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Preface

Differential equations are omnipresent in the modeling of physical and chemical processes. Often,
theses processes are subject to additional algebraic constraints. Examples for such constraints
are Kirchhoff’s laws in electrical circuits and position constraints in mechanical systems, see,
e.g., [10, 18, 40, 41]. Traditionally, such constraints are resolved by variable substitutions, reduc-
ing the model to a system of ordinary differential equations (ODEs). However, such substitutions
are not always possible and may be difficult to realize numerically. Furthermore, the increasing
size of the models makes such an approach a tedious task.

An elegant alternative to substitutions is to consider the differential equations along with
the algebraic constraints in their original form in one single system, which leads to the notion of
so called differential-algebraic equations (DAEs). In the scope of this thesis, we are concerned
with linear DAEs of the form

E@t)i(t) = A)z(t) + f(t), t € [to,T],

where E and A are matrix functions. This definition includes linear ODEs (for square and
point-wise nonsingular F) as well as purely algebraic systems (for £ = 0).

Several frameworks for the theoretical and numerical treatment of DAEs have been devel-
oped, see, e.g. [6, 16, 19, 31]. Here, we focus on the strangeness index concept developed by
Kunkel and Mehrmann [31], as this framework naturally includes under- and overdetermined
systems. With the advance of automatic modeling packages, such as ANSYS, COSMOS/M,
Modelica and Simulink, redundant constraints and variables are likely to be contained in the
model. Such redundancies lead to under- and overdetermined DAEs, which are the topic of this
thesis. Representing another application, the design and analysis of linear control systems can be
embedded in the framework of underdetermined DAEs using a behavioural approach [26, 32, 38].

This thesis is based on work by Kunkel and Mehrmann [28], which provides a theory that
extends the concepts of generalized inverse and least squares solution of linear algebraic equations
to linear DAEs. The numerical aspects of this extension, however, were not covered in [28] and
are the main purpose of this thesis. We treat the major aspects of the numerical computation
of generalized solutions of linear DAEs: discretization, convergence, efficient algorithms and
software. Various numerical examples illustrate the obtained theoretical and algorithmic results.

Outline of the thesis

In Chapter 1, we first provide two examples demonstrating that the direct numerical treatment
of DAEs may lead to wrong or misleading results. Further, the strangeness index concept is
introduced, based on normal forms of linear time-variant DAEs. These normal forms also yield
simple conditions for the existence and uniqueness of solutions. Reducing the strangeness index
to zero is an important preprocessing step of our numerical methods and can be done numerically
based on so called derivative arrays.

Chapter 2 summarizes the theoretical results in [28], which form the basis of our work. First, an
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orthogonal standard form of strangeness free linear DAEs is introduced; it allows to distinguish
between the differential, algebraic and undetermined parts in the solution. In the spirit of the
concept of the Moore-Penrose pseudoinverse for linear algebraic systems, we introduce the no-
tion of differential-algebraic operators and the corresponding generalized inverses, including the
notion of a Moore-Penrose pseudoinverse and the least squares solution for differential algebraic
equations. It turns out that the latter can be seen as the solution of a linear quadratic optimal
control problem. Based on the orthogonal standard form, this connection is used to turn deter-
mining the least squares solution of a DAE into solving an equivalent boundary value problem.
Another approach to obtain a generalized solution is to force the undetermined part of the so-
lution to be zero. It is shown that these solutions induce a so called (1,2,3)-generalized inverse
of the differential-algebraic operator. Let us emphasize, however, that the orthogonal standard
form is difficult to realize numerically and consequently we have to consider other means for
computing generalized solutions.

Being the main chapter of this thesis, Chapter 3 is concerned with the numerical computation
of generalized solutions of linear DAEs. First, we briefly survey BDF-methods and their use
for computing unique solutions of strangeness free DAEs. Our goal is to apply BDF-methods
for computing generalized solutions of over- and underdetermined DAEs. For this purpose, we
introduce a compact notation for the linear system arising from the BDF discretization, using
certain restriction operators. Two major approaches are presented for solving this linear system:
local and global minimization.

The basic idea of local minimization is to solve the linear systems arising in each step of the
BDF-methods independently in a least squares sense. It turns out that this leads to an O(h)
approximation of a (1,2,3)-generalized solution of the DAE. To prove this result, we compare the
solution computed by this approach with the solution of the discretization of a certain, uniquely
solvable DAE.

Global minimization consists of solving the full linear system obtained from an implicit Euler
discretization, again, in a least squares sense. This method leads to an O(h) approximation of the
least squares solution of the DAE. The rather technical proof of this result is done in two steps.
First, we show this assertion for systems given in orthogonal standard form by exploiting the
connection to a discrete linear quadratic optimal control problem that represents a convergent
discretization of the underlying boundary value problem. In the second step, we extend this
result to the case of general strangeness free DAEs. An important ingredient of the proof is to
show that a certain part of the Moore-Penrose inverse of the discretization is uniformly bounded;
this is done in Appendix A.

In Chapter 4, two algorithms realizing the derived numerical methods are presented. The com-
putational cost of both algorithms scales linearly with the number of time steps. This desirable
property can be directly achieved for local minimization. In the case of global minimization,
we present a special-purpose algorithm that takes the particular structure of the discretization
matrix into account to achieve the same goal.

The numerical behaviour of these algorithms is tested in several numerical experiments.
First, the theoretical result that using higher order BDF-methods does not lead to higher order
of convergence in our setting is confirmed. Using an implicit Euler discretization, the actual
convergence rate of both, local and global minimization, is verified. It is demonstrated that the
software package GELDA [33], which uses a similar local minimization technique for underde-
termined DAEs, does not produce satisfying approximations to the (1,2,3)-solution, nor to the
least squares solution. It is shown that the computational time needed by our methods scales
linearly with the number of time steps, with GELDA being faster than local minimization and
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local minimization being faster than global minimization. Using a purely algebraic example, it
is confirmed that both solutions produced by local and global minimization coincide in this case.
Finally, a real-world application is considered.

Appendix B contains a brief description of the software developed as part of the work on this
thesis.
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Chapter 1

Preliminaries

In this chapter we introduce preliminary definitions and notions used throughout the rest of this
thesis. Section 1.1 is concerned with the strangeness index for linear time-variant differential-
algebraic equations (DAEs). Numerical computations usually require the preliminary reduction
of this index to zero. One way to achieve this is to embed the DAE into a larger one, as described
in Section 1.2. This also admits the numerical determination of the strangeness index. A much
more important consequence is that from the large DAE one can extract a DAE of the size of
the original DAE, such that both smaller DAEs have the same solution sets but the extracted
DAE has strangeness index zero.

1.1 The strangeness index

Throughout this thesis we consider linear DAEs of the form

(1.1) E(t)x(t) = A(t)z(t) + f(t), te€ [to,T],

where E, A € C([to, T],R™") and f € C([to, T],R™), with an initial condition
(1.2) z(to) = To.

If F' is a square, point-wise nonsingular matrix function, then the system (1.1) can be transformed
into an ordinary differential equation by multiplying both sides with E(¢)~! from the left. In this
case, it is well known that there exists a unique solution for every given initial value g € R"™.
Furthermore, the system (1.1) can be discretized directly, e.g., by BDF-methods [20].

If the matrix function FE is singular or nonsquare then the situation is far more complicated.
For example in the special case F = 0, the DAE (1.1) becomes a purely algebraic system, which
may have several solutions or no solution at all. In this case, an initial value has to satisfy the
condition

0 = A(to)zo + f(to)

in order for (1.1) with (1.2) to be solvable. In the general case, further problems can occur,
because often the algebraic conditions of the DAE are not given explicitly but can be hidden
in the system (1.1). This frequently causes problems if the DAE is discretized directly as it is
usually done with ODEs. The following two examples demonstrate some of these difficulties.

Example 1 ([13, 24]) The DAE

N T e e |
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with t € [to,T], f1,f2 € C*([to,T],R), is uniquely solvable for any value € R. Setting

x = [z1,72]" we can rewrite the DAE as

0= —x1(t) — ntas(t) + f1(t), z1(t) + ntia(t) = —(n+ Daxa(t) + fa(t).

Differentiating the first equation gives @1 (t) 4+ ntia(t) = —nxe + fi(t), and together with the
second equation we get the solution

2a(t) = fo(t) — f1(t), w1(t) = —ntaa(t) + f1(t) = —ntfo(t) + ntfi(t) + fi(t).

Note that it is not necessary to solve any differential equation to compute this solution and that
an initial value is consistent if and only if it satisfies these equations for ¢ = tg.

Now we discretize (1.3) with the implicit Euler method with a fixed step size h = T&to. At
each time step t; = tg +1ih, ¢ = 1,... N we have to solve the system

D)= [ e (A6

with respect to z; = [z1,, ZL'QJ‘]T. This system can be rewritten as

w1+ ntixe; = f1(ti),
r1;+ (nti + h(T} + 1))35271' =11+ Ntixo; 1+ hfz(ti).

For n = —1 this system is singular. For all other values of  we get

h(n+ 1)zo,; = x1,i-1 + ntixzei—1 + hfa(ts) — fi(ts)

and after inserting 1 ,-1 = —nti—122,—1 + f1(ti—1)
t; t;) — ti—
S R f(t)  filt) = filtio1)
n+1 n+ 1 h(n+ 1)

It is obvious that this discretization is not stable if |27 > 1, i.e., n < —2. In all other cases
the solutions of this discretization converge to the correct result. %

Example 2 ([16, 30]) The DAE

—t 2] . -1 0 fi(t
(1.4) [_1 t}x(t):[o _Jm(t)—l—[é%t;],
with t € [0,7T7], f1, fo € C1([0,T],R), can be rewritten as

(1.5) —tiy(t) + t2ia(t) = —z1(t) + f1(t),
—21(t) + t2a(t) = —x2(t) + fa(?),

again setting x = [z1, 22]7. By multiplying (1.6) with ¢ and subtracting it from (1.5) we get the
relation

(1.7) l’l(t) = tl‘z(t) + fl(t) - tfg(t),
which gives, after differentiation,

(1.8) d1(t) — tin(t) = za(t) + f1(t) — tfat) — fa(t)
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and thus, by adding (1.6) and (1.8),

(1.9) 0= f1(t) —tfa(t).

We can see that the DAE (1.4) is solvable if and only if the condition (1.9) is satisfied. If
this is the case, then the initial condition has to satisfy (1.7) for ¢ = 0 and every function
x = [r1,22)T € CL([0, T],R?) that satisfies (1.7) solves (1.4). Again we discretize (1.4) as in the
previous example using the implicit Euler method, which leads to linear systems of the form

[ [ O e [

for i =1,..., N with respect to z; = [z1,, .%'271']T. These systems possess the unique solution

1
To; = ﬁ(_wl’i_l +tixo i1+ fi(ti) + (h —t;) fa(ts)),

x1; = (h+t)zo,; + x1,i-1 — tiwai—1 — hfa(t;).

Thus the implicit Euler method always leads to a unique solution although the system may have
several solutions or may not be solvable at all. O

Both examples show that a direct discretization of a DAE may lead to wrong or misleading
results. They also demonstrate that certain algebraic constraints may be hidden in the DAE
and that it is necessary to form derivatives of some parts of the system to detect these constraints.
This is a distinctive feature of DAEs.

There are several theories for the analytical and numerical treatment of DAEs. Most of
these concepts define an index of a DAE, such as the differentiation [6], perturbation [19],
strangeness [27, 30] or tractability [16, 34] index. Such indices provide measures of the order of
derivatives that have to be computed to extract a system which admits the explicit detection
of the algebraic constraints as well as the differential equations of the given DAE. In general,
however, these theories require that the system is reqular in the sense that the DAE possesses a
unique solution. Thus they cannot be applied to define and compute generalized solutions of a
DAE. A theory that allows for an analytic treatment of nonsquare over- and underdetermined
systems is the theory of the strangeness index [32], which will therefore suit our purposes.

In the following, we give a short summary of the strangeness index theory for linear DAE
systems with variable coefficients as it was introduced in [30] and [29].

In a first step we have to transform the DAE system to a normal form which helps us to
examine the behaviour of certain parts of the system. For this purpose we employ the following
transformations. Given a point-wise nonsingular matrix function P € C([to, T],R™™) we can
scale the system (1.1) by multiplying with P from the left. The solution space can be transformed
by setting = Q¥ with Q € C'([to, T],R™") point-wise nonsingular. Because of i = Qi + Qi
we obtain that (1.1) is equivalent to the system

PEQi = (PAQ — PEQ)Z + Pf.
This leads to the following definition of an equivalence relation for pairs of matrix functions.

Definition 1 (global equivalence) Two pairs (E,A) and (E,A) of matriz functions, with
E, A E, A € C([to, T],R™™"), are called (globally) equivalent if there are point-wise nonsingular
matriz functions P € C([to, T],R™™) and Q € C*([to, T],R™") such that

E=PEQ, A=PAQ- PEQ

as equality of functions. We then write (E, A) ~ (E, A).
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It is easy to verify that this relation is in fact an equivalence relation. Under certain con-
stant rank assumptions a pair (F, A) of matrix functions corresponding to a DAE (1.1) can
then be transformed to a normal form that allows for an analytical treatment of the correspond-
ing differential-algebraic system. First we have to define the following quantities that can be
computed at any time point t € [tg, T.

Definition 2 Let (E, A) € C([to, T],R™") and t € [to,T]. Then the quantities

e)  u(t)=n—r(t)—a(t),
£ o) =m—r(t) —alt) - s(t),
where
(a) T(t) is a basis of kernel E(t),
(1.10) (b) Z(t) 7,:5 a basz:s of corange E(t) = kernel E(t)7,
(c) T'(t) is a basis of cokernel E(t) = range E(t)7,
(d) V(t) is a basis of corange(Z(t)T A(t)T(t)),

are called local characteristic values of the pair (E, A) at the point t.

Note that these local characteristic values can be computed numerically at any given t €
[to, T] by three singular value decompositions [15]. To compute a pair (E, A) of matrix functions
in the normal form that is globally equivalent to the given pair (F, A) we have to make sure
that there exist smooth matrix functions T', 7", Z and V on [tg, T] that satisfy (1.10) point-wise.
The following theorems show that this is the case whenever E and A are sufficiently smooth and
the local characteristic values are constant on [tg, 7.

Theorem 3 Let E € Cl([tg, T],R™"), | € NgU{oco}, with rank E(t) = r for allt € [to, T]. Then
there are point-wise orthogonal (and therefore nonsingular) functions U € C*([to, T],R™™) and
V € C%([to, T),R™™), such that
X0
T —
(1.11) UTEV = [0 0]
with point-wise nonsingular ¥ € C*(T,C™").

Proof. A detailed proof of this result can be found in [36, 39]. O

Theorem 4 Let E, A € C([to, T],R"™") be sufficiently smooth and suppose that
(1.12) rt)=r, alt)=a, s(t)=s

for the local characteristic values of (E,A). Then (E,A) is globally equivalent to the normal
form

I, 000 0 Aia 0 Aig]\ s
0700 0 0 0 Ayl |4
(1.13) (E,A)=]1]10000],]0 0 I, 0 a
0000 |I, 0 0 0 s
0000 00 0 0 v

Here, the block entries Aia, A1a, A2s are matriz functions on [to,T] and the last block column
consists of u=n —s —d — a columns.
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Proof. A constructive proof of the normal form (1.13) is given in [27]. O

For the examples we considered in the beginning of this section, we obtain the following
normal forms.

Example 3 For Example 1 we get

[00] [-1 —nt

[ 1nt]"| 0 —(n+1)

[0 1][00 0 1]|-1 —nt
10| |[1nt]"|-10 0 —(n+1)

sal )

oo o]0 L )

o 10 )

7A~)7

(E’A) =

:;(

Il
7 N 7 N 7 N N N

el

and thus, s = u = 1 and A4 = [—1]. The pair (E, A) in normal form corresponds to a DAE

Il = —Z f
(1.14) . . i;fl
where
BN et
T 0 1 Z9 01|
and

4-124L

f2 —10] |/

An obvious way to solve the system (1.14) is to differentiate the second equation, subtract it
from the first equation and achieve the system

02—532+~JF1—J52,
0:j1+f27

which corresponds to the pair of constant matrix functions

(ol [vo)
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Example 4 For Example 2 we get
[ —t ¢2 -1 0
e = (35[0 )

[0 1] [t ¢ 0 —1][-1 0

-1 ¢ —1t||-1t 0 —1
_([1-t] [o1
“\[00 |1t

(1 —t|[1¢ 01 1t] [1-t][01

0 0]|01]”|1—-¢t][01 001]]00

[10] [00

100]7]10

= (E,A)

and thus, s = v = 1 and A4 = [0]. The pair (E, A) is in normal form and corresponds to the
DAE

:1:1:];17 B
0= j1+f27

which can be solved again by inserting the derivative of the second equation into the first
equation. This leads to the system

Ozfl_.fga
0:j1+f27

(Loal-[5))

In both examples, the simplification of the DAE relied on differentiating an equation that cor-
responds to the strangeness block I of the matrix function A and thus removing the strangeness
block in E. As will be shown in the following, we can proceed in a similar way with general
DAE systems that satisfy the assumptions of Theorem 4. The pair (F, A) in (1.13) is associated
with a DAE system

which can be represented by the pair

O

(a) 3?1 = A1a(t)To + A14(t)Ta + f1(2),
(b) To = Aos(t)x4 + falt),
(1.15) (c) 0 = 3+ f3(t),
(d) 0 =21+ fa(t),
(e) 0= f5(t).

This system consists of the algebraic equation (1.15¢) of size a for Z3, the consistency condi-
tion (1.15e) for the inhomogeneity of size v and the differential condition (1.15b) for Zo of size
d. Looking at the so-called strangeness equations (1.15a) and (1.15d) of size s we can recognize
a coupling for ;. As in the examples we can differentiate (1.15d) and insert it into (1.15a) to
obtain the modified equation

(1.16) (@) 0= Aw(t)F2 + Aua(t)ia + fi(t) + falt).
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If we now replace (1.15a) by (1.16a’), the modified differential algebraic system can be repre-
sented by the pair

0000 0 A 0 Ay
0100 0 0 0 Ay
(1.17) (Bmods Amod) = | |00 00|,[0 0 I, O
0000 |I, 0 0 0

v

0000 0 0 0 O

This elimination procedure is reversible because the modified system still contains the algebraic
equation (1.15d). One can show that the structure of the pair (E’mod, flmod) is invariant under
global equivalence, i.e., if two pairs (E(l),fl(l)) and (E(z),fl@)) are globally equivalent and in
global normal form (1.13), then the corresponding modified pairs (E(lc))d, A(l) 4) and (E I(fc)) ’E fll(i)) a)
are also globally equivalent, see [27].

This fact allows for the following inductive procedure. We start with the pair (EO,AO) =
(E,A) and define a sequence (E;, 4;), i € Ny, by transforming (E;, 4;) to the pair (E;, A;) in
global canonical form (1.13). Here we have to assume in each step of this procedure that the
assumptions of Theorem 4 are satisfied by the pair (E,,A ) We then define (Ejy1, Ait1) =
(Ezmod7 Azmod) where (Ezmod, Almod) is computed from (Ez, A; i) by passing from (1.13) to (1.17).

For every pair (FE;, A;) we can compute the corresponding characteristic values (7, a;, ;) as
defined in Definition 2. By comparing (1.13) and (1.17) one can see that r;11 = r; —s; for i € Ny
and because r; cannot be negative, the strangeness must vanish after a finite number of steps,
i.e., s, =0 for some p € Ny and thus the sequence (7, a;, s;) must become stationary for i > p.
The index p is a characteristic value of the pair (E, A).

Definition 5 (strangeness index) Let (E,A) be a pair of sufficiently smooth matriz func-
tions. Let the sequence (r;,a;,8;), i € No, be well-defined (in particular, let (1.12) hold for each
entry (Ey, A;) of the above sequence). Then, we call

w=min{i € Ny | s; =0}

the strangeness index of (F, A) and of (1.1). In the case of p = 0, we call (E,A) and the
corresponding DAE (1.1) strangeness free.

From the discussion above it follows that if the strangeness index is well-defined for a DAE
of the form (1.1) then the inductive procedure leads to a strangeness free DAE system, where
the associated pair (E,, A,) transformed to the normal form can be written as

o 15007 [0 0 A
(1.18) (En,A)=(|000|,]0L 0
000] |00 0

To compute the strangeness free DAE it is necessary that at least certain parts of the inhomo-
geneity are p times differentiable.

Theorem 6 Let the strangeness index p of (E,A) be well-defined (i.e., let the assumptions of
Definition 5 hold) and let f € CH([to,T],C™). Then the differential-algebraic equation (1.1) is
equivalent (in the sense that there is a one-to-one correspondence between the solution spaces
via a point-wise nonsingular matriz function) to a differential-algebraic equation of the form

(a) i1 = Awis(t)zs + f1(t),  du

(1.19) b)  0=m+ hl), »
(c) 0 = f(t), O
where A1z € C([to, T], C%%) and the inhomogeneity is determined from FO )
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The existence and uniqueness of solutions of a linear DAE (1.1) can be easily examined after
the strangeness free normal form (1.19) has been computed.

Corollary 7 Let the strangeness index p of (E,A) be well-defined and let f € CFTY(I,C™).
Then we have:

1. The problem (1.1) is solvable if and only if the v, functional consistency conditions
f3=0
are fulfilled.

2. An initial condition (1.2) is consistent if and only if in addition the a, conditions
z2(to) = — f2(to)

are implied by (1.2).

3. The corresponding initial value problem is uniquely solvable if and only if in addition

uy, =0

holds.

Let us illustrate these results by applying them to our running examples.

Example 5 For Example 1 we have already computed in Example 3 the normal form
oo = ([oa]- 1))

and the corresponding characteristic values

For the modified pair we get

(E1, A1) = (Eomod, Aomod)

{
S HERRIE)
(

and thus,
r1=0, aa=2, s1=0, di=0, w3 =0, v =0,

and finally the strangeness index p = 1. The system consists of two algebraic equations and
possesses a unique solution, provided that the initial values are consistent. %
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Example 6 For Example 2 we have seen that
= 10 00
ot (22 1))

7“0:1, a0:O, 80:1, d():(), u():l, ’U(]:O.

see Example 4, and thus,

For the modified pair we get
(ElvAl) = (EOmodaAOmod)

(ool-[10)
~ (Vo] [oo][0] [30)
([00]-00))

= (El, /Nh)

The characteristic values for the pair (E;, A;) are
7“1:0, a1:1, 81:0, d1:0, u1:1, ’1)1:1.

It follows that this system has strangeness index p = 1. It consists of an algebraic equation and
a consistency condition for the inhomogeneity and it has one undetermined solution component.
In particular, the homogeneous initial value problem (for which the consistency condition is
satisfied) does not possess a unique solution. O

Both results agree with the results that we have already computed in Example 1 and Exam-
ple 2.

As we have seen, the strangeness index p is well-defined for a differential-algebraic system
(1.1) on an interval I, whenever the constant-rank assumptions of Theorem 4 are satisfied by
all pairs (F;, A;), i =0, ..., u, provided that they are sufficiently smooth on I. Due to the fact
that the rank of any continuous matrix function can at most change outside of a dense subset
of open intervals in a given closed interval I (see, e. g., [7]), we get the following result.

Corollary 8 Let I C R be a closed interval and E; A € C(I, C™™) be sufficiently smooth. Then
there exist open intervals I;, j € N, with

UL=1L LnL=0 for i#j
JEN
such that the strangeness index of (E, A) restricted to 1; is well-defined for every j € N.

We have seen so far that the strangeness index can be defined for a large class of linear
differential-algebraic equations. The fact that the aforementioned theory can also be applied
to underdetermined and even unsolvable systems leads to intuitive solvability and uniqueness
results for differential-algebraic systems. In addition, this theory can also be applied to con-
trol problems, where the input variables can just be treated as undetermined solution compo-
nents [32, 25, 26].

However, it is in general not clear how to turn the above procedure into a reliable numerical
method for computing the strangeness index. On the one hand it is difficult to realize the
smooth transformations to compute the normal form (1.13), on the other hand for systems with
a higher strangeness index the derivatives needed here cannot be computed accurately. In the
next section, a method will be presented that avoids these difficulties.
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1.2 Numerical computation of the strangeness index

For the computation of the strangeness index of a linear DAE (1.1), one has to compute deriva-
tives of certain parts of the pair (F, A) of matrix functions. In addition, if we want to solve a
given differential algebraic equation by discretization, we have already seen that this might lead
to wrong or misleading results if the discretization is applied directly to a higher-index system.
Therefore, one wants to compute a system that has the same solution set as the original system
but which is strangeness free. This, however, makes it necessary to differentiate certain parts of
the inhomogeneity but it is well-known that the numerical computation of higher derivatives is
not necessarily stable [17]. It is also difficult or even infeasible to employ automatic differentia-
tion techniques [17]; as one has to compute derivatives of transformed data, this would require
to differentiate the original data and the transformations.

Therefore, it makes sense to assume that the necessary derivatives are given in advance and
defined solely in terms of the original data. A system that contains all the required derivatives of
the pair (E, A) and of the inhomogeneity should also contain all the information that is needed
to compute the strangeness index. We will see that such a system also allows the computation
of a strangeness free differential-algebraic equation which has the same solution set as the given
DAE.

The following idea was first introduced by Campbell [6]. If we differentiate the DAE (1.1)
once with respect to ¢ then we obtain

E@)i(t) + E()i(t) = A@)z(t) + A@)i(t) + f(b).

After sorting all the derivatives of x to the left-hand side of the equation, we can merge this
system with the original DAE to obtain the differential-algebraic equation

(120 )0 £t Lsty) = Lo o) [560) * i)

If all coefficients and f are sufficiently smooth then the solution of the DAE (1.1) coincides with
the solution of the inflated system (1.20). The same method can also be realized for higher
derivatives. If we build [ derivatives of (1.1), then we can combine all these derivatives to the
so-called inflated differential-algebraic equation or derivative array

M(t)2(t) = Ni(t)z(t) + gi(t), t € [to, T,

where the coefficients are given by

(Mp)ij; = (;) E(=9) — (jj-l) A=i=1) 5 =0,...1,

(N)ij = rE R J=
0 otherwise,
(z); = 2V, j=0,...,1,
()i = f9, i=0,...,1

Here we use the convention

<;> =0 fori<0, j<O0 orj>i.

As for the pair (F, A) we can compute the local characteristic values of the inflated pairs
(M, N;) according to Definition 2. If the strangeness index u of (E, A) is well-defined, then
the local characteristic values of the pairs (M;, N;), [ = 0,...,u, can be used to compute the
sequence (74, a;, s;) of global characteristic values of the pairs (E;, A;) that have been defined in

the previous section.
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Theorem 9 ([29, 30]) Let the strangeness index p of (E, A) be well-defined and let (71, ay, §;),
1 =0,...,u, be the sequence of the local characteristic values of (M(t), Ni(t)) for some t € 1.
Then the sequence (r;, a;, s;) of global characteristic values of (E, A) can be obtained by

(a) co = ap+ 50, Cit1 = (Air1 — a;) + (Sit1 — 5i),

(b) Vo =m —Cy—To, Vig1 =M — Ciy1 — (Fig1 — 77),
(1.21) (C) S; = C; — ELZ',

(d) a; =co+ -+ ¢ — 8,

(e) Ti=1Mm — a; — 8; — ;.

This means that if the strangeness index p of a given DAE is well-defined, then we can get
the information about the complete sequence of global characteristic values of the pairs (F;, A;)
as they were constructed in the previous chapter from the inflated pair (M, N,). In particular,
they can be computed numerically. The following theorem can then be used to construct a
strangeness free system which has the same solution set as the original DAE.

Theorem 10 Let the strangeness index p be well-defined for the pair (E, A) and let (14, a;, si),
i=0,...,u, be the sequence of global characteristic values of the pairs (E;, A;). Setting

a=ay,, d=d, O=v9+ -+,

where dy, =1, and v =m —r; —a; —s; fori=1,...,u, then the inflated pair (M, N,) has the
following properties.

1. For allt € [ty,T] we have rank M, (t) = (4 1)m — a — 0. This implies the existence of a
smooth matriz function Z of size ((1+ 1)m,a+ 0)) and point-wise orthonormal columns,
satisfying ZTMM =0.

2. For all t € [to,T] we have rank Z(t)TN,(t)[I,0---0)T = a. This implies that, without
loss of generality, Z can be partitioned as Z = [Zo Z3] with Zy of size ((u + 1)m,a)
and Zs of size ((n + 1)m,d), such that Ay = ZIN,IL,0---0]T has full row rank a and
ZEN,[L,0---0]T = 0. Furthermore, there exists a smooth matriz function Ty of size (n, d),
d=m—a— 0, and point-wise orthonormal columns, satisfying AsTy = 0.

3. Forallt € [to, T] we have rank E(t)T5(t) = d. This implies the existence of a smooth matriz
function Z; ofAsz'ze (m,d) and point-wise orthonormal columns such that £y = ZT E has
constant rank d.

Furthermore, the system

Ei(t) Ay (1) fi(t)
(1.22) 0 | #)= | Aut) [ 2(0)+ | fot) | -
0 0 f3(t)

with Ay = ZT A, fl =71, fg = Zggu and fg = Zggu, is strangeness free and has the same
solution set as the given DAF.

Proof. See [32] and [30]. O

Note that in general & > m — d — a, which implies that in these cases the system (1.22)
consists of more equations than the original DAE (1.1). The function fg contains the function
f3 as defined in (1.19) and derivatives of some parts of it. Hence if f3(t) = 0 for all ¢ € [to, T
then we know that the original system is solvable.
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For the numerical treatment of linear differential-algebraic equations another fact is impor-
tant. By means of three singular value decompositions we can compute matrix functions Z,
Z5 and Z3 that can replace the functions Z1, Zo and Z3 in the sense that they satisfy the con-
ditions given in Theorem 10 but without being smooth. The numerical realization of smooth
transformations is extremely expensive and will generally be impossible here, see [5] and [36].

Without loss of generality we may assume the functions Z;, Z and Z3 to be orthogonal due
to Theorem 3. What we can compute numerically are point-wise evaluations of Z, = Z,Qq,
Zy = Z5Qs and Zs = Z3Qs3, where Q1, Q2 and Q3 are orthogonal but not necessarily smooth.
Thus if we compute the system (1.22) using these matrices we may get a system where the
coefficient functions are only smooth (apart from roundoff errors) after a multiplication with
diag(Q1, Q2, Q3) from the left. This scaling, however, does not change the solution space of the
system and thus we can neglect the possibly nonsmooth realization of the functions 71, Zs and
Z3.

Due to Theorem 9 and Theorem 10 we are now able to treat linear differential-algebraic
equations numerically, whenever their strangeness index is well-defined and the inflated pair
(M, N,) is given. At every point t € [tg,T] we can compute the characteristic values for the
system using only local information at this point. We can extract a strangeness free DAE that
has the same solution space as the original system. In Chapter 3, we will see that this system
can be discretized, e.g. with BDF-methods, and that we get the same convergence results as for
ordinary differential equations.

Example 7 In Example 5 we have already computed the global (and hence local) characteristic

values of the pair
00 -1 —nt
My, Ng) = (E,A) =
( 0 0) ( ) ) (|:1’I’]t:|’|:0 _(77+1):|>7

according to Example 1, and thus we have

0O 0 00 -1 -t 00
- 1 nt 00 0 —(n+1)00
(M, N) = |y n 00’0 - 00
02n+11mnt 0 0 00
By means of the transformations
0 010 10 —nt 0
0 001 00 1 0
P= 0 110"’ @= 01 -2n—1-nt|’
-1 000 00 0 1

we can transform the pair (M7, N1) to the normal form

(M, N1) = (PM1Q, PN1Q — PM1Q)
1000 0000
0100| |000y
0000(’l0o010
0000 1000
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and read off the global characteristic values

Using the recursion (1.21) we get

co=ao+35 =1, c1=(a1—ag)+ (51— 5) =1,

vp=m—cy — (1 —79) =0,
81201—&1:0,
ay =cy+c—s1 =2,

rm=m-—a; —s1—v; =0,

and this agrees with the result that we have obtained in Example 5. To obtain the strangeness
free DAE system as defined in Theorem 10 we can choose

= O

7 =7y =

oo o~
o |
—_

as the matrix containing a basis of the corange of M. Now for

-1  —nt
- I 100 07| 0 —(n+1) —1 —nt
_ T 2| _ n _ 1
A2_Z2N1{0]_{01—10] 0 - _{o —1}
0 0

we have rank(flg) = 2 and we immediately get the strangeness free system

(123 0= Astet) + 20 = | 3 Y e [ " |

The unique solution of (1.3) can now be computed without any discretization by solving the
equivalent algebraic system (1.23). O

Example 8 For Example 2 we have already computed the global and local characteristic values
(see Example 6) for

as

The inflated pair

—tt2 0 0 -1 0 00
-1t 0 0 0 —-100
(My, N1) = 02t —tt2|’] 0 000

0 2 -1t 0 000
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can be transformed to the global normal form

(My,Ny) = (PMyQ, PN,Q — PM;Q)
10007 [000 O
0100| |000 -1
0000[’[100 0
0000] [000 0O

by means of the transformations

0 -10 0 10¢0
0 00-1 0010
P= -1t 00 |’ @= 012¢
0 01—t 0001

This yields the global and local characteristic values
f1:2, CL1:0, 81:1, 1)1:1.

The recursion (1.21) then gives

cp = ag + Sg = 1, 61:(&1—@0)4-(81—80):0,
vp=m-—c — (f1—79) =1,

51 =c1—a1 =0,

ap =cyg+c—s =1,
rr=m-—a;—38 —v1 =0,

again in accordance with the computation in Example 6.
The strangeness free system can be obtained from (M, N1) as follows. The matrix functions

0
—t 0
Zy = , 43 = 1
0 —t

span the corange of My, Z1 N1[I50] = 0, and

Ay =ZINi [ 0]

I
—_
|
—_
)
o
[

has full row rank. Thus, by Theorem 10 we get

a2 o= [0 a0 [FO] =[]0+ [0 TR0

As already observed in Example 2, the system is solvable if the condition fi(t) — tfa(t) = 0 is
satisfied for all ¢ € [to,T] but the solution is not unique. O
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In the next chapters we will only consider strangeness free linear differential-algebraic equations.
This restriction is justified by the aforementioned results, which show that we can compute
equivalent strangeness free systems numerically for every given system at any time point t,
whenever the strangeness index is well-defined. As already mentioned, the functions Z, Z and
Z3 defined in Theorem 10 can be chosen such that they have orthogonal columns. Combined with
the fact that the Euclidean norm for vector spaces is invariant under orthogonal transformations,
this property will admit the definition and computation of least-square solutions for differential-
algebraic systems of higher index.
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Chapter 2

Generalized Inverses of
Differential- Algebraic Operators

Being closely related to finding least-squares solutions of over /underdetermined linear systems,
the notion of generalized inverses of differential-algebraic operators is introduced in this chapter.
For this purpose, an orthogonal standard form based on the strangeness free form (1.22) is
defined. Furthermore, it is shown that computing these generalized inverses is equivalent to
solving a linear-quadratic optimal control problem or a boundary value problem; a connection
that will be used to justify the numerical method proposed in Section 3.3. The exposition in
this chapter is along the lines of the work in [28].

2.1 The orthogonal standard form

The strangeness free differential-algebraic system (1.22) defined in Theorem 10 can be computed
by using orthogonal transformations from the left only. The transformations do not change the
solution set of the given differential-algebraic system. The system (1.22) allows to distinguish
between a differential equation

~ A~

Ei(t)i(t) = A (t)a(t) + fi(t)

of dimension d and a purely algebraic equation

0= Ay(t)a(t) + fa(t)

of dimension a, but it does not distinguish between the parts of the solution that belong to
differential or algebraic parts of the system or those components of the solution that are unde-
termined. This could be achieved by transforming the system to the normal form (1.19), but
such an approach requires a non-orthogonal transformation of the solution space. The orthogo-
nal standard form proposed in this section is derived from (1.22) solely by means of orthogonal
transformations. This form will allow us to define least-square solutions of differential-algebraic
equations.

Theorem 11 Let the DAE (1.1) be strangeness free and (E, A) sufficiently smooth. Then there
exist matriz functions P € C([to, T],R™™) and Q € C([to, T], R™"), both point-wise orthogonal,
such that we can transform (1.1) to the orthogonal standard form

(2.1) B()i(t) = A@W)a(t) + f(),

17
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where
Sr(t) 00
E(t) = POE®HQE)=| 0 00],
0 00
. Ax1(t) Axa(t) Axs(t)
Alt) = P(OAR)Q() — PO ED)Q() = | A21(t) Zat) 0 |,
22) 0O 0 0
z1(t)
2(t) = Q)T x(t) = | xa(t) |
z3(t)
3 fi(?)
f) =PR)f(t)= | fo(t) |
f3(t)

with X g and ¥ 4 point-wise nonsingular. All block sizes are allowed to be zero.

Proof. While in [28], the existence of (2.1) was implicitly assumed, we will show constructively
that (2.1) always exists if the original DAE (1.1) is strangeness free.
By Theorem 10 there exist smooth matrix functions Z; of size (m, d), Z of size (m,a) and

Zs3 of size (m,), where d = rank(E), @ = rank([Z2Z3]T A) = rank(ZJ A) and & = m — d — a,
such that [Z) Zy Z3] is point-wise orthogonal and

B, A,
(21 Zo Z3]" (E, A) = 0|, As
0 0

By Theorem 3 there exist orthogonal and smooth matrix functions U; and V; such that
UlByVi =[S 0]

with point-wise nonsingular g of size (d, c?) Because E; has full row rank, one can choose
Uy = I and we get

Ey Ay [ Ey [ A, By
0 |,| Ay ~ 0|V, | A |Vi—=|0 | W
0 0 0 0 0

[Yr 0 _/:111 /:112
= 0 0, Ay Ag
Ll 00] [0 o

where [12111 Alg] = A Vi — B4V, and [Agl flgg] = AyV; are partitiQned according to the size of
Y. By Theorem 10 there exists a matrix function T3 of size (n,d) with point-wise orthogonal
columns such that rank(E(t)T2(t)) = d in [tg, T] and ATy = 0. If we partition

T/
‘/'1TT2 = I:Tg/:l s

such that T4 is of size (d,d), then

El EE 0 T/ N
rank(E(t)Ts) = rank 0 | Tz | =rank 00 [T%] =d
0 00" 2
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implies that 7% is nonsingular. From

. . T!
ATy = [ Ay Asy | [

T?,] = Ao T} + AgoTY
2

it follows that Ag; = —AQQTQ// Té_l and this implies rank(Agg) = rank([flgl Agg]) =q.
Again, Theorem 3 shows the existence of smooth orthogonal matrix functions U and V5
such that
U AV = [£4 0],

and consequently we obtain

YE 0 14:111 14:112 [ 0 Al} 1211;‘/2
0 0 ; A21 A22 ~ O 0 9 U2TA21 UéFAQQ‘/Q
00 0 0 00 0 0

(Y500 A1 A2 Ags
= 0 00|,]|A21 24 O
L oo00] [0 0 o

Like the normal form (1.18), the orthogonal normal form allows to distinguish between the
different components of the solution Z, namely the differential part =1, the algebraic part zo and
the undetermined part x3 of size & = n — d—a. Suppose that f3(t) = 0 for all ¢ and thus the
DAE is solvable, then x3 can be chosen arbitrarily, just like an input variable in a control system.
For any input x3 the variable x1 has to be the solution of the ordinary differential equation

#1(t) = =25 () (A (®)z1(t) + Arz(t)za(t) + Awz(H)as(t) + f1(t)),
where the component x5 has to satisfy the algebraic condition
2o(t) = =23 (1) (A2 ()21 (1) + fa(t)).

It follows that any initial condition can be assigned to x1, while the overall initial condition is
consistent if and only if the equation

T90 = —X ;1 (to) (A21 (to)z10 + falto))

holds, where

Note that it is in general difficult to compute the orthogonal standard form numerically due
to the difficulties associated with realizing the necessary transformations smoothly, as already
discussed at the end of Section 1.1.
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2.2 The Moore-Penrose pseudoinverse
Given A € R™"™ and b € R™, a general system of linear equations
Az = b,

which may be over- or underdetermined, can be “solved” uniquely by considering the minimiza-
tion problem

1 1
(2.3) §||x|\% =min! s.t. §HA1: —b||3 = min!

This problem always has a unique solution, which is called least squares solution and can be
written in the form

xz=A"b,

where AT € R™™ is the Moore-Penrose pseudoinverse of A [3]. The Moore-Penrose pseudoin-
verse can be computed by means of a singular value decomposition

_ %40 T
A_U[O O]V,

where U € R™™ and V' € R™" are orthogonal and ¥4 € R*%, a = rank(A), is a diagonal matrix
containing the nonzero singular values of A. Observe that

bl — o . ||[Za 0] [ViEe]  [UTb
4z ol = [oavTve - vl = |50 [Ver] - [

2
= UL

2
is minimized for Vi'z = % ;'UT'b and

VT
lalls = [V ]l = H[ i }

T
\

-
2 V'

2

is minimal for

—1y7T
r=[Vi V] FAOUI b] — Vx0T,
Therefore, we obtain
-1
(2.4) AT = Ul =V [2()4 8] Ur.

Here, V = [U; U] and U = [V} V3] are partitioned according to the above block structure, i.e.,
U; € R™% and V; € R™,
The Moore-Penrose pseudoinverse satisfies the four Moore-Penrose axioms

) AAYA= A,
) ATAAT = AT
3)  (AAN)T = AAT,

)

(
(2.5) E
( (A*A)T = A+ A,
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On the other hand, for given A € R™", the four axioms (2.5) fix a unique matrix A* € R™™,
see [7], which can be computed via the formula (2.4).

If, for a given matrix A € R™"™, a matrix A~ € R™™ satisfies only some of the Moore-Penrose
axioms it is also called a generalized inverse of A. If, e.g., A~ satisfies the Moore-Penrose axioms
(1), (2) and (3) it is called a (1,2,3)-inverse of A. Analogously, one can define (1,2,4)-inverses
or (1,2)-inverses of a given matrix. Of course, in general, these generalized inverses are not
uniquely defined [7].

Another way to interpret the definition of the Moore-Penrose pseudoinverse in the context
of linear operators is to consider the homomorphism A : R” — R™ induced by the matrix A.
There exists a linear mapping which maps a vector b € R" onto the unique solution z € R"
of the minimization problem (2.3). The matrix representation of this mapping is given by the
matrix AT,

2.2.1 The Moore-Penrose pseudoinverse for matrix functions

This well-known theory can be easily generalized to the case of matrix functions between spaces
of smooth functions. To see this, let us consider an equation of the form

(2.6) A(t)x(t) = f(t), tel
with A € CY{(I,R™"), f € CY(I,R™), I € Ny, on some interval I, along with the minimization
problem

1 1
(2.7) §Ha:|]2 = min! s.t. iHAx — fII? = min!

with respect to the norm

zll2 = v/ (2, x), (z,y) = /x(t)Ty(t)dt.

I

Provided that the conditions of Theorem 3 hold, we will see in Lemma 16 below that the time-
variant orthogonal decomposition (1.11) of A implies the existence of a unique solution of (2.7).
In this case, a pseudoinverse operator can be computed similarly as for linear systems, see (2.4).
We will now set up the appropriate spaces and reformulate the Moore-Penrose axioms for this
problem, using basic tools from functional analysis [22].

Definition 12 Let X be a vector space with an inner product (-,-) and let A : X — X be an
endomorphism. An endomorphism A* : X — X is called a conjugate of A if and only if

(Az,z*) = (z, A%x™)
for all x,x* € X,

In the setting of Definition 12, a conjugate is always unique and there exists the following rule
for the conjugate of a product of endomorphisms.

Lemma 13 Let X be a vector space with an inner product (-,-) and let A : X — X be an
endomorphism. There is at most one endomorphism A* : X — X conjugate to A.

Let the endomorphisms A*, B* : X — X be conjugate to the endomorphisms A, B : X — X.
Then AB has the conjugate (AB)* given by

(AB)* = B*A*.
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Proof. See, e.g., [22]. O

Now we are able to define a Moore-Penrose pseudoinverse of a linear operator between vector
spaces.

Definition 14 Let X and Y be two vector spaces with an inner product (-,-) and let D : X — Y
be a homomorphism. A homomorphism DT : Y — X is called a Moore-Penrose pseudoinverse
of D if DDV and DV D possess conjugates (DDT)* and (DT D)*, and the relations

(1)  DD*D =D,

2.8) (2)  DtDD* =D,
' (3)  (DDY)* =DDH,
(4)  (DTD)*=D*D
hold.

As for linear systems, it will be shown in the following lemma that the four axioms of Definition 14
guarantee the uniqueness of the Moore-Penrose pseudoinverse. In general, the existence of such
an inverse cannot be shown, but in the case of matrix functions A € C!(I, R™™) the function
AT defined via the smooth orthogonal decomposition (1.11) satisfies these four axioms.

Lemma 15 Let X and Y be two vector spaces with an inner product (-,-) and D : X — Y be a
homomorphism. Then D has at most one Moore-Penrose pseudoinverse DV : Y — X.

Proof. For completeness, let us recall the proof given in [28]. Let DT, Dt : Y — X be two
Moore-Penrose pseudoinverses of D. Then we have
DY = D*DD* = D*DDYDDT = (D*D)*(D*D)*D™
= (DYDDTD)*D* = (D™D)*Dt = DTDD™ = DY (DD™)*
= DY (DD*DDY)* = DY (DD"*(DD*)* = D*DD*DD* = DY DD = D™,

The following lemma shows that the Moore-Penrose pseudoinverse of a matrix function A
can be defined and computed analogously to the case of systems of linear equations provided
that the rank of A(t) is constant for all ¢.

Lemma 16 Let A € CH(I,R™") be a matriz function with rank(A(t)) = a for allt € 1. Then the
minimization problem (2.7) possesses a unique solution x € CHI,R™) for every inhomogeneity
f € CHI,R™). The matriz function AT € CY(I,R™™) that maps f by pointwise multiplication
onto this solution, i.e. x(t) = AT (t)f(t), is the Moore-Penrose pseudoinverse of A.

Proof. According to Theorem 3 there exist unitary matrix functions U € C!(I,R™™) and
V € CYI,R™") such that

_ Xa0| r
(2.9) A_U[OO]V,

where ¥4 € C'(I, R*%) is point-wise nonsingular. We now define

~ 40
T A
A=U AV—[OO},

i Ty | N1
f_Uf_|:f2:|7
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The minimization problem

2 2
{961”‘ min! s.t. 1”215?—ﬂ|2: H[EAxl_fl}
9 2

= min!

Lt
5191 = :

has the unique solution

P )

Moreover, the matrix function

. »7ro
+ _ A
= %)

satisfies, together with 121, the four Moore-Penrose axioms and thus is the Moore-Penrose pseu-
doinverse of A. Because of

Izl = [VTall = lIZ]l, [Az— [l = |UTAVVT2 —UTf| = | Az - ]|,
the minimization problem (2.7) transforms covariantly with the transformations U and V and
AT =VATUT

is the Moore-Penrose pseudoinverse of A. This can be easily verified by inserting A and AT in
the equations (2.8). The unique solution of the minimization problem (2.7) is given by x = AT f.
g

We can now compute the least squares solution and the Moore-Penrose pseudoinverse for
Example 1 following the lines of the proof of Lemma 16.

Example 9 ([28]) The strangeness free DAE (1.24) derived from system (1.4) can be written
in the form A(t)x(t) = f(t), where

a0=y 4] o

[fl(t) - tf2(t)]
fi(t) —tfa(t) |

We have A = AVT with

i_[viTeol o 1 1t
| o0 o) " T /izel|-t1]

Then the Moore-Penrose pseudoinverse of A is given by

1
e ! _ 10
0 0 1+¢2|—-t0

and for the solution of the minimization problem (2.7) we get

T fi(t) = tha(t)
r=A"f= 112 [_t}l(t)thQsz(t)] .

AT =VAt =V
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2.2.2 The Moore-Penrose pseudoinverse for differential-algebraic operators

The (algebraic) equation (2.6) can be interpreted as a special case of a differential-algebraic
equation with d=0 (for the definition of d see Theorem 10). So the question arises naturally,
if least squares or similarly generalized solutions can also be defined for general DAEs. For this
purpose, we introduce linear differential-algebraic operators (DAOs) and appropriate spaces.

Let us first assume that the DAE is strangeness free and that it is given in the orthogonal
standard form (2.1). This enables us to detect the differential components z; of the solution
# = QTz. Only these components of the solution have to be differentiable and only for these
components we can provide an initial condition. We must require that the DAE has the trivial
solution for f = 0 in the uniquely solvable case. Otherwise a mapping that maps f onto the
solution of (2.1) cannot be linear. Therefore, we only allow for initial values Z(tg) = Zo = 0.
This can always be obtained by shifting Z(t) to Z(¢) —Z¢ and changing the inhomogeneity f (t) to
f(t) + A(t)Zo. (Of course, this can be done for any DAE, which is not necessarily in orthogonal
standard form.)

In the following, we assume that the pair (E, fl) is in orthogonal standard form. We set

(2.10)
(2.11)

X = {# € C([to, T],R")|z1 € C*([to, T],R), z1(to) = 0},
¥ = C([to, T],R™),

where  is partitioned as in (2.2). Moreover, let us define a differential-algebraic operator
D:X Y by

(2.12) Di(t) = E(t)z(t) — A(t)&(t).
This operator allows to rewrite the DAE (2.1) in the compact form

Di = f.

Having defined differential-algebraic operators for DAEs in orthogonal standard form, we can
easily generalize this concept for general strangeness free DAEs by setting

(2.13) D = P"DQ",

where the product PTDQT should be understood point-wise and the operators P, Q represent
the transformations to orthogonal standard form. Then we obtain

Da(t) = P®)" DQ(t)a(!
= P(t)' Di(t)
= PWTEW)z(t) — Pt)TA(t)z(t)
= P POE®Q() (QW)T2(t) + Q1) ()
—P()" (PABRMQM) () - POEMOQMQT (M) (t))
= B()a(t) - AWx(t) + E(t) (QMQMT + Q1)TQ()) ()
= B(t)i(t) — A(t)a(),

using the identity

QMM +QMQM" = — (QMQMT) = -1=0.
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The spaces where the operator D acts upon can also be transformed, which gives D : X — Y
with

X = {z € C([to, T),R")|ETExz € C'([to, T],R™), ET Ex(ty) = 0},
Y = C([to, T],R™).

Here, the operator

25100 SE 00 1;00
ETE=Q| 0 o0|PPT| 0 o00|QT=Q|000]|QF
0 00 000 000

is a projector onto the differential component of x = QZ.
Summarizing the discussion, we are able to rewrite any strangeness free linear DAE (1.1) in
the form

Dz = f.

Our aim is to show that the minimization problem
1, 9 i 1 9 i
(2.14) Slel? =min! st oDz~ f[* = min!

possesses a unique solution and that this solution induces an operator DT : Y — X, which
satisfies the four Moore-Penrose axioms and is therefore a Moore-Penrose pseudoinverse of the
differential-algebraic operator D.

First, we will show this result for the operator D defined for DAEs in orthogonal stan-
dard form. The subsequent extension of this result to general linear DAEs will then be rather
straightforward.

The minimization problem

1 1, = ~
(2.15) S = minl st 5[DF — f|? = min!

can be written in explicit form as

IR .
= Z(t)” Z(t)dt = min!
2 Ji,

(2.16) L

st 5 /t (w1 (8)Twi (t) + wa(t) wa(t) + w3 (t) ws(t)) dt = minl,
where
(2.17) wi(t) = Lp(t)21(t) — Ann(t)z1(t) — Ar2(t)z2(t) — Ars(t)z3(t) — f1(t),
(2.18) wa(t) = —Ag1(t)z1(t) — Ba(t)z2(t) — f2(t),

(2.19) ws(t) = —fs(t).

The constraint can easily be satisfied, because we can solve the system w; = 0, wg = 0 in X
for an arbitrary continuous function z3. For this purpose we eliminate the function z2 in (2.17)
using

(2.20) To(t) = =X 4(t) 7L (Ao (B)z1(t) + fa(t)).
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Next, we solve the initial value problem

jjl(t) = EE(t)_l (All(t) — A ( ) t 1A21 t )xl(t
+3p() " Az (23 (t) + Se() " (fit) = A®)Ta(t) " (), z1(to) =0,
and compute 2 according to (2.20).

The problem (2.16) turns out to be a linear quadratic optimal control problem [21, 35]. If
we set

A(t) = EE(t)il (Au(t) — Au(t)EA(t) AQI(t)),
B(t) = EE(t)ilAlg(t),

(2.21) C(t) = =Sa(t) " An (),
F() = Zp@®) " (A1) = A®Za0) 7 2(0)),
g(t) = =Xa(t)"" fa(t),

and rename the components of & by setting z = z1, y = x2 and u = z3, the problem (2.15)
turns into

T
% /t (2()Ta(t) + y()Ty(t) +u(t)Tu(t)) dt = min!
A t)l’(t; (()) u(t) + f(t), z(to) =0,

Hence the undetermined part x3 of the variable £ can be interpreted as the input variable of
this control problem. The problem (2.22) is a generalization of the standard linear quadratic
control problems due to the inhomogeneities that appear in the constraints. As for standard
control problems, it can be shown that (2.22) possesses a unique solution.

(2.22)

L) = AC
Tyt = () +

Theorem 17 Let

A€ C([to, T),R?), B € C([to, T],R?),  C € C([to, T],R*9),
feC([to, TI,RY), g€ C([to, T],RY).

Then the linear quadratic control problem (2.22) possesses a unique solution x € C([to, T], R‘Z),
y € C([to, T],R%), u € C([to, T],R%). This solution coincides with the corresponding part of the
unique solution of the boundary value problem

At) = (I+CH)TCW)x(t) — A)"AE) + C(t)Tg(t), MT) =0,
(2.23) @(t) = A(t)(t) + B(t)u(t) + f(t), (to) =0,

y(t) = C(t)z(t) + g(t),

u(t) = B(t)"A(t),

P(t) = 1+ Ct)"C(t) - P(t)A(t) — A(t)" P(t) - P(t)B(t)B()" P(t), P(T)
o(t) = C(t)Tg(t) — P(t)f(t) — A(t)Tv(t) = P(t)B(t)B(t) v(t), v(T)=0
(2.04) 5(0) = AW(®) + BOBOT(P@O)(t) + v(®) + (1), w(to) =0,
C () = P(t)x(t) + (1),
y(t) = C(t)x(t) +g(t),
u(t) = B(t)TA(t).
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Proof. See [28]. O

The unique solvability of the problem (2.22) obviously implies that the minimization problem
(2.15) has the unique solution & = (71, ¥2, r3) = (x,y,u). This enables us to define an operator
D+ that maps the inhomogeneity f onto this solution:

(2.25) DY —X, DY : f i,

see (2.10)—(2.11) for the definition of X and Y. It is easy to see that this operator is linear because
the Riccati differential equation in (2.24) does not depend on the inhomogeneities. The image
of D7 lies in X because the state variable z in (2.22) and therefore the differential component
x1 of Z is continuously differentiable.

Finally, it can be shown that the operator D, together with the differential-algebraic opera-
tor D, satisfies the four Moore-Penrose axioms and hence D is the Moore-Penrose pseudoinverse
of D.

Theorem 18 The operator [)* defined as in (2.25), is the Moore-Penrose pseudoinverse of
the operator D defined in (2 12), i.e., the endomorphisms DD and DT D have conjugates such
that (2.8) holds for D and Dt.

Proof. See [28]. O

Having shown the existence and uniqueness of the Moore-Penrose pseudoinverse of a differen-
tial-algebraic equation in orthogonal standard form, we can now generalize this result to strange-
ness free linear DAEs. Remember that the differential-algebraic operator D was defined indi-
rectly via the standard form (2.1) by (2.13). Because of

lz = IQTzll = l|z]l, |Dz~ fll = |P(PTDQ"x — f)|| = ||Dz — f],

the minimization problem (2.14) transforms covariantly with the application of the transforma-
tions P and ). Thus for a general DAE we can first compute the orthogonal standard form
along with the operators P and @ and solve the minimization problem (2.15). Having found the
Moore-Penrose pseudoinverse DT of D, the Moore-Penrose pseudoinverse D1 of D is given by

+t=—QD*P.

In this way we have found the Moore-Penrose pseudoinverse of a differential-algebraic operator
that generalizes the Moore-Penrose pseudoinverses of matrices in a canonical way; it is defined
via a similar minimization problem.

In the special case F = 0, the problem (2.14) reduces to the algebraic minimization problem

1
||| = min! s.t. §HAx + f|* = min!

and we get DT = — AT, where A" is defined as in Lemma 15. Moreover, the transformation of a
DAE to orthogonal standard form corresponds to the application of the smooth decomposition
(2.9) that was necessary to compute the solution of the minimization problem (2.7) in the proof
of Lemma 15.

2.3 (1,2,3)-inverses

There are other ways to generalize the theory of Moore-Penrose pseudoinverses to linear DAEs.
The computation of the solution z = D™ f requires the solution of the boundary value problem
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(2.23). Furthermore, no arbitrary initial values can be prescribed for the undetermined part of
the solution (the component x3 in the orthogonal normal form).

A possible approach to circumvent this problem is to relax the Moore-Penrose theory and
fix a unique solution of (1.1). If the system can be transformed to the orthogonal standard form
this can be done very easily by setting x3 = 0 and then solving the problem

(2.26) [E%(t) 8] i(t) = [218 éf((m E(t) + H;Em . x1(tg) =0,

which is uniquely solvable. For a general strangeness free linear DAE we can write down this
approach in terms of a minimization problem using the matrix function

H(t) = EW)TE®) + F(t)TF(t),
with
F(t)= (I - E@®)E®)T)AMI — Et)TE(R)).

The function II has the following properties. For a system in orthogonal standard form we have

EE(t)_l 00
Et)T = 0 00
0 00
and thus
F(t) = (I- EQE®)TAW)I - E(t)TE(1))
[0 Aqp(t) Apa(t) Ais(®)] O
= | T || Au® Ba@®) 0 I
T 0 0 0 I
[0
= | Xa)
i 0
Therefore
I
Mt)=EWTEQ)+FO)TFt)=| I
0

is an orthogonal projector onto the components z1 and x5 of . In addition we get (omitting
the argument ¢):
F = (I— BEYA(I— B B)

= (I - PEQQTETPT)(PAQ — PEQ)(I — QTE*PTPEQ)

— P(I - BEY)(A— EQQT)(I - E*E)Q

= P(I - EEY)A(I - ETE)Q — P(E— EETE)QQT(I — ETE)Q

= PFQ.
This shows that F' is similarly transformed as F with respect to the transformations P and Q.
Hence,
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It follows that II is also an orthogonal projector and the minimization problem
1 1
(2.27) SII = Ma? = min! st. S Da — £ = min!

transforms covariantly with the application of P and (. Thus, the minimization problem (2.27)
possesses a unique solution and this solution induces a (linear) operator D~ : Y — X. The
following theorem shows that D~ is a (1,2,3)-inverse of the differential-algebraic operator D.

Theorem 19 The operator D~ defined as the solution operator of (2.27) is a (1,2,3)-inverse
of D, i.e., the endomorphism DD~ has a conjugate such that (2.8 a,b,c) hold for D and D~ .

Proof. For the sake of completeness, we provide a detailed proof of this result, which can also
be found in [28]. o

First we show this result for a DAE in orthogonal standard form. The solution £ = D~ f of
the minimization problem

1 . . -

(2.28) §H(I —Mz|?> = min! st. =||D#— f||* = min!
satisfies (2.26) and we have z3 = 0. If we set f = DD~ f and partition f = (fl, fa, fg) according
to the block structure of f, we get

At) = Spt)ii(t) — An(t)zi(t) — Ara(t)wa(t) — Ars(t) = fi(t),
faot) = —An(t)21(t) — Ba(t)za(t) = fo(t),
fa(t) = 0,

after inserting this solution. Thus the operator DD~ : Y — Y can be written as

1
DD~ = I
0

This operator is obviously self-conjugate. Furthermore, we get DD~D = D because D has a
vanishing third component, as well as D~DD~ = D~ because f3 does not have any influence
on the solution of (2.27).

Since the problem transforms covariantly if we apply the orthogonal transformations P and
Q, the operator D~ = QD™ P maps onto the solution of (2.27). Tt then satisfies the axioms

(2.8) (a)—(c). O

If we again consider the special case of a DAE with £ = 0, then the solution of (2.27)
coincides with the solution of the minimization problem (2.7) for the algebraic system (2.6) and
we get D~ = DT = —AT. Thus the (1,2,3)-inverse D~ also generalizes the Moore-Penrose
pseudoinverse of matrices.

The numerical computation of the generalized solutions that we have defined in this section
can be carried out easily if the DAEs are given in orthogonal standard form or if the necessary
transformations P and @ (and the derivative Q) are known. For the computation of the solution
x = D™ f a uniquely solvable DAE has to be solved and the computation of x = DT f requires
the solution of a boundary value problem.

But as already stated, the orthogonal standard form and in particular the necessary orthog-
onal transformations from the right are generally difficult to compute numerically. In the next
chapters we will present possibilities to approximate these generalized solutions without any
knowledge of these transformations.
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Chapter 3

Numerical Determination of
Generalized Solutions

In this chapter, we consider the numerical computation of generalized solutions of DAEs.
Throughout this chapter, we will assume that the DAE is strangeness free; this choice is mo-
tivated by the results of the preceding chapters. Two methods will be presented, both based
on time discretizations via BDF-methods [8, 20]. This class of methods has favourable stability
properties [20] and has proved its robustness as well as reliability for solving DAEs in software
packages such as DASSL [37], ODASSL [11, 12], and GELDA [33]. Moreover, the considerable
simplicity of BDF-methods makes them particularly suitable for our purposes.

The two methods presented here allow to approximate numerically the solutions associated
with the Moore-Penrose inverse and a (1,2,3)-inverse of differential-algebraic operators without
involving any transformation of the solution space.

3.1 BDF-methods and discretization operators

BDF-methods are implicit k-step methods for the numerical solution of ordinary differential
equations of the form

(31) x(t) - f(t,i[)), te [to,T],
with an initial condition
(3.2) z(to) = wo.

They are defined by setting

k
> i g = hf(ti, z2),

=0

where h = (T — to)/N with N € N is a fixed step size, t; = (to + ih) are the corresponding
grid points in the time interval, and z;, [ =7 — k,...,7 — 1, denote numerical approximations
to the solution of (3.1,3.2) at these grid points. The coefficients «;, | = 0,...,k, are defined
such that the method has the highest attainable order of convergence. Table 3.1 shows these
coefficients for different values of k. BDF-methods are stable for k£ < 6 and unstable for k& > 6
(see, e.g., [20]). They are consistent of order p = k and thus convergent of order p = k for k < 6.

In Chapter 1, we have seen that the implicit Euler method, i.e., the BDF-method for £ = 1,
can lead to misleading results if applied to general DAEs. However, if we discretize uniquely

31
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o l=k l=k—-1 Il=k—-2 1l=k-3 l=k—4 Il=k-5 1=k—6
k=1 1 -1

=2 3 —2 :

I R

I T T N

ST T T
SUEE S T s

Table 3.1: Coefficients for BDF-methods.

solvable strangeness free DAEs with BDF-methods, then we get the same convergence result
as for ODEs, see Theorem 20 below. This discretization is computed as in the case of ODEs
by replacing & with the sum %Efzo o1x;—k+1, such that, for given initial data x;_g,...x;—1, we
have to solve the systems

K
(3.3) %E(ti) > i = Atz + f(t:)
1=0

successively for x;, i = k,..., N.

Theorem 20 ([4]) Let (1.1) be a strangeness free DAE with E, A and f sufficiently smooth.
Let (1.1) together with (1.2) possess the unique solution x € C([tg, T],R™). Furthermore, let
o, ...,Tk_1 be given with

x(t;) —x; = O(hP) for h —0,
i=0,...,k—1. Define the sequence (x;) for i > k by solving the systems (3.3). Then we get
z(T;h) —x(T) = O(hP)  for h— 0.

Here, (T h) denotes the approximation x(T;h) = xzyto x(T) computed with the step size h =
(T —to)/N.

We now establish an alternative notation for the discretization of a linear DAE with BDF-
methods using a fixed step size h = (T — to)/N. First, we introduce the restriction operator
Rx, as the restriction of a function z to its values at the grid points t; = tg +th, i = k,..., N,
in the finite dimensional space X;, = RV¥" N, = N —k + 1, i.e.,

z(tx)
(3.4) Rx .

R =

z (t'N)

Note that we have used the subscript X, to emphasize the facts that Rx, will be used to discretize
the solution space and that the action of the operator depends on the chosen step size (it also
depends on the order of the BDF-method and ¢, which, however, will be assumed to be fixed).
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We also define a discretization operator Ry, , which maps a function f into the space Yj, =
RN#™ and is defined by

k—
Ftr) = £ 3050 cuB(ty)
tor—1) — 2o E(tog_1) T
<35) RYhf: f(Zk 1) 7 &0 (Qk l)kl
f(tar)
L f(tn) i
Note that the operator Ry,, in contrast to Rx,, includes additional information about the
initial values xg,...,rr_1. Apart from the step size h, we assume all other variables on which

the definition of Ry, depends to be constant.
Setting gp, := Ry, f, we can merge the systems (3.3) into one big linear system

(36) thh = Gh,
where xj, € X}, is given by

T
Th = )
TN

and the linear operator Dy, : X}, — Y, is defined as follows. Each of its blocks [Dy]i;, i,7 =
k,..., N, is given by

g —i B () fori—k <j <i,
[Dplij = § farE(t) — A(t;) for j =1,
0 otherwise.

If the corresponding initial value problem (1.1) with (1.2) possesses a unique solution = € X
then the matrix Dy, is nonsingular for sufficiently small step sizes h and the solution z; = D,:l Jh
of (3.6) contains the approximations x;, i = k,..., N, to x at the grid points t;.

With this notation we can now reformulate Theorem 20.

Remark 21 Let the assumptions of Theorem 20 be satisfied. Then for the solution xp = D,:lgh
of (5.6) we get

|lzp, — Rx, x|lcoc < ChP  for h —0,

where the constant C' > 0 does not depend on h.

3.2 Local Minimization

In Section 2.3, we have defined a (1,2,3)-inverse D~ of a differential-algebraic operator D. The
corresponding generalized solution z = D~ f of the strangeness free DAE (1.1) is uniquely
defined by the minimization problem (2.27).

This solution can be easily computed analytically and numerically if the DAE is given in
orthogonal standard form or if the necessary orthogonal transformations P and @ as defined in
Theorem 11 are known. In this case, the system can be assumed to be in orthogonal standard
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form and the undetermined component x3 of # = Q7 can be set to zero. The solvability
condition f3 = 0 does not have any influence on the generalized solution and the remaining
DAE

(3.7) Sp(t)ii(t) = An(Hai(t) + Aa(t)za(t) + f1(t),
' 0 = Aoy (t)a1(t) + Sa(t)z2(t) + fo(t)

possesses a unique solution. This system can be discretized directly with a BDF-method as
shown in the previous section.
One can also solve (3.7) by first solving the ordinary differential equation

<3 8) il(t) = ZE(t)fl (Au(t) — Alg(t)zA(t)flAgl(t)) xl(t)
' +3p(t) ! (f1(t) — a) " (1))

by an appropriate method and then compute the algebraic component of the solution by

w2 = =2a() " (A (D)1 (1) + fa(t))
The solution of (3.7) is then given by

I

rT=QT=Q |z
0

Let us emphasize again that both approaches require the undetermined components of the
solution and consequently the transformations P and @ to be known. However, since these
quantities are usually not known in advance in realistic applications, we have to find other ways
to approximate the generalized solution.

Discretizing the strangeness free DAE (1.1) directly with a k-step BDF method using a fixed
step size h = (T — to) /N leads to N — k 4 1 systems of the form

k
1
(3.9) EEZ' Z: Ty = Az + fi

for i = k,...,N. Here E;, A; and f; denote the values of F, A and f at the grid points
t; = to + ih. It must be assumed that sufficiently good initial approximations xg,...,Zr_1 to
the generalized solution x = D~ f at the grid points tg,...,tx_1 are provided. The systems in
(3.9) can be written as

1k

(0%
(3.10) (sz - Ai) T; = _E By + fi

and have to be solved with respect to x;. Since our focus is on over- or underdetermined DAEs,
the matrices (5 E; — 4;) are likely to be rank deficient. As in (3.6), the discretization (3.10)
can be written in terms of the large linear system

(3.11) Dyxp = gy,
where the blocks [Dy);; € R™", i,j =k,..., N of the matrix Dj, are defined as
1
Eozk.ﬂ-,iEi fori—k < j <1,
=01

0 otherwise.
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and the right-hand side g, = Ry, f with Ry, as in (3.5) contains values of the inhomogeneity f
at the grid points as well as the initial values zq,...,zr_1. The vector

Tk
Th =

IN

contains the solutions x; of (3.9), provided that these systems are solvable.
If the systems (3.9) are not solvable, then we can compute solutions in a least squares sense,
i.e., we solve the N — k 4+ 1 minimization problems

2

k
1 ) 11 .
(3.13) iH:cng = min! s.t. 3 EEZ Zal$i_k+l —A; — f;]| = min!
=0 2
successively for ¢ = k, ..., N. The corresponding solutions x; can then be written in the form
k-1
o + 1
(3.14) T = (sz — Ai) <_E ;ain:m—kH + fi) )

where (%El — Ai)+ denotes the Moore-Penrose pseudoinverse of the matrix St E; — A;.

The rest of this section is concerned with showing that the solutions x; in (3.14) are
approximations to the generalized solution x = D™ f at the grid points t;.

Synopsis of proof Before we go into the technical details to prove the main result, let us
provide a brief synopsis of the proof.

Step 1: Starting from (3.14), we use the transformation matrices of the DAE to orthogonal
standard form to get the reformulated equations (3.16). Multiplying by an appropriate
regular factor from the left gives (3.23). Writing these reformulations in terms of the
enlarged system as in (3.6) yields the system Dy, = §p, in (3.32), which has the same
solution as (3.11).

Step 2: On the other side, we consider the orthogonal standard form of the DAE and derive
a slightly modified DAE, which has as its unique solution the (1,2, 3)-solution D1 f as
defined in (2.28). Then we map the transformed solution space back to the original solution
space and obtain (3.27). This equation is discretized, see (3.28), and written as the enlarged
system Dpdj, = gp in (3.35).

Step 3: Lemma 25 shows that the coefficient matrices Dy, and ﬁh as well as the right-hand
sides gp, and g, differ at most by O(h). Combined with the boundedness of Dgl, this fact
is used in Theorem 26 to conclude the proof.

Remark: Let us emphasize that all the transformations are performed solely for theoretical
purposes; our numerical method will directly employ the unmodified discretized equa-
tions (3.14).

O
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Step 1

Since the QAE is strangeness free, we know that there exist orthogonal transformations P and @
such that £ = PEQ and A = PAQ — PEQ have the structure given in Theorem 11. Therefore,
we have

SEE — A = PI(SEREQi - PAQ)QT
= PZT(%Ei — (4; + PEQ,)QF
h
(3.15) o - ~ B .
= PiT(sz‘ — A, - E:QTQ)QT
= PZT(%EZ‘ — A + E:QTQ)HQT.

Again, the index ¢ denotes the evaluation of the corresponding matrix function at t = ¢;. The
last identity follows from

0=1=2@Q"Q) = @"Q+Q"0.

Because of the term EZ-Q;?FQi, Equation (3.15) shows that the discretization used here does not
transform covariantly with the application of the transformation Q.
Using (3.15), we can rewrite (3.14) as

o T
T = <7Ez — Ai) (_E ; aBim gy + fi)

k—1
_(pT /Y% s i BAT Nt 1 A A
= (Pi (TEi — A + E;Q; Qi)Q; ) <_E ;alszi—k-i-l + fz)
(3.16) - =0
ap =« = am N\ 1
— Q <7E A; +EZQ?QZ) P; ( EZOQE Ti—ft1 +fz>
=
k—1

alEQ Tij—k+1 +fz)

The matrix %El — A + E’ZQlTQZ has the structure

Y%p i poTo, — | TS

(3.17) ez &+&@@_[00y

where

(3.18) R; = [a_thEz — Au, + EEiQh‘ — A, + EEiQZZ} e Rétadta
— Ao, —Ya,

is nonsingular for sufficiently small h and

(3.19) S; = [‘Al& ‘BEEZQSZ} c Ritas

Here we use the notation

(3.20) Q; = Q1,Q1j + Q1,Q2; + Q4,Qs;,
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where Qw and Q;; denote the block (4, j) of Q and Q, respectively, in accordance with the block
structure of the orthogonal standard form. Hence, Q] is the j-th block of QTQ in the first block
row. Note that the perturbation induced by the derivative of () only appears in the first block

rows of R; and S;.
We will now use the following formula to compute the Moore-Penrose pseudoinverse.

Lemma 22 For a matrix

(3.21) A= [Jg g]

with a nonsingular block R, we have

(3.22) A+ — [(I —VvwvT) R! 0] ’

W-lvTR! 0
with
V:=Rl'S, W.=I+VTV.
Proof. For A and A7 as defined in (3.21) and (3.22) it follows that
r _ —1y/T\ p—1
aat = [RS][=vwvh) Rt
100 W-lVTR 0
C[RI-VW VTR 4+ SWIVTR! 0]
N 0 0

_[1-Sw=WWTR™ 4+ sSWIVTR 0]
- 0 0

_[ro0
100

and this immediately shows that the first three Moore-Penrose axioms (2.5) (1)—(3) are satisfied.
For the matrix AT A we get

A+ A — I-VWWWI)RT O] [RS
- w-lyTR-1 0100

C[1-vw T (1—vw- VTV
| owwT wvTy

The block I — VW ='VT is symmetric because W and thus W~ are symmetric. It follows that
W vTV) = vIvw T =vTVw T = 1+ VTV) W W
=W I+VvV)-wt=wvTv.

Furthermore,

WV — v =V (I —T+W ) =V (I -W ' (I+VV)+W)
=V({I-wVTV)=(1-vw vV

This shows that AT A is symmetric and the fourth Moore-Penrose axiom (2.5) (4) is satisfied. O
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From Lemma 22, it follows that

RS|[RS]T I 0

orf{oo] — |WWTRlo]"
Next, we turn Equation (3.16) for i = k,..., N into a linear system by multiplication from the
left with the regular matrix

0 Iy
in order to obtain the system
R; S; QT — R S| [Risi" lkz: EQT s
0 L™~ lorn|loo po TR TR
IdA 0 0 1]6*1 EEZOO fli-
Rli Rgi 0 =0 0 00 fgi_
= g, 00 J1; 1
= % oy 0 00 Qzﬂmifkﬂ + f2, )
1=0 R1,YE, 00 Ra, f1, + Ra, f2; |
where for
(3.24) Vi=R;'S;, Wi=I1+VV,
the matrix
(3.25) W 'WIRT = [R1, Ra

is partitioned according to the block structure in the orthogonal standard form.

Step 2

Let us consider the system (3.7) together with the condition z3 = 0 and write this uniquely
solvable DAE as

(3.26) B(t)z(t) = A(t)z(t) + f(1),
with
Yp(t)00
E(t) = 0 00| eCIR™),
0 00

F A () Aua() As(t)
A(t) = Agl(t) ZA(t) 0 < C(H’Rn,n),
0 0 -1

f@t) = | f2(t) | € C(LLR™).
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We then apply a change of basis with the matrix function @) to this system and obtain the new
DAE

(3.27) E@)i(t) = A)z(t) + f(t),

where E = EQT, A = AQT—EQT and f = f. Since the systems (3.26) and (3.27) are equivalent
and uniquely solvable, we get the following equality:

4 =QF = QF =z,

where Z is the solution of the DAE in orthogonal standard form with x3 = 0 and z is the

(1,2,3)-solution of the original DAE (1.1), i.e., z = D~ f. Furthermore, a discretization of (3.27)

with a k-step BDF-method is convergent of order p = k, see Theorem 20. Performing this

discretization will give a reference discretization that can be compared with the systems (3.23)

in order to show that the solutions x; of (3.23) actually approximate the solution Z of (3.27).
BDF-methods applied to (3.27) lead to systems of the form

k—1
L ~ a R A N
(3.28) (sz — AZ’) T, = — ZE y o EiZi g+ fi
for i = k,..., N, which are uniquely solvable for sufficiently small step sizes h. Analogously to

(3.15) we get

%Ez‘—z‘ii = (akEi_Ai+EiQT 2) 7

where R; and S; are defined as in (3.18) and (3.19) and thus we can rewrite the systems (3.28)
in the form

k—1
R; S; n 1 n - )
[ ! Iﬁ] Q= — ga,a@?wi_w + 7,
(3.29) Lkl [2E, 00 i,
=5 0 00| Q%1+ | fo
1=0 0 00 0

This system is the same as the final system (3.23) obtained in Step 1, apart from the third block
row, which does not vanish in (3.23).
Step 3

In the following we show that the systems (3.23) approximate the systems (3.29) by investigating
the third block row of (3.23) in more detail. For this purpose, we prove the following lemma,
which shows that the blocks R, and Ry, in (3.23) are sufficiently small.

Before, let us introduce the following definition for notational convenience.

Definition 23 Let A € C([to, T],R™") and 2 <p < co. Then the constant C) |, is defined as

Clay, = tén[tilf;]{HA(t)Hpa 1A 1}
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Lemma 24 Let Ry, and Ro, be defined as in (3.24) and (3.25). Then there exist constants
Co1, Cos € RT such that

IR [loe < Corh?,
and

[R2;: [l < Co2h,
for sufficiently small h.

Proof. We introduce the constants

Cn = C||—A11+ZEQ1H0<>’
Cra = C||—A12+ZEQ2H0<>’
C13 = O _ a1y 1550s)1oe

with Qj, j =1,2,3, as defined in (3.20). We will first estimate the block columns of the matrix

R 1 according to the given block structure. If we denote the blocks in the upper block row of

the matrix R; (omitting the index @) as

o N
Ry = TkEE — A+ XgpQ1,

R12 = —A12 + EEQZa

we see that the matrix R;; is nonsingular for sufficiently small h and we can compute the inverse
of R using the block LU decomposition

R [ Ri1 Rio } _ [ I 0] [RH 0 ] [I RHlng]
—Ag; %4 ~AnRF IT|| 0 AnR'Ria—%4| |0 I '

Then, if T'= A21R1_11R12 — Y4 is nonsingular, the inverse of R is given by

= [ [ ]

0 1 0 ’T_1 AglRﬁl I
_ [Bi (T + RieT ' AnRyy) —R RieT™!
~T~ Ay Ryy' T-! '

The individual block columns of R~! will be denoted by

[R_l] — Rl_ll (I + R12T_1R21R1_11)
1 _T—1A21R;11
and
_ — R R12T
ro = | R
Because of

a -1
Eyp—An+ EEQl)

(
(e (=5 =)y

1

_ (I - % (254 - Ql))_ pop
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we can compute R1_11 using the Neumann series if
h _ A
—HEElAll—QlH < 1.
(677 o]

This inequality is fulfilled if

ST TR S N RSN e SN

with CHZgllloo defined as in Definition 23. We then get

o0

(I = a% (z5tan - Ql))l -y (O% (z5tan - Q1)>

=0

l

and therefore

. h o . .
5. = a—lz( (Zetan - @) =3
h & b
<t a1l
h 1 _
kl—a—kHEE A — @1 )oo
h 1 _
S — 152
e1- 2|25, A - S0
h 1
< — Clae
T l- LGy On PR
2h
S el
Qg
= hCl for h < m, C C”EE floo "
15 loo

We estimate the norm of 77! using

1T = (A2 B Rao = 20) 7

‘ I— EA A21R11 Ri2)™ EAlHoo

|

|

< Z 153 A2 R Rua | 155 o
=0

) l
<> (hcnz;l||OOC||A21H0001012) =3

Ca-
125 oo

Cll Az || C1C12

1= hCgs

a lloo

1
C) Azl C1C12

< e for hSgE

A lleo

41
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Again, the constants 0”221”00 and C) 4,,., are defined according to Definition 23.

The remaining estimates are straightforward. For the block entries of [R™1]; and [R™!]y we
get

|R (I + RiaT " AR

IN

hCx (14 2hCaClsy Clagy ) C1)

Qf;
< 2hC; for h< )
4012051 Oz 1 O
I =T A1 By loo < 2hC)5ony Cllas o Cr
= hCy, Cy= 2C||221HOOC||A21”0°CI’

and

IR BT

IN

Analogously it can be proved for the transposed block entries of [R™1]; that
| (R (1+ R anB) || < 200y
and
H(—T—1A21R;11)THOO < hCs.

Thus, we obtain for the two block columns of R~! the estimates

H[R_l]IHOO < max{hC1, hCs}

= hmaX{Cl,Cg}

= hCy, C4=max(C,Cy),
JIRT| < (€ +Co)

= hC5, 05201+027

and

IR alloe < max{hCs,2C)51, }

2C

2C -1
124 oo 1
IS5 O =TT C1Cro

IN

For V = R~1S we get, owing to the block structure of S,
Voo = [|1R7S]
i {0

< 1B [~ A1 + 28Qs |
< hCyChs,

and
T AT -1 T
V7 loo = ||(—A13 + £5Qs) (R}
< hC5Cq3.

o0
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Hence, [VIV oo < [V |ool|V||oo < R2C4C5C%. In particular, we have
1 1
VIV <5 for < —m 0.
Vvl 00O

Thus for sufficiently small A we can again employ the Neumann series to estimate the norm of
the inverse of W = I + VTV which gives

W = H(I+VTV .=

§OO VTV
=0 1=0

Finally, we can combine all these results and obtain the assertion, because

o0

IRl = Wi Vi R
< 2h20405013
= h?Cy1, Co = 2C4C5013,

e}

and
IR2llo = [IW; Vi (R :|
< 4hC5C13C) -1
1IE4" oo

[e.9]

Note that none of the occurring constants depends on h. O

We now consider the systems (3.23) as well as (3.29), and represent both discretizations in
terms of two large linear systems. Let us define the matrix D;, = [Dp); =k e RVenNen
N = N — k + 1, blockwise by

-----

. Yg, 00
Eakﬂ-_i 0 00 Q? fori—k§j<i,
Ri,XEg, 00
(3.30) [Dylij =
J Fi 5i QT for j =1
0 I j - "
L0 otherwise,
and the right-hand side
1 2k=icl Xg, 00
(3.31) 9 = Lfnli = 5 o 0 00|Q &gy
1=0 Ri,XEg, 00
with
§ 1,
[fn)i = f2

R, f1, + Ra, fo,
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Then we can write the N — k + 1 discretization steps (3.23) as
(332) thh = gh-

Note that the (unique) solution xp of the system (3.32) is the solution of the system (3.11),
where the components z; of zj, are computed according to (3.16).
Analogously, we can define a matrix Dj, via

1 _
'Eakﬂ_iEiQ;f fori—k<j<i
(3.33) [Diliy = q | i S QT for j =1,
0 I,
0 otherwise,

and the corresponding right-hand side by

2k—i—1
(3.34) [gn)i = fi — 7 Z  EiQf wi—ji-
1=0
Then we can represent the systems (3.29) by the large system
(3.35) Dy, = gn.

The following lemma shows that transferring Lemma 24 to the large systems yields D, — D), =
O(h) and gn — gn = O(h).

Lemma 25 Let Dy, Dy, G, and g, be defined as in (3.30), (3.31), (3.33) and (5.34). Then
there exist positive constants Cp and Cgy, which do not depend on h, such that

Iov-01]_ <hco
and
9n = 9nll o < RCy

for sufficiently small h.

Proof. From Lemma 24 it follows that

N
Dy = Du|_ < max Y ||IDaliy — [Dily
oS ? =k o0
i-1 [ ¥g 00]
< max = ey 0 00|-E|QT
it | R1,XE; 00 %
(3.36) i—1 [ 0 00]
<max+ Y okl 0 00|Qf
j=i—k _Rliin 0 0_ 0o
1 k—1
< 3 2 lh*Co1C)s). Cla
=0
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Similarly, we get for the right-hand sides that

|(Fli = fill o = Wi Vi IR u o, + W V(R Yo fa | o

< Wi VIR | o oo + [ VTR M| o 1 2l e
<h2 ) oo h )|l oo
< 12Cor max {1£1(8) oo} + hCo2 mave {11 £a(t) o}

<
< 2hCoztén[t§§]{||f1(t)Hooa [f2()lloc}

for sufficiently small h. Together with (3.36), we consequently obtain
19n = Gnlloo < 2hCop max {[|f1(t)llcc, [If2(t)lloc} +hCp max |[zille
te(to,T) i=0,...,k—1

< hC,.

From these observations it is clear that the system (3.32) is nothing else than the system
(3.35) plus a perturbation of O(h). This fact allows us to prove the main result of this section.

Theorem 26 Let (1.1) be a strangeness free linear DAE. Let x = D~ f be the solution of the
minimization problem (2.27), i.e., D™ is the (1,2,3)-inverse of the differential-algebraic operator
D associated with (1.1).

Suppose that (1.1) is discretized with a k-step BDF-method, k < 6, using a fized step size
h = (T —ty)/N and k initial values xg,...,xx_1 that satisfy

z —x(t) = O(h),

where t; = to+Lh. If the systems (3.10) are solved in the least squares sense, i.e., the minimiza-
tion problems (3.13) are solved successively for i = k,..., N, then we have for the solutions x;
of these problems the estimate

”xz - x<t2)‘|oo < th’locala

with a positive constant Ciyeqr ot depending on the step size h.

Proof. Let Dyip = gn, defined as in (3.35), represent the BDF-discretization of the uniquely
solvable strangeness free DAE (3.27) and consider the restriction operator Rx, from (3.4). Then
the fact that BDF-methods applied to uniquely solvable strangeness free DAEs are convergent
(see Theorem 20) implies

|Zrn — Rx,®||eo < C1h  for h — 0,

with some constant C1 > 0. (Note that they would actually be convergent of order p = k if we
assumed sufficient accuracy in the initial values.)
Since BDF-methods are stable for k£ < 6, we also have

1D}, oo < Co

for some constant Cy > 0, see [4] and also Section 3.3.2.
We now consider the linear system (3.32), whose solution represents the output of the BDF
method applied to the DAE (1.1), where the systems (3.10) are solved in the least squares sense.
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Applying Lemma 25 and using Neumann series, we can estimate the difference of the inverses
of the discretization matrices Dy, and Dy, for h < %CQCD as follows:

. . . -1 A
o (-2 s
= <I ~ D! <f)h - Dh)) Dyt — Dt

IS (57 (00 - 1)) i - By

1=0 %
IS (50 (00— 21)) By
=1 o
< o> (o] o - 2af)
=1

< Cy i (hC2Cp)' = hC3Cp i (hC>Cp)’

=1 1=0
= % < 2h0220D.

This yields for the solution x) = Dgl ah,
lon = Rx, 2l = 1Dy 90 — B 2|

< ||D7an = D gn + Dy tan = Dy gn + Dy tan — Ry,

‘ o0

N

B R T I
< hCp max ||g(t)|lec +hC2Cy + hCy

tE[to,T}
< hClocab

which implies the assertion. O

Remark 27 [t is important to remark that, no matter how high the order of the BDF method is
chosen, the order of the bounds in Lemma 25 is always O(h). This is due to presence of the error
terms Ry, (which is always O(h?)) and Ro, (which is always O(h)) in (3.23). Our numerical
methods will compute the solution of (3.23), which represents the direct discretization of the
DAE combined with local least squares solutions. Thus there is little justification for employing
higher order BDF methods in our setting. This observation will be confirmed by the numerical
experiments in Section 4.2.1.

A (1,2,3)-inverse of Dy,

Let us take a different look at the linear system (3.11). Solving the systems (3.10) according
to the minimization problem (3.13), i.e., computing the solutions x; via (3.14), defines a matrix
D, such that the solution x;, of (3.11) can be written as

Thp = D}:gh.

Despite this notation, it is not clear yet that D, is actually a (1,2,3)-inverse of Dj. This
relationship will be proved in the following.
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Theorem 28 Let x), = [27,... 25T denote the solution of the system Dypxp, = gp, as in (3.11),
obtained by computing x; via (3.14) for i = 1,...,N. Let D, € R™NN be given such that
zp = Dy, gh-

Then D, is a (1,2,3)-inverse of Dy,.

Proof. The i-th block row of the vector Dpxp can be written as

k—1
1 1
[Dpap)i = (EEZ' - Ai) zit g > B
1=l
(3.37) °

R, S, k-1
=r' [O O]QTH- lzl:alPTEQ Ti—k+1s

for i = k,..., N with [; = max(0,2k — i). Here we have used (3.15) and (3.17). The solution
r; = [zp); = [D), gn)i of the minimization problem (3.13) is given by (3.16). Inserting this
solution into (3.37) yields for every g, = Ry, f, with Ry, defined in (3.5),

[Dpxp)i = [DhDh gnli
. S; + 1 k-1 _ ~ 1 k—1 ~
= Pz'T ] [ 0 } <_E > wEQ] wipi + fi) +a > aPTEQT v
1=0 1=,

k— k—1
[10] 1 ~ ~ 1 -
=P 100 < h Z; O EiQ] mi_py1 + fi) + 7 ;azH-TEiQiT%—kH

- l—l
10]
= PZT 0 O < Z alE Lj— k:—H)

[(70]
=pf 0o | Filonli

Therefore we have

PLIP,
DyD;, =
PLIPy

with

- I;,.0

I = d+a

i3]

From

and IE = E it immediately follows that
[DyD; Dpayli = [Dpapli

for k=1,...,N and for all vectors x;. From

R S ]" i _[Risi]"
00 "~ lo0o0
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we get
(D, DpD;, gnli = [Dy, gnli

for i = k,..., N and for all right hand sides gj. This shows that D;, and D, satisfy the first
three Moore-Penrose axioms (2.5) (1)—(3), thus D, is a (1,2, 3)-inverse of Dj,. O

3.3 Global Minimization

In Section 2.2, a Moore-Penrose solution of a linear strangeness free DAE was defined as the
solution of the minimization problem (2.14). For the analytical solution of (2.14) it is necessary
to transform the system to the orthogonal standard form (2.1) and to solve a linear boundary
value problem of the form (2.23). This is a viable approach for compute the Moore-Penrose
solution numerically, provided that the orthogonal standard form of the DAE can be computed.
However, as we have pointed on several occasions, this is not always possible for general DAEs.

This requires to develop a different approach for computing numerical approximations to the
Moore-Penrose solution. Let us again discretize the DAE with a BDF-method. As defined in
(3.11), we write down the whole discretization in terms of the large linear system

(3.38) Dypzh = f.

In the previous chapter we have examined the continuous solution z = D~ f of a strangeness
free differential-algebraic equation (1.1) with homogeneous initial conditions, where the (1, 2, 3)-
inverse D~ of the differential-algebraic operator D was defined by the solution of the minimiza-
tion problem (2.27). We have shown that this solution can be approximated by solving the
decoupled minimization problems (3.13) after discretizing the DAE. We have shown that this
solution of the discretization can be written as

xp = Dy, fn,

where Dy, is a (1,2, 3)-inverse of Dy. This result motivates much of the following approach to
compute an approximation of the Moore-Penrose solution x = DT f of the DAE (1.1).

Instead of computing least squares solutions in every single step of the BDF discretization,
as it was done in Section 3.2, we solve the complete system (3.38) in a least squares sense by
solving the minimization problem

1 1
(3.39) 5”»’%”2 = min! s.t. iHthh — fu|I* = min!.
The solution can be written as
(3.40) zp = D} fn,

where ij denotes the Moore-Penrose pseudoinverse of the matrix Dj. We will prove that
this rather intuitive approach leads in fact to a numerical approximation to the Moore-Penrose
solution # = DT f of the DAE (1.1). Note that the orthogonal standard form of the DAE does
not have to be computed to achieve this solution.

Being considerably long and technical, the proof of this assertion will be taken in two major
steps. In a first step, we assume that the system is given in orthogonal standard form. In this
case, solving the least squares problem (3.39) corresponds to the solution of a discrete boundary
value problem, which can be interpreted as a convergent discretization of the continuous bound-
ary value problem (2.23). In a second step, this result will be extended to general strangeness
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free DAEs. We will restrict ourselves here to the implicit Euler method instead of considering
general k-step BDF-methods. Using higher order BDF-methods requires highly accurate approx-
imations to k — 1 additional initial values and it is not clear how to obtain these approximations
in an efficient manner, as we implicitly solve a boundary value problem. In view of Remark 27,
it is moreover questionable whether this would result in higher order of convergence.

3.3.1 Systems in orthogonal standard form
Let
(3.41) E(t)x(t) = A(t)a(t) + f(1),

be a strangeness free DAE in orthogonal standard form, i.e. E, A and f are given as in (2.2).
A discretization of (3.41) with the implicit Euler method using a fixed step size h = (T' — to) /N
leads to equations of the form

1~ . -

(3.42) EEi(xi —Zi—1) = Aii + fi
for i =1,...,N. This discretization can be written as
(3.43) Dyzy = fi
with fj, = [ flT S f]:([]T and the discretization matriz Dy, is defined blockwise by

(1 -

—EEi for j =i —1,
. ) B

(344) [Dh]ij - EEZ —A; for j =i,

k0 otherwise,
where i,j = 1,...,N. The goal is to show that the solution &, = [#7,...,#%]7 of the mini-
mization problem

1,. 9 , 1~ . < 1|2 ,

(3.45) 5 |Zr]|” = min! s.t. 5 Hthh - th = min!.

approximates the least squares solution of (3.41). Using the structure of the orthogonal standard
form, the systems (3.42) can be written component-wise as
1
Ein (z1, — 21,_,) = A1, 21, + Ao, @2, + Arg,x3, + f1,,
0 = Agy,x1, + 24,22, + fo,,
0= f3¢7

for i = 1,...,N. The third equation is independent of Z; and will be omitted in the following
considerations. The algebraic components z3, of the unknown Z; can be eliminated from the
first equation by multiplying from the left with the regular matrices

Sg —Yg A, X!
(3.46)
0 Dy

Here we assume that h is sufficiently small such that Dj,, with 0 = f3, discarded, has full row
rank.
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After applying the substitutions

(3.47) Ci = =%, Ag
fi = EE} <f1i - AlZiEZilf%) ,
g9i = —X4 fa.,

these systems can be written in the form

1
_(xli - xlifl) = Aixli + Bi$3i + fi7

>

(3.48)
x9, = Cjxy, + 9.

Finally, we rearrange the first equation and introduce the matrices

o 1/1 -1
Ai-ﬁ(EI_Az) )

-1
(3.49) B; = (%—7— Ai) B;,

_ 1 -1
fi = (EI_ Ai) fi,

where h is assumed to be sufficiently small, such that %I — A; is invertible, and rename the
components of the solutions ¥; as x; = z1,, y; = x2, and u; = x3,. Then we can write (3.48) as
the linear discrete-time system

zi = Aizio1 + Biui + fi
yi = Ciz; + gi.

All the transformations applied to obtain this system are regular and do not have any influence
on the solution of the equations (3.42). Thus, the minimization problem (3.39) can be written
in the form

N
1 .
3 (xZTa:z +ylyi + uZTuZ) = min!

(3.50) = B
s.t. i—1 + Biu; + fi, i=1,...,N, z9=10

v = Cizi + gi,

which turns out to be a discrete-time linear quadratic optimal control problem (see [35]), where
the undetermined components z3, of the solution can be interpreted as an input u; and the
algebraic components xa, play the role of the output y;. In our case, it is already known that
the solution of the control problem (3.50) is unique, as it is represented by the unique solution
T = [);{ fn of the minimization problem (3.43). The following theorem shows that this solution
corresponds to the solution of a discrete linear boundary value problem.
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Theorem 29 Fori=1,...,N, let
A eRM, B eR™,  CieRYM, fieR!, geR.

Let u, = [u*Tl, ...,u*TN]T solve the linear quadratic optimal control problem

N
(:zcngcZ +yly; + uZTu,) = min!

N —

(3.51) =1
st. x; = Ajzio1 + Biu; + fi, i=1,...,N, zg =0,
yi = Cizi + gi,

and let x, = [1‘:{0, e :L‘:;FN]T denote the associated trajectory. Furthermore, we set

Yo = [yh, ., yIN)T with yu = Cizw; + g; fori=1,...N.
Then there exists A = AL, .., LT, \i € R%, such that (zx,\,us) solves the discrete linear
boundary value problem
A’L?—’-‘y-l)\i = (I + CZTCZ)% + X1+ CZ»Tgi, Ay =0,
(3.52) v = Ajzi1 + Biui + fi, @0 =0,
yi = Cizi + gi,
Uy = BiT)\ifl

fori=1,...,N.
Proof. By inserting the y; into the objective functional we obtain

N
(xf 2 + (Cizi + g:)" (Cimi + gi) + ul w;)

E

N —

(acZT:c, + ley, + ufuz) =

i=1 )

N

1

Il
N —
=

(a7 (I + CFCy)ai + 291 Cimi + ul wi + g gi) -

=1

The summands giT g; can be neglected and thus, the minimization problem

N
Z (fL"zT(I + CiTCi)fUi + 2ng0¢$¢ + u,Tul + giTgZ-) = min!

i=1

DN | =

(3.53)

S. x; = Ajxi—1 + Biu; + fi, i=1,...,N, x0=0

is equivalent to the discrete linear quadratic control optimization problem
1
(3.54) 5 (2" Mz +2¢"r + u'u) =min! st. Az + Bu=f

with z = [2F, .. 28T, u= [T, ..., u%)T, M = diag(I + C{ C4, ..., I + CLCn),
g=1[gIC,...,g5CNIT, B =diag(—Bu,...,—Bn), f = [fL, ..., f5]T and

1
—Ay

—An 1
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It is well-known (see, e.g., [14]), that due to the fact that the blockdiagonal matrix M is positive
definite, the problem (3.54) possesses a unique solution. This solution is given by the solution
of the unconstrained minimization problem

(3.55) S(z,u,\) = = (27 Mz + 2¢"z +u"u) + AT (Az + Bu — f) = min!

N =

with the Lagrange multiplier A = [)\OT, ey /\R]T. A necessary and sufficient condition for the
solution of (3.55) is that the partial derivatives of the functional S with respect to z, u and A
are equal to zero, which yields the system

Mz +g+ATXA =0,
(3.56) u+ BTN =0,
Ax+ Bu—f = 0.

Together with the output equations y; = Cijz; + ¢;, ¢ = 1, ..., N, the system (3.56) is equivalent
to the discrete boundary value problem (3.52). O

Theorem 29 can be directly applied to the control problem (3.50). It shows the exis-
tence of a vector A\, = [)\OTL. - M)T such that Aj, together with the components (z;, y;, u;) =
(x1,,m2,,x3,) = &; of Tp, = D;{ fn satisfies the discrete boundary value problem

AL N = (I +CICzi+ Xio1 +Clgi,  Anv =0,
T, = AZ‘CL‘Z‘_ + B,uz + ;, xg =0,
(3.57) ' fo o
yi = Cizi + gi,

e
u; = Bi N1,

i=1,...,N. Setting \; = (%I — Ai11)7 T\ and applying the transformations (3.49), this system
can be written as

1
E()\i — )\i—l) = (I + CZTCZ):C, - AZT)\Z‘—I + CZ-Tgi, Ay =0,
1
(3.58) E(fﬂz —zi-1) = Aiwi + Biug + fi, 10 =0,
yi = Cizi + gi,
u; = BI'A;_1,

it =1,...,N. This system coincides with a discretization by the implicit Euler method, forward
in  and backward in A, of the continuous boundary value problem (2.23) yielding the Moore-
Penrose solution (z,y,u) = & = Dt f. The solutions (x;,y;, u;) are approximations to (,y,u)
at the grid point t; = to + ih and consequently Z; contains approximations to &. This fact will
be proved by the following theorem, which shows that the systems (3.58) lead to a convergent
discretization of the boundary value problem (2.23).

Theorem 30 Let the boundary value problem
(3.59) z(t) = A(t)x(t) + f(t), Rix(to) + Rrx(T)=r, tE€ [to,T],

with A € C([to, T],R™™), f € C([to, T],R™) sufficiently smooth, be uniquely solvable.
Then for any d € N with d < n, the single step method defined by the recursion

(3.60) Tpp1 = T + RA(tgs1) (fwkﬂ + (I - f) $k> + hf(te+1),
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with

I

Ido n,n
[OO]ER ,

applied to (3.59) is convergent of order 1.

Proof. First, we have to show that the discretization defined by (3.60) is consistent. For the
solution x of (3.59), using the Taylor expansion, we get for t; = tg+ h

z(t1) = z(to) + hi(to) + O(h?)
= z(to) + h (A(to)z(to) + f(to)) + O(h?).

For 29 = z(to), the recursion (3.60) yields
2(t1) — 21 = h <A(to):1:(t0) + f(to) — A(th) (f:z:l +a(to) — f:n(to)> - f(tl)) +O(h?)
= h ((Alto) = A(t1)) 2(to) + A(t) ] (a(to) = 21) + f(to) = f(t1)) + O(h)
= o(1?)

for sufficiently smooth functions A and f. This implies that the discretization defined by (3.60)
is consistent of order 1. To show that it is convergent if applied to (3.59), we have to show that
it is stable. The discretization can be written in terms of the linear system

Lyxp = g,
with the discretization matrix
[ Ry | O 0 Rp ]
Lig|Lyg
Ly=| 0 [Log Log
L O Lns L |
and the right hand side
r
1
g =1
N

Here, the subdiagonal blocks L; s and the diagonal blocks L; ; are defined as

e = — (%IJF A(t;) (I - I)) ,

&
I

and f; = f(t;), ti=a+ih, fori=1,...,N.
The matrix

) )

Lns Lng
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can be interpreted as the discretization matrix belonging to the discretization (3.60) of the initial
value problem

= Ax + f, x(to) =0, te [to,T].

Since single step methods applied to initial value problems are always stable, we can conclude
that L,:l is uniformly bounded, i.e.,

I e = €2

for some positive constant C'; that does not depend on the step size h. The inverse of Lj can
be computed using Schur complements via

U A R P R s A I
Lis Ly 0 I 0 Lp| |L, Lis 1
with
Ly
Rr=1[0--- 0Ry], Lis=| .
0
This leads to
St ~S 'RyL?

Lit=| -7 . Th TR
h —L;'L1sS, " Lyt + Ly LS, ' Re Ly

provided that the Schur complement
Sy = Rto — RTZEIELS

is nonsingular. The matrix S} can be interpreted as follows.
A boundary value problem of the form (3.59) is uniquely solvable if and only if the matrix

Ry, + RTW (T, to)
is nonsingular, where the transfer function W (¢, a) € C([to, T],R™") is the solution of the initial

value problem

(3.61) %W(t,to):A(t)W(t,to), Wito,te) = I, € [to, T,

see, e.g., [2]. This initial value problem can be solved numerically by applying the discretization
defined by (3.60) to (3.61). This discretization can be written as

0— Ll,s
_ 0 _
LhWh = . = —Ll,Sa
0
where the solution
Wi
Wy, = =—L; 'Ly,
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contains approximations W; to W (tg + ih, to), i.e.,
W; — W (to + ih,tg) = O(h) for i=1,...,N.
In particular, we have

Sp = Ry — RrL, 'L
= Ry, + RrW),
= Ry, + RrWhn
= R, + RrW(T,to) + O(h).

Thus, for sufficiently small h the matrix S} is nonsingular and its inverse .S, 1 is uniformly
bounded. Therefore the matrix Lgl is also uniformly bounded and the consistent discretization
defined by the recursion (3.60) applied to (3.59) is stable and thus convergent. O

Theorem 30 shows that the solution of the systems (3.58) is unique and that it converges
to the solution of the boundary value problem (2.23). The following theorem summarizes the
results obtained so far.

Theorem 31 Let 7 = D*f be the (unique) solution of the minimization problem (2.15) and let
I, = Dif fi, be the solution of the minimization problem (3.45). Let Ry, be as in (3.4).
Then there exists a positive constant C' such that

1#n — R, 3, < Ch,
provided that h > 0 is sufficiently small.

Proof. According to Theorem 17, the solution (z,y,u) of the minimization problem (2.22) is
given by the corresponding parts of the (unique) solution of the boundary value problem (2.23).
This implies that the function

2
Il
S 8

solves the minimization problem (2.15).
The systems (3.58) can be written in the form

LOIN] (a2 [ AT 1+ cfa] ([oo] [n], [10] [Aa]) , [CFa
h \ | x; Tiq N B,-BZT A; WARE? 00| |2y AL
vi = Ciwi + gi,

T
u; = B N1,

i =1,..., N, with the initial values satisfying

o] L]+ ool 3] =

By Theorem 30, this system is uniquely solvable for sufficiently small A and a convergent dis-
cretization of the boundary value problem (2.23). Therefore, by setting

T x;
Ty = . with ;= |y |, i=1,...,N,
_ u;



56 CHAPTER 3. NUMERICAL DETERMINATION OF GENERALIZED SOLUTIONS

we get
lzn — Rx, & < Ch

for some positive constant C.

The discrete boundary value problem (3.57) can be computed from (3.58) by applying the
substitutions (3.49). Moreover, the unique solution (\;, z;, yi, u;), i = 0,..., N, of (3.57) is given
by the solution (\;, z;, ¥, u;) of (3.58) with \; = (%I — A )TN fori=0,...,N.

By Theorem 29, the part (x;,y;,u;), i = 0,..., N, of this solution solves the minimization
problem (3.50). By the substitutions (3.49), (3.47), and the regular transformation (3.46), the
problem (3.50) can be written in the form

1. .
3 |Z5 || = min! s.t.
(3.62) L (a1, - — A A A —0
h g(x1, —x1,_,) = Aoy, + Ag,wo, + Az a3, + f1,, 11, =0,

0 = Ag1,x1, + Xa,x2, + fo,,
i=1,...,N, with

L1 1, T
jh: ) j’L: x2; = Yi 3 Z:17 )N
IN T3, Uj

Hence, we get &5, = T, for the solution of (3.62). The assertion follows because the minimization
problem (3.62) is equivalent to the minimization problem (3.45). O

3.3.2 General strangeness free systems

To generalize the result of Theorem 31 to differential-algebraic systems that are not given in
orthogonal standard form, we use the following observation. Let the large linear system Djyx =
fn represent the discretization of the general strangeness free DAE (1.1) with the implicit Euler
method. Dj, can be defined analogously to (3.44) and the right-hand side is given by f; =
(f1,- .., fn). Furthermore, consider the orthogonal matrices

Ph = diag(Pl,...,PN),
Qh = diag(Qla"'7QN)a

which contain the orthogonal transformations P and () evaluated at the grid points t1,...,{N.
If f;, denotes the right-hand side corresponding to the discretization of the system transformed
to orthogonal standard form, we have fh = P, fp. It will be seen that the relation Dy, = PLDypQn
unfortunately only holds if @ is constant over the interval [ty, T']. This particularly implies that
the minimization problems (3.39) and (3.43) do not transform covariantly with the application
of these transformations if () is time-dependent. Our major goal is to show that zj; nevertheless
approximates Qp I, where xj, and Zj, are the least squares solution of the discretizations Dyxj, =
frn and lN)h:ih = fh of the original DAE and the transformed DAE in orthogonal standard form,
respectively.
The blocks of the matrix P, D,Q), are given by

(3.63)

1
_E-PiEiQi—l fOI‘ j =17 — 1,
(3:64) [PhDr@nlis = 4 P, (%Ez - Ai> Qi for j =1,
0 otherwise.
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From (2.2), we know that

and

This implies that

(3.65)

and for the subdiagonal blocks in (3.64), we get

1 1~ 1= 1~
_EPiEiQi—l = _EEi + —EiQiTQi - _EinTQi—l
1~ Qz Qz 1
= ——E; + EQT
(3.66) i+ Qi —
1= ~ : ~ i — Qi :
=3Bt EQ] Qi+ EiQ (% - Qz‘)-
For the large system, this implies the relationship
(3.67) PyDp@Qn = Dy, + Ay,
with a perturbation matrix Ay, that has the structure
A ;
—Ag — b9 Ag
(3.68) —Az —d3 A3 :
i —Ay —on An |

where A; = —EZQZTQZ- and §; = —ENZQZT (% — QZ) Note that for sufficiently smooth
orthogonal functions () and sufficiently small h we have

Qz Qz 1
- h

for some positive constant CQ. We will show in the following that for the perturbation Aj we
get

(3.69) (Dy+ Ap)*t — D = (P,DyQn) " — D = O(h),

- Qi

< CQh

which then implies
lon = Qunlloe = | D s — QuDEFa|
= |@n (@D PPt - DIR )
< | @ull|| (@FDFPT = DF) |
= Clat || ((PoDr@)" = D) A

= O(h).
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The assertion (3.69) will be proved in three steps. First, it will be shown for the special
case of ordinary differential equations, then this result will be extended to the case of uniquely
solvable DAEs and finally to the case of general underdetermined DAEs.

The ODE case

Let us assume that @ = @ = 0 = 0, with a, 4,0 as in Theorem 10, such that the DAE (2.1) in
orthogonal standard form reduces to the implicit ordinary differential equation

(3.70) Spt)E(t) = A (0)E(t) + fi(t), tel=[t,T),

with matrix functions Xp € C(I, R™"), A;; € C(I,LR™"), fi € C(I,R™), X pointwise nonsin-
gular and n = d. Moreover, we consider the initial condition

#(to) = 0.

Let the step size h = (T'— to) /N be constant. A discretization of (3.70) with the implicit Euler
method and the step size h can be written in terms of the linear system

(3.71) DpEn = fn,
with
+¥p — A,
(3.72) Dy = e %EE?_ s
—53Ey #3Ey — A1y

and

A

fn=1"

In

On the other hand, let
(3.73) Et)x(t) = A(t)x(t) + f(t), tel=][ty,T]

denote an ODE, which is equivalent to (3.70), i.e., there exist orthogonal matrix functions
P € C([to, T],R™") and Q € C*([to, T],R™") such that ¥ = PEQ, A;; = PAQ — PEQ and
fi = Pf. The discretization of (3.73) with the implicit Euler method using a constant step size
h can be represented by a linear system

(3.74) Dixy = fn
with

%Ell_ A 1
(3.75) Dg = b b A

—+EN +EN — Ay
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and

i
fo=1":
N

If we define block diagonal matrices Pj, and @} according to (3.63) and set
(3.76) Df = P,D}Qn,

then we have

(3.77) D9 = DY + Ay,

with a perturbation matrix Ay having the structure

Aqy,
—Aq1, — 011, AVER
A1, — 0115 Av1y

—Aq1y =011y Aty

In particular, we have ||A11,]lco = [|25Q7 Qilloo < Ca,, and [|611,]lec < Cs,,h for sufficiently

small h. Since the ODE systems (3.70) and (3.73) are globally equivalent, we have
F=Q"x

for the (unique) solutions & and z of (3.70) and (3.73). The implicit Euler method applied to
these systems is convergent of order one; for sufficiently small step sizes h we therefore get

|Zn — Rx, 2|l = O(h)
and
|zn — Rx, 2|l = O(h)

for the solutions Z;, and z, of (3.71) and (3.74), respectively. If we let &} denote the solution of
the linear system

Dyiy = fn,
with fh = Pufn, = fp, it follows that
l&n =@l = || DF " fu =
oo

- ooy -,
= [|Qhzn — Znl|
= ||Qf=n — Qf Rx,x + Qf Rx,x — @)
< [|@kll lzn — Byl + || B, @72 — 3|

= C1q| llzn — R, 2|l + |1 Bx, & — Znl| o
= O(h).
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This suggests that the inverses of the coefficient matrices 152 and D;’L satisfy

(3.78) Hf)g’l —po!

= O(h).

o)

We will show that this is indeed true. In addition, we will show that for the blocks [D;’l_l]ij and
D9 i, 4,5 =1,...,N, of D" and D9, we have
- -
H[Dh lij — [Dy i

To show this property we first define a third discretization of the ODE (3.70) that allows us
to compute the inverse of its discretization matrix in a simple way. This explicit discretization
is defined by

= O(h?).

5.79) S (e, — ) = w4 =1,
x1, = 0,

and leads to a discretization matrix of the form
_lE%EE%AH Iy .
(3.80) Dy =1 "7 2 e

— 135y — A1y 3By
If we denote the diagonal and (negative) subdiagonal entries of D;’l by D,Old,i and Dgs’i, respec-
tively, i.e.,

_ 1
[Dpla; = EEEN
(3.81) |
[D9)s: = EEE,- + Au,,

then we can write down the inverse blockwise according to the block structure of D;’L by

j+1
TP ADR e | [DR]55 fori > j,
Dy i =19 i ’
0 otherwise,
(3.82) P
_)n [H (1+mzgian,) | 25! foriz
k=i
\O otherwise.
Here, we employ the following non-standard notation: for matrices Ay, , Ak, 41, .., Ak,, k2 > k1,
we define the reversed product
k1
(3.83) IT 4x = Ary Ay Ag, 1 A,
k=k2
If ko < k1, we set
k1
I
k=k>

Since one-step formulas are always stable, we know that ||D? ||« is uniformly bounded.
The following lemma can be used to compute this bound explicitly.
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Lemma 32 Let D be defined as in (5.80). Then for

o __
7 = Cysizt., ©XP <C||E,51Aunoo)

we have

D5 1| < con,

o0

which implies
|57 < ez -t

Here, the constants C||E*

1, and Cjy—1 are defined according to Definition 23.
B lloo 125 Arlles

Proof. For [Df]a and [Dg],  as defined in (3.81) we have, using the notation (3.83),

g+l - j+1
[T D50l =TT + 885 Au,)
%
< II |7 +r=sian,
k=j+1 o
N
-1
< kl_[lHIJthEkAnk )

N
1 N
- (1 LA Gl t0)>

< exp (C”EEIAHHOO(T B to)) ’

and thus for 1 < j <14 < N, it follows from (3.82) that

41
_ ) .
H[Dh Il = |Ih !]_[ (I + thiAllk) o
OO k=i .
< szt P (CHZ;AH”OO(T - to)) h = C%h.

Hence,

< NCfh = CY(T — to),

o0

_ 1
o
|

o0

N
_ 1
< ma o ..
= i=1,.-i(NZ H[Dh ]z]
J=1
which concludes the proof. O

Additionally, we can use Df;l as an approximation to 15271 as well as to Df;l, which will
help proving (3.78). The following lemma shows that D;’;l has the desired properties.

Lemma 33 Let D¢ and 152 be defined as in (3.80) and (3.76). Then there exists a constant
C$ € RT, which does not depend on the step size h, such that fori,j =1,..,N,

Ao~ 1 o1 o
D51 = 105 1| < csm®
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Proof. First of all, similar to (3.82), we write D¢ blockwise in the form

1 ) A
[H[DZ];MDﬁ]S,k] [Dflz) fori>j,

0 otherwise,

(3.84) Dy iy =

using the notation

N 1
[Dplai == EEEi — A1, + Ay,

1
h

[Df]s,i - Yg, + Ay, + 611y,

for the diagonal and (negative) subdiagonal blocks of ﬁ,ol, respectively. The following observation
already proves the desired result for the diagonal blocks of the inverted matrices. We have

L 1 -1
[Diol]d; = (EEEi — A, + Ani)

- h (ZEi (I — hZ;Jil (An, — A11¢)>)

-1
1
=h (I — hEg (Au, — Am)) g,

Furthermore, for
. -1
h < min (17 C”EEl(AllAll)”oo) 9

where CHZ;;I(AH—AH)HOO is defined according to Definition 23, we have

HhZE} (Ani — AHZ)H <1

fori=1,..., N. Hence, we can use the Neumann series to compute the inverse by
B >0 k
DRIzt = (z (h=5 (A, - Au) ) ;!
k=0
> k
=h (I—l— Z (hgéll(Auq — Alh—)) ) EE}
k=1
Because of
- -1 k [t K
> <h2Ei (A1, — Am)) <> h HEE (A1; — Auy) ‘
k=0 o k=0 o
B 1
1—h HEE}(AHZ. ~ Au) Lo

2

IN
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and
i ( HAu, — Ay, ))k <h HE;;:(Ani —Aq,) ooihk HEES(Ani — Aqy,) .
k=1 o k=1

=h HEE}(Alli - A112-)

> k
’ > ot HEES(AMZ- — Aqy,)

HEE}(AH,- —Aqy,) .

=h

1—n HEE}(AHZ. - au)|

S 2hC”EEl(A11_A11)

lloo?

. < Lo 1
we obtain for A < 5 min <1 C'”E Ay All)”oo) that

(3.85) |Dzl]| <20y h for h—o.

Moreover,

([Eabrtoriby

< Z L (An, — Ay, )>k> Y~ Mg
k=

[e.9]

where

o __
O3 = 2051 (a1 - A1) o OIS oo

To get a similar estimate for the remaining blocks, we first define
My = (D7) D)ok — (DR [DR)sk

and observe that
1 11
M, = <E2Ek — Ay, + Allk) (EEEk + Ay, + 511k> — (I + hEEiAllk)
1 —1
=1+ <ﬁEEk — Ay, + Allk) (A11, +611,) — (I + hZEiAllk)

1 -1 B 1 -1
= <E2Ek — Ay, + Allk) A, — thiAllk + (EEE;C — A, + Allk) 011,
= (IDf)ak — [DRl3k) A, + [Df) ko,
and thus

1My loc < B2 (CgoCHAunoo +20||2;Ho<>05) =: h*CY

k—1

63
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for k=1,...,N. Applying Lemma 32, we get

Jj+1 A A Jj+1 ~ ~
T DR kDf)ek — TTIDR) 2k DRk
k=i k=1 0o
j+1 J+1
= |IT (7 +n35tAve + M) = T (1 + h55) A
k=i k=i 0
i—j i i—j—1 l
< ( j) ( max o ) ( max ||Mk||oo>
= l ke{j+1,...,i} k 0o ke{j+1,....i}
N N
<Y N{1+h YA h2Cy)
<N (14 s 57 QA0 ) ()
< exp Ozt a1 (T~ 10)) D (RCYT — to)
=1

l:O

1= hCo(T — o)

< 2hC9(T — to) exp <C||z,;1Au||oo (T — t0)>

=h

where the last equality holds for

. < —
(3.86) h < T T

This implies that the product appearing in the representation (3.84) of D;’;l is also bounded,
ie.,

i . i . L ~ it B
1108124107k 11D DR e — TTIDR 2k [DR s T1ID8)24D7) sk
k=i 00 k=i k=i 00 k=i 00
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for h satisfying (3.86). Thus, it follows that

rj+1 1 [+ ]
Aol Ao~ 1 Ao1—17 o No1~ i Df, D14
H[Dh ]ij - [Dh ]ij 00 - H[Dh]d,llg[ph]&k [Dh]d} o H[Dh]d’}f[Dh]s’k [Dh]d’;
L= 1 Hh=i ) OO
_]+1 T ) —]+1 R R | _
< || LTIDaGkDi | (PRI — | TTDRIZ Dl | DRG]
Lk=i ] Hh=i i =
il ) - o _ _
v H[Dz];,iwms,k] D3} - [H[Df‘ﬂim]s’k] (Dflas
k=i k=i =
j+1
< |TIonzion.s| [onz - o0z
k=1 oo
G+1 A J+1 B _ _
+ | LIORakD8 ~ TTIDRaADRL | (P71
k=i k=i o

2 o
2o
= C39h?,
where

Note that the result of Lemma 33 also applies if b;’;l is replaced by [);’;1, since 152 reduces
to Dy, for Ay, = 0.

Theorem 34 Let D} and ]_52 be defined as in (3.75) and (3.80). Then there exists a constant
C° € RY, which does not depend on the step size h, such that fori,j =1,...,N,

D51 = 1051,

< C°h?.
o0
Moreover,
H[);’[l - f);’[lH < C(T — to)h.
oo
Proof. Using Lemma 33 and the triangular inequality, we get

D51 = 10710 |

IN

~ -1 = -1
H[Dh lij = [Dy Lij

((jg(l) + (75(2)> fLQ,

= 1 A -1
OO+H[Dh lij = [Dy lij

o0

IN

where both constants, Cg(l) and 020(2), can be computed as shown in the proof of Lemma 33.
In particular, we obtain 020(1) by setting A1; = 0 and é17 = 0, i.e.,

o(1) _

o(2) _
5% = 40 (G, 1 = 10)) Ot (Cmptinn-aane (1 Cllang) +Cs)

E
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Let us define
CO — 020(1) + 05(2)

Then it follows that

N
~ o1 ~o— 1l ~ o1 Aol
[o =217 = s, X008 1 - 1071
yeeny = o0
< NC°h?* = C°(T — to)h.

The uniquely solvable DAE case

The next step is to extend the results of the previous step for ODEs to the case of a uniquely
solvable strangeness free DAE

(3.87) E)i(t) = A®)z®t) + f(t), tel=lty,T], &(to) =0,

with the coefficient functions

. [Zpo
=70
= A11A12}
A= ,
[Azl YA

where ¥ and ¥4 are are both square, pointwise nonsingular matrix functions of size d and a,
respectively. The matrix functions A1;, A1 and Ao are assumed to be of matching size. We
proceed as in the previous chapter by discretizing (3.87) with the implicit Euler method and
writing the discretization as a linear system

(3.88) Dz, = fi.
Next, we consider a linear DAE
(3.89) Et)x(t) = A()z(t) + f(t), tel=][to,T], =(to)=0,

which is equivalent to the system (3.87), i.e., there exist orthogonal matrix functions P €
C([to, T),R™™) and Q € C([to, T],R™"), n = d + @, such that E = PEQ, A = PAQ — PEQ
and f = Pf. A discretization of (3.89) with the implicit Euler method leads to a linear system
of the form

Dyzp = f.
We will show that the solution Zj, of the system
Diiy, = fn

with lA)}j = P, D@}, and fh = P,f, = fn approximates the solution Zj of (3.88); an assertion
that is motivated by the fact that the solutions # and z of (3.87) and (3.89) satisfy # = QTx. In
particular, we will show that Hf)gfl - 15{1 lloo = O(h) and estimate the norm of the differences
between certain blocks of these inverses.
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Similarly as for the ODE case in (3.67), we get the following relation for the matrices D}j
and lA)}j
Di = D + Ay,

where the perturbation matrix Ay has the block bidiagonal structure given in (3.68), with the
blocks

~ : A1, Aqo,
Ai:_EinTQi:[ éh (1)2}

and

o nWaYl Qi_Qi—l_ 5\ 5111' 5121.
5 = —B,Q] (7 QZ>_{ 1, o ]

In particular, for sufficiently small 2 and for a sufficiently smooth matrix function () there exist
positive constants Ca,,, Ca,,, Cs,, and Cs,, such that

A1, < Cayys
[A12,]l 00 < Caes
1611110 < Cs,1h,
1612, < Cs15h,

for:=1,...,N. To compute the inverses f)zil and ﬁ}fl, we introduce permutations P 5 and
P, ), such that

~ DY Ay }
3.90 PpDypPp, = | " "
( ) h 1L Lh, |:A21h S,
and
i D? A ]
3.91 Py D} Py, = h b
(3.91) hi D Ph, [Amh S
where
(3.92) Ay, = Ava, + A,
and
[ — Ao,
A, = ) ,
L _A12N
AND
—A12, — 012, Ar2
A12h = ’ ’ .‘1 ’ . )
(3.93) I —Aqgy — 12y Angy
— Aoy,
Aoy, = ,
—Aoiy
_ZAl
Sa, =
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Furthermore, D as well as D¢ = D9+ Ay, are defined as in (3.72) and (3.77), respectively. The
structure of the transformed discretization matrices allows us to compute the inverse matrices
with the help of the block LU decomposition

[ Dy Auh} _ [I Alghz;h{} [D;;_Auth}LAmh 0 } [ I o}
A21h EAh O I O EAh E;iAth I ’

This immediately yields

No -t 1 No -1 - A 1
[ Dy Al?h] — [ O] [(Dh_Al%EAhA?lh) 0 ] [I N 12h2Ah:|

A21), Ba, X A, T 0 el AL I
(3.94) h
_ Sl;l _Si;lAthE;hll
—E;iAzthh‘l 2;}{+2;}{A21hs,;11412h2;i ’
with
Sh = Dy — A1, 5, Az,
im A i
—3XE,  puE, — Az
(3.95) = e T . ,

1 1 A
_EEEN EEEN — Ay

A = An, + A12i22i114211--
Analogously, we get

[ ﬁg Algh ] - _ [ 5’;:1 —gh_lflmhﬁ];i

Ay, S, S A0, St Sy S A, S T Ay, B0 |
where
S0 = D — Auy, T3 Ags,
—A1g, + A1,

. —Aqg, — 012, —A12, + Ao,
=Dy, — .

. Az,
—Aqoy — 012y —Ai2y + A1y
can be written in the form
(3.96) Sp = Sp+ Ay,
with
A
R —Ay— 5y A
A 2 — 02 . 2
Ay —dn Ay
A=Ay, — AuiEZjAm“
and

0i = 011, — Auy, (2237114211-_1 - EAT}A%-) — 12,5, Ay,

Before proceeding, we need the following definition.
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Definition 35 Let A € C'([to, T],R™") and 2 < p < co. Then the constant Lyay, is defined
as

Lyay, = téﬁi‘f}]{m(t)”% LA I, }-

Because of

0;

= H511i — Aqy, (E;‘}_lflmi,l - E;‘}Azli) — 012,55 Aoy,
- : : :

< (Cou + Canalys g + Co0aCisy ) P

o0

it follows that we can apply Lemma 32 and Lemma 33 directly to the matrices S, and Sj,. Here
and in the following, by writing L., we implicitly assume that the argument is differentiable,
which, by Theorem 3, can be guaranteed if we assume the matrix pair (E, A) to be sufficiently
smooth. Then the above inequality follows from the mean value theorem.

The matrix S, can be interpreted as the discretization matrix of the ordinary differential
equation

(3.97) Sp(t)i(t) = Alt)z(t) + f (1),

with B
A=A+ A1p¥ 4 Aoy,

according to a discretization with the implicit Euler method. As in the previous section, we
consider an explicit discretization of (3.97) similar to (3.79) with the discretization matrix

(3.98) Sp=| PR . ,
— 335y — AN $3E
h N h N

which possesses the inverse 5’; ! with the blocks

J+1
_ -17 -1 S
(3.99) [Sil]i]’ _ h [,!;[Z(I + thkAk) EE]' for ¢ > 7,

0 otherwise.

Corollary 36 Let S, and Sy, be defined as in (3.98) and (3.96). Then there exists a constant
Ct € R, which does not depend on the step size h, such that fori,j=1,...,N,

(3.100) 15719 — 1871 _ < cn®
for sufficiently small h. Furthermore,

(3.101) 18749 < can

and

(3.102) S,;lHOO < C(T — to)
with

Cy = QCHE;IIO@ exp (CHE;AHM(T - to)) .
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Proof. The assertion (3.100) follows immediately from Lemma 33. In particular, we get

Ot =4exp (Cpsr g (T —10)) Cpsty . (Cpstaayy (14 Cag) +C5)

lloo

From Lemma 32, it follows that H[_,jl]ij\loo < CPh fori,j=1,...,N with

5 lloo

and thus

S [ PR o 1 R [ s P
g o h2 + Clh < 20%h < CYh

holds for sufficiently small . Then the estimate (3.102) follows from

[Sh ]ij o

IN

OINCOh = CU(T — to).

The results of Corollary 36 help us to show two further properties of 5’}: ! and 5‘; L

Lemma 37 Let S), and Sy, be defined as in (3.96) and (3.95). Then there exist constants C¥,
CY € R, which do not depend on the step size h, such that

< CYh?

(3.103) H[S;Zl]ij =15 |
fori,j=1,...,N, and

(3.104) ‘

fori=1,..,N,j=1,...,N—1.
Proof. The first estimate follows directly from Corollary 36, because

o < [
(c“m +C; <2>)h

N

08 = 157

where both Cf(l) and C?m can be computed as in Corollary 36, i.e.,
u(l) _ _
Cr =dexp (CHEEIAHOO(T - to)) Ol Clm5 Al (1 + CIIAHoo> :
u(2) _ ) _ X
1t = dexp (Cpsor a1 (T = 10)) Oy (Cpszriaaype (14 Crap) +65) -
Thus, the inequality (3.103) follows from setting

cy =y oy,
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To prove the second estimate, we first show that the matrix 5’}: ! satisfies an inequality of the
form (3.104):

Jj+1 42
1185 i7 = 1S5 i1l o, = |2 []_[ (r+mspidd) [ 25+ n (1T (1 +hsgld) | 55,
k=i k=1 00

j+1
<h ( ]_[ (I - hzgiﬁk) HEE]? - %5, N
i T
I1 (1 + hz,gifxg -1 <I + hz,;i;xk) Hz . >
k=i k=i 0o
< h(’“”“” (Clmprane (T = 0)) Ly
ﬁ(uhzgiﬁk) ((I+h2E HAM) ) Hz—m )
k=i 00

2
< exp (CHEEAHOO(T - to)) (angluoo T O 410, Cm e )h :

Thus, by applying Corollary 36, we get

N

110 = (87 Tagw | _ < (1970 — 157

‘Oo + (119 i = 1S5, il o
+ H Si i1 — [Sﬁl]z‘,jHHOO
< (201 + e (G (0 = 10)) (Lypryes + Ozt Ozt ) ) 1

= CY

Next, we take further steps to prove the main result for uniquely solvable DAEs. First, we ex-
tend the result of Corollary 36 to the remaining blocks of the inverted transformed discretization
matrices. We denote these blocks as follows:

inv inv A ~ _1
(3.105) D%}Av Dig | .= [ by Alﬂ :
Dh21 D%22 A21h EAh
ie.,
ﬁuinv _ S_l
hll h
ﬁiﬁ? = —5}?1/11%221,
3.106 , h
( ) Duznu — _Z_IA S’_l
h21 Ap“21n°n
Dy =Syt + 53 Agy, 8, Ay, 2

inv inv inv

Analogously, we define the blocks Dh11 , D}L‘lz , D}L‘Ql and Dh22 for the case Ay, = 0.

Lemma 38 Let
Diiy’ Dy
Dioy Dias
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be defined as in (3.105). Then there exist positive constants C}y, Cly, CY,, CY, such that

inv

(3.107) }:11 < CY,
o0

(3108 i | < cte
o0

(3.109) Dy || < O,
o0

(3.110) Hutll < C,.
o0

Proof. The assertion (3.107) follows directly from Corollary 36. From the equality ﬁﬁﬁv = g;I
it follows that

u’L?’LU

h1l

=l <eser -

and we can set Oy = C%(T —t). For the remaining assertions we note that the matrix S b LA,
can be written blockwise as

[S;IAIQh]ij = [S}:l]z] (_AIQJ' + Ale) - [S}:l]i7j+1 (A12j+1 + 612j+1) fOI' 17 > j’
0 otherwise.

From Corollary 36, we get

54

< (185 9a])_ (1rzu g + 1802
T < O3 (Ol + o)

and for ¢ > j, using Corollary 36 and Lemma 37, we obtain

H[Sﬁlfimh]z‘j Al

< [ises

—1
i A2, =[S, g1z, N

+ H (5] m‘+1HOO H512j+1Hoo
<y (C||A12||oo + C5l2h) h

+ H[S}fl]ij (Arg; — Arzyy,y) ‘OO + H ([gﬁl]ij - [Aﬁl]i,jﬂ) A2
< CYC il + (C3 (Ljass)o + Co1z) + CiCayy) B2

for sufficiently small h. It follows that

o,

IN

max H[S Algh

+§HS A, Jis
1

j=
< HlZaXH[SY;:lAwh]ii

Tt (N —1) H[gﬁlf‘imh]ij .

<
< Cg(T - tO) (C||A12Hoo + (T - tO)CAmh) + (Cg (LIIA12||oo + 0512) + CXCA12) h
< 2C110) An) o

for sufficiently small h.
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The assertions (3.108), (3.109) and (3.110) follow from (3.106) by observing that ZZ; and
Ay, are block diagonal matrices, and thus HEZ}ILHOO < Cls-

1
A lloo

s [[A21, Il < Cjag |- Hence,
we can choose

012 — 20110||A12Hooc||2A Hoo
C21 = O30 CllAa ) Cit

C3 = Ciz, ( + 200451 oo C11C) Ar2) o O 1||oo>

Lemma 39 There exist constants C11, Ciag, Cias, Ca1, Caaq and Cars € R, which do not
depend on the step size h, such that the following inequalities hold:

inv inv

1 ||ipE s — 1DE; ’ <Gk forij=1,..N;
[o@)
2. |[D#5 Y — D5 Nil| < Chaah fori=1,..,N,
(DR — (DY ‘ < Choeh? fori,j=1,...N, j < i
3. |[1peren — 1D ] < Coh? fori,j=1,...N:
o0
4o |IIDy Yii — (D Niil| < Cagah fori=1,..,N,
(D — (D] ‘ < Copeh? forij=1,...N,j<i.
o0
Proof.
1. Lemma 37 implies
1Dy )i — Diy | = 1180 i — S0 s
oo

where C1p := Cy.

2. Corollary 36 and Lemma 37 imply

[Dinz Jii — [Diy Jii

‘ ‘ Z”lU ’LTH}

= H 5*_1/11%221]1'1' — [, A1z, S i

o0

H( NiilArz,Jii — 1S5 Nl Arz, ) ki
i A1o

< H (—Aug, + Avg,) + [Sy i HEA

< <H< o) v 5] ) .
< (Csanleooh + 20551 Caneh ) Cpsry

< 3C)s-1 ). CAmCuzzlnoolh

=: C12d
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for sufficiently small h. Moreover,

= H S5, A, 25 ]a — [5;, 1 412,251 .

~

[ gl]zj (—A12j + A12]‘) - [Agl]i,j%—l (A12j+1 + 512]~+1)

+[5; i Az, H HEZf
[o@)

o0

< (H ( 1S5 ig — [Aﬁl]ij) Ang, T ‘ 1S5 i j+1012; 44
+ H z_]AlZJ {S}:l]i,j-i-lAleJrl oo) CHEA lloo
= ((03 CllAwlle + 050512 h2 Jij HAH' - A12j+1Hoo

18 = 187 i | HAHMH )CHEA e
< (C3C) )l T+ C3C13 + CELyja) + CiC)A L) Oty 7
=50

= C7’125
for sufficiently small h.

3. Once again, Lemma 37 implies

inv Z”lU

D321 = (Dien N |

= (=30 421,57 s — 25041, 57T

[e.9]

= H—EZJAH[S'_I]M + 35 Ao, S, i .

< HEZ}Am
<C

H j i? ]w
Oz 3 12

00
-1
1275 Moo

= Cy

for sufficiently small h.

4. Similarly,

inv

D3z Vi — 1D T

= H[Eji + EZiAthﬁlAlzhE;‘i]u

—[Sa) + 55 A1, 5, 1 A1, 54 i .

= [[maan | _[i80 Aun 300 = 135 Ave, 20
=< C\\2;1||OOC||A12||OOCud h,

[e.9]

=: Cayq
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Z”lU ’LTH}

[Dhze Jij — [Diza Ji|| _

= H[Zjl + X5 Ay, Sy Avg, 251

[E + E A21hS A12h ] ij

~ 12
< O Cllar ) Cr2s h

=: Chas

for sufficiently small h.

Now we are prepared to prove the main result for uniquely solvable DAEs.

Theorem 40 Let [?}f and D} be the discretization matrices of the globally equivalent differential-
algebraic equations (3.87) and (3.89) and let P and Q be the corresponding transformation
functions. Let Dv = P, Dy Qy, with Py, and Qp, defined as in (3.63). Then there exists a positive
constant C", which does not depend on the step size h, such that

Hf);;“ - [);;*H < CUh,
o0
Proof. Using the permutations P} ;, and P, as defined in (3.90) and (3.91), we get

- ul Au~! pul ul Ju~t puT
= |PhrDn Pry — Pry Dy Py ’oo

~ ~ —1
- (P,gle;;P,ﬁr) —(PﬁlDﬁP,ﬁr)

A . -1 ~ -1
_ [ Dy Algh:| B [ Dy Auh]
A21h EAh A21h EAh

L

(e 9]

[e.e]

mnuv mv mnuv mnuv

u U u u
Dh21 Dh22 ‘Dh21 Dh22

uznv uznv ul’Vl’U uznv
— [Dhll Dh12]_[Dh11 Dh12]

o0

mnv 'LTL'U

< max (HDh Dhll

inv

muv ~
u
Tt HDh h12

9

)

’an

mnuv
B — i

inv ’Ln'U

+ Hthz Diyy

By Lemma 39, we have

inv inv

u
h11 Dhll

(3.111)

[e.o]

< N011h2 = Cuh( — to).

Analogously, we get

znv

(3.112) HDth ~ Dity' || < Conh(T — o).
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For the remaining blocks we achieve the same result by observing that

Z?’L’U 'LTL/U

Dh12 ]ZJ

'an u’L’ﬂ’U
= Z_nllax m2 Jii = [Dh12 |

’Ln’U ’LTL'U
+§ H 1o Jij — (D ]za

< (Crzqh + NCig5h?) = (Ciog + (T — to)Clzs) h

and, analogously,

winv inv
u

Hthz — Dpao < (Coza + (T — t0)Ca2s) .

In summary, we conclude

| !
|pi" - by

< max (Ciaq + (T — t0)(C11 + Ci2s), Cazg + (T — t0)(Ca1 + Cazs)) b

[e.e]

= C"h.

The general DAE case

The final step to prove the main result of the whole section is to show that the results we
have obtained for regular DAEs can be extended to the least squares solution of over- and
underdetermined DAEs.

For this purpose, we consider a general strangeness free differential-algebraic equation (1.1)
with a homogeneous initial condition. The discretization of this system with the implicit Euler
method and a fixed step size h = (T — tp) /N is written in terms of the linear system

Dyxp = fn,
with Dj, defined as in (3.12) and
fi
fo="1":
In

Furthermore, consider a globally equivalent DAE in orthogonal standard form (2.1) and let P
and @ be the corresponding transformation functions. Applying the same discretization to the
orthogonal standard form system leads to a linear system

Dpip, = fn,

with Dy, defined as in (3.44) and f}, defined analogously to f;. From (3.65) and (3.66), we know
that for

(3.113) Dy, = P,DyQp,
where the orthogonal transformations Pj, and @, are defined as in (3.63), we get

ﬁh :bh—f-Ah.
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The perturbation matrix Ay has the structure given in (3.68), i.e.,

Ay
—Ag —0d2 Ay
Ay, = —Ag —d3 Ag
i —AN — 0N AN |
with
. ' Arr; Arg; Agg,
Ai=-EQTQi=| 0 0 o0
0 0 0
and
A 011, O12; 013,
6 = —EiQf <%—Qi> =10 0 0,
0 0 O
for ¢ = 1,...,N. Thus, for a sufficiently smooth transformation function ) we obtain the
inequalities
HAlji”oo < CAlj
and

”51ji ”oo < C51jh

with positive constants Ca,; and Cs, ; for j = 1,2,3. The corresponding right-hand sides satisfy

fn=Pufn= In )
~ Our aim is to show that the difference between the Moore-Penrose pseudoinverses of Dj, and
Dy, can be bounded as

(3.114) | =Dz |_<cm

for some positive constant C' which does not depend on h.

We compute the pseudoinverses of Dj, and Dj, using the formula (3.22) given in Lemma 22.
We apply permutations P,; and P, from the left and from the right, respectively, to the
discretization matrices, such that we obtain the structures

X 152 12112h 12113h
Py DpPp, = | A21, X4, 0
0 0 0

and

3 Dy Ay, Ass,
P DpPy, = | Ao, X4, 0 |,
0 0 0

where the matrices ﬁz and ﬁz are defined as in (3.72) and (3.77). The blocks A;3,, 12112,1, Ag,
and X4, are defined as in (3.92) and (3.93), while the matrices A3, and A;3, are given by

_A131
(3.115) Ays, =
_A13N
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and
Ayz, = A, + Aiz,,
with

—Aizy — 013y Aizy

According to Lemma 22, the pseudoinverses of Dy, and Dy, can be computed as follows. From
the previous chapters we know that the matrices

C DY AT
3.116 Rj, = h h
( ) RSN
as well as
[ Dy A,
Ry = h M2,
h | A1, X4, |

are nonsingular for sufficiently small step sizes h, and that the inverses of both matrices are
uniformly bounded.

If we set
A
(3.117) By, = [ agh] :
then the Moore-Penrose pseudoinverse of Ph,thPh,r is given by
) D7 A, Az, -
(PhJDhPh,r) = | A2, X4, O
0 0 0
| Ry By -
10 0

(I-vW,'VIY Rt 0
w, VIR ! 0]’

where

(3.118) Vi, =R, 'By
and

(3.119) Wy =1+VeIv,.

Analogously, we can compute the pseudoinverse of PthA?hPh’r as

. +_ [(1=vwvr) Ryt o
(Ph,thPh,r) = [ Ah_l h . Ah_l h
W, V'R, 0

with

(3.120) Bh — |:A(1)3h:| ’ Vh — R}:léh, Wh =]+ VhTVh

These representations of the pseudoinverses will be convenient for proving the main result (3.114).
Before we can achieve this proof, we have to show the following property.
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Lemma 41 Let W, =1+ VhTVh with
Vi, = R; ' By,

where Ry, and By, are defined as in (3.116) and (3.117). Then the inverse of Wy, is uniformly
bounded, i.e., there exists a constant Cyy—1 € Rt such that

Wi oo < G

Proof. See Appendix A. [

Theorem 42 Let Dy, and Dy, be defined as in (8.44) and (3.118). Then there exists a positive
constant C, which does not depend on the step size h, such that
(3.121) |t =Dy < cn

o0

for sufficiently small h.

Proof. First of all we can transform the matrices using the permutations P}, ; and P}, ., which
leads to

Al | pT pEpT _ pT et pT
B = B = |[Pa i pi = mL B

- A - + - +
Dy Ay, Az, D7 Aia, Az,
= Ath EAh 0 - Ath EA}L 0
0 0 0 0 0 0

(I — VhW,;lv,f) RO
W WIR! 0
(1= VW Vi) Bt (1= VWi V) Byt 0
W, VIR - W VIR 0

[ =vaw V) RO
w,'WiIRY 0

o0

o0

Here, the matrices Ry, Vi, Wh, Rp, Vi, and W, are defined as in (3.116), (3.118), (3.119) and
(3.120). The rest of this proof is concerned with estimating the norms of the nonzero blocks in
D;{ — D,J{. By basic algebraic manipulations,

(1= VW Vi) B = (1= VW) By
(3.122) = (T=VaW V) (Rt = B+ vawy (Vi = T By
+Vi, (W,;l —~ W,;l) VIR + (Vh —~ f/h) w, VIR
and

Wit VRS = Wi VER = Wi i (Rt - R ) wit (V- Vi) Ry
(3.123) A "
+ (W,;l — W,;1> VIR, .
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In order to show the bound (3.121), we have to examine the different parts of these sums. For
R,:l, we get from Lemma 38 that

—1
|: 1 :|
“121h EAh

u’LTL’U uznv
Dhll Dh12
Z’Vl’U uznv
h21 Dh22

o0

inv ’Ln'U

max (HD%L )DhIQ
< max (Cfl + 012, 021 + 022) =. CRfl.

)

The difference ﬁ’gl — R;! can be estimated using Theorem 40 and (3.91), (3.90):

+ Hthnv

IN

H—1 -1 T Au~ ! pT T Hu~ ! pT
HRh - Ry, HOO§ HPh,rDh Py — Py Dy, Ph,lHoo

A1 ~ 1
< Jor

oo
< C"h.
The matrices Vj, and Vj, are given by
Vh = R;léh
[ By Amh} [211 }
A21h EAh 0
_ [ B by

inv 1nv

u u
Dh21 Dh22

.

B nv
D“Z
- ’an

Du A13h7
h21

and, analogously,

Vi = BBy = | Dy Dy | Aus,.

max (HDhmv )
max (C11, C31) (Classfae +2C)Ass)10 T Clisrgct)
max (C%la Cgl) (CHA13”<x> + 3C||A13||oo)

C

Lemma 38 implies
|71 i

]

ININ A

v
for sufficiently small h, and analogously

'LTL'U

IValloo < max (|| D37 . ) 1415, 1
OO o0
< max (C11, C31) Cjayg).. = Cv-

For the transposed matrices VhT and VhT we get

.= (o) oy ] )b

(C 4 C51) (Clans)iee +3C)a)e) = CvT

IN

13h

/\
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and

Wil < ()" + @) ) hatale

< (O + C31) Cay). = Cyr

for sufficiently small h. Here, we used the fact that the definition of C__, see Definition 23, is
invariant under transposition, which implies that the constants C'{} and C3 defined in Lemma 38
share the same property.

Considering the difference

zn'u 7,’711)
Dhll Ali‘m Dhll A13h

inv ’LTH}

Vi =V =
Dﬁzl A13h Dh21 A13h

we get for the first block row, using f)}fﬁv = g,jl and (3.111), that

inuv ’an

HDhll Ays, — Dpyy Alsh

= H (Dhﬁv D}fﬁv) Ars, + S, ' Ass, N

< 0110||A13H00h+ HSh_IAl?,h .

To show that ||§,:1A13h||oo is small, we compute the matrix S’;lAlgh blockwise, using the
structure of A3, and the fact that S 1 is a lower block triangular matrix:

[Sgl]iiAlgi for i = j,
(S Ay Jis = § 8, TijAss; =[S, Tig (Busey + 013,4,)  for i >,
0 otherwise.

The estimate H[S’h]gllﬂoo < 2h02;31 (see (3.85)) implies the following bound for the diagonal
blocks of S’,;IAlgh,

H[S A13h 11A131
> 17, C A13]|oo
(3.124) H h 00 IA1s]|
< 180122 Chani-
< 2C||EE HOOC”AB”ooh'

Applying Lemma 36 and Lemma 37 yields for ¢ > j,

oA, — [Sp i+ (Asyp, + 013, )

| oo HA13]' - A13]'+1Hoo

H[S A13h ij

‘ o0

< H
(3.125)
185 e = 15 ]| vl + [ 187 gads |
< (CYLjays)ne + CEC)ars)1a + CEClls15)100) B
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This leads to

s,

N
G—1
< ~max E H[Sh AlSh]ij
0 i=1,....,N =1 e’

2
< 200521 Clas) + N (C3Ljay)w + C5Clag)le + C3Cls))
= (205311 Olssle + (T = t0)(C3 Ly + CEC) Ay + C3Clig)) ) o
= CS*1A13h7
and thus,
HDhﬂvABh DhﬁvAl?)h (0110\\A13||oo + CS*lAls) h.
Because of the identity Dh;1 = —EZiAmhg;:l, we can estimate the second block of Vj, — V,

analogously. Using (3.112), we achieve

'LTL'U

A ANV —1 A—1
= H( ha1 Dh21 ) Arg, — EAhAzthh ASEN
o0

u’L?’LU 'LTL'U

HDh21 Ays, — Dityy A13h

< ((7210||A13||oo T C||z;1A21HooCS*1A13) h.

Combining both inequalities yields

1711) Z”lU

Ays, — Diiyy Ass,

’LTH}

1Vh = Valloo = masx (|| D3y Av, — Dy} Avs,

)

|

< (C’HCHAwHoo + max (17 C“EZIAQl”oo) CS*lAm) h
=: Cavh.

The difference
. T T 'Ln’U 'Ln’U T ’Ln’U mnv T
Vii =V, = l:Al?)h ( i1 ) A13, ( i1 ) A13h ( h21 ) A13h (Dh21 ) ]
T 7477/[) 7/711) va T T mnv ~ uZn'U va T
= | Az, ( W= Diny ) + A13h ( 1l ) Ajs, (Dh21 — Dpoq ) + A13h ( h21 )

between the transposed matrices VhT and VhT can be estimated as follows. In Lemma 39 we have

proved that

’LTH}

D315 = (D 1|

fori,j =1,...,N. From ||AT||oc < m||A||s for all A € R™" it follows that

< Cp1h?

N 'LTL'U Zn'U T
= m?XZ H Diy = Ditt )AISthH
j=1 00

< A

| (s pit) ]|

| /\

|\A13i||oo)

'ln'U 'L’VL'U
XZ (H i1 i — (D 1

—JQMmuCnh
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From (3.124) and (3.125), we obtain for

Analogously, we get

lnv an)

AT ( _ pu )TH < dc Corh
13, (Ph21 h21 < aC)Ay5)00 C21 10

A13h (Dhﬁv) A13hS = (SﬁlAli’)h)T

that
‘ [A13h< hﬁv)T}

fori,7 =1,..., N. Consequently,

_ H [(églAlgh)T]

(/RIS 2|l oo

inuv

HAwh (Dhll >THOO < CZHSiz_lAli%h

< CZCSﬂAmh.

The identity
nuv T _ A T
A13h (Dh21 ) = <EA;11A21hSh 1A13h>

yields

; T
T Aul’n’U -
A13h< h21> H SdCHZ;\lAmHmCS*lAwh’
[e.9]

which implies

T
AT T T /an va va
HVh -V HOO < ‘Amh (Dhll Dy H HAwh Dhll) H
HAlgh ho1 — Dha H H 13h h21 H

= <C||A13Hoo (CU + 021) + (1 + CszlA21”oo> CS’1A13> h
= CAvTh.

Now we consider the matrices
Wy=I+VIVi,  Wy=I+VIV,.
From the observation
i =il = vl
< 2] o ] o]
we conclude

||Wh — Whlloo < (CayrCy + CavCyr) h =: Cawh.
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Using Neumann series, we obtain for h < (2Cy—1Caw) ™! that

Wt — Wh_lHOO — (Wh — W, + Wh)_1 —wt
_ (Wh (I — Wit (Wh _ Wh)))fl — !

— <I +§; (Wh—l (Wh - Wh»i) W - wit
5 o (o)

Wt S (i = v

1=

o0

IN

(i

IN

o0

< Cyr—1 Z (Cw—ICAWh)i

i=1

< CjyaCawh > (C-1Cawh)’
=0

< Cir-1Cawh

- 1- CWACAW}L

< 2CE_1Cawh =: Cap—1h.

The above considerations are combined to show the assertion (3.121). For the upper nonzero
block of D} — D} we get, according to (3.122), that

H (I — VhW;lv,?) Rt — (I = VW 'yl R’?Hoo

< |[r=vawitvn) (et = m)||+ vt (vir - ) &
i () | ) w7
< (14 CyCy-1Cyr)Carh + CvCy—1CavCphoih
+CVCAW—1CVT R*lh + CAVCW—lcVT R*lh
=: C1h
and for the lower block according to (3.123)
sty < e (-] s 7 -4

(v - s
< CW—lcVTCARh-f-CW—lCAVcR_lh-l-CAW—le/T R—lh
=: Cyh

and therefore, finally, (3.121) holds with C' := max (Cy, Cy) . O

3.3.3 The main theorem

Let us recall the objective of this section. Consider a strangeness free linear differential-algebraic
equation of the form (1.1) with a homogeneous initial condition z(tp) = 0, and a linear system

Dpzy = fp,
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which represents the discretization of (1.1) with the implicit Euler method. Then, our aim is to
show that the vector

xp = Dif fi,

where D,J{ is the Moore-Penrose pseudoinverse of Dy, contains approximations to the Moore-
Penrose solution

x=D"f

of (1.1). Here, DT denotes the Moore-Penrose pseudoinverse of the differential-algebraic operator
D, as defined in Section 2.2.2.

In Theorem 31, it has been shown that this approximation property is indeed true for systems
that are given in orthogonal standard form. Theorem 42 can be used to generalize this result to
general linear strangeness free differential algebraic equations.

Theorem 43 Consider the linear strangeness free differential algebraic equation (1.1), where
E and A are sufficiently smooth matriz functions. Let x = DY f be the (unique) solution of the
minimization problem (2.14) and let x), = D;{fh be the solution of the minimization problem
(8.39), where the system Dpxp, = fj, represents the discretization of (1.1) with the implicit Euler
method using a fized step size h = (T — to)/N.

Then there exists a positive constant C', which does not depend on the step size h, such that

(3.126) lzn — Rx, x|, < Ch
holds for sufficiently small h, where Rx, is defined as in (3.4).

Proof. By Theorem 11, there exist pointwise orthogonal matrix functions P and @ such that we
can transform (1.1) to the orthogonal standard form (2.1). Let the system Dj&, = fj, represent
the discretization of (2.1) with the implicit Euler method. Furthermore, let Py, and @}, be defined
as in (3.63). Then by Theorem 31 and Theorem 42, setting Dy, = P,DpQp, we get

Hxh - Rxh$||oo < ||Qh||oo HQ?;IL‘}Z — Q,}I;RX}LIEHOO
< Cjal [|QE DI fo — R, Q<
= Cjql.. | QR DI Py Pufn — Bx, 7|,

= Clal || D1 fo — B 2|
< Ciar. (|(0F = 0i) B+ (D5 - Bt )
< Oy (|27 = Di| |14+ |27~ R )

< Cjai. (€, +C) b

This concludes the proof by setting C' = C’HQHOO(CA'C' +0C). 0

I1Fll
With this theorem, we have finally shown that global minimization yields a viable approach

for computing O(h) approximations to the least squares solution of a general linear, strangeness
free DAE.
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Chapter 4

Numerical Computations

The theoretical results of Chapter 3 have been turned into practicable algorithms and software.
The purpose of this chapter is to describe these developments and to provide numerous numerical
experiments substantiating the theoretical results.

4.1 Algorithms

The numerical methods considered in Chapter 3 require the DAE (1.1) to be strangeness free. To
satisfy this requirement, a general DAE with a well-defined strangeness index is transformed into
an equivalent strangeness free system having the same solution set, by the methods described
in Section 1.2. Reliable algorithms have been derived in [27, 30, 33] and are part of the software
package GELDA [33]. Our software is based on slightly modified versions of the corresponding
routines in GELDA, see Chapter B.

In the following, we may therefore assume w.l.o.g. that the original DAE (1.1) is already
strangeness free. By neglecting the trivial third block row in the strangeness free form of (1.1),
we may furthermore assume that 3 E(t) — A(t) is of full row rank for all sufficiently small h > 0
and all ¢ € [to, T].

4.1.1 Local minimization

Let E;, A; and f; denote the values of the coefficients E, A and f of the DAE (1.1) at the grid
points tg + ¢h for i = 0,..., N with h = (T' — t¢)/N. Then local minimization amounts to the
following algorithm, based on formula (3.14).

Algorithm 1 (local minimization)

Input: Matrices E1,...,Eny € R™"™ and Aq,..., Ay € R™" with m > n,
vectors f1,..., fn € R™, a scalar h > 0. Starting values xq,...,Tp_1 €
R™ and the parameters aq,...,ar of a k-step BDF-method.

Output: Vectors xy, Tpi1,- .., TN approrimating a generalized (1,2,8)-solution of

the DAE (1.1).

FORi=k,k+1,....,N
Set r = —3 E; (ozi—g + -+ p—12i-1) + fi.
Compute an LQ decomposition (%El — A;) = [L,0]Q.
Compute z; = QT [Lglr}.

END

87
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Note that B = [L,0]Q is an LQ decomposition of B if and only if BT = QT[L,0]” is a
QR decomposition of BT. Algorithm 1 has favourably low computational requirements. The
dominating computational part is the computation of the L(Q decompositions, which require
an overall amount of O(Nm?n) floating point operations (flops) [15]. The minimal memory
requirement is O(mn), provided that intermediate data is not longer than necessary stored.

Remark 44 Motivated by the discussion in Remark 27, the final implementation of Algorithm 1
only covers the case k =1 (implicit Fuler). In this case, only the starting value xo needs to be
provided; we always set xg = 0. FEwven if this starting value is not a consistent initial value for
the DAE, it can be seen from (3.23) that only the “differential part” of xo is referenced and thus
the first step of Algorithm 1 automatically forces x1 to be (approximately) consistent. There is
no need to compute consistent initial values explicitly.

4.1.2 Global minimization

Using the same notation as in the previous section, global optimization amounts to the following
algorithm, based on formula (3.40).

Algorithm 2 (global minimization)

Input: Matrices E1,...,En € R™"™ and Ay,..., Ay € R™" with m > n,
vectors fi,..., fn € R™, a scalar h > 0.
Output: Vectors x1,x9,...,xN approrimating the least squares solution of the

DAE (1.1) with homogeneous initial conditions.

FORi=Fk,k+1,...,N
Set fr=[f . f3.. ... f&]".
Compute an LQ decomposition Dy, = [L,0]Q with Dj, defined as in (3.12).
—1
Set [2T, 21, ... 2L)T = QT [L th}.
END

The computational cost of Algorithm 2 is dominated by determining the L(Q decomposition
of the Nm x Nn matrix Dy, which requires O(N3m?n) flops using standard algorithms. Also
the memory requirement of O(N?mn) is rather high.

Both expenses can be considerably reduced by using an algorithm that takes the special
structure of Dy, into account. For this purpose, let us recall the structure of the matrix Dy:

[ F, — hA,;
—Ey  Ey—hAy

—En En — hAy |

where F;, A; € R™*"™ m < n. In the following, the proposed algorithm is illustrated for N = 3:

Ey—hA; 0 0
—F5 Es — hAQ 0
0 —F3  FEs— hA;

1
Dy = -
"
First, we compute LQ decompositions (E3 — hAs) = [L3,0]Q11 and E3 = [F3,0]Q12, where

Q11,Q12 are orthogonal and Ls, F are lower triangular matrices. Next, we compute an RQ
decomposition [F3, Lg] = [0, R3]Q13, where @13 is orthogonal and Rj3 is an upper triangular
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matrix. Applying the orthogonal transformations to the corresponding block columns of Dy
yields the updated matrix
1 Ei—hA; 0 0O
Dh — E —EQ T3 U3 0
0 0 R3O0

An analogous step is applied to —Fs and T3, resulting in

71 U2 0 0 0O
Dp——10 Ry0U30
0 00R30

Finally, an R decomposition is used to reduce T3 to upper triangular form:

Ri0U20 00
Dp+——-100R0U30
000O0R30

This is essentially an upper triangular matrix (leaving out zero block columns) and the solution
of min{||zp||2 : Dpxn = fr} can be obtained by backward substitution. Note that this backward
substitution can be combined with the reduction process; there is no need for saving all matrices
R; and U;. The transformation matrices @);j, however, must be saved and applied afterwards to
update the obtained solution .

For general N, the algorithm reads as follows.

Algorithm 3
Input and Output: See Algorithm 2.

Set T'=Eny — hAN.

FORi=N,N —1,...,2
Compute an LQ decomposition T' = [L, 0]Q;;.
Compute an LQ decomposition —F; = [F, 0]Q;a.
Update T = (Ei—l — hAz—l)Qz;
Compute an RQ decomposition [F, L] = [0, R]Q;s3.
Update [T(:,1:m),U] = [T(:,1:m), O] Q.
Compute x; = [Riolf’}.
Update fi—1 = fi-1 —UR™'f;.

END FOR
Compute RQ decomposition T' = [R, 0]Q1;.
Compute =1 = Q7 [Riolfl}.

FORi=2,3,...,N

Update [%05)] = @ [ ].

Update x;—1 < Q;fga:i_l.
Update x; «— Qh ;.

END FOR

T — hx

Note that we used the colon notation z(i : j) to denote the elements i,i+1, ..., j of a vector
x. Using compact LR and R(Q decompositions, as implemented in LAPACK [1], each of the
individual steps of Algorithm 3 requires at most O(mn?) flops, which yields an overall cost of
O(Nm?n). This compares favourably with the cost of Algorithm 2 (O(N3m?n) flops). There is
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O(Nmn) extra memory necessary to store information about the transformation matrices in the
course of Algorithm 3. This is still favourable compared with Algorithm 2 (O(N?m?n) memory)
but significantly higher than the minimal memory requirements of Algorithm 1 (O(m?n) mem-
ory). The fact that Algorithm 3 implicitly solves a boundary value problem makes it questionable
whether its memory requirements can be further reduced.

Let us emphasize that Algorithm 3 represents a (structure-exploiting) RQ decomposition of
Dy, combined with backward substitution using the upper triangular factor and matrix-vector
multiplication using the orthogonal factor. The main differences to Algorithm 2 are that an RQ
instead of an LQ decomposition is computed and that the backward substitution is carried out as
soon as the corresponding blocks in the upper triangular matrix become available. None of these
changes affects the numerical stability properties of Algorithm 3. In particular, as a consequence
of the fact that the “big” RQ decomposition is computed from numerically backward stable LQ
and RQ decompositions, the computed factors R and Q of the RQ decomposition of Dj, satisfy

Dy + ADy = [R,01Q, [|ADpll2 < cpul|Dpll2,  [|QQT — I]l2 < cou,

where cp, cg are constants only depending on the dimension, and u denotes the unit roundoff,
see [23]. Provided that the subsystems R~!f; in Algorithm 3 are solved in a backward stable
manner, the whole process of backward substitution is also numerically backward stable. Thus,
Algorithm 3 can be expected to have the same numerical behaviour as Algorithm 2.

Remark 45 Note that both Algorithm 2 and Algorithm 3 need not be initialized with a (consis-
tent) starting value. This follows from the fact that both algorithms implicitly solve the boundary
value problem (3.52), which forces the “differential part” of xo to be zero and the “algebraic part”
of the solution to be (approzimately) consistent.

4.2 Numerical experiments

If not otherwise stated, the numerical experiments described in this section were performed using
the Fortran routines listed in Appendix B. We used the Compaq Visual Fortran environment
(along with the included precompiled BLAS and LAPACK libraries) on a Pentium IV 2.4 GHz
processor with 512 MByte RAM to compile and execute these routines.

The following academical test example has been used to perform some of the numerical tests
presented here.

The DAE

(1)] #(t) + [t t_(2%(1+_€2t)] . tefo1).

is a strangeness free system and in orthogonal normal form (2.1), where the entries of the matrix
functions E and A, according to the block structure in (2.2), are given by

= D| o+

(4.2) [(1) ’ 8] ) = [1_—1%

(4.3) Yp(t) =1, An(t) =1-1%, A12(t§ = 1%, Ags(t) = 1,

A2l(t) = —1, EA(t

and the inhomogeneity f has the components

(4.4) fi(t) —t<%+et>, folt)=t—2(1—¢").
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The (1,2,3)-generalized solution of (4.2) as defined in Section 2.3 can be obtained by setting the
undetermined part x3 of T to zero and computing the remaining solution components by solving
the reduced system

o B[ (][] e

The (1,2,3)-generalized solution of (4.2) is therefore given by

x1(t) el —t—1
(4.6) Tge(t) = |@a(t) | = |1 -2t — €
x3(t) 0

To compute the least squares solution of (4.2) as defined in Section 2.2, we consider the
boundary value problem (2.23), where the coefficient functions can be computed from (4.3) and
(4.4) by the substitutions (2.21), i.e.,

Mt) = 22(t) = A(t) +2(1 —€t), A1) =0,
(4.7) #(t) = z(t) + u(t) + 1, 2(0) = 0,
' y(t) = z(t) +2(1 —e) — ¢,
u(t) = A1),

This system has the unique solution
(4.8) Aty =ut)=1—t, x{t)=c -1, yt)=1—t—¢,

and thus, the least square solution of (4.2) is given by

x1(t) x(t) el —1
(4.9) Tis(t) = |x2(t) | = |y@) | = [1-t—¢
x3(t) u(t) 1—t

In order to obtain a DAE system which is not in orthogonal standard form we have defined a time-
variant, smooth orthogonal transformation @ € C(I,R3?), based on the idea of Householder
transformations (see, e.g., [15]). Given a vector function v € CH(I,R3), v(t) # 0 € I, and its
derivative v, the matrix function QQ = I — 2% is orthogonal and its derivative can be computed
by

: wiG@) G\ o d . d . .
Q=2 ( (vd%v)Q — dthv , with @(UT’U) = 2070, @(’UUT) =T + (00T,

Throughout the tests presented here, we have chosen
t+2

v(t)= |2 +t+1
1

Except otherwise stated, the following numerical tests have been carried out with the DAE
system

(4.10) B(t)i(t) = A (t) + £(1),
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where
B = 500 @
wo=[2H e[
1) = :tt_(fthZt)]

The (1,2,3)-generalized solution of 4.10 can be obtained by applying the transformation @ to
the corresponding solution of the DAE 4.2, i. e.,

et —t—1
(4.11) Tge(t) = Qige(t) =Q | 1 —2t — €'
0

Analogously we can compute the least square solution of (4.10) as
et —1

1—t—eét
1-—t

(4.12) r5(t) = QIis(t) = Q

The Lo norms of 24(t) and xi5(t) are given by

- 23 N 20
Iaell = Ngell = \fe2 — de+ 2, sl = ol = y 2 — de + 5,

where e denotes exp(1).

4.2.1 Higher order BDF-methods for local minimization

A separate implementation of Algorithm 1 using higher order BDF-methods has been used to
compare the order of convergence of k-step BDF-methods for £ = 1,2,3,4. The algorithm
has been applied to the test example 4.10 where the initial values xg, ..., zr_1 were given by
evaluating the exact (1,2,3)-generalized solution as given in 4.11.

The error curves are shown in Figure 4.1. The maximum norm of the error is contained in
the following table:

h k=1 k=2 k=3 k=4

0.1 2.87x 1071 1.61x1071 1.34x10~' 1.09 x 107!
0.01 276 x 1072 1.62x 1072 1.33x 1072 1.17 x 1072
0.001 2.73x1073 1.62x107% 1.33x107% 1.17x 1073
0.0001 2.73x107* 1.62x107* 133x107* 1.17x107*

It can be seen that the implicit Euler method (k = 1) displays approximate linear convergence.
Using higher order BDF-methods leads to a slightly decreased error, apparently because of the
exact initial values, but does not lead to higher order of convergence.

4.2.2 Convergence of global minimization

Algorithm 3 has been applied to (4.10) and the results have been compared with the analytic
solution (4.12). The error curves are shown in Figure 4.2 and the maximum norm of the error
is shown in the following table:
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10°

O h=0.1

x h=0.01

+ h=0.001
—h=0.0001

0.4 0.6 0.8

O h=0.1

x h=0.01

+ h=0.001
—h=0.0001

0.4 0.6 0.8
t

93

O h=0.1
10 % h=0.01
+ h=0.001
——h=0.0001
10° : : : :
0 0.2 0.4 0.6 0.8 1
t
k=4
10°
o o 0 009 ©
1072}

; O h=0.1
10l % h=0.01
+ h=0.001
——h=0.0001
107 : : : :
0 0.2 0.4 0.6 0.8 1

t

Figure 4.1: Error curves between exact (1,2,3)-generalized solution and approximated solution
by local minimization with h € {0.1,0.01,0.001,0.0001} and &k € {1,...,4} for Example (4.10).
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Figure 4.2: Error curves between exact least squares solution and approximated solution by
global minimization with » € {0.1,0.01,0.001,0.0001} for Example (4.10).

h error

0.1 1.57 x 1071
0.01 1.67 x 1072
0.001 1.69 x 1073
0.0001 1.69 x 104

4.2.3 Comparison with GELDA

The software package GELDA [33], which solves linear DAEs, also allows for the application to
underdetermined DAEs. As in Algorithm 1, the linear systems arising during the discretization
are solved (locally) in the least squares sense. In addition, an order and stepsize control is
implemented in GELDA. We have applied Algorithm 1 with a step size h = 0.001 to the test
example in orthogonal standard form (4.2) and compared this result to the result obtained by
GELDA, where the absolute and relative error tolerances have been set to ATOL = RTOL =
0.0001. The corresponding results for all three solution components are shown in Figure 4.3.

One can see that the approximation computed by Algorithm 1 is closer to the analytical
(1,2,3) generalized solution (4.6) in the sense that the undetermined solution component com-
puted by Algorithm 1 is smaller and, hence, closer to the exact value x5 = 0, despite the
relatively tight error tolerances used in GELDA. The maximum value of the undetermined solu-
tion component amounts to 2.996 x 10~3 using Algorithm 1 and to 2.735 x 10~2 using GELDA.
This is due to the fact that the stepsize control implemented in GELDA does not consider which
solution is to be approximated and thus, the stepsize is increased up to h = 1.4 x 1072 by
GELDA.

GELDA allows the user to limit the maximimum stepsize. If the maximum stepsize is set to
h = 0.001 in GELDA, the maximum value of the approximation to the undetermined solution
component reduces to a value of 1.60 x 1073, The corresponding solution is computed with 1006
discretization steps.

Hence, the applicability of software packages like GELDA seems to be limited if one wants
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Algorithm 1 GELDA
1 " " 1
X1 T
0 /
X3
_1t
_ot X,
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_4 ‘
0 0.2 0.4 0.6 0.8 1

Figure 4.3: Approximate solutions of the DAE (4.2) computed with Algorithm 1 (with A = 0.001)
and GELDA (with absolute and relative tolerances set to 0.0001).

to compute approximations to the (1,2,3) generalized solutions as presented here. In addition, it
seems to be difficult to improve Algorithm 1 considerably by using stepsize control techniques.
The Lo mnorm of the solution computed with GELDA 1is approximately given by

\/Z}S{O :1:%/1000 ~ 2.040, where z;, i = 1,..., 1000, denote the values of this solution evaluated
at t; = 1/1000. Applying Algorithm 3 to the DAE (4.2) yields the solution which is displayed
in Figure 4.4. The approximate norm of this solution computed as above using all intermediate

grid points z;, ¢ = 1,...,1000, yields the value 1.785. This is a good approximation to the Lo
norm of the least squares solution x5 of (4.2), which equals [|zs| = y/e? — 4e + % ~ 1.7840, and
it is considerably smaller than the approximate norm of the solution computed with GELDA.

This confirms that GELDA cannot be used to compute approximations to the least squares
solution (4.9) of the test example 4.2.

4.2.4 Performance

In order to compare the performance of the three Algorithms presented in Section 4.1 we applied
them to a test example of size 30 x 60 with random coefficients.

The following table shows the execution time in seconds for the Algorithms using N €
{10, 20,40} discretization steps.

N Algorithm 1  Algorithm 2  Algorithm 3
10 1.8x1072 52x107" 6.9x107?
20 3.5 x 1072 3.6 x 109 1.4 x 1071
40 7.1 x1072 2.6 x 10! 3.0x 1071

As expected, the execution times for Algorithm 1 and Algorithm 3 are approximately O(N),
while Algorithm 2 needs approximately O(N?3) seconds to compute the result obtained with
Algorithm 3.
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Algorithm 3

Figure 4.4: Approximate solution of the DAE (4.2) computed with Algorithm 3 (with A = 0.001).

4.2.5 A purely algebraic example

We have applied Algorithm 1 and Algorithm 3 to the DAE given in Example 1. This DAE
has strangeness index one but the equivalent strangeness free system, computed with the index
reduction techniques presented in Section 1.2, turns out to be purely algebraic. In this case, the
(1,2,3)-generalized solution and the least squares solution coincide. Using both algorithms, we
obtained the exact solution given in Example 9 within the realm of roundoff errors.

The results obtained by Algorithm 1 and Algorithm 3 applied to purely algebraic DAEs
will always coincide. This can be explained by the fact that, in this case, the subdiagonal
block entries of the discretization matrix Dy, as defined in (3.12), vanish. Thus, the linear
systems which have to be solved in every discretization step are decoupled, and solving them
independently (as it is done by Algorithm 1) yields the same result as solving the complete
discretization at once (as it is done by Algorithm 3).



Chapter 5

Conclusions and Outlook

In this thesis, we have investigated the numerical computation of generalized solutions of linear
time-variant differential-algebraic equations (DAEs). The major contributions are as follows.

Development of a local minimization algorithm, which is shown in Theorem 26 to yield an
O(h) approximation to a particularly fixed (1,2,3)-generalized solution of the DAE.

Development of a global minimization algorithm, which is shown in Theorem 43 to yield an
O(h) approximation to the least squares solution of the DAE. As a by-product, Lemma 41
shows that the inverse of a matrix with a certain structure related to BDF-methods is
uniformly bounded.

Both algorithms are based on a rather intuitive approach, but the investigation of their
approximation properties turned out to be much more involved and has been addressed
for the first time in this thesis.

The straightforward implementation of global minimization requires O(N3m?n) flops; this
figure has been reduced to O(Nm?n) by exploiting the block bidiagonal structure of the
discretization matrix.

The developed algorithms have been implemented in Fortran routines.

Various numerical experiments verify the obtained theoretical results.

Although the obtained results cover a wide range of tasks associated with the numerical compu-
tation of generalized solutions of DAEs, several extensions of these results remain to be studied,
for instance:

use of other minimization criteria for defining the least squares solution;
application to control-related problems;

extension of the developed algorithms to large and possibly sparse DAEs;
investigation of adaptive time discretization schemes;

extension to nonlinear DAEs.
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Appendix A

Proof of Lemma 41

Before proving Lemma 41, we need the following preparatory results.
Theorem 46 ([23]) Consider A, AA € R™" with rank(A) = rank(A + AA) =n. Let
A=QR

and

A+AA=(Q+AQ)(R+AR)

be QR decompositions of A and A + AA, normalized such that R and R + AR have positive
diagonal elements. Then for sufficiently small AA we get

|AR] |AAlF
Al < Cprr(A ,
(A1) 1R]r A AT
AA
(A.2) 1AQ|F < Corp(4) IAANE.
1Al

where the constant C,, € RT depends only on the size n of A and kp(A) denotes the condition
number of A with respect to the Frobenius norm | - || r.

Lemma 47 Fori € N, let a matriz V' be given with the block structure

0o --- 0 I A
V=|M- - M_ 0] eR¥m™n
Ny -+ Ni—1 N;

where M;, N; € R™"™ and |Nj|2 is sufficiently small for j = 1,...,i. It is assumed that there
exists a matriv B € R™" such that

(A.3) N; = BM;

forg=1,...i—1.
Then there exists an orthogonal matriz Q € R3™3" such that

Ny -+ Nioy N
(A.4) V=Q"V=|NM - M_ 0|,
0 --- 0 0
where for j=1,...,1—1,

(A.5) INjll2 < V2 nCol|Nil2||N; |2,
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with a constant C,, € RY that depends only on the blocksize n,

(A.6) 1325112 < /1M 13+ 15113
and
(A7) I8l < 1.

Furthermore, there exists a matriz B € R™" such that Mj = BM]- forj=1,---,i—1.

Proof. The idea of the proof is as follows. The third block row of V' can be eliminated by means
of two QR decompositions. In a first step we can eliminate the block entry N; by applying a
QR decomposition to the first and the third block row of V. Then, by a QR decomposition of
the second and the modified third block row, the third block row can be eliminated completely
due to the assumption (A.3).

We first consider the QR decomposition

I 0] _ [Qu Q] [N; R
(A.8) [Nif] - [Qzl Q2Q} [O RQ?]’

where N; and Rao are upper triangular matrices. The property (A.7) follows from

—1 —1 /% -1 Nz -1 I
. pu— . N pu— N = . <
HNZ H2 Umln(NZ) Umln ( |: 0 :| ) Umln ( |:N’L :| > — 17

where the latter inequality holds because

' }
X
H [N 2 N.zll2
(A.9) i ([ ! ]) = i Ny R NS
N; TeR™ H.CE‘”Q TeR™ H.%'Hg

The QR decomposition (A.8) can be interpreted as a perturbation of the QR decomposition
A= QR with A =Q = R = Is,,, where A is perturbed by

00
sa-[o0]

From Theorem 46, it follows for sufficiently small N; that

10 00] ([0 AQ1; A1y
[0 I] i [Ni 0] a ([0 I} + {AQH AQ%D (I2n + AR),

where
00
AQ11 AQ12 ] H [Ni 0] F
<, Iop)————= = V2n C,|| N || F.
H [AQzl AQ22 | ‘ o wr (T2n) |25 || n Cull Nillr

Because of ||All2 < ||A||lr < /1 ||A]|2 for all A € R™™ we get

H |:AQ11 AQ12:| < ' _AQH A6212:|

<V2n Cy||Ni||F < V2 nC, || Nill2.
AQ21 AQa MO AQs ||| S V20 CallNillr < V2 nCylINil2

F

LS
From L

[Qll Q12:| _ |:I+AQ11 AQ12 ]
Q21 Q22 AQo1 T+ AQ2
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we can estimate the norm of le = AQ21 by

w%ubSH{AQHZMhﬂ < V2 nCn|[Nill2.

AQa AQa2 |||,
By setting
5 Q11 0 Quz
O=10 10
Q21 0 Qa2
we get
Ny Nioi N
Q'v=| M ... M_ 0],
QN1 -+ Q5N 0

with Nj = Q2Tle, where
IN;ll2 < Q3121 N;ll2 = 1Qa1ll2l N ll2 < V2 nChl|Nil|2||Nj |12,

and thus (A.5). .
To eliminate the third block row of QTV, we consider a QR decomposition

I [Qu Q2] [B
(4.10) {Q%B] a [Qﬂ QzJ {0} ’

where C; is upper triangular. From (A.10) it follows that
[ i Aa} [ I } _ [ T1F1+Qép1@ng] _ [B]

T

1o Q3 QLB A{2+Q§2Q2TzB 0
and thus
[:1T1 :2T1} [~¥j ] — i :{1 le] [~TMJ }
1T2 2Tz Q22Nj L {2 Qgé Q22BMJ‘
_ [ A1T1 + leQszB)Mj]
| (@1 4+ Q3,Q3,B) M
_[BM;]
0
We define
I 0 O
Q@=|0Qu Q2
0 Q21 Q22
and get R 3 3
- Ny -+ Ni1 N;
QTQ"V, = | Ny - M, 0 |,
0 --- 0 0

which consequently implies (A.4) with Q = QQ and Mj = BM ;. The blocks in the second block

row can be estimated by
! 0 2 1T2 2Tz Q22Nj 2 Q22Nj

< VIMIE + QRN 13 < /1M 13+ IN,13,

2
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which shows the assertion (A.6). O

Lemma 48 For N € N and h > 0, let

Ant - Annoa 1
with Aij € Rn,n} HAUH < CAh, fOTj = 1,...,N — 1, 7> ] Then

1
e Aoy 1
Ayy - Ayno T
with || Aij|| < Ca(1+Cah) == h. Here, ||-|| denotes an arbitrary submultiplicative matriz norm.

Proof. We can write down A in the form

A=F-...- Fy_q,
with the Frobenius matrices
o -
I
= I
Apr1p 1
I ANk I

The inverse of A can then be computed by
P

with } )
I
1
-1
Fl= I
—Apg1p 1
I —ANk 1]
We will show inductively that for k=N —1,... 1,
-l ;
I
Fyly Bl = I
App1n 1
L Ay o Annoa T
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with

(A.11) |Aij]| < Ca(1+ Cah) 7 h.

For kK = N — 1, this is a direct consequence of

I
-1
FyZy = 7
Ann-1 T
with AN,N—l = _AN,N—l and thus HAN7N—1H = ”AN,N—lH < Cyph.
For k < N — 1, we get
-1 1 1 11
Pyl F =Fyt, ... F 'R
o 1 _
I I
_ I I
B 1 App—1 1
App1p 1 Apsip—1 1
I Ang - Aynaa I L AN k-1 I ]
-7 -
I
B I
B Apg—1 1 ’

Apy1 k-1 Agrap 1

Angpor Ang oo Ann-a 1]

with

i—k—1
Ajp—1 = Aj -1 + E A k1 Ak k-1
1=0
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and thus
_ i—k—1 _
1Aik—all < Aokl + D NAigrilllArsrrl
=0
i—k—1 '
< Cah+ Y CRR*(1+ Cah)—H 11
=0

i—k—1
= Cah (1 +Cah Y 1+ cAh)ik“)
=0

i—k—1
— C4h (1 + Cah Z (1+ (JAh)’>
=0
(14 Cah)i=k —1
(14+Cah) -1
—k

= Cah (1 + Cah

= Cah(1+ Cyh)*
= Cah(1 + Cph)— k=D

This shows the assertion for A~! = Fﬁil S Fl_l. 0

We are now prepared to prove Lemma 41. For convenience, let us restate this lemma in a
more detailed form.

Lemma 41 Consider the matric Wy, = I + VhTVh with

(A.12) Vi, = R, By,
where

DY Ay } {AIS ]
A13 R g h h , B — h ,
(A-13) h [Amh Y4, h 0

with D7, Ay, , A21,, X4, and Ays, defined as in (3.72), (3.93) and (3.115).
Then the inverse of Wy, is uniformely bounded, i.e., there exists a positive constant Cy-1 € R
such that

(A.14) W loo < Chy—a
and Cyy-1 does not depend on the step size h.

Proof. In a first step, we show that Wj, = I + VhT Vi = f/}:f V;, with a lower block triangular
matrix f/h, where the inverses of the diagonal blocks of V;, have spectral norm less than one,
while the subdiagonal blocks of V3, have spectral norm O(h). In a second step, we use this result
to show that the inverse of V}, is uniformly bounded.

From (3.94) and (3.95) it follows that the inverse of the matrix R, takes the form

1
Sy, *

Rhl = _EZiA21hS}:1 « |
with
%EEll -4 . _
I N |
(A.15) .
—+XEy 5By — AN
A = An, + A12i2231421i-
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Thus, we have

_ STl A5 } { I } _
R'B), = ko = _ S1A
nooh |:_2A;1LA21hSh1A13h =, Agy,, | 0 T
and
vIv, = AT g T [I _AT E_T] I s14
h Vh 13, °h 21, Ay, _EZ;{AQM B 4113,

= ALy, S, (1445, 53755040, ) S, A,
Since ¥4, and Ajgj, are block diagonal matrices, we get
I+ A3, 380 Ay, = diag(l + Ay S S Aoy, T+ A S TS0 Ao ).

By a QR decomposition

I A;
[—EZJA%] =¢ [ 0 ]

the diagonal blocks can be written as

I
T vw—Ty—1 _ _ AT =T
Tt Ay, 2y Xg; Ao, = [I Az, 24 } [—EAJAmj
= [AT0]Q"Q [Ai]
0
[T 0] [“g] = AT A,
Obviously A; is nonsingular for ¢ = 1,..., N. The norm of A; can be estimated by

I
Ail2 = _ <A1+ 127 Ao, |13
il = || ot gy, || < VI IR AR

<143 A2 <14+ C

125" A2

where C| -1 is defined as in Definition 23.
13,7 A21ll2

Setting A;, = diag(Ay,...,Ay) and V;, = AhS;1A13h7 we have
Wy =I+VIV, =T+Viv,.

The inverse of S}, is given blockwise by

701 /1 A\ 1 N\ !
1571, = 1T 7 (EEE’“ - Ak) EEk] <EEEJ- - Aj) for i > j,
h 1Y Lk—i

0 otherwise,
(([i+1 ]/ 1

_ ) (I - thM’ﬂ) (gEEj - Aj) for i > j,

) Lk=¢
0 otherwise.
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Thus, it follows for all j =1,..., N —1and ¢ =j,...,N — 1 that

1 N\ 1
(2= 2)
Jj+1

_ (I _ hZEi1+1Ai+l)_1 [H (I — hZEiAk>_1
k=i

» j+1 o
(S, liv1y = H (I - thkAk)
k=it1

1 N\ !
(57 )

- (I - hzgjﬂfim)_l Sy is-

For the blocks V;; of Vj, from
Vij = AilS;, i Aus;,

we obtain
Vit = Ai+1[5f71]i+17j‘413j
(A.16) = A (10858 Ai) T AT AL, A,
= B;Vij,
with

Bi = Air (I - 3! AM)_I AL

Eit1

It has been shown in Corollary 36 that ||[S; ']ijllcc < C%h. Hence, we can conclude for the
blocks of V}, that

Vil < [All2l[S5 ijll2 ]l Ars, |2
< (1+ C||2;11A21||00)\/ﬁ 1S5, isllooClars e
= Cyh.

Note that the matrix W}, can be factored as

Wi = [1V]] Hh]

We now apply Lemma 47 inductively to the factor

I
bl
Vel | Vi

| VN1 -+ Vnn |

From (A.16), it follows that Vn; = By-1Vn-14, j = 1,...,N — 1. For sufficiently small h,
Lemma 47 implies the existence of an orthogonal matrix ) such that

o .- 0 I A]}Nl AT}N,N—I VNN
QN [ VN-11 - VNnoan-1 O | = |Vno1g - Uvoan-1 O,
VN1 -+ VNnN-1 VNN 0o - 0 0
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and consequently the existence of an orthogonal matrix @y, such that

- -
I
I
I\ _ r VN1 -+ VNnN—2 VnnN-1 VNN
_QNh )
Vi Vi
VN-21 - VN-aN-2
VN-11 - VN—1,N—2 VN—1,N-1
. 0 0 0 (V.

where for a positive constant C,,,
Vnjlla < V2 nCulVnl2lVaillz < V2 nCLCHh?,
Wnglle < /IVa-1alE + 1Vagli3 < /20202 = V2 Cyh,

forj=1,...,N—1, and )

Vanllz < 1.
Furthermore, there exists a matrix BN_l such that )A)N_Lj = BN_1VN_1J and thus ]}N_l,j =
Bn_1Bn—2Vn—_2,; according to (A.16). This implies for sufficiently small h that the matrix

0 - 0 I
VN-21 - VN-an-—2 0
VYN-11 - VN—1,N—2 VN-1,N-1

satisfies the assumptions of Lemma 47. Thus, there exists an orthogonal matrix ) nx—1, such
that

- )
I
I
VN-11 -+ VN-1N-3 VN-1,N—2 VN-1,N—1 _
[I } _ QT Vnvi -+ VNnnN-3 VnnN-2 VNN-1 VNN
Vh Np Y N-1y Vll
VN-31 - VN-3N-3
VN_21 -+ VN-2N-3 VN_2.N—2
0 0 0 0
0 0 0 0 0

with
IVn_1illa < V2nC,|[Vy_1.n-1ll2[VN-1l2 < 2V2 nC,CER2,
Wn—2ll2 < \/HVNfz,jH% + [ Vn-1l3 < \/01%2 +2C§h? = V/3 COyh

forj=1,...,N =2, )
WNlinoallz < 1
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Fori=N —2,...,2, we can apply Lemma 47 to the matrix

0

Vici1 -

where Vi—l,j = BiBi_lvi_Lj and

Vi1

0 I
Vici-1 0|,
Viie1 Vi

HVWHQ <+VN —i+1Cyh

Furthermore, there exists a matrix BN_Q such that ]A)N_QJ‘ = BN_QVN_QJ‘ = BN_QBN_?)VN_Q}J‘.

for j =1,...,i— 1. Then an orthogonal matrix );, is computed, such that
-7 i
I
I
Vi1 Viiea  Vii-1 Vi
I i T Vi Vni—2 VNi-1 VNi .- VNN
[Vh] B (H Qih) Vi ’
k=N .
Vieg1 - Vieai2
Vicia - Victi—2 Vie1,i-1
0 0 0 0
0 0 0 0 0 |

with

forj=1,...,i—1, and

Furthermore, there exists a matrix B;_1 such that ]A)Z-_Lj = Bi_lvi_lvj = Bi_lBi_QVi_QJ‘
When this elimination procedure is completed, we have computed a sequence Qu;, , - ..

of orthogonal matrix functions such that, using the notation (3.83),

with

where

(A.17)

|“>1:7171,N71H2 <1

Viillz < V2 nCy||Vill2|Vijllz < (N — i+ 1)vV2 nC,, Cph?,
Vie1ll2 < \/Hvz-_l,jH% + Vi3 < \/C§h2 +(N —i+1)C2h2 = VN —i+ 2 Cyh,

)= (e 4],

Vi

Vi

Vni - VNN
51

Vi'llz <1

9

, Q2,
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and
(A.18) [Vijll2 < V2 nCp(N —i+1)C3h? < V2 nC,C%h =: Cph

fori=1,...,Nand j=1,...,i— 1. In addition, we have

W= [1 V][, ]

N 2 v
(7 T h
-l (Mo ) (Tren) [ )
k=2 k=N
- (7ol @] = W,
The norm of the inverse of Vj, can be estimated blockwise according to Lemma 48, because
Vh = diag(f/ll, ceey )}NN)V}IJ
with
1
Voo Vo1 I
v = 22‘ .
f)]?[}vf)Nl f)]:[}vf)N,N—l I
From (A.17) and (A.18) we know that
Vi Visllz < Vi llViglle < [1Vil2 < Cph.

Therefore, Lemma 48 implies

where
IV Yijll2 < Cp(L+ Cph) =7 h < Cp(1 + Cph)Vh

S C\} exp(ij(T - to))h = CV*l h.
For the blocks [V ~1;; of f/h_l we get, due to the relation

Vb=V tdiag(Vt - V),
the estimates ) )

IV ill2 < Vit <1
and ) ) R R
IV~ igllz < IV IV il < IV il < Gk

The blocks [W, ;; of Wt = V,7'V,~ can be computed as

min(%,5)

N
Wi =Y IV alV e = D [V alV
k=1 =1
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In particular, the diagonal elements can be written as

Wi = (005 + SO 7
k=1

which implies
W, aalle < IV 1all3 + G = DIV all3 < 14 (0 — 1)CZ k2

For the upper offdiagonal elements (5 > i), we get

Wi i =DV alV S = IV alV T+ E[V*I]m[f/”]jka
k=1 k=1
and thus
W, Tisllz < 10V all IV JZH2+ZH Tarll2 [V 512

< Cporh+ (i— 1)03.,1h2.
From the symmetry of W, Lit follows that for i > 7,
W, Nisllz = 1Wy jilla < Cpah 4+ (G — DCE B2

Combining these estimates and using the fact that ||Al« < v/n ||A]]2 for all A € R™" finally
leads to

Wy oo < max ZH i iilloo
< V/n  max ZH - iglz
N
<Vn [14+(N-1)C;e 1h+maxz (min(z, j) — 1)6’3/71}12
j=1

which implies (A.14) with Cyy—1 = v/n (14 Cy (T —to) + (T — 10)*CZ ). D



Appendix B

Software

Algorithms 1 and 3 have been implemented in Fortran routines, according to the Fortran 77
standards. The user interface has a similar design as the interface of the GELDA software
package [33]. All linear algebra operations, such as computing QR and LQ decompositions,
are performed by calls to BLAS [9] and LAPACK [1]. In the following, we list and briefly
explain the individual routines of our implementation. For further details, we refer to the inline

documentation.
/ b \

DLOCAL.F DGLOBAL.F

N, —/

REDUCE.F |« DECOMP .F

_______________________________

Figure B.1: Graph of dependencies between the implemented Fortran routines.

MAIN.F This is a driver routine, which allows to conveniently call the corresponding routines
for performing the local and global minimization algorithms. The user must provide three
routines which evaluate the coefficient functions E(-), A(-) and f(-) at an arbitrary time
point, as well as the corresponding derivatives of order 1,..., s, where s is an upper bound
on the strangeness index of the underlying DAE. Optionally, the computed results can be
compared with a reference solution.

DLOCAL.F This is an implementation of the local minimization algorithm, Algorithm 1. Op-
tionally, REDUCE.F is called, either to compute an equivalent strangeness free system or to
reduce the size of the system by removing redundant equations.

DGLOBAL.F This routine initializes the global minimization algorithm and calls DECOMP.F.
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DECOMP.F This routine performs parts of the global minimization algorithm, Algorithm 3. Op-
tionally, REDUCE.F is called, either to compute an equivalent strangeness free system or to
reduce the size of the system by removing redundant equations.

REDUCE.F Performs calls to slightly modified routines of GELDA to compute the reduced
form (1.22) and to remove solvability conditions of the form 0 = f;(t).

All routines along with some example programs are contained on the enclosed CD or available
on request from the author.
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