=1

ki = n}

with N := {0, 1, 2, ...}.

The volume qn(t) of the Stanley-Pitman polytope Qn(t) can be captured via the zonotopal
algebra of the broken wheel graph BWn: a finite undirected graph with n+ 1 vertices and 2n

71
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edges, which defines the graphical matroid needed for our constructions. In section 1, we will
rigorously define the broken wheel graph BWn, define what it means to be a parking function
of BWn, and discuss some properties of such parking functions. We will then use these
properties in section 2, where we will discuss the Tutte polynomial and Hilbert series of BWn,
as well as develop the zonotopal algebra of BWn, after giving a review of the general theory
of zonotopal algebra. Section 3 we will specifically address the Stanley-Pitman polytope and
use the machinery developed to prove that the Stanley-Pitman volume polynomial qn(t) is
the monic polynomial in the central Dahmen-Micchelli space of BWn which corresponds to
the parking function (1, ..., 1) ∈ Rn, and that it is the unique internally monic polynomial
of maximal degree in the internal Dahmen-Micchelli space of BWn which corresponds to
the unique internal parking function (1, 1, ..., 1, 0) ∈ Rn+1. Using the following notation, we
will also further characterize the volume polynomial qn(t) with the following two theorems:
denote partial differentiation with respect to ti by Di; i.e with pi : Rn → Rn, t 7→ ti, we have
Di := pi(D), and D0 := 0. We then have that:

Theorem 0.2. The polynomial qn(t) is the only polynomial (up to normalization) of
degree n that is annihilated by each of the following differential operators

Di(Di −Di−1), i = 1, ..., n.

Moreover, let Pn,j be the subspace of homogeneous polynomials (in n indeterminates) of degree
j that are annihilated by each of the above differential operators. Then:

(1) Pn,j lies in the span of the translates of qn(t).
(2) dim Pn,j =

(
n
j

)
.

Theorem 0.3. The polynomial qn(t) is the only polynomial q(t) (in n variables) that
satisfies the following two properties:

(1) With m the square-free monomial

m : t 7→
n∏
i=1

ti,

the monomial support of (q −m)(t) is disjoint of the monomial support of the poly-
nomial

t 7→
n∏
i=1

(ti + ti−1), t0 := 0.

(2) q(t) is annihilated by each of the following differential operators:

(Dj+1 −Dj)(

j∏
k=i

Dk)(Di −Di−1), 1 ≤ i ≤ j < n,

and

(

n∏
k=1

Dk)(Di −Di−1), 1 ≤ i ≤ n.

We will then review the polyhedral subdivision of Qn(t) given by Pitman and Stanley
[106], whose set of interior faces, ordered by inclusion, is isomorphic to the face lattice of
the dual associahedron, and note how the volume of each polytope in this subdivision is
captured by the zonotopal algebra of the broken wheel graph. This observation is motivation
for studying the volumes of polyhedral subdivisions in terms of zonotopal algebras and lead
us to our study of the second polytope.

In section 4 we will introduce the second polytope: the regular simplex Simn(t1, ..., tn)
with parameters t1, ..., tn ∈ Rn+, defined by the inequalities

n∑
i=1

ri ≤
n∑
i=1

ti, ri ∈ Rn+,
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where the (ri)i∈[n] are variables. For every rooted tree T with n vertices, we can construct
2n−1 directed graphs, which we will refer to as generalized broken wheel graphs. Each gener-
alized broken wheel graph constructed from T will give us a polytope, its volume polynomial,
and a reference monomial. The 2n−1 polytopes together give a polyhedral subdivision of
Simn(t1, ..., tn), their volume polynomials together give a basis for the subspace of homogen-
eous polynomials of degree n of the corresponding central Dahmen-Micchelli space, and their
reference monomials together give a basis for its dual. And so, for each rooted tree with n
vertices we have a polyhedral subdivision of Simn(t1, ..., tn) completely characterized by the
zonotopal algebra of the generalized broken wheel graphs constructed from T .

Our study provides intriguing and quite rich examples of zonotopal algebra, on the one
hand, and sheds new light on how volumes of polytopes, and their polyhedral subdivisions,
can be studied on the other. This paper is meant for both the eyes of those familiar and
unfamiliar with the study of zonotopal algebras. For those familiar, we hope to provide you
with an enriching application which will spark your further interest. For those unfamiliar,
we hope to illustrate to you the potential of zonotopal algebras as a combinatorial way to
connect to analytic tools.

1. The Broken Wheel Graph

Before we jump into the details of the broken wheel graph, let’s define it precisely. The
broken wheel graph BWn is a finite undirected graph with n+ 1 vertices [0:n] and 2n edges.
The root vertex 0 is connected twice to the vertex 1, and once to each other vertex. In
addition, a single edge connects each consecutive pair i and i+ 1, with i = 1, ..., n− 1.

A wheel graph Wn consists of the edges of a regular n-gon, together with all the radii that
connect the vertices of the n-gon to its center. In algebraic graph theory, the n vertices of
the n-gon are associated with the standard basis (ei)

n
i=1 of Rn, while the center is identified

with e0 := 0. The edge that connects the vertices i and j is realized by the vector ei− ej (or
ej − ei, as the sign will not matter for us). For certain purposes (such as the definition of the
internal activity and the external activity of the forests of the graph) it is necessary to order
the edges, viz. their vector realization. The order that serves our needs is as follows:

x2i−1 = ei − ei−1, x2i = ei, i = 1, 2, ..., n.

The vectors Xn := (x1, ..., x2n) correspond to the edges of the wheel Wn: odd numbered
vectors corresponding to the edges of the n-gon and the even vectors corresponding to the
radii. Note that we have written x1 = e1−e0 = e1. This is because the broken wheel BWn is
obtained from the wheel Wn when replacing the n-gon edge e1 − en by the radius e1. Thus,
the edge e1 is doubled in BWn. We then use the following order on the edge set of BWn:

BWn := (x1 ≺ x2 ≺ · · · ≺ x2n).

0

1

2

3

4
x4

x6

x8

x2 x1

x3

x5 x7

Figure 38. The broken wheel graph BW4.
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With this order, the edges of BWn form the columns of an n × 2n matrix denoted Xn.
For example, the matrix X4 is

X4 =


1 1 −1 0 0 0 0 0
0 0 1 1 −1 0 0 0
0 0 0 0 1 1 −1 0
0 0 0 0 0 0 1 1

 .
With this identification, ordering of the edges of BWn, and the matrixXn we have enough

to construct three pairs of polynomial spaces, which are examples of the fundamental pairs
of polynomial spaces studied generally in the field zonotopal algebra. Before we do this (in
section 2), we need to talk about the parking functions of BWn, as they are key to discussing
these pairs of spaces.

1.1. The Parking Functions of the Broken Wheel Graph. Given a subset of ver-
tices [i : j] of BWn and a vertex k ∈ [i : j], we denote by

d(i, k, j)

the out-degree of k, viz. the number of edges that connect k to vertices in the complement
of [i : j]. Note that d(i, k, j) ∈ {1, 2, 3}, 0 < i ≤ k ≤ j ≤ n, for BWn. Parking functions of
graphs are studied in generality by Postnikov and Shapiro in [92]. Following their definition,
a parking function of the graph is a function s ∈ Nn, with s(i) denoting the ith entry of s,
which satisfies the following condition: given any 1 ≤ i ≤ j ≤ n, there exists a k ∈ [i : j] such
that s(k) < d(i, k, j). This definition follows suit from the definition of parking functions
given in [106]. A parking function s is called an internal parking function of a graph if
for every 1 ≤ i ≤ j ≤ n, we either have a k ∈ [i : j − 1] such that s(k) < d(i, k, j) or
s(j) < d(i, j, j)− 1. Let the set of parking functions of BWn be denoted by

S(BWn)

and the set of internal parking functions of BWn by

S−(BWn).

Lemma 1.1. If s is a parking function of BWn, then
∏j
k=i s(k) ≤ 2, while

∏n
k=i s(k) ≤ 1,

for every 1 ≤ i ≤ j ≤ n.

Proof. Consider s ∈ S(BWn). If i = j = n, then the only k we can choose is k = n and
we must then have that s(n) ≤ 1, as d(n, n, n) = 2 for BWn. If we choose i = j < n, then
the only k we can choose is k = i = j < n and we must then have that s(n) ≤ 2.

If we have that s(i) = 2, and we choose j to be n, then we can see that d(i, i, n) = 2 and,
for k > i, d(i, k, n) = 1. We can then conclude from these two observations that s(k) = 0 for
some k > i, as this is the only way we can find a k ∈ [i:n] such that s(k) < d(i, k, n).

Let’s now assume a bit further that s(i) = s(j) = 2 for some 1 ≤ i < j < n. As
d(i, i, j) = d(i, j, j) = 2, while d(i, k, j) = 1 for i < k < j, we can see that s(k) = 0 for some
i < k < j.

From all of these observations, we can conclude that, in order for s to be a parking function
of BWn, we must have that

∏j
k=i s(k) ≤ 2, while

∏n
k=i s(k) ≤ 1, for every 1 ≤ i ≤ j ≤ n. �

Let us now define a particular subset of S(BWn) which will be necessary for our studies.
The set of maximal parking functions Smax(BWn) of BWn is defined as

Smax(BWn) := {s ∈ S(BWn) : |s| :=
n∑
i=1

s(i) = n.
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We can explicitly define the sets S(BWn), Smax(BWn), and S−(BWn) as the support of
certain polynomials. For s ∈ Zn+, let us define the monomial

ms : t 7→ ts :=
n∏
i=1

t
s(i)
i .

Then, given a polynomial p ∈ K[t1, ..., tn], where K is a field of characteristic 0, the monomial
support supp p(t) of p(t) is the set of vectors s ∈ Zn+ for which

ms(D)p(t)|t=0 6= 0.

Example 1.2. For q2(t) = t22/2 + t1t2, we have that supp q2(t) = {(1, 1), (0, 2)}.

We now have the following two theorems which characterize the sets S(BWn), Smax(BWn),
and S−(BWn) as the support of certain polynomials:

Proposition 1.3. For a ∈ {0, 1}, let

pn,a(t) :=

n∏
i=1

(a+ ti−1 + ti), t0 := 0.

Then
Smax(BWn) = supp pn,0(t) and S(BWn) = supp pn,1(t),

and we have that
|Smax(BWn)| = 2n−1 and |S(BWn)| ≤ 2 · 3n−1.

Proof. Consider the polynomial expansion of pn,0(t):

pn,0(t) =

n∏
i=1

(ti−1 + ti) = (t21 + t1t2)

n∏
i=3

(ti−1 + ti). (IV.1)

We can see that pn,0(t) is a polynomial with 2n−1 monomials, as it is a polynomial which can
be factored into n binomials. Thus we have that |supp pn,0(t)| = 2n−1.

Let us prove the equality in question by induction on n. First, let us assume that n = 1.
We then have that p1,0(t) = t1, giving us that supp p1,0(t) = {(1)}. Corollary 2.5 of this note
tells us that the set of maximal parking functions is exactly the subset of Nn of all sequences
s that can be written as a sum

s = e1 +
n−1∑
j=1

aj ,

with (ei)
n
i=1 the standard basis for Nn, and aj ∈ {ej , ej+1} for every j. Thus Smax(BW1) =

{(1)} and we have equality for our base case.
Now, assuming that Smax(BWk) = supp pk,0(t) for k ≤ n, we have

pn+1,0(t) = pn,0(t)(tn + tn+1) = pn,0(t)tn + pn,0(t)tn+1.

First, let us consider any s ∈ supp pn,0(t)tn. We have that the first n − 1 entries of s are
going to satisfy the conditions of corollary 2.5, the nth entry of s is going to be either 1 or
2 (as the degree of tn for any term of pn,0(t) is 0 or 1), and that the (n + 1)st entry of s is
0. Thus, s is such a vector described in corollary 2.5, meaning that s ∈ Smax(BWn+1) and
supp pn,0(t)tn ⊆ Smax(BWn+1). Similarly, let’s consider any s ∈ supp pn,0(t)tn+1. We then
have that the first n−1 entries of s satisfy the conditions of corollary 2.5, the nth entry of s is
going to be either 0 or 1, and that the (n+1)st entry of s is 1. Thus, s is such a vector described
in corollary 2.5, meaning that s ∈ Smax(BWn+1) and supp pn,0(t)tn+1 ⊆ Smax(BWn+1).
Thus, supp pn+1,0(t) = supp pn,0(t)tn ∪ supp pn,0(t)tn+1 ⊆ Smax(BWn+1). To show that our
inclusion is actually an equality, let us assume our inclusion is strict and find a contradiction.
If our inclusion is strict, then there exists an s ∈ Smax(BWn+1) such that s /∈ supp pn+1,0(t).
We then have that

ms(D)pn+1,0(t) = ms(D)[pn,0(t)(tn + tn+1)]|t=0 = 0.
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Since we have that ms(D)pn,0(t)|t=0 6= 0 by our induction hypothesis, we must have s(n) =
s(n+ 1) = 0. This means, however, that when expressing s as stipulated in corollary 2.5,

s = e1 +

n∑
j=1

aj ,

we cannot have an ∈ {en, en+1} as required. Thus, we have our contradiction and the equality
desired. And so, in particular, we have that |Smax(BWn)| = 2n−1.

Now, let us consider pn,1(t). We can see that pn,1(t) is a polynomial with 2 · 3n−1 terms
by noting that

pn,1 = (1 + t1)
n∏
i=2

(1 + ti−1 + ti).

For n = 1, we have that p1,1 = 1 + t1 and thus that supp p1,1(t) = {(0), (1)}. Checking
the definition of a parking function against each element of the support of p1,1(t), we can see
that our only choice for i and j is i = j = 1. We can then see that 0 < d(1, 1, 1) = 2 and
1 < d(1, 1, 1) = 2; this shows us that supp p1,1 ⊂ S(BW1). And as |S(BW1)| = 2, as the
number of spanning trees of SW1 is 2, we have equality.

Now, assuming S(BWk) = supp pk,1(t) for k ≤ n, let’s consider
pn+1,1(t) := pn,1(t)(1 + tn + tn+1) = pn,1(t) + tnpn,1(t) + tn+1pn,1(t),

a polynomial with at most 2·3n−1 terms; thus |supp pn+1,1(t)| ≤ 2·3n−1. We have established
in lemma 1.1 that if a vector s is a parking function of BWn+1 then

∏j
k=i s(k) ≤ 2 and∏n+1

k=1 s(k) ≤ 1 for every 1 ≤ i ≤ j ≤ n+ 1. For supp pn,1(t), these conditions are met by our
induction hypothesis.

For supp tnpn,1(t), we also have that our conditions are met:
∏n+1
k=1 s(k) = 1 ·

∏n
k=1 s(k) ≤

1, and as
∏n
k=i s(k) ≤ 1 for every 1 ≤ i ≤ j ≤ n, we have that

∏n
k=i s(k) ≤ 2 for every 1 ≤

i ≤ j ≤ n+ 1 via our extra factor of tn in every monomial of tnpn,1(t). For supp tn+1pn,1(t),
we also have that our conditions are met, as adding a 1 to either of the products in question
will not change their numerical value. As supp pn+1,1(t) = supp pn,1(t) ∪ supp tnpn,1(t) ∪
supp tn+1pn,1(t), we thus have that supp pn+1,1(t) ⊆ S(BWn+1).

To prove that this inclusion is actually an equality, let us assume that the inclusion is
strict and find a contradiction. If our inclusion is strict, then there exists an s ∈ S(BWn+1)
such that s /∈ supp pn+1,1. We then have that

ms(D)pn+1,1|t=0 = ms(D)[pn,1(1 + tn + tn+1)] = 0.

This would then imply that ms(D)pn,1 = 0, a contradiction to our induction hypothesis.
Thus, we must have the equality desired. And so, in particular, we have that |S(BWn+1)| ≤
2 · 3n−1. �

Proposition 1.4. Let

pn,−(t) :=
n−1∏
i=1

(1 + ti).

Then S−(BWn) = supp pn,−(t) and |S−(BWn)| = 2n−1.

Proof. Let us consider the polynomial pn,−(t) :=
∏n−1
i=1 (1+ti) and prove our proposition

by induction on n. As always, let’s first consider our base case, n = 1. We then have
that p1,−(t) = 1. The support of this polynomial is supp p1,−(t) = {(0)}. Following the
definition of an internal parking function, as our only choice for i and j is i = j = 1, we
have that 0 < d(1, 1, 1) − 1 = 2 − 1 = 1. Thus, we have that (0) is in S−(BW1) and that
supp p1,−(t) = S−(BW1).

Now, let us assume that S−(BWk) = supp pk,−(t) for k ≤ n and show that this equality
is also true for k = n + 1. We have that pn+1,−(t) =

∏n
i=1(1 + ti) = pn,−(t)(1 + tn) =
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pn,−(t) + pn,−(t)tn. Thus, supp pn+1,−(t) = supp pn,−(t) ∪ supp pn,−(t)tn, where pn,1(t) is
considered as a polynomial in n variables. If s ∈ supp pn,−(t), then we know that for every
k ∈ [i : j − 1], 1 ≤ i ≤ j ≤ n, we have that either s(k) < d(i, k, j) or s(j) < d(i, j, j)− 1. We
also know that s(n) = 0, meaning that these inequalities certainly still hold after we extend
1 ≤ i ≤ j ≤ n to 1 ≤ i ≤ j ≤ n + 1. Thus, we have that supp pn,−(t) ⊆ S(BWn+1). If
s ∈ supp pn,−(t)tn, then we know that s(n) = 1. As we know that for every k ∈ [i : j − 1],
1 ≤ i ≤ j ≤ n, we have that either s(k) < d(i, k, j) or s(j) < d(i, j, j) − 1, we need to only
check the cases when i = j = n+1 and when j = n+1 and i < n+1. For when i = j = n+1,
we have that s(n) = 1 < d(n, n, n) = 3. For i < n+1, we have that s(n) = 1 < 2 ≤ d(i, n, n).
Thus, our conditions are satisfied and that supp pn,−(t)tn ⊆ S(BWn+1). We now have that
supp pn+1,−(t) ⊆ S(BWn+1). To prove that this inclusion is actually an equality, let us
assume that the inclusion is strict and find a contradiction. If our inclusion is strict, then
there exists an s ∈ S(BWn+1) which is not in supp pn+1,−(t). We then must have that

ms(D)pn+1,−(t)|t=0 = ms(D)[pn,−(t)(1 + tn)]|t=0 = 0.

This would then mean that ms(D)pn,−(t)|t=0 = 0, a contradiction to our induction hypo-
thesis. Thus we must have equality. And in particular, we have |S−(BWn)| = 2n−1. �

Note that, while qn(t) and pn,0(t) are both homogeneous polynomials of degree n in n
variables, their support is almost disjoint:

supp pn,0(t) ∩ supp qn(t) = {(1, ..., 1)}.
This observation is key to the proof of theorem 0.3. As for the internal parking functions of
BWn, we have

|{s ∈ S−(BWn+1) : |s| = j}| =
(
n− 1

j

)
, 0 ≤ j ≤ n− 1.

This observation is key to the proof of theorem 0.2.
We will see that the zonotopal algebra of BWn hinges on the parking functions of BWn.

The Hilbert series presented in the next section, the monomial bases for the P-central and
P-internal spaces, and the results connecting to the Stanley-Pitman polytope are all framed
in terms of the parking functions of BWn.

2. The Zonotopal Algebra of the Broken Wheel Graph

The zonotopal algebra of a graph consists of three pairs of polynomial spaces: a central
pair, an internal pair, and an external pair. We will discuss the central and internal pairs of
spaces for the broken wheel graph, and not the external pair as it does not play a role in our
study. We will discuss the central Dahmen-Micchelli space D(Xn) of BWn and its dual, the
P-central space P(Xn). We will observe that P(Xn) is monomial ; i.e. has a monomial basis.
Postnikov and Shapiro [92] show that the monomial basis for P(Xn) must be given by the
parking functions:

{ms : s ∈ S(Xn)}.
We will show that the volume polynomial qn(t) of the the Stanley-Pitman polytope lies
in D(Xn), and that qn(t) is precisely the polynomial in a particular basis of D(Xn) that
corresponds to the monomial t1t2 · · · tn in the monomial basis of P(BWn). Theorem 0.3
follows from this observation. We also show that once we reverse the order of the variables in
qn(t), q̄n(t1, ..., tn) := qn(tn, ..., t1), the polynomial q̄n(t) lies in the internal zonotopal space
D−(Xn+1). At the same time, the internal zonotopal space P−(Xn+1) is monomial, with its
monomial basis necessarily determined by the internal parking functions

{ms : s ∈ S−(Xn+1)}.
Theorem 0.2 follows from this observation. But in order to define and discuss these spaces
in detail, we must first discuss the Tutte polynomial and Hilbert series of the broken wheel
graph.
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2.1. The Tutte Polynomial and Hilbert Series of the Broken Wheel Graph.
Let X be the corresponding matrix of a graph. Recall that the collection of its spanning trees
B(X) correspond to the n× n invertible submatrices of X. We now define two valuations on
the set B(X) that are the reversal of the external activity and internal activity as defined by
Tutte.

Both valuations require an ordering on X, we use the above-defined order ≺: xi ≺ xj if
and only if i < j. Given B ∈ B(X), its valuation is defined by

val(B) := |{x ∈ (X\B) : {x} ∪ {b ∈ B : b ≺ x} is independent (in Rn)}| .
Its dual valuation is then defined as

val∗(B) := |{b ∈ B : {B\b} ∪ {x ∈ X\B : b ≺ x} spans Rn}| .
The Tutte polynomial is defined as the following bivariate polynomial, in the variables s and
t:

TX(s, t) :=
∑

B∈B(X)

sn−val(B)tn−val
∗(B).

Proposition 2.1. The Tutte polynomial TXn(s, t) of the broken wheel graph BWn is
symmetric:

TXn(s, t) = TXn(t, s).

Proof. Let A be the 2n× Z matrix whose first row has entries

a(1, j) :=

 1 j = 1, 2
−1 j = 3
0 otherwise

and whose entries are a(i, j) := a(1, i + j − 1) everywhere else. Note that each even row of
this matrix is orthogonal to all the odd rows. We can see that Xn is the submatrix of A
that corresponds to the rows indexed by 1, 3, ..., 2n− 1 and columns 1, ..., 2n. Let Yn be the
matrix that has the same columns as Xn, but the complementary set of rows. The rows of
Yn are still orthogonal to entries of Xn. Moreover, the matrix Yn is obtained from Xn by
performing the following operations:

(i): Multiply by -1 each odd column x2i−1,
(ii): Reverse the order of the columns.

Thus Yn represents the same graph as Xn, with respect to a reverse order of the edges. Since
the Tutte polynomial is invariant to the ordering of the edges, TXn(s, t) = TYn(s, t). On the
other hand, since the row span of Yn is orthogonal to the row span of Xn, Yn is isomorphic
to the dual matroid of Xn. It is further known that for every matroid X with dual X̂,
TX(s, t) = TX̂(t, s). And so we have

YXn(s, t) = TYn(s, t) = TX̂n
(s, t) = TXn(t, s).

�

A spanning tree B ∈ B(X) is called internal if val∗(B) = n and maximal if val(B) = n.
Note that the number of internal trees of a graph X equals TX(1, 0), while the number of
maximal trees equals TX(0, 1).

Proposition 2.2. The Tutte polynomial of the broken wheel BWn satisfies

TXn(1, 0) = TXn(0, 1) = 2n−1.

Proof. Let’s consider first the set Bmax(Xn) of maximal trees. For every B ∈ Bmax(Xn),
it follows directly from the definition that x1 /∈ B, while x2n ∈ B. After removing x2n from
each maximal basis, we obtain a modified set B′max(Xn). It is impossible that {x2i, x2i+1} ⊂ B
for some 1 ≤ i < n, since x2i + x2i+1 = x2i+2. Thus, we have

B′max(Xn) ⊂ ×n−1
i=1 {x2i, x2i+1},
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and in particular
|Bmax(Xn)| ≤ 2n−1.

Consider now the set B−(Xn) of internal trees. The definition of an internal tree implies
directly that x2n /∈ B, hence that x2n−1 ∈ B, for every internal basis. Removing x2n−1 from
each internal basis, we obtain the set B′−(Xn). Now, consider the product

A := ×n−1
i=1 {x2i−1, x2i}.

If we append x2n−1 to any set in A, we obtain a basis B ∈ B(Xn); by induction on j, this
follows from the assertion that every forest in ×ji=1{x2i−1, x2i}, 1 ≤ j ≤ n− 1 is a spanning
tree on the subgraph that corresponds to the vertices 0, ..., j.

Now, let B = (b1 ≺ b2 ≺ · · · ≺ bn−1) be a tree in A. If bi = x2i−1, then B\bi is completed
to a spanning tree by x2i, since (b1, ..., bi−1) connects the vertices 0, ..., i−1 and each of x2i−1

and x2i connects this vertex set to the vertex i.
If bi = x2i, since J := (b1, ..., bi−1) is a spanning tree of 0, ..., i−1, the union I∪J∪{x2n−1}

is full-rank, and hence bi is not internally active in B. Thus, A ⊂ B′−(X), and |B−(Xn)| ≥
2n−1. This completes the proof, since the symmetry of the Tutte polynomial implies that
|Bmax(Xn)| = |B−(Xn)|. �

Corollary 2.3. We have that

Bmax(Xn) = ×n−1
i=1 {x2i, x2i+1} × {x2n},

and
B−(Xn) = ×n−1

i=1 {x2i−1, x2i} × {x2n−1}.

It is known [92] that the number of parking functions of any graph equals the number of
spanning threes of that graph:

|Sn| = |B(Xn)| .
The central Hilbert series hn := hXn is defined as

hn(j) := |{B ∈ X : val(B) = j}| .
The Tutte polynomial determines hn; i.e hn records the coefficients of Tn(t, 1) (in reverse
enumerations). Note that proposition 2.2 asserts thus that hn(n) = 2n−1. Parking functions
could also be used to determine hn:

Proposition 2.4 (Holtz and Ron, [58]). For each 0 ≤ j ≤ n,

hn(j) =

∣∣∣∣∣{s ∈ S(BWn) : |s| :=
n∑
i=1

s(i) = j}

∣∣∣∣∣ .
Thus there must be exactly 2n−1 parking functions with |s| = n.

Corollary 2.5. The maximal parking functions Smax(BWn) are exactly the subset N
of Nn of all sequences s that can be written as a sum

s = e1 +
n−1∑
j=1

aj ,

with (ei)
n
i=1 the standard basis for Nn, and aj ∈ {ej , ej+1} for every j.

Proof. From proposition 2.2, we know that the number of parking functions s with
|s| = n is hn(n) = 2n−1. Since |N | = 2n−1, we merely need to verify that N ⊂ Smax(BWn).
The fact that N ⊂ {0, 1, 2}n is clear, and so is the fact that s(n) ≤ 1 for s ∈ N . Now, suppose
that s ∈ N and s(j) = 2. Then aj = ej , and hence

∑n−1
i=j+1 s(i) = |[j + 1 : n− 1]| < n − j,

which means that s(k) = 0 for some k > i. Finally, if s(j) = s(i) = 2 for some j < i < n,
then aj = ej , while ai−1 = ei. Hence

∑i−1
k=j+1 s(k) = |[j + 1 : i− 2]| < j− i−1, meaning that

s must vanish in between j and i. Thus, s is a parking function, and our claim follows. �
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Example 2.6. The maximal parking functions of BW3 are

e1+e1+e2 = (2, 1, 0), e1+e1+e3 = (2, 0, 1), e1+e2+e2 = (1, 2, 0), and e1+e2+e3 = (1, 1, 1).

Recall the set B−(Xn) of internal bases. When restricting the valuation function to the
internal bases, we obtain the internal Hilbert series

hn,−(j) := |{B ∈ B−(Xn) : val(B) = j}| .
This function is also recorded by the Tutte polynomial and it is completely computable via
the internal parking functions of BWn. It is known that the cardinality of the set of internal
parking functions agrees with the number of internal bases, hence

|S−(BWn)| = 2n−1.

More concretely,

Corollary 2.7. We have that S−(BWn) = {s ∈ {0, 1}n : s(n) = 0}.

Proof. Since both sets above have the same cardinality 2n−1, we only need to check that
every internal parking function must lie in S−(BWn). Let s be internal. Since d(n, n, n) = 2,
we conclude that s(n) = 0. Since d(i, i, i) = 3, for i < n, we conclude that d(i) ≤ 1. �

It is known, [59] that the internal Hilbert series is graded by the internal parking functions,

hn,−(j) = {s ∈ Sn,− : |s| = j}.
We therefore conclude:

Theorem 2.8. The internal Hilbert series of Xn is binomial:

hn,−(j) =

{ (
n−1
j

)
, 0 ≤ j < n

0, otherwise

We will now discuss zonotopal algebra in general, so that we have the framework for
understanding the zonotopal algebra of the broken wheel graph, as well as the zonotopal
algebra of the generalized broken wheel graph in section 4.

2.2. Zonotopal Spaces. Let X be a matrix whose columns lie in Rn \ 0 and span Rn.
We can consider two families of variable convex (bounded) polytopes:

Πr(t) := {r : Xr = t, r ∈ R≥0} and Π1
r(t) := {r : Xr = t, r ∈ [0, 1]n}.

The box-spline Br(t) is the volume of Π1
r(t). As discussed in [26], Br(t) is a piecewise

polynomial. With K a field of characteristic zero, the central Dahmen-Micchelli space, or
central D-space, D(X) of Br(t) is the vector space in K[t1, ..., tn] generated by all polynomials
in Br(t) and their partial derivatives.

Viewing X as a matroid whose ground set is the columns of X, D(X) can also be defined
as the Macaulay inverse system [79] of a certain ideal J (X). To define this ideal, first
note that a vector r ∈ Rn written in the basis (t1, ..., tn) naturally defines the polynomial
pr =

∑n
i=1 riti in K[t1, ..., tn]; if R is a set of vectors, then let pR :=

∏
r∈R pr ∈ K[t1, ..., tn].

The ideal J (X) is generated by the polynomials in K[t1, ..., tn] defined by the cocircuits of
X:

J (X) := ideal{pC : C ⊆ X cocircuit} ⊆ K[t1, ..., tn].

We then have that

D(X) = kerJ (X) := {f ∈ K[t1, ..., tn] : p(
δ

δt1
, ...,

δ

δtn
)f = 0},

where p runs over a set of generators of J (X). It was shown in [65] that the dimension of
D(X) is |B(X)|, where B(X) is the set of bases of Rn which can be selected from X. Note
that we use the same notation here as we did in the section above for the spanning trees of
a matrix define by a graph, as when dealing with a graphical matroid (as we are), these sets
are the same.
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The central P-space of X is defined as

P(X) := span{pR : R ⊆ X,X \R has full rank} ⊆ K[t1, ..., tn].

P(X) can also be expressed as a Macaulay inverse system of a power ideal generated by
products of linear forms defining particular hyperplanes defined by X; see [27] for more
details. As proven in [87], the central D(X) and P(X)-spaces are dual under the pairing
〈·, ·〉 : D(X)→ P(X)∗, f 7→ 〈·, f〉, giving us that their Hilbert series are equal.

There are two more dual pairs which make up the zonotopal algebra of X. In order to
define these pairs, we must define the set of internal bases B−(X) and the set of external
bases B+(X) of X. Let B0 = (b1, ..., bn) be an arbitrary basis for Rn which is not necessarily
contained in B(X). Let X ′ = (X,B0) and let

ex : {I ⊆ X : I linearly independent} → B(X ′)

be the function mapping an independent set in X to its greedy extension in X ′; i.e. for
such an I, the vectors b1, ..., bn are added successively to I unless the resulting set would be
linearly dependent to get its image under ex. The set of external bases B+(X) is then defined
as

B+(X) := {B ∈ B(X ′) : B = ex(I) for some I ⊆ X independent},
and the set of internal bases B−(X) is defined as

B−(X) := {B ∈ B(X) : B contains no internally active elements}.
Note that the sets B−(X) and B+(X) as defined in the section above are equal to these
sets for graphical matroids. We then have the following objects which define the internal
D−-space and external D+-space of X:

J−(X) := ideal{pC : C ⊆ XB−(X)-cocircuit} ⊆ K[t1, ..., tn],

D−(X) := kerJ−(X) ⊆ K[t1, ..., tn],

J+(X) := ideal{pC : C ⊆ XB+(X)-cocircuit} ⊆ K[t1, ..., tn],

D+(X) := kerJ+(X) ⊆ K[t1, ..., tn],

where a B−(X)-cocircuit (or B+(X)-cocircuit) is a subset of X that intersects all bases in
B−(X) (or B+(X)), which is inclusion-minimal with this property. We then have that the
internal P−-space and external P+-space of X are defined as:

P−(X) := span{pY : Y ⊆ X} and P+(X) :=
⋂
x∈X
P(X \ x).

These three pairs of spaces make up the study of zonotopal algebras, and are discussed in
great detail by Holtz and Ron in [59]. Now that we are familiar with their general definitions,
we are ready to specialize our discussion to the case of the broken wheel graph.

2.3. The Zonotopal Spaces of the Broken Wheel Graph. We will now construct
the zonotopal spaces associated to Xn. With K a field of characteristic zero, let K[t1, ..., tn]j
be the subspace of K[t1, ..., tn] consisting of homogeneous polynomials of degree j. Per [59],
each graph is associated with three pairs of subspaces of K[t1, ..., tn]: a central pair, an
internal pair, and an external pair. As mentioned before, we will not need, and hence will
not introduce, the external pair. We will first introduce the central and internal Dahmen-
Micchelli zonotopal spaces D(Xn) and D−(Xn), respectively. We would like to stress that
the latter space depends on the ordering we impose on the edges of the graph. The definition
we give below corresponds to ordering the edges of Xn in a reverse ordering. In fact, some
of the proofs in this paper may be simplified once we use the reverse ordering. However, this
reverse ordering is not inductive; the index of a given edge in the graph depends not only on
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the vertices that are connected, but also on the rank of the graph. To this end, we single out,
for 1 ≤ i ≤ j < n, the following subset of Xn:

Xi,j,n := {x2i, ..., x2j} ∪ {x2i−1, x2j+1}.
For j = n, the definition is as follows:

Xi,n,n := {x2i, ..., x2j} ∪ {x2i−1}.
The central Dahmen-Micchelli space D(Xn) is defined as the space of all polynomials in

K[t1, ..., tn] that are annihilated by each of the following differential operators:

pXi,j,n(D), 1 ≤ i ≤ j ≤ n.
The internal Dahmen-Micchelli space D−(Xn) is defined as the space of all polynomials in
K[t1, ..., tn] that are annihilated by each of the following differential operators:

px2i(D)px2i+1(D), 1 ≤ i < n, and px2n(D).

Note that these definitions are derived by considering all polynomials pC , where C is a
cocircuit of Xn, and considering all differential operators which annihilate theses polynomials.
This is the very construction of the central Dahmen-Micchelli space of Xn.

Example 2.9. The differential operators which define D(X2) correspond to the subsets

{x3, x4}, {x1, x2, x3}, {x1, x2, x4}.
Those which correspond to D−(X3) are

{x6}, {x4, x5}, {x2, x3}.
Thus, while both spaces consist of polynomials in the variables t1 and t2 of degree not
exceeding 2, the spaces themselves are different. Incidentally, the polynomial t22/2 + t1t2 lies
in the first, while t21/2 + t1t2 lies in the second.

Next we will introduce the space dual to the central Dahmen-Micchelli space, called
the P-central space, and the space dual to the internal Dahmen-Micchelli space, called the
P-internal space. Here, and elsewhere, we denote by

px(D), x ∈ Rn,
the directional derivative in the x direction. Also, for Y ⊂ X,

pY :=
∏
x∈Y

px.

The P-central space P(Xn) is the space of all polynomials in K[t1, ..., tn] that are annihilated
by each of the following differential operators:

p1i,j (D)j−i+3, 1 ≤ i ≤ j < n,

and
p1i,n(D)n−i+2, 1 ≤ i < n.

where 1i,j := ei+ei+1+· · ·+ej , and p1i,j (D)k is k-fold differentiation in the 1i,j direction. The
P-internal space P−(Xn) is the space of all polynomials in K[t1, ..., tn] that are annihilated
by each of the following differential operators:

p1i,j (D)j−i+2, 1 ≤ i ≤ j < n,

and
p1i,n(D)n−i+1, i ≤ i ≤ n.

Note that the set of differential operators given in the definition of the P-internal space
is redundant. However, we defined it in this way to demonstrate the parallels to the central
case definition. This also makes it easier to check that the definition is consistent with the
general definition of the internal space, as given in [59].
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The Hilbert series of the broken wheel graph is captured by the homogeneous dimensions
of the zonotopal spaces:

Proposition 2.10 (Holtz and Ron, [59]). For each j ≥ 0, we have

hn(j) = dim(P(Xn) ∩K[t1, ..., tn]j),

and
hn,−(j) = dim(P−(Xn) ∩K[t1, ..., tn]j).

Recall that a polynomial space is monomial if it is spanned by monomials. The general
theory of zonotopal algebra implies that once a P-space of a graph is monomial, the cor-
responding parking functions yield a monomial basis for the space. This is exactly the case
here.

Theorem 2.11. The zonotopal spaces P(Xn) and P−(Xn) are monomial. Consequently,
a basis for P(Xn) is given by the monomials

ms : t 7→ ts, s ∈ Sn,
while a basis for P−(Xn) is given by the square-free monomials in the first n− 1 variables.

Proof. We simply verify that each of the aforementioned monomials is annihilated by
each of the requisite differential operators. The rest follows from proposition 2.10.

Let s ∈ S−(BWn), and choose 1 ≤ i ≤ n. Since ms does not involve the variable tn, ms is
a polynomial of degree ≤ n− i in variables ti, ..., tn; hence, it is annihilated by p1i,n(D)n−i+1.
Now choose 1 ≤ i ≤ j < n. Then ms is a polynomial of degree ≤ n − i + 1 in the variables
ti, ..., tj ; hence, it is annihilated by p1i,j (D)n−i+2. This completes the proof for the internal
case.

Assume now that s ∈ Sn. Note that the characterization of s implies that
∑n

j=i s(j) ≤
n − i + 1 (since the number of 2-entries on [i : n] cannot exceed the number of 0 entries),
while

∑k
j=i s(j) ≤ n− i+ 2. Thus, an analogous argument to the above yields the result. �

We note in passing that the P-external space is not monomial. In fact, external zonoto-
pal spaces are never monomial unless the underlying linear matroid in the tensor of rank-1
matroids.

The general theory of zonotopal algebra tells us that the central spaces form a dual pair,
and that the same is true for the internal pair. To this end, we make the following definition:
Let X be a graph, and s a parking function of X. A polynomial p ∈ K[t1, ..., tn] is called
s-monic in X if p ∈ D(X), the monomial ms appears in the monomial expansion of p with
coefficient 1, and all other monomials ms′ that correspond to the other parking functions of
X appear with coefficient 0 in this expansion.

Similarly, for an internal parking function s of X, p ∈ K[t1, ..., tn] is internally s-monic in
X if p ∈ D−(X) (for the fixed ordering of X that is considered), ms appears in the monomial
expansion of p with coefficient 1, and all other monomials ms′ that correspond to the other
internal parking functions appear with coefficient 0.

Proposition 2.12 (Holtz and Ron, [59]). Let X be a graphic matroid, and assume
that P(X) is monomial. Then, for each parking function s of X there exists a unique s-
monic polynomial in X. Similarly, if P−(X) is monomial, and s is an internal parking
function, there exist a unique internal s-monic polynomial in X. The collection of all s-
monic polynomials in D(X) form a basis for D(X) (which is dual to the monomial basis of
P(X)); similarly for D−(X).

Corollary 2.13. For each broken wheel graph BWn, there is a unique basis for D(Xn)
which is monic in Xn. Similarly, there is a unique basis for D−(Xn) which is internally
monic in Xn.
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Example 2.14. In example 2.9, the polynomial t22/2 + t1t2 is (1,1)-monic in X2 and
t21 + t1t2 is internally (1,1,0)-monic in X3.

3. The Stanley-Pitman Polytope

Pitman and Stanley [106] studied the n-dimensional polytope

Qn(t) := {r ∈ Rn+ :
n∑
i=j

ri ≤
n∑
i=j

ti, 1 ≤ j ≤ n},

and outlined several of its properties as well as found an explicit expression for its volume

qn(t) := vol(Qn(t)).

In this section, we will draw a connection between the Stanley-Pitman polytope Qn(t) and
zonotopal algebra of the broken wheel graph as well as prove theorems 0.2 and 0.3 from the
introduction.

3.1. Connecting to the Zonotopal Algbra of the Broken Wheel Graph. We first
need to introduce the additional variables (u1, ..., un) such that, for each j, we have

uj +

j∑
i=1

ri =

j∑
i=1

ti.

Equivalently,
uj + rj − uj−1 = tj , j = 2, ..., n,

and
u1 + r1 = t1.

We then observe that these equations are equivalent to

Xna = t,

with the 2n-vector a obtained from the concatenated u, r by a suitable permutation: ui
corresponds to a21−1, and ri corresponds to a2i. We also have the “side condition” that
a ∈ R2n

+ . With this, we have the conditions necessary to link the zonotopal algebra of the
broken wheel graph with the Stanley-Pitman polytope. With this, we have that the volume
polynomial qn(t) is a homogeneous polynomial of maximal degree n in the zonotopal space
D(Xn):

Theorem 3.1. The Stanley-Pitman volume polynomial qn(t) is the monic polynomial in
D(Xn) that corresponds to the parking function (1, ..., 1) ∈ Rn. In addition, it is also the
unique internally monic polynomial of maximal degree in D−(Xn+1) which corresponds to the
unique internal parking function in Xn+1 of maximal degree, viz (1, 1, ..., 1, 0) ∈ Rn+1.

Proof. We have that qn(t) is the polynomial consisting of the sum of all the normalized
monomials ms

s! of degree n which satisfy
i∑

j=1

s(j) ≤ i, 1 ≤ i ≤ n. (IV.2)

This can be seen by applying our notation to proposition 0.1, the main theorem of Pitman
and Stanley in [106]. Let Cn be the set of vectors s such that ms

s! is a term of qn(t). We
notice that if s ∈ Cn is a maximal parking function, then it must satisfy

i ≤
i∑

j=1

s(j) ≤ i+ 1. (IV.3)

We can see this via corollary 2.5. Thus, we must have that
∑i

j=1 s(j) = i for all j; in other
words, s = (1, ..., 1), making qn(t) the unique (1, ..., 1)-monic polynomial in D(Xn).
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In order to show that qn(t) is the unique internally monic polynomial of maximal degree
in D−(Xn+1) that corresponds to the unique internal parking function in Xn+1 of maximal
degree, we only need to show that qn(t) ∈ D−(Xn+1), as our argument directly above gives
us our correspondence between qn(t) and (1,...,1,0), up to normalization.

We thus need to check that qn(t) is annihilated by the differential operators

px2i(D)px2i+1(D), 1 ≤ i < n+ 1, and px2(n+1)
(D).

We can quickly see that px2(n+1)
(D) annihilates qn(t) as px2(n+1)

(D) is differentiation in the
tn+1 variable, of which there are none in qn(t). The other operators we need to consider are

Di+1Di −D2
i , i = 1, ..., n.

When i = n, we have that (Dn+1Dn−D2
n)qn(t) = Dn+1Dnqn(t)−D2

nqn(t) = 0, as the degree
of tn+1 is 0 and the degree of tn is either 0 or 1 for any term of qn(t).

For i < n, let’s consider a term ms/s! of qn(t). If s(i) ≤ 1, we then have that ms/s!
is annihilated by Di+1Di − D2

i . If s(i) ≥ 2, then let us prove that s ∈ Cn if and only if
ŝ := s− ei + ei+1 ∈ Cn, as we will then see that the annihilation of qn(t) by the differential
operators in question will directly follow from this statement. First, let’s assume that s ∈ Cn.
We can then see that

i∑
j=1

s(j) =

i∑
j=1

ŝ(j) ≤ i.

Thus, ŝ satisfies the inequalities (IV.2), meaning that ŝ ∈ Cn. Now, let us assume that
ŝ ∈ Cn, and let us further assume for contradiction that s /∈ Cn. Then there exists some i
such that

∑i
j=1 s(j) > i. As ŝ ∈ Cn, we know that

i+1∑
j=1

s(j) =
i+1∑
j=1

ŝ(j) ≤ i+ 1,

meaning that i+ 1 ≤ s(1) + · · ·+ s(i) ≤ s(1) + · · ·+ s(i) + s(i+ 1) ≤ i+ 1. This then means
that s(i+ 1) = 0 and that

∑i
j=1 s(j) = i+ 1. But this then means that

i∑
j=1

ŝ(j) =
i∑

j=1

s(j) = i+ 1 ≤ i,

a contradiction to our assumption that ŝ ∈ Cn. Thus, we must have that s ∈ Cn. Now, we
can see, for s ∈ Cn with s(i) ≥ 2, that

D2
i (ms/s!) = Di+1Di(mŝ/ŝ!) = ms−2ei/(s− 2ei)!

and thus that the D2
i (ms/s!) term and the Di+1Di(mŝ/ŝ!) term in (Di+1Di−D2

i )qn(t) cancel
each other out. Furthermore, we know there exists a t ∈ Cn (i.e. t = s+ ei − ei+1) such that
s = t̂ and that ˆ̂s ∈ Cn. From this we know that the D2

i (mt/t!) term and the Di+1Di(ms/s!)

term cancel each other out, and that the D2
i (mŝ/ŝ!) term and the Di+1Di(mˆ̂s/

ˆ̂s!) term cancel
each other out. Carrying on in this fashion, we have that all of the terms of (Di+1Di−D2

i )qn(t)
are cancelled and we have that (Di+1Di − D2

i )qn(t) = 0 as desired. We thus have that
qn(t) ∈ D−(Xn+1), giving us our result. �

Corollary 3.2. The polynomial space q̄n(t) that is generated by the derivatives (of all
orders) of the polynomial qn(t) is the zonotopal space D−(Xn+1). Thus, its homogeneous
dimensions are binomial:

dim(qn(t) ∩
0∏
j

) =

(
n

j

)
, j = 0, ..., n.
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Proof. We know from theorem 2.11 that P−(Xn+1) is generated by the square-free
monomials in the first n variables. Let’s consider the generator of maximal degree, t1 · · · tn.
As we take partial derivatives of all orders of this monomial, we can see that we will generate
all square-free monomials of degree ≤ n. Thus, we have that P−(Xn+1) is the space generated
by the derivatives (of all orders) of the monomial t1 · · · tn.

Via proposition 2.12, we know that for every generator ms of P−(Xn+1), there is a
corresponding generator of D−(Xn+1) which is the unique internal s-monic polynomial in
Xn+1.

Now, let’s consider the polynomial qn(t), and let q′(t) := Dk1
1 · · ·Dkn

n qn(t). We then know
that q′(t) ∈ D−(Xn+1) and that the square-free monomial Dk1

1 · · ·Dkn
n t1 · · · tn is a term of

q′(t). Let s be the exponent vector of Dk1
1 · · ·Dkn

n t1 · · · tn. Then we know that s is an internal
parking function, meaning that q′(t) must be the unique internal s-monic polynomial and
thus is also a generator of D−(Xn+1).

Every generator of D−(Xn+1) is a derivative of qn(t), and every derivative of qn(t) is a
generator of D−(Xn+1). Thus, we have that D−(Xn+1) is the polynomial space generated by
the derivatives (of all orders) of the polynomial qn(t) as desired. �

3.2. Proving Theorems 0.2 and 0.3 From the Introduction. From theorem 3.1
and corollary 3.2, the proofs of theorems 0.2 and 0.3 from the introduction become clear. Let
us now prove these theorems. Recall that we denote partial differentiation with respect to ti
by Di; i.e. with pi : Rn → Rn, t 7→ ti, we have Di = pi(D), and D0 = 0.

Theorem 0.2. The polynomial qn(t) is the only polynomial (up to normalization) of
degree n that is annihilated by each of the following differential operators

Di(Di −Di−1), i = 1, ..., n.

Moreover, let Pn,j be the subspace of homogeneous polynomials (in n indeterminates) of
degree j that are annihilated by each of the above differential operators. Then:

(1) Pn,j lies in the span of the translates of qn.
(2) dimPn,j =

(
n
j

)
.

Proof. We show in the proof of theorem 3.1 that qn(t) is the unique internally monic
polynomial of maximal degree in D−(Xn+1). We also have that qn(t) lies in the dual central
zonotopal space, D(Xn), meaning that qn(t) is annihilated by Di(Di−Di−1), for i = 1, ..., n,
by definition. Corollary 3.2 of this note can be rephrased as saying that the space of translates
of qn(t) is D−(Xn+1). We then can see that for a given degree j, we have that Pn,j ⊂
K[t1, ..., tn]j , giving

(D−(Xn+1) ∩ Pn,j) ⊆ (D−(Xn+1) ∩K[t1, ..., tn]j). (IV.4)

In other words, we have that Pn,j ⊂ D−(Xn+1); i.e. we have that Pn,j lies in the span of the
translates of qn(t). Furthermore, we can actually see that our inclusion (IV.4) is actually an
equality, as the dimension of both (D−(Xn+1) ∩ Pn,j) and (D−(Xn+1) ∩K[t1, ..., tn]j) is

(
n
j

)
.

The dimension of (D−(Xn+1)∩K[t1, ..., tn]j) is given to us by corollary 3.2. The dimension
of (D−(Xn+1) ∩ Pn,j) is gotten by counting the number of internal parking functions of the
broken wheel graph.

The uniqueness of qn(t) can then be quickly seen by the fact that Pn,n ⊂ D−(Xn+1) and
that qn(t) is the unique internally monic polynomial of maximal degree in D−(Xn+1). �

Example 3.3. Let’s consider n = 2. We then have that q2(t) = t22/2 + t1t2. The theorem
above then tells us that q2(t) is the only polynomial which is annihilated by D2(D2 − D1)
and D2

1.

The following result gives another characterization of qn(t). It should be noted that while
the following result resembles the theorem 0.2, it is the result of a rather different observation.
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Theorem 0.3. The polynomial qn(t) is the only polynomial q(t) (in n variables) that
satisfies the following two properties:

(1) With m the square-free monomial

m : t 7→
n∏
i=1

ti,

the monomial support of (q − m)(t) is disjoint of the monomial support of the
polynomial

t 7→
n∏
i=1

(ti + ti−1), t0 := 0.

(2) q(t) is annihilated by each of the following differential operators:

(Dj+1 −Dj)(

j∏
k=i

Dk)(Di −Di−1), 1 ≤ i ≤< n

and

(

n∏
k=1

Dk)(Di −Di−1), 1 ≤ i ≤ n.

Proof. For part (1), we can see that the polynomial t 7→
∏n
i=1(ti−1 + ti) is exactly

the polynomial pn,0(t), introduced in proposition 1.3. From proposition 1.3, we know that
Smax(BWn) = supp pn,0(t). In other words,

supp pn,0(t) = {s ∈ S(BWn) : |s| = n}.

We know from [106] that the only maximal parking function in Cn which gives rise to a term
ms/s! of qn(t) is s = (1, ..., 1). Thus, we have that supp pn,0(t) ∩ supp qn(t) = {(1, ..., 1)}.
And so, by subtracting the monomial m from qn(t), we can quickly see that

supp pn,0(t) ∩ supp (qn −m)(t) = ∅.

For part (2), we again know that qn(t) must be annihilated by the differential operators in
question as qn(t) lies in D(Xn). We can see that qn(t) is the only polynomial in n vari-
ables which satisfies both (1) and (2) because, as qn(t) is uniquely the polynomial in D(Xn)
which corresponds to the monomial m in the basis of D(Xn), we have that qn(t) is the only
polynomial satisfying (2) which also satisfies (1). �

Example 3.4. Considering n = 2, we have that (q2 − m)(t) = t22/2. We can then see
that supp (q2 −m)(t) = {(0, 2)} and supp t1(t1 + t2) = {(2, 0), (1, 1)} are disjoint, and thus
that condition (1) of the theorem above is satisfied. For condition (2), we can see that q2(t)
is annihilated by both D2

1(D2 −D1) and D2
1.

Example 3.5. For n = 3, we have that (q3 −m)(t) = t23/6 + t23(t1 + t2)/2 + t3t
2
2/2. For

condition (1), we can see that supp t1(t1 + t2)(t2 + t3) = {(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1)}
is disjoint from supp (q3 −m)(t) = {(0, 0, 3), (1, 0, 2), (0, 1, 2), (0, 2, 1)}. For condition (2) we
can see that q3(t) is annihilated by the operators

D3(D3 −D2), D3D2(D2 −D1), (D3 −D2)D2(D2 −D1), (D2 −D1)D2
1.

3.3. A Polyhedral Subdivision Relating to the Associahedron. Pitman and Stan-
ley [106] describe a polyhedral subdivision of Qn(t) closely related to the associahedron. The
associahedron An is a polytope whose vertices correspond to the triangulations of the (n+3)-
gon and whose edges correspond to flips of diagonal edges; i.e. removing one diagonal edge
from a given triangulation and replacing it with another diagonal edge. This section is in-
cluded as a review of this polyhedral subdivision of Qn(t) which Pitman and Stanley [106]



88 IV. ZONOTOPAL ALGEBRA

Figure 39. The associahedron A3.

present and how the volume of each polytope in their subdivision is captured by the zono-
topal algebra of the broken wheel graph. This connection was the main inspiration for the
generalized broken wheel graph appearing in the coming sections.

Its dual is a simplicial complex whose vertices are diagonals of a convex (n + 3)-gon,
simplices are the partial triangulations of the (n + 3)-gon, and whose maximal simplices
are triangulations of the (n + 3)-gon. Pitman and Stanley [106] construct a fan Fn whose
chambers are indexed by plane binary trees with n internal vertices and prove the following
result:

Proposition 3.6 (Pitman and Stanley [106]). The face poset of the fan Fn, with a top
element adjoined, is isomorphic to the dual dec(En+2)∗ of the face lattice of the associahedron.

A plane binary tree is a plane tree such that each vertex has zero or two subtrees. If a
vertex has zero subtrees, then we call it a leaf, and if a vertex has two subtrees, then we call
it an internal vertex. The construction of the fan Fn is as follows. First consider a binary
tree T . Do a depth-first search of T , labelling its internal vertices 1 through n in the order
they are encountered from above. This labelling is referred to by Pitman and Stanley as the
binary search labelling.

1

2

3

4

Figure 40. A plane tree with the binary search labelling.

If an internal vertex of T with label i is covered by j, then associate to the pair (i, j) the
inequality

xi+1 + xi+2 + · · ·+ xj ≤ 0
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if i < j and the inequality
xj+1 + xj+2 + · · ·+ xi ≥ 0

if i > j. We then have a system of n−1 homogeneous linear equations which define a simplicial
cone in Rn−1. These cones, as they range over all plane binary trees with n internal vertices,
form the chambers of a complete fan, denoted Fn, in Rn−1.

Let T ∈ Tn, where Tn is the set of binary trees with n internal vertices. Pitman and
Stanley [106] then construct sets 4T (x) which form the maximal faces of a polyhedral de-
composition Γn of Qn(x) whose set of interior faces, ordered by inclusion, is isomorphic to
the face lattice of the dual associahedron. They also give the volume of these maximal faces.

Proposition 3.7 (Pitman and Stanley [106]). We have the following:

(1) The sets 4T (x), T ∈ Tn, form the maximal faces of a polyhedral decomposition Γn
of Qn(x).

(2) Let k(T ) = (k1, ..., kn), T ∈ Tn. Then Vol(4T (x))= x
k1
1
k1! · · ·

xknn
kn! .

(3) The set of interior faces of Γn, ordered by inclusion, is isomorphic to the face lattice
of the dual associahedron.

In order to understand this result, we must define the objects mentioned in it; let us do
this. Given a plane tree T and E the set of edges of T , let’s define a function ` : E → R+

sending every edge e of T to a positive real number `(e). We will then call the pair (T, `) a
plane tree with edge lengths. Now fix a real number s > 0 which we would like to be the sum
of the edge lengths of a plane tree. Let x = (x1, ..., xn) ∈ Rn+ be such that

∑
xi < s and

y = (y1, ..., yn) ∈ Rn+ with

y1 + · · · yi ≤ x1 + · · ·xi, 1 ≤ i ≤ n.

For each pair (x, y), we can assign a plane tree with edge lengths ϕ(x, y) = (T , `) as described
in [106, p. 32]. We start with a root and traverse the tree in depth-first order:

(1) Go up distance xi, then down distance yi, for 1 ≤ i ≤ n.
(2) Finish the tree by going up distance xn+1 = s − x1 − · · · − xn and down distance

yn+1 = s− y1 − · · · − yn.
We then have a planted (i.e. the root as one child) plane binary tree with edge lengths.
Let T be the tree obtained by removing the roots and its incident edge from T . Now let
x = (x1, ..., xn) be a sequence with

∑
xi < s and let T ∈ Tn be a plane binary tree without

edge lengths. We define

4T (x) := {y ∈ Rn+ : ϕ(x, y) = (T , `) for some `}.

For T ∈ Tn, with the binary search labeling of its internal vertices, let k(T ) = (k1, ..., kn) ∈ Nn
such that:

(1) ki = 0 if the left child of vertex i is an internal vertex.
(2) If the left child of vertex i is an endpoint, then let ki be the largest integer r such

that there exists a chain i < j1 < · · · jr of internal vertices where jh is a left child of
jh+1 for 1 ≤ h ≤ r − 1.

Proposition 3.7 tells us that the volume of every polytope in this particular subdivision
of the Stanley-Pitman polytope Qn(t) is a term of qn(t), and that all terms of qn(t) appear as
such volumes. So not only is the zonotopal algebra of the broken wheel graph capturing the
volume of Qn(t), it is also capturing the volumes of the polytopes of a polyhedral subdivision
of Qn(t) whose set of interior faces, ordered by inclusion, is isomorphic to the face lattice
of the dual associahedron. This observation was our motivation for studying the volumes of
polyhedral subdivisions in terms of zonotopal algebras and lead us to the generalized broken
wheel graph.
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4. The Zonotopal Algebra of the Generalized Broken Wheel Graph

While the zonotopal algebra of the broken wheel graph and its connection to the Stanley-
Pitman polytope are rich in their own right, our study reaches even further. We will consider
the zonotopal algebra of the generalized broken wheel graph GBWn(T ) over a tree T with n
vertices and how it relates to the regular simplex Simn(t1, ..., tn) with positive parameters
(ti)i∈[n], defined by the inequalities

n∑
i=1

ri ≤
n∑
i=1

ti, ri ∈ Rn+,

where the (ri)i∈[n] are variables. Since our set-up is homogeneous, we will assume without
loss of generality that

n∑
i=1

ti = 1.

We will show how to partition Simn(t1, ..., tn) into 2n−1 polytopes, where each polytope’s
volume is captured by the zonotopal algebra of GBWn(T ). We begin by outlining the set-up
necessary to define the generalized broken wheel graph.

4.1. Constructing the Generalized Broken Wheel Graph. Our first step in this
process is to enumerate all rooted trees with n vertices. So, for example, there are two rooted
trees with 3 vertices, which we will respectively call the “line tree” and the “fork tree", as
illustrated in figure 41. For convenience, let’s generally label the vertices of any rooted trees
we consider 1 through n and always assume that the root of each tree is 1.

1

2

3

1

2 3

Figure 41. The line tree (to the left) and the fork tree (to the right).

There are 2n−1 different ways to direct the edges of a rooted tree T with n vertices. For
n = 3, we have four directed trees from the line tree and four from the fork tree, as illustrated
in figure 42.
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Figure 42. The possible ways of directing the edges of the line and fork trees.

We can identify each of the 2n−1 directed trees constructed via directing the edges of a
rooted tree T with an n-tuple k ∈ {±1}n, where k(1) := 1 and, letting p be the parent vertex
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of i,

k(i) :=

{
1 if the edge (p, i) is directed towards i
−1 if the edge (p, i) is directed towards p .

Let us denote all directed trees constructed via directing the edges of a root tree T according
to k by Tk. Let Tk,j be the subtree of Tk in which j is the root. For each directed tree Tk we
define a corresponding polytope QTk(t1, ..., tn), which is the collection of all points r ∈ Rn+
that satisfy, for each j ∈ Tk, the set of inequalities,∑

i∈Tk,j

ri (≤,≥)j
∑
i∈Tk,j

ti, j = 1, ..., n,

where

(≤,≥)j :=

{
≤ k(j) = 1
≥ k(j) = −1

.

As k(1) = 1, we have that one of the above inequalities will always be
n∑
i=1

ri ≤ 1,

which defines our regular simplex Simn(t1, ..., tn). Thus the systems of inequalities for each of
our 2n−1 directed trees together give a partition of Simn(t1, ..., tn) into 2n−1 polytopes. For
Sim3(t1, t2, t3), the inequalities for the line tree are displayed in figure 43 and the inequalities
for the fork tree are displayed in figure 44.

Now take a tree T with n vertices. For each directed tree Tk, we will complete it to a
particular directed graph GBWn(Tk), which we will refer to as the generalized broken wheel
graph over Tk. We construct GBWn(Tk) in the following way:

(1) Add one more vertex, labelled 0.
(2) Add two edges from 0 to the root vertex.
(3) Add one edge from 0 to each of the n− 1 vertices of Tk.

Let GBWn(T ) denote the graph GBWn(Tk) without directed edges; GBWn(T ) is the same
for any k and will be referred to as the generalized broken wheel graph over T . In figure 43
we can see the graphs resulting from the line tree and in figure 44 we can see the graphs
resulting from the fork tree. Once we have completed a directed tree Tk to GBWn(Tk), we
will assign a weight to each of its vertices. The weight wTk(v) of each vertex v of GBWn(Tk)
will be equal to its indegree minus 1: wTk(v) := indeg(v)−1. For instance, the weights of the
n = 3 graphs are displayed in blue above each vertex in figures 43 and 44.

It is significant to note that GBWn(T ), where T is the “line” tree on n vertices, is exactly
the broken wheel graph BWn; hence the name generalized broken wheel graph. In fact,
the zonotopal algebra derived from BWn is exactly the same as that which is derived from
GBWn(Tk), where T is a line tree and k = (1, ..., 1).

4.2. The Zonotopal Spaces of the Generalized Broken Wheel Graph. The
weights of the vertices of GBWn(Tk) will guide us in constructing a polynomial qTk(t) ∈
C[t1, ..., tn], which will turn out to be the volume of the polytope QTk(t1, ..., tn). Each poly-
nomial qTk(t) has a distinguished monomial

refTk : t 7→ twTk :=
n∏
i=1

t
wTk

(i)

i , wTk := (wTk(1), ..., wTk(n)),

called the reference monomial of Tk. The polynomial qTk(t) is constructed in the following
way: the reference monomial refTk is a term of qTk(t). To get the exponent vectors of the
other terms of qTk(t), let’s think of the weight at each vertex i of Tk as a sandpile of wTk(i)
grains of sand. Each grain of sand can be moved to a sandpile at another vertex j if there is
an edge directed from i towards j.
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k (1,1,1) (1,1,-1)

GBWn(Tk)
0

1

2

3

1

1

1

0

1

2

3

1

2

0

QTk(t1, t2, t3)
r1 + r2 + r3 ≤ t1 + t2 + t3

r2 + r3 ≤ t2 + t3
r3 ≤ t3

r1 + r2 + r3 ≤ t1 + t2 + t3
r2 + r3 ≤ t2 + t3

r3 ≥ t3
refTk t1t2t3 t1t

2
2

qTk(t) t1t2t3 + t22t3 + t33 + t1t
2
3 + t2t

2
3 t1t

2
2 + t32

k (1,-1,1) (1,-1,-1)

GBWn(Tk)
0

1

2

3

2

0

1

0

1

2

3

2

1

0

QTk(t1, t2, t3)
r1 + r2 + r3 ≤ t1 + t2 + t3

r2 + r3 ≥ t2 + t3
r3 ≤ t3

r1 + r2 + r3 ≤ t1 + t2 + t3
r2 + r3 ≥ t2 + t3

r3 ≥ t3
refTk t21t3 t21t2
qTk(t) t21t3 t21t2 + t31

Figure 43. Sim3 with the line tree.

More formally, a move can be made from i to j if wTk(i) > 0 and there exists an edge
between i and j which is directed towards j. If a move is made from i to j, then the
weight at i becomes wTk(i)− 1 and the weight at j becomes wTk(j) + 1. We then have that
w ∈ supp qTk(t) if a series of moves can be made to get w from wTk .

Example 4.1. Consider the top, leftmost graph in figure 44 with k = (1, 1, 1). We know
that refTk = t1t2t3 is a term of qTk(t). Remembering that we always start at wTk = (1, 1, 1),
we can see that a move can be made from 1 to 2 to get (0, 2, 1), giving us the term t22t3.
We can also make a move from 1 to 3 to get (0, 1, 2), giving us the term t2t

2
3. As there

are no other tuples which can be reached by a series of moves, we have that supp qTk =
{(1, 1, 1), (0, 1, 2), (0, 2, 1)} and qTk(t) = t1t2t3 + t22t3 + t2t

2
3.

We can construct zonotopal spaces from GBWn(T ) in a similar fashion as we did for
BWn. For every edge (i, j) of GBWn(T ) we associate the vector ei − ej if (i, j) is directed
towards i and ej − ei if (i, j) is directed towards j. We take these vectors as columns of a
matrix GXn. From this matrix we can construct the central, internal, and external pairs of
zonotopal spaces, as described in section 2.2.
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k (1,1,1) (1,-1,1)

GBWn(Tk)
0

1

2 3
1

1 1

0

1

2 3
2

0 1

QTk(t1, t2, t3)
r1 + r2 + r3 ≤ t1 + t2 + t3

r2 ≤ t2
r3 ≤ t3

r1 + r2 + r3 ≤ t1 + t2 + t3
r2 ≥ t2
r3 ≤ t3

refTk t1t2t3 t21t3
qTk(t) t1t2t3 + t22t3 + t2t

2
3 t21t3 + t1t

2
3 + t23

k (1,1,-1) (1,-1,-1)

GBWn(Tk)
0

1

2 3
2

1 0

0

1

2 3
3

0 0

QTk(t1, t2, t3)
r1 + r2 + r3 ≤ t1 + t2 + t3

r2 ≤ t2
r3 ≥ t3

r1 + r2 + r3 ≤ t1 + t2 + t3
r2 ≥ t2
r3 ≥ t3

refTk t21t2 t31
qTk(t) t21t2 + t1t

2
2 + t32 t31

Figure 44. Sim3 with the fork tree.

Let Pn(GXn) be the space of all homogeneous polynomials of degree n that lie in the
P-central space P(GXn), and let Dn(GXn) be the space of all homogeneous polynomials of
degree n that lie in the D-central space D(GXn). We will now show that the polynomials
qTk(t) form a basis for Dn(GXn) and that the reference monomials refTk form a basis for
Pn(GXn).

Theorem 4.2. Pn(GXn) is monomial and the monomials refTk for each k together form
a basis for Pn(GXn).

Proof. Benson, Chakrabarty, and Tetali prove in Theorem 3.1 of [9] that the set of
weights,

{wTk : k ∈ {±1}n, k(1) = 1},
is exactly the set of maximal parking functions of GBWn(Tk). It was then shown in [92]
that the set of parking functions of any graph G is the support of a monomial basis of
the P-central space associated to G. Thus the set of reference monomials, {refTk : k ∈
{±1}n, k(1) = 1}, is exactly the degree n basis elements of the P-central space P(GXn),
which generate Pn(GXn). �

Theorem 4.3. The polynomials qTk(t) are contained in and form a basis for Dn(GXn).

Proof. A polynomial is contained in Dn(GXn) if it is homogeneous of degree n and
annihilated by all the operators defined by the cocircuits of GBWn(Tk). Let’s consider any
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cocircuit C of GBWn(Tk). We know that C is defined by a cycle in the dual graph of
GBWn(Tk); let the set {v1, ..., vs} be the set of vertices which are dual to C. The operator
DC defined by C is the product of operators of the form (Dx −Dy) where (x, y) is an edge
in GBWn(Tk) dual to an edge of C. We can see that the operator Dv1 · · ·Dvs is a factor of
DC , as all edges (0, vi), 1 ≤ i ≤ s, are dual to an edge of C.

If Dv1 · · ·Dvs does not annihilate qTk(t), then there must exist a vertex vi in {v1, ..., vs}
such that all edges from vi to a vertex in {v1, ..., vs}\{vi} flow out of vi, and such that all
edges from vi to a vertex in {vs+1, ..., vn} flow into vi. The product of all operators Dvj

such that vj is adjacent to vi and vj ∈ {vs+1, ..., vn} is a factor of DC and annihilates qTk(t)
together with Dv1 · · ·Dvs , giving us that qTk(t) ∈ Dn(GXn). The polynomials qTk(t) are then
the unique s-monic polynomials, where s is the support of some reference monomial, which
form a basis for Dn(GXn) by proposition 2.12. �

Theorem 4.4. The volume of QTk(t1, ..., tn) is qTk(t).

Proof. The truncated power TrnX(t) is a function which records the normalized volume
of QTk(t1, ..., tn). As defined in [26], it can specifically be identified as the function

TrnX(t) := voln−d(X
−1{t} ∩ Rn+)dt/|detX|, t ∈ ranX,

where ranX is the range of X, d is the dimension of ranX, and X is any matrix in which 0
is an extreme point for the non-negative polytope MX whose closed support is given by

supp MX = {Xa : 0 ≤ a ≤ 1}.

It is piecewise in the D-central space of GBWn(T ), which is spanned by the 2n−1 poly-
nomials qTk(t). Since no edge of GBWn(Tk) ever lies in the interior of the positive octant for
any k, the volume is one polynomial piece in the positive octant.

The positive octant has n facets. At least one of these facets is a part of the boundary of
the support of the truncated power. The facets on the boundary depend on the k we choose.
The volume polynomial QTk(t1, ..., tn) is thus divisible by twi

i whenever ti = 0 is a boundary
facet and wi + 1 edges do not lie in the ti = 0 facet. In our case, i will be a vertex which is
a sink and wi its corresponding weight.

For n = 2, there is one tree T with two possible orientations: k1 = (1, 1) and k2 =
(1,−1). We then know that the polynomials qTk1

= t1t2 + t22 and qTk2
= t21 form a basis for

D(GX2); so the volumes of QTk1
(t1, ..., tn) and QTk2

(t1, ..., tn) must be linear combinations of
qTk1

= t1t2 + t2 and qTk2
= t21, respectively. As these polynomials are divisible by t2 and t21,

respectively, we can see from our observations about the truncated power that the volume of
QTk1

(t1, ..., tn) must be qTk1
= t1t2 + t22 and the volume of QTk2

(t1, ..., tn) must be qTk2
= t21.

Let’s assume that the volume of QTk(t1, ..., tn) is qTk(t) n > 2 for any k, and consider
any tree T with n + 1 vertices, a k, and GBWn+1(Tk). We would like to find the volume
of QTk(t1, ..., tn, tn+1). We can pick a leaf l of GBWn+1(Tk) with parent p, and consider
the polytope QTk(t1, ..., tl−1, tl+1, ..., tn+1) corresponding to the directed graph resulting from
removing the edge between l and p and the edge between l and 0. We have two cases to
consider: the case where the edge connecting l and p is oriented from p to l, and the case
where the edge connecting l and p is oriented from l to p. For each case respectively, we have
that:

(1) If the edge connecting l and p is oriented from p to l, then

(Dl −Dp) vol(QTk(t1, ..., tn, tn+1)) = vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1)).

(2) If the edge connecting l and p is oriented from l to p, then

(Dp −Dl) vol(QTk(t1, ..., tn, tn+1)) = vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1)).

Let us first begin with the case where the edge connecting l and p is oriented from p to l,
as it is the quickest. In this case, as vol(QTk(t1, ..., tn)) has all positive coefficients, we know
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that

vol(QTk(t1, ..., tn, tn+1)) = tl·vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1))+tlDp·vol(QTk(t1, ..., tn, tn+1)).

Graphically this is the same as adding 1 to the weight of l, and then adding a monomial for
each time you make a move from p to l. Or in other words, vol(QTk(t1, ..., tn, tn+1)) = qTk(t).

The second case, where the edge connecting l and p is oriented from l to p, is a bit
more subtle. This is because we need to consider whether or not p is a sink. If p is a
sink, then there is a tp in every monomial of qTk(t) and never a tl. And so we can see that
vol(QTk(t1, ..., tn, tn+1)) = tpQTk(t1, ..., tl−1, tl+1, ..., tn+1), which is the same as adding 1 to
the weight of p, showing us that vol(QTk(t1, ..., tn, tn+1)) = qTk(t).

When p is not a sink, we have to be careful because it is difficult to recover what we have
lost after applying (Dp−Dl) to vol(QTk(t1, ..., tn)) from vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1)), as
we can no longer keep track of what moves out of p. So let’s assume that vol(QTk(t1, ..., tn)) =
qTk(t) + qTk′ (t), where k 6= k′ and qTk′ (t) is divisible by a sink of Tk raised to the power of its
weight. When applying (Dp −Dl) to vol(QTk(t1, ..., tn)), we can see that (Dp −Dl)qTk(t) =
DpqTk(t) = vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1)), as there are no terms with tl in qTk(t).

We must then have that (Dp − Dl)qTk′ (t) = 0. This means that either there are is
no tp or tl as a factor of any term in qTk′ (t), which is not possible as the edge connect-
ing p and l must be oriented towards either p or l, or there exists a pair of terms, tpα
and tlα, of qTk′ (t), where α is a monomial in K[t1, ..., tn]. This can only be the case
if the edge connecting p and l is oriented towards l in Tk′ , as that is the only way for
there to even exist a term with a factor of tl to begin with. This means, however, that
(Dp − Dl)qTk′ (t) = − vol(QTk′ (t1, ..., tl−1, tl+1, ..., tn+1)) by the first case we considered in
this proof. As − vol(QTk′ (t1, ..., tl−1, tl+1, ..., tn+1)) is non-zero, this contradicts the fact that
(Dp − Dl) vol(QTk(t1, ..., tn, tn+1)) = vol(QTk(t1, ..., tl−1, tl+1, ..., tn+1)). We must then have
that vol(QTk(t1, ..., tn, tn+1)) = qTk(t), as desired. �

With these results we can see that the zonotopal algebra derived from a given rooted tree
T completely describes a polyhedral subdivision of Simn(t1, ..., tn). Given how the zonotopal
spaces in our study seem to capture the volumes of the polytopes and the polytopes appearing
in their various subdivisions, it seems fair to suggest that the volumes of polytopes in general
could be studied via their corresponding zonotopal spaces. Given a polytope, one would
need to ask what the appropriate graphical matroid would be to derive the zonotopal spaces
which capture its volume, and then analyze which polyhedral subdivisions come out of these
spaces. This method could be a new and interesting approach towards studying volumes of
polytopes.
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multi-associahedra via Gale duality, J. Algebraic Combin. (August 2014), 28 pages.
11. A. V. Borovik, I. M. Gelfand, and N. White, Coxeter matroids, Progress in Mathematics, vol. 216,
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20. Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword complexes, cluster complexes, and

generalized multi-associahedra, J. Algebraic Combin. 39 (2014), no. 1, 17–51.
21. Cesar Ceballos and Vincent Pilaud, Denominator vectors and compatibility degrees in cluster algebras of

finite type, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1421–1439.
22. Cesar Ceballos and Vincent Pilaud, Cluster algebras of type D: pseudotriangulations approach, preprint,

arXiv:1504:06377 (April 2015), 21 pp.
23. M. Chan, Combinatorics of the tropical Torelli map, ArXiv e-prints (2010).
24. , Tropical hyperelliptic curves, ArXiv e-prints (2011).
25. F. Chapoton, S. Fomin, and A. Zelevinsky, Polytopal realizations of generalized associahedra,

Canad. Math. Bull. 45 (2002), no. 4.
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Birkhäuser Basel, Basel, 2000.
50. I.M. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants, and multidimensional determ-
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