

MOSAIC: An Online Modeling Platform
Supporting Automatic Discretization of Partial
Differential Equation Systems
Erik Esche*, David Müller, Gregor Tolksdorf, Robert Kraus, Günter
Wozny
Chair of Process Dynamics and Operation, Berlin University of Technology,
Sekr. KWT-9, Str. des 17. Juni 135, D-10623 Berlin, Germany
erik.esche@tu-berlin.de

Abstract
Partial differential algebraic equation systems (PDAE) frequently appear in
chemical engineering and their discretization is most often an issue when
preparing a simulation wherein they appear. In this contribution, an algorithm is
presented and implemented facilitating the general analysis of PDAE systems
appearing often in chemical engineering problems and their discretization via
orthogonal collocation on finite elements. The recognition of differentiating
variables, the application of varying boundary conditions, and the subdivision
into independent PDAE systems as well as the implementation of the actual
discretization is discussed.

Keywords: PDAE, Automatic Discretization, Orthogonal Collocation, Code
Generation

1. Introduction
An inherent issue in the preparation of simulations is the discretization of
differential algebraic equation systems (DAEs) or even partial differential
algebraic equation systems (PDAEs). Tools like Mathworks’ Matlab® or PSE’s
gPROMS® can handle DAEs which can easily be turned into ordinary
differential equation systems (ODEs), but are generally unable to process
systems of a higher order or even PDAE systems without further user input. In
chemical engineering, PDAE systems appear whenever the multidimensionality
of any piece of equipment needs to be described. Be it axial and radial flow of a
tubular reactor or the axial profiles of an absorption column changing with time.
Many different mathematical tools exist to rewrite PDAE systems as fully
discretized algebraic equation systems (AE). Among the more prominent of
those are the method of lines, finite differences, finite elements, finite volumes,
and orthogonal collocation on finite elements (OCFE) (Finlayson, 1980,
Scherer, 2013). So far, only very little effort has been made towards a software-
based facilitation of the discretization of partial differential equations, e.g.
(Sincovec et al., 1975) and (Yamabe et al., 1990). In this contribution, an
algorithm is presented, which facilitates the OCFE of complex systems in a user
interface. The algorithm has already been implemented and tested in Matlab®
and is currently in the process of being integrated into the online modeling,
simulation, and optimization platform MOSAIC (Kuntsche et al., 2011).

2

2. Status Quo
The online platform MOSAIC is a tool for modeling and simulating phenomena,
units, or whole chemical processes. The current version of the tool is already
able to automatically identify a user-defined equation system. Depending on
whether it is a pure algebraic equation system (AE), ordinary differential
equation system (ODE), or a differential algebraic equation system (DAE),
MOSAIC has varying specifications for handling it. Among these specifications
is the treatment of initial values, ranges of differentiating variables, and the
choice of solvers the equation systems can be exported for. On top of that, DAE
systems consisting of ODE and AE parts can be semi-automatically
reformulated using first order Lagrangian collocation or Euler methods to
automatically provide fully discretized AE systems. All of these equations can
be transferred to any desired programming language, be it Fortran, C++, Java,
Python, Matlab, gPROMS, AMPL, or GAMS.

3. Algorithm for Automatic Discretization of PDAE Systems
The following paragraphs discuss in detail how an initially supplied PDAE
system is analyzed and subsequently fully discretized using OCFE. Required
user input is noted whenever several choices exist to proceed. This algorithm is
not meant as the “sine qua non” solution to discretizing any PDAE system at all.
Instead, it is meant to tackle the discretization of most systems appearing in
chemical engineering. Any system, in which state variables are differentiated
with respect to other state variables, are neglected at this stage as these do not
commonly appear in this field. To further reduce the complexity for this
contribution, consistency tests for boundary condition definitions will be skipped
and only systems with first and second order derivatives are discussed.
3.1. Prerogatives
Firstly, it is assumed that the PDAE is supplied as given in Eq. (1).

(1)

This should, however, not be a limitation to the order of the partial differential
equation system (PDAE) or the number of differentiating variables, or
subsystems therein.
3.2. Subdivision of Differentiating Variables
In this step, the PDAE is scanned for all appearances of derivatives and the
denominators of those are identified as differentiating variables. Within the
scope of Eq. (1) this would be t, r, and z. Any PDAE system might consist of
PDAE subsystems, which could and should be discretized separately as there
is no connection between the respective differentiating variables, although their
physical meaning might be identical. An example might be a reactor network, in
which reactors are described both axially and radially and are bound to the
network by inlet conditions and averaging of the outlets. Within MOSAIC the
variables for each reactor would each have different namespaces, which are
prefixes to the variables, e.g. e0_z and e1_z for the axial coordinate. Once all
differentiating variables are identified, the user is required to specify ranges for
each: tmin < tmax, zmin < zmax etc.

 3

3.3. Analysis of State Variables
As a next step the numerators of said (partial) derivatives are scanned to
generate a comprehensive list (DS, differentiated states) of all differentiated
state variables x, which appear therein. For each x in DS the (partial)
derivatives are stored in a second list called PDL(x) (partial derivatives list).
Based on this new list, dimensions and derivative orders are determined for
each x as explained in Tab. 1. For the multidimensional cases, in which x
depends on more than one differentiating variable the next step allows for a
splitting of the ranges. In those cases, the user is asked to enter a number of
sections for each differentiating variable and a length for each. nt is the number
of sections for variable t and ti the set of section lengths. Of course, the
boundary condition options in Tab. 1 multiply with the number of subdivision of
each differentiating variable.
The last step in the analysis of the state variables is the actual definition of
boundary conditions. At this point there are three possibilities:
1. Either a constant value is assigned to the boundary condition.
2. Or a statement for the boundary condition is supplied, which is solely a

function of the differentiating variables.
3. Or an additional MOSAIC equation is supplied as a boundary condition,

which contains the state or a derivative of the state in an implicit form and
could even connect to other model parts of the whole MOSAIC equation
system. In case this is already included in the PDAE system, this needs to be
marked by the user and the range of validity needs to be specified as
required.

Table 1. User options for defining boundary conditions for different sets of PDL(x).

PDL(x) for a single x Required Initial or Boundary Conditions

 Select one of:

 Select two out of:

 Select two out of:

Derivatives with only r, or z Equivalent to t

Select one of: and one of:

Select one of: and two out of:

3.4. Discretization of PDAE Systems
Once all the boundary conditions are set, the overall PDAE system needs to be
decomposed into independent subsystems. This means systems which are only
attached to the overall system through initial or boundary conditions and can
therefore be discretized independently from everything else. The identification
of these subsystems will be performed in the following Steps:
1. The first element of DS is taken and all the equations of the PDAE system

are collected containing it.
2. All state variables of this collection of equations are identified and equations

are added wherein they appear. This step is repeated until no new equations
are added.

4

3. This new subset of equations is considered to be an independent PDAE
system and all variables therein need to be discretized equally. The new
subsystem is yet again analyzed with respect to the (partial) derivatives to
determine the required order of the discretization method. This procedure is
outlined in Tab. 2. As said above, boundary conditions are considered to be
the borderlines of each independent subsystem. The only exception is
subsystems which are bound together by coupling equations. At this point,
additional user input is required to pair certain differentiating variables and
bind these coupled subsystems together.

4. Once the collocation specifications are set according to Step 3, the number
of finite elements for each variable needs to be specified by the user. An
important constraint herein is the definition of sections of boundary conditions
for multidimensional systems. The number of finite elements for each
differentiating variable should at least be greater or equal to the number of
boundary sections for the same value. For t this would mean FEt ≥ nt. In
addition to the number, the length of the finite elements also needs to be set.
The notation and specification is shown in Fig. 2, wherein tij refers to the
length of finite element j for boundary condition section i of differentiating
variable t.

Table 2. Examples for user options for applying orthogonal collocation on systems with
various dimensions of partial differentials.

Appearing (Partial) Derivatives Examples for the Collocation Specifications

 Linear combination of Lagrangian polynomials on
finite elements

 Bilinear combination of two sets of Lagrangian
polynomials on finite segments

 Bilinear combination of Lagrangian polynomials (for t)
and Hermite polynomials (for r) on finite segments

 Bilinear combination of two sets of Hermite
polynomials on finite segments

Trilinear combination of Lagrangian polynomials (for
t) and two sets of Hermite polynomials (for r and z)
on finite volumes.

5. After the definition of all finite elements, user input is required again. The
order of the collocating polynomials needs to be chosen as well as the
position of the roots within each finite element (shifted Radau, Legendre
etc.). Based on these choices the values and the derivatives (first and
second order depending on the system) of the collocating polynomials are
automatically calculated at all collocation positions (roots) within MOSAIC
and saved as parameter values.

6. In this step the actual discretization is performed. New indices for the
boundary condition sections, the finite elements, and the collocation positions
therein are appended to all state variables in the PDAE subsystem. The new
generic form of the system is then reinstantiated by applying the ranges of
the newly added indices. The previously defined initial values for all states
are reused for their discretized sets; the same is true for previously set lower
and upper bounds. The (partial) derivatives within the equations are replaced
by variables, for which additional equations are added to calculate and to

 5

relate them to their respective states. In addition, all boundary conditions are
applied and added as additional equations to the system as well as
expressions for calculating all differentiating variables at all positions.

7. The non-discretized subsystem is removed from the whole PDAE system
and replaced by its fully discretized version. MOSAIC connectors, which
tethered this subsystem to the overall PDAE, are reapplied and connected to
the correct bounds.

8. Finally all states appearing in the discretized subsystem are removed from
DS and all steps starting with Step 1 are repeated until DS is finally empty.

4. Case Study: 2D Discretization of a PDAE System
The procedure above has already been applied to a conventional packed-bed
membrane reactor in a reactor network for the oxidative coupling of methane.
Fig. 1 shows a sketch of the reactor. CH4 and N2 are fed to the tube-side, O2
diluted with even more N2 to the shell. The packed-bed holds the catalyst to
facilitate the direct conversion of CH4 to C2H4. In addition, both outlet streams
contain a number of byproducts, namely: CO, CO2, H2, H2O, and leftover CH4
as well as N2. The modeling of the reactor has already been discussed in
(Esche et al., 2012) and (Esche et al., 2011).

Figure 1. Sketch of the conventional packed-bed membrane reactor (left): N2 and CH4
are fed to the catalytic packed-bed. O2 crosses the non-selective membrane from the
shell-side into the packed-bed. Definition of the boundary conditions for the reactor
(right).

At this point the model itself will only be sketched very roughly to facilitate the
procedure outlined above. The core of the PDAE system is the set of nine
component balances and the energy balance describing the concentration and
temperature fields:

(2)

(3)

Obviously, the whole reactor is modeled two-dimensionally. The balances
contain axial flow (coordinate z) and radial diffusion (coordinate r). Component

6

specific radial diffusion coefficients Di,r, component specific reaction rates cri,
concentrations ctot, heat capacities cp,tot, thermal conductivities , reaction rates
rrj are calculated in additional equations, which are directly included in the
PDAE system. To add to the complexity, the reaction terms cri and rrj need to
be neglected for describing the shell-side of the reactor. cat∙cat represents the
catalyst amount. The mass transfer through the membrane is governed by
Knudsen diffusion. The reactor is 20 cm long and each 10 cm a different
heating segment exists to heat or cool the system. The reactor is part of a larger
network of reactors discussed in (Esche et al., 2013). Let it suffice to say, that
the shell- and tube-side feeds of the reactor, i.e. the concentrations ci(r,z=0) and
temperatures T(r,z=0), are tethered to the network streams and that the outlet
conditions ci(r,z=zend) and T(r,z=zend) are returned to the network. From here on,
each step of the algorithm described above will be applied to the briefly outlined
PDAE system. Firstly, all prerogatives are fulfilled and the PDAE system is
supplied in an appropriate form. The system contains four differentiating
variables as the whole model is split up between tube and shell: rtube, rshell, ztube,
zshell. In total, the subdivisions of the differentiating variables are as follows:
rtube,min = 0.0cm, rtube,max = 3.5cm, rshell,min = 3.5cm, rshell,max = 5.0cm; ztube,min =
zshell,min = 0.0cm, ztube,max = zshell,max = 20.0cm. The analysis of the state variables
of the entire system leads to a list DS containing component concentrations ci
and temperatures T for shell and tube respectively. The respective PDL(x) for
each contains the following derivatives: . In this case, the user
decides to enter concentrations and temperatures at all inlet positions and to
supply radial gradient information for both rmin and rmax at all axial positions as
shown in Fig. 1 (right). Given the flux through the membranes, which collides
with radially constant feed concentrations, and the two separate heating
sections, zshell and ztube are further subdivided. Fig. 1 (right) shows how this
subdivision is carried out and presents details on the applied boundary
conditions. The boundary conditions for the membrane side are added as
additional equations, the same is true for the heat flux at the outer shell of the
reactor at rshell,max. The supplied boundary conditions make separating shell- and
tube-side equations impossible as the membrane closely links them. Hence, in
the first step of the discretization, all equations and state variables belonging to
the entire reactor are collected. The user needs to interfere at this point and pair
zshell and ztube as well as rshell and rtube. This leads to a drastic reduction of the
differentials appearing, yet again leading to: . For this system, the
user chooses to apply Lagrangian polynomials for the axial dependency and
Hermite polynomials for the radial. For the Lagrangian polynomials shifted
Radau roots and for the Hermite polynomials shifted Legendre roots are
applied. During the actual discretization the procedure leads to a set of 130,000
algebraic equations.

5. Conclusions
The presented algorithm is expected to work robustly on most PDAE systems
appearing in chemical engineering. The systematic analysis of the system and
smaller subsystems is essential for guaranteeing a logical discretization. Up to
now the algorithm has only been applied in Matlab and tested on a single, albeit
complex, problem. As a next step, a more generic form of the algorithm is

 7

implemented in MOSAIC, to ease the user interaction and to allow for an easier
set-up of the entire system.

Acknowledgements
The authors acknowledge the support from the Cluster of Excellence “Unifying
Concepts in Catalysis” and the Collaborative Research Center SFB/TR 63
InPROMPT “Integrated Chemical Processes in Liquid Multiphase Systems” both
coordinated by the Technische Universität Berlin and funded by the German
Research Foundation (Deutsche Forschungsgemeinschaft “DFG”).

References
E. Esche, H. Arellano-Garcia, L.T. Biegler, Optimal Operation of a Membrane Reactor

Network, AIChE Journal (2013), DOI: 10.1002/aic.14252
E. Esche, H. Arellano-Garcia, G. Wozny, L.T. Biegler, 2012, Optimal Operation of

Membrane Reactor Network, Computer Aided Chemcial Engineering, Vol. 31, 1321-
1325, DOI: 10.1016/B978-0-444-59506-5.50095-X

B.A. Finlayson, 1980, Nonlinear Analysis in Chemical Engineering, McGraw-Hill Inc.,
ISBN 0-07-020915-4

S. Kuntsche, T. Barz, R. Kraus, H. Arellano-Garcia, G. Wozny, 2011, MOSAIC a web-
based modeling environment for code generation, Computers & Chemical
Engineering, Vol. 35, 11, 2257-2273

P.O.J. Scherer, 2013, Computational Physics, Springer International Publishing, ISBN:
978-3-319-00400-6

R.F. Sincovec, N.K. Madsen, 1975, Software for Nonlinear Partial Differential Equations,
ACM Transactions on Mathematical Software, Vol. 1, 3, 232-260

M. Yamabe, C. Konno, Y. Umetani, 1990, Automatic generation method of a simulation
program for numerically solving a partial differential equation according to a
boundary-fitted method, US Patent No. 4972334

