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Zusammenfassung

Die in den letzten Jahren stetig weiterentwickelte Methode der mehrstufigen
Stark-Abbremsung von Molekularstrahlen wurde benutzt, um OH-Radikale in
wohldefinierten Quantenzuständen zu präparieren. Bei dieser Methode wird
ein gepulster Molekularstrahl mit Hilfe von inhomogenen und zeitabhängigen
elektrischen Feldern stufenweise gefiltert, fokussiert und gleichzeitig abgebremst
oder beschleunigt. Ein Stark-Abbremser für polare – aber elektrisch neutrale –
Moleküle funktioniert in vielerlei Hinsicht wie ein Linearbeschleuniger für ge-
ladene Teilchen. Stark-Abbremser wurden bisher hauptsächlich verwendet, um
Moleküle zum Stillstand zu bringen und in einer Molekülfalle zu speichern.

Der wesentliche Vorzug der Methode liegt darin, daß die mittlere Endge-
schwindigkeit der gefilterten Moleküle in einem gewissen Bereich willkürlich
festgelegt werden kann und daß man gleichzeitig auch die Geschwindigkeitsver-
teilung kontrolliert. Wie in der vorliegenden Arbeit gezeigt wird, sind die auf
diesem Wege präparierten Moleküle hervorragend geeignet, um damit Streuex-
perimente bei variabler Stoßenergie durchzuführen. Insbesondere kann man die
inelastische Streuung vom gegebenen anfänglichen Quantenzustand in andere
Zustände als Funktion der Stoßenergie untersuchen.

Mit diesem Ziel vor Augen wurde zunächst eine neue Stark-Abbremser Appa-
ratur aufgebaut, welche für Streuexperimente mit gekreuzten Molekularstrahlen
optimiert ist. Nach deren Fertigstellung konnte durch ausführliche Charak-
terisierung des Instruments gezeigt werden, daß die neue Apparatur in der
Tat den bisher verwendeten deutlich überlegen ist (siehe Kapitel 5). Im An-
schluss an diesen erfolgreichen Test wurde der Stark-Abbremser mit einer (kon-
ventionellen) Molekularstrahlquelle gekoppelt. Mit Hilfe dieser Quelle wur-
den Atomstrahlen aus der Reihe der Edelgase (He bis Xe) erzeugt, welche als
Streumedium für die präparierten OH-Radikale dienten. Nun konnten rela-
tive, integrale Streuquerschnitte für die Rotationsanregung des OH-Radikals
mit voller Zustandsauflösung, sowohl vor als auch nach dem Stoß, bestimmt
werden (siehe Kapitel 7 und 8). Aufgrund der hohen Stoßenergieauflösung war
es außerdem möglich, die Energieabhängigkeit der relativen Streuquerschnitte
mit bisher unerreichter Genauigkeit zu messen (siehe Seite 118 und 133-134).

Zum einen konnte somit gezeigt werden, daß die Methode der Stark-Ab-
bremsung auch bei Streuexperimenten sehr gute Ergebnisse liefern kann und
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ii Zusammenfassung

somit den bisher üblichen Methoden der Zustandsselektion vorzuziehen ist. Zum
anderen ergaben die gemessenen Daten neue Erkenntnisse über das Streuver-
halten bei den unterschiedlichen Stoßpartnern He, Ne, Ar, Kr und Xe. Durch
Vergleich mit ab-initio Streurechnungen konnte außerdem untersucht werden,
inwiefern die bisher publizierten Wechselwirkungspotentiale für die verschiede-
nen Stoßpartner die Daten korrekt reproduzieren können, wenn man sie bei
Streurechnungen verwendet. Dabei ergaben sich nützliche Aufschlüsse über die
Qualität der Potentiale und der Streurechnungen selbst. Die Rechnungen zeigen
allerdings auch, daß immer noch Verbesserungsbedarf von experimenteller Seite
besteht, denn nicht alle Strukturen in der Energieabhängigkeit der Streuquer-
schnitte kann man bisher auflösen. Um dies in Zukunft zu erreichen, wurde
eine Modifikation des Experiments vorgeschlagen, welche die Energieauflösung
erheblich verbessert (siehe Kapitel 9).
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Chapter 1

Introduction

Most natural processes that are of interest to us do not happen in an isolated en-
vironment, they usually occur in some condensed phase. But in this state, many
of the intrinsic (quantum) properties of molecules and atoms do not manifest
themselves very clearly. Only in the gas phase and under certain particularly
artificial conditions does it become possible to study in detail how atoms and
molecules interact and what their intrinsic properties are. It is one of the ul-
timate goals of the experimentalists to set up experiments that yield clear and
unambiguous information about atoms and molecules with as few additional
assumptions as possible and with a minimum of practical and theoretical com-
plexity. In the best case, an experiment does not only yield new information
which can be used by others, but is also a beautiful demonstration itself.

Atomic and molecular beams provide a first step towards obtaining such
clean and well controlled conditions in particular if additional state-preparation
procedures follow before the intended experiment takes place. With the help of
external fields – be they electric or magnetic – atoms and molecules in specific
quantum states can be prepared. The groundbreaking experiments on the mag-
netic moment of silver atoms by Otto Stern and Walther Gerlach1 conducted in
Frankfurt in 1922 were the first demonstration of this kind. In their experiment,
the external field modifies only the transverse velocity components of the atoms
or molecules while the velocity component in the beam propagation direction
remains unchanged.

However, it is useful to gain better control over the forward velocity as well.
In fact, in the past years it has become a kind of competition among several
groups of researchers to devise ever more original methods which allow atoms
and molecules that originate from supersonic gas expansions to be slowed down
to laboratory frame velocities around zero. These relatively new deceleration
methods have been the subject of several review articles e.g. [3, 4].

1For interesting and amusing facts about the protagonists see [1] and [2].
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6 Introduction

In this thesis, the so called multistage Stark-deceleration method is used,
which is probably the most tried and tested of the currently available ones
for the slowing of a molecular beam. This technique exploits the interaction
of a polar molecule with a strong and inhomogeneous electric field. The used
field is periodic and time dependent and the method is in effect analogous to
the acceleration of charged particles in linear accelerators. In 1999, the first
demonstration of a decelerator for polar molecules was described in a paper
by Bethlem, Berden and Meijer [5]. While their principle design prevails until
today, many technical problems have meanwhile been located and eliminated.
In particular, the used electric fields became stronger. While some researchers
increased the size of the apparatus [6], others tried to miniaturise their machines
[7, 8]. The development continues and a very promising route towards higher
efficiencies has been demonstrated recently [9].

A Stark decelerated beam is obtained as follows. One first creates a molec-
ular beam by expanding a gas from a reservoir at a high pressure (typically
1-5 bar) into the vacuum through a nozzle using a pulsed valve [10]. During
the expansion, the energy of the random thermal motion and also that of the
internal degrees of freedom of the particles is converted into kinetic energy of
motion in the beam propagation direction through the approximately isentropic
expansion. Even if the molecule of interest is in the gaseous state, it is usu-
ally added in small concentrations to a carrier gas which is typically one of
the rare gases. A few centimeters behind the expansion nozzle, a skimmer is
located which extracts the central part of the beam and which separates the
beam-source vacuum chamber from the experimental chamber. Right behind
the skimmer, many deceleration stages (sometimes hundreds of them) are lo-
cated which become electrically charged or grounded in a specifically tailored
sequence so as to allow a deceleration or acceleration to a specified velocity.

In the first years after their introduction, Stark decelerators were mainly
used to slow down molecules and to subsequently load them into a trap [6, 11,
12, 13, 14, 15, 16, 17]. In 2006, Gilijamse and coworkers [18] showed that state-
to-state inelastic scattering experiments are also feasible with Stark-decelerated
pulses of molecules. However, the machine that was used in the experiment
was not well suited for beam scattering studies and a better instrument was
designed and built. The first scattering experiments conducted with this new
machine are described in the present thesis.

The field of molecular beam scattering has a long history with the first ex-
periments appearing approximately 10 years after the Stern-Gerlach experiment
[19]. After Stern had moved to Hamburg in 1923, he continued to cultivate the
method of molecular beams further [20, 21]. It is not surprising that one of
the first molecular beam scattering studies was carried out in his laboratory, by
Friedrich Knauer [22]. Knauer was able to measure differential cross sections
for the scattering of He, O2, H2 and H2O beams from their respective vapors
and also for the scattering of He and H2 from Hg vapor. Similar experiments
were carried out by L.F. Broadway [23] who reported on the scattering of Na
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and K atoms from Hg vapor effusing from an oven, in 1933. This appears to
be the first crossed beam experiment with neutral particles ever conducted. In
the same year R.M. Zabel studied the scattering of He and H2 and was able
to determine differential cross sections for the scattering with He, H2 and Hg.
Further experiments, using alkali atoms, were reported in the following years
[24, 25, 26] – until the beginning of the Second World War. One of the main
objectives of these early scattering experiments was to detect diffraction phe-
nomena which were expected on the basis of wave mechanics. However, clear
indications of diffraction were not seen, because the available beams had too
broad a velocity distribution. Later experiments which made use of velocity
selectors could clearly show typical quantum effects; rather noteworthy in that
respect is the work by Feltgen et al. [27] on the glory oscillations in the integral
scattering cross sections for the systems 3He− 3He, 3He− 4He and 4He− 4He.

The technological developments in the past decades have led to more and
more refined investigations of the scattering properties of atoms and molecules.
Experiments with state-selection before the collision and full state-resolution
after the collision have become possible. In particular, ion-imaging techniques
together with state-selective ionization enable us to determine, in one stroke,
the post-collision quantum state together with the velocity vector of the ionized
molecule or atom [28, 29]. Using this so-called Velocity Map Imaging technique,
it has become possible to efficiently measure quantum state resolved differential
cross sections; even the preferred sense of rotation of a molecule after a collision
can be determined if suitably polarized laser radiation is used [30].

While it is indeed of interest to control the exact initial and to determine
the final state distributions, it is also important to have control over the relative
velocity of the colliding particles. An established method to tune the relative
velocity, and hence the collision energy, is to change the crossing angle between
the two beams [31], but this technique is difficult to combine with a state-
selector. By using a Stark decelerator, it is now becoming possible to achieve
the ultimate resolution as far as the state-preparation before the collision is
concerned: we can tune the initial mean velocity continuously and control the
velocity distribution, select the initial internal quantum state (often including
the hyperfine level, see p. 22) and fix the initial angular momentum projection
quantum number M , since the decelerated molecules are oriented. If a suitable
guiding field is used to retain the orientation of the molecules up to the collision
zone, it becomes possible to study the effect of orientation on the collision
process.

In the following four chapters, the basic principles of operation and the
construction of the machine are described. In the subsequent chapters, the
instrument is characterized and several scattering experiments are presented.
In these experiments, the rotationally inelastic scattering of OH radicals with
rare gas atoms is studied and state-to-state cross sections are determined as
a function of the collisions energy. That the collision energy can be precisely
adjusted is one of the main benefits of this technique and has led to a very
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detailed mapping of the energy dependence of the cross sections (see p. 118, 133
and 134). The scattering of OH with argon atoms is studied in chapter 7, the
scattering with all other rare gas atoms and D2 molecules is described in chapter
8. In the final chapter 9, it is analysed how the collision energy resolution can
be improved further by using a suitable beam crossing angle that differs from
the hitherto used 90◦.



Chapter 2

The OH radical

The interactions between electrons and protons are well known and consequently
one can formulate a Schrödinger equation for any molecule which then in princi-
ple describes the system with the desired degree of accuracy. However, even for
a small molecule like OH with only two nuclei and 9 electrons the determination
of the wavefunctions and energies is already quite a complicated task. In order
to solve the problem and also in order to gain physical insight, several approx-
imations need to be introduced which break down the problem into tractable
pieces. One usually begins with the separation of the electronic motion from
the motion of the nuclei and then separates the vibration, rotation and spin
degrees of freedom. A systematic treatment of this procedure can be found for
example in [32]. In the following, only the most relevant aspects are described.
Since our main interest concerns the Stark effect, particular emphasis is put on
the rotational properties of the electronic ground state.

9



10 The OH radical

2.1 The rigid rotor and its Stark effect

The rotation of a molecule as a whole is correctly described, in the first approx-
imation at least, by the quantum mechanical version of the classical rigid body.
The model is based on the classical Hamiltonian:

H =
J2
a

2Ia
+
J2
b

2Ib
+
J2
c

2Ic
(2.1)

with the three principle moments of inertia Ia, Ib, Ic and the scalar products
Ja := J · a etc. between the angular momentum vector J and the three orthog-
onal (body fixed) unit vectors a,b, c which point along the principle axes of
inertia of the body. In the quantum mechanical description, one may think of
these axes as defined relative to the position of the molecule’s nuclei. Strictly
speaking, this model is incompatible with the fundamental principles of quan-
tum mechanics. It is to be regarded as the limiting case in which the positions
of the nuclei are fixed relative to each other by a strong interaction potential
which is, in the spirit of the Born-Oppenheimer approximation, created by the
surrounding electrons. The energy eigenfunctions belonging to the above Hamil-
tonian determine the relative probabilities for specific orientations of the body
in space.

2.1.1 The energy spectrum

If the rigid rotor has an axis of symmetry, the possible energies follow from
the transformation properties of the involved vectors a,b, c. In the quantum
mechanical description, the a,b, c become vector operators with respect to the
angular momentum J which is itself a vector operator.

By definition, the components of a vector operator have to transform like
those of an ordinary geometrical vector under rotations (see e.g. [33]). An active
rotation of the considered object about a space fixed axis e by the angle φ is
implemented by a unitary transformation which we write as Re(φ) := e−iφ e·J

which acts on the respective state vector (we set � = 1). The transformation
which rotates the operator around the same axis and with the same angle is
then a′ = RaR†, the infinitesimal version of which is

a′ ≈ a− iδφ[e · J, a]. (2.2)

For a to be vector operator we require that

δa = a′ − a ≈ −iδφ[e · J, a] = −δφ e× a (2.3)

and therefore:

[e · J, a] = −i e× a. (2.4)
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For any two space fixed unit vectors e1 and e2 this becomes

[e1 · J, e2 · a] = i (e1 × e2) · a. (2.5)

Since J is itself a vector operator the commutation rules for the components of
J with respect to different axes are:

[e1 · J, e2 · J] = i (e1 × e2) · J. (2.6)

Does this relationship remain true if e1 and e2 are replaced by vector operators?
Not quite. One may show that (2.4) remains true when e is replaced by a vector
operator:

[a · J,b] = −i a× b (2.7)

provided a and b commute. Since J commutes with the scalar a · J we have:

[a · J,b · J] = −i (a× b) · J (2.8)

so that compared to (2.6) the sign of i is now inverted. The three orthogonal
vectors used in the description of the rigid rotor therefore have to satisfy these
same relationships, which means that the projections of J onto the body fixed
axes satisfy:

[a · J,b · J] = −i c · J. (2.9)

If we choose space fixed unit vectors e1, e2, e3 along a given x, y, z axis system,
the commutation relationships become:

[Jx, Jy] = +iJz (2.10)

[Ja, Jb] = −iJc (2.11)

which is not surprising if one recalls that successive rotations about body fixed
axes are equivalent to rotations about space fixed axes carried out in reverse
order, provided the space and body fixed axes coincide initially. Since scalar
products like J ·a are invariant under rotations, the components Jx, Jy, Jz com-
mute with the Ja, Jb, Jc and therefore common eigenfunctions of J ·J, Jz and Jc
can be found. The eigenvalue spectrum of Jc is the same as that of Jz because
the commutation relationships differ only by a sign. We denote the eigenvectors
by |JMK〉, so that J2 |JMK〉 = J(J + 1) |JMK〉, Jz |JMK〉 = M |JMK〉 and
Jc |JMK〉 = K |JMK〉.

If the rigid rotor has an axis of symmetry along the c-axis, the Hamiltonian
becomes:

H =
J · J− J2

c

2Ia
+
J2
c

2Ic
(2.12)
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which is diagonal in the |JMK〉 basis and the energy eigenvalues are:

H =
J(J + 1)−K2

2Ia
+
K2

2Ic
, (2.13)

where K = −J,−J + 1, . . . , J so that states with opposite K have the same
energy. Moreover, all 2J + 1 M -states have the same energy. The overall
degeneracy for the energy levels is therefore 2(2J + 1) if K �= 0 and 2J + 1 if
K = 0. States of opposite K have the same energy because the Hamiltonian
is invariant under space inversion while Jc changes sign under inversion1. In
contrast, Jz does not change sign under inversion and therefore only states with
K = 0 have definite parity.

2.1.2 The rigid rotor wavefunctions

A wavefunction for the state |JMK〉 must yield the amplitude for a specific ori-
entation of the body fixed system a,b, c with respect to the space fixed system.
The orientation is usually specified by the three Euler angles (φ, θ, χ), which
define three successive rotations that carry a copy of the space fixed x, y, z-axis
system into the body fixed a,b, c system; we denote any rotation by ω and we
write ωω′ for two successive rotations with ω′ applied first. Following common
convention, we rotate first by φ about z, then by θ about the new axis y′ and
finally by χ around z′′ so that θ and φ determine the orientation of the body
fixed c-axis. The wavefunction of the symmetric rigid body is completely de-
termined by the known transformation laws for angular momentum eigenstates.
Under any rotation ω such a state must change as

R(ω) |jm〉 =
∑
m′

D
(j)
m′m(ω) |jm′〉 (2.14)

=
∑
m′

e−im
′φd

(j)
m′m(θ)e−imχ |jm′〉 , (2.15)

where D
(j)
m′m(ω) is the unitary Wigner rotation matrix and d

(j)
m′m is the re-

duced rotation matrix. The wavefunctions must form basis functions for an
irreducible representation of the rotation group, which is given by the matrices
D(j)(ω). The wavefunction argument is itself a rotation, namely the rotation
specified by the Euler angles and the wavefunction labels are the time inde-
pendent quantum numbers, in this case J,M and K. Hence we denote the
wavefunction by ΨJMK(ω). To rotate such a function, rotations (i.e. group
elements) must be combined in the function’s argument. An active rotation
ω of the function with respect to the space-fixed frame is carried out via

1While J remains unchanged under inversion, an operator like c changes sign under inver-
sion and therefore J · c changes sign.
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R(ω)ΨJMK(ω′) = ΨJMK(ω−1ω′). As pointed out in [34]2, the group prop-
erty of the rotation matrices requires that

D
(j)
mm′(ω

−1ω′) =
∑
m′′

D
(j)
mm′′(ω

−1)D
(j)
m′′m′(ω

′). (2.16)

But the group representation is unitary and therefore

D
(j)
mm′(ω

−1ω′) =
∑
m′′

D
(j)∗
m′′m(ω)D

(j)
m′′m′(ω

′) (2.17)

D
(j)∗
mm′(ω

−1ω′) =
∑
m′′

D
(j)
m′′m(ω)D

(j)∗
m′′m′(ω

′). (2.18)

Hence it is the function ΨJMK(ω′) = D
(J)∗
MK (ω′) which transforms as required

by (2.14). The second index K does not change under the rotation, it specifies
the “spin” of the rotor. The reason for this is the following. After an arbitrary
rotation of the system, a state of definite m becomes a superposition of various
m states with respect to the space-fixed frame. However, in a reference frame
which undergoes the same rotation, the eigenvalue of the Jz operator with
respect to the rotated frame will still be m. This rotated operator is actually
Jc and therefore it is appropriate to write

D
(j)
mm′(ω) = 〈jm|R|jm′〉 = 〈jm|j k := m′〉 = D

(j)
mk(ω) (2.19)

which means that the probability amplitude to find the state R |jk〉 in an eigen-

state of Jz in the space-fixed frame is proportional to D
(j)
mk(ω). The properly

normalized wavefunction is then

ΨJMK(φ, θ, χ) =

(
2J + 1

8π2

) 1
2

D
(J)∗
MK (φ, θ, χ) (2.20)

provided the integration
∫

Ψdφ sin θdθdχ is carried out in the range 0 ≤ φ ≤ 2π,
0 ≤ θ ≤ π, 0 ≤ χ ≤ 2π. Wavefunctions which differ in J,M orK are orthogonal.
The proper derivation of integrals over rotation matrices is actually a somewhat
subtle matter [35]. Care must be taken if integrals over products of rotation
matrices are calculated in which integer and half integer values of J occur at
the same time – an integration over either φ or χ between 0 . . . 4π must then
be used instead of 0 . . . 2π and the normalization factor for the wavefunction is
then

√
(2J + 1)/16π2 (see e.g. [33, 36]).

In the case that the rotor is asymmetric, K is not conserved and therefore
no suitable label for the wavefunction. Nevertheless, the wavefunction can be

2This derivation, given by Biedenharn and Louck [34], clarifies the origin of the seemingly
bizarre convention to use complex conjugate matrix elements for the rigid rotor wavefunction.
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expressed by a superposition of states with definite K. This follows from:

ΨJM (ωω′) = R(ω−1)ΨJM (ω′) (2.21)

=
∑
M ′

D
(J)
M ′M (ω−1)ΨJM ′(ω′) (2.22)

=
∑
M ′

D
(J)∗
MM ′(ω)ΨJM ′(ω′). (2.23)

If we now consider ω′ as a fixed reference orientation we get

ΨJM (ω) =
∑
K

D
(J)∗
MK (ω)AJK (2.24)

with the expansion coefficients AJK which remain to be determined.

2.1.3 The Stark effect

The interaction energy between a body fixed dipole moment d := μc directed
along the c-axis and an externally applied electric field E is given by the Stark
interaction energy HS := −d · E. We let the external field be directed along
the space fixed z-axis, so that

HS := −d ·E = −μE c · ez = −μE cz. (2.25)

To determine the new spectrum, the matrix elements of HS are needed, which
amounts to finding 〈J ′M ′K ′|cz|JMK〉, where in the Euler angle parametriza-
tion cz = cos θ. HS does not connect states with different M or K because
HS is invariant under rotations about the z and c-axis: [Jz , cz] = 0 by (2.5)
and [Jc, cz] = 0 by (2.7). In spherical tensor language, one says that cz trans-
forms as the m = 0 component of a spherical tensor operator T of rank 1, i.e.

T
(1)
0 = cz =: c0. As such it may however connect states with ΔJ = 0, ±1 as

will be seen below.

To obtain the matrix elements, it is useful to realize that cz is an element
of a rotation matrix that belongs to J = 1 angular momentum states: cos θ =

D
(1)
00 (ω). This follows from the transformation properties of cz: the m = 0

component of any vector operator transforms as

Rc0R† =
∑

m=0,±1
D

(1)
m0(ω)cm (2.26)

under a rotation. But, the z-component of any vector operator is multiplied by
cos θ when the rotated z-component is written as a superposition:

Rc0R† = D
(1)
−10(ω) c−1 + cos (θ) c0 +D

(1)
+10(ω) c+1. (2.27)
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The sought matrix elements are therefore

〈J ′M ′K ′|cz|JMK〉 =√
2J ′ + 1

√
2J + 1

8π2

∫
dωD

(J′)
M ′K′(ω)D

(1)
00 (ω)D

(J)∗
MK (ω). (2.28)

The Clebsch-Gordon series formula applied to the present case

D
(J′)
M ′K′D

(1)
00 =

∑
J′′

D
(J′′)
M ′K′

(
J ′ 1 J ′′

K ′ 0 K ′

)(
J ′ 1 J ′′

M ′ 0 M ′

)
. (2.29)

is useful now to evaluate this integral. The used symbol(
j1 j2 j3
m1 m2 m3

)
(2.30)

is the usual Clebsch-Gordon (CG) coefficient (not a 3j-symbol). Inserting this
into (2.28) one obtains:

〈J ′M ′K ′|cz|JMK〉 =

√
2J ′ + 1√
2J + 1

(
J ′ 1 J
K ′ 0 K

)(
J ′ 1 J
M ′ 0 M

)
(2.31)

which confirms the selection rules for ΔJ , ΔM and ΔK. The non-zero CG-
coefficients are:

(
J + 1 1 J
M 0 M

)
= −

[
(J +M)(J −M)

J(2J + 1)

] 1
2

(2.32)(
J 1 J
M 0 M

)
=

M

[J(J + 1)]
1
2

(2.33)

(
J − 1 1 J
M 0 M

)
=

[
(J + 1 +M)(J + 1−M)

(J + 1)(2J + 1)

] 1
2

(2.34)

as given e.g. in [36]. For J ′ = J we obtain the famous formula:

〈JMK|HS |JMK〉 = −μE MK

J(J + 1)
, (2.35)

which at the same time yields directly the first order energy change of the
respective levels with given M and K. As mentioned above, for K = 0, the
states have definite parity and therefore no first order Stark effect since cz
changes sign under inversion. We also learn that to have an average orientation
in space (i.e. non-zero expectation value for cz), a non-zero spin around the
symmetry axis is required.
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2.2 Energy levels of OH

In a diatomic molecule, rotations about the internuclear axis are meaningless
as long as only the nuclei and not the electrons are considered. The rotational
energies of a rigid OH molecule are therefore obtained in the limit Ic → 0 so that
the energy remains finite only for K = 0. Despite of this, a diatomic molecule
may still have a nonzero projection of J onto c, if the total orbital L and spin
S angular momentum of the electrons is included in J. The operator which
generates rotations of the two nuclei is now R := J− L− S and its projection
onto c is zero by definition.

The electrons are moving in an axially symmetric field and therefore the
projection of L onto the internuclear axis c can be considered as conserved, as
long as non-axial interactions and the rotation of the reference frame can be
neglected. The absolute value of this projection is denoted by Λ and hence a
state of definite Λ must transform as e±iΛχ under a rotation about the inter-
nuclear axis by an angle χ, i.e. for every Λ > 0 there are two degenerate states
with projections of L given by ±Λ. If the total spin is zero, the transformation
properties of the wavefunction are the same as for the symmetric rigid rotor
and therefore, for a fixed electronic state, one may set K = ±Λ.

The case of non-zero total spin adds another complication. It now depends
on the strength of the spin-orbit interaction, whether it is useful to consider the
spin as “locked” to the internuclear axis. If it is, one denotes definite projections
of S on the internuclear axis c by Σ and defines another (approximately) con-
served quantum number by Ω := Λ + Σ. Eigenstates with definite Ω transform
as e±iΩχ under a rotation about the internuclear axis and hence we can still
use the rigid rotor wavefunction where now K = ±Ω. States with definite Ω
are still doubly degenerate (apart from the degeneracy in M). This scheme is
usually referred to as “Hund’s case (a)”, while in case (b), the spin is not con-
sidered as locked to the internuclear axis. As the rotational quantum number J
increases, the electron spin projection no longer follows the nuclear framework
adiabatically and hence as J increases, Hund’s case (b) must become the more
useful description. By definition, a so called case (a) set of basis functions is
constructed of products of basis functions with definite values of Λ, total spin
S, Σ, J , Ω and laboratory projection M of J [37].

The characteristic angular momentum quantum numbers for the electronic
ground state can be obtained from the electron configuration of the (almost)
united atoms, which is (1sσ)2(2sσ)2(2pσ)2(2pπ)3. This configuration gives rise
to only a single molecular state with Λ = 1 and S = 1/2 (see e.g.[38]) so that the
appropriate term symbol is 2Π. The possible Ω values are Ω = 1±1/2 and these
are appended as a subscript to the term symbol which means that there are two
electronic states: 2Π3/2 and 2Π1/2. These states are not degenerate because
of the spin-orbit interaction that gives rise to the so called fine-structure. This
interaction can be approximated by HSO = AL·S ≈ ALcSc where A is the spin-
orbit coupling constant, which can be negative or positive (see e.g. [39]). For
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OH, the spin-orbit coupling constant is negative and hence states with Ω = 3/2
are lower in energy than those with Ω = 1/2. The rotational levels with definite
Ω are labeled J = Ω,Ω + 1,Ω + 2, · · · .

Each of these levels is doubly degenerate (disregarding the degeneracy in M)
as long as the rotation of the reference frame is ignored. In reality, there occurs
a splitting of every rotational level which is called Λ-type doubling and which
increases with the rotational quantum number. The lowest rotational state of
OH with J = 3/2 is split into two components that are separated by 0.055 cm−1.
These components must have definite parity and therefore it is necessary to
construct basis functions of definite parity from the case (a) basis functions to
obtain the correct zero order basis functions. Details about the behaviour of
Hund’s case (a) states under inversion can be found in [37, 40, 41]. Here, only the
rotational part of the wavefunction is needed and the basis functions of definite
parity are given by the symmetric and antisymmetric linear combinations of
rigid rotor states with K = ±Ω. Denoting the parity by ε with ε = ±1, the
definite parity states are:

|JMΩ, ε〉 =
|JMΩ〉+ ε(−1)p |JM−Ω〉√

2
(2.36)

where for states with Λ > 0

p := J − S (2.37)

and hence for the rotational levels of OH 2Π the value of p is indeed always
an integer. It is common convention to denote states with a definite parity of
(−1)J−1/2 as e and states with (−1)J+1/2 as f provided J itself is half integer.
For integer values of J the e and f levels have the respective parities (−1)J and
(−1)J+1. With this convention, all lower components of a Λ-doublet are either
e or f , independent of J , likewise for the upper components (see Fig. 2.1 p. 20).

If the Hund’s case (a) description is not exactly valid, every level is a mixture
of
∣∣2Π3/2

〉
and
∣∣2Π1/2

〉
states. For OH, this complication must also be taken

into account by diagonalizing the rotational Hamiltonian

Hrot = Av L · S +Bv (J− L− S)2 (2.38)

in the Hund’s case (a) basis, where the spin-orbit coupling constant Av and
the rotational constant Bv depend on the vibrational quantum number v. The
result is given in [39, 42]:

|(F1)JM, ε〉 = aJ
∣∣2Π1/2ε

〉
+ bJ

∣∣2Π3/2ε
〉

(2.39)

|(F2)JM, ε〉 = −bJ
∣∣2Π1/2ε

〉
+ aJ

∣∣2Π3/2ε
〉
, (2.40)

The spin-orbit (fine-structure) manifolds F1 and F2 are labeled in order of in-
creasing energy. For OH in the electronic ground state Av < 0 and therefore
the F1 states resemble more closely the basis states with Ω = 3/2 whereas those
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labeled F2 resemble the Ω = 1/2 states; in fact, for J = 1/2 we have bJ = 0
exactly and within the used approximations we have a true Hund’s case (a)
state. The coefficients are:

aJ =

√
X + (Y − 2)

2X
(2.41)

bJ =

√
X − (Y − 2)

2X
(2.42)

with the definitions

X :=
√

4(J + 1/2)2 + Y (Y − 4) (2.43)

Y :=
Av

Bv
. (2.44)

For the vibrational ground state of OH, the values are Av = −139.73 cm−1

and Bv = 18.515 cm−1 as determined by Dieke and Crosswhite [43]. For the
lowest rotational state of F1, which has J = 3/2, the mixing coefficients and
the respective probabilities are:

a3/2 = 0.1739 (a3/2)2 = 0.03 (2.45)

b3/2 = 0.9848 (b3/2)2 = 0.97 (2.46)

so that also this state is quite well described by a pure Hund’s case (a) state.
It is therefore common practice to denote the F1-manifold by 2Π3/2 and the
F2-manifold by 2Π1/2 even though this assignment is not exact.

2.2.1 Stark effect of OH

The states of interest here are the upper and lower Λ-doublet component of
the lowest rotational (J = 3/2) state in the F1 manifold which we denote by
|JM, f〉 and |JM, e〉 respectively. To determine the Stark effect for these states,
the matrix elements of Hs are needed. If there was no Λ-doubling and if we had
a pure Hund’s case (a) state, the first order energies would be given by (2.35)
where K is replaced by +Ω or −Ω. However, the “true” states are given by
(2.39):

|JM, f〉 =
aJ√

2

(∣∣JM + 1
2

〉− ∣∣JM − 1
2

〉)

+
bJ√

2

(∣∣JM + 3
2

〉− ∣∣JM − 3
2

〉)
(2.47)

|JM, e〉 =
aJ√

2

(∣∣JM + 1
2

〉
+
∣∣JM − 1

2

〉)

+
bJ√

2

(∣∣JM + 3
2

〉
+
∣∣JM − 3

2

〉)
. (2.48)
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The diagonal matrix elements of Hs between these states are

〈JM, e|Hs|JM, e〉 = 〈JM, f |Hs|JM, f〉 = 0, (2.49)

as it must be, because Hs does not connect states of identical parity. The two
off-diagonal elements are real and given by:

〈JM, e|Hs|JM, f〉 = −μE M

J(J + 1)

(
1
2 (aJ )2 + 3

2 (bJ)2
)

=: Q, (2.50)

in which the weighted average of Ω = 1/2 and Ω = 3/2 occurs which is referred
to as the “effective” value of Ω:

Ωeff :=
(

1
2 (aJ )2 + 3

2 (bJ)2
)

= 〈JM, e|Jc|JM, f〉, (2.51)

so that only in the exact case (a) limit Ωeff = Ω.
The Hamiltonian matrix for the molecule, including HS , in the Λ-doublet

subspace of definite J is therefore(
EΛ/2 Q
Q −EΛ/2

)
(2.52)

where EΛ denotes the energy splitting of the Λ-doublet and therefore the ener-
gies of the unperturbed levels are ±EΛ/2. The eigenvalues of this matrix give
the energy to first order:

Ef/e = ±
√(

EΛ

2

)2

+Q2 (2.53)

where the upper sign refers to the f -component and the lower to the e-component.
As the energy Q becomes significantly larger than the Λ-doublet separation,

the Stark effect becomes linear. The Stark shift for levels with ±M is the same.
For J = 3/2, we have M = −3/2,−1/2, 1/2, 3/2 and therefore every Λ-doublet
component splits into two doubly degenerate levels with either |M | = 3/2 or
|M | = 1/2.

The state |Ψ, f〉 which correlates adiabatically with the field free |JM, f〉
state can now also be determined, the result is:

|Ψ, f〉 = α |JM, f〉+ β |JM, e〉 (2.54)

where the ratio of the coefficients is

β

α
=

Q

A+
√
A2 +Q2

= with A := EΛ/2. (2.55)

If for example Q = 10A, the ratio is β/α ≈ 10/11 so that the state is already
close to being a 1 : 1 mixture of states with opposite parity.
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Figure 2.1: Right: rotational energy levels of OH (2Π3/2 and 2Π1/2); the Λ-doublet split-
tings are magnified. Left: the adiabatic energy change due to the Stark effect for the upper
J = 3/2 f and lower J = 3/2 e Λ-doublet component. The absolute values for the projection
M of J on the laboratory z-axis are indicated.

To calculate the Stark effect for the F1, J = 3/2 level, the dipole moment μ,
Ωeff and the Λ-doublet splitting EΛ are needed. The electric dipole moment of
OH depends only very slightly on the rotational and vibrational level. For the
F1, J = 3/2, v = 0 state, the value is μ = 1.655 D as given in ref. [44]. For the
purpose of Stark deceleration, the tiny variations in the dipole moment with the
rotational state can be ignored. As noted before EΛ = 0.055 cm−1. For Ωeff the
above formulae yield Ωeff = 1.47 which is identical to the value given in [44].
The value of Q in units of cm−1 is given by the following equation

Q = −1.679 · 10−2 μE
MΩeff

J(J + 1)

[
cm−1

]
(2.56)

in which the electric field strength is in kV/cm and the dipole moment in Debye.
In Fig. 2.1 a plot of the Stark effect for the J = 3/2e, f levels is shown. It
is seen that the energy of all MJ -states of the upper Λ-doublet component
(ε = +, f -parity) increases in an electric field whereas for states in the lower
Λ-doublet component (ε = −, e-parity) the energy decreases. The former type
of states are referred to as “low field seeking” states whereas the latter are
“high field seeking” states. A low field seeking molecule is thus a molecule
which experiences a force in the direction towards lower field strengths due to
its Stark interaction upon traversing an electric field gradient.
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2.2.2 The Stark effect and hyperfine structure

The most abundant isotopic variant 16OH has a total nuclear spin of I = 1/2
which is due to the nuclear spin of the hydrogen proton alone. This non-zero
nuclear spin gives rise to hyperfine structure in the spectrum of OH due to
the magnetic dipole moment of the proton. This leads to a splitting of every
Λ-doublet component into two states with definite total angular momentum
F := J + I. For the J = 3/2 rotational level, the possible values for F are
therefore F = 2 and F = 1 with a degeneracy of 2F + 1. The splittings
are rather small, as shown in Fig. 2.2 for the J = 3/2 level of F1. Many Λ-
doublet hyperfine transition frequencies have been measured and are tabulated
in ref. [45].

To determine the adiabatic change of the energy levels due to the Stark
interaction, we proceed in the same way as above. We use zero order basis
functions together with the measured energy splittings and diagonalize the re-
sulting Hamiltonian matrix. The completely general matrix elements are given
in [46], but as such the result is not very illuminating. If one decides to ignore
ΔJ = ±1 contributions anyway, it is quite simple to derive the matrix elements.
Since HS does not connect states with different MF , the matrices are at most
4× 4 for all J . We use the following notation for the matrix elements:

ε + + − −
ε F 2 1 2 1

+ 2 E1 0 Q1 Q3

+ 1 0 E2 Q3 Q2

− 2 Q1 Q3 E3 0

− 1 Q3 Q2 0 E4

(2.57)

For every MF , the off-diagonal elements Qi have to be determined. All
states with definite F and MF are linear combinations of at most two direct
product states of the type |J MJ ε〉 ⊗ |I MI〉 with I = 1/2:

|F MF ε〉 =
∣∣J MF− 1

2 ε
〉⊗ ∣∣ 12 + 1

2

〉( J 1
2 F

MF− 1
2

1
2 MF

)
+

∣∣J MF + 1
2 ε
〉⊗ ∣∣ 12 − 1

2

〉( J 1
2 F

MF + 1
2 − 1

2 MF

)
. (2.58)

For J = 3/2 the required CG-coefficients are given in Fig. 2.2. Because HS

does not act on the nuclear spin degree of freedom, the sought matrix elements
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and the lower number to MI = + 1
2
. For example, if F = 1, MF = 1 the expansion is |FMF 〉 =

√
3/4

∣
∣ 3
2

MJ

〉 ∣∣ 1
2

MI

〉−√
1/4

∣
∣ 3
2
M ′

J

〉 ∣∣ 1
2
M ′

I

〉
, with MJ = 3

2
, MI = − 1

2
, M ′

J = 1
2
, M ′

I = 1
2
.

are:

〈F ′M ′F ε′|HS |F MF ε〉 = −μE Ωeff

J(J + 1)
δεε′δMFM ′

F
×{

(MF − 1
2 )

(
J 1

2 F ′

MF− 1
2 + 1

2 MF

)(
J 1

2 F

MF− 1
2 + 1

2 MF

)
+

(MF + 1
2 )

(
J 1

2 F ′

MF + 1
2 − 1

2 MF

)(
J 1

2 F

MF + 1
2 − 1

2 MF

)}
. (2.59)

The Hamiltonian matrix may therefore be written as

H =

⎛
⎜⎜⎝
E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

⎞
⎟⎟⎠− μE Ωeff

J(J + 1)

⎛
⎜⎜⎝

0 0 q1 q3
0 0 q3 q2
q1 q3 0 0
q3 q2 0 0

⎞
⎟⎟⎠ . (2.60)

For J = 3/2, the states with F = 2,MF = ±2 consist of only a single
component (see Fig. 2.2) and the resulting matrix can be diagonalized in a two
dimensional subspace. The matrix elements Qi(MF ) for MF = ±2 are:

Q1(±2) = 〈2 2 ε′|HS |2 2 ε〉 = −μE Ωeff

3
2 (32 + 1)

δεε′ ×
(
±3

2

)
(2.61)

Q2(±2) = 0 (2.62)

Q3(±2) = 0. (2.63)
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The matrix elements in the notation of equation (2.60) are:

MF : 0 ±1 ±2

q1 0 ±3/4 ±3/2

q2 0 ±5/2 0

q3 1/2
√

3/4 0

(2.64)

The eigenvalues in the cases where |MF | = 1, 0 are more difficult to obtain
analytically as the polynomial det(H − λI) = 0 is of 4th degree. Numerical
methods are useful in this case as provided e.g. by the program package [47].
The result of such a calculation is shown in Fig. 2.3, which agrees with previ-
ously published data [44, 48]. As before, all MF -states of the upper Λ-doublet
component are low field seeking whereas all states in the lower Λ-doublet com-
ponent become high field seeking if subjected to an electric field. For higher
electric fields, the hyperfine splittings do not significantly alter the energies
obtained before when the hyperfine structure was simply ignored. The result
is important nevertheless: all MF states in the upper Λ-doublet component
belonging to F = 1 have the high field behaviour of the states which were pre-
viously labeled |MJ | = 1/2. In contrast, the F = 2 states with |MF | = 2, 1
correlate with |MJ | = 3/2 while |MF | = 0 correlates with |MJ | = 1/2. The
Stark effect for molecules with |MJ | = 3/2 is three time stronger than for those
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with |MJ | = 1/2 and therefore under appropriate deceleration conditions (i.e.
at high “phase angles” – see chapter 3) it is possible to prepare molecules which
are in the low field seeking F = 2 states exclusively while it is not possible to
prepare a pure F = 1 ensemble. Of course, this requires that the molecules
traverse the adiabatic energy curves during the whole deceleration process.

The described correlations between the hyperfine levels and the high field
behaviour are easy to establish without setting up and diagonalizing the Hamil-
tonian matrix. All that is needed are the CG-coefficients. In the limit where
the hyperfine splitting approaches zero, the coupled basis is as good as the un-
coupled basis, because HS does not act on the nuclear spin. All curves shown in
Fig. 2.3 would change continuously as the hyperfine splitting decreases to zero
to finally merge with the previously obtained curves of Fig. 2.1. If the problem
is set up in the coupled basis, the diagonalization of the matrix only gives us
back the uncoupled (mixed parity) set as the result when either the splitting
is small enough or the field is strong enough! The MJ states contained in the
coupled states are given by the CG-coefficients. The state F = 2,MF = 2 con-
sists only of MJ = 3/2 and therefore, it must also correlate with this state in
higher fields. The states with F = 1, 2 and MF = 0 consist of MJ = +1/2 and
−1/2, therefore these states must correlate with |MJ | = 1/2. The only ambi-
guity occurs for F = 1, 2 with MF = 1: here it seems unclear whether F = 1 or
F = 2 correlates with MJ = 3/2 or 1/2. However, the F = 1 state is lower in
energy than F = 2, and both curves would have to cross if F = 1,MF = 1 were
to correlate with MJ = 3/2. Such a crossing is not possible however, because
both states have the same value of the only exact constant of motion MF (see
e.g. [35]) and therefore the correlations can be unambiguously established. The
same holds for other values of J .

2.3 Production of a pulsed OH beam

The OH radical is chemically unstable and therefore has to be produced in situ
during the supersonic expansion. Several routes are possible for this, the most
popular methods being electric discharge and photolysis. Both methods have
their benefits and shortcomings. The discharge method is inexpensive and in
principle easy to implement, unfortunately it produces many undesired species,
especially ions, and the resulting gas expansion does not cool to the lowest
possible temperatures. In contrast, the photolysis method is clean and well
controlled with small pulse to pulse fluctuations if used correctly. Furthermore,
the spatial extension of the produced OH pulse is smaller and to some extent
under control.

In both cases, the most common OH precursor molecules are H2O, HOOH
and HNO3. For all experiments described in this work, OH was produced by
193 nm photolysis of HNO3 using a compact ArF excimer laser3. Nitric acid is a

3PSX-501, Neweks Ltd., 19 Akadeemia tee, Tallinn, Estonia
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very suitable precursor molecule because its absorption cross section at 193 nm
is quite large (≈ 1200 · 10−20cm2) and the OH yield is moderately good4.

A thoroughly tested recipe for the production of an intense OH beam is
described in the following. First, a few ml of pure nitric acid are loaded into a
reservoir – the so called “bubbler” – through which a carrier gas may be passed
and become saturated with nitric acid vapor. About half of the inner volume
of the bubbler is filled with glass wool to increase the overall surface area of the
liquid-gas interface. A well suited material for the bubbler is titanium because
it does not react with nitric acid (and many other acids). A PTFE O-ring is
used to seal the bubbler. The bubbler is cooled by a thermostat so that the
reservoir is always lower in temperature than all other components which are
connected to it and therefore no condensation can occur outside the bubbler.

To expand the gas mixture into the vacuum, a commercial solenoid valve
(General Valve, Ser. 99) is used. This valve is reasonably resistant towards nitric
acid vapor as long as condensation inside the valve is avoided. The gas mixture
is expanded into the vacuum at a typical stagnation pressure of 1.5 − 3 bar.
The photolysis laser beam intersects the gas jet right behind the nozzle orifice.
Usually a short quartz capillary (≈ 5 mm long) is mounted onto the flat front
plate of the valve and the photolysis occurs mainly inside this capillary just
before the gas starts to expand. Whether a capillary is useful or not depends
on the desired beam characteristics. The laser beam is focussed by a cylindrical
lens. The so created beam of OH radicals has a high state purity: almost all
molecules reside in the J = 3/2,Ω = 3/2 level (see table 7.1 on page 112).
Since the Λ-doublet splitting is only 0.055 cm−1, both Λ-doublet components
are populated equally in the beam.

The vapor pressure of pure nitric acid at 20◦C is about 64 mbar. In the
experiment one finds the surprising result that the OH yield does not decrease
when the temperature of the HNO3-reservoir is lowered. Even a vapor pressure
of 2.4 mbar at −30◦C is still sufficient to produce a good OH beam. It therefore
seems that the chemical reactions which occur after the photolysis always lead
to a certain equilibrium concentration of OH radicals which is to a large extent
independent of the initial OH concentration5.

For practical reasons it is advisable to use low nitric acid concentrations.
First, the beam quality improves because there is less energy released during
the expansion by chemical reactions, that is the resulting beam temperature is
lower. Secondly, the corrosion of the valve and the vacuum system is greatly
reduced which is important for experiments which run for more than just a few
days. The vapor pressure p of an ideal gas in equilibrium with its fluid phase

4Apparently it is not far below 0.5, see IUPAC Subcommittee on Gas Kinetic Data Eval-
uation - Data Sheet PNOx2, where also absorption cross sections are tabulated.

5I have obtained these insights thanks to the commitment of Prof. David Nesbitt who was
visiting our laboratory in the spring of 2008.
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as a function of temperature is given by the relation

p = Ae−
ΔHe
RT . (2.65)

A derivation of the formula is given in textbooks on thermodynamics, e.g. [49].
The enthalpy of evaporation of nitric acid is ΔHe = 39.1 kJ/mol [50]. The pre-
exponential factor is determined if a single measured value for the vapor pressure
is known. Several are tabulated in [50] and the result is A = 592.58 · 106 mbar.
The universal gas constant is R = 8.3145 J/(K mol). The following values result:

T/◦C −40 −30 −20 −10 0 10 20 30

p/mbar 1.0 2.4 5.1 10.3 19.8 36.3 64.0 108.6

Another important observation is that highly concentrated nitric acid of
least 90%wt should be used, even better is close to 100%. One might think
that instead of cooling down the reservoir, one could simply dilute the nitric
acid. While indeed, the nitric acid partial pressure is reduced in this way,
experiment shows that the so produced OH beam density suffers strongly – for
as yet unknown reasons.

A final remark regarding beam sources for deceleration machines is in order.
Since the apparatus behind the skimmer is on high voltage, it is also quite prone
to discharges if droplets or solid particles deposit on the surface. Therefore it
is quite important to use only sufficiently clean beam preparation techniques
and to avoid condensation in the valve. Substances which tend to polymerize
should be avoided e.g. formaldehyde (H2CO) and the typical precursor for NH
radicals isocyanic acid (HNCO).

2.4 Detection of OH radicals

OH radicals are detected by laser induced fluorescence (LIF) using a commercial
pulsed dye laser system. The fluorescence is collected by a quartz lens (50 mm
focal length, 50 mm diameter) and imaged onto a photomultiplier tube (PMT).
Stray light is largely eliminated by use of Brewster windows, baffles and filters.

All rotational levels indicated in Fig. 2.1 can be selectively detected, even
if the transition is saturated. Molecules are pumped to the first electronically
excited state by using rotational transitions of the A 2Σ+, v = 1← X 2Π, v = 0
band which occur at around 282 nm. Measured values can be found in [43],
calculated values are available e.g. from the LIFBASE program [51]. The
typically used transitions are tabulated on page 113 table 7.2. The radiative
lifetime of the A 2Σ+, v = 1 state is 717 ns [52].

The emitted off-resonant fluorescence (to final states with v = 1) occurs
at longer wavelengths and can thus be separated easily from the excitation
wavelength by a filter which transmits at slightly longer wavelengths. One
should be aware however that besides true stray light, which has the wavelength
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of the excitation laser, also spurious fluorescence from the Brewster windows,
baffles or any other component can occur and this light naturally also has a
longer wavelength6. Therefore it is advisable to create a transmission window
in the range where the molecular fluorescence mainly occurs. To that end,
four filters are used. One UG11 (Schott, 1 mm thickness, transmission 90%) to
absorb light in the visible range and three filters which create a transmission
window as shown in Fig. 2.4. Filter A is a dichroic filter (Omega Optical,
USA) of which two are used, filter B (Laser Optik, Germany) is also a dichroic
filter. This filter combination (UG11+2A+B) yields a maximum transmission
of about 55% in the desired range.
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Figure 2.4: Transmission curves of the used filters. The transmission curve of the combina-
tion (UG11+2A+B) is also shown.

6An essential fact pointed out to me by Dr. Steven Hoekstra.





Chapter 3

Stark deceleration of OH radicals

The Stark effect provides a handle for the state selection and further manipu-
lation of polar molecules in a molecular beam. In this chapter it is explained
how an array of time dependent field gradients can be used to prepare molecules
in specific low field seeking quantum states and with a specific mean forward
velocity. The different modes of operation which are possible are discussed in
some detail.

29
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Figure 3.1: Scheme of the two possible on-axis potential energy curves Ue/o(0, 0, z) for a
molecule in the decelerator together with the electrode geometry and the definition of the
coordinate system. For the instrument used in this work, L = 8.25mm, the electrode gap
is 3mm wide yielding a 3 × 3mm2 opening. The inset shows the reference potential which
defines the phase φ of the molecule. A more detailed view of the machine is provided by the
pictures on p. 49 and 50.

3.1 Introduction

The principle design of the deceleration apparatus is very simple: parallel pairs
of cylindrical metal rods, that is electrodes, are combined into a periodic array as
it is shown schematically in Fig. 3.1, more detailed views of the machine can be
found on p. 49 and 50. The orientation of the pairs alternates between horizontal
and vertical, i.e. successive pairs are aligned at a right angle. A likewise periodic
electric field is created by applying a voltage to only the vertical (odd numbered)
electrodes while the horizontal (even numbered) electrodes remain uncharged at
ground potential. The voltages applied to the electrodes of a pair have the same
magnitude but opposite polarity. This is one of the two field configurations
which are needed. The other configuration is obtained by charging, in the
same manner, all horizontal pairs and connecting all vertical ones with ground.
During operation one rapidly switches between these two states. The so created
time dependent periodic field gradients allow a fairly precise adjustment of the
mean forward velocity and also of the velocity distribution (for representative
time-of-flight measurements see Fig. 5.3 on p. 65).

The electrodes of the used decelerator have a diameter of 4.5 mm and the
center to center distance between electrodes of a pair is 7.5 mm, while the center
to center distance L between neighboring pairs is 8.25 mm. The free opening
for the passage of the molecular beam is a 3 mm× 3 mm square. The aspect
ratios are the same as the ones used in earlier experiments by Crompvoets et al.
[53] in 2002, which was a slight modification of the very first design by Bethlem
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et al. in 1999 [5]. The present instrument has 317 electrode pairs in total, for
further technical details see chapter 4.

3.2 The potential

As described in chapter 2, the energy levels of a polar molecule change with the
applied field strength. If the change of the field direction and strength is slow
enough, i.e. if it is adiabatic, then the energy shift due to the Stark effect gives
rise to a definite force on the molecule. This force then has a potential which in
our case depends on the position (x, y, z) and time t. We denote this potential
by U(x, y, z, t). If the state of the molecule is low field seeking, i.e. if the energy
increases with increasing field strength, the potential U(0, 0, z, t) along z will
resemble the curve shown in Fig. 3.1.

At a certain time either the odd or the even numbered electrode pairs
are charged and therefore either U(x, y, z, t) = Uo(x, y, z) or U(x, y, z, t) =
Ue(x, y, z). Both potentials are related by a coordinate transformation where
the transverse coordinates (x, y) undergo a 90◦ rotation R and the z-coordinate
is shifted by the electrode distance L : Ue(x, y, z) = Uo(Rx,Ry, z±L). One pair
of grounded and one pair of charged electrodes make up an “elementary cell” or
simply deceleration stage. In the present instrument there are 316 stages (the
first electrode pair is usually not used to decelerate, because there the field is
not well defined).

3.3 Longitudinal motion

In the following, the molecules will be treated as mass points upon which exter-
nal forces act and for which the classical equations of motion hold. No quantum
mechanical treatment is necessary because at the given velocities the external
potential changes but little over the distance of a few de Broglie wavelengths.

For symmetry reasons, the transverse force components Fx = −∂xU and
Fy = −∂yU vanish on axis (x = y = 0). The z-dependence of the potential, i.e.
the force component Fz , does not change much when the transverse position
(x, y) is varied except for points very close to the electrodes. To analyse the lon-
gitudinal motion of a molecule through the decelerator one may therefore ignore
the x, y-dependence of the longitudinal force so that Fz(x, y, z, t) ≈ Fz(z, t).

That it is possible to change the longitudinal velocity of a single molecule is
easy to see. In the simplest mode of operation, a molecule with initial velocity
v1 starts at some position z1 and advances exactly a distance L on the poten-
tial U = Uo to reach its final position z2, as it is shown in Fig. 3.1. During
its travel, the molecule is first accelerated slightly and then decelerated. The
total change in kinetic energy ΔT is equal to −ΔU , in this case ΔU > 0 and
therefore v2 < v1. Now the field configuration is switched to U = Ue and the
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molecule travels the same distance L, again changing its kinetic energy by −ΔU
as before. Because the change in kinetic energy is quite small (on the order of a
wavenumber), the process must be repeated many times to significantly change
the energy of the molecule1. In this mode of operation the considered molecule
has the same initial position with respect to the potential at the beginning of
every time interval. We call this molecule the synchronous molecule because
it moves synchronously with the force field. The motion of the synchronous
molecule is particularly simple because the kinetic energy change ΔT is con-
stant in time by assumption:

ΔT =
m

2
(v22 − v21) =

m

2
(v2 + v1)(v2 − v1) (3.1)

=: m
v1 + v2

2
Δv (3.2)

=: mv̄Δv, (3.3)

where the average (v1 + v2)/2 =: v̄ is the arithmetic mean of the velocities
at the boundaries of the considered time interval. The value of v̄ must be
approximately equal to the time average of the molecule’s velocity 〈v〉 during
the time interval of duration τ because the velocities attained during a time
interval remain close to the velocities at switch time. Since 〈v〉 = L/τ ≈ v̄ we
obtain:

ΔT = mv̄Δv

≈ mL
Δv

τ
ΔT

mL
≈ Δv

τ
=: a = constant. (3.4)

Of course, the parabolic trajectory z(t) = z0 + v0t+at2/2 so obtained coincides
with the real trajectory only at the beginning and at the end of each time interval
but not in between.To describe the motion of non synchronous molecules we
proceed similarly in that we ignore the exact trajectory during a time interval
and focus only on the position and velocity when the field is switched.

The potential is periodic with period 2L and may be written as a Fourier
series. Therefore it is more convenient to map the z-position onto the angle
variable ϕ = πz/L. What has been called above “position with respect to
the potential” is also known as the phase. We denote this position by φ with
φ = −π/2 . . .3π/2 as shown in the inset of Fig. 3.1. A molecule can locate its
phase uniquely at any time by determining the current value of U(ϕ) and the
value of the derivative U ′(ϕ). The only ambiguity occurs at the time when the
field is switched, to remove it we define that the field is already present at the
beginning of each time interval. Alternatively, we can define the phase without

1For instance, an OH radical moving at a speed of 400m/s has a kinetic energy of about
114 cm−1.



3.3 Longitudinal motion 33

reference to the potential: since switching the field corresponds to shifting the
position of the molecule by a distance +π or −π, we can define the phase by
φ = (ϕ+ kπ) mod 2π where k = 0, 1, 2, . . . is the index of the time intervals.

If we consider only those modes of operation for which a synchronous molecule
exists, we can obtain a simple equation of motion for all other (non synchronous)
molecules relative to the synchronous one because the average force acting upon
the synchronous molecule is constant. The time averaged acceleration is given
approximately by (3.4), therefore the force required to produce this acceleration
is approximately −ΔU/L. From now on we will refer to one of the time inde-
pendent on-axis potentials Ue/o simply by U(ϕ) with the origin of coordinates
as defined in the inset of Fig. 3.1. If at the start of a time interval the phase is
φ and the molecule moves a distance ξ then the force is

F (φ, ξ) := −U(φ+ ξ)− U(φ)

ξ
. (3.5)

The phase of the synchronous molecule at the beginning of a time interval shall
be denoted exclusively by φs. For the molecule to be synchronous we have
to require that ξ = sπ with s being an odd integer. For even integers s the
molecule is synchronous only every second time the field is switched, moreover,
no kinetic energy change results for the synchronous molecule in this case. Hence
the average force upon the synchronous molecule is:

F (φs, sπ) = −U(φ+ sπ)− U(φ)

sπ
s = 1, 3, 5 . . . . (3.6)

The phase of the synchronous molecule at switch time φs is often simply referred
to as the phase angle. For 0◦ < φs ≤ 90◦ the molecules are decelerated whereas
for −90◦ ≤ φs < 0◦ they are accelerated; if the phase angle is exactly zero
(φs = 0◦), the molecules are guided through the apparatus at a constant mean
velocity. The average acceleration and the potential energy change of an OH
molecule in the (X 2Π3/2, J = 3/2f, |MJ | = 3/2) state are shown in Fig. 3.2
as a function of the phase angle. The acceleration is calculated for s = 1. The
maximum kinetic energy which can be removed or added between switch times
is approximately 1.7 cm−1. All of the following examples will pertain to that
same state of the OH radical.

We now consider the start of a time interval. Let the velocity of the syn-
chronous molecule be denoted by vs and its position by ϕs; a non synchronous
molecule has at least a different position ϕ �= ϕs or a different velocity v �= vs.
We denote the relative position ϕ − ϕs by θ. The non synchronous molecule
travels a distance sπ + δ where δ is a small correction, provided one consid-
ers only molecules with a velocity close to that of the synchronous molecule.
This correction is given by δ = sπ (〈v〉− 〈vs〉)/ 〈vs〉 where the time averages are
taken over the considered time interval. For the force upon the non-synchronous
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Figure 3.2: The acceleration and potential energy change as a function of the phase angle
for an OH molecule in (X 2Π3/2, J = 3/2f, |MJ | = 3/2) state with ± 20 kV on the electrodes
of the decelerator. The acceleration is given for s = 1, L = 8.25mm.

molecule we hence obtain:

F (φs + θ, sπ + δ) = −U(φs + θ + sπ + δ)− U(φs + θ)

sπ + δ
. (3.7)

The phase of the non synchronous molecule is given by φ = (φs + θ) mod 2π
and since U has periodicity 2π the above formula is correct. In the first approx-
imation, one may set δ = 0 to obtain the equation of motion for the relative
position:

m
d2θ

dt2
= F (φs + θ, sπ)− F (φs, sπ) (3.8)

m
d2θ

dt2
=

1

sπ
[U(φs + θ)− U(φs + θ + sπ) + U(φs + sπ)− U(φs)] .

This differential equation for the relative position at the time the field is switched
conserves the energy, since it depends on the relative position only. Therefore
the analysis of the motion becomes quite simple. Had we included the correction
δ, we would have obtained a differential equation involving the velocities as well
and then the energy is no longer conserved. This way of writing the equation
of motion was first used by Bethlem et al. as described in [54]. To proceed, an
analytic expression for the potential is required, which can be obtained from
the Fourier series:

U(ϕ) =

∞∑
n=1

an cos(n(ϕ + π/2)), an =
1

π

∫ 2π

0

dϕU(ϕ) cos(n(ϕ+ π/2)).

The constant term a0 is the spatial average of the potential and may be set to
zero by definition. We locate the origin at −π/2 to conform with the definition
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of the phase – although it somewhat inconvenient. The resulting series is then:

U(ϕ) = −a1 sin(ϕ)− a2 cos(2ϕ) + a3 sin(3ϕ) + a4 cos(4ϕ)− . . . (3.9)

the alternation of the signs being −,−,+,+,−,−,+,+, . . . . To evaluate the
force in equation (3.9) it is advisable to use the complex series

U(ϕ) =

∞∑
−∞

a|n|
2
ein(ϕ+π/2), (3.10)

so that the shifts of the function arguments become phase factors and the force
can be determined quite effortlessly:

Fs,φs(θ) = − 1

sπ

∞∑
−∞

a|n|
2
ein(φs+π/2)(einθ − 1)[(−1)ns − 1]. (3.11)

From this formula we easily see that positive odd integer values of s lead to non
vanishing terms only if n is odd, whereas for even integer values of s the force
vanishes identically – which is not surprising in view of the periodicity of U .
Finally, the force for odd integers of s is obtained from the previous equation:

Fs,φs(θ) = − 1

sπ

∑
n=1,3,5,...

in+1an

(
sin(n[φs + θ])− sin(nφs)

)
. (3.12)

The potential function V of this force is obtained via integration:

Vs,φs(θ) =
1

sπ

∑
n=1,3,5,...

in+1an

( 1

n
cos(n[φs + θ]) + sin(nφs)θ

)

≈ − 1

sπ
a1(cos(φs + θ) + sin(φs)θ) (3.13)

where in the last equation only the n = 1 term has been kept. For the elec-
trode geometry used in this work, and for an OH radical in the (X 2Π3/2, J =
3/2f, |MJ | = 3/2) state, the coefficients in units of cm−1 are:

a1 = 0.8872 a2 = 0.2308 a3 = 0.0814 a4 = 0.0341 a5 = 0.0173,

if ± 20 kV are applied to the electrodes. These coefficients are determined nu-
merically from the potential U(x, y, z) which in turn is also determined by nu-
merical methods.

To gain further insight about the relative motion, one need not bother to
solve the equation of motion numerically for the given force. The possible tra-
jectories in the phase space spanned by v := θ̇L/π and θ are already determined
completely through energy conservation. The implicit function for the trajec-
tories is thus:

m

2
v2 + Vs,φs(θ) = E(θ′, v′) (3.14)
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where any phase space point (θ′, v′) suffices to define the traversed curve in
phase space uniquely. For an OH molecule in the low field seeking |MJ | = 3/2
state, the possible phase space trajectories for s = 1 and φs = 0◦, 25◦ are
shown in Fig. 3.3. All bound trajectories around the synchronous molecule
are enclosed by the so called separatrix. Therefore, only those molecules with
initial relative positions and velocities inside the separatrix are trapped in the
potential Vs,φs(θ) during the passage through the apparatus and undergo sta-
ble oscillations in this potential. One says that the decelerator exhibits phase
stability since the phase at switch time of all trapped molecules never exceeds
a certain value which is determined by the phase angle φs. The area inside the
separatrix is an important quantity – the longitudinal phase space acceptance.

1.8

1.5

1.2

0.9

0.6

0.3

0.0

V
(

) 
/ c

m
-1

rel. position  / rad

-60

-40

-20

0

20

40

60

rel. position  / rad

-60

-40

-20

0

20

40

60

 r
el

. v
el

oc
ity

 / 
(m

/s
)

rel. position  / rad
0 0 0

(a) (b) (c)

Figure 3.3: The potential energy V (θ)s,φs in units of cm−1 of the relative motion for the
parameters s = 1, φs = 0◦, 25◦ (panel a) and the corresponding contours of constant energy
(panel b, c) according to equation (3.14). A molecule oscillates around the synchronous
molecule only if its initial relative position and velocity lies inside the so called separatrix.

For reasons to be explained in the following section, the most useful mode
of operation for our purposes is actually the mode where s = 3 instead of s = 1.
In the s = 3 mode, the longitudinal force component is three times weaker
and accordingly the longitudinal phase space acceptance is reduced. Since the
maximal kinetic energy is a factor of 3 smaller, the maximal velocity is a factor
of
√

3 smaller and so is the longitudinal phase space acceptance. A detailed
analysis of the s = 3 mode was first given by van de Meerakker et al. [55].

In Fig. 3.4 the separatrices for different values of the phase angle are shown
for the s = 3 mode. Also shown is the longitudinal oscillation period for the
contours of constant energy when the decelerator is operated in the guiding
(φs = 0◦) mode. For example, a molecule with an initial relative position of
± π/2 and zero initial relative velocity traverses the highlighted contour. The
period of oscillation is plotted as function of the maximum potential energy, in
this case the period is ≈ 1.5 ms. The decelerator used in this work has a total
length of 2.6 m, if the molecules are guided at e.g. 400 m/s, then the time of
flight is 6.5 ms and the molecule traverses the contour 4.3 times.

While the s = 1 and s = 3 mode are the ones usually used in experiments,
one might wonder how many possible other modes of operation actually exist.
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Figure 3.4: Top left: separatrices for different values of the phase angle for s = 3. Top
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The above considered scheme where a molecule is synchronous every time the
field is switched can be generalised further. If the molecule travels a number of
Q possibly distinct distances skπ with k = 1 . . .Q between switch times, then
the phase is the same after Q switch times provided:(

Q∑
k=1

skπ +Qπ + φs

)
mod 2π = φs (3.15)

where now φs is the phase after Q switch times and sk is a positive real number.
This condition is equivalent to:

Q∑
k=1

sk +Q = 2n , n = 0, 1, 2, . . . . (3.16)

As before one may calculate an average force upon the molecule by summing
the ΔU ’s for one cycle k = 1, . . . , Q which is then divided by the distance
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traveled. To give a very simple example, instead of using s = 1, we could also
use s1 = 0.8, s2 = 1.2. In this caseQ = 2 and the phase is the same every second
time the field is switched. Note that for this example, the average transverse
force is asymmetric for the x and y directions.

Cycles for which sk is always a constant rational number have been analysed
first by van de Meerakker et al. [55] and later by Gubbels et al. [56]. The latter
Ref. is especially remarkable because the authors do not only use a Fourier
analysis of the field’s spatial dependence, as is done here, they also use the
Fourier analysis of its time dependence.

3.4 Transverse motion

The components of the force in the transverse direction are given by the deriva-
tives Fx(y) = −∂x(y)U(x, y, z, t), but they are time dependent. As in the previ-
ous section, it would be convenient if the explicit time dependence could be elim-
inated. Under the usual operation conditions, all molecules fly approximately
a distance Δz = sL, that is Δϕ = sπ, within every time interval. Therefore
one can determine an approximate average transverse force for the considered
interval and use only this force to analyse the molecule motion. During a time
interval τ , the molecules move transversally from (x0, y0) to (x0 + δx, y0 + δy).
If the longitudinal velocity is high enough, the change (δx, δy) is small and we
may compute the spatially averaged force components by:

F̄y(x, y, φ) :=
1

sπ

∫ φ+sπ

φ

dϕFy(x, y, ϕ), (3.17)

with the phase φ of the molecule at the start of the considered time interval.
This approximation, which was first used by Bethlem et al. [57], works better
than it may seem at first sight because one can think of the average as being
computed for the intermediate point (x, y) = (x0 + δx/2, y0 + δy/2) which is
the approximate position at τ/2. Denote the potential from which the force is
derived by U(x, y, ϕ), then

F̄y(x, y, φ) = − 1

sπ
∂y

∫ φ+sπ

φ

dϕ U(x, y, ϕ) (3.18)

=: −∂y 〈U〉 . (3.19)

The averaged force is the same every second time interval because the elec-
trode orientation alternates between horizontal and vertical . Therefore we
have to use two averaged potentials 〈U〉(1) and 〈U〉(2) for the odd and even num-
bered time intervals. Both are related by a 90◦ rotation R of the coordinates:

〈U(x, y, φ)〉(1) = 〈U(Rx,Ry, φ)〉(2). For sufficiently high longitudinal velocities,

we may even take the average over both potentials 〈U〉 := (〈U〉(1) + 〈U〉(2))/2.
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This potential is still time dependent for all non synchronous molecules through
the phase φ.

In Fig. 3.5, the contours of the potential 〈U〉 are shown for s = 1 and s = 3.
The average potential for s = 1 varies strongly with φ. Therefore, a molecule
which oscillates longitudinally around the synchronous molecule with a large
amplitude is subjected to large variations of the transverse force. Moreover, if
the phase of the synchronous molecule φs is close to zero, the transverse force
along the x or the y axis is very small during the time when the molecule’s
relative position θ lies within the interval −0.25π . . . + 0.25π, and therefore
molecules will “leak out” along the x and y-axis. For higher absolute values
(|φs| > 45◦) of the phase angle, that is for large accelerations, these escape
channels of the potential start to close and the transverse confinement improves
– at the cost of the longitudinal confinement.
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Figure 3.5: The transverse potential 〈U〉 for s = 1 and s = 3 averaged over two successive
time intervals and for a given value of the phase φ. The potential has the value 0 cm−1 at
x = y = 0mm, the contour lines indicate steps of 0.008 cm−1. The red contours correspond
to the given values for the potential energy (and transverse velocity). The orientation of the
coordinate system is the same as given in Fig. 3.1.

For the s = 3 mode, the potential 〈U〉 is closed for any relative position,
because, for all values of φ, the averaging includes twice the full distance 2π
which corresponds to 〈U〉s=2 and which is independent of φ. Therefore, the
potentials shown for s = 3 are in fact equal to 1

3 〈U(φ)〉s=1 + 2
3 〈U〉s=2. Also,

〈U〉s=2 = 〈U(π/2)〉s=1 = 〈U(π/2)〉s=3 is valid for reasons of symmetry.

At φ = 0, the potential is deep enough to confine molecules with transverse
velocities of at least ≈ 6.7 m/s. The depth of the potential increases with in-
creasing relative position, but the change is now much more modest as compared
to the s = 1 mode – for sufficiently high longitudinal velocities, the transverse
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motion is therefore approximately independent of the longitudinal motion and
may be treated separately.

The functional form of the potential is a sum of a two dimensional harmonic
potential and a part which has reduced (4-fold) rotational symmetry. It is
approximated quite well by the simple formula:

〈U(x, y, φ)〉 = c2(x2 + y2) + c4x
2y2, (3.20)

where c2 and c4 depend on s and φ. For s = 1, the potential becomes more
and more harmonic as φ increases, whereas for values close to zero the harmonic
part disappears almost completely. The potential does not conserve the angular
momentum and therefore it is not easy to analyse the motion analytically.

The model which has been discussed so far can be tested with the help
of numerical trajectory calculations. In Fig. 3.6, different projections of the
resulting phase space distribution are shown for both modes of operation and
for two different values of the phase angle. In all cases, the initial mean velocity
in the z-direction is 350 m/s; the mean final velocities are 350 m/s (φs = 0◦)
and 190 m/s (φs = 25◦). The number of electrode pairs in the φs = 0◦ case
is 301, i.e. we use 300 deceleration stages. For the case φs = 25◦ case 300
stages are used for s = 3 and 100 stages for s = 1 to obtain the same final
velocities. For all simulations, the initial position and velocity components
of a molecule are chosen at random from within a 6 dimensional “box” with
ax < x < bx, avx < vx < bvx and so on. This box must be chosen large enough
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so that it completely contains the 6 dimensional phase space volume from which
molecules are accepted, that is from which stable trajectories result.

We find that the separatrices which are determined from the simple model fit
quite well to the observed boundaries. For the s = 1 mode, one can clearly make
out two separate areas for which the transverse motion is not stable. The central
area which represents molecules with small longitudinal oscillation amplitudes is
unstable because the transverse potential hardly confines molecules which move
close to and along the x and y-axis, as discussed above. Obviously this leaking
out cannot be immediate and therefore the area is somewhat diffuse. The second
unstable phase space area closer to the separatrix arises from the oscillation
of the potential with time as the molecules traverse along their longitudinal
contour of constant energy. This kind of instability can be analysed with well
known and simple methods, provided the non-harmonic terms of the potential
are neglected. An analysis of this kind has been given by van de Meerakker et
al. in Ref. [58]. Both instabilities are almost absent2 in the s = 3 mode, because
the time variation is smaller and the potential provides much better transverse
confinement for all relative positions. The projections onto the vx, vy-plane
show that the transverse velocity acceptance at small phase angles is larger for
s = 3. Under which conditions which mode is preferable is described in detail
in chapter 5.

As the mean forward velocity of the molecules becomes smaller and smaller,
one might expect that the approximation of an average potential should become
less and less suitable – in particular for the s = 3 mode where the averaging
is over a large distance of 6L. Below a certain velocity, one should therefore

consider the transverse potential as alternating between the two states 〈U〉(1)
and 〈U〉(2). The potentials 〈U〉(1)s=1 and 〈U〉(1)s=3 are shown in Fig. 3.7 for two
values of the phase (0◦ and 180◦). The contour lines given in red color indicate
values ≤ 0 whereas the black contours indicate positive values. For φ ≈ 0 and
s = 1, the defocusing force (i.e. away from the central axis) is about as large
as the focusing force (i.e. toward the central axis). The maximum focusing and
minimum defocusing force is found for 180◦. In the case of s = 3 the focusing
force is always larger than the defocusing force.

We see that focusing and defocusing forces are present in successive time
intervals. One might imagine that especially in the case of s = 3, a slow molecule
may get lost e.g. in the x-direction during the time interval in which there is a
defocusing force in this direction. Furthermore, it is possible that even before
this can happen, the alternation of direction and magnitude of the transverse
forces can cause an (unlimited) increase of the transverse oscillation amplitude
over time.

2A very thin unstable band close to the separatrix can be found.
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If the non-harmonic part is neglected, the potentials are:

〈U(x, y, φ)〉(1) = a(φ)x2 + b(φ)y2 (3.21)

〈U(x, y, φ)〉(2) = b(φ)x2 + a(φ)y2 (3.22)

for the potentials in two successive time intervals. The equation of motion for
the y-direction is then

mÿ = f(t)y (3.23)

with either f(t) = −a/2 or f(t) = −b/2, depending on the time interval con-
sidered.

One can now start to tackle the problem with increasing degree of difficulty.
The simplest case is the one where the phase φ is approximately constant (small
longitudinal oscillation amplitude) and where the absolute change of the forward
velocity over time is small. In this case the time intervals have constant duration
τ = sL/vz and the function f(t) is periodic in time with period 2τ . If the phase
is not constant, but the velocity vz is, then f(t) is also approximately periodic
but the period is now the period of the longitudinal oscillation. In both cases
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(periodic f) the differential equation is known as Hill’s differential equation3.
Techniques to solve the problem are well known and described in detail e.g. in
Refs. [59, 60].

The method uses a (2 × 2) transfer matrix to propagate the initial phase
space point u(0) := (y(0), vy(0)) in time steps of 2τ by taking powers of this
matrix. To obtain the matrix one has to solve the differential equations for
the individual time intervals (in this case 2) which make up the whole period
of f . If the matrix for the first period is M1 and for the second M2 then the
transfer matrix is M = M2M1. To propagate the point u(0) in time steps
of 2τ we use powers of M: u(n2τ) = Mnu(0). To see whether the motion
is bound or not, one diagonalizes the matrix so that powers of M become
powers of the eigenvalues. The motion can be bound only if the eigenvalues are
complex (conjugate) numbers of unit modulus (the case where the eigenvalues
are real and both smaller than unity does not occur). One can show that
this requirement is equivalent to the condition that |tr(M)| < 2 because the
eigenvalues λ1/2 are determined by:

λ1/2 =
tr(M)

2
±
√
tr(M)2

4
− |M| (3.24)

which follows from the requirement that |M− λI| = 0. For the determinant
|M| = 1 always holds, which can be shown directly from the differential
equation, but it is actually Liouville’s theorem for the motion in one dimension.
For the case considered, the differential equations for both time intervals are

ÿ = α2y, α > 0 (3.25)

ÿ = −β2y, β > 0 (3.26)

where α and β depend on the phase φ. After solving these equations, one finds
that the trace is given by:

tr(M) = 2 cosh (βτ) cos (ατ) +

(
β

α
− α

β

)
sinh (ατ) sin (ατ) (3.27)

where τ = sL/vz. For φ = 0 and s = 3 one finds that |tr(M)| < 2 as long
as vz > 103 m/s. From computer simulations and also from the experiment we
find that instabilities start to manifest for velocities below 150 m/s and that
almost no molecules can pass the decelerator for velocities below 100 m/s. To
efficiently decelerate OH molecules below 150 m/s, it is better to switch the
mode of operation to s = 1 somewhere before the critical velocity is reached.
More details can be found in chapter 5.

The various transverse instabilities can be circumvented only, if the trans-
verse potential well is approximately constant in time. Such a decelerator has

3George William Hill, Acta Mathematica, 8, 1-36 (1886),On the part of the motion of the
lunar perigee which is a function of the mean motions of the sun and moon
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been demonstrated already by Osterwalder, Meek and co workers [9]. Their
decelerator provides a true 3-dimensional trapping potential which propagates
along the beam axis and which can be used to slow down a packet of molecules.
This new principle might turn out to become the deceleration method of choice
in the near future.

3.5 Other loss mechanisms

The so far mentioned mechanisms which lead to a loss of particles during decel-
eration can be described by classical mechanics alone, provided the potentials
are known. These effects are however not the only ones we have to worry about,
there are three more possibilities to lose molecules.

Probably the most obvious loss mechanism are collisions with the back-
ground gas. Whether a molecule is really lost or not after a collision depends
on the details. If the collision is elastic, i.e. if the internal state remains the
same, the scattering angle and the depth of the transverse trapping potential
determine whether a molecule is lost. Inelastic collisions to states with a dif-
ferent Stark effect, in particular to high field seeking states, also lead to losses.
Collisions which change only the projection quantum number(s), are particu-
larly important since the cross sections for such collisions can be large (see for
example Paterson et al. [61] for the case OH/Xe). In-beam collisions, that is
collisions among molecules which are being decelerated, are of course also pos-
sible. Hogan et al. have considered this problem in some detail in Ref. [4] and
they find the effect to be irrelevant for most practical purposes.

The second important process which can cause a change of the internal quan-
tum state is optical pumping by black body radiation. This type of loss mecha-
nism has been studied in detail for OH radicals trapped in an electrostatic trap
by Hoekstra et al. in 2007 [16]. On the time scale of a deceleration/acceleration
sequence, this loss mechanism is unimportant for OH, but one should still be
aware of its presence, especially if one is interested in obtaining a very pure
ensemble of molecules for state-to-state scattering experiments.

The third mechanism which can lead to a loss of molecules is somewhat more
intrinsic and fundamental. One usually calculates the energies of the molecule
as a function of a given static field strength. To apply this calculation to the
Stark deceleration process, one needs another assumption: adiabaticity. Hence
we assume that the state changes continuously and that the system remains in
a single instantaneous eigenstate of the Hamiltonian at any time. But the Stark
effect changes with the projection quantum number M of the total angular mo-
mentum on the external quantization axis and as the field strength approaches
zero, these states are particularly sensitive to a rotation of the field (by defini-
tion of the angular momentum states). In fact, the smaller the energy difference
is between states of different M for a given field strength, the more difficult it is
to rotate the field adiabatically. If the change of the external field magnitude or
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direction is too fast, a low field seeking state can acquire components of other,
possibly high field seeking, instantaneous eigenstates. During a deceleration
sequence, a molecule experiences a time varying field simply because it travels
through a field which is inhomogeneous – but usually this causes no problems.
More important is the abrupt change when the decelerator switches: now the
field vectors rotate and change their magnitude as a function of time while the
molecules barely move forward. During this time, the field strength is reduced
and states with a different Stark effect can get rather close in energy. It is then
necessary to use time dependent perturbation theory to determine whether the
considered state can acquire amplitudes of other instantaneous states of different
energy by extracting quanta from the field. Such nonadiabatic transitions dur-
ing deceleration have been observed and quantified by Tarbutt et al. in 2010 [62]
for a conventional decelerator and for the molecule LiH. Meek et al. [63] have
also thoroughly studied such effects in 2011 for a microchip based decelerator
and the molecules 12CO and 13CO. Nonadiabatic transitions of electrostatically
trapped ammonia molecules were studied by Kirste et al. in 2009 [64].

For a conventional decelerator, a bias field can be used to ensure that the
field strength does not drop below a critical level. However, it depends on the
molecule whether this is necessary. For OH in the considered state, nonadiabatic
effects have not yet been noticed during normal operation in the decelerators
hitherto used and no bias voltage is necessary. The absence of these effects calls
for provoking them actively. This can be done in several ways. One possibility
is to introduce a gap in the switching sequence which normally is not there, for
example one may switch off the horizontal electrodes at the regular time and
switch on the vertical ones only after a certain delay. In Fig. 3.8 the result of
such an experiment is shown. Here the molecules have been guided at constant
velocity for 2/3 of the whole sequence, and then a single delay of 1, 2, 3 . . . mi-
croseconds is introduced. It is seen that the measured OH signal drops to about
75% and stays approximately constant after that. If one tries to reproduce this
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result with numerical trajectory calculations, one gets very good agreement by
assuming that molecules with |MJ | = 3/2 and those with |MJ | = 1/2 (because
a mixture is present) redistribute among both states homogeneously during the
delay. These states are degenerate as long as the hyperfine structure is ignored.
Yet, if we assume that the hyperfine splitting can prevent transitions between
the hyperfine states of the upper Λ-doublet component, we obtain a drop to
≈ 88%.

From hyperfine resolved experiments one knows that it is possible to prepare
an ensemble which is exlusively in the F = 2 state, provided high phase angles
are used (see sect. 2.2.2 and the remarks on p. 23). Therefore the nonadiabatic
transitions observed here probably occur during the rapid switching on of the
field – from almost zero to a high voltage – at the end of the delay.



Chapter 4

Construction of the Stark
decelerator

During the operation of a Stark decelerator, strong electric fields have to be
switched on and off at a rapid pace. With the advent of transistor based high
voltage switches, the switching itself has become less problematic and is nowa-
days straightforward to implement – provided a few tricks of the trade are
known. It is more demanding to design and manufacture the electrode arrays,
because several hundred electrodes are usually required. In this chapter, the
construction of the used apparatus is layed out in some detail and on several
occasions a few pertinent but more general remarks are given.

47
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4.1 Description of the mechanical parts

A multi-stage Stark decelerator for low field seeking molecules consists of a
periodic array of high voltage (HV) electrode pairs. The electrodes need to
be securely suspended and precisely aligned inside a vacuum chamber that is
capable to support a vacuum of about 10−8 mbar. Furthermore, all components
which are on high voltage during operation need to be well insulated from the
surrounding ground potential.

The main parts of the apparatus are shown in Fig. 4.1. In the present in-
strument the total number of electrodes is 634. The cylindrical electrodes are
made of stainless steel with a diameter of 4.5 mm and are capped by a half-
sphere. The vacuum gap between the electrodes of a pair is 3 mm wide, the gap
between neighboring pairs is 3.75 mm (see Fig. 4.1). The total length from the
centerline of the first electrode to the last electrode is 316×8.25 mm= 2607 mm.
To construct the machine as a single unit is unfeasible and therefore it is split
into three independent modules – in this way the handling of the apparatus
during construction becomes much easier; the modules can be subjected to in-
dependent high voltage conditioning and testing prior to their final installation.

4.1.1 Design of the modules

It has been found empirically that suitable HV electrode materials are stainless
steel, molybdenum, tantalum and titanium [65]. In the present instrument all
parts which are on HV during operation are made of stainless steel. Each of the
four arrays of electrodes is held in place by a cylindrical mounting rod with a
diameter of 25 mm; every electrode is securely fixed to this rod by two screws.
The mounting rods are suspended by a support-frame and electrically insulated
therefrom by ceramic cylinders (Al2O3, alumina) which are clamped by dough-
nut shaped holders (see also Fig. 4.2). It is documented in the HV-engineering
literature, and also tested experimentally in our lab, that the risk of surface
flashovers across the ceramics is reduced if the so called triple joint1 is slightly
recessed in this way. The length of the insulators required to securely hold a
certain voltage difference cannot be calculated, but a rule of thumb dictates a
distance of 1 cm for every 5 kilovolts. Under favorable conditions, it is possible
that a much smaller distance suffices, but this distance can only be determined
through experiment. In the present setup, the insulators can securely hold volt-
ages well above the required ±20kV. The support-frame consists of two parallel
discs (294 mm in diameter) which are held together by four hardened steel rods
of absolutely accurate straightness. Onto these discs, the clamps, which hold
the insulators, are mounted.

The first and last four electrodes in each array are made from a single slab
of stainless steel with the help of a CNC milling machine. The electrodes merge

1The “triple joint” is the point where metal, ceramic and vacuum meet. For details see
e.g. [65].
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4.5 mm

3.0 mm 3.75 mm

16.5 mm

HV vacuum feedthrough

ceramic insulator adjustment screwlocking screw

Figure 4.1: Schematic views of the Stark deceleration machine and its electrode dimensions.
The molecular beam pulses propagate from the source chamber on the right hand side to the
(spherical) experiment-chamber on the left hand side.
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Figure 4.2: Photos of a single decelerator module.

seamlessly with the tapered support rod. The reason for implementing such
intricate electrode arrangements is twofold. First, the coupling of the decelerator
to the molecular beam source is improved because the distance to the skimmer
exit can be reduced, and also the coupling of the decelerator exit to a secondary
beam for crossed beam scattering is facilitated. The second benefit is that
the optical access in between two modules becomes more efficient, which is
important if it is desired to detect molecules after the first or the second module
(see Fig. 5.1 on p. 62).

4.1.2 Alignment

To achieve a precise alignment of all electrodes within a single module, a spe-
cially designed scaffold is used which first defines the correct position of the
mounting rods (to which the electrodes are attached) with respect to the frame.
The connecting elements between the rods and the frame (T-piece, first clamp,
insulator, second clamp) are then fixed using conventional screws. After remov-
ing the scaffold, some relaxation can occur and the width of the gap between
opposite electrodes often needs some re-adjustment. Through tiny rotations of
the clamp on the insulator, a fairly precise adjustment of this gap is possible
and an accuracy of ± 0.05 mm may be readily achieved.

The support-frame rests on four fine thread screws. These screws are screwed
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into a support that is made of brass. The use of (soft) brass together with (hard)
stainless steel makes lubricants superfluous. With the help of these screws,
the whole module can be tilted and adjusted such that the molecular beam
propagation axis coincides with the central axis defined by the HV-electrodes.
A theodolite is used to accurately define the central beam propagation axis with
respect to the vacuum chamber. After the alignment, the module is locked in
place by a centrally positioned locking screw (see Fig. 4.1).

4.1.3 Surface preparation

It is well known that the maximum voltage difference supported by a vacuum
gap depends quite strongly on the surface quality, i.e. on its smoothness. There-
fore all parts which need to support strong electric fields are to be polished to
some extent. The polishing quality which is necessary depends on the electric
field strength that is locally present during operation.

In the present instrument, the electrodes are highly polished by mechanical
means2 to a final sub-micron “mirror finish”. Prior to its installation, each
electrode is inspected under a microscope and here it is a matter of experience
to be able to judge by eye if the surface is sufficiently smooth. Before an
electrode is mounted, it is cleaned by thoroughly wiping it with an iso-propanol
soaked cloth. All other parts are cleaned in several steps before installation.
All inner threads are first freed of any remaining metal particles and grease
using plenty of iso-propanol and a bottle brush or a pipe cleaner. Subsequently,
the parts are immersed in the same solvent and put into the ultrasonic bath,
preferably at slightly elevated temperature. If the solvent becomes markedly
dirty, one more cleaning step with fresh solvent is advisable.

The ceramic insulators require special attention. It is important to keep
them as clean as possible since any material deposited on the surface promotes
surface flashovers. In that respect metallic abrasions are particularly problem-
atic.

4.2 The maximum field strength at the surface

Discharges become more likely with increasing electric field strength at the
surface. It is therefore important to determine the field between two parallel
cylindrical electrodes with given radius as a function of position between the

2It has been reported by other researchers that additional electro-polishing further im-
proves the surface quality. For the present instrument, the mechanical polishing was largely
sufficient. In fact, during a HV-test a single pair of electrodes could be subjected to a voltage
of ± 30 kV across a distance of 1mm.
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Figure 4.3: Electric field strength E for parallel charged cylinders as a function of position x
for U = 40 kV, R = 2.25mm and d = 3mm. The mean electric field is 133 kV/cm as indicated
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whereR is the radius of the electrodes and d is their separation. The position x is
equal to the distance from the surface of the left electrode as defined in Fig. 4.3.
The mean value of the electric field strength is given by Emean = |U | /d where
U is the potential difference between both electrode surfaces. In Fig. 4.3 the
function E(x) is plotted for the present case with U = 40 kV, R = 2.25 mm and
d = 3 mm; the mean field strength of 133 kV/cm is indicated by the horizontal
line. The maximum field strength at the surface is 162 kV/cm. With increasing
electrode radius (at constant d) the curve E(x) becomes flatter and approaches
the line E(x) = Emean.

In the real electrode configuration every charged pair of electrodes has two
grounded pairs as neighbors at a distance of 3.75 mm which in principle must
be taken into account as well. Furthermore, every electrode terminates with a
spherical endcap and there the maximum field strength is higher because of the
additional curvature at the transition between the cylinder and half-sphere.

4.3 Vacuum

The main vacuum chamber which houses the decelerator is separated from the
source chamber where the molecular beam is created. The connection between
both chambers is provided by a skimmer with a 2 mm diameter opening. It
would be very inconvenient if regular maintenance of the beam source would
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always require a venting of the whole apparatus. In our setup therefore, the
source chamber can be isolated from the main chamber with the help of specially
designed gate-valve [67] so that both chambers can be vented independently.

The main chamber is pumped by two magnetically levitated turbo molecular
pumps (TMU 1600M P, Pfeiffer Vacuum GmbH ) each backed by a membrane
fore-pump (MVP 055-3C, Pfeiffer Vacuum GmbH ). The membrane pumps are
highly durable and able to run for several years without maintenance. For the
source chamber the same type of turbo pump is used but here the membrane
fore-pump is specifically adapted to pump corrosive gases which are often used
in experiments. If such gases are to be pumped, it is advisable to reduce their
residence time inside the apparatus. To that end, an inert gas (usually nitrogen)
is introduced via a special leak-valve, which is connected directly to the turbo
pump, to establish a higher gas flow through the fore-vacuum system.

The pressure is monitored at several positions by cold cathode gauges.
Gauges based on hot cathodes (e.g. Bayard-Alpert ionization gauges) are not
suitable because the emitted electrons can induce discharges – unless a suitable
shielding is installed. Without the gas load of the molecular beam, the vacuum
in the main chamber is in the low 10−8 mbar range without any bake-out.

During operation, the molecular beam valve introduces pulses of gas into
the source chamber, usually at a rate of 10 Hz. Only the central part of the so-
created beam passes the skimmer and propagates directly into the main cham-
ber, the remaining gas gives rise to a background pressure in the source chamber
and a flow of this background gas through the skimmer into the main chamber.
The pressure in the main chamber rises by at least an order of magnitude after
the molecular beam valve is switched on. Currently there is no need to further
improve the situation by an additional differential pumping stage behind the
skimmer.

4.4 High voltage conditioning and testing

Before the decelerator can be put into operation, the whole system is subjected
to a DC high-voltage testing and conditioning procedure to make sure that
the break-down voltage lies well above the voltage which is applied during nor-
mal operation. In the present instrument the maximal operating voltages are
± 20 kV, i.e. 40 kV across a minimum distance of 3 mm. During the condition-
ing procedure small discharges may occur which, in the favorable case, do not
cause any damage but rather improve the quality of the surface so that no fur-
ther discharges occur at the given voltage. In the less favorable case, a constant
electrical current remains after a discharge and the part which could not hold
the voltage has to be located and replaced or repolished.

Often it is not so clear what has actually triggered a sparkover across the
vacuum gap, but commonly cited reasons are surface defects or adsorbed mate-
rials (“dirt”). If the insulators are the limiting factor, the mechanism is different
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again. A useful overview about these problems is given in [65].

All field configurations which are planned to occur during normal operation
need to be tested. Furthermore, a certain safety margin should be allowed for:
here the voltage is raised to ± 23 kV during conditioning, while the highest
switched voltage used in the experiment is only ± 20 kV. It is necessary to
apply the voltage with the same polarity on the electrodes during conditioning
as during normal operation. However, it can be beneficial to test from the
beginning whether the systems can hold the voltage in both polarities. If a
serious sparkover has caused irreversible damage to the electrodes and a lowering
of the break-down voltage, the chance is high that the system can still hold the
voltage after switching the polarity. In this machine, a discharge occured once
and severely lowered the break-down voltage. After switching the polarities, the
ongoing experiments could be resumed without opening the instrument. Later
on the faulty electrodes were located and repolished.

4.4.1 The conditioning procedure

To condition the system, a HV-power supply of positive polarity is connected
with the desired electrodes via a 300 MΩ resistor and an ampere meter; the
HV-power supply of negative polarity is connected in the same way. Since the
current on the negative and the positive polarity can be monitored indepen-
dently, it is possible to determine whether a sparkover occurs among charged
HV-electrodes or between a charged component and any other grounded com-
ponent of the system. The resistor is in place to limit the current in the case of
a sparkover. The vacuum conditions are monitored by cold cathode gauges.

The conditioning proceeds as follows. At first, the voltage is raised slowly but
steadily to ±5 kV. Subsequently it is raised in increments of |ΔU | ≈ 1 kV per
minute. The process is slowed down a bit as the absolute voltage approaches
the maximum. The rationale behind this procedure is that a sparkover, if
it occurs, should happen at the lowest possible voltage (often the sparkover
occurs with some delay after the voltage was raised). If a sparkover occurs, it
is usually accompanied by a short increase in the pressure; if no such increase
can be detected the chance is high that the discharge actually involved parts
somewhere outside the vacuum chamber – a common problem especially if the
humidity of the air is high.

In the present instrument, only very few discharges occured during the ini-
tial conditioning procedure which means the electrodes were well polished and
clean. If the vacuum chamber is vented, and especially if the installed parts are
exposed to ambient air, it is necessary to repeat the HV-testing and condition-
ing procedure. Depending on the degree of exposure, the voltage can be raised
somwewhat more quickly as compared to the initial conditioning run.
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Figure 4.4: HV pulses on either the even or odd numbered electrode pairs for the guiding of
molecules. If the molecules are decelerated or accelerated the time Δt increases or decreases
with time, respectively. If desired, one may switch between high voltage and a small bias
voltage (below 1 kV) instead of ground potential (0V).

4.5 Safety measures

All electrical components which are on high voltage and outside the vacuum
need to be properly insulated. Permanent connections between cables and other
components like resistors should be casted in synthetic resin to inhibit corona
discharges or sparkovers to other components. Sharp tips of conductive mate-
rial must not occur anywhere. When soldering, a seemingly excessive amount
of solder should be used to achieve a smooth and nicely rounded off connec-
tion. All insulating surfaces need to be properly cleaned to reduce the surface
conductivity.

A device which is of central importance is the interlock unit, it automatically
disables the power supplies and stops the HV-switches if a serious system fault
occurs. In the present instrument, the interlock unit monitors the pressure
of the chambers and of the fore-vacuum system. Faults reported by the HV-
switches are also monitored. In this way it is possible to avert or at least
reduce the chance of a complete destruction of the apparatus by a gas discharge
which would occur after uncontrolled venting of the system during operation. If
discharges happen to occur during seemingly normal operation, they are usually
also registered because of the accompanying rise in pressure. Therefore it is
advisable to set the threshold for the maximally allowed pressure as low as
possible.

4.6 High voltage switching

4.6.1 Basic requirements

For the present deceleration machine, a potential of ± 20 kV has to be switched
rapidly between ground or bias and high voltage. If molecules are guided, the
pulses are of constant duration Δt as shown in Fig. 4.4; if molecules with a
mean forward velocity of e.g. 400 m/s are to be guided through the decelerator,
then Δt = (0.00825/400) s = 20.6μs. If the s = 1 mode of operation is used,
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each module has to be charged about 100 times, which means that every switch
needs to switch on and off 50 times. In order to supply the required charge
during a sequence of high voltage pules (a burst sequence) a buffer capacitor
must be used. As the experiment typically runs at 10 Hz, there is enough time
available between the bursts for the capacitors to be reloaded. The short rise
and fall times of less than 100 ns can be realized with commercial high voltage
transistor switches (see below).

4.6.2 Components and design

Shown in Fig. 4.5 is the circuit diagram of the basic electronic assembly that
is used to run a single module of the deceleration machine. In the center of the
figure, the decelerator electrodes are sketched. These are connected via their
support rods and via the vacuum feedthroughs (compare Fig. 4.1) to the high
voltage switches. The used switches are commercial transistor based switches
(HTS 301-03-GSM, Behlke Electronic GmbH ) which can be operated at a max-
imum absolute voltage of 30 kV. The same type of switch is used for both
polarities. For voltages up to 20 kV it is sufficient to cool the switches by air-
flow alone – for higher voltages an oil cooling system would be required. In the
present instrument, every switch is positioned directly below a small fan.

The driver control unit supplies the switch with the required +5 VDC oper-
ating voltage and with a control input signal: a +10 V trigger pulse for positive
polarity, an inverted pulse for negative polarity. Fault signals from the switch
are transmitted by a 50 Ω-driver to the system and control unit. A fault signal
occurs in the case of overfrequency, thermal overload or incorrect voltage sup-
ply. In these three cases3 the switch connects the electrodes with the ground or
bias potential. If the +5 VDC supply is cut off, the electrodes become isolated
(floating). To ensure a short rise time, the high voltage power supply is not di-
rectly connected to the switch, but used to constantly load a 500 nF high voltage
buffer capacitor (30 kV, PPR300-504 HiVolt Capacitors Ltd.). The capacitive
load behind a single switch is approximately 100 pF. If during a typical burst
one switch has to switch e.g. 50 times, a charge of about 50× 100 pF×20 kV is
drawn from the capacitor. If the recharging of the capacitor during the burst
is negligible, a total voltage drop of 1% or 200 V results. To avoid ringing, two
330 Ω resistors are placed in series: one resistor is placed before the input and
one behind the output of the HV-switch (R1 and R2, see detail of Fig. 4.5).

The system and control unit supplies 24 V for the driver control unit and
transmits the trigger signals from the burst unit. This unit also interprets the
fault signals from all 4 switches. In case of a fault, the +5 V at the fault output,

3One should not assume that these are all possible faults which can occur. It once happened
that under normal operating conditions a single switch suffered from a strong discharge right
through its own insulation. The event didn’t result in an error signal at the fault output,
however, the accompanying apocalyptic noise was easy to notice and the system was then
shut down by hand.
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Figure 4.5: The HV circuitry and auxiliary instrumentation for the deceleration machine.

which is connected to the interlock unit, drops to 0 V. The interlock unit then
shuts down the HV power supplies and it also brings the burst unit to a halt.

As may be seen from Fig. 4.6, the switch units are mounted directly onto the
top of the vacuum chamber. A metal housing encloses each unit and provides
shielding against leakage of high frequency radiation originating from the fast
switching of the high voltages. Onto each housing, 10 fans are mounted to
establish a steady air flow for the cooling of the switches and the resistors.
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Figure 4.6: Top left: a switch unit corresponding to the circuit diagram of Fig. 4.5. Top
right: a single unit during its installation on the vacuum chamber. Bottom: details for a
single unit. For HV connections, (red) silicone cladded cables without shielding are used. All
other cables are shielded, except those leading to the central ground potential point.



Chapter 5

Operation of a Stark decelerator
with optimum acceptance

With a Stark decelerator, beams of neutral polar molecules can be accelerated,
guided at a constant velocity, or decelerated. The effectiveness of this process is
determined by the 6D volume in phase space from which molecules are accepted
by the Stark decelerator. Couplings between the longitudinal and transverse
motion of the molecules in the decelerator can reduce this acceptance. These
couplings are nearly absent when the decelerator operates such that only every
third electric field stage is used for deceleration, while extra transverse focusing
is provided by the intermediate stages. For many applications, the acceptance
of a Stark decelerator in this so-called s = 3 mode significantly exceeds that of a
decelerator in the conventionally used (s = 1) mode. This has been experimen-
tally verified by passing a beam of OH radicals through a 2.6 meter long Stark
decelerator. The experiments are in quantitative agreement with the results of
trajectory calculations, and can qualitatively be explained with a simple model
for the 6D acceptance. These results imply that the 6D acceptance of a Stark
decelerator in the s = 3 mode of operation approaches the optimum value, i.e.
the value that is obtained when any couplings are neglected.

Based on: Operation of a Stark decelerator with optimum acceptance
L. Scharfenberg, H. Haak, G. Meijer and S.Y.T. van de Meerakker
Phys. Rev. A 79, 023410, (2009)

59
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5.1 Introduction

Since its introduction in 1999, the method of Stark deceleration has developed
into an established method for taming molecular beams [5, 3]. The Stark de-
celeration technique combines molecular beam technology with concepts from
charged particle accelerator physics. In essence, a part of a beam of neutral
molecules is selected and decelerated utilizing the force that polar molecules ex-
perience in inhomogeneous electric fields. A Stark decelerator produces bunches
of state-selected molecules with a computer-controlled velocity and with narrow
velocity distributions. These beams are ideally suited for a variety of experi-
ments in which the velocity of the molecules is an important parameter. Appli-
cations include the use of slow molecular beams to enhance the interaction time
in spectroscopic experiments [68, 69] and scattering studies as a function of the
collision energy [18]. When the molecules are decelerated to a near standstill,
they can be loaded and confined in traps [11, 6]. This allows the observation of
molecules in complete isolation for times up to several seconds, and enables the
investigation of molecular properties in great detail [13, 16, 15].

For many of these applications it is crucial that the number density of the
decelerated packets of molecules is further increased. Higher densities of decel-
erated molecules will improve the statistics in metrology experiments and can
be decisive, for instance, for the observation of (in)elastic scattering or reactive
collisions in crossed molecular beam experiments. Higher densities in traps are
also a prerequisite for the future application of cooling schemes like evaporative
cooling, needed to reach the regime of degenerate dipolar quantum gases [70].

The number density of decelerated molecules that can be reached at the exit
of the decelerator is limited by the initial phase space density in the molecular
beam and by the 6D phase space acceptance of the decelerator. The latter is de-
fined as the volume in 6D phase space – the product of the volume in real space
and in velocity space – from which stable trajectories through the decelerator
originate2. In most Stark deceleration experiments to date, molecular beams
with a low initial velocity are slowed down using decelerators with a rather
limited number of electric field stages. Hence, molecular beams are typically
released from a cooled pulsed valve using Xe or Kr as a carrier gas. The use of
Xe or Kr and the cooling of the pulsed valve strongly enhances cluster forma-
tion, however, and is generally regarded to be non-ideal for a molecular beam
expansion. Moreover, these decelerators are usually operated at large phase an-
gles. The phase angle φ0 is defined by the position of the synchronous molecule
at the moment the fields are switched [57] and determines the deceleration rate
per electric field stage. It ranges from 0◦ < φ0 < 90◦ for deceleration, while
acceleration occurs from −90◦ < φ0 < 0◦. While for increasing values of |φ0|

2More precisely, if a specific (small) volume in phase space is denoted by
(ΔxΔyΔzΔvxΔvyΔvz)i, and if all particles which originate from this volume can be de-
celerated or accelerated without being lost, then the total phase space acceptance is obtained
by summing all these volumina:

∑
i(ΔxΔyΔzΔvxΔvyΔvz)i.
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the deceleration rate gets larger, the longitudinal phase space acceptance gets
smaller.

An obvious route to higher number densities of decelerated molecules is thus
the use of seed gases of lower mass (preferably Ne or Ar) in room-temperature
expansions and the use of low phase angles in the decelerator. Together this
implies, however, that (much) longer Stark decelerators need to be constructed
to compensate for both the higher initial velocity and the lower deceleration
rate. It is not a priori clear whether one can actually transport molecules
through such long decelerators without significant losses. If only molecular
trajectories along the molecular beam axis are considered, the length of the
decelerator is inconsequential, as the deceleration process is subject to phase
stability [54, 57]. In reality the molecules in the beam have off-axis position
and velocity components, however. The transverse electric field gradients in
the decelerator drive the molecules back towards the molecular beam axis. The
resulting transverse oscillatory motion is strongly coupled to the longitudinal
(forward) motion and can result in a reduction of the 6D phase space acceptance
of the decelerator [58]. Numerical simulations indicate that this coupled motion
does not affect the overall performance of the relatively short Stark decelerators
that have been used and operated at high phase angles thus far, but that it
can severely affect the performance of longer decelerators that are operated at
low phase angles. In the ideal case, the longitudinal and transverse motions in
the Stark decelerator are completely uncoupled. This can be achieved by con-
structing decelerators with dedicated, spatially separated, elements for focusing
and deceleration [71, 72], as is common practice in charged particle accelerators
[73]. The required electrode geometries make the decelerator rather complex,
however [74, 72].

In this work we exploit that in a Stark decelerator with the original electrode
geometry, i.e., the geometry as used in reference [5], the coupling between the
longitudinal and transverse motion can be significantly reduced when the decel-
erator is operated in the so-called s = 3 mode (see [55] and chapter 3). In this
mode, only every third electric field stage is used for deceleration, while extra
transverse focusing is provided by the intermediate stages. We demonstrate and
quantify that for many applications, the acceptance of the Stark decelerator in
the s = 3 mode significantly exceeds that of a decelerator in the conventionally
used (s = 1) mode of operation. The improved performance of the s = 3 opera-
tion mode was demonstrated earlier for guiding at a constant velocity (φ0 = 0◦)
[58] and for deceleration in a relatively short decelerator at high phase angles
[72]. However, the latter experimental arrangement did not allow for a direct
comparison between the s = 1 and s = 3 modes of operation, and the advan-
tages of the s = 3 mode of operation for a wide range of parameters cannot be
inferred from these studies. Here we present experiments in which a beam of
OH radicals passes through a 2.6 meter long Stark decelerator consisting of 316
electric field stages. In this machine, the OH radicals can be detected either
after 103 or after 316 electric field stages, enabling a direct comparison between
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Figure 5.1: Scheme of the experimental setup. A pulsed beam of OH radicals is produced
via photolysis of HNO3 seeded in Xe, Kr, or Ar. The beam of OH radicals passes through
a 2.6m long Stark decelerator that consists of three modules of ∼ 100 stages each. The OH
radicals can be state-selectively detected using a laser induced fluorescence scheme at the
end of the decelerator, and in the region between the first two modules. In the top inset, a
photograph of a decelerator module is shown.

the s = 1 and s = 3 modes of operation under otherwise identical conditions, in
particular using the same phase angle φ0. This direct comparison allows us to
draw firm conclusions on the usefulness of the s = 3 mode of operation for a wide
range of experimental parameters. The experimental results are in quantitative
agreement with the results of trajectory calculations, and can qualitatively be
explained with a simple model for the 6D acceptance.

5.2 Experiment

5.2.1 Experimental setup

The experimental setup is schematically shown in Fig. 5.1. A pulsed beam of
OH radicals is produced via ArF-laser (193 nm) dissociation of HNO3 seeded
in an inert gas. The dissociation is carried out inside a quartz capillary that is
mounted on the orifice of a pulsed valve (General Valve, Series 99). The exper-
iment runs at a repetition frequency of 10 Hz. Details about the production of
OH radicals can be found on p. 24.

During the supersonic expansion, the majority of the OH radicals cool to
the lowest rotational and vibrational level of the X 2Π3/2 spin-orbit manifold
of the electronic ground state. This population is equally distributed over the
two Λ-doublet components of the J = 3/2 level. Only OH molecules in the
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upper Λ-doublet component are low-field-seeking, and are of relevance to the
experiments discussed here. This component splits into an |MJ | = 1/2 and an
|MJ | = 3/2 component in an electric field (see Fig. 2.1 on p. 20). Molecules in
the |MJ | = 3/2 component experience a Stark shift that is a factor of three larger
than the Stark shift experienced by molecules in the |MJ | = 1/2 component.

After passage through a skimmer with a 2 mm diameter opening, the molec-
ular beam enters the differentially pumped decelerator chamber. The skimmer
is mounted on a compact gate valve [67], enabling the venting of the source
chamber while keeping the decelerator chamber under vacuum. The beam en-
ters the Stark decelerator 60 mm from the nozzle orifice. The Stark decelerator
consists of three modules that are mechanically and electrically decoupled from
each other. The first two modules consist of 104 electrode pairs (i.e. 103 electric
field stages) each, whereas the last module contains 109 electrode pairs. These
electrode pairs consist of two parallel 4.5 mm diameter stainless steel electrodes
that are placed symmetrically around the molecular beam axis, providing a
3 mm gap for the molecular beam to pass through. Adjacent electrode pairs are
alternately horizontally and vertically oriented, such that a 3× 3 mm2 opening
area remains for the molecular beam. The electrodes of all horizontal (vertical)
pairs within each module are electrically connected and switched simultaneously
to high voltage. The center-to-center distance (L) of electrodes of adjacent pairs
is 8.25 mm, and the three modules are carefully aligned to also maintain this
distance between the electrode pairs of adjacent modules. The first and last
eight electrode pairs of each module are mounted on conically shaped rods, as
shown enlarged in Fig. 5.1 and in Fig. 4.1 on p. 49. This design provides excel-
lent optical access for fluorescence collection in between adjacent decelerator
modules. It also allows the exits of two Stark decelerators in a crossed beam
arrangement to be brought close together.

The electric field in the decelerator is switched back and forth between two
different configurations, that are schematically shown in Fig. 5.2. In each con-
figuration, the opposing electrodes of every other electrode pair are at ±20 kV,
while the remaining electrodes are grounded. Switching between the two con-
figurations is performed using fast air-cooled high voltage switches (see p. 55).
To minimize the power dissipation per switch, each module is connected to four
separate high voltage switches. Each switch is connected to its power supply via
a 0.5μF capacitor bank, limiting the voltage drop during a deceleration cycle
to less than 5%. For the conventional mode of operation of a Stark decelerator,
the s = 1 mode, the voltages are switched every time the molecules approach
the pair of electrodes that are on high voltage. In this case, the molecules
are simultaneously decelerated and transversally focussed in every electric field
stage. When the decelerator is operated in the s = 3 mode, the voltages are
switched only after every third stage. In this case, only every third stage is
used for combined deceleration and transverse focusing, while the intermediate
stages provide additional focusing.

The OH radicals can be state-selectively detected using an off-resonant Laser
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Figure 5.2: Schematic representation of the two electric field configurations that are used in
the deceleration process, together with the potential energy W for an OH molecule along the
molecular beam axis. By switching between the two field configurations when the molecules
are at the positions indicated by the vertical dashed lines, an amount of kinetic energy ΔW
is removed from the molecules. In the conventional (s = 1) mode of operation, each electric
field stage is used simultaneously for deceleration (D) and focusing in alternating transverse
directions (Fx,Fy). In the s = 3 mode of operation, only every third stage is used for com-
bined deceleration and transverse focusing, while the intermediate stages provide additional
focusing.

Induced Fluorescence (LIF) detection scheme at two different positions along
the beam line. The first detection zone is located between the first two modules
and the second one is 18 mm downstream from the last module, enabling the
detection of OH radicals after 103 or 316 electric field stages, respectively. The
282 nm radiation of a pulsed dye laser crosses the molecular beam in either one
of the detection regions at right angles, and saturates the (spectroscopically not
resolved) Q21(1) and Q1(1) transitions of the A 2Σ+, v = 1 ← X 2Π3/2, v = 0
band. The fluorescence occurs predominantly on the A 2Σ+, v = 1→ X 2Π, v =
1 transition around 313 nm. Stray light from the laser is minimized by passing
the laser beam through light baffles between the entrance and exit windows,
and by using optical filters which are located in front of the photomultiplier
tube (PMT).

In the experiments the seed gases Xe, Kr, or Ar are used. The velocity
distribution can be determined very accurately by measuring a time-of-flight
profile when the decelerator does not switch but is operated in a static mode.
In this mode, a static high voltage is applied to the horizontal and vertical elec-
trodes simultaneously with the effect that low field seeking molecules are only
transversally focused, while their longitudinal velocity remains unchanged. The
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Figure 5.3: Time-of-flight profiles of OH radicals, recorded at the exit of the 316 stage
Stark decelerator (black curves). The Stark decelerator is operated in the s = 3 mode, and
accelerates (curve a), guides (curve b), or decelerates (curve c) a packet of OH radicals with
an initial velocity of 350m/s. The TOF profiles that result from simulations of the experiment
are shown underneath the experimental profiles (red curves).

packet of OH radicals is quite short initially and therefore one may directly infer
the velocity distribution from the known total distance (≈ 2.7 m, see Fig. 5.1)
and the measured time-of-flight profile. The mean velocities for the beam are
350 m/s, 430 m/s, and 590 m/s for Xe, Kr, and Ar, respectively, with a full
width at half maximum (FWHM) velocity spread of about 15 − 20 % for all
seed gases.

In Fig. 5.3 the intensity of the LIF signal of a beam of OH (J = 3/2)
radicals seeded in Xe is shown as a function of time after firing the dissociation
laser using different deceleration sequences.

The OH radicals are detected using the second LIF detection unit, and the
Stark decelerator is operated in the s = 3 mode. In curve (b) the TOF profile
is shown that is obtained when the decelerator is operated at a phase angle of
φ0 = 0◦, corresponding to guiding a packet of OH radicals at a constant velocity.
A packet of OH radicals with a mean velocity of 350 m/s is selected, transported
through the 2.6 m long decelerator, and arrives in the detection region some
7.6 ms after its production, with a FWHM of the arrival time distribution of
25μs. The measurements shown in curve (a) are obtained with the decelerator
operating at a phase angle of φ0 = −50◦, accelerating a packet of OH radicals
from an initial velocity of 350 m/s to a final velocity of 544 m/s. There is no
signature of the part of the molecular beam that is not accelerated. This is
also expected as the electrodes of the decelerator are switched to ground when
the accelerated packet exits the decelerator, about 1.5 ms before the remainder
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of the beam pulse would arrive in the detection region. Curve (c) shows the
TOF profile that is obtained when the decelerator is operated at a phase angle
of φ0 = 29◦ to decelerate a packet of OH radicals from 350 m/s to 150 m/s.
The decelerated molecules exit the decelerator about 10.7 ms after production,
about 3 ms after the arrival of the undecelerated part of the beam.

The experimental TOF profiles are in excellent agreement with the profiles
that result from three dimensional trajectory simulations of the experiment that
are shown underneath the experimental profiles. In these and in all subsequent
simulations, the individual contributions of the |MJ | = 3/2 and the |MJ | = 1/2
components to the LIF signal intensity are taken into account.

5.2.2 Comparing the s = 1 and s = 3 modes of operation

In Fig. 5.4 two series of TOF profiles are shown that allow a direct comparison
between the performance of a Stark decelerator in the s = 1 and s = 3 operation
mode under otherwise identical conditions. In both series, the Stark decelerator
is programmed to accelerate, guide or decelerate a packet of OH radicals with
a mean initial velocity of 350 m/s to a final velocity that is in the 70− 600 m/s
range (−65◦ < φ0 < 32◦). Only that part of each TOF profile that contains
the signature of the packet at the final velocity is shown. In the left and right
panels the series of profiles are shown that are obtained when the decelerator
is operated using the s = 1 and the s = 3 mode, detecting the OH radicals
after 103 and 316 stages, respectively. The (almost) factor of three difference
in the number of stages results in (almost) identical phase angles for the Stark
decelerator to produce a given final velocity in both series. The phase angle that
is used, and the final velocity of the packet, is indicated for selected profiles in
both panels. To enable a direct comparison between the two modes of operation,
both series are plotted on the same vertical scale. For this, the relative detection
efficiency in the two LIF zones is experimentally determined by measuring OH
radicals at both detection locations when the Stark decelerator is operated at
s = 3, φ0 = 0◦. The overall scaling factor that is thus determined is correct if
we assume that for the s = 3, φ0 = 0◦ mode of operation the number density of
the packet of OH radicals does not decline when progressing from the first to
the second LIF zone, and that the relative detection efficiency is independent
of the velocity of the OH radicals. The validity of both assumptions is checked
experimentally and verified by numerical simulations.

When the decelerator is operated using s = 1, the signal intensity for φ0 =
0◦ is about a factor of two-and-a-half lower than the signal intensity for s =
3, φ0 = 0◦. The signal intensity for the s = 1 appears rather constant for the
different values of φ0 that are used. For the s = 3 mode of operation it is
observed that the signal intensity for φ0 �= 0◦ gradually reduces for increasing
absolute values of the phase angle, following the reduced acceptance of the
decelerator. For final velocities below 150 m/s, indicated by the dashed line in
Fig. 5.4, a sharp reduction of the signal intensity is observed even though the
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Figure 5.4: Time-of-flight profiles of OH radicals that exit the Stark decelerator using the
s = 1 and s = 3 mode of operation. The OH radicals are detected after 103 and after 316
electric field stages for s = 1 and s = 3, respectively. The measurements are recorded under
otherwise identical conditions, and are shown on the same vertical scale. The beam of OH
radicals has a mean initial velocity of 350m/s. The mean final velocity of the molecules and
the phase angle used, are indicated for selected profiles.

change in phase angle is only very small. This reduction is due to excessive
transverse focusing for low velocities, and will be discussed in more detail in
section 5.2.4. The signal intensities for the s = 1 and s = 3 modes of operation
are about equal for φ0 = −65◦. Both series of TOF profiles are in excellent
agreement with profiles that result from simulations of the experiment that are
shown underneath the experimental profiles (the low field seeking |MJ | = 1/2
component only contributes to the TOF profiles for −30◦ ≤ φ0 ≤ 30◦).

The gain of the s = 3 mode with respect to the s = 1 mode of operation,
defined as the ratio of the maximum signal intensities of the decelerated packets
at a given final velocity, is shown as a function of the final velocity in Fig. 5.5.
For this, the data presented in Fig. 5.4 are used. For selected velocities, the
phase angle that is used for s = 3 operation is indicated; the phase angle
that is used for s = 1 operation differs only slightly from this value. It is
seen that for φ0 = 0◦, i.e. at a final velocity of 350 m/s, the gain is 2.4,
consistent with previous studies [55, 72]. When the beam is accelerated to
450 m/s (φ0 = −21.7◦), a gain up to 3 is observed. For higher velocities the
gain gradually reduces and reaches 1.2 for 600 m/s (φ0 = −63.2◦). A gain up to
4.2 is observed when the beam is decelerated to 200 m/s (φ0 = 22.3◦). Below
150 m/s (φ0 = 27.0◦), the gain drops fast and reaches 1.0 for a final velocity of
about 120 m/s.
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Figure 5.5: The ratio of the maximum signal intensities (squares, connected by straight line
segments) for s = 3 operation versus s = 1 operation as a function of the final velocity. The
two additional data points (stars) apply to a bimodal operation of the decelerator (see text
for details).

5.2.3 The s = 1 mode of operation at low phase angles

In this section we want to address the question whether, for a fixed initial and
final velocity, the number density of decelerated molecules can also be increased
by using lower phase angles in the s = 1 mode of operation. For this, we compare
the deceleration with 103 stages at a certain phase-angle to the deceleration with
316 stages at about one-third of this phase-angle. The data for the deceleration
at the s = 1 mode with 103 deceleration stages, have already been shown and
discussed in the previous section. The complimentary data for the deceleration
at the s = 1 mode with 316 deceleration stages have been measured as well;
a beam of OH radicals with the same initial velocity of 350 m/s is decelerated
or accelerated to the same final velocities between 70 m/s and 600 m/s. The
phase-angles used for these measurements are very low, ranging from −21.7◦ to
10.9◦. Again, the signal intensity that is observed with guiding at the s = 3
mode, is used to calibrate the measurements with 316 stages relative to the ones
with 103 stages.

For the operation in the s = 1 mode, the gain in using 316 stages compared
to using 103 stages is shown as a function of the final velocity in the lower
curve in Fig. 5.6. This gain is determined as the ratio of the signal intensities
of the decelerated packets at a given final velocity, and lies between 0.5 and
0.7 throughout. Since this gain stays smaller than one in the considered ve-
locity range, it is evident that for the chosen parameters the number density
of decelerated molecules can not be increased by the use of lower phase-angles.
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This perhaps counterintuitive finding is explained by the presence of inherent
instabilities in the s = 1 mode, which more strongly manifest themselves during
the increased time spent in the decelerator.

We can now also address the question whether, given a Stark decelerator
of a certain length, the maximum number density of decelerated molecules is
obtained using the s = 3 mode at a certain phase-angle or using the s = 1
mode at about one-third of this phase-angle. For the 316 stage decelerator, the
resulting gain of the s = 3 versus the s = 1 mode directly follows from the
curve shown in Fig. 5.5 and the lower curve in Fig. 5.6, and is shown as the
upper curve in the Fig. 5.6. Operation on the s = 3 mode is seen to be about a
factor five better than on the s = 1 mode, provided the final velocity is larger
than the threshold velocity.

5.2.4 Excessive focusing at low velocities

The rather abrupt decrease in the number density of decelerated molecules
for velocities below 150 m/s as shown in the right hand panel of Fig. 5.4 can
qualitatively be understood as follows. During their flight through the decel-
erator, molecules are alternatingly focused in each transverse direction. When
the focusing force acts in one transverse direction, molecules experience to a
good approximation no focusing or de-focusing force in the orthogonal trans-
verse direction (the molecules actually experience a small defocusing force in the
orthogonal direction). As long as the characteristic wavelength λ of the trans-
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verse oscillatory motion is much larger than the periodicity of the transverse
focusing force, molecules will follow stable trajectories through the decelera-
tor. The wavelength λ is given by λ = 〈vz〉 2π/Ωy, where 〈vz〉 and Ωy are
the mean longitudinal velocity and the mean transverse oscillation frequency
of the packet of molecules, respectively. The periodicity of the focusing force
is given by 2sL, where L is the center-to-center distance of adjacent electrode
pairs. For high velocities, therefore, stable trajectories are expected. For low
velocities, however, λ becomes ever closer to 2sL, and molecules will get more
tightly transversely focused. The molecular trajectories will then exhibit ever
larger deviations from the molecular beam axis, and the molecules will eventu-
ally crash onto the electrodes. For a given electric field distribution in a Stark
decelerator, the resulting loss of molecules is thus expected to strongly depend
on the longitudinal velocity of the molecules.

In Fig. 5.7, the maximum signal intensity of decelerated packets of OH
radicals is shown at the exit of the 316 stage decelerator, operating in the s = 3
mode. Beams of OH radicals with three different initial velocities have been
used, and the signal is shown as a function of the final velocity (upper panel) or
as a function of the phase-angle (lower panel). When Xe or Kr are used as carrier
gas, the Stark decelerator is programmed to select a packet of molecules with
an initial velocity that is identical to the mean velocity of the molecular beam,
i.e. 350 m/s or 430 m/s, respectively. For Ar, a velocity of 520 m/s is selected
from the slow tail of the velocity distribution of the beam. The phase angle φ0
is varied to decelerate the selected packet of molecules to final velocities down
to 100 m/s. The series of measurements for each seed gas are normalized to the
data point that corresponds to φ0 = 0◦. The thresholds are found at a velocity
of about 150 m/s in each series, and are indicated by the vertical dashed lines.
This velocity is reached when φ0 = 27◦, φ0 = 43◦, and φ0 = 67◦ for Xe, Kr,
and Ar seeded beams, respectively. The value of the threshold velocity appears
independent from the phase angle φ0 of the decelerator, consistent with the
qualitative picture described above. The intensities that result from numerical
trajectory simulations of the experiments are shown as solid lines in Fig. 5.7.
Excellent agreement is obtained with the experiments and in particular the
threshold behavior of the signal intensity is reproduced well.

The threshold velocity below which losses due to excessive transverse focus-
ing occurs, can be approximately determined as described in section 3.4 (pp. 38).
The model described there predicts that no stable trajectories exist in the s = 3
mode of operation when λ ≤ (2.6 · 2sL). For the present Stark decelerator,
operating on s = 3, the periodicity of the transverse focusing force 2sL is equal
to 49.5 mm. The mean transverse oscillation frequency Ωy follows from the
time-averaged transverse force (see the Appendix on p. 76). For s = 3, Ωy is
rather independent from the phase angle φ0, and a threshold velocity of about
92 m/s is found, consistent with the experimental findings. In the s = 1 mode,
there is no clearly defined threshold velocity, but similar losses due to excessive
transverse focusing occur for velocities below 30 m/s.
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Figure 5.7: Maximum signal intensity of decelerated packets of OH radicals as a function
of the final velocity (left panel) and as a function of φ0 (right panel), using a 316 stage
decelerator operating at the s = 3 mode. Beams of OH radicals with three different initial
velocities, produced by seeding in Xe, Kr, or Ar, have been used. The intensities that are
obtained from numerical simulations of the experiment are shown as solid lines.

The rather high threshold velocity for s = 3 does not severely affect ex-
periments in which Stark-decelerated beams are used for high resolution spec-
troscopy and collision studies, or in which the decelerated beams are injected
into molecular storage rings or synchrotrons. It does affect, however, experi-
ments in which lower final velocities are required, e.g. trap loading experiments.
There are several approaches to yet produce decelerated packets at a velocity
below the threshold velocity with decelerators that are intended to operate at
s = 3. An electric field geometry for the last section of the decelerator can be
designed that permits a gradual reduction of the transverse focusing strength.
This can be achieved by a dedicated electrode geometry and/or by a sequential
reduction of the voltage that is applied to the electrodes. It is noted that similar
strategies have already been implemented in trapping experiments using deceler-
ators in the s = 1 mode [75]. An alternative approach is to develop an electrode
geometry for the last segment of the decelerator that allows the confinement
of molecules in a genuine traveling potential well. When the velocity of this
well is gradually reduced, the packet of molecules can be transferred from the
threshold velocity to lower velocities without loss. The trapping of molecules in
genuine traveling potential wells has already been demonstrated using optical
fields [76] and using electric fields above a micro-structured electrode array [7].

Within the possibilities of the present experimental arrangement, deceler-
ated packets with low final velocities can be produced by changing over from
the s = 3 mode to the s = 1 mode before the threshold velocity has been
reached. The number of molecules that exit the decelerator at velocities below
the threshold velocity strongly depends on the details of the change-over, i.e.,
the velocity after which s = 1 operation is used, and the phase angles that are
used before and after the transition. The influence of the choice of these param-
eters on the number of molecules that exit the decelerator has experimentally
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been studied, decelerating a packet of OH radicals with an initial velocity of
350 m/s. The velocity and position of the packet in the decelerator at which
the change-over from s = 3 to s = 1 is made is systematically varied for the
target (final) velocities of 100 m/s and 50 m/s. For both velocities the maximum
signal intensity is observed when the transition to s = 1 is made when the first
∼ 300 stages are operated at s = 3, φ0 ∼ 26◦ and when the molecular packet
has reached a velocity of 170 m/s. The remaining 12 and 15 stages are then
used at s = 1, φ0 = 43.2◦ and s = 1, φ0 = 48.3◦ to produce the final velocities
of 100 m/s and 50 m/s, respectively. The gain of this bimodal operation of the
Stark decelerator with respect to s = 1 operation is shown in Fig. 5.5 as separate
data points. It is observed that for a final velocity of 100 m/s the gain is about a
factor of 2, and is close to one for a final velocity of 50 m/s. These measurements
demonstrate that low final velocities can be produced with Stark decelerators
that are designed to operate at s = 3, although the efficiency approaches the
efficiency of conventional Stark decelerators when the target velocity is much
lower than the s = 3 threshold velocity.

5.3 Numerical trajectory calculations

The measurements presented thus far demonstrate the performance of the s = 1
and s = 3 modes of operation of Stark decelerators in the (limited) range of
parameters that is accessible to the experiment. In this section, both modes
of operation are studied in a wider parameter range using numerical trajectory
simulations. The electrode geometry that is used in the simulations is the same
as used in the experiments, but the decelerator is allowed to have an arbitrary
length.

Trajectories of OH radicals through the decelerator are numerically calcu-
lated as a function of the phase angle φ0 for both the s = 1 and the s = 3
mode of operation. In these simulations, a large number of molecules is homo-
geneously distributed at the entrance of the Stark decelerator over a block in 6D
phase space. This block has a dimension of 20 mm × 90 m/s in the longitudinal
direction, and a dimension of 4 mm × 25 m/s in each transverse direction. The
molecular distribution has a mean forward velocity of 550 m/s at the entrance of
the decelerator, and is decelerated or accelerated to a final velocity of 180 m/s or
755 m/s, corresponding to a change in the kinetic energy of 90%. These values
are arbitrary and can be chosen without loss of generality, as the phase-space
acceptance of a Stark decelerator is in principle independent of the absolute ini-
tial and final velocity. The rather high final velocity of 180 m/s for deceleration
is chosen to stay away from the velocities for which excessive transverse focusing
occurs, as discussed in section 5.2.4. Decelerators containing 781, 388, 256, 190,
151, 126, 111, 102, and 99 electric field stages are simulated that are operated
using |φ0| = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, and 90◦, respectively. These
numbers apply to s = 1; for simulations that apply to s = 3 the number of
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stages is three times as large. For both values of s, additional simulations were
performed for φ0 = 0◦ using a 2500 stages long decelerator. In each simulation,
a sufficient number (5,000,000 for s = 1 and 500,000 for s = 3) of molecules is
generated to obtain good statistics. The number of molecules that are within
the phase-space distributions of the decelerated packet are counted, and the
corresponding 6D volume in phase-space is calculated. In the lower part of
Fig. 5.8, the simulated longitudinal phase-space distributions for φ0 = −10◦

are shown both for s = 1 and for s = 3, together with the separatrices that
follow from the 1D model for phase stability [55]. These distributions are rep-
resentative for the distributions at low phase angles in general, and are shown
here to exemplify the simulation method only. The phase-space distribution
for φ0 = −10◦, s = 1 is highly structured with alternating stable and unstable
regions. In the distribution for φ0 = −10◦, s = 3 no clear structure is present.
The area within the longitudinal separatrix – the longitudinal acceptance – is
a factor

√
3 smaller for s = 3 than for s = 1 [55].

In the upper panel of Fig. 5.8, the resulting simulated 6D phase-space ac-
ceptance is shown as a function of φ0 for both s = 1 and s = 3. For s = 1
the phase-space acceptance is maximum for φ0 = 0◦, and drops significantly for
φ0 �= 0◦. It has a minimum at |φ0| = 10◦, is rather constant for 20◦ ≤ |φ0| ≤ 50◦,
and drops again for |φ0| ≥ 50◦, consistent with the experiments in section 5.2.3.
Note that the Stark decelerator has a nonzero acceptance for |φ0| = 90◦, as dis-
cussed before [58]. It is interesting to note that the phase-space acceptance is
not symmetric around φ0 = 0◦. The phase-space acceptance for φ0 < 0 is larger
than the acceptance for the same positive phase-angle; molecules spend less time
in the decelerator when they are accelerated then when they are decelerated,
reducing the loss due to instabilities.

The calculated acceptance for s = 3 shows a rather different trend, and is
generally larger for smaller values of |φ0|. Although the longitudinal phase-
space acceptance for s = 3 is a factor

√
3 smaller than for s = 1, the 6D

phase-space acceptance exceeds the acceptance for s = 1 for 0◦ ≤ |φ0| ≤ 70◦.
When |φ0| = 70◦, the acceptance in both modes of operation is equal, consis-
tent with the experimental findings discussed in section 5.2.2. For |φ0| ≥ 70◦

the acceptance for s = 1 is slightly larger than the acceptance for s = 3. Al-
though less pronounced, the |φ0| dependence of the acceptance for s = 3 is again
asymmetric around φ0 = 0◦.

It is interesting to compare the calculated phase-space acceptance with the
phase-space acceptance that is expected for a Stark decelerator in which insta-
bilities are absent. From this comparison one can quantify the presence and
severeness of instabilities in the s = 1 and s = 3 mode of operation. The lon-
gitudinal phase-space acceptance of a decelerator is given by the area within
the separatrix. The equations of motion that govern the transverse trajectories
of molecules through the decelerator contain time-dependent forces, for which
in general no simple analytical solutions exist. These equations, together with
the equation for the longitudinal motion, can be used to estimate the volume
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Figure 5.8: 6D phase space acceptance of a decelerator as a function of the phase-angle φ0,
resulting from numerical trajectory calculations (squares connected with solid lines for s = 3;
triangles connected with dashed lines for s = 1), together with the model predictions (solid
line for s = 3; dashed line for s = 1). In the inset, the s = 1 data is shown enlarged. In
the lower part, the longitudinal phase-space distributions that result from the simulations are
shown for φ0 = −10◦, both for s = 1 and s = 3.

in phase space from which stable trajectories can originate. This procedure is
outlined in detail in the Appendix to this chapter on p. 76, and the resulting 6D
phase-space acceptance is shown as a function of φ0 for both s = 1 and s = 3 in
Fig. 5.8. It is seen that for s = 1 the phase-space acceptance predicted by the
model deviates significantly from the calculated acceptance; for |φ0| ≤ 20◦ the
deviation is at least an order of magnitude. For larger angles the discrepancy
gets less, and both curves cross around |φ0| = 70◦. From this comparison it is
once more evident that instabilities are present when the decelerator operates
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in the s = 1 mode [58], and that these instabilities severely limit the obtainable
acceptance.

For the s = 3 mode, the acceptance predicted by the model reproduces
the calculated acceptance much better. The agreement for |φ0| > 40◦ is good,
and the deviations are in the 5-20% range for 20◦ ≤ |φ0| ≤ 40◦ and about
30 % for |φ0| < 20◦. These minor deviations can be taken as an indication for
the presence of small instable regions, as have indeed been observed close to
the separatrix for φ0 = 0◦ [58]. The overall agreement, however, demonstrates
that the 6D acceptance of a Stark decelerator in the s = 3 mode of operation
approaches the optimum value, i.e. the value that is predicted from the model
that neglects any instabilities.

5.4 Conclusions

The studies presented in this chapter address the question how one can get the
highest number density of decelerated molecules with a certain velocity at the
exit of a decelerator. Rather than discussing a variety of electrode geometries
that one might use to decelerate a beam of polar molecules, these studies focus
on a Stark decelerator in the conventional, experimentally proven design. This
decelerator can run at different phase-angles and operate in different modes,
and can be built with a variable length. The number density of accelerated and
decelerated OH radicals has been experimentally studied as a function of these
three parameters. Quantitative comparisons of these number densities, obtained
using Stark decelerators with different parameter sets, have been made. The
measurements have been substantiated by numerical simulations, from which
comparisons for a much wider range of parameters can be made. These studies
provide quantitative arguments for the design criteria of Stark decelerators for
specific applications.

Based on the one-dimensional description of a Stark decelerator, one would
expect more molecules at the end of the decelerator for longer decelerators
that run at lower phase-angles. This description neglects the coupling between
the longitudinal and transverse motion, however, which limits the actual 6D
acceptance of a decelerator. A first important conclusion from the present study
is that, for a decelerator operating in the s = 1 mode, a strategy to optimize
the number of decelerated molecules by using low phase angles and a large
number of deceleration stages is only of limited use. There is a maximum of
the 6D acceptance for a phase-angle of around 50◦, and the optimum number of
molecules is obtained when the length of the decelerator (for a given initial and
final velocity) is adjusted such that this phase-angle can be used. A decelerator
of 150 stages that is operated at 50◦, for instance, produces more decelerated
molecules than a decelerator of 250 stages that runs at a phase angle of 30◦.

A second important conclusion is that a decelerator that operates in the
s = 3 mode outperforms a decelerator in the s = 1 mode in almost all cases.
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In the s = 3 mode, coupling between the longitudinal and transverse motion
is nearly absent, and lower phase angles always result in a larger acceptance.
For small phase angles, a gain up to a factor of ten can be obtained. The gain
depends strongly on the phase angle that is used and for phase angles above
70◦, the acceptance for the two modes of operation is very similar. An intrinsic
disadvantage of the s = 3 mode is that there are large losses for final velocities
below around 150 m/s. Lower velocities can still be produced, however, and
different schemes have been discussed and demonstrated for this.

A third important conclusion is that the acceptance of a Stark decelerator
operating in the s = 3 mode approaches the optimum value. This conclusion is
based on a comparison between the outcome of numerical trajectory calculations
and the 6D acceptance that is derived from a model. In this model, couplings
between the longitudinal and transverse motion are neglected.

To make use of the advantages that the s = 3 mode of operation offers,
a considerably longer Stark decelerator is needed than for the s = 1 mode.
This indeed requires more electrode pairs and a longer vacuum chamber, but it
should be realized that there is no additional requirement on the high voltage
electronics. Compared to the decelerators that have been commonly used so far
(s = 1, ≈ 100 stages, φ0 = 50 − 60◦) a five times longer version operating in
the s = 3 mode at somewhat lower phase angles will typically result in a factor
five higher number density at the exit. Moreover, this gain in number density
is accompanied by a reduction in the longitudinal translational temperature.

5.5 Appendix

In chapter 3 (pp. 38), we studied the transverse stability in a Stark decelerator.
Here we adapt the model for the transverse motion of molecules through a Stark
decelerator, with the goal to derive the 6D phase-space acceptance as a function
of the phase angle φ0.

In the description of the motion of the OH radicals through the decelerator,
the z coordinate describes the position of the molecule along the molecular
beam axis, while x and y are the transverse coordinates. The forces in the x
and the y direction are assumed to be uncoupled from each other and identical.
The alternating focussing in either one of the transverse directions (say y) is
represented by an average transverse force F̄y(φ, y) that depends on the phase φ
of the molecule and on y-position, as described on pp. 38. We therefore define:

F̄y(φ, y) =
1

2T

∫ t+2T

t

Fy(y(t′), z(t′), t′)dt′

≈ 1

2sL

∫ (φ+2sπ)L/π

φL/π

Fy(y, z)dz, (5.1)

where 2T is the time during which the synchronous molecule travels a distance
2sL.
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To a reasonable approximation, the transverse force F̄y is linear in the dis-
placement y from the molecular beam axis. The strength of the transverse force
can be expressed in terms of a frequency ωy(φ)/2π, referred to hereafter as the
natural transverse oscillation frequency, using the relation:

F̄y(φ, y) = −mω2
y(φ) y, (5.2)

where m is the mass of the OH radical. In Fig. 5.9, the natural transverse
oscillation frequency is shown for an OH (X 2Π3/2, J = 3/2, |MJ | = 3/2) radical
as a function of its phase φ. For s = 1, the natural transverse oscillation
frequency has a strong dependence on the phase φ. For molecules close to φ =
0◦, the transverse frequency is very low and focussing forces are almost absent.
For s = 3, the natural transverse oscillation frequency is rather independent
from the phase φ.

The transverse phase-space acceptance for a given mode of operation of the
decelerator is evaluated as schematically illustrated in Fig. 5.10. The decel-
erator is operated at φ0 = 30◦ and s = 1 in this example. Let’s consider a
molecule with a maximum deviation zi from the synchronous molecule. The
frequency ωy(t) of this molecule can be constructed from its phase φ(t) as it
revolves around the synchronous molecule in longitudinal phase-space. Let’s
now consider an ensemble of molecules that is enclosed by this contour, and by
a contour that is displaced by an infinitesimal value Δzi. All these molecules
experience the same temporal dependence of the transverse focusing force, and
the transverse trajectories of the molecules are governed by the equation:

d2y

dt2
+ ω2

y(t)y = 0. (5.3)

The transverse phase-space acceptance is easily calculated only if ω2
y(t) is con-
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Figure 5.9: Natural transverse oscillation frequency ωy/2π for an OH (X 2Π3/2, J =
3/2, |MJ | = 3/2) radical as a function of its phase φ in a Stark decelerator, for the oper-
ation modes s = 1 and s = 3.
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Figure 5.10: Schematic representation of the method used to calculate the transverse phase-
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natural transverse oscillation frequency ωy(φ)/2π. (c) The time-averaged transverse focusing
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stant. In this case, in which ωy(t) is written as ωy, the longitudinal and trans-
verse motions are uncoupled, and in each transverse direction the molecules
orbit ellipses in transverse phase-space, as is shown in Fig. 5.10. The phase
space acceptance (Ay)zi and (Ax)zi in each transverse direction is given by the
maximum extension ymax = xmax =1.5 mm from the molecular beam axis, and
by the maximum transverse velocity vy,max = vx,max = ωy × ymax that can be
captured. The 4D volume (At)zi of the transverse phase-space acceptance is
then given by

(At)zi = (Ax)zi(Ay)zi = (πωy(ymax)2)2. (5.4)

If ω2
y(t) is not constant, as is actually the case in a Stark decelerator, the

molecules experience a transverse frequency ωy(t) that oscillates between the
minimum value ωmin

y and the maximum value ωmax
y . The time-averaged value

of ω2
y for this molecule is given by:

〈
ω2
y

〉
zi

=
1

τ

∫ τ

0

ω2
y(t)dt, (5.5)

where τ is the time it takes the molecule to revolve the contour in longitudinal
phase-space. The transverse phase-space acceptance cannot be calculated any-

more, but the values of ωmin
y , ωmax

y , and
√〈

ω2
y

〉
zi

can nevertheless be used to
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characterize the transverse phase-space acceptance of the ensemble of molecules
in three limiting cases. When the longitudinal oscillation frequency is much

larger than the transverse oscillation frequency, ωy can be taken as
√〈

ω2
y

〉
zi

.

In that case, one obtains the 4D transverse acceptance for the molecules in this
shell in longitudinal phase-space. This 4D acceptance can be interpreted as the
best estimate for the true transverse acceptance. When ωmax

y is used, a trans-
verse acceptances results that can be interpreted as a strict upper limit for the
true acceptance.

The total 6D phase-space acceptance A(φ0) is obtained by integrating over
all shells with area dAz within the separatrix in longitudinal phase-space:

A(φ0) =

∫
(Ay)zi(Ax)zidAz . (5.6)

In Fig. 5.11, the longitudinal (2D), transverse (2D) and total (6D) phase-
space acceptances are shown for the operation modes s = 1 and s = 3. The
transverse acceptance Ay(φ0) is calculated from the total 6D acceptance A(φ0)

and the longitudinal acceptance Az(φ0) via Ay(φ0) =
√
A(φ0)/Az(φ0). For

each mode of operation three curves are shown; the lower, center, and upper

curve correspond to the choice of ωmin
y ,
√〈

ω2
y

〉
zi

, and ωmax
y for ωy in equation

(5.4), respectively. The longitudinal acceptance Az(φ0) is a factor
√

3 smaller
for s = 3 than for s = 1. The transverse acceptance for s = 3 is somewhat
larger than for s = 1 and is almost independent of φ0. Furthermore, the three
different curves predict a rather similar transverse acceptance for s = 3. The
three curves for the transverse acceptance for s = 1 differ much more among
each other. The center curves that are shown in Fig. 5.11(c), and that have
been used in Fig. 5.8 of section 5.3, predict a rather similar total 6D phase-
space acceptance for s = 1 and s = 3. For almost all phase angles, the lower
longitudinal phase-space acceptance for s = 3 is compensated for by the larger
transverse acceptance of s = 3.
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Chapter 6

Crossed beam scattering with
Stark-decelerated molecules

As explained in detail in the previous chapters, polar molecules in specific quan-
tum states can be picked up from a supersonic expansion to be decelerated or
accelerated. Multi-stage Stark deceleration is often highly state selective and
therefore a natural application for such a beam is state-to-state inelastic scat-
tering at a precisely defined and also tunable collision energy. In the present
work, the Stark-deceleration machine is combined with a standard pulsed beam
source which provides a supersonic beam of rare gas atoms. In the following it
is analysed in detail what type of scattering cross sections can be determined
with such a setup and what is required to reliably extract the cross sections
from measurements.

81
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Figure 6.1: Scheme of the experimental setup used for the scattering experiments.

6.1 Introduction

The scattering experiment proceeds as sketched in Fig. 6.1: an incoming pulse
of state-selected OH molecules with mean velocity va and number density
na(r, t) is supplied by the decelerator and propagates freely towards a target
beam of rare gas atoms with mean velocity vb and density nb(r, t). Both par-
ticle sources are pulsed and therefore the number densities are functions of
position r and time t. The central axes of both beams cross at a right angle.
While passing through the target beam, some of the OH molecules are scattered
and their internal quantum state changes (inelastic scattering). To detect such
events, the scattered molecules are excited state sensitively by a pulsed laser
beam which propagates orthogonally to both molecular beam axes. The subse-
quently emitted fluorescence is imaged onto a photo multiplier tube by a lens
and hence provides a signal that is proportional to the number of molecules in
a specific state at a certain time and within a certain volume, provided suitable
conversion factors are taken into account. This signal is henceforth referred to
as the collision signal. With this experimental configuration one can in principle
determine the following quantities:
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1. the cross section ratios for different inelastic scattering channels for a fixed
collision energy, so-called relative cross sections

2. the energy dependence of the cross sections up to an energy independent
scaling factor, i.e. the shape of the so called excitation functions

3. the total absolute cross section for inelastic scattering for a given energy.

During the time interval in which the density functions na and nb have spatial
overlap, collisions occur at a rate that is proportional to the cross section for the
considered inelastic transition. Hence, the total number of molecules that are
scattered into a specific state until a certain time is strictly proportional to the
corresponding cross section. While the incoming molecules have a well defined
mean velocity with a narrow distribution, the scattered molecules have, in gen-
eral, a broad velocity distribution. Since slow molecules tend to reside longer
within the detection volume as compared to fast ones there is the possibility
that the relative collision signals are not exactly proportional to the respective
cross sections. Hence, if cross sections pertaining to case (1) are to be accurately
measured, the detection probability for all states which are monitored also has
to be determined.

For case (2), we have the same requirement as for (1) but additionally, all
factors (apart from the cross section itself) which determine the collision product
creation as a function of the collision energy must also be known. The main
difficulty here lies in the precise determination of the spatial beam overlap as a
function of time.

For measurements of type (3), no knowledge about the detection probabil-
ities is required because it is merely the decrease of the initial population that
has to be determined. What is required, but difficult to measure, is the target
beam density.

Before these three cases are discussed in detail, we review the most essential
aspects of the classical two body collision problem and we derive some pertinent
formulae which relate the scattering cross section to experimentally accessible
quantities. The discussion given in the following sections is to some extent
specialized to the considered experimental setup, but it is with obvious mod-
ifications also applicable to cases where more conventional pulsed beams are
used.

6.2 Collision kinematics and classical dynamics

6.2.1 Conservation laws

The classical two-body problem is special insofar as for this case the conserva-
tion laws alone impose fairly severe constraints upon the possible post collision
velocities and thereby on the possible particle trajectories. The following de-
tailed analysis will show how this information can be used to design the crossed
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beam experiment in such a way that cross sections can be determined with the
least possible error.

Let two point particles a and b with masses ma(b) approach each other with
laboratory position ra(b) and velocity va(b), as shown in Fig. 6.2. We denote
the relative position by r and the relative velocity by g; the position of the
center of mass is R and its corresponding velocity V. For later reference the
used kinematic variables are collected in the following:

reduced mass:

μ :=
mamb

ma +mb
(6.1)

position:

R :=
mara +mbrb
ma +mb

(6.2)

r := ra − rb (6.3)

ra = R +
mb

ma +mb
r = R +

μ

ma
r (6.4)

rb = R− ma

ma +mb
r = R− μ

mb
r (6.5)

velocity:

V := Ṙ =
maṙa +mbṙb
ma +mb

(6.6)

g := ṙ = ṙa − ṙb (6.7)

va := ṙa = Ṙ +
μ

ma
g (6.8)

vb := ṙb = Ṙ− μ

mb
g (6.9)

ua := va − Ṙ =
μ

ma
g (6.10)

ub := vb − Ṙ = − μ

mb
g (6.11)

If the particle velocities are given relative to the the center of mass velocity
V, as in (6.10) and (6.11), then the corresponding momenta maua and mbub

have equal magnitudes and point into opposite directions at any time by defi-
nition, i.e. regardless of whether or not the total momentum is conserved.

It remains to be seen in which cases the equations of motion for the center of
mass R and for the relative position r will be independent. Assume that particle
a experiences a force Fab due to particle b, which in turn experiences a force
Fba due to the presence of particle a. In general, external (or inertial) forces
Fe

a and Fe
b can also be present, as e.g. the gravitational or the Coriolis force.

If the collisions happen in external electric or magnetic fields, as present in a
trap or a storage ring, quantum state specific external forces must be included
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Figure 6.2: Definition of coordinates and velocities.

as well. The equations of motion are:

R̈ =
Fab + Fba

ma +mb
+

Fe
a + Fe

b

ma +mb
(6.12)

r̈ =
Fab

ma
− Fba

mb
+

Fe
a

ma
− Fe

b

mb
. (6.13)

If the interaction forces are equal in magnitude and point into opposite direc-
tions so that Fab = −Fba, the equations simplify to:

R̈ =
Fe

a + Fe
b

ma +mb
(6.14)

r̈ =
Fab

μ
+

Fe
a

ma
− Fe

b

mb
. (6.15)

If no external forces are present, the relative motion is influenced only by the
mutual force and the total momentum (ma + mb)V is conserved. The gravita-
tional force, if it is included, is proportional to the masses and (6.15) shows that
it disappears from the equation for the relative motion, but it does of course
lead to an acceleration of the center of mass. The equations we have to consider
are therefore:

R̈ = agr (6.16)

r̈ =
Fab

μ
(6.17)

where agr is the gravitational acceleration. We see that the total momentum
given by (ma + mb)V changes linearly in time. On the time scales considered
here the gravitational force has no significant effect upon the particle trajecto-
ries.

All collisions conserve the energy. The total kinetic energy T , as calculated
in the laboratory frame, can be related to the velocity of the center of mass and
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to the relative velocity using the above definitions:

T =
ma +mb

2
V 2 +

μ

2
g2 =: Tcm(V ) + Trel(g). (6.18)

This formula implies no assumptions about the forces, it is merely a result of
the coordinate transformation; the kinetic energy splits into two parts which are
independent in our case because V and g are independent. The interesting part
is the kinetic energy of the relative motion Trel = μg2/2, the so called collision
energy. If before and after the collision this part remains the same, the collision
is said to be elastic, whereas otherwise it is said to be inelastic. If at least one
of the particles has internal degrees of freedom, internal energy can be taken
up from or released into the relative motion. Using energy conservation alone,
only the length of the relative velocity vector after the collision, denoted by g′,
can be inferred if the change of the internal energy ΔEint is given:

g′ = g

√
Trel + ΔEint

Trel
, (6.19)

where ΔEint is positive if energy is released into the relative motion and negative
in the opposite case. If the beams cross at a right angle (other angles are
discussed in chapter 9 in connection with the overall energy resolution), the
collision energy is a linear combination of the laboratory translational energies
Ta and Tb of particle a and b given by:

T 90◦
rel =

μ

2
g2 =

μ

2
(v2a + v2b ) =

μ

ma
Ta +

μ

mb
Tb. (6.20)

Another important quantity to consider is the total angular momentum. For
two point particles it is given by:

L = ma(ra × va) +mb(rb × vb) (6.21)

= (ma +mb)R×V + μr× g (6.22)

= Lcm + Lrel. (6.23)

Again, this formula is valid for any type of force. The angular momentum
vector of the relative motion does not change with time, if the external forces
are proportional to the masses and if the particles interact via forces which are
not only equal in magnitude and point into opposite directions, but are also
directed along the relative position r; if this is the case, the relative angular
momentum is conserved:

∂tL = (ma +mb)R× V̇ + μr× ġ (6.24)

= R× (Fe
a + Fe

b) + r× Fab (6.25)

= R× (ma +mb)agr. (6.26)
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With gravity included, only the angular momentum of the center of mass motion
changes in time, while the relative motion is confined to the plane perpendicular
to Lrel. In crossed beam experiments the relative velocity is usually rather
well defined. Yet, the relative angular momentum of a particle pair is not
well defined. In fact, Lrel samples all directions and magnitudes because the
relative position is not controlled in the experiment. Therefore, even if the
forces conserve the relative angular momentum, g′ does not remain in the plane
spanned by the initial laboratory velocity vectors va and vb, unless r happens
to lie in that same plane initially. Therefore, every interaction between the two
particles is bound to rotate the relative velocity vector out of its initial plane.

6.2.2 Newton diagram for elastic and inelastic collisions

The magnitude of the relative velocity after the collision is fixed through energy
conservation. Its orientation is determined through the scattering dynamics
which in turn depend on the initial conditions and the intermolecular potential.
The angle between g′ and g, the so called scattering angle, is denoted by θ. The
second angle which is needed to fix the orientation of g′ will be denoted by φ.

If the forces conserve the relative angular momentum, the initial conditions
alone determine φ while the scattering angle θ is determined by the equations of
motion and the initial conditions. As noted before, the initial relative position
is not controlled in a gas phase scattering experiment and therefore an ensemble
of particles scatters in such a way that φ is homogeneously distributed between
0 and 2π for every given θ. Even if the forces do not conserve the relative
angular momentum, this is true as well. The only difference is that the initial
conditions alone no longer determine φ.

The relations discussed so far are conveniently visualized in the Newton
diagram. In Fig. 6.3 the relevant velocities and angles are indicated. The final
laboratory velocity vector v′a is determined if u′a is known. In the special case
where the inelastic collision consumes the total available collision energy, v′a(b) =
V holds and the scattering dynamics are defined completely through energy
conservation alone. One speaks of forward, sidewards or backward scattering if
the values of the scattering angle θ lie at around 0◦, 90◦ or 180◦ respectively.

6.3 The cross section

6.3.1 Definition of the cross section

The cross section can be defined in the following way (see e.g. [77]). We
imagine that a single scattering target is given and held fixed in space. Particles
approach this target with identical velocities v and pass through a plane of area
A perpendicular to v. The target is located far enough behind this plane so that
there is not yet any influence on the trajectories of the particles and the plane
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Figure 6.3: The Newton diagram for the scattering of two point particles; the scattering
angle is denoted by θ, whereas the laboratory scattering angle of particle a is denoted by χ.

is intersected by the particles at totally random positions. The cross section
then relates the number of particles that are scattered by the target Nsc to the
number of incoming particles Ninc having passed through area A:

Nsc = σ
Ninc

A
. (6.27)

The collision probability Nsc/Ninc is therefore given by the ratio σ/A. What
defines a scattering event? Clearly, the event must be countable in some way
and this is certainly the case if the collision changes the internal state of the
incoming particle. Another possibility is to count particles which are scattered
into a specific direction. The magnitude of the cross section is a function of the
internal state of the particles and of the collision energy; it may also depend on
the presence of external fields.

As such, the given definition of the cross section is still somewhat remote
from any measurable quantity. More useful relations are therefore given in the
following. Let incoming molecules of type (a) form a beam with constant flux
Ja, that is let Na molecules pass through a plane with area A in time Δt. If a
number Nb of fixed targets is present within this beam, the number of scattered
molecules per unit time is:

Nsc

Δt
= σ

Na

AΔt
Nb = σJaNb (6.28)

or equivalently
Nsc

Δt

1

Ja

1

Nb
= σ, (6.29)

which shows that the cross section can be inferred if the number of scattering
events per time interval, the number of targets and the incoming flux is known.
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Instead of counting all scattered particles, we may also count only those that
are scattered into a specific direction n. Let the cross section for scattering into a
solid angle dΩ in the direction n be denoted by G(n)dΩ or by G(θ, φ) sin(θ)dφdθ
if spherical coordinates are used. The particles scattered into a solid angle dΩ
at n in a given time interval form a flux Jsc(n) in the direction n. The angle
resolved cross section G(θ, φ), the so called differential cross section (DCS), is
therefore related to the outgoing (Jsc) and incoming flux (Ja) by:

Nsc(n)

Δt dΩ

1

Ja

1

Nb
=
Jsc(n)

Ja

1

Nb
=: G(n). (6.30)

The incoming flux Ja refers to a plane area with dimension length squared
whereas the outgoing flux Jsc refers to a curved area given in units of sterad (4π
times the fraction of area on the unit sphere). Since the DCS does not depend
on φ the cross section for scattering with deflection angle θ and arbitrary φ is
2π sin(θ)G(θ)dθ.

Usually the target molecules are dispersed homogeneously within a scat-
tering volume V . The scattering events per time and volume are then given
by

ṅsc :=
Nsc

ΔtV
= σ

Na

AΔt
nb = σJanb, (6.31)

with the number density nb = Nb/V within the scattering volume. If the
considered incoming molecules of a-type approach with speed va along parallel
lines, the flux is Ja = nava with number density na in the beam. Therefore the
scattering rate per scattering volume is:

ṅsc =
Nsc

ΔtV
= σvananb. (6.32)

Generalized to inhomogeneous and time dependent number densities the scat-
tering rate per volume is a function of position r and time t:

ṅsc(r, t) = σvana(r, t)nb(r, t). (6.33)

For pulsed beams the total number of scattered molecules as a function of time
is therefore determined by an integration over the beam intersection volume
and the relevant time interval.

Until now, the target molecules were considered at rest in space. For two
crossed beams with laboratory velocities va and vb the speed va in the previous
formulae has to be replaced with the relative speed g = |g| = |va − vb| :

ṅsc(r, t) = σgna(r, t)nb(r, t). (6.34)

This replacement is allowed if we think of the plane that is intersected by the
a-type molecules as perpendicular to g rather than va.

The direct determination of absolute state-to-state inelastic cross sections
is possible only, if the absolute number of molecules that are scattered into a
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specific state within a certain time interval and volume can be measured, and
if furthermore the density (distribution) of both beams is known. Usually this
kind of information is too difficult to obtain and cross sections are determined
up to a scaling factor. If the (absolute) total inelastic cross section is of interest,
one may proceed as described in section 6.3.3 – in this case only the target beam
density must known.

6.3.2 The scattering probability of a molecule

What is the probability that a given molecule with specified initial position
and velocity collides at a certain time while passing through a beam of tar-
get molecules? Due to the homogeneous but random distribution of the target
molecules there exists a time independent chance to collide within a time in-
terval dt. This quantity, which we shall denote by k, is the collision rate: the
probability density to scatter in a time interval dt. Starting with Na molecules
at some initial position in the target beam the change of Na is:

dNa(t)

Na(t)
= −kdt, (6.35)

where Na(t) denotes the number of molecules that have not yet collided with a
target. To identify the relation between k and the cross section, we write the
previous equation in the form:

Nsc

Δt
= −dNa

dt
= kNa. (6.36)

The number of scattering events Nsc is given by (6.28):

Nsc

Δt
= σ

NaNb

ΔtA
(6.37)

where we think ofNa stationary molecules being approached by a flux Nb/ΔtA =
gnb of b-molecules moving with velocity −g:

Nsc

Δt
= σgnbNa. (6.38)

The relation between the collision rate and the cross section is found by com-
paring this equation with (6.36):

k = σgnb. (6.39)

We may now proceed to calculate the scattering probability for a single a-
molecule moving with speed g through stationary b-molecules. Denote the
probability for scattering at time t within a time interval dt by p(t)dt, then

p(t)dt = −dNa(t)

Na(0)
. (6.40)
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Using the time evolution

Na(t) = Na(0)e−kt, (6.41)

the collision probability is therefore

p(t)dt = ke−ktdt = σgnbe
−σgnbtdt. (6.42)

If the decline of the initial population is small, that is if the exponential remains
close to unity within the time considered, the scattering experiment proceeds
under quasi single collision conditions and for the scattering probability we have
p(t)dt ≈ σgnbdt. Since all molecules move with the same speed g, we can rewrite
the probability in terms of the position l by noting that dt = 1/g dl where dl
is the distance traveled in time dt in the direction of g:

p(l)dl =
k

g
e−kl/gdt = σnbe

−σnbldl, (6.43)

or we may instead refer to the distance traveled in the direction of va so that
dt = dz/va:

p(z)dz = σnb
g

va
e−σnbgz/vadz. (6.44)

Hence, the probability to collide within dz is proportional to g/va. In gen-
eral, the target density is position and time dependent. Under single collision
conditions, the probability to scatter in a time interval dt is then given by
σgnb(r, t)dt.

6.3.3 Determination of the absolute total inelastic cross section

The total inelastic cross section σt is the sum over the cross sections for all
inelastic scattering channels which are relevant at the considered collision en-
ergy. It would be useful if this quantity can be measured, because if σt and
also the relative inelastic cross sections are known, we can calculate all absolute
inelastic cross sections. In order to determine σt, a well characterized target
beam is needed, i.e. nb(r, t) has to be known. If such a beam can be obtained,
one only needs to determine the fraction of molecules which are scattered out of
the initial state. The measurement principle is analogous to experiments where
a beam is scattered by molecules in a gas-cell.

To accurately determine the depletion of the initial population, an appre-
ciable fraction of molecules has to scatter out of its initial state. This means
that the target beam must be rather intense or that the incoming molecules
have to be slow enough so that the factor g/va is large. If the depletion is of
the order of a few percent, say 1 to 5, it can be determined quite accurately
while no effects due to multiple collisions should occur. The most simple and
least error prone configuration for such an experiment is shown in Fig. 6.4,
here the incoming pulse passes through the target beam completely before it is
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decelerator

target beam

detection laser beam

Figure 6.4: An experimental configuration for the measurement of total absolute inelastic
cross sections. The packet of molecules is detected after having passed the (well collimated)
target beam and before it exits the detection volume.

detected. We also assume that the target beam is a function of the z-position
only and homogeneous transversally. In this setting, the profile of the density
nb is irrelevant because all molecules pass through the whole target beam and
the fraction of scattered molecules is given by:

N0 −Nsc

N0
=

∫
p(z)dz ≈ σtg

va

∫
nb(z) dz (6.45)

where the integration is performed over the whole beam width. In this case it
is obviously sufficient to know the average density along the z-interval.

This way of measuring the cross section can also be sensitive to elastic scat-
tering. However, if the detection volume is sufficiently large compared to the
size of the packet, the effect should be negligible. A decelerator which can
provide a very small packet of molecules is best suited for such an experiment.

6.4 State-to-state inelastic scattering

6.4.1 The experiment

We proceed with the description of the essential elements of the scattering
experiments as they were performed in this work using OH radicals. For per-
pendicular beams, the collision energy is given by

Ecoll =
μ

2
(v2OH + v2target) =

μ

mOH
TOH +

μ

mtarget
Ttarget. (6.46)

The mean speed of the target beam is adjusted through a variation of the valve
temperature and the initial mean speed of the OH beam is set by choosing a
specific carrier gas (mixture) for the expansion. The collision energy can then
be tuned continuously by deceleration and acceleration of the OH radicals. As
a representative example, Fig. 6.5 shows the time of flight profiles which are
obtained when the initially selected mean forward velocity of the OH molecules
is 430 m/s which is the mean speed obtained upon seeding OH in Kr. Different
final velocities are reached by deceleration (down to 67 m/s) or acceleration
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Figure 6.5: Left: time-of-flight profiles for the deceleration, guiding or acceleration of OH
radicals seeded in krypton. The selected initial velocity in all cases is 430 m/s which is also
the mean forward velocity of the input beam. Right: time-of-flight profiles as obtained from
3D trajectory calculations; selected output velocities are indicated. Except for the two lowest
velocities (122 and 67 m/s), the s = 3 mode of operation is used. The used parameters are
listed in Table 6.1.

(up to 615 m/s). In Table 6.1 the parameters that pertain to the time of flight
profiles of Fig. 6.5 are listed. The contribution of the OH molecules to the
collision energy is given by (μ/mOH)TOH . At 67 m/s the remaining laboratory
kinetic energy of the OH molecules is only 3 cm−1 which means that even lower
velocities are usually not required in a crossed beam experiment of this kind. If
the target beam consists of Ar atoms with a mean speed of 400 m/s, the collision
energy range covered by deceleration and acceleration would be 82 - 268 cm−1.

Table 6.1: Parameters pertaining to the 16 time-of-flight profiles shown in Fig. 6.5: phase
angle φ0, mean OH velocity vOH and laboratory kinetic energy TOH . For the calculation of
the quotient g/vOH and also for the collision energy Ecoll a target beam speed of 400m/s is
assumed and the reduced mass for OH/Ar is used. The relative velocity g is determined by
g = (v2target + v2OH )1/2. For the two lowest velocities, the field is switched 100 times using
s = 3, afterwards the switching continues on s = 1 for 16 switch times; the transition occurs
at a velocity of 170m/s and the phase angles are 44/28◦ for (a) and 44/46◦ for (b) where 44◦
is the phase angle in the s = 3 mode. Units: φ0 in deg, vOH in m/s, TOH in cm−1, Ecoll in
cm−1

φ0 -51 -44 -37 -30 -22 -15 -8 0 8 16 23 31 38 42 a b

vOH 615 593 562 545 516 490 463 430 394 357 315 265 205 168 122 67

TOH 269 250 224 211 189 171 152 131 110 91 70 50 30 20 11 3
g

vOH
1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.5 1.6 1.8 2.2 2.6 3.4 6.1

Ecoll 268 255 241 228 212 199 187 172 157 143 129 115 101 94 87 82
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As analysed in detail in chapter 5, the deceleration process becomes rather
inefficient for velocities below 150 m/s. However, the number of molecules which
are scattered is proportional to the quotient g/vOH and this quotient (see Ta-
ble 6.1) increases significantly as we decelerate the molecules to the lowest veloc-
ities. Hence, even though we have less molecules to start with, a larger fraction
of them collide. This is indeed beneficial provided the detection probability re-
mains high. Unfortunately, the latter is not the case. The fraction of molecules
which can be detected is typically small compared to higher velocities: in every
time interval Δt the number of molecules scattered per volume is σgnanbΔt;
during this time the slow incoming molecules move only a small distance vaΔt
into the target beam while the scattered molecules can acquire much higher
speeds v′a > va and therefore cover a larger distance in the same time Δt. Now,
as va goes to zero, the possible v′a remain approximately the same and there-
fore the detection probability goes down as va is becoming smaller and smaller.
There is only one exception: if the scattering is almost exclusively in the for-
ward direction and almost elastic, the final velocities remain very close to the
initial ones and the fraction of all scattered molecules which can be detected
remains high.

Because the OH beam is pulsed, the collision signals are time dependent as
shown in the first row of Fig. 6.6, where collision signals that arise from the
scattering of OH with He, Ar and Xe are shown for a few selected scattering
channels. In the background the time of flight profile of the incoming OH
molecules is also shown for reference. The mean forward OH velocities are
430 m/s (He) and 615 m/s (Ar, Xe) while the target beam velocities are 950,
400 and 300 m/s for He, Ar and Xe respectively. In the second row of the same
figure, the collision signals are scaled so that the sum for all channels is equal to
100 for every given detection time, hence they represent the relative populations
within the detection volume in percent. For collisions with He, the measured
relative populations remain approximately constant in time, while for Ar and
Xe this is clearly not the case. As can be seen by comparing the respective
Newton diagrams, the range of possible final laboratory velocity vectors is rather
constrained only in the case of OH/He scattering, here molecules in different
states escape from the detection volume at similar rates. For Ar and Xe one
expects that a more pronounced effect occurs and this is indeed the case as
the measurements clearly show. Before collision signals can be compared with
predicted cross sections, it is necessary to model the detection process and to
determine the overall detection probability for the different scattering products
as a function of the detection time. If it is desired to determine excitation
functions, then also the change of the beam overlap for the different collision
energies has to be calculated. Both issues are addressed in the following sections.
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Figure 6.6: Collision signals that arise from the scattering of OH radicals in the F1(3/2f)
state with He, Ar and Xe atoms as a function of time. In the bottom row, a Newton diagram
of the respective scattering kinematics is shown; here the outermost circle corresponds to the
quasi elastic scattering into the F1(3/2e) state, whereas the inner circles (dashed lines) relate
to the scattering into the other possible states shown in the energy level diagram.

It is well known in the field that crossed beam experiments often require
more or less extensive modelling of the measurement process to extract cross
sections from the data. However the literature on this issue is somewhat scarce
and the procedures described are not directly applicable here; partly useful
sources are [78, 79].

6.4.2 Generation of collision products with time

The total scattering rate at time t can be obtained from (6.34) by spatial inte-
gration over the scattering volume V :

Ṅsc(t) = σg

∫
V

d3r na(r, t)nb(r, t), (6.47)

and therefore the total number of molecules scattered between t = t0 . . . τ is
given by adding the contributions Ṅsc(t)dt – which are nothing but simple
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integrals of the density function product (the “overlap”):

Nsc(t0, τ) =

∫ τ

t0

dt Ṅsc(t). (6.48)

This integration is trivial only, because we neglect the change of the density
functions due to the collisions.

In the experiment, the incoming pulse na(r, t) propagates along the z-direction
with a mean speed va. The relative velocity g is changed by a variation of va
through deceleration or acceleration. What is the influence on the total number
of scattered molecules apart from the possible change of the cross section itself?
Assume that there is a characteristic position of the density function na, say
the peak position, and assume that for t = t0 this peak is at some position z0.
At the instant of detection τ , the peak shall always be at the position zτ . Upon
changing the variable of integration from time to position using z = vat+ z0 we
get

Nsc(t0, τ) =
1

va

∫ zτ

z0

dz Ṅsc((z − z0)/va + t0). (6.49)

If we neglect the velocity distribution of the decelerated beam and simply as-
sume a constant mean velocity for all particles, then the time evolution of na

is trivial and given by na(r, t) = na(r − ezva(t − t0), t0) where ez is the unit
vector in the z-direction. The integral may therefore be expressed by

Nsc(t0, τ) =
σg

va

∫ zτ

z0

dz

∫
V

d3r na(r−ez(z−z0), t0)nb(r, (z−z0)/va+t0). (6.50)

As the velocity va is tuned, the value of the integral changes because the function
na changes. Furthermore we see that Nsc is proportional to g/va. It would
clearly be optimal if the function na would not change with the velocity va and
if nb would be time independent. In this case, only the factor σg/va changes
when va is tuned and therefore one need not evaluate the integral – provided
it is ensured that the beam overlap remains constant by choosing appropriate
detection times so that the peak intensity is always at the same position when
the molecules are detected.

Especially for the case of time independent nb it is useful to analyse the
above formula a bit further. Assume that at t = τ = 0 the peak intensity
of the incoming pulse na is located exactly in the center of the target beam
nb(r) for which we assume that nb(r) = nb(z) = nb(−z) holds. This implies
that nb depends only on the longitudinal position, has its center at z = 0
and is symmetric with respect to z = 0. Assume further that the incoming
pulse of molecules has a number density distribution at time t = 0 given by
Naf1(z)f2(y)f3(x)dzdydx where Na is the total number of particles in the pulse.
The total number of molecules scattered until t = 0 is

Nsc(−∞, 0) = σg Na

∫ 0

−∞
dt

∫ ∞
−∞

dzf1(z − va t)nb(z). (6.51)



6.4 State-to-state inelastic scattering 97

By changing the integration variable to q = vat this becomes

Nsc(−∞, 0) = σ
g

va
Na

∫ 0

−∞
dq

∫ ∞
−∞

dzf1(z − q)nb(z) (6.52)

=: σ
g

va
Na

∫ 0

−∞
dq U(q). (6.53)

In the experiment, the shape of f1(z) changes as a function of the phase angle,
but it remains approximately symmetric also for non zero values of the phase
angle. If it would be the case that f1(z) = f1(−z) exactly, then also U(q) =
U(−q) and the above integral yields∫ 0

−∞
dq U(q) =

1

2

∫ ∞
−∞

dq U(q) (6.54)

=
1

2

∫ ∞
−∞

dz nb(z) (6.55)

which is the same for all collision energies and the evaluation of the integral
can be omitted (one half of the scattered molecules collide before t = 0 and the
other half after t = 0, independent of the collision energy).

To determine Nsc(t0, τ) for arbitrary functions na and also for arbitrary
and possibly time dependent nb, the density function na has to be known.
However, computer simulations yield only phase space points which sample na.
To proceed by direct evaluation of (6.48) is possible but inconvenient because
a binning procedure is required to first obtain na from the given phase space
points. A different approach which requires only single particle phase space
coordinates is discussed in the following.

The computer simulations correctly reproduce the relative number of molecules
which exit the decelerator for a given output velocity (see Fig. 6.5). Moreover,
the phase space density distribution is represented with sufficient accuracy by
sample points. Let the phase space coordinates for molecule i at time t be
denoted by ri(t),vi(t) or simply by a 6-dimensional vector1 Ri. Denote the
number of molecules in an element of volume dR = dxdydzdvxdvydvz in phase
space by ρ(R, t)dR so that ρ is the phase space density at time t. For a given
start-time t0 the packet of molecules shall already be outside of the decelerator
but not yet inside the target beam. Now calculate the probability for a molecule
originating from R to have had a collision in the time interval [t0 . . . τ ], denote
this probability by w(R, t0, τ). Being given a specific distribution ρ(R, t) the
number of molecules scattered within the time interval [t0 . . . τ ] is given by

Nsc(t0, τ) =

∫
dR w(R, t0, τ)ρ(R, t0). (6.56)

1Here, Ri is a member of R6 that is used to collect the phase space coordinates – in this
case the three Cartesian position and velocity components.
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The computer simulation yields sample points Ri in phase space, which occur
with a frequency that is proportional to ρ(R, t) in the considered phase space
region. Assume that a sufficiently small region around Ri has a certain collision
probability w(Ri, t0, τ) associated with it. This means that if Ni molecules
would actually be inside the considered phase space volume at Ri at time t0, a
number w(Ri, t0, τ)Ni of them would on average collide until time τ . Therefore,
the total number of scattered molecules is

Nsc(t0, τ) =
∑
i

w(Ri, t0, τ)Ni =:
∑
i

wi(t0, τ)Ni. (6.57)

We may actually set Ni = 1 and simply sum the wi(t0, τ) for the molecules in
a simulation. If the target beam density nb(r, t) is given, wi can be calculated
by integration of the collision probability along the path ri(t) that is being
traversed:

wi(t0, τ) = σg

∫ τ

t0

dt nb(ri(t), t). (6.58)

For our purposes it is of course sufficient to know nb up to a scaling factor,
provided it is the same function for all relevant collision energies.

The procedure has a peculiar asymmetry: it depends on the availability of
a density function for the target beam. If only a limited number of phase space
points are given which sample this function, one first needs to determine an
approximate density nb by binning the spatial density and fitting an analytic
function to it. It is somewhat counterintuitive perhaps that one cannot directly
simulate the whole collision process by using only phase space sample points
from computer simulations for both beams.

If the fraction of all scattered molecules which are detected (the detection
probability) does not change with collision energy, then the energy dependence
of a collision signal S is given by

S(E, t0, τ) = λ

NE∑
i=1

wi(t0, τ) (6.59)

= λσ(E)g(E)

NE∑
i=1

∫ τ

t0

dt nb(ri(t), t) (6.60)

where the summation index runs over all particles in the packet for the given
energy (in total NE particles) and λ is an energy independent scaling factor. If
we have measured the collision signals for different energies Ek, we divide them
by g(Ek) and also by the sum over the integrals to obtain the sought energy
dependence of σ, again, provided the detection probability is the same for all
Ek. Since the summation runs over all particles in the packet, the relative
intensities of the particle numbers in a packet obtained from the simulation
must be sufficiently accurate. If they are not, one may try to scale up or down
the total particle number in the packet to apply a first order correction.
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Finally we note that there is a useful relation between (6.60) and the collision
time distribution. This distribution shall be denoted by f(E, t0, t) and it is given
by

f(E, t0, t) := ∂t
S(E, t0, t)

S(E, t0,∞)
=: ∂t F (E, t0, t). (6.61)

If a particle is certain to be scattered, and if its initial phase space position is
chosen at random from one of the vectors Ri then F (E, t0, t) is the probability
to scatter within a specific time interval t0 . . . t. For F (E, t0, t) we have

F (E, t0, t) =

∑NE

i=1

∫ t
t0
dt′ nb(ri(t

′), t′)∑NE

i=1

∫∞
t0
dt′ nb(ri(t′), t′)

(6.62)

so that for the collision signal we may write

S(E, t0, τ) = λσ(E)g(E)F (E, t0, τ)

NE∑
i=1

∫ ∞
t0

dt nb(ri(t), t). (6.63)

If the target density is independent of time, the sum over the integrals is par-
ticularly simple:

NE∑
i=1

∫ ∞
t0

dt nb(ri(t), t) =

NE∑
i=1

1

vi

∫ ∞
r0

ds nb(r) (6.64)

≈ 1

va

NE∑
i=1

∫ ∞
r0

ds nb(r) (6.65)

=
NE

va

∫ ∞
r0

ds nb(r) (6.66)

where ds is the line element along the particle trajectory ri(t) with speed vi. If
(6.66) is inserted into (6.63), the integral may be absorbed into λ because it is
independent of the collision energy E. The final result is then:

S(E, t0, τ) = λσ(E)g(E)
NE

va
F (E, t0, τ). (6.67)

This particular formulation is useful because F (E, t0, τ) can be obtained on
the side while determining the detection probability (see the following section).
We expect that F ≈ 0.5 – provided the symmetry conditions hold which were
discussed above in the derivation of (6.55) and provided the packet is centered
around the target beam’s central axis at the time the molecules are detected.

6.4.3 Detection of collision products

So far the discussion was only concerned with the creation of collision products
as a function of time. We now proceed to analyse the detection of these products
for a given collision energy.



100 Crossed beam scattering with decelerated molecules

The post collision velocity distribution relative to center of mass coordinates,
that is the distribution of u′OH , depends on the scattering channel and can be
inferred if the differential cross section is known. Upon adding the velocity of
the center of mass itself, we obtain the distribution for the laboratory veloci-
ties. Together with a model of the detection system of the used apparatus, we
can infer the detection probability. This probability depends on the scattering
channel, and the detection time, we define it by:

Pj(t0, τ) :=
Ndet(j, τ)

Nsc(j, t0, τ)
(6.68)

where Ndet denotes the number of particles that are detected at time t = τ in
state j and Nsc is equal to the total number of molecules scattered into state
j in the time interval t0 . . . τ ; t0 is some time before the beams have significant
overlap.

In the best case, the experiment yields a detection probability that is the
same for all probed final states at a given collision energy and detection time.
If one is interested also in the measurement of excitation functions, it would be
optimal if the detection probability is also the same for all probed energies. To
achieve this, one can try to design the setup such that Pj is unity for all j at
least until a certain time. This is possible only, if the detection volume is large
compared to the scattering volume and if furthermore the scattering volume is
located inside the detection volume (see also [79]). In general this is not always
possible; especially if the detection proceeds via state selective ionization the
used laser beam is often focussed and the ionization volume is then quite small
and somewhat ill defined.

There is also a special case for which the kinematics are constrained enough
so that Pj is not necessarily unity but approximately independent of j at a given
energy. This case occurs if the target has a much smaller mass compared to the
considered molecule, because then the velocity vector of the center of mass lies
very close to the laboratory velocity vOH – an example is the scattering of OH
molecules with helium atoms already mentioned above. We proceed to discuss
how Pj can be calculated.

At first, specific assumptions have to be made about the scattering angle
distribution. This distribution, denoted by gj(θ)dθ, can be calculated from the
differential cross section Gj(θ). As explained on p. 89, the cross section for
scattering into a specific solid angle is 2πGj(θ) sin(θ)dθ and therefore

gj(θ)dθ :=
Gj(θ) sin(θ)dθ∫ π
0 Gj(θ) sin(θ)dθ

. (6.69)

In order to separate assumptions about the experiment from assumptions about
the differential cross section, we first calculate a scattering angle resolved prob-
ability distribution Wj defined by

Wj(t0, τ, θ) :=
Ndet(j, τ, θ)

Nsc(j, t0, τ, θ)
(6.70)
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where Ndet and Nsc are defined as before but now the scattering angle θ is fixed.
With this definition the total detection probability becomes

Pj(t0, τ) =

∫ π

0

Wj(t0, τ, θ)gj(θ)dθ (6.71)

so that we can first determine Wj which is a function of the experimental con-
figuration alone and then later determine Pj by making assumptions about the
differential cross section.

The function Wj can be determined by a computer simulation in a straight
forward manner provided we have sufficient knowledge about the initial phase
space distribution, the target beam density profile – including its time depen-
dence – and also about the detection volume. As shown in the previous section,
under single collision conditions, the probability to scatter in a small time inter-
val dt is given by σ(E)g(E)nb(r(t), t)dt. In a direct approach, a molecule with
given initial phase space position Ri is followed along its straight line trajectory
in sufficiently small increments dt to its final position at t = τ . Along the way,
scattered molecules are created with numbers that are proportional to nbdt and
it is determined how many of them reside within the detection volume at t = τ .
If a molecule is created during the simulation, its propagation direction and
speed has to be determined for a fixed scattering angle θ and random φ. A
possible post collision velocity v′i is given by

v′i = V + u′i(θ, φ) (6.72)

where V is the approximate center of mass velocity2. The length of u′i depends
on the scattering channel and is given by (6.19), while the correct direction is
obtained by a sequence of suitable rotations of the initial velocity ui. Because
the length of the final relative velocity vector depends on the scattering channel,
the obtained functions Wj(t0, τ, θ) depend on j.

For the experiments of this work, the target beam pulse has a sufficient du-
ration to assume that it is approximately constant during the time in which the
OH molecules pass through, except maybe for the lowest velocities. Further-
more, the transverse width of the decelerated OH packet is sufficiently narrow
compared with the width of the target beam so that nb depends only on z and is
constant in x and y. A fair amount of simplification is possible in this case. The
probability to collide in a small time dt is σ(E)g(E)nb(z) dz/va, therefore the
collision position distribution is obtained by normalizing the density function
nb(z) along z. Here, a Gaussian is used for nb, the width of which is estimated
from a spatial scan of the target beam intensity using a small microphone as a
beam detector. To simulate the scattering of a single particle with given phase
space coordinate Ri, a collision position is determined at random but in accord
with the respective distribution and the collision time is inferred from the initial

2If necessary, an appropriate averaging over the distribution of V can be implemented in
a straight forward manner.



102 Crossed beam scattering with decelerated molecules

1

1

1 1

1

1

2

2

2 2

2

2

3

3

 scattering angle / deg

18013590450

42954255

80

60

40

20

0

 

42954255

80

60

40

20

0

 

61406100

80

60

40

20

0re
l. 

co
lli

si
on

 s
ig

na
l /

 %  He Ar Xe

1.0 1.0 1.0

0.8

0.6

0.4

0.2

0.0

de
te

ct
io

n 
pr

ob
ab

ili
ty

18013590450 18013590450

Figure 6.7: Top row: the time dependence of the measured and the predicted apparent rela-
tive cross sections. Bottom row: the functions Wj(t0, τ, θ) for different values of the detection
time τ , which are indicated by the arrows and referenced by the associated numbers. The
color code corresponds to the channels which are shown in the top row; molecules scattered
into the e or f component of the same rotational level have equal detection probabilities.

position and velocity of the particle. By recording the collision time we obtain
the function F (E, t0, τ) on the side. At a given collision position, molecules
have to be released for a given scattering angle θ and arbitrary φ and the time
interval in which they can be detected has to be determined. This is all that
is required to determine Wj(t0, τ, θ). The main uncertainty lies in the proper
specification of the detection volume, which must be estimated from the laser
diameter and the properties of the imaging system. Here, a cylinder with a
diameter of 8 mm and a height of 10 mm is assumed for the detection volume.

In the bottom row of Fig. 6.7, Wj is plotted for different detection times.
The final results of the simulation are shown in the top row as solid lines,
together with the measurements; the horizontal dashed lines represent the ex-
pected relative cross sections obtained from scattering calculations. In the case
of OH – He the functions Wj are approximately constant for any detection time
which means that different scattering angle distributions gj(θ)dθ yield approx-
imately the same detection probabilities. This is the most favorable case, the
collision signals need no further correction.

For OH – Ar the dependence on θ and also on j is a bit more pronounced.
At detection time (1), molecules which are scattered in the forward direction
are detected more efficiently compared to side and backward scattered ones.
For time (2), those molecules which are side scattered have a higher chance
of being detected. In the experimental setup the beam intersection volume is
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smaller than the detection volume so that for an early detection time most of
the scattered molecules can also be detected and the resulting bias is small. In
the case of OH – Xe, the situation is somewhat less favorable, even for an early
detection time the resulting detection probabilities differ.

The differential cross section that is used in all cases is based on high quality
ab-initio scattering calculations which are explained in more detail in chapter
8. The agreement with the measured time dependence of the relative cross
sections is remarkably good. It is found that within a reasonable range the
results are only modestly sensitive to input parameters which pertain to the
geometry of the detection volume and to the target beam width. In contrast,
the simulations showed that the vertical position of the detection volume can
have a strong influence on the results. For the simulations shown here, it is
assumed that the center of the detection laser is located where the central axes
of both beams intersect.

6.4.4 Excitation functions

To measure the energy dependence of the cross sections up to an energy in-
dependent scaling factor is more difficult than determining only relative cross
sections at a given energy, because now also the number of particles which col-
lide has to be accurately known. Upon multiplying (6.60) with Pj , the collision
signal Sj can be related to the cross section σj :

Sj(E, t0, τ) = λPj(E, t0, τ)σj(E)g(E)

NE∑
i=1

∫ τ

t0

dt nb(ri(t), t). (6.73)

We apply the so far discussed methods to the scattering of OH with Ar atoms
at the lowest measured energies. If a constant target beam density is assumed
and (6.73) is evaluated, the cross sections shown in Fig. 6.8, panel (a) and (b)
result. The measurements are scaled so as to give a good match to the predicted
cross sections from medium to high energies. It is seen that at low energies, a
significant decrease in the (3/2f → 3/2e) channel occurs, which is actually not
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Figure 6.8: Measured excitation functions for collisions of OH with Ar atoms, scaled to
match theoretical cross sections (solid lines).
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predicted: at low velocities the decelerated OH packet probes different parts of
the target beam as compared to large velocities. The average density that is
probed can be significantly lower for the very slow molecules as now the “early”
part of the target beam pulse also participates (in the experiment, the target
beam pulse density at the detection time in the crossing region is the same for
all energies, therefore slow molecules see more of the front of the beam also).
To verify this explanation, the measured time dependence of the target beam
density was included in the simulation program and the result is shown in panel
(c), yielding a consistent picture. Nevertheless, the need to include such a time
dependent beam density in a calculation should be avoided since invariably
yet another error prone factor is introduced in this way; if possible a beam
source which yields sufficiently long pulses should be used. In the present work,
the initial aim was not to measure excitation functions, and the relative cross
sections presented in the following chapters are not affected by such problems.



Chapter 7

State-to-state inelastic scattering
of Stark-decelerated OH radicals
with Ar atoms

The Stark deceleration method exploits the concepts of charged particle ac-
celerator physics to produce molecular beams with a tunable velocity. These
tamed molecular beams offer interesting perspectives for precise crossed beam
scattering studies as a function of the collision energy. The method has ad-
vanced sufficiently to compete with state-of-the-art beam methods that are
used for scattering studies throughout. This is demonstrated here for the scat-
tering of OH radicals (X 2Π3/2, J = 3/2, f) with Ar atoms, a benchmark system
for the scattering of open-shell molecules with atoms. Parity-resolved integral
state-to-state inelastic scattering cross sections are measured at collision ener-
gies between 80 and 800 cm−1. The threshold behavior and collision energy
dependence of 13 inelastic scattering channels is accurately determined. Excel-
lent agreement is obtained with the cross sections predicted by close-coupling
scattering calculations based on the most accurate ab initio OH+Ar potential
energy surfaces to date.

Based on: State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar
atoms, L. Scharfenberg, J. Klos, P.J. Dagdigian, M.H. Alexander, G. Meijer and S.Y.T. van
de Meerakker; Phys. Chem. Chem. Phys. 12, 10660 (2010)
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7.1 Introduction

The detailed understanding of interactions between individual atoms and/or
molecules is of fundamental importance in physical chemistry, and is pivotal to
the interpretation of the dynamic behavior of macroscopic systems. The study
of collisions between neutral atoms and molecules in the gas-phase is a well-
established experimental avenue to probe the potential energy surfaces (PES)
that govern molecular interactions [80].

The crossed molecular beam technique is ideally suited to obtain detailed
information on the PES, and enables the study of molecular encounters under
single collision conditions and in complete isolation from the environment. The
level of detail that can be reached in these experiments depends on the unique-
ness of the pre-collision conditions and on the quality of the detection method
to analyze the scattering products. Gaining ever better control over the relevant
parameters has thus been a recurrent theme in crossed beam experiments.

A wide variety of sophisticated methods have been developed to control
the collision energy [81, 82], the internal quantum states [83, 84, 85], the ve-
locity spreads [86, 87], and the mutual orientation [88, 89] of the scatterers.
Powerful laser-based detection techniques have been developed to measure the
state, angular and translational energy distribution of the scattering products
[90, 28, 29, 91]. Many of these methods have recently yielded new insights in
molecular scattering processes, ranging from the role of nonadiabatic dynam-
ics in elementary reactions [92, 93] to product pair correlations in bimolecular
reactive scattering [94]. In concert with advances in the theoretical analysis of
scattering processes, the wealth of available experimental scattering data has
contributed enormously to our present understanding of how intermolecular
potentials control molecular reaction dynamics.

Further enhancement of this relationship requires experiments with an in-
creasing level of resolution and detail. In crossed beam experiments the most
serious roadblock to further improve the resolution are the molecular beam
pulses. A precise level of control over molecules in a beam has become possi-
ble with the Stark deceleration technique [3]. A Stark decelerator for neutral
polar molecules is the equivalent of a linear accelerator (LINAC) for charged
particles [95], and exploits the interaction of a polar molecule with inhomoge-
neous time-varying electric fields. Compared to conventional molecular beam
sources, a Stark decelerator produces beams of molecules with a narrow velocity
spread, perfect quantum state purity, and with a computer-controlled velocity
that can be tuned between standstill and high velocities. These monochromatic
molecular beams offer the possibility of studying molecular encounters under
well controlled and unexplored conditions, and offer new prospects to probe
molecular interaction potentials with unprecedented detail [96].

The application of Stark-decelerated beams in scattering experiments is still
in its infancy, however. In 2006, Gilijamse et al. performed the thus far only
state-to-state scattering experiment using a Stark decelerated molecular beam
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[18]. A Stark-decelerated beam of OH radicals was crossed with a conventional
beam of xenon atoms, and the state-to-state rotational inelastic scattering cross
sections were measured for a number of scattering channels as a function of the
collision energy. This experiment clearly demonstrated the feasibility of the
approach; however, the sensitivity of the experiment was limited by the rather
low number densities of the decelerated molecules.

During the last years, we have developed a new Stark decelerator that em-
ploys the so-called s = 3 mode of operation to eliminate the loss of molecules
that occurs in decelerators of earlier designs. With this apparatus (see chapter
4 and 5), packets of molecules can be produced with a superior number den-
sity, a narrower velocity spread, and a higher quantum state purity. This Stark
decelerator enables state-to-state scattering experiments with a sensitivity that
is comparable to (or even exceeds) the level of sensitivity that is obtained in
state-of-the-art crossed beam scattering experiments of similar systems. This
we demonstrate here for the OH(X 2Π)−Ar system.

Rotational inelastic scattering of free radical species such as OH [97, 98], CH
[99] and NO [100] with rare gas atoms have always been of special interest in
crossed beam scattering experiments. This interest stems from the crucial roles
that these species play in many areas of chemistry and physics, ranging from
combustion to astrophysics. Because of the unpaired electrons, these radicals
have non-zero electronic spin and orbital angular momentum. This renders
more complex the rotational energy level structure. In addition, the scattering
is dominated by collisions on two (or more) PES’s. A detailed understanding
of these elementary systems therefore provides a firm basis to understand the
dynamics of more complex systems.

The OH(X 2Π)–Ar system (together with the similar NO(X 2Π)–Ar sys-
tem) has emerged as the paradigm for the scattering of open shell radicals
with rare gas atoms. In a series of crossed beam experiments, ter Meulen and
coworkers prepared the OH radicals in the upper Λ-doublet component of the
X 2Π3/2, J = 3/2 level by hexapole state selection [101, 102]. Accurate parity-
resolved integral state-to-state cross sections for rotational excitation up to the
X 2Π3/2, J = 9/2 and the X 2Π1/2, J = 5/2 states were obtained at high col-
lision energies. Preferred excitation to one of the Λ-doublet states of the final
rotational and spin-orbit state was observed, in agreement with the general
propensity rules that follow from a formal quantum analysis [103, 104]. Steric
asymmetries of the inelastic cross sections were measured by orienting the OH
radicals with either the O-end or the H-end towards the Ar atom by a static
electric field in the collision zone [105]. The collision induced reorientation of the
OH radicals was measured by probing the Stark-split states of the products cor-
responding to different orientations [106]. Under thermal bulk conditions, the
evolution of oriented or aligned OH (X 2Π) radicals was studied in collisions
with argon by polarization spectroscopy [107, 108, 109]. Detailed information
on the OH(X2Π)-Ar PES has also been obtained from spectroscopic study of
the bound states of the OH-Ar van der Waals complex [110, 111].
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Here we report the investigation of rotational energy transfer of fully state-
selected OH (X 2Π3/2, J = 3/2, f) radicals in collisions with Ar atoms at colli-
sion energies between 80 and 800 cm−1. Parity-resolved integral state-to-state
scattering cross sections for rotational excitation up to the 2Π3/2, J = 9/2 and
the 2Π1/2, J = 5/2 states are accurately measured. The collision energy depen-
dence of the relative integral inelastic scattering cross sections, the threshold be-
havior of the inelastic channels, and the energy dependence of the state-resolved
propensities are accurately determined. Excellent agreement is obtained with
cross sections determined by quantum close-coupled calculations based on re-
cent high-quality ab initio OH-Ar PES’s.

7.2 Experiment

7.2.1 Experimental setup

The production, Stark deceleration and detection of OH radicals as used in this
experiment has been described in the previous chapters. For convenience, we
briefly repeat the most important aspects in this section. All details that are
relevant to the variation of the collision energy are given in section 7.2.2 and
7.2.3.

A schematic overview of the experimental setup is shown in Fig. 7.1. A
pulsed supersonic beam of OH radicals is produced by photolysis (193 nm)
of nitric acid seeded in an inert carrier gas. During the expansion, nearly all
molecules cool to the lowest rotational (J = 3/2) and vibrational level of the
X 2Π3/2 electronic ground state. This level consists of two Λ-doublet compo-
nents (labelled e and f [40], see part c of Fig. 7.2) that are separated in energy
by only 0.05 cm−1. Both components are therefore equally populated in the
beam, but only the energetically higher lying f -component is low field seek-
ing in inhomogeneous electric fields and can be Stark-decelerated. The lower
e-component is high field seeking and is deflected from the beam axis in the
experiment.

After passage through a 2 mm diameter skimmer, the beam enters the 2.6
meter long Stark decelerator that consists of 317 parallel pairs of high-voltage
electrodes. Successive pairs are alternatingly charged or grounded, creating
a periodic field along the beam axis [57]. Two distinct field configurations are
produced by either charging the electrode pairs on the even or the odd numbered
positions. The OH radicals can be decelerated or accelerated by switching back
and forth between these two configurations using a sequence of high voltage
pulses. Essential in these experiments is the use of the so-called s = 3 operation
mode of the decelerator [55]. In this mode, only every third electrode pair is used
for deceleration, while extra transverse focusing is provided by the intermediate
electrode pairs.

The packet of OH (X 2Π3/2, J = 3/2, f) molecules that emerges from the
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Figure 7.1: Scheme of the experimental setup. A pulsed beam of OH radicals is produced
via of HNO3 seeded in an inert carrier gas. The OH radicals pass through a 2.6-m-long
Stark decelerator, and are scattered with a pulsed beam of argon atoms. The OH radicals
are state-selectively detected using a laser-induced fluorescence scheme. The fluorescence is
imaged onto a PMT. In the inset, a photograph of the beam crossing region is shown.

decelerator intersects with the central axis of the beam of argon atoms at a dis-
tance of 16.5 mm from the exit of the decelerator under 90◦ angle of incidence.
The fields are switched off when the OH radicals leave the decelerator, and col-
lisions take place in a field free region. We assume that the uneven distribution
over MJ -components that is present in the decelerator is scrambled completely
before collisions occur. A modified commercial solenoid valve (General Valve,
Series 99) is used to produce the pulsed supersonic beam of argon. The velocity
of this beam can be adjusted by controlling the temperature of the valve. The
atoms pass a 2 mm diameter skimmer and intersect the centerline of the OH
packet 90 mm from the nozzle orifice. The duration of the gas pulse is long,
and the number density of the argon atoms in the crossing region is constant
during the passage of the OH packet. Single collision conditions are insured by
keeping the decrease of the population in the J = 3/2, f level due to scattering
with the argon atoms below 4 percent. A microphone based beam detector
[112] can be moved into the crossing region to probe the spatial density profile
of the argon beam. Together with a second microphone that is placed 300 mm
further downstream, the mean forward beam velocity is determined from a time
of flight measurement of the gas pulse.
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The OH radicals are state-selectively detected via saturated laser induced
fluorescence when the most intense part of the OH packet is in the center of
the beam crossing region. The 282 nm radiation of a pulsed dye laser intersects
both beams under 90◦ angle of incidence, and induces rotational transitions of
the A 2Σ+, v = 1← X 2Π, v = 0 band. The off-resonant fluorescence is collected
at right angles by a lens and imaged onto a photo multiplier tube (PMT). Stray
light from the laser is suppressed by light baffles and by optical filtering in front
of the PMT. The radiative lifetime of the A 2Σ+, v = 1 state is 717 ns [52], and
no collisional quenching of the excited molecules takes place. The diameter of
the laser beam is approximately 8 mm, providing a detection volume that is
larger than the intersection volume of the OH and Ar beams.

7.2.2 Variation of the collision energy

The collision energy is varied by deceleration, guiding, or acceleration of the
OH radicals in the Stark decelerator, and by using two different temperatures
for the argon valve. The total energy range of 80 to 800 cm−1 is covered using
six separate measurement intervals, as is illustrated in Fig. 7.2 (a). The argon
valve is operated at 110 K for the collision energy range of 80 to 500 cm−1

(intervals 1 to 4) and at 293 K for energies between 430 and 800 cm−1 (intervals
5 and 6). The corresponding argon beam velocities are determined to be 400 and
565 m/s and stagnation pressures of 2 and 4 bar were used. Lower temperatures
for the valve are not possible without the risk of condensation.

For a given velocity of the argon beam, the collision energy range that is
accessible by tuning the velocity of the OH radicals is defined by the initial
velocity of the OH molecular beam. Molecular beams are produced using Kr,
Ar, Ne, a Ne/Ar mixture, and a He/Ne mixture as carrier gas; the gas that is
used in each interval is indicated in Fig. 7.2 (a) together with the mean initial
velocity of the molecular beam pulse. The collision energies that correspond
to these mean velocities are indicated by vertical lines in Fig. 7.2 (a) for each
interval. Within each interval, the argon beam velocity is fixed and the collision
energy is continuously scanned from low to high energies by deceleration and
acceleration of the OH radicals. The velocity range of the OH radicals was
chosen to ensure overlap between successive intervals.

The number density, velocity spread, quantum state purity, and size of the
OH packet critically depends on the carrier gas that is used, and on the final
velocity of the OH radicals. Within a measurement interval, the number density
varies by about a factor of three throughout the range of final velocities. The
highest number densities are typically observed for final velocities that are close
to the mean velocity of the initial molecular beam, and for beams that are
produced with a light carrier gas. The velocity spread depends on the settings
of the Stark decelerator, and ranges from 10 to 25 m/s. The size of the packet
is confined in the direction perpendicular to the beam axis to the 3 × 3 mm2

aperture of the Stark decelerator; the length of the packet in the beam direction
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Figure 7.2: (a) Collision energy intervals that were used to measure the collision energy
dependence of the state-to-state scattering cross sections. The carrier gases that are used to
generate OH radical beams with the indicated mean velocities are given above each interval.
(b) Measured relative collision induced populations for the four strongest scattering channels,
that are indicated in the rotational energy level diagram of the OH radical (c). In this diagram,
the energy splitting between both parity components is greatly exaggerated for reasons of
clarity.

depends on the settings of the decelerator and is typically 10−15 mm. The state
purity of the OH packet strongly depends on the carrier gas that is used and
the settings of the Stark decelerator. Representative values of the background
populations in levels other than the J = 3/2, f level are given in Table 7.1
for the different carrier gases that were used. The deceleration/acceleration
process is highly quantum state specific, and the quantum state purity of the
OH radicals approaches 100 %. The quantum state purity only drops below
99% when helium or neon is used, which reflects the inferior rotational cooling
of OH radicals during the supersonic expansion for He and/or Ne containing
carrier gases. The contaminating population is mainly in the low-field seeking
X 2Π3/2, J = 5/2, f level. Population in high-field seeking levels of e-parity is
negligible for all experimental conditions.

The energy resolution depends on the velocity and angular spreads of both
beams. The phase-space distribution of OH radicals that emerge from the de-
celerator is accurately known from simulations of the deceleration process. The
spatial distribution of argon atoms is estimated from the microphone measure-
ments; the velocity distribution is estimated to be 12% of the mean velocity. The
collision energy distribution is approximately gaussian with a full width at half
maximum of 20 cm−1 at the lowest collision energies and grows approximately
linearly to 33 cm−1 at 500 cm−1.
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carrier gas F1(5/2f) F1(7/2f) F2(1/2f)

Kr 0.10 - 0.40 — —

Ar 0.17 - 0.43 — —

Ar/Ne (1:1) 0.26 - 0.72 0.01 - 0.04 0.01 - 0.07

Ne 2.40 - 3.40 0.04 - 0.12 0.13 - 0.20

Ne/He (3:2) 1.83 - 2.90 0.02 - 0.15 0.12 - 0.22

Table 7.1: Background population in %. All states which are not listed are populated to
less than 0.04%.

7.2.3 Experimental procedure and data analysis

The experiment runs at a repetition rate of 10 Hz, and all relevant trigger pulses
to synchronize the experiment are computer controlled. The argon beam runs
at a repetition rate of 5 Hz, and the collision signals are inferred from the signal
intensity difference of alternating shots of the experiment. Within each interval
of collision energies, the collision energy is varied in a quasi-continuous cycle.
The Stark decelerator is programmed to produce a different velocity of the OH
radicals every second shot of the experiment. The timing of the argon valve
is adjusted automatically to match the arrival time of the OH packet in the
collision zone. The collision energy is scanned within an interval using typi-
cally 5 − 15 different velocities of the OH packet; a single scan is thus made
in 1 − 3 seconds. This scan is cycled 1000 times for every scattering channel,
and the scattering signals that correspond to the same collision energies are
averaged. Such cycles are made for all inelastic channels, and for all collision
energy intervals. This measurement procedure ensures that the collision energy
dependence of a given inelastic channel is insensitive to long-term variations in
either the beam intensities or the laser wavelength, and can be measured inde-
pendently from other channels. The relative signal intensities for the inelastic
channels are measured for a fixed collision energy in each interval separately.
These reference points are measured a few times, and are used to scale the signal
intensities that result from the automated cycles with respect to each other.

During all measurements, the fluorescence signals are recorded using dedi-
cated data acquisition software. The signal intensity of the strongest and weak-
est scattering channels differs by three orders of magnitude, and two modes
of signal processing are used. The weakest channels are analyzed using pho-
ton counting; an analog mode of detection is used for the strongest channels.
Both modes of signal acquisition are calibrated with respect to each other by
comparing both modes for several channels with intermediate signal intensity.

With the experimental arrangement used here, only scattering events that
change the quantum state of the OH radical, i.e., inelastic scattering events,
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e f

J transition ER E (cm−1) transition ER E (cm−1)

F1
3
2

P1
1
3

[0.000] Q1 + Q21
3
5

0.055

5
2

P1
2
5

83.723 Q1
1
2

83.924

7
2

P1
3
7

201.931 Q1
1
2

202.379

9
2

P1
4
9

355.120 Q1
1
2

355.914

F2
1
2

Q2 + Q12
3
4

126.296 P12
1
2

126.453

3
2

Q2
1
2

187.497 P12 + P2
3
5

187.757

5
2

Q2
1
2

288.776 P12
1
2

289.048

Table 7.2: The rotational states of the OH radical that are of relevance to the experiment.
The rotational energy of the levels, the rotational transitions that are used to probe the
population in the levels, and the excitation rates that apply to these transitions are given.
Rotational energies are adapted from ref. [113].

can be studied. A total of 13 inelastic scattering channels are measured. These
channels populate the rotational levels that are shown in the energy level dia-
gram in Fig. 7.2 (c). The rotational levels are referred to hereafter as Fi(Je/f),
where i = 1 and i = 2 are used to indicate the X 2Π3/2 and X 2Π1/2 spin-orbit
manifolds, respectively, and the parity labels e and f correspond to the two Λ-
doublet components of each rotational level. The rotational energies of all levels
are given in Table 7.2, together with the rotational transitions that are used to
probe the individual levels. The transitions are labelled using the nomencla-
ture of Dieke and Crosswhite [43]. A number of rotational levels are probed by
inducing both the main and satellite lines of a transition simultaneously. The
laser intensity is carefully adjusted to saturate both the main and satellite lines,
without causing spectral overlap between the transitions that probe individual
levels.

To relate fluorescence signal intensities to collision induced populations, the
fraction of molecules that are laser excited and that contribute to the fluo-
rescence intensity must be taken into account. This fraction is referred to as
the excitation rate (ER). We assume that for laser excitation under saturated
conditions, the population in the rotational level that is probed is equilibrated
between all possible MJ levels of the initial and final levels of the rotational
transition [105, 99]. Under this assumption, the ER is given by g′′/(g′ + g′′),
where g′′ = (2J ′′ + 1) and g′ = (2J ′ + 1) denote the degeneracy of the initial
and final state, respectively. In case molecules are excited by main and satellite
lines simultaneously, g′ is given by the sum over the degeneracies of the two final
states. The excitation rates that apply to the rotational transitions to probe
the 13 inelastic scattering channels are listed in Table 7.2. The population in
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selected rotational levels was probed using different optical transitions, and it
was verified that the difference in fluorescence intensities reflect the difference
in excitation rates. The laser radiation is linearly polarized, and it was veri-
fied that a rotation of the polarization axis does not influence the fluorescence
intensities.

In Fig. 7.2 (b) the measured relative collision induced populations are
shown for the four strongest channels, i.e. channels that populate the F1(3/2e),
F1(5/2e), F1(5/2f), and F1(7/2e) levels. The error bars represent the statistical
spread (2σ) of the data as obtained from repeated runs of the experiment. The
F1(5/2e), F1(5/2f), and F1(7/2e) levels open at a collision energy of 83.7 cm−1,
83.9 cm−1, and 201.9 cm−1 respectively, and the energetic thresholds are clearly
recognized in the data. The only exoenergetic inelastic channel is scattering to
the F1(3/2f) level, and all inelastic scattering events populate this level at the
lowest collision energies that were probed. We will postpone the discussion of
all 13 measured channels to section 7.4; we will first describe the theoretical
methods that were used to calculate the inelastic scattering cross sections.

7.3 Theory

When a diatomic molecule in a Π electronic state interacts with a spherical
target, the degeneracy is lifted, giving rise to two states, one of A′ and one
of A′′ symmetry, in which the single-occupied π orbital lies, respectively in,
or perpendicular to, the triatomic plane [114]. The inelastic scattering can be
described in terms of the average Vsum and half-difference Vdif of the potential
energy surfaces (PESs) corresponding to these two states [114].

7.3.1 Potential Energy Surfaces

In the simulations of the present experiments two sets of PESs are used. The
first were the restricted-coupled-cluster [RCCSD(T)] PESs of Tobo�la et al. [107,
115]. Here, the ArOH complex is described by single-determinant restricted
Hartree-Fock (RHF) wavefunction with the OH molecular geometry frozen at
its equilibrium bondlength re = 0.96966 Å. Subsequently, a full single- and
double-excitation coupled-cluster calculation was carried out with non-iterative
inclusion of triple excitations [RCCSD(T)] [116, 117]. We used the augmented
correlation-consistent, quadruple-zeta (aug-cc-avqz) atomic orbital basis sets of
Dunning and coworkers [118, 119]. The analytic fit to this RCCSD(T) PES has
already been used in scattering studies of the Ar–OH(X) system [107]. For the
present investigation we also used a second set of PESs, in which we averaged
the interaction potential over the v = 0 vibrational motion of the OH molecule.
Here, we used a spin-unrestricted, coupled-cluster method [UCCSD(T)], which
allows more flexibility in the description of the wave function of the system by
introducing different spatial functions for α and β spin-orbitals. We used the
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Figure 7.3: UCCSD(T) potentials of OH-Ar in cm−1 averaged over the v = 0 vibrational
motion of the OH moiety; for plots of the RCCSD(T) potential see Ref. [115]. Blue contours
belong to negative values of the potential energy, red contours belong to positive values.

MOLPRO 2008 program suite [120] to carry out UCCSD(T) calculations on a
grid of points specified by, in Jacobi coordinates, 10 equi-spaced values of the
Ar–OH angle θ (with θ = 0 corresponding to collinear ArHO), 35 values of the
Ar–OH distance ranging from 3.5 a0 to 25 a0, and five values of the OH bond
distance r [0.7, 0.85, 0.96966, 1.15, 1.4 Å]. This range of values of r spans well
the lower vibrational wavefunctions of the OH radical. The interaction energy
is determined in a supermolecular, counterpoise corrected approach where the
total energies of the dimer and of the monomers are calculated using a dimer
centered basis set [121]. At each point on the grid we performed three calcula-
tions for the PESs of both the A′ and A′′ electronic states, using, successively,
aug-cc-pvtz, aug-cc-pvqz and aug-cc-pv5z atomic orbital bases [118, 119]. These
were then extrapolated to the complete basis set limit, using the mixed expo-
nential and Gaussian formula of Peterson et al [122, 123]. Finally, the resulting
three-dimensional Vsum and Vdif PES’s were averaged over the v = 0 OH vi-
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Method θe Re De

ArHO, A′, A′′, linear
UMP4 0 7.08 147.3
RCCSD(T) 0 6.98 140.4
UCCSD(T)/CBS r = re 0 6.97 141.0
UCCSD(T)/CBS 〈v = 0〉 0 7.01 141.7

ArOH, A′, A′′, linear
UMP4 180 6.70 95.5
RCCSD(T) 180 6.71 91.8
UCCSD(T)/CBS r = re 180 6.70 91.4
UCCSD(T)/CBS 〈v = 0〉 180 6.70 92.4

ArOH, A′,bent
UMP4 75.1 6.23 135.5
RCCSD(T) 74.4 6.19 137.4
UCCSD(T)/CBS r = re 73.9 6.19 137.4
UCCSD(T)/CBS 〈v = 0〉 74.8 6.18 137.1

Table 7.3: Calculated position and depth of the minima in the OH-Ar potential energy
surface as predicted by four different ab initio surfaces. Energy De in cm−1, coordinate Re

in a0, coordinate θe in degree.

brational wavefunction. As shown in Fig. 7.3, the ArOH PESs have minima
in both collinear geometries. In addition, the state of A′ reflection symmetry
exhibits an additional minimum in bent geometry. The position and depth of
these minima are listed in Table 7.3 as predicted by the present UCCSD(T)
calculations as well as by the RCCSD(T) [107] and the earlier calculations of
K�los and co-workers [124], based on the application of 4th-order Møller-Plesset
perturbation theory within an unrestricted (spin-polarized) framework (UMP4).
As can be seen, the differences between the three CCSD(T) PESs are very small.
Averaging over the v = 0 vibrational motion of the OH moiety results in a slight
(∼ 1 cm−1) lowering of the well depth and a small shift in the minimum.

7.3.2 Scattering Calculations

The OH radical in its ground X 2Π electronic state is split into a lower (la-
belled F1) and upper (F2) spin-orbit manifold [125]. In Hund’s case (a) these
correspond, for a molecule with a negative spin-orbit constant, such as OH,
to projection quantum numbers of the sum of the electronic orbital and spin
angular momenta Ω = 3/2 and Ω = 1/2, respectively. Each rotational level J is
further split into two close-lying Λ-doublet levels, which are labelled e and f . For
a state of doublet multiplicity, the total parity is +(−1)J−1/2 for the e-labelled
states and −(−1)J−1/2 for the f -labelled states [40]. To define the asymptotic
energies of the OH molecule we used the known spectroscopic values of the
rotational constant in the lowest vibrational manifold (B0 = 19.5487 cm−1),
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the spin-orbit constant (A0 = −139.21 cm−1), and the two Λ-doubling param-
eters (p = 0.235 cm−1 and q = −0.0391 cm−1) [126]. We further assume that
the value of the spin-orbit constant of the OH is not altered by approach of
the Ar atom. We have used the HIBRIDON program suite [127] to carry out
fully-quantum, close-coupling calculations [103] of integral cross sections for the
scattering of OH(X2Π) with Ar on a dense grid of 3270 collision energies rang-
ing from 0.2 to 2500 cm−1. We used a channel basis large enough to ensure
convergence of the integral and differential cross sections for all J, Fi → J ′, F ′i
transitions with J, J ′ ≤ 11.5. The rotational basis set of OH was increased
gradually with increasing total energy up to a maximum value of J = 14.5. At
each collision energy, the maximum value of the total angular momentum J was
set large enough (J tot

max = 280 for collision energies between 2000-2500 cm−1)
that the inelastic cross sections were converged to within 0.01 Å2. We have also
calculated differential cross sections, using both sets of PESs, for transitions
from the initially prepared F1(3/2f) level. These cross sections, which were
used in the calculation of the density to flux transformation, were computed on
a coarser dense grid of collision energies.

7.4 Results and Discussion

The experimental scattering signals are most easily compared with theoretical
calculations when relative inelastic scattering cross sections are analyzed. The
measured relative collision induced populations do not yield directly the relative
scattering cross sections, but must be corrected for the detection probability of
the scattered molecules. This probability is not equal for all scattered molecules
and depends mostly on the post-collision velocity of the OH radicals. Molecules
with a low laboratory velocity reside longer in the detection area, and are thus
detected with higher probability than high velocity products which leave the
detection area quickly.

The detection probability of a scattered OH radical depends on kinematic
factors such as the translational energy of the products and/or the differential
cross section (DCS) of the scattering process, and on experimental geomet-
ric factors like the spatial and temporal distribution of the colliding molecular
beams and the size of the detection laser beam. To obtain the relative scatter-
ing cross sections from the raw experimental data, we corrected the scattering
signals using a model that is explained in detail in chapter 6 section 6.4.3. Only
small corrections are needed for the given experimental conditions, they amount
to typically 0.1 to 5 percent. The correction factors are insensitive to small dif-
ferences in the DCS. Use of DCS’s from calculations based on the RCCSD(T)
and UCCSD(T) sets of PESs gives rise to correction factors that are virtually
identical.

The resulting experimental relative inelastic scattering cross sections for 13
inelastic channels are shown in Fig. 7.4. The cross sections for inelastic scat-
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Figure 7.4: Measured relative state-to-state inelastic scattering cross sections for the scat-
tering of OH (X 2Π3/2, J = 3/2, f) radicals with argon atoms as a function of the collision
energy. The relative cross sections that result from the RCCSD(T) and the UCCSD(T) po-
tential energy surfaces are given by the dashed and solid curves, respectively.

tering generally rise sharply from the energy threshold, reach a maximum, and
become rather insensitive to a variation of the collision energy at higher energies.
For fine structure conserving collisions (transitions within the F1 spin-orbit man-
ifold) there is a strong propensity for final states of e-parity, while final states
of f -parity are preferred for fine-structure changing collisions. An exception to
this general propensity rule is the F2(1/2) state for which the e-component is
preferred in collisional excitation. These propensities are consistent with previ-
ous state-to-state inelastic scattering studies at high collision energies, and are
well understood [102].

To facilitate a direct comparison between experiment and theory, we have
also included in Fig. 7.4 the corresponding cross sections computed using the
RCCSD(T) and UCCSD(T) PESs, as described in Section 7.3, convoluted with
the experimental energy resolution. Excellent agreement is obtained for both
potentials for all inelastic channels throughout the entire range of collision en-
ergies. Slightly better agreement is found for cross sections computed with the
UCCSD(T) potential. However, the differences between cross sections com-
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puted for the two sets of PES’s are minor. This reflects the minor differences
between them, as illustrated by the comparison of well depths and separations
in Table 7.3.

For fine-structure-conserving transitions to levels within the F1 spin-orbit
manifold we find excellent agreement between the experimental and computed
cross sections. The only exceptions are slight differences for the transitions to
the F1(3/2e) and F1(5/2e) levels for collision energies above 500 cm−1. For a
2Π molecule described well by Hund’s case (a) (which is not, strictly speaking,
the case of OH(X)) transitions within a given spin-orbit manifold are induced
by the average (Vsum) of the PESs for A′ and A′′ symmetry [103]. Thus the
good agreement between experiment and theory for fine-structure conserving
transitions seen in Fig. 7.4 is a measure of the quality of the Vsum PES predicted
by the CCSD(T) calculations.

Transitions from the F1 to F2 spin-orbit manifolds are induced (again, in
the Hund’s case (a) limit) by the difference PES (Vdif ) [103]. The largest dis-
agreement between experiment and theory occurs for transition to the F2(1/2e)
level, where the computed cross sections are significantly larger for collision
energies greater than 200 cm−1. We note, however, that these cross sections
are considerably smaller in magnitude than those for the spin-orbit conserving
transitions. Nonetheless, the disagreement of the cross sections for the transi-
tion to the F2(1/2e) level suggests that the difference between the A′ and A′′

ab initio Ar–OH(X) PESs may be less accurate than their average.
As can be seen in Fig. 7.4, the difference in the cross sections predicted by

the earlier RCCSD(T) and the present UCCSD(T) calculations is small. In
general, and in particular in the case of the transition into the F2(1/2e) level,
this difference is considerably smaller than the magnitude of the disagreement
between theory and experiment. The present UCCSD(T) PES’s represent an
average over the zero-point vibrational motion of the OH molecule. Comparison
of these vibrationally averaged UCCSD(T) PES’s with those calculated for the
OH molecule frozen at r = re, the same rigid rotation approximation that was
made in the RCCSD(T) calculations, show very little difference. The vibra-
tionally averaged UCCSD(T) PES’s, which are extrapolated to the complete
basis set limit, represent the best currently achievable potential energy surfaces
for a system like OH–Ar. Extending the complexity of the treatment of elec-
tron correlation to include full (rather than perturbative) inclusion of triple,
and, ultimately, quadruple excitations would be computationally impractical.

We observe in Fig. 7.4 that the disagreement between theory and experiment
increases at higher collision energy. At higher collision energy, the classical
turning point moves up the repulsive wall. Thus, it is possible that the increasing
discrepancy at higher energy indicates a progressively increasing inaccuracy
higher on the repulsive wall. It is here, when the three atoms are closest, that a
fully correct description of electron correlation becomes increasingly important.
Thus, incompleteness in the description of triple excitations, and the neglect of
quadruple excitations, may possibly lead to a greater degree of inaccuracy in
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the calculated PES’s in the repulsive region.

7.5 Conclusions and outlook

We have presented measurements of the state-to-state rotational inelastic scat-
tering of OH radicals as a function of the collision energy. The velocity and the
initial quantum state of the OH radicals prior to the collision is controlled by
passing the OH radicals through a Stark decelerator. The collision energy is
varied from 80 to 800 cm−1, and the relative inelastic scattering cross sections
have been accurately determined for 13 inelastic scattering channels. Through-
out the range of collision energies that were probed, excellent agreement is found
with the results of quantum scattering calculations that are based on the most
accurate PES’s currently available. These PES’s should provide a very good
description of the interaction of the OH radical with Ar atoms.

The present experiment has allowed a more comprehensive comparison of
experimental and theoretical inelastic cross sections than has been hitherto
possible. The implications of the experiments that are presented in this chapter
reach beyond the OH–Ar system alone. These experiments also demonstrate
that the Stark deceleration technique has matured sufficiently to be applied
successfully in a wide range of scattering experiments.

The level of sensitivity that can now be achieved in these experiments is
comparable to the sensitivity of conventional crossed beam experiments of simi-
lar systems. In the present experiment, the sensitivity allows for the observation
of scattering processes with cross sections ≥ 0.01 Å2. In future experiments one
could add many of the well-established methods of the crossed beam experi-
mentalist. For instance, the collision energy dependence of steric effects can be
investigated by adding a static orientation field around the beam intersection
region. The implementation of a velocity map imaging detector would allow
for the measurement of the collision energy dependence of the differential cross
sections [90]. The narrow velocity spread of the Stark decelerated beam yields
images of the scattering products with a high angular and velocity resolution.

The Stark deceleration technique is applicable to a number of molecular
species, and allows for scattering studies involving chemically relevant molecules
like OH, NO, ND3, H2CO, and SO2. The recent development of the related
Zeeman deceleration technique extends this chemical diversity to molecules like
NH and O2, all molecular radical species, and all metastable atoms [128, 129].

The study of molecular collisions in the 1–20 cm−1 energy range is another
exciting avenue. Cold molecular collisions are governed by rich quantum phe-
nomena such as shape or Feshbach resonances that are less pronounced in col-
lisions at high energies [130, 131]. These resonances are extremely sensitive to
the details of the interaction potential, but have thus far escaped experimental
observation. Over the energy regime investigated here, molecular collisions are
expected to be highly susceptible to externally applied fields, opening the pos-
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sibility for controlled chemistry. The Stark deceleration technique offers viable
routes to reach experimentally the required energy range and resolution. For
instance, in the present experiment the angle between the reagent beams can be
made smaller to further reduce the collision energy. Although more challeng-
ing, the scattering between two Stark-decelerated packets of molecules, either
directly or in a molecular synchrotron, would allow us to observe the scatter-
ing between fully state-selected and velocity controlled molecules at collision
energies down to 1 cm−1 [96, 132].

Although originally conceived as a method to produce cold polar molecules
by decelerating molecules to a near-standstill, the Stark deceleration technique
offers exciting perspectives for molecular beam scattering experiments as well.
These tamed molecular beams add a novel new element to the existing collection
of experimental methods to unravel the precise nature of molecular interactions.





Chapter 8

Scattering of Stark-decelerated OH
radicals with rare-gas atoms

We present a combined experimental and theoretical study on the rotation-
ally inelastic scattering of OH (X 2Π3/2, J = 3/2, f) radicals with the collision
partners He, Ne, Ar, Kr, Xe, and D2 as a function of the collision energy be-
tween ∼60 cm−1 and 400 cm−1. The OH radicals are state selected and velocity
tuned prior to the collision using a Stark decelerator, and field-free parity-
resolved state-to-state inelastic relative scattering cross sections are measured
in a crossed molecular beam configuration. For all OH-rare gas atom systems
excellent agreement is obtained with the cross sections predicted by coupled
channel scattering calculations based on accurate ab initio potential energy sur-
faces. This series of experiments complements recent studies on the scattering
of OH radicals with Xe, Ar, He, and D2. A comparison of the relative scattering
cross sections for this set of collision partners reveals interesting trends in the
scattering behavior.

Based on: Scattering of Stark-decelerated OH radicals with rare-gas atoms
L. Scharfenberg, K.B. Gubbels, M. Kirste, G.C. Groenenboom, A. van der Avoird,
G. Meijer and S.Y.T. van de Meerakker; Eur. Phys. J. D 65, 189-198 (2011)
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8.1 Introduction

The study of collisional energy transfer between simple atoms and molecules
has been essential for our present understanding of the dynamics of molecular
interactions, and for testing our ability to accurately calculate potential energy
surfaces that govern these interactions [80]. Rotationally inelastic scattering
is one of the simplest scattering processes, and has been studied with ever
increasing level of detail during the last decades. Experimental studies at a full
state-to-state level are nowadays possible, revealing detailed information on the
potential energy surfaces and the resulting motion on these surfaces [133, 134].

Rotationally inelastic scattering of free radical species such as OH or NO
with atomic collision partners has been of special interest in molecular scat-
tering experiments [100, 135]. The scattering of these open-shell species in
a 2Π electronic state involves more than one Born-Oppenheimer potential sur-
face, resulting in rich multi-surface dynamics with various quantum interference
effects [136]. At a state-to-state level, collision induced transitions between ro-
tational, spin-orbit, and Λ-doublet levels have been studied [101, 102, 137].
Sophisticated beam production and product state detection methods have been
developed to measure differential cross sections [90, 138], the steric asymmetry
of the collision [88], and the alignment or orientation of the collision products
[106, 107, 115, 61]. The wealth of scattering data that is available for these
systems, together with the spectroscopic data of the bound states of relevant
complexes [139, 111], offers stringent tests for ab initio potential energy surfaces
(PESs) and for quantum scattering calculations.

In recent years, new approaches to perform high-precision inelastic scattering
experiments involving radical species have become possible with the develop-
ment of the Stark-deceleration technique [3]. The Stark deceleration method
exploits the concepts of charged-particle accelerator physics to produce molec-
ular beams with a tunable velocity and almost perfect state purity [5]. The
method was first applied to molecular scattering studies in 2006, when a Stark-
decelerated beam of OH (X 2Π3/2, J = 3/2, f) radicals was scattered with a
conventional beam of Xe atoms [18]. By tuning the velocity of the OH rad-
icals between 33 m/s and 700 m/s prior to the collision, the center-of-mass
collision energy was varied between 60 cm−1 and 400 cm−1. This energy range
encompasses the energetic thresholds for inelastic scattering to the first excited
rotational levels of the OH radical, and the threshold behavior of the inelastic
state-to-state cross sections was accurately determined. Excellent agreement
was found with cross sections derived from coupled channel calculations on ab
initio computed potential energy surfaces.

Since this first proof-of-principle experiment, a new crossed beam scattering
apparatus was developed that employs an improved version of the Stark decel-
erator. With this decelerator, packets of OH radicals can be produced with a
superior number density, a narrower velocity spread, and a higher quantum state
purity (see chapter 5). This apparatus enables state-to-state scattering experi-
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ments as a function of the collision energy with a sensitivity that exceeds that
of conventional crossed beam scattering experiments. This was demonstrated
on the benchmark OH (X 2Π)-Ar system in chapter 7, for which parity-resolved
integral state-to-state scattering cross sections for in total 13 inelastic scattering
channels have been determined as a function of the collision energy. The same
methodology has also been applied to the scattering of OH radicals with He
atoms and D2 molecules [140].

These experiments challenge the most accurate potential energy surfaces and
quantum scattering calculations presently available. For the scattering of OH
radicals with Ar and He atoms, excellent agreement was found between exper-
iment and theory, although at high collision energies and for specific inelastic
channels deviations were found. For the OH-He system, the almost perfect
quantum state purity offered by the Stark decelerator enabled the observation
of the strong propensities for preferred excitation into final states of certain
parity that had been predicted for this system [101].

In this chapter, we report new measurements on the rotationally inelastic
scattering of OH (X 2Π3/2, J = 3/2, f) radicals with He, Ne, Kr, and Xe atoms,
as well as D2 molecules, at collision energies between 60 cm−1 and 400 cm−1.
The measured cross sections for the OH-Xe system confirm the cross sections
that were determined in the earlier work of Gilijamse et al. [18]. For all four sys-
tems, excellent agreement is obtained with cross sections that are derived from
quantum scattering calculations based on available potential energy surfaces.

These studies complement previous investigations on the scattering of OH
radicals with He, Ar and D2, and together form a complete data set on the
scattering of OH radicals with rare-gas atoms. A comparison of the relative cross
sections for the various collision partners is presented that reveals interesting
aspects about the scattering behavior.

8.2 Experiment

8.2.1 Experimental setup

The experiments are performed in a crossed molecular beam apparatus that
is schematically shown in Fig. 7.1 on page 109. A detailed description of this
machine, as well as of the production, Stark deceleration, and detection of OH
radicals can be found in the previous chapters; only the most essential aspects
of the experiment are described here.

A pulsed supersonic beam of OH radicals is created by photolysis of nitric
acid seeded in either krypton or argon. After the supersonic expansion nearly all
OH radicals reside in the lowest rotational (J = 3/2) and vibrational level of the
X2Π3/2 electronic ground state. The two Λ-doublet components of this level,
labeled e and f , are populated equally in the beam since their energy difference
is only 0.05 cm−1. OH radicals that reside in the energetically higher lying
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f -component can be focused and velocity tuned using the Stark decelerator,
whereas OH radicals in the e-component are deflected from the beam axis. After
passing a skimmer, the packet of OH radicals enters the 3× 3 mm2 opening of
the decelerator. A sequence of high voltage pulses is applied to the decelerator
electrodes to generate time-dependent electric field configurations that either
decelerate, guide or accelerate the OH radicals.

The packet of OH (X2Π3/2, J = 3/2, f) radicals that emerges from the
decelerator has a quantum state purity of > 99% and intersects the central
axis of the secondary beam at an angle of 90◦ at a distance of 16.5 mm from
the decelerator exit. Collisions take place in a field free region and the initially
uneven distribution over MJ -components which is present inside the decelerator
is assumed to be scrambled completely while the molecules move towards the
collision region.

A temperature controlled solenoid valve produces the secondary beam of
rare-gas atoms or D2 molecules. The mean forward velocity of this beam is
inferred from a time-of-flight measurement using two microphone-based beam
detectors that are placed 300 mm apart. To ensure single-collision conditions,
the intensity of the secondary beam is kept sufficiently low so that the decrease
of the initial population in the J = 3/2, f level remains below 4 percent.

The collision products are state-selectively detected via saturated laser-
induced fluorescence when the most intense part of the OH packet is in the
center of the collision region. A pulsed dye laser is used to induce various ro-
tational transitions of the A2Σ+, v = 1 ← X2Π, v = 0 band. The laser beam
intersects both molecular beams under 90◦ and the off-resonant fluorescence is
collected by a lens and imaged onto a photomultiplier tube.

8.2.2 Measurement procedure and data analysis

The collision energy range between 60 and 400 cm−1 is covered using two mea-
surement intervals with overlapping energy, as described in chapter 7. For these
intervals, molecular beams of OH radicals are produced using Kr and Ar as seed
gases, resulting in OH radical beams with mean initial velocities of 430 m/s and
615 m/s, respectively. Within each interval, the collision energy is varied by
tuning the velocity of the OH radicals prior to the collision using the Stark
decelerator. For collisions with Ne, Ar, Kr and Xe atoms, the mean velocity
of the rare-gas atom beam is kept constant for all measurements. The mean
speed and corresponding valve temperatures for the different rare-gas beams
are: 445 m/s (Ne, 93 K), 400 m/s (Ar, 110 K), 330 m/s (Kr, 163 K) and 300 m/s
(Xe, 220 K). For collisions with He atoms and D2 molecules, the small reduced
mass makes it inconvenient to vary the collision energy by solely tuning the
speed of the OH packet. Therefore, the speed of the secondary beam is varied
in comparatively large steps by changing the temperature of the valve. For a
given valve temperature, the OH velocity is then tuned from 168 to 741 m/s.
The D2 molecules are assumed to be distributed between ortho and para rota-
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tional levels according to the statistical weights, i.e. 67% of the molecules are
expected to populate rotational levels with J even and 33% levels with J odd.

The Stark decelerator provides packets of OH radicals at a rate of 10 Hz. The
secondary beam is operated at 5 Hz and collision signals are inferred from the
fluorescence intensity difference between alternating shots of the experiment.
To limit the effects of long-term drifts in the experiment, the collision energy
dependence of the scattering channels is measured via a quasi-continuous cycle
(see chapter 7). In such a cycle, the collision energy is scanned automatically
by producing a different velocity of the OH radicals for every shot of the ex-
periment. The collision signals are obtained from typically 1000 runs of the
experiment, and quoted error bars represent the statistical fluctuation of the
measured mean values. Both photon counting and analog detection are used in
the data acquisition.

The experiment is not sensitive to elastic scattering; only scattering events
that change the internal quantum state of the OH radical can be detected.
Within the studied collision energy range, collisional excitation to at most 13
rotational levels can occur. These levels are labeled as F1(Je/f) and F2(Je/f),
where F1 and F2 denote the X 2Π3/2 and the X 2Π1/2 spin-orbit manifolds,
respectively, and the parity labels e and f correspond to the two Λ-doublet
components of each rotational level. An energy level diagram with all relevant
rotational levels is shown in Fig. 8.2 (p. 133). Note that the Λ-doublet splitting
is largely exaggerated in this figure for reasons of clarity. The rotational transi-
tions that are used to probe the individual levels, as well as the excitation rates
that are used to convert measured fluorescence intensities to populations, are
specified in Table 7.2 on page 113.

The experimental scattering signals are most easily compared with theoreti-
cal calculations when relative inelastic scattering cross sections are derived from
the observations. The relative scattering cross section for a specific channel is
proportional to the total number of molecules that is detected in the correspond-
ing quantum state. However, the detection volume is necessarily limited and in
general not all molecules can be detected. A density-to-flux transformation is
required to relate the measured relative populations in final states to relative
scattering cross sections. Under the given experimental conditions, the result-
ing correction is small, as is discussed in detail in chapter 6. For the scattering
of OH with Ne, Ar, Kr and Xe atoms, we have performed the transformation
using the differential cross sections determined from theory. For He and D2, the
density-to-flux correction can be safely omitted due to the small mass of the
collision partner compared to the mass of the OH radical.

8.3 Theory

The theory for the scattering of 2Π-state molecules with 1S-state atoms is well
established [103]. In particular, collision studies between OH molecules and
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rare-gas atoms at low collision energies have received a lot of attention over the
last years [18, 141, 142, 143]. In this section we only give a brief summary of
the relevant theory. A more extensive account can be found in Ref. [144].

The Hamiltonian that describes the scattering of ground state OH (X2Π)
with rare-gas atoms is given by

Ĥ =
−�2
2μR

∂2

∂R2
R+

L̂2

2μR2
+
∑
Λ′,Λ

|Λ′〉VΛ′,Λ(R, θ)〈Λ|+ ĤOH, (8.1)

where R is the length of the vector R that connects the center-of-mass of the
OH molecule and the rare-gas atom, μ is the reduced mass of the atom-OH
complex, L̂ is the angular momentum operator corresponding to end-over-end
rotation of the OH-rare gas atom complex, and ĤOH is the Hamiltonian of the
OH molecule in the (X2Π) ground state. The X 2Π electronic ground state of
the OH radical has two degenerate components with projections Λ = ±1 of the
orbital electronic angular momentum on the internuclear r̂-axis. The OH-rare
gas interaction is represented by the operators |Λ′〉VΛ′,Λ(R, θ)〈Λ| that couple
different electronic states Λ and Λ′. The angle θ defines the angle between the
unit vector R̂ and the OH bond direction r̂, with θ = 0 corresponding to collinear
atom-HO. The Hamiltonian of OH includes rotation, spin-orbit coupling and
Λ-doubling, where we use the OH rotational constant B = 18.5487cm−1, the
spin-orbit coupling constant A = −139.21cm−1, and Λ-doubling parameters
p = 0.235 cm−1 and q = −0.0391cm−1 [126]. From Eq. (8.1) it follows that
differences in the collisions between OH and the various rare gas atoms originate
from the differences in the interaction potential and the reduced mass.

When the rare-gas atom approaches the OH molecule, the electronic de-
generacy of the Π state is lifted. The resulting matrix elements VΛ,Λ′ of the
potential are nonzero for Λ′ − Λ = 0,±2, and two potential energy surfaces
are involved in the scattering process. The potential energy surfaces can be
expanded in Racah normalized spherical harmonics

V1,1 = V−1,−1 =
VA′ + VA′′

2
=
∑
l

vl,0(R)Cl,0(θ, 0),

V1,−1 = V−1,1 =
VA′′ − VA′

2
=
∑
l

vl,2(R)Cl,2(θ, 0), (8.2)

where A′ and A′′ refer to the reflection symmetry of the electronic states. The
surfaces V1,1 and V1,−1 are often referred to as the sum Vsum and difference Vdiff
potential energy surface, respectively.

Ab initio calculations for the OH-atom interaction energy can be performed
using the MOLPRO program package [120], which has resulted in potentials
for the OH-He [145], OH-Ne [145, 146], OH-Ar [147] (see also p. 115), OH-Kr
[148] and OH-Xe [18] complexes. The most relevant properties of the various
interacting systems, such as the reduced mass of the OH-rare gas atom complex,
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Atom μ α E R θ PES

He 3.24 0.21 -27.1 6.54 0 A′, A′′

-21.8 6.09 180 A′, A′′

-30.0 5.69 68.6 A′

Ne 9.22 0.40 -59.34 6.53 0 A′, A′′

-45.18 6.14 180 A′, A′′

-59.60 5.82 67.6 A′

Ar 11.9 1.64 -141.7 7.01 0 A′, A′′

-92.4 6.70 180 A′, A′′

-137.1 6.18 74.8 A′

Kr 14.14 2.48 -172.5 7.2 0 A′, A′′

-110.3 6.8 180 A′, A′′

-177.0 6.25 78 A′

Xe 15.05 4.04 -202.3 7.6 0 A′, A′′

-117.9 7.3 180 A′, A′′

-224.4 6.45 84 A′

Table 8.1: Properties of the Rg-OH interaction. Values for the potential minima adapted
from [18, 147, 124, 146, 148]. Reduced mass μ in u, polarizability α in 10−24 cm3, potential
energy E in cm−1, coordinate R in a0, coordinate θ in degree.

the polarizability of the rare gas atom, the minima of the potential energy
surfaces in the two different linear configurations of the complex (θ = 0◦ and
θ = 180◦), as well as the position and energy of the minimum of the A′ potential
at a nonlinear geometry, are listed in Table 8.1.

The potential energy surfaces vary in the quality of the basis set used,
and the quality of the method. All potentials used the counterpoise proce-
dure to correct for the basis set superposition error [149]. The OH-He and
the OH-Ne potentials of Lee et al. were both calculated with a spin-restricted
coupled-cluster method with single and double excitations and perturbative
triples [RCCSD(T)]. The augmented triple-zeta correlation-consistent basis set
(aug-cc-pVTZ) was used with an additional (3s, 3p, 2d, 2f , 1g) set of bond func-
tions centered in the midpoint of the vector R [145]. The Ne-OH potential was
also calculated more recently by Sumiyoshi et al., who used an explicitly cor-
related, spin-unrestricted approach [UCCSD(T)-F12b] with a larger quintuple-
zeta basis set (aug-cc-pV5Z) [146]. We calculated the cross sections for both
Ne-OH potentials, and we find that the most recent potential gives a clearly
better agreement with experiment. This is probably due to the larger basis set
and the improved calculation method, which includes explicit electron corre-
lations that particularly enhance the accuracy of the short-ranged behavior of
the potential. For the Xe-OH potential, RCCSD(T) was used with a quadruple-
zeta basis set (aug-cc-pVQZ) and with a set of (3s, 3p, 2d, 1f , 1g) mid-bond
orbitals with geometry-dependent exponents [18]. For the Kr-OH potential,
the UCCSD(T)-F12b approach was used with the aug-cc-pVQZ basis set [148].
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Finally, the Ar-OH potential surface was calculated with a spin-unrestricted
approach [UCCSD(T)], where the basis set was extrapolated to the complete
basis set limit, and where also an averaging over the v = 0 motion of the OH
molecule was performed. For the other systems, the OH molecular geometry
was assumed frozen at its equilibrium bond length (OH-He, Ne, Kr) or at its
vibrationally averaged distance (OH-Xe).

In order to calculate the OH monomer eigenfunctions it is convenient to use
a parity adapted Hund’s case (a) basis set, labeled by |Ω, J,MJ , p〉 with J the
total angular momentum of the OH molecule, Ω and MJ the projections on the
molecular and space-fixed quantization axes, and p the parity under inversion.
For the exact OH eigenfunctions, |Ω| is nearly a good quantum number. The
total angular momentum of the OH-atom complex is represented by the operator
Ĵ = Ĵ + L̂, whose eigenfunctions are obtained by coupling the monomer basis
with the spherical harmonics |L,ML〉 = YL,ML(ϑ, ϕ), where ϑ and ϕ are the
space-fixed spherical coordinates of the vector R. Assuming that the OH bond
length is fixed, we write the scattering wave functions as products of radial and
angular functions,

ΨJ ,MJ ,P
β,L =

1

R

∑
β′,L′

χJ ,MJ ,P
β′,L′←β,L(R)ψJ ,MJ ,P

β′,L′ (R̂, r̂), (8.3)

where β is a shorthand notation for the monomer quantum numbers (Fi, J)
with i to distinguish between the F1 and F2 spin-orbit manifolds of the OH
eigenstates. Note that the total angular momentum J , its space-fixed pro-
jection MJ and the parity of the complex P = p(−1)L are conserved in the
collision process. The experimentally relevant scattering properties, that is the
cross sections, are conveniently expressed in terms of scattering matrices, which
can be obtained using standard asymptotic matching procedures [150]. The ob-
tained S-matrices are then related to the scattering amplitudes, which in turn
determine the differential cross sections [151].

In order to achieve convergence of the calculated cross-sections, we used a
basis set that included all OH rotational states up to an angular momentum of
J = 21/2, and took into account all partial wave contributions up to a total
angular momentum of J = 241/2. For the propagation of the wavefunction,
the renormalized Numerov method was used, starting at 4a0 and continuing to
35a0 with a0 the Bohr radius. The cross sections were evaluated on an energy
grid with a 5 cm−1 interval spacing, well below the experimental energy reso-
lution in all cases. It is noted that this energy grid is too sparse, however, to
identify individual scattering resonances that occur at collision energies around
the energetic thresholds. In Fig. 8.1 the total integral inelastic cross sections
(the sum of the integral cross sections over all inelastic channels) are shown for
collisions of OH (X 2Π3/2, J = 3/2, f) radicals with the five different rare-gas
atoms. In this figure, the contribution to the total cross section of collisions that
populate levels within the F1 manifold are indicated. The total inelastic cross



8.4 Results and discussion 131

60

50

40

30

20

10

0

cr
os

s 
se

ct
io

n 
/ Å

2

40035030025020015010050

collision energy / cm
-1

 Xe

  Kr

  Ar

 Ne

He

Figure 8.1: The calculated total integral cross sections for inelastic scattering of OH
(X 2Π3/2, J = 3/2, f) radicals with He, Ne, Ar, Kr and Xe atoms (solid lines). The con-
tribution to the cross section which is due to transitions into the F1 spin-orbit manifold are
shown by the broken lines.

section is seen to rise with increasing reduced mass, increasing atom polarizabil-
ity and increasing well depth of the potential. The total inelastic cross sections
as presented in Fig. 8.1 can be used to deduce absolute state-to-state inelastic
cross sections from the experimentally determined relative state-to-state cross
sections. These are presented in the next section.

8.4 Results and discussion

8.4.1 Scattering of OH radicals with Ne, Kr, and Xe atoms

In this section, we first describe the results on the scattering of OH radicals
with Ne, Kr, and Xe atoms. A detailed comparison of the scattering behavior
for the various systems is given in section 8.4.2.

The measured relative state-to-state cross sections for the scattering of OH
radicals with Ne, Kr, and Xe are shown in Fig. 8.2 and Fig. 8.3. The the-
oretically computed cross sections, convoluted with the experimental energy
resolution, are included as solid curves; in the case of Ne, the cross sections ob-
tained from the most recent potential [146] are shown as solid curves, whereas
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the onces obtained from the older potential [145] are shown as dashed curves.
For completeness, the experimental and theoretical cross sections from previous
work for the OH-He, OH-D2, and OH-Ar systems [140, 147] are also shown
in these figures. The spin-orbit manifold conserving (transitions within the
F1 spin-orbit manifold) and spin-orbit manifold changing collisions (transitions
from the F1 into the F2 manifold) are summarized in Fig. 8.2 and Fig. 8.3, re-
spectively. In both figures, the state resolved scattering channels are labeled
following the color codes as indicated in the rotational energy level diagrams.

For the scattering of OH(F1(3/2f)) with Ne, the Λ-doublet changing chan-
nel F1(3/2f)→ F1(3/2e) dominates at low collision energies; at energies above
∼150 cm−1 the scattering is dominated by rotational excitation to the F1(5/2e)
state. For spin-orbit manifold conserving transitions, there is a strong propen-
sity for final states of e parity. For spin-orbit manifold changing collisions, a
strong Λ-doublet propensity is only observed for excitation into the F2(1/2)
states.

The scattering behavior of OH with Kr is observed to be very similar to
the scattering of OH with Xe atoms, and dominated by the Λ-doublet changing
F1(3/2f) → F1(3/2e) channel at all probed collision energies. For rotational
excitation, the cross sections generally rise sharply from the energetic threshold,
reach a maximum, and become rather insensitive to a variation of the collision
energy at higher energies. For spin-orbit manifold conserving collisions, there
is a small propensity for excitation into final states of e parity. For spin-orbit
changing collisions, no clear preference for excitation into one of the Λ-doublet
components of a final rotational state is observed.

For all three scattering systems, the measured cross sections are compared
to the cross sections determined by quantum coupled channel calculations based
on high quality ab initio PESs. For the scattering of OH with Ne and Kr atoms,
excellent agreement is found between the experimentally determined and theo-
retically computed scattering cross sections. The cross sections for all scattering
channels, both for spin-orbit conserving and spin-orbit changing collisions, and
for all collision energies are perfectly reproduced by the calculations.

For the scattering of OH radicals with Xe atoms, the measured cross sections
confirm the cross sections that were determined in previous work on this system
[18]. It is noted that both experiments were performed in different apparatuses
and with different levels of sensitivity. For the present experiment, in which
state-to-state cross sections for a larger number of final states are measured,
excellent agreement is obtained between experimental and theoretical cross sec-
tions. The relative scattering cross sections, as well as the threshold behavior of
individual channels, are reproduced well. Also the increase in the relative scat-
tering cross section for the F1(3/2f) → F1(5/2e) channel at collision energies
just above the energetic threshold is perfectly reproduced. The only pronounced
difference between experiment and theory is observed for the F2(1/2f) channel
at energies just above threshold. This discrepancy could possibly be explained
by small imperfections in the difference potential. We have observed in the
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Figure 8.2: Relative state-to-state inelastic scattering cross sections for spin-orbit conserving
(F1 → F1) collisions of OH (X 2Π3/2, J = 3/2, f) radicals with He, Ne, Ar, Kr, and Xe atoms
and D2 molecules as a function of the collision energy. The theoretically calculated cross
sections are included as solid curves. In the case of Ne, the cross sections calculated from
the old potential [145] are shown as dashed curves. In the energy-level scheme, the splitting
between both parity components of each rotational level is greatly exaggerated for reasons of
clarity.
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Figure 8.3: Relative state-to-state inelastic scattering cross sections for spin-orbit changing
(F1 → F2) collisions of OH (X 2Π3/2, J = 3/2, f) radicals with He, Ne, Ar, Kr, and Xe atoms
and D2 molecules as a function of the collision energy. The theoretically calculated cross
sections are included as solid curves. In the case of Ne, the cross sections calculated from the
old potential [145] are shown as dashed curves.
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calculations that the cross sections for scattering into the F2(1/2) channels are
particularly sensitive to small variations of Vdiff . At low collision energies, there
appears to be a small offset in the collision energy of a few cm−1 between the
experimental and the theoretical values for cross section. The origin of this
offset is not known, but could well be the result of an uncertainty in the Xe
beam velocity measurements.

8.4.2 Comparison between the various collision partners

Interesting trends are observed when the general scattering behavior for the
various OH-rare gas atom systems are qualitatively compared with each other.
For the series OH-He, Ne, Ar, Kr, Xe it is observed that the role of the
F1(3/2f)→ F1(3/2e) channel gradually increases. At the same time, propensi-
ties for preferred scattering into the e parity state of the other rotational states
of the F1 manifold tend to get weaker. Finally, the contribution of the spin-orbit
changing F1(3/2f) → F2(1/2e) channel to the scattering is gradually reduced
from ∼ 20 % for OH-He to ∼ 2 % for OH-Xe. We note that these qualitative
changes are strongest when the collision partner He is replaced by Ne, and when
Ne is replaced by Ar. When Ar is replaced by Kr, smaller changes are observed,
while hardly any changes occur in going from Kr to Xe. The scattering of OH
radicals with D2 molecules does not fit entirely in this trend; the overall scatter-
ing behavior for this system resembles that of the OH-Ar, OH-Kr and OH-Xe
systems.

A qualitative understanding of the inelastic scattering of OH radicals with
rare-gas atoms can be obtained from a general analysis given by Dagdigian
et al. [104]. According to this analysis, the relative strength of the various
scattering channels (in particular for low values of J) can be estimated from
the rotational energy level structure of the OH radical and the different expan-
sion coefficients vl,0(R) and vl,2(R) of the sum and difference potential energy
surfaces, respectively.

A close inspection of the nature of the interaction potential and the relevant
coefficients that determine the state-to-state cross sections can yield a satisfying
understanding of the physical origin of general scattering features [152]. As
outlined in Ref. [140], for instance, the profound difference in the scattering
behavior that is observed for the inelastic scattering of OH with He atoms or
D2 molecules can be explained by the much larger anisotropy of the OH-D2

PESs compared to the OH-He PESs. In general, a small F1(3/2f)→ F1(3/2e)
Λ-doublet changing cross section, a strong propensity for rotational excitation
into the e parity component of the F1(5/2) state, and a strong cross section
for scattering into the F2(1/2e) level indicates that the scattering is dominated
by the symmetric l = even terms, whereas the opposite scattering behavior is
expected for systems in which the asymmetric l = odd terms play a large role.
The former is the case for the weakly interacting OH-He system that results
in a potential energy surface with small anisotropy; the latter applies to the
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strongly interacting OH-D2 system.
These qualitative arguments can also be used to rationalize the trends that

are observed for the scattering of OH with the series of rare-gas atoms He, Ne,
Ar, Kr, and Xe. Indeed, with increasing polarizability of the collision partner,
the scattering is governed by potential energy surfaces with increasing well
depth and larger anisotropy. This results in more dominant l = odd expansion
coefficients, and hence in a larger F1(3/2f)→ F1(3/2e) Λ-doublet cross section,
smaller e over f propensities for excitation into the F1(5/2) state, and reduced
cross sections for the F1(3/2f)→ F2(1/2e) spin-orbit changing channel.

The trends that are observed are thus consistent with what may be expected
from the nature of the OH-rare gas atom interaction potential. However, for the
series of collision partners also dynamic effects that are related to the increasing
mass of the collision partner may play a role. It is not a priori clear which
features in the scattering behavior are due to the effect of the PES, and which
features result from the effect of the reduced mass.

To study the influence of both parameters on the scattering, we have per-
formed calculations for two hypothetical OH-rare gas atom systems. In the first
system, we have used the OH-He PESs, but performed the scattering calcula-
tions with the He atom mass replaced by the Xe atom mass. In the second
system, we have used the OH-Xe PESs, but performed the scattering calcu-
lations with the Xe atom mass replaced by the He atom mass. These model
systems thus yield information on the scattering of OH radicals with a weakly
interacting but heavy collision partner, and with a strongly interacting but
light collision partner. The resulting inelastic scattering cross sections for both
systems are shown in Fig. 8.4.

For the OH-He interaction potential, significant changes in the cross sections
are observed upon replacement of the He atom mass with the Xe atom mass.
In particular, the relative cross section for scattering into the F1(3/2e) state
increases, while the contributions of the F1(5/2e) and F2(1/2e) channels to the
scattering decrease. Note that also the threshold behavior of various channels
changes significantly; the cross sections rise less sharply at collision energies
above threshold. The resulting state-to-state relative inelastic cross sections
closely resemble those for the OH-Ne system, i.e. a weakly interacting system
with a larger reduced mass compared to OH-He.

For the OH-Xe interaction potential, opposite changes in the scattering cross
sections are observed upon replacement of the Xe mass with the He atom mass.
The F1(3/2f) → F1(3/2e) channel becomes less dominant, and the F1(5/2e)
and F2(1/2e) channels gain importance. The resulting relative state-to-state
cross sections resemble those that are measured for the OH-D2 system, i.e. of a
strongly interacting system with a smaller reduced mass compared to OH-Xe.

These model calculations indicate that the nature of the potential energy
surface and the reduced mass of the system can both have a profound and
qualitatively similar influence on the scattering cross sections. This suggests
that the interesting trends that are observed for the scattering of OH with He,
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Figure 8.4: Calculated relative state-to-state inelastic scattering cross sections for two hy-
pothetical OH (X 2Π3/2, J = 3/2, f)-rare gas atom systems. Top row: calculations are based
on the OH-He PESs from Ref. [124], but the scattering calculations are performed with the
He atom mass replaced by the Xe atom mass. Bottom row: calculations are based on the
OH-Xe PESs from Ref. [18], but the scattering calculations are performed with the Xe atom
mass replaced by the He atom mass.

Ne, Ar, Kr, and Xe are in part due to the increasing interaction strength of the
OH radical with the collision partner, and in part due to the increasing mass of
the rare-gas atom. It is not straightforward to disentangle the influence of both
effects using ab initio potential energy surfaces and coupled channel scattering
calculations as employed here. The individual influence on the scattering of
properties such as well depth, anisotropy and reduced mass can be studied best
using models for the potential and the scattering dynamics that allow for an
independent variation of the relevant parameters [153, 154].

8.5 Conclusions

We have presented new measurements on the state-to-state rotational inelas-
tic scattering of Stark-decelerated OH (X 2Π3/2, J = 3/2, f) radicals with Ne,
Kr, and Xe atoms. For each collision system, a total of 13 inelastic scattering
channels is studied at collision energies in the 70 − 400 cm−1 range. The col-
lision energy dependence of the relative inelastic scattering cross sections, the
threshold behavior of inelastic channels, and the energy dependence of the state-
resolved propensities are accurately determined. Excellent agreement is found
with the inelastic scattering cross sections determined from quantum coupled
channel scattering calculations based on ab initio potential energy surfaces.

These measurements complement recent studies on the scattering of the
OH radicals with He atoms, Ar atoms, and D2 molecules, and confirm the
measured cross sections of the original work on the scattering of OH radicals
with Xe atoms. Together, these studies represent the most complete combined
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experimental and theoretical study of the inelastic scattering of an open shell
radical in a 2Π electronic state with rare-gas atoms. The excellent agreement
that is obtained with the cross sections that are derived from ab initio potential
energy surfaces for all OH-rare gas atom systems clearly indicates that the
scattering of these systems is well understood.

Significant differences are found in the scattering behavior of OH radicals
with the various collision partners, and interesting trends are observed in the
relative inelastic scattering cross sections for the series OH-He, Ne, Ar, Kr,
and Xe. Replacement of the He atom by heavier rare-gas atoms results in a
more dominant F1(3/2f)→ F1(3/2e) Λ-doublet changing cross section, smaller
propensities for preferred excitation into one of the Λ-doublet components of ex-
cited rotational levels, and reduced cross sections for the F1(3/2f)→ F2(1/2e)
transition. These trends result in part from the increasing strength of the OH-
rare gas atom interaction, and in part from the increasing mass of the rare-gas
atom.



Chapter 9

Crossed beam scattering with
optimized energy resolution

Crossed molecular beam scattering experiments in which the energy of the col-
lision is varied can reveal valuable insight in the collision dynamics. The energy
resolution that can be obtained depends mainly on the velocity and angular
spreads of the molecular beams; often, these are too broad to resolve narrow
features in the cross sections like scattering resonances. The collision energy
resolution can be greatly improved by making appropriate choices for the beam
velocities and the beam intersection angle. This method works particularly well
for situations in which one of the beams has a narrow velocity spread, and
we here discuss the implications of this method for crossed beam scattering
experiments with Stark-decelerated beams.

Based on: Crossed beam scattering experiments with optimized energy resolution
L. Scharfenberg, S. Y. T. van de Meerakker and G. Meijer
Phys. Chem. Chem. Phys. 13, 8448 (2011)
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9.1 Introduction

The crossed molecular beam technique is one of the most widely used experi-
mental approaches to study collisions between individual atoms and molecules,
and has been seminal to our present understanding of molecular dynamics at
a microscopic level [80]. Since its introduction in the 1950’s, the technique
has witnessed a remarkable and continuous development. Its present level of
advancement allows for accurate control over the collision partners prior to
the collision event, and for sophisticated detection of the collision products
[155, 10, 28].

One of the most important parameters in a collision experiment is the col-
lision energy of the colliding particles. The collision energy can be tuned by
controlling the velocity of the particles prior to the collision, or by changing
the angle between the intersecting beams. For the latter approach, ingenious
crossed molecular beam machines have been engineered to continuously vary
the collision energy [81]. These methods have been used to measure, for in-
stance, the threshold behavior of rotational energy transfer [99, 82], or to tune
the collision energy over the reaction barrier for reactive scattering [156, 157].

Recently, new molecular beam techniques have become available that allow
for detailed control over the velocity of molecules in a beam. This control is
obtained by exploiting the interaction of molecules with electric or magnetic
fields in a so-called Stark decelerator or Zeeman decelerator, respectively [3, 4].
The tunability of the velocity allows for scanning of the collision energy in a
fixed experimental geometry. State-to-state inelastic scattering between Stark-
decelerated OH radicals and conventional beams of He, Ne, Ar, Kr, and Xe
atoms, as well as D2 molecules, has been studied. These beam deceleration
methods hold great promise for future scattering experiments and offer the
possibility to extend the available collision energy range to energies below one
wavenumber [96].

Essential in these experiments is the resolution with which the collision en-
ergy can be varied. High energy resolutions are particularly important at those
collision energies where a detailed structure in the energy dependence of the
cross sections is expected. At low collision energies, shape or orbiting reso-
nances can occur that are caused by rotational states of the collision complex
that are trapped behind the centrifugal or reaction barrier [158, 159]. At col-
lision energies near the energies of excited states of one of the reagents, also
Feshbach resonances can occur [160]. The experimental mapping of these reso-
nances would probe the interaction potentials with unprecedented detail [161].

The energy resolution that can be obtained experimentally depends on the
velocity and angular spreads of the molecular beam pulses. Typical molecular
beam spreads are too large to reveal narrow features like scattering resonances
that often require energy resolutions of about one wavenumber. So far, only
in exceptional cases have resonances been observed, mostly for kinematically
favorable systems in which a collision partner with low mass has been used



9.1 Introduction 141

[162, 163, 164, 165]. Recently, crossed beam experiments employing a tunable
beam crossing angle have been reported in which the resolution was sufficient to
resolve the contribution of individual partial waves to the scattering [166, 167].

Compared to conventional molecular beams, Stark-decelerated molecular
beams offer superior velocity spreads that typically range between 1 and 20 m/s
[57]. This narrow velocity spread can be exploited in crossed beam scattering
experiments to yield a high energy resolution. Indeed, energy resolutions of
about 13 cm−1 have already been achieved for the OH-Xe and OH-Ar sys-
tems, which is particularly good in view of the relatively large reduced mass
of these systems. This energy resolution was sufficient to accurately measure
the threshold behavior of the rotational inelastic cross sections and to resolve
broader features in the collision energy dependence of the cross sections (see
p. 118 and p. 133,134). The sharp resonances that are predicted by ab initio
calculations remained elusive, however.

To further improve the energy resolution in these experiments, the velocity
spread of the collision partner needs to be reduced. This can be achieved by
using a second Stark decelerator to obtain control over a molecular collision
partner, or by using mechanical velocity selectors to reduce the velocity spread
of the atomic collision partner. However, both approaches would reduce the
number density in the colliding beams.

Here we describe a simple yet effective method to improve the collision en-
ergy resolution that does not rely on velocity selection of the target beam. We
show that for beam crossing angles smaller than 90◦, kinematically favorable
situations can occur in which the velocity spread of the target beam does not
contribute to the collision energy spread. This enables high collision energy res-
olutions without having to sacrifice the number density of the target beam that
is available to the scattering. Furthermore, it is experimentally more convenient
because it avoids the use of a mechanical velocity selector for the target beam.

This method has been exploited before to improve the resolution in scat-
tering experiments. It was described for the first time in a book chapter by
H. Pauly and J.P. Toennies [168] in 1968 and it was part of the dissertation
[169] of R. Feltgen (a student of Pauly) in 1970. The method was used in an
experiment by Scoles and coworkers, in which orbiting resonances were observed
in the integral elastic scattering cross sections for the scattering of velocity se-
lected H atoms by Hg atoms [162, 163]. A beam intersection angle of 73◦ was
used in order to improve the velocity resolution. A similar investigation was
performed by Toennies and coworkers, who used a beam intersection angle of
46◦ to resolve orbiting resonances in the scattering of H atoms by various rare
gas atoms [164]. Finally, we note that under well chosen kinematic conditions,
one may produce molecules which are standing still (in the laboratory frame)
after the collision [170, 171].

The approach discussed in this chapter is particularly advantageous, if one
of the beams has a narrow velocity spread and if the overall angular spread of
the beams is sufficiently small. For collisions between Stark-decelerated beams
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and conventional beams of rare gas atoms, for instance, a very high energy
resolution can be obtained that may well be sufficient to experimentally resolve
scattering resonances, even for systems with a relatively large reduced mass.

This chapter is organized as follows. In section 9.2 the method itself is ex-
plained in more detail, and the beam properties that are used throughout in
the examples are introduced. In section 9.3 we describe different experimental
approaches that can be followed to vary the collision energy, and their implica-
tions for the collision energy resolution are analyzed. The description will be
held rather general, although we will emphasize the experimental arrangement
of one Stark-decelerated beam colliding with a conventional molecular beam.
In section 9.4 we illustrate the potential of the method using a recent crossed
beam experiment as an example. In this experiment, a Stark decelerated beam
of OH radicals was scattered with a beam of He atoms at a 90◦ crossing angle,
and we show that the future implementation of the method may well lead to
the experimental observation of scattering resonances for this system. In sec-
tion 9.5 we will draw conclusions, again with an emphasis on the advantages
this method can have for crossed beam collision experiments in which Stark-
decelerated beams are employed.

9.2 Collision kinematics

Consider two colliding particles with mass m1 and m2 and with respective
laboratory velocity vectors v1 and v2. This situation is sketched in Fig. 9.1.
The collision energy E of the system, calculated in a frame of reference that is
moving with the velocity of the center-of-mass of the two particles, is given by:

E =
μ

2
|v1 − v2|2 =

μ

2
(v21 + v22 − 2v1v2 cosφ), (9.1)

where v1 and v2 are the magnitudes of the laboratory velocity vectors, φ is the
enclosed angle between v1 and v2, and μ = m1m2/(m1+m2) is the reduced mass
of the system. This energy E is the total energy that is available for inelastic
processes. Small changes in v1, v2 or φ will cause an approximate change of E
that is given by its differential:

dE

μ
= [v1 − v2 cosφ]dv1 + [v2 − v1 cosφ]dv2 + v1v2 sinφdφ. (9.2)

The geometric meaning of the partial derivatives is brought out more clearly if
expressed directly by the velocity vectors:

dE

μ
= [v1 − v̂1 · v2]dv1 + [v2 − v̂2 · v1]dv2 + |v1 × v2| dφ (9.3)

with the vectors of unit length v̂1 and v̂2.
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Figure 9.1: Laboratory velocity vectors v1 and v2 of two colliding particles. The relative
velocity vector of the two particles is g := v1 − v2.

Two important special cases can occur. If the beams are parallel on average
(φ = 0◦ or 180◦), the influence of the angular spread of the beams becomes
negligible. If the relative velocity vector g is, on average, perpendicular to v1

or v2, E is almost unaffected by small changes in v1 or v2, respectively. In this
case the influence of the velocity spread of one of the beams becomes negligible.
The collision energy resolution thus strongly depends on the geometry of the
Newton diagram that describes the scattering process. For a suitable choice of
the geometry, this can be exploited to optimize the collision energy resolution
in the experiment. This is the main idea behind the method.

To make the discussion quantitative, an estimate of the collision energy
distribution is required. This distribution is determined by the distributions of
the vectors v1 and v2 and hence by six independent variables. This number can
be reduced by changing to a more suitable coordinate system and by making
appropriate approximations. If the vectors v1 and v2 are written as functions
of spherical coordinates the collision energy becomes:

E(v1,v2) = E(v1(v1, ϕ1, θ1),v2(v2, ϕ2, θ2)) (9.4)

where θ1(2) denotes the polar angle, i.e. the angle subtended by v1(2) and
the z-axis and ϕ1(2) denotes the azimuthal angle, i.e. the angle subtended by
the orthogonal projection of v1(2) onto the xy-plane and the x-axis. If the
averaged velocity vectors lie exactly within the xy-plane, the first order change
of E with θ1(2) vanishes2 so that we need to consider the projection of the
velocity vectors onto the xy-plane only. For the experiment, this means that
it is sufficient to collimate the beams by slits (rather than pinholes) that are
oriented perpendicular to the xy-plane. We can now identify φ in equation (9.1)
with φ = ϕ1 − ϕ2, and we only have to optimize the collision energy resolution
with respect to the three scalar variables v1, v2, and φ.

2A derivation is given in the Appendix on p. 155.
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7LiH OH/NH3 CO

m2\m1 8 17 28

1 H 0.88 0.94 0.97

2 D/H2 1.60 1.79 1.87

3 3He/HD 2.18 2.55 2.71

4 4He/D2 2.67 3.24 3.50

8 7LiH 4.00 5.44 6.22

17 OH/NH3 5.44 8.50 10.58

20 Ne/ND3 5.71 9.19 11.67

28 CO 6.22 10.57 14.00

40 Ar 6.67 11.93 16.47

83.8 Kr 7.30 14.13 20.99

131.3 Xe 7.54 15.05 23.08

Table 9.1: Reduced mass μ = m1m2/(m1 +m2) (in atomic units) for a selection of collision
systems.

In the experiment, v1, v2 and φ are distributed around their mean values;
let the variance3 of these variables be denoted by σ. Because ϕ1 and ϕ2 are
independent, the variance σφ of the distribution for φ is given by σ2

φ = σ2
ϕ1

+σ2
ϕ2

.
Hence the differential (9.2) can be used to estimate the width of the energy
distribution, and the variance of the collision energy σ2(E) is given to first
order by:

σ2(E)

μ2
= [v1 − v2 cosφ]2σ2

v1 + [v2 − v1 cosφ]2σ2
v2 + [v1v2 sinφ]2σ2

φ (9.5)

in which v1, v2 and φ now stand for the respective mean values. In the following,
E will denote the mean collision energy which is to first order given by (9.1)
when v1, v2 and φ are replaced by their mean values.

Because E as well as σ(E) is linear in μ, it suffices to consider σ(E/μ). For
convenience, the value of μ is listed in Table 9.1 for a few selected collision
systems. The molecules that are listed in the top row are typical molecules that
are suitable candidates for Stark deceleration.

3The variance is defined as usual by σ2 := 1
n

∑
i(x − xi)2, with the average value of x

denoted by x, and the summation over the total number of particles n.
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9.3 Overview and applications

If one intends to conduct an experiment at a given mean energy E with the
highest possible resolution, one has to optimize five parameters: Δv1,Δv2,Δφ
and the mean values of two of the three variables v1, v2, φ – the third is always
determined through equation (9.1). In the following sections, we will analyze
how the resolution depends on the experimental parameters, using three dif-
ferent experimental approaches. In section 9.3.1 we discuss the situation in
which the beam speeds are held constant, and the collision energy is tuned by
variation of the beam intersection angle φ alone. In section 9.3.2, we describe
the situation for a fixed beam intersection angle and target beam speed; the
collision energy is tuned by variation of v1. Finally, in section 9.3.3 we discuss
the most general case in which v1, v2, and φ are allowed to vary to optimize the
energy resolution.

The parameters that are used in the examples are chosen to represent the
collision energy resolution as realistic as possible and that may be expected
in an experiment. The molecular beam velocity spreads are assumed to be
10 % of the mean speed of the beam. In those cases where the velocity of
the primary beam (v1) is varied, we assume that the beam is produced with a
Stark decelerator. For a Stark-decelerated beam, the absolute velocity spread
in the forward direction is (almost) constant and does not depend on the mean
velocity; we will assume here a constant velocity spread of 10 m/s for all cases.
The angular spread of a Stark-decelerated beam is generally smaller (typically
1◦, or about 20 mrad) than the angular spread of a conventional molecular
beam. To simplify the analysis, we assume a constant angular spread in the
examples, but one should keep in mind that it actually depends on the forward
velocity if a decelerator is used. Angular spreads are assumed to be 0, 20, 40
or 80 mrad.

For the following analysis, we assume Gaussian distributions for all variables.
In this case the distribution for E, as approximated by the differential, becomes
a well defined Gaussian with σ(E) given by equation (9.5). If we denote the
full width at half maximum of the distribution of quantity x by Δ(x) ≡ Δx, we
have Δ(x) := 2.35σ(x) and

Δ(E/μ) =
(

[v1−v2 cosφ]2Δ2
v1 +[v2−v1 cosφ]2Δ2

v2 +[v1v2 sinφ]2Δ2
φ

)1/2
. (9.6)

This expression is used for all calculations that are presented below.

9.3.1 v1 and v2 constant, φ variable

In this case, both beam speeds are assumed to be constant, and the beam inter-
section angle alone is used to change the energy. For the kinematic parameters
we use v1 = v2 = 500 m/s, and Δv1 = Δv2 = 50 m/s. The resulting curves for
the energy resolution Δ(E/μ) as a function of E/μ are shown in Fig. 9.2. Two
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Figure 9.2: The dependence of the full width at half maximum Δ(E/μ) on E/μ pertaining
to the situation in which both beam velocities are constant, and the collision energy is tuned
by variation of φ (see section 9.3.1). Beam parameters: v1 = v2 = 500m/s, Δv1 = Δv2 =
50m/s and Δφ = 40mrad (2.3◦) (solid red curve), Δφ = 0mrad (dashed red curve). The
corresponding beam intersection angle is shown as the black curve with respect to the axis
on the right side.

curves are shown that correspond to an angular spread of Δφ = 0 (red dashed
curve), and Δφ = 40 mrad (red solid curve). The angle φ that is needed to
obtain a specific E/μ is given by the black curve with respect to the right axis.

If small crossing angles can be realized, fairly low collision energies are acces-
sible for systems with a small reduced mass. For example, the system OH/4He
has μ = 3.2 u, so that at 30◦ a collision energy of ≈ 9 cm−1 is obtained with a
resolution of ≈ 1.9 cm−1.

The energy resolution Δ(E/μ) depends approximately linearly on the energy
E/μ, resulting in a constant relative energy resolution ΔE/E. This linear
behavior is a consequence of the choice of equal velocities v1 = v2 = v. With
the help of equations (9.6) and (9.1), the relative energy resolution ΔE/E for
this special case is given by:

ΔE

E
=

(
Δ2

v1 + Δ2
v2

v2
+

1 + cosφ

1− cosφ
Δ2

φ

)1/2

, (9.7)

which is nearly independent of φ for small values of Δφ.
It is noted that the low collision energies and high energy resolutions that can

be obtained for small beam intersection angles and systems with low reduced
mass have been exploited in an experiment by Costes and coworkers, who have
thereby been able to observe oscillations in the integral cross sections for the
reactive scattering of S (1D2) atoms with H2 molecules [167].
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Figure 9.3: The dependence of Δ(E/μ) on E/μ for the situation in which the beam inter-
section angle and the target beam velocity v2 is constant, while the collision energy is tuned
by variation of v1 (see section 9.3.2). Beam intersection angles of φ = 45◦ (red solid curve),
or φ = 90◦ (red dashed curve) are assumed. Beam parameters: v2 = 500m/s, Δv2 = 50m/s,
Δv1 = 10m/s, and Δφ = 40mrad (2.3◦). The corresponding primary beam velocities v1 are
shown as the green curves with respect to the axis on the right. Note that at low collision
energies for 45◦ there are two possible values for v1 at a given energy with differing values for
the resolution. The red dotted curve labeled ΔE′(45◦) pertains to the hypothetical case in
which Δv1 = 0m/s, Δφ = 0mrad.

9.3.2 v2 and φ constant, v1 variable

In this case, the experimental geometry and the target beam velocity are fixed
and the collision energy is tuned by varying the velocity v1. This situation
pertains, for instance, to a collision experiment in which a Stark-decelerated
beam is collided with a conventional molecular beam at a fixed beam intersection
angle. Hence we assume in the analysis for beam 2 the parameters v2 = 500 m/s,
and Δv2 = 50 m/s; for beam 1 we assume a velocity spread of Δv1 = 10 m/s for
all velocities. Further, we assume an angular spread Δφ = 40 mrad (2.3◦).

In Fig. 9.3 the resulting values for Δ(E/μ) are shown for two different beam
intersection angles. The red solid and red dashed curve (with respect to the
axis on the left) shows the expected collision energy resolution as a function of
the collision energy for φ = 45◦ and φ = 90◦, respectively. The corresponding
primary beam velocities v1 that are required to obtain this collision energy are
shown as green curves with respect to the axis on the right.

From Fig. 9.3 it is evident that beam crossing angles of φ = 45◦ result in
lower collision energies and better energy resolutions. At low collision energies,
there are actually two values for v1 that result in the same collision energy. The
energy resolution, however, is quite different for both situations. The resolution
shows a minimum at E/μ = 7.6 cm−1 u−1 and v1 = 600 m/s.



148 Scattering with optimized energy resolution

From the analysis given in section 9.2, one would expect that the best
collision energy resolution is obtained when the relative velocity vector g is
perpendicular to v2; this condition is fulfilled for E/μ = 10.4 cm−1 u−1 and
v1 = 707 m/s. The position of the minimum that is found in Fig. 9.3 devi-
ates slightly from these values due to the nonzero angular spread Δφ, and the
nonzero velocity spread of beam 1. This is illustrated by the red dotted curve
in Fig. 9.3, labeled ΔE′(45◦), that shows the energy resolution that would be
obtained for Δv1 = Δφ = 0. In this hypothetical situation, the best collision
energy resolution that can be obtained is indeed found for g⊥v2, and becomes
independent of the velocity spread of beam 2. To first order, the collision energy
spread vanishes in this case.

9.3.3 Variation of v1, v2, and φ for a fixed energy

In this case the mean collision energy is specified while v1, v2, and φ are allowed
to vary. For a given choice of E, v1 and φ, there are in general two possible values
for v2 which yield this energy E. In calculations it is therefore advantageous
to vary v1 and v2 and to let φ be uniquely determined by equation (9.1). To
search for a minimum in ΔE then has the following geometrical significance:
the vectors v1, v2 and the relative velocity g define a triangle, g is held fixed
and the vertex opposite to g is allowed to move over all points within the plane
(excluding some areas which may not be accessible in the experiment).

Again, we calculate the expected energy resolution for an experiment in
which a Stark-decelerated beam collides with a conventional molecular beam;
i.e., we take the beam parameters Δv1 = 10 m/s, Δv2 = 0.10 × v2 and Δφ =
40 mrad. The collision energy resolution Δ(E/μ) is calculated on a suitable grid
of values for v1 and v2, where v1 = 100 . . .1000 m/s and v2 = 400 . . .1000 m/s.
The subsidiary condition of constant (mean) energy is introduced by letting φ be
determined by equation 9.1. The surface Δ(E/μ)(v1, v2) for the fixed collision
energy E/μ = 10 cm−1 u−1 is shown in Fig. 9.4.

The optimal resolution with Δ(E/μ) = 0.73 cm−1 u−1 is obtained for v1 =
627 m/s, v2 = 400 m/s and φ = 51◦; note that there is no local minimum,
only a global one at the boundary (this seems to be the usual case, that is the
minimum occurs at the boundary where v2 assumes the smallest value).

9.3.4 Applications

In a crossed beam collision experiment, one would like to tune the collision
energy with the highest possible resolution for each value of the collision energy.
As described in section 9.3.3, one would have to optimize the values for v1, v2,
and φ to accomplish this. This is possible in theory, it is however not practical
in an experiment. In this section we discuss to which extent satisfactory results
can also be obtained by a variation of two parameters only. First, let us assume
that the apparatus allows for a continuous variation of the crossing angle and
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and v2 = 773m/s. The optimal energy resolution that is obtained if both v1 and φ are tuned
is shown as a comparison [curve (1); reproduced from Fig. 9.5].

the speed of beam one, while the speed of beam two is fixed. As before, we
assume v2 = 500 m/s and Δv2 = 50 m/s. We calculate the values for v1 and φ
that result in an optimal energy resolution for the cases Δφ = 20, 40, 80 mrad
(hereafter referred to as case 1,2 and 3, respectively). In all cases and for all
values for v1 we assume Δv1 = 10 m/s. The minimal value for Δ(E/μ) has been
determined by numerically evaluating equation (9.6) on a sufficiently fine grid,
subject to the condition of constant collision energy.

In Fig. 9.5 the optimal values for Δ(E/μ) are shown (red curves) as a func-
tion of the collision energy for all three cases. The values for φ (black curve)
and v1 (green curve) for a given E/μ are plotted with respect to the axes on
the right.

To stay on the optimal curve, φ and v1 have to be changed continuously.
It is of practical interest to consider what happens if we move away from the
optimal curve by either changing only v1 or only φ. In Fig. 9.6 such deviations
are considered for case 1. The solid lines correspond to a change of v1 from 0 to
1000 m/s at fixed intersection angles (indicated on each curve). The two dashed
lines correspond to fixed values for v1 with v1 = 575 or 773 m/s and variable φ
with φ = 0 . . . 90◦.
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Figure 9.7: The minimized energy resolution for the situation in which both beam speeds
v1 and v2 are varied for a fixed beam intersection angle φ = 45◦. Beam parameters: Δv1 =
10m/s for all values of v1, Δv2 = 0.10×v2, and Δφ = 20mrad. Left panel: optimized energy
resolution [curve (1’)]. The values for v1 and v2 (green curves) that result in this energy
resolution are shown with respect to the green axis on the left. Right panel: optimized energy
resolution that is obtained if v1 is continuously varied between 0 and 1200m/s for fixed values
of v2 of 400, 500, 600, and 700m/s. For comparison, curve (1) of Fig. 9.5 is shown in both
panels.

All curves touch the optimal curve of case 1, as it should be. The energy
range that can be scanned with a close to optimal resolution appears limited,
both in the case where only v1 is varied and in the case where only φ is varied.
Note that by changing v1 alone, the energy range with a satisfactory energy
resolution becomes more and more narrow as φ decreases, finally vanishing at
φ = 0◦.

Let us now consider an apparatus in which the beam intersection angle is
fixed, but both beam velocities are variable. We assume φ = 45◦, as this beam
intersection angle appears experimentally most feasible. Again, we assume the
beam parameters pertaining to case 1, i.e., Δv1 = 10 m/s for all values of v1,
Δv2 = 0.10×v2, and Δφ = 20 mrad. In Fig. 9.7 the optimal values for Δ(E/μ)
are shown (red curve, labeled (1’)), together with curve (1) that was shown in
the preceding figures. On the left side of this figure, the corresponding values for
v1 and v2 that are required to obtain the optimal value for the energy resolution
are shown in green.

It is observed that by a proper variation of v1 and v2 at a fixed value of
φ = 45◦ (curve (1’)), energy resolutions are obtained that are very similar to
the optimal resolution that result from a variation of v1 and φ at a fixed value
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of v2 (curve (1)). At low collision energies curve (1’) is below curve (1). This
is a consequence of the fixed value of v2 = 500 m/s that was assumed for curve
(1); for curve (1’) v2 may assume values below 500 m/s, improving the energy
resolution.

Again, we may wonder what would happen if we move away from the optimal
curve by either changing only v1 or v2. This situation is addressed on the right
hand side of Fig. 9.7. The energy resolution is shown that is obtained if v1 is
varied between 0 m/s and 1200 m/s, while fixed values for v2 of 400, 500, 600
or 700 m/s are assumed. Again, we assume Δv1 = 10 m/s for all values of v1,
Δv2 = 0.10 × v2, and Δφ = 20 mrad. It can be seen that as long as v1 can
be tuned continuously, it is sufficient to change v2 in coarser steps in order to
traverse the minimum curve (1’). This is of practical importance because the
mean speed of a beam can easily be adjusted in larger steps by varying, for
instance, the nozzle temperature.

It is also interesting to compare some of the above results to a direct numer-
ical evaluation of ΔE. To see whether the linear approximation is sufficiently
accurate, we compare the calculations for the three cases shown in Fig. 9.5 to
a direct numerical evaluation of Δ(E/μ). For the latter we generate indepen-
dent random numbers from Gaussian distributions for the angular and velocity
spreads. All three cartesian velocity components of a beam are assumed to be
independent, and the total angular spread is shared equally among both beams.
The distributions for Δ(E/μ) are then not strictly Gaussian in shape, but can
be reasonably well approximated by a Gaussian in all cases. The resulting val-
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ues for a few sample points are plotted as dots in Fig. 9.8. It is seen that
the linear approximation indeed describes the considered cases well, but that it
actually overestimates the numerically calculated spread ΔE/μ.

9.4 Resonances in OH-He and OD-He collisions

In this section, we illustrate the benefits of the method to improve the energy
resolution, using the scattering of Stark-decelerated OH and OD radicals with
He atoms as an example. The scattering of OH with He is well-suited to be stud-
ied with high energy resolution, as this system is known to exhibit pronounced
resonant structure in the inelastic scattering cross sections. The potential well
for the OH-He van der Waals complex is shallow, and can only support a limited
number of bound states [172, 145]. The well depth of ∼ 25 cm−1 is significantly
smaller than the energy spacing between rotational levels of the OH radical,
resulting in resonances in the inelastic cross sections that are grouped within
rather narrow collision energy ranges. However, the energy resolution which is
required to resolve these resonances is on the order of a wavenumber, as can be
seen from the plots shown in Fig. 9.9 on p. 154. In panel (a) of this figure, the
optimized parameters for the highest energy resolution are shown for case 1 and
for a mean He beam velocity of v2 = vHe = 500 m/s. To the left of panel (a),
calculated scattering cross sections [173] are shown for the three different scat-
tering channels as a function of the collision energy. The cross sections pertain
to the collision induced transitions F1(3/2f) → F1(3/2e), F1(5/2e), F1(5/2f)
(compare p. 133). If these cross sections are convoluted with the energy reso-
lution of panel (a), one obtains the red curves (vertically offset for reasons of
clarity). It is seen that the resonances which occur at the energetic thresholds
for scattering into the J = 5/2e, f levels can be partly resolved provided a suf-
ficient signal to noise ratio can be obtained in the experiment. To resolve the
resonances in all detail would require a resolution of < 1 cm−1 which can only
be obtained if the angular spread is further reduced. Whether this is exper-
imentally feasible is currently unclear and the subject of future experiments.
The resolution in the range E = 40 . . . 55 cm−1 (OD-He) is higher than in the
range 75 . . . 90 cm−1 (OH-He) but unfortunately the predicted resonances are
also narrower in the former case. In panel (b) and (c) the energy resolution is
shown for case 1 but now the beam crossing angle is fixed to either φ = 45◦

(solid curves) or 90◦ (dashed curves) and only the velocity of the decelerated
molecules (v1 = vOH/OD) is varied as indicated by the green curves with respect
to the axis on the right. In panel (b) the He beam velocity is vHe = 500 m/s
while in panel (c) vHe = 800 m/s. To the left of both panels, the convolutions
of the calculated cross sections are shown for both angles. We see that in the
φ = 45◦ case, some of the structure can be resolved, which is hardly the case
for φ = 90◦.
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Figure 9.9: Panel (a) shows the optimized parameters for OH/OD - He collisions (vOH/OD =
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To the left of this panel, the calculated cross sections [173] for three different scattering
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9.5 Conclusion

We have presented a simple, yet effective method to optimize the collision en-
ergy resolution in crossed molecular beam scattering experiments. It is shown
that for beam intersection angles smaller than 90◦, kinematically favorable con-
ditions can be found in which the beam with the largest velocity or angular
spread contributes the least to the collision energy resolution. This allows for
high collision energy resolutions, without the need for methods that reduce the
velocity spread of the beam(s) and without greatly reducing the particle density
in the beam(s). Via a systematic optimization of the beam velocities and beam
intersection angle, we have analyzed the optimal value for the energy resolution
that can be reached experimentally using a realistic set of beam parameters.

The method is particularly suitable if one of the molecular beam pulses
already has a narrow angular and velocity spread, as is the case for Stark-
decelerated beams, for instance. Stark decelerators offer molecular packets
with a tunable velocity, an angular spread of typically 1◦, and a narrow ve-
locity spread that is typically in the 5− 20 m/s range. Using additional electric
field elements with which the phase-space distribution of the molecules is ma-
nipulated, velocity spreads below 1 m/s can be obtained [53]. Using a suitable
beam intersection angle and velocity of the target beam, this narrow angular
and velocity spread allows for exceptionally high collision energy resolutions. In
particular for systems with a low reduced mass, absolute collision energy reso-
lutions ranging from 0.5− 5 cm−1 appear feasible. This may well be exploited
to experimentally observe and study scattering resonances.

9.6 Appendix (estimation of σφ)

Let the laboratory-frame velocity vector of beam 1(2) be denoted by v1(2) =
v1(2)v̂1(2). The orientation of the unit vectors v̂1(2) can be specified in polar
coordinates with the angles θ1(2), ϕ1(2) as defined above. We assume that the
angular distributions in θ and ϕ are symmetric with respect to their mean values
θ̄ and ϕ̄ and therefore we express the unit vectors by:

v̂1 = v̂1(θ1, ϕ1) = v̂1(θ̄1 + δθ1, ϕ̄1 + δϕ1) (9.8)

v̂2 = v̂2(θ2, ϕ2) = v̂2(θ̄2 + δθ2, ϕ̄2 + δϕ2). (9.9)

We choose θ̄ = π/2 by definition, so that the vectors lie in the xy-plane on
average. We rewrite equation (9.1) as:

E =
μ

2
(v21 + v22 − 2v1v2v̂1 · v̂2) (9.10)

=
μ

2
(v21 + v22 − 2v1v2 cosα) (9.11)
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and evaluate cosα in terms of the angles θ̄+ δθ and φ̄+ δφ with the help of the
transformation equations for the coordinates on the unit sphere:

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ

cosα = x1x2 + y1y2 + z1z2.

Using θ̄1(2) = π/2 and neglecting terms that are of second and higher order in
δθ1δθ2 one obtains:

z1z2 = cos(θ̄1 + δθ1) cos(θ̄2 + δθ2)

= sin(δθ1) sin(δθ2)

≈ δθ1δθ2

≈ 0.

By an analogous argument we obtain:

y1y2 = sin θ1 sinϕ1 sin θ2 sinϕ2

≈ sin(ϕ̄1 + δϕ1) sin(ϕ̄2 + δϕ2)

x1x2 = sin θ1 cosϕ1 sin θ2 cosϕ2

≈ cos(ϕ̄1 + δϕ1) cos(ϕ̄2 + δϕ2).

By using the trigonometric relation

sinx sin y + cosx cos y = cos(x − y)

everything can be written more compactly as:

cosα = cos(ϕ̄1 − ϕ̄2 + δϕ1 − δϕ2). (9.12)

We now define the beam crossing angle φ by φ = ϕ̄1 − ϕ̄2 and hence have:

cosα = cos(φ+ δϕ1 − δϕ2). (9.13)

The value of cosα is subject to fluctuations because δϕ1(2) can assume positive
or negative values within some finite range. If these fluctuations are small, the
mean value of cosα must be approximatly equal to cosφ because the mean value
of δϕ1(2) vanishes by assumption. To first order, the variance of cosα is hence
given by:

σ2(cosα) = sin2(φ)σ2(φ+ δϕ1 − δϕ2) (9.14)

= sin2(φ)(σ2
ϕ1

+ σ2
ϕ2

). (9.15)

Therefore, the divergences of both beams as expressed by σ2
ϕ1(2)

are added to-

gether to give the total variance in the collision angle. The spread in the variable
δθ1(2) need not be taken into account.
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sämtliche Hilfe. Für das Korrekturlesen der Arbeit danke ich Gerard, Nicolas,
Boris, Christian, Peter und Janneke.

Nach dem offiziellen Teil, sei hier noch auszugsweise aus meinem Abbrem-
sertagebuch berichtet – auf eigene Gefahr des Lesers, denn für den Unterhal-
tungswert übernehme ich keine Garantie!

Als ich im Februar 2006 am FHI anfing, hatten Henrik und Bas bereits
die grundlegenden Entscheidungen über die mechanische Konstruktion getrof-
fen und Henrik hatte einen Großteil auch schon gezeichnet. In der Halle waren
Manfred und Jürgen dabei, das Gestell für die Kammern zusammenzubauen;
Joop und Steven machten die Messungen für das später vielzitierte OH-Xe Stoß-
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Drittel der geplanten Strecke. Später folgten ihnen metastabile NH-Radikale,
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