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Preface

Differential equations are omnipresent in the modeling of physical and chemical processes. Often,
theses processes are subject to additional algebraic constraints. Examples for such constraints
are Kirchhoff’s laws in electrical circuits and position constraints in mechanical systems, see,
e.g., [10, 18, 40, 41]. Traditionally, such constraints are resolved by variable substitutions, reduc-
ing the model to a system of ordinary differential equations (ODEs). However, such substitutions
are not always possible and may be difficult to realize numerically. Furthermore, the increasing
size of the models makes such an approach a tedious task.

An elegant alternative to substitutions is to consider the differential equations along with
the algebraic constraints in their original form in one single system, which leads to the notion of
so called differential-algebraic equations (DAEs). In the scope of this thesis, we are concerned
with linear DAEs of the form

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ [t0, T ],

where E and A are matrix functions. This definition includes linear ODEs (for square and
point-wise nonsingular E) as well as purely algebraic systems (for E ≡ 0).

Several frameworks for the theoretical and numerical treatment of DAEs have been devel-
oped, see, e.g. [6, 16, 19, 31]. Here, we focus on the strangeness index concept developed by
Kunkel and Mehrmann [31], as this framework naturally includes under- and overdetermined
systems. With the advance of automatic modeling packages, such as ANSYS, COSMOS/M,
Modelica and Simulink, redundant constraints and variables are likely to be contained in the
model. Such redundancies lead to under- and overdetermined DAEs, which are the topic of this
thesis. Representing another application, the design and analysis of linear control systems can be
embedded in the framework of underdetermined DAEs using a behavioural approach [26, 32, 38].

This thesis is based on work by Kunkel and Mehrmann [28], which provides a theory that
extends the concepts of generalized inverse and least squares solution of linear algebraic equations
to linear DAEs. The numerical aspects of this extension, however, were not covered in [28] and
are the main purpose of this thesis. We treat the major aspects of the numerical computation
of generalized solutions of linear DAEs: discretization, convergence, efficient algorithms and
software. Various numerical examples illustrate the obtained theoretical and algorithmic results.

Outline of the thesis

In Chapter 1, we first provide two examples demonstrating that the direct numerical treatment
of DAEs may lead to wrong or misleading results. Further, the strangeness index concept is
introduced, based on normal forms of linear time-variant DAEs. These normal forms also yield
simple conditions for the existence and uniqueness of solutions. Reducing the strangeness index
to zero is an important preprocessing step of our numerical methods and can be done numerically
based on so called derivative arrays.

Chapter 2 summarizes the theoretical results in [28], which form the basis of our work. First, an
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orthogonal standard form of strangeness free linear DAEs is introduced; it allows to distinguish
between the differential, algebraic and undetermined parts in the solution. In the spirit of the
concept of the Moore-Penrose pseudoinverse for linear algebraic systems, we introduce the no-
tion of differential-algebraic operators and the corresponding generalized inverses, including the
notion of a Moore-Penrose pseudoinverse and the least squares solution for differential algebraic
equations. It turns out that the latter can be seen as the solution of a linear quadratic optimal
control problem. Based on the orthogonal standard form, this connection is used to turn deter-
mining the least squares solution of a DAE into solving an equivalent boundary value problem.
Another approach to obtain a generalized solution is to force the undetermined part of the so-
lution to be zero. It is shown that these solutions induce a so called (1,2,3)-generalized inverse
of the differential-algebraic operator. Let us emphasize, however, that the orthogonal standard
form is difficult to realize numerically and consequently we have to consider other means for
computing generalized solutions.

Being the main chapter of this thesis, Chapter 3 is concerned with the numerical computation
of generalized solutions of linear DAEs. First, we briefly survey BDF-methods and their use
for computing unique solutions of strangeness free DAEs. Our goal is to apply BDF-methods
for computing generalized solutions of over- and underdetermined DAEs. For this purpose, we
introduce a compact notation for the linear system arising from the BDF discretization, using
certain restriction operators. Two major approaches are presented for solving this linear system:
local and global minimization.

The basic idea of local minimization is to solve the linear systems arising in each step of the
BDF-methods independently in a least squares sense. It turns out that this leads to an O(h)
approximation of a (1,2,3)-generalized solution of the DAE. To prove this result, we compare the
solution computed by this approach with the solution of the discretization of a certain, uniquely
solvable DAE.

Global minimization consists of solving the full linear system obtained from an implicit Euler
discretization, again, in a least squares sense. This method leads to an O(h) approximation of the
least squares solution of the DAE. The rather technical proof of this result is done in two steps.
First, we show this assertion for systems given in orthogonal standard form by exploiting the
connection to a discrete linear quadratic optimal control problem that represents a convergent
discretization of the underlying boundary value problem. In the second step, we extend this
result to the case of general strangeness free DAEs. An important ingredient of the proof is to
show that a certain part of the Moore-Penrose inverse of the discretization is uniformly bounded;
this is done in Appendix A.

In Chapter 4, two algorithms realizing the derived numerical methods are presented. The com-
putational cost of both algorithms scales linearly with the number of time steps. This desirable
property can be directly achieved for local minimization. In the case of global minimization,
we present a special-purpose algorithm that takes the particular structure of the discretization
matrix into account to achieve the same goal.

The numerical behaviour of these algorithms is tested in several numerical experiments.
First, the theoretical result that using higher order BDF-methods does not lead to higher order
of convergence in our setting is confirmed. Using an implicit Euler discretization, the actual
convergence rate of both, local and global minimization, is verified. It is demonstrated that the
software package GELDA [33], which uses a similar local minimization technique for underde-
termined DAEs, does not produce satisfying approximations to the (1,2,3)-solution, nor to the
least squares solution. It is shown that the computational time needed by our methods scales
linearly with the number of time steps, with GELDA being faster than local minimization and
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local minimization being faster than global minimization. Using a purely algebraic example, it
is confirmed that both solutions produced by local and global minimization coincide in this case.
Finally, a real-world application is considered.

Appendix B contains a brief description of the software developed as part of the work on this
thesis.
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Chapter 1

Preliminaries

In this chapter we introduce preliminary definitions and notions used throughout the rest of this
thesis. Section 1.1 is concerned with the strangeness index for linear time-variant differential-
algebraic equations (DAEs). Numerical computations usually require the preliminary reduction
of this index to zero. One way to achieve this is to embed the DAE into a larger one, as described
in Section 1.2. This also admits the numerical determination of the strangeness index. A much
more important consequence is that from the large DAE one can extract a DAE of the size of
the original DAE, such that both smaller DAEs have the same solution sets but the extracted
DAE has strangeness index zero.

1.1 The strangeness index

Throughout this thesis we consider linear DAEs of the form

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ [t0, T ],(1.1)

where E,A ∈ C([t0, T ], Rm,n) and f ∈ C([t0, T ], Rm), with an initial condition

x(t0) = x0.(1.2)

If E is a square, point-wise nonsingular matrix function, then the system (1.1) can be transformed
into an ordinary differential equation by multiplying both sides with E(t)−1 from the left. In this
case, it is well known that there exists a unique solution for every given initial value x0 ∈ R

n.
Furthermore, the system (1.1) can be discretized directly, e.g., by BDF-methods [20].

If the matrix function E is singular or nonsquare then the situation is far more complicated.
For example in the special case E = 0, the DAE (1.1) becomes a purely algebraic system, which
may have several solutions or no solution at all. In this case, an initial value has to satisfy the
condition

0 = A(t0)x0 + f(t0)

in order for (1.1) with (1.2) to be solvable. In the general case, further problems can occur,
because often the algebraic conditions of the DAE are not given explicitly but can be hidden
in the system (1.1). This frequently causes problems if the DAE is discretized directly as it is
usually done with ODEs. The following two examples demonstrate some of these difficulties.

Example 1 ([13, 24]) The DAE

[
0 0
1 ηt

]

ẋ(t) =

[
−1 −ηt
0 −(η + 1)

]

x(t) +

[
f1(t)
f2(t)

]

,(1.3)

1



2 CHAPTER 1. PRELIMINARIES

with t ∈ [t0, T ], f1, f2 ∈ C2([t0, T ], R), is uniquely solvable for any value η ∈ R. Setting
x = [x1, x2]

T we can rewrite the DAE as

0 = −x1(t)− ηtx2(t) + f1(t), ẋ1(t) + ηtẋ2(t) = −(η + 1)x2(t) + f2(t).

Differentiating the first equation gives ẋ1(t) + ηtẋ2(t) = −ηx2 + ḟ1(t), and together with the
second equation we get the solution

x2(t) = f2(t)− ḟ1(t), x1(t) = −ηtx2(t) + f1(t) = −ηtf2(t) + ηtḟ1(t) + f1(t).

Note that it is not necessary to solve any differential equation to compute this solution and that
an initial value is consistent if and only if it satisfies these equations for t = t0.

Now we discretize (1.3) with the implicit Euler method with a fixed step size h = T−t0
N

. At
each time step ti = t0 + ih, i = 1, . . .N we have to solve the system

[
0 0
1 ηti

]
xi − xi−1

h
=

[
−1 −ηti
0 −(η + 1)

]

xi +

[
f1(ti)
f2(ti)

]

with respect to xi = [x1,i, x2,i]
T . This system can be rewritten as

x1,i + ηtix2,i = f1(ti),

x1,i + (ηti + h(η + 1))x2,i = x1,i−1 + ηtix2,i−1 + hf2(ti).

For η = −1 this system is singular. For all other values of η we get

h(η + 1)x2,i = x1,i−1 + ηtix2,i−1 + hf2(ti)− f1(ti)

and after inserting x1,i−1 = −ηti−1x2,i−1 + f1(ti−1)

x2,i =
η

η + 1
x2,i−1 +

f2(ti)

η + 1
− f1(ti)− f1(ti−1)

h(η + 1)
.

It is obvious that this discretization is not stable if | η
η+1 | > 1, i.e., η < −1

2 . In all other cases
the solutions of this discretization converge to the correct result. ♦

Example 2 ([16, 30]) The DAE

[
−t t2

−1 t

]

ẋ(t) =

[
−1 0
0 −1

]

x(t) +

[
f1(t)
f2(t)

]

,(1.4)

with t ∈ [0, T ], f1, f2 ∈ C1([0, T ], R), can be rewritten as

−tẋ1(t) + t2ẋ2(t) = −x1(t) + f1(t),(1.5)

−ẋ1(t) + tẋ2(t) = −x2(t) + f2(t),(1.6)

again setting x = [x1, x2]
T . By multiplying (1.6) with t and subtracting it from (1.5) we get the

relation

x1(t) = tx2(t) + f1(t)− tf2(t),(1.7)

which gives, after differentiation,

ẋ1(t)− tẋ2(t) = x2(t) + ḟ1(t)− tḟ2(t)− f2(t)(1.8)
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and thus, by adding (1.6) and (1.8),

0 = ḟ1(t)− tḟ2(t).(1.9)

We can see that the DAE (1.4) is solvable if and only if the condition (1.9) is satisfied. If
this is the case, then the initial condition has to satisfy (1.7) for t = 0 and every function
x = [x1, x2]

T ∈ C1([0, T ], R2) that satisfies (1.7) solves (1.4). Again we discretize (1.4) as in the
previous example using the implicit Euler method, which leads to linear systems of the form

[
−ti t2i
−1 ti

]
xi − xi−1

h
=

[
−1 0
0 −1

]

xi +

[
f1(ti)
f2(ti)

]

for i = 1, . . . , N with respect to xi = [x1,i, x2,i]
T . These systems possess the unique solution

x2,i =
1

h
(−x1,i−1 + tix2,i−1 + f1(ti) + (h− ti)f2(ti)),

x1,i = (h + ti)x2,i + x1,i−1 − tix2,i−1 − hf2(ti).

Thus the implicit Euler method always leads to a unique solution although the system may have
several solutions or may not be solvable at all. ♦

Both examples show that a direct discretization of a DAE may lead to wrong or misleading
results. They also demonstrate that certain algebraic constraints may be hidden in the DAE
and that it is necessary to form derivatives of some parts of the system to detect these constraints.
This is a distinctive feature of DAEs.

There are several theories for the analytical and numerical treatment of DAEs. Most of
these concepts define an index of a DAE, such as the differentiation [6], perturbation [19],
strangeness [27, 30] or tractability [16, 34] index. Such indices provide measures of the order of
derivatives that have to be computed to extract a system which admits the explicit detection
of the algebraic constraints as well as the differential equations of the given DAE. In general,
however, these theories require that the system is regular in the sense that the DAE possesses a
unique solution. Thus they cannot be applied to define and compute generalized solutions of a
DAE. A theory that allows for an analytic treatment of nonsquare over- and underdetermined
systems is the theory of the strangeness index [32], which will therefore suit our purposes.

In the following, we give a short summary of the strangeness index theory for linear DAE
systems with variable coefficients as it was introduced in [30] and [29].

In a first step we have to transform the DAE system to a normal form which helps us to
examine the behaviour of certain parts of the system. For this purpose we employ the following
transformations. Given a point-wise nonsingular matrix function P ∈ C([t0, T ], Rm,m) we can
scale the system (1.1) by multiplying with P from the left. The solution space can be transformed
by setting x = Qx̃ with Q ∈ C1([t0, T ], Rn,n) point-wise nonsingular. Because of ẋ = Q ˙̃x + Q̇x̃
we obtain that (1.1) is equivalent to the system

PEQ ˙̃x = (PAQ− PEQ̇)x̃ + Pf.

This leads to the following definition of an equivalence relation for pairs of matrix functions.

Definition 1 (global equivalence) Two pairs (E,A) and (Ẽ, Ã) of matrix functions, with
E,A, Ẽ, Ã ∈ C([t0, T ], Rm,n), are called (globally) equivalent if there are point-wise nonsingular
matrix functions P ∈ C([t0, T ], Rm,m) and Q ∈ C1([t0, T ], Rn,n) such that

Ẽ = PEQ, Ã = PAQ− PEQ̇

as equality of functions. We then write (E,A) ∼ (Ẽ, Ã).
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It is easy to verify that this relation is in fact an equivalence relation. Under certain con-
stant rank assumptions a pair (E,A) of matrix functions corresponding to a DAE (1.1) can
then be transformed to a normal form that allows for an analytical treatment of the correspond-
ing differential-algebraic system. First we have to define the following quantities that can be
computed at any time point t ∈ [t0, T ].

Definition 2 Let (E,A) ∈ C([t0, T ], Rm,n) and t ∈ [t0, T ]. Then the quantities

(a) r(t) = rank E(t),
(b) a(t) = rank(Z(t)T A(t)T (t)),
(c) s(t) = rank(V (t)T Z(t)T A(t)T ′(t))),
(d) d(t) = r(t)− s(t),
(e) u(t) = n− r(t)− a(t),
(f) v(t) = m− r(t)− a(t)− s(t),

where

(a) T (t) is a basis of kernelE(t),
(b) Z(t) is a basis of corangeE(t) = kernelE(t)T ,
(c) T ′(t) is a basis of cokernelE(t) = rangeE(t)T ,
(d) V (t) is a basis of corange(Z(t)T A(t)T (t)),

(1.10)

are called local characteristic values of the pair (E,A) at the point t.

Note that these local characteristic values can be computed numerically at any given t ∈
[t0, T ] by three singular value decompositions [15]. To compute a pair (Ẽ, Ã) of matrix functions
in the normal form that is globally equivalent to the given pair (E,A) we have to make sure
that there exist smooth matrix functions T , T ′, Z and V on [t0, T ] that satisfy (1.10) point-wise.
The following theorems show that this is the case whenever E and A are sufficiently smooth and
the local characteristic values are constant on [t0, T ].

Theorem 3 Let E ∈ C l([t0, T ], Rm,n), l ∈ N0∪{∞}, with rankE(t) = r for all t ∈ [t0, T ]. Then
there are point-wise orthogonal (and therefore nonsingular) functions U ∈ C`([t0, T ], Rm,m) and
V ∈ C`([t0, T ], Rn,n), such that

UT EV =

[
Σ 0
0 0

]

(1.11)

with point-wise nonsingular Σ ∈ C`(I, Cr,r).

Proof. A detailed proof of this result can be found in [36, 39].

Theorem 4 Let E,A ∈ C([t0, T ], Rm,n) be sufficiently smooth and suppose that

r(t) ≡ r, a(t) ≡ a, s(t) ≡ s(1.12)

for the local characteristic values of (E,A). Then (E,A) is globally equivalent to the normal
form

(Ẽ, Ã) =

















Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0

















s

d

a

s

v

.(1.13)

Here, the block entries A12, A14, A24 are matrix functions on [t0, T ] and the last block column
consists of u = n− s− d− a columns.
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Proof. A constructive proof of the normal form (1.13) is given in [27].

For the examples we considered in the beginning of this section, we obtain the following
normal forms.

Example 3 For Example 1 we get

(E,A) =

([
0 0
1 ηt

]

,

[
−1 −ηt
0 −(η + 1)

])

∼
([

0 1
−1 0

] [
0 0
1 ηt

]

,

[
0 1
−1 0

] [
−1 −ηt
0 −(η + 1)

])

=

([
1 ηt
0 0

]

,

[
0 −(η + 1)
1 ηt

])

∼
([

1 ηt
0 0

] [
1 −ηt
0 1

]

,

[
0 −(η + 1)
1 ηt

] [
1 −ηt
0 1

]

−
[

1 ηt
0 0

] [
0 −η
0 0

])

=

([
1 0
0 0

]

,

[
0 −1
1 0

])

=: (Ẽ, Ã),

and thus, s = u = 1 and A14 = [−1]. The pair (Ẽ, Ã) in normal form corresponds to a DAE

˙̃x1 = −x̃2 + f̃1

0 = x̃1 + f̃2,
(1.14)

where

[
x̃1

x̃2

]

=

[
1 −ηt
0 1

]−1 [
x1

x2

]

=

[
1 ηt
0 1

] [
x1

x2

]

and

[
f̃1

f̃2

]

=

[
0 1
−1 0

] [
f1

f2

]

.

An obvious way to solve the system (1.14) is to differentiate the second equation, subtract it
from the first equation and achieve the system

0 = −x̃2 + f̃1 − ˙̃
f2,

0 = x̃1 + f̃2,

which corresponds to the pair of constant matrix functions

([
0 0
0 0

]

,

[
0 −1
1 0

])

.

♦
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Example 4 For Example 2 we get

(E,A) =

([
−t t2

−1 t

]

,

[
−1 0
0 −1

])

∼
([

0 −1
−1 t

] [
−t t2

−1 t

]

,

[
0 −1
−1 t

] [
−1 0
0 −1

])

=

([
1 −t
0 0

]

,

[
0 1
1 −t

])

∼
([

1 −t
0 0

] [
1 t
0 1

]

,

[
0 1
1 −t

] [
1 t
0 1

]

−
[

1 −t
0 0

] [
0 1
0 0

])

=

([
1 0
0 0

]

,

[
0 0
1 0

])

=: (Ẽ, Ã)

and thus, s = u = 1 and A14 = [0]. The pair (Ẽ, Ã) is in normal form and corresponds to the
DAE

˙̃x1 = f̃1,

0 = x̃1 + f̃2,

which can be solved again by inserting the derivative of the second equation into the first
equation. This leads to the system

0 = f̃1 − ˙̃
f2,

0 = x̃1 + f̃2,

which can be represented by the pair
([

0 0
0 0

]

,

[
0 0
1 0

])

.

♦

In both examples, the simplification of the DAE relied on differentiating an equation that cor-
responds to the strangeness block Is of the matrix function Ã and thus removing the strangeness
block in Ẽ. As will be shown in the following, we can proceed in a similar way with general
DAE systems that satisfy the assumptions of Theorem 4. The pair (Ẽ, Ã) in (1.13) is associated
with a DAE system

(a) ˙̃x1 = A12(t)x̃2 + A14(t)x̃4 + f1(t),

(b) ˙̃x2 = A24(t)x̃4 + f2(t),
(c) 0 = x̃3 + f3(t),
(d) 0 = x̃1 + f4(t),
(e) 0 = f5(t).

(1.15)

This system consists of the algebraic equation (1.15c) of size a for x̃3, the consistency condi-
tion (1.15e) for the inhomogeneity of size v and the differential condition (1.15b) for x̃2 of size
d. Looking at the so-called strangeness equations (1.15a) and (1.15d) of size s we can recognize
a coupling for x̃1. As in the examples we can differentiate (1.15d) and insert it into (1.15a) to
obtain the modified equation

(a’) 0 = A12(t)x̃2 + A14(t)x̃4 + f1(t) + ḟ4(t).(1.16)
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If we now replace (1.15a) by (1.16a’), the modified differential algebraic system can be repre-
sented by the pair

(Ẽmod, Ãmod) =

















0 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0

















.(1.17)

This elimination procedure is reversible because the modified system still contains the algebraic
equation (1.15d). One can show that the structure of the pair (Ẽmod, Ãmod) is invariant under
global equivalence, i.e., if two pairs (Ẽ(1), Ã(1)) and (Ẽ(2), Ã(2)) are globally equivalent and in

global normal form (1.13), then the corresponding modified pairs (Ẽ
(1)
mod, Ã

(1)
mod) and (Ẽ

(2)
mod, Ã

(2)
mod)

are also globally equivalent, see [27].
This fact allows for the following inductive procedure. We start with the pair (E0, A0) =

(E,A) and define a sequence (Ei, Ai), i ∈ N0, by transforming (Ei, Ai) to the pair (Ẽi, Ãi) in
global canonical form (1.13). Here we have to assume in each step of this procedure that the
assumptions of Theorem 4 are satisfied by the pair (Ei, Ai). We then define (Ei+1, Ai+1) =
(Ẽimod, Ãimod) where (Ẽimod, Ãimod) is computed from (Ẽi, Ãi) by passing from (1.13) to (1.17).

For every pair (Ei, Ai) we can compute the corresponding characteristic values (ri, ai, si) as
defined in Definition 2. By comparing (1.13) and (1.17) one can see that ri+1 = ri−si for i ∈ N0

and because ri cannot be negative, the strangeness must vanish after a finite number of steps,
i.e., sµ = 0 for some µ ∈ N0 and thus the sequence (ri, ai, si) must become stationary for i ≥ µ.
The index µ is a characteristic value of the pair (E,A).

Definition 5 (strangeness index) Let (E,A) be a pair of sufficiently smooth matrix func-
tions. Let the sequence (ri, ai, si), i ∈ N0, be well-defined (in particular, let (1.12) hold for each
entry (Ei, Ai) of the above sequence). Then, we call

µ = min{i ∈ N0 | si = 0}
the strangeness index of (E,A) and of (1.1). In the case of µ = 0, we call (E,A) and the
corresponding DAE (1.1) strangeness free.

From the discussion above it follows that if the strangeness index is well-defined for a DAE
of the form (1.1) then the inductive procedure leads to a strangeness free DAE system, where
the associated pair (Eµ, Aµ) transformed to the normal form can be written as

(Ẽµ, Ãµ) =









Id 0 0
0 0 0
0 0 0



 ,





0 0 A13

0 Ia 0
0 0 0







 .(1.18)

To compute the strangeness free DAE it is necessary that at least certain parts of the inhomo-
geneity are µ times differentiable.

Theorem 6 Let the strangeness index µ of (E,A) be well-defined (i.e., let the assumptions of
Definition 5 hold) and let f ∈ Cµ([t0, T ], Cm). Then the differential-algebraic equation (1.1) is
equivalent (in the sense that there is a one-to-one correspondence between the solution spaces
via a point-wise nonsingular matrix function) to a differential-algebraic equation of the form

(a) ẋ1 = A13(t)x3 + f1(t), dµ

(b) 0 = x2 + f2(t), aµ

(c) 0 = f3(t), vµ

(1.19)

where A13 ∈ C([t0, T ], Cdµ,uµ) and the inhomogeneity is determined from f (0), . . . , f (µ).
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The existence and uniqueness of solutions of a linear DAE (1.1) can be easily examined after
the strangeness free normal form (1.19) has been computed.

Corollary 7 Let the strangeness index µ of (E,A) be well-defined and let f ∈ Cµ+1(I, Cm).
Then we have:

1. The problem (1.1) is solvable if and only if the vµ functional consistency conditions

f3 = 0

are fulfilled.

2. An initial condition (1.2) is consistent if and only if in addition the aµ conditions

x2(t0) = −f2(t0)

are implied by (1.2).

3. The corresponding initial value problem is uniquely solvable if and only if in addition

uµ = 0

holds.

Let us illustrate these results by applying them to our running examples.

Example 5 For Example 1 we have already computed in Example 3 the normal form

(Ẽ0, Ã0) =

([
1 0
0 0

]

,

[
0 −1
1 0

])

and the corresponding characteristic values

r0 = 1, a0 = 0, s0 = 1, d0 = 0, u0 = 1, v0 = 0.

For the modified pair we get

(E1, A1) = (Ẽ0mod, Ã0mod)

=

([
0 0
0 0

]

,

[
0 −1
1 0

])

∼
([

0 1
−1 0

] [
0 0
0 0

]

,

[
0 1
−1 0

] [
0 −1
1 0

])

=

([
0 0
0 0

]

,

[
1 0
0 1

])

=: (Ẽ1, Ã1),

and thus,

r1 = 0, a1 = 2, s1 = 0, d1 = 0, u1 = 0, v1 = 0,

and finally the strangeness index µ = 1. The system consists of two algebraic equations and
possesses a unique solution, provided that the initial values are consistent. ♦



1.1. THE STRANGENESS INDEX 9

Example 6 For Example 2 we have seen that

(Ẽ0, Ã0) =

([
1 0
0 0

]

,

[
0 0
1 0

])

,

see Example 4, and thus,

r0 = 1, a0 = 0, s0 = 1, d0 = 0, u0 = 1, v0 = 0.

For the modified pair we get

(E1, A1) = (Ẽ0mod, Ã0mod)

=

([
0 0
0 0

]

,

[
0 0
1 0

])

∼
([

0 1
1 0

] [
0 0
0 0

]

,

[
0 1
1 0

] [
0 0
1 0

])

=

([
0 0
0 0

]

,

[
1 0
0 0

])

=: (Ẽ1, Ã1).

The characteristic values for the pair (Ẽ1, Ã1) are

r1 = 0, a1 = 1, s1 = 0, d1 = 0, u1 = 1, v1 = 1.

It follows that this system has strangeness index µ = 1. It consists of an algebraic equation and
a consistency condition for the inhomogeneity and it has one undetermined solution component.
In particular, the homogeneous initial value problem (for which the consistency condition is
satisfied) does not possess a unique solution. ♦

Both results agree with the results that we have already computed in Example 1 and Exam-
ple 2.

As we have seen, the strangeness index µ is well-defined for a differential-algebraic system
(1.1) on an interval I, whenever the constant-rank assumptions of Theorem 4 are satisfied by
all pairs (Ei, Ai), i = 0, . . . , µ, provided that they are sufficiently smooth on I. Due to the fact
that the rank of any continuous matrix function can at most change outside of a dense subset
of open intervals in a given closed interval I (see, e. g., [7]), we get the following result.

Corollary 8 Let I ⊆ R be a closed interval and E,A ∈ C(I, Cm,n) be sufficiently smooth. Then
there exist open intervals Ij, j ∈ N, with

⋃

j∈N

Ij = I, Ii ∩ Ij = ∅ for i 6= j,

such that the strangeness index of (E,A) restricted to Ij is well-defined for every j ∈ N.

We have seen so far that the strangeness index can be defined for a large class of linear
differential-algebraic equations. The fact that the aforementioned theory can also be applied
to underdetermined and even unsolvable systems leads to intuitive solvability and uniqueness
results for differential-algebraic systems. In addition, this theory can also be applied to con-
trol problems, where the input variables can just be treated as undetermined solution compo-
nents [32, 25, 26].

However, it is in general not clear how to turn the above procedure into a reliable numerical
method for computing the strangeness index. On the one hand it is difficult to realize the
smooth transformations to compute the normal form (1.13), on the other hand for systems with
a higher strangeness index the derivatives needed here cannot be computed accurately. In the
next section, a method will be presented that avoids these difficulties.
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1.2 Numerical computation of the strangeness index

For the computation of the strangeness index of a linear DAE (1.1), one has to compute deriva-
tives of certain parts of the pair (E,A) of matrix functions. In addition, if we want to solve a
given differential algebraic equation by discretization, we have already seen that this might lead
to wrong or misleading results if the discretization is applied directly to a higher-index system.
Therefore, one wants to compute a system that has the same solution set as the original system
but which is strangeness free. This, however, makes it necessary to differentiate certain parts of
the inhomogeneity but it is well-known that the numerical computation of higher derivatives is
not necessarily stable [17]. It is also difficult or even infeasible to employ automatic differentia-
tion techniques [17]; as one has to compute derivatives of transformed data, this would require
to differentiate the original data and the transformations.

Therefore, it makes sense to assume that the necessary derivatives are given in advance and
defined solely in terms of the original data. A system that contains all the required derivatives of
the pair (E,A) and of the inhomogeneity should also contain all the information that is needed
to compute the strangeness index. We will see that such a system also allows the computation
of a strangeness free differential-algebraic equation which has the same solution set as the given
DAE.

The following idea was first introduced by Campbell [6]. If we differentiate the DAE (1.1)
once with respect to t then we obtain

Ė(t)ẋ(t) + E(t)ẍ(t) = Ȧ(t)x(t) + A(t)ẋ(t) + ḟ(t).

After sorting all the derivatives of x to the left-hand side of the equation, we can merge this
system with the original DAE to obtain the differential-algebraic equation

[
E(t) 0

Ė(t)− A(t) E(t)

] [
ẋ(t)
ẍ(t)

]

=

[
A(t) 0

Ȧ(t) 0

] [
x(t)
ẋ(t)

]

+

[
f(t)

ḟ(t)

]

.(1.20)

If all coefficients and f are sufficiently smooth then the solution of the DAE (1.1) coincides with
the solution of the inflated system (1.20). The same method can also be realized for higher
derivatives. If we build l derivatives of (1.1), then we can combine all these derivatives to the
so-called inflated differential-algebraic equation or derivative array

Ml(t)ż(t) = Nl(t)z(t) + gl(t), t ∈ [t0, T ],

where the coefficients are given by

(Ml)i,j =

(
i
j

)

E(i−j) −
(

i
j + 1

)

A(i−j−1), i, j = 0, . . . , l,

(Nl)i,j =

{

A(i) for i = 0, . . . , l, j = 0,

0 otherwise,

(zl)j = x(j), j = 0, . . . , l,

(gl)i = f (i), i = 0, . . . , l.

Here we use the convention
(

i
j

)

= 0 for i < 0, j < 0 or j > i.

As for the pair (E,A) we can compute the local characteristic values of the inflated pairs
(Ml, Nl) according to Definition 2. If the strangeness index µ of (E,A) is well-defined, then
the local characteristic values of the pairs (Ml, Nl), l = 0, . . . , µ, can be used to compute the
sequence (ri, ai, si) of global characteristic values of the pairs (Ei, Ai) that have been defined in
the previous section.
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Theorem 9 ([29, 30]) Let the strangeness index µ of (E,A) be well-defined and let (r̃l, ãl, s̃l),
l = 0, . . . , µ, be the sequence of the local characteristic values of (Ml(t), Nl(t)) for some t ∈ I.
Then the sequence (ri, ai, si) of global characteristic values of (E,A) can be obtained by

(a) c0 = ã0 + s̃0, ci+1 = (ãi+1 − ãi) + (s̃i+1 − s̃i),
(b) v0 = m− c0 − r̃0, vi+1 = m− ci+1 − (r̃i+1 − r̃i),
(c) si = ci − ãi,
(d) ai = c0 + · · ·+ ci − si,
(e) ri = m− ai − si − vi.

(1.21)

This means that if the strangeness index µ of a given DAE is well-defined, then we can get
the information about the complete sequence of global characteristic values of the pairs (Ei, Ai)
as they were constructed in the previous chapter from the inflated pair (Mµ, Nµ). In particular,
they can be computed numerically. The following theorem can then be used to construct a
strangeness free system which has the same solution set as the original DAE.

Theorem 10 Let the strangeness index µ be well-defined for the pair (E,A) and let (ri, ai, si),
i = 0, . . . , µ, be the sequence of global characteristic values of the pairs (Ei, Ai). Setting

â = aµ, d̂ = dµ, v̂ = v0 + · · ·+ vµ,

where dµ = rµ and vi = m− ri− ai− si for i = 1, . . . , µ, then the inflated pair (Mµ, Nµ) has the
following properties.

1. For all t ∈ [t0, T ] we have rank Mµ(t) = (µ + 1)m− â− v̂. This implies the existence of a
smooth matrix function Z of size ((µ + 1)m, â + v̂)) and point-wise orthonormal columns,
satisfying ZT Mµ = 0.

2. For all t ∈ [t0, T ] we have rankZ(t)T Nµ(t)[In 0 · · · 0]T = â. This implies that, without
loss of generality, Z can be partitioned as Z = [Z2 Z3] with Z2 of size ((µ + 1)m, â)
and Z3 of size ((µ + 1)m, v̂), such that Â2 = ZT

2 Nµ[In 0 · · · 0]T has full row rank â and

ZT
3 Nµ[In 0 · · · 0]T = 0. Furthermore, there exists a smooth matrix function T2 of size (n, d̂),

d̂ = m− â− v̂, and point-wise orthonormal columns, satisfying Â2T2 = 0.

3. For all t ∈ [t0, T ] we have rankE(t)T2(t) = d̂. This implies the existence of a smooth matrix
function Z1 of size (m, d̂) and point-wise orthonormal columns such that Ê1 = ZT

1 E has
constant rank d̂.

Furthermore, the system





Ê1(t)
0
0



 ẋ(t) =





Â1(t)

Â2(t)
0



x(t) +





f̂1(t)

f̂2(t)

f̂3(t)



 ,(1.22)

with Â1 = ZT
1 A, f̂1 = ZT

1 f , f̂2 = ZT
2 gµ and f̂3 = ZT

3 gµ, is strangeness free and has the same
solution set as the given DAE.

Proof. See [32] and [30].

Note that in general v̂ > m − d̂ − â, which implies that in these cases the system (1.22)
consists of more equations than the original DAE (1.1). The function f̂3 contains the function
f3 as defined in (1.19) and derivatives of some parts of it. Hence if f̂3(t) = 0 for all t ∈ [t0, T ]
then we know that the original system is solvable.
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For the numerical treatment of linear differential-algebraic equations another fact is impor-
tant. By means of three singular value decompositions we can compute matrix functions Z̃1,
Z̃2 and Z̃3 that can replace the functions Z1, Z2 and Z3 in the sense that they satisfy the con-
ditions given in Theorem 10 but without being smooth. The numerical realization of smooth
transformations is extremely expensive and will generally be impossible here, see [5] and [36].

Without loss of generality we may assume the functions Z1, Z2 and Z3 to be orthogonal due
to Theorem 3. What we can compute numerically are point-wise evaluations of Z̃1 = Z1Q1,
Z̃2 = Z2Q2 and Z̃3 = Z3Q3, where Q1, Q2 and Q3 are orthogonal but not necessarily smooth.
Thus if we compute the system (1.22) using these matrices we may get a system where the
coefficient functions are only smooth (apart from roundoff errors) after a multiplication with
diag(Q1, Q2, Q3) from the left. This scaling, however, does not change the solution space of the
system and thus we can neglect the possibly nonsmooth realization of the functions Z1, Z2 and
Z3.

Due to Theorem 9 and Theorem 10 we are now able to treat linear differential-algebraic
equations numerically, whenever their strangeness index is well-defined and the inflated pair
(Mµ, Nµ) is given. At every point t ∈ [t0, T ] we can compute the characteristic values for the
system using only local information at this point. We can extract a strangeness free DAE that
has the same solution space as the original system. In Chapter 3, we will see that this system
can be discretized, e.g. with BDF-methods, and that we get the same convergence results as for
ordinary differential equations.

Example 7 In Example 5 we have already computed the global (and hence local) characteristic
values of the pair

(M0, N0) = (E,A) =

([
0 0
1 ηt

]

,

[
−1 −ηt
0 −(η + 1)

])

,

according to Example 1, and thus we have

r̃0 = r0 = 1, ã0 = a0 = 0, s̃0 = s0 = 1, ṽ0 = v0 = 0.

After differentiating the DAE we get the inflated pair

(M1, N1) =













0 0 0 0
1 ηt 0 0
1 ηt 0 0
0 2η + 1 1 ηt







,







−1 −ηt 0 0
0 −(η + 1) 0 0
0 −η 0 0
0 0 0 0













.

By means of the transformations

P =







0 0 1 0
0 0 0 1
0 −1 1 0
−1 0 0 0







, Q =







1 0 −ηt 0
0 0 1 0
0 1 −2η − 1 −ηt
0 0 0 1







,

we can transform the pair (M1, N1) to the normal form

(M̃1, Ñ1) = (PM1Q,PN1Q− PM1Q̇)

=













1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







,







0 0 0 0
0 0 0 η
0 0 1 0
1 0 0 0












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and read off the global characteristic values

r̃1 = 2, ã1 = 1, s̃1 = 1, ṽ1 = 0.

Using the recursion (1.21) we get

c0 = ã0 + s̃0 = 1, c1 = (ã1 − ã0) + (s̃1 − s̃0) = 1,

v1 = m− c1 − (r̃1 − r̃0) = 0,

s1 = c1 − ã1 = 0,

a1 = c0 + c1 − s1 = 2,

r1 = m− a1 − s1 − v1 = 0,

and this agrees with the result that we have obtained in Example 5. To obtain the strangeness
free DAE system as defined in Theorem 10 we can choose

Z = Z2 =







1 0
0 1
0 −1
0 0







.

as the matrix containing a basis of the corange of M1. Now for

Â2 = ZT
2 N1

[
I2

0

]

=

[
1 0 0 0
0 1 −1 0

]







−1 −ηt
0 −(η + 1)
0 −η
0 0







=

[
−1 −ηt
0 −1

]

we have rank(Â2) = 2 and we immediately get the strangeness free system

0 = Â2(t)x(t) + f̂2(t) =

[
−1 −ηt
0 −1

]

x(t) +

[
f1(t)

f2(t)− ḟ1(t)

]

.(1.23)

The unique solution of (1.3) can now be computed without any discretization by solving the
equivalent algebraic system (1.23). ♦

Example 8 For Example 2 we have already computed the global and local characteristic values
(see Example 6) for

(M0, N0) = (E,A) =

([
−t t2

−1 t

]

,

[
−1 0
0 −1

])

as

r̃0 = r0 = 1, ã0 = a0 = 0, s̃0 = s0 = 1, ṽ0 = v0 = 0.

The inflated pair

(M1, N1) =













−t t2 0 0
−1 t 0 0
0 2t −t t2

0 2 −1 t







,







−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0












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can be transformed to the global normal form

(M̃1, Ñ1) = (PM1Q,PN1Q− PM1Q̇)

=













1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







,







0 0 0 0
0 0 0 −1
1 0 0 0
0 0 0 0













by means of the transformations

P =







0 −1 0 0
0 0 0 −1
−1 t 0 0
0 0 1 −t







, Q =







1 0 t 0
0 0 1 0
0 1 2 t
0 0 0 1







.

This yields the global and local characteristic values

r̃1 = 2, ã1 = 0, s̃1 = 1, ṽ1 = 1.

The recursion (1.21) then gives

c0 = ã0 + s̃0 = 1, c1 = (ã1 − ã0) + (s̃1 − s̃0) = 0,

v1 = m− c1 − (r̃1 − r̃0) = 1,

s1 = c1 − ã1 = 0,

a1 = c0 + c1 − s1 = 1,

r1 = m− a1 − s1 − v1 = 0,

again in accordance with the computation in Example 6.

The strangeness free system can be obtained from (M1, N1) as follows. The matrix functions

Z2 =







1
−t
0
0







, Z3 =







0
0
1
−t







span the corange of M1, ZT
3 N1[I2 0] = 0, and

Â2 = ZT
2 N1

[
I2 0

]
=
[
1 −1 0 0

]







−1 0
0 −1
0 0
0 0







=
[
−1 t

]

has full row rank. Thus, by Theorem 10 we get

0 =

[
Â2(t)

0

]

x(t) +

[
f̂2(t)

f̂3(t)

]

=

[
−1 t
0 0

]

x(t) +

[
f1(t)− tf2(t)

ḟ1(t)− tḟ2(t)

]

.(1.24)

As already observed in Example 2, the system is solvable if the condition ḟ1(t) − tḟ2(t) = 0 is
satisfied for all t ∈ [t0, T ] but the solution is not unique. ♦
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In the next chapters we will only consider strangeness free linear differential-algebraic equations.
This restriction is justified by the aforementioned results, which show that we can compute
equivalent strangeness free systems numerically for every given system at any time point t,
whenever the strangeness index is well-defined. As already mentioned, the functions Z1, Z2 and
Z3 defined in Theorem 10 can be chosen such that they have orthogonal columns. Combined with
the fact that the Euclidean norm for vector spaces is invariant under orthogonal transformations,
this property will admit the definition and computation of least-square solutions for differential-
algebraic systems of higher index.
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Chapter 2

Generalized Inverses of
Differential-Algebraic Operators

Being closely related to finding least-squares solutions of over/underdetermined linear systems,
the notion of generalized inverses of differential-algebraic operators is introduced in this chapter.
For this purpose, an orthogonal standard form based on the strangeness free form (1.22) is
defined. Furthermore, it is shown that computing these generalized inverses is equivalent to
solving a linear-quadratic optimal control problem or a boundary value problem; a connection
that will be used to justify the numerical method proposed in Section 3.3. The exposition in
this chapter is along the lines of the work in [28].

2.1 The orthogonal standard form

The strangeness free differential-algebraic system (1.22) defined in Theorem 10 can be computed
by using orthogonal transformations from the left only. The transformations do not change the
solution set of the given differential-algebraic system. The system (1.22) allows to distinguish
between a differential equation

Ê1(t)ẋ(t) = Â1(t)x(t) + f̂1(t)

of dimension d̂ and a purely algebraic equation

0 = Â2(t)x(t) + f̂2(t)

of dimension â, but it does not distinguish between the parts of the solution that belong to
differential or algebraic parts of the system or those components of the solution that are unde-
termined. This could be achieved by transforming the system to the normal form (1.19), but
such an approach requires a non-orthogonal transformation of the solution space. The orthogo-
nal standard form proposed in this section is derived from (1.22) solely by means of orthogonal
transformations. This form will allow us to define least-square solutions of differential-algebraic
equations.

Theorem 11 Let the DAE (1.1) be strangeness free and (E,A) sufficiently smooth. Then there
exist matrix functions P ∈ C([t0, T ], Rm,m) and Q ∈ C1([t0, T ], Rn,n), both point-wise orthogonal,
such that we can transform (1.1) to the orthogonal standard form

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + f̃(t),(2.1)

17
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where

Ẽ(t) = P (t)E(t)Q(t) =





ΣE(t) 0 0
0 0 0
0 0 0



 ,

Ã(t) = P (t)A(t)Q(t)− P (t)E(t)Q̇(t) =





A11(t) A12(t) A13(t)
A21(t) ΣA(t) 0

0 0 0



 ,

x̃(t) = Q(t)T x(t) =





x1(t)
x2(t)
x3(t)



 ,

f̃(t) = P (t)f(t) =





f1(t)
f2(t)
f3(t)



 ,

(2.2)

with ΣE and ΣA point-wise nonsingular. All block sizes are allowed to be zero.

Proof. While in [28], the existence of (2.1) was implicitly assumed, we will show constructively
that (2.1) always exists if the original DAE (1.1) is strangeness free.

By Theorem 10 there exist smooth matrix functions Z1 of size (m, d̂), Z2 of size (m, â) and
Z3 of size (m, v̂), where d̂ = rank(E), â = rank([Z2Z3]

T A) = rank(ZT
2 A) and v̂ = m − d̂ − â,

such that [Z1 Z2 Z3] is point-wise orthogonal and

[Z1 Z2 Z3]
T (E,A) =









Ê1

0
0



 ,





Â1

Â2

0







 .

By Theorem 3 there exist orthogonal and smooth matrix functions U1 and V1 such that

UT
1 Ê1V1 = [ΣE 0]

with point-wise nonsingular ΣE of size (d̂, d̂). Because Ê1 has full row rank, one can choose
U1 = I and we get









Ê1

0
0



 ,





Â1

Â2

0







 ∼









Ê1

0
0



V1,





Â1

Â2

0



V1 −





Ê1

0
0



 V̇1





=









ΣE 0
0 0
0 0



 ,





Â11 Â12

Â21 Â22

0 0









where [Â11 Â12] = Â1V1 − Ê1V̇1 and [Â21 Â22] = Â2V1 are partitioned according to the size of
ΣE . By Theorem 10 there exists a matrix function T2 of size (n, d̂) with point-wise orthogonal
columns such that rank(E(t)T2(t)) = d̂ in [t0, T ] and Â2T2 = 0. If we partition

V T
1 T2 =

[
T ′

2

T ′′
2

]

,

such that T ′′
2 is of size (d̂, d̂), then

rank(E(t)T2) = rank









Ê1

0
0



T2



 = rank









ΣE 0
0 0
0 0





[
T ′

2

T ′′
2

]


 = d̂
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implies that T ′
2 is nonsingular. From

Â2T2 =
[

Â21 Â22

]
[

T ′
2

T ′′
2

]

= Â21T
′
2 + Â22T

′′
2

it follows that Â21 = −Â22T
′′
2 T ′−1

2 and this implies rank(Â22) = rank([Â21 Â22]) = â.

Again, Theorem 3 shows the existence of smooth orthogonal matrix functions U2 and V2

such that

UT
2 Â22V2 =

[
ΣA 0

]
,

and consequently we obtain









ΣE 0
0 0
0 0



 ,





Â11 Â12

Â21 Â22

0 0







 ∼









ΣE 0
0 0
0 0



 ,





Â11 Â12V2

UT
2 Â21 UT

2 Â22V2

0 0









=









ΣE 0 0
0 0 0
0 0 0



 ,





A11 A12 A13

A21 ΣA 0
0 0 0







 .

Like the normal form (1.18), the orthogonal normal form allows to distinguish between the
different components of the solution x̃, namely the differential part x1, the algebraic part x2 and
the undetermined part x3 of size û = n − d̂ − â. Suppose that f3(t) = 0 for all t and thus the
DAE is solvable, then x3 can be chosen arbitrarily, just like an input variable in a control system.
For any input x3 the variable x1 has to be the solution of the ordinary differential equation

ẋ1(t) = −Σ−1
E (t)(A11(t)x1(t) + A12(t)x2(t) + A13(t)x3(t) + f1(t)),

where the component x2 has to satisfy the algebraic condition

x2(t) = −Σ−1
A (t)(A21(t)x1(t) + f2(t)).

It follows that any initial condition can be assigned to x1, while the overall initial condition is
consistent if and only if the equation

x20 = −Σ−1
A (t0)(A21(t0)x10 + f2(t0))

holds, where





x10

x20

x30



 = Q(t0)
T x0.

Note that it is in general difficult to compute the orthogonal standard form numerically due
to the difficulties associated with realizing the necessary transformations smoothly, as already
discussed at the end of Section 1.1.
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2.2 The Moore-Penrose pseudoinverse

Given A ∈ R
m,n and b ∈ R

m, a general system of linear equations

Ax = b,

which may be over- or underdetermined, can be “solved” uniquely by considering the minimiza-
tion problem

1

2
‖x‖22 = min! s.t.

1

2
‖Ax− b‖22 = min!(2.3)

This problem always has a unique solution, which is called least squares solution and can be
written in the form

x = A+b,

where A+ ∈ R
n,m is the Moore-Penrose pseudoinverse of A [3]. The Moore-Penrose pseudoin-

verse can be computed by means of a singular value decomposition

A = U

[
ΣA 0
0 0

]

V T ,

where U ∈ R
m,m and V ∈ R

n,n are orthogonal and ΣA ∈ R
a,a, a = rank(A), is a diagonal matrix

containing the nonzero singular values of A. Observe that

‖Ax− b‖2 = ‖UAV T V x− UT b‖2 =

∥
∥
∥
∥

[
ΣA 0
0 0

] [
V T

1 x
V T

2 x

]

−
[

UT
1 b

UT
2 b

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
ΣAV T

1 x− UT
1 b

UT
2 b

]∥
∥
∥
∥

2

is minimized for V T
1 x = Σ−1

A UT
1 b and

‖x‖2 = ‖V T x‖2 =

∥
∥
∥
∥

[
V T

1 x
V T

2 x

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
Σ−1

A UT
1 b

V T
2 x

]∥
∥
∥
∥

2

is minimal for

x =
[
V1 V2

]
[

Σ−1
A UT

1 b
0

]

= V1Σ
−1
A UT

1 b.

Therefore, we obtain

A+ = V1Σ
−1
A UT

1 = V

[
Σ−1

A 0
0 0

]

UT .(2.4)

Here, V = [U1 U2] and U = [V1 V2] are partitioned according to the above block structure, i.e.,
U1 ∈ R

m,a and V1 ∈ R
n,a.

The Moore-Penrose pseudoinverse satisfies the four Moore-Penrose axioms

(1) AA+A = A,
(2) A+AA+ = A+,
(3) (AA+)T = AA+,
(4) (A+A)T = A+A.

(2.5)
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On the other hand, for given A ∈ R
m,n, the four axioms (2.5) fix a unique matrix A+ ∈ R

n,m,
see [7], which can be computed via the formula (2.4).

If, for a given matrix A ∈ R
m,n, a matrix A− ∈ R

n,m satisfies only some of the Moore-Penrose
axioms it is also called a generalized inverse of A. If, e.g., A− satisfies the Moore-Penrose axioms
(1), (2) and (3) it is called a (1,2,3)-inverse of A. Analogously, one can define (1,2,4)-inverses
or (1,2)-inverses of a given matrix. Of course, in general, these generalized inverses are not
uniquely defined [7].

Another way to interpret the definition of the Moore-Penrose pseudoinverse in the context
of linear operators is to consider the homomorphism A : R

n → R
m induced by the matrix A.

There exists a linear mapping which maps a vector b ∈ R
m onto the unique solution x ∈ R

n

of the minimization problem (2.3). The matrix representation of this mapping is given by the
matrix A+.

2.2.1 The Moore-Penrose pseudoinverse for matrix functions

This well-known theory can be easily generalized to the case of matrix functions between spaces
of smooth functions. To see this, let us consider an equation of the form

A(t)x(t) = f(t), t ∈ I(2.6)

with A ∈ C l(I, Rm,n), f ∈ C l(I, Rm), l ∈ N0, on some interval I, along with the minimization
problem

1

2
‖x‖2 = min! s.t.

1

2
‖Ax− f‖2 = min!(2.7)

with respect to the norm

‖x‖2 =
√

(x, x), (x, y) =

∫

I

x(t)T y(t)dt.

Provided that the conditions of Theorem 3 hold, we will see in Lemma 16 below that the time-
variant orthogonal decomposition (1.11) of A implies the existence of a unique solution of (2.7).
In this case, a pseudoinverse operator can be computed similarly as for linear systems, see (2.4).
We will now set up the appropriate spaces and reformulate the Moore-Penrose axioms for this
problem, using basic tools from functional analysis [22].

Definition 12 Let X be a vector space with an inner product (·, ·) and let A : X → X be an
endomorphism. An endomorphism A∗ : X→ X is called a conjugate of A if and only if

(Ax, x∗) = (x,A∗x∗)

for all x, x∗ ∈ X.

In the setting of Definition 12, a conjugate is always unique and there exists the following rule
for the conjugate of a product of endomorphisms.

Lemma 13 Let X be a vector space with an inner product (·, ·) and let A : X → X be an
endomorphism. There is at most one endomorphism A∗ : X→ X conjugate to A.

Let the endomorphisms A∗, B∗ : X → X be conjugate to the endomorphisms A,B : X → X.
Then AB has the conjugate (AB)∗ given by

(AB)∗ = B∗A∗.
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Proof. See, e.g., [22].

Now we are able to define a Moore-Penrose pseudoinverse of a linear operator between vector
spaces.

Definition 14 Let X and Y be two vector spaces with an inner product (·, ·) and let D : X→ Y

be a homomorphism. A homomorphism D+ : Y → X is called a Moore-Penrose pseudoinverse
of D if DD+ and D+D possess conjugates (DD+)∗ and (D+D)∗, and the relations

(1) DD+D = D,
(2) D+DD+ = D+,
(3) (DD+)∗ = DD+,
(4) (D+D)∗ = D+D

(2.8)

hold.

As for linear systems, it will be shown in the following lemma that the four axioms of Definition 14
guarantee the uniqueness of the Moore-Penrose pseudoinverse. In general, the existence of such
an inverse cannot be shown, but in the case of matrix functions A ∈ C l(I, Rn,m) the function
A+ defined via the smooth orthogonal decomposition (1.11) satisfies these four axioms.

Lemma 15 Let X and Y be two vector spaces with an inner product (·, ·) and D : X → Y be a
homomorphism. Then D has at most one Moore-Penrose pseudoinverse D+ : Y→ X.

Proof. For completeness, let us recall the proof given in [28]. Let D+, D̃+ : Y → X be two
Moore-Penrose pseudoinverses of D. Then we have

D+ = D+DD+ = D+DD̃+DD+ = (D+D)∗(D̃+D)∗D+

= (D̃+DD+D)∗D+ = (D̃+D)∗D+ = D̃+DD+ = D̃+(DD+)∗

= D̃+(DD̃+DD+)∗ = D̃+(DD+)∗(DD̃+)∗ = D̃+DD+DD̃+ = D̃+DD̃+ = D̃+.

The following lemma shows that the Moore-Penrose pseudoinverse of a matrix function A
can be defined and computed analogously to the case of systems of linear equations provided
that the rank of A(t) is constant for all t.

Lemma 16 Let A ∈ C l(I, Rm,n) be a matrix function with rank(A(t)) = a for all t ∈ I. Then the
minimization problem (2.7) possesses a unique solution x ∈ C l(I, Rn) for every inhomogeneity
f ∈ C l(I, Rm). The matrix function A+ ∈ C l(I, Rn,m) that maps f by pointwise multiplication
onto this solution, i.e. x(t) = A+(t)f(t), is the Moore-Penrose pseudoinverse of A.

Proof. According to Theorem 3 there exist unitary matrix functions U ∈ C l(I, Rm,m) and
V ∈ C l(I, Rn,n) such that

A = U

[
ΣA 0
0 0

]

V T ,(2.9)

where ΣA ∈ C l(I, Ra,a) is point-wise nonsingular. We now define

Ã = UT AV =

[
ΣA 0
0 0

]

,

f̃ = UT f =

[
f1

f2

]

,

x̃ = V T x =

[
x1

x2

]

.
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The minimization problem

1

2
‖x̃‖2 =

∥
∥
∥
∥

[
x1

x2

]∥
∥
∥
∥

2

min! s.t.
1

2
‖Ãx̃− f̃‖2 =

∥
∥
∥
∥

[
ΣAx1 − f1

f2

]∥
∥
∥
∥

2

= min!

has the unique solution

x̃ =

[
Σ−1

A f1

0

]

=

[
Σ−1

A 0
0 0

]

f̃ .

Moreover, the matrix function

Ã+ =

[
Σ−1

A 0
0 0

]

satisfies, together with Ã, the four Moore-Penrose axioms and thus is the Moore-Penrose pseu-
doinverse of Ã. Because of

‖x‖ = ‖V T x‖ = ‖x̃‖, ‖Ax− f‖ = ‖UT AV V T x− UT f‖ = ‖Ãx̃− f̃‖,

the minimization problem (2.7) transforms covariantly with the transformations U and V and

A+ = V Ã+UT

is the Moore-Penrose pseudoinverse of A. This can be easily verified by inserting A and A+ in
the equations (2.8). The unique solution of the minimization problem (2.7) is given by x = A+f .

We can now compute the least squares solution and the Moore-Penrose pseudoinverse for
Example 1 following the lines of the proof of Lemma 16.

Example 9 ([28]) The strangeness free DAE (1.24) derived from system (1.4) can be written
in the form A(t)x(t) = f(t), where

A(t) =

[
1 −t
0 0

]

, f(t) =

[
f1(t)− tf2(t)

ḟ1(t)− tḟ2(t)

]

.

We have A = ÃV T with

Ã =

[√
1 + t2 0
0 0

]

, V =
1√

1 + t2

[
1 t
−t 1

]

.

Then the Moore-Penrose pseudoinverse of A is given by

A+ = V Ã+ = V

[
1√

1+t2
0

0 0

]

=
1

1 + t2

[
1 0
−t 0

]

and for the solution of the minimization problem (2.7) we get

x = A+f =
1

1 + t2

[
f1(t)− tf2(t)
−tf1(t) + t2f2(t)

]

.

♦
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2.2.2 The Moore-Penrose pseudoinverse for differential-algebraic operators

The (algebraic) equation (2.6) can be interpreted as a special case of a differential-algebraic
equation with d̂ = 0 (for the definition of d̂, see Theorem 10). So the question arises naturally,
if least squares or similarly generalized solutions can also be defined for general DAEs. For this
purpose, we introduce linear differential-algebraic operators (DAOs) and appropriate spaces.

Let us first assume that the DAE is strangeness free and that it is given in the orthogonal
standard form (2.1). This enables us to detect the differential components x1 of the solution
x̃ = QT x. Only these components of the solution have to be differentiable and only for these
components we can provide an initial condition. We must require that the DAE has the trivial
solution for f̃ ≡ 0 in the uniquely solvable case. Otherwise a mapping that maps f̃ onto the
solution of (2.1) cannot be linear. Therefore, we only allow for initial values x̃(t0) = x̃0 = 0.
This can always be obtained by shifting x̃(t) to x̃(t)− x̃0 and changing the inhomogeneity f̃(t) to
f̃(t) + Ã(t)x̃0. (Of course, this can be done for any DAE, which is not necessarily in orthogonal
standard form.)

In the following, we assume that the pair (Ẽ, Ã) is in orthogonal standard form. We set

X̃ = {x̃ ∈ C([t0, T ], Rn)|x1 ∈ C1([t0, T ], R), x1(t0) = 0},(2.10)

Ỹ = C([t0, T ], Rm),(2.11)

where x̃ is partitioned as in (2.2). Moreover, let us define a differential-algebraic operator
D̃ : X̃→ Ỹ by

D̃x̃(t) = Ẽ(t) ˙̃x(t)− Ã(t)x̃(t).(2.12)

This operator allows to rewrite the DAE (2.1) in the compact form

D̃x̃ = f̃ .

Having defined differential-algebraic operators for DAEs in orthogonal standard form, we can
easily generalize this concept for general strangeness free DAEs by setting

D = P T D̃QT ,(2.13)

where the product P T D̃QT should be understood point-wise and the operators P,Q represent
the transformations to orthogonal standard form. Then we obtain

Dx(t) = P (t)T D̃Q(t)x(t)

= P (t)T D̃x̃(t)

= P (t)T Ẽ(t) ˙̃x(t)− P (t)T Ã(t)x̃(t)

= P (t)T P (t)E(t)Q(t)
(

Q̇(t)T x(t) + Q(t)T ẋ(t)
)

−P (t)T
(

P (t)A(t)Q(t)Q(t)Tx(t)− P (t)E(t)Q̇(t)QT (t)x(t)
)

= E(t)ẋ(t)− A(t)x(t) + E(t)
(

Q(t)Q̇(t)T + Q̇(t)T Q(t)
)

x(t)

= E(t)ẋ(t)− A(t)x(t),

using the identity

Q(t)Q̇(t)T + Q̇(t)Q(t)T =
d

dt

(
Q(t)Q(t)T

)
=

d

dt
I = 0.
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The spaces where the operator D acts upon can also be transformed, which gives D : X → Y

with

X = {x ∈ C([t0, T ], Rn)|E+Ex ∈ C1([t0, T ], Rn), E+Ex(t0) = 0},
Y = C([t0, T ], Rm).

Here, the operator

E+E = Q





Σ−1
E 0 0
0 0 0
0 0 0



PP T





ΣE 0 0
0 0 0
0 0 0



QT = Q





I
d̂

0 0
0 0 0
0 0 0



QT

is a projector onto the differential component of x = Qx̃.

Summarizing the discussion, we are able to rewrite any strangeness free linear DAE (1.1) in
the form

Dx = f.

Our aim is to show that the minimization problem

1

2
‖x‖2 = min! s.t.

1

2
‖Dx− f‖2 = min!(2.14)

possesses a unique solution and that this solution induces an operator D+ : Y → X, which
satisfies the four Moore-Penrose axioms and is therefore a Moore-Penrose pseudoinverse of the
differential-algebraic operator D.

First, we will show this result for the operator D̃ defined for DAEs in orthogonal stan-
dard form. The subsequent extension of this result to general linear DAEs will then be rather
straightforward.

The minimization problem

1

2
‖x̃‖2 = min! s.t.

1

2
‖D̃x̃− f̃‖2 = min!(2.15)

can be written in explicit form as

1

2

∫ T

t0

x̃(t)T x̃(t)dt = min!

s.t.
1

2

∫ T

t0

(
w1(t)

T w1(t) + w2(t)
T w2(t) + w3(t)

T w3(t)
)
dt = min!,

(2.16)

where

w1(t) = ΣE(t)ẋ1(t)− A11(t)x1(t)−A12(t)x2(t)−A13(t)x3(t)− f1(t),(2.17)

w2(t) = −A21(t)x1(t)− ΣA(t)x2(t)− f2(t),(2.18)

w3(t) = −f3(t).(2.19)

The constraint can easily be satisfied, because we can solve the system w1 = 0, w2 = 0 in X̃

for an arbitrary continuous function x3. For this purpose we eliminate the function x2 in (2.17)
using

x2(t) = −ΣA(t)−1 (A21(t)x1(t) + f2(t)) .(2.20)
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Next, we solve the initial value problem

ẋ1(t) = ΣE(t)−1
(
A11(t)− A12(t)ΣA(t)−1A21(t)

)
x1(t)

+ΣE(t)−1A13(t)x3(t) + ΣE(t)−1
(
f1(t)−A12(t)ΣA(t)−1f2(t)

)
, x1(t0) = 0,

and compute x2 according to (2.20).

The problem (2.16) turns out to be a linear quadratic optimal control problem [21, 35]. If
we set

A(t) = ΣE(t)−1
(
A11(t)−A12(t)ΣA(t)−1A21(t)

)
,

B(t) = ΣE(t)−1A13(t),

C(t) = −ΣA(t)−1A21(t),

f(t) = ΣE(t)−1
(
f1(t)−A12(t)ΣA(t)−1f2(t)

)
,

g(t) = −ΣA(t)−1f2(t),

(2.21)

and rename the components of x̃ by setting x = x1, y = x2 and u = x3, the problem (2.15)
turns into

1

2

∫ T

t0

(
x(t)T x(t) + y(t)T y(t) + u(t)T u(t)

)
dt = min!

s.t.
ẋ(t) = A(t)x(t) + B(t)u(t) + f(t), x(t0) = 0,
y(t) = C(t)x(t) + g(t).

(2.22)

Hence the undetermined part x3 of the variable x̃ can be interpreted as the input variable of
this control problem. The problem (2.22) is a generalization of the standard linear quadratic
control problems due to the inhomogeneities that appear in the constraints. As for standard
control problems, it can be shown that (2.22) possesses a unique solution.

Theorem 17 Let

A ∈ C([t0, T ], Rd̂,d̂), B ∈ C([t0, T ], Rd̂,û), C ∈ C([t0, T ], Râ,d̂),

f ∈ C([t0, T ], Rd̂), g ∈ C([t0, T ], Râ).

Then the linear quadratic control problem (2.22) possesses a unique solution x ∈ C1([t0, T ], Rd̂),
y ∈ C([t0, T ], Râ), u ∈ C([t0, T ], Rû). This solution coincides with the corresponding part of the
unique solution of the boundary value problem

λ̇(t) = (I + C(t)T C(t))x(t)− A(t)T λ(t) + C(t)T g(t), λ(T ) = 0,
ẋ(t) = A(t)x(t) + B(t)u(t) + f(t), x(t0) = 0,
y(t) = C(t)x(t) + g(t),
u(t) = B(t)T λ(t),

(2.23)

which can be obtained by the successive solution of the initial value problems

Ṗ (t) = I + C(t)T C(t)− P (t)A(t)− A(t)T P (t)− P (t)B(t)B(t)TP (t), P (T ) = 0,
v̇(t) = C(t)T g(t)− P (t)f(t)− A(t)T v(t)− P (t)B(t)B(t)Tv(t), v(T ) = 0,
ẋ(t) = A(t)x(t) + B(t)B(t)T (P (t)x(t) + v(t)) + f(t), x(t0) = 0,
λ(t) = P (t)x(t) + v(t),
y(t) = C(t)x(t) + g(t),
u(t) = B(t)T λ(t).

(2.24)
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Proof. See [28].

The unique solvability of the problem (2.22) obviously implies that the minimization problem
(2.15) has the unique solution x̃ = (x1, x2, x3) = (x, y, u). This enables us to define an operator
D̃+ that maps the inhomogeneity f̃ onto this solution:

D̃+ : Ỹ→ X̃, D̃+ : f̃ 7→ x̃,(2.25)

see (2.10)–(2.11) for the definition of X̃ and Ỹ. It is easy to see that this operator is linear because
the Riccati differential equation in (2.24) does not depend on the inhomogeneities. The image
of D̃+ lies in X̃ because the state variable x in (2.22) and therefore the differential component
x1 of x̃ is continuously differentiable.

Finally, it can be shown that the operator D̃+, together with the differential-algebraic opera-
tor D̃, satisfies the four Moore-Penrose axioms and hence D̃+ is the Moore-Penrose pseudoinverse
of D̃.

Theorem 18 The operator D̃+, defined as in (2.25), is the Moore-Penrose pseudoinverse of
the operator D̃ defined in (2.12), i.e., the endomorphisms D̃D̃+ and D̃+D̃ have conjugates such
that (2.8) holds for D̃ and D̃+.

Proof. See [28].

Having shown the existence and uniqueness of the Moore-Penrose pseudoinverse of a differen-
tial-algebraic equation in orthogonal standard form, we can now generalize this result to strange-
ness free linear DAEs. Remember that the differential-algebraic operator D was defined indi-
rectly via the standard form (2.1) by (2.13). Because of

‖x‖ = ‖QT x‖ = ‖x̃‖, ‖Dx− f‖ = ‖P (P T D̃QT x− f)‖ = ‖D̃x̃− f̃‖,

the minimization problem (2.14) transforms covariantly with the application of the transforma-
tions P and Q. Thus for a general DAE we can first compute the orthogonal standard form
along with the operators P and Q and solve the minimization problem (2.15). Having found the
Moore-Penrose pseudoinverse D̃+ of D̃, the Moore-Penrose pseudoinverse D+ of D is given by

D+ = QD̃+P.

In this way we have found the Moore-Penrose pseudoinverse of a differential-algebraic operator
that generalizes the Moore-Penrose pseudoinverses of matrices in a canonical way; it is defined
via a similar minimization problem.

In the special case E ≡ 0, the problem (2.14) reduces to the algebraic minimization problem

‖x‖ = min! s.t.
1

2
‖Ax + f‖2 = min!

and we get D+ = −A+, where A+ is defined as in Lemma 15. Moreover, the transformation of a
DAE to orthogonal standard form corresponds to the application of the smooth decomposition
(2.9) that was necessary to compute the solution of the minimization problem (2.7) in the proof
of Lemma 15.

2.3 (1,2,3)-inverses

There are other ways to generalize the theory of Moore-Penrose pseudoinverses to linear DAEs.
The computation of the solution x = D+f requires the solution of the boundary value problem
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(2.23). Furthermore, no arbitrary initial values can be prescribed for the undetermined part of
the solution (the component x3 in the orthogonal normal form).

A possible approach to circumvent this problem is to relax the Moore-Penrose theory and
fix a unique solution of (1.1). If the system can be transformed to the orthogonal standard form
this can be done very easily by setting x3 ≡ 0 and then solving the problem

[
ΣE(t) 0

0 0

]

˙̃x(t) =

[
A11(t) A12(t)
A21(t) ΣA(t)

]

x̃(t) +

[
f1(t)
f2(t)

]

, x1(t0) = 0,(2.26)

which is uniquely solvable. For a general strangeness free linear DAE we can write down this
approach in terms of a minimization problem using the matrix function

Π(t) = E(t)+E(t) + F (t)+F (t),

with

F (t) = (I − E(t)E(t)+)A(t)(I −E(t)+E(t)).

The function Π has the following properties. For a system in orthogonal standard form we have

Ẽ(t)+ =





ΣE(t)−1 0 0
0 0 0
0 0 0





and thus

F̃ (t) = (I − Ẽ(t)Ẽ(t)+)Ã(t)(I − Ẽ(t)+Ẽ(t))

=





0
I

I









A11(t) A12(t) A13(t)
A21(t) ΣA(t) 0

0 0 0









0
I

I





=





0
ΣA(t)

0



 .

Therefore

Π̃(t) = Ẽ(t)+Ẽ(t) + F̃ (t)+F̃ (t) =





I
I

0





is an orthogonal projector onto the components x1 and x2 of x̃. In addition we get (omitting
the argument t):

F̃ = (I − ẼẼ+)Ã(I − Ẽ+Ẽ)

= (I − PEQQT E+P T )(PAQ− PEQ̇)(I −QT E+P T PEQ)

= P (I − EE+)(A− EQ̇QT )(I − E+E)Q

= P (I − EE+)A(I −E+E)Q− P (E − EE+E)Q̇QT (I − E+E)Q

= PFQ.

This shows that F is similarly transformed as E with respect to the transformations P and Q.
Hence,

Π̃(t) = Ẽ(t)+Ẽ(t) + F̃ (t)+F̃ (t)

= Q(t)T E(t)+P (t)T P (t)E(t)Q(t) + Q(t)T F (t)+P (t)T P (t)F (t)Q(t)

= Q(t)T (E(t)+E(t) + F (t)+F (t))Q(t)

= Q(t)T ΠQ(t).
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It follows that Π is also an orthogonal projector and the minimization problem

1

2
‖(I − Π)x‖2 = min! s.t.

1

2
‖Dx− f‖2 = min!(2.27)

transforms covariantly with the application of P and Q. Thus, the minimization problem (2.27)
possesses a unique solution and this solution induces a (linear) operator D− : Y → X. The
following theorem shows that D− is a (1,2,3)-inverse of the differential-algebraic operator D.

Theorem 19 The operator D− defined as the solution operator of (2.27) is a (1,2,3)-inverse
of D, i.e., the endomorphism DD− has a conjugate such that (2.8 a,b,c) hold for D and D−.

Proof. For the sake of completeness, we provide a detailed proof of this result, which can also
be found in [28].

First we show this result for a DAE in orthogonal standard form. The solution x̃ = D̃−f̃ of
the minimization problem

1

2
‖(I − Π̃)x‖2 = min! s.t.

1

2
‖D̃x̃− f̃‖2 = min!(2.28)

satisfies (2.26) and we have x3 = 0. If we set f̂ = D̃D̃−f̃ and partition f̂ = (f̂1, f̂2, f̂3) according
to the block structure of f̃ , we get

f̂1(t) = ΣE(t)ẋ1(t)− A11(t)x1(t)− A12(t)x2(t)− A13(t) = f̃1(t),

f̂2(t) = −A21(t)x1(t)− ΣA(t)x2(t) = f̃2(t),

f̂3(t) = 0,

after inserting this solution. Thus the operator D̃D̃− : Y→ Y can be written as

D̃D̃− =





I
I

0



 .

This operator is obviously self-conjugate. Furthermore, we get D̃D̃−D̃ = D̃ because D̃ has a
vanishing third component, as well as D̃−D̃D̃− = D̃− because f3 does not have any influence
on the solution of (2.27).

Since the problem transforms covariantly if we apply the orthogonal transformations P and
Q, the operator D− = QD̃−P maps onto the solution of (2.27). It then satisfies the axioms
(2.8) (a)–(c).

If we again consider the special case of a DAE with E ≡ 0, then the solution of (2.27)
coincides with the solution of the minimization problem (2.7) for the algebraic system (2.6) and
we get D− = D+ = −A+. Thus the (1,2,3)-inverse D− also generalizes the Moore-Penrose
pseudoinverse of matrices.

The numerical computation of the generalized solutions that we have defined in this section
can be carried out easily if the DAEs are given in orthogonal standard form or if the necessary
transformations P and Q (and the derivative Q̇) are known. For the computation of the solution
x = D−f a uniquely solvable DAE has to be solved and the computation of x = D+f requires
the solution of a boundary value problem.

But as already stated, the orthogonal standard form and in particular the necessary orthog-
onal transformations from the right are generally difficult to compute numerically. In the next
chapters we will present possibilities to approximate these generalized solutions without any
knowledge of these transformations.
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Chapter 3

Numerical Determination of
Generalized Solutions

In this chapter, we consider the numerical computation of generalized solutions of DAEs.
Throughout this chapter, we will assume that the DAE is strangeness free; this choice is mo-
tivated by the results of the preceding chapters. Two methods will be presented, both based
on time discretizations via BDF-methods [8, 20]. This class of methods has favourable stability
properties [20] and has proved its robustness as well as reliability for solving DAEs in software
packages such as DASSL [37], ODASSL [11, 12], and GELDA [33]. Moreover, the considerable
simplicity of BDF-methods makes them particularly suitable for our purposes.

The two methods presented here allow to approximate numerically the solutions associated
with the Moore-Penrose inverse and a (1,2,3)-inverse of differential-algebraic operators without
involving any transformation of the solution space.

3.1 BDF-methods and discretization operators

BDF-methods are implicit k-step methods for the numerical solution of ordinary differential
equations of the form

ẋ(t) = f(t, x), t ∈ [t0, T ],(3.1)

with an initial condition

x(t0) = x0.(3.2)

They are defined by setting

k∑

l=0

αlxi−k+l = hf(ti, xi),

where h = (T − t0)/N with N ∈ N is a fixed step size, ti = (t0 + ih) are the corresponding
grid points in the time interval, and xl, l = i − k, . . . , i − 1, denote numerical approximations
to the solution of (3.1,3.2) at these grid points. The coefficients αl, l = 0, . . . , k, are defined
such that the method has the highest attainable order of convergence. Table 3.1 shows these
coefficients for different values of k. BDF-methods are stable for k ≤ 6 and unstable for k > 6
(see, e.g., [20]). They are consistent of order p = k and thus convergent of order p = k for k ≤ 6.

In Chapter 1, we have seen that the implicit Euler method, i.e., the BDF-method for k = 1,
can lead to misleading results if applied to general DAEs. However, if we discretize uniquely

31
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αl l = k l = k − 1 l = k − 2 l = k − 3 l = k − 4 l = k − 5 l = k − 6

k = 1 1 −1

k = 2 3
2 −2 1

2

k = 3 11
6 −3 3

2 −1
3

k = 4 25
12 −4 3 −4

3
1
4

k = 5 137
60 −5 5 −10

3
5
4 −1

5

k = 6 147
60 −6 15

2 −20
3

15
4 −6

5
1
6

Table 3.1: Coefficients for BDF-methods.

solvable strangeness free DAEs with BDF-methods, then we get the same convergence result
as for ODEs, see Theorem 20 below. This discretization is computed as in the case of ODEs
by replacing ẋ with the sum 1

h

∑k
l=0 αlxi−k+l, such that, for given initial data xi−k, . . . xi−1, we

have to solve the systems

1

h
E(ti)

k∑

l=0

αlxi−k+l = A(ti)xi + f(ti)(3.3)

successively for xi, i = k, . . . , N .

Theorem 20 ([4]) Let (1.1) be a strangeness free DAE with E, A and f sufficiently smooth.
Let (1.1) together with (1.2) possess the unique solution x ∈ C1([t0, T ], Rn). Furthermore, let
x0, . . . , xk−1 be given with

x(ti)− xi = O(hp) for h→ 0,

i = 0, . . . , k − 1. Define the sequence (xi) for i ≥ k by solving the systems (3.3). Then we get

x(T ;h)− x(T ) = O(hp) for h→ 0.

Here, x(T ;h) denotes the approximation x(T ;h) = xN to x(T ) computed with the step size h =
(T − t0)/N .

We now establish an alternative notation for the discretization of a linear DAE with BDF-
methods using a fixed step size h = (T − t0)/N . First, we introduce the restriction operator
RXh

as the restriction of a function z to its values at the grid points ti = t0 + ih, i = k, . . . , N ,
in the finite dimensional space Xh = R

Nkn, Nk = N − k + 1, i.e.,

RXh
z =






z(tk)
...

z(tN )




 .(3.4)

Note that we have used the subscript Xh to emphasize the facts that RXh
will be used to discretize

the solution space and that the action of the operator depends on the chosen step size (it also
depends on the order of the BDF-method and t0, which, however, will be assumed to be fixed).
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We also define a discretization operator RYh
, which maps a function f into the space Yh =

R
Nkm and is defined by

RYh
f =













f(tk)− 1
h

∑k−1
l=0 αlE(tk)xl

...
f(t2k−1)− 1

h
α0E(t2k−1)xk−1

f(t2k)
...

f(tN)













.(3.5)

Note that the operator RYh
, in contrast to RXh

, includes additional information about the
initial values x0, . . . , xk−1. Apart from the step size h, we assume all other variables on which
the definition of RYh

depends to be constant.
Setting gh := RYh

f , we can merge the systems (3.3) into one big linear system

Dhxh = gh,(3.6)

where xh ∈ Xh is given by

xh =






xk

...
xN




 ,

and the linear operator Dh : Xh → Yh is defined as follows. Each of its blocks [Dh]ij , i, j =
k, . . . , N , is given by

[Dh]ij =







1
h
αk+j−iE(ti) for i− k ≤ j < i,

1
h
αkE(ti)− A(ti) for j = i,

0 otherwise.

If the corresponding initial value problem (1.1) with (1.2) possesses a unique solution x ∈ X,
then the matrix Dh is nonsingular for sufficiently small step sizes h and the solution xh = D−1

h gh

of (3.6) contains the approximations xi, i = k, . . . , N , to x at the grid points ti.
With this notation we can now reformulate Theorem 20.

Remark 21 Let the assumptions of Theorem 20 be satisfied. Then for the solution xh = D−1
h gh

of (3.6) we get

‖xh −RXh
x‖∞ ≤ Chp for h→ 0,

where the constant C > 0 does not depend on h.

3.2 Local Minimization

In Section 2.3, we have defined a (1,2,3)-inverse D− of a differential-algebraic operator D. The
corresponding generalized solution x = D−f of the strangeness free DAE (1.1) is uniquely
defined by the minimization problem (2.27).

This solution can be easily computed analytically and numerically if the DAE is given in
orthogonal standard form or if the necessary orthogonal transformations P and Q as defined in
Theorem 11 are known. In this case, the system can be assumed to be in orthogonal standard
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form and the undetermined component x3 of x̃ = QT x can be set to zero. The solvability
condition f3 = 0 does not have any influence on the generalized solution and the remaining
DAE

ΣE(t)ẋ1(t) = A11(t)x1(t) + A12(t)x2(t) + f1(t),
0 = A21(t)x1(t) + ΣA(t)x2(t) + f2(t)

(3.7)

possesses a unique solution. This system can be discretized directly with a BDF-method as
shown in the previous section.

One can also solve (3.7) by first solving the ordinary differential equation

ẋ1(t) = ΣE(t)−1
(
A11(t)−A12(t)ΣA(t)−1A21(t)

)
x1(t)

+ΣE(t)−1
(
f1(t)− ΣA(t)−1f2(t)

)(3.8)

by an appropriate method and then compute the algebraic component of the solution by

x2 = −ΣA(t)−1 (A21(t)x1(t) + f2(t)) .

The solution of (3.7) is then given by

x = Qx̃ = Q





x1

x2

0



 .

Let us emphasize again that both approaches require the undetermined components of the
solution and consequently the transformations P and Q to be known. However, since these
quantities are usually not known in advance in realistic applications, we have to find other ways
to approximate the generalized solution.

Discretizing the strangeness free DAE (1.1) directly with a k-step BDF method using a fixed
step size h = (T − t0)/N leads to N − k + 1 systems of the form

1

h
Ei

k∑

l=0

αlxi−k+l = Aixi + fi(3.9)

for i = k, . . . , N . Here Ei, Ai and fi denote the values of E, A and f at the grid points
ti = t0 + ih. It must be assumed that sufficiently good initial approximations x0, . . . , xk−1 to
the generalized solution x = D−f at the grid points t0, . . . , tk−1 are provided. The systems in
(3.9) can be written as

(αk

h
Ei − Ai

)

xi = −1

h

k−1∑

l=0

αlEixi−k+l + fi(3.10)

and have to be solved with respect to xi. Since our focus is on over- or underdetermined DAEs,
the matrices

(
αk

h
Ei − Ai

)
are likely to be rank deficient. As in (3.6), the discretization (3.10)

can be written in terms of the large linear system

Dhxh = gh(3.11)

where the blocks [Dh]ij ∈ R
m,n, i, j = k, . . . , N of the matrix Dh are defined as

[Dh]ij =







1

h
αk+j−iEi for i− k ≤ j < i,

1

h
αkEi − Ai for j = i,

0 otherwise.

(3.12)
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and the right-hand side gh = RYh
f with RYh

as in (3.5) contains values of the inhomogeneity f
at the grid points as well as the initial values x0, . . . , xk−1. The vector

xh =






xk

...
xN






contains the solutions xi of (3.9), provided that these systems are solvable.

If the systems (3.9) are not solvable, then we can compute solutions in a least squares sense,
i.e., we solve the N − k + 1 minimization problems

1

2
‖xi‖22 = min! s.t.

1

2

∥
∥
∥
∥
∥

1

h
Ei

k∑

l=0

αlxi−k+l − Ai − fi

∥
∥
∥
∥
∥

2

2

= min!(3.13)

successively for i = k, . . . , N . The corresponding solutions xi can then be written in the form

xi =
(αk

h
Ei − Ai

)+
(

−1

h

k−1∑

l=0

αlEixi−k+l + fi

)

,(3.14)

where
(

αk

h
Ei − Ai

)+
denotes the Moore-Penrose pseudoinverse of the matrix αk

h
Ei −Ai.

The rest of this section is concerned with showing that the solutions xi in (3.14) are
approximations to the generalized solution x = D−f at the grid points ti.

Synopsis of proof Before we go into the technical details to prove the main result, let us
provide a brief synopsis of the proof.

Step 1: Starting from (3.14), we use the transformation matrices of the DAE to orthogonal
standard form to get the reformulated equations (3.16). Multiplying by an appropriate
regular factor from the left gives (3.23). Writing these reformulations in terms of the
enlarged system as in (3.6) yields the system Ďhxh = ǧh in (3.32), which has the same
solution as (3.11).

Step 2: On the other side, we consider the orthogonal standard form of the DAE and derive
a slightly modified DAE, which has as its unique solution the (1, 2, 3)-solution D̃−1f̃ as
defined in (2.28). Then we map the transformed solution space back to the original solution
space and obtain (3.27). This equation is discretized, see (3.28), and written as the enlarged
system D̂hx̂h = ĝh in (3.35).

Step 3: Lemma 25 shows that the coefficient matrices Ďh and D̂h as well as the right-hand
sides ǧh and ĝh differ at most by O(h). Combined with the boundedness of D̂−1

h , this fact
is used in Theorem 26 to conclude the proof.

Remark: Let us emphasize that all the transformations are performed solely for theoretical
purposes; our numerical method will directly employ the unmodified discretized equa-
tions (3.14).

♦
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Step 1

Since the DAE is strangeness free, we know that there exist orthogonal transformations P and Q
such that Ẽ = PEQ and Ã = PAQ−PEQ̇ have the structure given in Theorem 11. Therefore,
we have

αk

h
Ei − Ai = P T

i (
αk

h
PiEiQi − PiAiQi)Q

T
i

= P T
i (

αk

h
Ẽi − (Ãi + PiEiQ̇i))Q

T
i

= P T
i (

αk

h
Ẽi − Ãi − ẼiQ

T
i Q̇i)Q

T
i

= P T
i (

αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi)Q

T
i .

(3.15)

Again, the index i denotes the evaluation of the corresponding matrix function at t = ti. The
last identity follows from

0 = İ =
d

dt
(QT Q) = Q̇T Q + QT Q̇.

Because of the term ẼiQ̇
T
i Qi, Equation (3.15) shows that the discretization used here does not

transform covariantly with the application of the transformation Q.
Using (3.15), we can rewrite (3.14) as

xi =
(αk

h
Ei − Ai

)+
(

−1

h

k−1∑

l=0

αlEixi−k+l + fi

)

=
(

P T
i (

αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi)Q

T
i

)+
(

−1

h

k−1∑

l=0

αlEixi−k+l + fi

)

= Qi

(αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi

)+
Pi

(

−1

h

k−1∑

l=0

αlEixi−k+l + fi

)

= Qi

(αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi

)+
(

−1

h

k−1∑

l=0

αlẼiQ
T
i xi−k+l + f̃i

)

.

(3.16)

The matrix αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi has the structure

αk

h
Ẽi − Ãi + ẼiQ̇

T
i Qi =

[
Ri Si

0 0

]

,(3.17)

where

Ri =

[
αk

h
ΣEi
− A11i

+ ΣEi
Q̂1i
−A12i

+ ΣEi
Q̂2i

−A21i
−ΣAi

]

∈ R
d̂+â,d̂+â(3.18)

is nonsingular for sufficiently small h and

Si =

[
−A13i

+ ΣEi
Q̂3i

0

]

∈ R
d̂+â,û.(3.19)

Here we use the notation

Q̂j := Q̇T
11Q1j + Q̇T

21Q2j + Q̇T
31Q3j ,(3.20)
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where Q̇ij and Qij denote the block (i, j) of Q̇ and Q, respectively, in accordance with the block
structure of the orthogonal standard form. Hence, Q̂j is the j-th block of Q̇T Q in the first block
row. Note that the perturbation induced by the derivative of Q only appears in the first block
rows of Ri and Si.

We will now use the following formula to compute the Moore-Penrose pseudoinverse.

Lemma 22 For a matrix

A =

[
R S
0 0

]

(3.21)

with a nonsingular block R, we have

A+ =

[ (
I − V W−1V T

)
R−1 0

W−1V T R−1 0

]

,(3.22)

with

V := R−1S, W := I + V T V.

Proof. For A and A+ as defined in (3.21) and (3.22) it follows that

AA+ =

[
R S
0 0

] [ (
I − V W−1V T

)
R−1 0

W−1V T R−1 0

]

=

[
R
(
I − V W−1V T

)
R−1 + SW−1V T R−1 0
0 0

]

=

[
I − SW−1V T R−1 + SW−1V T R−1 0

0 0

]

=

[
I 0
0 0

]

and this immediately shows that the first three Moore-Penrose axioms (2.5) (1)–(3) are satisfied.
For the matrix A+A we get

A+A =

[ (
I − V W−1V T

)
R−1 0

W−1V T R−1 0

] [
R S
0 0

]

=

[
I − V W−1V T

(
I − V W−1V T

)
V

W−1V T W−1V T V

]

.

The block I − V W−1V T is symmetric because W and thus W−1 are symmetric. It follows that

(
W−1V T V

)T
= V T V W−T = V T V W−1 =

(
I + V T V

)
W−1 −W−1

= W−1
(
I + V T V

)
−W−1 = W−1V T V.

Furthermore,

(
W−1V T

)T
= V W−1 = V

(
I − I + W−1

)
= V

(
I −W−1

(
I + V T V

)
+ W−1

)

= V
(
I −W−1V T V

)
=
(
I − V W−1V T

)
V.

This shows that A+A is symmetric and the fourth Moore-Penrose axiom (2.5) (4) is satisfied.
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From Lemma 22, it follows that

[
R S
0 I

] [
R S
0 0

]+

=

[
I 0

W−1V T R−1 0

]

.

Next, we turn Equation (3.16) for i = k, . . . , N into a linear system by multiplication from the
left with the regular matrix

[
Ri Si

0 Iû

]

QT
i ,

in order to obtain the system

[
Ri Si

0 Iû

]

QT
i xi =

[
Ri Si

0 Iû

] [
Ri Si

0 0

]+
(

−1

h

k−1∑

l=0

αlẼiQ
T
i xi−k+l + f̃i

)

=





I
d̂

0 0
0 Iâ 0
R1i
R2i

0







−1

h

k−1∑

l=0

αl





ΣEi
0 0

0 0 0
0 0 0



QT
i xi−k+l +





f1i

f2i

f3i









= −1

h

k−1∑

l=0

αl





ΣEi
0 0

0 0 0
R1i

ΣEi
0 0



QT
i xi−k+l +





f1i

f2i

R1i
f1i

+R2i
f2i



,

(3.23)

where for

Vi = R−1
i Si, Wi = I + V T

i Vi,(3.24)

the matrix

W−1
i V T

i R−1
i =: [R1i

R2i
](3.25)

is partitioned according to the block structure in the orthogonal standard form.

Step 2

Let us consider the system (3.7) together with the condition x3 ≡ 0 and write this uniquely
solvable DAE as

Ē(t) ˙̄x(t) = Ā(t)x̄(t) + f̄(t),(3.26)

with

Ē(t) =





ΣE(t) 0 0
0 0 0
0 0 0



 ∈ C(I, Rn,n),

Ā(t) =





A11(t) A12(t) A13(t)
A21(t) ΣA(t) 0

0 0 −Iû



 ∈ C(I, Rn,n),

f̄(t) =





f1(t)
f2(t)

0



 ∈ C(I, Rn).
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We then apply a change of basis with the matrix function Q to this system and obtain the new
DAE

Ê(t) ˙̂x(t) = Â(t)x̂(t) + f̂(t),(3.27)

where Ê = ĒQT , Â = ĀQT−ĒQ̇T and f̂ = f̄ . Since the systems (3.26) and (3.27) are equivalent
and uniquely solvable, we get the following equality:

x̂ = Qx̄ = Qx̃ = x,

where x̃ is the solution of the DAE in orthogonal standard form with x3 ≡ 0 and x is the
(1,2,3)-solution of the original DAE (1.1), i.e., x = D−f . Furthermore, a discretization of (3.27)
with a k-step BDF-method is convergent of order p = k, see Theorem 20. Performing this
discretization will give a reference discretization that can be compared with the systems (3.23)
in order to show that the solutions xi of (3.23) actually approximate the solution x̂ of (3.27).

BDF-methods applied to (3.27) lead to systems of the form

(αk

h
Êi − Âi

)

x̂i = −
k−1∑

l=0

αlÊix̂i−k+l + f̂i(3.28)

for i = k, . . . , N , which are uniquely solvable for sufficiently small step sizes h. Analogously to
(3.15) we get

αk

h
Êi − Âi =

(αk

h
Ēi − Āi + ĒiQ̇

T
i Qi

)

QT
i

=

[
Ri Si

0 Iû

]

QT
i ,

where Ri and Si are defined as in (3.18) and (3.19) and thus we can rewrite the systems (3.28)
in the form

[
Ri Si

0 Iû

]

QT
i x̂i = −1

h

k−1∑

l=0

αlĒiQ
T
i x̂i−k+l + f̄i

= −1

h

k−1∑

l=0

αl





ΣEi
0 0

0 0 0
0 0 0



QT
i x̂i−k+l +





f1i

f2i

0



 .

(3.29)

This system is the same as the final system (3.23) obtained in Step 1, apart from the third block
row, which does not vanish in (3.23).

Step 3

In the following we show that the systems (3.23) approximate the systems (3.29) by investigating
the third block row of (3.23) in more detail. For this purpose, we prove the following lemma,
which shows that the blocks R1i

and R2i
in (3.23) are sufficiently small.

Before, let us introduce the following definition for notational convenience.

Definition 23 Let A ∈ C([t0, T ], Rm,n) and 2 ≤ p ≤ ∞. Then the constant C‖A‖p
is defined as

C‖A‖p
= max

t∈[t0,T ]
{‖A(t)‖p, ‖A(t)T‖p}.
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Lemma 24 Let R1i
and R2i

be defined as in (3.24) and (3.25). Then there exist constants
C01, C02 ∈ R

+ such that

‖R1i
‖∞ ≤ C01h

2,

and

‖R2i
‖∞ ≤ C02h,

for sufficiently small h.

Proof. We introduce the constants

C11 = C‖−A11+ΣEQ̂1‖∞ ,

C12 = C‖−A12+ΣEQ̂2‖∞ ,

C13 = C‖−A13+ΣEQ̂3‖∞ ,

with Q̂j , j = 1, 2, 3, as defined in (3.20). We will first estimate the block columns of the matrix
R−1

i according to the given block structure. If we denote the blocks in the upper block row of
the matrix Ri (omitting the index i) as

R11 =
αk

h
ΣE −A11 + ΣEQ̂1,

R12 = −A12 + ΣEQ̂2,

we see that the matrix R11 is nonsingular for sufficiently small h and we can compute the inverse
of R using the block LU decomposition

R =

[
R11 R12

−A21 −ΣA

]

=

[
I 0

−A21R
−1
11 I

] [
R11 0

0 A21R
−1
11 R12 − ΣA

] [
I R−1

11 R12

0 I

]

.

Then, if T = A21R
−1
11 R12 − ΣA is nonsingular, the inverse of R is given by

R−1 =

[
I −R−1

11 R12

0 I

] [
R−1

11 0
0 T−1

] [
I 0

A21R
−1
11 I

]

=

[
R−1

11

(
I + R12T

−1A21R
−1
11

)
−R−1

11 R12T
−1

−T−1A21R
−1
11 T−1

]

.

The individual block columns of R−1 will be denoted by

[R−1]1 =

[
R−1

11

(
I + R12T

−1R21R
−1
11

)

−T−1A21R
−1
11

]

and

[R−1]2 =

[
−R−1

11 R12T
−1

T−1

]

.

Because of

R−1
11 =

(αk

h
ΣE − A11 + ΣEQ̂1

)−1

=

(
αk

h
ΣE

(

I − h

αk

(

Σ−1
E A11 − Q̂1

)))−1

=
h

αk

(

I − h

αk

(

Σ−1
E A11 − Q̂1

))−1

Σ−1
E ,
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we can compute R−1
11 using the Neumann series if

h

αk

∥
∥
∥Σ−1

E A11 − Q̂1

∥
∥
∥
∞

< 1.

This inequality is fulfilled if

h <
αk

C‖Σ−1

E ‖∞C11
≤ αk
∥
∥Σ−1

E

∥
∥
∞

∥
∥
∥A11 − ΣEQ̂1

∥
∥
∥
∞

≤ αk
∥
∥
∥Σ−1

E A11 − Q̂1

∥
∥
∥
∞

,

with C‖Σ−1

E ‖∞ defined as in Definition 23. We then get

(

I − h

αk

(

Σ−1
E A11 − Q̂1

))−1

=
∞∑

l=0

(
h

αk

(

Σ−1
E A11 − Q̂1

))l

and therefore

∥
∥R−1

11

∥
∥
∞ =

∥
∥
∥
∥
∥

h

αk

∞∑

l=0

(
h

αk

(

Σ−1
E A11 − Q̂1

))l

Σ−1
E

∥
∥
∥
∥
∥
∞

≤ h

αk

∞∑

l=0

∥
∥
∥
∥

h

αk

(Σ−1
E A11 − Q̂1)

∥
∥
∥
∥

l

∞

∥
∥Σ−1

E

∥
∥
∞

=
h

αk

1

1− h
αk

∥
∥
∥Σ−1

E A11 − Q̂1

∥
∥
∥
∞

∥
∥Σ−1

E

∥
∥
∞

≤ h

αk

1

1− h
αk

∥
∥Σ−1

E

∥
∥
∞

∥
∥
∥A11 − ΣEQ̂1

∥
∥
∥
∞

∥
∥Σ−1

E

∥
∥
∞

≤ h

αk

1

1− h
αk

C‖Σ−1

E ‖∞C11

C‖Σ−1

E ‖∞

≤ 2h

αk

C‖Σ−1

E ‖∞

= hC1 for h ≤ αk

2C‖Σ−1

E ‖∞C11
, C1 =

2

αk

C‖Σ−1

E ‖∞ .

We estimate the norm of T−1 using

∥
∥T−1

∥
∥
∞ =

∥
∥(A21R

−1
11 R12 − ΣA)−1

∥
∥
∞

=
∥
∥(I − Σ−1

A A21R
−1
11 R12)

−1Σ−1
A

∥
∥
∞

≤
∞∑

l=0

∥
∥Σ−1

A A21R
−1
11 R12

∥
∥

l

∞ ‖Σ
−1
A ‖∞

≤
∞∑

l=0

(

hC‖Σ−1

A ‖∞C‖A21‖∞C1C12

)l

C‖Σ−1

A ‖∞

=
C‖Σ−1

A ‖∞
1− hC‖Σ−1

A ‖∞C‖A21‖∞C1C12

≤ 2C‖Σ−1

A ‖∞ for h ≤ 1

2C‖Σ−1

A ‖∞C‖A21‖∞C1C12
.
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Again, the constants C‖Σ−1

A ‖∞ and C‖A21‖∞ are defined according to Definition 23.

The remaining estimates are straightforward. For the block entries of [R−1]1 and [R−1]2 we
get

∥
∥R−1

11

(
I + R12T

−1A21R
−1
11

)∥
∥
∞ ≤ hC1

(

1 + 2hC12C‖Σ−1

A ‖∞C‖A21‖∞C1

)

≤ 2hC1 for h ≤ αk

4C12C‖Σ−1

A ‖∞C‖A21‖∞C1
,

‖ − T−1A21R
−1
11 ‖∞ ≤ 2hC‖Σ−1

A ‖∞C‖A21‖∞C1

= hC2, C2 = 2C‖Σ−1

A ‖∞C‖A21‖∞C1,

and
∥
∥−R−1

11 R12T
−1
∥
∥
∞ ≤ 2hC1C12C‖Σ−1

A
‖∞

= hC3, C3 = 2C1C12C‖Σ−1

A
‖∞ .

Analogously it can be proved for the transposed block entries of [R−1]1 that
∥
∥
∥

(
R−1

11

(
I + R12T

−1A21R
−1
11

))T
∥
∥
∥
∞
≤ 2hC1

and
∥
∥
∥

(
−T−1A21R

−1
11

)T
∥
∥
∥
∞
≤ hC2.

Thus, we obtain for the two block columns of R−1 the estimates
∥
∥[R−1]1

∥
∥
∞ ≤ max{hC1, hC2}

= hmax{C1, C2}
= hC4, C4 = max (C1, C2) ,

∥
∥[R−1]T1

∥
∥
∞ ≤ h (C1 + C2)

= hC5, C5 = C1 + C2,

and

‖[R−1]2‖∞ ≤ max{hC3, 2C‖Σ−1

A ‖∞}

≤ 2C‖Σ−1

A
‖∞ for h ≤

2C‖Σ−1

A ‖∞
C3

=
1

C1C12
.

For V = R−1S we get, owing to the block structure of S,

‖V ‖∞ =
∥
∥R−1S

∥
∥
∞

=
∥
∥
∥[R−1]1

(

−A13 + ΣEQ̂3

)∥
∥
∥
∞

≤
∥
∥[R−1]1

∥
∥
∞

∥
∥
∥−A13 + ΣEQ̂3

∥
∥
∥
∞

≤ hC4C13,

and

‖V T ‖∞ =

∥
∥
∥
∥

(

−A13 + ΣEQ̂3

)T

[R−1]T1

∥
∥
∥
∥
∞

≤ hC5C13.
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Hence, ‖V T V ‖∞ ≤ ‖V T ‖∞‖V ‖∞ ≤ h2C4C5C
2
13. In particular, we have

∥
∥V T V

∥
∥
∞ ≤

1

2
for h ≤ 1√

2C4C5C13
.

Thus for sufficiently small h we can again employ the Neumann series to estimate the norm of
the inverse of W = I + V T V , which gives

∥
∥W−1

∥
∥
∞ =

∥
∥
∥

(
I + V T V

)−1
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∞∑

l=0

(
−V T V

)l

∥
∥
∥
∥
∥
∞

≤
∞∑

l=0

∥
∥
∥

(
V T V

)l
∥
∥
∥
∞
≤

∞∑

l=0

1

2l
= 2.

Finally, we can combine all these results and obtain the assertion, because

‖R1i
‖∞ =

∥
∥W−1

i V T
i [R−1

i ]1
∥
∥
∞

≤ 2h2C4C5C13

= h2C01, C01 = 2C4C5C13,

and

‖R2i
‖∞ =

∥
∥W−1

i V T
i [R−1

i ]2
∥
∥
∞

≤ 4hC5C13C‖Σ−1

A ‖∞
= hC02, C02 = 4C5C13C‖Σ−1

A
‖∞ .

Note that none of the occurring constants depends on h.

We now consider the systems (3.23) as well as (3.29), and represent both discretizations in
terms of two large linear systems. Let us define the matrix Ďh = [Ďh]i,j=k,...,N ∈ R

Nkn,Nkn,
Nk = N − k + 1, blockwise by

[Ďh]ij =







1

h
αk+j−i






ΣEi
0 0

0 0 0

R1i
ΣEi

0 0




QT

i for i− k ≤ j < i,

[

Ri Si

0 Iû

]

QT
i for j = i,

0 otherwise,

(3.30)

and the right-hand side

[ǧh]i = [f̌h]i −
1

h

2k−i−1∑

l=0

αl





ΣEi
0 0

0 0 0
R1i

ΣEi
0 0



QT
i xi−k+l(3.31)

with

[f̌h]i =





f1i

f2i

R1i
f1i

+R2i
f2i



 .
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Then we can write the N − k + 1 discretization steps (3.23) as

Ďhxh = ǧh.(3.32)

Note that the (unique) solution xh of the system (3.32) is the solution of the system (3.11),
where the components xi of xh are computed according to (3.16).

Analogously, we can define a matrix D̂h via

[D̂h]ij =







1

h
αk+j−iĒiQ

T
i for i− k ≤ j < i,

[

Ri Si

0 Iu

]

QT
i for j = i,

0 otherwise,

(3.33)

and the corresponding right-hand side by

[ĝh]i = f̄i −
1

h

2k−i−1∑

l=0

αlĒiQ
T
i xi−k+l.(3.34)

Then we can represent the systems (3.29) by the large system

D̂hx̂h = ĝh.(3.35)

The following lemma shows that transferring Lemma 24 to the large systems yields Ďh − D̂h =
O(h) and ǧh − ĝh = O(h).

Lemma 25 Let Ďh, D̂h, ǧh and ĝh be defined as in (3.30), (3.31), (3.33) and (3.34). Then
there exist positive constants CD and Cg, which do not depend on h, such that

∥
∥
∥Ďh − D̂h

∥
∥
∥
∞
≤ hCD

and

‖ǧh − ĝh‖∞ ≤ hCg

for sufficiently small h.

Proof. From Lemma 24 it follows that

∥
∥
∥Ďh − D̂h

∥
∥
∥
∞
≤ max

i

N∑

j=k

∥
∥
∥[Ďh]ij − [D̂h]ij

∥
∥
∥
∞

≤ max
i

i−1∑

j=i−k

∥
∥
∥
∥
∥
∥

1

h
αk+j−i









ΣEi
0 0

0 0 0
R1i

ΣEi
0 0



− Ēi



QT
i

∥
∥
∥
∥
∥
∥
∞

≤ max
i

1

h

i−1∑

j=i−k

|αk+j−i|

∥
∥
∥
∥
∥
∥





0 0 0
0 0 0

R1i
ΣEi

0 0



QT
i

∥
∥
∥
∥
∥
∥
∞

≤ 1

h

k−1∑

l=0

|αl|h2C01C‖ΣE‖∞C‖Q‖∞

= hCD.

(3.36)
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Similarly, we get for the right-hand sides that

∥
∥[f̌h]i − f̄i

∥
∥
∞ =

∥
∥W−1

i V T
i [R−1

i ]1f1i
+ W−1

i V T
i [R−1

i ]2f2i

∥
∥
∞

≤
∥
∥W−1

i V T
i [R−1

i ]1
∥
∥
∞ ‖f1i

‖∞ +
∥
∥W−1

i V T
i [R−1

i ]2
∥
∥
∞ ‖f2i

‖∞

≤ h2C01 max
t∈[t0,T ]

{‖f1(t)‖∞}+ hC02 max
t∈[t0,T ]

{‖f2(t)‖∞}

≤ 2hC02 max
t∈[t0,T ]

{‖f1(t)‖∞, ‖f2(t)‖∞}

for sufficiently small h. Together with (3.36), we consequently obtain

‖ǧh − ĝh‖∞ ≤ 2hC02 max
t∈[t0,T ]

{‖f1(t)‖∞, ‖f2(t)‖∞}+ hCD max
i=0,...,k−1

‖xi‖∞

≤ hCg.

From these observations it is clear that the system (3.32) is nothing else than the system
(3.35) plus a perturbation of O(h). This fact allows us to prove the main result of this section.

Theorem 26 Let (1.1) be a strangeness free linear DAE. Let x = D−f be the solution of the
minimization problem (2.27), i.e., D− is the (1,2,3)-inverse of the differential-algebraic operator
D associated with (1.1).

Suppose that (1.1) is discretized with a k-step BDF-method, k ≤ 6, using a fixed step size
h = (T − t0)/N and k initial values x0, . . . , xk−1 that satisfy

xl − x(tl) = O(h),

where tl = t0 + lh. If the systems (3.10) are solved in the least squares sense, i.e., the minimiza-
tion problems (3.13) are solved successively for i = k, . . . , N , then we have for the solutions xi

of these problems the estimate

‖xi − x(ti)‖∞ ≤ hClocal,

with a positive constant Clocal not depending on the step size h.

Proof. Let D̂hx̂h = ĝh, defined as in (3.35), represent the BDF-discretization of the uniquely
solvable strangeness free DAE (3.27) and consider the restriction operator RXh

from (3.4). Then
the fact that BDF-methods applied to uniquely solvable strangeness free DAEs are convergent
(see Theorem 20) implies

‖x̂h −RXh
x‖∞ ≤ C1h for h→ 0,

with some constant C1 > 0. (Note that they would actually be convergent of order p = k if we
assumed sufficient accuracy in the initial values.)

Since BDF-methods are stable for k ≤ 6, we also have

‖D̂−1
h ‖∞ ≤ C2

for some constant C2 > 0, see [4] and also Section 3.3.2.
We now consider the linear system (3.32), whose solution represents the output of the BDF

method applied to the DAE (1.1), where the systems (3.10) are solved in the least squares sense.
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Applying Lemma 25 and using Neumann series, we can estimate the difference of the inverses
of the discretization matrices Ďh and D̂h for h < 1

2C2CD as follows:

∥
∥
∥Ď−1

h − D̂−1
h

∥
∥
∥
∞

=

∥
∥
∥
∥

(

D̂h −
(

D̂h − Ďh

))−1
− D̂−1

h

∥
∥
∥
∥
∞

=

∥
∥
∥
∥

(

I − D̂−1
h

(

D̂h − Ďh

))−1
D̂−1

h − D̂−1
h

∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∞∑

l=0

(

D̂−1
h

(

D̂h − Ďh

))l

D̂−1
h − D̂−1

h

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∞∑

l=1

(

D̂−1
h

(

D̂h − Ďh

))l

D̂−1
h

∥
∥
∥
∥
∥
∞

≤
∥
∥
∥D̂−1

h

∥
∥
∥
∞

∞∑

l=1

(∥
∥
∥D̂−1

h

∥
∥
∥
∞

∥
∥
∥D̂h − Ďh

∥
∥
∥

)l

≤ C2

∞∑

l=1

(hC2CD)l = hC2
2CD

∞∑

l=0

(hC2CD)l

=
hC2

2CD

1− hC2CD
≤ 2hC2

2CD.

This yields for the solution xh = Ď−1
h ǧh,

‖xh −RXh
x‖∞ =

∥
∥Ď−1

h ǧh −RXh
x
∥
∥
∞

≤
∥
∥
∥Ď−1

h ǧh − D̂−1
h ǧh + D̂−1

h ǧh − D̂−1
h ĝh + D̂−1

h ĝh −RXh
x
∥
∥
∥
∞

≤
∥
∥
∥Ď−1

h − D̂−1
h

∥
∥
∥
∞
‖ǧh‖∞ +

∥
∥
∥D̂−1

h

∥
∥
∥
∞
‖ǧh − ĝh‖∞ +

∥
∥
∥D̂−1

h ĝh −RXh
x
∥
∥
∥
∞

≤ hCD max
t∈[t0,T ]

‖g(t)‖∞ + hC2Cg + hC1

≤ hClocal,

which implies the assertion.

Remark 27 It is important to remark that, no matter how high the order of the BDF method is
chosen, the order of the bounds in Lemma 25 is always O(h). This is due to presence of the error
terms R1i

(which is always O(h2)) and R2i
(which is always O(h)) in (3.23). Our numerical

methods will compute the solution of (3.23), which represents the direct discretization of the
DAE combined with local least squares solutions. Thus there is little justification for employing
higher order BDF methods in our setting. This observation will be confirmed by the numerical
experiments in Section 4.2.1.

A (1,2,3)-inverse of Dh

Let us take a different look at the linear system (3.11). Solving the systems (3.10) according
to the minimization problem (3.13), i.e., computing the solutions xi via (3.14), defines a matrix
D−

h such that the solution xh of (3.11) can be written as

xh = D−
h gh.

Despite this notation, it is not clear yet that D−
h is actually a (1,2,3)-inverse of Dh. This

relationship will be proved in the following.
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Theorem 28 Let xh = [xT
1 , . . . , xT

N ]T denote the solution of the system Dhxh = gh as in (3.11),
obtained by computing xi via (3.14) for i = 1, . . . , N . Let D−

h ∈ R
mN,nN be given such that

xh = D−
h gh.

Then D−
h is a (1,2,3)-inverse of Dh.

Proof. The i-th block row of the vector Dhxh can be written as

[Dhxh]i =

(
1

h
Ei − Ai

)

xi +
1

h

k−1∑

l=l0

αlEixi−k+l

= P T
i

[
Ri Si

0 0

]

QT
i xi +

1

h

k−1∑

l=li

αlP
T
i ẼiQ

T
i xi−k+l,

(3.37)

for i = k, . . . , N with li = max(0, 2k − i). Here we have used (3.15) and (3.17). The solution
xi = [xh]i = [D−

h gh]i of the minimization problem (3.13) is given by (3.16). Inserting this
solution into (3.37) yields for every gh = RYh

f , with RYh
defined in (3.5),

[Dhxh]i = [DhD−
h gh]i

= P T
i

[
Ri Si

0 0

] [
Ri Si

0 0

]+
(

−1

h

k−1∑

l=0

αlẼiQ
T
i xi−k+l + f̃i

)

+
1

h

k−1∑

l=li

αlP
T
i ẼiQ

T
i xi−k+l

= P T
i

[
I 0
0 0

](

−1

h

k−1∑

l=0

αlẼiQ
T
i xi−k+l + f̃i

)

+
1

h

k−1∑

l=li

αlP
T
i ẼiQ

T
i xi−k+l

= P T
i

[
I 0
0 0

]

Pi

(

fi −
1

h

li−1∑

l=0

αlEixi−k+l

)

= P T
i

[
I 0
0 0

]

Pi[gh]i.

Therefore we have

DhD−
h =






P T
k ÎPk

. . .

P T
N ÎPN






with

Î =

[
I
d̂+â

0

0 0

]

.

From

Î

[
Ri Si

0 0

]

=

[
Ri Si

0 0

]

and ÎẼ = Ẽ it immediately follows that

[DhD−
h Dhxh]i = [Dhxh]i

for k = 1, . . . , N and for all vectors xh. From

[
Ri Si

0 0

]+

Î =

[
Ri Si

0 0

]+
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we get
[D−

h DhD−
h gh]i = [D−

h gh]i

for i = k, . . . , N and for all right hand sides gh. This shows that Dh and D−
h satisfy the first

three Moore-Penrose axioms (2.5) (1)–(3), thus D−
h is a (1, 2, 3)-inverse of Dh.

3.3 Global Minimization

In Section 2.2, a Moore-Penrose solution of a linear strangeness free DAE was defined as the
solution of the minimization problem (2.14). For the analytical solution of (2.14) it is necessary
to transform the system to the orthogonal standard form (2.1) and to solve a linear boundary
value problem of the form (2.23). This is a viable approach for compute the Moore-Penrose
solution numerically, provided that the orthogonal standard form of the DAE can be computed.
However, as we have pointed on several occasions, this is not always possible for general DAEs.

This requires to develop a different approach for computing numerical approximations to the
Moore-Penrose solution. Let us again discretize the DAE with a BDF-method. As defined in
(3.11), we write down the whole discretization in terms of the large linear system

Dhxh = fh.(3.38)

In the previous chapter we have examined the continuous solution x = D−f of a strangeness
free differential-algebraic equation (1.1) with homogeneous initial conditions, where the (1, 2, 3)-
inverse D− of the differential-algebraic operator D was defined by the solution of the minimiza-
tion problem (2.27). We have shown that this solution can be approximated by solving the
decoupled minimization problems (3.13) after discretizing the DAE. We have shown that this
solution of the discretization can be written as

xh = D−
h fh,

where Dh is a (1, 2, 3)-inverse of Dh. This result motivates much of the following approach to
compute an approximation of the Moore-Penrose solution x = D+f of the DAE (1.1).

Instead of computing least squares solutions in every single step of the BDF discretization,
as it was done in Section 3.2, we solve the complete system (3.38) in a least squares sense by
solving the minimization problem

1

2
‖xh‖2 = min! s.t.

1

2
‖Dhxh − fh‖2 = min!.(3.39)

The solution can be written as

xh = D+
h fh,(3.40)

where D+
h denotes the Moore-Penrose pseudoinverse of the matrix Dh. We will prove that

this rather intuitive approach leads in fact to a numerical approximation to the Moore-Penrose
solution x = D+f of the DAE (1.1). Note that the orthogonal standard form of the DAE does
not have to be computed to achieve this solution.

Being considerably long and technical, the proof of this assertion will be taken in two major
steps. In a first step, we assume that the system is given in orthogonal standard form. In this
case, solving the least squares problem (3.39) corresponds to the solution of a discrete boundary
value problem, which can be interpreted as a convergent discretization of the continuous bound-
ary value problem (2.23). In a second step, this result will be extended to general strangeness
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free DAEs. We will restrict ourselves here to the implicit Euler method instead of considering
general k-step BDF-methods. Using higher order BDF-methods requires highly accurate approx-
imations to k−1 additional initial values and it is not clear how to obtain these approximations
in an efficient manner, as we implicitly solve a boundary value problem. In view of Remark 27,
it is moreover questionable whether this would result in higher order of convergence.

3.3.1 Systems in orthogonal standard form

Let

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + f̃(t),(3.41)

be a strangeness free DAE in orthogonal standard form, i.e. Ẽ, Ã and f̃ are given as in (2.2).
A discretization of (3.41) with the implicit Euler method using a fixed step size h = (T − t0)/N
leads to equations of the form

1

h
Ẽi(x̃i − x̃i−1) = Ãix̃i + f̃i(3.42)

for i = 1, . . . , N . This discretization can be written as

D̃hx̃h = f̃h(3.43)

with f̃h = [f̃T
1 , . . . , f̃T

N ]T and the discretization matrix D̃h is defined blockwise by

[D̃h]ij =







−1

h
Ẽi for j = i− 1,

1

h
Ẽi − Ãi for j = i,

0 otherwise,

(3.44)

where i, j = 1, . . . , N . The goal is to show that the solution x̃h = [x̃T
1 , . . . , x̃T

N ]T of the mini-
mization problem

1

2
‖x̃h‖2 = min! s.t.

1

2

∥
∥
∥D̃hx̃h − f̃h

∥
∥
∥

2
= min!.(3.45)

approximates the least squares solution of (3.41). Using the structure of the orthogonal standard
form, the systems (3.42) can be written component-wise as

1

h
ΣEi

(
x1i
− x1i−1

)
= A11i

x1i
+ A12i

x2i
+ A13i

x3i
+ f1i

,

0 = A21i
x1i

+ ΣAi
x2i

+ f2i
,

0 = f3i
,

for i = 1, . . . , N . The third equation is independent of x̃h and will be omitted in the following
considerations. The algebraic components x2i

of the unknown x̃i can be eliminated from the
first equation by multiplying from the left with the regular matrices




Σ−1

Ei
−Σ−1

Ei
A12i

Σ−1
Ai

0 Σ−1
Ai



 .(3.46)

Here we assume that h is sufficiently small such that D̃h, with 0 = f3i
discarded, has full row

rank.
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After applying the substitutions

Ai = Σ−1
Ei

(

A11i
− A12i

Σ−1
Ai

A21i

)

,

Bi = Σ−1
Ei

A13i
,

Ci = −Σ−1
Ai

A21i
,

fi = Σ−1
Ei

(

f1i
− A12i

Σ−1
Ai

f2i

)

,

gi = −Σ−1
Ai

f2i
,

(3.47)

these systems can be written in the form

1

h
(x1i
− x1i−1

) = Aix1i
+ Bix3i

+ fi,

x2i
= Cix1i

+ gi.
(3.48)

Finally, we rearrange the first equation and introduce the matrices

Āi =
1

h

(
1

h
I −Ai

)−1

,

B̄i =

(
1

h
I − Ai

)−1

Bi,

f̄i =

(
1

h
I − Ai

)−1

fi,

(3.49)

where h is assumed to be sufficiently small, such that 1
h
I − Ai is invertible, and rename the

components of the solutions x̃i as xi = x1i
, yi = x2i

and ui = x3i
. Then we can write (3.48) as

the linear discrete-time system

xi = Āixi−1 + B̄iui + f̄i

yi = Cixi + gi.

All the transformations applied to obtain this system are regular and do not have any influence
on the solution of the equations (3.42). Thus, the minimization problem (3.39) can be written
in the form

1

2

N∑

i=1

(
xT

i xi + yT
i yi + uT

i ui

)
= min!

s.t. xi = Āixi−1 + B̄iui + f̄i, i = 1, ..., N, x0 = 0

yi = Cixi + gi,

(3.50)

which turns out to be a discrete-time linear quadratic optimal control problem (see [35]), where
the undetermined components x3i

of the solution can be interpreted as an input ui and the
algebraic components x2i

play the role of the output yi. In our case, it is already known that
the solution of the control problem (3.50) is unique, as it is represented by the unique solution
x̃h = D̃+

h f̃h of the minimization problem (3.43). The following theorem shows that this solution
corresponds to the solution of a discrete linear boundary value problem.
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Theorem 29 For i = 1, ..., N , let

Ai ∈ R
d,d, Bi ∈ R

d,k, Ci ∈ R
l,d, fi ∈ R

d, g ∈ R
l.

Let u∗ = [uT
∗1, ..., u

T
∗N ]T solve the linear quadratic optimal control problem

1

2

N∑

i=1

(
xT

i xi + yT
i yi + uT

i ui

)
= min!

s.t. xi = Aixi−1 + Biui + fi, i = 1, ..., N, x0 = 0,

yi = Cixi + gi,

(3.51)

and let x∗ = [xT
∗0, ..., x

T
∗N ]T denote the associated trajectory. Furthermore, we set

y∗ = [yT
∗1, ..., y

T
∗N ]T with y∗i = Cix∗i + gi for i = 1, ...N .

Then there exists λ = [λT
0 , ..., λT

N ]T , λi ∈ R
d, such that (x∗, λ, u∗) solves the discrete linear

boundary value problem

AT
i+1λi = (I + CT

i Ci)xi + λi−1 + CT
i gi, λN = 0,

xi = Aixi−1 + Biui + fi, x0 = 0,

yi = Cixi + gi,

ui = BT
i λi−1

(3.52)

for i = 1, ..., N .

Proof. By inserting the yi into the objective functional we obtain

1

2

N∑

i=1

(
xT

i xi + yT
i yi + uT

i ui

)
=

1

2

N∑

i=1

(
xT

i xi + (Cixi + gi)
T (Cixi + gi) + uT

i ui

)

=
1

2

N∑

i=1

(
xT

i (I + CT
i Ci)xi + 2gT

i Cixi + uT
i ui + gT

i gi

)
.

The summands gT
i gi can be neglected and thus, the minimization problem

1

2

N∑

i=1

(
xT

i (I + CT
i Ci)xi + 2gT

i Cixi + uT
i ui + gT

i gi

)
= min!

s.t. xi = Aixi−1 + Biui + fi, i = 1, ..., N, x0 = 0

(3.53)

is equivalent to the discrete linear quadratic control optimization problem

1

2

(
xT Mx + 2gT x + uT u

)
= min! s.t. Ax + Bu = f(3.54)

with x = [xT
1 , ..., xT

N ]T , u = [uT
1 , ..., uT

N ]T , M = diag(I + CT
1 C1, ..., I + CT

NCN ),

g = [gT
1 C1, ..., g

T
NCN ]T , B = diag(−B1, ...,−BN), f = [fT

1 , ..., fT
N ]T and

A =









I

−A2
. . .
. . . I
−AN I









.
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It is well-known (see, e.g., [14]), that due to the fact that the blockdiagonal matrix M is positive
definite, the problem (3.54) possesses a unique solution. This solution is given by the solution
of the unconstrained minimization problem

S(x, u, λ) =
1

2

(
xT Mx + 2gT x + uT u

)
+ λT (Ax + Bu− f) = min!(3.55)

with the Lagrange multiplier λ = [λT
0 , ..., λT

N ]T . A necessary and sufficient condition for the
solution of (3.55) is that the partial derivatives of the functional S with respect to x, u and λ
are equal to zero, which yields the system

Mx + g + AT λ = 0,
u + BT λ = 0,

Ax + Bu− f = 0.
(3.56)

Together with the output equations yi = Cixi + gi, i = 1, ..., N , the system (3.56) is equivalent
to the discrete boundary value problem (3.52).

Theorem 29 can be directly applied to the control problem (3.50). It shows the exis-
tence of a vector λ̄h = [λ̄T

0 , . . . , λ̄T
N ]T such that λ̄h together with the components (xi, yi, ui) =

(x1i
, x2i

, x3i
) = x̃i of x̃h = D̃+

h f̃h satisfies the discrete boundary value problem

ĀT
i+1λ̄i = (I + CT

i Ci)xi + λ̄i−1 + CT
i gi, λ̄N = 0,

xi = Āixi−1 + B̄iui + f̄i, x0 = 0,

yi = Cixi + gi,

ui = B̄T
i λ̄i−1,

(3.57)

i = 1, ..., N . Setting λi = ( 1
h
I −Ai+1)

−T λ̄i and applying the transformations (3.49), this system
can be written as

1

h
(λi − λi−1) = (I + CT

i Ci)xi − AT
i λi−1 + CT

i gi, λN = 0,

1

h
(xi − xi−1) = Aixi + Biui + fi, x0 = 0,

yi = Cixi + gi,

ui = BT
i λi−1,

(3.58)

i = 1, ..., N . This system coincides with a discretization by the implicit Euler method, forward
in x and backward in λ, of the continuous boundary value problem (2.23) yielding the Moore-
Penrose solution (x, y, u) = x̃ = D̃+f̃ . The solutions (xi, yi, ui) are approximations to (x, y, u)
at the grid point ti = t0 + ih and consequently x̃h contains approximations to x̃. This fact will
be proved by the following theorem, which shows that the systems (3.58) lead to a convergent
discretization of the boundary value problem (2.23).

Theorem 30 Let the boundary value problem

ẋ(t) = A(t)x(t) + f(t), Rt0x(t0) + RT x(T ) = r, t ∈ [t0, T ],(3.59)

with A ∈ C([t0, T ], Rn,n), f ∈ C([t0, T ], Rn) sufficiently smooth, be uniquely solvable.
Then for any d ∈ N with d < n, the single step method defined by the recursion

xk+1 = xk + hA(tk+1)
(

Îxk+1 +
(

I − Î
)

xk

)

+ hf(tk+1),(3.60)
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with

Î =

[
Id 0
0 0

]

∈ R
n,n,

applied to (3.59) is convergent of order 1.

Proof. First, we have to show that the discretization defined by (3.60) is consistent. For the
solution x of (3.59), using the Taylor expansion, we get for t1 = t0 + h

x(t1) = x(t0) + hẋ(t0) + O(h2)
= x(t0) + h (A(t0)x(t0) + f(t0)) + O(h2).

For x0 = x(t0), the recursion (3.60) yields

x(t1)− x1 = h
(

A(t0)x(t0) + f(t0)− A(t1)
(

Îx1 + x(t0)− Îx(t0)
)

− f(t1)
)

+ O(h2)

= h
(

(A(t0)− A(t1))x(t0) + A(t1)Î(x(t0)− x1) + f(t0)− f(t1)
)

+ O(h2)

= O(h2)

for sufficiently smooth functions A and f . This implies that the discretization defined by (3.60)
is consistent of order 1. To show that it is convergent if applied to (3.59), we have to show that
it is stable. The discretization can be written in terms of the linear system

Lhxh = gh,

with the discretization matrix

Lh =










Rt0 0 . . . 0 RT

L1,s L1,d

0 L2,s L2,d

...
. . .

. . .

0 LN,s LN,d










and the right hand side

gh =








r
f1
...

fN








.

Here, the subdiagonal blocks Li,s and the diagonal blocks Li,d are defined as

Li,s = −
(

1

h
I + A(ti)

(

I − Î
))

,

Li,d =

(
1

h
I − A(ti)Î

)

,

and fi = f(ti), ti = a + ih, for i = 1, . . . , N .
The matrix

L̄h =








L1,d

L2,s L2,d

. . .
. . .

LN,s LN,d







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can be interpreted as the discretization matrix belonging to the discretization (3.60) of the initial
value problem

ẋ = Ax + f, x(t0) = 0, t ∈ [t0, T ].

Since single step methods applied to initial value problems are always stable, we can conclude
that L̄−1

h is uniformly bounded, i.e.,
∥
∥L̄−1

h

∥
∥
∞ ≤ CL̄

for some positive constant CL̄ that does not depend on the step size h. The inverse of Lh can
be computed using Schur complements via

Lh =

[
Rt0 R̄T

L̄1,s L̄h

]

=

[
I R̄T L̄−1

h

0 I

] [
Rt0 − R̄T L̄−1

h L̄1,s 0
0 L̄h

] [
I o

L̄−1
h L̄1,s I

]

with

R̄T =
[
0 · · · 0 RT

]
, L̄1,s =








L1,s

0
...
0








.

This leads to

L−1
h =

[
S−1

h −S−1
h R̄T L̄−1

h

−L̄−1
h L̄1,sS

−1
h L−1

h + L−1
h L̄1,sS

−1
h R̄T L̄−1

h

]

,

provided that the Schur complement

Sh = Rt0 − R̄T L̄−1
h L̄1,s

is nonsingular. The matrix Sh can be interpreted as follows.
A boundary value problem of the form (3.59) is uniquely solvable if and only if the matrix

Rt0 + RT W (T, t0)

is nonsingular, where the transfer function W (t, a) ∈ C1([t0, T ], Rn,n) is the solution of the initial
value problem

d

dt
W (t, t0) = A(t)W (t, t0), W (t0, t0) = I, t ∈ [t0, T ],(3.61)

see, e.g., [2]. This initial value problem can be solved numerically by applying the discretization
defined by (3.60) to (3.61). This discretization can be written as

L̄hWh =








0− L1,s

0
...
0








= −L̄1,s,

where the solution

Wh =






W1
...

WN




 = −L̄−1

h L̄1,s
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contains approximations Wi to W (t0 + ih, t0), i.e.,

Wi −W (t0 + ih, t0) = O(h) for i = 1, . . . , N.

In particular, we have

Sh = Rt0 − R̄T L̄−1
h L̄1,s

= Rt0 + R̄T Wh

= Rt0 + RT WN

= Rt0 + RT W (T, t0) + O(h).

Thus, for sufficiently small h the matrix Sh is nonsingular and its inverse S−1
h is uniformly

bounded. Therefore the matrix L−1
h is also uniformly bounded and the consistent discretization

defined by the recursion (3.60) applied to (3.59) is stable and thus convergent.

Theorem 30 shows that the solution of the systems (3.58) is unique and that it converges
to the solution of the boundary value problem (2.23). The following theorem summarizes the
results obtained so far.

Theorem 31 Let x̃ = D̃+f̃ be the (unique) solution of the minimization problem (2.15) and let
x̃h = D̃+

h f̃h be the solution of the minimization problem (3.45). Let RXh
be as in (3.4).

Then there exists a positive constant C̃ such that

‖x̃h −RXh
x̃‖∞ ≤ C̃h,

provided that h > 0 is sufficiently small.

Proof. According to Theorem 17, the solution (x, y, u) of the minimization problem (2.22) is
given by the corresponding parts of the (unique) solution of the boundary value problem (2.23).
This implies that the function

x̃ =





x
y
u





solves the minimization problem (2.15).
The systems (3.58) can be written in the form

1

h

([
λi

xi

]

−
[

λi−1

xi−1

])

=

[
−AT

i I + CT
i Ci

BiB
T
i Ai

]([
0 0
0 I

] [
λi

xi

]

+

[
I 0
0 0

] [
λi−1

xi−1

])

+

[
CT

i gi

fi

]

,

yi = Cixi + gi,

ui = BT
i λi−1,

i = 1, . . . , N , with the initial values satisfying
[

0 0
0 I

] [
λ0

x0

]

+

[
I 0
0 0

] [
λN

xN

]

= 0.

By Theorem 30, this system is uniquely solvable for sufficiently small h and a convergent dis-
cretization of the boundary value problem (2.23). Therefore, by setting

x̄h =






x̄1
...

x̄N




 with x̄i =





xi

yi

ui



 , i = 1, . . . , N,
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we get

‖x̄h −RXh
x̃‖ ≤ C̃h

for some positive constant C̃.
The discrete boundary value problem (3.57) can be computed from (3.58) by applying the

substitutions (3.49). Moreover, the unique solution (λ̄i, xi, yi, ui), i = 0, . . . , N , of (3.57) is given
by the solution (λi, xi, yi, ui) of (3.58) with λ̄i = ( 1

h
I − Ai+1)

T λi for i = 0, . . . , N .
By Theorem 29, the part (xi, yi, ui), i = 0, . . . , N , of this solution solves the minimization

problem (3.50). By the substitutions (3.49), (3.47), and the regular transformation (3.46), the
problem (3.50) can be written in the form

1

2
‖x̃h‖ = min! s.t.

1

h
ΣEi

(x1i
− x1i−1

) = A11i
x1i

+ A2i
x2i

+ A3i
x3i

+ f1i
, x10

= 0,

0 = A21i
x1i

+ ΣAi
x2i

+ f2i
,

(3.62)

i = 1, . . . , N , with

x̃h =






x̃1
...

x̃N




 , x̃i =





x1i

x2i

x3i



 =





xi

yi

ui



 , i = 1, . . . , N.

Hence, we get x̃h = x̄h for the solution of (3.62). The assertion follows because the minimization
problem (3.62) is equivalent to the minimization problem (3.45).

3.3.2 General strangeness free systems

To generalize the result of Theorem 31 to differential-algebraic systems that are not given in
orthogonal standard form, we use the following observation. Let the large linear system Dhxh =
fh represent the discretization of the general strangeness free DAE (1.1) with the implicit Euler
method. Dh can be defined analogously to (3.44) and the right-hand side is given by fh =
(f1, . . . , fN ). Furthermore, consider the orthogonal matrices

Ph = diag(P1, . . . , PN ),
Qh = diag(Q1, . . . , QN ),

(3.63)

which contain the orthogonal transformations P and Q evaluated at the grid points t1, . . . , tN .
If f̃h denotes the right-hand side corresponding to the discretization of the system transformed
to orthogonal standard form, we have f̃h = Phfh. It will be seen that the relation D̃h = PhDhQh

unfortunately only holds if Q is constant over the interval [t0, T ]. This particularly implies that
the minimization problems (3.39) and (3.43) do not transform covariantly with the application
of these transformations if Q is time-dependent. Our major goal is to show that xh nevertheless
approximates Qhx̃h, where xh and x̃h are the least squares solution of the discretizations Dhxh =
fh and D̃hx̃h = f̃h of the original DAE and the transformed DAE in orthogonal standard form,
respectively.

The blocks of the matrix PhDhQh are given by

[PhDhQh]ij =







−1

h
PiEiQi−1 for j = i− 1,

Pi

(
1

h
Ei − Ai

)

Qi for j = i,

0 otherwise.

(3.64)
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From (2.2), we know that

Ãi = PiAiQi − PiEiQ̇i

and

Ẽi = PiEiQi.

This implies that

Pi

(
1

h
Ei −Ai

)

Qi =
1

h
Ẽi − Ãi − PiEiQ̇i

=
1

h
Ẽi − Ãi − ẼiQ

T
i Q̇i,

(3.65)

and for the subdiagonal blocks in (3.64), we get

−1

h
PiEiQi−1 = −1

h
Ẽi +

1

h
ẼiQ

T
i Qi −

1

h
ẼiQ

T
i Qi−1

= −1

h
Ẽi + ẼiQ

T
i

Qi −Qi−1

h

= −1

h
Ẽi + ẼiQ

T
i Q̇i + ẼiQ

T
i

(
Qi −Qi−1

h
− Q̇i

)

.

(3.66)

For the large system, this implies the relationship

PhDhQh = D̃h + ∆h,(3.67)

with a perturbation matrix ∆h that has the structure









∆1

−∆2 − δ2 ∆2

−∆3 − δ3 ∆3

. . .
. . .

−∆N − δN ∆N










,(3.68)

where ∆i = −ẼiQ
T
i Q̇i and δi = −ẼiQ

T
i

(
Qi−Qi−1

h
− Q̇i

)

. Note that for sufficiently smooth

orthogonal functions Q and sufficiently small h we have
∥
∥
∥
∥

Qi −Qi−1

h
− Q̇i

∥
∥
∥
∥
∞
≤ CQ̇h

for some positive constant CQ̇. We will show in the following that for the perturbation ∆h we
get

(D̃h + ∆h)+ − D̃+
h = (PhDhQh)+ − D̃+

h = O(h),(3.69)

which then implies

‖xh −Qhx̃h‖∞ =
∥
∥
∥D+

h fh −QhD̃+
h f̃h

∥
∥
∥
∞

=
∥
∥
∥Qh

(

QT
h D+

h P T
h Phfh − D̃+

h f̃h

)∥
∥
∥
∞

≤ ‖Qh‖∞
∥
∥
∥

(

QT
h D+

h P T
h − D̃+

h

)

f̃h

∥
∥
∥
∞

= C‖Q‖∞

∥
∥
∥

(

(PhDhQh)+ − D̃+
h

)

f̃h

∥
∥
∥
∞

= O(h).



58 CHAPTER 3. NUMERICAL DETERMINATION OF GENERALIZED SOLUTIONS

The assertion (3.69) will be proved in three steps. First, it will be shown for the special
case of ordinary differential equations, then this result will be extended to the case of uniquely
solvable DAEs and finally to the case of general underdetermined DAEs.

The ODE case

Let us assume that â = û = v̂ = 0, with â, û, v̂ as in Theorem 10, such that the DAE (2.1) in
orthogonal standard form reduces to the implicit ordinary differential equation

ΣE(t) ˙̃x(t) = A11(t)x̃(t) + f̃1(t), t ∈ I = [t0, T ],(3.70)

with matrix functions ΣE ∈ C(I, Rn,n), A11 ∈ C(I, Rn,n), f1 ∈ C(I, Rn), ΣE pointwise nonsin-
gular and n = d̂. Moreover, we consider the initial condition

x̃(t0) = 0.

Let the step size h = (T − t0)/N be constant. A discretization of (3.70) with the implicit Euler
method and the step size h can be written in terms of the linear system

D̃o
hx̃h = f̃h,(3.71)

with

D̃o
h =








1
h
ΣE1
− A111

− 1
h
ΣE2

1
h
ΣE2
− A112

. . .
. . .

− 1
h
ΣEN

1
h
ΣEN

−A11N








(3.72)

and

f̃h =






f̃1
...

f̃N




 .

On the other hand, let

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ I = [t0, T ](3.73)

denote an ODE, which is equivalent to (3.70), i.e., there exist orthogonal matrix functions
P ∈ C([t0, T ], Rn,n) and Q ∈ C1([t0, T ], Rn,n) such that ΣE = PEQ, A11 = PAQ − PEQ̇ and
f1 = Pf . The discretization of (3.73) with the implicit Euler method using a constant step size
h can be represented by a linear system

Do
hxh = fh(3.74)

with

Do
h =








1
h
E1 − A1

− 1
h
E2

1
h
E2 −A2

. . .
. . .

− 1
h
EN

1
h
EN − AN








(3.75)
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and

fh =






f1
...

fN




 .

If we define block diagonal matrices Ph and Qh according to (3.63) and set

D̂o
h = PhDo

hQh,(3.76)

then we have

D̂o
h = D̃o

h + ∆h,(3.77)

with a perturbation matrix ∆h having the structure










∆111

−∆112
− δ112

∆112

−∆113
− δ113

∆113

. . .
. . .

−∆11N
− δ11N

∆11N










.

In particular, we have ‖∆11i
‖∞ = ‖ΣEi

QT
i Q̇i‖∞ ≤ C∆11

and ‖δ11i
‖∞ ≤ Cδ11h for sufficiently

small h. Since the ODE systems (3.70) and (3.73) are globally equivalent, we have

x̃ = QT x

for the (unique) solutions x̃ and x of (3.70) and (3.73). The implicit Euler method applied to
these systems is convergent of order one; for sufficiently small step sizes h we therefore get

‖x̃h −RXh
x̃‖∞ = O(h)

and

‖xh −RXh
x‖∞ = O(h)

for the solutions x̃h and xh of (3.71) and (3.74), respectively. If we let x̂h denote the solution of
the linear system

D̂o
hx̂h = f̂h,

with f̂h = Phfh = f̃h, it follows that

‖x̂h − x̃h‖∞ =
∥
∥
∥D̂o−1

h f̂h − x̃h

∥
∥
∥
∞

=
∥
∥
∥QT

h Do−1

h P T
h Phfh − x̃h

∥
∥
∥
∞

=
∥
∥QT

h xh − x̃h

∥
∥
∞

=
∥
∥QT

h xh −QT
h RXh

x + QT
h RXh

x− x̃h

∥
∥
∞

≤
∥
∥QT

h

∥
∥
∞ ‖xh −RXh

x‖∞ +
∥
∥RXh

QT x− x̃h

∥
∥
∞

= C‖Q‖∞ ‖xh −RXh
x‖∞ + ‖RXh

x̃− x̃h‖∞
= O(h).
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This suggests that the inverses of the coefficient matrices D̂o
h and D̃o

h satisfy
∥
∥
∥D̂o−1

h − D̃o−1

h

∥
∥
∥
∞

= O(h).(3.78)

We will show that this is indeed true. In addition, we will show that for the blocks [D̂o−1

h ]ij and

[D̃o−1

h ]ij, i, j = 1, . . . , N , of D̂o−1

h and D̃o−1

h , we have
∥
∥
∥[D̂o−1

h ]ij − [D̃o−1

h ]ij

∥
∥
∥
∞

= O(h2).

To show this property we first define a third discretization of the ODE (3.70) that allows us
to compute the inverse of its discretization matrix in a simple way. This explicit discretization
is defined by

1

h
ΣEi

(x1i
− x1i−1

) = A11i
x1i−1

+ f1i
, i = 1, ..., N,

x10
= 0,

(3.79)

and leads to a discretization matrix of the form

D̄o
h =








1
h
ΣE1

− 1
h
ΣE2
− A112

1
h
ΣE2

. . .
. . .

− 1
h
ΣEN

−A11N

1
h
ΣEN








.(3.80)

If we denote the diagonal and (negative) subdiagonal entries of D̄o
h by D̄o

hd,i
and D̄o

hs,i
, respec-

tively, i.e.,

[D̄o
h]d,i =

1

h
ΣEi

,

[D̄o
h]s,i =

1

h
ΣEi

+ A11i
,

(3.81)

then we can write down the inverse blockwise according to the block structure of D̄o
h by

[D̄o−1

h ]ij =







[
j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

]

[D̄o
h]−1

d,j for i ≥ j,

0 otherwise,

=







h

[
j+1
∐

k=i

(

I + hΣ−1
Ek

A11k

)
]

Σ−1
Ej

for i ≥ j,

0 otherwise.

(3.82)

Here, we employ the following non-standard notation: for matrices Ak1
, Ak1+1, . . . , Ak2

, k2 ≥ k1,
we define the reversed product

k1∐

k=k2

Ak := Ak2
Ak2−1...Ak1+1Ak1

.(3.83)

If k2 < k1, we set

k1∐

k=k2

Ak := I.

Since one-step formulas are always stable, we know that ‖D̄o−1

h ‖∞ is uniformly bounded.
The following lemma can be used to compute this bound explicitly.
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Lemma 32 Let D̄o
h be defined as in (3.80). Then for

Co
1 = C‖Σ−1

E ‖∞ exp
(

C‖Σ−1

E A11‖∞

)

we have
∥
∥
∥[D̄o−1

h ]ij

∥
∥
∥
∞
≤ Co

1h,

which implies
∥
∥
∥D̄o−1

h

∥
∥
∥
∞
≤ Co

1(T − t0).

Here, the constants C‖Σ−1

E ‖∞ and C‖Σ−1

E A11‖∞ are defined according to Definition 23.

Proof. For [D̄o
h]d,k and [D̄o

h]s,k as defined in (3.81) we have, using the notation (3.83),

∥
∥
∥
∥
∥

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

j+1
∐

k=i

(I + hΣ−1
Ek

A11k
)

∥
∥
∥
∥
∥
∞

≤
i∏

k=j+1

∥
∥
∥I + hΣ−1

Ek
A11k

∥
∥
∥
∞

≤
N∏

k=1

∥
∥
∥I + hΣ−1

Ek
A11k

∥
∥
∥
∞

≤
(

1 + hC‖Σ−1

E A11‖∞

)N

=

(

1 +
1

N
C‖Σ−1

E
A11‖∞(T − t0)

)N

≤ exp
(

C‖Σ−1

E A11‖∞(T − t0)
)

,

and thus for 1 ≤ j ≤ i ≤ N , it follows from (3.82) that

∥
∥
∥[D̄o−1

h ]ij

∥
∥
∥
∞

=

∥
∥
∥
∥
∥
h

[
j+1
∐

k=i

(

I + hΣ−1
Ek

A11k

)
]

Σ−1
Ej

∥
∥
∥
∥
∥
∞

≤ C‖Σ−1

E ‖∞ exp
(

C‖Σ−1

E A11‖∞(T − t0)
)

h = Co
1h.

Hence,

∥
∥
∥D̄o−1

h

∥
∥
∥
∞
≤ max

i=1,...,N

N∑

j=1

∥
∥
∥[D̄o−1

h ]ij

∥
∥
∥
∞
≤ NCo

1h = Co
1(T − t0),

which concludes the proof.

Additionally, we can use D̄o−1

h as an approximation to D̂o−1

h as well as to Do−1

h , which will

help proving (3.78). The following lemma shows that D̄o−1

h has the desired properties.

Lemma 33 Let D̄o
h and D̂o

h be defined as in (3.80) and (3.76). Then there exists a constant
Co

2 ∈ R
+, which does not depend on the step size h, such that for i, j = 1, ..., N ,

∥
∥
∥[D̄o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞
≤ Co

2h2.
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Proof. First of all, similar to (3.82), we write D̂o−1

h blockwise in the form

[D̂o−1

h ]ij =







[
j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

]

[D̂o
h]−1

d,j for i ≥ j,

0 otherwise,

(3.84)

using the notation

[D̂o
h]d,i :=

1

h
ΣEi
− A11i

+ ∆11i
,

[D̂o
h]s,i :=

1

h
ΣEi

+ ∆11i
+ δ11i

,

for the diagonal and (negative) subdiagonal blocks of D̂o
h, respectively. The following observation

already proves the desired result for the diagonal blocks of the inverted matrices. We have

[D̂o
h]−1

d,i =

(
1

h
ΣEi
− A11i

+ ∆11i

)−1

= h
(

ΣEi

(

I − hΣ−1
Ei

(A11i
−∆11i

)
))−1

= h
(

I − hΣ−1
Ei

(A11i
−∆11i

)
)−1

Σ−1
Ei

.

Furthermore, for

h < min

(

1, C−1

‖Σ−1

E (A11−∆11)‖∞

)

,

where C‖Σ−1

E (A11−∆11)‖∞ is defined according to Definition 23, we have

∥
∥
∥hΣ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

< 1

for i = 1, . . . , N . Hence, we can use the Neumann series to compute the inverse by

[D̂o
h]−1

d,i = h

( ∞∑

k=0

(

hΣ−1
Ei

(A11i
−∆11i

)
)k
)

Σ−1
Ei

= h

(

I +
∞∑

k=1

(

hΣ−1
Ei

(A11i
−∆11i

)
)k

)

Σ−1
Ei

.

Because of

∥
∥
∥
∥
∥

∞∑

k=0

(

hΣ−1
Ei

(A11i
−∆11i

)
)k

∥
∥
∥
∥
∥
∞
≤

∞∑

k=0

hk
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥

k

∞

=
1

1− h
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

≤ 2
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and
∥
∥
∥
∥
∥

∞∑

k=1

(

hΣ−1
Ei

(A11i
−∆11i

)
)k

∥
∥
∥
∥
∥
∞
≤ h

∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

∞∑

k=1

hk
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥

k−1

∞

= h
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

∞∑

k=0

hk
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥

k

∞

= h

∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

1− h
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

≤ 2h
∥
∥
∥Σ−1

Ei
(A11i

−∆11i
)
∥
∥
∥
∞

≤ 2hC‖Σ−1

E (A11−∆11)‖∞ ,

we obtain for h ≤ 1
2 min

(

1, C−1

‖Σ−1

E (A11−∆11)‖∞

)

that

∥
∥
∥[D̂o

h]−1
d,i

∥
∥
∥
∞
≤ 2C‖Σ−1

E
‖∞h for h→ 0.(3.85)

Moreover,

∥
∥
∥[D̂o

h]−1
d,i − [D̄o

h]−1
d,i

∥
∥
∥
∞

=

∥
∥
∥
∥
∥
h

(

I +
∞∑

k=1

(

hΣ−1
Ei

(A11i
−∆11i

)
)k
)

Σ−1
Ei
− hΣ−1

Ei

∥
∥
∥
∥
∥
∞

= h

∥
∥
∥
∥
∥

( ∞∑

k=1

(

hΣ−1
Ei

(A11i
−∆11i

)
)k
)

Σ−1
Ei

∥
∥
∥
∥
∥
∞

≤ h

∥
∥
∥
∥
∥

∞∑

k=1

(

hΣ−1
Ei

(A11i
−∆11i

)
)k

∥
∥
∥
∥
∥
∞

∥
∥
∥Σ−1

Ei

∥
∥
∥
∞

≤ Co
3h2 for h→ 0,

where

Co
3 = 2C‖Σ−1

E (A11−∆11)‖∞C‖Σ−1

E ‖∞ .

To get a similar estimate for the remaining blocks, we first define

Mk := [D̂o
h]−1

d,k[D̂
o
h]s,k − [D̄o

h]−1
d,k[D̄

o
h]s,k

and observe that

Mk =

(
1

h
ΣEk
− A11k

+ ∆11k

)−1(1

h
ΣEk

+ ∆11k
+ δ11k

)

−
(

I + hΣ−1
Ek

A11k

)

= I +

(
1

h
ΣEk
− A11k

+ ∆11k

)−1

(A11k
+ δ11k

)−
(

I + hΣ−1
Ek

A11k

)

=

(
1

h
ΣEk
− A11k

+ ∆11k

)−1

A11k
− hΣ−1

Ek
A11k

+

(
1

h
ΣEk
− A11k

+ ∆11k

)−1

δ11k

=
(

[D̂o
h]−1

d,k − [D̄o
h]−1

d,k

)

A11k
+ [D̂o

h]−1
d,kδ11k

,

and thus

‖Mk‖∞ ≤ h2
(

Co
3C‖A11‖∞ + 2C‖Σ−1

E ‖∞Cδ

)

=: h2Co
4
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for k = 1, . . . , N . Applying Lemma 32, we get

∥
∥
∥
∥
∥

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k −

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

j+1
∐

k=i

(

I + hΣ−1
Ek

A11k
+ Mk

)

−
j+1
∐

k=i

(

I + hΣ−1
Ek

Ak

)
∥
∥
∥
∥
∥
∞

≤
i−j
∑

l=1

(
i− j

l

)(

max
k∈{j+1,...,i}

∥
∥
∥I + hΣ−1

Ek
A11k

∥
∥
∥
∞

)i−j−l(

max
k∈{j+1,...,i}

‖Mk‖∞
)l

≤
N∑

l=1

N l

(

1 + h max
t∈[t0,T ]

∥
∥Σ−1

E (t)A11(t)
∥
∥
∞

)N

(h2Co
4)l

≤ exp
(

C‖Σ−1

E A11‖∞(T − t0)
) ∞∑

l=1

(hCo
4(T − t0))

l

= h exp
(

C‖Σ−1

E A11‖∞(T − t0)
)

Co
4(T − t0)

∞∑

l=0

(hCo
4(T − t0))

l

= h
Co

4(T − t0) exp
(

C‖Σ−1

E A11‖∞(T − t0)
)

1− hCo
4(T − t0)

≤ 2hCo
4(T − t0) exp

(

C‖Σ−1

E A11‖∞(T − t0)
)

where the last equality holds for

h ≤ 1

2Co
4(T − t0)

.(3.86)

This implies that the product appearing in the representation (3.84) of D̂o−1

h is also bounded,
i.e.,

∥
∥
∥
∥
∥

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

∥
∥
∥
∥
∥
∞
≤
∥
∥
∥
∥
∥

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k −

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

∥
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
∥

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

∥
∥
∥
∥
∥
∞

≤ 2hCo
4(T − t0) exp

(

C‖Σ−1

E A11‖∞(T − t0)
)

+ exp
(

C‖Σ−1

E A11‖∞(T − t0)
)

≤ 2 exp
(

C‖Σ−1

E A11‖∞(T − t0)
)



3.3. GLOBAL MINIMIZATION 65

for h satisfying (3.86). Thus, it follows that

∥
∥
∥[D̄o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[
j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

]

[D̂o
h]−1

d,j −
[

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

]

[D̄o
h]−1

d,j

∥
∥
∥
∥
∥
∞

≤
∥
∥
∥
∥
∥

[
j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

]

[D̂o
h]−1

d,j −
[

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

]

[D̄o
h]−1

d,j

∥
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
∥

[
j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

]

[D̄o
h]−1

d,j −
[

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

]

[D̄o
h]−1

d,j

∥
∥
∥
∥
∥
∞

≤
∥
∥
∥
∥
∥

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k

∥
∥
∥
∥
∥
∞

∥
∥
∥[D̂o

h]−1
d,j − [D̄o

h]−1
d,j

∥
∥
∥
∞

+

∥
∥
∥
∥
∥

j+1
∐

k=i

[D̂o
h]−1

d,k[D̂
o
h]s,k −

j+1
∐

k=i

[D̄o
h]−1

d,k[D̄
o
h]s,k

∥
∥
∥
∥
∥
∞

∥
∥
∥[D̄o

h]−1
d,j

∥
∥
∥
∞

≤ 2h2 exp(C‖Σ−1

E
A11‖∞(T − t0))C

o
3

+2h2Co
4 exp(C‖Σ−1

E A11‖∞(T − t0))C‖Σ−1

E ‖∞

= Co
2h2,

where

Co
2 = 2 exp(C‖Σ−1

E A11‖∞(T − t0))(C
o
3 + Co

4C‖Σ−1

E ‖∞).

Note that the result of Lemma 33 also applies if D̂o−1

h is replaced by D̃o−1

h , since D̂o
h reduces

to D̃o
h for ∆h = 0.

Theorem 34 Let D̃o
h and D̂o

h be defined as in (3.75) and (3.80). Then there exists a constant
Co ∈ R

+, which does not depend on the step size h, such that for i, j = 1, ..., N ,
∥
∥
∥[D̃o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞
≤ Coh2.

Moreover,
∥
∥
∥D̃o−1

h − D̂o−1

h

∥
∥
∥
∞
≤ Co(T − t0)h.

Proof. Using Lemma 33 and the triangular inequality, we get
∥
∥
∥[D̃o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞
≤
∥
∥
∥[D̃o−1

h ]ij − [D̄o−1

h ]ij

∥
∥
∥
∞

+
∥
∥
∥[D̄o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞

≤
(

C
o(1)
2 + C

o(2)
2

)

h2,

where both constants, C
o(1)
2 and C

o(2)
2 , can be computed as shown in the proof of Lemma 33.

In particular, we obtain C
o(1)
2 by setting ∆11 = 0 and δ11 = 0, i.e.,

C
o(1)
2 = 4 exp

(

C‖Σ−1

E A11‖∞(T − t0)
)

C‖Σ−1

E ‖∞C‖Σ−1

E A11‖∞
(
1 + C‖A11‖∞

)
,

C
o(2)
2 = 4 exp

(

C‖Σ−1

E A11‖∞(T − t0)
)

C‖Σ−1

E ‖∞

(

C‖Σ−1

E (A11−∆11)‖∞
(
1 + C‖A11‖∞

)
+ Cδ

)

.
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Let us define

Co = C
o(1)
2 + C

o(2)
2 .

Then it follows that

∥
∥
∥D̃o−1

h − D̂o−1

h

∥
∥
∥
∞

= max
i=1,...,N

N∑

j=1

∥
∥
∥[D̃o−1

h ]ij − [D̂o−1

h ]ij

∥
∥
∥
∞

≤ NCoh2 = Co(T − t0)h.

The uniquely solvable DAE case

The next step is to extend the results of the previous step for ODEs to the case of a uniquely
solvable strangeness free DAE

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + f̃(t), t ∈ I = [t0, T ], x̃(t0) = 0,(3.87)

with the coefficient functions

Ẽ =

[
ΣE 0
0 0

]

,

Ã =

[
A11 A12

A21 ΣA

]

,

where ΣE and ΣA are are both square, pointwise nonsingular matrix functions of size d̂ and â,
respectively. The matrix functions A11, A12 and A21 are assumed to be of matching size. We
proceed as in the previous chapter by discretizing (3.87) with the implicit Euler method and
writing the discretization as a linear system

D̃u
hx̃h = f̃h.(3.88)

Next, we consider a linear DAE

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ I = [t0, T ], x(t0) = 0,(3.89)

which is equivalent to the system (3.87), i.e., there exist orthogonal matrix functions P ∈
C([t0, T ], Rn,n) and Q ∈ C1([t0, T ], Rn,n), n = d̂ + â, such that Ẽ = PEQ, Ã = PAQ − PEQ̇
and f̃ = Pf . A discretization of (3.89) with the implicit Euler method leads to a linear system
of the form

Du
hxh = fh.

We will show that the solution x̂h of the system

D̂u
hx̂h = f̂h

with D̂u
h = PhDhQh and f̂h = Phfh = f̃h approximates the solution x̃h of (3.88); an assertion

that is motivated by the fact that the solutions x̃ and x of (3.87) and (3.89) satisfy x̃ = QT x. In
particular, we will show that ‖D̂u−1

h − D̃u−1

h ‖∞ = O(h) and estimate the norm of the differences
between certain blocks of these inverses.
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Similarly as for the ODE case in (3.67), we get the following relation for the matrices D̃u
h

and D̂u
h:

D̂u
h = D̃u

h + ∆h,

where the perturbation matrix ∆h has the block bidiagonal structure given in (3.68), with the
blocks

∆i = −ẼiQ
T
i Q̇i =

[
∆11i

∆12i

0 0

]

and

δi = −ẼiQ
T
i

(
Qi −Qi−1

h
− Q̇i

)

=

[
δ11i

δ12i

0 0

]

.

In particular, for sufficiently small h and for a sufficiently smooth matrix function Q there exist
positive constants C∆11

, C∆12
, Cδ11 and Cδ12 such that

‖∆11i
‖∞ ≤ C∆11

,

‖∆12i
‖∞ ≤ C∆12

,

‖δ11i
‖∞ ≤ Cδ11h,

‖δ12i
‖∞ ≤ Cδ12h,

for i = 1, . . . , N . To compute the inverses D̃u−1

h and D̂u−1

h , we introduce permutations Pl,h and
Pr,h such that

Ph,lD̃
u
hPh,r =

[
D̃o

h A12h

A21h
ΣAh

]

(3.90)

and

Ph,lD̂
u
hPh,r =

[
D̂o

h Â12h

A21h
ΣAh

]

,(3.91)

where

Â12h
= A12h

+ ∆12h
(3.92)

and

A12h
=






−A121

. . .

−A12N




 ,

∆12h
=








∆121

−∆122
− δ122

∆122

. . .
. . .

−∆12N
− δ12N

∆12N








,

A21h
=






−A211

. . .

−A21N




 ,

ΣAh
=






−ΣA1

. . .

−ΣAN




 .

(3.93)
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Furthermore, D̃o
h as well as D̂o

h = D̃o
h+∆11h

are defined as in (3.72) and (3.77), respectively. The
structure of the transformed discretization matrices allows us to compute the inverse matrices
with the help of the block LU decomposition

[
D̃o

h A12h

A21h
ΣAh

]

=

[
I A12h

Σ−1
Ah

0 I

] [
D̃o

h − A12h
Σ−1

Ah
A21h

0

0 ΣAh

] [
I 0

Σ−1
Ah

A21h
I

]

.

This immediately yields

[
D̃o

h A12h

A21h
ΣAh

]−1

=

[
I 0

−Σ−1
Ah

A21h
I

][ (

D̃o
h − A12h

Σ−1
Ah

A21h

)−1
0

0 Σ−1
Ah

][
I −A12h

Σ−1
Ah

0 I

]

=

[

S−1
h −S−1

h A12h
Σ−1

Ah

−Σ−1
Ah

A21h
S−1

h Σ−1
Ah

+ Σ−1
Ah

A21h
S−1

h A12h
Σ−1

Ah

]

,

(3.94)

with

S̃h = D̃o
h − A12h

Σ−1
Ah

A21h

=








1
h
ΣE1
− Ā1

− 1
h
ΣE2

1
h
ΣE2
− Ā2

. . .
. . .

− 1
h
ΣEN

1
h
ΣEN

− ĀN








,

Āi = A11i
+ A12i

Σ−1
Ai

A21i
.

(3.95)

Analogously, we get
[

D̂o
h Â12h

A21h
ΣAh

]−1

=

[

Ŝ−1
h −Ŝ−1

h Â12h
Σ−1

Ah

−Σ−1
Ah

A21h
Ŝ−1

h Σ−1
Ah

+ Σ−1
Ah

A21h
Ŝ−1

h Â12h
Σ−1

Ah

]

,

where

Ŝh = D̂o
h − Â12h

Σ−1
Ah

A21h

= D̂o
h −








−A121
+ ∆121

−∆122
− δ122

−A122
+ ∆122

. . .
. . .

−∆12N
− δ12N

−A12N
+ ∆12N








Σ−1
Ah

A21h

can be written in the form

Ŝh = S̃h + ∆̂h(3.96)

with

∆̂h =








∆̂1

−∆̂2 − δ̂2 ∆̂2

. . .
. . .

−∆̂N − δ̂N ∆̂N








,

∆̂i = ∆11i
−∆12i

Σ−1
Ai

A21i
,

and

δ̂i = δ11i
−∆12i

(

Σ−1
Ai−1

A21i−1
− Σ−1

Ai
A21i

)

− δ12i
Σ−1

Ai
A21i

.

Before proceeding, we need the following definition.
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Definition 35 Let A ∈ C1([t0, T ], Rm,n) and 2 ≤ p ≤ ∞. Then the constant L‖A‖p
is defined

as

L‖A‖p
= max

t∈[t0,T ]
{‖Ȧ(t)‖p, ‖Ȧ(t)T‖p}.

Because of
∥
∥
∥δ̂i

∥
∥
∥
∞

=
∥
∥
∥δ11i

−∆12i

(

Σ−1
Ai−1

A21i−1
− Σ−1

Ai
A21i

)

− δ12i
Σ−1

Ai
A21i

∥
∥
∥
∞

≤
(

Cδ11 + C∆12
L‖Σ−1

A A21‖∞ + Cδ12C‖Σ−1

A A21‖∞

)

h,

it follows that we can apply Lemma 32 and Lemma 33 directly to the matrices S̃h and Ŝh. Here
and in the following, by writing L‖·‖∞ we implicitly assume that the argument is differentiable,
which, by Theorem 3, can be guaranteed if we assume the matrix pair (E,A) to be sufficiently
smooth. Then the above inequality follows from the mean value theorem.

The matrix S̃h can be interpreted as the discretization matrix of the ordinary differential
equation

ΣE(t)ẋ(t) = Ā(t)x(t) + f(t),(3.97)

with
Ā = A11 + A12ΣAA21,

according to a discretization with the implicit Euler method. As in the previous section, we
consider an explicit discretization of (3.97) similar to (3.79) with the discretization matrix

S̄h =








1
h
ΣE1

− 1
h
ΣE2
− Ā2

1
h
ΣE2

. . .
. . .

− 1
h
ΣEN

− ĀN
1
h
ΣEN








,(3.98)

which possesses the inverse S̄−1
h with the blocks

[S̄−1
h ]ij =







h

[
j+1
∐

k=i

(I + hΣ−1
Ek

Āk)

]

Σ−1
Ej

for i ≥ j,

0 otherwise.

(3.99)

Corollary 36 Let S̄h and Ŝh be defined as in (3.98) and (3.96). Then there exists a constant
Cu

1 ∈ R, which does not depend on the step size h, such that for i, j = 1, ..., N ,
∥
∥
∥[S̄−1

h ]ij − [Ŝ−1
h ]ij

∥
∥
∥
∞
≤ Cu

1 h2(3.100)

for sufficiently small h. Furthermore,
∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞
≤ Cu

2 h(3.101)

and
∥
∥
∥Ŝ−1

h

∥
∥
∥
∞
≤ Cu

2 (T − t0)(3.102)

with

Cu
2 = 2C‖Σ−1

E ‖∞ exp
(

C‖Σ−1

E Ā‖∞(T − t0)
)

.
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Proof. The assertion (3.100) follows immediately from Lemma 33. In particular, we get

Cu
1 = 4 exp

(

C‖Σ−1

E Ā‖∞(T − t0)
)

C‖Σ−1

E ‖∞

(

C‖Σ−1

E (Ā−∆̂)‖∞

(

1 + C‖Ā‖∞

)

+ C
δ̂

)

.

From Lemma 32, it follows that ‖[S̄−1
h ]ij‖∞ ≤ Co

1h for i, j = 1, . . . , N with

Co
1 = C‖Σ−1

E ‖∞ exp
(

C‖Σ−1

E Ā‖∞(T − t0)
)

,

and thus
∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞
≤
∥
∥
∥[Ŝ−1

h ]ij − [S̄−1
h ]ij

∥
∥
∥
∞

+
∥
∥[S̄−1

h ]ij
∥
∥
∞

≤ Cu
1 h2 + Co

1h ≤ 2Co
1h ≤ Cu

2 h

holds for sufficiently small h. Then the estimate (3.102) follows from

∥
∥
∥Ŝ−1

h

∥
∥
∥
∞
≤ max

i

N∑

j=1

∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞

≤ 2NCo
1h = Cu

2 (T − t0).

The results of Corollary 36 help us to show two further properties of Ŝ−1
h and S̃−1

h .

Lemma 37 Let Ŝh and S̃h be defined as in (3.96) and (3.95). Then there exist constants Cu
3 ,

Cu
4 ∈ R

+, which do not depend on the step size h, such that

∥
∥
∥[S̃−1

h ]ij − [Ŝ−1
h ]ij

∥
∥
∥
∞
≤ Cu

3 h2(3.103)

for i, j = 1, ..., N , and

∥
∥
∥[Ŝ−1

h ]ij − [Ŝ−1
h ]i,j+1

∥
∥
∥
∞
≤ Cu

4 h2(3.104)

for i = 1, ..., N , j = 1, ..., N − 1.

Proof. The first estimate follows directly from Corollary 36, because

∥
∥
∥[S̃−1

h ]ij − [Ŝ−1
h ]ij

∥
∥
∥
∞
≤
∥
∥
∥[S̃−1

h ]ij − [S̄−1
h ]ij

∥
∥
∥
∞

+
∥
∥
∥[S̄−1

h ]ij − [Ŝ−1
h ]ij

∥
∥
∥
∞

≤ (C
u(1)
1 + C

u(2)
1 )h2,

where both C
u(1)
1 and C

u(2)
1 can be computed as in Corollary 36, i.e.,

C
u(1)
1 = 4 exp

(

C‖Σ−1

E
Ā‖∞(T − t0)

)

C‖Σ−1

E
‖∞C‖Σ−1

E
Ā‖∞

(

1 + C‖Ā‖∞

)

,

C
u(2)
1 = 4 exp

(

C‖Σ−1

E Ā‖∞(T − t0)
)

C‖Σ−1

E ‖∞

(

C‖Σ−1

E (Ā−∆̂)‖∞

(

1 + C‖Ā‖∞

)

+ C
δ̂

)

.

Thus, the inequality (3.103) follows from setting

Cu
3 = C

u(1)
1 + C

u(2)
1 .
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To prove the second estimate, we first show that the matrix S̄−1
h satisfies an inequality of the

form (3.104):

∥
∥[S̄−1

h ]ij − [S̄−1
h ]i,j+1

∥
∥
∞ =

∥
∥
∥
∥
∥
h

[
j+1
∐

k=i

(

I + hΣ−1
Ek

Āk

)
]

Σ−1
Ej

+ h

[
j+2
∐

k=i

(

I + hΣ−1
Ek

Āk

)
]

Σ−1
Ej+1

∥
∥
∥
∥
∥
∞

≤ h

(∥
∥
∥
∥
∥

j+1
∐

k=i

(

I + hΣ−1
Ek

Āk

)
∥
∥
∥
∥
∥
∞

∥
∥
∥Σ−1

Ej
− Σ−1

Ej+1

∥
∥
∥
∞

+

∥
∥
∥
∥
∥

j+1
∐

k=i

(

I + hΣ−1
Ek

Āk

)

−
j+2
∐

k=i

(

I + hΣ−1
Ek

Āk

)
∥
∥
∥
∥
∥
∞

∥
∥
∥Σ−1

Ej+1

∥
∥
∥
∞

)

≤ h

(

h exp
(

C‖Σ−1

E Ā‖∞(T − t0)
)

L‖Σ−1

E ‖∞

+

∥
∥
∥
∥
∥

[
j+2
∐

k=i

(

I + hΣ−1
Ek

Āk

)
]
((

I + hΣ−1
Ej+1

Āj+1

)

− I
)
∥
∥
∥
∥
∥
∞

∥
∥
∥Σ−1

Ej+1

∥
∥
∥
∞

)

≤ exp
(

C‖Σ−1

E Ā‖∞(T − t0)
)(

L‖Σ−1

E ‖∞ + C‖Σ−1

E Ā‖∞C‖Σ−1

E ‖∞

)

h2.

Thus, by applying Corollary 36, we get
∥
∥
∥[Ŝ−1

h ]ij − [Ŝ−1
h ]i,j+1

∥
∥
∥
∞
≤
∥
∥
∥[Ŝ−1

h ]ij − [S̄−1
h ]i,j

∥
∥
∥
∞

+
∥
∥[S̄−1

h ]ij − [S̄−1
h ]i,j+1

∥
∥
∞

+
∥
∥
∥[S̄−1

h ]i,j+1 − [Ŝ−1
h ]i,j+1

∥
∥
∥
∞

≤
(

2Cu
1 + exp

(

C‖Σ−1

E
Ā‖∞(T − t0)

)(

L‖Σ−1

E
‖∞ + C‖Σ−1

E
Ā‖∞C‖Σ−1

E
‖∞

))

︸ ︷︷ ︸

=: Cu
4

h2.

Next, we take further steps to prove the main result for uniquely solvable DAEs. First, we ex-
tend the result of Corollary 36 to the remaining blocks of the inverted transformed discretization
matrices. We denote these blocks as follows:

[

D̂uinv

h11 D̂uinv

h12

D̂uinv

h21 D̂uinv

h22

]

:=

[
D̂o

h Â12h

A21h
ΣAh

]−1

,(3.105)

i.e.,

D̂uinv

h11 = Ŝ−1
h ,

D̂uinv

h12 = −Ŝ−1
h Â12h

Σ−1
Ah

,

D̂uinv

h21 = −Σ−1
Ah

A21h
Ŝ−1

h ,

D̂uinv

h22 = Σ−1
Ah

+ Σ−1
Ah

A21h
Ŝ−1

h Â12h
Σ−1

Ah
.

(3.106)

Analogously, we define the blocks D̃uinv

h11 , D̃uinv

h12 , D̃uinv

h21 and D̃uinv

h22 for the case ∆h = 0.

Lemma 38 Let [

D̂uinv

h11 D̂uinv

h12

D̂uinv

h21 D̂uinv

h22

]
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be defined as in (3.105). Then there exist positive constants Cu
11, C

u
12, C

u
21, C

u
22 such that

∥
∥
∥D̂uinv

h11

∥
∥
∥
∞
≤ Cu

11,(3.107)
∥
∥
∥D̂uinv

h12

∥
∥
∥
∞
≤ Cu

12,(3.108)
∥
∥
∥D̂uinv

h21

∥
∥
∥
∞
≤ Cu

21,(3.109)
∥
∥
∥D̂uinv

h22

∥
∥
∥
∞
≤ Cu

22.(3.110)

Proof. The assertion (3.107) follows directly from Corollary 36. From the equality D̂uinv

h11 = Ŝ−1
h

it follows that

∥
∥
∥D̂uinv

h11

∥
∥
∥
∞

=
∥
∥
∥Ŝ−1

h

∥
∥
∥
∞
≤ Cu

2 (T − t0)

and we can set Cu
11 = Cu

2 (T − t0). For the remaining assertions we note that the matrix Ŝ−1
h Â12h

can be written blockwise as

[Ŝ−1
h Â12h

]ij =







[Ŝ−1
h ]ii (−A12i

+ ∆12i
) for i = j,

[Ŝ−1
h ]ij

(
−A12j

+ ∆12j

)
− [Ŝ−1

h ]i,j+1

(
∆12j+1

+ δ12j+1

)
for i > j,

0 otherwise.

From Corollary 36, we get

∥
∥
∥[Ŝ−1

h Â12h
]ii

∥
∥
∥
∞
≤
∥
∥
∥[Ŝ−1

h ]ii

∥
∥
∥
∞

(
‖A12i

‖∞ + ‖∆12i
‖∞
)

≤ Cu
2

(
C‖A12‖∞ + C∆12

)
h

and for i > j, using Corollary 36 and Lemma 37, we obtain

∥
∥
∥[Ŝ−1

h Â12h
]ij

∥
∥
∥
∞
≤
∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞

∥
∥A12j

∥
∥
∞ +

∥
∥
∥[Ŝ−1

h ]ij∆12j
− [Ŝ−1

h ]i,j+1∆12j+1

∥
∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]i,j+1

∥
∥
∥
∞

∥
∥δ12j+1

∥
∥
∞

≤ Cu
2

(
C‖A12‖∞ + Cδ12h

)
h

+
∥
∥
∥[Ŝ−1

h ]ij
(
∆12j

−∆12j+1

)
∥
∥
∥
∞

+
∥
∥
∥

(

[Ŝ−1
h ]ij − [Ŝ−1

h ]i,j+1

)

∆12j+1

∥
∥
∥
∞

≤ Cu
2 C‖A12‖∞h +

(
Cu

2

(
L‖∆12‖∞ + Cδ12

)
+ Cu

4 C∆12

)
h2

for sufficiently small h. It follows that

∥
∥
∥Ŝ−1

h Â12h

∥
∥
∥
∞
≤ max

i

∥
∥
∥[Ŝ−1

h Â12h
]ii

∥
∥
∥
∞

+
i−1∑

j=1

∥
∥
∥[Ŝ−1

h Â12h
]ij

∥
∥
∥
∞

≤ max
i

∥
∥
∥[Ŝ−1

h Â12h
]ii

∥
∥
∥
∞

+ (N − 1)
∥
∥
∥[Ŝ−1

h Â12h
]ij

∥
∥
∥
∞

≤ Cu
2 (T − t0)

(
C‖A12‖∞ + (T − t0)C∆12

h
)

+
(
Cu

2

(
L‖∆12‖∞ + Cδ12

)
+ Cu

4 C∆12

)
h

≤ 2Cu
11C‖A12‖∞

for sufficiently small h.
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The assertions (3.108), (3.109) and (3.110) follow from (3.106) by observing that Σ−1
Ah

and

A21h
are block diagonal matrices, and thus ‖Σ−1

Ah
‖∞ ≤ C‖Σ−1

A
‖∞ , ‖A21h

‖∞ ≤ C‖A21‖∞ . Hence,

we can choose

Cu
12 = 2Cu

11C‖A12‖∞C‖Σ−1

A ‖∞ ,

Cu
21 = C‖Σ−1

A ‖∞C‖A21‖∞Cu
11,

Cu
22 = C‖Σ−1

A ‖∞

(

1 + 2C‖A21‖∞Cu
11C‖A12‖∞C‖Σ−1

A ‖∞

)

.

Lemma 39 There exist constants C̄11, C̄12d, C̄12s, C̄21, C̄22d and C̄22s ∈ R
+, which do not

depend on the step size h, such that the following inequalities hold:

1.
∥
∥
∥[D̂uinv

h11 ]ij − [D̃uinv

h11 ]ij

∥
∥
∥
∞
≤ C̄11h

2 for i, j = 1, ..., N ;

2.
∥
∥
∥[D̂uinv

h12 ]ii − [D̃uinv

h12 ]ii

∥
∥
∥
∞
≤ C̄12dh for i = 1, ..., N ,

∥
∥
∥[D̂uinv

h12 ]ij − [D̃uinv

h12 ]ij

∥
∥
∥
∞
≤ C̄12sh

2 for i, j = 1, ..., N , j < i;

3.
∥
∥
∥[D̂uinv

h21 ]ij − [D̃uinv

h21 ]ij

∥
∥
∥
∞
≤ C̄21h

2 for i, j = 1, ..., N ;

4.
∥
∥
∥[D̂uinv

h22 ]ii − [D̃uinv

h22 ]ii

∥
∥
∥
∞
≤ C̄22dh for i = 1, ..., N ,

∥
∥
∥[D̂uinv

h22 ]ij − [D̃uinv

h22 ]ij

∥
∥
∥
∞
≤ C̄22sh

2 for i, j = 1, ..., N , j < i.

Proof.

1. Lemma 37 implies

∥
∥
∥[D̂uinv

h11 ]ij − [Duinv

h11 ]ij

∥
∥
∥
∞

=
∥
∥
∥[Ŝ−1

h ]ij − [S̃−1
h ]ij

∥
∥
∥
∞

≤ C̄11h
2,

where C̄11 := Cu
3 .

2. Corollary 36 and Lemma 37 imply

∥
∥
∥[D̂uinv

h12 ]ii − [D̃uinv

h12 ]ii

∥
∥
∥
∞

=
∥
∥
∥[Ŝ−1

h Â12h
Σ−1

Ah
]ii − [S̃−1

h A12h
Σ−1

Ah
]ii

∥
∥
∥
∞

≤
∥
∥
∥

(

[Ŝ−1
h ]ii[Â12h

]ii − [S̃−1
h ]ii[A12h

]ii

)

[Σ−1
Ah

]ii

∥
∥
∥
∞

≤
∥
∥
∥[Ŝ−1

h ]ii (−A12i
+ ∆12i

) + [S̃−1
h ]iiA12i

∥
∥
∥
∞

∥
∥
∥Σ−1

Ai

∥
∥
∥
∞

≤
(∥
∥
∥

(

[Ŝ−1
h ]ii − [S̃−1

h ]ii

)

A12i

∥
∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]ii∆12i

∥
∥
∥
∞

)

C‖Σ−1

A ‖∞

≤
(

Cu
3 C‖A12‖∞h2 + 2C‖Σ−1

E ‖∞C∆12
h
)

C‖Σ−1

A ‖∞
≤ 3C‖Σ−1

E ‖∞C∆12
C‖Σ−1

A ‖∞
︸ ︷︷ ︸

=: C̄12d

h
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for sufficiently small h. Moreover,

∥
∥
∥[D̂uinv

h12 ]ij − [D̃uinv

h12 ]ij

∥
∥
∥
∞

=
∥
∥
∥[Ŝ−1

h Â12h
Σ−1

Ah
]ij − [S̃−1

h A12h
Σ−1

Ah
]ij

∥
∥
∥
∞

≤
∥
∥
∥

(

[Ŝ−1
h ]ij [Â12h

]jj + [Ŝ−1
h ]i,j+1[Â12h

]j+1,j − [S̃−1
h ]ij[A12h

]jj

)

[Σ−1
Ah

]jj

∥
∥
∥
∞

≤
∥
∥
∥[Ŝ−1

h ]ij
(
−A12j

+ ∆12j

)
− [Ŝ−1

h ]i,j+1

(
∆12j+1

+ δ12j+1

)

+[S̃−1
h ]ijA12j

∥
∥
∥
∞

∥
∥
∥Σ−1

Ai

∥
∥
∥
∞

≤
(∥
∥
∥

(

[S̃−1
h ]ij − [Ŝ−1

h ]ij

)

A12j

∥
∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]i,j+1δ12j+1

∥
∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]ij∆12j
− [Ŝ−1

h ]i,j+1∆12j+1

∥
∥
∥
∞

)

C‖Σ−1

A ‖∞

≤
((

Cu
3 C‖A12‖∞ + Cu

2 Cδ12

)
h2 +

∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞

∥
∥∆12j

−∆12j+1

∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]ij − [Ŝ−1
h ]i,j+1

∥
∥
∥
∞

∥
∥∆12j+1

∥
∥
∞

)

C‖Σ−1

A ‖∞

≤
(
Cu

3 C‖A12‖∞ + Cu
2 Cδ12 + Cu

2 L‖∆12‖∞ + Cu
4 C‖∆12‖∞

)
C‖Σ−1

A ‖∞
︸ ︷︷ ︸

=: C̄12s

h2

for sufficiently small h.

3. Once again, Lemma 37 implies

∥
∥
∥[D̂uinv

h21 ]ij − [D̃uinv

h21 ]ij

∥
∥
∥
∞

=
∥
∥
∥[Σ−1

Ah
A21h

Ŝ−1
h ]ij − [Σ−1

Ah
A21h

S̃−1
h ]ij

∥
∥
∥
∞

=
∥
∥
∥−Σ−1

Ai
A21i

[Ŝ−1
h ]ij + Σ−1

Ai
A21i

[S−1
h ]ij

∥
∥
∥
∞

≤
∥
∥
∥Σ−1

Ai
A21i

∥
∥
∥
∞

∥
∥
∥[S−1

h ]ij − [Ŝ−1
h ]ij

∥
∥
∥
∞

≤ C‖Σ−1

A ‖∞C‖A21‖∞Cu
3

︸ ︷︷ ︸

=: C̄21

h2

for sufficiently small h.

4. Similarly,

∥
∥
∥[D̂uinv

h22 ]ii − [D̃uinv

h22 ]ii

∥
∥
∥
∞

=
∥
∥
∥[Σ−1

Ah
+ Σ−1

Ah
A21h

Ŝ−1
h Â12h

Σ−1
Ah

]ii

−[Σ−1
Ah

+ Σ−1
Ah

A21h
S̃−1

h A12h
Σ−1

Ah
]ii

∥
∥
∥
∞

=
∥
∥
∥Σ−1

Ai
A21i

∥
∥
∥
∞

∥
∥
∥[Ŝ−1

h Â12h
Σ−1

Ah
]ii − [S̃−1

h A12h
Σ−1

Ah
]ii

∥
∥
∥
∞

≤ C‖Σ−1

A ‖∞C‖A12‖∞C̄12d
︸ ︷︷ ︸

=: C̄22d

h,
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∥
∥
∥[D̂uinv

h22 ]ij − [D̃uinv

h22 ]ij

∥
∥
∥
∞

=
∥
∥
∥[Σ−1

Ah
+ Σ−1

Ah
A21h

Ŝ−1
h Â12h

Σ−1
Ah

]ij

−[Σ−1
Ah

+ Σ−1
Ah

A21h
S̃−1

h A12h
Σ−1

Ah
]ij

∥
∥
∥
∞

=
∥
∥
∥Σ−1

Ai
A21i

∥
∥
∥
∞

∥
∥
∥[Ŝ−1

h Â12h
Σ−1

Ah
]ij − [S̃−1

h A12h
Σ−1

Ah
]ij

∥
∥
∥
∞

≤ C‖Σ−1

A ‖∞C‖A12‖∞C̄12s
︸ ︷︷ ︸

=: C̄22s

h2

for sufficiently small h.

Now we are prepared to prove the main result for uniquely solvable DAEs.

Theorem 40 Let D̃u
h and Du

h be the discretization matrices of the globally equivalent differential-
algebraic equations (3.87) and (3.89) and let P and Q be the corresponding transformation
functions. Let D̂u

h = PhDhQh with Ph and Qh defined as in (3.63). Then there exists a positive
constant Cu, which does not depend on the step size h, such that

∥
∥
∥D̂u−1

h − D̃u−1

h

∥
∥
∥
∞
≤ Cuh.

Proof. Using the permutations Pl,h and Pr,h as defined in (3.90) and (3.91), we get

∥
∥
∥D̂u−1

h − D̃u−1

h

∥
∥
∥
∞

=
∥
∥
∥P uT

h,r D̂u−1

h P uT

h,l − P uT

h,r D̃u−1

h P uT

h,l

∥
∥
∥
∞

=

∥
∥
∥
∥

(

P u
h,lD̂

u
hP u

h,r

)−1
−
(

P u
h,lD̃

u
hP u

h,r

)−1
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[
D̂o

h Â12h

A21h
ΣAh

]−1

−
[

D̃o
h A12h

A21h
ΣAh

]−1
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[

D̂uinv

h11 D̂uinv

h12

D̂uinv

h21 D̂uinv

h22

]

−
[

D̃uinv

h11 D̃uinv

h12

D̃uinv

h21 D̃uinv

h22

]∥
∥
∥
∥
∥
∞

≤ max
(∥
∥
∥D̂uinv

h11 − D̃uinv

h11

∥
∥
∥
∞

+
∥
∥
∥D̂uinv

h12 − D̃uinv

h12

∥
∥
∥
∞

,
∥
∥
∥D̂uinv

h21 − D̃uinv

h21

∥
∥
∥
∞

+
∥
∥
∥D̂uinv

h22 − D̃uinv

h22

∥
∥
∥
∞

)

.

By Lemma 39, we have

∥
∥
∥D̂uinv

h11 − D̃uinv

h11

∥
∥
∥
∞
≤ max

i=1,...,N

N∑

j=1

∥
∥
∥[D̂uinv

h11 ]ij − [D̃uinv

h11 ]ij

∥
∥
∥
∞

≤ NC̄11h
2 = C̄11h(T − t0).

(3.111)

Analogously, we get

∥
∥
∥D̂uinv

h21 − D̃uinv

h21

∥
∥
∥
∞
≤ C̄21h(T − t0).(3.112)
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For the remaining blocks we achieve the same result by observing that

∥
∥
∥D̂uinv

h12 − D̃uinv

h12

∥
∥
∥
∞
≤ max

i=1,...,N

N∑

j=1

∥
∥
∥[D̂uinv

h12 ]ij − [D̃uinv

h12 ]ij

∥
∥
∥
∞

= max
i=1,...,N





∥
∥
∥[D̂uinv

h12 ]ii − [D̃uinv

h12 ]ii

∥
∥
∥
∞

+

i−1∑

j=1

∥
∥
∥[D̂uinv

h12 ]ij − [D̃uinv

h12 ]ij

∥
∥
∥
∞





≤
(
C̄12dh + NC̄12sh

2
)

=
(
C̄12d + (T − t0)C̄12s

)
h

and, analogously,
∥
∥
∥D̂uinv

h22 −Duinv

h22

∥
∥
∥
∞
≤ (C̄22d + (T − t0)C̄22s)h.

In summary, we conclude

∥
∥
∥D̂u−1

h −Du−1

h

∥
∥
∥
∞
≤ max

(
C̄12d + (T − t0)(C̄11 + C̄12s), C̄22d + (T − t0)(C̄21 + C̄22s)

)
h

= Cuh.

The general DAE case

The final step to prove the main result of the whole section is to show that the results we
have obtained for regular DAEs can be extended to the least squares solution of over- and
underdetermined DAEs.

For this purpose, we consider a general strangeness free differential-algebraic equation (1.1)
with a homogeneous initial condition. The discretization of this system with the implicit Euler
method and a fixed step size h = (T − t0)/N is written in terms of the linear system

Dhxh = fh,

with Dh defined as in (3.12) and

fh =






f1
...

fN




 .

Furthermore, consider a globally equivalent DAE in orthogonal standard form (2.1) and let P
and Q be the corresponding transformation functions. Applying the same discretization to the
orthogonal standard form system leads to a linear system

D̃hx̃h = f̃h,

with D̃h defined as in (3.44) and f̃h defined analogously to fh. From (3.65) and (3.66), we know
that for

D̂h = PhDhQh,(3.113)

where the orthogonal transformations Ph and Qh are defined as in (3.63), we get

D̂h = D̃h + ∆h.
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The perturbation matrix ∆h has the structure given in (3.68), i.e.,

∆h =










∆1

−∆2 − δ2 ∆2

−∆3 − δ3 ∆3

. . .
. . .

−∆N − δN ∆N










with

∆i = −ẼiQ
T
i Q̇i =





∆11i
∆12i

∆13i

0 0 0
0 0 0





and

δi = −ẼiQ
T
i

(
Qi −Qi−1

h
− Q̇i

)

=





δ11i
δ12i

δ13i

0 0 0
0 0 0



 ,

for i = 1, . . . , N . Thus, for a sufficiently smooth transformation function Q we obtain the
inequalities

‖∆1ji
‖∞ ≤ C∆1j

and
‖δ1ji
‖∞ ≤ Cδ1j

h

with positive constants C∆1j
and Cδ1j

for j = 1, 2, 3. The corresponding right-hand sides satisfy

f̂h = Phfh = f̃h.
Our aim is to show that the difference between the Moore-Penrose pseudoinverses of D̂h and

D̃h can be bounded as
∥
∥
∥D̂+

h − D̃+
h

∥
∥
∥
∞
≤ Ch(3.114)

for some positive constant C which does not depend on h.
We compute the pseudoinverses of D̃h and D̂h using the formula (3.22) given in Lemma 22.

We apply permutations Ph,l and Ph,r from the left and from the right, respectively, to the
discretization matrices, such that we obtain the structures

Ph,lD̂hPh,r =





D̂o
h Â12h

Â13h

A21h
ΣAh

0
0 0 0





and

Ph,lD̃hPh,r =





D̃o
h A12h

A13h

A21h
ΣAh

0
0 0 0



 ,

where the matrices D̃o
h and D̂o

h are defined as in (3.72) and (3.77). The blocks A12h
, Â12h

, A21h

and ΣAh
are defined as in (3.92) and (3.93), while the matrices A13h

and Â13h
are given by

A13h
=






−A131

. . .

−A13N




(3.115)
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and

Â13h
= A13h

+ ∆13h
,

with

∆13h
=








∆131

−∆132
− δ132

∆132

. . .
. . .

−∆13N
− δ13N

∆13N








.

According to Lemma 22, the pseudoinverses of D̂h and D̃h can be computed as follows. From
the previous chapters we know that the matrices

Rh =

[
D̃o

h A12h

A21h
ΣAh

]

(3.116)

as well as

R̂h =

[
D̂o

h Â12h

A21h
ΣAh

]

are nonsingular for sufficiently small step sizes h, and that the inverses of both matrices are
uniformly bounded.

If we set

Bh =

[
A13h

0

]

,(3.117)

then the Moore-Penrose pseudoinverse of Ph,lD̃hPh,r is given by

(

Ph,lD̃hPh,r

)+
=





Do
h A12h

A13h

A21h
ΣAh

0
0 0 0





+

=

[
Rh Bh

0 0

]+

=

[ (
I − VhW−1

h V T
h

)
R−1

h 0

W−1
h V T

h R−1
h 0

]

,

where

Vh = R−1
h Bh(3.118)

and

Wh = I + V T
h Vh.(3.119)

Analogously, we can compute the pseudoinverse of Ph,lD̂hPh,r as

(

Ph,lD̂hPh,r

)+
=

[ (

I − V̂hŴ−1
h V̂ T

h

)

R̂−1
h 0

Ŵ−1
h V̂ T

h R̂−1
h 0

]

with

B̂h =

[
Â13h

0

]

, V̂h = R̂−1
h B̂h, Ŵh = I + V̂ T

h V̂h.(3.120)

These representations of the pseudoinverses will be convenient for proving the main result (3.114).
Before we can achieve this proof, we have to show the following property.
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Lemma 41 Let Wh = I + V T
h Vh with

Vh = R−1
h Bh,

where Rh and Bh are defined as in (3.116) and (3.117). Then the inverse of Wh is uniformly
bounded, i.e., there exists a constant CW−1 ∈ R

+ such that

∥
∥W−1

h

∥
∥
∞ ≤ CW−1 .

Proof. See Appendix A.

Theorem 42 Let D̂h and D̃h be defined as in (3.44) and (3.113). Then there exists a positive
constant Ĉ, which does not depend on the step size h, such that

∥
∥
∥D̂+

h − D̃+
h

∥
∥
∥
∞
≤ Ĉh(3.121)

for sufficiently small h.

Proof. First of all we can transform the matrices using the permutations Ph,l and Ph,r, which
leads to

∥
∥
∥D̂+

h − D̃+
h

∥
∥
∥
∞

=
∥
∥
∥P T

h,rD̂
+
h P T

h,l − P T
h,rD̃

+
h P T

h,l

∥
∥
∥
∞

=

∥
∥
∥
∥
∥
∥
∥





D̂o
h Â12h

Â13h

A21h
ΣAh

0
0 0 0





+

−





D̃o
h A12h

A13h

A21h
ΣAh

0
0 0 0





+
∥
∥
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[ (

I − V̂hŴ−1
h V̂ T

h

)

R̂−1
h 0

Ŵ−1
h V̂ T

h R̂−1
h 0

]

−
[ (

I − VhW−1
h V T

h

)
R−1

h 0

W−1
h V T

h R−1
h 0

]
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[ (

I − V̂hŴ−1
h V̂ T

h

)

R̂−1
h −

(
I − VhW−1

h V T
h

)
R−1

h 0

Ŵ−1
h V̂ T

h R̂−1
h −W−1

h V T
h R−1

h 0

]∥
∥
∥
∥
∥
∞

.

Here, the matrices Rh, Vh, Wh, R̂h, V̂h and Ŵh are defined as in (3.116), (3.118), (3.119) and
(3.120). The rest of this proof is concerned with estimating the norms of the nonzero blocks in
D̂+

h −D+
h . By basic algebraic manipulations,

(

I − V̂hŴ−1
h V̂ T

h

)

R̂−1
h −

(
I − VhW−1

h V T
h

)
R−1

h

=
(
I − VhW−1

h V T
h

) (

R̂−1
h −R−1

h

)

+ VhW−1
h

(

V T
h − V̂ T

h

)

R̂−1
h

+V̂h

(

W−1
h − Ŵ−1

h

)

V̂ T
h R̂−1

h +
(

Vh − V̂h

)

W−1
h V̂ T

h R̂−1
h

(3.122)

and

Ŵ−1
h V̂ T

h R̂−1
h −W−1

h V T
h R−1

h = W−1
h V T

h

(

R̂−1
h −R−1

h

)

+ W−1
h

(

V̂ T
h − V T

h

)

R̂−1
h

+
(

Ŵ−1
h −W−1

h

)

V̂ T
h R̂−1

h .
(3.123)
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In order to show the bound (3.121), we have to examine the different parts of these sums. For
R̂−1

h , we get from Lemma 38 that

∥
∥
∥R̂−1

h

∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[
D̂o

h Â12h

A21h
ΣAh

]−1
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[

D̂uinv

h11 D̂uinv

h12

D̂uinv

h21 D̂uinv

h22

]∥
∥
∥
∥
∥
∞

≤ max
(∥
∥
∥D̂uinv

h11

∥
∥
∥
∞

+
∥
∥
∥D̂uinv

h12

∥
∥
∥
∞

,
∥
∥
∥D̂uinv

h21

∥
∥
∥
∞

+
∥
∥
∥D̂uinv

h22

∥
∥
∥
∞

)

≤ max (Cu
11 + Cu

12, C
u
21 + Cu

22) =: C
R̂−1 .

The difference R̂−1
h −R−1

h can be estimated using Theorem 40 and (3.91), (3.90):
∥
∥
∥R̂−1

h −R−1
h

∥
∥
∥
∞
≤
∥
∥
∥P T

h,rD̂
u−1

h P T
h,l − P T

h,rD
u−1

h P T
h,l

∥
∥
∥
∞

≤
∥
∥
∥D̂u−1

h − D̃u−1

h

∥
∥
∥
∞

≤ Cuh.

The matrices V̂h and Vh are given by

V̂h = R̂−1
h B̂h

=

[
D̂o

h Â12h

A21h
ΣAh

]−1 [
Â13h

0

]

=

[

D̂uinv

h11 D̂uinv

h12

D̂uinv

h21 D̂uinv

h22

][
Â13h

0

]

=

[

D̂uinv

h11

D̂uinv

h21

]

Â13h
,

and, analogously,

Vh = R−1
h Bh =

[

D̃uinv

h11 D̃uinv

h21

]

A13h
.

Lemma 38 implies
∥
∥
∥V̂h

∥
∥
∥
∞
≤ max

(∥
∥
∥D̂uinv

h11

∥
∥
∥
∞

,
∥
∥
∥D̂uinv

h21

∥
∥
∥
∞

)∥
∥
∥Â13h

∥
∥
∥
∞

≤ max (Cu
11, C

u
21)
(
C‖A13‖∞ + 2C‖∆13‖∞ + C‖δ13‖∞h

)

≤ max (Cu
11, C

u
21)
(
C‖A13‖∞ + 3C‖∆13‖∞

)

=: C
V̂

for sufficiently small h, and analogously

‖Vh‖∞ ≤ max
(∥
∥
∥D̃uinv

h11

∥
∥
∥
∞

,
∥
∥
∥D̃uinv

h21

∥
∥
∥
∞

)

‖A13h
‖∞

≤ max (Cu
11, C

u
21)C‖A13‖∞ =: CV .

For the transposed matrices V̂ T
h and V T

h we get

∥
∥
∥V̂ T

h

∥
∥
∥
∞
≤
(∥
∥
∥
∥

(

D̂uinv

h11

)T
∥
∥
∥
∥
∞

+

∥
∥
∥
∥

(

D̂uinv

h21

)T
∥
∥
∥
∥
∞

)∥
∥
∥ÂT

13h

∥
∥
∥
∞

≤ (Cu
11 + Cu

21)
(
C‖A13‖∞ + 3C‖∆13‖∞

)
=: C

V̂ T
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and

∥
∥V T

h

∥
∥
∞ ≤

(∥
∥
∥
∥

(

D̃uinv

h11

)T
∥
∥
∥
∥
∞

+

∥
∥
∥
∥

(

D̃uinv

h21

)T
∥
∥
∥
∥
∞

)
∥
∥AT

13h

∥
∥
∞

≤ (Cu
11 + Cu

21)C‖A13‖∞ =: CV T

for sufficiently small h. Here, we used the fact that the definition of C‖·‖∞, see Definition 23, is
invariant under transposition, which implies that the constants Cu

11 and Cu
21 defined in Lemma 38

share the same property.

Considering the difference

V̂h − Vh =

[

D̂uinv

h11 Â13h
−Duinv

h11 A13h

D̂uinv

h21 Â13h
−Duinv

h21 A13h

]

,

we get for the first block row, using D̂uinv

h11 = Ŝ−1
h and (3.111), that

∥
∥
∥D̂uinv

h11 Â13h
−Duinv

h11 A13h

∥
∥
∥
∞

=
∥
∥
∥

(

D̂uinv

h11 −Duinv

h11

)

A13h
+ Ŝ−1

h ∆13h

∥
∥
∥
∞

≤ C̄11C‖A13‖∞h +
∥
∥
∥Ŝ−1

h ∆13h

∥
∥
∥
∞

.

To show that ‖Ŝ−1
h ∆13h

‖∞ is small, we compute the matrix Ŝ−1
h ∆13h

blockwise, using the

structure of ∆13h
and the fact that Ŝ−1

h is a lower block triangular matrix:

[Ŝ−1
h ∆13h

]ij =







[Ŝ−1
h ]ii∆13i

for i = j,

[Ŝ−1
h ]ij∆13j

− [Ŝ−1
h ]i,j+1

(
∆13j+1

+ δ13j+1

)
for i > j,

0 otherwise.

The estimate ‖[Ŝh]−1
d,i ‖∞ ≤ 2hCΣ−1

E
(see (3.85)) implies the following bound for the diagonal

blocks of Ŝ−1
h ∆13h

,

∥
∥
∥[Ŝ−1

h ∆13h
]ii

∥
∥
∥
∞

=
∥
∥
∥[Ŝ−1

h ]ii∆13i

∥
∥
∥
∞

≤
∥
∥
∥[Ŝ−1

h ]ii

∥
∥
∥
∞

C‖∆13‖∞

≤
∥
∥
∥[Ŝh]−1

d,i

∥
∥
∥
∞

C‖∆13‖∞

≤ 2C‖Σ−1

E ‖∞C‖∆13‖∞h.

(3.124)

Applying Lemma 36 and Lemma 37 yields for i > j,

∥
∥
∥[Ŝ−1

h ∆13h
]ij

∥
∥
∥
∞

=
∥
∥
∥[Ŝ−1

h ]ij∆13j
− [Ŝ−1

h ]i,j+1

(
∆13j+1

+ δ13j+1

)
∥
∥
∥
∞

≤
∥
∥
∥[Ŝ−1

h ]ij

∥
∥
∥
∞

∥
∥∆13j

−∆13j+1

∥
∥
∞

+
∥
∥
∥[Ŝ−1

h ]ij − [Ŝ−1
h ]i,j+1

∥
∥
∥
∞

∥
∥∆13j+1

∥
∥
∞ +

∥
∥
∥[Ŝ−1

h ]i,j+1δ13j+1

∥
∥
∥
∞

≤
(
Cu

2 L‖∆13‖∞ + Cu
5 C‖∆13‖∞ + Cu

2 C‖δ13‖∞
)
h2.

(3.125)
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This leads to

∥
∥
∥Ŝ−1

h ∆13h

∥
∥
∥
∞
≤ max

i=1,...,N

N∑

j=1

∥
∥
∥[Ŝ−1

h ∆13h
]ij

∥
∥
∥
∞

≤ 2C‖Σ−1

E ‖∞C‖∆13‖∞h + N
(
Cu

2 L‖∆13‖∞ + Cu
5 C‖∆13‖∞ + Cu

2 C‖δ13‖∞
)
h2

=
(

2C‖Σ−1

E ‖∞C‖∆13‖∞ + (T − t0)(C
u
2 L‖∆13‖∞ + Cu

5 C‖∆13‖∞ + Cu
2 C‖δ13‖∞)

)

h

=: CS−1∆13
h,

and thus,

∥
∥
∥D̂uinv

h11 Â13h
− D̃uinv

h11 A13h

∥
∥
∥
∞
≤
(
C̄11C‖A13‖∞ + CS−1∆13

)
h.

Because of the identity D̂uinv

h21 = −Σ−1
Ah

A21h
Ŝ−1

h , we can estimate the second block of V̂h − Vh

analogously. Using (3.112), we achieve

∥
∥
∥D̂uinv

h21 Â13h
− D̃uinv

h21 A13h

∥
∥
∥
∞

=
∥
∥
∥

(

D̂uinv

h21 − D̃uinv

h21

)

A13h
− Σ−1

Ah
A21h

Ŝ−1
h ∆13h

∥
∥
∥
∞

≤
(

C̄21C‖A13‖∞ + C‖Σ−1

A A21‖∞CS−1∆13

)

h.

Combining both inequalities yields

‖V̂h − Vh‖∞ = max
(∥
∥
∥D̂uinv

h11 Â13h
− D̃uinv

h11 A13h

∥
∥
∥
∞

,
∥
∥
∥D̂uinv

h21 Â13h
− D̃uinv

h21 A13h

∥
∥
∥
∞

)

≤
(

C̄11C‖A13‖∞ + max
(

1, C‖Σ−1

A
A21‖∞

)

CS−1∆13

)

h

=: C∆V h.

The difference

V̂ T
h − V T

h =

[

ÂT
13h

(

D̂uinv

h11

)T

− AT
13h

(

D̃uinv

h11

)T

ÂT
13h

(

D̂uinv

h21

)T

− AT
13h

(

D̃uinv

h21

)T
]

=

[

AT
13h

(

D̂uinv

h11 − D̃uinv

h11

)T

+ ∆T
13h

(

D̂uinv

h11

)T

AT
13h

(

D̂uinv

h21 − D̃uinv

h21

)T

+ ∆T
13h

(

D̂uinv

h21

)T
]

between the transposed matrices V̂ T
h and V T

h can be estimated as follows. In Lemma 39 we have
proved that ∥

∥
∥[D̂uinv

h11 ]ij − [D̃uinv

h11 ]ij

∥
∥
∥
∞
≤ C̄11h

2

for i, j = 1, . . . , N . From ‖AT ‖∞ ≤ m‖A‖∞ for all A ∈ R
m,n, it follows that

∥
∥
∥
∥
AT

13h

(

D̂uinv

h11 − D̃uinv

h11

)T
∥
∥
∥
∥
∞

= max
i

N∑

j=1

∥
∥
∥
∥

[(

D̂uinv

h11 − D̃uinv

h11

)

A13h

]T

ij

∥
∥
∥
∥
∞

≤ d̂max
i

N∑

j=1

∥
∥
∥
∥

[(

D̂uinv

h11 − D̃uinv

h11

)

A13h

]

ij

∥
∥
∥
∥
∞

≤ d̂max
i

N∑

j=1

(∥
∥
∥[D̂uinv

h11 ]ij − [D̃uinv

h11 ]ij

∥
∥
∥
∞
‖A13i

‖∞
)

≤ d̂C‖A13‖∞C̄11h.
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Analogously, we get
∥
∥
∥
∥
AT

13h

(

D̂uinv

h21 − D̃uinv

h21

)T
∥
∥
∥
∥
∞
≤ d̂C‖A13‖∞C̄21h.

From (3.124) and (3.125), we obtain for

∆T
13h

(

D̂uinv

h11

)T

= ∆T
13h

Ŝ−T
h =

(

Ŝ−1
h ∆13h

)T

that

∥
∥
∥
∥
∥

[

∆T
13h

(

D̂uinv

h11

)T
]

ij

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[(

Ŝ−1
h ∆13h

)T
]

ij

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥

[

Ŝ−1
h ∆13h

]T

ji

∥
∥
∥
∥
∞
≤ d̂

∥
∥
∥
∥

[

Ŝ−1
h ∆13h

]

ji

∥
∥
∥
∥
∞

for i, j = 1, . . . , N . Consequently,

∥
∥
∥
∥
∆T

13h

(

D̂uinv

h11

)T
∥
∥
∥
∥
∞
≤ d̂

∥
∥
∥Ŝ−1

h ∆13h

∥
∥
∥
∞
≤ d̂CS−1∆13

h.

The identity

∆T
13h

(

D̂uinv

h21

)T

=
(

Σ−1
Ah

A21h
Ŝ−1

h ∆13h

)T

yields
∥
∥
∥
∥
∆T

13h

(

D̂uinv

h21

)T
∥
∥
∥
∥
∞
≤ d̂C‖Σ−1

A A21‖∞CS−1∆13
h,

which implies

∥
∥
∥V̂ T

h − V T
h

∥
∥
∥
∞
≤
∥
∥
∥
∥
AT

13h

(

D̂uinv

h11 − D̃uinv

h11

)T
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
∆T

13h

(

D̂uinv

h11

)T
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
AT

13h

(

D̂uinv

h21 − D̃uinv

h21

)T
∥
∥
∥
∥
∞

+

∥
∥
∥
∥
∆T

13h

(

D̂uinv

h21

)T
∥
∥
∥
∥
∞

≤ d̂
(

C‖A13‖∞
(
C̄11 + C̄21

)
+
(

1 + C‖Σ−1

A
A21‖∞

)

CS−1∆13

)

h

=: C∆V T h.

Now we consider the matrices

Ŵh = I + V̂ T
h V̂h, Wh = I + V T

h Vh.

From the observation

∥
∥
∥Ŵh −Wh

∥
∥
∥
∞

=
∥
∥
∥V T

h Vh − V̂ T
h V̂h

∥
∥
∥
∞

≤
∥
∥
∥V T

h − V̂ T
h

∥
∥
∥
∞
‖Vh‖∞ +

∥
∥
∥V̂ T

h

∥
∥
∥
∞

∥
∥
∥Vh − V̂h

∥
∥
∥
∞

,

we conclude

‖Ŵh −Wh‖∞ ≤ (C∆V T CV + C∆V CV T )h =: C∆W h.
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Using Neumann series, we obtain for h < (2CW−1C∆W )−1 that
∥
∥
∥Ŵ−1

h −W−1
h

∥
∥
∥
∞

=

∥
∥
∥
∥

(

Ŵh −Wh + Wh

)−1
−W−1

h

∥
∥
∥
∥
∞

=

∥
∥
∥
∥

(

Wh

(

I −W−1
h

(

Wh − Ŵh

)))−1
−W−1

h

∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

(

I +
∞∑

i=1

(

W−1
h

(

Wh − Ŵh

))i
)

W−1
h −W−1

h

∥
∥
∥
∥
∥
∞

≤
∥
∥
∥
∥
∥

∞∑

i=1

(

W−1
h

(

Wh − Ŵh

))i

∥
∥
∥
∥
∥
∞

∥
∥W−1

h

∥
∥
∞

≤
∥
∥W−1

h

∥
∥
∞

∞∑

i=1

(∥
∥W−1

h

∥
∥
∞

∥
∥
∥Wh − Ŵh

∥
∥
∥
∞

)i

≤ CW−1

∞∑

i=1

(CW−1C∆W h)i

≤ C2
W−1C∆W h

∞∑

i=0

(CW−1C∆W h)i

≤ C2
W−1C∆W h

1− CW−1C∆W h

≤ 2C2
W−1C∆W h =: C∆W−1h.

The above considerations are combined to show the assertion (3.121). For the upper nonzero
block of D̂+

h −D+
h we get, according to (3.122), that

∥
∥
∥

(

I − V̂hŴ−1
h V̂ T

h

)

R̂−1
h −

(
I − VhW−1

h V T
h

)
R−1

h

∥
∥
∥
∞

≤
∥
∥
∥

(
I − VhW−1

h V T
h

) (

R̂−1
h −R−1

h

)∥
∥
∥
∞

+
∥
∥
∥VhW−1

h

(

V T
h − V̂ T

h

)

R̂−1
h

∥
∥
∥
∞

+
∥
∥
∥V̂h

(

W−1
h − Ŵ−1

h

)

V̂ T
h R̂−1

h

∥
∥
∥
∞

+
∥
∥
∥

(

Vh − V̂h

)

W−1
h V̂ T

h R̂−1
h

∥
∥
∥
∞

≤ (1 + CV CW−1CV T )C∆Rh + CV CW−1C∆V C
R̂−1h

+C
V̂

C∆W−1CV̂ T C
R̂−1h + C∆V CW−1CV̂ T C

R̂−1h
=: C1h

and for the lower block according to (3.123)
∥
∥
∥Ŵ−1

h V̂ T
h R̂−1

h −W−1
h V T

h R−1
h

∥
∥
∥
∞
≤
∥
∥
∥W−1

h V T
h

(

R̂−1
h −R−1

h

)∥
∥
∥
∞

+
∥
∥
∥W−1

h

(

V̂ T
h − V T

h

)

R̂−1
h

∥
∥
∥
∞

+
∥
∥
∥

(

Ŵ−1
h −W−1

h

)

V̂ T
h R̂−1

h

∥
∥
∥
∞

≤ CW−1CV T C∆Rh + CW−1C∆V C
R̂−1h + C∆W−1CV̂ T C

R̂−1h
=: C2h

and therefore, finally, (3.121) holds with Ĉ := max (C1, C2) .

3.3.3 The main theorem

Let us recall the objective of this section. Consider a strangeness free linear differential-algebraic
equation of the form (1.1) with a homogeneous initial condition x(t0) = 0, and a linear system

Dhxh = fh,
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which represents the discretization of (1.1) with the implicit Euler method. Then, our aim is to
show that the vector

xh = D+
h fh,

where D+
h is the Moore-Penrose pseudoinverse of Dh, contains approximations to the Moore-

Penrose solution

x = D+f

of (1.1). Here, D+ denotes the Moore-Penrose pseudoinverse of the differential-algebraic operator
D, as defined in Section 2.2.2.

In Theorem 31, it has been shown that this approximation property is indeed true for systems
that are given in orthogonal standard form. Theorem 42 can be used to generalize this result to
general linear strangeness free differential algebraic equations.

Theorem 43 Consider the linear strangeness free differential algebraic equation (1.1), where
E and A are sufficiently smooth matrix functions. Let x = D+f be the (unique) solution of the
minimization problem (2.14) and let xh = D+

h fh be the solution of the minimization problem
(3.39), where the system Dhxh = fh represents the discretization of (1.1) with the implicit Euler
method using a fixed step size h = (T − t0)/N .

Then there exists a positive constant C, which does not depend on the step size h, such that

‖xh −RXh
x‖∞ ≤ Ch(3.126)

holds for sufficiently small h, where RXh
is defined as in (3.4).

Proof. By Theorem 11, there exist pointwise orthogonal matrix functions P and Q such that we
can transform (1.1) to the orthogonal standard form (2.1). Let the system D̃hx̃h = f̃h represent
the discretization of (2.1) with the implicit Euler method. Furthermore, let Ph and Qh be defined
as in (3.63). Then by Theorem 31 and Theorem 42, setting D̂h = PhDhQh, we get

‖xh −RXh
x‖∞ ≤ ‖Qh‖∞

∥
∥QT

h xh −QT
h RXh

x
∥
∥
∞

≤ C‖Q‖∞
∥
∥QT

h D+
h fh −RXh

QT x
∥
∥
∞

= C‖Q‖∞
∥
∥QT

h D+
h P T

h Phfh −RXh
x̃
∥
∥
∞

= C‖Q‖∞

∥
∥
∥D̂+

h f̃h −RXh
x̃
∥
∥
∥
∞

≤ C‖Q‖∞

(∥
∥
∥

(

D̂+
h − D̃+

h

)

f̃h

∥
∥
∥
∞

+
∥
∥
∥D̃+

h f̃h −RXh
x̃
∥
∥
∥
∞

)

≤ C‖Q‖∞

(∥
∥
∥D̂+

h − D̃+
h

∥
∥
∥
∞

∥
∥
∥f̃h

∥
∥
∥
∞

+
∥
∥
∥D̃+

h f̃h −RXh
x̃
∥
∥
∥
∞

)

≤ C‖Q‖∞

(

ĈC‖f̃‖∞ + C̃
)

h.

This concludes the proof by setting C = C‖Q‖∞(ĈC‖f̃‖∞ + C̃).

With this theorem, we have finally shown that global minimization yields a viable approach
for computing O(h) approximations to the least squares solution of a general linear, strangeness
free DAE.
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Chapter 4

Numerical Computations

The theoretical results of Chapter 3 have been turned into practicable algorithms and software.
The purpose of this chapter is to describe these developments and to provide numerous numerical
experiments substantiating the theoretical results.

4.1 Algorithms

The numerical methods considered in Chapter 3 require the DAE (1.1) to be strangeness free. To
satisfy this requirement, a general DAE with a well-defined strangeness index is transformed into
an equivalent strangeness free system having the same solution set, by the methods described
in Section 1.2. Reliable algorithms have been derived in [27, 30, 33] and are part of the software
package GELDA [33]. Our software is based on slightly modified versions of the corresponding
routines in GELDA, see Chapter B.

In the following, we may therefore assume w.l.o.g. that the original DAE (1.1) is already
strangeness free. By neglecting the trivial third block row in the strangeness free form of (1.1),
we may furthermore assume that 1

h
E(t)−A(t) is of full row rank for all sufficiently small h > 0

and all t ∈ [t0, T ].

4.1.1 Local minimization

Let Ei, Ai and fi denote the values of the coefficients E,A and f of the DAE (1.1) at the grid
points t0 + ih for i = 0, . . . , N with h = (T − t0)/N . Then local minimization amounts to the
following algorithm, based on formula (3.14).

Algorithm 1 (local minimization)
Input: Matrices E1, . . . , EN ∈ R

m×n and A1, . . . , AN ∈ R
m×n with m ≥ n,

vectors f1, . . . , fN ∈ R
m, a scalar h > 0. Starting values x0, . . . , xk−1 ∈

R
n and the parameters α1, . . . , αk of a k-step BDF-method.

Output: Vectors xk, xk+1, . . . , xN approximating a generalized (1,2,3)-solution of
the DAE (1.1).

FOR i = k, k + 1, . . . , N

Set r = − 1
h
Ei (α0xi−k + · · ·αk−1xi−1) + fi.

Compute an LQ decomposition ( 1
h
Ei − Ai) = [L, 0]Q.

Compute xi = QT
[

L−1r
0

]

.

END

87
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Note that B = [L, 0]Q is an LQ decomposition of B if and only if BT = QT [L, 0]T is a
QR decomposition of BT . Algorithm 1 has favourably low computational requirements. The
dominating computational part is the computation of the LQ decompositions, which require
an overall amount of O(Nm2n) floating point operations (flops) [15]. The minimal memory
requirement is O(mn), provided that intermediate data is not longer than necessary stored.

Remark 44 Motivated by the discussion in Remark 27, the final implementation of Algorithm 1
only covers the case k = 1 (implicit Euler). In this case, only the starting value x0 needs to be
provided; we always set x0 = 0. Even if this starting value is not a consistent initial value for
the DAE, it can be seen from (3.23) that only the “differential part” of x0 is referenced and thus
the first step of Algorithm 1 automatically forces x1 to be (approximately) consistent. There is
no need to compute consistent initial values explicitly.

4.1.2 Global minimization

Using the same notation as in the previous section, global optimization amounts to the following
algorithm, based on formula (3.40).

Algorithm 2 (global minimization)
Input: Matrices E1, . . . , EN ∈ R

m×n and A1, . . . , AN ∈ R
m×n with m ≥ n,

vectors f1, . . . , fN ∈ R
m, a scalar h > 0.

Output: Vectors x1, x2, . . . , xN approximating the least squares solution of the
DAE (1.1) with homogeneous initial conditions.

FOR i = k, k + 1, . . . , N
Set fh = [fT

1 , fT
2 , . . . , fT

N ]T .
Compute an LQ decomposition Dh = [L, 0]Q with Dh defined as in (3.12).

Set [xT
1 , xT

2 , . . . , xT
N ]T = QT

[
L−1fh

0

]

.

END

The computational cost of Algorithm 2 is dominated by determining the LQ decomposition
of the Nm × Nn matrix Dh, which requires O(N3m2n) flops using standard algorithms. Also
the memory requirement of O(N 2mn) is rather high.

Both expenses can be considerably reduced by using an algorithm that takes the special
structure of Dh into account. For this purpose, let us recall the structure of the matrix Dh:

Dh =
1

h











E1 − hA1

−E2 E2 − hA2

. . .
. . .
. . .

. . .

−EN EN − hAN











, (4.1)

where Ei, Ai ∈ Rm×n, m ≤ n. In the following, the proposed algorithm is illustrated for N = 3:

Dh =
1

h





E1 − hA1 0 0
−E2 E2 − hA2 0

0 −E3 E3 − hA3



 .

First, we compute LQ decompositions (E3 − hA3) = [L3, 0]Q11 and E3 = [F3, 0]Q12, where
Q11, Q12 are orthogonal and L3, F are lower triangular matrices. Next, we compute an RQ
decomposition [F3, L3] = [0, R3]Q13, where Q13 is orthogonal and R3 is an upper triangular
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matrix. Applying the orthogonal transformations to the corresponding block columns of Dh

yields the updated matrix

Dh ←
1

h





E1 − hA1 0 0 0
−E2 T3 U3 0

0 0 R3 0



 .

An analogous step is applied to −E2 and T3, resulting in

Dh ←
1

h





T1 U2 0 0 0
0 R2 0 U3 0
0 0 0 R3 0



 .

Finally, an RQ decomposition is used to reduce T1 to upper triangular form:

Dh ←
1

h





R1 0 U2 0 0 0
0 0 R2 0 U3 0
0 0 0 0 R3 0



 .

This is essentially an upper triangular matrix (leaving out zero block columns) and the solution
of min{‖xh‖2 : Dhxh = fh} can be obtained by backward substitution. Note that this backward
substitution can be combined with the reduction process; there is no need for saving all matrices
Ri and Ui. The transformation matrices Qij , however, must be saved and applied afterwards to
update the obtained solution x.

For general N , the algorithm reads as follows.

Algorithm 3
Input and Output: See Algorithm 2.

Set T = EN − hAN .
FOR i = N,N − 1, . . . , 2

Compute an LQ decomposition T = [L, 0]Qi1.
Compute an LQ decomposition −Ei = [F, 0]Qi2.
Update T = (Ei−1 − hAi−1)Q

T
i2.

Compute an RQ decomposition [F,L] = [0, R]Qi3.
Update [T (:, 1 : m), U ] = [T (:, 1 : m), 0m×m]QT

i3.

Compute xi =
[

R−1fi

0

]

.

Update fi−1 = fi−1 − UR−1fi.
END FOR

Compute RQ decomposition T = [R, 0]Q11.

Compute x1 = QT
11

[
R−1f1

0

]

.

FOR i = 2, 3, . . . , N

Update
[

xi−1(1:m)
xi(1:m))

]

= QT
i3

[
xi−1(1:m)
xi(1:m))

]

.

Update xi−1 ← QT
i2xi−1.

Update xi ← QT
i1xi.

END FOR

x← hx

Note that we used the colon notation x(i : j) to denote the elements i, i+1, . . . , j of a vector
x. Using compact LR and RQ decompositions, as implemented in LAPACK [1], each of the
individual steps of Algorithm 3 requires at most O(mn2) flops, which yields an overall cost of
O(Nm2n). This compares favourably with the cost of Algorithm 2 (O(N 3m2n) flops). There is
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O(Nmn) extra memory necessary to store information about the transformation matrices in the
course of Algorithm 3. This is still favourable compared with Algorithm 2 (O(N 2m2n) memory)
but significantly higher than the minimal memory requirements of Algorithm 1 (O(m2n) mem-
ory). The fact that Algorithm 3 implicitly solves a boundary value problem makes it questionable
whether its memory requirements can be further reduced.

Let us emphasize that Algorithm 3 represents a (structure-exploiting) RQ decomposition of
Dh combined with backward substitution using the upper triangular factor and matrix-vector
multiplication using the orthogonal factor. The main differences to Algorithm 2 are that an RQ
instead of an LQ decomposition is computed and that the backward substitution is carried out as
soon as the corresponding blocks in the upper triangular matrix become available. None of these
changes affects the numerical stability properties of Algorithm 3. In particular, as a consequence
of the fact that the “big” RQ decomposition is computed from numerically backward stable LQ
and RQ decompositions, the computed factors R̂ and Q̂ of the RQ decomposition of Dh satisfy

Dh +4Dh = [R̂, 0]Q̂, ‖4Dh‖2 ≤ cDu‖Dh‖2, ‖Q̂Q̂T − I‖2 ≤ cQu,

where cD, cQ are constants only depending on the dimension, and u denotes the unit roundoff,
see [23]. Provided that the subsystems R−1fi in Algorithm 3 are solved in a backward stable
manner, the whole process of backward substitution is also numerically backward stable. Thus,
Algorithm 3 can be expected to have the same numerical behaviour as Algorithm 2.

Remark 45 Note that both Algorithm 2 and Algorithm 3 need not be initialized with a (consis-
tent) starting value. This follows from the fact that both algorithms implicitly solve the boundary
value problem (3.52), which forces the “differential part” of x0 to be zero and the “algebraic part”
of the solution to be (approximately) consistent.

4.2 Numerical experiments

If not otherwise stated, the numerical experiments described in this section were performed using
the Fortran routines listed in Appendix B. We used the Compaq Visual Fortran environment
(along with the included precompiled BLAS and LAPACK libraries) on a Pentium IV 2.4 GHz
processor with 512 MByte RAM to compile and execute these routines.

The following academical test example has been used to perform some of the numerical tests
presented here.

The DAE

[
1 0 0
0 0 0

]

˙̃x(t) =

[
1− t

2
t
2 1

−1 1 0

]

x̃(t) +

[
t
(

t
2 + et

)

t− 2(1− et)

]

, t ∈ [0, 1].(4.2)

is a strangeness free system and in orthogonal normal form (2.1), where the entries of the matrix
functions Ẽ and Ã, according to the block structure in (2.2), are given by

ΣE(t) = 1, A11(t) = 1− t
2 , A12(t) = t

2 , A13(t) = 1,
A21(t) = −1, ΣA(t) = 1,

(4.3)

and the inhomogeneity f̃ has the components

f1(t) = t

(
t

2
+ et

)

, f2(t) = t− 2
(
1− et

)
.(4.4)
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The (1,2,3)-generalized solution of (4.2) as defined in Section 2.3 can be obtained by setting the
undetermined part x3 of x̃ to zero and computing the remaining solution components by solving
the reduced system

[
1 0
0 0

] [
ẋ1(t)
ẋ2(t)

]

=

[
1− t

2
t
2

−1 1

] [
x1(t)
x2(t)

]

+

[
t
(

t
2 + et

)

t− 2(1− et)

]

, t ∈ [0, 1].(4.5)

The (1,2,3)-generalized solution of (4.2) is therefore given by

x̃ge(t) =





x1(t)
x2(t)
x3(t)



 =





et − t− 1
1− 2t− et

0



 .(4.6)

To compute the least squares solution of (4.2) as defined in Section 2.2, we consider the
boundary value problem (2.23), where the coefficient functions can be computed from (4.3) and
(4.4) by the substitutions (2.21), i.e.,

λ̇(t) = 2x(t)− λ(t) + 2(1− et), λ(1) = 0,
ẋ(t) = x(t) + u(t) + t, x(0) = 0,
y(t) = x(t) + 2(1− et)− t,
u(t) = λ(t).

(4.7)

This system has the unique solution

λ(t) = u(t) = 1− t, x(t) = et − 1, y(t) = 1− t− et,(4.8)

and thus, the least square solution of (4.2) is given by

x̃ls(t) =





x1(t)
x2(t)
x3(t)



 =





x(t)
y(t)
u(t)



 =





et − 1
1− t− et

1− t



 .(4.9)

In order to obtain a DAE system which is not in orthogonal standard form we have defined a time-
variant, smooth orthogonal transformation Q ∈ C1(I, R3,3), based on the idea of Householder
transformations (see, e.g., [15]). Given a vector function v ∈ C1(I, R3), v(t) 6= 0 ∈ I, and its

derivative v̇, the matrix function Q = I−2 vvT

vT v
is orthogonal and its derivative can be computed

by

Q̇ = 2

(

vvT d
dt

(vT v)

(vT v)2
−

d
dt

(vvT )

vT v

)

,with
d

dt
(vT v) = 2v̇T v,

d

dt
(vvT ) = v̇vT + (v̇vT )T .

Throughout the tests presented here, we have chosen

v(t) =





t + 2
t2 + t + 1

1



 .

Except otherwise stated, the following numerical tests have been carried out with the DAE
system

E(t)ẋ(t) = A(t)x(t) + f(t),(4.10)
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where

E(t) =

[
1 0 0
0 0 0

]

QT ,

A(t) =

[
1− t

2
t
2 1

−1 1 0

]

QT −
[

1 0 0
0 0 0

]

Q̇T ,

f(t) =

[
t
(

t
2 + et

)

t− 2(1− et)

]

.

The (1,2,3)-generalized solution of 4.10 can be obtained by applying the transformation Q to
the corresponding solution of the DAE 4.2, i. e.,

xge(t) = Qx̃ge(t) = Q





et − t− 1
1− 2t− et

0



 .(4.11)

Analogously we can compute the least square solution of (4.10) as

xls(t) = Qx̃ls(t) = Q





et − 1
1− t− et

1− t



 .(4.12)

The L2 norms of xge(t) and xls(t) are given by

‖xge‖ = ‖x̃ge‖ =

√

e2 − 4e +
23

3
, ‖xls‖ = ‖x̃ls‖ =

√

e2 − 4e +
20

3
,

where e denotes exp(1).

4.2.1 Higher order BDF-methods for local minimization

A separate implementation of Algorithm 1 using higher order BDF-methods has been used to
compare the order of convergence of k-step BDF-methods for k = 1, 2, 3, 4. The algorithm
has been applied to the test example 4.10 where the initial values x0, ..., xk−1 were given by
evaluating the exact (1,2,3)-generalized solution as given in 4.11.

The error curves are shown in Figure 4.1. The maximum norm of the error is contained in
the following table:

h k = 1 k = 2 k = 3 k = 4

0.1 2.87× 10−1 1.61× 10−1 1.34× 10−1 1.09× 10−1

0.01 2.76× 10−2 1.62× 10−2 1.33× 10−2 1.17× 10−2

0.001 2.73× 10−3 1.62× 10−3 1.33× 10−3 1.17× 10−3

0.0001 2.73× 10−4 1.62× 10−4 1.33× 10−4 1.17× 10−4

It can be seen that the implicit Euler method (k = 1) displays approximate linear convergence.
Using higher order BDF-methods leads to a slightly decreased error, apparently because of the
exact initial values, but does not lead to higher order of convergence.

4.2.2 Convergence of global minimization

Algorithm 3 has been applied to (4.10) and the results have been compared with the analytic
solution (4.12). The error curves are shown in Figure 4.2 and the maximum norm of the error
is shown in the following table:
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Figure 4.1: Error curves between exact (1,2,3)-generalized solution and approximated solution
by local minimization with h ∈ {0.1, 0.01, 0.001, 0.0001} and k ∈ {1, . . . , 4} for Example (4.10).
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Figure 4.2: Error curves between exact least squares solution and approximated solution by
global minimization with h ∈ {0.1, 0.01, 0.001, 0.0001} for Example (4.10).

h error

0.1 1.57× 10−1

0.01 1.67× 10−2

0.001 1.69× 10−3

0.0001 1.69× 10−4

4.2.3 Comparison with GELDA

The software package GELDA [33], which solves linear DAEs, also allows for the application to
underdetermined DAEs. As in Algorithm 1, the linear systems arising during the discretization
are solved (locally) in the least squares sense. In addition, an order and stepsize control is
implemented in GELDA. We have applied Algorithm 1 with a step size h = 0.001 to the test
example in orthogonal standard form (4.2) and compared this result to the result obtained by
GELDA, where the absolute and relative error tolerances have been set to ATOL = RTOL =
0.0001. The corresponding results for all three solution components are shown in Figure 4.3.

One can see that the approximation computed by Algorithm 1 is closer to the analytical
(1,2,3) generalized solution (4.6) in the sense that the undetermined solution component com-
puted by Algorithm 1 is smaller and, hence, closer to the exact value x3 ≡ 0, despite the
relatively tight error tolerances used in GELDA. The maximum value of the undetermined solu-
tion component amounts to 2.996× 10−3 using Algorithm 1 and to 2.735× 10−2 using GELDA.
This is due to the fact that the stepsize control implemented in GELDA does not consider which
solution is to be approximated and thus, the stepsize is increased up to h = 1.4 × 10−2 by
GELDA.

GELDA allows the user to limit the maximimum stepsize. If the maximum stepsize is set to
h = 0.001 in GELDA, the maximum value of the approximation to the undetermined solution
component reduces to a value of 1.60×10−3. The corresponding solution is computed with 1006
discretization steps.

Hence, the applicability of software packages like GELDA seems to be limited if one wants
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Figure 4.3: Approximate solutions of the DAE (4.2) computed with Algorithm 1 (with h = 0.001)
and GELDA (with absolute and relative tolerances set to 0.0001).

to compute approximations to the (1,2,3) generalized solutions as presented here. In addition, it
seems to be difficult to improve Algorithm 1 considerably by using stepsize control techniques.

The L2 norm of the solution computed with GELDA is approximately given by
√
∑1000

i=1 x2
i /1000 ≈ 2.040, where xi, i = 1, ..., 1000, denote the values of this solution evaluated

at ti = i/1000. Applying Algorithm 3 to the DAE (4.2) yields the solution which is displayed
in Figure 4.4. The approximate norm of this solution computed as above using all intermediate
grid points xi, i = 1, ..., 1000, yields the value 1.785. This is a good approximation to the L2

norm of the least squares solution xls of (4.2), which equals ‖xls‖ =
√

e2 − 4e + 20
3 ≈ 1.7840, and

it is considerably smaller than the approximate norm of the solution computed with GELDA.

This confirms that GELDA cannot be used to compute approximations to the least squares
solution (4.9) of the test example 4.2.

4.2.4 Performance

In order to compare the performance of the three Algorithms presented in Section 4.1 we applied
them to a test example of size 30× 60 with random coefficients.

The following table shows the execution time in seconds for the Algorithms using N ∈
{10, 20, 40} discretization steps.

N Algorithm 1 Algorithm 2 Algorithm 3

10 1.8× 10−2 5.2× 10−1 6.9× 10−2

20 3.5× 10−2 3.6× 100 1.4× 10−1

40 7.1× 10−2 2.6× 101 3.0× 10−1

As expected, the execution times for Algorithm 1 and Algorithm 3 are approximately O(N),
while Algorithm 2 needs approximately O(N 3) seconds to compute the result obtained with
Algorithm 3.
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Figure 4.4: Approximate solution of the DAE (4.2) computed with Algorithm 3 (with h = 0.001).

4.2.5 A purely algebraic example

We have applied Algorithm 1 and Algorithm 3 to the DAE given in Example 1. This DAE
has strangeness index one but the equivalent strangeness free system, computed with the index
reduction techniques presented in Section 1.2, turns out to be purely algebraic. In this case, the
(1,2,3)-generalized solution and the least squares solution coincide. Using both algorithms, we
obtained the exact solution given in Example 9 within the realm of roundoff errors.

The results obtained by Algorithm 1 and Algorithm 3 applied to purely algebraic DAEs
will always coincide. This can be explained by the fact that, in this case, the subdiagonal
block entries of the discretization matrix Dh, as defined in (3.12), vanish. Thus, the linear
systems which have to be solved in every discretization step are decoupled, and solving them
independently (as it is done by Algorithm 1) yields the same result as solving the complete
discretization at once (as it is done by Algorithm 3).



Chapter 5

Conclusions and Outlook

In this thesis, we have investigated the numerical computation of generalized solutions of linear
time-variant differential-algebraic equations (DAEs). The major contributions are as follows.

• Development of a local minimization algorithm, which is shown in Theorem 26 to yield an
O(h) approximation to a particularly fixed (1,2,3)-generalized solution of the DAE.

• Development of a global minimization algorithm, which is shown in Theorem 43 to yield an
O(h) approximation to the least squares solution of the DAE. As a by-product, Lemma 41
shows that the inverse of a matrix with a certain structure related to BDF-methods is
uniformly bounded.

• Both algorithms are based on a rather intuitive approach, but the investigation of their
approximation properties turned out to be much more involved and has been addressed
for the first time in this thesis.

• The straightforward implementation of global minimization requires O(N 3m2n) flops; this
figure has been reduced to O(Nm2n) by exploiting the block bidiagonal structure of the
discretization matrix.

• The developed algorithms have been implemented in Fortran routines.

• Various numerical experiments verify the obtained theoretical results.

Although the obtained results cover a wide range of tasks associated with the numerical compu-
tation of generalized solutions of DAEs, several extensions of these results remain to be studied,
for instance:

• use of other minimization criteria for defining the least squares solution;

• application to control-related problems;

• extension of the developed algorithms to large and possibly sparse DAEs;

• investigation of adaptive time discretization schemes;

• extension to nonlinear DAEs.
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Appendix A

Proof of Lemma 41

Before proving Lemma 41, we need the following preparatory results.

Theorem 46 ([23]) Consider A,∆A ∈ R
n,n with rank(A) = rank(A + ∆A) = n. Let

A = QR

and
A + ∆A = (Q + ∆Q)(R + ∆R)

be QR decompositions of A and A + ∆A, normalized such that R and R + ∆R have positive
diagonal elements. Then for sufficiently small ∆A we get

‖∆R‖F
‖R‖F

≤ CnκF (A)
‖∆A‖F
‖A‖F

,(A.1)

‖∆Q‖F ≤ CnκF (A)
‖∆A‖F
‖A‖F

,(A.2)

where the constant Cn ∈ R
+ depends only on the size n of A and κF (A) denotes the condition

number of A with respect to the Frobenius norm ‖ · ‖F .

Lemma 47 For i ∈ N, let a matrix V be given with the block structure

V =





0 · · · 0 I
M1 · · · Mi−1 0
N1 · · · Ni−1 Ni



 ∈ R
3n,in,

where Mj , Nj ∈ R
n,n and ‖Nj‖2 is sufficiently small for j = 1, . . . , i. It is assumed that there

exists a matrix B ∈ R
n,n such that

Nj = BMj(A.3)

for j = 1, . . . , i− 1.
Then there exists an orthogonal matrix Q ∈ R

3n,3n such that

V̂ = QT V =





Ñ1 · · · Ñi−1 Ñi

M̂1 · · · M̂i−1 0
0 · · · 0 0



 ,(A.4)

where for j = 1, . . . , i− 1,

‖Ñj‖2 ≤
√

2 nCn‖Ni‖2‖Nj‖2,(A.5)

99
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with a constant Cn ∈ R
+ that depends only on the blocksize n,

‖M̂j‖2 ≤
√

‖Mj‖22 + ‖Nj‖22(A.6)

and

‖Ñ−1
i ‖2 ≤ 1.(A.7)

Furthermore, there exists a matrix B̂ ∈ R
n,n such that M̂j = B̂Mj for j = 1, · · · , i− 1.

Proof. The idea of the proof is as follows. The third block row of V can be eliminated by means
of two QR decompositions. In a first step we can eliminate the block entry Ni by applying a
QR decomposition to the first and the third block row of V . Then, by a QR decomposition of
the second and the modified third block row, the third block row can be eliminated completely
due to the assumption (A.3).

We first consider the QR decomposition

[
I 0
Ni I

]

=

[
Q̃11 Q̃12

Q̃21 Q̃22

] [
Ñi R12

0 R22

]

,(A.8)

where Ñi and R22 are upper triangular matrices. The property (A.7) follows from

‖Ñ−1
i ‖2 = σ−1

min(Ñi) = σ−1
min

([
Ñi

0

])

= σ−1
min

([
I
Ni

])

≤ 1,

where the latter inequality holds because

σmin

([
I
Ni

])

= min
x∈Rn

∥
∥
∥
∥

[
I
Ni

]

x

∥
∥
∥
∥

2

‖x‖2
= min

x∈Rn

√

‖x‖22 + ‖Nix‖22
‖x‖2

≥ 1.(A.9)

The QR decomposition (A.8) can be interpreted as a perturbation of the QR decomposition
A = QR with A = Q = R = I2n, where A is perturbed by

∆A =

[
0 0
Ni 0

]

.

From Theorem 46, it follows for sufficiently small Ni that

[
I 0
0 I

]

+

[
0 0
Ni 0

]

=

([
I 0
0 I

]

+

[
∆Q11 ∆Q12

∆Q21 ∆Q22

])

(I2n + ∆R),

where

∥
∥
∥
∥

[
∆Q11 ∆Q12

∆Q21 ∆Q22

]∥
∥
∥
∥

F

≤ CnκF (I2n)

∥
∥
∥
∥

[
0 0
Ni 0

]∥
∥
∥
∥

F

‖I2n‖F
=
√

2n Cn‖Ni‖F .

Because of ‖A‖2 ≤ ‖A‖F ≤
√

n ‖A‖2 for all A ∈ R
n,n, we get

∥
∥
∥
∥

[
∆Q11 ∆Q12

∆Q21 ∆Q22

]∥
∥
∥
∥

2

≤
∥
∥
∥
∥

[
∆Q11 ∆Q12

∆Q21 ∆Q22

]∥
∥
∥
∥

F

≤
√

2n Cn‖Ni‖F ≤
√

2 nCn‖Ni‖2.

From [
Q̃11 Q̃12

Q̃21 Q̃22

]

=

[
I + ∆Q11 ∆Q12

∆Q21 I + ∆Q22

]
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we can estimate the norm of Q̃21 = ∆Q21 by

‖Q̃21‖2 ≤
∥
∥
∥
∥

[
∆Q11 ∆Q12

∆Q21 ∆Q22

]∥
∥
∥
∥

2

≤
√

2 nCn‖Ni‖2.

By setting

Q̃ =





Q̃11 0 Q̃12

0 I 0

Q̃21 0 Q̃22





we get

Q̃T V =





Ñ1 · · · Ñi−1 Ñi

M1 . . . Mi−1 0

Q̃T
22N1 · · · Q̃T

22Ni−1 0



 ,

with Ñj = Q̃T
21Nj , where

‖Ñj‖2 ≤ ‖Q̃T
21‖2‖Nj‖2 = ‖Q̃21‖2‖Nj‖2 ≤

√
2 nCn‖Ni‖2‖Nj‖2,

and thus (A.5).
To eliminate the third block row of Q̃T V , we consider a QR decomposition

[
I

Q̃T
22B

]

=

[
Q̂11 Q̂12

Q̂21 Q̂22

] [
B̂
0

]

,(A.10)

where Ci is upper triangular. From (A.10) it follows that
[

Q̂T
11 Q̂T

21

Q̂T
12 Q̂T

22

] [
I

Q̃T
22B

]

=

[
Q̂T

11 + Q̂T
21Q̃

T
22B

Q̂T
12 + Q̂T

22Q̃
T
22B

]

=

[
B̂
0

]

,

and thus
[

Q̂T
11 Q̂T

21

Q̂T
12 Q̂T

22

] [
Mj

Q̃T
22Nj

]

=

[
Q̂T

11 Q̂T
21

Q̂T
12 Q̂T

22

] [
Mj

Q̃T
22BMj

]

=

[
(Q̂T

11 + Q̂T
21Q̃

T
22B)Mj

(Q̂T
12 + Q̂T

22Q̃
T
22B)Mj

]

=

[
B̂Mj

0

]

.

We define

Q̂ =





I 0 0

0 Q̂11 Q̂12

0 Q̂21 Q̂22





and get

Q̂T Q̃T Vi =





Ñ1 · · · Ñi−1 Ñi

M̂1 · · · M̂i−1 0
0 · · · 0 0



 ,

which consequently implies (A.4) with Q = Q̃Q̂ and M̂j = B̂Mj . The blocks in the second block
row can be estimated by

‖M̂j‖2 =

∥
∥
∥
∥

[
M̂j

0

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
Q̂T

11 Q̂T
21

Q̂T
12 Q̂T

22

] [
Mj

Q̃T
22Nj

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
Mj

Q̃T
22Nj

]∥
∥
∥
∥

2

≤
√

‖Mj‖22 + ‖Q̃T
22Nj‖22 ≤

√

‖Mj‖22 + ‖Nj‖22,
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which shows the assertion (A.6).

Lemma 48 For N ∈ N and h ≥ 0, let

A =








I
A21 I
...

. . .
. . .

AN1 · · · AN,N−1 I








with Aij ∈ R
n,n, ‖Aij‖ ≤ CAh, for j = 1, . . . , N − 1, i > j. Then

A−1 =








I

Ã21 I
...

. . .
. . .

ÃN1 · · · ÃN,N−1 I








with ‖Ãij‖ ≤ CA(1+CAh)i−j−1h. Here, ‖·‖ denotes an arbitrary submultiplicative matrix norm.

Proof. We can write down A in the form

A = F1 · . . . · FN−1,

with the Frobenius matrices

Fk =















I
. . .

I
I

Ak+1,k I
...

. . .

ANk I















.

The inverse of A can then be computed by

A−1 = F−1
N−1 · . . . · F−1

1

with

F−1
k =















I
. . .

I
I

−Ak+1,k I
...

. . .

−ANk I















.

We will show inductively that for k = N − 1, . . . , 1,

F−1
N−1 · . . . · F−1

k =















I
. . .

I
I

Ãk+1,k I
...

. . .
. . .

ÃNk · · · ÃN,N−1 I














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with

‖Ãij‖ ≤ CA(1 + CAh)i−j−1h.(A.11)

For k = N − 1, this is a direct consequence of

F−1
N−1 =








I
. . .

I

ÃN,N−1 I








with ÃN,N−1 = −AN,N−1 and thus ‖ÃN,N−1‖ = ‖AN,N−1‖ ≤ CAh.

For k < N − 1, we get

F−1
N−1 · . . . · F−1

k−1 = F−1
N−1 · . . . · F−1

k F−1
k−1

=

















I
. . .

I
I

I

Ãk+1,k I
...

. . .
. . .

ÃNk · · · ÃN,N−1 I

































I
. . .

I
I

Ak,k−1 I
Ak+1,k−1 I

...
. . .

AN,k−1 I

















=

















I
. . .

I
I

Ãk,k−1 I

Ãk+1,k−1 Ãk+1,k I
...

...
. . .

. . .

ÃN,k−1 ÃNk · · · ÃN,N−1 I

















,

with

Ãi,k−1 = Ai,k−1 +
i−k−1∑

l=0

Ãi,k+lAk+l,k−1
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and thus

‖Ãi,k−1‖ ≤ ‖Ai,k−1‖+

i−k−1∑

l=0

‖Ãi,k+l‖‖Ak+l,k−1‖

≤ CAh +

i−k−1∑

l=0

C2
Ah2(1 + CAh)i−k−l−1

= CAh

(

1 + CAh
i−k−1∑

l=0

(1 + CAh)i−k−l−1

)

= CAh

(

1 + CAh
i−k−1∑

l=0

(1 + CAh)l

)

= CAh

(

1 + CAh
(1 + CAh)i−k − 1

(1 + CAh)− 1

)

= CAh(1 + CAh)i−k

= CAh(1 + CAh)i−(k−1)−1.

This shows the assertion for A−1 = F−1
N−1 · . . . · F−1

1 .

We are now prepared to prove Lemma 41. For convenience, let us restate this lemma in a
more detailed form.

Lemma 41 Consider the matrix Wh = I + V T
h Vh with

Vh = R−1
h Bh,(A.12)

where

Rh =

[
D̃o

h A12h

A21h
ΣAh

]

, Bh =

[
A13h

0

]

,(A.13)

with Do
h, A12h

, A21h
, ΣAh

and A13h
defined as in (3.72), (3.93) and (3.115).

Then the inverse of Wh is uniformely bounded, i.e., there exists a positive constant CW−1 ∈ R

such that

‖W−1
h ‖∞ ≤ CW−1(A.14)

and CW−1 does not depend on the step size h.

Proof. In a first step, we show that Wh = I + V T
h Vh = Ṽ T

h Ṽh with a lower block triangular
matrix Ṽh, where the inverses of the diagonal blocks of Ṽh have spectral norm less than one,
while the subdiagonal blocks of Ṽh have spectral norm O(h). In a second step, we use this result
to show that the inverse of Ṽh is uniformly bounded.

From (3.94) and (3.95) it follows that the inverse of the matrix Rh takes the form

R−1
h =

[
S−1

h ∗
−Σ−1

Ah
A21h

S−1
h ∗

]

,

with

Sh =








1
h
ΣE1
− Ā1

− 1
h
ΣE2

1
h
ΣE2
− Ā2

. . .
. . .

− 1
h
ΣEN

1
h
ΣEN

− ĀN








,

Āi = A11i
+ A12i

Σ−1
Ai

A21i
.

(A.15)
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Thus, we have

R−1
h Bh =

[
S−1

h A13h

−Σ−1
Ah

A21h
S−1

h A13h

]

=

[
I

−Σ−1
Ah

A21h

]

S−1
h A13h

and

V T
h Vh = AT

13h
S−T

h

[

I −AT
21h

Σ−T
Ah

] [ I

−Σ−1
Ah

A21h

]

S−1
h A13h

= AT
13h

S−T
h

(

I + AT
21h

Σ−T
Ah

Σ−1
Ah

A21h

)

S−1
h A13h

.

Since ΣAh
and A21h

are block diagonal matrices, we get

I + AT
21h

Σ−T
Ah

Σ−1
Ah

A21h
= diag(I + AT

211
Σ−T

A1
Σ−1

A1
A211

, . . . , I + AT
21N

Σ−T
AN

Σ−1
AN

A21N
).

By a QR decomposition

[
I

−Σ−1
Ai

A21i

]

= Q

[
Ai

0

]

,

the diagonal blocks can be written as

I + AT
21i

Σ−T
Ai

Σ−1
Ai

A21i
=
[

I −AT
21i

Σ−T
Ai

] [ I

−Σ−1
Ai

A21i

]

=
[
AT

i 0
]
QT Q

[
Ai

0

]

=
[
AT

i 0
]
[
Ai

0

]

= AT
i Ai.

Obviously Ai is nonsingular for i = 1, . . . , N . The norm of Ai can be estimated by

‖Ai‖2 =

∥
∥
∥
∥

[
I

−Σ−1
Ai

A21i

]∥
∥
∥
∥

2

≤
√

1 + ‖Σ−1
Ai

A21i
‖22

≤ 1 + ‖Σ−1
Ai

A21i
‖2 ≤ 1 + C‖Σ−1

A A21‖2
,

where C‖Σ−1

A
A21‖2

is defined as in Definition 23.

Setting Ah = diag(A1, . . . ,AN ) and Vh = AhS−1
h A13h

, we have

Wh = I + V T
h Vh = I + VT

h Vh.

The inverse of Sh is given blockwise by

[S−1
h ]ij =







[
j+1
∐

k=i

1

h

(
1

h
ΣEk
− Āk

)−1

ΣEk

](
1

h
ΣEj
− Āj

)−1

for i ≥ j,

0 otherwise,

=







[
j+1
∐

k=i

(

I − hΣ−1
Ek

Āk

)−1
](

1

h
ΣEj
− Āj

)−1

for i ≥ j,

0 otherwise.
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Thus, it follows for all j = 1, . . . , N − 1 and i = j, . . . , N − 1 that

[S−1
h ]i+1,j =

[
j+1
∐

k=i+1

(

I − hΣ−1
Ek

Āk

)−1
](

1

h
ΣEj
− Āj

)−1

= (I − hΣ−1
Ei+1

Āi+1)
−1

[
j+1
∐

k=i

(

I − hΣ−1
Ek

Āk

)−1
](

1

h
ΣEj
− Āj

)−1

=
(

I − hΣ−1
Ei+1

Āi+1

)−1
[S−1

h ]ij .

For the blocks Vij of Vh from

Vij = Ai[S
−1
h ]ijA13j

,

we obtain

Vi+1,j = Ai+1[S
−1
h ]i+1,jA13j

= Ai+1

(

I − hΣ−1
Ei+1

Āi+1

)−1
A−1

i Ai[S
−1
h ]ijA13j

= BiVij ,

(A.16)

with

Bi = Ai+1

(

I − hΣ−1
Ei+1

Āi+1

)−1
A−1

i .

It has been shown in Corollary 36 that ‖[S−1
h ]ij‖∞ ≤ Cu

2 h. Hence, we can conclude for the
blocks of Vh that

‖Vij‖2 ≤ ‖Ai‖2‖[S−1
h ]ij‖2‖A13h

‖2
≤ (1 + C‖Σ−1

A A21‖∞)
√

n ‖[S−1
h ]ij‖∞C‖A13‖∞

≤ (1 + C‖Σ−1

A A21‖∞)
√

n Cu
2 C‖A13‖∞h

= CVh.

Note that the matrix Wh can be factored as

Wh =
[
I VT

h

]
[

I
Vh

]

.

We now apply Lemma 47 inductively to the factor

[
I
Vh

]

=













I
. . .

I
V11
...

. . .

VN1 · · · VNN













.

From (A.16), it follows that VNj = BN−1VN−1,j , j = 1, . . . , N − 1. For sufficiently small h,
Lemma 47 implies the existence of an orthogonal matrix QN such that

QN





0 · · · 0 I
VN−1,1 · · · VN−1,N−1 0
VN1 · · · VN,N−1 VNN



 =





ṼN1 · · · ṼN,N−1 ṼNN

V̂N−1,1 · · · V̂N−1,N−1 0
0 · · · 0 0



 ,
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and consequently the existence of an orthogonal matrix QNh
such that

[
I
Vh

]

= QT
Nh





















I
. . .

I
I

ṼN1 · · · ṼN,N−2 ṼN,N−1 ṼNN

V11
...

. . .

VN−2,1 · · · VN−2,N−2

V̂N−1,1 · · · V̂N−1,N−2 V̂N−1,N−1

0 · · · 0 0 0





















,

where for a positive constant Cn,

‖ṼNj‖2 ≤
√

2 nCn‖VNN‖2‖VNj‖2 ≤
√

2 nCnC2
Vh2,

‖V̂N−1,j‖2 ≤
√

‖VN−1,j‖22 + ‖VN,j‖22 ≤
√

2C2
Vh2 =

√
2 CVh,

for j = 1, . . . , N − 1, and
‖Ṽ−1

NN‖2 ≤ 1.

Furthermore, there exists a matrix B̂N−1 such that V̂N−1,j = B̂N−1VN−1,j and thus V̂N−1,j =

B̂N−1BN−2VN−2,j according to (A.16). This implies for sufficiently small h that the matrix





0 · · · 0 I
VN−2,1 · · · VN−2,N−2 0

V̂N−1,1 · · · V̂N−1,N−2 V̂N−1,N−1





satisfies the assumptions of Lemma 47. Thus, there exists an orthogonal matrix QN−1h
such

that

[
I
Vh

]

= QT
Nh

QT
N−1h


























I
. . .

I
I

ṼN−1,1 · · · ṼN−1,N−3 ṼN−1,N−2 ṼN−1,N−1

ṼN1 · · · ṼN,N−3 ṼN,N−2 ṼN,N−1 ṼNN

V11
...

. . .

VN−3,1 · · · VN−3,N−3

V̂N−2,1 · · · V̂N−2,N−3 V̂N−2,N−2

0 · · · 0 0 0
0 · · · 0 0 0 0


























with

‖ṼN−1,j‖2 ≤
√

2 nCn‖V̂N−1,N−1‖2‖V̂N−1,j‖2 ≤ 2
√

2 nCnC2
Vh2,

‖V̂N−2,j‖2 ≤
√

‖VN−2,j‖22 + ‖V̂N−1,j‖22 ≤
√

C2
Vh2 + 2C2

Vh2 =
√

3 CVh

for j = 1, . . . , N − 2,
‖Ṽ−1

N−1,N−1‖2 ≤ 1.
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Furthermore, there exists a matrix B̂N−2 such that V̂N−2,j = B̂N−2VN−2,j = B̂N−2BN−3VN−3,j .
For i = N − 2, . . . , 2, we can apply Lemma 47 to the matrix





0 · · · 0 I
Vi−1,1 · · · Vi−1,i−1 0

V̂i,1 · · · V̂i,i−1 V̂ii



 ,

where V̂i−1,j = B̂iBi−1Vi−1,j and

‖V̂ij‖2 ≤
√

N − i + 1 CVh

for j = 1, . . . , i− 1. Then an orthogonal matrix Qih is computed, such that

[
I
Vh

]

=

(
i∐

k=N

QT
ih

)































I
. . .

I
I

Ṽi,1 · · · Ṽi,i−2 Ṽi,i−1 Ṽii

...
...

...
...

. . .

ṼN1 · · · ṼN,i−2 ṼN,i−1 ṼNi . . . ṼNN

V11
...

. . .

Vi−2,1 · · · Vi−2,i−2

V̂i−1,1 · · · V̂i−1,i−2 V̂i−1,i−1

0 · · · 0 0 0
...

...
...

...
. . .

0 · · · 0 0 0 · · · 0































,

with

‖Ṽij‖2 ≤
√

2 nCn‖V̂ii‖2‖V̂ij‖2 ≤ (N − i + 1)
√

2 nCnC2
Vh2,

‖V̂i−1,j‖2 ≤
√

‖Vi−1,j‖22 + ‖V̂ij‖22 ≤
√

C2
Vh2 + (N − i + 1)C2

Vh2 =
√

N − i + 2 CVh,

for j = 1, . . . , i− 1, and
‖Ṽ−1

N−1,N−1‖2 ≤ 1.

Furthermore, there exists a matrix B̂i−1 such that V̂i−1,j = B̂i−1Vi−1,j = B̂i−1Bi−2Vi−2,j .
When this elimination procedure is completed, we have computed a sequence QNh

, . . . , Q2h

of orthogonal matrix functions such that, using the notation (3.83),

[
I
Vh

]

=

(
2∐

k=N

QT
ih

)[
Ṽh

0

]

,

with

Ṽh =






Ṽ11
...

. . .

ṼN1 · · · ṼNN




 ,

where

‖Ṽ−1
ii ‖2 ≤ 1(A.17)
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and

‖Ṽij‖2 ≤
√

2 nCn(N − i + 1)C2
Vh2 ≤

√
2 nCnC2

Vh =: CṼh(A.18)

for i = 1, . . . , N and j = 1, . . . , i− 1. In addition, we have

Wh =
[
I VT

h

]
[

I
Vh

]

=
[

Ṽ T
h 0

]

(
N∏

k=2

Qih

)(
2∐

k=N

QT
ih

)[
Ṽh

0

]

=
[

Ṽ T
h 0

]
[

Ṽh

0

]

= Ṽ T
h Ṽh.

The norm of the inverse of Ṽh can be estimated blockwise according to Lemma 48, because

Ṽh = diag(Ṽ11, . . . , ṼNN )V̂h,

with

V̂h =








I

Ṽ−1
22 Ṽ21 I

...
. . .

. . .

Ṽ−1
NN ṼN1 · · · Ṽ−1

NN ṼN,N−1 I








.

From (A.17) and (A.18) we know that

‖Ṽ−1
ii Ṽij‖2 ≤ ‖Ṽ−1

ii ‖2‖Ṽij‖2 ≤ ‖Ṽij‖2 ≤ CṼh.

Therefore, Lemma 48 implies

V̂ −1
h =









I
[

V̂ −1
]

21
I

...
. . .

. . .
[

V̂ −1
]

N1
· · ·

[

V̂ −1
]

N,N−1
I









,

where

‖[V̂ −1]ij‖2 ≤ CṼ(1 + CṼh)i−j−1h ≤ CṼ(1 + CṼh)Nh

≤ CṼ exp(CṼ(T − t0))h =: C
V̂ −1h.

For the blocks [Ṽ −1]ij of Ṽ −1
h we get, due to the relation

Ṽ −1
h = V̂ −1

h diag(Ṽ−1
11 , . . . , Ṽ−1

NN ),

the estimates
‖[Ṽ −1]ii‖2 ≤ ‖Ṽ−1

ii ‖2 ≤ 1

and
‖[Ṽ −1]ij‖2 ≤ ‖Ṽ−1

jj ‖2‖[V̂ −1]ij‖2 ≤ ‖[V̂ −1]ij‖2 ≤ C
V̂ −1h.

The blocks [W−1
h ]ij of W−1

h = Ṽ −1
h Ṽ −T

h can be computed as

[W−1
h ]ij =

N∑

k=1

[Ṽ −1]ik[Ṽ
−T ]kj =

min(i,j)
∑

k=1

[Ṽ −1]ik[Ṽ
−1]Tjk.
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In particular, the diagonal elements can be written as

[W−1
h ]ii = [Ṽ −1]ii[Ṽ

−1]Tii +

i−1∑

k=1

[Ṽ −1]ik[Ṽ
−1]Tik,

which implies

‖[W−1
h ]ii‖2 ≤ ‖[Ṽ −1]ii‖22 + (i− 1)‖[Ṽ −1]ik‖22 ≤ 1 + (i− 1)C2

V̂ −1
h2.

For the upper offdiagonal elements (j > i), we get

[W−1
h ]ij =

i∑

k=1

[Ṽ −1]ik[Ṽ
−1]Tjk = [Ṽ −1]ii[Ṽ

−1]Tji +
i−1∑

k=1

[Ṽ −1]ik[Ṽ
−1]Tjk,

and thus

‖[W−1
h ]ij‖2 ≤ ‖[Ṽ −1]ii‖2‖[Ṽ −1]Tji‖2 +

i−1∑

k=1

‖[Ṽ −1]ik‖2‖[Ṽ −1]jk‖2

≤ C
V̂ −1h + (i− 1)C2

V̂ −1
h2.

From the symmetry of W−1
h it follows that for i > j,

‖[W−1
h ]ij‖2 = |[W−1

h ]ji‖2 ≤ C
V̂ −1h + (j − 1)C2

V̂ −1
h2.

Combining these estimates and using the fact that ‖A‖∞ ≤
√

n ‖A‖2 for all A ∈ R
n,n finally

leads to

‖W−1
h ‖∞ ≤ max

i=1,...,N

N∑

j=1

‖[W−1
h ]ij‖∞

≤ √n max
i=1,...,N

N∑

j=1

‖[W−1
h ]ij‖2

≤ √n



1 + (N − 1)C
V̂ −1h + max

i

N∑

j=1

(min(i, j)− 1)C2
V̂ −1

h2





≤ √n



1 + C
V̂ −1(T − t0) +

N∑

j=1

(j − 1)C2
V̂ −1

h2





≤ √n

(

1 + C
V̂ −1(T − t0) +

(N − 1)(N − 2)

2
C2

V̂ −1
h2

)

≤ √n

(

1 + C
V̂ −1(T − t0) +

1

2
(T − t0)

2C2
V̂ −1

)

,

which implies (A.14) with CW−1 =
√

n (1 + C
V̂ −1(T − t0) + 1

2(T − t0)
2C2

V̂ −1
).



Appendix B

Software

Algorithms 1 and 3 have been implemented in Fortran routines, according to the Fortran 77
standards. The user interface has a similar design as the interface of the GELDA software
package [33]. All linear algebra operations, such as computing QR and LQ decompositions,
are performed by calls to BLAS [9] and LAPACK [1]. In the following, we list and briefly
explain the individual routines of our implementation. For further details, we refer to the inline
documentation.

GELDA

MAIN.F

DLOCAL.F DGLOBAL.F

REDUCE.F DECOMP.F

BLAS/LAPACK

Figure B.1: Graph of dependencies between the implemented Fortran routines.

MAIN.F This is a driver routine, which allows to conveniently call the corresponding routines
for performing the local and global minimization algorithms. The user must provide three
routines which evaluate the coefficient functions E(·), A(·) and f(·) at an arbitrary time
point, as well as the corresponding derivatives of order 1, . . . , s, where s is an upper bound
on the strangeness index of the underlying DAE. Optionally, the computed results can be
compared with a reference solution.

DLOCAL.F This is an implementation of the local minimization algorithm, Algorithm 1. Op-
tionally, REDUCE.F is called, either to compute an equivalent strangeness free system or to
reduce the size of the system by removing redundant equations.

DGLOBAL.F This routine initializes the global minimization algorithm and calls DECOMP.F.
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DECOMP.F This routine performs parts of the global minimization algorithm, Algorithm 3. Op-
tionally, REDUCE.F is called, either to compute an equivalent strangeness free system or to
reduce the size of the system by removing redundant equations.

REDUCE.F Performs calls to slightly modified routines of GELDA to compute the reduced
form (1.22) and to remove solvability conditions of the form 0 = fi(t).

All routines along with some example programs are contained on the enclosed CD or available
on request from the author.
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