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PASSIVITY-PRESERVING BALANCED TRUNCATION
FOR ELECTRICAL CIRCUITS

TIMO REIS† AND TATJANA STYKEL‡

Abstract. We present a passivity-preserving balanced truncation model reduction method for
differential-algebraic equations arising in circuit simulation. This method is based on balancing the
solutions of projected Lur’e equations. By making use of the special structure of circuit equations, we
can reduce the numerical effort for balanced truncation significantly. It is shown that the property
of reciprocity is also preserved in the reduced-order model. Network topological interpretations of
certain circuit effects are given. The presented theory is illustrated by a numerical example.
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1. Introduction. Design of very large system integrated (VLSI) circuits with
distributed elements such as transmission lines and transistors is no longer possible
without computer simulations that involve numerical solution of differential-algebraic
equations (DAEs). Such equations may have order up to ten millions or even more
that makes the analysis and simulations unacceptably time consuming and expensive.
In this context, model order reduction is of great importance, especially if simulation
is required for different input signals.

A general idea of model order reduction is to approximate the large-scale system
by a much smaller model that captures the input-output behavior of the original
system to a required accuracy and also preserves essential physical properties such
as stability and passivity. Especially, the preservation of passivity allows a back
interpretation of the reduced-order model as an electrical circuit which has fewer
electrical components than the original one [1, 18].

Krylov subspace based methods are the most used model reduction methods in
circuit simulation, e.g., [5, 6, 15]. Although these methods are efficient for very
large sparse problems, stability and passivity are not necessarily preserved in the
reduced-order model, so that usually a post-processing is needed to guarantee these
properties. Passivity-preserving model reduction methods based on Krylov subspaces
have been developed for standard state space systems [2, 4, 22] and also for structured
generalized state space systems describing interconnect circuits [6, 8, 11, 15]. Despite
the successful application of these methods in circuit simulation, they provide only
a good local approximation and, so far, there exist no global error bounds.

Balanced truncation is another model reduction approach commonly used in con-
trol design. In order to capture specific system properties, different balancing tech-
niques have been developed in the last thirty years [10, 13, 14, 16, 19, 23]. An im-
portant property of balancing-related model reduction is the existence of computable
error bounds that allow an adaptive choice of the order of the approximate model.

In this paper, we consider a passivity-preserving model reduction method for lin-
ear circuit equations obtained via modified nodal analysis (MNA). This method is
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based on bounded real balanced truncation applied to a Moebius-transformed sys-
tem, see [19]. It requires balancing two Gramians that satisfy the projected Lur’e
equations. For a large class of systems, such equations with large-scale matrix coef-
ficients can be solved using Newton’s method or a method related to an generalized
Hamiltonian eigenvalue problem. The major difficulty in the numerical solution of
the projected Lur’e equations is that the spectral projectors onto the deflating sub-
spaces corresponding to the finite and infinite eigenvalues of an underlying pencil are
required. Fortunately, the matrix coefficients in MNA circuit equations have some
special block structure. We will exploit this structure to construct the required pro-
jectors in explicit form. We also present an efficient implementation of the bounded
real balanced truncation method for large-scale circuits equations.

The paper is organized as follows. In Section 2, we briefly review the basic frame-
work of linear circuit theory. Section 3 considers the passivity-preserving balanced
truncation model reduction method for DAEs. This technique is applied to circuit
equations in Section 4. Finally, in Section 5, a numerical example is presented.

Throughout the paper R
n,m and C

n,m denote the spaces of n×m real and complex
matrices, respectively. The open right half-plane is denoted by C+ and i =

√
−1. The

matrices AT and A∗ denote, respectively, the transpose and the conjugate transpose
of A ∈ C

n,m, and A−T = (A−1)T . An identity matrix of order n is denoted by In or
simply by I. The zero n × m matrix is denoted by 0n,m or simply by 0. We denote
by imA and ker A the image and the kernel of A, respectively. Further, for Hermitian
matrices P,Q ∈ C

n,n we write P > Q (P ≥ Q) if P − Q is positive (semi)definite.
The Euclidean vector norm is denoted by ‖ · ‖, and the spectral and Frobenius matrix
norms are denoted by ‖ · ‖2 and ‖ · ‖F , respectively.

2. Circuit equations. A general electrical circuit can be modelled as a di-
rected graph whose nodes correspond to the nodes of the circuit and whose branches
correspond to the circuit elements like capacitors, inductors, resistors, diodes and
transistors. Using Kirchhoff’s current and voltage laws as well as the branch con-
stitutive relations, linear RLC circuits consisting only of linear resistors, inductors,
capacitors and independent current and voltage sources can be described via MNA
by the following system of DAEs

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(2.1)

where

E =




AC C AT
C 0 0

0 L 0

0 0 0


 , A =



−AR R

−1
AT

R −AL −AV

AT
L 0 0

AT
V

0 0


 ,

C =

[
−AT

I 0 0

0 0 −I

]
= BT , D = 0,

(2.2)

x(t) =




η(t)
iL(t)
iV (t)


 , u(t) =

[
iI(t)

vV (t)

]
, y(t) =

[
vI(t)

iV (t)

]
.

Here η is a vector of node potentials, iL , iI and iV are vectors of currents through
inductors, current and voltage sources, respectively, vI and vV are vectors of voltages
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of current and voltage sources, respectively. We denote by nη the number of nodes
excepting the grounding node, by nL the number of inductors, by nI the number
of current sources and by nV the number of voltage sources. The number of state
variables n = nη +nL +nV is called the order of system (2.1), and m = nI +nV is the
number of inputs. Furthermore, AC , AL , AR , AV and AI are the incidence matrices
describing the circuit topology, and R , L and C are the resistance, inductance and
capacitance matrices, respectively. Linear RLC circuits are often used to model the
interconnects, transmission lines and pin packages in VLSI networks. They arise also
in the linearization of nonlinear circuit equations around DC operating point.

We now give our general assumptions on the above defined matrices.

Assumptions 2.1.

(A1) The matrix AV has full column rank.
(A2) The matrix [AC , AL , AR , AV ] has full row rank.
(A3) The matrices C , R and L are symmetric and positive definite.

Assumption (A1) corresponds to the absence of loops of voltage sources, while
(A2) forbids cutsets of current sources. Condition (A3) on the capacitance, resistance
and inductance matrices means that all elements of the circuit do not generate energy.
These three assumptions together guarantee that the pencil λE−A is regular [7], i.e.,
det(λE − A) 6= 0 for some λ ∈ C, and it is of index at most two [3], see [9] for
the definition of index. Moreover, (A1)-(A3) make sure that system (2.1), (2.2) is
passive, and, hence, it is stable [1]. Note, however, that the asymptotic stability
of (2.1), (2.2) is, in general, not guaranteed, since λE − A might have generalized
eigenvalues on the imaginary axis. For the asymptotic stability, some further circuit
topological conditions have to be fulfilled such as the absence of loops of voltage
sources, capacitors and inductors and also the absence of cutsets consisting only of
current sources, capacitors and inductors [20]. Note that for the model reduction
method considered here, we do not claim that the circuit forms an asymptotically
stable system.

Passivity is closely related to positive realness of a transfer function of (2.1) given
by G(s) = C(sE − A)−1B + D. The transfer function G is positive real if it has no
poles in C+ and G(s) + G(s)∗ ≥ 0 for all s ∈ C+.

Proposition 2.2. [18] If assumptions (A1)-(A3) are valid, then the transfer
function G(s) = C(sE −A)−1B +D with the matrices E, A, B, C and D as in (2.2)
is positive real.

Another important property of circuit equations is reciprocity. We call a mat-
rix S ∈ R

m,m a signature if S is diagonal and S2 = Im. System (2.1) is called
reciprocal with an external signature Sext ∈ R

m,m if its transfer function satisfies
G(s) = SextG(s)T Sext for all s ∈ C.

Proposition 2.3. [18] If assumptions (A1)-(A3) are valid, then system (2.1),
(2.2) is reciprocal with the external signature

Sext = diag(InI ,−InV
). (2.3)

Note that the transfer function G is positive real if and only if the Moebius-
transformed function G(s) = (I−G(s))(I+G(s))−1 is bounded real, i.e., G has no poles
in C+ and I − G(s)∗G(s) ≥ 0 for all s ∈ C+, see [1]. Furthemore, if G is reciprocal
with the external signature Sext, then G is also reciprocal with the same external
signature. For system (2.1), (2.2), a realization of G is given by G = [ E , A, B, C, I ],
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where

E = E =




AC C AT
C 0 0

0 L 0
0 0 0


 , B= −

√
2B(I + D)−1 =

√
2




AI 0
0 0
0 I


 = −CT ,

A = A − B(I + D)−1C =



−AR R

−1
AT

R − AIA
T
I −AL −AV

AT
L 0 0

AT
V

0 −I


 . (2.4)

For a physical interpretation of the Moebius-transformation of circuit equations, we
refer to [1, p. 28].

3. Passivity-preserving balanced truncation. Model order reduction con-
sists in the approximation of the large-scale system (2.1) by a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),

ỹ(t) = C̃ x̃(t) + D̃ u(t),
(3.1)

where Ẽ, Ã ∈ R
ℓ,ℓ, B̃ ∈ R

ℓ,m, C̃ ∈ R
p,ℓ, D̃ ∈ R

p,m and ℓ ≪ n. It is required
that the approximate model (3.1) preserves essential properties of (2.1) like passivity
and reciprocity and that the approximation error is small. In this section, we briefly
describe a passivity-preserving model reduction method from [19] that is based on
bounded real balanced truncation applied to the Moebius-transformed system G.

For simplicity, and since this holds true for electrical circuits, we restrict ourself
to system (2.1) with m = p and D = 0. Since G is bounded real, there exist the
matrices M0,Jc,Jo ∈ R

m,m such that

M0 = lim
s→∞

G(s) = I − 2 lim
s→∞

C(sE − A + BC)−1B, (3.2)

I −M0MT
0 = JcJ T

c , I −MT
0 M0 = J T

o Jo.

Let Pl and Pr be the projectors onto the left and right deflating subspaces of the
pencil λE −A = λE − (A−BC) corresponding to the finite eigenvalues along the left
and right deflating subspaces corresponding to the eigenvalue at infinity. If system
(2.1) is R-minimal, i.e.,

rank[λE − A , B ] = rank[λET − AT , CT ] = n for all λ ∈ C,

then G = [ E , A, B, C, I ] as in (2.4) is also R-minimal. This condition together with
the bounded realness of G implies that the projected Lur’e equations

(A − BC)XET + EX(A − BC)T + 2PlBBTPT
l = −2KcKT

c ,

X = PrXPT
r ≥ 0, EXCT − PlBMT

0 = −KcJ T
c ,

(3.3)

and

(A − BC)T Y E + ET Y (A − BC) + 2PT
r CT CPr= −2KT

o Ko,

Y = PT
l Y Pl ≥ 0, −ET Y B + PT

r CTM0= −KT
o Jo

(3.4)

are solvable for X ∈ R
n,n, Kc ∈ R

n,m and Y ∈ R
n,n, Ko ∈ R

m,n, respectively. More-
over, there exist the extremal solutions that satisfy 0 ≤ Xmin ≤ X ≤ Xmax and
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0 ≤ Ymin ≤ Y ≤ Ymax for all symmetric solutions X and Y of (3.3) and (3.4), respec-
tively. The minimal solutions Xmin and Ymin are called the bounded real Gramians of
the Moebius-transformed system G. Note that the R-minimality of G is violated for
a large class of electrical circuits. In general, this may cause that the projected Lur’e
equations (3.3) and (3.4) are unsolvable. In the next section we will, however, show
that for E, A, B and C as in (2.2) (minimal) solutions of (3.3) and (3.4) exist in any
case.

The passivity-preserving balanced truncation model reduction method for G con-
sists in computing the reduced-order system G̃ via the bounded real balanced trun-
cation method applied to the Moebius-transformed system G = (I − G)(I + G)−1

and then the back Moebius transformation G̃ = (I − G̃)(I + G̃)−1, see [19] for details.
This method can be summarized in our notations as follows.

Algorithm 3.1.Passivity-preserving balanced truncation model reduction method.
Given a passive system G = [E, A, B, C, 0 ], compute a passive reduced-order model

G̃ = [ Ẽ, Ã, B̃, C̃, 0 ].
1. Compute the Cholesky factors R̂ and L̂ of the solutions X̂ = R̂R̂T , Ŷ = L̂L̂T

of the projected discrete-time Lyapunov equations

(A−BC)X̂(A−BC)T − EX̂ET = 2QlBBTQT
l , X̂ = QrX̂QT

r , (3.5)

(A−BC)T Ŷ (A−BC) − ET Ŷ E = 2QT
r CTCQr, Ŷ = QT

l Ŷ Ql, (3.6)

where Ql = I − Pl and Qr = I − Pr.
2. Compute the singular value decomposition L̂T (A − BC)R̂ = UΘV T , where

UT U = V T V = Iℓ∞ and Θ = diag(θ1, . . . , θℓ∞) is nonsingular.
3. Compute the matrix M0 = I + 2CT∞W∞B with W∞ = Θ−1/2UT L̂T and

T∞ = R̂V Θ−1/2.
4. Compute the Cholesky factors R and L of Xmin = RRT and Ymin = LLT that

are the minimal solutions of the projected Lur’e equations (3.3) and (3.4),
respectively.

5. Compute the singular value decomposition

LT ER = [U1, U2 ]

[
Π1

Π2

]
[V1, V2 ]T ,

where [U1, U2] and [V1, V2] have orthonormal columns,

Π1 = diag(π1Il1 , . . . , πrIlr ), Π2 = diag(πr+1Ilr+1
, . . . , πqIlq )

and π1 > . . . > πr > πr+1 > . . . > πq.
6. Compute the reduced-order system

[ Ẽ, Ã, B̃, C̃, 0 ] = [WET, WAT, WB, CT, 0 ]

where W = [WT
f , WT

∞
]T and T = [Tf , T∞ ] with

Wf = Π
−1/2

1 UT
1 LT , Tf = RV1Π

−1/2

1 .

The values π1, . . . , πq are called the bounded real characteristic values of G. They
can be used to estimate the H∞-norm of the error defined as

‖G̃ − G‖H∞ = sup
s∈C+

‖G̃(s) − G(s)‖2.
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If r is chosen such that ‖I + G‖H∞(πr+1 + . . . + πq) < 1, then we have the following
error bound

‖G̃ − G‖H∞ ≤ ‖I + G‖2
H∞

(πr+1 + . . . + πq)

1 − ‖I + G‖H∞(πr+1 + . . . + πq)
, (3.7)

see [19] for details and also for other error bounds.

4. Application to circuit equations. By exploiting the structure of circuit
equations, the reduction procedure in Algorithm 3.1 can be made more efficient and
accurate. First, we show that the spectral projectors Pl and Pr as well as the so-
lutions of the projected Lur’e equations (3.3) and (3.4) are related by a similarity
transformation with a signature matrix.

Theorem 4.1. For E, A, B and C given in (2.2), the spectral projectors Pl and
Pr onto the left and right deflating subspace of λE − (A − BC) corresponding to the
finite eigenvalues satisfy Pr = SintPT

l Sint, where

Sint = diag(Inη
,−InL

,−InV
). (4.1)

Moreover, Y is a (minimal ) solution of (3.4) if and only if X = SintY Sint is a (mi-
nimal ) solution of (3.3).

Proof. Let Sext be as in (2.3). Then the result follows from Sext = S−1
ext, Sint = S−1

int

and AT = SintASint, ET = SintESint, CT = SintBSext.
In the following, we present an explicit expression for the projector Pr.
Theorem 4.2. For E, A, B and C as in (2.2), the matrix pencil λE−(A−BC) is

of index at most two. Furthermore, the projector Pr onto the right deflating subspace
of λE − (A − BC) corresponding to the finite eigenvalues along the right deflating
subspace corresponding to the eigenvalue at infinity is given by

Pr =




H4(QC H−1
3 H2 − I) H4QC H−1

3 ALH5 0
0 H5 0

−AT
V

(QC H−1
3 H2 − I) −AT

V
QC H−1

3 ALH5 0


 , (4.2)

where

H1 = PT
C R IV PC R IV + QT

C R IV ALL
−1

AT
L QC R IV ,

H2 = AR R
−1

AT
R +AIA

T
I +AV AT

V +ALL
−1

AT
L QC R IV H−1

1 QT
C R IV ALL

−1
AT

L ,

H3 = AC CAT
C + H2QC ,

H4 = QC R IV H−1
1 QT

C R IV ALL
−1

AT
L − I,

H5 = I − L
−1

AT
L QC R IV H−1

1 QT
C R IV AL

(4.3)
with the projectors QC and QC R IV onto ker AT

C and ker[AC , AR , AI , AV ]T , respec-
tively, and PC R IV = I − QC R IV .

Proof. See Appendix A.
The solvability of the projected Lur’e equations and the existence of the minimal

solutions requires, in general, the R-minimality of the system. We will now state that
for system (2.1) with E, A, B and C as in (2.2) the solvability and, especially, the
existence of the minimal solutions is guaranteed nevertheless.
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Theorem 4.3. Let E, A, B and C be given in (2.2). Under Assumptions 2.1
the projected Lur’e equations (3.3) and (3.4) are solvable. Furthermore, there exist
the minimal solutions Xmin and Ymin satisfying 0 ≤ Xmin ≤ X and 0 ≤ Ymin ≤ Y for
all symmetric solutions X and Y of (3.3) and (3.4), respectively.

Proof. See Appendix B.
By Theorem 4.1 it is sufficient to compute only one of the projectors Pl and Pr

and only one of Xmin and Ymin. Furthermore, the Cholesky factors R and L of Xmin

and Ymin, respectively, are related as R = SintL. Since ESint = SintE is symmetric,
this also holds true for LT ER = LT ESintL. Thus, to determine the characteristic
values πj we can compute an eigenvalue decomposition of LT ESintL instead of a more
expensive singular value decomposition. Let

LT ESintL = [U1, U2 ]

[
Λ1

Λ2

]
[U1, U2 ]T (4.4)

be an eigenvalue decomposition, where [U1, U2 ] is orthogonal and

Λ1 = diag(λ1I, . . . , λrI), Λ2 = diag(λr+1I, . . . , λqI)

with |λ1| > . . . > |λr| > |λr+1| > . . . > |λq|. Then |λj | = πj for i = 1, . . . , q and the
projection matrices Wf and Tf in Algorithm 3.1 can be taken as

Wf = |Λ1|−1/2UT
1 LT , Tf = SintLU1S|Λ1|−1/2, (4.5)

where |Λ1| = diag(|λ1|I, . . . , |λr|I) and S = diag(sign(λ1)I, . . . , sign(λr)I).
We now deliver an explicit expression for the matrix M0.
Theorem 4.4. For E, A, B, C as in (2.2), the matrix M0 in (3.2) is given by

M0 =

[
I − 2AT

I QC H−1
6 QT

C AI 2AT
I QC H−1

6 QT
C A

V

−2AT
V

QC H−1
6 QT

C AI −I + 2AT
V

QC H−1
6 QT

C A
V

]
, (4.6)

where

H6 = QT
C (AR R

−1
AT

R +AIA
T
I +AV AT

V )QC + QT
R IV −C QR IV −C (4.7)

and QR IV −C is a projector onto ker([AR , AI , AV ]T QC ).
Proof. See Appendix C.
Since for circuit equations the matrix M0 is given in explicit form, we do not

need to solve the projected Lyapunov equations (3.5) and (3.6). The bounded real
balanced truncation method applied to G = [E, A − BC, −

√
2B,

√
2C, I ] provides

the system G̃ = [ Ẽ , Ã, B̃, C̃, I ] with

Ẽ =

[
I 0
0 0

]
, Ã =

[
Wf (A − BC)Tf 0

0 I

]
,

B̃ =

[
−
√

2WfB
B∞

]
, C̃ =

[√
2CTf , C∞

]
,

where Wf and Tf are as in (4.5) and I −M0 = C∞B∞. From the reciprocity of G,
we obtain that (I −M0)Sext is symmetric. Let

(I −M0)Sext = U0Λ0U
T
0 (4.8)
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be an eigenvalue decomposition, where U0 is orthogonal and Λ0 = diag(λ̂1, . . . , λ̂m).

Then the Moebius transformation G̃ = (I − G̃)(I + G̃)−1 has the realization

Ẽ = Ẽ =

[
I 0
0 0

]
, Ã = Ã − 1

2
B̃ C̃ =

1

2

[
2Wf ATf

√
2Wf BC∞

−
√

2B∞CTf 2I − B∞C∞

]
,

B̃ = −
√

2

2
B̃ =

√
2

2

[√
2Wf B
−B∞

]
C̃ =

√
2

2
C̃ =

√
2

2

[√
2CTf , C∞

]
,

(4.9)

where

B∞ = S0|Λ0|1/2UT
0 Sext, C∞ = U0|Λ0|1/2, (4.10)

with |Λ0| = diag(|λ̂1|, . . . , |λ̂m|) and S0 = diag(sign(λ̂1), . . . , sign(λ̂m)).
We summarize the passivity-preserving balanced truncation method for electrical

circuits (PABTEC) in the following algorithm.
Algorithm 4.5. Passivity-preserving balanced truncation for electrical circuits.

Given a passive system G = [E, A, B, C, 0 ] as in (2.2), compute a passive reduced-

order model G̃ = [ Ẽ, Ã, B̃, C̃, 0 ].
1. Compute the matrix M0 given in (4.6).
2. Compute the Cholesky factor L of the minimal solution Ymin = LLT of the

projected Lur’e equation (3.4), where Pr is as in (4.2) and Pl = SextPT
r Sext

with Sext as in (2.3).
3. Compute the eigenvalue decompositions (4.4) and (4.8).

4. Compute the reduced-order system G̃ = [ Ẽ, Ã, B̃, C̃, 0 ] as in (4.9), where
Wf , Tf and B∞, C∞ are given in (4.5) and (4.10), respectively.

The following theorem shows that the reduced-order system computed by this
algorithm is reciprocal with the same external signature as the original system.

Theorem 4.6. Let E, A, B and C be given in (2.2). The reduced-order system

G̃ = [ Ẽ, Ã, B̃, C̃, 0 ] in (4.9) is reciprocal with the external signature Sext as in (2.3).
Proof. For the matrices Wf , Tf as in (4.5) and B∞, C∞ as in (4.10), we have

ẼT = S̃intẼS̃int, ÃT = S̃intÃS̃int, B̃T = SextC̃S̃int

with S̃int = diag(S,−S0). Thus, G̃(s) = SextG̃(s)T Sext.
If the matrix I −MT

0 M0 is nonsingular, then the projected Lur’e equation (3.4)
is equivalent to the projected Riccati equation

(A − BC)T Y E + ET Y (A − BC) + 2PT
r CT CPr

+2(ET Y B − PT
r CTM0)(I −MT

0 M0)
−1(ET Y B − PT

r CTM0)
T = 0,

Y = PT
l Y Pl.

(4.11)

The following theorem gives necessary and sufficient topological conditions for
the invertibility of I −MT

0 M0.
Theorem 4.7. Let the matrix M0 be as in (4.6). Then I −MT

0 M0 is invertible
if and only if

ker QT
C [AI , AV ] = {0} and QT

R C [AI , AV ] = 0,

where QR C is a projector onto ker[AR , AC ]T .
Proof. See Appendix D.
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Using [20, Proposition 4.5], it can be seen that the condition that QT
C [AI , AV ]

has full column rank is equivalent to the absence of loops of branches of capacitances
and sources except for loops only consisting of capacitive branches. On the other hand,
the matrix QT

R C [AI , AV ] vanishes if and only if the circuit does not contain cutsets
consisting of branches of inductances and sources except for cutsets only consisting of
inductive branches [20, Proposition 4.4]. Equivalently, for each source, its incidence
nodes are connected by a path only consisting of resistive and capacitive branches.

Thus, for systems with nonsingular I −MT
0 M0, the Gramian Ymin can be com-

puted by solving the projected Riccati equation (4.11). Such an equation with large-
scale matrix coefficients can be solved using Newton’s method or a method based
on computing the delating subspaces of an extended Hamiltonian pencil, see [19] for
details. In case of singular I −MT

0 M0, small to medium-sized DAE system can be
transformed similarly to the standard state space case [24] to a system of smaller
dimension for which we can again write bounded real Riccati equations. However,
the computation of the Gramians for large-scale systems with singular I − MT

0 M0

remains an open problem.

5. Numerical example. In this section, we present some results of numerical
experiments to demonstrate the feasibility of the described model reduction method
for circuit equations. The computations were done on IBM RS 6000 44P Model 270
with machine precision ε = 2.22 × 1016 using MATLAB 7.0.4.

We have tested the PABTEC method on several circuit examples provided by
NEC Laboratories Europe, IT Research Division. In all these examples the matrices
E and A are badly scaled since the ratio ‖A‖F /‖E‖F varies from O(1012) to O(1018).
This causes some difficulties in the numerical solution of the projected Riccati equation
(4.11). To overcome this difficulties we applied the PABTEC method to the scaled
system Gα = [Eα, A, B, C, 0 ], where Eα = αE and α is chosen such that Eα and A
have about the same norm. Note that the pencils λE−(A−BC) and λEα−(A−BC)
have the same right (left) deflating subspaces corresponding to the finite eigenvalues
and, hence, the same spectral projectors Pr and Pl. The computed reduced-order
model G̃α = [ Ẽα, Ã, B̃, C̃, 0 ] was then replaced by G̃ = [ Ẽα/α, Ã, B̃, C̃, 0 ]. Next
we report the results for one example only.

Example 5.1. This example is a three-port RC circuit described by the passive
system of order n = 2007. The minimal solution of the projected Riccati equation
(4.11) has been approximated by a low-rank matrix Ymin ≈ L̃L̃T with L̃ ∈ R

n,102 using
Newton’s method as presented in [19]. Figure 5.1(a) shows the largest 100 bounded
characteristic values of G = (I −G)(I +G)−1 determined from the eigenvalue decom-

position of L̃T ESintL̃. One can see that the characteristic values decay rapidly. In
this case we can expect a good approximation by a reduced-order model. The original
system was approximated by a model of order ℓ = 44. The frequency responses of the
full-order and the reduced-order models are not presented, since they were impossible
to distinguish. In Figure 5.1(b) we display the absolute error ‖G̃(iω) − G(iω)‖2 for
a frequency range ω ∈ [1, 1015] and also the error bound (3.7).

6. Conclusion. In this paper, we have presented the passivity-preserving ba-
lanced truncation model reduction method for electrical circuits (PABTEC). This
method is based on balancing two Gramians that satisfy the projected Lur’e equations.
Exploiting the special structure of circuit equations, we have established the solvability
of these equations. We have also shown that their solutions are simply related and
thus, only one projected Lur’e equation has to be solved. Moreover, the spectral
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Fig. 5.1. RC circuit: (a) the bounded real characteristic values of G = (I − G)(I + G)−1;

(b) the absolute error ‖G̃(iω) − G(iω)‖2 and the error bound (3.7).

projectors and the feedthrough matrix for the Moebius-transformed system required
in the Lur’e equation have been derived explicitly. It has also been proved that the
PABTEC method preserves the reciprocity in the reduced-order model. A circuit
topological characterization has been given for the class of circuits for which the
projected Lur’e equations can be rewritten as the projected Riccati equations. The
numerical experiments demonstrate the reliability of the presented model reduction
method to large-scale circuit equations.

Acknowledgments. The authors would like to thank Achim Basermann and
Carsten Neff from NEC Laboratories Europe, IT Research Division, NEC Europe
Ltd. for providing the circuit examples.

Appendix A. Spectral projectors for the Moebius-transformed system.
Consider a pencil λE − A with E and A as in (2.4). For computing the spec-

tral projector Pr onto the right deflating subspace of λE − A corresponding to the
finite eigenvalues along the right deflating subspace corresponding to the eigenvalue
at infinity, we use the canonical projection technique proposed in [12]. Let

E0 = E , A0 = −A,
Ek+1 = Ek + AkQk, Ak+1 = Ak(I − Qk),

(A.1)

where Qk is a projector onto kerEk and QjQk = 0 for j > k. We will show that
under Assumptions 2.1 the matrix E2 is nonsingular. Then Q1 can be chosen such
that Q1 = Q1E

−1
2 A1. In this case, the spectral projector Pr is computed as

Pr =
(
I − Q0(I − Q1)E

−1
2 A0

)
(I − Q1), (A.2)

see [12] for details. Note that nonsingularity of E2 implies that the pencil λE − A is
of index at most two independent of the index of λE − A in (2.2).

A projector Q0 onto ker E0 is given by

Q0 =




QC 0 0
0 0 0
0 0 I


 , (A.3)
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where QC be a projector onto kerAT
C . Then we get

E1 = E0 + A0Q0 =




AC CAT
C + (AR R

−1
AT

R + AIA
T
I )QC 0 AV

−AT
L QC L 0

−AT
V

QC 0 I


 , (A.4)

A1 = A0(I − Q0) =




(AR R
−1

AT
R + AIA

T
I )(I − QC ) AL 0

−AT
L (I − QC ) 0 0

−AT
V

(I − QC ) 0 0


 .

Lemma A.1. Let QC be a projector onto ker AT
C and let QR IV −C be a projec-

tor onto ker([AR , AI , AV ]T QC ). Then QC R IV = QC QR IV −C is a projector onto

ker[AC , AR , AI , AV ]T and ker(AT
L QC R IV ) = ker QC R IV .

Proof. We first show that QC QR IV −C is a projector onto ker[AC , AR , AI , AV ]T .
By definition we have kerQC ⊆ im QR IV −C and, hence, QR IV −C (I−QC ) = (I−QC ).
This leads to QR IV −C QC = QR IV −C − I + QC . Therefore,

Q2

C R IV = QC (QR IV −C QC )QR IV −C = QC QR IV −C = QC R IV .

Assume now that v ∈ im QC R IV . This implies that v ∈ im QC = ker AT
C . Furthemore,

[AR , AI , AV ]T v = [AR , AI , AV ]T QC QR IV −C v = 0.

Thus, v ∈ ker[AC , AR , AI , AV ]T .
Conversely, assume that v ∈ ker[AC , AR , AI , AV ]T . Then we have v = QC v and

[AR , AI , AV ]T QC v = [AR , AI , AV ]T v = 0, i.e., v = QC v = QC QR IV −C v.

It remains to show that ker(AT
L QC R IV = ker QC R IV ). The inclusion ⊇ is trivial.

To prove the converse inclusion, we take a vector v ∈ ker(AT
L QC R IV ). Then

QC R IV v ∈ ker[AL , AC , AR , AI , AV ]T .

However, Assumption (A2) implies that ker[AL , AC , AR , AI , AV ]T = {0} and,
hence, v ∈ ker QC R IV .

Lemma A.2. The matrices H1 and H3 in (4.3) are nonsingular.

Proof. The invertibility of H1 = PT
C R IV

P
C R IV

+QT
C R IV

ALL
−1

AT
L Q

C R IV
follows

from Lemma A.1 and the general fact that ker(NMNT ) = ker NT for N ∈ R
m,n and

a positive definite M ∈ R
n,n.

In order to show that H3 is nonsingular, we assume that H3v = 0. Multiplying
this equation from the left by vT QT

C we obtain that

vT QT
C (AR R

−1
AT

R +AIA
T
I +AV AT

V +ALL
−1

AT
L QC R IV H−1

1 QT
C R IV ALL

−1
AT

L )QC v=0.

Hence, [AC , AR , AI , AV ]T QC v = 0 and QT
C R IV

ALL
−1

AT
L QC v = 0. Then

QC v = QC R IV v, AT
L QC R IV v = 0.

By Lemma A.1 we have QC R IV v = 0. Therefore, H3v = 0 reduces to AC CAT
C v = 0,

i.e., v = QC v = 0. Thus, H3 is nonsingular.
We now determine ker E1 and imE1.
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Lemma A.3. Let E1 be as in (A.4). Then

ker E1 = im




QC R IV

L
−1

AT
L QC R IV

0


 , im E1 = ker




QT
C R IV

0 0

0 0 0
0 0 0


 . (A.5)

Proof. Let [ vT
1 , vT

2 , vT
3 ]T ∈ ker E1. Then we have

0 = AC CAT
C v1 + (AR R

−1
AT

R + AIA
T
I + AV AT

V )QC v1, (A.6)

v2 = L
−1

AT
L QC v1,

v3 = AT
V QC v1. (A.7)

Multiplication of (A.6) from the left by vT
1 QT

C yields

vT
1 QT

C (AR R
−1

AT
R + AIA

T
I + AV AT

V )QC v1 = 0

and, thus, v1 = QR IV −C v1. Hence, we get QC v1 = QC QR IV −C v1 = QC R IV v1. Then

equation (A.6) reduces to AC CAT
C v1 = 0, i.e., v1 = QC v1 = QC R IV v1. Moreover,

(A.7) implies v3 = AT
V

QC R IV v1 = 0. Thus, the first equation in (A.5) holds.
Further, we prove the relation

ker ET
1 = im




QC R IV 0 0
0 0 0
0 0 0




that is equivalent to the second equation in (A.5). The inclusion ⊇ is trivial. To prove
the converse inclusion assume that [ vT

1 , vT
2 , vT

3 ]T ∈ ker ET
1 . Then

AC CAT
C v1 + QT

C (AR R
−1

AT
R + AIA

T
I + AV AT

V )v1 = 0, (A.8)

v2 = 0, v3 = −AT
V v1.

Multiplying (A.8) from the left by QT
C we get

QT
C (AR R

−1
AT

R + AIA
T
I + AV AT

V )v1 = 0

Then AC CAT
C v1 = 0 and, hence, v1 = QC v1. This yields

vT
1 QT

C (AR R
−1

AT
R + AIA

T
I + AV AT

V )QC v1 = 0,

i.e., v1 = QC v1 ∈ ker[AC , AR , AI , AV ]T . Thus, v1 ∈ im QC R IV and v3 = 0.
We now construct a projector Q1 onto kerE1 that additionally satisfies Q1Q0 = 0.
Lemma A.4. The matrix

Q1 =




0 Q
C R IV

H−1
1 QT

C R IV
AL 0

0 L
−1

AT
L QC R IV H−1

1 QT
C R IV

AL 0

0 0 0


 (A.9)

is a projector onto ker E1 such that Q1Q0 = 0.
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Proof. The equations Q2
1 = Q1 and Q1Q0 = 0 follow by simple calculations.

Furthermore, we have

im Q1 ⊆ im




QC R IV

L
−1

AT
L QC R IV

0


 = ker E1.

Conversely, let [ vT
1 , vT

2 , vT
3 ]T ∈ ker E1, i.e., v1 = QC R IV v1, v2 = L

−1
AT

L QC R IV v1

and v3 = 0. Then




0 Q
C R IV

H−1
1 QT

C R IV
AL 0

0 L
−1

AT
L QC R IV H−1

1 QT
C R IV

AL 0

0 0 0







v1

v2

v3


 =




QC R IV v1

L
−1

AT
L QC R IV v1

0


 =




v1

v2

v3


 .

Thus, im Q1 = ker E1.

Lemma A.5. The matrix E2 = E1 + A1Q1 is invertible and its inverse is given
by

E−1
2 =




H−1
3 H7 −H−1

3 AV

L
−1

AT
L QC H−1

3 L
−1

+ L
−1

AT
L QC H7 −L

−1
AT

L QC H−1
3 AV

AT
V

QC H−1
3 AT

V
QC H7 I − AT

V
QC H−1

3 AV


 , (A.10)

where H3 is given in (4.3) and H7 = −H−1
3 ALL

−1
AT

L QC R IV H−1
1 QT

C R IV
ALL

−1
.

Proof. The matrix E2 has the form

E2 = E1 + A1Q1 = E1 +




0 ALL
−1

AT
L Q

C R IV
H−1

1 QT
C R IV

AL 0

0 0 0
0 0 0




=




AC CAT
C +(ARR

−1
AT

R +AIA
T
I )QC ALL

−1
AT

L QC R IV H−1
1 QT

C R IV
AL AV

−AT
L QC L 0

−AT
V

QC 0 I




=




I ALL
−1

AT
L QC R IV H−1

1 QT
C R IV

ALL
−1

AV

0 I 0
0 0 I







H3 0 0
−AT

L QC L 0
−AT

V
QC 0 I


 .

Since H3 and L are nonsingular, it follows from this factorization that E2 has an in-
verse given in (A.10).

The equation Q1 = Q1E
−1
2 A1 can be verified by simple calculations. By the

results of [12], the index of the pencil λE −A is the smallest number k such that Ek is
invertible. Therefore, Lemma A.5 implies that the index of λE − A with E and A as
in (2.4) is at most two. The index is less than two if and only if Q1 in (A.9) vanishes.
Since this is equivalent to QC R IV = 0, it can be shown analogous to the results in [3]
that the index of λE − A is less than two if and only if the circuit does not contain
cutsets only consisting of inductive branches.

We are now ready to prove Theorem 4.2.



14 T. REIS AND T. STYKEL

Proof of Theorem 4.2. Taking into account that

Q0(I − Q1) =




QC −Q
C R IV

H−1
1 QT

C R IV
AL 0

0 0 0
0 0 I


 ,

E−1
2 A0 =




H−1
3 H2 H−1

3 AL 0

L
−1

AT
L (QC H−1

3 H2 − I) L
−1

AT
L QC H−1

3 AL 0
AT

V
(QC H−1

3 H2 − I) AT
V

QC H−1
3 AL I


 ,

we have

Q0(I − Q1)E
−1
2 A0 =



−H4(QC H−1

3 H2 − I) + I −H4QC H−1
3 AL 0

0 0 0
AT

V
(QC H−1

3 H2 − I) AT
V

QC H−1
3 AL I




with H4 as in (4.3). Finally, using (A.2) we obtain the relation (4.2).

Appendix B. Solvability of the projected Lur’e equation.
In this section, we prove the solvability and existence of the minimal solutions of

the projected Lur’e equations (3.3) and (3.4).
Lemma B.1. Let E, A, B, C be given in (2.4) and let Assumptions 2.1 be fulfilled.

Then there exist invertible W, T ∈ R
n,n such that

WT (λE − A)T =




λIni
−Ai 0 0
0 λIns

−As 0
0 0 λE∞ − In∞


 , (B.1)

WTB =




0
Bs

B∞


 , CT =

[
0, Cs, C∞

]
, (B.2)

where
(i) Cs,BT

s ∈ R
m,ns and C

∞
,BT

∞
∈ R

m,n∞ ;
(ii) Ai ∈ R

ni,ni is diagonalizable and has purely imaginary eigenvalues only;
(iii) all eigenvalues of As ∈ R

ns,ns have negative real part;
(iv) E∞ ∈ R

n∞,n∞ with E2
∞

= 0, E∞B∞ = 0 and C∞E∞ = 0.
Proof. Due to A + AT ≤ 0 and E = ET ≥ 0, the function R(s) = (sE − A)−1

is positive real. Then the poles of R on the imaginary axis are simple [1] and thus
every purely imaginary eigenvalue of λE − A has the same geometric and algebraic
multiplicity. We can make use of the Weierstrass canonical form [9] to find invertible
W, T ∈ R

n,n such that WT (λE − A)T has the form (B.1) with nilpotent E∞. By
Theorem 4.2 the index of λE − A is at most two and, hence, E2

∞
= 0.

In order to prove that the matrices WTB and CT have the block structure as
in (B.2), we show that for each eigenvector v ∈ C

n of λE − A (resp. λET − AT )
corresponding to a generalized eigenvalue iω with ω ∈ R holds Cv = 0 (resp. v∗B = 0).
Assume that v = [ vT

1 , vT
2 , vT

3 ]T partitioned according to the block structure of E
satisfies iωEv = Av. Then

0 = v∗(iωE − A)v + v∗(−iωET −AT )v = −v∗(A + AT )v

= 2v∗

1AR R
−1

AT
R v1 + 2v∗

1AIA
T
I v1 + 2v∗

3v3

and, hence, AT
R v1 = 0, AT

I v1 = 0 and v3 = 0. The last two relations especially imply

that Cv = 0. The result for WTB can be proven analogously.
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It remains to show that E∞B∞ = 0 and C∞E∞ = 0. In [12, 17], the following
decoupling

λE − A =
[
E2Q0 E2P0Q1 E2P0P1

]



Q0 λQ0Q1 Q0P1E
−1
2 A2

0 Q1 Q1E
−1
2 A2

0 0 λP0P1+P0P1E
−1
2 A2






Q0

P0Q1

P0P1


,

has been obtained, where E2 and A2 are as in (A.1), the projectors Q0 and Q1 are
given in (A.3) and (A.9), respectively, P0 = I − Q0 and P1 = I − Q1. Since P0P1 is
a projector with P0P1 + P0Q1 + Q0 = I, see [12, 17], we obtain that

C(sE − A)−1 = −sCQ0Q1E
−1
2 + Gp(s),

where Gp is proper, i.e., lim
s→∞

Gp(s) < ∞. Since CQ0Q1 = 0, the function C(sE−A)−1

is proper. This implies that C∞E∞ = 0. The relation E∞B∞ = 0 follows analogously
from the properness of (sE −A)−1B = −Sint(C(sE −A)−1)T Sext, where Sext and Sint

are as in (2.3) and (4.1), respectively.
Similarly to the corresponding results in [20, Theorem 4.6], one can show that

the pencil λE − A does not have generalized eigenvalues on the imaginary axis if the
circuit does not contain cutsets consisting of capacitive and inductive branches only.
In this case the block λI −Ai does not appear in (B.1).

Lemma B.2. [21] Let Â, Q̂ ∈ R
n,n and B̂ ∈ R

n,m be given with Q̂ = Q̂T . Assume
that

rank[−sI − Â, B̂ ] = n for all s ∈ C+ (B.3)

and that there exist a symmetric matrix Y ∈ R
n,n satisfying the algebraic Riccati

inequality

ÂT Y + Y Â − Y B̂B̂T Y + Q̂ ≥ 0. (B.4)

Then there exists a symmetric matrix Ymin ∈ R
n,n that solves the algebraic Riccati

equation

ÂT Ymin + YminÂ − YminB̂B̂T Ymin + Q̂ = 0 (B.5)

and satisfies Ymin ≤ Y for all symmetric Y fulfilling (B.4).
Lemma B.3. Let A ∈ R

n,n, B ∈ R
n,m, C ∈ R

m,n and D ∈ R
m,m be given and

assume that all eigenvalues of A have negative real part. Moreover, let

F : R
n,n → R

n+m,n+m

Y 7→
[
AT Y + Y A + CT C Y B + CT D

BT Y + DT C DT D − I

]

and assume that

L =
{

Y ∈ R
n,n | Y = Y T and F (Y ) ≤ 0

}
6= ∅.

Then there exists Ymin∈L such that 0≤ Ymin≤Y for all Y ∈L and rankF (Ymin)≤m.
Proof. For ε > 0, define

Fε : R
n,n → R

n+m,n+m

Y 7→
[
AT Y + Y A + CT C Y B + CT D

BT Y + DT C DT D − (1+ε)I

]
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and

Lε =
{

Y ∈ R
n,n | Y = Y T and Fε(Y ) ≤ 0

}
.

It can be seen that for all ε1 > ε2 > 0 holds Lε1
⊃ Lε2

⊃ L. Moreover, the matrix
Mε = (1+ ε)I − DT D satisfies Mε > 0 for ε > 0. Thus, there exists invertible
Lε ∈ R

m,m such that Mε = LT
ε Lε. By using the Schur complement [9], we obtain

that Y ∈ Lε if and only if the algebraic Riccati inequality (B.4) is fulfilled for

Â = −A − BM−1
ε DT C, B̂ = BL−1

ε , Q̂ = −CT (I + DM−1
ε DT )C.

Since all eigenvalues of A have negative real part, relation (B.3) holds true for all
s ∈ C+. Then Lemma B.2 implies that there exists a symmetric matrix Yε,min that
satisfies the algebraic Riccati equation (B.5) and Yε,min ≤ Y for all Y ∈ Lε. Moreover,
we have rankFε(Yε,min) ≤ m.

Let now {εk}k∈N be a monotonically decreasing sequence tending to 0. Due to
Lεk

⊃ Lεk+1
⊃ L, we have Yεk,min ≤ Yεk+1,min ≤ Y for all Y ∈ L. Therefore, the

matrix sequence {Yεk,min}k∈N converges to some Ymin ∈ R
n,n. We now show that

Ymin indeed has the desired properties. Since for all k ∈ N holds Yεk,min ≤ Y , we have
that Ymin ≤ Y for all Y ∈ L and, moreover, F (Ymin) ≤ 0. This inequality implies
that AT Ymin + YminA + CT C = −H for some H ≥ 0. Since all eigenvalues of A have
negative real part and H +CT C ≥ 0, this Lyapunov equation has a unique symmetric
solution Ymin ≥ 0, see [9]. Furthermore, we obtain that

rankF (Ymin) = rank lim
k→∞

Fεk
(Yεk,min) ≤ max

k∈N

rankFεk
(Yεk,min) ≤ m.

Proof of Theorem 4.3. Due to Theorem 4.1, it suffices to show the statement for
the projected Lur’e equation (3.4) only. Regarding the matrices in (2.4), we have that

E = ET ≥ 0, A + AT + CTC ≤ 0, CT = −B. (B.6)

By Lemma B.1 there exist invertible W, T ∈ R
n,n such that λÊ − Â = WT (λE −A)T

and B̂ = WTB, Ĉ = CT are as in (B.1) and (B.2). Defining Y = W−1T , relations
(B.6) imply that

YT Ê = ÊTY ≥ 0, YT Â + ÂTY + ĈT Ĉ ≤ 0, ĈT = −YT B̂. (B.7)

Let

Y =




Yi Yi,s Yi,∞

Ys,i Ys Ys,∞

Y∞,i Y∞,s Y∞




be partitioned according to the block structure in (B.1). Then relations (B.7) imply
that

Ys = YT
s ≥ 0, Ys,∞ = YT

∞,sE∞,

CT
s = −YT

s Bs − YT
∞,sB∞, CT

∞
= −Ys,∞Bs − YT

∞
B∞,

0 ≥
[
YsAs + AT

s Ys + CT
s Cs AT

s Ys,∞ + YT
∞,s + CT

s C∞
YT

s,∞As + Y∞,s + CT
∞
Cs Y∞ + YT

∞
+ CT

∞
C
∞

]
.
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Using these relations together with M0 = I − C∞B∞, we obtain that

0 ≥
[
I 0
0 −BT

∞

] [
YsAs + AT

s Ys + CT
s Cs AT

s Ys,∞ + YT
∞,s + CT

s C∞
YT

s,∞As + Y∞,s + BT
∞
Cs Y∞ + YT

∞
+ CT

∞
C
∞

] [
I 0
0 −B∞

]

=

[
AT

s Ys + YsAs + CT
s Cs YsBs + CT

s (I − C∞B∞)
BT

s Ys + (I − BT
∞
CT
∞

)Cs BT
∞
CT
∞
C∞B∞ − BT

∞
CT
∞

− C∞B∞

]

=

[
AT

s Ys + YsAs + CT
s Cs YsBs + CT

s M0

BT
s Ys + MT

0 Cs MT
0 M0 − I

]
.

Lemma B.3 yields the existence of some Ys,min ≥ 0 which solves the above matrix
inequality and is minimal with this property. Moreover, we have

rank

[
AT

s Ys,min + Ys,minAs + CT
s Cs Ys,minBs + CT

s M0

BT
s Ys,min + MT

0 Cs MT
0 M0 − I

]
≤ m. (B.8)

We now define

Ymin = W




0 0 0
0 Ys,min 0
0 0 0


WT .

Taking into account (B.1), the spectral projectors Pl and Pr are given by

Pl = W−T




I 0 0
0 I 0
0 0 0


WT , Pr = T




I 0 0
0 I 0
0 0 0


 T −1.

Then we have Ymin = PT
l YminPl ≥ 0. Furthermore, the matrix

F(Ymin) =

[
AT YminE + ET YminA + PT

r CTCPr ET YminB + PT
r CTM0

BT YminE + MT
0 CPr MT

0 M0 − I

]

fulfils F(Ymin) ≤ 0 and rankF(Ymin) ≤ m due to (B.8). Hence, there exist Ko ∈ R
m,n

and Jo ∈ R
m,m such that

F(Ymin) = −[
√

2Ko, Jo ]T [
√

2Ko, Jo ].

Now using E = E, A = A − BC, B = −
√

2B and C =
√

2C, we obtain that

(A − BC)T YminE + ET Ymin(A − BC) + 2PT
r CT CPr= −2KT

o Ko,

−ET YminB + PT
r CTM0= −KT

o Jo.

By construction, one can further see that Ymin is minimal with this property.

Appendix C. The feedthrough matrix M0.
In order to prove Theorem 4.4 we need the following results.
Lemma C.1. Let G(s) = C(sE −A)−1B+I with E, A, B and C as in (2.4). Then

the transfer function Gr(s) = G( 1

s ) has a realization Gr = [ Er, Ar, Br, Cr, I ], where

Er =




ALL
−1

AT
L 0 0

0 C
−1

0
0 0 0


 , Br =

√
2




AI 0
0 0
0 I


 = −CT ,

Ar =



−AR R

−1
AT

R − AIA
T
I −AC −AV

AT
C 0 0

AT
V

0 −I


 .
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Proof. We have

G( 1

s ) = I−2




AI 0
0 0
0 I




T



1

sAC CAT
C +AR R

−1
AT

R +AIA
T
I AL AV

−AT
L

1

s L 0

−AT
V

0 I




−1 


AI 0
0 0
0 I




= I−2

[
AI 0
0 I

]T



1

sACCAT
C +ARR

−1
AT

R +AIA
T
I +sALL

−1
AT

L AV

−AT
V

I



−1[

AI 0
0 I

]

= I + Cr(sEr −Ar)
−1Br = Gr(s).

Lemma C.2. The matrix H6 in (4.7) is nonsingular.
Proof. Assume that H6v = 0. Then [AR , AI , AV ]T QC v = 0 and QR IV −C v = 0.

It follows from the first equation that v = QR IV −C v, whereas the second one implies
that v = 0. Thus, H6 is nonsingular.

Proof of Theorem 4.4. The bounded realness of G implies the existence of the
limit and from the reciprocity we obtain that

M0 =

[
M11 −MT

21

M21 M22

]
,

where M11 ∈ R
nI ,nI , M21 ∈ R

nV ,nI , M22 ∈ R
nV ,nV and M11 = MT

11, M22 = MT
22.

Since M0 = Gr(0), where Gr is as in Lemma C.1, the matrices M11, M21 and M22

satisfy

M11 =I − 2
[
AT

I , 0, 0
]
X1,

M21 = − 2
[
0, 0, I

]
X1,

M22 =I − 2
[
0, 0, I

]
X2,

where X1 and X2 are the solutions of

−ArX1 =
[
AT

I , 0, 0
]T

, −ArX2 =
[
0, 0, I

]T
. (C.1)

Let us first solve the system for X1. Assume that X1 = [XT
11, XT

21, XT
31 ]T . Then we

have

(AR R
−1

AT
R + AIA

T
I )X11 + AC X21 + AV X31 = AI , (C.2)

−AT
C X11 = 0, (C.3)

−AT
V X11 + X31 = 0. (C.4)

Substituting X31 from (C.4) in (C.2), we obtain that

(AR R
−1

AT
R + AIA

T
I + AV AT

V )X11 + AC X21 = AI . (C.5)

It follows from (C.3) that X11 = QC X11. A multiplication of equation (C.5) from the
left by QT

C leads to

QT
C (AR R

−1
AT

R + AIA
T
I + AV AT

V )QC X11 = QT
C AI ,
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and, hence,

X11 = H−1
6 QT

C AI + QR IV −C X11.

Therefore, we get

X11 = QC X11 = QC H−1
6 QT

C AI + QC R IV X11.

Since QC R IV is a projector onto ker[AC , AR , AI , AV ]T , we have

M11 = I − 2AT
I X11 = I − 2AT

I (QC H−1
6 QT

C AI + QC R IV X11)

= I − 2AT
I QC H−1

6 QT
C AI

and

M21 = −2X31 = −2AT
V

X11 = −2AT
V

(QC H−1
6 QT

C AI + QC R IV X11)

= −2AT
V

QC H−1
6 QT

C AI .

We now compute M22. Substituting X2 = [XT
12, XT

22, XT
32 ]T in the second equation

in (C.1), we have

(AR R
−1

AT
R + AIA

T
I )X12 + AC X22 + AV X32 = 0, (C.6)

−AT
C X12 = 0, (C.7)

−AT
V X12 + X32 = I. (C.8)

Then we obtain from (C.6) and (C.8) that

(AR R
−1

AT
R + AIA

T
I + AV AT

V )X12 + AC X22 = −AV .

Furthermore, equation (C.7) yields X12 = QC X12 and, hence,

QT
C (AR R

−1
AT

R + AIA
T
I + AV AT

V )QC X12 = −QT
C AV .

By the same argumentation as for X11, we obtain

X12 = −QC H−1
6 QT

C AV + QC R IV X12.

Thus, M22 = I − 2X32 = −I + 2AT
V

QC H−1
6 QT

C A
V

.

Appendix D. Topological conditions for the invertibility of I−M0MT
0 .

In order to prove Theorem 4.7 we need the following result.
Lemma D.1. Let P ∈ R

n,n be an orthogonal projector, i.e., P 2 = P and P = PT .
Assume that P is partitioned as

P =

[
P11 P12

PT
12 P22

]

with P11 ∈ R
k,k for some k ≤ n. Then all eigenvalues of P11 satisfy λj(P11) < 1 if

and only if

im

[
P11 P12

PT
12 P22

]
∩ im

[
Ik

0n−k,k

]
= {0}. (D.1)
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Proof. First assume that the converse of (D.1) holds true. Let v1 ∈ R
k\{0} such

that v = [ vT
1 , 0 ]T ∈ im P . Then P11v1 = v1. This is a contradiction to the fact that

λj(P11) < 1 for j = 1, . . . , k.
Assume now that v1 ∈ R

k\{0} with P11v1 = λv1 for some λ ≥ 1. Since ‖P‖2 ≤ 1,
we have

∥∥∥∥
[

λv1

PT
12v1

]∥∥∥∥
2

=

∥∥∥∥
[
P11 P12

PT
12 P22

] [
v1

0

]∥∥∥∥
2

≤
∥∥∥∥
[
v1

0

]∥∥∥∥
2

.

Then λ = 1 and PT
12v1 = 0. Hence,

[
v1

0

]
∈ im

[
P11 P12

PT
12 P22

]
∩ im

[
Ik

0n−k,k

]
,

which is a contradiction to (D.1).
Proof of Theorem 4.7. The invertibility of I − MT

0 M0 is equivalent to the fact
that σ = 1 is not a singular value of M0 and also of the symmetric matrix

M0Sext =

[
I − 2AT

I QC H−1
6 QT

C AI −2AT
I QC H−1

6 QT
C AV

−2AT
V

QC H−1
6 QT

C AI I − 2AT
V

QC H−1
6 QT

C AV

]

=

[
InI 0
0 InV

]
− 2

[
AT

I
AT

V

]
QC H−1

6 QT
C

[
AI , AV

]
,

with Sext as in (2.3). The symmetry of this matrix then implies that I −MT
0 M0 is

invertible if and only if the spectrum of

K =

[
AT

I
AT

V

]
QC H−1

6 QT
C

[
AI , AV

]

contains neither 0 nor 1.
Since H6 is symmetric and positive definite, we have that λ = 0 is not an eigen-

value of K if and only if

ker QT
C

[
AI , AV

]
= {0}.

We now analyze whether K has the eigenvalue λ = 1. Let R
−1/2

be the matrix square

root of R
−1

and consider the matrix

P =




AT
I

AT
V

R
−1/2

AT
R


 QC H−1

6 QT
C

[
AI , AV , AR R

−1/2
]
.

Then we have PT = P and

I − QR IV −C = H−1
6 QT

C (AR R
−1

AT
R + AIA

T
I + A

V
AT

V
)QC ,[

AT
I

AT
V

]
QC (I − QR IV −C ) =

[
AT

I
AT

V

]
QC .
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Thus, P is an orthogonal projector. Since K is an upper left block of P, Lemma D.1
leads to the fact that λ = 1 is not an eigenvalue of K if and only if

imP ∩ im




InI 0
0 InV

0 0


 = {0}.

In this case, v1 ∈ R
nI , v2 ∈ R

nV with v1 = 0 and v2 = 0 are the only vectors with



v1

v2

0


 ∈ im




AT
I

AT
V

R
−1/2

AT
R


 QC .

Hence, for all v ∈ ker AT
R QC holds AT

V
QC v = 0 and AT

I QC v = 0. Then for the pro-

jector QR −C onto kerAT
R QC and the projector QR C = QC QR −C onto ker[AR , AC ]T ,

we obtain
[
AT

I
AT

V

]
QC QR −C =

[
AT

I
AT

V

]
QR C = 0.
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