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Abstract
We study the motion of a polar tracer, having a concave surface, immersed in a two-dimensional
suspension of active particles. Using Brownian dynamics simulations, we measure the distributions
and auto-correlation functions of force and torque exerted by active particles on the tracer. The
tracer experiences a finite average force along its polar axis, while all the correlation functions show
exponential decay in time. Using these insights we construct the full coarse-grained Langevin
description for tracer position and orientation, where the active particles are subsumed into an
effective self-propulsion force and exponentially correlated noise for both translations and
rotations. The ensuing mesoscopic dynamics can be described in terms of five dimensionless
parameters. We perform a thorough parameter study of the mean squared displacement, which
illustrates how the different parameters influence the tracer dynamics, which crosses over from a
ballistic to diffusive motion. We also demonstrate that the distribution of tracer displacements
evolves from a non-Gaussian shape at early stages to a Gaussian behavior for sufficiently long
times. Finally, for a given set of microscopic parameters, we establish a procedure to estimate the
matching parameters of our effective model, and show that the resulting dynamics is in a very
good quantitative agreement with the one obtained in Brownian dynamics simulations.

1. Introduction

In recent years active motion has evolved into a thriving field combining different disciplines from physics
and chemistry to biology and engineering sciences [1–4]. Microorganisms swim in a fluid environment at
low Reynolds number, meaning that viscous forces dictate over inertial forces. Tremendous research
activities have been devoted to better understand their propulsion mechanisms [2, 5, 6], as well as to
construct artificial microswimmers [7–10] and to explore their fascinating patterns of collective motion
[11–15]. Artificial or biological microswimmers, which we simply term active particles, consume energy to
swim forward, and therefore are constantly driven out of equilibrium. Fascinating generic properties arise
in such nonequilibrium settings, as illustrated, for example, by active particles getting stuck at confining
walls [16–20], on which they exert a swim pressure [21–25].

Combining active motion with concepts from Brownian ratchets, one of the existing paradigms in
nonequilibrium statistical mechanics [26], provides new possibilities of rectified motion [27]. In the
direction of applications the following works are of interest: capturing active particles [28, 29], sorting
active particles based on their velocity [30] or the mechanism how they reorient [31], effective interactions
between inclusions in active suspensions [32–37], cargo transport [38, 39] and active assembly [40–42].
Active particles accumulate in corners, which causes directed transport through a wall of funnels [43, 44], in
an asymmetric potential [45, 46], or in a symmetric potential in combination with a position-dependent
swimming speed [47], in a corrugated channel [48], and in arrays of asymmetric obstacles [49].

When many active particles act on a mesoscopic object, they can be regarded as a nonequilibrium active
bath, which is strongly determined by fluctuations in the swimming directions of particles. Rotational and
translational ratchet motors can be constructed by placing asymmetric objects in active baths. Notably, a
wheel with sawtooth-like contour deposited in an active bath exhibits unidirectional rotation [50–52].
When passive mesoscopic objects, which do not self-propel, are suspended in such a bath, they are
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Figure 1. (a) Tracer geometry used in Brownian dynamics simulations. In the eigenframe of the tracer the orientation of its
symmetry axis, passing through the center of mass C, is determined by the unit vector e‖ which makes the angle θ with the x-axis
of the lab frame. (b) A snapshot of the motion of the tracer immersed in a bath of active particles; we selected only a small region
of the simulation box centered around the tracer.

stochastically pushed around, and, more importantly, their motion can even be rectified if they have a polar
shape and a pronounced concave surface [53]. In what follows we shall refer to such a mesoscopic object as
a polar tracer. Well known examples include semicircle forms and wedge-like structures [53–55]. The
directed motion of the tracer can be explained by the fact that a portion of active particles, trapped within
some cavity of the object, exercise certain pressure on the surface of the cavity and thus they push the object
in the outward direction as illustrated in figure 1. Thereby, the polar tracers are endowed with substantial
persistence of motion and can act as microshuttles [53–55]. Contrarily, spherical tracers in an active bath
display only enhanced diffusive motion [56–65].

Most theoretical studies [53–55] performed so far were based on methods of Brownian dynamics
simulations, replicating a collection of active particles interacting with the tracer. An alternative approach is
the extraction of effective Langevin equations from the microscopic many-particle dynamics, which is a
long term goal of theoreticians both in and out of thermal equilibrium. Specifically, for an active bath it
remains a challenge to describe the motion of a polar tracer or of even more complicated structures by
mesoscopic equations. Due to the nonequilibrium nature of the bath [66], it is clear that the standard
Langevin equation is not appropriate in this case. It has been shown, for instance, that the motion of a
spherical tracer in a bath of E. coli bacteria can be described by a Langevin equation containing
instantaneous friction kernel and colored noise [53, 56, 63, 67]. Such noise can be generated by an auxiliary
Ornstein–Uhlenbeck process [68] and it brings the system outside of thermodynamic equilibrium.

In this article we develop an effective Langevin description for a polar tracer with a concave surface
immersed in an active bath (see figure 1). To determine the coarse-grained active noise resulting from the
impact of the active bath particles, we performed simulations based on Brownian dynamics equations by
extending previous studies. Our simulations support previous findings [53, 55] concerning the existence of
a finite average force acting along tracer’s symmetry axis and the exponential time decay of relevant
correlation functions. In addition, we demonstrate that the cross-correlation function between the torque
and the force acting perpendicularly on the tracer’s symmetry axis is always negative, but decays
exponentially with time as well. Based on these insights we propose a complete description of the tracer
motion with effective Langevin equations. More precisely, we show that the previous complex problem of
many-body Brownian dynamics can be reduced to a simple system of three stochastic equations of Langevin
type. Using this approach, we performed a detailed study of the tracer mean squared displacement (MSD)
and its displacement probability distributions as a function of time. We show for the first time that the
distribution of tracer displacements crosses over from a non-Gaussian at early stages of evolution to a
Gaussian behavior for sufficiently long times.

The article is organized as follows: after the introduction, section 2 is devoted to the presentation of our
model and its description in the frameworks of Brownian dynamics and effective Langevin equations
approach. In section 3 we present our results together with an extensive discussion of the mean squared
tracer displacement and associated probability distributions. Some concluding remarks and a summary of
the main results are given in section 4. Finally, in appendix A we describe some technical details of our
Brownian dynamics simulations.

2. Model

To introduce the quantities of interest for the coarse-grained dynamics, we start with a description of the
problem within the framework of Brownian dynamics. Thus we begin with the general equations of tracer
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motion in the overdamped limit. In the lab frame, the vector r = (x, y) denotes the center of mass position
of the tracer and the direction of its symmetry axis e‖ is characterized by an angle θ (see figure 1). In dyadic
notation the translational mobility matrix M of the tracer in its eigenframe can be written as

M = μ‖e‖ ⊗ e‖ + μ⊥(I − e‖ ⊗ e‖), (1)

where μ‖ and μ⊥ are translational scalar mobilities, and I is the unit matrix. In the overdamped limit, where
inertial contributions are negligible, the equations of motion of the tracer are

V = M F, (2)

θ̇ = κT. (3)

Here, the tracer velocity V and the force F acting on it, in the eigenframe take the form V = v‖e‖ + v⊥e⊥
and F = F‖e‖ + F⊥e⊥, respectively. The quantity θ̇ and T = Tez = T(e‖ × e⊥) are the angular velocity of
the tracer and the torque exerted by active particles on it, while κ denotes its rotational mobility. For future
convenience, we also introduce a typical length l of the tracer connecting the mobilities μ⊥ and κ through
the relation l2 = μ⊥/κ.

To characterize the fluctuating force and torque, which result from the active particles hitting the polar
tracer, we performed Brownian dynamics simulations of a semicircle tracer immersed in a bath of active
Brownian particles [69]. The technical details of simulations are given in appendix A. As one can infer from
figure 2 (top row, left) the probability distribution of force F‖ has a Gaussian profile centered at a finite
mean (similar results were reported in [53], where the motion of a wedge shaped tracer in a bath of active
rods has been studied). One can also see that the auto-correlation function C‖(t) = 〈F‖(t0)F‖(t0 + t)〉
− 〈F‖〉2 in the stationary regime (top row, right) decays with time following an exponential law; similar
behavior has been observed in [53]. As the graph shows, the characteristic time of this decay is of the order
of the reorientation time τR of an individual active bath particle. This hints that the force F‖ can be
modeled as F‖ = 〈F‖〉+ ξ‖, where 〈F‖〉 is a net drift force acting along the tracer’s polar axis, and ξ‖ is a
random noise term, with a zero mean, exponentially correlated in time. In contrast to the case of F‖,
Brownian dynamics simulations show that the average value of the perpendicular component of the force is
equal to zero, 〈F⊥〉 = 0, which suggests that the perpendicular force can be taken in the simple form
F⊥ = ξ⊥, with 〈ξ⊥〉 = 0. As before, the corresponding correlation function C⊥(t) appears to follow an
exponential decay in time (see figure 2, middle row). Furthermore, the simulations also reveal that the
different components of the random force are not mutually correlated, 〈ξ‖(t)ξ⊥(t′)〉 = 0, which is also clear
by the polar symmetry of the tracer. All these findings can be summarized by relations

〈ξα〉 = 0, 〈ξα(t)ξβ(t′)〉 = δαβ
1

μ2
α

DA
α

1

τα
e−

|t−t′ |
τα , (4)

where the indices α and β take values ‖ and ⊥, while DA
α are the diffusion constants along the principal

directions and τα represents the corresponding persistence time of the active noise.
We have seen that the active particles affect the motion of the tracer through the force F. These particles

also produce a random torque leading to a rotation of the tracer, which causes a gradual degradation in
directed motion. Brownian dynamics simulations demonstrate that the average value of torque is equal to
zero, and that its auto-correlation function CT(t) decays exponentially in time (see figure 2 (bottom row)
and [53]). Since the fluctuating torque results from the fluctuating perpendicular force component, we also
measured the cross-correlation function CF⊥T(t) = 〈F⊥(t0)T(t0 + t)〉. As one can see from figure 3, it is
always negative and displays an exponential behavior. In our coarse-grained model the presence of these
anti-correlations is taken into account in the following way

T(t) = −μ⊥
κlT

ξ⊥(t), (5)

where the characteristic length μ⊥/(κlT) linking T and ξ⊥ can be deduced using dimensional analysis; here

we have introduced the new length lT =
√

DA
⊥/DA

R with DA
R being the tracer’s rotational diffusion constant.

Let us mention in passing that, in contrast to the case of F⊥, the force F‖ and the torque T are not mutually
correlated.

Taking into account the above considerations, after transforming the equation (2) into the lab frame, we
obtain the following system of three stochastic equations for the polar tracer

ẋ = μ‖
(
〈F‖〉+ ξ‖

)
cos θ − μ⊥ξ⊥ sin θ, (6)

ẏ = μ‖
(
〈F‖〉+ ξ‖

)
sin θ + μ⊥ξ⊥ cos θ, (7)
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Figure 2. The probability distribution P‖ of the force F‖ acting on the tracer is presented on the left side of the top row; the force
is measured in units of kBT/σ, where T is the temperature of the bath and σ is the characteristic length of the interaction
potential between the active particles. The solid black line is the best fit of P‖ to a Gaussian distribution; note that 〈F‖〉 > 0,
which means that it has a positive projection on the polar axis e‖ of figure 1. On the right side of the top row the scaled
auto-correlation function C‖(t) = C‖(t)/C‖(0) for F‖(t) is shown (light gray symbols), together with its fit to the exponential
form e−t/τ‖ (black solid line); note that the time is measured in units of the persistence time, τR, of an active particle, discussed in
the appendix A. The middle row presents the corresponding data for P⊥(F⊥) and C⊥(t). Finally in the bottom row we presented
the behavior of PT and CT . Note that the mean values of the perpendicular force and torque acting on the tracer are vanishing,
〈F⊥〉 = 0 and 〈T〉 = 0; the torque is measured in units of thermal energy kBT. According to our observations the values of all
three correlation times τ ‖ , τ⊥, and τT are approximately 0.45τR. All results presented in this panel correspond to an active bath
having the area packing fraction φ ≈ 0.08 and the persistence number Per = 80/3 of active particles (see appendix A for
definitions of φ and Per and more details).

θ̇ = −μ⊥
lT

ξ⊥. (8)

In these equations we neglected the usual thermal noise because we confined ourselves to the physically
most interesting case of large speed of active particles. To generate the exponentially correlated noises ξ‖
and ξ⊥ of equation (4) with exactly the same parameters, we use two auxiliary Ornstein–Uhlenbeck
processes [68]

ξ̇α = − 1

τα

(
ξα +

√
2DA

α

μα
ηα

)
with α = ‖,⊥, (9)

where ηα are Gaussian white noises of zero mean and unit variance: 〈ηα〉 = 0, 〈ηα(t)ηβ(t′)〉 = δαβδ(t − t′).
We use the typical extent of the tracer l as the unit of length, persistence time τ ‖ of the noise as the unit

of time, and we measure forces in units of the effective self-propulsion force 〈F‖〉. Now, keeping the same
notation, the equations (6)–(9) can be rewritten in the dimensionless form:

ẋ = P
[
(1 + ξ‖) cos θ − ξ⊥ sin θ

]
, (10)

ẏ = P
[
(1 + ξ‖) sin θ + ξ⊥ cos θ

]
, (11)

θ̇ = −P

b
ξ⊥, (12)
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Figure 3. The scaled cross-correlation function between the perpendicular force and torque acting on the tracer,
CF⊥T(t) = CF⊥T (t)/|CF⊥T(0)|, versus time measured in units of τR (light gray symbols); note that F⊥ and T are anti-correlated,
CF⊥T < 0. The solid black curve represents the best fit of CF⊥T data to the exponential form −e−t/τc , where τ c is the characteristic
cross-correlation time. The simulation data were obtained for the same values of bath parameters as those in figure 2.

ξ̇‖ = −ξ‖ +

√
2Q

P
η‖, (13)

ξ̇⊥ = −wξ⊥ +
w

P

√
2Q

d
η⊥, (14)

where we introduced five independent dimensionless parameters:

P =
μ‖〈F‖〉τ‖

l
, Q =

DA
‖ τ‖

l2
, d =

DA
‖

DA
⊥

, w =
τ‖
τ⊥

, b =
lT
l
. (15)

Here, the persistence number P quantifies the effective persistence length μ‖〈F‖〉τ ‖, which is the distance the
tracer traverses in roughly the same direction. The parameter Q is the ratio of two timescales: the
persistence time τ ‖ and the time l2/DA

‖ it takes the tracer to diffuse its own length l due to active noise. The
parameters d and w describe the ratios of diffusion constants and persistence times of the active noise along
‖ and ⊥ directions, respectively. Finally, b denotes the characteristic length lT that we introduced earlier
measured in units of l. It is useful to note that all these dimensionless parameters depend on the geometry
of the tracer and the active bath properties. Let us add yet that in writing the above dimensionless equations
we removed the parameter μ‖/μ⊥ by absorbing it into the definition of the perpendicular component of
noise: ξ⊥μ⊥/μ‖ → ξ⊥.

The stochastic equations (10)–(14) are integrated using a simple Euler scheme with a time step of
δt/τ ‖ = 10−5. The simulation time goes up to t/τ ‖ = 2000, and the results are averaged over 100
independent simulation runs for each parameter set.

3. Results

One of the most important characteristics of tracer movement is the behavior of its MSD, which will be
presented in section 3.1. Of course more detailed characterization of tracer’s motion is provided by
probability distributions of its displacements. We explore them in section 3.2. Finally, in section 3.3 we
present a procedure which allows us to estimate the parameters of our effective Langevin model from direct
Brownian dynamics simulations. We then demonstrate that the time evolution of probability distribution of
displacements obtained in our model is in a very good quantitative agreement with the one acquired from
Brownian dynamics simulations.

3.1. Mean squared displacement
We analyze the motion of the tracer by computing its MSD: 〈Δr2(t)〉 = 〈[r(t + T ) − r(T )]2〉T , where the
averaging is performed over different initial times T and over 100 independent simulation runs. Our results
span over several decades in time. In the following we evaluate how the MSD changes with varying each of
the above dimensionless parameters (15).

The MSD obtained for different values of the persistence number P is shown in figure 4. As one can
infer from figure 4 the MSD displays a ballistic behavior, 〈Δr2(t)〉 ∼ t2, for short times (t/τ ‖ � 1, for our
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Figure 4. The MSD, measured in units of l2, as a function of time, measured in units of τ ‖, for three selected persistence number
values P. All other dimensionless parameters are set to 1. The solid black lines are guides to the eye.

Figure 5. The MSD as a function of time for three selected values of parameter Q. All other dimensionless parameters are set to
1. The solid black lines are guides to the eye.

choice of parameters). The practically pure ballistic motion is due to the persistence in random force acting
on the tracer (there are no thermal fluctuations in our model). The higher the persistence number, the
more space is explored by the tracer. From the equations (10) and (11), it is easy to see that the MSD should
scale as 〈Δr2〉 ∼ P2t2 in the ballistic regime, which is supported by the numerical results in figure 2. On the
other hand, for long times (t/τ ‖� 100) the tracer motion is eventually randomized for all P so that the
normal diffusion sets in, 〈Δr2(t)〉 ∼ t. One can notice that a larger value of P gives rise to an enhanced
effective value of the diffusion coefficient.

Varying parameter Q = D A
‖ τ‖/l2 yields a nontrivial change of the MSD, see figure 5. By changing Q one

essentially alters the active diffusion constants DA
‖ and DA

⊥ = DA
‖ /d. Compared to the case Q = 1, for

Q = 10 the tracer is subjected to a larger value of correlated noise, which also affects short-time ballistic
motion leading to a larger effective speed. However, the tracer is also exposed to a greater active diffusion
constant DA

⊥ or correlated noise along its lateral direction, causing a destruction of its ordered motion at
earlier times if compared to the case Q = 1. As a consequence of this, the effective diffusion constant at long
times is not markedly distinct between these two cases. On the other hand, for Q = 0.1 the lateral random
force exerted on the tracer is sufficiently small, such that for a chosen P = 1, one obtains a pronounced
ballistic regime spanning up to times t/τ ‖ ≈ 10. Consequently, the effective diffusion constant at long times
is noticeably larger with respect to the previous two cases.

The MSD for persistence number P = 10 and for diverse values of parameter d, quantifying the ratio of
active diffusion constants along the main and lateral axis of the tracer, is shown in figure 6. The effect of
changing d is straightforward. Increasing d above the reference value d = 1, corresponding to DA

‖ = DA
⊥, the

tracer exhibits longer ballistic movement due to elevated diffusion constant of the persistent active noise
along its symmetry axis. In contrast, d < 1 signifies less persistent ballistic motion.

In figure 7 we show the MSD for P = 10 and two values of the parameter w = τ ‖/τ⊥. Note that the
measurements of time auto-correlations of forces F‖ and F⊥ in Brownian dynamics simulations suggest that
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Figure 6. The MSD as a function of time for P = 10 and three selected values of parameter d. All other dimensionless
parameters are set to 1. The solid black lines are guides to the eye.

Figure 7. The MSD as a function of time for P = 10 and w = 1, 10. All other dimensionless parameters are set to 1. The solid
black lines are guides to the eye.

Figure 8. The MSD as a function of time for P = 10 and four selected values of parameter b. All other dimensionless parameters
are set to 1. The solid black lines are guides to the eye.

τ ‖ � τ⊥ with w� 1. Thus, figure 7 indicates that in the physically relevant region of parameter space
1 � w < 10 the MSD is not appreciably sensitive to variations of w. This implies that in most practical
cases one can set w = 1.

Finally, the effect of changing the parameter b = lT/l on the MSD is depicted in figure 8. As can be seen
from the equation (12) larger values of b correspond to a slower variation of tracer’s angular velocity, and
thus to a longer persistence of motion. As before for early times we obtain a ballistic regime, while for
longer times diffusive motion takes place. One notes that the duration of the ballistic regime grows with b.
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Figure 9. The probability distribution Px of displacements Δx, measured in units of l, for four characteristic time values t/τ ‖.
Here we chose the same values of parameters as those used to obtain the cyan line in figure 6, P = d = 10 and Q = w = b = 1.
For t/τ ‖ = 200 the solid black line provides the best fit of Px to a Gaussian form.

Figure 10. The probability distribution Pr of displacements Δr, measured in units of l, for four characteristic time values t/τ ‖.
Here we chose the same values of parameters as those used to obtain the cyan line in figure 6, P = d = 10 and Q = w = b = 1.
For t/τ ‖ = 1 the solid black line represents the best fit of Pr to a Gaussian form. For t/τ ‖ = 200 the solid black line is the best fit

of Pr to the form Pr = (Δr/σ2
r )e−Δr2/(2σ2

r ), where σr is a fit parameter.

3.2. Probability distribution of displacements
The time evolution of probability distribution Px of tracer displacement Δx = x − x0, with respect to some
initial position x0, obtained for some representative values of relevant parameters, is shown in figure 9. As
one can infer from this figure, at early times, when the tracer displays ballistic motion, the probability
distribution Px is bimodal with two peaks located at Δx/l ≈ ±P. As the time progresses, the height of these
peaks decreases until the end of the ballistic regime. After a characteristic time t/τ ‖ (in our case t/τ ‖ = 30)
they completely disappear, and Px exhibits a plateau. Later in time (see the figure corresponding to
t/τ ‖ = 50) the shoulders of Px subside, and with further increase in time Px crosses over to a purely
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Figure 11. The probability distribution Px of tracer displacements Δx, measured in units of σ, for four characteristic time
values t/τR. The results obtained in Brownian dynamics simulations are shown as gray histograms; here the persistence number
of an active particle was chosen to be Per = 80/3 and the bath packing fraction was set to φ ≈ 0.08. The solid black lines show Px

for matching parameters of the coarse-grained model P ≈ 0.4, Q ≈ 0.1, d ≈ 1.5, w ≈ 1 and b ≈ 1.7, without any free fitting
parameter.

Gaussian form for sufficiently long times. The width of this Gaussian is directly related to the MSD
presented in figure 6.

For the same parameter choice, the corresponding time evolution of the probability distribution Pr of
radial displacement Δr =

√
Δx2 +Δy2 is shown in figure 10. In this representation the initial two peak

structure of Px, presented in figure 9, maps onto a Gaussian centered at Δr/l ≈ P. Later in time the peak of
Pr propagates to higher values of Δr/l, and develops a shoulder for smaller displacements Δr/l (see
figure 10 for t/τ ‖ = 30). For even longer times (in our case t/τ ‖ = 50) the shoulder becomes more

pronounced and eventually the probability distribution attains the expected form Pr = (Δr/σr)e−Δr2/(2σ2
r ),

which is typical for the diffusive regime.

3.3. Comparison between the models
In Brownian dynamics simulations the tracer motion depends on its geometry (through the radius R and
the mobilities μ‖, μ⊥ and κ) and on the properties of the surrounding active bath (characterized by the
packing fraction of active particles φ and their persistence number Per). For a given set of parameters of this
system, we would like to find the matching parameters (15) in the effective Langevin description. To achieve
this goal, we use the insights from Brownian dynamics simulations to numerically compute the physical
quantities entering (15). We illustrate this mapping procedure for the example of a tracer of radius R/σ = 5
immersed in an active bath described by Per = 80/3 and φ ≈ 0.08. One can extract the effective
self-propulsion force 〈F‖〉 acting on the tracer, and the persistence times of the active noise by analyzing the
statistic of force and torque (figure 2). This gives 〈F‖〉 ≈ 75kBT/σ, and τ ‖ ≈ τ⊥ ≈ τT ≈ 0.45τR.

The translational active diffusivities DA
‖ and DA

⊥ follow directly from the MSDs along the polar axis e‖
and the axis e⊥ perpendicular to it, 〈Δr2

‖(t)〉 and 〈Δr2
⊥(t)〉, where ṙ‖ = P(1 + ξ‖) and ṙ⊥ = Pξ⊥ are

equations analogous to (10)–(11) but written in the eigenframe of the tracer (do not confuse 〈Δr2
‖(t)〉 and

〈Δr2
⊥(t)〉 with the previously introduced quantity 〈Δr2(t)〉 = 〈Δx2(t)〉+ 〈Δy2(t)〉 referring to the lab

system xOy). Although the colored noise (4) enters these equations, due to their simplicity, they can be
solved analytically

〈Δr2
‖(t)〉 = P2t2 + 2Q

[
t − (1 − e−t)

]
, (16)

〈Δr2
⊥(t)〉 = 2Q

d

[
t − 1

w
(1 − e−wt)

]
. (17)
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On the other hand, the same quantities can be measured in Brownian dynamics simulations. Our
simulation results are presented in figure A1. From equations (16) and (17), in the limit of large times, one
gets 〈Δr2

‖(t)〉 → P2t2 and 〈Δr2
⊥(t)〉 → 2Qt/d. Converting these expressions back to the dimensional form,

and fitting the data of figure A1 to them, we obtain 〈F‖〉 ≈ 75kBT/σ, in perfect agreement with the above
estimate from force statistics, and DA

⊥ ≈ 5σ2/τR. On the other hand, in the limit of small times, one obtains
〈Δr2

‖(t)〉 → (P2 + Q)t2. Fitting the 〈Δr2
‖(t)〉 data corresponding to this regime allows us to extract the

diffusion constant DA
‖ ≈ 7.5σ2/τR, see inset of figure A1.

Figure A2 shows the orientational auto-correlation function Co(t) = 〈e‖(t + t0)e‖(t0)〉t0 of the tracer
measured in Brownian dynamics simulations; here e‖(t) = cos θ(t)ex + sin θ(t)ey is the tracer’s orientation
vector, and the averaging is performed over different initial times t0 and over 15 independent simulation
runs. The obtained data can be nicely fitted to a simple exponential form Co(t) = e−t/τo , with τ o ≈ 20τR

being the orientational correlation time. We can argue that τ o should be close to 1/DA
R . Indeed, from

equation (12) it follows that 〈[θ(t) − θ(0)]2〉 ≈ 2DA
R t, t  τ⊥. On the other hand, since τ o  τ⊥, the

auto-correlation function can be written as Co(t) = 〈cos[θ(t) − θ(0)]〉 ≈ 1 − 1
2〈[θ(t) − θ(0)]2〉 = 1 − DA

R t,
which can be compared to Co(t) ≈ 1 − t/τo. This allows us to estimate the rotational diffusion constant of
the coarse-grained model, DA

R ≈ 0.05τ−1
R .

Using the above findings and the values of tracer mobilities μ‖, μ⊥ and κ from the appendix A, one can
calculate the sought matching parameters of the effective Langevin model. This gives: P ≈ 0.4, Q ≈ 0.1,
d ≈ 1.5, w ≈ 1 and b ≈ 1.7. In figure 11 we show a comparison between the time evolution of probability
distribution Px of tracer displacements Δx obtained in Brownian dynamics simulations (gray histograms)
and in the effective Langevin model (black solid curves). We achieve a very good quantitative agreement,
confirming that our effective model correctly describes the tracer motion in an active bath.

4. Conclusion

We have studied the dynamics of a polar tracer with a concave surface in a bath consisting of active
particles. By investigating the non-equilibrium statistics of the force and torque with which the active
particles push against the tracer, we were able to fully determine a set of three effective Langevin equations
for the tracer position and orientation. Thus, this procedure enabled us to reduce the complexity of the
problem, by going from an involved many-body dynamics approach to a coarse-grained description of the
bath, which appears in the tracer dynamics as a force drift and an exponentially correlated noise. Our
effective Langevin equations contain five independent dimensionless parameters, which depend on the
geometry of the tracer and the properties of active particles constituting the bath. For a given set of
parameters of the original Brownian dynamics approach, we managed to construct a numerical mapping to
obtain the matching parameters of the coarse-grained model without any free parameters. We
demonstrated a very good quantitative agreement between the time evolution of the probability distribution
of displacements obtained in Brownian dynamics simulations and in the effective Langevin model. In this
way we have been able to reduce the computational efforts by several orders of magnitude. For example, to
perform one run of a Brownian dynamics simulation up to time t/τR = 1000 required about 12 h on 20
CPUs, while one run of the effective Langevin simulation for the same time t/τR took only a few minutes
on a single CPU. Further work is needed in order to establish an analytical connection between the
parameters in our coarse-grained model and the parameters of the full many-body system in the Brownian
dynamics simulations.

Polar tracers can harness energy from the noisy non-equilibrium environment of an active bath and
thereby generate directed motion. Our work provides a complete effective description for the coupled
translational and rotational tracer motion. It will help to further explore the capabilities of active baths for
fueling directed transport, for example, with micro shuttles. An extension of this idea is to endow the polar
tracers with some intrinsic information processing system so that they can sense their environment and act
accordingly. Such smart micro shuttles can then use reinforcement learning to learn to perform some
prescribed task. For example, in [70] it was demonstrated how smart active particles learn to optimize their
travel time in a potential landscape.
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Appendix A. Brownian dynamics simulations

We consider a system of N interacting active Brownian particles in two dimensions, which self-propel with a
constant speed v and have a mobility μ. Their dynamics is described by overdamped stochastic
equations [37]

ṙi = vui − μ
∑
j�=i

∇ri V(ri − rj), (A.1)

θ̇i =
√

2DRηi. (A.2)

Here ri is position vector and ui ≡ (cos θi, sin θi) the unit orientation vector of particle i, DR denotes its
rotational diffusion constant, and ηi is Gaussian white noise of zero mean and unit variance: 〈ηi〉 = 0,
〈ηi(t)ηj(t′)〉 = δijδ(t − t′). We perform simulations in the regime of large v, which is physically most
interesting. This allows us to neglect the effect of translational thermal diffusivity in (A.1). Active particles
interact with each other through pairwise forces, which are given by the negative gradient of the
Weeks–Chandler–Andersen (WCA) potential

V(r) =

⎧⎪⎪⎨
⎪⎪⎩

4ε

[(
σ

|r|

)12

−
(

σ

|r|

)6
]
+ ε, |r| � 21/6σ,

0, |r| > 21/6σ.

Here ε is the strength of the potential and σ is the characteristic length where the potential takes the value ε.
We carry out simulations in a rectangular box of size L × L and use periodic boundary conditions [37].

We use σ as the unit of length, persistence time τR = D−1
R = σ2/(3μkBT) of an active particle as the unit

of time, and we measure energies in units of kBT, where T is the temperature of the solvent surrounding
active particles (not to be confused with the torque T used in the main text). We introduce the persistence
number Per = vτR/σ, which measures the distance an active particle travels in approximately the same
direction. The equations (A.1) and (A.2) can be transformed into a dimensionless form with two
independent dimensionless parameters: the persistence number Per and the potential strength ε/kBT. The
persistence number Per, together with the area packing fraction of active particles, φ = Nσ2π/(4L2),
determine the properties of the active bath.

Here we consider a polar tracer immersed in the bath of interacting active particles (see figure 1). We
imagine our tracer as a semicircle of radius R composed of particles having effective diameter σ. Then, an
active particle interacts with a particle of the semicircle through a repulsive contact force, derived from the
WCA potential, provided that the distance between them is smaller than 21/6σ. The position of the polar
tracer is described by the coordinates of its center of mass, r = (x, y), and the angle its symmetry axis makes
with the x-axis of the lab frame (figure 1(a)). Now the equations of motion of the tracer can be written in
the form

ẋ = μ‖F‖ cos θ − μ⊥F⊥ sin θ, (A.3)

ẏ = μ‖F‖ sin θ + μ⊥F⊥ cos θ, (A.4)

θ̇ = κT. (A.5)

Here, F‖ and F⊥ are the projections on e‖ and e⊥ of the resulting force exerted by active particles on the
tracer, and similarly T is the projection on the unit vector ez = e‖ × e⊥ of the resulting torque on the tracer.
The translational mobilities of the tracer are denoted by μ‖ and μ⊥, while its rotational mobility is denoted
by κ.

The number of active particles is fixed to N = 104, and the area L2 of the simulation box is adjusted to
obtain the required packing fraction φ. We set ε/kBT = 100, R/σ = 5, μ‖/μ = 0.2, μ⊥/μ = 0.1 and
κσ2/(3 μ) = 10−3 (unless otherwise stated). Equations (A.1)–(A.5) are integrated using a simple Euler
scheme with a time step of δt/τR = 10−5. The simulation time goes up to t/τR = 5000, and all results are
averaged over 15 independent simulation runs.

A typical snapshot from our Brownian dynamics simulation is presented in figure 1(b). The probability
distributions of F‖, F⊥ and T and their time auto-correlation functions are shown in figure 2, while the
cross-correlation function 〈F⊥(t0)T(t0 + t)〉 obtained in this approach is presented in figure 3. In figure 11
we give the probability distributions Px of tracer displacement Δx for several characteristic times. The
MSDs 〈Δr2

‖(t)〉 and 〈Δr2
⊥(t)〉, introduced in the section 3.3 of the main text, are displayed in figure A1. The

auto-correlation function Co(t) = 〈e‖(t + t0)e‖(t0)〉t0 , quantifying the correlation of tracer’s orientation
vector e‖(t) = cos θ(t)ex + sin θ(t)ey, is shown in figure A2 and discussed in the main text.
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Figure A1. The MSDs 〈Δr2
‖(t)〉 and 〈Δr2

⊥(t)〉, defined in the section 3.3 of the main text, measured in units of σ2, as a function
of time t/τR. The inset shows the same quantities for small times t/τR. The black solid lines are guides to the eye. The active bath
is characterized by the parameters Per = 80/3 and φ ≈ 0.08.

Figure A2. The orientational auto-correlation function Co(t) = 〈e‖(t + t0)e‖(t0)〉t0 versus time t/τR. The black solid line is the
best fit of the data to the form Co(t) = e−t/τo , where τ o is the orientational correlation time. The active bath is characterized by
the parameters Per = 80/3 and φ ≈ 0.08.

Figure A3. The average self-propulsion force 〈F‖〉 acting on the tracer, measured in units of kBT/σ, as a function of packing
fraction φ of active particles in the bath, for two selected values of the persistence number Per = 40, 80/3.

The influence of bath parameters φ and Per on the average force 〈F‖〉 experienced by the tracer is
presented in figure A3. The force 〈F‖〉 increases with active particles’ persistence Per, while it saturates as the
packing fraction φ of active particles is increased for a fixed Per. Note that we considered only homogeneous
active baths with particle packing fractions φ smaller than the threshold value above which the
motility-induced phase separation of the bath takes place [1].

Finally, we consider tracers of three different sizes R/σ = 5, 27, 80 immersed in a bath characterized by
Per = 80/3 and φ ≈ 0.08. Their MSD 〈Δr2(t)〉 is presented in figure A4. We simulated the tracer
trajectories up to times t/τR = 5000. The tracer of size R/σ = 5 reaches a diffusive regime, characterized by
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Figure A4. The MSD 〈Δr2(t)〉 of the tracer, measured in units of σ2, as a function of time t/τR, for three selected tracer sizes
R/σ = 5, 27, 80. The black solid lines are guides to the eye. The active bath is characterized by the parameters Per = 80/3 and
φ ≈ 0.08.

〈Δr2(t)〉 ∼ t, already at times t/τR � 100. On the other side, even for much larger times t/τR � 1000 the
MSD of tracers of size R/σ = 27 and R/σ = 80 still displays super-diffusive motion, characterized by
〈Δr2(t)〉 ∼ tα with α > 1. This effect we attribute to a significant decrease of tracer rotational mobility
when increasing R. It is expected, however, that the tracers of large size should reach the diffusive regime for
sufficiently large times; due to high computational costs these times were not accessible in our simulations.

References

[1] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219
[2] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[3] Bechinger C, Di Leonardo R, Löwen H, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[4] Zöttl A and Stark H 2016 J. Phys.: Condens. Matter 28 253001
[5] Lauga E and Powers T R 2009 Rep. Prog. Phys. 72 096601
[6] Alizadehrad D, Krüger T, Engstler M and Stark H 2015 PLoS Comput. Biol. 11 e1003967
[7] Deseigne J, Dauchot O and Chat́e H 2010 Phys. Rev. Lett. 105 098001
[8] Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C and Bocquet L 2012 Phys. Rev. Lett. 108 268303
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