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Zusammenfassung

Die in den letzten Jahren stetig weiterentwickelte Methode der mehrstufigen
Stark-Abbremsung von Molekularstrahlen wurde benutzt, um OH-Radikale in
wohldefinierten Quantenzustdnden zu praparieren. Bei dieser Methode wird
ein gepulster Molekularstrahl mit Hilfe von inhomogenen und zeitabhangigen
elektrischen Feldern stufenweise gefiltert, fokussiert und gleichzeitig abgebremst
oder beschleunigt. Ein Stark-Abbremser fiir polare — aber elektrisch neutrale —
Molekiile funktioniert in vielerlei Hinsicht wie ein Linearbeschleuniger fiir ge-
ladene Teilchen. Stark-Abbremser wurden bisher hauptsachlich verwendet, um
Molekiile zum Stillstand zu bringen und in einer Molekiilfalle zu speichern.

Der wesentliche Vorzug der Methode liegt darin, dafl die mittlere Endge-
schwindigkeit der gefilterten Molekiile in einem gewissen Bereich willkiirlich
festgelegt werden kann und dal man gleichzeitig auch die Geschwindigkeitsver-
teilung kontrolliert. Wie in der vorliegenden Arbeit gezeigt wird, sind die auf
diesem Wege préparierten Molekiile hervorragend geeignet, um damit Streuex-
perimente bei variabler Stoflenergie durchzufithren. Insbesondere kann man die
inelastische Streuung vom gegebenen anfinglichen Quantenzustand in andere
Zustande als Funktion der Stofenergie untersuchen.

Mit diesem Ziel vor Augen wurde zunéchst eine neue Stark-Abbremser Appa-
ratur aufgebaut, welche fiir Streuexperimente mit gekreuzten Molekularstrahlen
optimiert ist. Nach deren Fertigstellung konnte durch ausfiihrliche Charak-
terisierung des Instruments gezeigt werden, dafl die neue Apparatur in der
Tat den bisher verwendeten deutlich iiberlegen ist (siehe Kapitel 5). Im An-
schluss an diesen erfolgreichen Test wurde der Stark-Abbremser mit einer (kon-
ventionellen) Molekularstrahlquelle gekoppelt. Mit Hilfe dieser Quelle wur-
den Atomstrahlen aus der Reihe der Edelgase (He bis Xe) erzeugt, welche als
Streumedium fiir die praparierten OH-Radikale dienten. Nun konnten rela-
tive, integrale Streuquerschnitte fiir die Rotationsanregung des OH-Radikals
mit voller Zustandsauflosung, sowohl vor als auch nach dem Stof}, bestimmt
werden (siehe Kapitel 7 und 8). Aufgrund der hohen Stofienergieauflosung war
es auflerdem moglich, die Energieabhangigkeit der relativen Streuquerschnitte
mit bisher unerreichter Genauigkeit zu messen (siehe Seite 118 und 133-134).

Zum einen konnte somit gezeigt werden, dafl die Methode der Stark-Ab-
bremsung auch bei Streuexperimenten sehr gute Ergebnisse liefern kann und
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somit den bisher iiblichen Methoden der Zustandsselektion vorzuziehen ist. Zum
anderen ergaben die gemessenen Daten neue Erkenntnisse tiber das Streuver-
halten bei den unterschiedlichen Stopartnern He, Ne, Ar, Kr und Xe. Durch
Vergleich mit ab-initio Streurechnungen konnte auflerdem untersucht werden,
inwiefern die bisher publizierten Wechselwirkungspotentiale fiir die verschiede-
nen Stofipartner die Daten korrekt reproduzieren koénnen, wenn man sie bei
Streurechnungen verwendet. Dabei ergaben sich niitzliche Aufschliisse iiber die
Qualitat der Potentiale und der Streurechnungen selbst. Die Rechnungen zeigen
allerdings auch, dafl immer noch Verbesserungsbedarf von experimenteller Seite
besteht, denn nicht alle Strukturen in der Energieabhéngigkeit der Streuquer-
schnitte kann man bisher auflosen. Um dies in Zukunft zu erreichen, wurde
eine Modifikation des Experiments vorgeschlagen, welche die Energicauflosung
erheblich verbessert (siche Kapitel 9).
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Chapter 1

Introduction

Most natural processes that are of interest to us do not happen in an isolated en-
vironment, they usually occur in some condensed phase. But in this state, many
of the intrinsic (quantum) properties of molecules and atoms do not manifest
themselves very clearly. Only in the gas phase and under certain particularly
artificial conditions does it become possible to study in detail how atoms and
molecules interact and what their intrinsic properties are. It is one of the ul-
timate goals of the experimentalists to set up experiments that yield clear and
unambiguous information about atoms and molecules with as few additional
assumptions as possible and with a minimum of practical and theoretical com-
plexity. In the best case, an experiment does not only yield new information
which can be used by others, but is also a beautiful demonstration itself.

Atomic and molecular beams provide a first step towards obtaining such
clean and well controlled conditions in particular if additional state-preparation
procedures follow before the intended experiment takes place. With the help of
external fields — be they electric or magnetic — atoms and molecules in specific
quantum states can be prepared. The groundbreaking experiments on the mag-
netic moment of silver atoms by Otto Stern and Walther Gerlach! conducted in
Frankfurt in 1922 were the first demonstration of this kind. In their experiment,
the external field modifies only the transverse velocity components of the atoms
or molecules while the velocity component in the beam propagation direction
remains unchanged.

However, it is useful to gain better control over the forward velocity as well.
In fact, in the past years it has become a kind of competition among several
groups of researchers to devise ever more original methods which allow atoms
and molecules that originate from supersonic gas expansions to be slowed down
to laboratory frame velocities around zero. These relatively new deceleration
methods have been the subject of several review articles e.g. [3, 4].

LFor interesting and amusing facts about the protagonists see [1] and [2].
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In this thesis, the so called multistage Stark-deceleration method is used,
which is probably the most tried and tested of the currently available ones
for the slowing of a molecular beam. This technique exploits the interaction
of a polar molecule with a strong and inhomogeneous electric field. The used
field is periodic and time dependent and the method is in effect analogous to
the acceleration of charged particles in linear accelerators. In 1999, the first
demonstration of a decelerator for polar molecules was described in a paper
by Bethlem, Berden and Meijer [5]. While their principle design prevails until
today, many technical problems have meanwhile been located and eliminated.
In particular, the used electric fields became stronger. While some researchers
increased the size of the apparatus [6], others tried to miniaturise their machines
[7, 8]. The development continues and a very promising route towards higher
efficiencies has been demonstrated recently [9].

A Stark decelerated beam is obtained as follows. One first creates a molec-
ular beam by expanding a gas from a reservoir at a high pressure (typically
1-5bar) into the vacuum through a nozzle using a pulsed valve [10]. During
the expansion, the energy of the random thermal motion and also that of the
internal degrees of freedom of the particles is converted into kinetic energy of
motion in the beam propagation direction through the approximately isentropic
expansion. FEven if the molecule of interest is in the gaseous state, it is usu-
ally added in small concentrations to a carrier gas which is typically one of
the rare gases. A few centimeters behind the expansion nozzle, a skimmer is
located which extracts the central part of the beam and which separates the
beam-source vacuum chamber from the experimental chamber. Right behind
the skimmer, many deceleration stages (sometimes hundreds of them) are lo-
cated which become electrically charged or grounded in a specifically tailored
sequence so as to allow a deceleration or acceleration to a specified velocity.

In the first years after their introduction, Stark decelerators were mainly
used to slow down molecules and to subsequently load them into a trap [6, 11,
12, 13, 14, 15, 16, 17]. In 2006, Gilijamse and coworkers [18] showed that state-
to-state inelastic scattering experiments are also feasible with Stark-decelerated
pulses of molecules. However, the machine that was used in the experiment
was not well suited for beam scattering studies and a better instrument was
designed and built. The first scattering experiments conducted with this new
machine are described in the present thesis.

The field of molecular beam scattering has a long history with the first ex-
periments appearing approximately 10 years after the Stern-Gerlach experiment
[19]. After Stern had moved to Hamburg in 1923, he continued to cultivate the
method of molecular beams further [20, 21]. It is not surprising that one of
the first molecular beam scattering studies was carried out in his laboratory, by
Friedrich Knauer [22]. Knauer was able to measure differential cross sections
for the scattering of He, Os, Hy and H2O beams from their respective vapors
and also for the scattering of He and Hy from Hg vapor. Similar experiments
were carried out by L.F. Broadway [23] who reported on the scattering of Na



and K atoms from Hg vapor effusing from an oven, in 1933. This appears to
be the first crossed beam experiment with neutral particles ever conducted. In
the same year R.M. Zabel studied the scattering of He and Hy and was able
to determine differential cross sections for the scattering with He, Hy and Hg.
Further experiments, using alkali atoms, were reported in the following years
[24, 25, 26] — until the beginning of the Second World War. One of the main
objectives of these early scattering experiments was to detect diffraction phe-
nomena which were expected on the basis of wave mechanics. However, clear
indications of diffraction were not seen, because the available beams had too
broad a velocity distribution. Later experiments which made use of velocity
selectors could clearly show typical quantum effects; rather noteworthy in that
respect is the work by Feltgen et al. [27] on the glory oscillations in the integral
scattering cross sections for the systems 3He — *He, 3He — *He and “He — *He.

The technological developments in the past decades have led to more and
more refined investigations of the scattering properties of atoms and molecules.
Experiments with state-selection before the collision and full state-resolution
after the collision have become possible. In particular, ion-imaging techniques
together with state-selective ionization enable us to determine, in one stroke,
the post-collision quantum state together with the velocity vector of the ionized
molecule or atom [28, 29]. Using this so-called Velocity Map Imaging technique,
it has become possible to efficiently measure quantum state resolved differential
cross sections; even the preferred sense of rotation of a molecule after a collision
can be determined if suitably polarized laser radiation is used [30].

While it is indeed of interest to control the exact initial and to determine
the final state distributions, it is also important to have control over the relative
velocity of the colliding particles. An established method to tune the relative
velocity, and hence the collision energy, is to change the crossing angle between
the two beams [31], but this technique is difficult to combine with a state-
selector. By using a Stark decelerator, it is now becoming possible to achieve
the ultimate resolution as far as the state-preparation before the collision is
concerned: we can tune the initial mean velocity continuously and control the
velocity distribution, select the initial internal quantum state (often including
the hyperfine level, see p.22) and fix the initial angular momentum projection
quantum number M, since the decelerated molecules are oriented. If a suitable
guiding field is used to retain the orientation of the molecules up to the collision
zone, it becomes possible to study the effect of orientation on the collision
process.

In the following four chapters, the basic principles of operation and the
construction of the machine are described. In the subsequent chapters, the
instrument is characterized and several scattering experiments are presented.
In these experiments, the rotationally inelastic scattering of OH radicals with
rare gas atoms is studied and state-to-state cross sections are determined as
a function of the collisions energy. That the collision energy can be precisely
adjusted is one of the main benefits of this technique and has led to a very
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detailed mapping of the energy dependence of the cross sections (see p. 118, 133
and 134). The scattering of OH with argon atoms is studied in chapter 7, the
scattering with all other rare gas atoms and Dy molecules is described in chapter
8. In the final chapter 9, it is analysed how the collision energy resolution can
be improved further by using a suitable beam crossing angle that differs from
the hitherto used 90°.



Chapter 2

The OH radical

The interactions between electrons and protons are well known and consequently
one can formulate a Schrédinger equation for any molecule which then in princi-
ple describes the system with the desired degree of accuracy. However, even for
a small molecule like OH with only two nuclei and 9 electrons the determination
of the wavefunctions and energies is already quite a complicated task. In order
to solve the problem and also in order to gain physical insight, several approx-
imations need to be introduced which break down the problem into tractable
pieces. One usually begins with the separation of the electronic motion from
the motion of the nuclei and then separates the vibration, rotation and spin
degrees of freedom. A systematic treatment of this procedure can be found for
example in [32]. In the following, only the most relevant aspects are described.
Since our main interest concerns the Stark effect, particular emphasis is put on
the rotational properties of the electronic ground state.
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2.1 The rigid rotor and its Stark effect

The rotation of a molecule as a whole is correctly described, in the first approx-
imation at least, by the quantum mechanical version of the classical rigid body.
The model is based on the classical Hamiltonian:

T2
21, 20,  2I.

H (2.1)

with the three principle moments of inertia I, I, I. and the scalar products
Jo :=J-a etc. between the angular momentum vector J and the three orthog-
onal (body fixed) unit vectors a, b, c which point along the principle axes of
inertia of the body. In the quantum mechanical description, one may think of
these axes as defined relative to the position of the molecule’s nuclei. Strictly
speaking, this model is incompatible with the fundamental principles of quan-
tum mechanics. It is to be regarded as the limiting case in which the positions
of the nuclei are fixed relative to each other by a strong interaction potential
which is, in the spirit of the Born-Oppenheimer approximation, created by the
surrounding electrons. The energy eigenfunctions belonging to the above Hamil-
tonian determine the relative probabilities for specific orientations of the body
in space.

2.1.1 The energy spectrum

If the rigid rotor has an axis of symmetry, the possible energies follow from
the transformation properties of the involved vectors a,b,c. In the quantum
mechanical description, the a, b, c become vector operators with respect to the
angular momentum J which is itself a vector operator.

By definition, the components of a vector operator have to transform like
those of an ordinary geometrical vector under rotations (see e.g. [33]). An active
rotation of the considered object about a space fixed axis e by the angle ¢ is
implemented by a unitary transformation which we write as Re(¢) := e~#%¢J
which acts on the respective state vector (we set h = 1). The transformation
which rotates the operator around the same axis and with the same angle is
then a’ = RaR', the infinitesimal version of which is

a'~a—idple-J, al. (2.2)
For a to be vector operator we require that
da=a' —a~ —idple-J,a] = —dpe x a (2.3)
and therefore:

[e-J,a] = —iex a. (2.4)
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For any two space fixed unit vectors e; and e; this becomes
[e1-J,ex-a] =i(e; x e2)-a. (2.5)

Since J is itself a vector operator the commutation rules for the components of
J with respect to different axes are:

[el-J,eg-J]:i(elxeg)-J. (26)

Does this relationship remain true if e; and es are replaced by vector operators?
Not quite. One may show that (2.4) remains true when e is replaced by a vector
operator:

[a-J,b]=—-iaxb (2.7)
provided a and b commute. Since J commutes with the scalar a-J we have:
[a-J,b-J=—i(axb)-J (2.8)

so that compared to (2.6) the sign of ¢ is now inverted. The three orthogonal
vectors used in the description of the rigid rotor therefore have to satisfy these
same relationships, which means that the projections of J onto the body fixed
axes satisfy:

[a-J,b-J] = —ic-J. (2.9)

If we choose space fixed unit vectors ey, es, e3 along a given z,y, z axis system,
the commutation relationships become:

o dy] = +il. (2.10)
oo Jy] = —ide (2.11)

which is not surprising if one recalls that successive rotations about body fixed
axes are equivalent to rotations about space fixed axes carried out in reverse
order, provided the space and body fixed axes coincide initially. Since scalar
products like J - a are invariant under rotations, the components J,, J,, J. com-
mute with the J,, Jp, J. and therefore common eigenfunctions of J-J, J, and J,
can be found. The eigenvalue spectrum of J. is the same as that of J, because
the commutation relationships differ only by a sign. We denote the eigenvectors
by |JMK), so that J?|JMK) = J(J+1)|JMK), J, |JMK) = M |JMK) and
J|IMK) =K |JMK).

If the rigid rotor has an axis of symmetry along the c-axis, the Hamiltonian
becomes:
_JJ - J: g2

H 21, 21,

(2.12)
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which is diagonal in the |JM K) basis and the energy eigenvalues are:

JJ+1)—K? K2

= o1, tor

(2.13)

where K = —J,—J + 1,...,J so that states with opposite K have the same
energy. Moreover, all 2J 4+ 1 M-states have the same energy. The overall
degeneracy for the energy levels is therefore 2(2J + 1) if K # 0 and 2J + 1 if
K = 0. States of opposite K have the same energy because the Hamiltonian
is invariant under space inversion while .J. changes sign under inversion'. In
contrast, J, does not change sign under inversion and therefore only states with

K = 0 have definite parity.

2.1.2 The rigid rotor wavefunctions

A wavefunction for the state |JM K) must yield the amplitude for a specific ori-
entation of the body fixed system a, b, ¢ with respect to the space fixed system.
The orientation is usually specified by the three Euler angles (¢, 6, x), which
define three successive rotations that carry a copy of the space fixed x,y, z-axis
system into the body fixed a, b, ¢ system; we denote any rotation by w and we
write ww’ for two successive rotations with w’ applied first. Following common
convention, we rotate first by ¢ about z, then by 6 about the new axis 3’ and
finally by x around z” so that 6 and ¢ determine the orientation of the body
fixed c-axis. The wavefunction of the symmetric rigid body is completely de-
termined by the known transformation laws for angular momentum eigenstates.
Under any rotation w such a state must change as

R(w) |jm) = ZD“’ (w) [jm’) (2.14)

Z e~ edY) ()X |im/) (2.15)

where Dg?m(w) is the unitary Wigner rotation matrix and dg}m is the re-
duced rotation matrix. The wavefunctions must form basis functions for an
irreducible representation of the rotation group, which is given by the matrices
DU)(w). The wavefunction argument is itself a rotation, namely the rotation
specified by the Euler angles and the wavefunction labels are the time inde-
pendent quantum numbers, in this case J, M and K. Hence we denote the
wavefunction by ¥y (w). To rotate such a function, rotations (i.e. group
elements) must be combined in the function’s argument. An active rotation
w of the function with respect to the space-fixed frame is carried out via

IWhile J remains unchanged under inversion, an operator like ¢ changes sign under inver-
sion and therefore J - ¢ changes sign.
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RW)V k(W) = Viyk(w ). As pointed out in [34]2, the group prop-
erty of the rotation matrices requires that

DY) (wlw ZD(J) w DY), (). (2.16)

mm’

But the group representation is unitary and therefore

DY) (wlw') = ZDm”m )D), () (2.17)
DYV (W) = ZDmHm DY (). (2.18)

m'’

Hence it is the function ¥ k(W) = D(z\;fl); (w") which transforms as required
by (2.14). The second index K does not change under the rotation, it specifies
the “spin” of the rotor. The reason for this is the following. After an arbitrary
rotation of the system, a state of definite m becomes a superposition of various
m states with respect to the space-fixed frame. However, in a reference frame
which undergoes the same rotation, the eigenvalue of the J, operator with
respect to the rotated frame will still be m. This rotated operator is actually
J. and therefore it is appropriate to write

D(J)

mm/’

(@) = (fm|Rljm') = (jm|j k :== m') = DY) (w) (2.19)

which means that the probability amplitude to find the state R |jk) in an eigen-

state of J, in the space-fixed frame is proportional to ng{(w) The properly
normalized wavefunction is then

2J+1 *
\IJJMK@,G,x):( - ) D1 (6,0.) (2.20)

provided the integration [ Wd¢sin@dfdy is carried out in the range 0 < ¢ < 27,
0<60<m 0<yx <2m. Wavefunctions which differ in J, M or K are orthogonal.
The proper derivation of integrals over rotation matrices is actually a somewhat
subtle matter [35]. Care must be taken if integrals over products of rotation
matrices are calculated in which integer and half integer values of J occur at
the same time — an integration over either ¢ or y between 0...47 must then
be used instead of 0...27 and the normalization factor for the wavefunction is
then /(2J 4+ 1)/1672 (see e.g. [33, 36]).

In the case that the rotor is asymmetric, K is not conserved and therefore
no suitable label for the wavefunction. Nevertheless, the wavefunction can be

2This derivation, given by Biedenharn and Louck [34], clarifies the origin of the seemingly
bizarre convention to use complex conjugate matrix elements for the rigid rotor wavefunction.
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expressed by a superposition of states with definite K. This follows from:

Uonr(ww') = R )P (w) (2.21)
= ZDI(\;I]’)M(W_I)‘I’JM/(WI) (2.22)

M’
= D Dinn(@) V(). (2.23)

M’

If we now consider w’ as a fixed reference orientation we get

\I’J]\/[(w> = ZD;&?(UJ)AJK (224)
K

with the expansion coefficients A jx which remain to be determined.

2.1.3 The Stark effect

The interaction energy between a body fixed dipole moment d := pc directed
along the c-axis and an externally applied electric field E is given by the Stark
interaction energy Hg := —d - E. We let the external field be directed along
the space fixed z-axis, so that

Hg:=—-d-E=—-puFEc-e, =—uFc,. (2.25)

To determine the new spectrum, the matrix elements of Hg are needed, which
amounts to finding (J'M'K’|c,|JMK), where in the Euler angle parametriza-
tion ¢, = cosf. Hg does not connect states with different M or K because
Hg is invariant under rotations about the z and c-axis: [J,,c.] = 0 by (2.5)
and [J., c.] = 0 by (2.7). In spherical tensor language, one says that ¢, trans-
forms as the m = 0 component of a spherical tensor operator T of rank 1, i.e.
Tél) = ¢, =: ¢p. As such it may however connect states with AJ = 0, £1 as
will be seen below.

To obtain the matrix elements, it is useful to realize that ¢, is an element
of a rotation matrix that belongs to J = 1 angular momentum states: cosf =
D((JE) (w). This follows from the transformation properties of ¢,: the m = 0
component of any vector operator transforms as

ReoRT = Z Dga(w)cm (2.26)
m=0,£1

under a rotation. But, the z-component of any vector operator is multiplied by
cos # when the rotated z-component is written as a superposition:

ReoRT = D(_ll)o(w) c—1+cos(0)co+ Dill)o (W) 1. (2.27)
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The sought matrix elements are therefore

(J'M'K'|c.|IMK) =

V2J' + \/2J +1 (J T
[ @D @PR @D ). 229)
The Clebsch-Gordon series formula applied to the present case
J J// / 1 J// J/ 1 J//
](\/[/}(/D ZDM/[)(/ < K/ 0 K/ ) < M/ 0 M/ ) (229)
]N

is useful now to evaluate this integral. The used symbol

jl j2 j3 (2 30)
mip Mo '

ms3
is the usual Clebsch-Gordon (CG) coefficient (not a 3j-symbol). Inserting this
into (2.28) one obtains:

2T +1( J 1]J Jo1J
1A 17! _
(JMK|cZ|JMK>_72J+1<K, 0‘K><M’ O‘M) (2.31)

which confirms the selection rules for AJ, AM and AK. The non-zero CG-
coefficients are:

J+1 1 g\ [(J+MJ M) (2,32
M o o|M) T J2J+1) '
J 1| J M
Cirolar) = govar 239
J-1 117\ _ (J+1+M)(J+1-M)]* (2,34
M o o|M) = J+1)2]+1) '
as given e.g. in [36]. For J' = J we obtain the famous formula:
MK
MK|Hg|JMK) = —pbl—— 2.
(IMKIHS|IMEK) = ~pB 5 (2.35)

which at the same time yields directly the first order energy change of the
respective levels with given M and K. As mentioned above, for K = 0, the
states have definite parity and therefore no first order Stark effect since c,
changes sign under inversion. We also learn that to have an average orientation
in space (i.e. non-zero expectation value for c¢,), a non-zero spin around the
symmetry axis is required.
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2.2 Energy levels of OH

In a diatomic molecule, rotations about the internuclear axis are meaningless
as long as only the nuclei and not the electrons are considered. The rotational
energies of a rigid OH molecule are therefore obtained in the limit /. — 0 so that
the energy remains finite only for K = 0. Despite of this, a diatomic molecule
may still have a nonzero projection of J onto c, if the total orbital L and spin
S angular momentum of the electrons is included in J. The operator which
generates rotations of the two nuclei is now R :=J — L — S and its projection
onto c is zero by definition.

The electrons are moving in an axially symmetric field and therefore the
projection of L onto the internuclear axis ¢ can be considered as conserved, as
long as non-axial interactions and the rotation of the reference frame can be
neglected. The absolute value of this projection is denoted by A and hence a
state of definite A must transform as e***X under a rotation about the inter-
nuclear axis by an angle y, i.e. for every A > 0 there are two degenerate states
with projections of L given by +A. If the total spin is zero, the transformation
properties of the wavefunction are the same as for the symmetric rigid rotor
and therefore, for a fixed electronic state, one may set K = £A.

The case of non-zero total spin adds another complication. It now depends
on the strength of the spin-orbit interaction, whether it is useful to consider the
spin as “locked” to the internuclear axis. If it is, one denotes definite projections
of S on the internuclear axis ¢ by ¥ and defines another (approximately) con-
served quantum number by €2 := A + X. Eigenstates with definite € transform
as e under a rotation about the internuclear axis and hence we can still
use the rigid rotor wavefunction where now K = +). States with definite €
are still doubly degenerate (apart from the degeneracy in M). This scheme is
usually referred to as “Hund’s case (a)”, while in case (b), the spin is not con-
sidered as locked to the internuclear axis. As the rotational quantum number J
increases, the electron spin projection no longer follows the nuclear framework
adiabatically and hence as J increases, Hund’s case (b) must become the more
useful description. By definition, a so called case (a) set of basis functions is
constructed of products of basis functions with definite values of A, total spin
S, X, J, Q and laboratory projection M of J [37].

The characteristic angular momentum quantum numbers for the electronic
ground state can be obtained from the electron configuration of the (almost)
united atoms, which is (1s0)?(2s0)?(2po)?(2pm)3. This configuration gives rise
to only a single molecular state with A = 1 and S = 1/2 (see e.g.[38]) so that the
appropriate term symbol is 2II. The possible € values are Q = 14-1/2 and these
are appended as a subscript to the term symbol which means that there are two
electronic states: 2IIg 2 and 1L, /2. These states are not degenerate because
of the spin-orbit interaction that gives rise to the so called fine-structure. This
interaction can be approximated by Hso = AL-S =~ AL.S. where A is the spin-
orbit coupling constant, which can be negative or positive (see e.g. [39]). For
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OH, the spin-orbit coupling constant is negative and hence states with Q = 3/2
are lower in energy than those with 2 = 1/2. The rotational levels with definite
Q are labeled J =Q,Q+1,Q+2,---.

Each of these levels is doubly degenerate (disregarding the degeneracy in M)
as long as the rotation of the reference frame is ignored. In reality, there occurs
a splitting of every rotational level which is called A-type doubling and which
increases with the rotational quantum number. The lowest rotational state of
OH with J = 3/2 is split into two components that are separated by 0.055 cm™?.
These components must have definite parity and therefore it is necessary to
construct basis functions of definite parity from the case (a) basis functions to
obtain the correct zero order basis functions. Details about the behaviour of
Hund’s case (a) states under inversion can be found in [37, 40, 41]. Here, only the
rotational part of the wavefunction is needed and the basis functions of definite
parity are given by the symmetric and antisymmetric linear combinations of
rigid rotor states with K = +(). Denoting the parity by e with ¢ = +1, the
definite parity states are:

|TMQ) + e(—1)7 | JM—Q)
V2

|TMQ, ¢) = (2.36)

where for states with A > 0
pi=J—8 (2.37)

and hence for the rotational levels of OH 2II the value of p is indeed always
an integer. It is common convention to denote states with a definite parity of
(—1)7=1/2 as e and states with (—1)7*'/2 as f provided .J itself is half integer.
For integer values of .J the e and f levels have the respective parities (—1)7 and
(—1)7*1. With this convention, all lower components of a A-doublet are either
e or f, independent of .J, likewise for the upper components (see Fig. 2.1 p. 20).

If the Hund’s case (a) description is not exactly valid, every level is a mixture
of |*Il3/5) and |*II; o) states. For OH, this complication must also be taken
into account by diagonalizing the rotational Hamiltonian

Hyor = Av L-S+ B, (J —L- S>2 (238)

in the Hund’s case (a) basis, where the spin-orbit coupling constant A, and
the rotational constant B, depend on the vibrational quantum number v. The
result is given in [39, 42]:
|(F1)JM,€) = ay|* i z€) + by |*Il52¢) (2.39)
|(Fy)J M, €) —by |PILy ja€) + ay [*1l3)a¢) (2.40)

The spin-orbit (fine-structure) manifolds F; and F» are labeled in order of in-
creasing energy. For OH in the electronic ground state A, < 0 and therefore
the Fy states resemble more closely the basis states with = 3/2 whereas those
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labeled F resemble the Q = 1/2 states; in fact, for J = 1/2 we have by = 0
exactly and within the used approximations we have a true Hund’s case (a)
state. The coefficients are:

X+ -2
= _— 2.41
a e (2.41)
X—-(Y -2
by = _ 2.42
! 2X (242)
with the definitions
X = VAJT+1/22+Y(Y —4) (2.43)
Ay
= —. 2.44
5 (2.44)
For the vibrational ground state of OH, the values are A, = —139.73cm™!

and B, = 18.515cm ™! as determined by Dieke and Crosswhite [43]. For the
lowest rotational state of Fy, which has J = 3/2, the mixing coefficients and
the respective probabilities are:

agp = 0.1739 (azj2)* =0.03 (2.45)
by, = 0.9848 (b3/2)* =0.97 (2.46)

so that also this state is quite well described by a pure Hund’s case (a) state.
It is therefore common practice to denote the Fj-manifold by 2II; s2 and the
Fy-manifold by 211, /2 even though this assignment is not exact.

2.2.1 Stark effect of OH

The states of interest here are the upper and lower A-doublet component of
the lowest rotational (J = 3/2) state in the F; manifold which we denote by
|JM, f) and |JM, e) respectively. To determine the Stark effect for these states,
the matrix elements of H are needed. If there was no A-doubling and if we had
a pure Hund’s case (a) state, the first order energies would be given by (2.35)
where K is replaced by +Q or —Q2. However, the “true” states are given by
(2.39):

|JM, f) = “—\/‘%(|JM+%>_|JM_%>)

+ %(VMJF 5)— [JM — %>) (2.47)
[JM, e) = a—\/‘%(|JM+%>+|JM—%>)

+ %(|JM+%>+|JM—%>) (2.48)
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The diagonal matrix elements of Hg between these states are
(JM,e|Hgs|JM,e) = (JM, f|Hs|JM, f) =0, (2.49)

as it must be, because Hg does not connect states of identical parity. The two
off-diagonal elements are real and given by:

M

JM, e|H,|JM, f) = —pE—r
(JM,e|Hs|JM, f) S TESY

(3@ +30)?) =@, (250)
in which the weighted average of 2 = 1/2 and Q = 3/2 occurs which is referred
to as the “effective” value of (2

Oup = (%(aj)z + g(bJ)Q) — (M, e| J|TM, f), (2.51)

so that only in the exact case (a) limit Qg = Q.
The Hamiltonian matrix for the molecule, including Hg, in the A-doublet
subspace of definite J is therefore

(E‘ém _E3/2) (2.52)

where E5 denotes the energy splitting of the A-doublet and therefore the ener-
gies of the unperturbed levels are £F) /2. The eigenvalues of this matrix give
the energy to first order:

Er\°
Efje =+ (7) +Q? (2.53)
where the upper sign refers to the f-component and the lower to the e-component.

As the energy @ becomes significantly larger than the A-doublet separation,
the Stark effect becomes linear. The Stark shift for levels with £M is the same.
For J = 3/2, we have M = —3/2,—1/2,1/2,3/2 and therefore every A-doublet
component splits into two doubly degenerate levels with either |M| = 3/2 or
|M|=1/2.

The state |U, f) which correlates adiabatically with the field free |JM, f)
state can now also be determined, the result is:

|, f) =al|JM, f)+ B|JM,e) (2.54)

where the ratio of the coefficients is

B @ with A= FE\/2. (2.55)

a:A+ /A2_|_Q2:

If for example @ = 10A, the ratio is 8/« = 10/11 so that the state is already
close to being a 1 : 1 mixture of states with opposite parity.
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Figure 2.1: Right: rotational energy levels of OH (2H3/2 and 2H1/2); the A-doublet split-
tings are magnified. Left: the adiabatic energy change due to the Stark effect for the upper
J =3/2 f and lower J = 3/2 e A-doublet component. The absolute values for the projection
M of J on the laboratory z-axis are indicated.

To calculate the Stark effect for the Fy, J = 3/2 level, the dipole moment ,
Qe and the A-doublet splitting £y are needed. The electric dipole moment of
OH depends only very slightly on the rotational and vibrational level. For the
Fi,J = 3/2,v = 0 state, the value is 4 = 1.655D as given in ref. [44]. For the
purpose of Stark deceleration, the tiny variations in the dipole moment with the
rotational state can be ignored. As noted before E5 = 0.055cm ™. For Qg the
above formulae yield Qe = 1.47 which is identical to the value given in [44].
The value of @ in units of cm™! is given by the following equation

Q=-1679-10"pE MQGH) [em™] (2.56)

J(J+1

in which the electric field strength is in kV/cm and the dipole moment in Debye.
In Fig. 2.1 a plot of the Stark effect for the J = 3/2e, f levels is shown. It
is seen that the energy of all M j-states of the upper A-doublet component
(e = +, f-parity) increases in an electric field whereas for states in the lower
A-doublet component (e = —, e-parity) the energy decreases. The former type
of states are referred to as “low field seeking” states whereas the latter are
“high field seeking” states. A low field seeking molecule is thus a molecule
which experiences a force in the direction towards lower field strengths due to
its Stark interaction upon traversing an electric field gradient.
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2.2.2 The Stark effect and hyperfine structure

The most abundant isotopic variant ‘OH has a total nuclear spin of I = 1/2
which is due to the nuclear spin of the hydrogen proton alone. This non-zero
nuclear spin gives rise to hyperfine structure in the spectrum of OH due to
the magnetic dipole moment of the proton. This leads to a splitting of every
A-doublet component into two states with definite total angular momentum
F := J 4+ 1. For the J = 3/2 rotational level, the possible values for F' are
therefore F' = 2 and F' = 1 with a degeneracy of 2F + 1. The splittings
are rather small, as shown in Fig. 2.2 for the J = 3/2 level of F;. Many A-
doublet hyperfine transition frequencies have been measured and are tabulated
in ref. [45].

To determine the adiabatic change of the energy levels due to the Stark
interaction, we proceed in the same way as above. We use zero order basis
functions together with the measured energy splittings and diagonalize the re-
sulting Hamiltonian matrix. The completely general matrix elements are given
in [46], but as such the result is not very illuminating. If one decides to ignore
AJ = +1 contributions anyway, it is quite simple to derive the matrix elements.
Since Hg does not connect states with different Mg, the matrices are at most
4 x 4 for all J. We use the following notation for the matrix elements:

+ o+ - -
2 1 2 1

€
F
2B 0 @1 @3
1
2
1

+ 4|

(2.57)
0 Ey Q3 Q2

Q1 Q3 E3 0
Qs Q2 0 Ey

For every My, the off-diagonal elements ); have to be determined. All
states with definite F' and Mg are linear combinations of at most two direct
product states of the type |J My e) ® |I M) with T =1/2:

J LF
|F Mpe) = !JMF_%€>®|%+%><MF—% ;‘MF)+
J P
|JMF+§e>®I%—%><MF+1 _g‘MF) (2.58)

For J = 3/2 the required CG-coefficients are given in Fig. 2.2. Because Hg
does not act on the nuclear spin degree of freedom, the sought matrix elements
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Figure 2.2: Left: the splittings of the Fi,J = 3/2 level into two A-doublet components
of positive and negative parity and the hyperfine splitting of each component (not to scale).
Note that in contrast to the definition of eq. (2.52), the zero in energy is not at the center of
the A-doublet. Right: angular momentum coupling scheme for the case 3/2 x 1/2 and the
corresponding Clebsch-Gordon coefficients. The coefficient pairs in the left column belong to
F' = 2 and those in the right to F' = 1; for each pair, the upper number belongs to M; = —%

and the lower number to M; = —i—%. For example, if F' =1, Mp = 1 the expansion is |FFMp) =
VTR |% M) 14 M) = IR |30 [53), with My = .My = —4,00) = .24 = .
are:

Qo
(F' Mye' |Hg|F Mpe) = —uEngl)ckaéMFMfF x

L pr 1
(Mr =) <MFJ—% +§ AZF) (M;]—% +§ ]§F>+
L g 1
(MF+%)<MFJ+% _g ]\ZF><MFJ+% _; ]\5p> , (2.59)
The Hamiltonian matrix may therefore be written as
Ey 00 0 0 0 @1 g3
H= 8 E02 E03 8 _“E% ;1 q(l T (2.60)
0 0 0 E4 G g 0 0

For J = 3/2, the states with F' = 2, Mp = £2 consist of only a single
component (see Fig. 2.2) and the resulting matrix can be diagonalized in a two
dimensional subspace. The matrix elements @Q;(Mp) for Mp = 42 are:

/ Qe 3
Q1(42) = (22€|Hg[22¢) = —MEWB5€€/X<:E§) (2.61)
Q2(£2) = 0 (2.62)

Qs(£2) = 0. (2.63)
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Figure 2.3: Adiabatic energy change of the hyperfine resolved energy levels of OH as a
function of field strength. The values for |Mp| are indicated at each curve, likewise for the
high-field limit values of |Ms|.

The matrix elements in the notation of equation (2.60) are:

Mp:| 0 1  +2
@ | 0 £3/4 +£3/2
@ | 0 +5/2 0
g3 [ 1/2 V3/4 0

(2.64)

The eigenvalues in the cases where |Mp| = 1,0 are more difficult to obtain
analytically as the polynomial det(H — AI) = 0 is of 4th degree. Numerical
methods are useful in this case as provided e.g. by the program package [47].
The result of such a calculation is shown in Fig. 2.3, which agrees with previ-
ously published data [44, 48]. As before, all Mp-states of the upper A-doublet
component are low field seeking whereas all states in the lower A-doublet com-
ponent become high field seeking if subjected to an electric field. For higher
electric fields, the hyperfine splittings do not significantly alter the energies
obtained before when the hyperfine structure was simply ignored. The result
is important nevertheless: all Mp states in the upper A-doublet component
belonging to F' = 1 have the high field behaviour of the states which were pre-
viously labeled |M;| = 1/2. In contrast, the F' = 2 states with |Mp| = 2,1
correlate with |M;| = 3/2 while |[Mp| = 0 correlates with |M;| = 1/2. The
Stark effect for molecules with |M ;| = 3/2 is three time stronger than for those
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with |M;| = 1/2 and therefore under appropriate deceleration conditions (i.e.
at high “phase angles” — see chapter 3) it is possible to prepare molecules which
are in the low field seeking F' = 2 states exclusively while it is not possible to
prepare a pure F' = 1 ensemble. Of course, this requires that the molecules
traverse the adiabatic energy curves during the whole deceleration process.

The described correlations between the hyperfine levels and the high field
behaviour are easy to establish without setting up and diagonalizing the Hamil-
tonian matrix. All that is needed are the CG-coefficients. In the limit where
the hyperfine splitting approaches zero, the coupled basis is as good as the un-
coupled basis, because Hg does not act on the nuclear spin. All curves shown in
Fig. 2.3 would change continuously as the hyperfine splitting decreases to zero
to finally merge with the previously obtained curves of Fig.2.1. If the problem
is set up in the coupled basis, the diagonalization of the matrix only gives us
back the uncoupled (mixed parity) set as the result when either the splitting
is small enough or the field is strong enough! The M states contained in the
coupled states are given by the CG-coefficients. The state F' = 2, Mp = 2 con-
sists only of M; = 3/2 and therefore, it must also correlate with this state in
higher fields. The states with FF = 1,2 and Mp = 0 consist of M; = +1/2 and
—1/2, therefore these states must correlate with |M;| = 1/2. The only ambi-
guity occurs for F' = 1,2 with Mpr = 1: here it seems unclear whether F' =1 or
F = 2 correlates with M; = 3/2 or 1/2. However, the F = 1 state is lower in
energy than F' = 2, and both curves would have to cross if FF =1, Mp = 1 were
to correlate with M; = 3/2. Such a crossing is not possible however, because
both states have the same value of the only exact constant of motion Mp (see
e.g. [35]) and therefore the correlations can be unambiguously established. The
same holds for other values of J.

2.3 Production of a pulsed OH beam

The OH radical is chemically unstable and therefore has to be produced in situ
during the supersonic expansion. Several routes are possible for this, the most
popular methods being electric discharge and photolysis. Both methods have
their benefits and shortcomings. The discharge method is inexpensive and in
principle easy to implement, unfortunately it produces many undesired species,
especially ions, and the resulting gas expansion does not cool to the lowest
possible temperatures. In contrast, the photolysis method is clean and well
controlled with small pulse to pulse fluctuations if used correctly. Furthermore,
the spatial extension of the produced OH pulse is smaller and to some extent
under control.

In both cases, the most common OH precursor molecules are HoO, HOOH
and HNOgs. For all experiments described in this work, OH was produced by
193 nm photolysis of HNO3 using a compact ArF excimer laser®. Nitric acid is a

3PSX-501, Neweks Ltd., 19 Akadeemia tee, Tallinn, Estonia
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very suitable precursor molecule because its absorption cross section at 193 nm
is quite large (= 1200 - 10~2°cm?) and the OH yield is moderately good®.

A thoroughly tested recipe for the production of an intense OH beam is
described in the following. First, a few ml of pure nitric acid are loaded into a
reservoir — the so called “bubbler” — through which a carrier gas may be passed
and become saturated with nitric acid vapor. About half of the inner volume
of the bubbler is filled with glass wool to increase the overall surface area of the
liquid-gas interface. A well suited material for the bubbler is titanium because
it does not react with nitric acid (and many other acids). A PTFE O-ring is
used to seal the bubbler. The bubbler is cooled by a thermostat so that the
reservoir is always lower in temperature than all other components which are
connected to it and therefore no condensation can occur outside the bubbler.

To expand the gas mixture into the vacuum, a commercial solenoid valve
(General Valve, Ser.99) is used. This valve is reasonably resistant towards nitric
acid vapor as long as condensation inside the valve is avoided. The gas mixture
is expanded into the vacuum at a typical stagnation pressure of 1.5 — 3 bar.
The photolysis laser beam intersects the gas jet right behind the nozzle orifice.
Usually a short quartz capillary (=~ 5mm long) is mounted onto the flat front
plate of the valve and the photolysis occurs mainly inside this capillary just
before the gas starts to expand. Whether a capillary is useful or not depends
on the desired beam characteristics. The laser beam is focussed by a cylindrical
lens. The so created beam of OH radicals has a high state purity: almost all
molecules reside in the J = 3/2,Q = 3/2 level (see table 7.1 on page 112).
Since the A-doublet splitting is only 0.055cm ™!, both A-doublet components
are populated equally in the beam.

The vapor pressure of pure nitric acid at 20°C is about 64 mbar. In the
experiment one finds the surprising result that the OH yield does not decrease
when the temperature of the HNOgs-reservoir is lowered. Even a vapor pressure
of 2.4mbar at —30°C is still sufficient to produce a good OH beam. It therefore
seems that the chemical reactions which occur after the photolysis always lead
to a certain equilibrium concentration of OH radicals which is to a large extent
independent of the initial OH concentration®.

For practical reasons it is advisable to use low nitric acid concentrations.
First, the beam quality improves because there is less energy released during
the expansion by chemical reactions, that is the resulting beam temperature is
lower. Secondly, the corrosion of the valve and the vacuum system is greatly
reduced which is important for experiments which run for more than just a few
days. The vapor pressure p of an ideal gas in equilibrium with its fluid phase

4 Apparently it is not far below 0.5, see IUPAC Subcommittee on Gas Kinetic Data Eval-
uation - Data Sheet PNOz2, where also absorption cross sections are tabulated.

5T have obtained these insights thanks to the commitment of Prof. David Nesbitt who was
visiting our laboratory in the spring of 2008.
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as a function of temperature is given by the relation

AH,

p=Ae TT . (2.65)

A derivation of the formula is given in textbooks on thermodynamics, e.g. [49].
The enthalpy of evaporation of nitric acid is AH, = 39.1kJ/mol [50]. The pre-
exponential factor is determined if a single measured value for the vapor pressure
is known. Several are tabulated in [50] and the result is A = 592.58 - 105 mbar.
The universal gas constant is R = 8.3145 J /(K mol). The following values result:

T/°C —-40 -30 —-20 -—-10 0 10 20 30
p/mbar 1.0 24 5.1 103 19.8 36.3 64.0 108.6

Another important observation is that highly concentrated nitric acid of
least 90%.,+ should be used, even better is close to 100%. One might think
that instead of cooling down the reservoir, one could simply dilute the nitric
acid. While indeed, the nitric acid partial pressure is reduced in this way,
experiment shows that the so produced OH beam density suffers strongly — for
as yet unknown reasons.

A final remark regarding beam sources for deceleration machines is in order.
Since the apparatus behind the skimmer is on high voltage, it is also quite prone
to discharges if droplets or solid particles deposit on the surface. Therefore it
is quite important to use only sufficiently clean beam preparation techniques
and to avoid condensation in the valve. Substances which tend to polymerize
should be avoided e.g. formaldehyde (HoCO) and the typical precursor for NH
radicals isocyanic acid (HNCO).

2.4 Detection of OH radicals

OH radicals are detected by laser induced fluorescence (LIF) using a commercial
pulsed dye laser system. The fluorescence is collected by a quartz lens (50 mm
focal length, 50 mm diameter) and imaged onto a photomultiplier tube (PMT).
Stray light is largely eliminated by use of Brewster windows, baffles and filters.

All rotational levels indicated in Fig.2.1 can be selectively detected, even
if the transition is saturated. Molecules are pumped to the first electronically
excited state by using rotational transitions of the A2X+, v =1+ X2I,v =0
band which occur at around 282nm. Measured values can be found in [43],
calculated values are available e.g. from the LIFBASE program [51]. The
typically used transitions are tabulated on page 113 table 7.2. The radiative
lifetime of the A2XF v = 1 state is 717 ns [52].

The emitted off-resonant fluorescence (to final states with v = 1) occurs
at longer wavelengths and can thus be separated easily from the excitation
wavelength by a filter which transmits at slightly longer wavelengths. One
should be aware however that besides true stray light, which has the wavelength
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of the excitation laser, also spurious fluorescence from the Brewster windows,
baffles or any other component can occur and this light naturally also has a
longer wavelength®. Therefore it is advisable to create a transmission window
in the range where the molecular fluorescence mainly occurs. To that end,
four filters are used. One UG11 (Schott, 1 mm thickness, transmission 90%) to
absorb light in the visible range and three filters which create a transmission
window as shown in Fig.2.4. Filter A is a dichroic filter (Omega Optical,
USA) of which two are used, filter B (Laser Optik, Germany) is also a dichroic
filter. This filter combination (UG114+2A+B) yields a maximum transmission

of about 55% in the desired range.
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Figure 2.4: Transmission curves of the used filters. The transmission curve of the combina-

tion (UG1142A+B) is also shown.

6 An essential fact pointed out to me by Dr. Steven Hoekstra.






Chapter 3

Stark deceleration of OH radicals

The Stark effect provides a handle for the state selection and further manipu-
lation of polar molecules in a molecular beam. In this chapter it is explained
how an array of time dependent field gradients can be used to prepare molecules
in specific low field seeking quantum states and with a specific mean forward
velocity. The different modes of operation which are possible are discussed in
some detail.

29
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Figure 3.1: Scheme of the two possible on-axis potential energy curves UC/O(O,O,Z) for a
molecule in the decelerator together with the electrode geometry and the definition of the
coordinate system. For the instrument used in this work, L = 8.25mm, the electrode gap
is 3mm wide yielding a 3 x 3mm? opening. The inset shows the reference potential which

defines the phase ¢ of the molecule. A more detailed view of the machine is provided by the
pictures on p. 49 and 50.
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3.1 Introduction

The principle design of the deceleration apparatus is very simple: parallel pairs
of cylindrical metal rods, that is electrodes, are combined into a periodic array as
it is shown schematically in Fig. 3.1, more detailed views of the machine can be
found on p. 49 and 50. The orientation of the pairs alternates between horizontal
and vertical, i.e. successive pairs are aligned at a right angle. A likewise periodic
electric field is created by applying a voltage to only the vertical (odd numbered)
electrodes while the horizontal (even numbered) electrodes remain uncharged at
ground potential. The voltages applied to the electrodes of a pair have the same
magnitude but opposite polarity. This is one of the two field configurations
which are needed. The other configuration is obtained by charging, in the
same manner, all horizontal pairs and connecting all vertical ones with ground.
During operation one rapidly switches between these two states. The so created
time dependent periodic field gradients allow a fairly precise adjustment of the
mean forward velocity and also of the velocity distribution (for representative
time-of-flight measurements see Fig. 5.3 on p. 65).

The electrodes of the used decelerator have a diameter of 4.5 mm and the
center to center distance between electrodes of a pair is 7.5 mm, while the center
to center distance L between neighboring pairs is 8.25 mm. The free opening
for the passage of the molecular beam is a 3mm x 3 mm square. The aspect
ratios are the same as the ones used in earlier experiments by Crompvoets et al.
[53] in 2002, which was a slight modification of the very first design by Bethlem
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et al. in 1999 [5]. The present instrument has 317 electrode pairs in total, for
further technical details see chapter 4.

3.2 The potential

As described in chapter 2, the energy levels of a polar molecule change with the
applied field strength. If the change of the field direction and strength is slow
enough, i.e. if it is adiabatic, then the energy shift due to the Stark effect gives
rise to a definite force on the molecule. This force then has a potential which in
our case depends on the position (z,y, z) and time ¢. We denote this potential
by U(x,y, z,t). If the state of the molecule is low field seeking, i.e. if the energy
increases with increasing field strength, the potential U (0,0, z,t) along z will
resemble the curve shown in Fig. 3.1.

At a certain time either the odd or the even numbered electrode pairs
are charged and therefore either U(x,y,z,t) = U,(z,y,2) or U(zx,y,z,t) =
Ue(z,y,z). Both potentials are related by a coordinate transformation where
the transverse coordinates (x,y) undergo a 90° rotation R and the z-coordinate
is shifted by the electrode distance L: U.(z,y, z) = U,(Rz, Ry, 2+ L). One pair
of grounded and one pair of charged electrodes make up an “elementary cell” or
simply deceleration stage. In the present instrument there are 316 stages (the
first electrode pair is usually not used to decelerate, because there the field is
not well defined).

3.3 Longitudinal motion

In the following, the molecules will be treated as mass points upon which exter-
nal forces act and for which the classical equations of motion hold. No quantum
mechanical treatment is necessary because at the given velocities the external
potential changes but little over the distance of a few de Broglie wavelengths.
For symmetry reasons, the transverse force components F, = —3J,U and
F, = —0,U vanish on axis (x = y = 0). The z-dependence of the potential, i.e.
the force component F, does not change much when the transverse position
(z,y) is varied except for points very close to the electrodes. To analyse the lon-
gitudinal motion of a molecule through the decelerator one may therefore ignore
the z, y-dependence of the longitudinal force so that F,(x,y, z,t) ~ F,(z,t).
That it is possible to change the longitudinal velocity of a single molecule is
easy to see. In the simplest mode of operation, a molecule with initial velocity
v1 starts at some position z; and advances exactly a distance L on the poten-
tial U = U, to reach its final position z3, as it is shown in Fig.3.1. During
its travel, the molecule is first accelerated slightly and then decelerated. The
total change in kinetic energy AT is equal to —AU, in this case AU > 0 and
therefore vo < v1. Now the field configuration is switched to U = U, and the
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molecule travels the same distance L, again changing its kinetic energy by —AU
as before. Because the change in kinetic energy is quite small (on the order of a
wavenumber), the process must be repeated many times to significantly change
the energy of the molecule!. In this mode of operation the considered molecule
has the same initial position with respect to the potential at the beginning of
every time interval. We call this molecule the synchronous molecule because
it moves synchronously with the force field. The motion of the synchronous
molecule is particularly simple because the kinetic energy change AT is con-
stant in time by assumption:

AT =203 —v}) = F(v2+v1)(v2—v1) (3.1)

=: mvl_;JAv (3.2)

=: mvAuv, (3.3)

where the average (v1 + v2)/2 =: ¥ is the arithmetic mean of the velocities

at the boundaries of the considered time interval. The value of ¥ must be
approximately equal to the time average of the molecule’s velocity (v) during
the time interval of duration 7 because the velocities attained during a time
interval remain close to the velocities at switch time. Since (v) = L/7 ~ T we
obtain:

AT = mvAv
A
~ mL—U
p
AT Av
H I~ T =: a = constant. (3~4)

Of course, the parabolic trajectory z(t) = 2z + vot +at?/2 so obtained coincides
with the real trajectory only at the beginning and at the end of each time interval
but not in between.To describe the motion of non synchronous molecules we
proceed similarly in that we ignore the exact trajectory during a time interval
and focus only on the position and velocity when the field is switched.

The potential is periodic with period 2L and may be written as a Fourier
series. Therefore it is more convenient to map the z-position onto the angle
variable ¢ = 7z/L. What has been called above “position with respect to
the potential” is also known as the phase. We denote this position by ¢ with
¢ = —7/2...37/2 as shown in the inset of Fig.3.1. A molecule can locate its
phase uniquely at any time by determining the current value of U(y) and the
value of the derivative U’(¢). The only ambiguity occurs at the time when the
field is switched, to remove it we define that the field is already present at the
beginning of each time interval. Alternatively, we can define the phase without

IFor instance, an OH radical moving at a speed of 400 m/s has a kinetic energy of about
114cm~—1L.
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reference to the potential: since switching the field corresponds to shifting the
position of the molecule by a distance +m or —m, we can define the phase by
¢ = (¢ + km)mod 2w where k = 0,1,2,... is the index of the time intervals.

If we consider only those modes of operation for which a synchronous molecule
exists, we can obtain a simple equation of motion for all other (non synchronous)
molecules relative to the synchronous one because the average force acting upon
the synchronous molecule is constant. The time averaged acceleration is given
approximately by (3.4), therefore the force required to produce this acceleration
is approximately —AU/L. From now on we will refer to one of the time inde-
pendent on-axis potentials U, , simply by U(y) with the origin of coordinates
as defined in the inset of Fig. 3.1. If at the start of a time interval the phase is
¢ and the molecule moves a distance £ then the force is

U@+ -U@©)

F(¢,€) = €

(3.5)

The phase of the synchronous molecule at the beginning of a time interval shall
be denoted exclusively by ¢s. For the molecule to be synchronous we have
to require that £ = sm with s being an odd integer. For even integers s the
molecule is synchronous only every second time the field is switched, moreover,
no kinetic energy change results for the synchronous molecule in this case. Hence
the average force upon the synchronous molecule is:

¢+ sm) —U(o)

ST

F(¢S,SW)=—U( s=1,3,5.... (3.6)

The phase of the synchronous molecule at switch time ¢4 is often simply referred
to as the phase angle. For 0° < ¢4 < 90° the molecules are decelerated whereas
for —90° < ¢ < 0° they are accelerated; if the phase angle is exactly zero
(¢s = 0°), the molecules are guided through the apparatus at a constant mean
velocity. The average acceleration and the potential energy change of an OH
molecule in the (X *II3/5,.J = 3/2f,|M;| = 3/2) state are shown in Fig. 3.2
as a function of the phase angle. The acceleration is calculated for s = 1. The
maximum kinetic energy which can be removed or added between switch times
is approximately 1.7cm™t. All of the following examples will pertain to that
same state of the OH radical.

We now consider the start of a time interval. Let the velocity of the syn-
chronous molecule be denoted by v, and its position by ¢g; a non synchronous
molecule has at least a different position ¢ # @4 or a different velocity v # vs.
We denote the relative position ¢ — s by 6. The non synchronous molecule
travels a distance sm + ¢ where ¢ is a small correction, provided one consid-
ers only molecules with a velocity close to that of the synchronous molecule.
This correction is given by § = sm ({(v) — (vs))/ (vs) where the time averages are
taken over the considered time interval. For the force upon the non-synchronous
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Figure 3.2: The acceleration and potential energy change as a function of the phase angle
for an OH molecule in (X 21_13/27 J =3/2f,|Ms| = 3/2) state with £20kV on the electrodes
of the decelerator. The acceleration is given for s = 1, L = 8.25 mm.

molecule we hence obtain:

U(ps +0+sm+0)—U(ps +6)

F(¢s +0,sm+0) = — pr—-

. (3.7)

The phase of the non synchronous molecule is given by ¢ = (¢ + 6) mod 27
and since U has periodicity 27 the above formula is correct. In the first approx-
imation, one may set § = 0 to obtain the equation of motion for the relative
position:

0 F 0 F 3.8

moz = F(fs+0,5m) = F(¢s, 5m) (3.8)
2

mj—tf = i[U(%*—@)—U(¢s+9+87r)+U(¢s+s7r)—U(¢S)].

This differential equation for the relative position at the time the field is switched
conserves the energy, since it depends on the relative position only. Therefore
the analysis of the motion becomes quite simple. Had we included the correction
0, we would have obtained a differential equation involving the velocities as well
and then the energy is no longer conserved. This way of writing the equation
of motion was first used by Bethlem et al. as described in [54]. To proceed, an
analytic expression for the potential is required, which can be obtained from
the Fourier series:

Ulp) =Y ancos(n(p+7/2),  an = % /0 " dp U () cos(n( + 7/2)).
n=1

The constant term ag is the spatial average of the potential and may be set to
zero by definition. We locate the origin at —m/2 to conform with the definition
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of the phase — although it somewhat inconvenient. The resulting series is then:

U(p) = —aq sin(p) — az cos(2¢) + ag sin(3¢) + a4 cos(dp) — ... (3.9)
the alternation of the signs being —, —, 4+,+,—, —,+,+, ... . To evaluate the
force in equation (3.9) it is advisable to use the complex series

= aln in T
Ulp) = Y —peimetnr), (3.10)

so that the shifts of the function arguments become phase factors and the force
can be determined quite effortlessly:

1 > AIn in(ps+m n ns
Fs,¢s(0):_gz%e (@s47/2) (gm0 _ 1)[(—1)"* — 1]. (3.11)

From this formula we easily see that positive odd integer values of s lead to non
vanishing terms only if n is odd, whereas for even integer values of s the force
vanishes identically — which is not surprising in view of the periodicity of U.
Finally, the force for odd integers of s is obtained from the previous equation:

1
Fsp.(0)=—— Z i"a, (Sin(n[¢s +0]) — sin(ngbs)). (3.12)
5T =135,...
The potential function V' of this force is obtained via integration:
1 1
Veor®) = — 30 " an( cos(nlgs +6)) + sin(n, )0)
n=1,3,5,...
~ —;al(cos(qbs + 0) + sin(¢s)0) (3.13)

where in the last equation only the n = 1 term has been kept. For the elec-
trode geometry used in this work, and for an OH radical in the (X 2II3 s2,d =
3/2f,|M ;| = 3/2) state, the coefficients in units of cm™! are:

a1 = 0.8872 a2 =0.2308 a3 =0.0814 a4 =0.0341 a5 =0.0173,

if £20kV are applied to the electrodes. These coefficients are determined nu-
merically from the potential U(x,y, z) which in turn is also determined by nu-
merical methods.

To gain further insight about the relative motion, one need not bother to
solve the equation of motion numerically for the given force. The possible tra-
jectories in the phase space spanned by v := 6L /7 and 6 are already determined
completely through energy conservation. The implicit function for the trajec-
tories is thus:

%vz + Vi (0) = B0, V) (3.14)
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where any phase space point (6’,v") suffices to define the traversed curve in
phase space uniquely. For an OH molecule in the low field seeking |M ;| = 3/2
state, the possible phase space trajectories for s = 1 and ¢s = 0°, 25° are
shown in Fig.3.3. All bound trajectories around the synchronous molecule
are enclosed by the so called separatriz. Therefore, only those molecules with
initial relative positions and velocities inside the separatrix are trapped in the
potential V 4, (0) during the passage through the apparatus and undergo sta-
ble oscillations in this potential. One says that the decelerator exhibits phase
stability since the phase at switch time of all trapped molecules never exceeds
a certain value which is determined by the phase angle ¢s. The area inside the
separatrix is an important quantity — the longitudinal phase space acceptance.
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Figure 3.3: The potential energy V(0), 4, in units of cm~! of the relative motion for the
parameters s = 1, ¢s = 0°, 25° (panel a) and the corresponding contours of constant energy
(panel b, ¢) according to equation (3.14). A molecule oscillates around the synchronous
molecule only if its initial relative position and velocity lies inside the so called separatriz.

For reasons to be explained in the following section, the most useful mode
of operation for our purposes is actually the mode where s = 3 instead of s = 1.
In the s = 3 mode, the longitudinal force component is three times weaker
and accordingly the longitudinal phase space acceptance is reduced. Since the
maximal kinetic energy is a factor of 3 smaller, the maximal velocity is a factor
of /3 smaller and so is the longitudinal phase space acceptance. A detailed
analysis of the s = 3 mode was first given by van de Meerakker et al. [55].

In Fig. 3.4 the separatrices for different values of the phase angle are shown
for the s = 3 mode. Also shown is the longitudinal oscillation period for the
contours of constant energy when the decelerator is operated in the guiding
(¢s = 0°) mode. For example, a molecule with an initial relative position of
+ /2 and zero initial relative velocity traverses the highlighted contour. The
period of oscillation is plotted as function of the maximum potential energy, in
this case the period is &~ 1.5ms. The decelerator used in this work has a total
length of 2.6 m, if the molecules are guided at e.g. 400m/s, then the time of
flight is 6.5 ms and the molecule traverses the contour 4.3 times.

While the s = 1 and s = 3 mode are the ones usually used in experiments,
one might wonder how many possible other modes of operation actually exist.



3.3 Longitudinal motion 37

rel. velocity / (m/s)

V(@) /cm’

1.0 1.5 2.0 2.5 3.0 3.5 -1 -T/2 0 /2 b4

period of oscillation / ms rel. position 6 / rad

Figure 3.4: Top left: separatrices for different values of the phase angle for s = 3. Top
right: contours of constant energy for ¢s = 0°,s = 3. Bottom: potential energy V(6) for
¢s = 0°,s = 3 and the corresponding period of oscillation as a function of the potential
energy at the turning point (zero relative velocity). For the indicated contour, the period is
~ 1l.5ms.

The above considered scheme where a molecule is synchronous every time the
field is switched can be generalised further. If the molecule travels a number of
@ possibly distinct distances sipm with kK = 1...(Q between switch times, then
the phase is the same after @ switch times provided:

Q
D skm+ Qm 4 ¢ | mod 2w = ¢, (3.15)
k=1

where now ¢, is the phase after ) switch times and sy, is a positive real number.
This condition is equivalent to:

Q
ZSk+Q:2n7 n:O,l,Q,.--- (316)
k=1

As before one may calculate an average force upon the molecule by summing
the AU’s for one cycle K = 1,...,Q which is then divided by the distance
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traveled. To give a very simple example, instead of using s = 1, we could also
use s1 = 0.8, so = 1.2. In this case @ = 2 and the phase is the same every second
time the field is switched. Note that for this example, the average transverse
force is asymmetric for the z and y directions.

Cycles for which sy, is always a constant rational number have been analysed
first by van de Meerakker et al. [55] and later by Gubbels et al. [56]. The latter
Ref. is especially remarkable because the authors do not only use a Fourier
analysis of the field’s spatial dependence, as is done here, they also use the
Fourier analysis of its time dependence.

3.4 Transverse motion

The components of the force in the transverse direction are given by the deriva-
tives Fi() = —0u,)U(z,y,2,1), but they are time dependent. As in the previ-
ous section, it would be convenient if the explicit time dependence could be elim-
inated. Under the usual operation conditions, all molecules fly approximately
a distance Az = s, that is Ap = sm, within every time interval. Therefore
one can determine an approximate average transverse force for the considered
interval and use only this force to analyse the molecule motion. During a time
interval 7, the molecules move transversally from (zo,y0) to (o + 0z, Yo + Jy).
If the longitudinal velocity is high enough, the change (05, 9,) is small and we
may compute the spatially averaged force components by:

B 1 p+sm

with the phase ¢ of the molecule at the start of the considered time interval.
This approximation, which was first used by Bethlem et al. [57], works better
than it may seem at first sight because one can think of the average as being
computed for the intermediate point (x,y) = (zo + d2/2,yo + 0,/2) which is
the approximate position at 7/2. Denote the potential from which the force is
derived by U(z,y, ¢), then

3 1 ¢+sm
= —9,(U). (3.19)

The averaged force is the same every second time interval because the elec-
trode orientation alternates between horizontal and vertical . Therefore we
have to use two averaged potentials <U>(1) and <U>(2) for the odd and even num-
bered time intervals. Both are related by a 90° rotation R of the coordinates:
(U(z,y, ¢))(1) = (U(Rz, Ry, ¢)>(2). For sufficiently high longitudinal velocities,
we may even take the average over both potentials (U) := ((U)m + (U)(2))/2.
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This potential is still time dependent for all non synchronous molecules through
the phase ¢.

In Fig. 3.5, the contours of the potential (U) are shown for s = 1 and s = 3.
The average potential for s = 1 varies strongly with ¢. Therefore, a molecule
which oscillates longitudinally around the synchronous molecule with a large
amplitude is subjected to large variations of the transverse force. Moreover, if
the phase of the synchronous molecule ¢ is close to zero, the transverse force
along the x or the y axis is very small during the time when the molecule’s
relative position 6 lies within the interval —0.257... + 0.257, and therefore
molecules will “leak out” along the x and y-axis. For higher absolute values
(|¢ps| > 45°) of the phase angle, that is for large accelerations, these escape
channels of the potential start to close and the transverse confinement improves
— at the cost of the longitudinal confinement.

¢= oOn +0.257 t05m
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Figure 3.5: The transverse potential (U) for s = 1 and s = 3 averaged over two successive
time intervals and for a given value of the phase ¢. The potential has the value 0cm™! at
x =y = 0mm, the contour lines indicate steps of 0.008 cm™!. The red contours correspond
to the given values for the potential energy (and transverse velocity). The orientation of the
coordinate system is the same as given in Fig.3.1.

For the s = 3 mode, the potential (U) is closed for any relative position,
because, for all values of ¢, the averaging includes twice the full distance 27
which corresponds to (U),_, and which is independent of ¢. Therefore, the
potentials shown for s = 3 are in fact equal to % (U(¢)),_; + 2 (U),_,. Also,
(U)yy =(U(n/2)) ;g = (U(1/2)),_4 is valid for reasons of symmetry.

At ¢ = 0, the potential is deep enough to confine molecules with transverse
velocities of at least ~ 6.7m/s. The depth of the potential increases with in-
creasing relative position, but the change is now much more modest as compared
to the s = 1 mode — for sufficiently high longitudinal velocities, the transverse
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Figure 3.6: Projections of the phase space density distributions after a guiding or decelera-
tion sequence for s = 1 and s = 3 as determined from numerical trajectory calculations. The
initial mean forward velocity is 350 m/s in all cases, the final mean velocity for ¢ = 25° is
190 m/s. The separatrix as determined from the one dimensional model is shown as a black
solid curve.

motion is therefore approximately independent of the longitudinal motion and
may be treated separately.

The functional form of the potential is a sum of a two dimensional harmonic
potential and a part which has reduced (4-fold) rotational symmetry. It is
approximated quite well by the simple formula:

(U(x,y,0)) = ca(a® + y*) + caz®y?, (3.20)

where ¢o and ¢4 depend on s and ¢. For s = 1, the potential becomes more
and more harmonic as ¢ increases, whereas for values close to zero the harmonic
part disappears almost completely. The potential does not conserve the angular
momentum and therefore it is not easy to analyse the motion analytically.
The model which has been discussed so far can be tested with the help
of numerical trajectory calculations. In Fig. 3.6, different projections of the
resulting phase space distribution are shown for both modes of operation and
for two different values of the phase angle. In all cases, the initial mean velocity
in the z-direction is 350 m/s; the mean final velocities are 350m/s (¢s = 0°)
and 190m/s (¢s = 25°). The number of electrode pairs in the ¢, = 0° case
is 301, i.e. we use 300 deceleration stages. For the case ¢s = 25° case 300
stages are used for s = 3 and 100 stages for s = 1 to obtain the same final
velocities. For all simulations, the initial position and velocity components
of a molecule are chosen at random from within a 6 dimensional “box” with
Ay < & < by, yr < vz < by and so on. This box must be chosen large enough
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so that it completely contains the 6 dimensional phase space volume from which
molecules are accepted, that is from which stable trajectories result.

We find that the separatrices which are determined from the simple model fit
quite well to the observed boundaries. For the s = 1 mode, one can clearly make
out two separate areas for which the transverse motion is not stable. The central
area which represents molecules with small longitudinal oscillation amplitudes is
unstable because the transverse potential hardly confines molecules which move
close to and along the z and y-axis, as discussed above. Obviously this leaking
out cannot be immediate and therefore the area is somewhat diffuse. The second
unstable phase space area closer to the separatrix arises from the oscillation
of the potential with time as the molecules traverse along their longitudinal
contour of constant energy. This kind of instability can be analysed with well
known and simple methods, provided the non-harmonic terms of the potential
are neglected. An analysis of this kind has been given by van de Meerakker et
al. in Ref. [58]. Both instabilities are almost absent? in the s = 3 mode, because
the time variation is smaller and the potential provides much better transverse
confinement for all relative positions. The projections onto the v,,v,-plane
show that the transverse velocity acceptance at small phase angles is larger for
s = 3. Under which conditions which mode is preferable is described in detail
in chapter 5.

As the mean forward velocity of the molecules becomes smaller and smaller,
one might expect that the approximation of an average potential should become
less and less suitable — in particular for the s = 3 mode where the averaging
is over a large distance of 6L. Below a certain velocity, one should therefore
consider the transverse potential as alternating between the two states (U >(1)

and <U>(2). The potentials (U)S:)l and (U)§1:)3 are shown in Fig. 3.7 for two
values of the phase (0° and 180°). The contour lines given in red color indicate
values < 0 whereas the black contours indicate positive values. For ¢ ~ 0 and
s = 1, the defocusing force (i.e. away from the central axis) is about as large
as the focusing force (i.e. toward the central axis). The maximum focusing and
minimum defocusing force is found for 180°. In the case of s = 3 the focusing

force is always larger than the defocusing force.

We see that focusing and defocusing forces are present in successive time
intervals. One might imagine that especially in the case of s = 3, a slow molecule
may get lost e.g. in the x-direction during the time interval in which there is a
defocusing force in this direction. Furthermore, it is possible that even before
this can happen, the alternation of direction and magnitude of the transverse
forces can cause an (unlimited) increase of the transverse oscillation amplitude
over time.

2A very thin unstable band close to the separatrix can be found.
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Figure 3.7: Contour plots of the transverse potential averaged over a distance s7 for ¢ = 0°
and 180°. The red contour lines indicate values < 0, the black contours positive values.
The potential difference between two contours is 0.008 cm—1, cuts through the potentials are
shown on the right hand side for z = 0 and y = 0 where the dashed lines belong to ¢ = 180°
and the solid lines to ¢ = 0°. Cuts for x = 0 are indicated by the red curves, those for y = 0
by the black curves.

If the non-harmonic part is neglected, the potentials are:

(U(z,y,0))" = a(¢)2® + b(d)y? (3.21)
(U(x,y, ) = b(¢)a? + a(¢)y® (3.22)

for the potentials in two successive time intervals. The equation of motion for
the y-direction is then

mijj = f(t)y (3.23)
with either f(t) = —a/2 or f(t) = —b/2, depending on the time interval con-
sidered.

One can now start to tackle the problem with increasing degree of difficulty.
The simplest case is the one where the phase ¢ is approximately constant (small
longitudinal oscillation amplitude) and where the absolute change of the forward
velocity over time is small. In this case the time intervals have constant duration
7 = sL/v, and the function f(t) is periodic in time with period 27. If the phase
is not constant, but the velocity v, is, then f(¢) is also approximately periodic
but the period is now the period of the longitudinal oscillation. In both cases
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(periodic f) the differential equation is known as Hill’s differential equation®.
Techniques to solve the problem are well known and described in detail e.g. in
Refs. [59, 60].

The method uses a (2 x 2) transfer matriz to propagate the initial phase
space point u(0) := (y(0),v,(0)) in time steps of 27 by taking powers of this
matrix. To obtain the matrix one has to solve the differential equations for
the individual time intervals (in this case 2) which make up the whole period
of f. If the matrix for the first period is M; and for the second My then the
transfer matrix is M = MyM;. To propagate the point u(0) in time steps
of 27 we use powers of M: u(n27) = M"u(0). To see whether the motion
is bound or not, one diagonalizes the matrix so that powers of M become
powers of the eigenvalues. The motion can be bound only if the eigenvalues are
complex (conjugate) numbers of unit modulus (the case where the eigenvalues
are real and both smaller than unity does not occur). One can show that
this requirement is equivalent to the condition that |[tr(M)| < 2 because the
eigenvalues A1/, are determined by:

tr(M) n tr(M)?
2 4

A2 = — M| (3.24)
which follows from the requirement that |M — AI| = 0. For the determinant
IM| = 1 always holds, which can be shown directly from the differential
equation, but it is actually Liouville’s theorem for the motion in one dimension.
For the case considered, the differential equations for both time intervals are

j=a%y, a>0 (3.25)
ji=-By B>0 (3.26)

where a and 3 depend on the phase ¢. After solving these equations, one finds
that the trace is given by:

tr(M) = 2 cosh (87) cos (at) + (g - %) sinh (a7) sin (a1) (3.27)
where 7 = sL/v,. For ¢ = 0 and s = 3 one finds that |tr(M)| < 2 as long
as v, > 103 m/s. From computer simulations and also from the experiment we
find that instabilities start to manifest for velocities below 150m/s and that
almost no molecules can pass the decelerator for velocities below 100 m/s. To
efficiently decelerate OH molecules below 150m/s, it is better to switch the
mode of operation to s = 1 somewhere before the critical velocity is reached.
More details can be found in chapter 5.

The various transverse instabilities can be circumvented only, if the trans-
verse potential well is approximately constant in time. Such a decelerator has

3George William Hill, Acta Mathematica, 8, 1-36 (1886),0n the part of the motion of the
lunar perigee which is a function of the mean motions of the sun and moon
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been demonstrated already by Osterwalder, Meek and co workers [9]. Their
decelerator provides a true 3-dimensional trapping potential which propagates
along the beam axis and which can be used to slow down a packet of molecules.
This new principle might turn out to become the deceleration method of choice
in the near future.

3.5 Other loss mechanisms

The so far mentioned mechanisms which lead to a loss of particles during decel-
eration can be described by classical mechanics alone, provided the potentials
are known. These effects are however not the only ones we have to worry about,
there are three more possibilities to lose molecules.

Probably the most obvious loss mechanism are collisions with the back-
ground gas. Whether a molecule is really lost or not after a collision depends
on the details. If the collision is elastic, i.e. if the internal state remains the
same, the scattering angle and the depth of the transverse trapping potential
determine whether a molecule is lost. Inelastic collisions to states with a dif-
ferent Stark effect, in particular to high field seeking states, also lead to losses.
Collisions which change only the projection quantum number(s), are particu-
larly important since the cross sections for such collisions can be large (see for
example Paterson et al. [61] for the case OH/Xe). In-beam collisions, that is
collisions among molecules which are being decelerated, are of course also pos-
sible. Hogan et al. have considered this problem in some detail in Ref. [4] and
they find the effect to be irrelevant for most practical purposes.

The second important process which can cause a change of the internal quan-
tum state is optical pumping by black body radiation. This type of loss mecha-
nism has been studied in detail for OH radicals trapped in an electrostatic trap
by Hoekstra et al. in 2007 [16]. On the time scale of a deceleration/acceleration
sequence, this loss mechanism is unimportant for OH, but one should still be
aware of its presence, especially if one is interested in obtaining a very pure
ensemble of molecules for state-to-state scattering experiments.

The third mechanism which can lead to a loss of molecules is somewhat more
intrinsic and fundamental. One usually calculates the energies of the molecule
as a function of a given static field strength. To apply this calculation to the
Stark deceleration process, one needs another assumption: adiabaticity. Hence
we assume that the state changes continuously and that the system remains in
a single instantaneous eigenstate of the Hamiltonian at any time. But the Stark
effect changes with the projection quantum number M of the total angular mo-
mentum on the external quantization axis and as the field strength approaches
zero, these states are particularly sensitive to a rotation of the field (by defini-
tion of the angular momentum states). In fact, the smaller the energy difference
is between states of different M for a given field strength, the more difficult it is
to rotate the field adiabatically. If the change of the external field magnitude or
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direction is too fast, a low field seeking state can acquire components of other,
possibly high field seeking, instantaneous eigenstates. During a deceleration
sequence, a molecule experiences a time varying field simply because it travels
through a field which is inhomogeneous — but usually this causes no problems.
More important is the abrupt change when the decelerator switches: now the
field vectors rotate and change their magnitude as a function of time while the
molecules barely move forward. During this time, the field strength is reduced
and states with a different Stark effect can get rather close in energy. It is then
necessary to use time dependent perturbation theory to determine whether the
considered state can acquire amplitudes of other instantaneous states of different
energy by extracting quanta from the field. Such nonadiabatic transitions dur-
ing deceleration have been observed and quantified by Tarbutt et al. in 2010 [62]
for a conventional decelerator and for the molecule LiH. Meek et al. [63] have
also thoroughly studied such effects in 2011 for a microchip based decelerator
and the molecules '2CO and '*CO. Nonadiabatic transitions of electrostatically
trapped ammonia molecules were studied by Kirste et al. in 2009 [64].

For a conventional decelerator, a bias field can be used to ensure that the
field strength does not drop below a critical level. However, it depends on the
molecule whether this is necessary. For OH in the considered state, nonadiabatic
effects have not yet been noticed during normal operation in the decelerators
hitherto used and no bias voltage is necessary. The absence of these effects calls
for provoking them actively. This can be done in several ways. One possibility
is to introduce a gap in the switching sequence which normally is not there, for
example one may switch off the horizontal electrodes at the regular time and
switch on the vertical ones only after a certain delay. In Fig. 3.8 the result of
such an experiment is shown. Here the molecules have been guided at constant
velocity for 2/3 of the whole sequence, and then a single delay of 1,2,3... mi-
croseconds is introduced. It is seen that the measured OH signal drops to about
75% and stays approximately constant after that. If one tries to reproduce this
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Figure 3.8: The signal for guided OH as a function of the delay time.
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result with numerical trajectory calculations, one gets very good agreement by
assuming that molecules with |M ;| = 3/2 and those with |M ;| = 1/2 (because
a mixture is present) redistribute among both states homogeneously during the
delay. These states are degenerate as long as the hyperfine structure is ignored.
Yet, if we assume that the hyperfine splitting can prevent transitions between
the hyperfine states of the upper A-doublet component, we obtain a drop to
~ 88%.

From hyperfine resolved experiments one knows that it is possible to prepare
an ensemble which is exlusively in the F' = 2 state, provided high phase angles
are used (see sect.2.2.2 and the remarks on p.23). Therefore the nonadiabatic
transitions observed here probably occur during the rapid switching on of the
field — from almost zero to a high voltage — at the end of the delay.



Chapter 4

Construction of the Stark
decelerator

During the operation of a Stark decelerator, strong electric fields have to be
switched on and off at a rapid pace. With the advent of transistor based high
voltage switches, the switching itself has become less problematic and is nowa-
days straightforward to implement — provided a few tricks of the trade are
known. It is more demanding to design and manufacture the electrode arrays,
because several hundred electrodes are usually required. In this chapter, the
construction of the used apparatus is layed out in some detail and on several
occasions a few pertinent but more general remarks are given.

47
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4.1 Description of the mechanical parts

A multi-stage Stark decelerator for low field seeking molecules consists of a
periodic array of high voltage (HV) electrode pairs. The electrodes need to
be securely suspended and precisely aligned inside a vacuum chamber that is
capable to support a vacuum of about 1078 mbar. Furthermore, all components
which are on high voltage during operation need to be well insulated from the
surrounding ground potential.

The main parts of the apparatus are shown in Fig. 4.1. In the present in-
strument the total number of electrodes is 634. The cylindrical electrodes are
made of stainless steel with a diameter of 4.5 mm and are capped by a half-
sphere. The vacuum gap between the electrodes of a pair is 3 mm wide, the gap
between neighboring pairs is 3.75 mm (see Fig. 4.1). The total length from the
centerline of the first electrode to the last electrode is 316 x 8.25 mm= 2607 mm.
To construct the machine as a single unit is unfeasible and therefore it is split
into three independent modules — in this way the handling of the apparatus
during construction becomes much easier; the modules can be subjected to in-
dependent high voltage conditioning and testing prior to their final installation.

4.1.1 Design of the modules

It has been found empirically that suitable HV electrode materials are stainless
steel, molybdenum, tantalum and titanium [65]. In the present instrument all
parts which are on HV during operation are made of stainless steel. Each of the
four arrays of electrodes is held in place by a cylindrical mounting rod with a
diameter of 25 mm; every electrode is securely fixed to this rod by two screws.
The mounting rods are suspended by a support-frame and electrically insulated
therefrom by ceramic cylinders (Al2Os, alumina) which are clamped by dough-
nut shaped holders (see also Fig. 4.2). It is documented in the HV-engineering
literature, and also tested experimentally in our lab, that the risk of surface
flashovers across the ceramics is reduced if the so called triple joint! is slightly
recessed in this way. The length of the insulators required to securely hold a
certain voltage difference cannot be calculated, but a rule of thumb dictates a
distance of 1 cm for every 5 kilovolts. Under favorable conditions, it is possible
that a much smaller distance suffices, but this distance can only be determined
through experiment. In the present setup, the insulators can securely hold volt-
ages well above the required +£20kV. The support-frame consists of two parallel
discs (294 mm in diameter) which are held together by four hardened steel rods
of absolutely accurate straightness. Onto these discs, the clamps, which hold
the insulators, are mounted.

The first and last four electrodes in each array are made from a single slab
of stainless steel with the help of a CNC milling machine. The electrodes merge

1The “triple joint” is the point where metal, ceramic and vacuum meet. For details see
e.g. [65].
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Figure 4.1: Schematic views of the Stark deceleration machine and its electrode dimensions.
The molecular beam pulses propagate from the source chamber on the right hand side to the
(spherical) experiment-chamber on the left hand side.
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Figure 4.2: Photos of a single decelerator module.

seamlessly with the tapered support rod. The reason for implementing such
intricate electrode arrangements is twofold. First, the coupling of the decelerator
to the molecular beam source is improved because the distance to the skimmer
exit can be reduced, and also the coupling of the decelerator exit to a secondary
beam for crossed beam scattering is facilitated. The second benefit is that
the optical access in between two modules becomes more efficient, which is
important if it is desired to detect molecules after the first or the second module
(see Fig.5.1 on p.62).

4.1.2 Alignment

To achieve a precise alignment of all electrodes within a single module, a spe-
cially designed scaffold is used which first defines the correct position of the
mounting rods (to which the electrodes are attached) with respect to the frame.
The connecting elements between the rods and the frame (T-piece, first clamp,
insulator, second clamp) are then fixed using conventional screws. After remov-
ing the scaffold, some relaxation can occur and the width of the gap between
opposite electrodes often needs some re-adjustment. Through tiny rotations of
the clamp on the insulator, a fairly precise adjustment of this gap is possible
and an accuracy of +0.05 mm may be readily achieved.

The support-frame rests on four fine thread screws. These screws are screwed
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into a support that is made of brass. The use of (soft) brass together with (hard)
stainless steel makes lubricants superfluous. With the help of these screws,
the whole module can be tilted and adjusted such that the molecular beam
propagation axis coincides with the central axis defined by the HV-electrodes.
A theodolite is used to accurately define the central beam propagation axis with
respect to the vacuum chamber. After the alignment, the module is locked in
place by a centrally positioned locking screw (see Fig. 4.1).

4.1.3 Surface preparation

It is well known that the maximum voltage difference supported by a vacuum
gap depends quite strongly on the surface quality, i.e. on its smoothness. There-
fore all parts which need to support strong electric fields are to be polished to
some extent. The polishing quality which is necessary depends on the electric
field strength that is locally present during operation.

In the present instrument, the electrodes are highly polished by mechanical
means? to a final sub-micron “mirror finish”. Prior to its installation, each
electrode is inspected under a microscope and here it is a matter of experience
to be able to judge by eye if the surface is sufficiently smooth. Before an
electrode is mounted, it is cleaned by thoroughly wiping it with an iso-propanol
soaked cloth. All other parts are cleaned in several steps before installation.
All inner threads are first freed of any remaining metal particles and grease
using plenty of iso-propanol and a bottle brush or a pipe cleaner. Subsequently,
the parts are immersed in the same solvent and put into the ultrasonic bath,
preferably at slightly elevated temperature. If the solvent becomes markedly
dirty, one more cleaning step with fresh solvent is advisable.

The ceramic insulators require special attention. It is important to keep
them as clean as possible since any material deposited on the surface promotes
surface flashovers. In that respect metallic abrasions are particularly problem-
atic.

4.2 The maximum field strength at the surface

Discharges become more likely with increasing electric field strength at the
surface. It is therefore important to determine the field between two parallel
cylindrical electrodes with given radius as a function of position between the

2Tt has been reported by other researchers that additional electro-polishing further im-
proves the surface quality. For the present instrument, the mechanical polishing was largely
sufficient. In fact, during a HV-test a single pair of electrodes could be subjected to a voltage
of £30kV across a distance of 1 mm.
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Figure 4.3: Electric field strength E for parallel charged cylinders as a function of position x
for U =40kV, R = 2.25mm and d = 3mm. The mean electric field is 133kV /cm as indicated
by the horizontal line.

electrodes. As described in Ref. [66] the sought function is:

U (%)2 +(#)

B(z) == - : (4.1)
[1+%—§—3}1n(1+%+ (%) +(%>)

where R is the radius of the electrodes and d is their separation. The position z is
equal to the distance from the surface of the left electrode as defined in Fig. 4.3.
The mean value of the electric field strength is given by Eyean = |U| /d where
U is the potential difference between both electrode surfaces. In Fig. 4.3 the
function E(z) is plotted for the present case with U = 40kV, R = 2.25 mm and
d = 3mm; the mean field strength of 133kV /cm is indicated by the horizontal
line. The maximum field strength at the surface is 162kV/cm. With increasing
electrode radius (at constant d) the curve FE(z) becomes flatter and approaches
the line E(z) = Enean-

In the real electrode configuration every charged pair of electrodes has two
grounded pairs as neighbors at a distance of 3.75 mm which in principle must
be taken into account as well. Furthermore, every electrode terminates with a
spherical endcap and there the maximum field strength is higher because of the
additional curvature at the transition between the cylinder and half-sphere.

4.3 Vacuum

The main vacuum chamber which houses the decelerator is separated from the
source chamber where the molecular beam is created. The connection between
both chambers is provided by a skimmer with a 2mm diameter opening. It
would be very inconvenient if regular maintenance of the beam source would



4.4 High voltage conditioning and testing 53

always require a venting of the whole apparatus. In our setup therefore, the
source chamber can be isolated from the main chamber with the help of specially
designed gate-valve [67] so that both chambers can be vented independently.

The main chamber is pumped by two magnetically levitated turbo molecular
pumps (TMU 1600M P, Pfeiffer Vacuum GmbH ) each backed by a membrane
fore-pump (MVP 055-3C, Pfeiffer Vacuum GmbH ). The membrane pumps are
highly durable and able to run for several years without maintenance. For the
source chamber the same type of turbo pump is used but here the membrane
fore-pump is specifically adapted to pump corrosive gases which are often used
in experiments. If such gases are to be pumped, it is advisable to reduce their
residence time inside the apparatus. To that end, an inert gas (usually nitrogen)
is introduced via a special leak-valve, which is connected directly to the turbo
pump, to establish a higher gas flow through the fore-vacuum system.

The pressure is monitored at several positions by cold cathode gauges.
Gauges based on hot cathodes (e.g. Bayard-Alpert ionization gauges) are not
suitable because the emitted electrons can induce discharges — unless a suitable
shielding is installed. Without the gas load of the molecular beam, the vacuum
in the main chamber is in the low 10~8 mbar range without any bake-out.

During operation, the molecular beam valve introduces pulses of gas into
the source chamber, usually at a rate of 10 Hz. Only the central part of the so-
created beam passes the skimmer and propagates directly into the main cham-
ber, the remaining gas gives rise to a background pressure in the source chamber
and a flow of this background gas through the skimmer into the main chamber.
The pressure in the main chamber rises by at least an order of magnitude after
the molecular beam valve is switched on. Currently there is no need to further
improve the situation by an additional differential pumping stage behind the
skimmer.

4.4 High voltage conditioning and testing

Before the decelerator can be put into operation, the whole system is subjected
to a DC high-voltage testing and conditioning procedure to make sure that
the break-down wvoltage lies well above the voltage which is applied during nor-
mal operation. In the present instrument the maximal operating voltages are
+20kV, i.e. 40kV across a minimum distance of 3 mm. During the condition-
ing procedure small discharges may occur which, in the favorable case, do not
cause any damage but rather improve the quality of the surface so that no fur-
ther discharges occur at the given voltage. In the less favorable case, a constant
electrical current remains after a discharge and the part which could not hold
the voltage has to be located and replaced or repolished.

Often it is not so clear what has actually triggered a sparkover across the
vacuum gap, but commonly cited reasons are surface defects or adsorbed mate-
rials (“dirt”). If the insulators are the limiting factor, the mechanism is different
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again. A useful overview about these problems is given in [65].

All field configurations which are planned to occur during normal operation
need to be tested. Furthermore, a certain safety margin should be allowed for:
here the voltage is raised to £23kV during conditioning, while the highest
switched voltage used in the experiment is only £20kV. It is necessary to
apply the voltage with the same polarity on the electrodes during conditioning
as during normal operation. However, it can be beneficial to test from the
beginning whether the systems can hold the voltage in both polarities. If a
serious sparkover has caused irreversible damage to the electrodes and a lowering
of the break-down voltage, the chance is high that the system can still hold the
voltage after switching the polarity. In this machine, a discharge occured once
and severely lowered the break-down voltage. After switching the polarities, the
ongoing experiments could be resumed without opening the instrument. Later
on the faulty electrodes were located and repolished.

4.4.1 The conditioning procedure

To condition the system, a HV-power supply of positive polarity is connected
with the desired electrodes via a 300 Mf) resistor and an ampere meter; the
HV-power supply of negative polarity is connected in the same way. Since the
current on the negative and the positive polarity can be monitored indepen-
dently, it is possible to determine whether a sparkover occurs among charged
HV-electrodes or between a charged component and any other grounded com-
ponent of the system. The resistor is in place to limit the current in the case of
a sparkover. The vacuum conditions are monitored by cold cathode gauges.

The conditioning proceeds as follows. At first, the voltage is raised slowly but
steadily to £5kV. Subsequently it is raised in increments of |AU| ~ 1kV per
minute. The process is slowed down a bit as the absolute voltage approaches
the maximum. The rationale behind this procedure is that a sparkover, if
it occurs, should happen at the lowest possible voltage (often the sparkover
occurs with some delay after the voltage was raised). If a sparkover occurs, it
is usually accompanied by a short increase in the pressure; if no such increase
can be detected the chance is high that the discharge actually involved parts
somewhere outside the vacuum chamber — a common problem especially if the
humidity of the air is high.

In the present instrument, only very few discharges occured during the ini-
tial conditioning procedure which means the electrodes were well polished and
clean. If the vacuum chamber is vented, and especially if the installed parts are
exposed to ambient air, it is necessary to repeat the HV-testing and condition-
ing procedure. Depending on the degree of exposure, the voltage can be raised
somwewhat more quickly as compared to the initial conditioning run.
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Figure 4.4: HV pulses on either the even or odd numbered electrode pairs for the guiding of
molecules. If the molecules are decelerated or accelerated the time At increases or decreases
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voltage (below 1kV) instead of ground potential (0V).
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4.5 Safety measures

All electrical components which are on high voltage and outside the vacuum
need to be properly insulated. Permanent connections between cables and other
components like resistors should be casted in synthetic resin to inhibit corona
discharges or sparkovers to other components. Sharp tips of conductive mate-
rial must not occur anywhere. When soldering, a seemingly excessive amount
of solder should be used to achieve a smooth and nicely rounded off connec-
tion. All insulating surfaces need to be properly cleaned to reduce the surface
conductivity.

A device which is of central importance is the interlock unit, it automatically
disables the power supplies and stops the HV-switches if a serious system fault
occurs. In the present instrument, the interlock unit monitors the pressure
of the chambers and of the fore-vacuum system. Faults reported by the HV-
switches are also monitored. In this way it is possible to avert or at least
reduce the chance of a complete destruction of the apparatus by a gas discharge
which would occur after uncontrolled venting of the system during operation. If
discharges happen to occur during seemingly normal operation, they are usually
also registered because of the accompanying rise in pressure. Therefore it is
advisable to set the threshold for the maximally allowed pressure as low as
possible.

4.6 High voltage switching

4.6.1 Basic requirements

For the present deceleration machine, a potential of +20kV has to be switched
rapidly between ground or bias and high voltage. If molecules are guided, the
pulses are of constant duration At as shown in Fig. 4.4; if molecules with a
mean forward velocity of e.g. 400 m/s are to be guided through the decelerator,
then At = (0.00825/400)s= 20.6 us. If the s = 1 mode of operation is used,
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each module has to be charged about 100 times, which means that every switch
needs to switch on and off 50 times. In order to supply the required charge
during a sequence of high voltage pules (a burst sequence) a buffer capacitor
must be used. As the experiment typically runs at 10 Hz, there is enough time
available between the bursts for the capacitors to be reloaded. The short rise
and fall times of less than 100 ns can be realized with commercial high voltage
transistor switches (see below).

4.6.2 Components and design

Shown in Fig. 4.5 is the circuit diagram of the basic electronic assembly that
is used to run a single module of the deceleration machine. In the center of the
figure, the decelerator electrodes are sketched. These are connected via their
support rods and via the vacuum feedthroughs (compare Fig.4.1) to the high
voltage switches. The used switches are commercial transistor based switches
(HTS 301-03-GSM, Behlke Electronic GmbH ) which can be operated at a max-
imum absolute voltage of 30kV. The same type of switch is used for both
polarities. For voltages up to 20kV it is sufficient to cool the switches by air-
flow alone — for higher voltages an oil cooling system would be required. In the
present instrument, every switch is positioned directly below a small fan.

The driver control unit supplies the switch with the required 45 VDC oper-
ating voltage and with a control input signal: a +10V trigger pulse for positive
polarity, an inverted pulse for negative polarity. Fault signals from the switch
are transmitted by a 50 Q-driver to the system and control unit. A fault signal
occurs in the case of overfrequency, thermal overload or incorrect voltage sup-
ply. In these three cases® the switch connects the electrodes with the ground or
bias potential. If the +5 VDC supply is cut off, the electrodes become isolated
(floating). To ensure a short rise time, the high voltage power supply is not di-
rectly connected to the switch, but used to constantly load a 500 nF high voltage
buffer capacitor (30kV, PPR300-504 HiVolt Capacitors Ltd.). The capacitive
load behind a single switch is approximately 100 pF. If during a typical burst
one switch has to switch e.g. 50 times, a charge of about 50 x 100 pFx20kV is
drawn from the capacitor. If the recharging of the capacitor during the burst
is negligible, a total voltage drop of 1% or 200 V results. To avoid ringing, two
330 € resistors are placed in series: one resistor is placed before the input and
one behind the output of the HV-switch (R; and Ras, see detail of Fig.4.5).

The system and control unit supplies 24V for the driver control unit and
transmits the trigger signals from the burst unit. This unit also interprets the
fault signals from all 4 switches. In case of a fault, the +5V at the fault output,

30ne should not assume that these are all possible faults which can occur. It once happened
that under normal operating conditions a single switch suffered from a strong discharge right
through its own insulation. The event didn’t result in an error signal at the fault output,
however, the accompanying apocalyptic noise was easy to notice and the system was then
shut down by hand.
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Figure 4.5: The HV circuitry and auxiliary instrumentation for the deceleration machine.

which is connected to the interlock unit, drops to 0 V. The interlock unit then
shuts down the HV power supplies and it also brings the burst unit to a halt.
As may be seen from Fig. 4.6, the switch units are mounted directly onto the
top of the vacuum chamber. A metal housing encloses each unit and provides
shielding against leakage of high frequency radiation originating from the fast
switching of the high voltages. Onto each housing, 10 fans are mounted to
establish a steady air flow for the cooling of the switches and the resistors.
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R, 330Q HV vacuum feedthrough R, 330Q HV capacitor (500nF) ~ System & Control Unit central reference
potential (ground)

Figure 4.6: Top left: a switch unit corresponding to the circuit diagram of Fig.4.5. Top
right: a single unit during its installation on the vacuum chamber. Bottom: details for a
single unit. For HV connections, (red) silicone cladded cables without shielding are used. All
other cables are shielded, except those leading to the central ground potential point.



Chapter 5

Operation of a Stark decelerator
with optimum acceptance

With a Stark decelerator, beams of neutral polar molecules can be accelerated,
guided at a constant velocity, or decelerated. The effectiveness of this process is
determined by the 6D volume in phase space from which molecules are accepted
by the Stark decelerator. Couplings between the longitudinal and transverse
motion of the molecules in the decelerator can reduce this acceptance. These
couplings are nearly absent when the decelerator operates such that only every
third electric field stage is used for deceleration, while extra transverse focusing
is provided by the intermediate stages. For many applications, the acceptance
of a Stark decelerator in this so-called s = 3 mode significantly exceeds that of a
decelerator in the conventionally used (s = 1) mode. This has been experimen-
tally verified by passing a beam of OH radicals through a 2.6 meter long Stark
decelerator. The experiments are in quantitative agreement with the results of
trajectory calculations, and can qualitatively be explained with a simple model
for the 6D acceptance. These results imply that the 6D acceptance of a Stark
decelerator in the s = 3 mode of operation approaches the optimum value, i.e.
the value that is obtained when any couplings are neglected.

Based on: Operation of a Stark decelerator with optimum acceptance
L. Scharfenberg, H. Haak, G. Meijer and S.Y.T. van de Meerakker
Phys. Rev. A 79, 023410, (2009)
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5.1 Introduction

Since its introduction in 1999, the method of Stark deceleration has developed
into an established method for taming molecular beams [5, 3]. The Stark de-
celeration technique combines molecular beam technology with concepts from
charged particle accelerator physics. In essence, a part of a beam of neutral
molecules is selected and decelerated utilizing the force that polar molecules ex-
perience in inhomogeneous electric fields. A Stark decelerator produces bunches
of state-selected molecules with a computer-controlled velocity and with narrow
velocity distributions. These beams are ideally suited for a variety of experi-
ments in which the velocity of the molecules is an important parameter. Appli-
cations include the use of slow molecular beams to enhance the interaction time
in spectroscopic experiments [68, 69] and scattering studies as a function of the
collision energy [18]. When the molecules are decelerated to a near standstill,
they can be loaded and confined in traps [11, 6]. This allows the observation of
molecules in complete isolation for times up to several seconds, and enables the
investigation of molecular properties in great detail [13, 16, 15].

For many of these applications it is crucial that the number density of the
decelerated packets of molecules is further increased. Higher densities of decel-
erated molecules will improve the statistics in metrology experiments and can
be decisive, for instance, for the observation of (in)elastic scattering or reactive
collisions in crossed molecular beam experiments. Higher densities in traps are
also a prerequisite for the future application of cooling schemes like evaporative
cooling, needed to reach the regime of degenerate dipolar quantum gases [70].

The number density of decelerated molecules that can be reached at the exit
of the decelerator is limited by the initial phase space density in the molecular
beam and by the 6D phase space acceptance of the decelerator. The latter is de-
fined as the volume in 6D phase space — the product of the volume in real space
and in velocity space — from which stable trajectories through the decelerator
originate?. In most Stark deceleration experiments to date, molecular beams
with a low initial velocity are slowed down using decelerators with a rather
limited number of electric field stages. Hence, molecular beams are typically
released from a cooled pulsed valve using Xe or Kr as a carrier gas. The use of
Xe or Kr and the cooling of the pulsed valve strongly enhances cluster forma-
tion, however, and is generally regarded to be non-ideal for a molecular beam
expansion. Moreover, these decelerators are usually operated at large phase an-
gles. The phase angle ¢ is defined by the position of the synchronous molecule
at the moment the fields are switched [57] and determines the deceleration rate
per electric field stage. It ranges from 0° < ¢y < 90° for deceleration, while
acceleration occurs from —90° < ¢y < 0°. While for increasing values of |¢o|

2More precisely, if a specific (small) volume in phase space is denoted by
(AzAyAzAvy AvyAv,);, and if all particles which originate from this volume can be de-
celerated or accelerated without being lost, then the total phase space acceptance is obtained
by summing all these volumina: >, (AzAyAzAveAvyAv;);.
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the deceleration rate gets larger, the longitudinal phase space acceptance gets
smaller.

An obvious route to higher number densities of decelerated molecules is thus
the use of seed gases of lower mass (preferably Ne or Ar) in room-temperature
expansions and the use of low phase angles in the decelerator. Together this
implies, however, that (much) longer Stark decelerators need to be constructed
to compensate for both the higher initial velocity and the lower deceleration
rate. It is not a priori clear whether one can actually transport molecules
through such long decelerators without significant losses. If only molecular
trajectories along the molecular beam axis are considered, the length of the
decelerator is inconsequential, as the deceleration process is subject to phase
stability [54, 57]. In reality the molecules in the beam have off-axis position
and velocity components, however. The transverse electric field gradients in
the decelerator drive the molecules back towards the molecular beam axis. The
resulting transverse oscillatory motion is strongly coupled to the longitudinal
(forward) motion and can result in a reduction of the 6D phase space acceptance
of the decelerator [58]. Numerical simulations indicate that this coupled motion
does not affect the overall performance of the relatively short Stark decelerators
that have been used and operated at high phase angles thus far, but that it
can severely affect the performance of longer decelerators that are operated at
low phase angles. In the ideal case, the longitudinal and transverse motions in
the Stark decelerator are completely uncoupled. This can be achieved by con-
structing decelerators with dedicated, spatially separated, elements for focusing
and deceleration [71, 72|, as is common practice in charged particle accelerators
[73]. The required electrode geometries make the decelerator rather complex,
however [74, 72].

In this work we exploit that in a Stark decelerator with the original electrode
geometry, i.e., the geometry as used in reference [5], the coupling between the
longitudinal and transverse motion can be significantly reduced when the decel-
erator is operated in the so-called s = 3 mode (see [55] and chapter3). In this
mode, only every third electric field stage is used for deceleration, while extra
transverse focusing is provided by the intermediate stages. We demonstrate and
quantify that for many applications, the acceptance of the Stark decelerator in
the s = 3 mode significantly exceeds that of a decelerator in the conventionally
used (s = 1) mode of operation. The improved performance of the s = 3 opera-
tion mode was demonstrated earlier for guiding at a constant velocity (¢o = 0°)
[68] and for deceleration in a relatively short decelerator at high phase angles
[72]. However, the latter experimental arrangement did not allow for a direct
comparison between the s = 1 and s = 3 modes of operation, and the advan-
tages of the s = 3 mode of operation for a wide range of parameters cannot be
inferred from these studies. Here we present experiments in which a beam of
OH radicals passes through a 2.6 meter long Stark decelerator consisting of 316
electric field stages. In this machine, the OH radicals can be detected either
after 103 or after 316 electric field stages, enabling a direct comparison between
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Figure 5.1: Scheme of the experimental setup. A pulsed beam of OH radicals is produced
via photolysis of HNOg3 seeded in Xe, Kr, or Ar. The beam of OH radicals passes through
a 2.6 m long Stark decelerator that consists of three modules of ~ 100 stages each. The OH
radicals can be state-selectively detected using a laser induced fluorescence scheme at the
end of the decelerator, and in the region between the first two modules. In the top inset, a
photograph of a decelerator module is shown.

the s = 1 and s = 3 modes of operation under otherwise identical conditions, in
particular using the same phase angle ¢g. This direct comparison allows us to
draw firm conclusions on the usefulness of the s = 3 mode of operation for a wide
range of experimental parameters. The experimental results are in quantitative
agreement with the results of trajectory calculations, and can qualitatively be
explained with a simple model for the 6D acceptance.

5.2 Experiment

5.2.1 Experimental setup

The experimental setup is schematically shown in Fig.5.1. A pulsed beam of
OH radicals is produced via ArF-laser (193 nm) dissociation of HNOj3 seeded
in an inert gas. The dissociation is carried out inside a quartz capillary that is
mounted on the orifice of a pulsed valve (General Valve, Series 99). The exper-
iment runs at a repetition frequency of 10 Hz. Details about the production of
OH radicals can be found on p. 24.

During the supersonic expansion, the majority of the OH radicals cool to
the lowest rotational and vibrational level of the X %Il /2 spin-orbit manifold
of the electronic ground state. This population is equally distributed over the
two A-doublet components of the J = 3/2 level. Only OH molecules in the
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upper A-doublet component are low-field-seeking, and are of relevance to the
experiments discussed here. This component splits into an |[M ;| = 1/2 and an
|M ;| = 3/2 component in an electric field (see Fig.2.1 on p.20). Molecules in
the |[M ;| = 3/2 component experience a Stark shift that is a factor of three larger
than the Stark shift experienced by molecules in the |M;| = 1/2 component.

After passage through a skimmer with a 2 mm diameter opening, the molec-
ular beam enters the differentially pumped decelerator chamber. The skimmer
is mounted on a compact gate valve [67], enabling the venting of the source
chamber while keeping the decelerator chamber under vacuum. The beam en-
ters the Stark decelerator 60 mm from the nozzle orifice. The Stark decelerator
consists of three modules that are mechanically and electrically decoupled from
each other. The first two modules consist of 104 electrode pairs (i.e. 103 electric
field stages) each, whereas the last module contains 109 electrode pairs. These
electrode pairs consist of two parallel 4.5 mm diameter stainless steel electrodes
that are placed symmetrically around the molecular beam axis, providing a
3mm gap for the molecular beam to pass through. Adjacent electrode pairs are
alternately horizontally and vertically oriented, such that a 3 x 3 mm? opening
area remains for the molecular beam. The electrodes of all horizontal (vertical)
pairs within each module are electrically connected and switched simultaneously
to high voltage. The center-to-center distance (L) of electrodes of adjacent pairs
is 8.25 mm, and the three modules are carefully aligned to also maintain this
distance between the electrode pairs of adjacent modules. The first and last
eight electrode pairs of each module are mounted on conically shaped rods, as
shown enlarged in Fig.5.1 and in Fig.4.1 on p.49. This design provides excel-
lent optical access for fluorescence collection in between adjacent decelerator
modules. It also allows the exits of two Stark decelerators in a crossed beam
arrangement to be brought close together.

The electric field in the decelerator is switched back and forth between two
different configurations, that are schematically shown in Fig. 5.2. In each con-
figuration, the opposing electrodes of every other electrode pair are at +20kV,
while the remaining electrodes are grounded. Switching between the two con-
figurations is performed using fast air-cooled high voltage switches (see p.55).
To minimize the power dissipation per switch, each module is connected to four
separate high voltage switches. Each switch is connected to its power supply via
a 0.5 uF capacitor bank, limiting the voltage drop during a deceleration cycle
to less than 5%. For the conventional mode of operation of a Stark decelerator,
the s = 1 mode, the voltages are switched every time the molecules approach
the pair of electrodes that are on high voltage. In this case, the molecules
are simultaneously decelerated and transversally focussed in every electric field
stage. When the decelerator is operated in the s = 3 mode, the voltages are
switched only after every third stage. In this case, only every third stage is
used for combined deceleration and transverse focusing, while the intermediate
stages provide additional focusing.

The OH radicals can be state-selectively detected using an off-resonant Laser
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Figure 5.2: Schematic representation of the two electric field configurations that are used in
the deceleration process, together with the potential energy W for an OH molecule along the
molecular beam axis. By switching between the two field configurations when the molecules
are at the positions indicated by the vertical dashed lines, an amount of kinetic energy AW
is removed from the molecules. In the conventional (s = 1) mode of operation, each electric
field stage is used simultaneously for deceleration (D) and focusing in alternating transverse
directions (Fy,Fy). In the s = 3 mode of operation, only every third stage is used for com-
bined deceleration and transverse focusing, while the intermediate stages provide additional
focusing.

Induced Fluorescence (LIF) detection scheme at two different positions along
the beam line. The first detection zone is located between the first two modules
and the second one is 18 mm downstream from the last module, enabling the
detection of OH radicals after 103 or 316 electric field stages, respectively. The
282 nm radiation of a pulsed dye laser crosses the molecular beam in either one
of the detection regions at right angles, and saturates the (spectroscopically not
resolved) Q21(1) and Q1(1) transitions of the A?YT, v = 1 + X ?II3/5,0 = 0
band. The fluorescence occurs predominantly on the A?X+ v =1 — X 21,0 =
1 transition around 313 nm. Stray light from the laser is minimized by passing
the laser beam through light baffles between the entrance and exit windows,
and by using optical filters which are located in front of the photomultiplier
tube (PMT).

In the experiments the seed gases Xe, Kr, or Ar are used. The velocity
distribution can be determined very accurately by measuring a time-of-flight
profile when the decelerator does not switch but is operated in a static mode.
In this mode, a static high voltage is applied to the horizontal and vertical elec-
trodes simultaneously with the effect that low field seeking molecules are only
transversally focused, while their longitudinal velocity remains unchanged. The
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Figure 5.3: Time-of-flight profiles of OH radicals, recorded at the exit of the 316 stage
Stark decelerator (black curves). The Stark decelerator is operated in the s = 3 mode, and
accelerates (curve a), guides (curve b), or decelerates (curve c) a packet of OH radicals with
an initial velocity of 350 m/s. The TOF profiles that result from simulations of the experiment
are shown underneath the experimental profiles (red curves).

packet of OH radicals is quite short initially and therefore one may directly infer
the velocity distribution from the known total distance (= 2.7m, see Fig.5.1)
and the measured time-of-flight profile. The mean velocities for the beam are
350m/s, 430m/s, and 590m/s for Xe, Kr, and Ar, respectively, with a full
width at half maximum (FWHM) velocity spread of about 15 — 20 % for all
seed gases.

In Fig. 5.3 the intensity of the LIF signal of a beam of OH (J = 3/2)
radicals seeded in Xe is shown as a function of time after firing the dissociation
laser using different deceleration sequences.

The OH radicals are detected using the second LIF detection unit, and the
Stark decelerator is operated in the s = 3 mode. In curve (b) the TOF profile
is shown that is obtained when the decelerator is operated at a phase angle of
¢p = 0°, corresponding to guiding a packet of OH radicals at a constant velocity.
A packet of OH radicals with a mean velocity of 350 m/s is selected, transported
through the 2.6 m long decelerator, and arrives in the detection region some
7.6 ms after its production, with a FWHM of the arrival time distribution of
25 ps. The measurements shown in curve (a) are obtained with the decelerator
operating at a phase angle of ¢y = —50°, accelerating a packet of OH radicals
from an initial velocity of 350 m/s to a final velocity of 544m/s. There is no
signature of the part of the molecular beam that is not accelerated. This is
also expected as the electrodes of the decelerator are switched to ground when
the accelerated packet exits the decelerator, about 1.5 ms before the remainder
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of the beam pulse would arrive in the detection region. Curve (c¢) shows the
TOF profile that is obtained when the decelerator is operated at a phase angle
of ¢o = 29° to decelerate a packet of OH radicals from 350m/s to 150m/s.
The decelerated molecules exit the decelerator about 10.7 ms after production,
about 3 ms after the arrival of the undecelerated part of the beam.

The experimental TOF profiles are in excellent agreement with the profiles
that result from three dimensional trajectory simulations of the experiment that
are shown underneath the experimental profiles. In these and in all subsequent
simulations, the individual contributions of the |M ;| = 3/2 and the |M ;| = 1/2
components to the LIF signal intensity are taken into account.

5.2.2 Comparing the s = 1 and s = 3 modes of operation

In Fig. 5.4 two series of TOF profiles are shown that allow a direct comparison
between the performance of a Stark decelerator in the s = 1 and s = 3 operation
mode under otherwise identical conditions. In both series, the Stark decelerator
is programmed to accelerate, guide or decelerate a packet of OH radicals with
a mean initial velocity of 350 m/s to a final velocity that is in the 70 — 600 m/s
range (—65° < ¢y < 32°). Only that part of each TOF profile that contains
the signature of the packet at the final velocity is shown. In the left and right
panels the series of profiles are shown that are obtained when the decelerator
is operated using the s = 1 and the s = 3 mode, detecting the OH radicals
after 103 and 316 stages, respectively. The (almost) factor of three difference
in the number of stages results in (almost) identical phase angles for the Stark
decelerator to produce a given final velocity in both series. The phase angle that
is used, and the final velocity of the packet, is indicated for selected profiles in
both panels. To enable a direct comparison between the two modes of operation,
both series are plotted on the same vertical scale. For this, the relative detection
efficiency in the two LIF zones is experimentally determined by measuring OH
radicals at both detection locations when the Stark decelerator is operated at
s = 3,¢09 = 0°. The overall scaling factor that is thus determined is correct if
we assume that for the s = 3, ¢9 = 0° mode of operation the number density of
the packet of OH radicals does not decline when progressing from the first to
the second LIF zone, and that the relative detection efficiency is independent
of the velocity of the OH radicals. The validity of both assumptions is checked
experimentally and verified by numerical simulations.

When the decelerator is operated using s = 1, the signal intensity for ¢g =
0° is about a factor of two-and-a-half lower than the signal intensity for s =
3,9 = 0°. The signal intensity for the s = 1 appears rather constant for the
different values of ¢g that are used. For the s = 3 mode of operation it is
observed that the signal intensity for ¢y # 0° gradually reduces for increasing
absolute values of the phase angle, following the reduced acceptance of the
decelerator. For final velocities below 150 m/s, indicated by the dashed line in
Fig. 5.4, a sharp reduction of the signal intensity is observed even though the
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Figure 5.4: Time-of-flight profiles of OH radicals that exit the Stark decelerator using the
s = 1 and s = 3 mode of operation. The OH radicals are detected after 103 and after 316
electric field stages for s = 1 and s = 3, respectively. The measurements are recorded under
otherwise identical conditions, and are shown on the same vertical scale. The beam of OH
radicals has a mean initial velocity of 350 m/s. The mean final velocity of the molecules and
the phase angle used, are indicated for selected profiles.

change in phase angle is only very small. This reduction is due to excessive
transverse focusing for low velocities, and will be discussed in more detail in
section 5.2.4. The signal intensities for the s = 1 and s = 3 modes of operation
are about equal for ¢g = —65°. Both series of TOF profiles are in excellent
agreement with profiles that result from simulations of the experiment that are
shown underneath the experimental profiles (the low field seeking |M ;| = 1/2
component only contributes to the TOF profiles for —30° < ¢y < 30°).

The gain of the s = 3 mode with respect to the s = 1 mode of operation,
defined as the ratio of the maximum signal intensities of the decelerated packets
at a given final velocity, is shown as a function of the final velocity in Fig. 5.5.
For this, the data presented in Fig.5.4 are used. For selected velocities, the
phase angle that is used for s = 3 operation is indicated; the phase angle
that is used for s = 1 operation differs only slightly from this value. It is
seen that for ¢9 = 0°, i.e. at a final velocity of 350 m/s, the gain is 2.4,
consistent with previous studies [55, 72]. When the beam is accelerated to
450m/s (¢g = —21.7°), a gain up to 3 is observed. For higher velocities the
gain gradually reduces and reaches 1.2 for 600 m/s (¢o = —63.2°). A gain up to
4.2 is observed when the beam is decelerated to 200 m/s (¢g = 22.3°). Below
150m/s (¢pp = 27.0°), the gain drops fast and reaches 1.0 for a final velocity of
about 120 m/s.
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Figure 5.5: The ratio of the maximum signal intensities (squares, connected by straight line
segments) for s = 3 operation versus s = 1 operation as a function of the final velocity. The
two additional data points (stars) apply to a bimodal operation of the decelerator (see text
for details).

5.2.3 The s = 1 mode of operation at low phase angles

In this section we want to address the question whether, for a fixed initial and
final velocity, the number density of decelerated molecules can also be increased
by using lower phase angles in the s = 1 mode of operation. For this, we compare
the deceleration with 103 stages at a certain phase-angle to the deceleration with
316 stages at about one-third of this phase-angle. The data for the deceleration
at the s = 1 mode with 103 deceleration stages, have already been shown and
discussed in the previous section. The complimentary data for the deceleration
at the s = 1 mode with 316 deceleration stages have been measured as well;
a beam of OH radicals with the same initial velocity of 350 m/s is decelerated
or accelerated to the same final velocities between 70 m/s and 600 m/s. The
phase-angles used for these measurements are very low, ranging from —21.7° to
10.9°. Again, the signal intensity that is observed with guiding at the s = 3
mode, is used to calibrate the measurements with 316 stages relative to the ones
with 103 stages.

For the operation in the s = 1 mode, the gain in using 316 stages compared
to using 103 stages is shown as a function of the final velocity in the lower
curve in Fig. 5.6. This gain is determined as the ratio of the signal intensities
of the decelerated packets at a given final velocity, and lies between 0.5 and
0.7 throughout. Since this gain stays smaller than one in the considered ve-
locity range, it is evident that for the chosen parameters the number density
of decelerated molecules can not be increased by the use of lower phase-angles.
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Figure 5.6: Lower curve: The ratio of the signal intensity for s = 1 operation of a decelerator
with 316 versus 103 stages as a function of the final velocity. Upper curve: The ratio of the
signal intensity using a 316 stage decelerator operating on the s = 3 versus the s = 1 mode.

This perhaps counterintuitive finding is explained by the presence of inherent
instabilities in the s = 1 mode, which more strongly manifest themselves during
the increased time spent in the decelerator.

We can now also address the question whether, given a Stark decelerator
of a certain length, the maximum number density of decelerated molecules is
obtained using the s = 3 mode at a certain phase-angle or using the s = 1
mode at about one-third of this phase-angle. For the 316 stage decelerator, the
resulting gain of the s = 3 versus the s = 1 mode directly follows from the
curve shown in Fig.5.5 and the lower curve in Fig.5.6, and is shown as the
upper curve in the Fig. 5.6. Operation on the s = 3 mode is seen to be about a
factor five better than on the s = 1 mode, provided the final velocity is larger
than the threshold velocity.

5.2.4 Excessive focusing at low velocities

The rather abrupt decrease in the number density of decelerated molecules
for velocities below 150m/s as shown in the right hand panel of Fig.5.4 can
qualitatively be understood as follows. During their flight through the decel-
erator, molecules are alternatingly focused in each transverse direction. When
the focusing force acts in one transverse direction, molecules experience to a
good approximation no focusing or de-focusing force in the orthogonal trans-
verse direction (the molecules actually experience a small defocusing force in the
orthogonal direction). As long as the characteristic wavelength A of the trans-
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verse oscillatory motion is much larger than the periodicity of the transverse
focusing force, molecules will follow stable trajectories through the decelera-
tor. The wavelength X is given by A = (v,) 27/Q,, where (v,) and Q, are
the mean longitudinal velocity and the mean transverse oscillation frequency
of the packet of molecules, respectively. The periodicity of the focusing force
is given by 2sL, where L is the center-to-center distance of adjacent electrode
pairs. For high velocities, therefore, stable trajectories are expected. For low
velocities, however, A becomes ever closer to 2sL, and molecules will get more
tightly transversely focused. The molecular trajectories will then exhibit ever
larger deviations from the molecular beam axis, and the molecules will eventu-
ally crash onto the electrodes. For a given electric field distribution in a Stark
decelerator, the resulting loss of molecules is thus expected to strongly depend
on the longitudinal velocity of the molecules.

In Fig.5.7, the maximum signal intensity of decelerated packets of OH
radicals is shown at the exit of the 316 stage decelerator, operating in the s = 3
mode. Beams of OH radicals with three different initial velocities have been
used, and the signal is shown as a function of the final velocity (upper panel) or
as a function of the phase-angle (lower panel). When Xe or Kr are used as carrier
gas, the Stark decelerator is programmed to select a packet of molecules with
an initial velocity that is identical to the mean velocity of the molecular beam,
i.e. 350m/s or 430 m/s, respectively. For Ar, a velocity of 520 m/s is selected
from the slow tail of the velocity distribution of the beam. The phase angle ¢y
is varied to decelerate the selected packet of molecules to final velocities down
to 100m/s. The series of measurements for each seed gas are normalized to the
data point that corresponds to ¢g = 0°. The thresholds are found at a velocity
of about 150 m/s in each series, and are indicated by the vertical dashed lines.
This velocity is reached when ¢y = 27°, ¢g = 43°, and ¢g = 67° for Xe, Kr,
and Ar seeded beams, respectively. The value of the threshold velocity appears
independent from the phase angle ¢ of the decelerator, consistent with the
qualitative picture described above. The intensities that result from numerical
trajectory simulations of the experiments are shown as solid lines in Fig.5.7.
Excellent agreement is obtained with the experiments and in particular the
threshold behavior of the signal intensity is reproduced well.

The threshold velocity below which losses due to excessive transverse focus-
ing occurs, can be approximately determined as described in section 3.4 (pp. 38).
The model described there predicts that no stable trajectories exist in the s = 3
mode of operation when A < (2.6 - 2sL). For the present Stark decelerator,
operating on s = 3, the periodicity of the transverse focusing force 2sL is equal
to 49.5mm. The mean transverse oscillation frequency €2, follows from the
time-averaged transverse force (see the Appendix on p.76). For s = 3, Q, is
rather independent from the phase angle ¢, and a threshold velocity of about
92m/s is found, consistent with the experimental findings. In the s = 1 mode,
there is no clearly defined threshold velocity, but similar losses due to excessive
transverse focusing occur for velocities below 30 m/s.
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Figure 5.7: Maximum signal intensity of decelerated packets of OH radicals as a function
of the final velocity (left panel) and as a function of ¢g (right panel), using a 316 stage
decelerator operating at the s = 3 mode. Beams of OH radicals with three different initial
velocities, produced by seeding in Xe, Kr, or Ar, have been used. The intensities that are
obtained from numerical simulations of the experiment are shown as solid lines.

The rather high threshold velocity for s = 3 does not severely affect ex-
periments in which Stark-decelerated beams are used for high resolution spec-
troscopy and collision studies, or in which the decelerated beams are injected
into molecular storage rings or synchrotrons. It does affect, however, experi-
ments in which lower final velocities are required, e.g. trap loading experiments.
There are several approaches to yet produce decelerated packets at a velocity
below the threshold velocity with decelerators that are intended to operate at
s = 3. An electric field geometry for the last section of the decelerator can be
designed that permits a gradual reduction of the transverse focusing strength.
This can be achieved by a dedicated electrode geometry and/or by a sequential
reduction of the voltage that is applied to the electrodes. It is noted that similar
strategies have already been implemented in trapping experiments using deceler-
ators in the s = 1 mode [75]. An alternative approach is to develop an electrode
geometry for the last segment of the decelerator that allows the confinement
of molecules in a genuine traveling potential well. When the velocity of this
well is gradually reduced, the packet of molecules can be transferred from the
threshold velocity to lower velocities without loss. The trapping of molecules in
genuine traveling potential wells has already been demonstrated using optical
fields [76] and using electric fields above a micro-structured electrode array [7].

Within the possibilities of the present experimental arrangement, deceler-
ated packets with low final velocities can be produced by changing over from
the s = 3 mode to the s = 1 mode before the threshold velocity has been
reached. The number of molecules that exit the decelerator at velocities below
the threshold velocity strongly depends on the details of the change-over, i.e.,
the velocity after which s = 1 operation is used, and the phase angles that are
used before and after the transition. The influence of the choice of these param-
eters on the number of molecules that exit the decelerator has experimentally
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been studied, decelerating a packet of OH radicals with an initial velocity of
350m/s. The velocity and position of the packet in the decelerator at which
the change-over from s = 3 to s = 1 is made is systematically varied for the
target (final) velocities of 100 m/s and 50 m/s. For both velocities the maximum
signal intensity is observed when the transition to s = 1 is made when the first
~ 300 stages are operated at s = 3,¢¢ ~ 26° and when the molecular packet
has reached a velocity of 170m/s. The remaining 12 and 15 stages are then
used at s = 1, ¢g = 43.2° and s = 1, ¢pg = 48.3° to produce the final velocities
of 100 m/s and 50 m/s, respectively. The gain of this bimodal operation of the
Stark decelerator with respect to s = 1 operation is shown in Fig. 5.5 as separate
data points. It is observed that for a final velocity of 100 m/s the gain is about a
factor of 2, and is close to one for a final velocity of 50 m/s. These measurements
demonstrate that low final velocities can be produced with Stark decelerators
that are designed to operate at s = 3, although the efficiency approaches the
efficiency of conventional Stark decelerators when the target velocity is much
lower than the s = 3 threshold velocity.

5.3 Numerical trajectory calculations

The measurements presented thus far demonstrate the performance of the s =1
and s = 3 modes of operation of Stark decelerators in the (limited) range of
parameters that is accessible to the experiment. In this section, both modes
of operation are studied in a wider parameter range using numerical trajectory
simulations. The electrode geometry that is used in the simulations is the same
as used in the experiments, but the decelerator is allowed to have an arbitrary
length.

Trajectories of OH radicals through the decelerator are numerically calcu-
lated as a function of the phase angle ¢y for both the s = 1 and the s = 3
mode of operation. In these simulations, a large number of molecules is homo-
geneously distributed at the entrance of the Stark decelerator over a block in 6D
phase space. This block has a dimension of 20 mm x 90m/s in the longitudinal
direction, and a dimension of 4mm X 25m/s in each transverse direction. The
molecular distribution has a mean forward velocity of 550 m/s at the entrance of
the decelerator, and is decelerated or accelerated to a final velocity of 180 m/s or
755m/s, corresponding to a change in the kinetic energy of 90%. These values
are arbitrary and can be chosen without loss of generality, as the phase-space
acceptance of a Stark decelerator is in principle independent of the absolute ini-
tial and final velocity. The rather high final velocity of 180 m/s for deceleration
is chosen to stay away from the velocities for which excessive transverse focusing
occurs, as discussed in section 5.2.4. Decelerators containing 781, 388, 256, 190,
151, 126, 111, 102, and 99 electric field stages are simulated that are operated
using |¢o| = 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, respectively. These
numbers apply to s = 1; for simulations that apply to s = 3 the number of
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stages is three times as large. For both values of s, additional simulations were
performed for ¢y = 0° using a 2500 stages long decelerator. In each simulation,
a sufficient number (5,000,000 for s = 1 and 500,000 for s = 3) of molecules is
generated to obtain good statistics. The number of molecules that are within
the phase-space distributions of the decelerated packet are counted, and the
corresponding 6D volume in phase-space is calculated. In the lower part of
Fig. 5.8, the simulated longitudinal phase-space distributions for ¢¢9 = —10°
are shown both for s = 1 and for s = 3, together with the separatrices that
follow from the 1D model for phase stability [55]. These distributions are rep-
resentative for the distributions at low phase angles in general, and are shown
here to exemplify the simulation method only. The phase-space distribution
for ¢9 = —10°, s = 1 is highly structured with alternating stable and unstable
regions. In the distribution for ¢y = —10°, s = 3 no clear structure is present.
The area within the longitudinal separatrix — the longitudinal acceptance — is
a factor v/3 smaller for s = 3 than for s = 1 [55].

In the upper panel of Fig. 5.8, the resulting simulated 6D phase-space ac-
ceptance is shown as a function of ¢y for both s = 1 and s = 3. For s = 1
the phase-space acceptance is maximum for ¢y = 0°, and drops significantly for
@0 # 0°. Tt has a minimum at |¢g| = 10°, is rather constant for 20° < |¢g| < 50°,
and drops again for |¢g| > 50°, consistent with the experiments in section 5.2.3.
Note that the Stark decelerator has a nonzero acceptance for |¢g| = 90°, as dis-
cussed before [58]. It is interesting to note that the phase-space acceptance is
not symmetric around ¢y = 0°. The phase-space acceptance for ¢y < 0 is larger
than the acceptance for the same positive phase-angle; molecules spend less time
in the decelerator when they are accelerated then when they are decelerated,
reducing the loss due to instabilities.

The calculated acceptance for s = 3 shows a rather different trend, and is
generally larger for smaller values of |¢g|. Although the longitudinal phase-
space acceptance for s = 3 is a factor /3 smaller than for s = 1, the 6D
phase-space acceptance exceeds the acceptance for s = 1 for 0° < |¢o| < 70°.
When |¢p| = 70°, the acceptance in both modes of operation is equal, consis-
tent with the experimental findings discussed in section 5.2.2. For |¢g| > 70°
the acceptance for s = 1 is slightly larger than the acceptance for s = 3. Al-
though less pronounced, the |¢g| dependence of the acceptance for s = 3 is again
asymmetric around ¢y = 0°.

It is interesting to compare the calculated phase-space acceptance with the
phase-space acceptance that is expected for a Stark decelerator in which insta-
bilities are absent. From this comparison one can quantify the presence and
severeness of instabilities in the s = 1 and s = 3 mode of operation. The lon-
gitudinal phase-space acceptance of a decelerator is given by the area within
the separatrix. The equations of motion that govern the transverse trajectories
of molecules through the decelerator contain time-dependent forces, for which
in general no simple analytical solutions exist. These equations, together with
the equation for the longitudinal motion, can be used to estimate the volume
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Figure 5.8: 6D phase space acceptance of a decelerator as a function of the phase-angle ¢q,
resulting from numerical trajectory calculations (squares connected with solid lines for s = 3;
triangles connected with dashed lines for s = 1), together with the model predictions (solid
line for s = 3; dashed line for s = 1). In the inset, the s = 1 data is shown enlarged. In
the lower part, the longitudinal phase-space distributions that result from the simulations are
shown for ¢g = —10°, both for s =1 and s = 3.

in phase space from which stable trajectories can originate. This procedure is
outlined in detail in the Appendix to this chapter on p. 76, and the resulting 6D
phase-space acceptance is shown as a function of ¢g for both s =1 and s = 3 in
Fig.5.8. It is seen that for s = 1 the phase-space acceptance predicted by the
model deviates significantly from the calculated acceptance; for |pg| < 20° the
deviation is at least an order of magnitude. For larger angles the discrepancy
gets less, and both curves cross around |¢g| = 70°. From this comparison it is
once more evident that instabilities are present when the decelerator operates
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in the s = 1 mode [58], and that these instabilities severely limit the obtainable
acceptance.

For the s = 3 mode, the acceptance predicted by the model reproduces
the calculated acceptance much better. The agreement for |¢g| > 40° is good,
and the deviations are in the 5-20% range for 20° < |¢g| < 40° and about
30 % for |¢o| < 20°. These minor deviations can be taken as an indication for
the presence of small instable regions, as have indeed been observed close to
the separatrix for ¢9 = 0° [58]. The overall agreement, however, demonstrates
that the 6D acceptance of a Stark decelerator in the s = 3 mode of operation
approaches the optimum value, i.e. the value that is predicted from the model
that neglects any instabilities.

5.4 Conclusions

The studies presented in this chapter address the question how one can get the
highest number density of decelerated molecules with a certain velocity at the
exit of a decelerator. Rather than discussing a variety of electrode geometries
that one might use to decelerate a beam of polar molecules, these studies focus
on a Stark decelerator in the conventional, experimentally proven design. This
decelerator can run at different phase-angles and operate in different modes,
and can be built with a variable length. The number density of accelerated and
decelerated OH radicals has been experimentally studied as a function of these
three parameters. Quantitative comparisons of these number densities, obtained
using Stark decelerators with different parameter sets, have been made. The
measurements have been substantiated by numerical simulations, from which
comparisons for a much wider range of parameters can be made. These studies
provide quantitative arguments for the design criteria of Stark decelerators for
specific applications.

Based on the one-dimensional description of a Stark decelerator, one would
expect more molecules at the end of the decelerator for longer decelerators
that run at lower phase-angles. This description neglects the coupling between
the longitudinal and transverse motion, however, which limits the actual 6D
acceptance of a decelerator. A first important conclusion from the present study
is that, for a decelerator operating in the s = 1 mode, a strategy to optimize
the number of decelerated molecules by using low phase angles and a large
number of deceleration stages is only of limited use. There is a maximum of
the 6D acceptance for a phase-angle of around 50°, and the optimum number of
molecules is obtained when the length of the decelerator (for a given initial and
final velocity) is adjusted such that this phase-angle can be used. A decelerator
of 150 stages that is operated at 50°, for instance, produces more decelerated
molecules than a decelerator of 250 stages that runs at a phase angle of 30°.

A second important conclusion is that a decelerator that operates in the
s = 3 mode outperforms a decelerator in the s = 1 mode in almost all cases.
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In the s = 3 mode, coupling between the longitudinal and transverse motion
is nearly absent, and lower phase angles always result in a larger acceptance.
For small phase angles, a gain up to a factor of ten can be obtained. The gain
depends strongly on the phase angle that is used and for phase angles above
70°, the acceptance for the two modes of operation is very similar. An intrinsic
disadvantage of the s = 3 mode is that there are large losses for final velocities
below around 150 m/s. Lower velocities can still be produced, however, and
different schemes have been discussed and demonstrated for this.

A third important conclusion is that the acceptance of a Stark decelerator
operating in the s = 3 mode approaches the optimum value. This conclusion is
based on a comparison between the outcome of numerical trajectory calculations
and the 6D acceptance that is derived from a model. In this model, couplings
between the longitudinal and transverse motion are neglected.

To make use of the advantages that the s = 3 mode of operation offers,
a considerably longer Stark decelerator is needed than for the s = 1 mode.
This indeed requires more electrode pairs and a longer vacuum chamber, but it
should be realized that there is no additional requirement on the high voltage
electronics. Compared to the decelerators that have been commonly used so far
(s = 1, &~ 100 stages, ¢p = 50 — 60°) a five times longer version operating in
the s = 3 mode at somewhat lower phase angles will typically result in a factor
five higher number density at the exit. Moreover, this gain in number density
is accompanied by a reduction in the longitudinal translational temperature.

5.5 Appendix

In chapter 3 (pp. 38), we studied the transverse stability in a Stark decelerator.
Here we adapt the model for the transverse motion of molecules through a Stark
decelerator, with the goal to derive the 6D phase-space acceptance as a function
of the phase angle ¢y.

In the description of the motion of the OH radicals through the decelerator,
the z coordinate describes the position of the molecule along the molecular
beam axis, while  and y are the transverse coordinates. The forces in the z
and the y direction are assumed to be uncoupled from each other and identical.
The alternating focussing in either one of the transverse directions (say y) is
represented by an average transverse force Fy (¢,y) that depends on the phase ¢
of the molecule and on y-position, as described on pp. 38. We therefore define:

1 T

2T J,
1 (¢p+2sm)L/m

Fy(¢,y) F,(y(t), ('), t')dt’

Q

— F, 1
25l S/ y(yv Z)dZ, (5 )

where 27T is the time during which the synchronous molecule travels a distance
2sL.



5.5 Appendix 7

To a reasonable approximation, the transverse force F, is linear in the dis-
placement y from the molecular beam axis. The strength of the transverse force
can be expressed in terms of a frequency wy(¢)/2m, referred to hereafter as the
natural transverse oscillation frequency, using the relation:

Fy(0,y) = —mwy(9) v, (5.2)

where m is the mass of the OH radical. In Fig. 5.9, the natural transverse
oscillation frequency is shown for an OH (X *II3/5,J = 3/2, | M| = 3/2) radical
as a function of its phase ¢. For s = 1, the natural transverse oscillation
frequency has a strong dependence on the phase ¢. For molecules close to ¢ =
0°, the transverse frequency is very low and focussing forces are almost absent.
For s = 3, the natural transverse oscillation frequency is rather independent
from the phase ¢.

The transverse phase-space acceptance for a given mode of operation of the
decelerator is evaluated as schematically illustrated in Fig.5.10. The decel-
erator is operated at ¢9 = 30° and s = 1 in this example. Let’s consider a
molecule with a maximum deviation z; from the synchronous molecule. The
frequency wy(t) of this molecule can be constructed from its phase ¢(t) as it
revolves around the synchronous molecule in longitudinal phase-space. Let’s
now consider an ensemble of molecules that is enclosed by this contour, and by
a contour that is displaced by an infinitesimal value Az;. All these molecules
experience the same temporal dependence of the transverse focusing force, and
the transverse trajectories of the molecules are governed by the equation:

d2
d—g +w(t)y = 0. (5.3)

The transverse phase-space acceptance is easily calculated only if wi(t) is con-
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Figure 5.9: Natural transverse oscillation frequency wy /27 for an OH (XQH;;/Q,J =

3/2,|My| = 3/2) radical as a function of its phase ¢ in a Stark decelerator, for the oper-
ation modes s =1 and s = 3.
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Figure 5.10: Schematic representation of the method used to calculate the transverse phase-
space acceptance. (a) The trajectory of a molecule in longitudinal phase-space, shown as
a dashed line. (b) The time dependence of the natural transverse oscillation frequency is
constructed from the time dependence of the phase ¢(t), and the phase dependence of the
natural transverse oscillation frequency wy (¢)/2m. (c¢) The time-averaged transverse focusing
force results in elliptical orbits in transverse phase-space.

stant. In this case, in which w,(t) is written as w,, the longitudinal and trans-
verse motions are uncoupled, and in each transverse direction the molecules
orbit ellipses in transverse phase-space, as is shown in Fig.5.10. The phase
space acceptance (A, )., and (A;)., in each transverse direction is given by the
maximum extension ¥mar = Tmaez =1.5 mm from the molecular beam axis, and
by the maximum transverse velocity vy mar = Ve,maz = Wy X Ymaa that can be
captured. The 4D volume (A;)., of the transverse phase-space acceptance is
then given by

(At)z = (Az)z(Ay)z, = (ﬂ—wy(ymaw)2)2' (5.4)

It wz(t) is not constant, as is actually the case in a Stark decelerator, the
molecules experience a transverse frequency wy(t) that oscillates between the

minimum value w,™" and the maximum value w,***. The time-averaged value

of w? for this molecule is given by:

(w2), = ! /OT W2(t)dt, (5.5)

T

where 7 is the time it takes the molecule to revolve the contour in longitudinal
phase-space. The transverse phase-space acceptance cannot be calculated any-

min max
w,

more, but the values of W™, wy

, and <w5>2v can nevertheless be used to
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characterize the transverse phase-space acceptance of the ensemble of molecules
in three limiting cases. When the longitudinal oscillation frequency is much

larger than the transverse oscillation frequency, w, can be taken as <w5>21.
In that case, one obtains the 4D transverse acceptance for the molecules in this
shell in longitudinal phase-space. This 4D acceptance can be interpreted as the
best estimate for the true transverse acceptance. When w;*** is used, a trans-
verse acceptances results that can be interpreted as a strict upper limit for the
true acceptance.

The total 6D phase-space acceptance A(¢g) is obtained by integrating over

all shells with area dA, within the separatrix in longitudinal phase-space:

Alo) = / (Ay)-.(Aqy)-.dA.. (5.6)

In Fig. 5.11, the longitudinal (2D), transverse (2D) and total (6D) phase-
space acceptances are shown for the operation modes s = 1 and s = 3. The
transverse acceptance A, (¢o) is calculated from the total 6D acceptance A(¢o)
and the longitudinal acceptance A,(¢o) via Ay(po) = VA(po)/A.(¢o). For
each mode of operation three curves are shown; the lower, center, and upper

min

curve correspond to the choice of wy™™,

2 max . .
<wy>ziv and w,*** for w, in equation

(5.4), respectively. The longitudinal acceptance A.(¢o) is a factor v/3 smaller
for s = 3 than for s = 1. The transverse acceptance for s = 3 is somewhat
larger than for s = 1 and is almost independent of ¢y. Furthermore, the three
different curves predict a rather similar transverse acceptance for s = 3. The
three curves for the transverse acceptance for s = 1 differ much more among
each other. The center curves that are shown in Fig.5.11(c), and that have
been used in Fig.5.8 of section 5.3, predict a rather similar total 6D phase-
space acceptance for s = 1 and s = 3. For almost all phase angles, the lower
longitudinal phase-space acceptance for s = 3 is compensated for by the larger
transverse acceptance of s = 3.
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Figure 5.11: Prediction for the longitudinal (a), transverse (b) and total 6D (c) phase-space
acceptance of a Stark decelerator for the operation modes s = 1 (dashed curves) and s = 3
(solid curves) as a function of the phase angle ¢o. For the transverse and 6D acceptances,
three curves are shown for each mode of operation that predict the phase space acceptance
in three limiting cases, as explained in the text. The center curves describe the best estimate
for the acceptance in the limit that instabilities in the decelerator can be neglected, and have
been used in Fig. 5.8 of section 5.3.



Chapter 6

Crossed beam scattering with
Stark-decelerated molecules

As explained in detail in the previous chapters, polar molecules in specific quan-
tum states can be picked up from a supersonic expansion to be decelerated or
accelerated. Multi-stage Stark deceleration is often highly state selective and
therefore a natural application for such a beam is state-to-state inelastic scat-
tering at a precisely defined and also tunable collision energy. In the present
work, the Stark-deceleration machine is combined with a standard pulsed beam
source which provides a supersonic beam of rare gas atoms. In the following it
is analysed in detail what type of scattering cross sections can be determined
with such a setup and what is required to reliably extract the cross sections
from measurements.
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Figure 6.1: Scheme of the experimental setup used for the scattering experiments.

6.1 Introduction

The scattering experiment proceeds as sketched in Fig. 6.1: an incoming pulse
of state-selected OH molecules with mean velocity v, and number density
nq(r,t) is supplied by the decelerator and propagates freely towards a target
beam of rare gas atoms with mean velocity v; and density ny(r,t). Both par-
ticle sources are pulsed and therefore the number densities are functions of
position r and time ¢. The central axes of both beams cross at a right angle.
While passing through the target beam, some of the OH molecules are scattered
and their internal quantum state changes (inelastic scattering). To detect such
events, the scattered molecules are excited state sensitively by a pulsed laser
beam which propagates orthogonally to both molecular beam axes. The subse-
quently emitted fluorescence is imaged onto a photo multiplier tube by a lens
and hence provides a signal that is proportional to the number of molecules in
a specific state at a certain time and within a certain volume, provided suitable
conversion factors are taken into account. This signal is henceforth referred to
as the collision signal. With this experimental configuration one can in principle
determine the following quantities:
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1. the cross section ratios for different inelastic scattering channels for a fixed
collision energy, so-called relative cross sections

2. the energy dependence of the cross sections up to an energy independent
scaling factor, i.e. the shape of the so called excitation functions

3. the total absolute cross section for inelastic scattering for a given energy.

During the time interval in which the density functions n, and n; have spatial
overlap, collisions occur at a rate that is proportional to the cross section for the
considered inelastic transition. Hence, the total number of molecules that are
scattered into a specific state until a certain time is strictly proportional to the
corresponding cross section. While the incoming molecules have a well defined
mean velocity with a narrow distribution, the scattered molecules have, in gen-
eral, a broad velocity distribution. Since slow molecules tend to reside longer
within the detection volume as compared to fast ones there is the possibility
that the relative collision signals are not exactly proportional to the respective
cross sections. Hence, if cross sections pertaining to case (1) are to be accurately
measured, the detection probability for all states which are monitored also has
to be determined.

For case (2), we have the same requirement as for (1) but additionally, all
factors (apart from the cross section itself) which determine the collision product
creation as a function of the collision energy must also be known. The main
difficulty here lies in the precise determination of the spatial beam overlap as a
function of time.

For measurements of type (3), no knowledge about the detection probabil-
ities is required because it is merely the decrease of the initial population that
has to be determined. What is required, but difficult to measure, is the target
beam density.

Before these three cases are discussed in detail, we review the most essential
aspects of the classical two body collision problem and we derive some pertinent
formulae which relate the scattering cross section to experimentally accessible
quantities. The discussion given in the following sections is to some extent
specialized to the considered experimental setup, but it is with obvious mod-
ifications also applicable to cases where more conventional pulsed beams are
used.

6.2 Collision kinematics and classical dynamics

6.2.1 Conservation laws

The classical two-body problem is special insofar as for this case the conserva-
tion laws alone impose fairly severe constraints upon the possible post collision
velocities and thereby on the possible particle trajectories. The following de-
tailed analysis will show how this information can be used to design the crossed
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beam experiment in such a way that cross sections can be determined with the
least possible error.

Let two point particles a and b with masses m, ;) approach each other with
laboratory position r,) and velocity v ), as shown in Fig.6.2. We denote
the relative position by r and the relative velocity by g; the position of the
center of mass is R and its corresponding velocity V. For later reference the
used kinematic variables are collected in the following:

reduced mass:

Mgy
= — 6.1
Iz F— (6.1)
position:
R = Mata + MpTp (6.2)
Mg + My
r = r,—Tr (6.3)
r, = R+ T _Rry Ly (6.4)
Mg + My Mg
r, = R-—" p-R-Ly (6.5)
Mg + My mp
velocity:
V o~ R Mafatmuty (6.:6)
Mg + My
g = I =r,—Tp (6.7)
Ve = F,=R+ ig (6.8)
Mg
 n T H
vp = I, =R—-—¢g (6.9)
mp
u, = v,—R= Lg (6.10)
Mg
— > _ M
up, = Vb—R— ——g (6.11)
mp

If the particle velocities are given relative to the the center of mass velocity
V, as in (6.10) and (6.11), then the corresponding momenta mg,u, and mpyup
have equal magnitudes and point into opposite directions at any time by defi-
nition, i.e. regardless of whether or not the total momentum is conserved.

It remains to be seen in which cases the equations of motion for the center of
mass R and for the relative position r will be independent. Assume that particle
a experiences a force F;, due to particle b, which in turn experiences a force
Fy. due to the presence of particle a. In general, external (or inertial) forces
F¢ and F} can also be present, as e.g. the gravitational or the Coriolis force.
If the collisions happen in external electric or magnetic fields, as present in a
trap or a storage ring, quantum state specific external forces must be included
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Figure 6.2: Definition of coordinates and velocities.

as well. The equations of motion are:

) Fup + Fpo  F° L FS

R - b+ Foa + ¥ (6.12)
mg + mp me + my
F, Fp. FS Fy

ipo= —_ by “a b (6.13)

me my me my

If the interaction forces are equal in magnitude and point into opposite direc-

tions so that F,;, = —Fy,, the equations simplify to:
" FE FE
R = Fat Xy (6.14)
Mg + Mp
F. F¢ F?
o= by _ae b (6.15)
H Me my

If no external forces are present, the relative motion is influenced only by the
mutual force and the total momentum (m, + mp)V is conserved. The gravita-
tional force, if it is included, is proportional to the masses and (6.15) shows that
it disappears from the equation for the relative motion, but it does of course
lead to an acceleration of the center of mass. The equations we have to consider
are therefore:

R = a, (6.16)

. Fab

Po= 6.17
P (6.17)

where agy, is the gravitational acceleration. We see that the total momentum
given by (m, + my;)V changes linearly in time. On the time scales considered
here the gravitational force has no significant effect upon the particle trajecto-
ries.

All collisions conserve the energy. The total kinetic energy 7', as calculated
in the laboratory frame, can be related to the velocity of the center of mass and
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to the relative velocity using the above definitions:

T— WW +£07 = Ton(V) + Tralg): (6.18)
This formula implies no assumptions about the forces, it is merely a result of
the coordinate transformation; the kinetic energy splits into two parts which are
independent in our case because V' and g are independent. The interesting part
is the kinetic energy of the relative motion T}.; = pg?/2, the so called collision
energy. If before and after the collision this part remains the same, the collision
is said to be elastic, whereas otherwise it is said to be inelastic. If at least one
of the particles has internal degrees of freedom, internal energy can be taken
up from or released into the relative motion. Using energy conservation alone,
only the length of the relative velocity vector after the collision, denoted by ¢/,
can be inferred if the change of the internal energy AFE;,; is given:

! Trel + AEint

— 6.19
g =g T ; (6.19)

where AF;,,; is positive if energy is released into the relative motion and negative
in the opposite case. If the beams cross at a right angle (other angles are
discussed in chapter 9 in connection with the overall energy resolution), the
collision energy is a linear combination of the laboratory translational energies
T, and Ty of particle a and b given by:

o0t B2 _Hoey oy B Bop 6.20
rel 2g 2(va+vb) ma +mb b ( )

Another important quantity to consider is the total angular momentum. For
two point particles it is given by:

L = mg(rg X vy) +mp(ry X vi) (6.21)
= (meg+mpy)RXV+4purxg (6.22)
— Lem + Ly (6.23)

Again, this formula is valid for any type of force. The angular momentum
vector of the relative motion does not change with time, if the external forces
are proportional to the masses and if the particles interact via forces which are
not only equal in magnitude and point into opposite directions, but are also
directed along the relative position r; if this is the case, the relative angular
momentum is conserved:

OL = (ma+my)RxV+4purxg (6.24)
Rx (F.+F,)+rxFy (6.25)
= R x (mq+mp)ag,. (6.26)
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With gravity included, only the angular momentum of the center of mass motion
changes in time, while the relative motion is confined to the plane perpendicular
to L,e;. In crossed beam experiments the relative velocity is usually rather
well defined. Yet, the relative angular momentum of a particle pair is not
well defined. In fact, L, samples all directions and magnitudes because the
relative position is not controlled in the experiment. Therefore, even if the
forces conserve the relative angular momentum, g’ does not remain in the plane
spanned by the initial laboratory velocity vectors v, and vy, unless r happens
to lie in that same plane initially. Therefore, every interaction between the two
particles is bound to rotate the relative velocity vector out of its initial plane.

6.2.2 Newton diagram for elastic and inelastic collisions

The magnitude of the relative velocity after the collision is fixed through energy
conservation. Its orientation is determined through the scattering dynamics
which in turn depend on the initial conditions and the intermolecular potential.
The angle between g’ and g, the so called scattering angle, is denoted by 6. The
second angle which is needed to fix the orientation of g’ will be denoted by ¢.

If the forces conserve the relative angular momentum, the initial conditions
alone determine ¢ while the scattering angle 6 is determined by the equations of
motion and the initial conditions. As noted before, the initial relative position
is not controlled in a gas phase scattering experiment and therefore an ensemble
of particles scatters in such a way that ¢ is homogeneously distributed between
0 and 27 for every given 6. Even if the forces do not conserve the relative
angular momentum, this is true as well. The only difference is that the initial
conditions alone no longer determine ¢.

The relations discussed so far are conveniently visualized in the Newton
diagram. In Fig. 6.3 the relevant velocities and angles are indicated. The final
laboratory velocity vector v/, is determined if u/, is known. In the special case
where the inelastic collision consumes the total available collision energy, v/, ® =
V holds and the scattering dynamics are defined completely through energy
conservation alone. One speaks of forward, sidewards or backward scattering if
the values of the scattering angle € lie at around 0°,90° or 180° respectively.

6.3 The cross section

6.3.1 Definition of the cross section

The cross section can be defined in the following way (see e.g. [77]). We
imagine that a single scattering target is given and held fixed in space. Particles
approach this target with identical velocities v and pass through a plane of area
A perpendicular to v. The target is located far enough behind this plane so that
there is not yet any influence on the trajectories of the particles and the plane



88 Crossed beam scattering with decelerated molecules

f\ A
‘
gl Il/ 1_1L u‘rx
-
0 FV 0
v, \
1 1 1
' ' \% . A\Y
\A 3 ] u,
h 1
78 u;
\ vb
v R —

Figure 6.3: The Newton diagram for the scattering of two point particles; the scattering
angle is denoted by 6, whereas the laboratory scattering angle of particle a is denoted by x.

is intersected by the particles at totally random positions. The cross section
then relates the number of particles that are scattered by the target Ny, to the
number of incoming particles N;,. having passed through area A:
Ninc

Neye =0 T (6.27)
The collision probability Ns./N;,. is therefore given by the ratio o/A. What
defines a scattering event? Clearly, the event must be countable in some way
and this is certainly the case if the collision changes the internal state of the
incoming particle. Another possibility is to count particles which are scattered
into a specific direction. The magnitude of the cross section is a function of the
internal state of the particles and of the collision energy; it may also depend on
the presence of external fields.

As such, the given definition of the cross section is still somewhat remote
from any measurable quantity. More useful relations are therefore given in the
following. Let incoming molecules of type (a) form a beam with constant flux
Ju, that is let IV, molecules pass through a plane with area A in time At. If a
number N, of fixed targets is present within this beam, the number of scattered
molecules per unit time is:

NSC _ Nll _
A UAAth =o0J,Np (6.28)
or equivalently
Ngee 1 1
i 2
At T, N, O (6:29)

which shows that the cross section can be inferred if the number of scattering
events per time interval, the number of targets and the incoming flux is known.
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Instead of counting all scattered particles, we may also count only those that
are scattered into a specific direction n. Let the cross section for scattering into a
solid angle df? in the direction n be denoted by G(n)dS2 or by G (0, ¢) sin(8)d¢do
if spherical coordinates are used. The particles scattered into a solid angle df)
at n in a given time interval form a flux Js.(n) in the direction n. The angle
resolved cross section G(6, ¢), the so called differential cross section (DCS), is
therefore related to the outgoing (Js.) and incoming flux (J,) by:

Nee(n) 1 1 Je(n) 1T
AL dO J_aﬁb = J—aﬁb =: (n) (630)

The incoming flux J, refers to a plane area with dimension length squared
whereas the outgoing flux Ji. refers to a curved area given in units of sterad (47
times the fraction of area on the unit sphere). Since the DCS does not depend
on ¢ the cross section for scattering with deflection angle # and arbitrary ¢ is
27 sin(0)G(6)d6.

Usually the target molecules are dispersed homogeneously within a scat-
tering volume V. The scattering events per time and volume are then given
by

. NSC _ Na _
TNge 1= AV = oA = oJanp, (6.31)

with the number density n, = N,/V within the scattering volume. If the
considered incoming molecules of a-type approach with speed v, along parallel
lines, the flux is J, = n,v, with number density n, in the beam. Therefore the
scattering rate per scattering volume is:

Nge = A:‘C/ = 0V Nq M- (6.32)
Generalized to inhomogeneous and time dependent number densities the scat-
tering rate per volume is a function of position r and time ¢:

Nse(r,t) = ovang(r, t)np(r, ). (6.33)

For pulsed beams the total number of scattered molecules as a function of time
is therefore determined by an integration over the beam intersection volume
and the relevant time interval.

Until now, the target molecules were considered at rest in space. For two
crossed beams with laboratory velocities v, and vy the speed v, in the previous
formulae has to be replaced with the relative speed g = |g| = |[vy — Vb :

Nge(r, t) = ogng(r, t)ny(r, t). (6.34)

This replacement is allowed if we think of the plane that is intersected by the
a-type molecules as perpendicular to g rather than v,.

The direct determination of absolute state-to-state inelastic cross sections
is possible only, if the absolute number of molecules that are scattered into a
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specific state within a certain time interval and volume can be measured, and
if furthermore the density (distribution) of both beams is known. Usually this
kind of information is too difficult to obtain and cross sections are determined
up to a scaling factor. If the (absolute) total inelastic cross section is of interest,
one may proceed as described in section 6.3.3 — in this case only the target beam
density must known.

6.3.2 The scattering probability of a molecule

What is the probability that a given molecule with specified initial position
and velocity collides at a certain time while passing through a beam of tar-
get molecules? Due to the homogeneous but random distribution of the target
molecules there exists a time independent chance to collide within a time in-
terval dt. This quantity, which we shall denote by k, is the collision rate: the
probability density to scatter in a time interval dt. Starting with N, molecules
at some initial position in the target beam the change of NN, is:

AN, (t)
Na(t)

= —kdt, (6.35)

where N, () denotes the number of molecules that have not yet collided with a
target. To identify the relation between k and the cross section, we write the
previous equation in the form:

Nsc dNa
= — =kN,. 6.36
At dt ( )
The number of scattering events Ny, is given by (6.28):
Nsc _ NaNb
Ar = A (6.37)

where we think of N, stationary molecules being approached by a flux N, /AtA =
gnyp of b-molecules moving with velocity —g:

Nsc
T = Ug’flea. (638)

The relation between the collision rate and the cross section is found by com-
paring this equation with (6.36):
k = ognp. (6.39)

We may now proceed to calculate the scattering probability for a single a-
molecule moving with speed g through stationary b-molecules. Denote the
probability for scattering at time ¢ within a time interval dt by p(t)dt, then

dN,(t)
CNL(0)

p(t)dt = (6.40)
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Using the time evolution
N (t) = N,(0)e™*, (6.41)

the collision probability is therefore
p(t)dt = ke Mdt = ognye 79 dt. (6.42)

If the decline of the initial population is small, that is if the exponential remains
close to unity within the time considered, the scattering experiment proceeds
under quasi single collision conditions and for the scattering probability we have
p(t)dt ~ ognpdt. Since all molecules move with the same speed ¢, we can rewrite
the probability in terms of the position [ by noting that dt = 1/g dl where dl
is the distance traveled in time dt in the direction of g:

p(l)dl = Ke=tifagy — onye ™l (6.43)
g

or we may instead refer to the distance traveled in the direction of v, so that
dt = dz/vg,:

p(z)dz = oL~/ Ve (6.44)

Vq

Hence, the probability to collide within dz is proportional to g/v,. In gen-
eral, the target density is position and time dependent. Under single collision
conditions, the probability to scatter in a time interval dt is then given by
ogny(r,t)dt.

6.3.3 Determination of the absolute total inelastic cross section

The total inelastic cross section o; is the sum over the cross sections for all
inelastic scattering channels which are relevant at the considered collision en-
ergy. It would be useful if this quantity can be measured, because if o; and
also the relative inelastic cross sections are known, we can calculate all absolute
inelastic cross sections. In order to determine oy, a well characterized target
beam is needed, i.e. ny(r,t) has to be known. If such a beam can be obtained,
one only needs to determine the fraction of molecules which are scattered out of
the initial state. The measurement principle is analogous to experiments where
a beam is scattered by molecules in a gas-cell.

To accurately determine the depletion of the initial population, a