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Abstract

The thesis deals with the problem of optimal consumption under uncertainty.
Here, we distinguish uncertainty and risk. Risk denotes the fact that the future
development of the stock market is random but the investor knows which future
scenarios are possible and knows their probabilities - the so-called market measure.
In contrast to this we denote by uncertainty the fact that market participants usually
do not know the market measure or at least not exactly.

There exists extensive economic literature on the modeling of such a decision
problem. In this thesis the agent optimizes his consumption and investment strategy
with respect to a robust utility functional.

We investigate the investment problem in a general semimartingale market. The
agent can invest an initial capital and a random endowment. To find a solution to the
investment problem we use the so-called martingale method. We prove that under
appropriate assumptions a unique solution to the investment problem exists and
describe it. A further result is that primal and dual problem are convex conjugate
functions.

Furthermore we consider a diffusion-jump-model where the coefficients depend
on the state of a Markov chain and the investor is uncertain about the intensity of the
underlying Poisson process. In this model we consider an agent with logarithmic and
HARA utility function. For both we can write the solution of the dual problem as
the solution of a system of ordinary differential equations. For this we use stochastic
control methods in order to derive so-called Hamilton-Jacobi-Bellmann-equations.
The solution to this HJB equation can be determined numerically and we show how
thereby the optimal investment strategy can be computed.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Problem des optimalen Konsums
unter Berücksichtigung von Unsicherheit. Dabei unterscheiden wir Unsicherheit und
Risiko. Mit Risiko bezeichnen wir die Tatsache, dass die zukünftige Entwicklung des
Aktienmarktes zufällig erfolgt, aber gehen davon aus, dass der Investor weiß, welche
zukünftigen Szenarien möglich sind und ihre Wahrscheinlichkeit - also das sogenan-
nte Marktmaß - kennt. Im Gegensatz dazu bezeichnen wir mit Unsicherheit die
Tatsache, dass Marktteilnehmer normalerweise dieses Marktmaß nicht oder zumin-
dest nicht genau kennen.

Zur Modellierung eines solchen Entscheidungsproblems existiert umfangreiche
ökonomische Literatur. In dieser Arbeit optimiert der Agent seine Konsum- und
Anlagestrategie bezüglich eines robusten Nutzenfunktionals.

Wir untersuchen das Investitionsproblem in einem allgemeinen Semimartingal-
markt. Der Agent kann ein Anfangskapital und eine zufällige Zusatzausstattung
investieren. Um eine Lösung des Investitionsproblems zu finden, wenden wir die
sogenannte Martingalmethode an. Wir beweisen, dass unter geeigneten Vorausset-
zungen eine eindeutige Lösung des Investitionsproblems existiert und beschreiben
diese. Ein weiteres Resultat ist, dass primales und duales Problem konjugiert kon-
vexe Funktionen sind.

Weiterhin behandeln wir ein Diffusions-Sprung-Modell, bei dem die Koeffizien-
ten vom Zustand einer Markovkette abhängen und der Investor, sich über die Inten-
sität des zugrunde liegenden Poissonprozesses unsicher ist.In diesem Modell betra-
chten wir einen Agenten mit logarithmischer und mit HARA Nutzenfunktion. Für
beide können wir zunächst die Lösung des dualen Problems als Lösung eines Sys-
tems gewöhnlicher Differentialgleichungen darstellen. Dazu nutzen wir stochastis-
che Kontrollmethoden, um sogenannte Hamilton-Jacobi-Bellmann-Gleichungen zu
gewinnen. Die Lösung dieser HJB Gleichungen kann numerisch ermittelt werden
und wir zeigen, wie man damit die optimale Anlagestrategie berechnen kann.
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Chapter 1

Introduction

Ever since the works by Merton [32, 33] in 1969/1971 optimal investment has
been one of the major research areas in mathematical finance. Here the interplay be-
tween mathematical progress and economic research leads to ever new formulations
of the investment problem and possible solutions - starting from the maximization
of expected utility several more advanced approaches were developed. One major
development was the incorporation of model uncertainty, additional to the consid-
eration of risk. Here risk means that the future market development is random but
the randomness behaves according to some known probability model. In contrast to
this, model uncertainty or ambiguity is concerned with the fact that the agent does
not have a valid probability model for the possible future market development.

In this thesis we consider an agent who invests in a stock market in order to
maximize her contentment from consumption and is aware of risk as well as uncer-
tainty. In the first part we investigate the problem of optimal consumption in a
general semimartingale framework where the agent may invest in the stock market
and receives additional random endowment. We treat the problem with the help of
the dual or martingale method. A version of this third chapter was published in
[41]. In the second part we use stochastic control techniques to compute the optimal
consumption and investment strategy in a specific Markovian switching model.

We specify our problem as a robust optimization problem. In its basic form
this specification of the problem is called Maximin Expected Utility (MEU) and
was introduced by Gilboa and Schmeidler [18]. One possible interpretation of this
approach is that the agent takes a class of possible models into consideration and
decides on the worst-case outcome. For the first part of the thesis we use a simi-
lar model where the agent applies additionally a penalty function to each possible
model. (These utility functionals are closely related to convex risk measures.) Ob-
viously there might as well be agents who are not uncertainty averse but have a
more positive attitude towards uncertainty. These preferences can be modeled via
α-MEU, which is a mixture of the uncertainty averse and loving attitude via a pa-
rameter α. A more detailed explanation of the representation for robust problems
is given in the next chapter.

There exists a vast amount of literature for the non-robust problem of optimal
terminal wealth discussing different aspects of the problem. For example Kramkov
and Schachermayer [28, 29] characterized solutions of this problem in a general
setting using duality methods. There exist many extensions of this problem, e.g.
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Cvitanić et al. [6], Karatzas and Žitković [27], or Hugonnier and Kramkov [25] con-
sider the case where the agent optimizes the consumption process and also receives
some kind of additional random endowment.

In Schied [37], Schied and Wu [40] and Gundel [19] the robust problem (without
penalty term) was solved, also via the duality or martingale method.

When the dual method is used one can usually not expect to be able to compute
the optimal investment strategy. This is often possible if different methods in more
specific models are used: See Duffie and Zariphopoulo [9] for a stochastic control
approach for a model with random endowment or Quenez [36] for computation of
the optimal strategy in a robust setting. In Becherer [3] and Müller [34] an opti-
mal investment problem is solved using Backward Stochastic Differential Equations.
There are several papers on optimal investment in a Markovian switching model,
among others compare Bäuerle and Rieder [2]. Also the robust problem with a
penalty term was considered, e.g. by Hansen and Sargent [20] and Bordigoni et al.
[4] for an entropic penalty term and by Hernández-Hernández and Schied [22, 23] for
a general penalty term. For the solution of an optimization problem with α-MEU
compare for example Fei [12].

The organization of the thesis is as follows. The second chapter is a short in-
troduction into robust optimization. In the third chapter we use the martingale
method to formulate an appropriate dual problem for a robust setting given by
a utility function and a penalty term. We prove that the usual duality relations
hold and characterize the form of the optimal consumption strategy. In the fourth
chapter we apply these results to a Markovian switching model. Here, we do not
consider a penalty function or random endowment and work in a rather concrete
setting. Using the results of the third chapter we can solve a problem where we need
to find the infimum and do not need to compute the saddlepoint of the utility func-
tional. We deal with logarithmic and Hyperbolic Absolute Risk Aversion (HARA)
utility. For the case of logarithmic utility we also solve the investment problem for
an uncertainty loving investor using maxmax expected utility. We do not consider
an investor with α-MEU preferences but only the cases α = 1 and α = 0. Never-
theless, at least for a rather specific setting this seems to be sufficient to solve the
investment problem for general α (compare [12]). Furthermore, we give a numerical
comparison between an optimistic and a pessimistic investor. Finally, we give an
appendix that includes the code that was used to do the simulations and numerical
analysis.
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Chapter 2

Robust Preferences

One of the major questions when investigating optimization problems is how to
model the preferences of an agent. More precisely, we need a numerical representa-
tion which enables us to compute which consumption alternative is more attractive
to the agent. In this chapter we introduce rather informally the ideas of robust
optimization. In the following let X denote the set of possible payoffs. (Here, we
consider just payoffs and no consumption streams. This is sufficient to demonstrate
the reasoning behind the robust approach.) These payoffs are subject to future ran-
dom developments and hence they are random variables on some probability space.
We assume that X contains constants and convex combinations. In our setting the
payoffs are the result of investments in the stock-market. If the agent prefers X2 to
X1 we will write X1 � X2 and X1 ≺ X2 for strict preference.

It seems rather obvious that agents do not judge investment opportunities just
according to their expectation but also consider the likeliness of different outcomes.
We call the fact that the payoff is random risk. Most agents are risk averse, i.e. if
there are two possible payoffs with the same expectation, and one is certain while
the other is random, most agents prefer the certain payoff.

The above definition of risk aversion uses the expectation of the payoff. It seems
sensible that this expectation should be taken with respect to the market measure.
However, there are two problems that will be discussed in more detail below. Firstly,
even in situations where the probability model for the payoff is given, the agent might
use a subjective probability to evaluate the situation. Secondly, it is not realistic
that any market model reflects market developments correctly and also given a class
of possible models the agent might feel uncertain about the correct market measure.
The theory of robust preferences tries to find a model that allows to incorporate
this uncertainty or ambiguity.

The theory of preferences can be applied to a much wider range of consumption
than just monetary goods but this is sufficient for our purpose. All of the numerical
representations below can be characterized by a set of axioms.

The following set of axioms can be used to characterize the subjective expected

utility as introduced by Savage.

(i) (Completeness) For all X1, X2 ∈ X we have either X1 ≺ X2, X2 ≺ X1 or
X1 ≈ X2. I.e., the agent faced with two alternatives knows which alternative
she prefers or if both are equally desirable.

(ii) (Transitivity) For all X1, X2, X3 ∈ X with X1 � X2 and X2 � X3 we have
X1 � X3.
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(iii) (Continuity) If X1 ≺ X2 ≺ X3 then there exists some α ∈ [0, 1] such that
αX1 + (1− α)X3 ≺ X2.

(iv) (Independence) If X1 � X2, X3 ∈ X and α ∈ [0, 1] then

αX1 + (1− α)X3 � αX2 + (1− α)X3.

This means that if X2 is preferred to X1 this preference is not changed if
another payoff is added.

(v) (Monotonicity) If X1(ω) ≤ X2(ω) for all ω ∈ Ω then X1 � X2. I.e. if the
payoff X2 is almost surely higher than X1 the agent will prefer X2.

(vi) (Non-degeneracy) There exist X1 and X2 ∈ X such that X1 ≺ X2.

These axioms guarantee a numerical representation of the form

EQ[U(X) ].

Hence, the representation is given as a von Neumann-Morgenstern expected utility
with respect to the subjective probability measure Q which is typically different from
the market measure and not the same for all agents. Here, U is a utility function.

We will assume the investor to be risk averse. Apart from technical issues the
utility function has then two main features: it is concave and increasing. The
monotonicity is implied by Axiom (v) and the concavity corresponds to the risk
aversion. In chapter 4 we will work with Hyperbolic absolute risk aversion (HARA)
utility functions. These include logarithmic utility, i.e. U(x) = log(x) and for a risk
aversion parameter α 6= 0, α < 1 utility functions of the form U(x) = xα/α.

Now we will concentrate on the above axioms and the question how they can
be changed in order to include uncertainty. Axioms (i), (ii) and (v) are obviously
necessary and should be satisfied by most agents. Axiom (iii) and (vi) are of technical
importance. Axiom (iv) is the axiom that is often violated by agents faced with
ambiguity and which will therefore be the main focus of the following consideration.

Ellsberg [11] showed by the following experiment that the independence ax-
iom does not reflect reality very well in situations where uncertainty/ambiguity is
present:

Suppose there is an urn containing 30 red balls and 60 balls that are either black
or yellow. The agent can choose between bet A and B. In case of bet A he wins $
100 if a red ball is drawn (otherwise nothing) in case of bet B he receives $ 100 if a
yellow ball is drawn. In this situation most people prefer bet A. Now the bets are
changed: In both cases the agent also wins if a black ball is drawn. Now most agents
decide for the second bet. This is a contradiction to the independence axiom and
these kind of preferences cannot be modeled via the Savage representation. Ellsberg
explained this contradiction to the independence axiom by ambiguity - the agent
perceives/has a lack of information about the probability of drawing a favorable
ball. Agents who decide for bet A in the first situation are typically uncertainty
averse and assume the unknown probability of drawing a yellow ball as small. In
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the second situation the black balls work as a hedge giving a 60:100 chance to win
for bet B.

Gilboa and Schmeidler [18] developed a set of axioms where they replaced the
independence axiom by a certainty independence axiom, i.e.

(iv’) X1 ≺ X2 if and only if αX1 + (1 − α)x ≺ αX2 + (1 − α)x for all constants x
and α ∈ (0, 1).

This means a certain payoff does not change the preferences of the investor. This
certain payoff does not admit hedging and hence the situation of the Ellsberg para-
dox is avoided. Furthermore, Gilboa and Schmeidler assume Axiom (i)- (iii), (v),
(vi) and additionally

(vii) (Uncertainty aversion) For X1, X2 ∈ X with X1 ≈ X2 and all α ∈ [0, 1] we
have αX1 + (1− α)X2 � X1.

This axiom states that the investor will always prefer a possible hedge.
Here, the Ellsberg paradox can be resolved (at least for uncertainty averse

agents). The preferences given by these axioms have a representation via

inf
Q∈Q

EQ[U(X) ] (2.1)

where Q is a closed convex set of probability measures.
One possible interpretation of this approach is that the agent takes a class of

possible models into consideration and decides on the worst-case outcome.
This interpretation also explains why it is useful to extend the robust approach

to an evaluation that includes a penalty function: the agent will typically have some
assessment of the different models (for instance she might use estimated data for
the model specification, and while she does not assume her estimates to be correct,
she believes values close to the estimates to be more likely than values far off). It
is possible to incorporate this evaluation by the introduction of a penalty function,
which allows to adjust the impact of a model according to its plausibility.

In [31] Maccheroni et al. weaken the axiom of certainty independence to

(iv”) (Weak certainty independence) For all X1, X2 ∈ X , constants x, y ∈ X and
α ∈ (0, 1) we have

αX1 + (1− α)x ≺ αX2 + (1− α)x ⇒ αX1 + (1− α)y ≺ αX2 + (1− α)y.

Axiom (iv’) could also be written as
For all X1, X2 ∈ X , constants x, y ∈ X and α, β ∈ (0, 1) we have

αX1 + (1− α)x ≺ αX2 + (1− α)x ⇒ αX1 + (1− β)y ≺ αX2 + (1− β)y.

In this form it is easier to compare both axioms: The choice of α and β influ-
ences how close the combined payoff is to a constant. Axiom (iv’) states that the
preferences of the agent do not depend on the ratio of certain to uncertain payoff. In
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contrast to this, Axiom (iv”) means that the agent may have preferences depending
on this ratio.

A preference order satisfying these axioms has a representation via

inf
Q∈Q

(EQ[U(X) ] + γ(Q))

where γ is such a penalty function. We will use this representation of preferences in
Chapter 3. Earlier e.g. Hansen and Sargent [20] developed a similar model where
they use relative entropy as a penalty function.

In this thesis we will also use the link between the robust preference functionals
and monetary risk measures. A risk measure assigns to a random loss/gain the
amount of money the agent needs to add in order to reduce the risk to an “accept-
able” level. A detailed discussion of these risk measures can be found in [15, Chapter
4]. If ρ : L∞ → R satisfies the first two axioms of the following set of axioms it is
called a monetary risk measure. If it satisfies (RM1)-(RM3) it is called a convex
risk measure, and (RM1)-(RM4) characterize a coherent risk measure.

(RM1) (Monotonicity) If X1(ω) ≤ X2(ω) for all ω ∈ Ω then ρ(X1) ≥ ρ(X2).

(RM2) (Cash invariance) For a constant x we have ρ(X + c) = ρ(X)− c.

(RM3) (Convexity) For α ∈ (0, 1) we have

ρ(αX1 + (1− α)X2) ≤ αρ(X1) + (1− α)ρ(X2).

(RM4) (Positive homogeneity) If α ≥ 0 then ρ(αX) = αρ(X).

Axiom (i) and (ii) are clear in view of the interpretation of ρ(X) as capital require-
ment. The convexity implies that a diversified portfolio has a smaller risk and hence,
encourages hedging.

It is now interesting that these axioms yield a representation similar to (2.1).
Namely, for coherent risk measures we have

ρ(X) = sup
Q∈Q

EQ[−X ].

The more general notion of a convex risk measure has a representation via

ρ(X) = sup
Q∈Q

(EQ[−X ] + γ(Q)).

This analogous representation will be used in the thesis.
Another aspect when considering ambiguous situations is the attitude of the

agent towards uncertainty. In the above approaches the agent is always assumed to
be uncertainty averse as given by Axiom (vii). This means the agent prefers always
a possible hedge. However, there might be agents that have a more distinguished
attitude towards uncertainty. The most trivial case would be the preferences of
an uncertainty loving investor, these can be modeled via supQ∈QEQ[U(X) ]. We
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work with this kind of preferences in the fourth chapter where we call these agents
optimists.

In order to make it possible to distinguish between perceived uncertainty (i.e.
the set Q) and the attitude towards this uncertainty, Ghirardato et al. [17] work
with the axioms (i)-(iii), (iv’), (v) and (vi) given by Gilboa and Schmeidler [18] and
change Axiom (vii) of uncertainty aversion. They show that the resulting preferences
have a numerical representation and that α-MEU is a subclass for which Axiom (vii)
is replaced by their Axiom 7. Here, α-MEU is the representation we get if we take
a convex mixture of the “classical” and the “optimistic” MEU: the agent evaluates
the payoff X via

α inf
Q∈Q

EQ[U(X) ] + (1− α) sup
Q∈Q

EQ[U(X) ] for α ∈ [0, 1].

We will only consider the cases α = 0 and α = 1. Nevertheless, it would be
interesting to investigate also more general cases.
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Chapter 3

Duality theory

This chapter is based on [41]. We will investigate the problem of optimal con-
sumption in a general semimartingale framework where the agent may invest in the
stock market and receives additional random endowment. She evaluates positions
by a robust utility functional described through a utility function U and a penalty
term γ. More specifically the agent tries to maximize

inf
Q≪P

(
EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ γ(Q)

)

over all possible consumption rate processes c. First the dual function for this prob-
lem is given. As usual in the theory of utility maximization the dual problem is a
minimization problem where the infimum is taken over the dual set, that is somehow
related to the set of equivalent martingale measures. In our case the dual solution
will consist of two elements - (Q̂, R̂). Here, Q̂ ≪ P is the “worst-case scenario” and

R̂ is the minimizer from the dual set. We examine properties and relations between
primal and dual problem, e.g. we will show that both problems have a solution and
are conjugate to one another. Next we will verify that the above maximin problem
and the corresponding minimax problem are equivalent.

The problem is motivated by [38] where Schied considers the problem of optimal
terminal wealth with respect to a convex risk measure in a setting without random
endowment. We extend this problem by introducing a concept of consumption,
general enough to include also the maximization of terminal wealth and additional
random endowment (compare Karatzas and Žitković [27]). In contrast to the prob-
lem of optimal terminal wealth, the problem of optimal consumption does not admit
an equivalent static version. Hence, we cannot restrict ourselves to random variables
to solve the primal problem, but need to work with stochastic processes. Further-
more, our dual problem is different from the dual problem in Schied [38] or Karatzas
and Žitković [27] due to random endowment on the one hand and robustification on
the other. These differences imply for instance that there are cases where, given the
dual solution (Q̂, R̂), R̂ is no longer a solution to the associated dual problem under

the model Q̂. Aspects regarding the dual function will be discussed in more detail
in the third section. Robustification changes the problem of optimal consumption
also significantly with respect to the optimization procedure since we consider a
maximin instead of just a maximization problem. This extension yields some new
results and partly we give new proofs for known results.
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In [5] Burgert and Rüschendorf also consider a robust version of [27]. The most
obvious difference to our setting is that we deal with preferences given by convex
instead of just coherent risk measures. Furthermore, Burgert and Rüschendorf work
under the serious restriction that the set Q should only consist of measures that are
equivalent to P and have a uniformly bounded density. The first assumption rules
out risk measures such as AVaR, the second standard dynamic consistent coherent
utility functionals in a Brownian setting such as used in [22].

In the next section we will introduce the market setting and describe the agent’s
preferences in more detail before we state our main theorem and give an example.
In the third section we will derive our dual problem and prove the statements of the
theorem related to it. Finally, in the fourth section we will finish the proof of the
theorem.

3.1 Notation and main results

We consider an agent who wants to maximize her utility from consumption between
time zero and some finite time horizon T . She is endowed with an initial capital
and receives additional random endowment over time, which she may invest into d
assets. To formalize this problem we use the same market model as Karatzas and
Žitković [27]. That means we model the price process of the assets as a d-dimensional
RCLL semimartingale on (Ω,F , (Ft)0≤t≤T , P ) where the filtration satisfies the usual
conditions. The financial market is assumed to be arbitrage-free in the sense that
the set M of supermartingale measures equivalent to P is not empty. The portfolio
process is denoted by θ = (θt)0≤t≤T , and we allow only those strategies for which∫ t

0
θu dSu is bounded from below by some constant.1 The initial capital is denoted

by x and the random endowment is described as a non-decreasing, adapted, RCLL
process E = (Et)0≤t≤T with ET ∈ L∞(P ). The consumption process C = (Ct)0≤t≤T

is assumed to be a non-negative, non-decreasing and adapted RCLL process. More
specifically we will only deal with consumption processes that can be written as

Ct =

∫ t

0

cs µ(ds)

where µ is a probability measure on [0, 1] which is diffuse on [0, 1). This implies
that the agent consumes in a continuous way except for the final time T where
we also allow for lump consumption. In particular we can choose µ = δ{T} which
corresponds to the problem of optimizing terminal wealth.

The terminal wealth is required to be non-negative:

x+ ET +

∫ T

0

θt dSt − CT ≥ 0 P − a.s. (3.1)

We denote by A(x, µ) the set of consumption process densities (ct)0≤t≤T , for which
an admissible strategy θ exists, such that condition (3.1) is fulfilled.

1This condition will correspond to our admissibility condition for strategies, since the additional
income of the agent is bounded.
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The utility from consumption is measured in terms of a robust utility functional
of the form

c 7−→ inf
Q≪P

(
EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ γ(Q)

)
. (3.2)

This functional was introduced in the second chapter and is closely related to the
convex risk measure

ρ(Y ) := sup
Q≪P

(
EQ[−Y ]− γ(Q)

)
, Y ∈ L∞(P ). (3.3)

More precisely the penalty function γ is supposed to be bounded from below and
equal to the minimal penalty function of the convex risk measure above. In other
words, it satisfies the biduality relation

γ(Q) = sup
Y ∈L∞(P )

(
EQ[−Y ]− ρ(Y )

)
. (3.4)

Furthermore, we need the following conditions on γ; compare [38, Assumption 1].

Assumption 3.1
We assume that the risk measure ρ is continuous from below, i.e. for a sequence
(Yn) ⊂ L∞(P ) increasing a.s. to some Y ∈ L∞(P ), we have ρ(Yn) ց ρ(Y ). Fur-
thermore, ρ needs to be sensitive in the sense that ρ(Y ) is strictly positive for all
Y ∈ L∞

− (P ) \ {0}.
We work with a utility function U : [0, T ]×R+ → R with the properties assumed in
Definition 3.1 of [27]:

Assumption 3.2
For fixed t ∈ [0, T ] we request U(t, .) : R+ → R to be a utility function, i.e. U(t, .)
is strictly concave, increasing, continuously differentiable and satisfies the so-called
Inada conditions, namely

lim
x→0

Ux(t, x) = ∞ and lim
x→∞

Ux(t, x) = 0

for all t ≥ 0.
The marginal utility is bounded by the strictly decreasing continuous functions

K1 and K2, such that
K1(x) ≤ Ux(t, x) ≤ K2(x)

and

lim sup
x→∞

K2(x)

K1(x)
< ∞.

The map t 7→ U(t, 1) is bounded and

lim
x→∞

inf
t∈[0,T ]

U(t, x) > 0.

Additionally, U is supposed to be of reasonable asymptotic elasticity, i.e.

lim sup
x→∞

(
sup
t

xUx(t, x)

U(t, x)

)
< 1.
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See [27] for a discussion of these assumptions.
To avoid problems of evaluating

EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ γ(Q)

for the case where U is unbounded from below it is sensible to restrict the set of
measures that enter the optimization problem to

Q = {Q ≪ P | γ(Q) < ∞}.

Hence, our optimization problem is now

maximize inf
Q∈Q

(
EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ γ(Q)

)
over all c ∈ A(x, µ).

Furthermore, to circumvent difficulties when integrating we follow [38] in setting

EQ[F ] := sup
n

EQ[F ∧ n ] = lim
n

EQ[F ∧ n ] for arbitrary F ∈ L0. (3.5)

In doing so we keep the functional

(ct)0≤t≤T 7−→ EQ

[ ∫ T

0

U(t, ct)µ(dt)
]

concave.
In the following we will use UQ(c) to abbreviate EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
. We

define the value function of the maximization problem as follows

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
. (3.6)

Hence, the investor needs to solve a maximin problem in order to find u. Another
approach to the optimization problem is to solve the problem in each possible model,
i.e. compute

uQ(x) = sup
c∈A(x,µ)

UQ(c)

for each Q ∈ Q and then robustify the result by taking the infimum. We will show
that both methods lead to the same result, namely

u(x) = inf
Q∈Q

(uQ(x) + γ(Q)).

Sometimes it will be more convenient to work with densities instead of measures.
We denote the density of Q with respect to P on FT by ZQ = dQ/dP and the set
{ZQ |Q ∈ Q} by Z. We will identify Q and ZQ, and thus γ(Q) and γ(ZQ) or uQ

and uZQ denote the same object. While we write ZQ for dQ/dP |FT
we will denote

the corresponding density process by (ZQ
t )0≤t≤T .
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In this chapter we will use the dual (or martingale) approach to characterize
the solution to our optimization problem. A downside of the dual method is that
it does not directly give the investment strategy θ which is necessary in order to
realize the optimal consumption plan. In the next chapter we will give an example
how to compute this strategy for a special market model. We will do so by applying
stochastic control techniques to the dual problem. The papers [22] and [36] are
further examples where the optimal strategy is determined for special cases. These
authors also argue that the dual problem is easier to treat than the primal problem
which shows that our results are still useful. Furthermore, in this chapter we do
not restrict the form of the penalty function, therefore our approach covers also the
cases where time consistency is lacking and hence optimal control techniques cannot
be applied (see [38]).

In general the dual problem is an associated minimization problem where the
dual domain is related to the set of equivalent martingale measures. As was shown
in [6] and [27] we need to use D, the weak*-closure of the set of equivalent super-
martingale measures M, as dual domain. More precisely, we identify the set M with
its embedding in the dual of L∞(P ), (L∞(P ))∗. Then D is the σ((L∞(P ))∗, L∞(P ))-
closure of M. The set D contains also finitely-additive measures to which we can-
not directly associate a density process. Therefore, we use that each R in D has
a unique Hewitt-Yosida decomposition Rr + Rs where the regular part Rr is the
maximal countable measure on F that is dominated by R. Hence, we can for each
R ∈ D define a supermartingale LR, where LR

t is the density of the regular part
(R|Ft

)r of R|Ft
with respect to P |Ft

. In the following we will work with the RCLL
supermartingale Y R that coincides with LR for all t ∈ Q ∩ [0, T ]. For a proof of
the existence of Y R and further properties of Y and D see [27]. We need as fur-
ther notation 〈R, ET 〉 which gives the canonical pairing. Observe that in particular
〈R, IΩ〉 = 1.

Using D we consider as dual problem

v(y) = inf
Z∈Z

(
inf
R∈D

(
E
[
Z

∫ T

0

V
(
t, y

Y R
t

Zt

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Z)

)
(3.7)

where V is the convex conjugate of U , i.e.

V (t, y) = sup
x≥0

(U(t, x)− xy).

In section 3.2 we will explain how this problem can be derived from the capital

constraint (3.1). To simplify notation, EQ

[ ∫ T

0
V (t, Y R

t )µ(dt)
]
will be denoted by

VQ(Y
R). We defined the function uQ as the solution to the optimization problem

under the subjective probability Q. We can now define an associated dual value
function vQ as

vQ(y) = inf
R∈D

(
VQ(yY

R/ZQ) + y〈R, ET 〉
)
.

Remark 3.3
In the introduction convex risk measures were interpreted as a worst-case approach
for different scenarios Q. Using this interpretation it seems sensible that when the
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agent evaluates the utility in a scenario given by a measure Q, all strategies that
satisfy the capital constraint under this measure should be admissible. (And hence,
the dual domain would depend on the measure Q.) But we formulated the assump-
tions for the market and the trading strategy only with respect to the measure P .
One reason why we use P is that we use the convex risk measure as a model for the
agent’s preferences, not as a model of the “real” market. Furthermore, the worst-
case measure may allow for arbitrage, compare [38, Example 3.2]. Hence, to exclude
arbitrage opportunities it is necessary to formulate the admissibility condition under
P .

Nevertheless, for all Q out of

Qe := {Q ∈ Q |Q ∼ P}
we have the conditions necessary to apply standard duality results. (Lemma 3.11
will guarantee that Qe is nonempty.)

Assumption 3.4
In the following we will assume that there exists Q0 ∈ Qe that satisfies

uQ0
(x) < ∞ for some x > 0.

This is a similar assumption as is needed in [27] to guarantee the existence of so-
lutions to both the primal and the dual problems under the subjective probability
measure Q0. Furthermore, we can conclude that uQ0

and vQ0
are dual functions [27,

Theorem 3.10]. We will show that we have similar results in our robust setting.

Theorem 3.5
Under the above assumption the following assertions are valid.

1. Both value functions u and v take only finite values and satisfy

u′(∞−) = 0 and v′(0+) = −∞,

u is strictly concave and v is continuously differentiable.

2. The value function u satisfies

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
= inf

Q∈Q

(
sup

c∈A(x,µ)

UQ(c) + γ(Q)
)
.

3. The two value functions u and v are conjugate to each other:

u(x) = inf
y>0

(
v(y) + xy

)
and v(y) = sup

x>0

(
u(x)− xy

)
.

In particular, v is convex.

4. The derivative of v satisfies

v′(∞−) ∈ [ inf
R∈D

〈R, ET 〉, sup
R∈D

〈R, ET 〉 ]. (3.8)

If ET ≡ 0 the derivatives of v and u satisfy

u′(0+) = ∞ and v′(∞−) = 0. (3.9)
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5. There exists a solution (Q̂, R̂) ∈ Q ×D to the dual problem, i.e.

v(y) = VQ̂,µ

(
y
Y R̂

ZQ̂

)
+ y 〈R̂, ET 〉+ γ(Q̂).

6. For any x > 0 there exists an optimal consumption strategy ĉ ∈ A(x, µ). If

(Q̂, R̂) is a solution to the dual problem for y > 0 such that x = −v′(y) then

u(x) = inf
Q∈Q

(
UQ(ĉ) + γ(Q)

)
= UQ̂,µ(ĉ) + γ(Q̂) = uQ̂(x) + γ(Q̂)

and

ĉ = I
(
·, ŷ Y

R̂

Ẑ

)
Q̂⊗ µ-a.s.,

where

Ẑ =
dQ̂

dP
and I(t, ·) =

(∂U
∂x

(t, ·)
)−1

.

Obviously the problem is easier to treat if Q contains only measures that are equiv-
alent to P . As in Schied [38] we get additional results in this case:

Corollary 3.6
If Assumption 3.4 and Q = Qe are satisfied and γ is strictly convex on Q then the
value function u is continuously differentiable, the dual value function v is strictly
convex, and for each y > 0 there exist Q̂ ∈ Q and R̂ ∈ D such that

v(y) = VQ̂,µ

(
y
Y R̂

ZQ̂

)
+ y 〈R̂, ET 〉+ γ(Q̂).

Moreover, Y R̂ is unique. For any x > 0, the optimal solution ĉ ∈ A(x, µ) is P -a.s.
unique.

The condition of strict convexity for γ is crucial for the differentiability of u.

Remark 3.7
In the case E = 0 the finitely additive part of R ∈ D does not occur in the formula-
tion of the dual problem. We can thus replace the set D by the set

YD = {Y R |R ∈ D}.

In fact, one can easily check that Theorem 2.10 in [27] implies that YD can be
replaced by the even more convenient set Y(1), which is as usual defined as the set of
all non-negative supermartingales starting in one for which Y X is a supermartingale
for all admissible value processes X , also starting in one.

The following example considers the case of uncertain drift in a Black-Scholes
model. Here one can see the advantage of a penalty function - if we used an MEU
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approach the least absolute drift would always give the optimum but when a penalty
is introduced the result is dependent on the drift under the measure P .

This is obviously an extremely easy example. In the next chapter we will give
an example where we apply our results to a more complex market model. (Compare
also e.g. [39] or [24]).

Example 3.8
We consider a Black-Scholes model, more precisely the dynamics of S and the money
market account B are given through

dBt =Btrtdt, B0 =1,

dSt =St(btdt+ σdWt), S0 =s0 > 0

for constant σ > 0, progressively measurable b and r and a Brownian motion W .
This market is complete. Hence, the set of martingale measures consists only of one
element and we do not need to consider different processes Y R, R ∈ D but need
only

Yt = exp
(
−
∫ t

0

bs − rs
σ

dWs −
1

2

∫ t

0

(bs − rs)
2

σ2
ds
)
.

It is well-known that for each measure Q ≪ P there exists a progressively mea-
surable η such that the density dQ/dP can be written as

dQ

dP
= exp

(∫ T

0

ηs dWs −
1

2

∫ T

0

η2s ds
)

Q− a.s.;

see, e.g., [21, Lemma 3.1].

As penalty function we take the relative entropy between Q and P forQ “similar”
to P , i.e.

γ(Q) =

{
EQ[

∫ T

0
ηs dWs − 1

2

∫ T

0
η2s ds], if |η| ≤ 1

∞, otherwise.

and we choose the non-time-dependent utility functional U(t, x) = log(x).

The convex conjugate of U is given by V (t, y) = −1− log(y).

We set

b̃s = σηs + bs

which corresponds to the drift-rate of S under Q. We will denote the Q-Brownian
motion

W −
∫
(b̃s − bs)/σ ds

by WQ. The condition |η| ≤ 1 translates to b̃ ∈ [b− σ, b+ σ].
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With this we have

v(y) = inf
z∈Z

(
E
[
Z

∫ T

0

V (t, yYt/Zt)µ(dt)
]
+ γ(Z)

)

= inf
b̃∈[−σ+b,σ+b]

(
EQ

[
−
∫ T

0

bt − b̃t
σ

dWQ
t +

1

2

∫ T

0

(bt − b̃t)
2

σ2
dt
]

+ EQ

[∫ T

0

(
−1− log y +

∫ t

0

b̃s − rs
σ

dWQ
s +

1

2

∫ t

0

(b̃s − rs)
2

σ2
ds

)
µ(dt)

])
.

If we consider the case where µ = δ{T} we get

v(y) = inf
b̃∈[−σ+b,σ+b]

(
log 1/y − 1 + EQ

[1
2

∫ T

0

(b̃t − rt)
2

σ2
dt +

1

2

∫ T

0

(bt − b̃t)
2

σ2
dt
])

.

If we minimize
(b̃t − rt)

2

σ2
+

(bt − b̃t)
2

σ2

with respect to b̃ we get a unique minimum at (bt + rt)/2. Obviously this might
fail to satisfy the restrictions which implies that the optimum is at a boundary.
Together this yields that the above infimum is achieved for

b̃∗t =





bt − σ, if (rt + bt)/2 < bt − σ

(bt + rt)/2, if (rt + bt)/2 ∈ [bt − σ, bt + σ]

bt + σ, if (rt + bt)/2 > bt + σ.

First we observe, that the b̃∗ depends on b which shows the influence of the
penalty function. Since σ is typically rather small b̃∗ will often be at the boundary
if b and r are not close. This results from our choice of the restriction of η. Obviously
we could change this to |η| ≤ c for some constant c > 0.

Furthermore if we assume that b̃∗ = (b + r)/2, we can compute via u(x) =
infy>0(v(y) + xy) that

u(x) = log x+ EQ

[∫ T

0

(bt − rt)
2

4σ2
dt

]
.

3.2 Dual problem

We now develop the dual problem. The general approach is to use the capital
constraint to bound the result of the primal problem from above which gives a
related minimization problem. Karatzas and Žitković prove (Proposition 2.13 in
[27]) that the capital constraint (3.1) can equivalently be formulated as follows,
using the set D introduced above. The set A(x, µ) of admissible consumption rates
consists of all processes c such that

(
Ct :=

∫ t

0

cu µ(du)
)
0≤t≤T
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is a non-negative, non-decreasing, right-continuous and adapted process satisfying

E

[ ∫ T

0

Y R
t ct µ(dt)

]
≤ x+ 〈R, ET 〉 for all R ∈ D. (3.10)

With the help of this characterization we can motivate our dual problem by the next
calculation. Due to (3.10) we have for all y > 0 and all R ∈ D

UQ(c) ≤EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ y

(
x+ 〈R, ET 〉 − E

[ ∫ T

0

ctY
R
t µ(dt)

])

≤E
[
ZQ

∫ T

0

U(t, ct)− y ct
Y R
t

ZQ
t

µ(dt)
]
+ y

(
x+ 〈R, ET 〉

)

≤E
[
ZQ

∫ T

0

V
(
t, y

Y R
t

ZQ
t

)
µ(dt)

]
+ y

(
x+ 〈R, ET 〉

)
.

Hence, we arrive at the dual problem

v(y) = inf
Z∈Z

(
inf
R∈D

(
E
[
Z

∫ T

0

V
(
t, y

Y R
t

Zt

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Z)

)
. (3.11)

Remark 3.9
When considering the inner problem we could also define

ṽQ(y) = inf
R∈DQ

EQ

[∫ T

0

V
(
t, yY R,Q

t

)
µ(dt)

]
+ y 〈R, ET 〉

where DQ is the weak*-closure of the set of supermartingale measures equivalent to
Q in (L∞(P ))∗ and Y R,Q is again defined as a version of the density process of the
regular part of R but here with respect to Q. Obviously DQ can be empty if the
market given by the measure Q admits arbitrage. In this case we set the infimum to
infinity. With the help of the functions (ṽQ)Q∈Q we can define an alternative dual
function ṽ:

ṽ(y) = inf
Q∈Q

(ṽQ(y) + γ(Q)) .

Schied defines his dual problem in [38] in this way. In contrast to our setting he
is able to show that there is a one-to-one correspondence between the two kinds of
dual sets [38, Lemma 4.2]. In our case no similar result holds, i.e. there is no way
to decide whether R belongs to D based on the knowledge of DQ. This is due to the
random endowment (Remark 3.7 implies that the result holds in the case without
random endowment). Nevertheless, we can still show that v(y) = ṽ(y) for all y > 0.
If we define the dual problem via the function ṽ there are cases where the infima
are not attained in contrast to Assertion 5 of Theorem 3.5. This will be illustrated
by the example below.

Example 3.10
In this example we will have a unique solution (R̂, Q̂) to the dual problem for which

R̂ 6∈ DQ̂. We consider all convex combinations of two measures Q∗ and P , i.e.

Q = {Qα = αP + (1− α)Q∗|0 ≤ α ≤ 1}.
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The penalty function is given by

γ(Q) =

{
αn, for Q = Qα, 0 ≤ α ≤ 1

∞, otherwise,

where n is a constant we will specify later. Under P , S0 = 10 and ST takes the
values 5 and 15 each with probability 0.5. Under Q∗, S0 = 10 and ST = 5 Q∗-a.s.
In order to achieve a continuous time model we set St = S0 for all t < T. Obviously
Q∗ ≪ P .

Assume that

ET = mI{ST=5}, µ = δ{T} and U(t, x) = 2
√
x

(again m will be given later). Hence, V (t, y) = V (y) equals 1/y. Observe that D
contains all measures R ≪ P that satisfy

β := R[ST = 5] ≥ 0.5

and DQ∗ contains only Q∗. Then

v(y) = inf
α∈[0,1]

inf
R∈D

(
EQα

[ ∫ T

0

V (t,
yY R

t

Zα
t

)µ(dt)
]
+ γ(Q) + y〈R, ET 〉

)

= inf
α∈[0,1]

inf
β∈[1/2,1]

(
(1− α

2
)V

( yβ

1− α/2

)
+

α

2
V
(y(1− β)

α/2

)
+ αn+ yβm

)
.

Since we want to compute v(1) we need to consider

g(α, β) =
(1− α/2)2

β
+

(α/2)2

1− β
+ αn+ βm.

The partial derivatives of g are

gα(α, β) = n− −(1− α/2)

β
+

α/2

1− β

and

gβ(α, β) = m+−(1− α/2)2

β2
+

(α/2)2

(1− β)2
.

If we choose m = 4 and n = 2 both derivatives are positive and therefore the
infimum is reached for α = 0 and β = 1/2.

Hence, the solution to the dual problem equals (Q0, P ) = (Q∗, P ). Obviously
P 6∈ DQ∗.

In the rest of this section we will prove that the solution to our dual problem
exists, and that v equals ṽ. First we observe that for Q0 ∈ Qe of Assumption 3.4
Theorem 3.10 in [27] guarantees that vQ0

(y) < ∞ for all y > 0 and consequently
also v(y) < ∞ for all y > 0. We will repeatedly make use of a version of Komlós
principle of convergence, compare e.g. [7, Lemma A1.1]. To control the behavior of
the penalty function we will need the following lemma, which is taken from Schied
[38, Lemma 4.1].
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Lemma 3.11
For d ≥ 0 denote the subsets of Z corresponding to

Q(d) := {Q ∈ Q | γ(Q) ≤ d} and Qe(d) := {Q ∈ Q(d) |Q ∼ P}

by Z(d) and Ze(d). Then for every d > 0, the level set Z(d) is weakly compact,
and Ze(d) is nonempty. Moreover, Z 7→ γ(Z) is lower semicontinuous with respect
to P -a.s. convergence on Z(d).

We will need the following technical result.

Lemma 3.12
For each constant d > 0 the set,

{
ZV −

(
· , y Y

R
·

Z·

) ∣∣Z ∈ Z(d), R ∈ D
}
,

is uniformly integrable with respect to P ⊗ µ.

Proof. Proposition 3.5 in [27] guarantees the existence of a utility function U such
that

U(x) ≤ U(t, x)

for all x > 0 and all t ∈ [0, T ]. Furthermore, the convex conjugate V to U satisfies

V (·) ≤ V (t, ·)

for all 0 ≤ t ≤ T . Now we give a slight modification of the arguments of the proof
of Lemma 3.6 in [40] to get the claim for V and hence, also for V .

Since Z(d) is uniformly integrable (according to Lemma 3.11 and the Dunford-
Pettis theorem) the claim follows immediately if V is bounded from below. Assume
V is not bounded from below. Let ϕ denote the inverse function of −V and y0 =
ϕ(0). Then it follows that

E
[ ∫ T

0

Ztϕ
(
V −

(
y
Y R
t

Zt

))
µ(dt)

]
≤E

[ ∫ T

0

Ztϕ
(
−V

(
y
Y R
t

Zt

))
µ(dt)

]
+ y0

≤E

[ ∫ T

0

y Y R
t µ(dt)

]
+ y0

≤y + y0 = M.

In [28] it was proved that ϕ(h)/h → ∞ as h → ∞. Hence for each a there exists d(a)
such that ϕ(h) ≥ ah for all h ≥ d(a). Let ε > 0 and take d = d(2M/ε), η = ε/2d. If

A ∈ F ⊗ B([0, T ]) with E
[ ∫ T

0

ZtIA µ(dt)
]
< η
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then we obtain the following inequality.

E
[ ∫ T

0

ZtV
−
(
t,
y Y R

t

Zt

)
IA µ(dt)

]

≤ E
[ ∫ T

0

ZtV
−
(y Y R

t

Zt

)(
IA∩{V −(y Y R

t /Zt)≥d} + IA∩{V −(y Y R
t /Zt)<d}

)
µ(dt)

]

≤ E
[ ∫ T

0

Ztϕ
(
V −

(y Y R
t

Zt

))
IA∩{V −(y Y R

t /Zt)≥d} µ(dt)
] ε

2M
+ dE

[ ∫ T

0

ZtIA µ(dt)
]

< ε.

Because of the uniform integrability of Z(d) there exists δ > 0 such that

E
[ ∫ T

0

ZtIA µ(dt)
]
< η

as soon as (P ⊗ µ)[A] < δ. This finishes the proof.

The next lemma shows assertion 5 of the main theorem. In this and some later
proofs we will need the fact that the map (x, y) 7→ xV (t, y/x) is convex for all
0 ≤ t ≤ T , and that

αx0V (t, y0/x0) + (1− α)x1V (t, y1/x1) > (αx0 + (1− α)x1)V
(
t,
αy0 + (1− α)y1
αx0 + (1− α)x1

)

for y1/x1 6= y0/x0 and α ∈ (0, 1); see e.g. [38, equation (4.4)].

Lemma 3.13
There exist Ẑ ∈ Z and R̂ ∈ D such that

v(y) = E
[
Ẑ

∫ T

0

V
(
t, y

Y R̂
t

Ẑt

)
µ(dt)

]
+ y〈R̂, ET 〉+ γ(Ẑ).

Proof. Observe that Assumption 3.4 guarantees that v(y) < ∞ (compare Karatzas
and Žitković [27, Theorem 3.10]). Let (Zn, Rn)n∈N be a sequence in Z×D such that

E
[
Zn

∫ T

0

V
(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
+ y〈Rn, ET 〉+ γ(Zn) → v(y) as n → ∞.

Let dQn = ZndP , then Jensen’s inequality and Fubini’s theorem imply that

E
[
Zn

∫ T

0

V
(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
≥E

[
Zn

∫ T

0

V
(
y
Y Rn

t

Zn
t

)
µ(dt)

]
(3.12)

≥
∫ T

0

V
(
EQn

[ y Y Rn

t

Zn
t

])
µ(dt)

=

∫ T

0

V
(
E
[
y Y Rn

t ;Zn
t > 0

])
µ(dt)

≥V (y).
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Since ET ≥ 0 it follows that

d := 1 + lim sup
n→∞

γ(Zn) < ∞

and we may assume that Zn ∈ Z(d) for all n.

Now we want to construct a sequence converging to the optimal (Ẑ, R̂). For
this we apply repeatedly a Komlós-type argument. Observe that in our case con-
vex combinations of a converging sequence are still convergent. First we obtain a
sequence (Z̃n, R̃n)n of convex combinations of (Zn, Rn)n, i.e.

(Z̃n, R̃n) ∈ conv{(Zn, Rn), (Zn+1, Rn+1), . . .},

where Z̃n converges P - a.s. to some Ẑ ∈ Z(d) (compare Lemma 3.11). To get
also convergence for the processes (Zt)0≤t≤T and (Y Rn

t )0≤t≤T we will argue anal-
ogously to the proof of Proposition A.2 in [27]. Due to [14, Lemma 5.2] we can

choose a sequence of convex combinations ((Ẑn
t )0≤t≤T , (Y

R̂n

t )0≤t≤T ) of elements in

((Z̃m
t )0≤t≤T , (Y

R̃m

t )0≤t≤T )m≥n that Fatou-converges to some RCLL supermartingale

(Ẑt)0≤t≤T . Due to Lemma 3.11 and the fact that µ is diffuse on [0, T ) we can

find a subsequence that converges also P ⊗ µ-a.s. to (Ẑt)0≤t≤T . We know that

Z̃ = ẐT ∈ Z(d) hence (Ẑt)0≤t≤T is a density process. To get similarly Y R̂ we first

extract a subsequence of (R̂n, Ẑn)n also denoted by (R̃n, Z̃n)n such that 〈R̂n, ET 〉
converges in R. Then we consider the corresponding series (Y R̂n

)n∈N. We have a

sequence (Ỹ R̂n

)n∈N of convex combinations of (Y R̂n

) converging P ⊗µ - a.s. to some

Y R̂ where R̂ is a weak* cluster point of R̂n ∈ D.
For Z ∈ Z(d), R ∈ D the function

(Z, Y R) 7→ E
[
Z

∫ T

0

V (t, y Y R
t /Zt)µ(dt)

]

is lower semicontinuous with respect to P -a.s. convergence. This can be proved
the same way as Lemma 3.7 in [40] using our Lemma 3.12. Combining this lower
semicontinuity with Lemma 3.11 and the fact that (x, y) 7→ xV (t, y/x) is a convex
function, results in

E
[
Ẑ

∫ T

0

V
(
t, y

Y R̂
t

Ẑt

)
µ(dt)

]
+ y〈R̂, ET 〉+ γ(Ẑ)

≤ lim inf
n→∞

(
E
[
Zn

∫ T

0

V
(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
+ y〈Rn, ET 〉+ γ(Zn)

)

= v(y).

This proves the optimality of (Ẑ, R̂).

We will now show that we may replace the set Q in the dual problem by Qe as
well as Qf

e , and that the dual functions are equal. (Where Qf
e denotes the set of

measures Q ∈ Qe where uQ(x) is finite for some x > 0.)
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Lemma 3.14
The dual value function of the robust problem satisfies

ṽ(y) = v(y) = inf
Q∈Qf

e

(vQ(y) + γ(Q)) = inf
Q∈Qe

(vQ(y) + γ(Q)) .

Proof. In order to get
v(y) = inf

Q∈Qe

(vQ(y) + γ(Q))

we adapt the proof of Lemma 4.4 in [38] as follows. Let (Z1, R1) ∈ Z × D be such
that

v(y) = E
[
Z1

∫ T

0

V (t, y Y R1

t /Z1
t )µ(dt)

]
+ γ(Z1) + 〈R1, ET 〉 < ∞.

Due to Assumption 3.4 and the assumptions on U we can choose Z0 ∈ Ze and
R0 ∈ D such that also

E[Z0

∫ T

0

V (t, y Y R0

t /Z0
t )µ(dt) ] + γ(Z0) < ∞.

Let Zα := αZ1 + (1− α)Z0 ∈ Ze and Rα := αR1 + (1− α)R0 for 0 ≤ α < 1. Since

α 7→ E
[
Zα

∫ T

0

V (t, y Y Rα

t /Zα
t )µ(dt)

]

is convex and takes only finite values it is upper semicontinuous. Moreover, with
the same argument we can conclude that α 7→ γ(Zα) is upper semicontinuous. This
yields together with Lemma 3.11 that α 7→ γ(Zα) is continuous2. The functional
α 7→ 〈Rα, ET 〉 is linear and bounded and hence continuous. Consequently, the
function

α 7→ inf
R∈D

(
E
[
Zα

∫ T

0

V
(
t,
y Y R

t

Zα
t

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Zα)

= vZα(y) + γ(Zα),

is also upper semicontinuous on [0, 1], therefore we get

v(y) = E
[
Z1

∫ T

0

V
(
t,
y Y R1

t

Z1
t

)
µ(dt)

]
+ y〈R1, ET 〉+ γ(Z1)

≥ lim sup
αր1

(vZα(y) + γ(Zα)).

This yields
v(y) = inf

Q∈Qe

(vQ(y) + γ(Q)) .

Furthermore, observe that

vQ(y) = ∞ for Q ∈ Qe\Qf
e .

2For a more detailed argument compare [38, Remark 4.5].
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This follows again from [27, Lemma A.3] for Q ∼ P since then vQ and uQ satisfy
the duality relations. We have v(y) ≤ ṽ(y) as DQ ⊂ D for Q ≪ P . Since Zα ∈ Ze

for α ∈ (0, 1) we also get

v(y) ≥ lim sup
αր1

(vZα(y) + γ(Zα)) ≥ inf
Z∈Z

(vZ(y) + γ(Z)) = ṽ(y).

This proves the first identity.

3.3 Proofs for the primal problem

In this section we will prove the missing assertions. First we make some simple
observations. Due to (3.10) we know that for all α ∈ [0, 1] we have

αA(x1, µ) + (1− α)A(x2, µ) ⊂ A(αx1 + (1− α)x2, µ).

Furthermore, if Assumption 3.4 is satisfied it is easy to show that, under the con-
vention (3.5), c 7→ UQ(c) is a concave functional on A(x, µ) for each Q ∈ Q and all
x > 0. These facts yield the concavity of the value functions uQ and u and therefore
under Assumption 3.4 the finiteness of the value function u(x) for all x > 0. The
concavity of uQ implies in turn that uQ ≡ +∞ as soon as

EQ

[ ∫ T

0

U+(t, ct)µ(dt)
]
= +∞

for some c ∈ ⋃
x>0A(x, µ). Indeed, if

EQ

[ ∫ T

0

U+(t, ct)µ(dt)
]
= +∞ for c ∈ A(x, µ)

then it follows that c+ 1 ∈ A(x+ 1, µ) and

EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
= +∞.

Thus, uQ(x+ 1) = +∞. As uQ is concave this implies uQ ≡ +∞.

Lemma 3.15
We have the following minimax identity.

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
= inf

Q∈Q

(
uQ(x) + γ(Q)

)

= sup
c∈A(x,µ)

inf
Q∈Qe

(
UQ(c) + γ(Q)

)
= inf

Q∈Qe

(
uQ(x) + γ(Q)

)
.

Hence, Assertion 2 of Theorem 3.5 is valid.
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Proof. The proof of this lemma works along the lines of the proof of Lemma 4.6 in
[38]. Let ε ∈ (0, 1). Proposition 3.5 in [27] gives the existence of a utility function
U such that

U(x) ≤ U(t, x)

for all x > 0 and all t ∈ [0, T ]. With the help of this utility function we define
d = 1 + u(x+ 1)− U(ε) ∧ 0. Then we have

u(x+ 1) ≥ u(x+ ε) ≥ sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c+ ε) + γ(Q)

)

= sup
c∈A(x,µ)

inf
Z∈Z(d)

(
UQ(c+ ε) + γ(Z)

)
.

Now U(t, .+ ε) is bounded from below and thus

Z 7→ E

[
Z

∫ T

0

U(t, ct + ε)µ(dt)

]

= sup
n

E

[
Z

(∫ T

0

U(t, ct + ε)µ(dt) ∧ n

)]

is a weakly lower semicontinuous affine functional. Lemma 3.11 states that Z 7→
γ(Z) is weakly lower semicontinuous and Z(d) is a weakly compact and convex set.
Furthermore, for each Z ∈ Z(d) c 7→ UZ(c) is a concave functional defined on the
convex set A(x, µ). Therefore, we may use the lopsided minimax theorem [1, p.295]
to obtain

sup
c∈A(x,µ)

min
Z∈Z(d)

(
UZ(c+ ε) + γ(Z)

)
= min

Z∈Z(d)
sup

c∈A(x,µ)

(
UZ(c+ ε) + γ(Z)

)
.

We know that these expressions are bounded by u(x+ ε) < d + U(ε) ∧ 0. Thus, it
does not matter whether we take the infimum over Z or over Z(d). We obtain

u(x+ ε) ≥ inf
Z∈Z

sup
c∈A(x,µ)

(
UZ(c+ ε) + γ(Z)

)
(3.13)

≥ inf
Z∈Z

sup
c∈A(x,µ)

(
UZ(c) + γ(Z)

)
(3.14)

≥ sup
c∈A(x,µ)

inf
Z∈Z

(
UZ(c) + γ(Z)

)
= u(x). (3.15)

As ε → 0 the assertion follows since u is continuous.

Observe now that Theorem 3.10 in [27] states that

uQ(x) = inf
y>0

(vQ(y) + xy) for all Q ∈ Qf
e .

Pooling our lemmas and using this result, we get

u(x) = inf
Q∈Qe

(uQ(x) + γ(Q)) = inf
Q∈Qf

e

(uQ(x) + γ(Q))

= inf
Q∈Qf

e

inf
y>0

(vQ(y) + γ(Q) + xy) = inf
y>0

(v(y) + xy)
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which is assertion 3 of the theorem. Finiteness of v and general duality principles
yield then

lim
x→∞

u(x)/x → 0. (3.16)

Lemma 3.16
For any x > 0 there exists ĉ ∈ A(x, µ) such that

inf
Q∈Q

(
EQ

[ ∫ T

0

U(t, ĉt)µ(dt)
]
+ γ(Q)

)
= u(x).

Proof. Let (cn)n∈N be a maximizing sequence for a given x > 0. Using again
a Komlós-type argument we get a sequence (c̃n)n∈N with c̃n ∈ conv(cn, cn+1, . . .)
converging P ⊗µ-a.s. to some ĉ ∈ A(x, µ) since A(x, µ) is closed under convergence
in probability.

The following adaption of an argument in the proof of [29, Lemma 1] shows that
the positive parts of U(t, c̃nt ) are uniformly integrable with respect to Q ⊗ µ for all
Q ∈ Qf

e .
Assume (U+(t, c̃nt ))n∈N is not uniformly integrable. Then there is a constant

α, a subsequence which is also denoted (c̃n)n∈N and a disjoint partition (An)n∈N of
(Ω× [0, T ],F ⊗ B([0, T ])) such that

E
[ ∫ T

0

U+(t, c̃nt )IAn
µ(dt)

]
≥ α for n ≥ 1.

For 0 ≤ t ≤ T let
x0
t = inf{x > 0 |U(t, x) ≥ 0}

and define a process sn = (snt )0≤t≤T by

snt = x0
t +

n∑

k=1

c̃kt IAk
.

Then for any Y ∈ Y we have

E
[ ∫ T

0

Yts
n
t µ(dt)

]
≤

∫ T

0

x0
t µ(dt) + nx.

Hence sn ∈ A
(∫ T

0
x0
t µ(dt) + nx, µ

)
. Furthermore

E
[ ∫ T

0

U(t, snt )µ(dt)
]
≥

n∑

k=1

E
[ ∫ T

0

U+(t, c̃kt )IAk
µ(dt)

]
≥ αn.

Which yields

lim sup
x→∞

u(x)

x
≥ lim sup

n→∞

E
[ ∫ T

0
U(t, st)µ(dt)

]
∫ T

0
x0
tµ(dt) + nx

≥ lim sup
n→∞

αn
∫ T

0
x0
tµ(dt) + nx

= α > 0.
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Contradicting (3.16).
Using the uniform integrability on the positive parts and a version of Fatou’s

Lemma on the negative parts of U(t, c̃nt ) we can deduce that

c 7→ EQ

[ ∫ T

0

U(t, ct)µ(dt)

]
+ γ(Q)

is upper semicontinuous with respect to almost sure convergence. From the concav-
ity of

c 7→ inf
Q∈Qf

e

(
EQ

[ ∫ T

0

U(t, ct)µ(dt)
]
+ γ(Q)

)

it follows that (c̃n) is still a maximizing sequence. Then the upper semicontinuity
yields that

inf
Q∈Qe

(
EQ

[ ∫ T

0

U(t, ĉt)µ(dt)
]
+ γ(Q)

)
≥ u(x).

Actually, we also have

inf
Q∈Q

(
EQ

[ ∫ T

0

U(t, ĉt)µ(dt)
]
+ γ(Q)

)
≥ u(x) :

first we have that

{Q ∈ Q |EQ[

∫ T

0

U(t, ĉt)µ(dt) ] = −∞} = ∅

since otherwise this set would have a nonempty intersection with Qe. Hence, for
Q ∈ Q\Qe, Q0 ∈ Qf

e and

Qα := αQ+ (1− α)Q0 ∈ Qe,

we get

lim
αր1

EQα

[ ∫ T

0

U(t, ĉt)µ(dt)
]
= EQ

[ ∫ T

0

U(t, ĉt)µ(dt)
]
.

Due to the convexity and lower semicontinuity of γ, we also have γ(Qα) → γ(Q).

Proof of Theorem 3.5. Assertion 2 and 3, the finiteness of u and v, and the
concavity of u were already proved. The convexity of v is an immediate consequence
of the convexity of

(Z, y Y R) 7→ VZ(Y
R/Z) + γ(Z).

Assertion 3 of Theorem 3.5 is a consequence of the lower semicontinuity of v (the
lower semicontinuity can be shown as in the proof of Theorem 2.3 in [38] with an
additional 〈R, ET 〉-term).

Equation (3.8) follows as in [27, Lemma A.7]. If ET ≡ 0 this implies v′(∞−) = 0
which yields by general duality results that u′(0) = ∞ which is equation (3.9).
Assertion 5 corresponds to Lemma 3.13. Furthermore, the existence of an optimal
c (Item 6) is the content of Lemma 3.16.
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We will now deal with the existence of a saddlepoint. Let y > 0 be such that

v(y) + yx = u(x),

such a y exists due to the behavior of v′. Take then a solution (Q̂, R̂) to the dual

problem for y and let Ẑ be the density of Q̂ with respect to P . Let Z1 be in Zf
e and

define

Zα = αZ1 + (1− α)Ẑ for α ∈ (0, 1].

Then

vZα(y) + γ(Zα) → v(y) as α → 0 :

Let R1 be such that

VZ1(yY R1

/Ẑ1) + 〈R1, ET 〉 = vZ1(y).

Then define Rα = αR1 + (1− α)R̂. We get

v(y) ≤ vZα(y) + γ(Zα)

≤ VZα(yY Rα

/Zα) + 〈Rα, ET 〉+ γ(Zα)

≤ α
(
vZ1(y) + γ(Z1)

)
+ (1− α)

(
ṽẐ(y) + γ(Ẑ)

)

because of convexity. Observe that the right-hand side of the equation goes to v(y)
as α goes to 0.

Due to the duality relations we have that

vZα + xy ≥ uZα and uZα + γ(Zα) → uẐ + γ(Ẑ).

Hence,

u(x) = v(y) + yx = lim
α→0

(
vZα(y) + xy + γ(Zα)

)

≥ lim
α→0

(
uZα(x) + γ(Zα)

)
= uẐ(x) + γ(Ẑ)

With the minimax identity we get u(x) = uẐ + γ(Ẑ) and therefore we get for ĉ as
in Lemma 3.16

u(x) = uẐ(x) + γ(Ẑ) ≥ UẐ,µ(ĉ) + γ(Ẑ) ≥ inf
Q∈Q

UQ(ĉ) + γ(Ẑ) = u(x).

Now we show that

ĉ = I(·, yY R̂) Q̂⊗ µ− a.s.

We have

0 ≤ V
(
t,
ŷ Y R̂

t

Ẑt

)
+

ŷ Y R̂
t

Ẑt

ĉt − U(t, ĉt)
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and therefore

0 ≤EQ̂

[ ∫ T

0

V
(
t,
y Y R̂

t

Ẑt

)
µ(dt) +

∫ T

0

y Y R̂
t

Ẑt

ĉt µ(dt)−
∫ T

0

U(t, ĉt)µ(dt)
]

=v(y) + E
[ ∫ T

0

y Y R̂
t ĉt µ(dt)

]
− y〈R̂, ET 〉 − u(x)

≤v(y) + yx− u(x) = 0.

Together this implies

0 = V
(
t,
y Y R̂

t

Ẑt

)
+

y Y R̂
t

Ẑt

ĉt − U(t, ĉt) Q̂⊗ µ(dt)-a.s.

which means that ĉt = I(t, y Y R̂
t /Ẑt).

The fact that
u′(∞−) = 0

follows from (3.16). Therefore, we also have

v′(0+) = −∞.

To obtain the strict concavity of the function u (and hence the differentiability of
v) assume that u is not strictly concave. Since u is increasing and because of the
conditions for the derivatives we know there exist 0 < x0 < x1 and y > 0 such that

v(y) + yx0 = u(x0) and v(y) + yx1 = u(x1).

Let c0, c1 be the corresponding optimal consumption processes and (Q̂, R̂) the solu-
tion to the dual problem. Then we have

c0t = I(t, yY R̂) = c1t Q̂− a.s.

and

EQ̂

[ ∫ T

0

c0t yY
R̂
t µ(dt)

]
+ y〈R̂, ET 〉 = x0y < x1y = EQ̂

[ ∫ T

0

c1t yY
R̂
t µ(dt)

]
+ y〈R̂, ET 〉.

This is a contradiction.

Proof of Corollary 3.6. This corollary can be proved by copying the arguments
of the proof of Proposition 2.4 in [38].
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Chapter 4

Application to a Markovian
switching Model

In the following we want to apply the results of the first part to a specific market
model and coherent utility functional given by a specific ambiguity set Q and a
HARA utility function. As a reward for this limitation we can describe the solu-
tion to the optimization problem as the solution to the Hamilton-Jacobi-Bellman
equations of stochastic optimal control. In our case these are ordinary differential
equations and can be solved numerically. Then it is also possible to compute the
optimal investment strategy.

As market model we will consider a Markovian switching model. The state of
the economy is given by a continuous time Markov chain. We assume that this
state influences the coefficients of a simple jump diffusion model and is known to
the agent. In the literature there are several papers on Markovian switching models
with unobservable state process. In these cases a suitable filter needs to be applied.
As far as we know there is no work on filtering in a situation subject to model
uncertainty. This poses new questions of interpretation: The filter is applied because
some parameter is not observable. This lack of information is also the source of
ambiguity. The filtering technique gives a likely parameter while the robust approach
also gives some parameter (here, the worst case). Hence, the question arises which
part of the uncertainty should be removed via filtering and which part with the help
of the robust approach. Or should the robust approach be applied after filtering? Or
how else can the situation be resolved? We are not going to answer these questions
and therefore restrict ourselves to the case where the state process is observable.

The investor is ambiguous about the rate with which the Markov chain changes
its state. We consider HARA utility functions with risk aversion parameter α ≥ 0.

First we introduce our model and prove that our set Q satisfies the assumptions
of the first part. Since we want to work with the dual problem we need the dual
set which we consider in Section 4.2. Then we deal with optimal consumption for
an investor with HARA utility where we consider logarithmic utility and HARA
utility with risk aversion coefficient 0 < α < 1 in separate sections. First we study
the problem for the logarithmic utility. Here, we develop the HJB equations, give
some properties of their solution and compute the optimal strategy. This is done
for a pessimistic and an optimistic investor. We call an investor pessimistic if she
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optimizes according to MEU, i.e. the agent maximizes

inf
Q∈Q

EQ

[∫ T

0

log(ct)µ(dt)
]
.

As before, a possible interpretation is that the investor is aware of different scenarios
and tries to be on the safe side by assuming that the worst-case-scenario will occur.
This kind of investor might also be described as ambiguity averse. In contrast to the
pessimistic investor the optimistic or ambiguity loving investor is going to optimize

sup
Q∈Q

EQ

[∫ T

0

log(ct)µ(dt)
]
.

This means the investor assumes the best-case-outcome. As mentioned in the in-
troduction it is also possible to consider a mixture of these two extremes but we
restrict ourselves to the two counterparts. Furthermore, we give some numerical
results regarding the question which approach is more useful in a “real” setting, i.e.
we compute the outcome to the strategies of an optimistic/pessimistic investor and
compare these as the “real” parameter of the stock price varies.

In the Section 4.5 we consider HARA utility for 0 < α < 1. As before, we
develop the HJB equation, give some properties and compute the optimal strategy.

4.1 Notations

We work on a filtered probability space (Ω,F , (Ft)t≤T , P ) where Ω is the path space
of (W,Y ). Here, W is a Brownian motion and Y is a time-continuous Markov chain
with state space {e1, . . . , en} and generator

A =




−λ0 λ0p1,2 . . . λ0p1,n
. . .

. . .

λ0pn,1 . . . λ0pn,n−1 −λt


 ,

where, λ0 is the fixed jump rate of the Markov chain and P = (pi,j)i,j=1,...,n is a
stochastic matrix (with pi,i = 0 for i = 1, . . . , n). Hence, we can equivalently
describe Y through a Poisson process N with intensity λ0 > 0 giving the jump
times and a discrete time Markov chain Ỹ with transition matrix P that specifies
the transition probabilities if a jump occurs. In the following we will frequently use
this equivalent formulation. For the proofs and for some results we restrict ourselves
to the case n = 2 in order to avoid notational inconveniences.

The filtration is assumed to satisfy the usual conditions. Furthermore, M is the
compensated Poisson process, i.e. Mt = Nt − λ0t. Observe that under a probability
measure Q with density

dQ

dP
= E

(∫ ·

0

(λs − λ0)/λ0 dMs

)
T
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the process (Nt)0≤t≤T is a Poisson process with stochastic intensity (λt)0≤t≤T . (E
denotes the stochastic exponential.)

The dynamics of the stock and the bond depend on the external market factor
Y :

dSt = St−

(
σ(Yt) dWt + b(Yt) dt+ δ(Yt−) dNt

)

dS0
t = S0

t r(Yt) dt

where we assume σ > 0. A solution to this SDE exists. See [35, Theorem V.6].
The investor can invest the initial capital x > 0 into the stock and bond. The

fraction of her wealth invested in the stock at time t will be denoted by πt. As
before the consumption process C = (Ct)0≤t≤T is assumed to be a non-negative,
non-decreasing and adapted RCLL process. More specifically we deal only with
consumption processes that can be written as

Ct =

∫ t

0

cs µ(ds)

where

µ(ds) = κ(γe−ρtds+ δT (ds)). (4.1)

(With γ ≥ 0, ρ ≥ 0 and κ such that µ is a probability measure on [0, T ].)
The wealth process develops according to the following SDE

dXπ
t =

Xπ
t−πt−

St−
dSt +

Xπ
t−(1− πt−)

S0
t−

dS0
t − ct µ(dt) and X0 = x.

As before we require the wealth process to stay non-negative:

Xπ
t ≥ 0 P − a.s. (4.2)

We denote by A(x, µ) the set of consumption process densities (ct)0≤t≤T , for which
an admissible strategy exists, such that condition (4.2) is fulfilled.

In this setting we solve the optimization problem of a pessimistic investor

max
c∈A(x)

inf
Q∈Q

EQ

[∫ T

0

U(ct)µ(dt)
]

for U being a HARA utility function and µ defined as in (4.1).
We consider an investor who is not certain how fast the states of the economy

switch, i.e. she is ambiguous about the rate of the Poisson process N . (Even though
this is not very realistic, we assume that she knows the transition probabilities.
However, in a two-state-economy these are not important.) If we let a1, a2 be positive
constants then the set Q appearing in the definition of the robust utility functional
is given as

Q =
{
Q
∣∣∣ dQ
dP

= E
(∫

0

λs − λ0

λ0
dMs

)
where λ ∈ Λ

}
.
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Where the set Λ parameterizing the possible integrands is defined as

Λ = {λ | λ is a predictable process and λs ∈ [a1, a2], a1 < λ0 < a2}.

For the logarithmic utility we treat also the problem of an optimistic investor,
i.e. solve

max
c∈A(x)

sup
Q∈Q

EQ

[∫ T

0

log(ct)µ(dt)
]
.

If not mentioned otherwise we consider the pessimistic investor.
To use the duality result as given in the first chapter we need the following lemma

which guarantees that Assumption 3.1 is satisfied.

Lemma 4.1
The coherent risk measure defined through

ρ(Y ) = sup
Q∈Q

EQ[−Y ]

is sensitive in the sense that ρ(Y ) is strictly positive for all Y ∈ L∞
− \ {0} and

continuous from below, i.e. for a sequence (Yn) ⊂ L∞ increasing a.s. to some
Y ∈ L∞, we have ρ(Yn) ց ρ(Y ).

Proof. First we show that Q is convex. Let ε ∈ (0, 1) and Q1, Q2 ∈ Q. We
want to show that

Q := εQ1 + (1− ε)Q2 ∈ Q.

We assume that
dQi

dP
= Z i

T = E
(∫ ·

0

λi
s − λ0

λ0
dMs

)
T

for λi ∈ Λ and i = 1, 2. Now we define

Z = εZ1 + (1− ε)Z2.

Then Z is as Z1, Z2 a strictly positive uniformly integrable martingale to which we
apply now Itô’s formula.

dZt =εZ1
t−

λ1
t − λ0

λ0
dMt + (1− ε)Z2

t−

λ2
t − λ0

λ0
dMt

=Zt−

(
ε
Z1

t−

Zt−

λ1
t − λ0

λ0
+ (1− ε)

Z2
t−

Zt−

λ2
t − λ0

λ0

)
dMt.

Hence, it follows

Zt = E
(∫ ·

0

λ̃s − λ0

λ0
dMt

)
t
.

Where,

λ̃s = ε
Z1

t−

Zt−
λ1
s + (1− ε)

Z2
t−

Zt−
λ2
s ∈ [a1, a2].
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Furthermore, λ̃ is predictable and thus λ̃ ∈ Λ which implies Z = dQ/dP is such
that Q ∈ Q.

Next, sensitivity follows from the fact that P ∈ Q. Continuity from below follows
from [30, Lemma 2], [15, Corollary 4.35] and the Dunford-Pettis Theorem once we
have shown that

Z = {dQ/dP |Q ∈ Q}
is uniformly integrable and closed in L1.

First we show that there is B ∈ L2
+(P ) such that dQ/dP ≤ B for all Q ∈ Q.

dQ

dP
= exp

(
−
∫ T

0

λs − λ0

λ0
λ0 ds

)∏

s≤T

(
1 +

λs − λ0

λ0
∆Ns

)

≤ exp
(
−
∫ T

0

(a1 − λ0) ds
)(a2

λ0

)NT

=: B

where

E[B2] = exp
(
−
∫ T

0

2(a1 − λ0) ds
) ∞∑

n=0

(
a2
λ0

)2n

P [NT = n]

= exp(2(λ0 − a1)T )e
−Tλ0

ea
2

2
T = eT (λ0+a2

2
−2a1) < ∞.

Hence, Z is uniformly integrable. (In the same way one can show that B ∈ Lp(P )
for 1 ≤ p < ∞.) Furthermore, later we will need a lower bound which we denote by
B̃ and that is defined via

B̃t = exp
(
−
∫ t

0

(a2 − λ0) ds
)(a1

λ0

)Nt

for 0 ≤ t ≤ T.

Obviously,
1

B̃t

≥ 1

dQ/dP |Ft

for all t ∈ [0, T ].

Next we show that Z is closed in L1. Let (Zn)n∈N be a sequence in Z converging
in L1 to Z. Let

Zn =
dQn

dP
= E

(∫ λn
s − λ0

λ0
dMs

)
T

and Z =
dQ

dP

where λn ∈ Λ. We want to show that there exists a predictable process λ∗ ∈ Λ such
that

Z = E
(∫ λ∗

s − λ0

λ0
dMs

)
T
.

First we will show that the densities converge also in the semimartingale topol-
ogy. This topology is induced by the following distance function on the space of
semimartingales

D[S] =

∞∑

n=1

2−n sup
{
E
[∣∣∣
∫ n

0

Ku dSu

∣∣∣ ∧ 1
] ∣∣∣K real-valued, predictable, |K| ≤ 1

}
.
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(Compare (7.13) of [8]). Then we can show convergence of the stochastic logarithms
and finally we will use Komlós’ Theorem to prove the existence of a limit that has
the desired form.

We have
‖Zn

T‖L2 ≤ ‖B‖L2 < c

uniformly in n. Hence, Lebesgue’s dominated convergence theorem implies that Zn
T

converges to ZT in L2 as n → ∞. And this means that Zn → Z in H2. (For a local

martingale X the H2-norm is given by

‖X‖H2 = ‖[X,X ]1/2∞ ‖L2 .

Compare e.g. [35, corollary, p.251].) Furthermore, this convergence yields conver-
gence in the semimartingale topology (compare [35, Theorem IV.14]). We will use
this convergence to get also convergence of the stochastic logarithms.1

To this end, we first let σm be the time of the m-th jump of the Poisson process
N . Then (Zn)σm is uniformly bounded away from 0, implying that (1/Zn)σm and
(1/Z)σm are bounded.

Now we want to show that the stochastic logarithm of Zn

1

Zn
−

· Zn

converges to the stochastic logarithm of Z

1

Z−
· Z.

(Here, · denotes as usual the stochastic integral.) For this we consider the conver-
gence of the stopped processes first. We have

∣∣∣
( 1

Zn
−

)σm

· Zn −
( 1

Z−

)σm

· Z
∣∣∣ ≤

∣∣∣
( 1

Zn
−

)σm

· Zn −
( 1

Zn
−

)σm

· Z
∣∣∣+

∣∣∣
( 1

Zn
−

)σm

· Z −
( 1

Z−

)σm

· Z
∣∣∣. (4.3)

Here, the first term goes to 0 uniformly on compacts in probability (ucp) since the
integrand is bounded and Zn converges to Z in the semimartingale topology (this
is a direct consequence of the definition via (4.3)). The second goes to 0 ucp due to
the Theorem of dominated convergence for stochastic integrals, e.g. [35, Theorem
IV.32]. As bounding process we can use 1/B̃− which is in L(Zn) and L(Z) due

1[26, Theorem II.8.3] guarantees the existence of the stochastic logarithm for a real-valued
semimartingale Y where Y and Y

−
do not vanish. The stochastic logarithm of Y is given as

X =

∫
1

Y
−

dY.

Then X as above is the unique semimartingale that satisfies Y = E(X) and X0 = 0.
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to [35, Theorem IV.28]. Now we let m and hence also σm go to infinity, then the
left-hand side of (4.3) goes to

∣∣∣ 1

Zn
−

· Zn − 1

Z−
· Z

∣∣∣

(again Theorem of dominated convergence for stochastic integrals). Hence, it follows
convergence of the stochastic logarithms.

Let L = 1/Z− · Z. We know that

1

Zn
−

· Zn =

∫

0

λn
s − λ0

λ0
dMs.

Komlós’ Theorem implies that there exists a sequence (λ̃n)n∈N of convex combina-
tions of (λn)n∈N converging P ⊗dt-a.s. to some predictable λ∗ with values in [a1, a2].
Then we have

∫ t

0

λ∗
s − λ0

λ0
dMs = lim

n→∞

∫ t

0

λ̃n
s − λ0

λ0
dMs = lim

n→∞

∫ t

0

λn
s − λ0

λ0
dMs = Lt.

The first equality follows again from the Theorem of dominated convergence for
stochastic integrals.

4.2 Dual Set

In this chapter Ũ denotes the dual function to U . In order to apply the duality
theory we need the corresponding dual set. We use the set

D =

{
E
(
−
∫

b(Yt)− r(Yt) + δ(Yt)νt
σ(Yt)

dWt +

∫
νt − λ0

λ0
dMt

)
T

∣∣∣ ν ∈ N
}

where

N =
{
ν
∣∣∣ νs > 0 a.e.,

∫ t

0

ν2
s ds < ∞ a.e. and ν predictable

}
.

Theorem 4.2
If Assumption 3.2 and Assumption 3.4 are satisfied the dual problem is given as

v(y) = inf
Q∈Q

inf
D∈D

EQ

[∫ T

0

Ũ
(
y

Dt

S0
tZ

Q
t

)
µ(dt)

]
.

Hence, we have

u(x) = inf
y>0

(v(y) + xy).
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Proof. We will show that P ⊆ D ⊆ Y(1) where P is the set of equivalent local
martingale measures and Y(1) is the dual set as used e.g. in Remark 3.7. Then the
result follows from Remark 3.7 and [38, Remark 2.7] (if we use Lemma 3.14).

To see that P ⊆ D let P ∗ ∈ P. Then the density process

D = (dP ∗/dP |Ft
)0≤t≤T

is a strictly positive martingale. Hence, we can take the stochastic logarithm

Lt :=

∫ t

0

1

Ds−
dDs for 0 ≤ t ≤ T

where L is a local martingale. Now we apply a martingale representation result (e.g.
[26, III.4.34]) to get

Lt =

∫
θνt dWt +

∫
ν̃t dMt

for 0 ≤ t ≤ T where θν , ν̃ are predictable processes such that the integrals are
well-defined. It follows

dP ∗

dP
= E

(∫
θνt dWt +

∫
ν̃t dMt

)
T
.

In particular ν̃ > −1 and
∫ t

0
ν̃s(ω)

2 ds < ∞ for all t ∈ [0, T ] and P -a.a. ω ∈ Ω.

We know that the discounted stock price process S̃ is a local martingale under
P ∗. Due to Girsanov’s Theorem (e.g. [10, Theorem 13.19]) it follows that

dS̃t = S̃t

(
σ dW̃t + δ dM̃t + (σθν + δν̃λ0 + µ+ λ0δ − r) dt

)

where

W̃ = W −
∫

θν ds and M̃ = M −
∫

ν̃ λ0 ds

are local P ∗-martingales. Hence, if we let

ν̃t = (νt − λ0)/λ0

we need

θνt = −b(Yt)− r(Yt) + δ(Yt)λ
0(ν̃t + 1)

σ(Yt)
= −b(Yt)− r(Yt) + δ(Yt)νt

σ(Yt)

in order for S̃ to be a local P ∗-martingale. Thus, P ∗ ∈ D.

To see that D ⊆ Y(1) observe that D ∈ D is a positive local martingale. An
application of Itô’s formula to S̃D implies that this is a local martingale as well,
and hence a supermartingale and this yields the claim.
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In the following we will keep the notation

θν = −b− r + δν

σ

and apply our results to two specific utility functions.

4.3 Logarithmic utility

The easiest case is as usual the logarithmic utility. As mentioned before, we will
first consider the classical robust setting, i.e. a pessimistic investor and then transfer
the results to an optimistic investor. We assume that the investor uses the utility
function

U(x) = log(x)

and the discount factor is equal to 1. I.e., the agent tries to maximize

inf
Q∈Q

EQ

[∫ T

0

log(ct)µ(dt)
]
= κ inf

Q∈Q
EQ

[∫ T

0

γ log(ct) dt+ log(cT )
]
.

4.3.1 HJB equation for the dual problem

In order to find the optimal strategy we will describe the solution to the dual problem
via an HJB equation. Hence, we want to apply Theorem 4.2. Therefore and since
U obviously satisfies Assumption 3.2, we need to check whether Assumption 3.4 is
valid.

Assumption 3.4 is satisfied if there exists Q0 ∈ Q and x > 0 such that uQ0
(x) <

∞. Now observe that P ∈ Q and that the derivation of (3.11) implies

uP (x) ≤ E
[∫ T

0

Ũ(yDν
t )µ(dt)

]
+ yx

for all y > 0 and ν ∈ N . Hence, it is enough to show

E
[∫ T

0

− log(Dν
t )µ(dt)

]
< ∞

for some ν ∈ N . This will be obvious from equation (4.6) for bounded ν and thus,
all assumptions necessary to apply the results of the preceding chapter are satisfied.

Let z > 0. Then the dual problem is according to Theorem 4.2

ũ(z) = inf
ν∈N

inf
λ∈Λ

EQλ

[∫ T

0

Ũ
( zDν

t

S0
tZ

λ
t

)
µ(dt)

]

= inf
ν∈N

inf
λ∈Λ

EQλ

[∫ T

0

(
−1− log

zDν
t

S0
tZ

λ
t

)
µ(dt)

]

where

Dν
t = E

(∫ ·

0

θνs dWs +

∫ ·

0

νs − λ0

λ0
dMs

)
t
, 0 ≤ t ≤ T
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and

Zλ
t = E

(∫ ·

0

λs − λ0

λ0
dMs

)
t
, 0 ≤ t ≤ T.

Then we get the solution to the primal problem as

u(x) = min
z>0

(ũ(z) + zx) = ũ(1/x) + 1.

First, we make some computations and reduce the problem to a single minimiza-
tion problem.

Lemma 4.3
We have for all t ≥ 0

inf
ν∈N

inf
λ∈Λ

EQλ

[
−1− log

Dν
t

S0
tZ

λ
t

]
=

inf
λ∈Λ

EQλ

[
−1 +

∫ t

0

1

2
(θν

∗

s )2 + ν∗
s − λs + (log λs − log ν∗

s )λs − r ds
]

where

ν∗
s =ν∗(Ys, λs)

=

{
1
2
b(Ys)δ(Ys)+σ2(Ys)

δ2(Ys)
+
√

(b(Ys)δ(Ys)+σ(Ys)2)2

4δ(Ys)4
+ σ(Ys)2λs

δ(Ys)2
, if δ(Ys) 6= 0

λs, if δ(Ys) = 0.
(4.4)

Proof. First we get

S0
t Z

λ
t

Dν
t

= exp
{
−
∫ t

0

θνs dWs +

∫ t

0

(1
2
(θνs )

2 + νs − λ0 + r
)
ds
}
exp

(
−
∫ t

0

(λs − λ0) ds
)

∏

s≤t,∆Ns=1

(1 + λs−λ0

λ0

1 + νs−λ0

λ0

)

= exp
{
−
∫ t

0

θνs dWs +

∫ t

0

(1
2
(θνs )

2 + νs − λs + r
)
ds
} ∏

s≤t,∆Ns=1

λs

νs
. (4.5)

Hence,

log
S0
tZ

λ
t

Dν
t

=−
∫ t

0

θνs dWs +
∑

s≤t

(log λs − log νs)∆Ns +

∫ t

0

(1
2
(θνs )

2 + νs − λs + r
)
ds

=−
∫ t

0

θνs dWs +

∫ t

0

(log λs − log νs) dM
λ
s

+

∫ t

0

(1
2
(θνs )

2 + νs − λs + r + (log λs − log νs)λs

)
ds (4.6)

where

Mλ
t = Nt −

∫ t

0

λs ds
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is the compensated Poisson process with respect to Qλ. Observe that Mλ and W
are Qλ-martingales (the latter due to [W,M ] = 0).

We would now like to take the Qλ-expectation and argue that the integrals
with respect to the martingales Mλ and W vanish such that we can minimize the
remaining drift term with respect to ν. Unfortunately this approach does not work
directly since the integrands are not necessarily bounded.

Instead, we will mimic the solution in [23] and reformulate our problem in terms
of relative entropy. For this we will associate a measure to each Dν ∈ D. Obviously,
this is not possible on (Ω,F) if E[Dν

T ] 6= 1.
However, if we use the notion of extended martingale measure as introduced

in Föllmer, Gundel [13] the process Dν defines a probability measure P̄ν on the
probability space (Ω̄, F̄).

This probability space is defined as Ω̄ := Ω× (0,∞] with the predictable σ-field

F̄ = σ({A× (t,∞] |A ∈ Ft, t ≥ 0})

(for t > T define Ft = FT ). Furthermore, the filtration (F̄t)t≥0 is given by

F̄t : = σ(A× (s,∞] |A ∈ Fs, s ≤ t), t ≥ 0.

Then a given measure Q on (Ω,F) is associated to the measure Q̄ := Q ⊗ δ∞ on
(Ω̄, F̄) and for a measure Q̃ on (Ω̄, F̄) they define the projection Qt on (Ω,Ft)
by Qt[A] := Q̄[A × (t,∞]] for A ∈ Ft. Furthermore, each (Ft)-stopping time is
associated with an (F̄t)-stopping time via

τ̄ (ω, t) := τ(ω)1l(τ(ω),∞](t).

On this measure space we can associate each Dν ∈ D (being a positive super-
martingale) with a probability measure P̄ν (Föllmer measure) given by

P̄ν [A× (t,∞]] = E[Dν
t IA], 0 ≤ t < ∞, A ∈ Ft.

With the above definition the set Y(1) can be identified with the set of extended
martingale measures from [13, Definition 4.1].

Here we will use [23, Lemma 3.4] which formulates our problem as a problem for
the relative entropy: Let ν ∈ N and Q ≪ P . If Z is defined as the density process
of Q with respect to P then for any bounded (Ft)-stopping time τ the probability
measure Q̄ := Q ⊗ δ∞ satisfies Q̄ ≪ P̄ν on F̄τ̄ and the relative entropy of Q̄ with
respect to P̄ν on F̄τ̄ is given by

HF̄τ̄
(Q̄|P̄ν) = EQ

[
log

Zτ

Dν
τ

]
. (4.7)

We return to our calculation and apply a sequence of stopping times (τn)n∈N
suitable to our problem, namely let

τn := inf
{
t ≥ 0

∣∣
∫ t

0

(
ν2
s + | log νs|

)
ds ≥ 1/n

}
.
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Now we can stop the processes in Equation (4.6) and use that the integrals with
respect to W and Mλ are martingales. Hence, we get

EQλ

[
−1− log

(Dν)τnt
(S0)τnt (Zλ)τnt

]
=

− 1 + EQλ

[∫ τn∧t

0

(1
2

(
(θν)2 + νs − λs + r(Ys) + (log λs − log νs)λs

)
ds
]
. (4.8)

We now take the limit of this expression as n → ∞ (and thus τn ր ∞). The
right-hand side converges to

−1 + EQλ

[∫ t

0

(1
2

(b(Ys)− r(Ys) + δ(Ys)νs
σ(Ys)

)2

+ νs − λs + r(Ys)

+ (log λs − log νs)λs

)
ds.

]

This convergence is due to the monotone convergence theorem - the integrand is
always non-negative. (To see this for νs − λs + (log λs − log νs)λs observe that this
expression is minimal for ν = λ where it equals 0.)

For the left-hand side we have

sup
n∈N

EQλ

[
log

Zτn∧t

Dν
τn∧t

]
= sup

n∈N
HF̄τn∧t

(Q̄λ|P̄ν) = HF̄t
(Q̄λ|P̄ν).

To get the second equality we need τ̄n ր ∞ and continuity properties of the relative
entropy (compare e.g. [16, Proposition (15.6)]

Together with (4.7) for τ = t this yields

EQλ

[
− log

Dν
t

S0
tZ

λ
t

]
=

EQλ

[∫ t

0

(1
2

(b(Ys)− r(Ys) + δ(Ys)νs
σ(Ys)

)2

+ νs − λs + r(Ys) + λs log
λs

νs

)
ds.

]
(4.9)

Minimizing the expression in the expectation with ordinary calculus methods with
respect to ν yields (under the condition that ν > 0) a unique minimum at

ν∗
s =

{
−1

2
(b−r)δ+σ2

δ2
+
√

((b−r)δ+σ2)2

4δ4
+ σ2λs

δ2
, if δ 6= 0

λs otherwise.

Hence, the claim follows.

In the following we use the notation

β = −((b− r)δ + σ2)/2δ2.

In order to use the dynamic programming principle we define

J(t, y, ν, λ) := E
[∫

Zλ
s log

S0
sZ

λ
s

Dν
s

µ̃t(ds)
]
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where
µ̃t(ds) = γI[0,t]ds+ δt(ds)

and Y0 = y. Furthermore, let the value function

V (t, y) := inf
ν∈N

inf
λ∈Λ

J(t, y, ν, λ).

Obviously, κµ̃T = µ and hence,

ũ(z) = −1− log z + κV (T, Y0).

We can use the lemma above to guess the form of the HJB equations with the
help of classical stochastic control results. For this we will need the generator (or
Q-matrix) A of the Markov chain Y . Our construction of Y yields that under the
measure Qλ

Aλ
t =




−λt λtp1,2 . . . λtp1,n
. . .

. . .

λtpn,1 . . . λtpn,n−1 −λt


 , 0 ≤ t ≤ T.

Observe that (λt)0≤t≤T is a predictable stochastic process. Thus, it might itself
depend on Y .

Next, we will prove that the following system of HJB equations characterizes the
value function. The solution needs to satisfy

vit(t) = inf
λ∈[a1,a2]

(
(1 + γt)ci(λ) + (Aλv(t, .))i

)
(4.10)

= inf
λ∈[a1,a2]

(
(1 + γt)ci(λ) + λ

( n∑

j=1

pi,jv
j(t)− vi(t)

))

and the boundary condition

vi(0) = 0 for i = 1, . . . , n. (4.11)

Here, for δ(ei) 6= 0

ci(λ) =
1

2

(b(ei)− r(ei) + δ(ei)
(
β(ei) +

√
β(ei)2 + σ(ei)2λ/δ(ei)2

)

σ(ei)

)2

− λ

+ β(ei) +

√
β(ei)2 +

σ(ei)2λ

δ(ei)2
+ r(ei)

+
(
log λ− log

(
β(ei) +

√
β(ei)2 +

σ(ei)2λ

δ(ei)2

))
λ

and for δ(ei) = 0

ci(λ) =
1

2

(b(ei)− r(ei)

σ(ei)

)2

.
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Theorem 4.4
There exists a unique classical solution v ∈ C1(R,Rn) to (4.10) and (4.11). This
solution satisfies v = V . If λ∗ is a measurable process, realizing the infimum in
(4.10) then λ̂ := (λ∗(T − t, Yt−))0≤t≤T is a feasible control strategy from the set Λ.
Furthermore, if we define ν̂ via (4.4) then ν̂ is an element of N . Furthermore, we
have then V (t, y) = J(t, y, ν̂, λ̂).

Proof. We will prove the result only for the case n = 2. The proof for the case
n > 2 works along the same lines. Existence of a unique solution is the statement
of Lemma 4.5. To prove that v = V let ν ∈ N and λ be a predictable process with
values in [a1, a2]. Then Lemma 4.3 implies

J(t, y, ν, λ) = EQλ

[∫
log

S0
t Z

λ
t

Dν
t

dµ̃t(s)
]

= EQλ

[∫ 1

2
(θνs )

2 + νs − λs + r + (log λs − log νs)λs dµ̃t(s)
]

which is minimal for

ν∗
s =

{
β +

√
β2 + σ2λs/δ2 if δ 6= 0

λs otherwise.

Now we show that v ≤ V . For this we choose a function v ∈ C1(R×R2,R) such
that v(t, ei) = vi(t) for i = 1, 2. (We name both functions v since they only differ
in the way the arguments are represented.) We will also sometimes write c(ei, λ)
instead of ci(λ).

Then we have according to Itô’s Lemma

dv(u− t, Yt) =− vt(u− t, Yt−) dt+ vy(u− t, Yt−) dYt +∆v(u− t, Yt)

− vy(u− t, Yt−)∆Yt

=− vt(u− t, Yt−) dt+∆v(u− t, Yt)

We have a closer look at the jumps of v. Since v ∈ C1 there will only be jumps if
(Nt)0≤t≤T and hence (Yt)0≤t≤T jumps. If we now use Ŷt to denote the state “opposite”
to Yt (i.e. ê1 = e2 and vice versa), we can write

∑

0≤t≤u

∆v(u− t, Yt) =
∑

0≤t≤u

(
v(u− t, Ŷt−)− v(u− t, Yt−)

)
∆Nt

=

∫ t

0

(
v(u− t, Ŷt−)− v(u− t, Yt−)

)
(dMλ

t + λt dt).

Here, Mλ is the Qλ-martingale N −
∫
λs ds.
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With this and the continuity of the dt-integrals in the boundary we get
∫ u

0

dv(u− t, Yt) = v(0, Yu)− v(u, y)

=

∫ u

0

(
−vt(u− t, Yt−) + (v(u− t, Ŷt−)− v(u− t, Yt−))λt

)
dt

+

∫ u

0

(v(u− t, Ŷt−)− v(u− t, Yt−)) dM
λ
t

=

∫ u

0

(
−vt(u− t, Yt) + (v(u− t, Ŷt)− v(u− t, Yt))λt

)
dt

+

∫ u

0

(v(u− t, Ŷt−)− v(u− t, Yt−)) dM
λ
t

≥
∫ u

0

(1 + γ(u− t))c(Yt, λt) dt+

∫ u

0

(v(u− t, Ŷt−)− v(u− t, Yt−)) dM
λ
t

=

∫ u

0

(
c(Yt, λt) + γ

∫ t

0

c(Ys, λs) ds
)
dt

+

∫ u

0

(v(u− t, Ŷt−)− v(u− t, Yt−)) dM
λ
t .

The inequality is a consequence of (4.10) and the last equation follows with integra-
tion by parts. Since v is bounded this implies that

v(u, y) ≤ EQ

[∫ u

0

(
c(Yt, λt) + γ

∫ t

0

c(Ys, λs) ds
)
dt

]
≤ J(u, y, λ, ν).

To show the other inequality take

λ∗(t, ei) = argminλ∈Λ

(
(1 + γt)ci(λ) + λ(v(t, êi)− v(t, ei))

)
.

In Lemma 4.9 we prove that ci is a strictly convex function of λ (and it is obviously
differentiable). Hence, λ∗(t, ei) is either a1, a2 or a solution to

c′i(λ) =
v(t, ei)− v(t, êi)

1 + γt
.

Since the right hand side is a continuous function of t and c′i(λ) is strictly increasing,
λ∗(t, ei) is a continuous function of t.

Then λ̂s = λ∗(u− s, Ys−) is an admissible control strategy and due to (4.10) we
get v = V .

We will now show that the ODE (4.10) has a unique solution. In the next
subsection we will consider some properties of this solution. In the following we will
stick to the case n = 2.

Lemma 4.5
The ODE (4.10) satisfies a global Lipschitz condition. Hence, it has a unique solu-
tion.



44

Proof. For this we show first that for vectors v = (v1, v2) and w = (w1, w2) in R2

we have
| |v1 − v2| − |w1 − w2| | ≤ ξ‖v − w‖

for a fixed constant ξ. Since all norms in R2 are equivalent we can show this claim
for the maximum norm, i.e. we take ‖v‖max = max(v1, v2). Then we have either
(v1 − v2)(w1 − w2) ≥ 0 which yields

| |v1− v2|− |w1−w2| | = |v1− v2− (w1−w2)| ≤ |v1−w1|+ |v2−w2| ≤ 2‖v−w‖max

or (v1 − v2)(w1 − w2) < 0. In this case we can argue

| |v1 − v2| − |w1 − w2| | ≤ | |v1 − v2|+ |w1 − w2| | = |v1 − v2 − (w1 − w2)|
≤ |v1 − w1|+ |v2 − w2| ≤ 2‖v − w‖max.

We prove now the Lipschitz continuity. Let v = (v1, v2) and w = (w1, w2) be
two vectors from R2. We need∥∥∥∥

(
infλ((1 + γt)c1(λ) + λ(v2 − v1))
infλ((1 + γt)c2(λ) + λ(v1 − v2))

)

−
(

infλ((1 + γt)c1(λ) + λ(w2 − w1))
infλ((1 + γt)c2(λ) + λ(w1 − w2))

)∥∥∥∥ ≤ L‖v − w‖

for a constant L.
We assume without loss of generality that

inf
λ
(c1(λ) + λ(v2 − v1)) ≥ inf

λ
(c1(λ) + λ(w2 − w1)).

If now λ∗ is such that

inf
λ
((1 + γt)c1(λ) + λ(w2 − w1)) = (1 + γt)c1(λ

∗) + λ∗(w2 − w1),

then we have

0 ≤ inf
λ
(c1(λ)(1 + γt) + λ(v2 − v1))− inf

λ
((1 + γt)c1(λ) + λ(w2 − w1))

≤c1(λ
∗)(1 + γt) + λ∗(v2 − v1))− (c1(λ

∗)(1 + γt) + λ∗(w2 − w1))

=λ∗((v2 − v1)− (w2 − w1))

≤λ∗ξ‖v − w‖.
The same argument can be applied to the second component. Since λ∗ is bounded
the claim follows.

Remark 4.6
If δ = 0 the HJB-equation simplifies considerably to

vit(t) = inf
λ∈[a1,a2]

(
(1 + γt)

((b(ei)− r(ei))
2

2σ(ei)2
+ r(ei)

)
+ λ

(
vj(t)− vi(t)

))

for (i, j) = (1, 2), (2, 1).

Especially the optimal λ will either be a1 or a2. Hence, in this case we have a
switching control.
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4.3.2 Optimistic investor

Let us now consider an optimistic investor. The problem for the optimist is

max
c∈A(x)

sup
Q∈Q

EQ[

∫ T

0

log(ct)µ(dt) ] = sup
Q∈Q

max
c∈A(x)

EQ[

∫ T

0

log(ct)µ(dt) ].

We will use the same notation as for the pessimist but use the index opt (e.g. Jopt).
The problem of maximizing EQ[ log(XT ) ] for a given measure Q ∈ Q can be

solved as before, if we assume that the investor does not face any ambiguity. Hence,
we know the dual problem and the HJB equation for this problem. In order to adapt
this solution for the optimist we need to maximize this solution with respect to λ.
Thus, we consider the system of ODE’s

vit(t) = sup
λ

(
(1 + γt)ci(λ) + λ

( n∑

j=1

pi,jv
j(t)− vi(t)

))
for i = 1, . . . , n (4.12)

With boundary condition vi(0) = 0 for i = 1, . . . , n.
Then we have the following corollary.

Corollary 4.7
There exists a unique classical solution v ∈ C1(R,Rn) to (4.12). This solution
satisfies vopt = V opt. If λ∗ is a measurable process, realizing the supremum in
(4.12) then λopt := (λ∗(T − t, Yt−))0≤t≤T is a feasible control strategy from the set
Λ. Furthermore, νopt

t defined as in (4.4) is an element of N , and we have then
V opt(t, y) = Jopt(t, y, νopt, λopt).

Due to Lemma 4.9 we know that λ∗ is the optimizer of a convex function. Here, we
are looking for the maximum. Hence, the optimal λ∗ is either a1 or a2 (switching
control) and does not need to be unique. However, as long as v1 6= v2 there will be
at most one t where non-uniqueness might occur.

Remark 4.8
The corresponding versions of Lemma 4.5 and Remark 4.6 are also valid for the
optimist. The switching controls in the case δ = 0 are for pessimist and optimist
polar.

4.3.3 Behavior of the solution to the HJB equation

In the following we will study the long-term behavior of the solution v = (v1, v2) of
the HJB equation (4.10) (all results will also hold for the solution to (4.12)). This
behavior depends on the values of the right-hand side of (4.10) at time t = 0, in
particular on the functions c1, c2. The infimum of these functions gives the slope at
time 0 and this indicates how “attractive” a set of parameters is. More precisely, we
will show that the value functions v1, v2 are always non-decreasing and that the set
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of parameters that is advantageous at time 0 yields a value function that dominates
the other value function at all times.

We will assume δ 6= 0 for this subsection.
First we give some properties of the functions c1, c2. We already used that these

functions are convex. Hence, the minimum is unique. Furthermore, they are non-
negative which yields that the value function is non-decreasing at time 0 (and we
will see that it stays non-decreasing).

Lemma 4.9
The functions ci, i = 1, 2 are non-negative and have a zero if and only if−b(ei)/δ(ei) >
0 and r(ei) = 0. If this zero exists it is −b(ei)/δ(ei). Furthermore, c′′i (λ) > 0. Hence,
the term inside the infimum in (4.10) is a strictly convex function of λ.

Proof. To prove the first claim we minimize the integrand of (4.9) with respect to
λ. This gives

ci(λ) ≥ 1/2(b(ei)− r(ei) + δ(ei)ν)
2/σ(ei)

2 + r(ei) ≥ 0

and equality for r(ei) = 0 at −b(ei)/δ(ei) > 0 (if this is non-negative).
To see the second claim observe that

c′′i (λ) =
1

4λ(β(ei)2δ(ei)2 + λσ(ei)2)2

(
2β(ei)

4δ(ei)
4 + 4β(ei)

2δ(ei)
2λσ(ei)

2

+ 2β(ei)
3δ(ei)

4
√

β(ei)2 + λσ(ei)2/δ(ei)2 + λσ(ei)
2
(
2λσ(ei)

2

−
(
b(ei)δ(ei)− r(ei)δ(ei) + σ(ei)

2
)√

β(ei)2 + λσ(ei)2/δ(ei)2
))

=
δ(ei)

4

2λ(β(ei)2δ(ei)2 + λσ(ei)2)2

((
β(ei)

2 + λσ(ei)
2/δ(ei)

2
)2

+ β(ei)
√
β(ei)2 + λσ(ei)2/δ(ei)2

(
β(ei)

2 + λσ(ei)
2/δ(ei)

2
))

>
δ(ei)

4

2λ
(
β(ei)2δ(ei)2 + λσ(ei)2

)2
((

β(ei)
2 + λσ(ei)

2/δ(ei)
2
)2

−
(
β(ei)

2 + λσ(ei)
2/δ(ei)

2
)(
β(ei)

2 + λσ(ei)
2/δ(ei)

2
))

=0.

In the following proposition we consider the problem without consumption. As
mentioned before we can use the functions c1 and c2 to decide which set of parameters
yields the dominating value function. This function also has a higher slope. But as
t tends to infinity the slopes converge to the same constant.

Proposition 4.10
If γ = 0 and

inf
λ∈[a1,a2]

c1(λ) > inf
λ∈[a1,a2]

c2(λ)
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then v1t (t) > v2t (t) for all t ≥ 0. Furthermore,

lim
t→∞

v1(t)− v2(t) = ξ and vit → ξ̃

where ξ and ξ̃ are constants.

Proof. At time t = 0 we have v1t (0) > v2t (0) due to our assumption on c1, c2. Hence,
v1 − v2 increases up to

t∗ = inf{t ≥ 0 | v1t (t∗)− v2t (t
∗) < 0}

where t∗ > 0. Our claim is that t∗ = ∞. Assume now, that t∗ < ∞. Then there is
some ε > 0 such that

v1t (t
∗ + ε)− v2t (t

∗ + ε) < 0.

Due to continuity we can choose ε and t0 < t∗ such that

v1(t0)− v2(t0) = v1(t∗ + ε)− v2(t∗ + ε) =: ∆v.

Since we have
v1t (t

∗ + ε) = inf
λ
(c1(λ) + λ∆v) = v1t (t0)

and similarly v2t (t
∗ + ε) = v2t (t0) we get

v1t (t
∗ + ε)− v2t (t

∗ + ε) = v1t (t0)− v2t (t0) > 0

by the definition of t∗. And this contradicts our assumption t∗ < ∞.
The fact that v1t (t) > v2t (t) for all t ≥ 0 implies that v1 − v2 is an increasing

function of t and hence, v1t is decreasing and v2t is increasing in t. To show that
v1t − v2t → 0 as t → ∞ we assume that there is some ε > 0 such that v1t (t)− v2t ≥ ε
(due to the above this difference is decreasing). This implies v1(t)−v2(t) ≥ εt → ∞
as t → ∞. If the optimizers for the infimum at time t are (λt

1, λ
t
2) then it follows

that
v1t (t)− v2t (t) = c1(λ

t
1)− c2(λ

t
2) + (λt

1 + λt
2)(v

2(t)− v1(t)) → −∞
since c1, c2 and λ are bounded. This contradicts the first step of the proof and the
claim follows. This implies now that v1(t)−v2(t) converges to a constant as t → ∞,
which in turn implies vit(t) → ξ̃ for i = 1, 2.

In the situation with consumption the asymptotic behavior changes - we prove
that the value functions are asymptotically quadratic and the difference between
the slopes is linear.

Proposition 4.11
If γ > 0 and

inf
λ∈[a1,a2]

c1(λ) > inf
λ∈[a1,a2]

c2(λ)

then v1t (t) > v2t (t) for all t ≥ 0. Furthermore, vit = O(t),
(
v1 − v2

)
= O(t) and

vi = O(t2) for i = 1, 2 where O is the usual asymptotic notation.
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Proof. Let
t∗ = inf{t ≥ 0 | v1t (t∗)− v2t (t

∗) < 0}.
We want to prove that t∗ = ∞. First, our assumption immediately implies t∗ > 0.
Assume that t∗ < ∞. Then there exists t2 > t∗ such that v1t (t2) − v2t (t2) < 0 and
v1(t2)− v2(t2) > 0. The function

f(t) = (v1(t)− v2(t))/(1 + γt)

is continuous and satisfies

f(0) = 0 < f(t2) < f(t∗).

Hence, due to the Intermediate Value Theorem there exists t1 ∈ (0, t∗) such that
f(t1) = f(t2). Thus, we have

v1t (t2)− v2t (t2) = inf
λ∈[a1,a2]

(
(1 + γt2)c1(λ) + λ

(
v2(t2)− v1(t2)

))

− inf
λ∈[a1,a2]

(
(1 + γt2)c2(λ) + λ(v1(t2)− v2(t2))

)

=(1 + γt2)
(

inf
λ∈[a1,a2]

(
c1(λ) + λ

v2(t2)− v1(t2)

1 + γt2

)

− inf
λ∈[a1,a2]

(
c2(λ) + λ

v1(t2)− v2(t2)

1 + γt2

))

=(1 + γt2)
(

inf
λ∈[a1,a2]

(
c1(λ) + λ

v2(t1)− v1(t1)

1 + γt1

)

− inf
λ∈[a1,a2]

(
c2(λ) + λ

v1(t1)− v2(t1)

1 + γt1

))

=
1 + γt2
1 + γt1

(v1t (t1)− v2t (t1)) > 0.

This is a contradiction to the choice of t2 and it follows t∗ = ∞.
Now we prove v1(t)− v2(t) = O(t). From the above we know that v1 − v2 > 0.

Hence,
(1 + γt)c02 < v2t (t) < v1t (t) < (1 + γt)c∗1

for all t > 0 where

c02 = inf
λ∈[a1,a2]

c2(λ) and c∗1 = sup
λ∈[a1,a2]

c1(λ).

This implies that vit = O(t). Hence, vi = O(t2) and due to the form of vit the
difference v1 − v2 = O(t) as well.

Remark 4.12
A version of the above results is also valid for an optimistic investor. Here, the
question which set of parameters is preferable depends on the supremum over ci.
Also the proofs differ only in the fact that sup and inf have to be exchanged.
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4.3.4 Numerical Results

Using MATLAB (the code is given in the appendix) we can compute the solution
of the HJB equation for given parameters σ, δ and b.

We show the results for a typical set of parameters (the parameters are given
below the graphs). More precisely, we have that

inf
λ∈[a1,a2]

c2(λ) > inf
λ∈[a1,a2]

c1(λ) > 0.

As we proved in the preceding subsection this implies v2 ≥ v1 for a pessimistic
investor. Furthermore the optimizing λ for c1 needs to be non-increasing whereas the
optimizing λ for c2 will be non-decreasing (this follows from (4.10) and v2−v1 > 0).

First there are two graphs that give the form of ci(λ).

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: c1(λ) for b = 1, δ = −0.7 and σ = 1
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Figure 4.2: c2(λ) for b = 0.035, δ = −0.316 and σ = 1
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Due to Proposition 4.10 we already know that v2, v1 will increase linearly in the
limit with the same slope. The solution for the corresponding HJB-equation without
consumption (γ = 0) is shown below.
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Figure 4.3: a1 = 1.2, a2 = 30, T = 7

Here the optimal λ’s develop as follows.

Figure 4.4: a1 = 1.2, a2 = 30, T = 7

When we include consumption (γ = 1) Proposition 4.11 implies that the solutions
are asymptotically quadratic functions:
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Figure 4.5: a1 = 1.2, a2 = 30, T = 7

And the optimal λ’s develop as shown below.

0 1 2 3 4 5 6 7
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

t

λ

 

 
λ

1

λ
2

Figure 4.6: a1 = 1.2, a2 = 30, T = 7

In the following the solution for the optimist without consumption is shown. As
Remark 4.12 yields it behaves basically as the solution for the pessimist. The same
would be true if we included consumption. Thus, we did not include a further graph.
As mentioned before, the optimal λ is always either a1 or a2.
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Figure 4.7: a1 = 1.2, a2 = 1.5, T = 7

And the optimal λ’s develop as follows.

Figure 4.8: a1 = 1.2, a2 = 1.5, T = 7

4.3.5 Optimal strategy

Proposition 4.13
The optimal strategy is given as

π̂(t, Yt) =

{
− θν̂t

σ(Yt)
= b(Yt)−r(Yt)+ν̂tδ(Yt)

σ(Yt)2
= λ̂t−ν̂t

δ(Yt)ν̂t
, if δ(Yt) 6= 0

b(Yt)−r(Yt)
σ(Yt)2

, if δ(Yt) = 0,
0 ≤ t ≤ T

where for the pessimist λ̂ and ν̂ are as in Theorem 4.4 and for the optimist we choose
λ̂ = λopt, ν̂ = νopt as in Corollary 4.7.
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The optimal consumption rate is

ĉ = x
Z λ̂S0

Dν̂

and the optimal wealth process is given by

X̂ = κ(γ(T − ·) + 1)ĉ.

The optimal consumption rate is the rate relative to µ. It implies an optimal
terminal wealth of X̂T = CT − CT− = κĉT and an optimal consumption rate of
c̃ = κγĉ with respect to the Lebesgue measure. Furthermore, the pessimist’s optimal
strategy is unique since the minimizing λ̂ and hence ν̂ is unique. As mentioned
before, the optimist’s strategy is dt-a.e. unique.

Proof. First the form of ĉ follows directly from Theorem 3.5 and the fact that
I(y) = 1/y and ẑ = 1/x.

To compute the optimal strategy we will consider the P -martingaleR = (Rt)0≤t≤T

defined as

Rt =
(X̂t

S0
t

+

∫ t

0

ĉu
S0
u

µ(du)
)
Dν̂

t , 0 ≤ t ≤ T. (4.13)

We have for 0 ≤ t ≤ T

Rt = E[RT |Ft] = E
[
Dν̂

T

∫ T

0

ĉu
S0
u

µ(du)
∣∣∣Ft

]

= Dν̂
t

∫ t

0

ĉu
S0
u

µ(du) + E
[
Dν̂

T

∫ T

0

xZ λ̂
uS

0
u

Dν̂
uS

0
u

µ(du)
∣∣∣Ft

]

= Dν̂
t

∫ t

0

ĉu
S0
u

µ(du) + x

∫ T

t

Z λ̂
t µ(du)

= Dν̂
t

∫ t

0

ĉu
S0
u

µ(du) + xκZ λ̂
t (γ(T − t) + 1). (4.14)

Comparison of (4.13) and (4.14) yields

X̂t = κ(γ(T − t) + 1)ĉt for 0 ≤ t ≤ T.

Next, we can apply Itô’s formula to the right-hand side and get (compare (4.5) for
the form of dĉt)

dX̂t =− ĉtκγ dt+

X̂t−

(
−θν̂t dWt +

λ̂t − ν̂t
ν̂t

dMt +
(
(θν̂t )

2 + ν̂t − λ̂t + rt + λ0 λ̂t − ν̂t
ν̂t

)
dt
)
.

Furthermore, we know that the wealth process evolves according to the SDE

dX̂t =− ĉt µ(dt) + X̂t−

(
σ(Yt)πt dWt + (b(Yt)− r(Yt))πt + r(Yt) dt+ πtδ(Yt) dNt

)

=− κγĉt dt+ X̂t−

(
σ(Yt)πt dWt + πtδ(Yt) dMt

+
(
(b(Yt)− r(Yt) + λ0δ(Yt))πt + r(Yt)

)
dt
)
. (4.15)
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Comparison of the dWt or dMt-terms gives the form of π̂. (To see that this also
implies equality for the dt-terms one has to consider the dependence of ν̂ from λ̂.)

4.4 Comparison of optimist and pessimist

Even though the robust problem is based on an axiomatic approach to uncertainty
we interpret in this section the set of priors Q rather literally as set of possible
market measures. (Especially for the α-MEU formulation this seems to be feasible.)
In this setting we compare how the optimistic/pessimistic agent performs in a “real”
market setting.

More precisely, we want to compare whether the investment strategy of the
optimist or the pessimist is more successful if the “real” market measure is Qλ for
some λ ∈ Λ. First, the question arises how to evaluate the success of a strategy.
One thing that seems reasonable to compare is expected terminal wealth, i.e.

EQλ
[XT ]

- here we will give some numerical results. However, actually one should compare
expected utility

EQλ
[log(XT )]

since the agents choose the strategy such that the expected utility is maximized.
Except from the case δ = 0 we are only able to give numerical results. Then it

is obviously not possible to simulate all possible market measures, hence we restrict
ourselves to measures that are given by a constant λ ∈ Λ. Furthermore, we will
consider only terminal wealth, no consumption. It would be interesting to do more
advanced simulations in particular to have a non constant intensity λ.

First, we observe that for the case δ = 0 the expected utility from terminal
wealth does not depend on the measure the investor used to optimize. I.e. optimist
and pessimist have the same expected utility, namely

EQ[logXT ] = EQ

[∫ T

0

(1/2(b− r)2/σ2 + r) ds
]

(the equation follows with easy computations from Proposition 4.13). In this case
both investors have as optimal λ’s a1 or a2 but they get polar values (compare
Remark 4.8).

For the more general case we used MATLAB to simulate the outcome. (The
code for the simulation is again given in the appendix.) Since we assume that the
“real” market has a constant intensity we choose the parameters for the simulation
such that optimist and pessimist optimize also with respect to (nearly) constant
intensities.

For the parameters T = 0.55, δ = (−1,−1), σ = (0.1, 1), b = (0.5, 0.54), a1 = 0.8,
a2 = 1.1 we have that the λ for the pessimist is constant at 0.8 and λ for the optimist
is constant at 1.1. We get the following results for the expected utility
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λ 0.8 0.9 1 1.1
optimist 0.0162 0.0588 0.1010 0.1399
pessimist 0.0412 0.0655 0.0899 0.1162

and the expected wealth

λ 0.8 0.9 1 1.1
optimist 1.2122 1.2870 1.3754 1.4617
pessimist 1.1013 1.1390 1.1722 1.2108

Next, we consider the parameters T = 1.1, δ = (−0.25,−0.25), σ = (0.7, 0.177),
b = (1, 0.5) and x = 1. Then the λ for the pessimist is higher (not constant, but
always above 1.8) and λopt = 0.1 (at least up to T ). Here the results for the expected
utility are

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

optimist 1.0444 0.9793 0.8961 0.8288 0.7496 0.6754 0.6024
pessimist 0.6982 0.6727 0.6479 0.6175 0.5962 0.5708 0.5423

λ 0.8 0.9 1 1.1 1.2 1.3 1.4

optimist 0.5324 0.4499 0.3830 0.3087 0.2358 0.1675 0.0964
pessimist 0.5197 0.4894 0.4728 0.4414 0.4181 0.3912 0.3666

λ 1.5 1.6 1.7 1.8 1.9

optimist 0.0190 -0.0510 -0.1238 -0.1961 -0.2652
pessimist 0.3390 0.3190 0.2902 0.2676 0.2429

and

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

optimist 8.1494 7.5340 7.1730 6.8569 6.5238 6.1784 5.7942
pessimist 2.4095 2.3603 2.3130 2.2529 2.2047 2.1587 2.1006

λ 0.8 0.9 1 1.1 1.2 1.3 1.4

optimist 5.6687 5.2179 5.0162 4.6934 4.5034 4.2550 4.0486
pessimist 2.0588 2.0178 1.9693 1.9186 1.8779 1.8352 1.8019

λ 1.5 1.6 1.7 1.8 1.9

optimist 3.7914 3.6007 3.3875 3.2082 3.1150
pessimist 1.7591 1.7175 1.6814 1.6395 1.6082

for the expected wealth.

As is clear from the problem formulation the optimist performs better than the
pessimist in his “predicted” scenario and vice versa. Furthermore, the “optimistic”
scenario gives the higher utility for both agents and the utility is monotonic in λ.
Apart from that the main difference between the two approaches is that the range of
possible expected utilities is smaller for the pessimistic agent. This is in accordance
with the “pessimistic” view. This investor prefers safety over possible gains whereas
the optimistic investor bids on the uncertainty and might thus gain and lose more.
With respect to expected wealth the optimist always gets more in our examples.
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4.5 HARA utility

We will now consider our problem for an investor with HARA utility function with
risk aversion parameter 0 < α < 1, i.e. U(x) = xα/α. We will see later that
a negative risk aversion parameter is not feasible for the HJB equations we are
computing. We will again develop the corresponding HJB equation which enables
the investor to compute the optimal strategy (at least numerically).

4.5.1 HJB equation

The aim of the pessimistic investor is again to maximize

inf
Q∈Q

EQ

[∫ T

0

U(ct)µ(dt)
]

where now

µ(dt) = κ(γe−ρtdt+ δ{T}(dt)).

We give again the HJB equation for the dual problem. As before we want to use
Theorem 4.2. For this observe that U obviously satisfies Assumption 3.2 and As-
sumption 3.4 is fulfilled with the same argument as for the logarithmic utility when
we use equation (4.20).

Hence, we have that the dual problem is

ũ(z) = inf
λ∈Λ

inf
ν∈N

E
[
Zλ

T

∫ T

0

Ũ
( zDν

t

S0
t Z

λ
t

)
µ(dt)

]
, z > 0.

Here Ũ(z) = −zβ/β with β = −α/(1 − α). In particular β will have a different
meaning from the last section.

Then we know that

u(x) = min
z>0

(ũ(z) + zx)

= min
z>0

(
inf
λ∈Λ

inf
ν∈N

E
[
Zλ

T

∫ T

0

Ũ
( zDν

t

S0
tZ

λ
t

)
µ(dt)

]
+ zx

)

= inf
λ∈Λ

inf
ν∈N

min
z>0

(−zβ

β
Γλ,ν + zx)

=
xα

α
( inf
λ∈Λ

inf
ν∈N

Γλ,ν)1−α (4.16)

where

Γλ,ν = E
[∫ T

0

Zλ
t (D

ν
t /(S

0
tZ

λ
t ))

β µ(dt)
]
.

The last equality follows by standard optimization methods which also yield that
the optimal

ẑ = (x/Γλ,ν)1/(β−1). (4.17)
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To simplify this expression we compute

(Zλ
t )

1−β(Dν
t )

β/(S0
t )

β =

exp
(
−
∫ t

0

(1− β)(λs − λ0) ds
) ∏

s≤t

(
1 +

λs − λ0

λ0
∆Ns

)1−β

exp
(∫ t

0

β θνs dWs −
1

2

∫ t

0

β (θνs )
2 ds−

∫ t

0

β (νs − λ0) ds
)

∏

s≤t

(
1 +

νs − λ0

λ0
∆Ns

)β

exp
(
−
∫ t

0

β rs ds
)

=exp
(∫ t

0

λ0 − λs + β (λs − λ0)− 1

2
β (θνs )

2 − β (νs − λ0 + rs) ds
)

exp
(∫ t

0

β θνs dWs

) ∏

s≤t,∆Ns 6=0

(λs

λ0

)1−β( νs
λ0

)β

=exp
(∫ t

0

β θνs dWs −
1

2

∫ t

0

(β θνs )
2 ds

)

exp
(∫ t

0

(
λ0 − λs + β

(
λs −

1

2
(θνs )

2 − νs − rs
)
+

1

2
(β θνs )

2
)
ds
)

∏

s≤t,∆Ns 6=0

(λ1−β
s νβ

s − λ0

λ0
+ 1

)

=E
(∫ .

0

β θνs dWs

)
t
E
(∫ .

0

λ1−β
s νβ

s − λ0

λ0
dMs

)
t
exp

(∫ t

0

λ0 − λs ds
)

exp
(∫ t

0

β
(
λs −

1

2
(θνs )

2 − νs − rs
)
+

1

2
β2(θνs )

2 +
λ1−β
s νβ

s − λ0

λ0
λ0 ds

)
.

(4.18)

We want to exploit the fact that the stochastic exponential defines a density as long
as it satisfies

E
[
E
(∫ .

0

β θνs dWs +

∫ .

0

λ1−β
s νβ

s − λ0

λ0
dMs

)
T

]
= 1. (4.19)

In this case let

dP λ,ν

dP
= E

(∫ ·

0

β θνs dWs +

∫ ·

0

λ1−β
s νβ

s − λ0

λ0
dMs

)
T
.

Then

E
[
(Zλ

t )
1−β(Dν

t )
β/(S0

t )
β
]
= Eλ,ν

[
exp

(∫ t

0

q(Ys, λs, νs) ds
)]

(4.20)

where

q(ei, λ, ν) = −λ + β
(
λ− 1

2
(θν(ei))

2 − ν − r(ei)
)
+

1

2
β2(θν(ei))

2 + λ1−βνβ.
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Observe that (4.19) is satisfied if

ν ∈ N0 := {ν ∈ N |
∫ T

0

ν2
s ds is bounded P -a.s.}.

This follows by an application of Novikov’s criterion and [35, remark, p. 142]. In
analogy to [22, Lemma 3.2] we can formulate the following Lemma.

Lemma 4.14
For fixed λ ∈ Λ we have

inf
ν∈N

Γν,λ = inf
ν∈N0

Γν,λ. (4.21)

Proof. The proof is a copy of the proof of [22, Lemma 3.2] if we use Lemma 3.12
instead of [40, Lemma 3.6].

In the end, we need to compute (4.16). The above lemma implies that it is
enough to compute

inf
λ∈Λ,ν∈N0

Γλ,ν = inf
λ∈Λ,ν∈N0

Eλ,ν
[∫ T

0

exp
(∫ u

0

q(Ys, λs, νs) ds
)
µ(du)

]
.

We will again use stochastic programming to find ordinary differential equations that
give the solution. For this define for 0 ≤ t ≤ T , ν ∈ N0, λ ∈ Λ and i ∈ {1, . . . , n}

J(t, ei, ν, λ) = Eλ,ν
[∫

exp
(∫ u

0

q(Ys, λs, νs) ds
)
µ̃t(du)

]

where
µ̃t(du) = κ̃eρ(t−u)I[0,t](du) + δt(du),

κ̃ = γe−ρT and Y0 = ei. Hence,

J(T, y, ν, λ) = 1/κΓλ,ν.

Furthermore, let
V (t, y) = inf

ν∈N0,λ∈Λ
J(t, y, ν, λ).

If the generator of the Markov chain with respect to the measure P λ,ν is called Aλ,ν

the HJB’s should be

vit(t) = inf
λ∈[a1,a2],ν>0

(
q(ei, λ, ν)v

i(t) + (Aλ,νv(t, .))i
)
+ κ̃e−ρt

= inf
λ∈[a1,a2],ν>0

(
q(ei, λ, ν)v

i(t) + λ1−βνβ
n∑

j=1

pi,j(v
j(t)− vi(t))

)
+ κ̃e−ρt (4.22)

with boundary condition

vi(0) = 1, i = 1, . . . , n. (4.23)
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Remark 4.15
If α < 0 there exists no feasible solution to the HJB equation as can be seen by
the following argumentation. To compute vit(0) we need to minimize q(ei, λ, ν) with
respect to ν and λ. Since λ is bounded we can here neglect the terms which only
depend on λ. Hence, we need to minimize

1

2
β(1− β)

(b− r + δν

σ

)2

− βν + λ1−βνβ

with respect to ν > 0. If we consider the case α < 0 we have 0 < β < 1 and in this
case q goes to minus infinity as ν goes to infinity. Hence, there exists no feasible
solution to the HJB equation. Furthermore, it is not easy to prove existence for
the solutions to the above HJB equations and numerical results suggest that there
might be cases where no bounded solution exists.

Theorem 4.16 (Verification)
Assume that a bounded solution v ∈ C1(R,Rn) to (4.22), (4.23) exists, then v = V .
If (λ∗, ν∗) is a measurable bounded process, realizing the infimum in (4.22) then
(λ̂, ν̂) := (λ∗(T − t, Yt−), ν

∗(T − t, Yt−))0≤t≤T is a feasible control strategy from the

set Λ×N0. Furthermore, we have then V (t, y) = J(t, y, ν̂, λ̂).

Proof. As for the logarithmic utility we will prove the result only for n = 2 in order
to keep the notation easy.

First, we show that v ≤ V . As in the proof for the logarithmic utility let
v : R2 → R be a differentiable function which satisfies v(t, ei) = vi(t) for i = 1, 2.
Note, that since v is differentiable v(t, Yt) can only jump when Y jumps. For fixed
λ ∈ Λ, ν ∈ N0 Itô’s lemma yields

d(e
∫ t

0
q(Ys,λs,νs) ds v(u− t, Yt))

= e
∫ t

0
q(Ys,λs,νs) ds

((
q(Yt−, λt, νt) v(u− t, Yt−)− vt(u− t, Yt−)

)
dt+∆v(u− t, Yt)

)

≥ e
∫ t

0
q(Ys,λs,νs) ds

(
(v(u− t, Ŷt−)− v(u− t, Yt−)) dM

λ,ν
t − κ̃e−ρ(u−t) dt

)

where

Mλ,ν = N −
∫ ·

0

λ1−β
s νβ

s ds

is the P λ,ν-compensated Poisson process and the inequality follows with (4.22). With
the same arguments as for the logarithmic utility the result does not change if we
use t instead of t−. And thus, we get by integrating and taking expectations

v(u, y) ≤ Eλ,ν
[
e
∫ u

0
q(Ys,λs,νs) ds +

∫ u

0

e
∫ t

0
q(Ys,λs,νs) dsκ̃e−ρ(u−t) dt

]

= J(u, y, ν, λ).

To see the other inequality we take again for i 6= j

(λ∗(t, ei), ν
∗(t, ei)) = argmin(λ,ν)∈[a1,a2]×(0,∞)

(
q(ei, λ, ν)v

i(t)

+ λ1−βνβ(vj(t)− vi(t)) + κ̃e−ρt
)
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Arguing as for the logarithmic utility and with the help of Lemma 4.17 we get that
(λ∗, ν∗) can be chosen as a measurable function.

Then (λ̂s, ν̂s) = (λ∗(T − s, Ys−), ν
∗(T − s, Ys−)) is an admissible control strategy

and due to (4.22) we get v = V .

In the following we stick to the case where the Markov chain switches only
between two states.

4.5.2 Behavior of the solution to the HJB equation

As for the logarithmic utility we can again try to find properties of the solution to
the HJB equation. Here, the situation is not as easy as before since we have the
additional infimum over ν. However, we can still prove that the “better” state of the
Markov chain can be determined at time 0. For this we consider first the function
q and show that it is non-negative and convex in ν.

Lemma 4.17
We have q(ei, λ, ν) ≥ 0 and qνν(ei, λ, ν) > 0 for all i ∈ {1, 2}, λ ∈ [a1, a2] and ν > 0.

Proof. If we minimize q for given ν > 0 we get that the minimizing λ equals ν.
(Obviously this λ is not necessarily in [a1, a2].) And thus, we have

q(ei, λ, ν) ≥ q(ei, ν, ν) ≥ −ν + βν − βν + ν1−βνβ = 0.

Furthermore, by taking derivatives we get

qν =βθν
δ

σ
− β − β2θν

δ

σ
+ βλ1−βνβ−1 and

qνν =(β − 1)β
( δ2

σ2
+ λ1−βνβ−2

)
> 0.

As before we can determine whether the state e1 or e2 is more advantageous by
considering the infimum of the corresponding function q. This infimum gives the
slope of the value function at time zero and the following proposition states that
the state with the higher slope at time zero is always “preferable”.

Proposition 4.18
If

inf
ν>0

inf
λ∈[a1,a2]

q(e1, λ, ν) > inf
ν>0

inf
λ∈[a1,a2]

q(e2, λ, ν)

then it follows
v1t (t) ≥ v2t (t) for all t ≥ 0.

Proof. Let as in the corresponding proof for the logarithmic utility

t∗ = inf{t ≥ 0 | v1t (t∗)− v2t (t
∗) < 0}.
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We want to prove that t∗ = ∞. As before, our assumption immediately implies
t∗ > 0. Up to t∗ we have

v1t (t) > v2t (t) > 0. (4.24)

Assume that t∗ < ∞. Then there exists also due to (4.24) t2 > t∗ such that
v1t (t2)− v2t (t2) < 0, v1(t2)− v2(t2) > 0, v1t (t2) > 0 and v1(t2) > 0. Using this we get
that the function

f : [0,∞) → R, f(t) = (v1(t)− v2(t))/v1(t) = 1− v2(t)/v1(t)

is continuous and satisfies

f(0) = 0 < f(t2) < f(t∗).

Hence, due to the Intermediate Value Theorem there exists t1 ∈ (0, t∗) such that
f(t1) = f(t2) and hence,

v2(t2)/v
1(t2) = v2(t1)/v

1(t1)

or equivalently
v2(t2)/v

2(t1) = v1(t2)/v
1(t1).

Together this yields

v1t (t2)− v2t (t2) = inf
λ∈[a1,a2],ν>0

(
q(e1, λ, ν)v

1(t2) + λ1−βνβ
(
v2(t2)− v1(t2)

))

− inf
λ∈[a1,a2],ν>0

(
q(e2, λ, ν)v

2(t2) + λ1−βνβ(v1(t2)− v2(t2))
)

=v1(t2) inf
λ∈[a1,a2],ν>0

(
q(e1, λ, ν) + λ1−βνβ v

2(t2)− v1(t2)

v1(t2)

)

− v2(t2) inf
λ∈[a1,a2],ν>0

(
q(e2, λ, ν) + λ1−βνβ v

1(t2)− v2(t2)

v2(t2)

)

=
v1(t2)

v1(t1)
v1t (t1)−

v2(t2)

v2(t1)
v2t (t1)

=
v1(t2)

v1(t1)

(
v1t (t1)− v2t (t1)

)
> 0.

And this contradicts our assumption t∗ < ∞.

4.5.3 Numerical Results

We use again MATLAB to compute the solution of the HJB equation for given
parameters σ, δ, r and b. We consider the utility function U(x) = 1/2

√
x, i.e. β =

−1/2. First there are two graphs (from mathematica) that give the form of q(λ, ν).
We choose a1 = 0.1 and a2 = 1.5 which according to Proposition 4.18 implies that
v2 ≥ v1.
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Figure 4.9: q(λ, ν) for b = 0.9, δ = −0.3, r = 0 and σ = 0.1
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Figure 4.10: q(λ, ν) for b = −0.84, δ = 1, r = 0 and σ = 0.1

Then the solution for the corresponding HJB-equation without consumption is
given by the following graph.
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Figure 4.11: a1 = 0.1, a2 = 1.5, T = 1

Here the λ’s develop as follows.
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Figure 4.12: a1 = 0.1, a2 = 1.5, T = 1

4.5.4 Optimal strategy

In this subsection we will compute the optimal consumption rate and the optimal
strategy.

Proposition 4.19
Assume that a solution to the HJB equation exists. Then the optimal consumption
rate with respect to µ is

ĉ = ẑβ−1(Dν̂)β−1(Z λ̂)1−β(S0)1−β
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where λ̂ and ν̂ are as in Theorem 4.16 and

ẑ =
( x

κv(T, Y0)

)1/(β−1)

.

We get this rate by investing according to the strategy

π̂(t, Yt) =
−θν̂t
σ(Yt)

(1− β) = 1/δ(Yt)
(
−1 +

v(T − t, Ŷt−)

v(T − t, Yt−)

( λ̂t

ν̂t

)1−β)
, 0 ≤ t ≤ T.

Proof. First, the form of ĉ follows from Theorem 3.5, and we already computed

ẑ =
( x

κv(T, Y0)

)1/(β−1)

.

To compute the optimal strategy we will again consider the P -martingale (Rt)0≤t≤T

defined as

Rt =
(X̂t

S0
t

+

∫ t

0

ĉu
S0
u

µ(du)
)
Dν̂

t , 0 ≤ t ≤ T. (4.25)

We use the martingale property to compute

Rt = E[RT |Ft] = Dν̂
t

∫ t

0

ĉu
S0
u

µ(du) + ẑβ−1
(Dν̂

t

S0
t

)β

(Z λ̂
t )

1−βEt

where

Et = E
[∫ T

t

(Dν̂
u

Dν̂
t

)β(Z λ̂
u

Z λ̂
t

)1−β(S0
u

S0
t

)−β

µ(du)
∣∣∣Ft

]
.

We introduce the controls λ̂
(t)
s = λ∗(T − t− s, Ys−) and ν̂

(t)
s = ν∗(T − t− s, Ys−) and

use the Markov-property (compare [39] ) to compute furthermore

Et = κJ(T − t, Yt, λ̂
(t), ν̂(t)) = κv(T − t, Yt).

Hence,

Rt = Dν̂
t

∫ t

0

ĉu
S0
u

µ(du) +
x

v(T, Y0)

(Dν̂
t

S0
t

)β

(Z λ̂
t )

1−βv(T − t, Yt). (4.26)

Comparison of (4.25) and (4.26) yields

X̂t = κ v(T − t, Yt) ĉt.

We want to apply Itô’s formula to the right-hand side of the above equation. For
this we have first (the computations are the same as for (4.18))

dĉt =ĉt−

(
θν̂t (β − 1) dWt + (ν̂β−1

t λ̂1−β
t − 1) dMt +

(1
2
(θν̂(β − 1))2 − λ0 − λ̂t+

λ0ν̂β−1
t λ̂1−β

t + βλ̂t − βν̂t −
1

2
(β − 1)(θν̂t )

2 + ν̂t − βr + r
)
dt
)
.
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Thus, we get

dX̂t =X̂t−

(
θν̂t (β − 1) dWt + (ν̂β−1

t λ̂1−β
t − 1) dMt +

(1
2
(θν̂t (β − 1))2 − λ0+

λ0ν̂β−1
t λ̂1−β

t − λ̂t + βλ̂t − βν̂t −
1

2
(β − 1)(θν̂t )

2 + ν̂t − βr + r
)
dt
)

− κvt(T − t, Yt) ĉt dt+ κ(v(T − t, Ŷt)− v(T − t, Yt)) ĉt dNt

+ κ ĉt(v(T − t, Ŷt)− v(T − t, Yt))(ν̂
β−1
t λ̂1−β

t − 1) dNt

=X̂t−

(
θν̂t (β − 1) dWt +

(
ν̂β−1
t λ̂1−β

t

v(T − t, Ŷt)

v(T − t, Yt)
− 1

)
dMt +

(
λ0ν̂β−1

t λ̂1−β
t

+
1

2
(θν̂t (β − 1))2 − λ0 − λ̂t + βλ̂t − βν̂t −

1

2
(β − 1)(θν̂t )

2 + ν̂t − βr

+ r
)
dt
)
− κ

((
−λ̂t + β

(
λ̂t −

1

2
(θν̂t )

2 − ν̂t − r
)
+

1

2
β2(θν̂t )

2 + λ̂1−β
t ν̂β

t

)

v(T − t, Yt) + λ̂1−β
t ν̂β

t (v(T − t, Ŷt)− v(T − t, Yt)) + γe−ρT eρ(T−t)
)
ĉt dt

+ κ(v(T − t, Ŷt)− v(T − t, Yt)) λ
0ĉt(1 + ν̂β−1

t λ̂1−β
t − 1) dt

=X̂t−

(
θν̂t (β − 1) dWt +

(
ν̂β−1
t λ̂1−β

t

v(T − t, Ŷt)

v(T − t, Yt)
− 1

)
dMt +

(
(θν̂t )

2(1− β)

− λ0 + ν̂t + r +
V (T − t, Ŷt)

V (T − t, Yt)
(λ0 − λ̂1−β

t ν̂β
t + λ0λ̂1−β

t ν̂β−1
t )

)
dt
)

− κγe−ρtĉt dt. (4.27)

We know again that the wealth process evolves according to the SDE

dX̂t =− ĉt µ(dt) + X̂t−

(
σ(Yt)π(t, Yt) dWt +

(
(b(Yt)− r(Yt))π(t, Yt)

+ r(Yt)
)
dt+ π(t, Yt)δ(Yt) dNt

)

=− κγe−ρtĉt dt+ X̂t−

(
σ(Yt)π(t, Yt) dWt +

(
(b(Yt)− r(Yt) + λ0δ)π(t, Yt)

+ r(Yt)
)
dt+ π(t, Yt)δ(Yt) dMt

)
. (4.28)

We can now compare the dW and dM terms in (4.27) and (4.28) and get

π̂(t, Yt) =
−θν̂t
σ(Yt)

(1− β) = 1/δ(Yt)
(
−1 +

v(T − t, Ŷt−)

v(T − t, Yt−)

( λ̂t

ν̂t

)1−β)
.

(Using this strategy the dt terms are the same.)
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Appendix
Matlab Code

In the following we give some code that was used for the simulations.
This program is used to compare the expected terminal wealth and logarithmic

utility of an optimistic and pessimistic investor. As arguments it gets the interval for
the intensity of the Poisson process, i.e. a1, a2. All other parameters are specified
directly in the program.

1 %c a l l s the func t i on e x p e c t e d t e rm i n a l u t i l i t y
2 % and expec t ed t e rmina lwea l t h f o r v a l u e s o f lambda between a1
3 %and a2
4

5

6 function optpesscompar i s ion ( a1 , a2 )
7

8 T=0.55; %termina l time
9 de l t a =[−1 ,−1];

10 sigm = [ 0 . 1 , 1 ] ;
11 b= [ 0 . 5 , 0 . 5 4 ] ;
12 x=1;
13 %l e t the h j b s o l v e r run in order to ge t the lambda f o r

op t im i s t and
14 %pes s im i s t
15 lambdaopt=hjblambdalogconsopt2 (T, a1 , a2 , de l ta , b , sigm ) ;
16 lambdapess=hjblambdalogconsumption (T, a1 , a2 , de l ta , b , sigm ) ;
17

18 for l=a1 : 0 . 1 : a2
19 expwealth=expectedterminalweal th ( l , lambdaopt , lambdapess ,

T, de l ta , sigm , b , x )
20 e x p u t i l i t y=exp e c t e d t e rm i n a l u t i l i t y ( l , lambdaopt ,

lambdapess ,T, de l ta , sigm , b , x )
21 end

22 end

The above program calls hjblambdalogconsumption.m which solves the HJB equa-
tion for a pessimistic investor and the given parameters. In particular it returns the
times at which the solution to the ODE was evaluated and the corresponding opti-
mal values for λ. (We do not give hjblambdalogconsopt2.m here since it is basically
identical code just for the optimistic investor.)

1 function lambdapess = hjblambdalogconsumption (T, a11 , a21 , de l ta , b ,
sigm )

2 %re turns vec tor wi th vec tor f o r lambda1 and lambda2 and the
t imepo in t s f o r
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3 %the s e
4

5 %so l v e s the h j b equat ion f o r the l o g a r i t hm i c u t i l i t y
6

7 clear y a1 a2 ;
8

9 global a1 a2 zaeh l BETA1 BETA2 b1 b2 sigma1 sigma2 Y de l ta1
de l ta2 tp o in t s gamma

10

11 gamma=0;
12 a1=a11 ;
13 a2=a21 ;
14 zaeh l =1;
15 l ambdat i l1=zeros (1 , 10) ;
16 l ambdat i l2=zeros (1 , 10) ;
17 de l ta1=de l t a (1 ) ;
18 de l ta2=de l t a (2 ) ;
19 b1=b (1) ;
20 b2=b (2) ;
21 sigma1=sigm (1) ;
22 sigma2=sigm (2) ;
23

24 BETA1=−(b1∗ de l ta1+sigma1 ˆ2) /(2∗ de l ta1 ˆ2) ;
25 BETA2=−(b2∗ de l ta2+sigma2 ˆ2) /(2∗ de l ta2 ˆ2) ;
26

27

28 tspan = [0 T ] ;
29 y0 = [ 0 ; 0 ] ;
30 % Solve the problem us ing ode45
31 [ tpo in t s ,Y]=ode45 (@f , tspan , y0 ) ;
32 %p l o t s the s o l u t i o n
33 plot ( tpo in t s ,Y) ;
34 lambdapess=zeros (3 , length (Y) ) ;
35 for zaeh l =1: length (Y)
36 l ambdat i l1 ( zaeh l )=fminbnd (@tomin21 , a1 , a2 ) ;
37 l ambdat i l2 ( zaeh l )=fminbnd (@tomin22 , a1 , a2 ) ;
38 lambdapess (1 , zaeh l )=lambdat i l1 ( zaeh l ) ;
39 lambdapess (2 , zaeh l )=lambdat i l2 ( zaeh l ) ;
40 lambdapess (3 , zaeh l )=tpo in t s ( zaeh l ) ;
41 end ;
42

43 figure ;
44 plot ( tpo in t s , lambdati l1 , tpo in t s , lambdat i l2 ) ;
45 t i t l e ( ’ lambda f o r p e s s im i s t ’ )
46 end

47

48
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49

50 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 function dydt = f ( t ,w)
52 global a1 a2 BETA1 BETA2 b1 b2 sigma1 sigma2 Y de l ta1 de l ta2

gamma

53 y=w;
54

55 lambda1=fminbnd (@tomin1 , a1 , a2 ) ;
56 lambda2=fminbnd (@tomin2 , a1 , a2 ) ;
57

58 dydt=zeros (2 , 1 ) ;
59 dydt (1)=(1+gamma∗ t ) ∗ ( 0 . 5∗ ( ( b1+de l ta1 ∗(BETA1+sqrt (BETA1̂ 2+sigma1

ˆ2∗ lambda1/ de l ta1 ˆ2) ) ) / sigma1 )ˆ2+BETA1+sqrt (BETA1ˆ2+sigma1ˆ2∗
lambda1/ de l ta1 ˆ2)−lambda1+( log ( lambda1 )−log (BETA1+sqrt (BETA1
ˆ2+sigma1ˆ2∗ lambda1/ de l ta1 ˆ2) ) ) ∗ lambda1 )+lambda1 ∗( y (2)−y (1) ) ;

60 dydt (2)=(1+gamma∗ t ) ∗ ( 0 . 5∗ ( ( b2+de l ta2 ∗(BETA2+sqrt (BETA2̂ 2+sigma2
ˆ2∗ lambda2/ de l ta2 ˆ2) ) ) / sigma2 )ˆ2+BETA2+sqrt (BETA2ˆ2+sigma2ˆ2∗
lambda2/ de l ta2 ˆ2)−lambda2+( log ( lambda2 )−log (BETA2+sqrt (BETA2
ˆ2+sigma2ˆ2∗ lambda2/ de l ta2 ˆ2) ) ) ∗ lambda2 )+lambda2 ∗( y (1)−y (2) ) ;

61

62

63

64 function tomin = tomin1 ( l )
65

66

67 tomin=(1+gamma∗ t ) ∗0 . 5∗ ( ( b1+de l ta1 ∗(BETA1+sqrt (BETA1ˆ2+sigma1ˆ2∗ l
/ d e l ta1 ˆ2) ) ) / sigma1 )ˆ2+BETA1+sqrt (BETA1̂ 2+sigma1ˆ2∗ l / d e l ta1
ˆ2)− l +( log ( l )−log (BETA1+sqrt (BETA1̂ 2+sigma1 ˆ2∗ l / d e l ta1 ˆ2) ) ) ∗ l
+l ∗( y (2)−y (1) ) ;

68 end

69

70 function tomin = tomin2 ( l )
71 tomin=(1+gamma∗ t ) ∗0 . 5∗ ( ( b2+de l ta2 ∗(BETA2+sqrt (BETA2ˆ2+sigma2ˆ2∗ l

/ d e l ta2 ˆ2) ) ) / sigma2 )ˆ2+BETA2+sqrt (BETA2̂ 2+sigma2ˆ2∗ l / d e l ta2
ˆ2)− l +( log ( l )−log (BETA2+sqrt (BETA2̂ 2+sigma2 ˆ2∗ l / d e l ta2 ˆ2) ) ) ∗ l
+l ∗( y (1)−y (2) ) ;

72 end

73 end

74

75

76

77 function tomin = tomin22 ( l )
78 global BETA2 b2 sigma2 zaeh l d e l ta2 Y tpo in t s gamma

79 tomin=(1+gamma∗ tp o i n t s ( zaeh l ) ) ∗0 . 5∗ ( ( b2+de l ta2 ∗(BETA2+sqrt (BETA2
ˆ2+sigma2ˆ2∗ l / d e l ta2 ˆ2) ) ) / sigma2 )ˆ2+BETA2+sqrt (BETA2̂ 2+sigma2
ˆ2∗ l / d e l ta2 ˆ2)− l +( log ( l )−log (BETA2+sqrt (BETA2ˆ2+sigma2 ˆ2∗ l /
d e l ta2 ˆ2) ) ) ∗ l+l ∗(Y( zaehl , 1 )−Y( zaehl , 2 ) ) ;
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80 end

81

82 function tomin = tomin21 ( l )
83 global BETA1 b1 sigma1 zaeh l d e l ta1 Y tpo in t s gamma

84 tomin=(1+gamma∗ tp o i n t s ( zaeh l ) ) ∗0 . 5∗ ( ( b1+de l ta1 ∗(BETA1+sqrt (BETA1
ˆ2+sigma1ˆ2∗ l / d e l ta1 ˆ2) ) ) / sigma1 )ˆ2+BETA1+sqrt (BETA1ˆ2+sigma1
ˆ2∗ l / d e l ta1 ˆ2)− l +( log ( l )−log (BETA1+sqrt (BETA1̂ 2+sigma1 ˆ2∗ l /
d e l ta1 ˆ2) ) ) ∗ l+l ∗(Y( zaehl , 2 )−Y( zaehl , 1 ) ) ;

85 end

The programs expectedterminalutility.m and expectedterminalwealth.m are also
called by optpesscomparision.m. They simulate the terminal utility/wealth of an
investor that is using a strategy adapted to a pessimistic/optimistic attitude but
invests in a market where the stock price process moves according to a “real world”
λ as given by the calling method.

1 %the func t i on s imu la t e s the s t o c k p r i c e proce s s f o r a g iven
Poisson

2 %in t e n s i t y lambda
3 %in order to compute the expec t ed termina l u t i l i t y f o r an

i n v e s t o r wi th
4 %op t im i s t i c / p e s s im i s t i c a t t i t u d e .
5 %the SDE fo r the s t o c k p r i c e proce s s i s s imu lated wi th the Euler

method . The
6 %timepo in t s are the ones used by matlab f o r the HJB so l u t i o n .

This i s
7 %c e r t a i n l y one o f the major reasons f o r numerical l a c k o f

p r e c i s i on s ince
8 %the d i s t anc e between t he s e po i n t s i n c r e a s e s wi th time
9

10 %input : lambda : the lambda t ha t shou ld be used to s imu la t e the
s t o c k p r i c e

11 % lambdaopt : array wi th the argmin o f the s o l u t i o n to the
ODE for the

12 % op t im i s t
13 % lambdapess : the same f o r the pe s s im i s t
14 % T: termina l time
15 % de l ta , sigm , b , x : parameters f o r the SDE to generate

the s t o c k
16 % pr i c e
17 %output : an array S wi th expec t ed u t i l i t i e s where S (1) i s the

expec t ed
18 %u t i l i t y o f the pe s s im i s t and S (2) i s the expec t ed u t i l i t y o f

the optmis t
19

20

21 function Ex =exp e c t e d t e rm i n a l u t i l i t y ( lambda , lambdaopt , lambdapess
,T, de l ta , sigm , b , x )

22
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23

24 %number o f i t e r a t i o n s used f o r the Monte−Carlo−Method
25 numberof i ter =100000;
26

27 S (1) =0;
28 S (2) =0;
29

30

31 %use the lambda to compute the nu ( f o r Y t=1, Y t=2)
32 nupess ( 1 , : ) =−1/2∗(b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2 +sqrt

( (1/2∗ ( b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2)ˆ2+sigm (1) ˆ2∗
lambdapess ( 1 , : ) / d e l t a (1 ) ˆ2) ;

33 nupess ( 2 , : ) =−1/2∗(b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2 +sqrt

( (1/2∗ ( b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2)ˆ2+sigm (2) ˆ2∗
lambdapess ( 2 , : ) / d e l t a (2 ) ˆ2) ;

34 nuopt ( 1 , : ) =−1/2∗(b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2 +sqrt

( (1/2∗ ( b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2)ˆ2+sigm (1) ˆ2∗
lambdaopt ( 1 , : ) / d e l t a (1 ) ˆ2) ;

35 nuopt ( 2 , : ) =−1/2∗(b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2 +sqrt

( (1/2∗ ( b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2)ˆ2+sigm (2) ˆ2∗
lambdaopt ( 2 , : ) / d e l t a (2 ) ˆ2) ;

36

37 %compute the s t r a t e g i e s f o r d i f f e r e n t cases o f Y
38 p ip e s s ( 1 , : ) =(lambdapess ( 1 , : )−nupess ( 1 , : ) ) . / ( d e l t a (1 ) ∗ nupess

( 1 , : ) ) ;
39 p ip e s s ( 2 , : ) =(lambdapess ( 2 , : )−nupess ( 2 , : ) ) . / ( d e l t a (2 ) ∗ nupess

( 2 , : ) ) ;
40 p iopt ( 1 , : ) =(lambdaopt ( 1 , : )−nuopt ( 1 , : ) ) . / ( d e l t a (1 ) ∗ nuopt

( 1 , : ) ) ;
41 p iopt ( 2 , : ) =(lambdaopt ( 2 , : )−nuopt ( 2 , : ) ) . / ( d e l t a (2 ) ∗ nuopt

( 2 , : ) ) ;
42

43 %compute e xpe c t a t i on f o r pe s s im i s t
44 for ( i =1: numberof i ter )
45 y=1;
46 i n t1 =0;
47 i n t2 =0;
48 prod=1;
49

50 t imepoints=lambdapess ( 3 , : ) ;
51 N=length ( t imepoints ) ;
52 dW=BM( t imepoints ) ;
53 dN=PP( timepoints , lambda ) ;
54 for ( t ind =2:N)
55 i f (dN( t ind )==1)
56 %product changes
57 prod=prod∗( p i p e s s (y , t ind ) ∗ de l t a (y )+1) ;
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58 %swi t ch y
59 y=mod(y+1 ,2)+1;
60

61 end

62 i n t1=in t1+sigm (y ) ∗ p ip e s s (y , t ind ) ∗dW( t ind ) ;
63 i n t2=in t2 +(−0.5∗ sigm (y ) ˆ2∗ p ip e s s ( y , t ind )ˆ2+b(y ) ∗

p ip e s s (y , t ind ) ) ∗( t imepoints ( t ind )−t imepoints (
tind −1) ) ;

64 end

65 S (1)=S (1)+( in t1+in t2 )+log (prod ) ;
66 end

67

68

69 %compute e xpe c t a t i on f o r op t im i s t
70 for ( i =1: numberof i ter )
71 y=1;
72 i n t1 =0;
73 i n t2 =0;
74 prod=1;
75

76 t imepoints=lambdaopt ( 3 , : ) ;
77 N=length ( t imepoints ) ;
78 dW=BM( t imepoints ) ;
79 dN=PP( timepoints , lambda ) ;
80 for ( t ind =2:N)
81 i f (dN( t ind )==1)
82 prod=prod∗( p iopt (y , t ind ) ∗ de l t a (y )+1) ;
83 %swi t ch y
84 y=mod(y+1 ,2)+1;
85 %product changes
86 end

87 i n t1=in t1+sigm (y ) ∗ p iopt (y , t ind ) ∗dW( t ind ) ;
88 i n t2=in t2 +(−0.5∗ sigm (y) ˆ2∗ p iopt (y , t ind )ˆ2+b(y ) ∗ p iopt

(y , t ind ) ) ∗( t imepoints ( t ind )−t imepoints ( tind −1) ) ;
89 end

90 S (2)=S (2)+( in t1+in t2 )+log (prod ) ;
91 end

92 Ex=S ./ numberof i ter ;
93 end

1 %the func t i on s imu la t e s the s t o c k p r i c e proce s s f o r a g iven
Poisson i n t e n s i t y lambda

2 %in order to compute the expec t ed termina l wea l th f o r an
i n v e s t o r wi th

3 %op t im i s t i c / p e s s im i s t i c a t t i t u d e .
4 %the SDE fo r the s t o c k p r i c e proce s s i s s o l v e d wi th the Euler

method . The
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5 %timepo in t s are the ones used by matlab f o r the HJB so l u t i o n .
This i s

6 %c e r t a i n l y one o f the major reasons f o r numerical l a c k o f
p r e c i s i on s ince

7 %the d i s t anc e between t he s e po i n t s i n c r e a s e s wi th the time
8

9 %input : the lambda t ha t shou ld be used to s imu la t e the s t o c k
p r i c e

10 %output : an array S wi th expec t ed wea l th where S(1) i s the
expec t ed

11 %weal th o f the pe s s im i s t and S(2) i s the expec t ed wea l th o f the
optmis t

12

13

14

15

16 function Ex =expectedterminalweal th ( lambda , lambdaopt , lambdapess ,
T, de l ta , sigm , b , x )

17 numberof i ter =100000;
18

19 S (1) =0;
20 S (2) =0;
21

22

23 %use the lambda to compute the nu ( f o r Y t=1, Y t=2)
24 nupess ( 1 , : ) =−1/2∗(b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2 +sqrt

( (1/2∗ ( b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2)ˆ2+sigm (1) ˆ2∗
lambdapess ( 1 , : ) / d e l t a (1 ) ˆ2) ;

25 nupess ( 2 , : ) =−1/2∗(b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2 +sqrt

( (1/2∗ ( b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2)ˆ2+sigm (2) ˆ2∗
lambdapess ( 2 , : ) / d e l t a (2 ) ˆ2) ;

26 nuopt ( 1 , : ) =−1/2∗(b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2 +sqrt

( (1/2∗ ( b (1) ∗ de l t a (1 )+sigm (1) ˆ2) / d e l t a (1 ) ˆ2)ˆ2+sigm (1) ˆ2∗
lambdaopt ( 1 , : ) / d e l t a (1 ) ˆ2) ;

27 nuopt ( 2 , : ) =−1/2∗(b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2 +sqrt

( (1/2∗ ( b (2) ∗ de l t a (2 )+sigm (2) ˆ2) / d e l t a (2 ) ˆ2)ˆ2+sigm (2) ˆ2∗
lambdaopt ( 2 , : ) / d e l t a (2 ) ˆ2) ;

28 %compute the s t r a t e g i e s f o r d i f f e r e n t cases o f Y
29 p ip e s s ( 1 , : ) =(lambdapess ( 1 , : )−nupess ( 1 , : ) ) . / ( d e l t a (1 ) ∗ nupess

( 1 , : ) ) ;
30 p ip e s s ( 2 , : ) =(lambdapess ( 2 , : )−nupess ( 2 , : ) ) . / ( d e l t a (2 ) ∗ nupess

( 2 , : ) ) ;
31 p iopt ( 1 , : ) =(lambdaopt ( 1 , : )−nuopt ( 1 , : ) ) . / ( d e l t a (1 ) ∗ nuopt

( 1 , : ) ) ;
32 p iopt ( 2 , : ) =(lambdaopt ( 2 , : )−nuopt ( 2 , : ) ) . / ( d e l t a (2 ) ∗ nuopt

( 2 , : ) ) ;
33
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34 %compute e xpe c t a t i on f o r pe s s im i s t
35 for ( i =1: numberof i ter )
36 y=1;
37 i n t1 =0;
38 i n t2 =0;
39 prod=1;
40

41 t imepoints=lambdapess ( 3 , : ) ;
42 N=length ( t imepoints ) ;
43 dW=BM( t imepoints ) ;
44 dN=PP( timepoints , lambda ) ;
45 for ( t ind =2:N)
46 i f (dN( t ind )==1)
47 %product changes
48 prod=prod∗( p i p e s s ( y , t ind ) ∗ de l t a (y )+1) ;
49 %swi t ch y
50 y=mod(y+1 ,2)+1;
51

52 end

53 %the t a=−(b ( y )+de l t a ( y )∗nuopt ( y , t i nd ) ) /sigm ( y ) ;
54 i n t1=in t1+sigm (y ) ∗ p ip e s s (y , t ind ) ∗dW( t ind ) ;
55 i n t2=in t2 +(−0.5∗ sigm (y ) ˆ2∗ p ip e s s ( y , t ind )ˆ2+b(y ) ∗

p ip e s s (y , t ind ) ) ∗( t imepoints ( t ind )−t imepoints (
tind −1) ) ;

56

57 end

58 S (1)=S (1)+x∗exp( in t1+in t2 ) ∗prod ;
59 end

60

61 %compute e xpe c t a t i on f o r op t im i s t
62 for ( i =1: numberof i ter )
63 y=1;
64 i n t1 =0;
65 i n t2 =0;
66 prod=1;
67

68 t imepoints=lambdaopt ( 3 , : ) ;
69 N=length ( t imepoints ) ;
70 dW=BM( t imepoints ) ;
71 dN=PP( timepoints , lambda ) ;
72 for ( t ind =2:N)
73 i f (dN( t ind )==1)
74 prod=prod∗( p iopt (y , t ind ) ∗ de l t a (y )+1) ;
75 %swi t ch y
76 y=mod(y+1 ,2)+1;
77 %product changes
78 end
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79 %the t a=−(b ( y )+de l t a ( y )∗nuopt (y , t i nd ) ) /sigm ( y ) ;
80 i n t1=in t1+sigm (y ) ∗ p iopt (y , t ind ) ∗dW( t ind ) ;
81 i n t2=in t2 +(−0.5∗ sigm (y ) ˆ2∗ p iopt (y , t ind )ˆ2+b(y ) ∗ p iopt

(y , t ind ) ) ∗( t imepoints ( t ind )−t imepoints ( tind −1) ) ;
82 end

83 S (2)=S (2)+x∗exp( in t1+in t2 ) ∗prod ;
84 end

85 Ex=S ./ numberof i ter ;
86 end

The following two files are used to simulate the increments of a Brownian motion/
a Poisson process as they are needed in the above simulation.

1 %genera te s the increments o f a path
2 %of Brownian motion , where the t ime i n t e r v a l s
3 %are g iven as the array t imepo in t s
4

5 function dW=BM( t imepoints )
6

7 dW=zeros (1 , length ( t imepoints ) ) ;
8 for i =2: length ( t imepoints )
9 dW( i )=randn∗ sqrt ( t imepoints ( i )−t imepoints ( i −1) ) ;

10 end ;
11 end

1 %cons t ru c t s a Poisson proce s s f o r the parameter l , which i s
g iven at the

2 %for each t out o f t imepo in t s
3 %func t i on re tu rns a vec tor o f 0 and 1 , one i f a jump occurs at

the
4 %corresponding t imepoint
5

6

7 function dN=PP( timepoints , l )
8 N=length ( t imepoints ) ;
9 PP(1) =0;

10 dN(1) =0;
11 i =2;
12 t=0;
13 while ( t<=timepoints (N) )
14 t=t+log(1−rand) /(− l ) ;
15 while ( i<=N && ( t imepoints ( i ) < t ) )
16 PP( i )=PP( i −1) ;
17 dN( i )=0;
18 i=i +1;
19 end

20 i f ( i<=N)
21 PP( i )=PP( i −1)+1;
22 dN( i )=1;
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23 i=i +1;
24 end

25 end

26 end

To compute the solution to the HARA utility maximization problem we use the
program hjbsolverhara.m.

1 function h jb so lve rhara (T, a1 , b1 )
2 %so l v e s the h j b equat ion f o r the HARA u t i l i t y
3 %a1 and b1 g i v e the i n t e r v a l f o r lambda
4 clear Y a b ;
5 global a b de l ta1 de l ta2 MU1 MU2 r1 r2 sigma1 sigma2 BETA

tpo in t s Y zaeh l
6 a=a1 ; %lower boundary f o r lambda
7 b=b1 ; %upper boudary f o r lambda
8 BETA=−1/5; %=−a lpha/1−a lpha
9

10 %parameters f o r s t o c k p r i c e proce s s
11 de l ta1=−1;
12 de l ta2=−1;
13 MU1=2;
14 MU2=2.5;
15 r1=1;
16 r2 =1.1;
17 sigma1=.1;
18 sigma2=.1;
19

20 %compute the s o l u t i o n Y fo r the ode dydt and boundary cond i t i on
Y(0)=1

21 tspan = [0 T ] ;
22 y0 = [ 1 ; 1 ] ;
23 [ tpo in t s ,Y]=ode45 (@f , tspan , y0 ) ;
24 plot ( tpo in t s ,Y) ;
25

26 %to p l o t the deve lopment o f lambda and nu , compute t h e s e wi th
the g iven

27 %so l u t i on Y
28 lambda1=zeros (1 , 10) ;
29 lambda2=zeros (1 , 10) ;
30 para (1)=(a+b) /2 ;
31 para (2) =1;
32 for zaeh l =1: length (Y)
33 para1=fminsearch (@tomin12 , para ) ;
34 para2=fminsearch (@tomin22 , para ) ;
35 lambda1 ( zaeh l )=para1 (1) ;
36 lambda2 ( zaeh l )=para2 (1) ;
37 end ;
38
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39 figure ;
40 plot ( tpo in t s , lambda1 , tpo in t s , lambda2 ) ;
41

42 end

43

44 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 function dydt = f ( t ,w)
46 global a b de l ta1 de l ta2 MU1 MU2 r1 r2 sigma1 sigma2 BETA
47

48

49

50 %fminsearch , d e f i n e func t i on as − i n f t y o the rwi se . . .
51 para (1)=(a+b) /2 ;
52 para (2) =1;
53 para1=fminsearch (@tomin1 , para ) ;
54 para2=fminsearch (@tomin2 , para ) ;
55 lambda1=para1 (1)
56 nu1=para1 (2) ;
57 lambda2=para2 (1) ;
58 nu2=para2 (2) ;
59

60

61 dydt = [ qOfY1( lambda1 , nu1 ) ∗w(1)+(lambda1ˆ(1−BETA) ∗nu1ˆBETA) ∗(w
(2)−w(1) )

62 qOfY2( lambda2 , nu2 ) ∗w(2)+(lambda2ˆ(1−BETA) ∗nu2ˆBETA) ∗(w(1)
−w(2) ) ]

63

64 function tomin = tomin1 ( ln )
65 i f ( a<=ln (1) && ln (1)<=b && ln (2)>0)
66 tomin=qOfY1( ln (1) , ln (2 ) ) ∗w(1)−ln (1 ) ˆ(1−BETA) ∗ ln (2 ) ˆBETA∗(w

(2)−w(1) ) ;
67 else tomin=i n f ;
68 end

69 end

70

71 function tomin = tomin2 ( ln )
72 i f ( a<=ln (1) && ln (1)<=b && ln (2)>0)
73 tomin=qOfY2( ln (1) , ln (2 ) ) ∗w(2)−ln (1 ) ˆ(1−BETA) ∗ ln (2 ) ˆBETA∗(w

(1)−w(2) ) ;
74 else tomin=i n f ;
75 end

76 end

77

78 function qOfY1 = qOfY1( l , n )
79 theta1=−(MU1−r1+de l ta1 ∗n) / sigma1 ;
80 qOfY1=−l+BETA∗( l −1/2 ∗ theta1ˆ2−n−r1 )+1/2 ∗BETAˆ2 ∗ theta1

ˆ2+ l ˆ(1−BETA) ∗nˆBETA;
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81 end

82 function qOfY2 = qOfY2( l , n )
83 theta2=−(MU2−r2+de l ta2 ∗n) / sigma2 ;
84 qOfY2=−l+BETA∗( l −1/2 ∗ theta2ˆ2−n−r2 )+1/2 ∗BETAˆ2 ∗ theta2

ˆ2+ l ˆ(1−BETA) ∗nˆBETA;
85 end

86 end

87

88

89

90 function tomin = tomin12 ( ln )
91 global a b Y BETA MU1 de l ta1 sigma1 r1 zaeh l
92

93 i f ( a<=ln (1) && ln (1)<=b && ln (2)>0)
94 tomin=qOfY1( ln (1) , ln (2 ) ) ∗Y( zaehl , 1 )−ln (1 ) ˆ(1−BETA) ∗ ln (2 ) ˆ

BETA∗(Y( zaehl , 2 )−Y( zaehl , 1 ) ) ;
95 else tomin=i n f ;
96 end

97 function qOfY1 = qOfY1( l , n )
98 theta1=−(MU1−r1+de l ta1 ∗n) / sigma1 ;
99 qOfY1=−l+BETA∗( l −1/2 ∗ theta1ˆ2−n−r1 )+1/2∗BETAˆ2 ∗ theta1

ˆ2+ l ˆ(1−BETA) ∗nˆBETA;
100 end

101

102 end

103

104

105 function tomin = tomin22 ( ln )
106 global a b Y BETA MU2 de l ta2 sigma2 zaeh l r2
107 i f ( a<=ln (1) && ln (1)<=b && ln (2)>0)
108 tomin=qOfY2( ln (1) , ln (2 ) ) ∗Y( zaehl , 2 )−ln (1 ) ˆ(1−BETA) ∗ ln (2 ) ˆ

BETA∗(Y( zaehl , 1 )−Y( zaehl , 2 ) ) ;
109 else tomin=i n f ;
110 end

111

112 function qOfY2 = qOfY2( l , n )
113 theta2=−(MU2−r2+de l ta2 ∗n) / sigma2 ;
114 qOfY2=−l+BETA∗( l −1/2 ∗ theta2ˆ2−n−r2 )+1/2∗BETAˆ2 ∗ theta2

ˆ2+ l ˆ(1−BETA) ∗nˆBETA;
115 end

116

117 end
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[13] H. Föllmer and A. Gundel. Robust projections in the class of martingale mea-
sures. Illinois Journal of Mathematics, 2006.

79



80
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[30] V. Krätschmer. Robust representation of convex risk measures by probability
measures. Finance and Stochastics, 9(4):597–608, 2005.

[31] F. Maccheroni, M. Marinacci, and A. Rustichini. Ambiguity aversion, ro-
bustness, and the variational representation of preferences. Econometrica,
74(6):1447 – 1498, 2006.

[32] R. C. Merton. Lifetime portfolio selection under uncertainty: The continuous-
time case. Review of Economics and Statistics, 1969.

[33] R. C. Merton. Optimum consumption and portfolio rules in a continuous time
model. Journal of Economic Theory, 3:373–413, 1971.

[34] M. Müller. Market completion and robust utility maximization. PhD thesis,
Humboldt University, 2005.

[35] P. E. Protter. Stochastic integration and differential equations. Springer, 2. ed.
edition, 2004.

[36] M.-C. Quenez. Optimal portfolio in a multiple-priors model. In Seminar on

stochastic analysis, random fields and applications IV, Progress in Probability
58, pages 291–321, Basel, 2004. Birkhäuser.
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