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Abstract 
Partial differential algebraic equation systems (PDAE) frequently appear in 
chemical engineering and their discretization is most often an issue when 
preparing a simulation wherein they appear. In this contribution, an algorithm is 
presented and implemented facilitating the general analysis of PDAE systems 
appearing often in chemical engineering problems and their discretization via 
orthogonal collocation on finite elements. The recognition of differentiating 
variables, the application of varying boundary conditions, and the subdivision 
into independent PDAE systems as well as the implementation of the actual 
discretization is discussed. 
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1. Introduction 
An inherent issue in the preparation of simulations is the discretization of 
differential algebraic equation systems (DAEs) or even partial differential 
algebraic equation systems (PDAEs). Tools like Mathworks’ Matlab® or PSE’s 
gPROMS® can handle DAEs which can easily be turned into ordinary 
differential equation systems (ODEs), but are generally unable to process 
systems of a higher order or even PDAE systems without further user input. In 
chemical engineering, PDAE systems appear whenever the multidimensionality 
of any piece of equipment needs to be described. Be it axial and radial flow of a 
tubular reactor or the axial profiles of an absorption column changing with time. 
Many different mathematical tools exist to rewrite PDAE systems as fully 
discretized algebraic equation systems (AE). Among the more prominent of 
those are the method of lines, finite differences, finite elements, finite volumes, 
and orthogonal collocation on finite elements (OCFE) (Finlayson, 1980, 
Scherer, 2013). So far, only very little effort has been made towards a software-
based facilitation of the discretization of partial differential equations, e.g. 
(Sincovec et al., 1975) and (Yamabe et al., 1990). In this contribution, an 
algorithm is presented, which facilitates the OCFE of complex systems in a user 
interface. The algorithm has already been implemented and tested in Matlab® 
and is currently in the process of being integrated into the online modeling, 
simulation, and optimization platform MOSAIC (Kuntsche et al., 2011). 
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2. Status Quo 
The online platform MOSAIC is a tool for modeling and simulating phenomena, 
units, or whole chemical processes. The current version of the tool is already 
able to automatically identify a user-defined equation system. Depending on 
whether it is a pure algebraic equation system (AE), ordinary differential 
equation system (ODE), or a differential algebraic equation system (DAE), 
MOSAIC has varying specifications for handling it. Among these specifications 
is the treatment of initial values, ranges of differentiating variables, and the 
choice of solvers the equation systems can be exported for. On top of that, DAE 
systems consisting of ODE and AE parts can be semi-automatically 
reformulated using first order Lagrangian collocation or Euler methods to 
automatically provide fully discretized AE systems. All of these equations can 
be transferred to any desired programming language, be it Fortran, C++, Java, 
Python, Matlab, gPROMS, AMPL, or GAMS. 

3. Algorithm for Automatic Discretization of PDAE Systems 
The following paragraphs discuss in detail how an initially supplied PDAE 
system is analyzed and subsequently fully discretized using OCFE. Required 
user input is noted whenever several choices exist to proceed. This algorithm is 
not meant as the “sine qua non” solution to discretizing any PDAE system at all. 
Instead, it is meant to tackle the discretization of most systems appearing in 
chemical engineering. Any system, in which state variables are differentiated 
with respect to other state variables, are neglected at this stage as these do not 
commonly appear in this field. To further reduce the complexity for this 
contribution, consistency tests for boundary condition definitions will be skipped 
and only systems with first and second order derivatives are discussed. 
3.1. Prerogatives 
Firstly, it is assumed that the PDAE is supplied as given in Eq. (1). 

 
(1) 

This should, however, not be a limitation to the order of the partial differential 
equation system (PDAE) or the number of differentiating variables, or 
subsystems therein. 
3.2. Subdivision of Differentiating Variables 
In this step, the PDAE is scanned for all appearances of derivatives and the 
denominators of those are identified as differentiating variables. Within the 
scope of Eq. (1) this would be t, r, and z. Any PDAE system might consist of 
PDAE subsystems, which could and should be discretized separately as there 
is no connection between the respective differentiating variables, although their 
physical meaning might be identical. An example might be a reactor network, in 
which reactors are described both axially and radially and are bound to the 
network by inlet conditions and averaging of the outlets. Within MOSAIC the 
variables for each reactor would each have different namespaces, which are 
prefixes to the variables, e.g. e0_z and e1_z for the axial coordinate. Once all 
differentiating variables are identified, the user is required to specify ranges for 
each: tmin < tmax, zmin < zmax etc. 
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3.3. Analysis of State Variables 
As a next step the numerators of said (partial) derivatives are scanned to 
generate a comprehensive list (DS, differentiated states) of all differentiated 
state variables x, which appear therein. For each x in DS the (partial) 
derivatives are stored in a second list called PDL(x) (partial derivatives list). 
Based on this new list, dimensions and derivative orders are determined for 
each x as explained in Tab. 1. For the multidimensional cases, in which x 
depends on more than one differentiating variable the next step allows for a 
splitting of the ranges. In those cases, the user is asked to enter a number of 
sections for each differentiating variable and a length for each. nt is the number 
of sections for variable t and ti the set of section lengths. Of course, the 
boundary condition options in Tab. 1 multiply with the number of subdivision of 
each differentiating variable. 
The last step in the analysis of the state variables is the actual definition of 
boundary conditions. At this point there are three possibilities: 
1. Either a constant value is assigned to the boundary condition. 
2. Or a statement for the boundary condition is supplied, which is solely a 

function of the differentiating variables. 
3. Or an additional MOSAIC equation is supplied as a boundary condition, 

which contains the state or a derivative of the state in an implicit form and 
could even connect to other model parts of the whole MOSAIC equation 
system. In case this is already included in the PDAE system, this needs to be 
marked by the user and the range of validity needs to be specified as 
required. 

Table 1. User options for defining boundary conditions for different sets of PDL(x). 

PDL(x) for a single x Required Initial or Boundary Conditions 

 Select one of:  

 Select two out of:   

 Select two out of:  

Derivatives with only r, or z Equivalent to t 

 
Select one of:  and one of: 

 

 
Select one of:  and two out of: 

 

3.4. Discretization of PDAE Systems 
Once all the boundary conditions are set, the overall PDAE system needs to be 
decomposed into independent subsystems. This means systems which are only 
attached to the overall system through initial or boundary conditions and can 
therefore be discretized independently from everything else. The identification 
of these subsystems will be performed in the following Steps: 
1. The first element of DS is taken and all the equations of the PDAE system 

are collected containing it. 
2. All state variables of this collection of equations are identified and equations 

are added wherein they appear. This step is repeated until no new equations 
are added. 
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3. This new subset of equations is considered to be an independent PDAE 
system and all variables therein need to be discretized equally. The new 
subsystem is yet again analyzed with respect to the (partial) derivatives to 
determine the required order of the discretization method. This procedure is 
outlined in Tab. 2. As said above, boundary conditions are considered to be 
the borderlines of each independent subsystem. The only exception is 
subsystems which are bound together by coupling equations. At this point, 
additional user input is required to pair certain differentiating variables and 
bind these coupled subsystems together. 

4. Once the collocation specifications are set according to Step 3, the number 
of finite elements for each variable needs to be specified by the user. An 
important constraint herein is the definition of sections of boundary conditions 
for multidimensional systems. The number of finite elements for each 
differentiating variable should at least be greater or equal to the number of 
boundary sections for the same value. For t this would mean FEt ≥ nt. In 
addition to the number, the length of the finite elements also needs to be set. 
The notation and specification is shown in Fig. 2, wherein tij refers to the 
length of finite element j for boundary condition section i of differentiating 
variable t. 

Table 2. Examples for user options for applying orthogonal collocation on systems with 
various dimensions of partial differentials. 

Appearing (Partial) Derivatives Examples for the Collocation Specifications 

 Linear combination of Lagrangian polynomials on 
finite elements 

 Bilinear combination of two sets of Lagrangian 
polynomials on finite segments 

 Bilinear combination of Lagrangian polynomials (for t) 
and Hermite polynomials (for r) on finite segments 

 Bilinear combination of two sets of Hermite 
polynomials on finite segments 

 
Trilinear combination of Lagrangian polynomials (for 
t) and two sets of Hermite polynomials (for r and z) 
on finite volumes. 

5. After the definition of all finite elements, user input is required again. The 
order of the collocating polynomials needs to be chosen as well as the 
position of the roots within each finite element (shifted Radau, Legendre 
etc.). Based on these choices the values and the derivatives (first and 
second order depending on the system) of the collocating polynomials are 
automatically calculated at all collocation positions (roots) within MOSAIC 
and saved as parameter values. 

6. In this step the actual discretization is performed. New indices for the 
boundary condition sections, the finite elements, and the collocation positions 
therein are appended to all state variables in the PDAE subsystem. The new 
generic form of the system is then reinstantiated by applying the ranges of 
the newly added indices. The previously defined initial values for all states 
are reused for their discretized sets; the same is true for previously set lower 
and upper bounds. The (partial) derivatives within the equations are replaced 
by variables, for which additional equations are added to calculate and to 
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relate them to their respective states. In addition, all boundary conditions are 
applied and added as additional equations to the system as well as 
expressions for calculating all differentiating variables at all positions. 

7. The non-discretized subsystem is removed from the whole PDAE system 
and replaced by its fully discretized version. MOSAIC connectors, which 
tethered this subsystem to the overall PDAE, are reapplied and connected to 
the correct bounds. 

8. Finally all states appearing in the discretized subsystem are removed from 
DS and all steps starting with Step 1 are repeated until DS is finally empty. 

4. Case Study: 2D Discretization of a PDAE System 
The procedure above has already been applied to a conventional packed-bed 
membrane reactor in a reactor network for the oxidative coupling of methane. 
Fig. 1 shows a sketch of the reactor. CH4 and N2 are fed to the tube-side, O2 
diluted with even more N2 to the shell. The packed-bed holds the catalyst to 
facilitate the direct conversion of CH4 to C2H4. In addition, both outlet streams 
contain a number of byproducts, namely: CO, CO2, H2, H2O, and leftover CH4 
as well as N2. The modeling of the reactor has already been discussed in 
(Esche et al., 2012) and (Esche et al., 2011). 

 
Figure 1. Sketch of the conventional packed-bed membrane reactor (left): N2 and CH4 
are fed to the catalytic packed-bed. O2 crosses the non-selective membrane from the 
shell-side into the packed-bed. Definition of the boundary conditions for the reactor 
(right). 

At this point the model itself will only be sketched very roughly to facilitate the 
procedure outlined above. The core of the PDAE system is the set of nine 
component balances and the energy balance describing the concentration and 
temperature fields:  

 
(2) 

 
(3) 

Obviously, the whole reactor is modeled two-dimensionally. The balances 
contain axial flow (coordinate z) and radial diffusion (coordinate r). Component 
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specific radial diffusion coefficients Di,r, component specific reaction rates cri, 
concentrations ctot, heat capacities cp,tot, thermal conductivities , reaction rates 
rrj are calculated in additional equations, which are directly included in the 
PDAE system. To add to the complexity, the reaction terms cri and rrj need to 
be neglected for describing the shell-side of the reactor. cat∙cat represents the 
catalyst amount. The mass transfer through the membrane is governed by 
Knudsen diffusion. The reactor is 20 cm long and each 10 cm a different 
heating segment exists to heat or cool the system. The reactor is part of a larger 
network of reactors discussed in (Esche et al., 2013). Let it suffice to say, that 
the shell- and tube-side feeds of the reactor, i.e. the concentrations ci(r,z=0) and 
temperatures T(r,z=0), are tethered to the network streams and that the outlet 
conditions ci(r,z=zend) and T(r,z=zend) are returned to the network. From here on, 
each step of the algorithm described above will be applied to the briefly outlined 
PDAE system. Firstly, all prerogatives are fulfilled and the PDAE system is 
supplied in an appropriate form. The system contains four differentiating 
variables as the whole model is split up between tube and shell: rtube, rshell, ztube, 
zshell. In total, the subdivisions of the differentiating variables are as follows: 
rtube,min = 0.0cm, rtube,max = 3.5cm, rshell,min = 3.5cm, rshell,max = 5.0cm; ztube,min = 
zshell,min = 0.0cm, ztube,max = zshell,max = 20.0cm. The analysis of the state variables 
of the entire system leads to a list DS containing component concentrations ci 
and temperatures T for shell and tube respectively. The respective PDL(x) for 
each contains the following derivatives: . In this case, the user 
decides to enter concentrations and temperatures at all inlet positions and to 
supply radial gradient information for both rmin and rmax at all axial positions as 
shown in Fig. 1 (right). Given the flux through the membranes, which collides 
with radially constant feed concentrations, and the two separate heating 
sections, zshell and ztube are further subdivided. Fig. 1 (right) shows how this 
subdivision is carried out and presents details on the applied boundary 
conditions. The boundary conditions for the membrane side are added as 
additional equations, the same is true for the heat flux at the outer shell of the 
reactor at rshell,max. The supplied boundary conditions make separating shell- and 
tube-side equations impossible as the membrane closely links them. Hence, in 
the first step of the discretization, all equations and state variables belonging to 
the entire reactor are collected. The user needs to interfere at this point and pair 
zshell and ztube as well as rshell and rtube. This leads to a drastic reduction of the 
differentials appearing, yet again leading to: . For this system, the 
user chooses to apply Lagrangian polynomials for the axial dependency and 
Hermite polynomials for the radial. For the Lagrangian polynomials shifted 
Radau roots and for the Hermite polynomials shifted Legendre roots are 
applied. During the actual discretization the procedure leads to a set of 130,000 
algebraic equations.  

5. Conclusions 
The presented algorithm is expected to work robustly on most PDAE systems 
appearing in chemical engineering. The systematic analysis of the system and 
smaller subsystems is essential for guaranteeing a logical discretization. Up to 
now the algorithm has only been applied in Matlab and tested on a single, albeit 
complex, problem. As a next step, a more generic form of the algorithm is 
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implemented in MOSAIC, to ease the user interaction and to allow for an easier 
set-up of the entire system. 
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