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Abstract

Over the last few years, the scope of telecommunication services has increased dramatically, mak-
ing network infrastructure-related services a very competitive market. Additionally, the traditional
telecoms are now using Internet technology to provide a larger range of services. The obvious
outcome, is the increase in the number of subscribers and services demanded.

Due to this complexity, the performance testing of continuously evolving telecommunication ser-
vices has become a real challenge. More efficient and more powerful testing solutions are needed.
This ability depends highly on the workload design and on the efficient use of hardware resources
for test execution.

The performance testing of telecommunication services raises an interesting problem: how to cre-
ate adequate workloads to test the performance of such systems. Traditional workload characteri-
zation methods, based on requests/second, are not appropriate since they do not use proper models
for traffic composition. In these environments, users interact with the network through consecutive
requests, called transactions. Several transactions create a dialog. A user may demand in parallel
two or more services and different behavioural patterns can be observed for different groups of
users.

This thesis proposes a performance testing methodology which copes with the afore mentioned
characteristics. The methodology consists of a set of methods and patterns to realize adequate
workloads for multi-service systems. The effectiveness of this methodology is demonstrated
throughout a case study on IP Multimedia Subsystem performance testing.
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Zusammenfassung

In den letzten Jahren hat sich das Angebot an Telekommunikationsdiensten erweitert, was dazu
geführt hat, dass der Markt für Dienste, die sich auf Netzwerkinfrastrukturen beziehen, mittler-
weile sehr umkämpft ist. Ausserdem werden die traditionellen Telekommunikationssysteme mit
Internet Technologien kombiniert, um eine grössere Auswahl an Diensten anbieten zu können.
Daraus resultieren offensichtlich eine Zunahme der Teilnehmeranzahl und ein erhöhter Dienst-
Bedarf.

Infolge dieser Komplexität werden Leistungstests der sich kontinuierlich entwickelnden Telekom-
munikationsdienste zu einer echten Herausforderung. Effizientere und leistungsfähigere Testlö-
sungen werden benötigt. Das Leistungsvermögen hängt ab vom Workload Design und von der
effizienten Nutzung der Hardware für die Testdurchführung.

Die Leistungstests der Telekommunikationsdienste führen zu einer interessanten Problemstel-
lung: Wie soll man adäquate Lastprofile erstellen, um die Leistung solcher Systeme zu testen?
Traditionelle Methoden zur Darstellung der Last, die auf Anfrage/Sekunde basieren, sind nicht
zweckmässig, da sie keine geeigneten Modelle zur Anordnung des Datenverkehrs nutzen. In
diesen Umgebungen soll der Nutzer mit dem Netzwerk über fortlaufende Anfragen, sogenannten
Transaktionen, interagieren. Mehrere Transaktionen erzeugen einen Dialog. Ein Benutzer kann
gleichzeitig zwei oder mehrere Dienste abrufen und es können verschieden Navigationsmuster für
verschiedene Benutzergruppen beobachtet werden.

Diese Promotion schlägt eine Methodologie für Leistungstests vor, die sich mit den vorher genan-
nten Charakteristika beschäftigt. Diese Methodologie setzt sich aus Verfahrensweisen und Mod-
ellen zusammen, die eine adäquate Last von Multi-Dienst Systemen realisieren sollen. Die Leis-
tungsfähigkeit dieser Methodologie wird in einer Fallstudie nachgewiesen, die sich mit Leistung-
stests von IMS-Systemen (IP Multimedia Subsystem) befasst.

5



6



Acknowledgements

The work in this thesis required a large effort on my part, but this effort would not have been
possible without the support of many people. My most special thanks are for Bianca for her love
and patience with my endless working days. I warmly thank my parents for their love, education
and accepting my living away.

I especially thank my advisers Professor Dr. Ina Schieferdecker and Professor Dr. Jens Grabowski.
I wrote a thesis related to TTCN-3 and have been coordinated by the creators of this language, I
cannot imagine ever topping that. I thank Ina Schieferdecker for giving me the opportunity to
work in TTmex and IMS Benchmarking projects and for supporting my work and my ideas over
the years. I also thank her for the many discussions we had and for guiding me over the years to
achieve always the best results. Her knowledge, suggestions and numerous reviews contributed
much to the results and the form of this thesis. I thank Jens Graboswki for the valuable suggestions
and for insufflating me a high level of quality and professionalism.

I would like to express my gratitude to Professor Dr. Radu Popescu Zeletin for providing me with
excellent working conditions during my stay at Fraunhofer FOKUS and for giving me the advice
to start a career on testing. My sincere thanks are also due to Professor Dr. Valentin Cristea and
Ivonne Nicolescu for advicing me during my studentship to follow an academical direction.

I also thank the members of the TIP research group at FOKUS (later MOTION-Testing group) for
many fruitful discussions and for providing the environment in both technical and non-technical
sense that made this work not just possible but even enjoyable. Sincere thanks to my colleagues
Diana Vega and Razvan Petre for helping me during the implementation of the software. Also
thank Diana Vega and Justyna Zander-Nowicka for the tireless efforts of proof-reading the docu-
ment. I am grateful to Zhen Ru Dai (aka Lulu), Justyna Zander-Nowicka and Axel Rennoch who
didn’t let me forget that live is more than writing a PhD thesis.

I consider myself fortunate to be involved in two technical challenging projects. I greately enjoyed
working with Theofanis Vassiliou Gioles, Stephan Pietch, Dimitrios Apostolidis and Valentin Za-
harescu during the TTmex project. Many thanks I owe to the colleagues in the IMS Benchmark-
ing project: Tony Roug, Neal Oliver, Olivier Jacques, Dragos Vingarzan, Andreas Hoffmann,
Luc Provoost and Patrice Buriez for their efforts, ideas and debates about IMS benchmarking that
sharpened my arguments. Also especial thanks to INTEL for providing me with the latest hard-
ware technology for doing the experimental work. These experiences were the true definition of
getting a doctorate to me.

7



8



Contents

1 Introduction 19

1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Dependencies of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Fundamentals of Performance Testing 25

2.1 Concepts of Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Performance Testing Process . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Workload Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Performance Test Procedures for Different Performance Test Types . . . 29

2.1.4 Performance Measurements and Performance Metrics . . . . . . . . . . 30

2.1.5 Performance Test Architectures . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Performance Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 The Functional Architecture of a Test Framework . . . . . . . . . . . . . 32

2.2.2 Towards Test System Performance . . . . . . . . . . . . . . . . . . . . . 35

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Performance Testing Methodology and Realisation Patterns 39

3.1 Multi-Service Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Performance Testing Reusing Functional Tests . . . . . . . . . . . . . . . . . . . 40

3.3 The Performance Test Design Process . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 The Performance Test Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Use-Cases and Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Traffic Set Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Traffic-Time Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.5 Scenario based Performance Metrics . . . . . . . . . . . . . . . . . . . . 50

3.4.6 Global Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 52

9



10 CONTENTS

3.4.7 Design Objective Capacity Definition . . . . . . . . . . . . . . . . . . . 52

3.4.8 Performance Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.9 Performance Test Report . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Workload Implementation Patterns Catalogue . . . . . . . . . . . . . . . . . . . 57

3.5.1 User State Machine Design Patterns . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Patterns for Thread Usage in User Handling . . . . . . . . . . . . . . . . 63

3.5.3 Patterns for Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.4 Messages Sending Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.5 Message Receiving Patterns . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.6 Load Control Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.7 Data Encapsulation Patterns . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.8 User Pools Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.9 Pattern Compatibility Table . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.10 A Selected Execution Model . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Performance Test Execution 87

4.1 Requirements on Test Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Test Execution Driver Requirements . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Execution Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Performance Testing Tools Survey . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Domain Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Scripting Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Workload Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4 SUT Resource Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Motivation for the TTCN-3 Language . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 TTCN-3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Workload Realisation with TTCN-3 . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.2 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.3 Data Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.4 User Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.5 Traffic Set, Traffic-Time Profile and Load Generation . . . . . . . . . . . 101

4.5.6 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.7 Verdict Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Platform Architecture for TTCN-3 . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS 11

4.6.1 Implementation Architecture of the TTCN-3 Execution Environment . . 106

4.6.2 Test Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.3 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6.4 Test Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.5 Test Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Case Study: IMS Performance Benchmarking 125

5.1 Benchmark Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 IP Multimedia Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Session Initiation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Use-Cases, Scenarios and Scenario based Metrics . . . . . . . . . . . . . . . . . 129

5.4.1 Registration/Deregistration Use-Case . . . . . . . . . . . . . . . . . . . 130

5.4.2 Session Set-Up/Tear-Down Use-Case . . . . . . . . . . . . . . . . . . . 132

5.4.3 Page-Mode Messaging Use-Case . . . . . . . . . . . . . . . . . . . . . 138

5.4.4 Use Case Representativeness . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Tools Specialised for IMS Testing . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5.1 SipStone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5.2 SIPp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.3 IxVoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.4 Spirent Protocol Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Benchmark Specification in TTCN-3 . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Test Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.2 Test Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.3 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6.4 Protocol Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6.5 User State Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.6 Test Adaptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6.7 Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6.8 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.1 Testbed Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.2 The SUT Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.3 Visualisation Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7.4 Experiment 1: A Complete Benchmark Execution Example . . . . . . . 150

5.7.5 Experiment 2: Hardware Configurations Comparison . . . . . . . . . . . 162



12 CONTENTS

5.7.6 Traffic Set Composition Experiments . . . . . . . . . . . . . . . . . . . 163

5.7.7 Benchmark Parameters which Impact the SUT Performance . . . . . . . 167

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Conclusions and Outlook 175

6.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3 Outlook and Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Glossary 179

Acronyms 185



List of Figures

1.1 Chapters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Interaction between the Performance Test System and the SUT . . . . . . . . . . 31

2.2 Architecture Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The Performance Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 The Performance Test Design Process . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Performance Test Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Test Scenario Flow Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 User State Machine Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Example of Histogram with the Distribution of Scenario Requests . . . . . . . . 48

3.7 Stair-Step Traffic-Time Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Transmission Latency Visualisation Example . . . . . . . . . . . . . . . . . . . 51

3.9 Performance Test Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Call Rate and Error Rate Visualisation . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 System under Test Reaction Latency Visualisation . . . . . . . . . . . . . . . . . 56

3.12 Graph Example of CPU Consumption Visualisation . . . . . . . . . . . . . . . . 56

3.13 Graph Example of Memory Consumption Visualisation . . . . . . . . . . . . . . 57

3.14 User State Handling within a Thread . . . . . . . . . . . . . . . . . . . . . . . . 59

3.15 Specific Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.16 Generic Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.17 Single User per Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.18 Sequence of Users per Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.19 Interleaved Users per Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.20 Timer Implementation Using Sleep Operation . . . . . . . . . . . . . . . . . . . 66

3.21 Use of a Timer Thread to Control Timing Constraints . . . . . . . . . . . . . . . 67

3.22 Messages Sending in the Main Thread . . . . . . . . . . . . . . . . . . . . . . . 68

13



14 LIST OF FIGURES

3.23 Sending with Separate Send Thread per Request . . . . . . . . . . . . . . . . . . 69

3.24 Send Thread per Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.25 Thread Pool for Message Sending . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.26 Receiver Thread per Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.27 Thread Pool for Message Receiving . . . . . . . . . . . . . . . . . . . . . . . . 72

3.28 Single Load Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.29 Multiple Load Generators with Centralised Data . . . . . . . . . . . . . . . . . . 75

3.30 Multiple Load Generators with Decentralised Data . . . . . . . . . . . . . . . . 76

3.31 Data Representation using a String Buffer . . . . . . . . . . . . . . . . . . . . . 76

3.32 Data Representation using a Structure with Minimal Content . . . . . . . . . . . 77

3.33 Data Representation using a Structure with Pointers to Content Locations . . . . 78

3.34 Single User Pool Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.35 User Pools Clusters for Different Scenarios . . . . . . . . . . . . . . . . . . . . 81

3.36 Approach with Minimal Number of User Pool Clusters . . . . . . . . . . . . . . 81

3.37 A Selected Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Timers Management in the Test Adaptor . . . . . . . . . . . . . . . . . . . . . . 103

4.2 TTCN-3 Architecture of a Test System . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Architecture of a Test System for Distributed Execution . . . . . . . . . . . . . . 106

4.4 Implementation Architecture of the TTCN-3 Execution Environment . . . . . . . 107

4.5 Test Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Test Management-Test Executable Interaction . . . . . . . . . . . . . . . . . . . 112

4.7 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Coder and Decoder Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9 The TTCN-3 Value Types which can Appear in Test Executable . . . . . . . . . 117

4.10 Home Finding Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.11 Component Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.12 Entities Involved in Test Logging . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 TISPAN IMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 The IMS control layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 SIP Invite Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Registration State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Sequence of Messages for Initial Registration Scenario . . . . . . . . . . . . . . 131

5.6 Sequence of Messages for Re-Registration Scenario . . . . . . . . . . . . . . . . 131

5.7 Sequence of Messages for Re-Subscribe Scenario . . . . . . . . . . . . . . . . . 132



LIST OF FIGURES 15

5.8 Sequence of Messages for Successful Call without Resource Reservation Scenario 133

5.9 Sequence of Messages for Successful Call with Resource Reservation on Both
Sides Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.10 Sequence of Messages for Successful Call with Resource Reservation on Origi-
nating Side Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.11 Sequence of Messages for Successful Call with Resource Reservation on Termi-
nating Side Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.12 Sequence of Messages for Abandoned Termination Scenario . . . . . . . . . . . 137

5.13 Sequence of Messages for Rejected Termination Scenario . . . . . . . . . . . . . 137

5.14 Sequence of Messages for Call Fail Scenario . . . . . . . . . . . . . . . . . . . . 138

5.15 Sequence of Messages for Page-Mode Messaging Scenario . . . . . . . . . . . . 138

5.16 Test System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.17 Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.18 Test Adaptor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.19 Steps to Determine the Load for which the SUT Starts Failing . . . . . . . . . . 152

5.20 Visualisation of Fails per Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.21 Error Statistics for the Successful Call with Resource Reservation Scenario . . . 155

5.22 Visualisation of Simultaneous Scenarios . . . . . . . . . . . . . . . . . . . . . . 156

5.23 Visualisation of Message Retransmissions . . . . . . . . . . . . . . . . . . . . . 157

5.24 CPU Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.25 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.26 Test System Server CPU Consumption . . . . . . . . . . . . . . . . . . . . . . . 160

5.27 Long Run to Check the Stability of the DOC . . . . . . . . . . . . . . . . . . . . 161

5.28 CPU Consumption Using Only Successful Scenarios . . . . . . . . . . . . . . . 163

5.29 CPU Consumption Using a Mix of Successful, Abandoned, Rejected and Failed
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.30 First Traffic Set Including Only Successful Scenarios . . . . . . . . . . . . . . . 165

5.31 Second Traffic Set Including Abandoned, Rejected and Fail Scenarios . . . . . . 166

5.32 CPU Consumption for 5000 Users . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.33 CPU Consumption for 10000 Users . . . . . . . . . . . . . . . . . . . . . . . . 168

5.34 Test Run with 320 SAPS for 10 Minutes . . . . . . . . . . . . . . . . . . . . . . 169

5.35 Test Run with 320 SAPS for 30 Minutes . . . . . . . . . . . . . . . . . . . . . . 170

5.36 Test Run without Stir Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.37 Transient Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



16 LIST OF FIGURES



List of Tables

3.1 Traffic Set Composition Example . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Traffic-Time Profile Configuration Example . . . . . . . . . . . . . . . . . . . . 49

3.3 Pattern Compatibility Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Performance Testing Tools Comparison . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Example of Mapping Rules from TTCN-3 Abstract Elements to Java Language
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Traffic Set Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Traffic Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Inadequately Handled Scenarios Statistics . . . . . . . . . . . . . . . . . . . . . 153

5.4 Benchmark Comparison of Different Software Configurations . . . . . . . . . . 162

5.5 Benchmark Comparison of Different Hardware Configurations . . . . . . . . . . 162

5.6 Execution Time Durations Corresponding to 1.000.000 SAPS . . . . . . . . . . . 169

17



18 LIST OF TABLES



Chapter 1

Introduction

The worthwhile problems are the ones you can really solve or
help solve, the ones you can really contribute something to.

– Richard Feynman

The service providers (SPs) are evolving their networks from legacy technologies to "fourth gen-
eration" technologies which involves: (1) evolution of "traditional" wire-line telecoms standards
to Voice over IP (VoIP) standards [DPB+06], (2) evolution of Global System for Mobile Com-
munications (GSM) and Code Division Multiple Access (CDMA) networks to 3rd Generation
Partnership Project (3GPP) [3GP08] standards, e.g., Universal Mobile Telecommunications Sys-
tem (UMTS) [KR07], (3) introduction of Wireless Local Area Network (WLAN) standards, e.g.,
IEEE 802.16 [oEI08], for both data and voice communications [RBAS04]. The current direction
is to realise a convergence point of these trends into a set of technologies termed the IP Multi-
media Subsystem (IMS). The concept behind IMS is to support a rich set of services available to
end users on either wireless or wired User Equipments (UEs), provided via a uniform interface.
Services are provided via an "overlay" technique over multiple service provider networks.

The introduction of many new telecoms services and technologies is making it difficult to sat-
isfy service quality requirements [Afu04], [TSMW06]. The growing number of users adds ad-
ditional performance requirements to the upcoming telecommunication technologies. Therefore,
the telecommunications service provider’s survival depends on its ability to prepare for changes in
customer needs, as well as changes in regulation and technology [Jeu99].

Due to this complexity, the performance testing of continuously evolving telecommunication ser-
vices has become a real challenge. More efficient and more powerful testing solutions are needed.
These test solutions require a good performance test design and an efficient use of hardware
resources for performance test execution. There is an urgent need to do research for a perfor-
mance testing methodology that utilises the characteristics of the interactions between users and
services, and methods to create adequate performance tests which simulate realistic traffic pat-
terns [AKLW02]. This can only be achieved by addressing the overall performance test design,
test architecture and test execution aspects common to various performance testing scenarios.

The survey in [WV00] indicates that very little research has been published in the area of perfor-
mance testing. The traditional methods to design performance tests do not use adequate traffic
models to simulate the real behaviour of a user population. They are based on statistical observa-
tions of the traffic, e.g., packets/second, and try to reproduce a similar traffic which satisfies the
observed statistics [SK74], [ÁCV02]. This is unfortunately not enough to simulate characteris-
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tics of a realistic workload as they do not take into account the behavioural paths of a user, the
probability of a user to create a call etc. as required for testing of telecommunication services.

This thesis elaborates a set of methods and patterns to design and implement efficient performance
tests. The methodology is designed for telecoms systems which offer a large number of telecom-
munication services and typically have to handle a large number of requests in short periods of
time. Furthermore, the telecommunication services are deployed in a network which typically has
to serve a large number of users.

Different from the previous approaches, the creation of the performance tests is realised by instan-
tiating a user behaviour model for each simulated user. The performance test relates to four parts:
workload, performance metrics, performance test plan and performance test report. The workload
describes the traffic of a large number of individual simulated users, each performing an individ-
ual scenario where a scenario is the set of actions to use a service. The rate at which scenarios
are attempted in the performance test is controlled by a traffic-time profile defined for the test. A
traffic-time profile is so designed that the rate of scenario attempts remains constant for sufficient
time to collect a statistically significant data set. As long as any user can execute calls for any
service, a traffic set concept is used to assign users to services. The traffic set also describes the
proportions of services composition. For example, it describes how along the test, a service S1 is
instantiated 70% while a service S2 is instantiated 30%.

1.1 Scope of the Thesis

This thesis presents a methodology that defines processes for effectively designing and implement-
ing performance tests for multi-service systems. It presents a set of methods to create workloads,
performance metrics and performance test procedures. Additionally, it discusses how these per-
formance tests can be technically realised.

The construction of efficient performance tests, in terms of resource consumption, requires the de-
velopment of efficient methods and algorithms at various levels in the design of the performance
test framework. An efficient performance test design starts with the selection of the most appro-
priate conception of the workload. There are many possibilities to architect a workload, but the
concern is to find the one which fits better on a certain hardware- and operating system configura-
tion. Furthermore, the execution model of the workload is fundamental due to two major aspects.
Firstly, the workload’s abstract elements, e.g., state machines, parallel processes and user data, are
mapped to underlying operating system elements like threads, memory, network protocol units.
Secondly, the workload parts must be implemented in such ways that the separation and the dis-
tribution over several test nodes are possible. Both aspects must be considered when designing a
performance test.

The problem this thesis addresses can be stated as follows:

How can performance tests for multi-service systems be designed and realised
efficiently?

Before having a deeper insight into the performance testing methodology elements, the following
questions should be examined more closely:
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1. What are the performance characteristics of the tested system? The target of performance
testing is to evaluate the performance of a system. This is achieved by identifying the impor-
tant system characteristics related to performance and by evaluating them. Some examples
of general performance characteristics are: volume, throughput and latency. The perfor-
mance characteristics are evaluated by collecting data in the form of performance metrics
such as: maximal number of users, maximal load intensity or transaction delays.

2. Which are the parameters to control a performance test? A number of performance test pa-
rameters should be defined in order to control the performance test. They typically regard
workload aspects such as number of users, number of calls per second, test duration but also
mathematical properties of the traffic such as the probability of a scenario to happen along
a test run.

3. How does a user behaviour relate to a workload? A workload is created as a composition of
the behaviours of a huge number of users. A user is an instance of a user behavioural model
that defines the number and rate at which an individual user makes scenario attempts. Each
user may be selected during test execution and be assigned to a particular scenario.

4. How can workloads be efficiently implemented? Workloads are descriptions of the interac-
tions between a test system (TS) and the system under test (SUT). These descriptions are,
often, informal and depict the message flows and the performance test procedure, e.g., how
to increase the load, how many users to create. The workloads are implemented in a pro-
gramming language which binds the abstract concepts like user, transaction etc., to platform
specific elements: threads, data buffers or network channels. In this respect, several imple-
mentation patterns [DTS06] for mapping workload abstract elements to platform specific
elements can be identified.

In order to realise the proposed performance testing methodology, the thesis deliberates the fol-
lowing aspects:

Performance test information model. A performance test is constructed according to a perfor-
mance test information model. The information model identifies a limited number of concepts
that essentially characterise the performance test. Examples of such concepts are: test scenario,
performance metric, performance test parameter or performance test procedure. These elements
are instantiated for each performance test. The information model is based on the concept that
any workload presented to an SUT starts with the behaviour of an individual user. When a user
interacts with the SUT, he/she does so with a particular goal, e.g., to make a call. The SUT may
provide a variety of ways to accomplish this goal. However, the high-frequency actions are rel-
atively limited in number, and can be captured by a manageable set of scripts. Individual users
may differ in the relative speed with which the actions are performed, but this behaviour can be
described by a probability model.

Performance test execution. Today’s technologies provide powerful scripting engines which per-
mit writing tests in high level languages. However, more overhead and resources demand on the
test servers come along with the “ease-of-use”. A test execution model considers all aspects of
mapping abstract elements such as test case, message, communication channel to Operating Sys-
tem (OS) elements such as process, memory, network. Several design patterns are identified and
discussed in relation with test parallelisation to increase test efficiency.

Using the Testing and Test Control Notation, version 3 (TTCN-3). The performance tests are
experimentally realised by use of TTCN-3 language as test specification and implementation lan-
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guage. TTCN-3 is suitable for specifying performance tests and its language elements simplify the
design of complex workloads. However, the concrete execution and distribution of the executable
tests is out of consideration of TTCN-3 specification. Therefore, an additional test specification
element is needed to describe the test configuration on a target network of test nodes consisting
potentially of one test node only.

IMS Benchmarking case study. The work presented in this thesis originates from the author’s
participation in the IMS Benchmarking project [FOK07], a joint project between Fraunhofer
FOKUS [Fok08] and Intel [Int08]. The project aimed at the specification, execution and vali-
dation of performance benchmarks for IMS enabling solutions. The continuation of this work
resulted in the participation in the IMS Benchmark Specification [TIS07] work item at the Euro-
pean Telecommunications Standards Institute (ETSI). Consequently, most concepts presented in
this work have been applied and evaluated within this case study.

1.2 Structure of the Thesis

This section presents an overview of the chapters of this thesis. Figure 1.1 highlights the relation
between their contents.

Figure 1.1: Chapters Overview

• Chapter 2: Fundamentals of Performance Testing - this chapter gives an overview on es-
tablished foundations introduced and employed along the thesis. This includes a character-
isation of performance testing in general and reviews performance testing of multi-service
systems.

• Chapter 3: Performance Testing Methodology and Realisation Patterns - this chapter intro-
duces the developed methodology for performance testing. Based on the proposed design
requirements, workload and test execution design patterns are derived.
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• Chapter 4: Performance Test Execution - this chapter provides design guidelines for im-
plementing a performance testing platform. The guidelines are based on the experience of
implementing a TTCN-3 based distributed execution platform.

• Chapter 5: Case Study: IMS Performance Benchmarking - this chapter presents the IMS
benchmarking case study which serves as the basis for experimental work. The require-
ments for performance testing an IMS platform and applying the methodology to realise
performance tests are discussed. The prototype implementation uses most of the workload
patterns discussed in Chapter 3.

• Chapter 6: Conclusions and Outlook - the concluding remarks and discussion of future
works complete the thesis.

1.3 Dependencies of Chapters

Chapters 3 to 5 use concepts presented in Chapter 2. Nevertheless, a reader who is familiar with
the concepts related to performance testing may skip to Chapter 3.

Chapter 3 describes the developed performance test design methodology which is applied in the
case study presented in Chapter 5. It is important to understand the concepts discussed in Chapters
4. Chapter 5 presents the case study on IMS performance testing.

A reader who just wants to get a quick overview on the topics of this thesis should read the sum-
maries which are provided at the end of each chapter and the overall summary and conclusions
given in Chapter 6.
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Chapter 2

Fundamentals of Performance Testing

Nothing is particularly hard if you divide it into small jobs.
– Henry Ford

Performance testing is a complex conceptual and technical activity for answering questions re-
lated to the performance of a system. 1. Some of the typical questions [Bar04a] that performance
testing answers are: Does the application respond quickly enough for the intended users? Will the
application handle the expected user load and more? How many users are possible before it gets
“slower” or stops working? Performance testing requires not only concepts, methods and tools
but also a broad understanding of software and systems. This chapter reviews concepts related to
performance testing, which are referred to throughout the thesis.

2.1 Concepts of Performance Testing

In a general view, performance testing is a qualitative and quantitative evaluation of a SUT under
realistic conditions to check whether performance requirements are satisfied or not. As a qual-
ity control task, the performance testing must be performed on any system before delivering it to
customers. On a testing road map, performance testing comes at the end of the test plan, after func-
tional testing including conformance, integration and interoperability takes place. However, the
evaluation of performance is particularly important in early development stages, when important
architectural choices are made [DPE04].

Binder [Bin99] defines performance testing in relation with performance requirements. Perfor-
mance tests are designed to validate performance requirements which are expressed either as time
intervals in which the SUT must accomplish a given task, as performance throughput, e.g., the
number of successful transactions per unit of time, or as resource utilisation. Performance test-
ing finds out how responsive the tested system is, how fast it fulfils its tasks under various load
conditions but also discovers problems like the degradation of performance with time or increased
loading, software errors or malfunctions that are sensitive to loading and also thresholds at which
overloading might occur.

Gao et al. [GTW03] define performance testing as the activity to validate the system performance
and measure the system capacity. There are three major goals defined. The first goal is to validate

1The notion of system is used here in a broader sense: it can mean an application, a network, a part of a network,
etc.

25



26 Chapter 2 Fundamentals of Performance Testing

the system ability to satisfy the performance requirements. A second goal is to find information
about the capacity and the boundary limits. This information helps customers to compare different
solutions and select the one which fits best in terms of costs and performance requirements. The
last goal is to assist the system designers and developers in finding performance issues, bottlenecks
and/or to further tune and improve the performance of the system.

The performance testing activities act upon a target system that usually, in the testing area, is called
SUT. The SUT can be every element of a complex system: a) hardware parts together with their
controlling drivers, e.g., hard-disk, CPU [DRCO05] or b) network elements running embedded
applications, e.g., routers, sensor controllers [SB04] or c) applications running on a node, e.g.,
Web servers, Web services, databases [MA98], [LF06], [ZGLB06], or d) a whole network with
distributed network services running on them, e.g., telecommunication infrastructure, distributed
applications [BHS+99], [SSTD05], [TSMW06].

The focus of this thesis is the performance testing of systems from the last two categories. Those
systems are reactive systems with respect to the interaction with users and interaction between
parts of the system. They are supposed to deliver multiple services to a large number of users. For
instance, the telecommunication network infrastructure should be able to sustain several million
users [HMR02], [CPFS07]. The SUT is considered as a whole and the test system interacts with
it over well-defined interfaces and protocols. These systems provide many services which are ac-
cessed by users during a communication session. The user requests require responses from the
server side. A typical session between the user and the server consists of a sequence of request/re-
sponse pairs where all messages in a session are characterised by the same session identifier. The
sessions can vary from one pair of request/response, e.g., simple Web based applications up to
several pairs, e.g., call establishment in a UMTS network [KR07]. The simplest example for
such SUT is a Web server where each request is answered with a response - this interaction is
also known as content-delivery interaction. However, in telecommunication services every service
consists of sequences of several interactions.

2.1.1 Performance Testing Process

A performance testing process consists of all engineering steps starting from requirements to de-
sign, implement, execute and analyse the results of a performance test. A road map to elaborate a
performance test process is described in [GTW03]. This process or parts of it is applied in many
case studies [WV00], [Men02a].

The process starts with the selection of performance requirements. In this step, the performance
testing engineer has to identify which features characterise the performance of the tested system.
High number of transactions per unit of time, fast response times, low error rate under load con-
ditions are examples of very common performance requirements. However, there are also other
specific requirements, which might be considered for a system in particular: availability, scala-
bility or resources utilisation. A detailed view on performance requirements selection is provided
in [Nix00]. This paper presents a performance requirements framework, which integrates and
catalogues performance knowledge and the development process.

The next step is to define the workload. In [GTW03] the term performance evaluation models
is used instead of workload. The workload comprehends the performance testing focus points,
test interfaces and scenarios of interest. The test engineer has to identify for each scenario the
sequence of actions the test system should interchange with the SUT, interaction protocols and
input data sets. The workload includes also traffic models which describe traffic patterns for the
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request arrival rates [GJK99] with varying inter-arrival times and varying packet length [SSR97].
A model often used in practise for the description of traffic patterns is that of Markov Modulated
Poisson Processes [FMH93].

Based on the identified scenarios, the performance metrics need to be defined. A classification of
the types of metrics can also be found in [Jai91]. Metrics can be: throughput metrics, e.g., number
of transactions per unit of time; resource utilisation, e.g., CPU consumption; processing speed,
e.g. system-user response time. The names of the metrics can be customised for an application
area; for instance, the number of transactions per second of a Web server is often named number of
hits per second, while for a telecommunication infrastructure it is named call attempts per second.

The metrics list, the complexity of the selected scenarios and the requirements for the connection
with the SUT determine the requirements for selecting a test tool. However, the selection of an
adequate tool depends on various factors such as costs, ease of use, report generation capabilities.

In the next step, the workloads are documented in a performance test plan. The test plan contains
technical documentation related to the execution of the performance test: which hardware is used
to run the test, software versions, the test tools and the test schedule. The test cases and the test
data are then implemented and executed in a selected performance test tool. Part of the test plan is
also the performance test procedure which is specific to the selected type of performance test such
as volume, load, stress, benchmark, etc. For example, the performance test procedure of a volume
test increases the number of users until the system runs out of resources, while the test procedure
of a load test increases the number of requests per second until the system cannot hold the load
anymore.

After test execution, the final step is to prepare a performance test report in order to analyse system
performance and document the results. The resulting report includes performance indicators such
as maximal supported load or supported number of users. Additionally, the report contains various
graphs which display the performance metrics along the duration of test execution.

2.1.2 Workload Characterisation

The performance of a system is tested by monitoring the system while it is being exposed to a
particular workload [Smi07]. Workload is sometimes also called operational profile [Alz04] for
the simple reason that workload can be seen as a profiling activity of the system operation. The
concept of workload was originally developed to define performance tests for processors and time-
sharing systems but, nowadays, the concept is broader in means, being used in many areas such as
Web applications, networking or middleware. The performance of a system cannot be determined
without knowing the workload, that is, the set of requests presented to the SUT. The workload
definition belongs to the performance testing process (see Section 2.1.1) and is a description of the
test actions against a tested system.

It is important that the workload reflects how users typically utilise that system. Overloading an
SUT with a huge number of requests tells us how robust the system is, but this kind of test does not
reflect the performance requirements for normal usage of the system and it gives no information
about the behaviour of the system in daily scenarios. Therefore, the workload should describe
real-world scenarios taking into account social, statistical, and probabilistic criteria. Appropriate
workloads depend on the type of system being considered and on the type of user and application.
For this reason, researchers proposed different workload approaches targeting particular types of
systems.
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The activity to select and define a workload is called workload characterisation [AKLW02] and it
has the goal to produce models that are capable of describing and reproducing the behaviour of a
workload. There are different ways to characterise the workload. The simplest approach is based
on collecting data for significant periods of time in the production environment [SJ01], [LGL+02].
These representative workloads are then used to determine system performance for what it is likely
to be when run in production. One issue is that the empirical data is not complete or not avail-
able when creating new technologies [Bar04b]. In these situations, partial data can be collected
from similar systems and may serve to create realistic workloads. Other approaches are based on
modelling formalisms such as Markov chains [AL93], [BDZ03] or Petri networks [GHKR04] to
deriving models for the workload which are then used to generate performance tests [AW94]. One
technique, often used in practise, is to apply the load modelling concepts described in [SW01].
This method, called Software Performance Engineering, creates a performance model of the SUT
and helps estimating the performance of the system. Unfortunately, the method is based on em-
pirical data which might not be accurate enough for a good evaluation. The approach presented
in [MAFM99] seems to be the most appropriate to the goal of this thesis. The paper proposes
a methodology for characterising and generating e-commerce workload models based on a user
state machine. The state machine is used to describe the behaviour of groups of customers who
exhibit similar navigational patterns. For more details on workload characterisation techniques, a
comprehensive reference is [EM02].

Workloads are classified into real and synthetic workloads [Jai91]. The real workloads are those
workloads observed on a system being used for normal operations. In practise, these workloads
are not controlled, they are just observed, while the performance is estimated on the base of col-
lected logs. The main disadvantage is that they are not repeatable; thus they can characterise only
particular evolutions of the system under certain load conditions but do not help determine the
behaviour of a system under more load. Synthetic workloads are simulations of real conditions
and can be applied repeatedly and be controlled by the tester. A synthetic workload has behind it
a model of the real workload. It can be parameterised and be executed for different sets of data
allowing the tester evaluate the performance of the tested system under different load conditions.
Very often, the real workloads are studied in order to recognise certain patterns which are the used
to create synthetic workloads.

In any performance test the workload should contain:

• the workload data - it is the data used by the test system to create users and instantiate
users behaviours. The workload data usually contains also parameters to tune the load, e.g.,
number of users, requests per second, types of interactions.

• the test behaviour - a performance test runs parallel interaction activities with the SUT. Of-
ten, the interactions are transactions based, and, several transactions belong to a session,
e.g., voice call. The test behaviour include precise descriptions of how these transactions
and sessions are to be executed.

• the design objective - the design objectives define the QoS constraints to be validated dur-
ing the test. Many actions fulfilled by the SUT are associated with time constraints which
describe how long those actions should take. These constraints should be validated by the
performance test and in cases where they are not satisfied, the translation or the session is
considered as failed.
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In [Jai91] some of the aspects to take into consideration when designing a workload are presented.
These aspects describe how the system is used in real life and constitute the background for the
performance test design methodology presented later in this thesis:

• arrival rate - the arrival rate describes the intensity of events received by the system.

• resource demands - the demands of resources describe the needs of the system in terms of
hardware resources such as CPU, memory, disk, etc.

• resource usage profile - the resource usage profile defines the sequence and the amounts in
which different resources are used in a system.

• timeliness - timeliness define the workloads changes in usage pattern in a timely fashion.

• description of service requests - the description of a service request consists of service re-
quest characteristics such as type of requests, duration of requests, etc.

• loading level - a workload may exercise a system to its full capacity, beyond its capacity or
at the load level observed in real world.

• impact of external components - the impact of components outside the system may have
a significant impact on the system performance. These kinds of external influences also
should be simulated by the test workload.

• repeatability - the workload should be such designed that the results can be reproduced.

Besides these aspects, another important aspect, being essential for nowadays workloads, is to
ensure that the workload is stateful session. Many protocol messages carry stateful information
which has to be correlated with the information retrieved from other messages. In a stateful test-
ing approach, the test behaviour defines a sequence of requests and settings for controlling the
state maintained between them. Most performance tests define cookie-based or similar session
tracking. Stateless workloads do not require to keep track of previous messages and, therefore, are
easier to simulate. The tools which produce stateless workload are usually called traffic generators
and have the purpose to only exercise the SUT with requests following a given pattern.

2.1.3 Performance Test Procedures for Different Performance Test Types

A performance test procedure defines the steps to be performed by a performance test. There
are several variations of performance testing; each one regards specific facets of the performance
of the tested system. The literature distinguishes: load, robustness, stress, scalability, or volume
testing. For them, the performance test procedures are different.

Many sources elaborate on these definitions: “Testing computer software” by Kaner et al [KFN99],
“Testing Object-Oriented Systems" by Binder [Bin99], “Testing applications on the Web” by
Nguyen et al [NJHJ03], and “Software testing techniques” by Loveland et al [LMPS04]. However,
people use these terms differently. The following definitions are used within this thesis:

Load testing [Jai91] simulates various loads and activities that a system is expected to encounter
during production time. The typical outcome of a load test is the level of the load the system can
handle but also measurements like fail rate, delays under load etc. Load testing helps detecting
problems of the SUT such as abnormal delays, availability or scalability issues, or fails, when the
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number of emulated users is increased. A load test defines real-life-like volumes of transactions to
test system stability, limits or thresholds. Typically, a number of emulated users interacting with
the SUT have to be created and managed while the functional behaviour of their communication
with the SUT has to be observed and validated.

Scalability testing [Bin99] is a special kind of load testing, where the system is put under increas-
ing load to determine how the system performance varies when the resources vary. For example,
comparing an application while running on a machine with one processor versus running it on a
machine with two processors. This helps to conclude how much the system performance increases
in terms of requests per second.

Robustness testing [Bar02] is load testing over extended periods of time to validate an applications
stability and reliability. During short runs of load tests or volume tests the system may behave cor-
rectly, but extending the testing period of time to a few hours, may reveal problems of the inspected
system.

Stress testing [Bar02] is the simulation of activities that expected to be more “stressful" when an
application is delivered to real users. Stress tests measure various performance parameters of the
application under stressful conditions. Examples of stress tests are spike testing, e.g., short burst;
extreme load testing, e.g., load test with huge number of users; hammer testing, e.g., continuous
sending of requests. The main purpose of stressing the system is to make sure that the system is
able to recover when it fails.

Volume testing [Bar02] is the kind of performance test, executed in order to find which volume
of load an application under test can handle. For example, a client-server application is tested for
the maximal number of users it can handle. It is, however, different from load testing since the
volume testing does not necessarily imply that the load is very high.

Benchmarking is a performance test used to compare the performance of a system [Men02a].
Benchmarking is considered in general to be a load test which has a well-defined execution pro-
cedure that ensures reproducible results.

2.1.4 Performance Measurements and Performance Metrics

During the execution of a performance test, performance measurements are performed. Mea-
surements are collections of events with timestamps [SSR97]. The events mark different events
such as creation and termination of a transaction. The measurements are then used to compute
performance metrics such as resource consumption, latency or throughput. Performance metrics
are used to derive more elaborated performance characteristics such as mean, standard deviation,
maximum and minimum or their distribution functions.

Performance characteristics can be evaluated either off-line, after the performance test finished its
execution, or on-line, during the performance test execution. The on-line approach requires to
evaluate the performance constraints on the fly. The constraints are sometimes also called perfor-
mance design objectives. They define requirements on the observed performance characteristics,
e.g., the response of a request should arrive within 50 ms.

2.1.5 Performance Test Architectures

A widely used approach for testing is the Conformance Testing Methodology and Framework
(CTMF) standardized as International Standards Organization (ISO)/International Electrotechni-
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cal Commission (IEC) 9646 [ISO94]. The CTMF defines several test architectures, called abstract
test methods, and the Tree and Tabular Combined Notation (TTCN) (ISO International Standard
9646) [BG94]. Unfortunately, the CTMF proved to be not good enough to cope with performance
testing needs. Therefore, an extension of CTMF with performance testing concepts has been
proposed [SSR97]. The extension proposes an approach for testing the performance of commu-
nication network components such as protocols, services, and applications. In that approach the
test system is seen as a distributed system that consists of active components, called test compo-
nents. The paper also proposes a performance test configuration for an end-to-end service which
is depicted in Figure 2.1.

Figure 2.1: Interaction between the Performance Test System and the SUT

The test components are of two types: foreground test components, which communicate with the
SUT directly by sending and receiving Protocol Data Units (PDUs) or Abstract Service Primitives
(ASP)s similar to conformance testing, and background test components, which use load gen-
erators to generate continuous streams of data but do not interact with the SUT. The foreground
component are used in fact to emulate the clients. A multi-service SUT would consist of many Ser-
vice Entity (SE)s. Points of Control and Observation (PCOs) are access points for the foreground
and background test components to the interfaces of the SUT. They offer means to exchange PDUs
or ASPs with the SUT and to monitor the occurrence of test events. Coordination Points (CPs) are
used to exchange information between the test components and to coordinate their behaviour. The
test components are controlled by the main tester via coordination points.

This architecture is referred in [WSG98] as part of a survey of various test architectures for testing
including performance testing. The paper proposes also a general test architecture, which can be
adapted to different types of testing and to testing of applications based on new architectures and
frameworks.

The test architecture concepts have been further extended to the TTCN-3 Runtime Interfaces (TRI)
interfaces in [SVG03] and TTCN-3 Control Interfaces (TCI) interfaces in [SDA05]. The TRI pro-
vides a set of operations to adapt the abstract methods to the execution platform and to the network.
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These concepts gained a more general interest from industry and have been adopted as an ETSI
standard [ETS07b]. The TCI interfaces consist of operations to handle the test data and the com-
munication between test components. They also have been standardised by ETSI in [ETS07c]

2.2 Performance Test Framework

This section discusses design requirements for the functional architecture of the performance test
framework. Many commercial or non-commercial test frameworks are available. In [WSP+02]
the possibility to integrate them by means of a unified set of data exchange, control and Graph-
ical User Interface (GUI) interfaces is discussed. However, not all of them may offer a suitable
framework to develop performance tests based on the concepts introduced before.

2.2.1 The Functional Architecture of a Test Framework

Figure 2.2: Architecture Functional Blocks

The functional elements are depicted in Figure 2.2. They are structured into three main blocks:
test development, test execution and test report. The architecture takes into account the realisa-
tion of test systems capable to satisfy testing needs in terms of developing, executing or analysing
performance. However, this set of requirements represent a minimal specification which can be
extended with further features.

The development and execution are closely linked. The test development not only implies the edi-
tor and test files management, it also includes the libraries, data representation and connectivity to
SUT. In general, the more functionality is offered in form of libraries, the easier the test develop-
ment is. Ideally from the test development point of view, the tester should not care about the test
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distribution, the connectivity to SUT, the call arrival pattern or the data encoding. In this respect,
the development should only concern the realisation of the test behaviour and testdata [ER96].

Test artefacts have also to be maintained. This is usually supported in test frameworks by a test
repository. The test behaviour may be interpretable code or binary code (in this case a compiler is
needed). In either case, the test behaviour is deployed onto an execution framework. The execution
includes test management functionality which takes care of scheduling of runs, test parametrisa-
tion and monitoring. Another major requirement for execution is the throughput performance
which determines how many messages per second the test system can handle. The throughput is
usually improved by scaling the performance through load distribution, by moving to better hard-
ware or by finding better algorithms for critical parts of execution which are also called hot-spots.

The test execution is realised by a load generator, several user handlers and a user repository. The
load generator provides ready-to-use traffic-time profiles which have to be parameterised with the
workload. Part of the workload is the user data which is maintained within the user repository.
There is an entry for each user which consists of the identity and the state. The load genera-
tor selects users from the user repository and instantiates test behaviours. The user handlers are
responsible for handling the events received from SUT.

During the execution, the interaction between users and SUT is monitored in the form of events
with timestamps. Also the resource consumption on SUT side is monitored. These measurements
are the input of the performance test report part. A metrics processor correlates the measurements
into metrics and gives them a human readable representation in the form of graphs and charts. For
more flexibility, the metrics processor should provide an easy to use front-end which allows the
specification of the metrics. A report manager should also be available in order to manage the
results obtained for different test configurations, hardware configurations, software versions, etc.

2.2.1.1 Performance Test Development

The tests have to be written into a machine-understandable language in order to make them exe-
cutable. Test development is used within this thesis to refer to the activity of programming tests.
They can be either manually written or be generated in a programming language. Sometimes, test
specification term is also used in this thesis. This term refers to the abstract view of a test which
contains the specification of the data input, interactions and expected results. The test specification
does not necessarily have to be executable.

Flexible data representation. The communication protocols used today for the communication
between UEs and SUT involve many types of messages with rather complex structures. Addition-
ally, the message fields may be defined optionally or may depend on the values of other fields.
To cope with these requirements, the test development framework must assure that any message
structure or constraint can be described in an easy way.

Event handling. At test execution many messages are interchanged between the test system and
the SUT. The test system has to handle each event occurred as effect of receiving of a message from
the SUT. Typical operations are: queuing of messages, finding the user to which an enqueued mes-
sage corresponds, updating the state of the user, acting appropriately by sending a new message or
closing the transaction. Such operations have to be easy to define within the test framework.



34 Chapter 2 Fundamentals of Performance Testing

User state handling. In general, any message received or sent by a user changes the state of that
user. For any message, the test system has to update the state of a user. Therefore, a user state
description as well as a state update mechanism has to be available in the test framework too.
Furthermore, the mechanism has to be both performant and easy to use.

Test parametrisation. The test system should provide the possibility to define test parameters.
Additionally, the test parameters should be accessible within test implementations.

2.2.1.2 Performance Test Execution

Test execution takes place after the tests have been developed and are ready to run in the target
hardware environment. At the execution of performance tests, similar to the execution of func-
tional tests, the test system applies test stimuli to an SUT while the behaviour of the SUT is
monitored, and expected and actual behaviours are compared in order to yield a verdict. However,
different from functional testing, performance testing runs parallel tests [SDA05]. Technically,
each test is a separate process and it simulates the behaviour of one SUT user 2.

Code deployment. The first step of test execution is the code deployment. It sums up the op-
erations to prepare the test behaviour for execution. For example, in a Java [SM08] based en-
vironment, a test behaviour in the form of a Java archive is loaded in the test tool via reflection
mechanism.

Load generation. The test system must be able to execute test scenarios following a traffic-time
profiles configuration. The shape of traffic-time profile must be supported as a reusable mechanism
by the test framework itself and its configuration should be possible through test parameters. The
precision of the load generator must be good enough to satisfy the temporal constraints imposed
by the event arrival distribution used for traffic generation.

Test behaviour execution. Test behaviour execution is the concrete execution of the interactions
between the test system and SUT. Every action or stimuli from the test system is encoded into
a protocol unit and is sent over the network link to the SUT. Corresponding responses, received
back from SUT are validated and further actions are executed.

Test distribution. In order to increase the performance of a test system, parts of the test behaviour
can be distributed over several test nodes. At the physical level, parallelism is realised by using
multiple CPUs and/or multiple interconnected nodes. Therefore, the assumption that the work-
load execution involves several distributed computing devices is made. Additionally, each test
node may contain more than one CPU. Distributed testing is the testing activity which involves a
distributed test environment. It combines two basic concepts - workload distribution and remote
control - in order to offer highly scalable and flexible test systems. In a distributed test environ-
ment, several test systems running on different nodes are controlled from one or more remote
control centres. The multiple test systems can be combined logically to operate as a single unit.

Load balancing. The test distribution is usually correlated with load balancing techniques ap-
plied to efficiently use the underlying hardware environment. Load balancing algorithms are used
to minimise the execution time, minimise communication delays and/or maximise resource utili-
sation.

Network emulation. The test system should also emulate the network characteristics of the dif-
ferent interfaces as long as users may use different interfaces to connect to SUT. This includes

2Parallelism is realised by simulating the parallel behaviour of a large number of SUT users.
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network bandwidth, latency and error rate. These characteristics are to be set separately for each
direction so that non-symmetric interfaces can be emulated, e.g., up and down bandwidth on a DSL
link. These settings should be supported by a communication layer which provides a transparent
interface with respect to user behaviour.

Monitoring. Monitoring implies generation of large amounts of measurements which are later
used to analyse the performance of the SUT and generate performance test reports.

Synchronisation. Test distribution is a major requirement for scaling the performance of a test
system. In the case that the test framework supports distribution over several test nodes, a syn-
chronisation mechanism is needed. The mechanism is used to pass control information between
the test nodes.

2.2.1.3 Performance Test Report

The performance test report documents the test results. It consists of monitored data represented
as charts and data sets which help to understand the behaviour of the SUT over the elapsed time
of the test. Additionally, the test report presents the relevant metrics that are conventionally used
to compare test results.

Test reports management. A detailed performance evaluation requires the execution of multiple
test runs with different test configurations, test hardware or SUT software versions. This will result
in a large number of reports. To control a large number of reports, the test report tool should offer
a management feature to track/retrieve the reports on different criteria: time, SUT version, SUT
hardware, etc.

Illustration of history logs. The history view is also a test result management requirement which
allows to investigate the performance increase/decrease of an SUT along different versions of the
software. This view may vary from a simple one, which reports only the variation of some met-
rics, to a more complex one, which displays charts with the variation of communication latency,
round-trip times, resource consumption, etc.

Comparison view. The comparison view is similar to the history view, but the comparison is
realised for only two sets of results with the same test configuration, e.g., same software but dif-
ferent hardware. The comparison view should display as many differences as possible including
resource consumption graphs, latency, error rates, etc.

2.2.2 Towards Test System Performance

The intensive use of hardware resources, e.g., 100 percent CPU usage, during the test execution
leads very often to malfunctions of the test system which ends up running slower than expected.
Consequently, the test results can be wrong as an effect of erroneous evaluation of SUT responses.
Such a situation is encountered when, for example, the test system creates too many parallel pro-
cesses which share the same CPU. The processes wait in a queue until they acquire the CPU
according to the used scheduling algorithm. Hence, the bigger the number of processes is, the
more time a process has to wait in the queue until it acquires the CPU. Since the execution of
critical operations such as timer evaluation, data encoding or decoding is automatically also de-
layed, the test system may consider an operation timed out while, in reality, it did not. The same
phenomenon has a considerable impact also on the load generation by decreasing the number of
interaction per second.
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2.2.2.1 Evaluation of Test System Performance

The evaluation of performance test systems [GMT04] turns into a problem of determining whether
the SUT is that slow as the results reveal or rather the test system is overloaded by its testing activ-
ities and cannot produce the necessary load and/or reacting in time. Answer to this question can
only be given after analysing the quality of the test execution. To detect such problems, several
parameters which help the tester to validate the test execution are observed.

One of these parameters is the duration of the execution of critical test tasks. It assigns temporal
dimensions to all operations to be executed sequentially in a test which might influence the evalu-
ation of SUT’s performance. For example when receiving a message from SUT and this message
is used to validate the reaction of SUT to a previous request, the test system has to decode and
match the received message only in a small amount of time, otherwise the additional computation
time will be counted as the SUT reaction time.

A further interesting parameter is the quantity of the demanded resources. If the test system con-
stantly requires the maximum of the resources the underlying hardware can allocate, this is a first
sign that the test might not be valid. Another parameter is the deviation average from load shape.
If the load does fluctuate very often moving from lower to higher values, it proves that the test
system might be overloaded.

A performance test is considered to be valid only if the platform satisfies the performance param-
eters of the workload. The quality of the load test execution is guaranteed if the test tool fulfils the
performance requirements with respect to throughput and latency.

2.2.2.2 The Performance Pyramid

Looking at the test system from a performance perspective, requires a good understanding of the
layers of a test system architecture. Figure 2.3 is an approach to thinking about the performance
of a test system. This is an adaptation to test execution of the model presented in [HM01].

Figure 2.3: The Performance Pyramid

In this view, the test system is represented as a pyramid with several layers. Each layer plays an
extremely important role regarding the performance. If one understands how things work at each
level, one can better decide upon the load distribution strategy or decide how to tune the perfor-
mance of the overall system. However, one important aspect of this performance pyramid is that
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as the performance problems have been improved at one level, other performance improvements
can be still realised at other levels.

The physical architecture of a typical distributed test execution environment is an assembly of
computing devices. The computing device concept covers anything one might use to run test ac-
tivities such as general purpose PCs, specialised testing hardware with SUT specific connection
hardware, or with protocol specific hardware stack or real-time computation systems. Any of
these physical computing devices is called a test node. The test nodes are connected by physical
communication channels. The connections may be of various types and technologies and typi-
cally include network connection devices such as routers or switches and Unshielded Twisted Pair
(UTP) cables.

Additionally, the test environment may include more specialised hardware test devices, which do
not execute test behaviours. They actually provide an operation interface to the rest of the envi-
ronment for external services, e.g., Domain Name System (DNS), time server.

Hardware. This is usually the easiest part to be improved in terms of performance, since in
general, putting better hardware in the environment lets the system perform better. However,
upgrading the hardware is not enough without understanding how it works in relation with the
applications running on it, in order to make the best of the current environment. This covers a
range of elements, including:

• communication factors - such as the speed and physical components, and the access speed
of disk storage.

• the overhead of switching environments and data transforms - required between environ-
ments.

• advantages of using multi-core processors - that are the latest innovation in the PC indus-
try. These multi-core processors contain two cores, or computing engines, located in one
physical processor and present the advantage that two computing tasks can be executed
simultaneously.

Operating System. The OS processes execution platform requests for hardware resource alloca-
tion and responds by allocating and managing tasks and internal system resources as a service to
users and programs of the system. The OS is typically the place where many test systems can be
easily tuned for better performance. Additionally, the OSs offer also configurable load balancing
strategies for the parallel processes managed by that OS. In general-purpose operating systems,
the goal of the scheduler is to balance processor loads and prevent one process from either mo-
nopolising the processor or being starved of resources [LKA04].

Execution Platform. The execution platform provides the execution engine for the workload
specification. There are many tools for performance test execution and, consequently, many strate-
gies to execute a workload. The programming language used to develop the execution platform
may also influence the way the execution platform is designed. The most popular languages used
to implement execution platforms are C/C++, Java, C#.

Workload Development. Most tools provide programming or scripting languages to ease the
workload development. These languages offer abstract means for parallelism, e.g, parallel compo-
nents, threads, processes; for data encapsulation, e.g., messages, hashes, tables or even database
access; and for network connectivity, e.g., channels, ports.
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For each language, one has to understand how these abstract elements are transformed into ele-
ments of the execution platform layer. For example, a parallel component from the programming
language can be transformed into a single execution platform thread or can be grouped with other
parallel components into a bulk of components attached to a thread. The performance of a system
decreases when a few thousands of processes are running in parallel. In the first mapping strategy
the system will suffer of performance earlier than the second mapping strategy. Therefore, in the
first situation, it is good to choose a better way, though more complex, to program the workload.

The tools which do not offer such an abstract specification layer provide a platform level program-
ming Application Programming Interface (API). The test designer then has the task to program
rather than to specify the test. Such an example is JUnit [JUn07] testing framework and its related
extensions.

2.3 Summary

This section introduced concepts on performance testing. Depending on the applied test proce-
dure several types of performance tests are identified: load, stress or volume tests. The design of a
performance test requires several main parts: workload, metrics, load parameters. A performance
test is then implemented and executed in an execution platform. The execution platform supports
logging of the execution and based on this log traces the performance of the tested system can be
analysed. Sometimes the performance of a single test node may not satisfy the load requirements,
then distributed test environments are employed. Test distribution brings along load balancing
techniques and methods to efficiently design performance tests for the running of distributed exe-
cution frameworks.



Chapter 3

Performance Testing Methodology and
Realisation Patterns

All truths are easy to understand once they are discovered;
the point is to discover them.

– Galileo Galilei

Although performance testing is a common topic among people and organisations, the research
does not address performance testing of multi-service systems at a general level but rather targets
only specific types of applications, e.g., Web applications [MAFM99]. This chapter introduces a
methodology for developing performance tests for multi-service systems including the methods to
design the performance tests and a selection of implementation patterns.

3.1 Multi-Service Systems

Before discussing the performance testing of multi-service systems, the definition of the multi-
service system must be given. A typical multi-service system offers a number of services which
can be accessed through entry-points [MP02]. In this context, a service runs on a service plat-
form [Cas04], [MP02] which allows organisations and individuals to serve and consume content
through the Internet. There are various levels of services and various kinds of services offered.

The system consists of many sub-systems (hardware and software) communicating usually
through more than one protocol. The sub-systems provide different functionalities and either host
services or mediate their access and administration. The service consumers are the end users
which access the services through compatible devices called UEs. The service consumption is
realised through communication protocols involving different types of transactions, e.g., authen-
tication, charging. With the specification of IMS, the current telecommunication infrastructure
is moving rapidly toward a generic approach [CGM05] to create, deploy and manage services;
therefore, a large variety of services is expected to be available soon in many tested systems.

Beside this service variety aspect, two more aspects are visible too: the service complexity and
the randomness in services demand. The services are becoming more and more complex, requir-
ing more computing resources on the system side and more messages exchange between involved
components. The expectation is that the more complex and demanded the service is, the more the
system performance decreases. The service demand randomness concerns the user preferences

39
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for services and describes the way users may select a service from a list of available services. As
result, the overall system load is a composition of instances from different services where each
type of service contributes in a small proportion.

The services are deployed within a network of components, where each component has a well-
defined functionality, e.g., authentication, registration, charging. To gain more performance, some
of the components may be even distributed over several servers. When a service is invoked by
a user, these components interact with each other through messages exchange. The communica-
tion requires a good synchronisation between the components and a reliable service state handling
mechanism capable to work under heavy loads. Among the well-known issues met when evalu-
ating the performance of a complex distributed system, one has to take into account that not all
software components are proprietary. Due to the complexity of the present systems it is expected
that some of the components are third-party components. Therefore, during performance testing
it may be discovered that these components do not interact properly with the rest of the system,
or that some of them are performance bottlenecks for the whole system. However, the challenge
remains the same: to find the performance of the whole system and, eventually, be able determine
which component is the bottleneck for the performance.

The services may be available on two or more networks. These networks may interconnect with
each other such that users from one network may communicate with users from other networks.
This aspect has to be considered too while designing performance tests. The TS should be able to
demand in adequate proportions also services from foreign networks. However, in this configura-
tion, the TS is required to simulate users which connect to all networks.

Another characteristic is that different users exhibit different navigational paths for the same ser-
vice. Typically, users follow the interaction path for a successful call but also failure paths may
happen, e.g., user not available, abandoned calls. Depending on the service, the communication
between two entities varies in complexity. The more complex the service interaction is, the more
failure scenarios may occur.

3.2 Performance Testing Reusing Functional Tests

One of the well-established methods in testing is that of functional testing [SPVG01]. The func-
tional testing of multi-services systems is used to check if the services meet functional require-
ments, i.e., that the service is functionally correct.

Along this thesis, performance testing is seen as an extension to functional testing to check per-
formance requirements. The basic idea is to define performance tests by reusing basic functional
tests for the services [SDA05]. Test components are used to emulate service clients. These test
components perform basic functional tests to evaluate the reaction of the services to their requests.
The combination of test components performing different basic functional tests in parallel leads
to different test scenarios for the services. Parameterisation of this test framework enables flexible
test setups with varying functional and performance load.

3.3 The Performance Test Design Process

For testing multi-service systems, there is an emerging need for a more general methodology
which focuses on the user-service relation. The methodology should address both sides of the
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problem: functionality aspects, e.g., user behaviour and non-functional, e.g., concurrency, QoS.
To address these aspects a number of new concepts have been introduced. The performance test
design methodology is based on the performance test design process which is depicted in Figure
3.1. This process refines the general process described in Section 2.1.1 as applied to multi-service
systems.

Figure 3.1: The Performance Test Design Process

Performance Requirements. The process starts with the selection of performance requirements.
In this step the test engineer has to identify which features characterise the performance of the
tested system. High number of transactions per unit of time, fast response times, low error rate un-
der load conditions are examples of common performance requirements. But there are also other
specific requirements which might be considered for a system in particular: availability, scalabil-
ity or utilisation. A detailed view on performance requirements selection is provided in [Nix00]
where a performance requirements framework integrates and catalogues performance knowledge
and the development process.

Workload. The second step is to define the workload. The workload consists of the use-cases
which are the types of interactions between users and SUT to access services, e.g., voice call,
conference call, application call. Since a multi-service system provides many services for each
use-case, it is required that the workload is created as a composition of multiple test scenarios
from each call model. This task requires a systematic search through the SUT’s specification doc-
uments in order to recognise all possible interaction models. A concept which extends the previous
performance test process is the traffic set which enables the possibility to parameterise the traffic
composition instead of having a fixed one. This way, multiple traffic sets can be defined, e.g., at
city, region, country level, taking into account social and technological factors. The workload is
also associated with a predefined traffic-time profile which combines the traffic sets with existent
traffic patterns, e.g., random call arrival rate.
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Performance Metrics. In third step, the performance metrics have to be defined. Different to
related works, for performance testing of multi-service systems it is necessary to gather informa-
tion about each scenario. Therefore, two types of metrics are regarded: global metrics similar,
e.g., CPU, memory, fail rate, throughput, and scenario related metrics defined for each scenario,
e.g., fail rate, latency. The performance metrics list should include the key performance indicators
which are relevant for the overall evaluation.

Test Plan. In forth step, the SUT and the TS are parameterised by the primary provisioning pa-
rameters, e.g., user identities. The performance tests are executed according to a performance test
procedure which takes into consideration the effects of long duration runs involving many services.

Test Report. The final step is to execute the tests according to the test plan and generate reports
with meaningful data, e.g., largest sustainable load, number of supported users. The related works
provide few details about the structure of a performance test report. Therefore, this thesis goes
into more detail with respect to the structure and contents of a test report.

3.4 The Performance Test Concepts

The performance test elements are presented in Figure 3.2. The concepts are grouped into three
main blocks:

• use-cases - use-cases describe the types of behaviours of an individual user, and which in
turn define scenarios.

• performance tests - scenarios from different use-cases are used in a performance test which
generates a workload by aggregating the behaviour of individual scenarios in a controlled
manner and collects log-files of measurements during the test.

• performance test reports - at the end of the test, the test report is created in order to report
the metrics correlated from the log files.

A scenario is defined as a message flow between the interacting parties. For each scenario, metrics
and design objectives (DOs) are defined.

A performance test combines scenarios from different use-cases into a traffic set. Within a traffic
set, each scenario type is instantiated in a predefined proportion, interpreted as its probability of
occurrence during the execution of the performance test procedure. These proportions are speci-
fied in a traffic-time profile.

The performance test report is generated after the execution and it contains a full description of
the SUT configuration, the TS configuration, the process used to generate the system loads at each
SUT reference point, and data series reporting the metrics as a function of time.

3.4.1 Use-Cases and Scenarios

The first step in the workload creation is to identify the use-cases and, for each use-case, select
multiple test scenarios1. A use-case is usually associated to one service, however, a use-case may
be defined also as a composition of services. Use-cases define interaction models between one or

1In the rest of the thesis, the term test scenario is mixed with the term scenario and refer the same concept.
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Figure 3.2: Performance Test Concepts

more users and the SUT, for instance, in the telecommunication domain, there are services such
as voice call, conference call. Different to test scenario, a use-case is a specification of a general
type of interaction between a TS and a SUT, corresponding to a mode of end-user behaviour.

Figure 3.3: Test Scenario Flow Example

An individual interaction path is called a test scenario and describes a possible interaction deter-
mined by the behaviour of the user and other system actors. The typical questions that have to
be answered at this point are: Which services are going to be used most? Which particular flows
are characteristic to a given scenario? What is most likely to be an issue? Each test scenario is
described by its message flow between the talking entities.
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An example of a test scenario is depicted in Figure 3.3. This example presents the interaction
between two UEs and the SUT. All entities of the SUT are represented as a single box. The inter-
action is based on request/response transactions. For each request, there is at least one response.
The flow presented in the figure consists of two transactions. The first transaction is initiated by
the UE1 which sends the Req1 request message to the SUT. There are two responses for this trans-
action. The first response is sent by the SUT while the second is sent by the UE2. The second
transaction is created by UE2 after an arbitrary period of time consumed after the first transaction.
In that transaction, the UE2 sends the Req2 which is answered by the UE1 with the Res2 message.
Each response has to be received within a time limit. This time is modelled as a timer which
measures the time spent between the request and response. If the response is not received within
the expected time, the transaction runs into a fail situation.

As presented in the previous chapter, it is considered that the more the workload approximates the
reality, the more meaningful the performance test results are. To most representative workload is
realised when the selection of test scenarios covers all possible interaction flows including positive
and negative flows. The selected test scenarios should capture typical situations such as success
or fail as encountered in reality. In order to achieve a good coverage of test scenarios one has to
regard the following types of scenarios. They are exemplified with the help of the simple voice
call service as it is presented in the telecommunication domain:

• successful scenarios - this type of scenario happens most of the time and should always
be included in the scenario list of each identified use case. A voice call is called success-
ful when all transactions are completed without any error states caused, for instance, by
timeouts, wrong content or IDs, etc.

• fail scenarios - many causes may lead to a fail of a service. For the voice call service exam-
ple, a typical error situation occurs when a user tries to call another user who is not available.
The TS simulates this scenario by creating a call to a user who does not exist.

• abandoned scenarios - this test scenario is based on an abandoned service interaction. The
TS should simulate users who abandon the calls before they terminate. For example, a
user initiates a voice call to a second user, but before the second user answers, the first one
cancels the service interaction.

• rejected scenarios - in a service involving more than one user, it may happen that one of the
users - not the one who initiates the service - declines the service request. In the voice call
example where one user calls a second user, the rejected scenario happens when the second
user declines the call.

In Figure 3.4 the state machine of UE1 is presented. A general pattern to describe the state ma-
chines of users which deal with telecommunication services can be described as in this example;
the behaviour of any user involved in a test scenario can modelled in a similar way. The UE1 starts
from a state called available. A user is available when it can be used to create a new call. There
are three types of actions which may change the state of that user:

• external actions - these actions are triggered by the load generator which controls all users.
The load generator may decide that a user starts a new call scenario and does this by trig-
gering an action to start the scenario.



3.4 The Performance Test Concepts 45

Figure 3.4: User State Machine Example

• communication events - these actions correspond to messages received from SUT or sent to
SUT. The messages may be correct messages or incorrect messages. In either case the user
should react. Therefore the state-machine should model also these kind of exceptions.

• timeout events - for each request, a transaction timer is started. It expires after a given pe-
riod of time. A timeout event implies that no message has been received for the associated
transaction.

The UE in Figure 3.4 starts a new call scenario at an external action request issued by the load
generator. The UE creates the first transaction and sends the first request message. If the SUT
answers with Res1.1 message, the UE goes into Res1.1 rcvd state. Otherwise, if a timeout occurs,
or if the SUT replies with another message type, the scenario is considered as fail and the UE goes
back into the available state, which means that the user may be used again for another call. From
Res1.1 rcvd state, the user goes into Res1.2 rcvd state if the Res 1.2 message is received.

The two transactions are independent and are executed at different points in time. This means that
the user may wait for an arbitrary amount of time until the second UE sends the Req2 message. If
the UE2 or the SUT sends a different type of message instead of Req2, the UE1 goes into available
state. However, in order to ensure that the UE1 will finish the state machine, a timer expiring after
a sufficient amount of time may be started. If this timer expires, it means that the second transac-
tion will never take place. If the Req2 is received, the UE1 goes into Req2 rcvd state. From that
state, the UE1 goes into available state, after sending the Res2 response.

3.4.2 Design Objectives

The performance evaluation is based on two steps: firstly, collect measurements about each instan-
tiated test scenario during the workload execution and secondly, derive the performance metrics
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to evaluate performance requirements. The collected measurements consist of logging events of
each message interchanged with the SUT. Additionally, the timestamp when the message becomes
visible to the TS is logged together with the message.

The performance requirements concern error rates and delays. They are evaluated separately for
each use-case on top of the collected measurements. For each performance requirement a Design
Objective (DO) is defined as the threshold value which is then used to compare the metrics.

Figure 3.5: Design Objectives

DOs for Delays. Figure 3.5 depicts one scenario flow including the associated DOs for commu-
nication delays. The DOs for delays are of two types:

• latency DO - defines the maximal time required to get a message through the SUT network
from a caller UE1 to a callee UE2.

• transaction round-trip time DO - defines the maximal time required to complete a transaction
including all messages.

These DOs define temporal limits for the latency of the SUT and can be modelled in the user state
machine (see Figure 3.4) as timer events. When a timer expires, it means that a DO for that test
scenario has been exceeded and the test scenario will count as a failed test scenario.

DOs for Error Rates. A DO for the error rate sets the threshold for allowed percentage of errors
out of the total number of scenarios. Different than DOs for delays, the DOs for error rates should
be set at use-case level such the error rate is validated for all types of scenarios which belong to
that use-case.

3.4.3 Traffic Set Composition

The TS applies a workload to the SUT which consists of the traffic generated by a large number of
individual simulated UEs. Each UE performs an individual scenario. Obviously, different scenar-
ios may be combined in the same workload. A conceptual question is how to allow test engineers
define compositions of scenarios. The concept to cover this aspect is called a traffic set.
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Table 3.1: Traffic Set Composition Example

Scenario Type Scenario Label Scenario ratio Scenario distribution
registration s1.1 5% poisson

re-registration s1.2 20% poisson
de-registration s1.3 5% poisson

successful voice-call s2.1 21% poisson
abandoned voice-call s2.2 4% poisson

rejected voice-call s2.3 4% poisson
fail voice-call s2.4 1% constant

successful page-mode messaging s3.1 38% poisson
failed page-mode messaging s3.2 2% constant

A traffic set example is presented in Table 3.1. It consists of a mix of nine scenarios selected from
different use cases. The names of the scenarios are not relevant at this moment; they are only used
to illustrate the concept.

Within the traffic set, each scenario has an associated relative occurrence frequency which is inter-
preted as its probability of occurring during the execution of the performance test procedure. This
frequency indicates how often a scenario should be instantiated during the complete execution of
the performance test.

As long as in reality the load is random, to avoid constant load intensities, the scenarios are in-
stantiated according to an arrival distribution, which describes the arrival rate of occurrences of
scenarios from the traffic set. The arrival rate characterises the evolution of the average arrival rate
as a function of time over the duration of the performance test procedure. An example of such an
arrival process is the Poisson process [NIS06] employed often in simulations of telecommunica-
tion traffic.

A histogram example of scenario attempts distribution, as resulting of a performance test execu-
tion, is presented in Figure 3.6. The graph displays the frequencies of the various load intensities
values as scenario attempts per second, which occur along the test execution. For example, the
load intensity value of 86 on X-axis has an occurrence frequency close to 0.4 on Y-axis. The curve
shows that the frequency of values is higher around the mean and lower for values more distant to
the mean, which corresponds to a Poisson distribution.

Though the traffic set concept allows any combination of scenarios, a relevant traffic set is a col-
lection of scenarios which are determined to be likely to occur in a real-world situation. A source
of information for traffic set selection is offered by telecoms statistics collected over the years.
However, these statistics are unfortunately limited in space and time. They comprehend only a
few scenarios since, in the past, very few services have been offered. The statistics are also not
representative anymore for the current social context since user population has increased, services
are cheaper, etc. This thesis does not consider the aspect of traffic set selection but offers a concept
to experiment with any possible combination.
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Figure 3.6: Example of Histogram with the Distribution of Scenario Requests

3.4.4 Traffic-Time Profile

A further concept is the traffic-time profile used to describe how the load intensity, i.e., arrival rate
of scenarios, changes along the test duration. The traffic-time profile defines the load intensity as
a function of elapsed time during a performance test. The function should ensure that sufficient
samples are generated on a specific time duration so that the performance metrics can be collected
with an appropriate confidence bound.

The traffic-time profile combined with the traffic set guarantee that the workload is composed as a
mix of scenarios, where each scenario with a specification and that the duration of the load inten-
sity at a specific level is long enough to collect relevant measurements for performance evaluation.

A common traffic-time profile is the stair-step traffic-time profile which is based on the stair-step
shape (see Figure 3.7). The width of the stair-step is such chosen to collect sufficient samples at
a constant average scenario arrival rate. In the presented methodology only the stair-step shape is
considered so far.

The traffic-time profile is controlled by a set of test parameters which regulate the behaviour of
the test along the execution time, e.g., load generation. As long as the traffic-time profile relates
to a particular traffic shape, the parameters can be defined globally for that shape. The general
parameters for the stair-step traffic-time profile are:

• stir-time - amount of time that a system load is presented to a SUT at the beginning of a test.
During this time interval, the database records are said to be "stirred".

• total number of simulated users - this describes the total number of simulated users. The
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Figure 3.7: Stair-Step Traffic-Time Profile

Table 3.2: Traffic-Time Profile Configuration Example

Stair-Step Traffic-Time Profile Parameters Value
PX SimultaneousScenarios 2
PX TotalProvisionedSubscribers 20000
PX PercentRegisteredSubscribers 100%
PX StepNumber 4
PX StartStepTransientTime 60 sec
PX EndStepTransientTime 60 sec
PX StepTime 600 sec
PX SApSIncreaseAmount 10
PX SystemLoad 100

SUT has to provide, i.e,. recognise their identities, this number of subscribers during the
test execution, but the test system may simulate only a part of them.

• the percentage of active users - this parameter describes the average percentage of simulated
users that are considered active and used by the TS. For example, if the SUT is required to
support one million subscribers, the TS may be requested to simulate only 20% out of this
number.

• scenario increase amount - the amount of scenario attempts by which the scenario arrival
rate is increased.

• the number of steps - the number of steps in a performance test as described in the perfor-
mance test procedure (see Figure 3.7)

• step duration - amount of time for a test to be executed with a given system load (a test step)
before incrementing the load.

• start transient time - an interval at the beginning of a step, during which scenario attempts
are not counted. It has the role to make the TS wait until the SUT accommodates to the new
load so that the metrics of a previous step are not influenced by the new step.

• end transient time - interval at the end of a step, to make the TS wait for the current transac-
tions close. The TS maintains the current load but does not count the metrics for any of the
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new created transactions.

• system load - initial rate at which scenario attempts arrive.

Table 3.2 illustrates a traffic-time profile for running a performance test with a population of 20000
users. All users are active at the beginning of the test. The initial system load is 100 Scenario At-
tempts per Second (SAPS) and it is then increased four times with 10 SAPS. The duration of each
step is 600 seconds.

3.4.5 Scenario based Performance Metrics

The performance metrics may be defined either for a specific type of scenario or for the whole
workload. First the scenario based metrics are discussed.

To validate the DOs established for a particular scenario a set of metrics specific to that scenario
can be derived.

Pass/Fail Metrics. The scenario attempts can be sorted into passed and failed scenarios. The
number of failed or passed scenarios represented as percentage of the total attempts is a metric
defined for each type of scenario. This metric is usually reported as a time based shape of fails or
passes per second and are described by the formula (1) - (4).

(1) MScenariosPassed : N → [0..100]

(2) MScenariosPassed ∆t = #PassedScenarios ∆t
#Scenarios ∆t ∗ 100

(3) MScenariosFailed : N → [0..100]

(4) MScenariosFailed ∆t = #FailedScenarios ∆t
#Scenarios ∆t ∗ 100

The metric defined in (3) and (4) computes the number of fails per second but does not take into
account which transaction has failed. As long as the interaction flow typically consists of several
transactions (see Figure 3.3 in Section 5.4), similar metrics can also be defined at transaction level
as presented in formula (5), with the meaning that reports the scenarios which failed on a particular
transaction.

(5) M tr
ScenariosFailed

∆t = #FailedScenariostr ∆t
#Scenarios ∆t ∗ 100

Transmission Latency. Another important metric applied to any scenario is the transmission la-
tency which measures the time needed by the SUT to deliver a message from one user to another
user. This metric can be computed per second and it is used to compute the average latency of
the SUT to process a certain event. It can be defined for any message which transverses the SUT
and it may be used to debug the performance of the SUT at transaction level, e.g., help finding
which transaction requires the most processing time. The definition of this metric is presented
in (6) where Td and Ts represent the time at destination or the time at sending of the message,
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Figure 3.8: Transmission Latency Visualisation Example

respectively. The formula computes the average latency per ∆t unit of time out of the number of
messages which traverse the SUT in this amount of time.

(6) Mlatency ∆t =
∑#messages

i=0 (Tdmessagei
−Tsmessagei

)
#messages ∆t

An example of the visualisation of the transmission latency is presented in Figure 3.8 which dis-
plays the load intensity as SAPS - upper line - and the latency as time duration in milliseconds -
lower line. Both shapes refer to the same X-axis but have different scales. Therefore, the left Y-
axis regards the load intensity with ranges from 100 to 136 SAPS while the right Y-axis concerns
the latency with ranges from 0 to 100 ms. The duration of the execution is represented on the
X-axis. The graph reveals how the latency depends on the load intensity along the test execution
time.

Round-Trip Time. The time between sending the request and receiving a response within a trans-
action is called round-trip time. This metric may be used to compute the average time needed to
execute a transaction. Similar to the transmission latency, the round-trip time is computed as a
function over time. Each second displays the average round-trip time computed among all trans-
actions within that second.

Formula (7) describes this metric. The function transactionduration (i ) denotes the time elapsed
from sending the first message in the transaction to the last message of the transaction. The average
is computed per unit of time ∆t out of all transactions created in that time.

(7) MRoundTripTime ∆t =
∑#transactions

i=0 (transactionduration (i))
#transactions ∆t
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3.4.6 Global Performance Metrics

Different to scenario based metrics, the global metrics characterise the overall test execution either
cumulated for all use-cases or for a particular use-case. They are classified: resource usage metrics
and throughput metrics.

Resource usage metrics. Typical resources that need to be considered include network bandwidth
requirements, CPU cycles, cache, disk access operations, network and memory usage. These met-
rics capture the resource consumption of the SUT over time and may help identify when, i.e., at
which load and after how much time, the SUT runs out of resources or starts failing. The use of
multi-core CPUs adds the requirement for CPU monitoring per core. This offers the possibility to
monitor how good does the SUT take advantage of processor parallelisation.

Throughput metrics. The throughput metrics are related to the message rates and characterise
the quantity of data the SUT is able to process. They are computed globally or per use-case for all
scenarios. The following global metrics are introduced:

• Scenario Attempts per Second (SAPS) - all observations made for an SUT are related to the
applied load. Therefore, the load intensity is a metric to be computed along the execution
time. This metric has the name SAPS and is computed as the average rate at which scenarios
are attempted. Here, all scenarios - not only the successful ones - are taken into account. By
observing this metric as a function of time, it becomes easier to understand how all other
metrics evolve over time and how they depend on the load intensity.

• Simultaneous Scenarios (SIMS) - another important metric is SIMS which counts how many
scenarios are open in each second. The duration of one scenario varies from a few seconds
to several minutes, therefore, SIMS metrics is a good indicator of how many open calls can
handle the SUT.

• Inadequately Handled Scenarios (IHS)% - to compute the error proportion, the IHS% met-
ric has been introduced. This metric is computed as a proportion of Inadequately Handled
Scenarios Attempts (IHSA) out of the total number of attempted scenarios. Therefore, the
IHS is represented as a percentage, i.e., IHS%. A scenario is counted as failed when either:
a) the message flow has not been respected, b) the message flow was stuck (timeout) or
c) one of the DOs for the scenario is not met. If one of these situations happens, then the
scenario is considered to be an inadequately handled scenario.

3.4.7 Design Objective Capacity Definition

The primary comparison metric reported by the TS is the Design Objective Capacity (DOC) and
it represents the largest load an SUT can sustain under specified conditions, e.g., error rate should
not exceed a given threshold. The DOC is intended to characterise the overall performance of an
SUT. It should not be confused with DOs which describe requirements with respect to delays or
error rates of a scenario. This number should serve for comparison among versions of the SUT,
different hardware platforms, different products, etc.

This number is defined as the load intensity for which the SUT still can handle the load for certain
quality conditions. Increasing the load intensity would automatically affect the SUT to exceed
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the demanded performance requirements, e.g., response times should be below a predefined limit.
The execution of a performance test implies that the selected scenarios from various use-cases are
executed at the same time. Each started scenario becomes a scenario attempt. Any of the scenarios
not handled correctly count as IHSA. The IHSAs are used to compute the IHS% metric which is
compared with a predefined threshold which is chosen by the test engineer. The last value of the
load intensity before IHS% exceeds the threshold is taken as the DOC value for that system.

3.4.8 Performance Test Procedure

A performance test is executed following the selected traffic-time profile2. Based on this shape,
several test steps with increasing loads are executed with the scope to measure the DOC of the
SUT. The test terminates when the threshold for IHSA frequency is reached. This is done by
finding a load at which the error rate is below the threshold, another load at which the error rate
exceeds the threshold, and by bracketing the DOC between these two loads. A test starts with
an underloaded system, which is gradually brought to its DOC, and maintained at that load for a
certain time. The time while the system is running at its DOC must be long enough to provide
meaningful data and highlight possible performance issues, such as memory leaks and overloaded
message queues.

The DOC interval is searched in accordance with the performance test procedure described in List-
ing 3.1. The test starts with the initial load and it increases the load for a number of steps. Each
step is executed for the pre-established duration of time. The results are analysed after each step
in order to evaluate whether the DOC was reached or not. If not, a new performance test with an
increased load value is executed. After a number of iterations, the situation depicted in Figure 3.7,
where the DOC is surrounded between two load values is encountered. However, the DOC taken
into account is the lower load value. In order to find the DOC with a finer granularity, that interval
can be split into further load values and run another test.

Listing 3.1: Performance Test Procedure

1. configure the system load for an initial load
2. run the test for TshortStep duration
3. if the step has IHS<0.1 increase the load with

SApSIncreaseAmount and go to 2 else go to 4
4. decrease the load with SApSIncreaseAmount
5. execute confirmation run for Tconfirmation duration
6. if the confirmation run has IHS>0.1 go to 4
7. the DOC is the current load

For better confidence in the results, the procedure terminates with a campaign of confirmation
runs. Different from the short steps to bracket the DOC value, the confirmation runs are executed
for a long enough period of time such as few million of transactions. If during the confirmation
run, the SUT fails, then the DOC must be lower than the first estimation and, consequently, a
new confirmation run is executed for a lower value. The test finishes when a confirmation run
terminates successfully, i.e., the IHS% is bellow the threshold.

2In this thesis only the stair-step traffic-time profile is considered.
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3.4.9 Performance Test Report

The performance test report collects and visualises all relevant metrics and statistics. A general
structure of a performance test report is shown in Figure 3.9. It is a document, with accompanying
data files, that provides a full description of an execution of a performance test. The SUT and the
TS, as well as their parameters, are described in sufficient detail that another person can replicate
the test. The test results should present as intuitively as possible the computed metrics and data
sets in the form of charts, graph or other visual format. A simple inspection of this information
depicts the behaviour of the SUT over the whole test execution time.

Figure 3.9: Performance Test Report Structure

The performance test report should visualise the global performance metrics and the scenario
based metrics, respectively. The metrics are presented in the form of graphs which display the
values per unit of time. Additionally, for each metric the performance characteristics should be
computed as well. With respect to the scenario based metrics, the test report contains a list of
separate reports for each scenario. Each scenario page includes the graphs generated out of the
collected metrics for that scenario and their performance characteristics. The types of graphs are
detailed in the following subsections.

3.4.9.1 Call Rate and Error Rate

Figure 3.10 provides an example of visualising the SAPS and IHS metrics. The test consists of
two load steps. The first line indicates the intensity of the load. Additionally, the points indicating
the number of scenarios created in each second can be observed. The dashed line (second line)
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Figure 3.10: Call Rate and Error Rate Visualisation

indicates the IHS as a percentage of fails out of the total number of calls. This graph visualises
two metrics in parallel, where one of the metrics is the load intensity itself. The same idea can be
applied to all other metrics, and even more than two metrics can be visualised in parallel.

3.4.9.2 Reaction Latency

Figure 3.11 shows the average latency of call establishment. This metric measures the round-trip
time between sending a request message until receiving the corresponding response message. The
time between the two events denotes the actual computation time required by the SUT to process
the request and deliver the response. This graph indicates the dependency between the latency and
the load level: during the second load step the latency is obviously higher.

3.4.9.3 Resource Consumption

Besides the protocol related metrics, the TS should monitor resources consumption of the SUT.
Figure 3.12 shows the dependency of the CPU system time (dashed-dotted line) and user time (dot-
ted line) on load rate. The demand for this resource depends on the applied system load. Figure
3.13 indicates the memory demand (dashed-dotted line) along the performance test procedure.
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Figure 3.11: System under Test Reaction Latency Visualisation

Figure 3.12: Graph Example of CPU Consumption Visualisation
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Figure 3.13: Graph Example of Memory Consumption Visualisation

3.5 Workload Implementation Patterns Catalogue

Test patterns are generic, extensible and adaptable test implementations [Bin99]. Test patterns
are reusable and, like an analogy of software patterns [Ale77], derived from test methods and test
solutions. They are available in the form of design methods [GHJV95], software libraries and/or
code generators which provide the test engineer ready to use code.

Although the test implementation languages are very flexible and allow various ways to write
a test, very often several architectural design patterns can be recognised in non-functional test
implementations [Neu04], [VFS05]. A common practise in software design is pattern-oriented
architecture design [SSRB00], [BHS07]. Similarly, architectural patterns can also be defined for
performance test development. The intent of this section is to analyse the implementation patterns
which may be used in TS realisation.

The overall test behavioural specification is realised as a collection of parallel executing pro-
cesses. Most operating systems provide features enabling a process to contain multiple threads of
control [Tan01]. At this level, the resource contention resolution, scheduling, deadlock avoidance,
priority inversion and race conditions are common problems [SGG03].

Within a test platform, the threads are used for testing specific tasks such as load generator, user
state handlers but, within the execution platform, also threads dedicated to non-testing tasks, e.g.,
garbage collection thread in a Java-based platform, may coexist. The focus in this thesis is on
patterns related to test behaviour only.

The employed threads fulfil different requirements. They can be grouped into types of actions,
e.g., threads for load generation, threads for state handling. The type of a thread may be instanti-
ated for an arbitrary number of times. Additionally, for each type of action, more than one thread
can be instantiated in order to increase the parallelism.
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The activity of the threads focuses on the interaction with the SUT, e.g., messages preparation,
communication, state validation. The behaviour of a thread may consist of simple protocol data
interchanges or of more-complex state machines based on sessions with several communication
transactions. The complexity consists of data processing instructions, communication instructions,
timing conditions. The set of testing related operations and their flow of execution include:

• user creation - concerns the creation of a user and its initialisation. At this step, the test
process creates a new entry in the users repository and sets the initial status of that user.

• user termination - at the termination of a user, the entry in the users repository has to be re-
moved. Additionally, if the communication is transaction based, the associated transactions
or timers have to be removed as well.

• data processing - different computations appear in a test process , e.g., data preparation,
evaluation of SUT answers.

• encoding - the data is encoded into the data format of the SUT. This operation only concerns
the tools which do not work directly on the raw-data.

• send - the operation the TS undertakes to send stimuli to the SUT. This operation also
comprehends the underlying communication operations, e.g., socket operations.

• enqueue - the operation the TS performs when receiving a message from SUT. Each re-
ceived message is put in a queue from where it will be processed at a later stage.

• decoding - the inverse operation of encoding; a raw message, constituting the returned SUT
information, is transformed into a structural entity which can be further investigated by the
TS. This step is also characteristic only to those tools which do not work directly on the
raw-message, but rather create a structural representation of the message.

• filtering - the received messages are filtered upon rules which determine the type of the
messages. In practise, the TS has to verify more than one filter. If one of the filters matches
the message, the TS executes the actions triggered by that filter.

• timer timeout - is the operation to check if an event happens, e.g., the SUT’s reaction, syn-
chronisation. A timer is a separate process which issues events for behaviour processes.

• logging - is the operation to produce log data when a relevant event happens in the TS.

The interaction between a test behaviour thread and the users’ data is depicted in Figure 3.14.
The users’ data repository consists of users’ identity information and the list of active scenarios
in which each user is involved. The thread simulates the behaviour of the user which consists,
in that example, of the communication operations represented in the figure as send and receive
operations. For simplification, the thread which handles the state machine of a user is named main
thread. At any receive or send operation, the thread updates the state of the corresponding sce-
nario. When a scenario finishes, the scenario id is removed from the list of active scenarios and
the user is made available for a new scenario.
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Figure 3.14: User State Handling within a Thread

The following catalogue presents the identified design patterns. They are structured into groups
and subgroups which are characterised by their common target.

User State Machine (Section 3.5.1)

• State Machine with Specific Handler: The state machine is bound to a single user only.

• State Machine with Generic Handler: The state machine can handle in parallel the states of
more than one user.

Thread Usage in User Handling (Section 3.5.2)

• Single User Behaviour per Thread: One thread handles only one user.

• Sequential User Behaviours per Thread: One thread handles more than one user in sequen-
tial order.

• Interleaved User Behaviours per Thread: One thread handles simultaneously more than one
user.

Timers Handling (Section 3.5.3)

• Timer Handling based on Sleep Operation: The timer is handled in the main thread using
the sleep operation.

• Timer Handling based on a Separate Timer Thread: The timers are handled by a separate
thread.

Message Sending (Section 3.5.4)

• Sending in the Main Thread: The send operation is handled directly by the main thread.

• Sending with Separate Thread: The send operation is handled by a separate thread.

– Sending with Separate Thread per Request: The separate sending thread handles only
one request; after that it dies.
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– Sending with Separate Thread per Session: The separate sending thread handles all
requests of a session.

– Sending with Thread Pool: A group of threads, i.e., thread pool, handles all requests
of all users.

Message Receiving (Section 3.5.5)

• Receiving in the Main Thread: The waiting for received data is performed directly in the
main thread.

• Receiving with Separate Thread: The waiting for the received data is performed by a sepa-
rate thread.

– Receiving with Separate Thread per Session: The waiting for the received data is re-
alised in a separate thread.

– Receiving with Thread Pool

∗ Reactor Pattern: The waiting for the received data is realised by a thread pool
which uses the reactor pattern.

∗ Proactor Pattern: The waiting for the received data is realised by a thread pool
which uses the proactor pattern.

Load Control (Section 3.5.6)

• Single Load Generation: The load is generated by a single load generator.

• Multiple Load Generators with Centralised Data

– Push Method: The load is generated by multiple generators using centralised data.
The data is pushed to the load generators.

– Pull Method: The load is generated by multiple generators using centralised data. The
data is pulled by the load generators.

• Multiple Load Generators with Decentralised Data: The load is generated by multiple load
generators which use separate data.

Data Encapsulation (Section 3.5.7)

• String Buffer Pattern: The messages are handled as string buffers.

• Content Reduction: The messages are represented as structures with minimal content.

• Structured Representation of Message Content: The whole content of the messages is rep-
resented as structure.

• Structured Representation of Pointers to Message Content: The content of the messages is
represented as a structure of pointers to locations inside the message.
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Population of Users (Section 3.5.8)

• Single Population: The population is maintained by a single pool.

• Clusters of Users: The population is split into clusters. There is one cluster for each sce-
nario.

• Minimal Number of Clusters: The population is split into a minimal number of clusters.

3.5.1 User State Machine Design Patterns

The behaviour of a user is usually implemented as a state machine that stores the status of the user
at a given time and can operate on input to change the status and/or cause an action or output to
take place for any given change.

Following the definition of the state machine as, for example, the one in [Bin99], the elements of
a state machine of the user behaviour in the test behaviour are recognised:

• an initial state - the user is initially unregistered.

• a set of possible input events - any message received from SUT is an input in the behaviour
of a user and may change its current state.

• a new state may result according to the input - many types of messages from SUT may
change the current status.

• a set of possible actions or output events that result from a new state - for most inputs from
SUT, a reaction must be taken, e.g., a new message is created and sent back to the SUT as a
response.

From the implementation point of view, the user state machine can be accomplished either in a
specific way or in a generic way. In the following, these two approaches are discussed.

Pattern: State Machine with Specific Handler (SM SpecHdl)3

Mechanism Illustration

Figure 3.15: Specific Event Handler
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Description

The specific handling approach is presented in Figure 3.15. The user state machine is processed
entirely by one thread and all data associated to its state machine is stored locally. At receiving
or sending of events, the user data is modified locally, the thread does not have to interact with an
external repository. This way it avoids synchronisation times with the rest of threads.

Advantages

As far as the implementation of this design model is concerned, it is easy to implement it since the
whole logic concerns only one user. The behaviour does not have to perform complex checks to
identify which user has to be updated for a given message. The timer events can also be simulated
locally within the thread by using sleep-like operations. The thread sleeps for short periods of time
until the waiting time expires or a valid event occurs, e.g., a response from SUT is received.

Additionally, this pattern has the advantage that the state machine is implemented very efficiently
since at each state only the valid choices are allowed. Everything unexpected is considered invalid
and the situation is passed over to an error handler. However, this works well only if the behaviour
consists of one scenario only. If the behaviour consists of more than one parallel scenario, the
state machine may be more complex.

Disadvantages

Unfortunately, for a huge number of users, this pattern is not practical since many threads have to
be created [BHS+99]. The most used operating systems (based on Unix or Windows) encounter all
serious problems under conditions involving a tremendous number of threads. The more threads
are created, the more context switches have to be performed, and the fewer CPU slots a thread is
assigned to. Also the synchronisation of many threads may raise a problem since too much time
is required. If the test behaviour needs many synchronisation points, it may become too expensive
to spend time for synchronisation only [Lea99].

Pattern: State Machine with Generic Handler (SM GenHdl)

Mechanism Illustration

Figure 3.16: Generic Event Handler

Description

The specific event handler pattern suffers from performance problems when too many threads are
created. Therefore, a better solution would be to create fewer threads by using one thread to handle
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more than one user. This way, the platform may scale obviously better than the previous pattern.

This pattern assures the data management globally and the state machine can be rather seen as a
message processor. The functionality of this pattern is depicted in Figure 3.16. At any new re-
ceived message, the message processor identifies the user to which the new message belongs and
updates its status in the required way. If the event requires also the creation of a new message
which has to be sent back to the SUT, the thread acts accordingly.

Advantages

From a programming point of view, this model is a bit more complicated than the previous one, but
the application of some programming conventions eases enough of the technical implementation,
e.g., templates, indexing.

This model has the advantage that a handler can be used to process an arbitrary number of users
in parallel since it depends on the new received message only. As long as the user data is stored
outside the thread, the thread does not control the flow of execution; instead, it executes its actions
only when they are triggered by external events.

Another advantage offered by this pattern is that the information of one user may be managed by
more than one thread. Since the thread does not manage the user information locally, it might be
assigned to handle any arbitrary event. However, all threads have to keep the user information
consistent. This concept offers also the possibility of more efficient balancing among the threads
since any thread can handle any event.

Disadvantages

A disadvantage in this pattern, is that the handler has to check the type of each new message
against all expected message types. This might not be efficient if applied to a large number of
types but, by using specialised search methods, such as a tree based search method, the efficiency
and optimisations may increase considerably.

3.5.2 Patterns for Thread Usage in User Handling

In the previous section the two models to realise a user state machine have been discussed. Both
approaches have advantages and disadvantages. In this section three more patterns regarding the
thread design and usage are presented. These patterns are based on the fact that not all users have
to be active at the same time. This avoids the existence of inactive threads, by instantiating new
threads only when they are needed.

Pattern: User Handler with Single User per Thread (UH SingleUPT)

Description

The easiest way to implement a user is to create an instance of a thread simulating only that user,
i.e. the main thread, as shown in Figure 3.17. This pattern is suitable to the state machine specific
handling approach (SM SpecHdl) but can also be combined with the generic approach. However,
if the SM GenHdl is selected, it is recommended that rather one of the next two patterns is used
to handle users.

Advantages

This pattern is easy to apply to user behaviour description. One can also reuse code from func-
tional tests.
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Disadvantages

Despite the easiness to write tests using this technique, two main drawbacks exist. Firstly, load
control is difficult to realise when the test engineer wants to keep a constant number of parallel
users. The test controller needs to continuously control the number of threads acting in parallel
and whenever a thread terminates, a new one has to be created. Secondly, the creation, the start
and the termination operations applied to threads are very expensive operations with respect to
CPU.

Mechanism Illustration

Figure 3.17: Single User per Thread

Pattern: User Handler with Sequential Users per Thread (UH SeqUPT)

Mechanism Illustration

Figure 3.18: Sequence of Users per Thread

Description

Due to the costs to create and destroy threads, it is preferable to reuse the threads for further users
as soon as other users terminate. This pattern is illustrated in Figure 3.18. This pattern requires
that the user identities are stored outside the thread and are loaded into the thread only when the
user has to become active. This pattern eliminates the problem of creating and destroying threads.
The threads are used like a pool of threads where each thread may take any user identity. During
the test, the number of threads may be increased or decreased according to the load intensity. This
way, the number of active users is maintained and controlled from within the running threads.

Advantages

The threads are reused to execute new user behaviours in sequential order. This way less CPU will
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be spent in order to create and destroy threads.

Disadvantages

This pattern can be combined with the specific strategy to implement a user state machine, as well
as with the generic approach. However, if applied to the generic approach, the process does not
keep the state locally but in the external users repository.

Another disadvantage is that the number of threads still depends on the load intensity. The higher
the load is the bigger the number of threads will be.

Pattern: User Handler with Interleaved Users per Thread (UH InterleavedUPT)

Description

A better approach to use threads is to interleave user behaviours at the same time on the same
thread as shown in Figure 3.19. This pattern may be seen as an extension of the previous pattern
with the addition that users are handled at the same time. This way, the thread is able to simulate
in parallel an arbitrary number of users.

Advantages

In combination with the generic state handling approach (SM GenHdl), this pattern is the most
flexible and scalable solution. A single thread can handle simultaneously many users. Moreover,
there is no need to associate the users to a thread, i.e., different events of one user can be handled
arbitrarly by more than one thread.

Disadvantages

If combined with the specific model, the mixture of parallel behaviours on one thread is com-
plicated to specify and most of the time the code loses its readability and becomes difficult to
maintain.

Mechanism Illustration

Figure 3.19: Interleaved Users per Thread

3.5.3 Patterns for Timers

All protocols used nowadays in telecommunication include time constraint specifications for the
maximal response times. Many protocols include also retransmissions specification at the protocol
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level4. Additionally, the user interaction with the SUT involves various user times such as talking
time or ringing time, which in performance tests have to be simulated too.

All these timing specifications have been regarded also in the proposed test methodology. The
DOs refer to the maximal response times. These values are taken out of the protocol specifications
or out of the Service Layer Agreement (SLA). The TS has to validate if these time constraints are
fulfilled, otherwise the scenario is considered as inadequately handled. If required, the retransmis-
sion times are taken directly out of the protocol specifications. They also have to be simulated by
the TS. If according to the specification, after a number of retransmissions, the SUT does not re-
act, the scenario is also considered to be inadequately handled. The user times are test parameters
which are typically randomly distributed around mean values. The mean values are obtained from
statistical estimations on the real user behaviours, e.g., the average voice call duration is three
minutes.

Two methods to realise timers in test specifications have been identified. Next, these two methods
are discussed.

Pattern: Timer with Sleep Operation (T Sleep)

Mechanism Illustration

Figure 3.20: Timer Implementation Using Sleep Operation

Description

The sleep operation is a thread functionality which causes the executing thread to sleep for a spec-
ified duration. The thread can wait until the time expires or it is notified by an external process to
wake up.

The sleep operation can be used to implement the timers used in test behaviours. The operation
can be invoked either to wait for an SUT response within a thread, or to validate whether the SUT
responds or not. This pattern is illustrated in Figure 3.20.

Advantages

This pattern is simple to apply and the timer concept can be implemented within the same thread
as the rest of the test behaviour.

Disadvantages

This approach is very limited due to the thread sleeping time when the thread cannot do something
else in parallel. Thus, the thread cannot simulate more than one user since it has to wait for the
responses of one user. Similarly, the thread cannot be involved in parallel calls since it has to track
the current call. This approach limits the state machine design possibilities to UH SingleUPT
pattern only.

4It is not meant the TCP retransmissions, but retransmissions at the upper level of the communication protocol.
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Timer with Separate Timer Thread (T SepTT)

Description

An approach which offers more flexibility implies the use of an external timer thread which man-
ages all timers involved in users’ scenarios. The functionality of this pattern is illustrated in Fig-
ure 3.21. When an event handler thread comes to the point that a timer has to be started, it asks
the timer thread to create a new timer which will notice it back when it expires. The timer thread
is provided with the user identity information and the expiration time. The timer thread manages a
queue of timers and executes them in their temporal order. When a new timer is created, the timer
thread schedules the new event in the right place. Since the timer events are ordered on time base,
the timer thread has only to sleep until the next timeout.

When a new timeout occurs, the timer thread notices the events handler thread responsible for the
user which created the timer. This can simply happen by sending a timeout event for that user.
However, if the user receives in the meantime a valid response from the SUT, the timer thread has
to remove the timeout event from the scheduling queue.

Mechanism Illustration

Figure 3.21: Use of a Timer Thread to Control Timing Constraints

Advantages

This approach is compatible with all patterns previously described. It is very flexible since it al-
lows the event handling threads to process events for an arbitrary number of users in parallel or
even parallel calls of the same user. Moreover, the timeout events are handled as normal events,
which makes the concept more generic. However, for even more flexibility, more than one timer
thread can be created.

Disadvantages

One disadvantage is that only one timer thread has to handle all timers created along the test execu-
tion. This might cause a problem when too many timers need to be created due to synchronization.
However, this issue can be remediated by creating several timer threads.
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3.5.4 Messages Sending Patterns

Sending and receiving operations are usually requiring long execution times due to data encoding,
queuing and network communication. The threads, which execute them, block until the operation
is completed. From this perspective, as argued in the previous patterns, it is not convenient to
let a state machine handling thread, i.e., main thread, spend too much time for these operations.
Therefore, several implementation patterns are investigated and the problem of gaining more per-
formance from a better design is discussed.

Pattern: Sending with Main Thread (S MainThread)

Description

The simplest method to realise the call flow of a scenario is to implement it completely as one
single thread. That thread takes care of all operations including sending and receiving of events.
This pattern is illustrated in Figure 3.22.

This approach is usually used in conformance testing where the test behaviour is a single thread.
The thread can send stimuli to SUT or wait for responses from SUT, but never at the same time.
When waiting for SUT reactions, technically, the test thread sleeps for short amounts of time and
wakes up from time to time to check whether the SUT has replied or not. If the SUT responds, the
test thread validates the answer and follows the course of test actions. If the SUT does not react,
the test threads can decide to issue a timeout after several wake ups.

Mechanism Illustration

Figure 3.22: Messages Sending in the Main Thread

Advantages

This pattern is simple to use as long as all send operations are handled by the main thread.

Disadvantages

This pattern is not suitable for performance testing for two reasons. Firstly, it is bound to the
execution of one scenario, i.e., the thread can only handle messages which belong to one scenario
due to the time events it has to wait for. Once the thread has to wait for a response it has to sleep
until the thread receives a message or until its waiting time expires. Secondly, in order to simulate
a huge number of scenarios, this model is not efficient since each scenario has to be instantiated
as a separate thread. For a big number of threads, the TS becomes slow since CPU slots have to
be reserved to threads context switches too.
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Pattern: Send with Separate Thread per Request (S SepThreadPerRequest)

Description

A better approach is to use a separate thread for sending operations when these operations con-
sume too much time. This pattern has the advantage that the main thread can work in parallel
with the sending thread. The send thread either dies right after sending the message or can also
be used as waiting thread to treat the SUT responses. The S SepThreadPerRequest, illustrated in
Figure 3.23, implies that each send request is handled by a separate send thread.

Advantages

This pattern is useful for TSs which simulate multiple users that handle long-duration request/re-
sponse, such as database queries. The main thread can execute many other operations while the
send operation is handled.

Disadvantages

This pattern is less useful for short-duration requests due to the overhead of creating a new thread
for each request. It can also consume a large number of OS resources if the TS has to simulate
many users that make requests simultaneously.

Mechanism Illustration

Figure 3.23: Sending with Separate Send Thread per Request

Send with Separate Thread per Session (S SepThreadPerSession)

Mechanism Illustration

Figure 3.24: Send Thread per Session
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Description

The S SepThreadPerSession is a variation of the S SepThreadPerRequest that compensates the
cost of spawning the thread across multiple requests. It implies that each user simulated by the TS
is handled by a separate thread for the whole duration of the session, i.e. the sending operations
are handled by the same thread.

Advantages

This pattern is useful for TSs that simulate multiple users that carry on long-duration conversa-
tions.

Disadvantages

This pattern is not useful for TSs that simulate users that make only one single request, since this
is actually a thread-per-request model.

Pattern: Send with Thread Pool (S ThreadPool)

Mechanism Illustration

Figure 3.25: Thread Pool for Message Sending

Description

In the S ThreadPool pattern illustrated in Figure 3.25, a number of N threads are created to per-
form a number of M tasks, usually organised in a queue. Typically, N is much smaller than M. As
soon as a thread completes its task, it will request the next task from the queue until all tasks have
been completed. The thread can then terminate, or sleep until there are new tasks available.

Advantages

Having in mind the two patterns described above, the thread pool model can be seen as another
variation of thread per-request that also compensates thread creation costs by pre-spawning a pool
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of threads. It is useful for TSs that need to limit the number of OS resources they consume. SUT’s
requests/responses can be handled concurrently until the number of simultaneous requests exceeds
the number of threads in the pool. At this point, additional requests must be queued until a thread
becomes available.

The advantage of using a thread pool over creating a new thread for each task is that thread creation
and destruction overhead is avoided, which may result in better performance and better system sta-
bility. When implementing this pattern, the programmer should ensure thread-safety of the queue.

Disadvantages

One potential problem is how to configure the correct number of threads (N) so that the waiting
time for the tasks in the queue is minimal.

3.5.5 Message Receiving Patterns

Similar to sending of messages, there are several patterns to implement the receiving operations.
For receiving of messages, the receiver thread creates a message queue in order to read from it
whenever new messages are enqueued into it.

Pattern: Receive with Main Thread (R MainThread)

Mechanism Illustration

This pattern is illustrated in Figure 3.22.

Description

In this pattern, which is traditionally used for functional testing [BJK+05], the thread which im-
plements the scenario call flow may be used also for receiving messages. In this approach, the
thread has to stop until a message is received, thus it cannot be used for more than one call flow.
At receiving of a new message, the thread validates whether it is the expected one or not.

Advantages

This pattern is simple to apply as long as the receive operation are described in the main test
behaviour.

Disadvantages

This approach is a simple one but cannot be used to implement large scale TSs due to the large
number of threads required for large numbers of users.

Pattern: Receive with Separate Thread per Session (R SepThreadPerSession)

Description

For critical tasks it is necessary to return the control to the thread instead of waiting for SUT re-
sponses. This way, the test thread can deal with other actions, e.g., other scenario flows. In this
situation, a new thread is created and it only waits for SUT responses and notifies the main thread
in case where something is received.

Advantages

This approach is needed especially when the first thread has to handle more than one user. The
first thread sends a request for one user and instead of waiting for responses from SUT, it creates
another request for a further user. The second thread listens to the communication channels for
SUT replies.
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Disadvantages

This pattern has the inconvenient that, for large number of users, a huge number of receiving
threads need to be created.

Mechanism Illustration

Figure 3.26: Receiver Thread per Session

Pattern: Receive with Thread Pool (R ThreadPool)

Mechanism Illustration

Figure 3.27: Thread Pool for Message Receiving

Description

Depending on the quantity of responses, many different threads might be simultaneously present,
complicating the thread management. Since any main behaviour thread requires a second thread
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for checking SUT replies, one thread can be shared among several main threads. The shared thread
listens to more sockets in parallel and whenever something is received it notifies the corresponding
main thread.

This pattern requires an identification mechanism, usually called event demultiplexor, between the
received messages and the main threads. The event demultiplexor is an object that dispatches I/O
events from a limited number of sources to the appropriate event handlers. The developer regis-
ters interest in specific events and provides event handlers, or callbacks. The event demultiplexor
delivers the requested events to the event handlers.

Two patterns that involve event demultiplexors are called Reactor, i.e., Receive with Thread Pool
with Reactor (R ThreadPool Reactor) and Proactor, i.e., Receive with Thread Pool with Proactor
(R ThreadPool Proactor).

The reactor pattern supports the demultiplexing and dispatching of multiple event handlers with
synchronous events. This pattern simplifies event-driven applications by integrating the syn-
chronous demultiplexing of events and the dispatching of their corresponding event handlers. The
demultiplexor passes this event to the appropriate handler, which is responsible for performing the
actual processing. This communication is based on synchronous operations which return control
to the caller only after the processing is finished.

The proactor pattern supports the demultiplexing and dispatching of multiple event handlers,
which are triggered by asynchronous events. The event demultiplexor initiates asynchronous oper-
ations and sends those events forward to the appropriate handlers but does not wait for completion.

Advantages

This pattern uses efficiently the hardware resources by reducing considerably the number of
threads.

Disadvantages

This pattern is complicated to realise since it requires an identification mechanism, i.e., event
demultiplexor, between the received messages and the main threads.

3.5.6 Load Control Patterns

In order to control the load intensity, the TS has to control the number of transactions running in
parallel. Such a mechanism is called load control and it is usually implemented as one or more
separate processes which interact with each other in order to increase, hold or decrease the number
of interactions with the SUT.

Coming back to the general model for a scenario flow, in Figure 3.3, the role of the load controller
is to select users and create new calls for those users which executes scenarios as presented in that
flow. This implies the sending of the first request, i.e., Req1, for each user. This step will bring
the user from the available state to the Req1 sent state, as represented in Figure 3.4. In order to
control the intensity of the load, the load controller needs to manage all send events of messages
of type Req1. For this reason, the load controller is also called load generator.

The synchronisation of the parallel threads is realised by passing coordination messages asyn-
chronously or through synchronous remote procedure calls. In general, the load control threads
require synchronisation at the start or stop and at increasing or decreasing the level of load.

A general issue of load controlling is the precision of the timestamps of the events. Many perfor-
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mance tests require a precise control of the time of each sent event and of the rate the events are
sent. Some performance tests even require a precise distribution of the timestamps within a time
interval, e.g., Poisson distribution [FMH93].

The load control mechanisms may have centralised data or decentralised data. The centralised data
approach implies that the data needed for load generation is centralised in one place, therefore the
load generation threads have to acquire the data from a central place. The approaches based on
decentralised data eliminate the overhead of synchronisation, so that each load generation thread
is capable of deciding how to generate requests.

Pattern: Load Generation with Single Generator (LG SGen)

Description

The simplest method to realise the load control is to have only one thread to generate the load. A
single load generator can control the load by itself taking care of the times of issuing events.

Advantages

This works very well as long this thread can generate the whole load.

Disadvantages

This pattern has the disadvantage that the precision decreases for higher loads.

Mechanism Illustration

Figure 3.28: Single Load Generator

Pattern: Load Generation with Multiple Generators and Centralised Data (LG MGenCtrl)

Description

In the centralised approach, the load information is maintained by a central entity called load con-
troller. The load controller keeps a global view of the load rate to be realised and controls all
timestamps when events have to be created.

The load controller mechanism can work either in pull mode, i.e. Load Generation with
Multiple Generators and Centralised Data using Pull Method (LG MGenCtrl Pull) pattern, in
which the user threads ask the controller for timestamps when to send new events, or in push
mode, i.e. Load Generation with Multiple Generators and Centralised Data using Push Method
(LG MGenCtrl Push) pattern, in which the controller asks the user threads when to generate
new events.

The LG MGenCtrl Pull pattern requires that each load generator thread asks the load controller
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for the timestamps when to send events. The load controller works in this case as a server which
provides an interface for demanding timestamps.

The LG MGenCtrl Push implies that each load generator is provided ahead with information
when to issue a new event. This requires that each load generator is ready to send events at the
demand of the load controller. The load controller works in this case as a dispatcher of timestamps.

Mechanism Illustration

Figure 3.29: Multiple Load Generators with Centralised Data

Advantages

The load generation is distributed to several load controllers which balance the effort of creating
requests. This pattern ensures a good time precision.

Disadvantages

The disadvantage of these patterns is that the data is kept centrally, thus, synchronization between
the load generator threads is required.

Pattern: Load Generation with Multiple Generators and Decentralised Data (LG MGenDectrl)

Description

The load control can be realised also in a decentralised fashion, so that each load generation thread
acts on its own. The basic idea is to instrument each generation thread for how much load to gen-
erate and how it should generate that load.

Advantages

This approach is adequate for distributed execution in order to avoid the communication overhead
required by the centralised method.

Disadvantages

One disadvantage of this pattern is that the user data has to be split into smaller clusters so that
each load generator can work with its own user data.



76 Chapter 3 Performance Testing Methodology and Realisation Patterns

Mechanism Illustration

Figure 3.30: Multiple Load Generators with Decentralised Data

3.5.7 Data Encapsulation Patterns

The test operations act upon messages interchanged with the SUT. The content of a message is
usually not handled in its raw form but in the form of a structure which provides means to access
its information. The mechanism is called data encapsulation. The content of a message is accessed
via an interface which provide pointers to the smaller parts of a message.

In this section several strategies to encapsulate and access the content of a message are discussed.

Pattern: Data Representation using String Buffer (D StringBuffer)

Mechanism Illustration

Figure 3.31: Data Representation using a String Buffer

Description

The simplest method to encapsulate message data is to store it into a string buffer. Therefore, this
approach is limited to string based protocols, e.g., SIP, diameter. The string buffer allows for easy
search and modification operations through regular expressions. Due to its simplicity, this pattern
is easy to integrate in any execution environment. It also does not require further encoding or
decoding of the content.
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Advantages

The string buffer allows for easy search and modification operations through regular expressions.

Disadvantages

Unfortunately, the string processing costs a lot of CPU time. Therefore, the pattern should not be
used for big messages. A simple optimisation is to split the message into several strings which are
then processed separately.

Pattern: Data Representation with Minimal Structure Content (D MinStrContent)

Description

This pattern considers that the content is reduced to a minimal amount of information. It is based
on the idea to extract from the message only the useful information and handle it separately from
the rest of the message. When the information has to be used to create a new message it only
has to be introduced into the new message. This pattern requires two operations: decoding, i.e.,
extracts the used information from the message and encoding, i.e., puts the information into a new
message. Figure 3.32 illustrated the mechanism of this pattern.

Advantages

This pattern is applicable to any type of protocol, not only string based. It works efficiently when
the used information is small compared to the size of the message.

Disadvantages

This pattern works efficiently only when the extracted information is sufficient to create new mes-
sages, i.e. the further messages according to the protocol. Otherwise, when additional information
from the original message is needed to create the response, the original message has to be stored as
well. This happens when the additional information is not needed by the TS but might be required
by the SUT.

Mechanism Illustration

Figure 3.32: Data Representation using a Structure with Minimal Content

Pattern: Data Representation with Complete Structured Content (D StrContent)

Description

This pattern requires that the content of the message is represented as a tree structure, which is
based on the protocol message specification. The information is extracted by a decoder which
traverses the whole message and constructs the tree representation. At send operation, the tree is
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transformed back into a raw-message by traversing each node of the tree.

Advantages

A big advantage, from testing point of view, is that the tree representation eases the access to ev-
ery piece of information. On top of this the event handler may validate any detail required by the
protocol, e.g., test the conformance with the protocol specification.

Disadvantages

The coder and decoder operations may cost a lot of CPU time, therefore it should not be used
unless the whole information is required for testing activities. Additionally, the coding operation
may need to create lots of short living objects. In a Java based environment, this may cause very
dense garbage collections, which make that all threads stops, thus interrupting other important
activities.

Mechanism Illustration

This pattern has the same mechanism as D MinStrContent pattern with the addition that the entire
message is decoded into the structured representation.

Pattern: Data Representation as Structure of Pointers (D StrPointers)

Mechanism Illustration

Figure 3.33: Data Representation using a Structure with Pointers to Content Locations

Description

This pattern is an optimisation of the D StrContent pattern. The idea is to keep in the tree structure
only pointers to the locations where the content can be accessed in the raw-message. Figure 3.33
illustrates the mechanism of this pattern. This pattern still requires a CoDec but it can be imple-
mented more efficiently as long as no short living objects are required since the only task is to
identify and modify data at given locations in the raw-message.

This pattern can be used even more efficiently when the locations are predefined. In a test work-
load, where all data is created based on data generation patterns, the locations can be computed in
advance only based on the possible content in the message. However, this requires that each field
has fixed size, e.g., user number always has seven digits.

Advantages

The main advantage of this pattern is the reduced consumption of CPU and memory for coding
and decoding.
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Disadvantages

This pattern is difficult to implement for many protocols.

3.5.8 User Pools Patterns

Until this point, the performance test behaviour has been described as the composition of all user
behaviours, where each user behaviour is seen as a particular test scenario. However, there still
have to be considered the rules to select users and to assign them to a particular type of scenario
as long as a user may run any type of scenario.

A user is characterised by its identity and its state. A user can be in “available” state, which im-
plies that the user can be selected to run a new scenario, or another state different than available,
while running a scenario. When a user runs a scenario it means that all transactions involved in
the scenario are parameterised with that user identity.

A simulated user may create calls of different types. Additionally, a user may run simultaneous
scenarios, e.g., make a voice call and send a message at the same time. At the creation of a new
call, the selection of the user should be arbitrary. The chosen user should be able to call any other
user, including himself, e.g., the user can send an instant message to himself. A user may be used
several times if the run is long enough. For short runs it is very unlikely that a user is used twice.

The set of users involved in a performance test is called user population and the user population
can be split into several user pools. A user pool groups together a set of users which are intended
to perform a similar task, e.g., a particular type of scenario, a group of scenarios, a use case.

Any performance test should define and obey a set of rules with respect to the manner in which
the users are selected from a users pool. Here is an example of several rules:

• A user is a state machine able to simulate the complete behaviour of a user equipment

• A user may be “callee" or/and “caller"

• A user may create more than one call

• A user may be reused to create other calls

• A user may call randomly any other user

The “active" users initiating a scenario and reacting to a scenario attempt are selected randomly
from one users pool. Since users may be selected arbitrarily, the test logic has to avoid side effects
between different scenarios impacting the measurement, as it happens for example in IMS domain
when a called party has been unregistered but it has been selected to create a new voice call; thus,
the call will fail even though it is not caused by the SUT.

There are several patterns to sort out the users into users pools. These patterns are discussed in the
following.

Pattern: Population with Single Pool (P SinglePool)

Description

The simplest pattern is to use a single pool as presented in Figure 3.34. All scenario instances
share this user pool.
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Unfortunately, in this approach, it is difficult to avoid conflicts between the different scenarios
executed in parallel. For example, for an IMS SUT which requires users to be first registered,
the unregistered users for a registration scenario are needed. If a user, which has been already
registered, is selected again for registration, this is not a correct selection.

To avoid conflicts, the TS needs more computational resources to perform various checks on the
random selected users. If a users does not fulfil the preconditions, then it is abandoned, and another
one will be selected.

This pattern influences also the test distribution, since the user states have to be always updated
when the call goes into a new state. Assuming that each server keeps a local repository for user
information, extra communication between the servers is needed in order to synchronise and keep
the local repositories up-to-date.

Mechanism Illustration

Figure 3.34: Single User Pool Pattern

Advantages

This pattern has the advantage that it is simple to realise.

Disadvantages

This pattern may cause conflicts between scenarios. To avoid these conflicts the TS needs to
perform various checks to verify whether the selected users can be used or not in a new scenario.

Pattern: Population with Pool Clusters (P Clusters)

Description

A better pattern which avoids the conflicts described for single pool pattern defines a separate
pool for each scenario as illustrated in Figure 3.35. It is unfortunately less realistic since a user is
limited to only one type of scenario along the test duration.

Advantages

This pattern has the advantage that it avoids conflicts between scenarios using the same users.

Disadvantages

This pattern causes a unrealistic behaviour due to the association of users to a type scenario. This
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implies that a user associated to one scenario cannot be involved in other types of scenarios than
the one it has been associated to.

Mechanism Illustration

Figure 3.35: User Pools Clusters for Different Scenarios

Pattern: Population with Minimal Number of Pool Clusters (P MinClusters)

Description

This pattern is based on the combination of the previous two patterns as presented in Figure 3.36.
This pattern solves the conflicts between the different scenarios which use the same users, e.g,
deregistration versus registration in an IMS network, by creating separate clusters for the users in-
volved in scenarios which might cause conflicts. All other scenarios which do not cause conflicts
share the same cluster.

Advantages

This pattern has the advantage that it creates less clusters than P Clusters pattern.

Disadvantages

This pattern is not realistic if all scenarios should use separate clusters (they may conflict one each
other). Additionally, this pattern is more complicate to implement since a special management of
the clusters is needed.

Mechanism Illustration

Figure 3.36: Approach with Minimal Number of User Pool Clusters
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3.5.9 Pattern Compatibility Table

In the previous sections, several patterns to realise workloads have been introduced and discussed.
The patterns have been grouped into categories which depend on the function they have to ful-
fil, e.g., patterns to realise the event handling. As one can observe, there are patterns from one
category which are not compatible with others from another category. The compatibility between
patterns is an important aspect which has to be analysed before selecting a certain pattern to realise
a workload.

Table 3.3: Pattern Compatibility Table
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SM SpecHdl * + + + + + + + + + + + + + + + +

SM GenHdl * + + + + + + + + + + + + + + +

UH SingleUPT * + + + + + + + + + + + + + +

UH SeqUPT * + + + + + + + + + + + + + +

UH InterleavedUPT * + + + + + + + + + + +

T Sleep * + + + + + + + + + + + +

T SepTT * + + + + + + + + + + + +

S MainThread * + + + + + + + +

S SepThreadPerRequest * + + + + + + + +

S SepThreadPerSession * + + + + + + + +

S ThreadPool * + + + + + + + +

R MainThread * + + + +

R SepThreadPerSession * + + + +

R ThreadPool Reactor * + + + +

R ThreadPool Proactor * + + + +

LG SGen *
LG MGenCtrl Push *
LG MGenCtrl Pull *

LG MGenDectrl *

In Table 3.3 the compatibility between the presented patterns is analysed. A simple notation is
used: the “+” sign marks pairs of patterns which are compatible. Obviously, the patterns from the
same category are not compatible with each other, since they cannot be used simultaneously in the
same implementation.

Since the load generation patterns consist of separate threads, which do not interfere with the rest
of the threads used for user state handlers, timers, senders, receivers, etc., they are compatible with
all categories. Therefore, the selection of a load generation scheme does not depend on the way
the user behaviour is implemented.

The specific state machine handling pattern cannot be used with the interleaved user handling
pattern, while the generic approach for state handling is not compatible neither with the reactor
message receiving pattern nor with the sleep based pattern for timers.

Another set of incompatibilities is noticeable for the interleaved user handling pattern. This is not
compatible with sleep based timer pattern, receiving in the main thread pattern and reactor based
message receiving pattern.
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3.5.10 A Selected Execution Model

Throughout the case study presented later in Chapter 5, most of the patterns have been experi-
mented. For any given workload, many design approaches are suitable. However, each pattern has
advantages and disadvantages. Some are difficult to implement but work more efficiently, others
are simpler to implement but are also less efficient. Though the work presented here may help test
engineers to decide upon an architecture, it is, however, out of the scope of this thesis to decide
which design or pattern is best to use. The goal is rather to decide upon an example of an execution
model and study how performance test workloads can be implemented on top of it.

At the beginning, the TS was based on the Specific Handler design pattern (SM SpecHdl) and
on the Single User Behaviour per Thread (UH SingleUPT). For the receiving of the messages the
Thread per Session (R SepThreadPerSession) pattern was used. As far as the data is concerned,
for the data encapsulation a structured representation of the message content (D StrContent) was
used. The initial implementation was a simple adaptation of the functional tests to performance
testing. This approach was not capable of satisfing the performance needs as required by the
project; therefore, further improvements have been investigated.

The first improvement was related to the mechanism used for receiving messages. A thread pool
approach for handling the received messages (R ThreadPool) has been replaced and the perfor-
mance of the TS increased up to 40%. The increase occurs in fact due to the reduction of the
number of receiving threads.

Another milestone in the implementation was the switch from Single User Behaviour per Thread
(UH SingleUPT) to Sequential User Behaviours per Thread (UH SeqUPT) and, later on, to
the Interleaved User Behaviours per Thread pattern (UH InterleavedUPT). That was necessary
mainly because the SUT was capable of supporting more users and the aim was to test the maxi-
mal capacity of the SUT. By using this approach the TS increased the number of emulated users
from a couple of hundreds up to more than 10.000. Also the throughput performance increased
again up to 30% since fewer threads are created than before.

In the early stages only 5 scenarios were supported, but in the end the traffic set consists of 20
different scenarios. This amount of different scenarios made that the Specific Handler pattern was
not suitable anymore; thus the adoption the Generic Handler pattern occurred. The Generic Han-
dler proved to be more flexible and easier to maintain and also more suitable for satisfying all the
requirements of the workload, e.g., the mix of scenarios, the possibility of a user to handle more
than one scenario at the same time.

A final improvement of the test solution is the switch from a structured representation of the
message content (D StrContent) to a structured representation of pointers to message content
(D StrPointers). From the preliminary experiments a remarkable increase of the performance to
more than 300% out of the current performance is expected.

As result of various improvements, the overall performance of the TS increased significantly. The
resulting selection of patterns is presented in Figure 3.37. Far from being a simplified model, this
particular model combines several patterns described in Section 3.5 and limits itself to a subset of
characteristics. However, the model is an outcome of various experiments to find the best design
in order to satisfy the performance needs in the case study.

An architecture with more than one CPU per host is considered. It results from the fact that most
test hardware is nowadays based on multi-CPU architectures. Additionally, the architecture may
scale over an arbitrary number of hosts by distributing the functionality and the data among the
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Figure 3.37: A Selected Execution Model

hosts. The execution framework consists of three types of elements:

• threads which fulfil various types of tasks, e.g., load generation, state handling, send opera-
tions, receive operations, timers operations

• data repositories to keep the users’ information, e.g., identities, states

• message queues to enqueue messages received from SUT or from timer scheduler

The test data consists of user data and traffic set data. The user data comprises of user identity
and for each user scenario the scenario status. This data is stored in a user repository created at
the beginning of the test. If more than one host is used, the user repository is simply replicated on
each host or split into several repositories so that each host has its own data repository.

The traffic data consists of the traffic set, traffic-time profile and set of users to be used during the
execution. This data is loaded into the load generators. For a distributed environment, the traffic
set is split among the load generators (one per host) so that no collision between users may happen,
i.e., each load generator acts on its own set of users.

The load generation is realised by several load generator threads (one per host) which use decen-
tralised data (LG MGenDectrl pattern). Each load generator has its own data which is created at
the beginning of the test. Therefore, each load generator controls only a part of the users. This
approach is chosen since it is easy to implement and works for many types of call arriving patterns.

The users are handled by user handler threads in the figure, p1, p2, p3 and p4. On each host,
multiple instances of such threads are created. The number of instances is usually selected equal
to the number of CPUs on that host such that each thread is executed on a separate CPU. All user
handler threads instantiated on a host act on the same user repository in order to update users’
status.

In this model an assumption is made that the sending operation does not cost too much CPU.
Hence, the user handler threads also execute the sending operations. Therefore, no separate threads
for these operations will be created.

On the receive side, a thread pool monitors all communication ports with the SUT. Whenever
something is received from SUT, one thread available from the pool reads the message and
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enqueues it into the correct queue, i.e., q1, q2, q3, q4. The thread does not have to wait
until the message is processed by a user state handler thread, therefore the proactor pattern
(R ThreadPool Proactor) is used.

The received messages are read from the queue by the user handler threads. For each message the
handler interacts with the user repository and identify the user responsible for the new message.
Then it updates the state accordingly and undertakes the follow-up actions.

The interrupted arrows in Figure 3.37 show the communication paths between the TS and SUT.
The continuous arrows indicate the actions within the TS. Each arrow has a label with the sequence
number indicating the order in a complete call flow. A call is created by the load generator which
selects from the users’ repository a valid user. A user is valid when it is not busy and when it can be
used for a new scenario. The load generator creates the call by sending the first request to the SUT
(1) and updates the status of the scenario in the scenario list of the selected user. The response is
captured by the RsecvPool (2) which puts the message into a queue (3). Each user handler thread
can be used to handle a message, therefore the message can be enqueued arbitrarily in any queue.
For optimisation purpose, a load balancing algorithm can be used. Next, the message is read by
the corresponding user handler thread (4). The thread processes the state and update the new state
in the users’ repository (5). If the call flow requires a new message to be sent to the SUT, the
thread prepares the new message out of the information available, e.g., the received message and
users’ repository. The new message is sent to the SUT (6).

In order to simplify the figure, the timer events are not shown. The timer thread is needed to
schedule the timer events. Whenever a timeout event occurs, the event is enqueued in one of the
receiver queues as any other SUT response. The timer thread can be interrogated at any time by
any user handler thread or load generator thread in order to create or remove timers. The timeout
events of timers created by load generators are handled also by user handler threads.

3.6 Summary

In this section the composing parts of a TS have been distinguished. The first part describes
the method to design suitable workloads and performance tests for multi-service systems. In the
second part of the chapter the patterns used in the implementation of performance tests are inves-
tigated. These patterns are seen as generic guidelines for how to implement a test relying only on
abstract artefacts such as threads, user state machines and data processing operations. Addition-
ally, a selected model for test execution based on the introduced patterns has been also described.
The discussion around the model compares different combinations of the patterns as they have
been employed within the case study (see Section 5). However, the list of patterns can still be
extended if further hardware or OS artefacts such as Hyper-Threaded CPUs [BBDD06], multi
CPU architectures [KSG+07] are considered. Additionally, platform, e.g., J2EE [DF03], specific
characteristics should be taken into consideration.
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Chapter 4

Performance Test Execution

I was born not knowing and have had only a little time to change that here and there.
– Richard Feynman

The methodology introduced in the previous chapter helps a test engineer in designing meaningful
performance tests. The next step is to realise those tests into a concrete test execution platform. As
shown in Chapter 2 where the requirements for a functional test architecture are discussed, the test
execution is the TS part which executes the test operations described into a programming language
form. The test operations implementation approaches have been presented by means of patterns
for the most common operations: state handling, load generation, send/receive, etc. which can be
realised by using general data processing elements: threads, buffers, data structures.

This chapter covers the design of the test harness for performance test execution and proposes a
concrete conception of an execution platform based on the TTCN-3 language. The test harness is
the central part of a test execution platform which supplies the functionality to create, execute and
validate tests [ORLS06]. The elements of the test harness are: stubs, test drivers and test control
systems. These components build together the system that starts the SUT, sends messages to it
and then evaluates the responses [Bin99].

4.1 Requirements on Test Harness

A test harness is a software just like an application system [Bin99]. Test harness definition in-
cludes the specification of requirements, architecture and functional components, interfaces be-
tween components and the interface to the user [LyWW03]. This Section regards the requirements
and the execution dynamics of the test harness while, later on, in Section 4.6 the architecture and
interfaces are presented in detail.

4.1.1 Test Execution Driver Requirements

Test harness can be a library, a tool or a collection of tools to map the abstract test concepts, e.g.,
users, states, traffic set into operating system elements, e.g., threads, IO, buffers [Bin99]. The
requirements for a performance test execution driver are highlighted.

Full automation. First of all, the test execution driver has to be fully automated [FG99], i.e.,
the test engineer should only need to configure the tests and then wait for the final results. The

87
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test framework should provide the test engineer with all the technical support to compile tests,
generate execution scripts and control the execution, e.g., stop, pause, restart anytime during the
test.

Distributed execution. Since various types of performance tests are regarded, the performance of
the test tool should be very high. It is also expected that the SUT will scale very fast due perfor-
mance improvements, scaling over more servers, etc. Therefore, the test tool should also be able
to scale its overall performance by distributing the test behaviour over several hosts.

Test Reporting. The test reporting capability constitutes an important aspect. During or at the
end of the test execution the information about the SUT’s performance has to be reported. This
can be gathered from the execution traces, therefore, an important requirement for the test driver
is the logging provision. However, the logs alone are also not enough. The reporting feature has
to provide various graphs and statistics toward performance metrics.

4.1.2 Execution Dynamics

The execution of a test application aims at installation and execution of a logical component topol-
ogy in a physical computing environment. It comprises the following steps:

1. The code is uploaded on all target test nodes.

2. The execution platform allocates on each node the required start-up hardware resources,
e.g., memory.

3. Start of the execution environment and instantiation of parallel processes on particular target
nodes.

4. During the execution, the creation and connection of further parallel processes is foreseen.
The processes are programmed to execute test operations, interact with the SUT and detect
SUT’s malfunctions.

5. When the test procedure is done, the execution environment stops the parallel processes,
closes the communication channels to SUT, delivers the produced logs to the tester and
releases the allocated memory.

4.2 Performance Testing Tools Survey

There are various commercial and open source libraries or tools which can be used for performance
testing. Although there are many documents put out by software vendors, very few research sur-
veys of performance test tools are available. Also very few research papers present performance
test tools design issues.

In research catalogues like ACM [ACM08], CiteSeer [Cit07], Elsevier [Els07], Springer [Spr07],
IeeeXplore [IEE07] only a few publications related to performance test tool design can be found.

In [KPvV00] the Tool Command Language/Toolkit (Tcl/Tk) [WJ03] language is used to develop
performance test frameworks. The paper explains the complex requirements of load testing and
gives a detailed overview for the extensive use of Tcl/Tk within the system. Similarly, in [Ama98]
a Tcl-based system capable of running multiple simultaneous tests in the context of testing an
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authentication server is presented. The design and implementation illustrate novel applications of
Tcl as well as the rapid development and code re-usability inherent in using Tcl as an application
glue language.

Tcl combined with Tk is used often in large companies, small companies, academia or source
but when used for testing purposes one has to also care about the technical complexity of the
programming language itself instead of targeting the testing activity only. Another automated
load generator and performance measurement tool for multi-tier software systems is described
in [SA07]. The tool requires a minimal system description for running load testing experiments
and it is capable of generating server resource usage profiles, which are required as an input to
performance models. The key feature of this tool is the load generator which automatically sets
typical parameters that load generator programs need, such as maximum number of users to be
emulated, number of users for each experiment, warm-up time, etc.

In [Sta06] the Hammer [Emp08], LoadRunner [Mer07] and eLoad [Emp07] are compared. These
tools are restricted by licenses and are very expensive; therefore, the paper also motivates the
implementation of an in-hause tool for performance testing. The test tool is based on Visper mid-
dleware [SZ02] which is written in Java and provides the primitives, components, and scalable
generic services for direct implementation of architectural and domain specific decisions. One of
the major design requirements for the framework is transparency to the user. Thus, the distributed
middle-ware provides a consistent and uniform view of how to build and organise applications that
run on it.

Most available documentation is published either by the tool vendors in the form of Web pages or
white papers or by the engineers of other companies as technical papers in one of the on-line tech-
nical journals. Some popular on-line technical journals are JavaWord [Jav08], Dev2Dev [BEA07],
DevelopersWork [IBM07a] and Software Test and Performance [BZ 07]. These journals usually
offer users guides, technical details, examples, experiences or technical opinions. A list of open
source performance testing tools is available at [Ope07] while another list including also commer-
cial tools is available at [Fau07]. In [Bur03] analyses a number of load testing tools and identifies
the specificity of each application, what are the possibilities and finally points out advantages and
drawbacks. Some of these tools are referenced in the next section where a detailed comparison is
realised.

Many tools for running performance tests exist and consequently also various approaches to exe-
cute the performance tests are applied. Table 4.1 captures several tools and some of the features
of interest. These tools are compared in the following subsections based on different criteria.

4.2.1 Domain Applicability

One criteria to characterise the performance testing tools is the domain applicability. Many tools
are conceived as specialised tools focusing on a particular type of SUT, e.g., Web applications.
Other tools are more general being architected to serve for testing SUTs from multiple domains.

Library tools. A simple approach is to implement the workload in a target language, e.g., C,
Java, by using a library. An example of such approach is [SNLD02]. The implementation is a
specific workload and only that specific workload can be executed with very little flexibility. This
approach lacks of extendability and introduces a limitation degree with respect to usage.
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Table 4.1: Performance Testing Tools Comparison

Name Domain
Applica-
bility

Scripting Inter-
face

Workload Distribution SUT Resources
Monitoring

SQS Test
Professional
[AG08]

any user scripts (may
invoke other pro-
grams)

programmed by user,
flow control possible,
heterogeneous

-

WebLOAD
[Ltd07]

Web Java script, visual
GUI

automated, GUI, hetero-
geneous

yes (MEM, CPU,
throughput)

WebPerformance
[Web08]

Web recording of ac-
tions done in a
Web browser

- -

LoadRunner
[Mer07]

any (offers
templates
for many
protocols)

GUI to edit ac-
tions by using
predefined tem-
plates, script
editing possible

programmed by user,
homogeneous/ het-
erogeneous (single
OS)

system monitors
and diagnostics
modules

Rational Per-
formanceTester
[IBM07b]

any scripting (Ra-
tional libraries
based)

programmed by user,
heterogeneous (many
OSs)

capture communi-
cation for HTTP,
HTTPS, SQL

AppPerfect
Load Tester
[Cor07]

Web script recording automated, heteroge-
neous (many OSs)

integrated moni-
toring of target
machine’s system
resources

Embarcadero
Extreme Test
[Emb07]

database,
HTTP

- - use health index
to appreciate the
performance of
the DB

Microsoft WAS
[Mic07]

Web GUI/recording programmed by user,
heterogeneous (many
OSs)

no

Silk Performer
[Bor07]

any workload editor
/importing JUnit
scripts

automated (based on an
agent health system),
heterogeneous

no

QA Load
[Com07]

Web server
applica-
tions

GUI/recording/

scripting
programmed by user,
heterogeneous (Win-
dows OS only)

no

eLoad Hammer
Suite [Emp07]

Web scripting/ auto-
mated

programmed by user,
heterogeneous

no

Apache Jmeter
[Apa07]

Web GUI/recording programmed by user,
heterogeneous (any OS)

no

OpenLoad
[Sys07]

Web appli-
cations

Web based im-
porting data from
Excel tables

programmed by user,
heterogeneous

no
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Specialized tools. A slightly different approach is to derive an execution platform where the
specifics of a workload category can be easily implemented, e.g., workloads for a particular tech-
nology such as SIP. This concept provides an excellent framework for implementing workloads.
The concept permits extensions and parameterisation of the implementation with further workload
characteristics, e.g., new user behaviours. Examples of such tools are: Web Load, Web Perfor-
mance, Extreme Test or QA Load. A disadvantage is, however, the complexity of the environment
itself which is inherited in the workload implementation process. The workload designer has to
be aware of the programming language elements inside the framework, e.g., parallel processes,
instantiation of actors, management of platform elements.

Generic tools. A better approach is to provide a powerful scripting engine or a GUI which per-
mits writing tests in high-level languages. This concept allows easy extendability of the workload
scenarios set but also a more flexible development environment. The test designer does not have
to care about the memory allocation, parallel process instantiation, etc. But along with the ease of
use, comes also more overhead and resource load on the server and it becomes even more impor-
tant to look at the load issues. This is the viewpoint taken by tools such as SQS Test Professional,
Load Runner, Silk Performer and Rational Performance Tester where the workload is specified
really as a test procedure which is passed as execution program to an execution environment.

4.2.2 Scripting Interface

Use of the Programming Language of the underlying Framework. Some frameworks offer
only test decorators as programming libraries, i.e., JUnitPerf [Cla07]. These approaches offer
good performance capabilities but the test development process is quite difficult as long as the
tester has actually to program all technical details such as memory allocation, sockets handling.

Use of an Abstract Notation Language. This approach implies that the tests are written in other
language that the language used to develop the framework itself. Some examples are Extensible
Markup Language (XML) [JG06], TTCN-3 [Tec08]. Technically, the abstract notation language is
meant to simplify the specification by providing only the test specific elements. Such approaches
are characterised by simplicity and easy-to-use features. Anyhow, the abstract notation appears as
an extra layer above the test execution driver, fact which may cause some performance issues.

Use of a graphical language. The test development can be made even easier by providing a
graphical notation to describe tests, e.g., Spirent Protocol Tester [Spi06]. Due simplicity of test
development, these approaches might also suffer of performance problems.

Use of a capture/replay tool. The simplest approach is offered by capture/replay tools. Such
tools are available for Web site testing, e.g., eLoad [Emp07]. The concept is to capture real life
traces of users interactions with the SUT and then multiply and reproduce them. The traces can
also be modified or multiplied to simulate higher number of users. These tools are very fast both
at development and execution since they do not require interpretation or further development. The
disadvantage is that the concept cannot be applied to more complex protocols.

4.2.3 Workload Distribution

The performance of the test system is enhanced through scalability over multiple test nodes. One
of the columns in Table 4.1 presents whether the tools can distribute the workload or not. Ad-
ditionally, for each tool it is detailed how the distribution is realised in terms of heterogeneous
versus homogeneous hardware and operating systems. For instance, WebLOAD, Rational Tester,
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AppPerfect Load Tester, Silk Performer, Apache Jmeter and OpenLoad support distribution over
heterogeneous hardware. LoadRunner and QALoad support distribution only between test nodes
running the same operating system. Except for AppPerfect Load Tester, all other tools require that
the tester defines manually how the workload should be distributed.

4.2.4 SUT Resource Monitoring

The last column in the comparison table refers the capability of the tools to report SUT resources
consumption metrics. Most of the tools do not have this feature even though it is extremely im-
portant for performance evaluation of the SUT. WebLOAD and Mercury Load Runner allows for
deploying of system monitors and diagnosis modules on SUT side. Embarcadero Extreme Test
tool, which targets database testing only, is using a so-called “health index” to appreciate the
performance of the SUT.

4.3 Motivation for the TTCN-3 Language

Among the various languages and tools to design performance tests, the TTCN-3 technology has
been selected to develop and execute performance tests. The reasons to select this language lay on
the facts that TTCN-3, as a standardised test language, is increasingly accepted in the industry as
the test specification language. Additionally, various features offered by this language make it a
suitable technology to implement performance tests. Some of these features are described in this
section.

TTCN-3 is an abstract platform independent test language. Since it hides many technical de-
tails, e.g., memory allocation, network communication, data representation, behind the abstract
artefacts, such as test components, test behaviours or templates, it is easier to experiment various
test specification patterns while implementing performance tests. This allows testers to concen-
trate on the test specification only, while the complexity of the underlying platform, e.g., operating
system, hardware configuration, is left behind the scene. This facilitates the description of complex
test scenarios and the handling of very complex data structures.

TTCN-3 is a programming language. Though TTCN-3 is an abstract test notation, it is also
a programming language which allows the tester program the tests as any software applications.
From an engineering view, the language encapsulate the technical mechanisms under much sim-
pler test specific programming elements.

TTCN-3 is a standardised language. The language has been conceived as a standard test lan-
guage by a group of academia and industry. Therefore, since many and various requirements have
been regarded, the language was conceived to satisfy many testing needs. Thus, the belief that the
language might be a good choice for performance testing too.

Test Execution Driver Architecture and API. Within this thesis various implementation details
toward the test execution driver are examined. The documentation provided by the ETSI standard
for the TTCN-3 language contains a precise programming API for implementing a test execu-
tion driver. This opens the possibility to understand any compliant execution tool and use this
knowledge at the upper level, i.e., the test specification.
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Events handling. Complex distributed test behaviours which involve multiple interacting entities
are easier to implement in TTCN-3 than in other languages, e.g., Java, C, since many technical
aspects, e.g., memory allocation, socket communication, are hidden by the abstract language arte-
facts. In general, the performance tests are required to process large numbers of various types of
events. The event type specification in TTCN-3 is very flexible while the processing of events can
be expressed using sequences, alternatives, and loops of stimuli and responses.

Parallel Test Components. The TS can create multiple test components to perform test be-
haviours in parallel. The dynamic and concurrent configurations are realised by means of con-
figuration operations, i.e., create, start/stop, map/unmap, connect/disconnect. This
has a significant impact especially in the case of testing systems like IMS where different user
behaviours have to be emulated at the same time.

Concurrent types of behaviours. The behaviours of the test components are defined as functions.
A function is used in performance tests to specify client activities within a test scenario. A sim-
ulated user may behave in different ways when interacting with the SUT, thus the TS may need
different functions implementing different client behaviours.

Inter-component Communication. Another mechanism supported by TTCN-3 is the inter-
component communication. This allows the connection of components to each other and the
message exchange between them. In performance testing it is used for synchronisation of actions,
e.g., all components behaving as clients start together after receiving a synchronisation token, or
for collecting statistical information at a central point.

Additionally, several subjective factors influenced the technology selection too.

The TTmex project. The TTmex project [TTm08] between Fraunhofer FOKUS [Fok08] and
Testing Technologies [TTe08] had the aim to create a distributed test platform for the TTCN-
3 language. The platform opened the possibility to design performance tests with the TTCN-3
language and execute them distributed over several test nodes.

The IMS Benchmarking project. The problem of defining a performance testing methodology
originated from the IMS Benchmarking project [FOK07]. The goal of this project was to define a
standard performance benchmark for the control plane of an IMS network which supports a rich
set of services available to end users. The project required the implementation of a set of perfor-
mance tests in a standard test notation with the motivation to gain the industry acceptance. The
TTCN-3 appeared to be the best choice for these requirements.

4.4 TTCN-3 Related Works

The related work on applying TTCN to performance testing targets either the specification of
distributed tests with TTCN-3, or previous versions of it, or concerns the test execution and test
distribution over several test nodes.

The first experiments with TTCN applied to performance testing were done with the version 2 of
the TTCN language. PerfTTCN [SSR97] is an extension of Tree and Tabular Combined Notation,
version 2 (TTCN) with notions of time, measurements and performance. Although it came with
interesting concepts like foreground and background load, stochastic streams of data packets, that
work has been done for TTCN-2 and has never been extended for TTCN-3.

Some practical guidelines for performance testing with TTCN-3 are given in [DST04]. Using a
distributed parallel test environment, the authors evaluate the performance of BRAIN Candidate
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Mobility Management Protocol (BCMP). The test system creates and distributes parallel test com-
ponents which simulate Mobile Node clients. This work highlights some of the major performance
issues and test system limits when it is about to generate high loads, e.g., when the load on SUT is
increased, the load on the test system also increases. They also conclude that a careful test design
and test optimisation is a must in these kinds of tests, meaning that tests have to be designed to
work efficiently on the execution platform that accommodates them. Although the work is closely
related to the topic of this thesis, it misses the application of behaviour and traffic models which
are required for performance testing of multi-service systems.

As far as the test distribution is concerned, which is a significant feature when high loads have
to be handled, in [DTS06] a platform which implements the TCI [ETS07c] is presented. It also
discusses the possibility of using TCI to realise distributed test execution environments and intro-
duced the idea of using load balancing strategies to optimise the load distribution.

4.5 Workload Realisation with TTCN-3

TTCN-3 offers various concepts to design performance tests. This section renders an introduc-
tion into the TTCN-3 language and targets the description of the elements used in the case study
to design the performance tests. These elements are test data, state handling, timeout handling
and load generation. These concepts are introduced along with small examples of how they can
be implemented in TTCN-3. However, the introduction does not aim to be a presentation of the
language itself. For a detailed presentation of the language the reader is referred to the standard
from ETSI [ETS07a], two introductory papers [Gra00], [GHR+03] and the chapter on TTCN-3
in [BJK+05].

4.5.1 Test Data

The type system of TTCN-3 allows any type of protocol message, service primitive, procedure in-
vocation, exception handling as required for performance test implementation to be expressed. A
type can be instantiated as templates, module parameters, variables or constants. The templates
are concrete message instances used in the communication with the SUT. The module parameters,
variables and the constants are used in the test behaviour for implementing the test algorithms.
The module parameters allow the parametrisation of tests during their execution. For a better
integration with other technologies, TTCN-3 also offers the possibility to import data described
in other languages, e.g., Abstract Syntax Notation One (ASN.1), Interface Description Language
(IDL), XML [W3C08].

The type definition constructs allow the realisation of any data representation pattern presented
in Section 3.5.7. To describe basic data types, TTCN-3 provides a number of predefined data
types. Most of these data types are similar to basic data types of well-known programming lan-
guages, e.g., Java, C. Ordered and unordered structured types are created by using constructs like
record (ordered structure), record of (ordered list), set (unordered structure), set of (unordered
list), enumerated and union. Their elements can be at their turn basic or structured types.

For synchronous communication, i.e., procedure-based, TTCN-3 offers the possibility to define
procedure signatures. Signatures are characterised by their name, optional list of parameters,
optional return value and optional list of exceptions. For a performance test based on syn-
chronous communication, the procedures are also specified in the same way as for conformance
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tests.

Templates are data structures used to define message patterns for the data sent or received. Tem-
plates can be specified for any message type or procedure signature. They can be parameterised,
extended or reused in other template definitions. The declaration of a template contains either a
concrete value or a set of possible values or a pattern for possible values.

Listing 4.1: Template for receiving data
t empla te Reques t Request_INVITE_r := {

t r a n s a c t i o n I d := ? ,
r e q u e s t L i n e := {

method := INVITE_E ,
r e q u e s t U r i := ? ,
s i p V e r s i o n := ∗

} ,
msgHeader := ? ,
sdpMessage := ∗

}

The TTCN-3 distinguishes between send data and receive data. A sent message has to be a com-
plete message, i.e., all fields need to have concrete values and contain all information required by
the protocol. The receive data does not have to be complete, i.e., some fields can be specified as
“*" to indicate that the value of the field can be missing or as “?" to indicate that the field must
contain an arbitrary value. The specification of a receive message is a template of something that is
expected to be received. This template mechanism is extremely important for performance testing
since it reduces considerably the effort to validate a received message. Usually, in performance
tests only a few fields need to be validated. When comparing a received message with a template,
the message data shall match one of the possible values defined by the template.

In Listing 4.1, an example of a receiving template is given. The template describes a pattern
for an INVITE message in the SIP protocol [IET05]. The message consists of transactionId,
requestLine and msgHeader fields. When a new message is received, the TS has only to iden-
tify the type of the message encoded in the requestLine.method field. The values of the rest of
the fields do not matter at message identification step. Once the message has been identified, the
TS has to use the information within it. Some fields are required, others are not. To specify this,
the question mark “?” is used to say that a field must contain an arbitrary value. The wildcard “*”
marks that the TS does not expect any value or a specific value for that field.

4.5.2 Event Handling

An event handler processes events received from the SUT and executes appropriate actions ac-
cording to the scenario message flow. The event processing starts with the identification of the
userid for which the message is received. This information is extracted from the protocol data
embedded in the message. Once the user is identified, the handler evaluates the current state of
that user and validates if the new message corresponds to a valid state, otherwise the transaction
is considered an IHSA. Next, the user state is updated in the local user information database. If
the received message, requires follow-up actions on the TS side, new messages are created and
sent to the SUT. When receiving or sending any message, a log event is generated with precise
time-stamp for the evaluation of the SUT latency.

In Section 3.5.1, the specific and the generic event handling patterns have been introduced. Both
of them are implementable in the TTCN-3 language.
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The specific handling can be implemented as a TTCN-3 function which executes on a component.
In Listing 4.2, a simple example for the specific handling mechanism is provided. The function
gets a userid as start parameter to personalise it to a particular user. At the beginning of the func-
tion several variables are defined. As long as the function implements a specific user behaviour,
the state variables, e.g., state, also have to be defined. Other variables are defined globally for the
whole function. The events are received by port p and are handled by an alt block. Each event
type is caught by a receive statement which is parameterised with a receive template. The tem-
plate must contain matching constraints for the userid given as parameter to the function. This
is simple to achieve by parameterising the template with the userid.

Listing 4.2: Specific Event Handling
f u n c t i o n u s e r ( i d u s e r i d ) runs on UserComponent {

var s t a t e T y p e s t a t e := s t a t e 1 ;
var r e q u e s t T y p e r e q ;
var r e s p o n s e T y p e r e s p ;
. . . . . . . . . . .
a l t {

[ s t a t e == s t a t e 1 ] p . r e c e i v e ( r e q u e s t T y p e 1 ( u s e r i d ) ) −> va lue r e q
{

i f ( match ( r e q . f i e l d 1 , e x p e c t e d V a l u e ) {
s t a t e := s t a t e 2 ;
/ / o t h e r a c t i o n s
r e s p := r e s p o n s e T y p e T e m p l a t e ;
r e s p . f i e l d 2 := r e q . f i e l d 2 ;
r e s p . f i e l d 3 := r e q . f i e l d 3 + 1 ;
p . send ( r e s p ) ;
r ep ea t ;

}
e l s e {

s t a t e = f a i l u r e S t a t e ;
makeAva i l ab l e ( u s e r i d ) ;
s top ;

}
}
[ s t a t e == s t a t e 2 ] p . r e c e i v e ( r e q u e s t T y p e 2 ( u s e r i d ) )
{

s t a t e := f i n a l S t a t e ;
makeAva i l ab l e ( u s e r i d ) ;
s top ;

}
. . . . . . . . . . .
/ / o t h e r s t a t e s

[ ] p . r e c e i v e {
s t a t e = f a i l u r e S t a t e ;
makeAva i l ab l e ( u s e r i d ) ;
s top ;

}
} / / end a l t

} / / end f u n c t i o n

Once a message matches an alternative, the test takes the appropriate actions. In the example, three
possible branches are defined. The first one defines the handle of an event of type requestType1.
An event of this type can occur only when the user is in state1. This condition is specified in the
guard of any branch. Next, the event is stored into the req variable for further use. In the state
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handling, particular fields of the received message can be inspected by using the match function.
If the received value matches a valid state for the user, the state is updated to the state2 and a re-
sponse message is prepared and sent back to the SUT. At the preparation of the response message,
the data from the request stored in req variable is reused. The repeat statement makes the alt
construct go back to the top and wait for new messages from the SUT. For a non-valid message,
the TS has to set the state of the user to failureState and stop the component.

In the case of receiving a final message, according to the protocol, i.e., second alternative is
matched, the TS sets the state to finalState, makes the user available for other calls and stops
the component. When an unexpected message is received, e.g., last alternative, the state of the
user is set to failureState, the user is made available and the component is stopped. The TS
may log anytime the state of each user for performance statistics post-processing.

Listing 4.3 provides an example of a generic handler in TTCN-3. It basically rewrites the example
from Listing 4.2 in a generic way. The generality reflects in the fact that the function can be used
now to handle concurrently the events of several users in parallel. To achieve that, several changes
have to be performed on the TTCN-3 snapshot presented in the listing. In the first example, the
component has one port which is used for the communication with the SUT exactly for one user.
In the second example, the same port is used for all users simulated by the component. This is
possible thanks to the address type available in TTCN-3. This type allows an address of an SUT
entity to be defined which will be connected to a TTCN-3 port. Technically, this allows a com-
ponent to use a single port for any number of users, where each user is characterised by a unique
address. The address is used at sending of messages by putting the to address statement after the
send statement. This concept optimises the number of ports which require a lot of resources (see
the patterns for message receiving in Section 3.5.5).

Listing 4.3: Generic Event Handling

f u n c t i o n u s e r H a n d l e r ( ) runs on UserComponent {

var r e q u e s t T y p e r e q ;
var r e s p o n s e T y p e r e s p ;
. . . . . . . . . . .
a l t {

[ ] p . r e c e i v e ( r e q u e s t T y p e 1 ) −> va lue r e q
{

i f ( not v a l i d S t a t e ( r e q . u s e r i d , r e q ) ) {
s e t S t a t e ( r e q . u s e r i d , f a i l u r e S t a t e ) ;
makeAva i l ab l e ( r e q . u s e r i d ) ;
r ep ea t ;

}

i f ( match ( r e q . f i e l d 1 , e x p e c t e d V a l u e ) ) {
s e t S t a t e ( r e q . u s e r i d , s t a t e 2 ) ;
r e s p := r e s p o n s e T y p e T e m p l a t e ;
r e s p . f i e l d 2 := r e q . f i e l d 2 ;
r e s p . f i e l d 3 := r e q . f i e l d 3 + 1 ;
p . send ( r e s p ) to address a d d r e s s O f ( r e q . u s e r i d ) ;
r ep ea t ;

}
e l s e {

s e t S t a t e ( r e q . u s e r i d , f a i l u r e S t a t e ) ;
makeAva i l ab l e ( u s e r I d ) ;
r ep ea t ;

}
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}
[ ] p . r e c e i v e ( r e q u e s t T y p e 2 ) −> va lue r e q
{

i f ( not v a l i d S t a t e ( r e q . u s e r i d , r e q ) ) {
s e t S t a t e ( r e q . u s e r i d , f a i l u r e S t a t e ) ;
makeAva i l ab l e ( r e q . u s e r i d ) ;
r ep ea t ;

}

s e t S t a t e ( r e q . u s e r i d , f i n a l S t a t e ) ;
makeAva i l ab l e ( r e q . u s e r i d ) ;
r ep ea t ;

}
. . . . . . . . . . .
/ / o t h e r s t a t e s

[ ] p . r e c e i v e {
s e t S t a t e ( r e q . u s e r i d , f a i l u r e S t a t e ) ;
makeAva i l ab l e ( u s e r i d ) ;
r ep ea t ;

}

} / / end a l t
} / / end f u n c t i o n

The next change is to drop the conditions in the guards of the alternatives since now any event can
be received. Instead, the validState() function is introduced so as to check the state of a user
in a repository, e.g., a data structure. The validation is realised upon the userid information ex-
tracted from the received message and the message itself. If the new state created by the received
message is not a valid one, the TS considers the current call as fail and makes the user available
for a new call. For a valid state the behaviour looks the same as in the previous example. The state
is updated by the setState() function.

Further on, the receive templates are now generic templates instead of parameterised templates
per userid. These templates are not so restrictive as the ones used for the specific pattern but one
can compensate by introducing more checks through match conditions.

In the previous example, the termination of the behaviour of a user was equivalent to the termina-
tion of the component. The last modification is to add to each branch the repeat statement since
the alt statement has to be reused for further messages.

For simplification, the fact that a user can be used in more than one scenarios is not taken into
account. To achieve that, both examples should be modified such the callid, embedded in the
received messages, is processed too. Thus, any state change refers to a particular user and to a
particular callid.

4.5.3 Data Repositories

Besides the messages exchanged with the SUT, other types data have to be managed by the TS
as well. They concern the user information needed to create calls and the information needed to
track the status of the calls. The referred data is stored in a repository which can be accessed from
any test behaviour.

A simple API to manage the repository is presented in Listing 4.4. It consists of very simple op-
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Listing 4.5: Simple Data Repository implemented in TTCN-3

type record of i n t e g e r s t a t e s L i s t ;
type record of boolean a v a i l a b l e L i s t ;

type record r e p o s i t o r y T y p e {
s t a t e s L i s t s t a t e ;
a v a i l a b l e L i s t a v a i l a b l e ;

}

t empla te r e p o s i t o r y T y p e r e p o s i t o r y := {
s t a t e := {0 , 0 , 0} ,
a v a i l a b l e := { true , true , t rue }

}

Listing 4.6: Repository Access API through external functions
e x t e r n a l g e t A v a i l a b l e ( ) re turn u s e r i d ;
e x t e r n a l s e t S t a t e ( u s e r i d u , s t a t e s ) ;
e x t e r n a l v a l i d a t e S t a t e ( u s e r i d u , n e w s t a t e ns ) re turn boolean ;
e x t e r n a l makeAva i l ab l e ( u s e r i d u ) ;

erations to extract or update the information. Typical operations are getAvailable() to get an
available user to create new call and makeAvailable() to release a user. For state management,
setState() serves to set a new state while validateState() is meant to check whether a new
state to get into is valid or not. However, the API can be extended to many needs but the principle
remains the same.

Listing 4.4: Repository Access API
g e t A v a i l a b l e ( ) re turn u s e r i d ;
s e t S t a t e ( u s e r i d u , s t a t e s ) ;
v a l i d a t e S t a t e ( u s e r i d u , n e w s t a t e ns ) re turn boolean ;
makeAva i l ab l e ( u s e r i d u ) ;

Unfortunately, the TTCN-3 language does not offer data management containers, e.g., Queues,
Hashes, like, for example, Java does [SM08]. This is a point where TTCN-3 should be improved
in the future. One solution is to implement these structures into a TTCN-3 library by using data
types provided by TTCN-3 such as recordof, array, etc. In Listing 4.5 a simple data reposi-
tory is provided. However, this implementation might not be as efficient as that provided by the
execution platform itself. To access execution platform functionality, TTCN-3 offers the exter-
nal function mechanism which permits the implementation of pieces of functionality outside of
the test specification. The example in Listing 4.6 modifies the API so that the repository access
functions are external.

As a remark, in the IMS Benchmarking case study (see Chapter 5), both approaches have been
experimented (1) using a pure TTCN-3 repository and (2) using an external repository. The second
solution proved to be far more efficient. The root cause lies in the way the data types from TTCN-
3 are mapped down to the execution environment. For instance, using the TTCN-3 mapping to
Java language [ETS07b], a simple integer is not mapped to a Java [SM08] int basic type but to
an object. This causes that a repository, based on integer type, implemented in TTCN-3, occupies
much more memory than one implemented purely in Java. Also for a simple loop, e.g., for(var
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Listing 4.7: Performance Test Configuration
t e s t c a s e p e r f o r m a n c e T e s t ( ) runs on L o a d C o n t r o l l e r system System {

var d e f a u l t d := a c t i v a t e ( d e f a u l t L o a d C o n t r o l l e r ( ) ) ;

/ / c r e a t e E v e n t H a n d l e r s
var E v e n t H a n d l e r e v e n t H a n d l e r [NR_OF_COMPONENTS ] ;
f o r ( var i n t e g e r i := 0 ; i < NR_OF_COMPONENTS; i := i + 1) {

/ / c r e a t e i − t h component
e v e n t H a n d l e r [ i ] := E v e n t H a n d l e r . c r e a t e ;
connect ( s e l f : p2Even tHand le r [ i ] ,

e v e n t H a n d l e r [ i ] : p 2 L o a d C o n t r o l l e r ) ;
e v e n t H a n d l e r [ i ] . s t a r t ( u s e r S t a t e H a n d l e r ( ) ) ;
TSync . s t a r t ; p2Even tHand le r [ i ] . r e c e i v e (SYNC ) ; TSync . s top ;

}

/ / s e n d e r component
var Even tSende r e v e n t S e n d e r ;
e v e n t S e n d e r := Even tSende r . c r e a t e ;
connect ( s e l f : p2EventSender , e v e n t S e n d e r : p 2 L o a d C o n t r o l l e r ) ;
e v e n t S e n d e r . s t a r t ( u se rMa i nHand le r ( ) ) ;

integer i:=0, i<length, i:=i+1), using i of type integer, actually the test environment has
to do all these operations on objects instead of simple integers.

4.5.4 User Handlers

In TTCN-3, the test component is the building block to be used in order to simulate concurrent
user behaviours. The specification of all test components, ports, connections and TS interface
involved in a test case is called test configuration. Every test case has one Main Test Component
(MTC) which is the component on which the behaviour of the test case is executed. The MTC is
created automatically by the TS at the start of the test case execution. The other test components
defined for the test case are called Parallel Test Component (PCO) and are created dynamically
during the execution of the test case. The interface to communicate with it is the Abstract Test
System Interface (system).

Parallelism is realised in TTCN-3 through PTCs. The components are handled by configuration
operations such as create, connect, disconnect, start, stop which are mapped to concrete opera-
tions in the execution environment. The configuration operations are called from test behaviours,
e.g., test cases, functions, control. In Listing 4.7 an example of a test configuration is given.
The performanceTest testcase is executed on the LoadController component which is in this
case the MTC component. The testcase creates a number of EventHandler components and con-
nects them to the LoadController. Each EventHandler connects its p2LoadController port
to the p2EventHandler port of the LoadController. Each EventHandler component starts
a userStateHandler function. The successful start of the this function is verified by starting a
TSync timer. If, before the timeout of TSync, a SYNC message is received then the component
has started correctly and the LoadController can go to the next component. A different type of
component, i.e., EventSender, is created as soon as all EventHandler components are up and
running. The EventSender executes the userMainHandler whose main task is to create calls
which will be handled by the EventHandlers.
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Listing 4.8: Message based synchronisation
/ / SYNC from E v e n t S e n d e r t h a t t h e load g e n e r a t o r i s ready
/ / or i t c o u l d n o t i n i t i a l i s e
TSync . s t a r t ;
a l t {

[ ] p2Even tSende r . r e c e i v e (SYNC) {
TSync . s top ;

}
[ ] p2Even tSende r . r e c e i v e {

l o g ( " f a i l d u r i n g preamble " ) ;
s e t v e r d i c t ( inconc ) ;

l o g ( " e x i t i n g . . . " ) ;
s top ;

}
TSync . t imeout {

l o g ( " t imeout d u r i n g preamble " ) ;
s e t v e r d i c t ( inconc ) ;

l o g ( " e x i t i n g . . . " ) ;
s top ;

}
}

/ / SYNC t o E v e n t S e n d e r t o s t a r t t h e load g e n e r a t o r
p2Even tSende r . send (SYNC ) ;

Another important mechanism provided by TTCN-3 is the inter-component communication which
allows connecting components to each other and transmitting messages between them. This mech-
anism is used in performance testing for synchronisation of actions, e.g., all components behav-
ing as event handlers start together after receiving a synchronisation token. Listing 4.8 provides
a synchronisation example between the LoadController and the EventSender components.
The LoadController wants to know whether the EventSender starts successfully. To achieve
this, the LoadController starts a TSync timer and waits until a) the EventSender responds
or b) the TSync expires. In the later case the LoadController has to stop the test since the
EventSender did not start correctly. The possible responses of the EventSender are handled by
an alt block. If the EventSender responds with a SYNC message, then the TSync is stopped and
the LoadController sends another SYNC message to the EventSender in order to start the test.
If a different message is receive, then the LoadController concludes that the EventSender did
not start successfully and it decides to stop the test.

The behaviour of a test component is defined by a function. A function is used to specify user
activities within a test scenario, i.e., user state machine. A user may behave in different ways
when interacting with the SUT. Therefore, the test system may have different functions emulating
different behaviours or only one function which takes care of all possible events.

4.5.5 Traffic Set, Traffic-Time Profile and Load Generation

The traffic set and traffic-time profile contain parameters to control the load generation. Examples
of traffic set and traffic-time profile have been shown in Section 3.3. All these parameters are
defined as module parameters and are used in the load control.
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The load control is a special process which is implemented as an EventSender component and is
responsible for call creation. A new call is created by selecting 1) one scenario for the call, 2) one
or more available users 1 and 3) a time when the first event from the call should be sent to the SUT.
The scenario is selected according to the traffic set parameters which describe the proportions of
scenarios of each type along the execution. The sending time is derived from the traffic profile
which contains parameters to describe the load intensity and the call arrival rate, e.g., Poisson.

4.5.6 Timers

Timers are a further essential feature in the development of performance tests with TTCN-3 in
order to evaluate the performance of the SUT. The operations with timers are start, stop, to start
or stop a timer, read, to read the elapsed time, running, to check if the timer is running and time-
out, to check if timeout event occurred. The start command may be used with a parameter which
indicates the duration for which the timer will be running. If started without parameter, the default
value specified at declaration is used.

In conformance tests, timers are defined on test components and they are used in the test behaviour
to measure the time between sending a stimuli and the SUT response. If the SUT answer does not
come in a predefined period of time, the fail rate statistics should be correspondingly updated.

Listing 4.9: Timer in a specific state machine

t imer t W a i t := 0 . 2 ;
a l t {

[ s t a t e == s t a t e 1 ] p . r e c e i v e ( r e q u e s t T y p e 1 ( u s e r i d ) ) −> va lue r e q
{

. . . . . . . . . . .
p . send ( secondMessage ) ;
t W a i t . s t a r t ;
s t a t e := s t a t e 2 ;
. . . . . . . . . . .

}
[ s t a t e == s t a t e 2 ] t W a i t . t imeout
{

/ / t h e c a l l has f a i l e d
}
. . . . . . . . . . .

}

For performance tests, the timer mechanism works almost the same. Two patterns to implement
a state machine namely the specific pattern and the generic pattern have been discussed. For the
specific pattern, the use of a timer is similar to conformance testing. The function running the
state machine starts a timer and the alt block handles potential timeout events. Listing 4.9 offers
an example of how a timer can be used in the test specification. The tWait timer is started when
the user received requestType1 and sends a further message, i.e., secondMessage. The time
until a response from the SUT should be received is 0.2 seconds.

Unfortunately, with respect to the realisation of the generic pattern for state machine, TTCN-3
is not offering an appropriate mechanism to handle an array of timers. This feature is needed
for performance testing since each user needs its own timer. Listing 4.10 offers an example with
a modified syntax of the TTCN-3 language, which allows using of arrays of timers. tWait is

1The number of users depends on the type of the scenario.
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an array of timers. Whenever a timer is needed, one of the tWait timers is used. The handler of
requestType1 event starts the timer tWaitwith index 0. The timeout events of the timer are han-
dled as usual by using tWait.timeout with the addition of→ index i which helps determining
the index in the tWait array.

Listing 4.10: Timer in a generic state machine

var i n t e g e r i ;
t imer t W a i t [ 2 0 0 ] ;
a l t {

[ ] p . r e c e i v e ( r e q u e s t T y p e 1 ( ) ) −> va lue r e q
{

. . . . . . . . . . .
p . send ( secondMessage ) ;
t W a i t [ 0 ] . s t a r t ;
s t a t e := s t a t e 2 ;
. . . . . . . . . . .

}
[ ] t W a i t . t imeout −> i n d e x i
{

/ / t h e c a l l o f u s e r i has f a i l e d
}
. . . . . . . . . . .

}

However, the proposed change in the syntax of TTCN-3 requires changes in the compiler and in
the execution runtime. To avoid this, another solution based on the Test Adapter (TA) is possible.
The timers are no longer started from TTCN-3 from the TA which controls all send operations.
The TA starts a timer by using the execution environment programming elements, e.g., timer in
Java. The timeout is a pure event which is enqueued in the port used for communication with the
SUT. The event contains also the information needed to process the call, i.e., the user to which the
timeout event belongs to. The concept is presented in Figure 4.1.

Figure 4.1: Timers Management in the Test Adaptor
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4.5.7 Verdict Setting

The handling of verdicts in performance tests is different from the traditional verdict handling
procedure in functional testing. In functional testing, the built-in concept of verdict is used to set
a verdict when an action influences significantly the execution of the test, for example, if the SUT
gives the correct answer the verdict is set to pass else if the response timer expires the verdict is
set to inconc or to fail.

Performance tests have also to maintain a verdict which should be delivered to the tester at the end
of a test case execution. The verdict of a performance test has rather a statistical meaning than
only a functional one; still, the verdict should be a sum of all verdicts reported by test components.
In our approach, the verdict is set by counting the rate of fails during one execution. If during the
test, more than a threshold percentage of clients behaved correctly, the test is considered as passed.
The percentage of correct behaviours in a tests must be configured by the test engineer himself and
must be adapted separately to each SUT and test specification.

The collection of statistical information like fails, timeouts, successful transactions can be imple-
mented by using counter variables on each component. These numbers can be communicated at
the end of the test to a central entity, i.e., MTC which computes the final results of the test. If the
test needs to control the load based on the values of these variables, than central entity must be
periodically updated.

A simple convention for establishing the verdict is the following:

• pass - the error statistics are above the established threshold. The test sets the verdict to pass
since it fulfils the performance test condition.

• inconc - the test did not execute successfully a preamble operation, e.g., cannot connect to
the SUT.

• fail - the error statistics are below the threshold.

However, following this convention, it requires that the tester sets the verdict only at the end of
execution after collecting and analysing all calls. Another option would be to modify the semantic
of TTCN-3 verdict to compute the verdict on the fly. Each component modifies the verdict for
each terminated scenario. At each modification the global verdict is recomputed.

4.6 Platform Architecture for TTCN-3

The design of next generation TSs considers obligatory to implement modular, software defined
test architectures based on widely adopted industry standards [Ins06], [GHR+03]. One of the
most important contributions to test execution field is the standardised TS architecture from ETSI,
which presents a guideline for how test systems can be designed. The architecture has been de-
fined for the TTCN-3 test specification language but it can be also used as a generic test execution
architecture.

The general structure of a TTCN-3 TS is depicted in Figure 4.2. A TTCN-3 TS is build up from
a set of interacting entities which manage the test execution. The specification consists of two
documents: TRI [ETS07b] and TCI [ETS07c]. The TCI provides a standardised adaptation for
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management, test component handling and encoding/decoding of a TS to a particular test plat-
form, i.e., it specifies the interfaces between Test Management (TM), Component Handling (CH),
Coder/Decoder (CD) and Test Executable (TE) entities. The TRI specifies the interfaces between
the TE and TA entities, respectively. The two interfaces provide an unified model to realise the
TTCN-3 based systems [SVG02], [SVG03].

Figure 4.2: TTCN-3 Architecture of a Test System

The main components of the TS are:

• Test Executable (TE) - is the executable code produced by a compiler. The compiler trans-
forms the TTCN-3 elements into platform specific elements, e.g., threads, classes. This
component manages different test elements such as control, behaviour, component, type,
value and queues, which are the basic constructors for the executable code.

• Component Handling (CH) - handles the communication between test components. The CH
API contains operations to create, start, stop parallel test components, to establish the con-
nection between test components, i.e., connect, to handle the communication operations,
i.e., send, receive, call and reply, and to manage the verdicts, i.e., setverdict. The infor-
mation about the created components and their physical locations is stored in a repository
within the execution environment.

• Test Management (TM) - defines operations to manage tests, to provide and set execution
parameters and external constants. The test logging is also collected by this component. The
TM functionality presented to the user provides means to start/stop a test case or a whole
test campaign and to monitor the test execution.

• Test Logging (TL) - performs test event logging and presentation to the TS user. It provides
the logging of information about the test execution such as which test components have been
created, started and terminated, which data is sent to the SUT, received from the SUT and
matched to TTCN-3 templates, which timers have been started, stopped or timed out, etc.

• Coder/Decoder (CD) - in a TTCN-3 TS the data is encapsulated in a data model instance.
A message instance is a tree of objects where the leaf nodes contain values of basic types,
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e.g., charstring, integer. The non-leaf nodes represent structured data, e.g., record. This
representation helps the test logic to better process the test data. Therefore, for sending
data to SUT, a coder is needed to serialise the data into SUT understandable messages. On
the receive way, a decoder makes the inverse process to transform the SUT message into a
tree-like model instance.

• System Adapter (SA) - realises the communication with the SUT. The entity provides the
communication operations send, receive, call, getcall, reply.

• Platform Adapter (PA) - implements the timers and the external functions. Timers are plat-
form specific elements and have to be implemented outside the TS. The Platform Adapter
(PA) provides operations in order to handle timers: create, start, stop. External functions,
whose signature is specified in the TTCN-3 specification, are implemented also in the PA.

Figure 4.3: Architecture of a Test System for Distributed Execution

The TS can be distributed over many test nodes and different test behaviours can be executed
simultaneously. Figure 4.3 shows the distributed perspective of the TS architecture. As it is
conceived within the standard, on each host, an instance of the TS is created. The TE must be
distributed on each host with its own CD, System Adapter (SA) and PA. The CH supplies the
communication between the test components which run on different hosts.

4.6.1 Implementation Architecture of the TTCN-3 Execution Environment

The TRI and TCI interfaces provide a unified model to realise the TTCN-3 based sys-
tems [SVG02], [SVG03]. Despite their generality, from a technical point of view, the ETSI
standard does not cover further aspects, required by a concrete test architecture [Alb03], such
as test deployment, test distribution or test container service. Therefore, an extension of these
concepts is needed. This section extends the concepts and the implementation architecture of a
distributed TTCN-3 TS.

The architecture presented in Figure 4.4 lays out the entities of the extended test execution plat-
form. The entities defined in the ETSI architecture are also distinguished in this architecture as
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Figure 4.4: Implementation Architecture of the TTCN-3 Execution Environment

part of the special execution environment called test container. The architecture presents two test
containers, as the test distribution is foreseen. Several test containers can be used in the same test
session coordinated by a global Session Manager (SM) entity.

The Test Console (TC) is the point of the platform which offers the control functionality to the
tester. The test daemons are standalone processes installed on any hosts to manage the test de-
ployment activities. The test containers intercede between TC and TTCN-3 PTCs, transparently
providing services to both, including transaction support and resource pooling. From the test view,
the containers constitute the target operational environment and comply with the TCI standard for
TTCN-3 test execution environment. Within the container, the specific the TS entities are recog-
nised.

The main goal is to generalise the relationship between components and their execution environ-
ments. The interaction between two components or a component and a container is a matter of
transaction. The transaction context provides runtime access to machine resources and underlying
services. The transactional support must be isolated from the technical complexity required in
development of component-based applications. These operations and many others are the target
activities of the test containers.

In the following sections, four main roles are highlighted: test management, test execution, test
distribution and test logging. For each role the contribution of the entities and their collaboration
to fulfil certain activities is discussed.

4.6.2 Test Management

The TM includes all operations to deploy test resources, execute tests, collect log files and remove
temporary files. In the proposed architecture, the test management is fulfilled by four components:
TC, test daemon, test container (especially the TM-TE relation) and Session Manager (SM). These
components are highlighted in Figure 4.5.
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Figure 4.5: Test Management

4.6.2.1 Test Console-Session Manager Interaction

The TC is the entity that handles the management operations to create test sessions, deploy re-
sources into containers and launch the test cases execution. It is the entity which provides a user
interface and offers commands and actions to control the test environment.

A TC can be presented to the user in different forms:

• command line with scripting support - this is an old-style type of user interfacing but for
performance testing it is perhaps the most efficient. The command interpreters do not con-
sume as much resources as GUIs. The command line combined with scripting offers a very
flexible technology. Different to GUI approaches, this concept allows the tester design com-
binations of commands which are not typically possible with GUI based tools. In general,
GUIs offer a limited number of command sets which are mostly based on usage patterns.

• GUI - many tools use GUI frameworks such as swing or eclipse to define more user friendly
user interfaces. The advantage against scripting is obviously the learning curve: it is much
easier to control and avoid mistakes when using a GUI.

• Web GUI - a simpler form of GUI is Web GUI. This is the middle way between command
line and GUI, which offers a Web based GUI to control the test environment. Web GUIs
are not so evolved as normal GUIs but provide anyway a more user friendly interface than a
command line console.

Independently on how the TC offers the control actions, GUI or command line, three categories of
actions are identified.

Test sessions management. The TC activities are performed in the context of a test session. A test
environment, especially a distributed one, offers the test resources to more than one test engineers.
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Therefore, the test session concept is needed to distinguish between the test activities of different
test engineers. Additionally, a tester may schedule different test sessions. The test environment has
to offer an adequate interface to create and manage test sessions. The sessions’ scheduler should
take care that a test session has enough resources available. Therefore, one approach is to execute
the sessions sequentially. The typical operations related to session management are:

• create/kill - at session creation, the TC makes the initial reservation of resources, e.g., de-
ploy test files on all selected test nodes, but does not start the actual test execution. This
is a separate step. After creation, the session is configured with the test parameters, test
distribution strategy, etc.

• status check - a session goes through different states: initialised, running, terminated or er-
ror. The TC should offer the possibility to investigate the status of a session. Multiple views
are possible: view of a certain session (by ID), view of all sessions of one user, view all
sessions.

• save/load - a session can be saved and reloaded. This concept is very helpful to reuse an
existent configuration. The basic idea is to reuse a configuration, i.e., same test nodes and
test behaviour, for different test parameters.

The Session Manager (SM) is the place where all information about sessions is stored. It includes
data such as who created the sessions, the current status of the session. It provides an API to the
TC which may create, start/stop, kill each session.

Session control. Once a session has been created, it can be used to execute tests. For this purpose,
further operations are required:

• configure test component distribution rules - in a distributed environment, the test engineer
should be able to define rules for how the test components should be distributed. Addition-
ally, the test engineer should be able to select load balancing algorithms.

• configure test parameters - to prepare the test for execution, test parameters have to be pro-
vided.

• start/stop test - after all preliminary configuration operations are finished, the test can be
started. During the execution the tester may stop the test anytime.

• on-line tracking - the log statements will be logged during the execution. However, the
tester may want to see these statements on-line while the execution progresses.

To allow the TC to administrate the test sessions, the SMProvided2TC interface has been in-
troduced. The interface defines operations for all tasks presented above. The interface can be
addressed by multiple TCs since many users can access the environment at the same time.

Another functionality the Session Manager (SM) may provide, is a call back interface to be able
to call the TC when certain events happen. For instance, a callback event is the termination of a
test. From the test console, the tester may start a wait-for-termination command which will actu-
ally wait until the Session Manager (SM) announces the termination. Since multiple test consoles
may be connected at the same time to the platform, e.g., more than one tester, the callback imple-
mentation has to keep track of all consoles which are interested on certain events. The call back
functionality is defined on the Test Console side within the SMRequired interface.
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Test environment management. Test environment management implies the actions to adminis-
trate the standalone processes, i.e., the test daemons and the Session Manager (SM). This func-
tionality has to be supported also by the test console. Typical commands are: update, e.g., to
update the test daemon software, version (to check the current version), reboot (to restart the
test daemons or the Session Manager (SM)), ping (to check the availability of a test daemon on
a given test node). These operations are defined in DaemonProvided (for the test daemon) and
SMProvided2TC interfaces.

The time is an important notion for distributed TS. A major problem is that there is no concept
of the usage of a common clock. As a distributed system contains distributed test nodes where
each node has its own notion of time, i.e., an own internal clock. The problem that occurs is that
the clocks very often get un-synchronised altering the test execution. To coupe with this problem
a simple technical solution is the Global Positioning System (GPS). Each test node receives the
time from a GPS receiver, with a high accuracy, and substitutes the existing time operations. This
way the time will be always the same for all test nodes.

Script Example. Listing 4.11 offers an example of a script to create, configure, execute and termi-
nate a test session. These operations are explained in detail. The ses id and verdict variables
are used to save the id of the session and the verdict of the test. The make command creates a ses-
sion using the configuration parameters in the containersConfig.ccf file and stores the id of
the session into the ses id variable. The session id is used in the config command to configure
the distribution rules, in the load command to load the test parameters and in the log command
to set the logging to “on”. Setting the log to “on” means that the tester can see the log events
displayed along the test execution. Setting it to “off” means that the events can be visualised only
after the termination of the test. The starttc starts the test with the name MyTest. The wait
command blocks the script execution until the session terminates. At termination, the verdict is
stored into the verdict variable. The log command asks the execution environment to collect
all log events and put them together into the exec.log file. At the end, the session is terminated
and resources released, e.g., temporary files are removed, with the command kill. The exit
command leaves the script and displays the final verdict.

Listing 4.11: Script Example
echo on

var $ s e s _ i d
var $ v e r d i c t

# c r e a t e a new s e s s i o n
make −c c f c o n t a i n e r s C o n f i g . c c f −v $ s e s _ i d

# c o n f i g u r e t h e new s e s s i o n ( c o n f i g u r e t h e dep loyment r u l e s )
c o n f i g −s $ s e s _ i d − t c d l d i s t r i b u t i o n C o n f i g . t c d l

# load t e s t p a r a m e t e r s
load −s $ s e s _ i d −mlf t e s t P a r a m e t e r s . mlf

l o g −s $ s e s _ i d on

# s t a r t s t h e s e s s i o n
s t a r t t c −s $ s e s _ i d MyTest

# wait u n t i l t h e e x e c u t i o n t e r m i n a t e s
wait −s $ s e s _ i d −v $ v e r d i c t
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l o g −s $ s e s _ i d −o exec . l o g

k i l l −s $ s e s _ i d

echo t e r m i n a t i o n − v e r d i c t $ v e r d i c t

e x i t −v $ v e r d i c t

4.6.2.2 Test Console-Test Daemon Interaction

Test daemons are standalone processes installed on the test nodes (one test daemon per node) with
the role to manage the test containers. A test session involves at least one test daemon during the
execution. The test daemons are addressed by the TC during the test session creation. At session
creation, each test daemon makes the initial resource reservation, e.g., creates the folders where
the test resources will be deployed, creates the log files. After the creation of the container, the
test daemon does not need any further interaction with the test daemon excepting the case when
the TC sends the request to kill a session. During the test session administration, e.g., initialisa-
tion, parameterisation, start/stop test, the TC talks directly to the container. This functionality is
provided by the test daemon through the DaemonProvided interface.

4.6.2.3 Test Console-Test Container Interaction

The test containers are the hosts of TEs; they manage the creation, configuration, communication
and the removal of the parallel test components. Moreover, the containers are the target test execu-
tion environment and comply with the TCI standard for TTCN-3 test execution environment. The
container includes the specific TS entities: TM, CD, TE, CH, SA and PA. For more information
on the API and interactions between these entities, the reader is referred to [SVG02], [SVG03].
The container subsystems are functionally bound together by the TCI interfaces and communicate
with each other via the communication middle-ware.

The TC addresses the test containers via ContainerProvided interface. During the test setup,
the console communicates with all test containers created for a session in order to keep a consistent
configuration and parameterisation. One of the test containers is marked as “special” container.
The special test container is the one which creates the MTC component where the testcase will
be started. When the testcase is started, the TC asks the “special” container for the TM interface
which is then used to start the testcase within the local TE.

4.6.2.4 Test Management-Test Executable Interaction

The TM entity is responsible for the control of TE. It provides the necessary functionality for the
TC so as to control the test execution. The functionality includes: start/stop of test cases, collec-
tion of final verdict and propagation of module parameters to the TE. In a test session, the TC
addresses each TM on each test node in order to maintain a consistent configuration.

The interaction TM-TE consists of two sets of actions grouped into TciTMProvided, which is
the functionality provided by TM to TE, and TciTMRequired, which is the functionality offered
by TE but required by TM. Figure 4.6 shows some of the possible interactions between TM and
TE. The two actions, tciStartTestCase and tciStopTestCase belong to the TciTMRequired
while the tciGetModulePar belongs to TciTMProvided.
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Figure 4.6: Test Management-Test Executable Interaction

The TM may start or stop the test cases and the control part. This functionality is implemented
in TE. In response, the TE may notify the TM when a test case or the control started or termi-
nated. The test parameterisation is also a task of the TM which includes the tciStartTestCase
operation which has a TciParamterListType as argument.

The values of the parameters of a module are transferred to TE also via TM interface. TE may ask
TM about the value of a parameter by using the tciGetModuleParameter function.

TM can obtain information about the content of a module directly from TE. With the
tciGetTestCases and the tciGetModuleParameters functions, the TM may acquire the list
of test cases and module parameters.

TE-TM relation has an important role also for logging and error handling. The TEs forward the
logging events to the TM using tciLog function and it informs the TM about errors occurred during
the runtime by using tciError function.

4.6.2.5 Test Management-SessionManager Interaction

The SMProvided2TM interface defines the operations which a TM can invoke on the SM. The
operations are related to logging of logStatements and errors which are dispatched by the SM
to all listening test consoles. Additionally, in case that errors are reported by any of the TM com-
ponents, the SM updates the status of the test sessions to “error”. When a testcase starts or finishes
its execution, the TM where the testcase runs, informs the SM about this event as well.

4.6.3 Test Execution

The part of the test platform which executes the TTCN-3 statements is the TE entity. Technically,
TE contains the same test logic as the TTCN-3 code, but into a concrete executable form, i.e.,
executable code, produced by a compiler. The statements are usually expanded into bigger pieces
of code, e.g., Java classes, which call the underlying platform functions to execute the test logic.

Some operations cannot be executed directly by the TE. Though TE is a concrete executable code,
some function calls are only pointers to concrete functions which deal with the aspects that cannot
be extracted from information given in the abstract test. For example, the mapping of the send
statement does not know how to send the data to SUT and it needs to call a function provided by
the SA. This non-TE functionality can be decomposed into:

• communication with the SUT provided by SA
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Figure 4.7: Test Execution

• external functions provided by PA.

• timer functions provided by PA

• component handling provided by CH and SM

• data encoding provided by CD

A very simple and incomplete mapping from TTCN-3 to Java is given as example in Table 4.2.

The test can be distributed over many test nodes and different test behaviours can be executed
simultaneously. On each host, an instance of the TS is created. The TE must be distributed on
each host with its own CD, SA and PA. The CH supplies the communication between the test
components created, that run on different hosts. The TM coordinates and manages the execution
of the test.

Figure 4.7 highlights the entities which contribute to the test execution. The interaction between
these entities is defined as a set of interfaces. The API, conceived within the interfaces, defines
operations which the entities either provide or use. For this reason, there are two types of inter-
faces: provided and required. The provided interfaces contain operations which are offered by an
entity to TE; the required interfaces contain operations that a non-TE entity expects from the TE
entity.
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Table 4.2: Example of Mapping Rules from TTCN-3 Abstract Elements to Java Language Ele-
ments

TTCN-3 Element Mapping to Java
basic type a class which encapsulates the mapping of the type

to Java types. The class provides access methods based
on TciValue interface to the internal data.

structured type a class whose fields are references to other types.
The references are accessed through TciValue interface methods.

component a class which provides references to ports and local
variables.

function a thread whose run method contains the mapping of statements.
The component on which the function runs is a local field
used to access the components’ internals.

send a function which checks whether the sending port is mapped to
an SUT port or to another PTC port. If the destination is the SUT
the function uses the reference to the SA and calls the triSend
If the destination is another PTC, the function calls tciSendMessage
of CH.

4.6.3.1 The ContainerProvided Interface

The test container has an important role in the test execution offering repository functionality
for keeping the references to components, ports and functions. Additionally, it provides also
the location information of entities which reside on other test nodes, e.g., Session Manager
(SM), the CH of another test container. The functionality of the container is defined within the
ContainerProvided interface.

To understand the repository role of the test container, the PTC management functionality is used
as an example. Along the testcase execution, a PTC is created, mapped to SUT or connected to
other PTCs, started and stopped or terminated. Whenever a component is used, a reference to its
object is needed. This reference is managed by the test container. At creation, the component
receives an ID and an instance of its component type is created. The container repository stores
the instance together with its ID. Within the test behaviour, the components are addressed by their
references, e.g., self, mtc, or a variable of type component. At the start of the component, the
behaviour running on the component receives the component reference but not the concrete in-
stance. To access the internal data of the component, e.g., variables, ports, the container is asked
to resolve the ID into a concrete reference which is then used to access the internal data.

In a similar way, the container provides the functionality of a repository for ports and behaviours.
For the port references, the container resolve their components to which they belong. The be-
haviours are searched in the repository when, for example, an error occurs and all threads have to
be stopped.

The container keeps also all references to the entities TE talks to: SA, PA, CD and CH. These enti-
ties are used during the compilation process to provide the pointers to the interfaces they provide.
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4.6.3.2 Test Configuration

A test configuration consists of all components created by a testcase and the connections between
the ports of different components. The TTCN-3 operations to create a test configuration are: cre-
ate, map, unmap, connect and disconnect. The compiler maps these operations to function
pointers whose implementation is provided by CH. The TE itself cannot supply this functionality
since it does not have the knowledge about where the components are located. A component can
be created either locally or remotely, on another test node. To acquire this information, the CH is
used as proxy through its TciCHProvided interface.

The decision where a component has to be created is taken by the SM which supplies the rules for
PTCs distribution. For this purpose, the SM provides the SMProvided2CH interface. At compo-
nent creation, the CH asks the SM for a the location of the new component. After the creation,
the ID of the component contains also the location information, therefore, for other configuration
operations, the CH can manage alone where the operation will be executed.

The configuration operations are called from test cases or functions. CH keeps track of the mod-
ifications in the TS configuration. It stores the references of the components, knows about the
running behaviours and manages the component connections. CH can also be asked if a compo-
nent is running or if it finished its execution. Whenever an execution error occurs inside of a TE,
the tciReset operation is called in order to stop all the other components of all TEs.

In a distributed environment, the CH also helps in deciding if the requests are to be handled lo-
cally or remotely. If the request is executed locally, it is sent back to the local TE. TE provides the
TciCHRequired interface so as to allow CH to address a TE. If the request is to be executed on a
remote node, the CH sends the request to the remote TE.

4.6.3.3 Inter-Component Communication

The communication operations between components are also realised by CH. CH provides to TE
a set of operations (in TciCHProvided interface) which are called whenever data is transmitted
between components. The CH communication operations represent the mapping of the TTCN-3
communication operations, e.g., send, receive, call, getcall. When a component sends data to
another component, the request is forwarded to CH. CH has the global view over the distributed
configuration and knows the host of the receiving component as well. If the host is a remote one,
the message is send to the remote TE, which offers the TciCHRequired interface. TTCN-3 sup-
ports two types of communication: asynchronous (message based) and synchronous (procedure
based). Consequently, CH supports also the two types of data communication by providing meth-
ods like tciSendConnected, tciEnqueueMsgConnected for asynchronous communication,
but also methods like tciCallConnected, tciEnqueueCallConnected for procedure based
communication.

4.6.3.4 Test Executable-Coder and Decoder Interaction

The TTCN-3 values must be converted to SUT specific data, i.e., bitstring. This task is solved by
CD, which provides the tciEncode and the tciDecode operations. These functions are called by
the TE when it executes send and receive operations. The interaction between TE, CD and SA is
illustrated in Figure 4.8.

The encoding operation is called by TE before the data is sent to the TA. The decoding operation is
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Figure 4.8: Coder and Decoder Functionality

used by TE when data is received from the TA. To be able to decode, CD requires some informa-
tion from TE; this information is the decoding hypothesis. The behaviour running in TE knows the
type of data that is to be received, so it asks CD to try to decode the received data according with
a certain expected type. If the decoding fails, CD is called again with a new decoding hypothesis.

During the encoding, the TTCN-3 data is transformed into concrete data values as required by
the SUT. The TE contains the data values which are generated at compilation in form of a tree of
objects. In order to maintain a common data model, the TCI standard defines the Abstract Data
Type Model, which describes the interfaces that handle the TTCN-3 data from TE. Each abstract
data type has associated a set of operations which allows for accessing its internal data.

The Abstract Data Type Model contains two parts: the data type Type, which represents all TTCN-
3 types, and data types that represent TTCN-3 values (instances of TTCN-3 types). All TTCN-3
types provide the same interface. One may obtain for a type the module where it was defined, its
name or class and the type of encoding. Any type can be instantiated by using the newInstance
method. The different types of values, which can appear in a TE, are presented in Figure 4.9.

All types of values inherit the Value type and provide the core operations: getValueEncoding,
getType and notPresent. The Value types represent the mapping of the abstract TTCN-3 val-
ues to concrete ones. There are three categories of values: a) basic types, e.g., integer, float,
boolean, b) string based values, e.g., hexstring, octetstring, charstring, and c) structured types,
e.g., union, record, verdict, etc.. Besides the core operations extended from TciValue interface,
all of them provide additional operations, specific to each type, to access their content.

4.6.3.5 Test Executable-System Adapter and Test Executable-Platform Adapter Interac-
tion

The TRI interfaces define the communication of TE with the SA and with the PA. The PA is a
gateway to host resources, i.e., timers, external functions. The SA defines a portable service API
to connect to the SUT. The TA is a user provided part and implements the SA interface. TAs
promote flexibility by enabling a variety of implementations of specific tasks.

This part describes two tasks: firstly, the way the TE sends data to SUT (TriCommunicationSA
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Figure 4.9: The TTCN-3 Value Types which can Appear in Test Executable

interface) or manipulates timers and external functions (TriPlatformPA interface), and secondly,
the way the SA notifies the TE about the received test data (TriCommunicationTE interface) and
PA notifies the TE about timers’ timeouts (TriPlatformTE).

The TTCN-3 specifications use the operation system to reference the SUT. The component re-
turned by the system operation is conceptually similar to the other PTCs and is usually called
system component; it may contain ports which can be connected to other components. In contrast
to normal components, the ports of the system component are connected with the ports of other
components by using the map operation. As far as the test execution is concerned, the system is
handled differently. The configuration operations map, unmap are not sent to CH, but to the TA.

SA implements all message and procedure based communication operations. The data received
from SUT is transmitted to TE also through SA. The enqueue operations are implemented by TE,
so the TA implementation shall be concerned with the task of using the enqueue operations to
deliver the received data to TE.

4.6.4 Test Distribution

As far as the test distribution is concerned, TTCN-3 provides the necessary language elements for
implementing distributed tests as well. This is, however, supported in a transparent fashion as far
as the same test may run either locally or distributed. The distributed execution of a test enables
the execution of parallel test components on different test nodes, sharing thus a bigger amount of
computational resources.

The design of a distributed TTCN-3 test architecture rises a number of conceptual ques-
tions [Apo04]:

• What does it imply the distribution of a component on a specific node? - a component con-
sists basically of data and ports. The component is like an object which contains a number
of other objects. The ports can be seen also as objects which contain a list of available
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connections (to other ports). During the test execution, a component is started with a test
behaviour. A test behaviour is a thread which has a reference to the component object in
order to access its internal data.

• How can it be specified that a component has to be distributed on a specific node? - the
TTCN-3 language lacks of support to specify which components should be executed to a
remote test node. This issue requires a further development of distributed testing concepts
related to TTCN-3.

• How can a load balancing algorithm be applied? - a performance test may create a large
number of components. Moreover, the test nodes may have different amounts of CPU and
memory resources. Therefore the question arises: How can one balance the components in
an intelligent manner such that the test nodes with more resources run more parallel com-
ponents?

• How can it be specified which hosts shall participate in a test session? - a test component
may be distributed anywhere on any test node. The question is how to specify which hosts
should be used.

4.6.4.1 Container Configuration File

To give the possibility to describe the participating nodes and the sources that have to be deployed,
a Container Configuration File (CCF) concept is proposed. Every node is identified by an IP ad-
dress and a logical name. The logical name is used to simplify later needed referencing for a user.
The sources that have to be specified include the TE created by the TTCN-3 compiler, the TA
together with the appropriate CD, and all other libraries needed by the test suite.

Listing 4.12: Filter by component type
< c o n t a i n e r _ l i s t >

< c o n t a i n e r >

<IP >1 9 2 . 1 6 8 . 9 9 . 1 8 </ IP >

<name>hos t1 </ name>

<de p l oy name = " . . / . . / l i b / CommonBehaviours . j a r " / >

<de p l oy name = " . . / . . / l i b / CommonTemplates . j a r " / >

<de p l oy name = " . . / . . / l i b / CommonTypes . j a r " / >

<de p l oy name = " . . / . . / l i b / U s e r S t a t e M a c h i n e . j a r " / >

<de p l oy name = " . . / . . / l i b / a d a p t o r . j a r " / >

</ c o n t a i n e r >

< c o n t a i n e r >

<IP >1 9 2 . 1 6 8 . 9 9 . 1 9 </ IP >

<name>hos t2 </ name>

<de p l oy name = " . . / . . / l i b / CommonBehaviours . j a r " / >

<de p l oy name = " . . / . . / l i b / CommonTemplates . j a r " / >

<de p l oy name = " . . / . . / l i b / CommonTypes . j a r " / >

<de p l oy name = " . . / . . / l i b / U s e r S t a t e M a c h i n e . j a r " / >

<de p l oy name = " . . / . . / l i b / a d a p t o r . j a r " / >

</ c o n t a i n e r >

</ c o n t a i n e r _ l i s t >

An example of a CCF if given in Listing 4.12. A CCF starts with the tag container list. For
every container, which has to be created, a container tag is added. In the example, two contain-
ers shall be created. Within a container tag the host, the container name and the needed files have
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to be specified. The host where the container has to be created is specified within the IP tag. The
IP address of the host of the creating container has to be written. An IP address has to be used only
once in a CCF as only one container on a host can be used in the appropriate test session. In the
given CCF example containers will be created on the hosts with the IP addresses 192.168.99.18
and 192.168.99.19. The IP addresses where a container has to be created and the container’s
names have to be unique in the CCF file. The sources that have to be deployed to all containers,
and required in order to execute the test, are specified within the deploy tags.

4.6.4.2 Component Distribution Language

A test distribution strategy defines how the components are distributed among test nodes and thus
it plays a major role in the efficiency of a TS. Test distribution defines which components are to
be distributed and where they should be deployed. The distribution of components can be defined
as a mathematical function of different parameters which is applied at deployment time separately
for each test component in order to assign it to a home location where it will be executed. In
the function definition (8), D is the distribution function, p1, p2, ..., pn are the parameters which
influence the distribution and h is the home where the test component should be distributed.

There are two types of parameters which are taken into consideration when distributing test com-
ponents: external and internal.

(8) h = D(p1, p2, . . . , pn)

The external parameters are application independent parameters whose values depend on the ex-
ecution environment and are constant for all applications running on that environment. Examples
of external parameters are: bandwidth, CPU and memory.

The internal parameters are related to the test component based application itself and are different
for each test case. They refer to characteristics which can be obtained at the creation of the test
component: the component type, the instance number, component name and the port types which
belong to that component.

When multiple homes can be selected for a particular sub-set, a balancing algorithm can be ap-
plied, e.g., round-robin. This mechanism encapsulates the complexity of distribution avoiding
complex distribution rules. In fact, the goal of distribution is to rather help the tester distribute the
components in an efficient way than to provide a language to implement any distribution rule.

Based on the aspects described above, a simple language for defining the distributions of test
components has been defined. To help understanding the concepts related to test component dis-
tribution, some examples written in this language are presented here. The distribution specification
is the process of assembling test components to hosts. The assembling process groups all compo-
nents to be deployed, in a big set while the assembling rules shall define sub-sets of components
with a common property, i.e., all components of the same type. A (sub-)set defines a selector of
components and the homes where the selected components are placed. The filtering criteria of the
selector handle component types, component instance numbers or even component names. The
home are the possible locations where the test components may be distributed. Also for the homes
further constraints for distribution can be defined, e.g., max number of components.

Figure 4.10 explains the principle of applying the assembly rules. A distribution strategy consists
of a number of rules which are interpreted top-down. Each rule follows the flow presented in the
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Figure 4.10: Home Finding Flow

figure. As a general rule, the internal parameters impose filtering rules and define which compo-
nents to be selected while the external parameter validate whether a selected home can sustain a
new component or not. The external parameters are always checked after the home has been iden-
tified. The flow starts with checking if the filtering rules match the component. If not, then the next
assembly rule is taken. On successful match, it is checked if more than one home is specified in
that assembly rule. If false, then it is checked if the external parameters for that home are satisfied.
If not, then the next rule is taken; otherwise, the component is deployed in that home. If more than
one home is specified, then a balancing algorithm must be specified too. This algorithm specifies
in which order to choose the available homes. A simple algorithm is the round-robin algorithm
which says that the homes are selected sequentially. If the external parameters of a home are not
satisfied, then the algorithm is applied again for the rest of the homes until one home satisfies its
external parameters. In the case no home can be used, then the next assembly rule is selected.

Filtering by component type. Listing 4.13 is an example of a component assembly rule based on
filtering the components on their types. The tag with the name “special" indicates the host where
the MTC component is deployed. The selector defines a filter to select all components of type
ptcType. The selected components can be deployed either on container1 or on container2.
One can define deployment constraints for each container, for example, do not allow the deploy-
ment of more than 100 components on container2. In a similar way, other constraints related to
memory usage, CPU load, number of components, etc., can be defined.

Listing 4.13: Filter by component type
<component_assembly >

< d e s c r i p t i o n >Example to use TCDL language </ d e s c r i p t i o n >

< s p e c i a l c o n t a i n e r =" c o n t a i n e r 1 " / >

<s e t >

<c o m p o n e n t _ s e l e c t o r s >

<component type >ptcType </ component type >

</ c o m p o n e n t _ s e l e c t o r s >
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<homes d i s t r i b u t i o n =" round− r o b i n ">

< c o n t a i n e r i d =" c o n t a i n e r 1 ">

<max_components >10</ max_components >

</ c o n t a i n e r >

< c o n t a i n e r i d =" c o n t a i n e r 2 " / >

<max_components >100 </ max_components >

</ c o n t a i n e r >

</homes>

</ s e t >

</ component_assembly >

Filtering by instance number. Listing 4.14 shows a set which deploys the instances 1, 2 and 5 of
type ptcType4 on the container2. The number of the instances are given as parameters in the
filter rule.

Listing 4.14: Filter of instance number
<s e t >

<c o m p o n e n t _ s e l e c t o r s >

< i n s t a n c e type =" s i n g l e ">

<component type >ptcType4 </ component type >

<number >1</number>

<number >2</number>

<number >5</number>

</ i n s t a n c e >

</ c o m p o n e n t _ s e l e c t o r s >

<homes d i s t r i b u t i o n ="">

< c o n t a i n e r i d =" c o n t a i n e r 2 " / >

</homes>

</ s e t >

Filtering by component name. Listing 4.15 shows a set which deploys the component with the
name ptc1 on the container2. The number of the instances are given as parameters in the filter
rule.

Listing 4.15: Filter of component name
<s e t >

<c o m p o n e n t _ s e l e c t o r s >

<componentname >ptc1 </ componentname >

</ c o m p o n e n t _ s e l e c t o r s >

<homes d i s t r i b u t i o n ="">

< c o n t a i n e r i d =" c o n t a i n e r 2 " / >

</homes>

</ s e t >

Distribution by algorithm. Usually, the definition of constraints is a difficult task; for complex
setups it may be very difficult to describe an efficient distribution. Therefore, the task of identify-
ing hardware options and constraints should be realised by the test execution environment itself. It
should provide services, which implement distribution algorithms that are designed to be efficient
for a certain type of problems. The task of the user remains to select the algorithm which solves
the problem best [Tol05].

Listing 4.16 provides an example of applying the mem prediction algorithm [Tol05] for all
components of type ptcType. This algorithm encapsulates the whole complexity of finding the
memory proportions among all test nodes. It also does not require further constraints on the homes
- it just provides the whole functionality by itself.
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Listing 4.16: Distribution by algorithm
<s e t >

<c o m p o n e n t _ s e l e c t o r s >

<component type >ptcType </ component type >

</ c o m p o n e n t _ s e l e c t o r s >

<homes d i s t r i b u t i o n =" mem_pred i c t i on ">

< c o n t a i n e r i d =" c o n t a i n e r 1 " / >

< c o n t a i n e r i d =" c o n t a i n e r 2 " / >

< c o n t a i n e r i d =" c o n t a i n e r 3 " / >

</homes>

</ s e t >

The collector rule. The components which are not accepted by any set selector are deployed in a
default home. This home is defined by collector tag.

Listing 4.17: Collector Home
< c o l l e c t o r >

< c o n t a i n e r i d =" c o n t a i n e r 1 " / >

</ c o l l e c t o r >

4.6.4.3 Distributed Component Handling

The assembly rules are implemented within the SM. Each session has assigned a set of assembly
rules which are applied at each PTC creation.

Figure 4.11: Component Creation

Figure 4.11 illustrates the mechanism of component creation. The scenario presented in the figure
involves two test containers. The TE of container1 intends to create a component on the second
container. To realise that, the TE of container1 invokes the tciCreateTestComponentReq on
the CH of the same container. Next, the CH asks the SM for a location for the new component.
Based on the SM’s decision, the request for the creation of a component will be either transmitted
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to the local TE or to a remote TE. In the scenario presented in the figure, the location is a remote
container; therefore, the tciCreateTestComponent operation is invoked on the remote TE. The
remote TE will create the TTCN-3 component and will provide back a handler to the requesting
TE of container1. The local TE can then operate on the remote test component by using the
obtained handler.

4.6.5 Test Logging

Log events are understood as single logical information units generated during the test execution.
Log traces are physical representation of the logs, mentioned above. In relation to the test execu-
tion their order represents the whole test against considered System Under Test. Log traces are
given to the user or test operator in textual format.

Analysis of such a textual log traces is done after test execution and implies manual or automatic
review of previously generated text. Manual analysis requires a lot of time and effort as people
involved have to understand every single detail and also recognise possible doubts, misunderstand-
ings or errors. It is clear that in cases of huge test campaigns big effort is needed to analyse log
traces. Automatic form, on the other hand, requires creation of appropriate tool, which could be
reasonable in some cases.

The realisation of all mentioned issues requires a Test Execution Logging Interface. The task of
the logging interface is to define a generic API provided by the test execution tool. The Logger is
the client of this interface and handles the events produced during test execution.

Figure 4.12: Entities Involved in Test Logging

Logging interface is a crucial part enabling observation of test log traces. It is a bridge between
Test Execution Tool and Logger. It therefore provides all possible log events. Besides creation,
start and termination of test components and ports several other events represent the operations
done during the test case. The most important are the execution (start/stop) of test cases, the
timers within statements: start, stop, timeout.

However, the afore-mentioned examples cover rather the test execution than the test logic itself.
Especially, for performance testing, the information related to users transactions is far more im-
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Listing 4.18: Log Event Format
[ t imes t amp ] , [ t e s t node i d ] , [ component i d ] ,
[ u s e r i d ] , [ c a l l i d ] , [ e v e n t type ] , [ e v e n t c o n t e n t ]

portant. Figure 4.12 presents the entities involved in the logging. Though other entities of the
container, e.g., CH, TM, CD, may produce logs, the log events they produce are not relevant
for performance testing. The information related to user states is captured by SA and PA enti-
ties. Therefore, the events to be stored in the log repository are: triSend, triEnqueueMsg and
triTimeout.

The general form of an event is illustrated in Listing 4.18. Each event has a time-stamp. It also
needs to store information about who produced it: test node id and component id. The rest
of the information is related to user and its state: user id, call id and event type. It is also
possible to store more information about the event, e.g., if a second user is involved in the call,
then it can be also logged.

At the end of execution the TC uses the ContainerProvided interface to ask each container on
each test node to provide the log traces. These traces are then sorted on timestamps so that the
trace contains the events in there temporal order.

4.7 Summary

This chapter approaches the test harness topic in the performance testing context. It starts with the
requirements related to test harness for the characteristics specific to performance testing (includ-
ing test distribution). The TTCN-3 language has been selected to allow a more concrete illustration
of the presented concepts. The arguments for the selection of this technology are also given. The
language is then used to present how various performance testing concepts introduced in Chapter
3 such as event handling, traffic set, data repositories, etc., can be designed. Then the chapter
converges toward execution platform concepts. An extension of the ETSI standardised architec-
ture for test execution is discussed. Various aspects such as test management, test execution or
distribution are discussed in detail.
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Case Study: IMS Performance
Benchmarking

Ethical axioms are found and tested not very differently
from the axioms of science. Truth is what stands the test of experience.

– Albert Einstein

The performance testing methodology has been evaluated throughout a case study on IMS bench-
marking. IMS [3GP06] is a standardised architecture designed to support a rich set of services and
make them available to end users. The multitude of offered services and the complex call flows
of the interactions between users and IMS network, make IMS an excellent candidate to apply
the methodology. Therefore, the goal of the case study is to investigate how an IMS system will
behave when the number of calls per second and the number of active users increase for a realistic
selection of test scenarios.

The existing models inherited for legacy telephony, e.g., Erlang tables, 3-minute average holding
time, 1 Busy Hour Call (BHC) per subscriber) [Ack04] are insufficient for IMS service model
deployments. The service providers need IP based models more similar to those used for data
networks and applications servers. This can be achieved only if the test system creates adequate
workloads which consist of ordinary calls invoking the services.

The purpose of performance testing in the IMS context is to provide information on the complete
IMS network and on subsystems of such a network corresponding to discrete products that may be
available from a supplier. Therefore, the test system defines the input stimulus to the system under
test by providing precise definitions of transaction types and contents, statistical distributions for
transaction types, arrival rates, and other relevant parameters. The tests specify how the traffic is
to be provided to the SUT and define the measurements to be made from the SUT and how they
are to be reported.

5.1 Benchmark Definition

The goal of project, where the case study derives from, is to create a benchmark for IMS which
implies the realisation of a representative workload and a test procedure capable of producing
comparable results. Therefore, some definitions related to benchmarking are presented first.

125
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A benchmark [JE05] is a program or an application used to assess the performance of a target
system (hardware or software). This is realised by simulating a particular type of workload on a
component or system. In a benchmark the test scenarios test the SUT services, the utility perfor-
mance, one can experiment with different methods of loading data, transaction rate characteristics
as more users are added, and even test the regression when upgrading some parts of the system.

A benchmark is a type of performance test designed such that it can be used as a method
of comparing the performance of various subsystems across different chip/system architec-
tures [VW98],[DPS07]. From a business perspective, a benchmark is the ideal tool to compare
systems and make adequate acquisition decisions [Men02b]. Nevertheless, a benchmark serves
also as a performance engineering tool in order to identify performance issues among versions of
a system.

A benchmark is not easy to realise and often the tools have to deal with high performance capa-
bilities. The list of requirements includes:

• benchmark procedure - the method for defining the load and for measuring the performance,
should be based on the number of virtual users. This can be measured either by the number
of subscribers a specific configuration can support, or the minimal system cost of a config-
uration that can support a specific number of users.

• hardware resource limitations - the benchmark must measure the capacity of a system. This
requires the test system to emulate the behaviour of a big number of users interacting with
the SUT. Although the benchmark will define a traffic load corresponding to thousands of
simulated users, the method of traffic generation should be defined in such a way that it can
be implemented economically by a test system.

• realistic workload - the benchmark must be driven by a set of traffic scenarios and traffic-
time profiles, i.e., the benchmark is executed for various load levels. The test system should
generate realistic traffic and cover the majority of use cases of interest.

5.2 IP Multimedia Subsystem

The IP Multimedia Subsystem is the 3GPP standardised architecture and protocol specification,
based on Session Initiation Protocol (SIP) [IET05] and IP [IET81] protocols, for deploying real-
time IP multimedia services in mobile networks [3GP06]. ETSI TISPAN has extended the ar-
chitecture in order to support the deployment of IP services in all communication networks, e.g.,
fixed, cable. IMS provides the basis of a multimedia service model for core voice services (a.k.a.
VoIP) and for new services based on voice, but including both video, e.g., video conferencing, and
data services, e.g., location.

For users, IMS-based services enable person-to-person and person-to-content communications in
a variety of modes including voice, text, pictures and video, or any combination of these in a
highly personalised and controlled way [Eri04]. At the same time, for service operators, the ar-
chitecture simplifies and speeds up the service creation and provisioning process, while enabling
legacy inter-working.

The main layers of the IMS architecture are the access layer, control layer, and service layer.

• access layer - comprises routers and switches, both for the backbone and the access network.
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Figure 5.1: TISPAN IMS Architecture

• control layer - comprises network control servers for managing call or session set-up, mod-
ification and release. The most important of these is the Call Session Control Function
(CSCF), also known as a SIP server. This layer also contains a full suite of support func-
tions, such as provisioning, charging and and management. Inter-working with other oper-
ators networks and other types of networks is handled by border gateways.

• service layer - comprises application and content servers to execute value-added services
for the user. Generic service enablers as defined in the IMS standard, such as presence and
group list management, are implemented as services in a SIP Application Server (AS).

The IMS architecture is presented in Figure 5.1, where the call control signalling entities are high-
lighted. The key technology behind IMS is the SIP protocol, which is underlying many of the
important interfaces between elements in an IMS-based network. The traffic between a UE and
the Proxy-CSCF (P-CSCF) is carried by an IPSec [Dav02] tunnel corresponding to the UE. A
P-CSCF is a SIP proxy, that is the first point of contact for the IMS terminal. It is assigned to
an IMS terminal during registration, and it does not change for the duration of the registration.
The Interrogating-CSCF (I-CSCF) queries the User Profile Server Function (UPSF) (or Home
Subscriber Server (HSS) in 3GPP specifications) to retrieve the user location, and then routes the
SIP request to its assigned Serving-CSCF (S-CSCF). An Subscriber Location Function (SLF) is
needed to map user addresses when multiple UPSFs are used. For the communication with non-
IMS networks, the call is routed to the Interconnection Border Control Function (IBCF) which
is used as gateway to external networks. S-CSCF is the central node of the signalling plane; it
decides to which ASs the SIP message will be forwarded to, in order to provide their services.
The ASs host and execute services and are instantiated by S-CSCF. The Media Resource Function
(MRF) provides media related functions, e.g., voice streaming. Each MRF is further divided into
a Media Resource Function Controller (MRFC) for signalling and a Media Resource Function
Processor (MRFP) for media related functions. The Breakout Gateway Control Function (BGCF)
is a SIP server that connects IMS clients to clients in a circuit switched network. A Signalling
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Gateway (SGW) interfaces with the signalling plane of the circuit switched network.

Figure 5.2: The IMS control layer

The main components of the IMS have been briefly introduced. However, the test system focuses
on the performance evaluation of the core network components only (highlighted in the figure).
The primary goal of the benchmark is to define a set of test cases that can be applied to an IMS
SUT in order to evaluate its performance. The benchmark is defined for the control plane of an
IMS network, which consists of the x-CSCF, HSS, and SLF components, the links over which
they perform signalling, and the database transactions required to perform these functions. These
elements are highlighted in Figure 5.2 which presents the test architecture in relation with the IMS
control layer. A call is a relationship between one or more subscribers, signalled and managed
through the IMS system. The intent of a subscriber when using IMS is to make calls, so the
obvious way to obtain realistic behaviour in an IMS test is to model the behaviour of calls.

5.3 Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application-layer control protocol for creating, modify-
ing, and terminating sessions with one or more participants. The SIP protocol has been developed
by IETF and standardised as Request for Comments (RFC) 3261 [IET05] and it was accepted as
a 3GPP signalling protocol of the IMS architecture. Within IMS network, SIP is used at the ap-
plication and control layer. SIP is a relatively simple protocol. It is a text-based protocol allowing
humans to read and debug SIP messages. A SIP message consists of three parts:

• the start line - this line determines whether the message is a request or a reply. The start
line of a request contains the method name followed by the protocol name and version. The
start line of a response starts with the protocol name and version.

• the header fields - the header fields consist of a list of headers where each field has a name
followed by a colon and a value.

• the body - a blank line separates the header fields from the body. The message body is
optional but when it is specified, the type of the body is indicated by the MIME value of the
Content-Type header. The length is specified by the Content-Length header.
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The original SIP specification defines six types of requests, i.e., REGISTER, INVITE, ACK,
BYE, CANCEL and OPTIONS, and one type of response. The responses are differentiated by codes,
as for example 100 Trying (sent by proxies to indicate that the request was forwarded), 200
OK (the general purpose OK response), 404 Not Found (sent when the callee is not currently
registered at the recipient of the request).

The SIP specification has been extended by various IETF documents, in order to increase its func-
tionality. Some of the relevant SIP extension methods, used in IMS, are: SUBSCRIBE (to subscribe
for an event of notification from a notifier, NOTIFY (to notify the subscriber of a new event; it is
sent to all subscribers when the state has changed), UPDATE (update the session information before
the completion of the initial INVITE transaction).

Figure 5.3: SIP Invite Request

The general structure of a SIP request is depicted in Figure 5.3. Each request has at least the
following headers: To, From, CSeq, CallID, MaxForwards, Via. These fields supply the
required information for services such as routing and addressing. The Request-URI field defines
the callee where the request should go. The To field defines the receiver of the message. The From
contains the identification of the sender. Call-ID is an unique identifier for a whole dialogue. The
Call-ID is generated at the creation of each call; all messages which belong to a call have the same
Call-ID. The CSeq serves for identification of a message within a call and defines the sequence
of the messages. The Max-Forwards defines how often the message should be forwarded until it
reaches the receiver. The Via field identifies the entities from the IMS network which receive the
message.

5.4 Use-Cases, Scenarios and Scenario based Metrics

The benchmark traffic has been defined by selecting scenarios from the most common IMS use
cases that are encountered the most in the real life deployments. For each use case a number
of scenarios have been defined and for each scenario, its design objectives have been identified.
However, further use cases can be defined in a similar way [Din06].
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5.4.1 Registration/Deregistration Use-Case

The first step a user has to accomplish, in order to use an IMS network, is the registration. At
registration, the user informs the IMS network about its location and establishes a secure commu-
nication channel for later signalling between the UE and the network. This information is stored in
the home domain registrar and used by the network entities to route terminating messages toward
it. De-registration is the operation to remove the registered contact information.

Figure 5.4: Registration State Machine

Figure 5.4 presents the steps a user executes during the registration process. The user starts from
an initial state where the user is connected to the IP network and can start the authentication pro-
cedure. The first step to register is the authentication when the P-CSCF negotiates a set of security
associations with the UE. Future registration/deregistration operations performed over these secure
channels do not need to further be authenticated as the integrity of the messages is protected.

Once authenticated, the user may start the registration procedure. The registration has attached
also an expiration timer which indicates for how long the user will remain registered. After regis-
tration, the user will subscribe to its own registration status in order to be able to react to network
initiated events regarding its registration status. After subscription, the user will receive updates on
changes of its status, e.g., the user will be deregistered sooner than it required. After registration,
the user may start anytime the deregistration procedure thus going back to the initial state.

The state machine opens the perspective for many scenarios definition. However, only a few of
them which cover some of the most representative paths are selected.

5.4.1.1 Scenario 1.1: Initial Registration

This scenario includes the transitions from initial state to authentication, registration and subscrip-
tion. Each user is forced to execute this flow before starting using any other IMS service. The call
flow for this scenario is presented in Figure 5.5. The user starts the registration procedure by send-
ing a REGISTER message, requiring the IMS network to send back an authentication key. The
401 message indicates that the user is asked to authenticate. In response, the user computes the
response and issues a new REGISTER message (this time including the response). If everything
works well, the networks response with a 200 OK.
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Figure 5.5: Sequence of Messages for Initial Registration Scenario

5.4.1.2 Scenario 1.2: Re-Registration

Any registration has an expiration time. When the validity of a registration is about to expire, the
user has to renew its registration. To simulate this behaviour, the re-registration scenario has been
defined. The re-registration call flow is presented in Figure 5.6. It consists only of two messages
which are REGISTER and its 200 OK response. This time the user does not have to authenticate
again, since its credentials are still valid.

Figure 5.6: Sequence of Messages for Re-Registration Scenario

5.4.1.3 Scenario 1.3: Re-Subscription

Similar to registration, the subscription expires after some time. In general, the subscription and
registration have different expiration times, therefore, a re-subscription is also needed from time
to time. The call flow for the re-subscription scenario is illustrated in Figure 5.7.
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Figure 5.7: Sequence of Messages for Re-Subscribe Scenario

5.4.1.4 Scenario 1.4: De-Registration

The deregistration happens when a user switches off its device. This scenario occurs in similar pro-
portions as the initial registration since after a deregistration, usually an initial registration takes
place. A typical example is when the user switches off its device in the plane before the take off,
and initiates a new registration after landing. The deregistration is similar to re-registration call
flow with the remark that the expiration time is zero.

5.4.1.5 Scenario 1.5: Failed Initial Registration

A typical fail scenario is the user-not-found case. It may happen when a user tries to register to
a new network being a non valid subscriber. In this case the IMS network is expected to respond
with a “404 Not Found”.

5.4.2 Session Set-Up/Tear-Down Use-Case

This use-case regards the establishment of a multimedia session, e.g., voice call, between two reg-
istered users. To be realistic enough, during the set-up period a "ringing" delay is introduced. Both
steps of the session are concerned: session set-up and the session tear-down. Therefore, between
the two steps, a talking time is foreseen. The most common situations encountered in real live are:

• Call Successful - when everything goes right, the session is successfully established but also
successfully terminated.

• Call Abandoned - when the originating party cancels the call during ringing, before the
terminating party answers.

• Call Rejected - when the terminating party rejects the call while busy.

• Call Failed - when some information in the call establishment is wrong and causes a failure,
e.g., terminating party not found.

In the real-world, these kinds of communication situations occur with a certain frequency, so they
must be included in the traffic set of the benchmark test scenarios, in order to make it more realis-
tic.

An important aspect is the resource reservation (of video and audio streams) status on the two
participating sides. During the call establishment, any party might require resource reservation,
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thus the call flow will be more complex for these scenarios. The resource reservation can be
multiplexed with the first three situations described above: successful, abandoned and rejected
call.

Moreover, there are several waiting times during which the Test System must pause, like the ring-
ing time or the call holding time. Distribution of these delays can follow a constant or a Poisson
distribution. During the set-up period, a “ringing” delay is introduced and if the set-up is success-
ful then the scenario is put on hold for the duration of the call and then it is terminated with a
tear-down sequence. After the “talking” time, one of the users issues a BYE message to close the
session. The BYE is answered by an OK confirmation message.

In the case of the calling scenario some metrics are measured, including: the delay for invite
request, the delay between consecutive invite requests, the delay of established calls and so on.

5.4.2.1 Scenarios 2.1-2.4: Successful Calls

Scenario 2.1: Successful Call without Resource Reservation

Figure 5.8: Sequence of Messages for Successful Call without Resource Reservation Scenario

Figure 5.8 depicts the sequence of messages of a voice call. The call scenario implies two UEs
which establish a call session. Each message is indicated in the message flow by a name and a
sequence number according to its order in the flow. One of them plays the role of caller by sending
the INVITE message (message 1) to the IMS network and the other one plays the role of callee
by accepting the call invitation (message 3). The first 10 interchanged messages between the two
entities are used for establishing the connection only. The UE2 first answers with 100 Trying
(message 4) to announce the IMS network that the INVITE has been received and that it tries to
reserve resources for the call. After the resource reservation step, the UE2 sends a 180 Ringing
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message (message 6) to announce the UE1 that the UE2’s phone is ringing. When the UE2 an-
swers the call, a 200 OK message (messages 7 and 8) is sent to UE1. The UE1 confirms the call
establishment with an ACK message (messages 9 and 10). After a talking time period, one of the
UEs decides to close the call by issuing a BYE message (messages 11 and 12). The second UE
confirms the call finalisation with a 200 OK (messages 13 and 14).

For this scenario, a number of metrics are interesting. The TRT1 is introduced to measure the time
required by the network to route the INVITEmessage from the originating party to the terminating
party. The TRT2 measure the session tear-up part and indicates the time required by the network
to establish a call. Similarly, the TRT3 measures the session tear-down part.

Scenario 2.2: Successful Call with Resource Reservation on Both Sides.

Figure 5.9: Sequence of Messages for Successful Call with Resource Reservation on Both Sides
Scenario

In this scenario, both of the UEs have to complete the resource reservation. The UE1 completes
resource reservation shortly after the arrival of the 183 response. The terminating UE completes
local resource reservation after sending a provisional response to the INVITE request. As soon
as the UE1 has finished the resource reservation, it acknowledges the 183 response with a PRACK
request. Resource reservation at UE1 is assumed to have completed at some point prior to sending
the PRACK request. The 200 OK response sent by the UE2, lets the UE1 that the PRACK has
been received. When the resource reservation is completed, UE1 sends the UPDATE request to the
terminating endpoint. After the confirmation of the UPDATE, the rest of the call flow looks similar
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to successful call without reservation scenario.

Also for this scenario, the metrics defined for the successful call without reservation can be ap-
plied. However, this time it is expected that the TRT2 takes far more time than for the simple
successful call.

Scenario 2.3: Successful Call with Resource Reservation on Origination Side

In this case only the originating party needs to reserve resources as the terminating one is consid-
ered to have them already. The call flow looks identical to the call flow of successful call with
resource reservation on both sides, with the difference that the step 6 “Resource reservation for
media” is missing for the UE2.

Figure 5.10: Sequence of Messages for Successful Call with Resource Reservation on Originating
Side Scenario

Scenario 2.4: Successful Call with Resource Reservation on Terminating Side.

In this case only the terminating party needs to reserve resources. The call flow looks identical
to the call flow of successful call without resource reservation on both sides, with the difference
that the step 5 “Resource reservation for media” is introduced on UE2 side to make the resource
reservation.
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Figure 5.11: Sequence of Messages for Successful Call with Resource Reservation on Terminating
Side Scenario

5.4.2.2 Scenarios 2.5-2.8: Abandoned Calls

In these scenarios, the terminating user does not answer the phone during the ringing time and the
originating user abandons the call. The first part of the call, is similar to the successful call scenar-
ios for all combinations with respect to resource reservation. The termination, which is different
from the successful call scenarios, is illustrated in Figure 5.12. The termination is the same for all
abandoned scenarios with or without resource reservation and consists of a CANCEL transaction.
The originating party sends the CANCEL message which is quickly answered by the IMS network
without waiting for a reaction from the terminating party. The CANCEL is sent by the IMS network
also to the terminating party which has to answer it with a 200 OK. Additionally, the terminating
party sends also a 487 Request Terminated message which is answered by the network with an
ACK message. The network sends the 487 further to the originating party which has to replay with
an ACK. The time between the CANCELmessage until the receiving of 487 can help to measure how
long it takes the IMS network to process the abandon sequence. The TRT3 has been introduced to
measure this time.

The complete list of abandoned scenarios, taking into account the resource reservation, is:

Scenario 2.5: Abandoned Call Scenario without Resource Reservation

Scenario 2.6: Abandoned Call Scenario with Resource Reservation on Both Sides

Scenario 2.7: Abandoned Call Scenario with Resource Reservation on Origination Side

Scenario 2.8: Abandoned Call Scenario with Resource Reservation on Terminating Side
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Figure 5.12: Sequence of Messages for Abandoned Termination Scenario

5.4.2.3 Scenarios 2.9-2.12 Rejected Calls

These scenarios illustrate the case when the terminating user refuses the call after the ringing
time. The first part of the call including the resource reservation is similar to the successful call
scenarios.

Figure 5.13: Sequence of Messages for Rejected Termination Scenario

The complete list of rejected scenarios, taking into account the resource reservation, is:

Scenario 2.9: Rejected Call Scenario without Resource Reservation

Scenario 2.10: Rejected Call Scenario with Resource Reservation on Both Sides

Scenario 2.11: Rejected Call Scenario with Resource Reservation on Origination Side

Scenario 2.12: Rejected Call Scenario with Resource Reservation on Terminating Side
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5.4.2.4 Scenario 2.13: Failed Calls

A call failure occurs when some information in the call establishment is wrong. When the call
cannot be created, the SUT responds with an error message. A simple scenario is, for example,
when terminating party is not found. In this scenario, the SUT responds with the 404 Not Found
message (see Figure 5.14).

Figure 5.14: Sequence of Messages for Call Fail Scenario

5.4.3 Page-Mode Messaging Use-Case

This service is a simple data transport service between two users. The service has a limitation for
the size of the messages but it is an ideal service for transmitting short messages between users
thanks to the short call flow which consists of only two messages.

Though this service cannot harm too much the performance of the IMS network, it should also be
included in the traffic set since many users utilise it quite frequently.

Since the service consists only of two messages: one request and one confirmation, only the suc-
cessful (S3.1) and the fail (S3.2) scenarios are identified.

Figure 5.15: Sequence of Messages for Page-Mode Messaging Scenario

5.4.4 Use Case Representativeness

The benchmark traffic set consists of scenarios which belong to the most common IMS use cases
that are encountered the most in the real life deployments. As argued earlier in this thesis, the
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representativeness of the selected scenarios has a considerable impact on the significance of the
produced results. One simple rule is that the more complex the scenarios are, the more signifi-
cant the results are. The representativeness of the chosen use cases is evaluated considering the
following arguments:

• SIP protocol coverage - overall, any type of Request and Response defined by the SIP pro-
tocol is included in at least one scenario. This ensures a good coverage of the SIP protocol
with respect to test data types.

• IMS application coverage - IMS supports various types of applications: voice call, con-
ference, IPTV [Har07], presence, Facebook, etc. All these applications rely on the three
recognised use-cases: registration, voice-call and messaging. These types of interactions
are recognised in any other application. Therefore, the selected use cases ensure also a good
coverage with respect to the interactions types between UEs and IMS network.

• negative testing - Not only the positive interactions are treated, e.g., successful calls, but
also negative situations, e.g., abandoned, rejected calls. This ensures a good coverage of
typical user behaviours as encountered in reality.

• risk management - The three selected use cases lay as basis for further types of interac-
tions, e.g., conference, IPTV. Therefore, any IMS network provider should ensure a good
functionality of the basic types of interactions.

5.5 Tools Specialised for IMS Testing

As long as the case study presented in this thesis regards the SIP [IET05] protocol, highlighting
on some of the available tools is necessary.

5.5.1 SipStone

The SipStone [SNLD02] is an example of realising a performance test by using a simple and spe-
cific architecture. It is a benchmark for SIP which is designed to be a benchmark with a single
standardised implementation and workload. The implementation performs a series of tests that
generate the pre-configured workload. This workload simulates the activities of multiple users
initiating SIP calls. The workload is intended to be simple and repeatable, and satisfy workload
requirements such as concurrent initiation of calls by multiple users, random call arrivals and the
forwarding of requests.

SipStone implementation is a tool which consists of three components: Controller, Loader, and
Callhandler. The controller is the master program that starts request generators to generate SIP
requests. It uses loaders for request generation and call handlers for responding to generated calls.
The Loader emulates a SIP User Agent Client (UAC) and is the request generator. The Callhan-
dler emulates a SIP User Agent Server (UAS) and runs the actions of receiving SIP requests, and
responding according to the protocol sequence.

The benchmark consists of a set of SIPstone load generators that create the SIP request load, a call
handler that simulates a user agent server and a central benchmark manager that coordinates the
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execution of the benchmark, and the SUT. The call handlers may run along with the load genera-
tors or on different systems; the distribution is based on mechanisms such as rsh/rcmd [SN90] or
Java Remote Method Invocation (RMI).

SIP requests for the benchmark are generated by UACs. Depending on the request rate needed,
one or more clients may be needed to generate the requests. The requests are directed to the UASs
which take the appropriate protocol actions.

5.5.2 SIPp

SIPp [JG06] is a SIP test tool and traffic generator. Sponsored by HP, its source code is open
sourced and at the moment it enjoys the position of the fastest and most flexible SIP test tool. It is
a tool specific for testing the SIP protocol and it efficiently uses the advantage of this constraint.

SIPp is capable of generating thousands of calls per second, it can also generate any SIP scenario.
By default it includes several SIPStone scenarios and complex call flows can easily be gener-
ated through comprehensive XML [W3C08] configuration files. It features dynamic displays of
statistical data as well as periodic dumps for further processing and user interactive traffic rates.

The first phase in a test specification is the definition of the test interfaces. This consists of XML
dictionaries on top of the base protocols that define each particular reference point used in the test.
Then the scenarios for tests are described in other XML files and the test is run in an interactive
interface that shows a set of dynamically computed metrics and also allows for user interactions
through commands. One thing that these test tools lack is the concept of subscriber or user to
perform a set of specific scenarios. In order to achieve this functionality the total traffic that the
subscribers would generate has to be simulated as an aggregation of scenarios.

Load generation is achieved by starting in parallel the scenarios that constitute the traffic mix, with
the given individual call rates required.

5.5.3 IxVoice

IxVoice [Ixi07] service is a VoIP [DPB+06] test platform to provide both functional and bulk VoIP
testing. Ixia’s VoIP test solution provides an environment of real-world triple-play traffic that ac-
curately models live network environments. Using Ixia test platform, a single test chassis emulates
millions of realistic call scenarios. IxVoice SIP emulates user agents that use SIP and Real-Time
Transport Protocol (RTP). Default configurations and state machines can be constructed for any
session lifetime scenario.

5.5.4 Spirent Protocol Tester

Spirent’s IMS solution [Spi06] is based on a customisable state-machine with high performance
and scalability. The tool can test or emulate any IMS core network element including CSCFs,
HSS, AS. Additionally, multiple protocols, e.g., SIP, Diameter, RTP, can be used simultaneously
in the test process. With respect to the test scenarios, the tool can run custom call flows at a high
load rate. Technically, the workload is realised by running the same test cases used to perform
functional testing in parallel.
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5.6 Benchmark Specification in TTCN-3

TTCN-3 is used to specify the behaviour of the benchmark scenarios and the load characteristics,
e.g., number of scenario attempts per second, number of users, benchmarking time. In this section
the TTCN-3 language elements used to implement the benchmark specification are explained.

5.6.1 Test Components

In TTCN-3, the test component is the building block to be used in order to simulate concurrent user
behaviours. The parallelism is realised by running a number of test components in parallel. For
better performance, the test components are distributed over several hosts by using an execution
framework which implements the TCI interfaces as described in Chapter 4.

Figure 5.16: Test System Configuration

The test specification consists of a collection of test components that emulate the users of the
IMS system, i.e., the SUT. The test components interact with the SUT via TTCN-3 send and
receive statements. For performance reasons, the User Handler with Interleaved Users per
Thread (UH InterleavedUPT) pattern described in Section 3.5.2 is applied. In this pattern, the
behaviour of each test component simulates a number of parallel user behaviours at the same time.
The test component may work concurrently on many transactions at the same time. This way,
the number of parallel threads running on one machine is reduced and, consequently, less CPU is
consumed for thread context switches (a well known performance problem).

The test configuration is presented in Figure 5.16. The load generation is realised by an external
process instantiated in the adaptor layer. The applied pattern for load generation is Load Genera-
tion with Multiple Generators and Decentralised Data (LG MGenDectrl) defined in Section 3.5.6.
Therefore, each test node has its own load generation process. Each process is controlled by a test
component of type EventSender, which creates template messages for the initial protocol mes-
sages meant to create calls, e.g., INVITE. This approach is chosen in order to improve the precision
of the load generator. The project required that the calls are sent to the SUT following a Poisson
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distribution which requires a precision of one millisecond. The implementation in TTCN-3 proved
to be very resource consuming and lacked precision. Therefore it has been decided to move the
load generator in the adaptor. The templates are used by the load generator process to initiate
calls; a template instance is bound to a specific user and it is reused anytime the load generator
creates a call for that user. This approach encapsulates the generation process allowing the use of
third party load generators. The TTCN-3 component is used in this approach only to configure the
external process with the message templates that need to be sent to the SUT.

Each call created by the load generator is associated to an EventHandler component, which
will handle all required transactions for that call. The event handling behaviour is run on the
EventHandler component type. The number of EventHandlers is arbitrary and depends on
the number of simulated users and on the performance of the hardware running the test system.
Typically, an EventHandler simulates a few hundreds of users.

5.6.2 Test Distribution

The test distribution is realised at the test component level, therefore the test tool will instanti-
ate on each test node a number of test components. The distribution is configured as shown in
Listing 5.1.

Listing 5.1: Test Component Distribution
<?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>

<componentassembly xmlns =" h t t p : / / www. t e s t i n g t e c h . de / xsd / t t c n / t c d l "
xmlns : t c d l =" h t t p : / / www. t e s t i n g t e c h . de / xsd / t t c n / t c d l "
xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
x s i : s chemaLoca t ion =" h t t p : / / www. t e s t i n g t e c h . de / xsd / t t c n / t c d l
com / t e s t i n t e c h / t t c n / p l a t f o r m / xml / t c d l . xsd ">

< d e s c r i p t i o n >A d i s t r i b u t e d t e s t </ d e s c r i p t i o n > < s p e c i a l c o n t a i n e r =" h o s t 1 " / >

< p a r t i t i o n >

<c o m p o n e n t _ s e l e c t o r s >

<component type >EventSender </ component type >

</ c o m p o n e n t _ s e l e c t o r s >

<homes d i s t r i b u t i o n =" round− r o b i n ">

< c o n t a i n e r i d =" h o s t 1 " / > < c o n t a i n e r i d =" h o s t 2 " / >

< c o n t a i n e r i d =" h o s t 3 " / > < c o n t a i n e r i d =" h o s t 4 " / >

</homes>

</ p a r t i t i o n >

< p a r t i t i o n >

<c o m p o n e n t _ s e l e c t o r s >

<component type >Even tHand le r </ component type >

</ c o m p o n e n t _ s e l e c t o r s >

<homes d i s t r i b u t i o n =" round− r o b i n ">

< c o n t a i n e r i d =" h o s t 1 " / > < c o n t a i n e r i d =" h o s t 2 " / >

< c o n t a i n e r i d =" h o s t 3 " / > < c o n t a i n e r i d =" h o s t 4 " / >

</homes>

</ p a r t i t i o n >

< p a r t i t i o n >

<c o m p o n e n t _ s e l e c t o r s >

<component type >L o a d C o n t r o l l e r </ component type >

</ c o m p o n e n t _ s e l e c t o r s >

<homes>

< c o n t a i n e r i d =" h o s t 1 " / >

</homes>

</ p a r t i t i o n >

< c o l l e c t o r >
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< c o n t a i n e r i d =" h o s t 1 " / >

</ c o l l e c t o r >

</ componentassembly >

In this configuration, one EventSender component is created on each test node. Listing 5.2
presents the TTCN-3 code which creates the EventSender components. When a new component
of this type is created, the execution environment investigates the distribution rules given in the
XML file. The for loop creates PX NumberOfServers components which are distributed by us-
ing the round-robin algorithm. Therefore, in order to have a single EventSender per test node,
the PX NumberOfServers parameter has to be equal to the number of test nodes.

Listing 5.2: EventSender Creation
f o r ( var i n t e g e r i := 0 ; i < PX_NumberOfServers ; i := i + 1) {

e v e n t S e n d e r [ i ] := Even tSende r . c r e a t e ;
connect ( s e l f : p2Even tSende r [ i ] , e v e n t S e n d e r [ i ] : p 2 L o a d C o n t r o l l e r ) ;
e v e n t S e n d e r [ i ] . s t a r t ( u se rMa i nHand le r ( i ) ) ;

}

In order to handle the local created transactions several EventHandler components are created
on each server. The EventHandlers can handle only transactions created by the EventSender
on the same test node. The handling of “remote" transactions would be possible, but with sig-
nificantly more overhead. The TTCN-3 code which creates the EventHandler components is
presented in Listing 5.3. The for loop creates NR OF COMPONENTS*PX NumberOfServers com-
ponents which are distributed according to the rules given in the XML file. For homogeneous
test hardware configurations an equal number of components will be distributed on each node.
Therefore, the PX NumberOfServers is equal to the number of test nodes involved in the test ex-
ecution. The NR OF COMPONENTS is the number of EventHandlers per test node and it is such
selected that the parallelism of a test node is increased. It should be at least equal to the number
of CPUs on a test node so that each CPU is used to run an EventHandler process. However, the
NR OF COMPONENTS parameter can be also determined empirically through experiments in order
to find out the best performance of the test system.

Listing 5.3: EventHandler Creation
var E v e n t H a n d l e r e v e n t H a n d l e r [NR_OF_COMPONENTS∗PX_NumberOfServers ] ;
f o r ( var i n t e g e r i := 0 ; i < NR_OF_COMPONENTS∗PX_NumberOfServers ; i := i + 1) {

e v e n t H a n d l e r [ i ] := E v e n t H a n d l e r . c r e a t e ;
connect ( s e l f : p2Even tHand le r [ i ] , e v e n t H a n d l e r [ i ] : p 2 L o a d C o n t r o l l e r ) ;
e v e n t H a n d l e r [ i ] . s t a r t ( u s e r S t a t e H a n d l e r ( ) ) ;
TSync . s t a r t ; p2Even tHand le r [ i ] . r e c e i v e (SYNC ) ; TSync . s top ;

}

5.6.3 Event Handling

Figure 5.17 illustrates the behaviour of an EventHandler component. The implementation of
the EventHandler is based on the State Machine with Generic Handler (SM GenHdl) pattern
presented in Section 3.5.1. An event handler processes events received from the SUT and executes
appropriate actions according to the scenario message flow (as described in Section 5.4). The event
processing starts with the identification of the user id for which the message is received. This
information is extracted from the protocol information embedded in the message. Once the user
is identified, the handler evaluates the current state of that user and validates if the new message
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Figure 5.17: Event Handler

corresponds to a valid state, otherwise the transaction is considered inadequately handled scenario
attempt. Next, the user state is updated in the local user information database (accessed over
TTCN-3 external functions). If the received message, requires follow-up actions on the test sys-
tem side, new messages are created and sent to the SUT. When receiving or sending any message,
a log event is generated with precise timestamp for the evaluation of the SUT latency.

Listing 5.4: State Processing
a l t {

/ / P−CSCF −−INVITE−> User
[ ] p2SUT . r e c e i v e ( INV_Req_r)−>

va lue invReq {
}
/ / User <− 200 OK − P−CSCF
[ ] p2SUT . r e c e i v e ( Resp_200_r_INV)−>

va lue r e s p o n s e {
}
/ / P−CSCF −−ACK −> User
[ ] p2SUT . r e c e i v e ( ACK_Req_r)−>

va lue ackReq {
}
/ / User <− BYE −− P−CSCF
[ ] p2SUT . r e c e i v e ( BYE_Req_r)−>

va lue byeReq {
}
/ / User <− 200 OK −− P−CSCF
[ ] p2SUT . r e c e i v e ( Resp_200_r_BYE)−>

va lue r e s p {
}
/ / User <− 408 −− P−CSCF
[ ] p2SUT . r e c e i v e ( Resp_408_r )−>

va lue r e s p {
}
/ / User <− 480 −− P−CSCF
[ ] p2SUT . r e c e i v e ( Resp_480_r )−>

va lue r e s p {
}
/ / User <−− ? r e s p o n s e −−P−CSCF
[ ] p2SUT . r e c e i v e ( Resp : ? ) {
}
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/ / User <−− ? r e q u e s t −−P−CSCF
[ ] p2SUT . r e c e i v e ( Req : ? ) {
}

}

The event handling process is implemented by using the alt construct which defines an alterna-
tive for each possible message type (see Listing 5.4). The alternatives capture expected message
types in accordance with the implemented scenario, e.g., INVITE, 200 OK, ACK, BYE, but also
unexpected message types which might occur when the scenarios are not handled correctly by the
SUT, e.g., 408, 480. However, the receiveing of any other unexpected message is foreseen by
using the ? template.

5.6.4 Protocol Messages

Listing 5.5: SIP protocol messages specified in TTCN-3
/ / g e n e r a l t y p e f o r a SIP R e q u e s t
/ / can be e x t e n d e d by any
/ / o t h e r r e q u e s t t y p e ( e . g . INV_Req )
type record Reques t {

i n t e g e r t r a n s a c t i o n I d ,
R e q u e s t L i n e r e q u e s t L i n e ,
MessageHeader msgHeader ,
c h a r s t r i n g messageBody o p t i o n a l

}

The specification of the SIP message types derives from the ETSI type system for SIP conformance
testing [ETS05], which is consistent with the SIP protocol specification [IET05].

SIP is a text-based protocol that allows structured presentations of the same information. A
TTCN-3 implementation of SIP should describe the protocol messages into TTCN-3 type struc-
tures and values. The instances of these types are encoded into the textual representation. The
received messages are decoded back into the abstract presentation format.

The top message type is SIP Request (see Listing 5.5), which contains a requestLine, a
messageHeader and a messageBody. An additional field which is transactionId is used to
track the SIP transactions. Except transactionId, all other fields are of structured types such
as the MessageHeader type presented in Listing 5.6. The structure of the SIP message types is
refined up to leafs fields of basic types such as integer, charstring, bitstring. An example
of a terminal element is the Authorization type presented in Listing 5.7.

Listing 5.6: The MessageHeader type
type s e t MessageHeader {

A u t h o r i z a t i o n a u t h o r i z a t i o n o p t i o n a l ,
C a l l I d c a l l I d o p t i o n a l ,
C o n t a c t c o n t a c t o p t i o n a l ,
CSeq cSeq o p t i o n a l ,
E x p i r e s e x p i r e s o p t i o n a l ,
From f r o m F i e l d o p t i o n a l ,
RecordRoute r e c o r d R o u t e o p t i o n a l ,
Route r o u t e o p t i o n a l ,
S e r v i c e R o u t e s e r v i c e r o u t e o p t i o n a l ,
To t o F i e l d o p t i o n a l ,
Via v i a o p t i o n a l ,
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MaxForwards maxForwards o p t i o n a l ,
C o n t e n t L e n g t h c o n t e n t L e n g t h o p t i o n a l ,
WwwAuthenticate wwwAuth o p t i o n a l ,
Event e v e n t o p t i o n a l

}

Listing 5.7: The Authorization type
type record A u t h o r i z a t i o n {

FieldName f ie ldName (AUTHORIZATION_E ) ,
/ / C r e d e n t i a l s body
c h a r s t r i n g body o p t i o n a l

}

5.6.5 User State Processing

Listing 5.8: Example of handling Resp 200 OK INV event
[ ] p2SUT . r e c e i v e ( Resp_200_OK_INV)−>

va lue r e s p {

/ / c r e a t e an ACK r e q u e s t
ackReq := ACK_Request_s ;

/ / c r e a t e a new t r a n s a c t i o n
ackReq . t r a n s a c t i o n I d := getNewTrId ( ) ;

/ / use t h e same c a l l I d and seqNumber
ackReq . msgHeader . c a l l I d :=

r e s p . msgHeader . c a l l I d ;
ackReq . msgHeader . cSeq . seqNumber :=

r e s p . msgHeader . cSeq . seqNumber ;

/ / s e t from , to , v i a and r o u t e
ackReq . msgHeader . f r o m F i e l d :=

r e s p . msgHeader . f r o m F i e l d ;
ackReq . msgHeader . t o F i e l d :=

r e s p . msgHeader . t o F i e l d ;
ackReq . msgHeader . v i a :=

r e s p . msgHeader . v i a ;
ackReq . msgHeader . r o u t e :=

g e t S e r v i c e R o u t e ( r e s p ) ;

/ / send t h e ACK
u s e r C h a n n e l := g e t C h a n n e l ( r e s p ) ;
p2SUT . send ( ackReq ) to u s e r C h a n n e l ;

/ / c l o s e t h e t r a n s a c t i o n
d e l T r a n s a c t i o n I d ( r e s p . t r a n s a c t i o n I d ) ;

}

SIP protocol messages are bound to carry state-full information which has to be correlated with
information retrieved from other messages. In a state-full testing approach, the test behaviour de-
fines a sequence of requests and settings for controlling the state maintained between them. Most
performance testing tools support session tracking mechanisms based on unique session identi-
fiers.
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State-less workloads do not require to keep track of previous messages and, therefore, they are
easier to simulate. State-less workloads tools are usually called traffic generators and have the
purpose to only send requests to the SUT, following a given pattern. However, these tools do not
validate or react to SUT’s responses.

The implementation is based on the state-full approach which helps controlling the whole flow of
actions specified in the test scenario. The state information is maintained in a Java [SM08] hash
object created in the adaptor, but controlled from TTCN-3 over external functions.

The state processing is exemplified in Listing 5.8. In that example, a 200 OK SIP message (see Fig-
ure 5.8, message 8) is received by the test system. The message matches the Resp 200 OK INV
template and it is decoded in the resp variable. According to the scenario message flow (see
Figure 5.8, message 9), an ACK message should be sent back to the SUT. This message is created
from the ACK Request s template. Some fields of the ACK template are already set by default
but most of them have to be set with information retrieved from the Resp 200 OK INV message.
The new message is then sent back to the SUT by using the p2SUT port. Since the component has
only one port connection to the SUT, the correct identification of the user, which has to receive
the message, is realised by using the userChannel variable of type address.

5.6.6 Test Adaptor

The connections to the SUT are implemented via ports and an adaptation layer which handles the
SIP messages interchanged with the SUT.

The adaptation layer is based on the National Institute of Standards and Technology (NIST) Jain
SIP [OR05], a Java-standard interface to a SIP signalling stack, and it implements the TRI in-
terface [ETS07b] for TTCN-3 test adaptation. It provides a standardised interface for handling
the SIP events and event semantics, and offers full transaction support for SIP-based calls. The
relation between the test adaptor, SIP stack and the SUT is depicted in Figure 5.18. The test adap-
tor registers an implementation of the SipListener interface to interact with the SIP Stack. The
triSend(...) operation [ETS07b] uses stack objects via the SipProvider in order to create or
use protocol transactions. The test adaptor receives back messages from the stack as Events, via
the SipListener interface.

The NIST stack has been modified to support multiple listening points (one per user) and to im-
prove the performance of the I/O handling [Pet06]. Initially, the stack had used one thread instance
for each request. This model is not adequate to generate large amount of requests due to the over-
head to create new threads for each request. It also consumes a large number of operating system
resources in order to handle context switches between many threads.

In the redesign, the thread pool concept is applied. It uses a fixed number of N threads to handle
a big number of M tasks (N�M). A thread can handle only one task at a time, but as soon as
the thread finishes its task, a new task can be processed. The awaiting tasks are kept in a queue
wherefrom any thread may pull tasks.

The test logic, i.e., state handling, is executed by the TTCN-3 parallel test components. In or-
der to maintain the association between user transactions, created by the SIP Provider, and the
corresponding EventHandlers at TTCN-3 level, a Java HashMap object is used. The HashMap
contains value pairs of transaction IDs as those created by the SIP Provider and TTCN-3 mes-
sage instances identified by the transactionId field (see Listing 5.5). The HashMap is updated
whenever a new transaction is created or closed.
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Figure 5.18: Test Adaptor Architecture

5.6.7 Data Encoding

The data is seen in TTCN-3 at an abstract level, but during execution it has to be encoded into
protocol messages, which are then transmitted over the network layer. Usually, a higher flexibility
at data specification level affects more the performance of the tool since more CPU is required to
transform data to a lower level.

In the implementation, the type system is based on ETSI SIP Test Suite defined in [ETS05]. This
representation offers flexibility, allowing a detailed manipulation of the SIP messages. However,
for improving the performance, some of the fields currently implemented as structured types may
be simply transformed into charstring.

5.6.8 Technical Details

TTCN-3 proved to be an easy-to-use language. But, along with the easy-to-use also comes more
overhead and resource load on the test nodes and it becomes even more important to look at the
performance issues. Therefore, a number of technical performance improvements [Shi03] were
needed:

• the load generator has been moved in the adaptor in order to increase the precision of the
event distribution as explained in Section 5.6.

• the load generation has been separated from the event handling. The initial message of each
call is sent by only one component of type EventSender. Then, all the SUT responses are
handled by the EventHandlers.

• the simulation of more than one user per test component instead of one single user per test
component is far more efficient. In this approach, the behaviour was a little more complex to
specify since a mechanism to find out for each message to which user it belongs is required.

• the adaptor has been modified to use the more efficient concept of pools of threads instead
of having a new thread for each transaction.
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• the offline logging processing has been used instead of real-time logging in order to avoid
additional processing operations.

Another problem, was the garbage collection which affected seriously the precision of the test
system actions [BCM04](the tool is developed with Java [SM08] technology). The Java virtual
machine calls the garbage collector from time to time to release unused memory. For higher loads,
the garbage collection happens a few times per second. During the garbage collection, the Java
virtual machine stops all threads currently running. Moving the load generator from TTCN-3 to
the adaptor improved the precision. However, for even better precision, the platform should move
to a real-time Java virtual machine which offers the possibility to create threads which are not
stopped during the garbage collection.

5.7 Experiments

The experiments presented in this section serve two major goals. The first goal is to show a con-
crete execution of the IMS benchmark with a complete analysis of the performance of the tested
SUT. Additionally, the benchmark is applied to different hardware configurations in order to illus-
trate how the test can be used for performance comparison. The second goal is to discuss in more
detail some of the test parameters which influence the results. It is important to understand them
and learn how to select valid values for them such that the results are also valid and meaningful
for the performance analysis.

5.7.1 Testbed Environment

The hardware used to run the IMS Benchmark test system consists of multiple rack-mount servers
providing enough processing power to produce the requested loads. Depending on the requested
load for a particular test, up to 8 test servers are currently used. The current configuration consists
of 5 HP DL380 G4 (dual Dual-Core Intel Xeon Processor 2.80 GHz, 2*2M Cache, 800 MHz FSB,
12GB memory) and 3 Supermicro rack-mount servers (dual Dual-Core Intel Xeon Processor 5150,
4M Cache, 2.66 GHz, 1333 MHz FSB, 8GB memory) . They are connected via 1Gbps Ethernet
links to a ZNYX ZX7000CA-X3 ATCA switch. That switch will then forward the stimulus load
to the SUT connected for a particular test run. No other systems are connected to the switch.

5.7.2 The SUT Software

The SUT consists of software and hardware. While the hardware may vary, the software is al-
most the same (though even here various parameters can be tuned). However, since the hardware
running the SUT depends on the experiment, it will be presented separately for each experiment.

The implementation for the IMS architecture used as SUT within the case study is OpenIM-
SCore [FOK06], the open-source implementation of Fraunhofer FOKUS [Fok08]. The System
under Test is represented by the components of the Open IMS Core [VWM05]: P-CSCFs, I-
CSCFs, S-CSCFs and the HSS. The HSS is a stateless Authentication, Authorisation, Accounting
(AAA) server which uses MySQL [AB.08] for all of its state and data storage requirements. This
function, called CHeSS, was developed by the same team at Fraunhofer FOKUS that developed
the Open IMS Core. It uses the same CDiameterPeer routines as are used in the Open IMS Core,
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and is built as a server using the same memory, locking, logging routines and basic structures as
the SIP Express Router [Ipt07]. Its speed is mainly limited only by the database in use.

5.7.3 Visualisation Software

During the test execution, all benchmark-related information needed for assessing the SUT per-
formance is collected and stored in the form of log files. Then, the log files are processed by the
traffic analysis and choreography engine TraVis developed by Fraunhofer FOKUS. During this
post-processing step, all the logged events are correlated and statistically analysed. As a result,
the TraVis visualisation tool generates a benchmark report for the evaluation of SUT’s behaviour
under well-defined load conditions. This benchmark report contains various graphs to visualise
collected metrics in different views: dependency on time, delays between events, stochastic distri-
bution of events, etc. Also various statistics (max, min, average, variation, etc.) are reported. All
graphs presented in the following sections are generated with the TraVis tool.

5.7.4 Experiment 1: A Complete Benchmark Execution Example

This section explains the way how the benchmark is executed against a concrete IMS core net-
work. It also discusses how to interpret the various statistics and, the most important, how to
determine the maximal load sustained by the SUT.

For this experiment, the SUT software is installed on a ATCA MPCBL0001 platform with 4x F29
2.00 GHz Dual Low Voltage Intel Xeon processors, 512KB L2 and 2Gb of memory. The server is
running an RHEL AS4U3 operating system with a 2.6.9-34.ELsmp kernel.

Traffic Set

According to the test procedure, a complete benchmark test consists of several test steps with the
purpose to determine the maximal sustained load of the SUT. The threshold for the termination of
the test campaign is reached when the error rate percentage goes above a threshold. The values
selected for the threshold of fails out of the generated load is 0.1%. The selected scenarios for the
traffic set are presented in Table 5.1.
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Table 5.1: Traffic Set Composition

Scenario Type Label Ratio
initial registration s1.1 1%
re-registration s1.2 1%
de-registration s1.3 1%
successful voice-call without resource reservation s2.1 12%
successful voice-call with resource reservation on originating side s2.2 12%
successful voice-call with resource reservation on terminating side s2.3 12%
successful voice-call with resource reservation on both sides s2.4 12%
abandoned voice-call without resource reservation s2.5 3%
abandoned voice-call with resource reservation on originating side s2.6 3%
abandoned voice-call with resource reservation on terminating side s2.7 3%
abandoned voice-call with resource reservation on both sides s2.8 3%
rejected voice-call without resource reservation s2.9 3%
rejected voice-call with resource reservation on originating side s2.10 3%
rejected voice-call with resource reservation on terminating side s2.11 3%
rejected voice-call with resource reservation on both sides s2.12 3%
fail voice-call without resource reservation s2.13 1%
successful page-mode messaging s3.1 19%
failed page-mode messaging s3.2 5%

Traffic Profile

The traffic profile which parameterises the test execution is given in Table 5.2. The benchmark
starts with a stirring phase of the SUT for a period of 720 seconds followed by three load steps
at 60, 70 and 80 SAPS. Each step is executed for 600 sec. The run uses 100000 subscribers and,
out of these, 40% are registered at the beginning and used at the start of the tests. During the test,
also other users from the rest up to 100000 will be registered but the number of active users will
remain around almost the same since the registration and deregistration have the same frequency
in the traffic set. This number may slightly vary due to registration/deregistration scenarios which
make users active or inactive.

Table 5.2: Traffic Profile

Traffic Profile Parameter Value
PX StirTime 720 sec
PX SimultaneousScenarios 2
PX TotalProvisionedSubscribers 100000
PX PercentRegisteredSubscribers 40%
PX StepNumber 2
PX StepTransientTime 120 sec
PX StepTime 600 sec
PX SApSIncreaseAmount 10 SAPS
PX SystemLoad 60 SAPS
PX PreambleLoad 42 SAPS
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SAPS graph

In Figure 5.19 the main graph of the benchmark test is presented. The graph shows two shapes.
The first one, above, presents the load applied to the SUT. It is intersected by several vertical lines
which delimit the particular steps of the run. The test starts with a preamble step, where the users
are registered to the IMS network. This is easy to recognise since the load is applied at a constant
rate. The first vertical line marks the beginning of the stirring-time when the SUT is “warmed up”
for the first load step. The stirring time is selected long enough to allow the SUT accommodate
to the load, thus the test system avoids the effects caused by applying directly a high load. The
stirring time load is actually split into three incremental steps so that the last step has the load close
to the load of the first step. The end of the stirring time load is marked by the second vertical line.
After the stirring time, the test system proceeds with the intended load test.

Figure 5.19: Steps to Determine the Load for which the SUT Starts Failing

At the beginning of each step, the load is applied for a short period of accommodation time called
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transient time. During the transient time, the test system increases the load from one step to an-
other, but does not compute the statistics. The reason for adding the transient time is to allow the
test system to wait until the calls created in the previous step close and do not interfere anymore
with the load which will be created in the next step. After the stirring time, the test executes three
steps (at 60, 70 and 80), and at the start of each step, a transient time is marked by a vertical line.

The second shape displays the error rate which is computed as percent of fails out of the total
created load. The error shape remains zero for a long period of time but starts increasing during
the last step. In the middle of the last step it reaches 50-60%.

Obviously, the test system also detects that the SUT reached the limit of sustainable load by com-
paring in each step the IHS% average with the threshold. The IHS% maximal and average values
are presented in Table 5.3.

Table 5.3: Inadequately Handled Scenarios Statistics

Step Avg Max
step1 (60SAPS) 0.00 0
step2 (70SAPS) 0.01 1.56
step3 (80SAPS) 49.28 73.08

The IHS% exceeds the threshold in the last step where it has an average of 49.28% fails. This
means that almost half of the created calls are failing. This brings us to the conclusion that the
DOC of the SUT has been exceeded. Based on the test procedure, the last load where the IHS%
average is below the threshold is the actual DOC of the SUT. This happen in the example in the
step2 where the IHS% average is only 0.01.

IHS Graph

A more detailed view on the types of errors is provided in Figure 5.20 which displays the IHS%
shapes per use case. This graph shows that the most occurred fails are from the session set-up/tear
down use case, while the less fails are of type messaging.
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Figure 5.20: Visualisation of Fails per Use-Case



5.7 Experiments 155

Error Causes per Scenario

The causes of errors can be investigated separately for each scenario. Figure 5.21 shows the errors
statistics for the successful call with resource reservation scenario. During the first two steps, there
is no error. But in the last step all error metrics increase. The most fails occurs at sending the first
request (the INVITE) to the terminating party which means that the SUT is not able to process
new calls after it reaches the overload capacity.

Figure 5.21: Error Statistics for the Successful Call with Resource Reservation Scenario
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SIMS Graph

Figure 5.22 shows the SIMS (simultaneous scenarios) along the test execution. Depending on the
scenario, the time a call remains open varies from a few seconds, e.g., registration, messaging,
up to a few minutes, e.g., successful call. Therefore, it is expected that the value of SIMS metric
indicate a large number of open calls compared to the number of SAPS.

In a normal behaviour, this metric should stabilise around an average value if the SAPS is main-
tained constant. In this figure, after a normal shape along step1 and step2, the SIMS values
grow dramatically in the last step which actually means that the SUT receives too many calls and
it can not finish the existent ones. The SIMS shape does not seem to stabilise, but on the contrary
it rises continuously until the end of the test. This is another clear clue that the SUT reaches its
DOC in the last step.

Figure 5.22: Visualisation of Simultaneous Scenarios
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RETR Graph

In a further graph (see Figure 5.23, the RETR (retransmissions) metric is visualised for each use
case. The RETR metric is shown in parallel with the SAPS metric so that the load intensity can
be correlated with the RETR values. In a normal SUT behaviour, the number of retransmissions
should be very low (ideally no retransmissions). During step1 and step2 the RETR is close to
zero. In the last step, the test system has to retransmit many messages since they are not answered
in time by the SUT.

Figure 5.23: Visualisation of Message Retransmissions
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CPU Graph

No doubt, the best view of what happens around DOC is given by the CPU monitoring graphs.
Figure 5.24 shows the idle, system and user times of the CPU. It is obvious from this graph that
the DOC is reached when the SUT almost runs out of resources. For example, the idle shape
decreases from 50% during the first step to 10% in the last step. Mirrored, the user time increased
from about 40% up to 80% which indicates the high demand of CPU on the SUT side.

Figure 5.24: CPU Consumption
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MEM Graph

An abnormal behaviour of the SUT around DOC is also noticed from the memory consumption
graph presented in Figure 5.25. While during the first two steps, the free memory decreases very
little, it has a huge fall in the last step indicating that the SUT needs much more memory.

Figure 5.25: Memory Consumption
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Test System CPU Monitoring

To validate the results, it is necessary to prove that the test system was not overloaded during the
test execution. This can be inspected by looking to the CPU consumption of each test system
server. One of these graphs is presented in Figure 5.26. Along the test, the test system barely used
the CPU resource, almost 90% being idle, except the last step when the test system had to deal
with the retransmission (which require more CPU).

Figure 5.26: Test System Server CPU Consumption
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Long Runs to Prove that the SUT Runs Stable at the DOC Load

Once the DOC has been found, it is important the check that the SUT behaves stable also for
longer runs. A long run, for at least half an hour, discovers situations when the SUT can hold
the DOC load only for short runs but not for longer runs. Ideally, all steps in the test procedure
should be long runs but to avoid very long test executions, the shorter runs are used to find the
DOC and, at the end, several confirmation runs prove the DOC value. Figure 5.27 shows that the
SUT remains stable also for a period of 30 minutes.

Figure 5.27: Long Run to Check the Stability of the DOC



162 Chapter 5 Case Study: IMS Performance Benchmarking

5.7.5 Experiment 2: Hardware Configurations Comparison

The benchmark may serve as a comparison tool between different hardware and software config-
urations. The comparisons based on IMS benchmark can be realised in different ways:

• A - comparison between different software configuration with same hardware. This ap-
proach is useful for the software developers as a debugging method. Along the project one
may track the performance improvements. Additionally, the approach is useful also for
comparing different tuning of the SUT software on a given platform.

• B - comparison between different hardware configurations but same software configuration.
This approach can be used by hardware vendors in order to compare their hardware on a
common workload basis.

• C - comparison between two different hardware configurations and different software config-
uration. This case reflects the situation when the software is tuned for a particular hardware
configuration in order to take advantage of the underlying hardware resources.

Table 5.4: Benchmark Comparison of Different Software Configurations

Hardware Configuration DOC
With activation of monitoring modules 60

Without monitoring modules 180

Table 5.4 presents the performance results of two experiments with different software configura-
tions running on the same hardware. For both experiments, the test system is running the same
traffic set and traffic profile. The SUT is first configured with some monitoring capabilities acti-
vated, while in the second experiment, these features are deactivated. The performance number
in the second experiment is three times higher than in the first experiment which reveals that the
features activated in the first experiment heavily impact the performance. This is an essential
performance debugging information which helps the SUT engineers localise and improve perfor-
mance bottlenecks.

Table 5.5: Benchmark Comparison of Different Hardware Configurations

Hardware Configuration DOC
mem=4GB cpu=4x2.00GHz cache=512KB L2 180

mem=8GB cpu=4x2.00GHz cache=2MB L2 270
mem=8GB cpu=4x2.66GHz cache=4MB L2 450

Table 5.5 presents a comparison of the DOC numbers for different servers. The SUT software has
been installed with the same configuration on all servers. The DOC is obviously higher for the
last two servers which have more memory. However, the cache seems to have the biggest impact
since the last board (with the highest DOC) has similar configuration as the second server but more
cache.

Due to lack of time, experiments of type C have been left out. These kinds of experiments are
the ultimate tests for comparing the optimal configurations of hardware and software. They are
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utilised for managerial decisions when selecting the most convenient configuration in terms of
costs, performance and number of supported users.

5.7.6 Traffic Set Composition Experiments

The DOC is measured according to a traffic set selection. Therefore, an IMS network may be able
to sustain a certain load for a traffic-set1 but not for a traffic-set2. The concept of traffic selection
allows the testers identify a minimal capacity of the network for which all traffic sets of interest
can be successfully sustained.

5.7.6.1 Experiment 3: Successful Scenarios vs. Mix of Successful, Abandoned, Rejected,
Failed Scenarios

Figure 5.28: CPU Consumption Using Only Successful Scenarios

This experiment shows the influence of mixing successful scenarios with abandoned, rejected or
failed scenarios. Figure 5.28 shows the CPU consumption for a traffic set which consists of only
successful scenarios. Figure 5.29 shows the CPU consumption for a traffic set which consists of
scenarios from all categories. In the second run the SUT uses less CPU since the fails are easier
to be handled than the successful calls. This happens because the successful calls include also the
talking time period which requires the SUT to keep the state of the call in memory for that period
of time. This contrasts with the abandoned or rejected scenarios which do not have to stay active
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as long as the successful ones. This result can help service providers estimate correctly the capac-
ity of their systems. However, this estimations rely on statistics which indicate the proportions of
abandoned or rejected calls out of the total number of calls.

Figure 5.29: CPU Consumption Using a Mix of Successful, Abandoned, Rejected and Failed
Scenarios
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5.7.6.2 Experiment 4: Traffic Set Combination

To obtain valuable results, the traffic set must be carefully selected. It is obvious that for different
traffic sets, the SUT has different capacities. This result can be observed also from the follow-
ing experiment. Two different traffic sets are selected. The first one is the traffic set used also in
Experiment1 (see Section 5.7.4). The second traffic set contains the same scenarios selection but
with slightly different proportions (moved 2% from successful scenarios to abandoned scenarios).

Figure 5.30: First Traffic Set Including Only Successful Scenarios
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Figure 5.31: Second Traffic Set Including Abandoned, Rejected and Fail Scenarios
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5.7.7 Benchmark Parameters which Impact the SUT Performance

The performance results are influenced not only by the traffic set combination but also by the traf-
fic profile parameters. The following experiments show how the modification of these parameters
acts upon the resource consumption on the SUT side.

5.7.7.1 Experiment 5: User Number

The number of active users influences both the memory and CPU consumption of the SUT. Mem-
ory is allocated to store the status information of each user. Therefore, the more users are regis-
tered, the more memory is allocated. The CPU is needed to handle the transactions and subscrip-
tions.

Figure 5.32: CPU Consumption for 5000 Users

Figures 5.32 and 5.33 show the CPU consumption for two tests with the same workload but using
different number of users. While in the first test the free CPU is about 40%, in the second test the
free CPU reaches 0%. It might look strange that the second experiment uses more CPU for the
same number of transactions, but the difference appears due to internal users state management
(the SUT reserves more memory in the second experiment).
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Figure 5.33: CPU Consumption for 10000 Users
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5.7.7.2 Experiment 6: Execution Time

For accurate results, the execution times should be long enough so that a large number of scenar-
ios are executed. Figure 5.34 shows a test with two steps at 320 and 330 SAPS, executed for 10
minutes each. During the first step, the SUT holds the load with very few fails. In the second step,
the SUT becomes overloaded and ends up failing all calls. According to this test, it seems that the
DOC is 320 SAPS. Running another test for the same traffic set but for 30 minutes, reveals that the
SUT reaches the overload limit after 15 minutes. This implies that the DOC is below 320 SAPS.

Figure 5.34: Test Run with 320 SAPS for 10 Minutes

Table 5.6: Execution Time Durations Corresponding to 1.000.000 SAPS

SAPS/sec Duration
100 2.7 hours
200 1.3 hours
300 55 min
400 41 min

This experiment brings to the conclusion that the SUT may sustain higher loads but only for short
period of times. The duration is actually influenced by the number of total calls created along
the test. For different loads but same duration, the TS create different numbers of calls. An ade-
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quate value for the number of calls is one million of calls. This number permits the computations
of statistics with very small error rates but also should be huge enough to do not allow the SUT
“survive” as it does for short runs. Table 5.6 shows the optimal durations for one million of calls
computed for different loads. For 100 SAPS the test should be executed for 2.7 hours while for
400 SAPS only 41 minutes should be enough.

Figure 5.35: Test Run with 320 SAPS for 30 Minutes
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5.7.7.3 Experiment 7: Stirring Time

The stirring time is a parameter representing a period of time in the preamble of a benchmark test
in which a system load is run in order to allow initial transient conditions attenuate to an insignif-
icant level. Figure 5.36 shows the effect of setting the stir time to null. The SUT fails some of the
initial calls right after the beginning of the test, thus affecting the performance statistics.

A long enough stir time, e.g., 10 minutes, should avoid this effect, as it is observed in the Experi-
ment 1 (see Section 5.7.4) when this effect does not occur.

Figure 5.36: Test Run without Stir Time



172 Chapter 5 Case Study: IMS Performance Benchmarking

5.7.7.4 Experiment 8: Transient Time

At increasing the load to a new step, there is a period of time when the SUT is exposed to the
new load but when it also have to handle the existent calls. Since the existent calls will have to
terminate during the next step, there is the possibility that the SUT is overloaded by the new load
and the previous call terminations fail. Due to this phenomenon, the previous step may exceed
the fails threshold only because the termination of the last created calls happens during the second
step.

Figure 5.37 provides an example for how the last created calls fail only because the SUT reaches
the overload capacity in the last step. To avoid this effect, the transient time has been introduced.
A safe value is usually a value long enough to ensure that all calls from the previous step are
terminated.

Figure 5.37: Transient Time
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5.8 Summary

In this chapter the IMS benchmark case study has been presented. It aims at developing a perfor-
mance benchmark for comparing IMS deployment configurations. The IMS subsystem architec-
ture has been introduced and the performance testing elements used to design the benchmark have
been highlighted. A number of experiments have been conducted to determine the capacities and
compare the performances of IMS deployments on different hardware configurations.

A large part of the chapter is dedicated to exploring the parameters which influence the perfor-
mance results. It is revealed that many of these parameters have a great impact on the SUT perfor-
mance. Due to the need for realistic experimental conditions, the values of these parameters are
analysed.
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Chapter 6

Conclusions and Outlook

Let the future tell the truth, and evaluate each one according to his work and accomplishments.
The present is theirs; the future, for which I have really worked, is mine.

– Nikola Tesla

6.1 Summary of the Thesis

The performance testing of continuously evolving services is becoming a real challenge due to the
estimated increase of the number of subscribers and services demand. More efficient and more
powerful testing solutions are needed. This ability highly depends on the workload design and on
the efficient use of hardware resources for test execution.

This thesis presented a methodology for performance testing of multi-service systems. The topic
embraces the challenges of the nowadays telecommunication technologies which are characterised
by a huge variety of services and interactions. The main output is the method to create workloads
for performance testing of such systems. The approach takes into account many factors: test sce-
narios, test procedures, metrics and performance test reporting. The design method ensures that
the workloads are realistic and simulate the conditions expected to occur in the real-life usage.
The main performance indicator is the DOC which reports the largest load an SUT can sustain and
it serves as comparison criterion among different SUT implementations, SUT hardware configu-
rations etc.

The thesis approaches also the test harness topic in the performance testing context. It establishes
the requirements related to test harness for the characteristics specific to performance testing (in-
cluding test distribution). The TTCN-3 language has been selected to allow a more concrete
realisation of the presented concepts. The arguments for the selection of this technology are also
provided. The language is then used to show how various performance testing concepts introduced
in the testing methodology such as event handling, traffic set, data repositories, etc., can be de-
signed. With respect to test execution, an extension of the ETSI standardised architecture for test
execution is discussed. Various aspects such as test management, test execution and distribution
are discussed in detail.

Within the case study, a performance test suite capable of evaluating the performance of IMS net-
works for realistic workloads has been designed and developed. The results have been published as
IMS Benchmark TISPAN technical specification [TIS07]. The available implementation provides
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23 IMS scenarios with varying traffic sets and increasing traffic loads and it is used to differentiate
the performance of different IMS core network configurations. The software is now available at
Fraunhofer FOKUS [Fok08] and it is marketed by the Testing Technologies company [TTe08].

The use of an abstract language such as TTCN-3 to specify the performance tests was worth for a
number of reasons. From a technical perspective, the abstract level helped to better organise the
sequence of interactions between users and SUT. The message receiving mechanism simplified
the creation of further messages directly from the received message by using a very small amount
of code. In addition, most of the processing tasks required small amounts of TTCN-3 code, thus
improving the readability of the specification. But, along with the ease-to-use also comes more
overhead and resource load on the test nodes and it becomes even more important to look at the
performance issues. This motivated the work toward implementation patterns.

The case study helped to experiment the strategies to design and implement performance test
systems with TTCN-3 technology but also revealed the technical issues of the whole solution.
Compared to other technologies, e.g., SIPp [JG06], the TTCN-3 and TTmex [TTm08] combina-
tion faces more performance issues but gains from simplicity, extendability and state control in the
test specification.

The workload distribution over multiple computation resources is the obvious method to scale the
performance of a test system, in order to supply a large amount of virtual users. In this respect,
it has to be considered that the hardware involved in performance testing is expensive and many
performance test beds are constructed on heterogeneous hardware. This aspect has also been ad-
dressed within this thesis by using intelligent distribution algorithms of the workload thus scaling
the test system performance needs.

6.2 Evaluation

The target of this work was to realise rather a generic framework for performance testing than a
single purpose implementation, making it easier to extend it for new SUTs, new types of user-
SUT interactions, new protocols, etc. Therefore, the design process described in Chapter 3 can be
applied directly to a new SUT.

This thesis can be evaluated by analysing the value and novelty of contributions it makes:

• performance test design process - Different to previous approaches, the test design process
proposed in this thesis takes into account the representativeness of the selected use cases
by emphasising new concepts such as design objectives, traffic set, traffic-time profile. Ad-
ditionally, it is proposed to follow up a test procedure which unquestionably leads to the
determination of a single, representative and comparable performance indicator - a simple
number. This number, which is the DOC, is the introduced criterion to differentiate the
performance of various systems irrespective of the used test system.

• implementation patterns and architecture - No other work before has collected and com-
bined in such a comprehensive manner the test system implementation possibilities regard-
ing: abstraction layer, e.g., test specification language, underlying platform, e.g., Java, C,
and operating system layer, e.g., Unix, Windows. This has been achieved by identifying
a set of patterns to be instantiated during the test implementation process. The usability of
these patterns has been analysed in a comparative manner with respect to effort and resource
consumption.
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• TTCN-3 based specification - By selecting the TTCN-3 language as implementation lan-
guage, this thesis also contributes significantly to the evolution of this language toward
non-functional testing. Since its standardisation, TTCN-3 has been used especially for con-
formance testing. This work shares the knowledge of how to realise performance tests. It
may happen that other solution such as Spirent Tester, IxVoice or SIPp overtake the TTCN-3
based solution in terms of performance, but with TTCN-3 one gains in terms of a) use of a
standardised test notation, b) use of the same notation for all types of tests, c) specify the
tests at an abstract level and d) use a generic and flexible solution.

• IMS test solution - As far as the case study is concerned, another value of the thesis re-
sides in the contribution to the core parts of the TISPAN technical specification for IMS
Benchmarking.

6.3 Outlook and Possible Extensions

The presented methodology targets the structure of performance tests, therefore it can be applied
to many types of systems. Its applicability to further domains is foreseen: Web services, bank-
ing systems, automotive etc. However, the idea of applying the methodology into other areas is
already in progress [DES08]. In this respect, a significant extension of this work would be the
formalisation of the performance test design elements in a modelling language such as Unified
Modeling Language (UML). This will open the possibility to apply model driven test generation
techniques [Dai06] to the performance test design and, thus, automatically generate performance
tests out of UML models. At the model level many aspects of performance test design can be
treated a way easier by using class and interaction diagrams.

One of the most common questions in performance test system engineering is "how to maximise
the test system throughput?". Typical strategies to improve the speed of a system include [Ins06]:
efficient resource management by smart implementation, techniques to take advantage of the latest
processor technology and/or design of system architectures that support parallel test and resource
sharing. The approach presented in this thesis investigates the performance engineering by look-
ing into various patterns to implement a performance test framework. The list of patterns can
still be extended if further hardware or OS artefacts such as Hyper-Threaded CPUs, multi CPU
architectures are considered. Additionally, platform, e.g., J2EE, specific characteristics should be
taken into consideration.

Another way to improve the performance of the test system is to efficiently balance the load over
the computation resources. The problem of efficient allocation of hardware resources or resource
scheduling is encountered [SHK95] very often. The complexity of the tested systems is increas-
ing rapidly as well as the demand for higher quality and more features. The performance testing
tools for typical client-server architectures require the simulation of thousands of users, e.g., IMS,
UMTS; this requirement rises the problem of how to design a proper system to sustain the effort
of thousands of users by using a cost acceptable hardware. To achieve that, the load balancing
mechanisms play a major role in the execution dynamic and comprises activities like distribution
of users, distribution of the computation effort, balancing of CPU consumption among the parallel
processes. In this respect, the framework can be extended with various algorithms for dynamic
distribution and load balancing.
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Glossary

Benchmarking
Benchmarking is a performance test used to compare the performance of a hardware and/or
software system. In general, benchmarking is similar to a load test which has a well defined
execution procedure which ensures consistently reproducible results.

Design Objective
A design objective is a performance requirement defined for a scenario and expressed as
delay or as failure condition. Design objectives are specified as threshold values for the
evaluated performance requirements.

Load testing
Load testing is a type of performance test which simulates various loads and activities that
a system is expected to encounter during production time.

Metric
A metric is a computation formula based on performance measurements of an SuT reported
in a performance test report. This term is used interchangeably with performance metric
term.

Multi-service system
A multi-service system offers a number of services which can be accessed through entry-
points. A service runs on a service platform which allows organisations and individuals to
serve and consume content through the Internet. There are various levels of services and
various kinds of services offered.

Operational profile
Operational profile is a complete description of the work an SUT has to complete during a
performance test. This term has the same meaning as workload term.

Performance characteristic
Performance characteristics are elaborated performance metrics derived from performance
metrics. Examples: mean, standard deviation, maximum, minimum.

Performance measurement
A performance measurements is a measurement undertaken while running a performance
test in order to derive the performance metrics.

179



180 Glossary

Performance metric
A performance metric is a computation formula based on performance measurements of an
SuT reported in a performance test report. This term is used interchangeably with metric
term.

Performance requirement
A performance requirement is a requirement established at the design of a system with re-
spect to its performance in terms of response time, capacity, maximal sustained number of
users, etc.

Performance test
A performance test is a test with the purpose to verify the performance requirements ex-
pressed as DO

Performance test information model
The performance test information model defines the structure of the performance test.

Performance test parameter
A performance test parameter is a parameter whose value determines the behaviour of a
performance test. Performance test parameters are used in order to configure the workload.

Performance test plan
A performance test plan is a technical documentation related to the execution of the per-
formance test. It contains the description of the hardware which is used to run the test, the
software versions, the test tools and the test schedule. Part of the test plan is also the per-
formance test procedure which is specific to the selected type of performance test: volume,
load, stress, benchmark, etc.

Performance test procedure
The performance test procedure comprehends the steps to be performed by a performance
test.

Performance test report
A performance test report is a document that provides a full description of the execution of
a performance test on a test system. This term is used interchangeably with the test report
term.

Performance testing
Performance testing is the qualitative and quantitative evaluation of an SUT under realistic
conditions to check whether performance requirements are satisfied or not.

Performance testing methodology
A performance testing methodology comprehends methods, patterns and tools to design,
implement and execute performance tests.

Performance testing process
The performance testing process describes the steps from the definition of the performance
requirements to the execution and the evaluation of the results of performance tests.

Robustness testing
Robustness testing is a kind of performance test which is executed over extended periods
of time to validate the stability and reliability of an SUT. During short runs of load tests or
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volume tests the system may behave correctly, but extending the testing period of time to a
few hours, it may reveal problems of the inspected system.

Scalability testing
Scalability testing is a special kind of load testing, where the system is put under increasing
load to determine how much more capacity a system has when the resources vary.

Scenario
A scenario defines a set of interactions to use an SUT service. Several scenarios may be
associated to the same service. This term is used interchangeably with test scenario term.

Service
The service term refers to a telecommunication service offered by a telecoms provider to
users. A user uses a service by interacting with the service platform, typically, through a
sequence of messages.

Stateful session
A stateful test session keeps track of the state of communication between the entities in-
volved in that session. A test system capable of stateful testing verifies that all messages are
consistent with the state of the session.

Stateless
A stateless test session does not keep track of the state of communication between the en-
tities involved in that session. A stateless test system does not verify the consistency of the
messages in relation with the state of the session.

Stress testing
A stress test is a kind of performance tests which simulates the activities that are more
stressful than the application is expected to encounter when delivered to real users.

System
System indicates the system to be tested. Since this thesis focuses on multi-service systems,
the term system refers only to these types of systems. This terms is used interchangeably
with the SUT term.

System load
A system load is a stream of protocol interactions presented to the SUT by the test system.

Test container
The test container is the host of test executables and manages the creation, configuration,
communication and the removal of the parallel test components.

Test daemon
Test daemon are standalone processes installed on the test nodes (one test daemon per node)
with the role to manage the test containers.

Test development
Test development is the concrete implementation of a test specification within a test frame-
work. In this thesis, the TTCN-3 language is used for both, test specification and test devel-
opment.
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Test execution
Test execution is an automated process to apply test stimuli to an SUT while the behaviour
of the SUT is monitored, and expected and actual behaviours are compared in order to yield
a verdict.

Test harness
Test harness is the central part of a test execution platform which supplies the functionality
to create, execute and validate tests. The elements of the test harness are: stubs, test drivers
and test control systems.

Test node
A test node is a computing device involved in test execution. The concept covers anything
one might use to run test activities such as general purpose PCs, specialised testing hard-
ware with SUT specific connection hardware, or with protocol specific hardware stack or
real-time computation systems. The test nodes are connected by physical communication
channels. The connections may be of various types and technologies and typically include
network connection devices such as routers or switches and UTP cables.

Test report
A test report is a document that provides a full description of the execution of a perfor-
mance test on a test system. This term is used interchangeably with the performance test
report term.

Test repository
A test repository is a storage mechanism providing versioning feature for the source files of
a test suite.

Test scenario
A test scenario defines a set of interactions to use an SUT service. Several scenarios may be
associated to the same service. This term is used interchangeably with scenario term.

Test session
A test session is the concrete interaction between a user and SUT and includes the concrete
dialog information, e.g., session id, user ids.

Traffic model
A traffic model describes patterns for the request arrival rates with varying inter-arrival times
and varying packet length.

Traffic set
Traffic set is a collection of test scenarios which are determined to be likely to co-occur
in a real-world scenario. The scenarios need not come from the same use-case. Within a
traffic set, each scenario has an associated relative occurrence frequency, interpreted as the
probability with which it would occur in the course of the test procedure.

Traffic-time profile
Traffic-time profile is a function describing the average arrival rate as a function of elapsed
time during a performance test.

Use-case
A use-case is a specification of a type of interaction between a TS and a SUT, corresponding
to a mode of end-user behaviour.
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User
A user is a person who consumes a service. The user uses a user equipment to access the
service.

User equipment
A user equipment is a device used by a user to access and consume a service. This term is
used interchangeably with the user term.

User pool
A user pool is a set of users which are intended to perform a similar task, e.g., run a partic-
ular type of test scenario.

User population
User population is the set of users involved in a performance test. Each user of a user
population can be selected by random to be used in a test scenario.

Volume testing
A volume test is the kind of performance test which scales the number of users in order to
find out which is the largest number of supported users by an SUT.

Workload
A workload is a complete description of the work an SUT has to complete during a perfor-
mance test. In this thesis, a workload comprehends use-case, the traffic-time profile and the
Traffic set.

Workload characterisation
Workload characterisation is the activity to select and define a workload with the goal to
produce models that are capable of describing and reproducing the behaviour of a work-
load.
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Acronyms

3GPP 3rd Generation Partnership Project

API Application Programming Interface
AS Application Server
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitives

BCMP BRAIN Candidate Mobility Management Proto-
col

CCF Container Configuration File
CD Coder/Decoder
CDMA Code Division Multiple Access
CH Component Handling
CP Coordination Point
CSCF Call Session Control Function
CTMF Conformance Testing Methodology and Frame-

work

D MinStrContent Data Representation with Minimal Structure Con-
tent

D StrContent Data Representation with Complete Structured
Content

D StringBuffer Data Representation using String Buffer
D StrPointers Data Representation as Structure of Pointers
DNS Domain Name System
DO Design Objective
DOC Design Objective Capacity

ETSI European Telecommunications Standards Insti-
tute

GPS Global Positioning System
GSM Global System for Mobile Communications
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GUI Graphical User Interface

HSS Home Subscriber Server

I-CSCF Interrogating Call Session Control Function
IDL Interface Description Language
IEC International Electrotechnical Commission
IHS Inadequately Handled Scenarios
IHSA Inadequately Handled Scenario Attempt
IMS IP Multimedia Subsystem
ISO International Standards Organization

LG MGenCtrl Load Generation with Multiple Generators and
Centralised Data

LG MGenCtrl Pull Load Generation with Multiple Generators and
Centralised Data using Pull Method

LG MGenCtrl Push Load Generation with Multiple Generators and
Centralised Data using Push Method

LG MGenDectrl Load Generation with Multiple Generators and
Decentralised Data

LG SGen Load Generation with Single Generator

MTC Main Test Component

OS Operating System

P-CSCF Proxy Call Session Control Function
P Clusters Population with Pool Clusters
P MinClusters Population with Minimal Number of Pool Clus-

ters
P SinglePool Population with Single Pool
PA Platform Adapter
PCO Point of Control and Observation
PDU Protocol Data Unit
PTC Parallel Test Component

QoS Quality of Service (QoS)

R MainThread Receive with Main Thread
R SepThreadPerSession Receive with Separate Thread per Session
R ThreadPool Receive with Thread Pool
R ThreadPool Proactor Receive with Thread Pool with Proactor
R ThreadPool Reactor Receive with Thread Pool with Reactor
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RFC Request for Comments
RMI Remote Method Invocation
RTP Real-Time Transport Protocol

S-CSCF Serving Call Session Control Function
S MainThread Send with the Main Thread
S SepThreadPerRequest Send with Separate Thread per Request
S SepThreadPerSession Send with Separate Thread per Session
S ThreadPool Send with Thread Pool
SA System Adapter
SAPS Scenario Attempts per Second
SE Service Entity
SIMS Simultaneous Scenarios
SIP Session Initiation Protocol
SLA Service Layer Agreements
SLF Subscriber Location Function
SM Session Manager
SM GenHdl State Machine with Generic Handler
SM SpecHdl State Machine with Specific Handler
SP Service Provider
SUT System Under Test

T SepTT Timer with Separate Timer Thread
T Sleep Timer with Sleep Operation
TA Test Adapter
TC Test Console
TCI TTCN-3 Control Interfaces
Tcl/Tk Tool Command Language/Toolkit
TE Test Executable
TL Test Logging
TM Test Management
TRI TTCN-3 Runtime Interfaces
TS Test System
TTCN Tree and Tabular Combined Notation
TTCN-2 Tree and Tabular Combined Notation, version 2
TTCN-3 Testing and Test Control Notation, version 3

UAC User Agent Client
UAS User Agent Server
UE User Equipment
UH InterleavedUPT User Handler with Interleaved Users per Thread
UH SeqUPT User Handler with Sequential Users per Thread
UH SingleUPT User Handler with Single User per Thread



188 Acronyms

UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
UPSF User Profile Server Function
UTP Unshielded Twisted Pair

VoIP Voice over IP

WLAN Wireless Local Area Network

XML Extensible Markup Language
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