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Abstract. In the paper, we developed a macroscopic discrete element model of permeable 

fluid-saturated materials with solid skeleton characterized by viscoelastic rheological 

properties. The Biot’s linear model of poroelasticity was used as a mathematical basis for 

describing the mechanical interrelation between the solid skeleton and interstitial fluid. Using 

this model, we numerically studied the dependences of the effective Young’s modulus and 

strength of fluid-saturated viscoelastic materials on the loading rate, sample size and the 

mechanical parameters, which determine the relaxation time of the solid-phase skeleton and the 

time scale of redistribution of fluid in the pore space. We revealed two dimensionless control 

parameters that determine the dynamic values of the effective mechanical characteristics of the 

samples under compression loading. We obtained the general relations that describe the above-

mentioned dependences in terms of the two proposed control parameters. These relations have 

a logistic nature and are described by sigmoid functions. The importance of the proposed 

empirical expressions is determined by the possibility of their application for predicting the 

mechanical response of fluid-saturated materials of different nature (bone tissue, rocks, porous 

materials with polymeric skeleton, including elastomers, etc.) under dynamic loading. 

1. Introduction 

The regularities of the nonlinear behavior of viscoelastic materials and the related non-stationarity of 

mechanical characteristics (namely, their dependence on the loading rate) are the issues in a wide 

range of analytical and computational studies as these features determine the peculiarities of 

functioning of critical elements of various technical and natural structures including biological ones 

[1]-[6]. A broad subgroup of materials of this class comprises materials that contain viscous soft 

matter phases as structural constituents. Such kind of materials is characterized by a high contrast of 

local mechanical properties. Well-known examples are porous fluid-saturated materials, such as rocks, 

bone, and soft tissues, other natural and synthesized biomedical and engineering materials.  

Interstitial fluid can change the behavior of material dramatically. In particular, the mechanical 

interaction of solid-phase and liquid-phase components can determine a strongly pronounced non-

linear dependence of the mechanical behavior and effective mechanical characteristics of the material 

on the loading rate even in a quasistatic region in which the material of the solid-phase skeleton is 

insensitive to strain rate [7]-[11]. Moreover, at higher loading rates the material response is determined 

by the ratio of the time of stress relaxation in the skeleton and the characteristic time of redistribution 

of interstitial fluid in the pore space. 
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The above said determines the relevance of conducting theoretical studies of crucial aspects of 

nonlinear dynamic behavior (including fracture) of fluid-saturated viscoelastic materials under 

complex loading conditions. A useful tool for carrying out these studies is computer modeling using 

the discrete element method (DEM) [12][13]. A key advantage of this particle-based numerical 

method is the ability to explicitly model fracture processes (including multiple fractures) on various 

scales from micro- to macroscopic. This makes DEM attractive, in particular, for studying contact 

interaction, friction and wear in viscoelastic contact pairs of different nature, including articular joints. 

In spite of the broad application of this numerical method, its classical formalism does not allow 

modelling viscoelastic materials with taking into account mutual influence of the processes of stress 

relaxation in the deformed solid skeleton and fluid redistribution in the pore space due to change of 

pore volume. 

In this work, we developed a DEM-based coupled model, which makes possible computer 

simulation of the mechanical behavior of porous fluid-saturated materials with a viscoelastic skeleton. 

With the use of the developed numerical model, we obtained the general expressions, which describe 

the dependences of uniaxial compressive strength and effective Young's modulus of viscoelastic fluid-

saturated materials on the two dimensionless parameters related to characteristic times of relaxation 

processes in solid and fluid constituents. 

2. Method 

The model of mechanical behavior of viscoelastic materials was implemented within the formalism of 

homogeneously deformable discrete elements. This representative of the DEM group is called the 

method of movable cellular automata (MCA) [14]. It is based on the following assumptions. 
A simulated body or consolidated fragment of the medium is represented by an ensemble of linked 

(chemically bonded) equiaxial discrete elements. Elements interact through contact faces. The initial 

value of the contact area is determined by the size of discrete elements and their packaging. This 

assumption is in many respects similar to the joint flat model of element-element interaction in the 

latest implementations of DEM [15]. 

When describing the kinematics of an element, its shape is approximated by an equivalent sphere. 

This approximation is the most widely used in DEM and allows one to consider the forces of central 

and tangential interaction of elements as formally independent. This makes possible to use the 

simplified equations of element dynamics (Newton-Euler equations of motion). 

Discrete elements are treated as deformable. Strains and stresses are assumed to be uniformly 

distributed in the volume of the element (averaged stresses and strains). Within the framework of this 

approximation, the values of averaged stresses in the volume of the element are calculated as the 

superposition of forces applied to different parts of the surface of the element. In other words, 

averaged stresses are expressed in terms of the element-element interaction forces [16]: 

     



iN

j
ijijijij

i

ijii tn
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1
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where i is element number, i


  is component  of averaged stress tensor, , = x,y,z (XYZ is the 

laboratory coordinate system), 0

i
  is the initial volume of element, 0

ij
S  is initial value of an area of the 

contact face of the element i with the neighbour j, Ri is radius of equivalent sphere (semi-size of the 

element i), ij and ij are specific values of central and tangential forces of interaction of the elements i 

and j,  
ij

n


 and  
ij

t


 are the projections of unit normal and unit tangent vectors onto the -axis, Ni is 

the number of interacting neighbors.  

Invariants of the averaged stress tensor i


  are used to calculate element-element central 

interaction force ij and criterion of an interelement bond break (criterion of local fracture). The 

components of the averaged strain tensor i


  are calculated in increments using the specified equation 
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of state of the simulated material and the calculated increments of averaged stresses [16].  

In the present work, we performed the numerical implementation of a particular three-parameter 

model of viscoelastic materials. This well-known model is sometimes called the standard model of 

elastomers (figure 1). It is a superposition of Kelvin element (spring with elastic modulus EK) and 

Maxwell element (spring with elastic modulus EM, connected in series with viscosity damper M).  

 

 

Figure 1. Schematic representation of a one-dimensional 

standard model of elastomers. 

 

The 3D constitutive relations between stresses and strains in the considered model of a viscoelastic 

material are formulated in hypoelastic form: 
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where upper dot denotes time derivative of the variable,  is Kronecker delta, total stresses  are a 

superposition of contributions of Kelvin and Maxwell elements: MK


  , mean is mean stress. 

Note that volumetric stresses are associated with volumetric strains by a linear-elastic law (only shear 

stresses relax):  
meanmeanMKmean
  KKK  . 

The authors previously showed that the relation for the force of central interaction of elements is 

formulated based on constitutive equation of the material for the diagonal components of the stress 

tensor, while the force of tangential interaction is formulated on the basis of similar equations for non-

diagonal stresses [16]. When implementing the considered model of viscoelastic materials, the 

expressions for specific values of central and tangential forces of mechanical response of the element i 

to mechanical action from the neighbouring element j are written as follows: 
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where the symbol  means increment of the corresponding variable during time step t of the 

numerical scheme of integration of motion equations, total values of interaction forces are the sums of 

“Kelvin” and “Maxwell” contributions ( MK

ijijij
   and MK

ijijij
  ), 

ij
  and 

ij
  are 

increments of normal and shear strains of the element i in i-j pair, ii

i
GGG

MK
222   is total shear 

modulus of the material of the element i, ii

i
KKK

MK
  is total bulk modulus, 

iii
KGD 21 , 

iii GT
MMM

2  is relaxation time of Maxwell element,  iiii KKKN
MKMM

 , 

   iiii

i
KKGKM

MKKK
2  .  
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In view of the necessity of fulfilling the third Newton's law (ij=ji and ij=ji), the increments of 

the reaction forces of the elements i and j are calculated based on the solution of the following system 

of equations: 
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, (4) 

where rij is the change in the distance between the centers of the automata for a time step t, sh

ij
l  is 

the value of the relative shear displacement of the interacting automata i and j [16][17]. The system of 

equations (4) is solved for the increments of strains. This allows calculation of the increments of the 

specific interaction forces. When solving the system (4), the increments of mean stress and the values 

of specific forces in the right-hand sides of relations (3) are taken from the previous time step or are 

evaluated and further refined within the predictor-corrector scheme. 

Discrete elements that model porous fluid-saturated material are described as porous and 

permeable. Pore space of such an element can be saturated with liquid. The characteristics of the pore 

space are taken into account implicitly through specified integral parameters, namely, the porosity , 

permeability k, the ratio of the macroscopic value of bulk modulus K to the bulk modulus of the walls 

of porous skeleton Ks. The mechanical influence of the pore fluid on the stresses and strains in the 

solid skeleton of an element is taken into account on the basis of the linear Biot’s model of 

poroelasticity [18][19]. Within this model, the mechanical response of a “dry” discrete element is 

assumed to be viscoelastic and is described on the basis of the above-shown relations. The mechanical 

effect of the pore fluid on the element behavior is described in terms of the local pore pressure Ppore 

(fluid pore pressure in the volume of the element). In the Biot model, the pore pressure only affects the 

diagonal components of the stress tensor. Therefore, it is necessary to modify only the relations for the 

central interaction forces in (3): 
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, (5) 

where a=1–K/Ks is coefficient of poroelasticity.  

Interstitial fluid is assumed to be linearly compressible. The value of fluid pore pressure in the 

volume of a discrete element is calculated on the basis of relationships of Biot’s poroelasticity model 

with the use of the current value of pore volume [19][20]. The pore space of discrete elements is 

assumed to be interconnected and provides the possibility of redistribution (filtration) of interstitial 

fluid between the interacting elements. A pore pressure gradient is considered as the “driving force” of 

filtration. The redistribution of fluid between elements is carried out by numerical solution of the 

classical equation of transfer of fluid density [21]. This equation is solved by the finite volume method 

on an ensemble of discrete elements. 

Local fracture is modeled by the method of discrete elements as the loss of cohesion/adhesion in a 

pair of elements (crack formation on the contact surface) [15]-[17]. In the developed model, the 

Drucker-Prager two-parameter criterion (a generalization of the von Mises criterion for a wide class of 

materials of different nature, including brittle solids) is used as a criterion for breaking a bond in a pair 

of automata i-j: 
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151150   ,  (6)
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where ijij

ij tc
   is the ratio of uniaxial compression strength ( ij

c
 ) and uniaxial tension strength 

( ij

t
 ) of the pair i-j in a “dry state”, ij

mean
  and ij

eq
  are invariants of the stress tensor on the contact face 

of the pair (stress tensor ij


  is calculated by linear interpolation of the values of the components of 

tensors i


  and j


 ), 0bij1 is the dimensionless coefficient of the influence of pore pressure on 

critical stress (typical values is b=1), ijP
pore

 is pore pressure on the contact face (it is determined by 

linear interpolation of the pore pressures iP
pore

 and jP
pore

 in interacting elements). 

The developed discrete-element model of viscoelastic materials was verified by performing a 

numerical analysis of the frequency dependence of the steady-state values of the real and imaginary 

Young's moduli of dry samples subjected to cyclic alternating loading. Comparison of simulation 

results with analytical estimates [22] confirmed the correctness of the developed model and the 

possibility of modeling with high precision the mechanical behavior of viscoelastic materials 

described by Kelvin and Maxwell models as well as by the standard model of elastomers. 

3. Results and discussion 

The developed model was applied to study the dynamic mechanical characteristics of porous fluid-

saturated materials under uniaxial compression at a constant speed. We considered a model isotropic 

viscoelastic material with mechanical characteristics of the same order of magnitude as the compact 
bone tissue: EK=1 GPa, Е=EK+EM=11 GPa (ЕК/Е=0.1 what is a lower estimate for this class of 

materials), =0.3, М=10 MPas (lower-bound estimate for bone tissue), =2500 kg/m
3
, c20 MPa 

and t10 MPa (=2 what does not go beyond the bounds of the literature data interval for compact 

bone tissue), 0=10% (the lower limit of the interval of porosities of compact bone tissue), a0.67 

(poroelastic constant), b=1. We considered water as a reference fluid. Using mentioned values as a 

reference, we studied and analyzed the dependences of the dynamic compressive strength and the 

effective Young's modulus of viscoelastic fluid-saturated materials on the strain rate, the relaxation 

time of the solid skeleton and the characteristic time of redistribution of fluid in the pore space. In our 

calculations, the material parameters and the strain rate varied within wide limits: the permeability of 

the material varied within 4 orders of magnitude, the viscosity of the fluid varied within 2 orders of 

magnitude, the sample size changed within the order of magnitude and the strain rate varied within 3 

orders of magnitude. 

We simulated uniaxial compression of 3D cylindrical samples along the axis of the cylinder. The 

initial pore pressure of interstitial fluid was assumed to be atmospheric. Fluid could flow out freely 

from the compressed sample through the side surface. 

Analysis of the simulation results showed that under compression, the values of the mechanical 

characteristics of fluid-saturated samples including the elastic modulus and strength are determined by 

the balance of two competing processes [23,24]: 

 deformation of the solid skeleton, providing compression of the pore space and a 

corresponding increase in the pore pressure of the interstitial fluid; 

 the outflow of interstitial fluid through the side surfaces, which leads to the inverse effect of 

lowering pore pressure. 

We revealed two key control parameters that determine the specific dynamic value of the 

mechanical characteristics of fluid-saturated viscoelastic materials. 

The first one is the pore fluid related dimensionless parameter. It is formulated by the analogy with 

dimensionless Darcy number: 

 
def

2

fl

load

Darcy







Pk

L
~

T

T
Da  ,  

where 
Darcy

T  is the characteristic time of fluid filtration (Darcy time scale), 
defload

1 ~T  is time scale of 

(7)
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deformation of the sample, 
def
  is applied strain rate, fl is dynamic viscosity of pore fluid, L is the 

length of the segment with the pore pressure difference P at the ends (radius of deformed cylinder in 

the considered case). The parameter Da characterizes the ratio of the timescales of deformation of the 

skeleton (and the fluid-filled pore space) and filtration of the pore fluid. 

Note that in the process of deformation of a fluid-saturated sample, the pore pressure difference P 

continuously changes from zero to some maximum value (at the time of fracture beginning). 

Therefore, when analyzing the results of the calculations, we used some constant value that 

characterizes the scale of the pore pressure difference in the sample. It is the difference between the 

Terzaghi estimate of the maximum pore pressure in the compressed material 
0c

max

pore
P  and the 

atmospheric pressure at the lateral sides of the sample PaP 5min

pore
10 : min

pore

max

pore
PPP  . 

The second control parameter is the dimensionless parameter, which characterizes the ratio of the 

time scale of deformation to the stress relaxation time in the viscoelastic skeleton: 

      1

MKcdefM

1

def

elast

defMelast

def

M 
 EETT

T

T
B   ,  

where 
MMM

2GT   is a characteristic time of stress relaxation in the skeleton, 

    1

defMKcdef

elast

def

elast

def


   EET  is the time of deformation of the sample of the virtual linear 

elastic material with the value of strength equal to the considered viscoelastic material and Young’s 

modulus 
MK

EEE  . Note that parameter B is an indicator of the balance of two competing 

processes: linear elastic growth of stress deviators during deformation and relaxation of deviator 

stresses. 

The determining effect of these two parameters can be vividly illustrated by two extreme cases: a 

fluid-filled viscoelastic material with an infinitely large relaxation time of the skeleton TM (Kelvin 

material with 
MK

EEE  ) and a “dry” material (Ppore=0) with a finite relaxation time of the solid 

skeleton. 

The simulation results showed that the dynamic values of Young's modulus and the uniaxial 

compression strength (UCT) of fluid-saturated Kelvin material samples non-linearly depend on the 

strain rate 
def
 , the radius of the sample L, the dynamic viscosity of pore fluid fl and the permeability 

of solid skeleton k. In particular, Young's modulus of a fluid-saturated sample is minimal (equal to E) 

at infinitely small strain rates and tends to the maximum value (Young’s modulus of undrained sample 

Eu [19]) at large ones. In turn, UCT of the sample at extremely small strain rate approaches the 

maximum value (strength of dry sample c) and non-linearly decreases to some minimum value at 

large ones. The key result is the established ability to build a single “gauge” dependence applicable to 

samples of porous materials of various widths, characterized by different strength and permeability of 

solid skeleton, different pore fluid viscosities and deformed at different rates. An argument of such a 

“master curve” is the dimensionless Darcy number Da (figure 2): 
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where Emin and UCT,max correspond to Da0 (parameters for “dry” sample), Emax and UCT,min 

correspond to Da (undrained sample), Da0 is normalizing constant. Both master curves (for 

Young’s modulus and UCT) have a logistic (sigmoidal) form. Note that sigmoid dependence is typical 

(8)

(9)



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012116

IOP Publishing

doi:10.1088/1742-6596/1391/1/012116

7

 

 

 

 

 

 

for the functions determined by the balance of competing processes. 

 

 

Figure 2. Dependences of Young's modulus (a) and uniaxial compression strength (b) of 

fluid-saturated samples of Kelvin material on the dimensionless Darcy number. Dots 

show numerically obtained values, lines are approximating sigmoids. 

 
A similar study was carried out for “dry” samples of viscoelastic materials with finite relaxation 

times TM. Simulation results showed that dependences of the value of Young’s modulus on strain rate, 

dynamic viscosity M and compression strength c of the skeleton and Young’s moduli EK and EM can 

be brought together in the following sigmoid master curve (figure 3): 

  
2

M

MK 1 B

E
EEE


   

with introduced dimensionless parameter B as an argument. Here E is an effective (dynamic) secant 

modulus of the sample. It is derived from numerical experiments as a ratio of the strength of the 

sample to ultimate strain (at the moment of fracture). Note that UCT of the samples is a constant value 

(c) until the range of high strain rates. 

 

 

Figure 3. Typical diagrams of uniaxial compression of a “dry” sample of a model 

viscoelastic material at different strain rates (a) and the dependence of the secant 

elastic modulus of the sample on the dimensionless timescale parameter B (b). Dots 

show numerically obtained values, lines are approximating sigmoids. 

 

One can see the generality of the relations for the effective elastic moduli of viscoelastic material 

(9) and a fluid-saturated linear elastic material (8). In both cases, relaxation processes strongly 

influence the deformation process by reducing the magnitude of local stresses. In the first case, they 

are concerned with the motion of defects and/or reconfiguration of the system of molecules in the 

(10)
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viscoelastic skeleton. In the second case, the stress relaxation mechanism is transport/redistribution of 

the pore fluid (outflow from the sample). The revealed generality suggests that the effective 

mechanical properties of fluid-saturated viscoelastic materials should also have a sigmoid dependence 

on the parameter, which is a combination of the dimensionless parameters Da and B. 

The established co-directionality of the effects of the redistribution of pore fluid and stress 

relaxation in solid skeleton on the effective mechanical characteristics of viscoelastic permeable 

materials allowed us to obtain a generalized relation for the dynamic strength of fluid-saturated 

viscoelastic materials. Such a master curve has a logistic character, as in the limiting cases described 

above (figure 4): 

 
2

21

0

minUCT,maxUCT,

minUCT,UCT

1


















B
Da

Da


 .  

 

 

Figure 4. An example of the calibration dependence of the uniaxial compressive 

strength of the fluid-saturated sample of a model viscoelastic material on Darcy number 

at 
def
 =1.375 s

-1
 (a) and strength dependences for various strain rates 

def
  (b). Dots 

show numerically obtained values, lines are approximating sigmoids. 

 

Similar to the first relation (8), the dependence of the secant Young's modulus of samples of a 

viscoelastic fluid-saturated sample on a combination BDa   also has a sigmoidal form. 

4. Conclusions 

The mechanical behavior of porous fluid-saturated materials with a viscoelastic skeleton is determined 

by the combined effect of two key factors: fluid redistribution in a deformed pore volume and stress 

relaxation in the walls of the porous skeleton. Both factors provide not only effective relaxation of 

local stresses but also an extremely non-linear (logistic) character of the dependence of the dynamic 

mechanical characteristics of such contrast materials on the loading parameters and mechanical 

characteristics of the constituents (fluid and solid phases).  

The key result of the study is the established possibility of constructing generalized dependencies 

(master curves) of effective mechanical characteristics on the strain rate, relaxation times of the 

skeleton and redistribution of fluid in the pore space, as well as the size factor. In the paper, this was 

illustrated by the example of constructing such dependences for effective elastic moduli and dynamic 

compression strength. It is important to note that the argument of the obtained master curves is a 

dimensionless combination of dimensional parameters. This allows these master curves to be used to 

evaluate and predict the mechanical response of fluid-saturated materials of various nature (including 

bone tissue, polymer-based porous materials, primarily elastomers, and rocks) under dynamic loading. 

The “reference” mechanical characteristics of the solid-phase and liquid-phase components of the 

(11)
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contrast material can be used as input parameters for such an assessment. 
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