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Abstract. Consider a system of linear algebraic equations with a nonsingular n by n matrix A.
When solving this system with GMRES, the relative residual norm at the step k is bounded from
above by the so called ideal GMRES approximation. This bound is sharp (it is attainable by the
relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worst-
case GMRES behavior if A is nonnormal. In this paper we consider an n by n Jordan block J , and
study the relation between ideal and worst-case GMRES as well as the problem of estimating the
ideal GMRES approximations. Under some assumptions, we show that ideal and worst-case GMRES
are identical at steps k and n − k such that k divides n, and we derive explicit expressions for the
(n−k)th ideal GMRES approximation. Furthermore, we extend previous results in the literature by
proving new results about the radii of the polynomial numerical hulls of Jordan blocks. Using these,
we discuss the tightness of the lower bound on the ideal GMRES approximation that is derived from
the radius of the polynomial numerical hull of J .

Key words. Krylov subspace methods, GMRES convergence, polynomial numerical hull, Jordan
block.

1. Introduction. Suppose that we solve a linear system Ax = b with the GM-
RES method [12]. Starting from an initial guess x0, this method computes the initial
residual r0 ≡ b − Ax0 and a sequence of iterates x1, x2, . . ., so that the kth residual
rk ≡ b−Axk satisfies

‖rk‖ = min
p∈πk

‖p(A) r0‖ ,(1.1)

where πk denotes the set of polynomials of degree at most k and with value one at the
origin, and ‖·‖ denotes the Euclidean norm. The residual rk is uniquely determined by
the minimization condition (1.1) and satisfies the equivalent orthogonality condition

rk ∈ r0 +AKk(A, r0) , rk ⊥ AKk(A, r0) .(1.2)

Here Kk(A, r0) ≡ span{r0, Ar0, . . . A
k−1r0} is the kth Krylov subspace generated

by A and r0, and ⊥ means orthogonality with respect to the Euclidean inner product.
Without loss of generality we will consider in this paper that r0 is a unit norm vector,
i.e. ‖r0‖ = 1.

The approximation problem (1.1) depends on the three input parameters A, r0,
and k. It turns out that it is very hard to analyze this problem in general. A
common approach for investigating the GMRES convergence behavior is to bound
(1.1) independently of r0. Because of the submultiplicativity of the Euclidean norm,
an upper bound on (1.1) is given by

ΦA

k ≡ min
p∈πk

‖p(A)‖.(1.3)

The problem (1.3) represents a matrix approximation problem and the value ΦA

k is
called the ideal GMRES approximation [6]. Clearly, ΦA

k represents an upper bound
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on the worst-case GMRES approximation

ΨA

k ≡ max
‖r0‖=1

min
p∈πk

‖p(A)r0‖ .(1.4)

The relation between ideal and worst-case GMRES has been investigated in several
papers. The best known result is that ΦA

k = ΨA

k for all k whenever A is normal [5, 9].
For nonnormal A, the situation is more complicated. Here some example matrices A
are known for which ΦA

k > ΨA

k [2, 15]. Despite the existence of these examples, it is
still an open problem whether ΦA

k = ΨA

k (or at least ΦA

k ≈ ΨA

k ) for larger classes of
nonnormal matrices.

Another open problem in the context of (1.3) is how to determine or estimate the
value of the ideal GMRES approximation ΦA

k in general. A possible approach that
is still under development is to associate the matrix A with some set in the complex
plane and to relate the norm of the matrix polynomial to the maximum norm of the
polynomial on this set. An appropriate set, designed to give useful information about
the norm of functions of a matrix, is the polynomial numerical hull of degree k,

Hk(A) ≡ {z ∈ C : ‖p(A)‖ ≥ |p(z)| for all p ∈ Pk} ,(1.5)

introduced by Nevanlinna [11, p. 41]. Here Pk denotes the set of polynomials of degree
at most k. The sets Hk(A) have been used to study the ideal GMRES behavior [2, 3, 4].
Based on the definition (1.5) it is not hard to see that these sets provide a lower bound
on the ideal GMRES approximation [3],

ΦA

k ≥ min
p∈πk

max
z∈Hk(A)

|p(z)| .(1.6)

Moreover, Hk(A) allows to identify when ideal GMRES fails to converge [2, 3],

ΦA

k = 1 ⇐⇒ 0 ∈ Hk(A) .(1.7)

In this paper we consider an n by n Jordan block Jλ with eigenvalue λ, and study the
relation between ideal and worst-case GMRES as well as the problem of estimating
the ideal GMRES approximations. We show that Φ

Jλ

k = Ψ
Jλ

k when k divides n. For
|λ| ≥ 1 and k dividing n, we derive explicit expressions for Φ

Jλ

n−k and prove that

Φ
Jλ

n−k = Ψ
Jλ

n−k. Furthermore, we extend the results of [1, 4] by proving new results
about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we
discuss the closeness of the lower bound (1.6) in case of a Jordan block. We conclude
that this bound is tight up to a constant for k ≤ n/2 (in case n is even), but that it
fails to characterize the ideal GMRES approximations for k > n/2. This proves that
the lower bound (1.6) in case of a general nonnormal matrix cannot be expected to
be tight for all k.

The paper is organized as follows. Section 2 summarizes relations between ideal
and worst-case GMRES. In Section 3 we deal with the (n− 1)st ideal and worst-case
GMRES step for a Jordan block. Section 4 describes the structure behind the ideal
GMRES convergence. As shown in Section 5, this structure can be used to translate
results about steps 1 and n−1 into steps k and n−k, in case k divides n. In Section 6
we discuss the question how well the bound based on the polynomial numerical hull
characterizes the ideal GMRES convergence, and Section 7 presents further discussion
based on numerical experiments.
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2. Relations between ideal and worst-case GMRES. If the matrix A is
nonsingular and ΦA

k > 0, then the polynomial that solves the ideal GMRES approx-
imation problem (1.3) is uniquely determined [6, Theorem 2]. This gives rise to the
following definition.

Definition 2.1. Suppose that a nonsingular matrix A and a positive integer k
are given for which ΦA

k > 0. Then the polynomial ϕk ∈ πk that satisfies

‖ϕk(A)‖ = ΦA

k = min
p∈πk

‖p(A)‖

is called the kth ideal GMRES polynomial of A, and ϕk(A) is called the kth ideal
GMRES matrix of A.

In general it is an open problem which properties of A are necessary and sufficient
so that ΦA

k = ΨA

k . In the following we will summarize the most important results for
our context. We first present a lemma that characterizes the case ΦA

k = ΨA

k .

Lemma 2.2. Suppose that a nonsingular matrix A and a positive integer k are
given for which ΦA

k > 0. Then ΦA

k = ΨA

k if and only if there exist a unit norm vector
r0 and a polynomial ψ ∈ πk, such that

ψ(A)r0 ⊥ AKk(A, r0) ,(2.1)

and r0 lies in the span of right singular vectors of ψ(A) corresponding to its maximal
singular value. If such ψ and r0 exist, then ψ = ϕk.

Proof. If ΦA

k = ΨA

k , then there exists an unit norm vector r0 and a GMRES
polynomial ψ ∈ πk satisfying (2.1), cf. (1.2), and for the kth ideal GMRES polynomial
ϕk of A,

‖ϕk(A)r0‖ ≤ ‖ϕk(A)‖ = ‖ψ(A)r0‖ .(2.2)

Since ‖ψ(A)r0‖ is minimal, the equality ‖ϕk(A)r0‖ = ‖ψ(A)r0‖ holds. But this means
that r0 lies in the span of maximal right singular vectors of ϕk(A), cf. (2.2). Moreover,
since ΨA

k > 0, the kth GMRES polynomial is unique, cf. [6, Theorem 2]. Therefore
ϕk = ψ, and hence r0 lies in the span of maximal right singular vectors of ψ(A).

Now assume that there exists a polynomial ψ ∈ πk and a unit norm vector r0
such that (2.1) holds and r0 lies in the span of maximal right singular vectors of ψ(A).
Then

‖ψ(A)‖ = ‖ψ(A)r0‖ = min
p∈πk

‖p(A)r0‖ ≤ ‖ϕk(A)‖.(2.3)

Since ϕk is the ideal GMRES polynomial, ‖ψ(A)‖ < ‖ϕk(A)‖ is impossible, and
therefore equality holds in (2.3). In other words, ΦA

k = ΨA

k , and from uniqueness of
ϕk it follows that ψ = ϕk.

Lemma 2.3. For any nonsingular matrix A, ΦA
1 = ΨA

1 . If the kth ideal GMRES
matrix ϕk(A) of A has a simple maximal singular value, then ΦA

k = ΨA

k .

Proof. The first statement is proven independently in [5] and [9], the second
follows from [5, Lemma 2.4].

Faber, Joubert, Knill, and Manteuffel [2] prove that for an upper triangular
Toeplitz matrix T ,

ΦT

k = 1 ⇐⇒ ΨT

k = 1 ,(2.4)
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i.e. the ideal and worst-case GMRES approximations for upper triangular Toeplitz
matrices are the same in case of stagnation. However, it is in general still an open
problem, originally posed in [2, p. 722], whether the two approximations also coincide
when ideal GMRES converges, i.e. when ΦA

k < 1.
The situation where ΦA

k < 1 can be identified using the polynomial numerical
hull. Faber, Greenbaum, and Marshall [1] investigate the polynomial numerical hulls
of an n by n Jordan block,

Jλ =








λ 1
. . .

. . .

. . . 1
λ








≡ λIn + En .(2.5)

They show that for each k = 1, . . . , n− 1, Hk(Jλ) is a circle around the eigenvalue λ
with some radius ̺k,n, where 1 > ̺1,n > . . . > ̺n−1,n > 0, and the radii are indepen-
dent of the eigenvalue λ. In particular, Faber et al. [1] concentrate on determining
the radii ̺1,n and ̺n−1,n. Since H1(Jλ) is equal to the field of values of Jλ, it holds
that

̺1,n = cos
(

π
n+1

)

,(2.6)

cf. [1, p. 235]. The problem of determining ̺n−1,n is equivalent to a classical problem in
complex approximation theory, closely related to the Carathéodory-Fejér interpolation
problem. Using this connection it is shown in [1, p. 238], that ̺n−1,n is a solution of
a certain nonlinear equation and can be bounded by

1 − log(2n)
n ≤ ̺n−1,n ≤ 1 − log(2n)

n + log(log(2n))
n .(2.7)

Continuing this work, Greenbaum [4, p. 88] combines (1.6) and results of [1] to prove
that for k = 1, . . . , n− 1,

|λ|−k ≥ Φ
Jλ

k ≥ ̺k
k,n|λ|

−k for |λ| ≥ ̺k,n ,(2.8)

Φ
Jλ

k = Ψ
Jλ

k = 1 ⇐⇒ |λ| ≤ ̺k,n .(2.9)

The upper bound in (2.8) can be replaced by 1 if |λ| ≤ 1. The lower bound in (2.8)
is a special case of the general lower bound (1.6) on the ideal GMRES approximation
based on the polynomial numerical hull. The tightness of this lower bound is examined
in Section 6 below. For example, combining the first assertion in Lemma 2.3, (2.6),

and (2.8) shows that for |λ| ≥ cos
(

π
n+1

)

,

|λ|−1 ≥ Φ
Jλ
1 = Ψ

Jλ
1 ≥ cos

(
π

n+1

)

|λ|−1 .

Using previous results, if λ = 0, then the polynomial numerical hull of Jλ of each
degree contains the origin, which implies that both ideal and worst-case GMRES
completely stagnate. Hence of interest in our context is only the nonsingular case,
i.e. λ 6= 0. Moreover, each λ ∈ C can be written as λ = |λ|eiα, and it holds that

Jλ = eiαUJ|λ|U
H , U ≡ diag(eiα, ei2α, . . . , einα) .(2.10)

Therefore, to investigate ideal and worst-case GMRES, it suffices to concentrate only
on real and positive λ. All results can be then easily extended to all complex λ using
the unitary similarity transformation defined by (2.10).
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Throughout the paper, we will use the backward identity IB
n and the matrix I±

n

defined by

IB

n ≡





1

. .
.

1



 ∈ R
n×n , I±

n ≡ diag(1,−1, . . . , (−1)n−1) .(2.11)

3. The next-to-last ideal and worst-case GMRES approximations. Con-
sider the (n−1)st ideal and worst-case GMRES approximations for an n by n Jordan
block Jλ, λ > 0. Our main result, stated in Theorem 3.4 below, is that Φ

Jλ
n−1 = Ψ

Jλ
n−1

for λ ≥ 1, and we also give an explicit expression for Φ
Jλ
n−1 in terms of the eigenvalue λ.

The proof of this result will make use of three technical lemmas. The first lemma is
a slight reformulation of [10, Corollary 2.2].

Lemma 3.1. Consider an n by n Jordan block Jλ, a vector r0 = [ρ1, . . . , ρn]T

with ρn 6= 0, and let χ be the unique solution of the linear system








ρ1 . . . ρn−1 ρn

... . .
.

. .
.

ρn−1 . .
.

ρn







χ = I±

n







1
λ
...

λn−1






.(3.1)

Then the (n− 1)st GMRES residual rn−1 for Jλ, and the initial residual r0 satisfies
‖rn−1‖

−2rn−1 = χ.
Lemma 3.2. Let λ > 0 be given and let r0 ∈ Rn be the unit norm vector

r0 ≡ (−1)n−1‖ξ‖−1 IB

n ξ ,(3.2)

where ξ = [ξ1, . . . , ξn]T has the components

ξi+1 = λ
n−1

2 −i (−1)i

4i

(
2i

i

)

, i = 0, . . . , n− 1.(3.3)

Then the (n − 1)st GMRES residual rn−1 for the n by n Jordan block Jλ and the
initial residual r0 is given by rn−1 = ‖ξ‖−3 ξ and hence

‖rn−1‖ = ‖ξ‖−2 =
1

λn−1

[
n−1∑

i=0

(4λ)−2i

(
2i

i

)2
]−1

.(3.4)

Proof. Since the last component of r0 = (−1)n−1‖ξ‖−1[ξn, . . . , ξ1]
T is non-

zero, Lemma 3.1 implies that the (n − 1)st GMRES residual for Jλ and r0 satisfies
‖rn−1‖

−2rn−1 = χ, where χ is the unique solution of

(−1)n−1

‖ξ‖








ξn . . . ξ2 ξ1
... . .

.
. .
.

ξ2 . .
.

ξ1







χ = I±

n







1
λ
...

λn−1






.(3.5)

Using the definition (3.3), the numbers ξi+1 satisfy for j = 0, . . . , n− 1,

j
∑

i=0

ξi+1ξj−i+1 =
(−1)j

4j
λn−j−1

j
∑

i=0

(
2i

i

)(
2(j − i)

j − i

)

= (−1)jλn−j−1.
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In the last equality we use the fact that the sum of the products of the given binomial
coefficients is equal to 4j, see e.g. [13, p. 44]. The n previous equations can be written
in matrix form as








ξn . . . ξ2 ξ1
... . .

.
. .
.

ξ2 . .
.

ξ1














ξ1
ξ2
...
ξn







= (−1)n−1I±

n







1
λ
...

λn−1






.(3.6)

A comparison of (3.6) and (3.5) shows that the solution of (3.5) is χ = ‖ξ‖ξ. Now
χ = ‖rn−1‖

−2rn−1 implies that rn−1 indeed is of the form rn−1 = ‖ξ‖−3 ξ . A straight-
forward computation shows that ‖rn−1‖ is given by (3.4).

Lemma 3.3. Let λ > 0 be given and let ξ+ ≡ I±

n ξ, where the vector ξ is defined
as in Lemma 3.2. Then there exists an uniquely determined Hankel matrix H of the
form

H =








hn . . . h2 h1
... . .

.
. .
.

h2 . .
.

h1







, such that ξ+ = Hξ+.(3.7)

If λ ≥ 1, the matrix H is primitive and has only one eigenvalue of maximum modulus.
This eigenvalue is equal to 1, and ξ+ is the corresponding eigenvector.

Proof. First note that since the entries of ξ alternate in sign and ξ1 > 0, all
components of ξ+ = [ξ+

1 , . . . , ξ
+
n ]T are positive.

The nth equation in ξ+ = Hξ+ is h1ξ
+

1 = ξ+
n , i.e. h1 = ξ+

n/ξ
+

1 . Therefore, h1 is
well-defined and positive. Considering the equations n − 1, . . . , 1 it is clear that the
entries h2, . . . , hn of H are uniquely determined.

To show the remaining part of the lemma, we will first prove by induction that
for λ ≥ 1, H is nonnegative with hi > 0, i = 1, . . . , n. We already know that h1 > 0.
Now suppose that h1 > 0, . . . , hj > 0 for some j ≥ 1. The (n − j)th equation in
ξ+ = Hξ+ is of the form

ξ+

n−j = hj+1ξ
+

1 +

j+1
∑

i=2

hj−i+2ξ
+

i = hj+1ξ
+

1 +

j
∑

i=1

hj−i+1ξ
+

i+1.

Using the definitions of ξ+

i+1 and ξi+1, cf. (3.3), it holds that

ξ+

i+1 = λ−1

(

ξ+

i −
ξ+

i

2i

)

and, therefore,

ξ+

n−j = hj+1ξ
+

1 + λ−1

j
∑

i=1

hj−i+1ξ
+

i − λ−1

j
∑

i=1

hj−i+1
ξ+

i

2i

= hj+1ξ
+

1 + λ−1ξ+

n−j+1 − λ−1

j
∑

i=1

hj−i+1
ξ+

i

2i
.
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Finally,

hj+1 = (ξ+

1 )−1

(

ξ+

n−j − λ−1ξ+

n−j+1 +

[

λ−1

j
∑

i=1

hj−i+1
ξ+

i

2i

])

.

The term in the square brackets is positive according to the induction hypothesis.
Moreover, since the sequence ξ+

1 , ξ
+

2 , . . . is decreasing for λ ≥ 1, it holds that ξ+

n−j >

λ−1ξ+

n−j+1, i.e. hj+1 > 0.
Summarizing, H is nonnegative and ξ+ > 0 is an eigenvector of H corresponding

to the eigenvalue 1. Therefore, 1 must be an eigenvalue of maximum modulus [8,
Corollary 8.1.30., p. 493]. Moreover, since H2 > 0, H is primitive, cf. [8, Theo-
rem 8.5.2., p. 516], and there exists only one eigenvalue of maximum modulus.

We now can state and prove the main result of this section.

Theorem 3.4. Consider an n by n Jordan block Jλ with λ ≥ 1. Then the
unit norm initial residual r0 defined in (3.2)–(3.3) solves the worst-case GMRES
approximation problem (1.4) for Jλ and k = n− 1, and

Φ
Jλ
n−1 = Ψ

Jλ
n−1 =

1

λn−1

[
n−1∑

i=0

(4λ)−2i

(
2i

i

)2
]−1

.(3.8)

Proof. Consider the (n−1)st GMRES residual rn−1 for Jλ and the initial residual
r0 defined in (3.2)–(3.3), and denote by pn−1 the corresponding GMRES polynomial,
i.e.

rn−1 = pn−1(Jλ) r0 .(3.9)

Using (3.4), ‖rn−1‖ is equal to the rightmost expression in (3.8). To prove the as-
sertion it suffices to show that r0 is a maximal right singular vector of the matrix
pn−1(Jλ), cf. Lemma 2.2. Since pn−1(Jλ) is an upper triangular Toeplitz matrix, the
matrix pn−1(Jλ)IB

n , where IB
n is defined in (2.11), is symmetric, and hence unitarily

diagonalizable. Denote its eigendecomposition by pn−1(Jλ)IB
n = UDUT , where D is

a nonsingular real diagonal matrix, and UTU = UUT = In. Given D, there exists a
(uniquely determined) diagonal matrix Î±

n having entries 1 or −1 on its diagonal such
that S ≡ DÎ±

n is a real diagonal matrix with positive diagonal entries. Then

pn−1(Jλ) = U (DÎ±

n ) (Î±

nU
T IB

n ) = U S (Î±

nU
T IB

n ) ,(3.10)

and the rightmost expression is the singular value decomposition of pn−1(Jλ).
Substituting (3.2), (3.4) and (3.10) into (3.9), we obtain

ξ = (−1)n−1‖ξ‖2USÎ±

nU
T ξ.(3.11)

Similarly as in Lemma 3.3, denote ξ+ ≡ I±

n ξ > 0. Multiplying both sides of (3.11)
from the left by I±

n we receive

ξ+ = Hξ+ , H ≡ (−1)n−1‖ξ‖2(I±

nU)SÎ±

n (I±

nU)T(3.12)

= (−1)n−1‖ξ‖2(I±

n pn−1(Jλ)IB

n I
±

n ) .
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Fig. 3.1. The right hand side of (3.8) and Φ
Jλ
n−1

plotted as a function of λ.

Since pn−1(Jλ) is an upper triangular Toeplitz matrix, the expression (3.12) shows
that H is a Hankel matrix of the form (3.7). Considering the eigenvalue decomposition
H = QΛQT it is easy to see that

Q = I±

nU, Λ = (−1)n−1‖ξ‖2SÎ±

n .(3.13)

Therefore, the modulus of any eigenvalue of H is a ‖ξ‖2-multiple of some singular
value of pn−1(Jλ). Consequently, ξ+ in (3.12) is an eigenvector corresponding to the
eigenvalue of maximum modulus of H if and only if r0 is a right singular vector
corresponding to the maximal singular value of pn−1(Jλ). By Lemma 3.3, H has only
one eigenvalue of maximum modulus, and ξ+ is the corresponding eigenvector. Hence
r0 is the maximal right singular vector of pn−1(Jλ), which completes the proof.

In the previous theorem we use the assumption λ ≥ 1. It is natural to ask,
what is the relation between ideal and worst-case GMRES for ̺n−1,n < λ < 1 and
whether the right hand side of (3.8) still characterizes these quantities. Our numerical
experiments predict that Φ

Jλ
n−1 = Ψ

Jλ
n−1 also for λ between ̺n−1,n and 1. However, for

each integer n there seems to exist a λ(n)
∗ , ̺n−1,n < λ(n)

∗ < 1, such that Ψ
Jλ
n−1 is not

equal to the right hand side of (3.8) for λ < λ(n)
∗ . In other words, the right hand side

of (3.8) does not characterize the ideal and worst-case GMRES approximation for all
λ ≥ ̺n−1,n. This situation is demonstrated in Fig. 3.1. We consider n = 10 so that
̺n−1,n ≈ 0.8. By the dashed line we plot the right hand side of (3.8) and by the solid
line the ideal GMRES approximation Φ

Jλ
n−1 as a function of λ.

Also note that the lower bound on ̺n−1,n in (2.7) approaches 1 for n → ∞, the
equivalence (2.9) implies that for each λ with 0 < λ < 1, there exists a positive integer
nλ such that for the nλ by nλ Jordan block Jλ, Φ

Jλ
n−1 = Ψ

Jλ
n−1 = 1. In other words,

both ideal and worst-case GMRES stagnate completely for each Jordan block Jλ

corresponding to an eigenvalue λ inside the unit circle, provided that Jλ is sufficiently
large.

4. Structure of the ideal GMRES matrices for a Jordan block. In the
following, we will translate the results for the 1st resp. (n − 1)st ideal GMRES
approximation to the kth resp. (n−k)th ideal GMRES approximation, where k divides
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n. To this end we will use the special structure of the ideal GMRES matrices, which we
originally discovered numerically (for our experiments we use MATLAB 6.5 Release 13
and the semidefinite programming package SDPT3 [16]). Since the development below
is quite technical, we will start with a simple example. Consider a 6 by 6 Jordan block
Jλ. Then its second, third and fourth ideal GMRES matrices are upper triangular
Toeplitz matrices of the form










• ◦ •

• ◦ •

• ◦ •

• ◦ •

• ◦

•










︸ ︷︷ ︸

ϕ2(Jλ)

,










• ◦ ◦ •

• ◦ ◦ •

• ◦ ◦ •

• ◦ ◦

• ◦

•










︸ ︷︷ ︸

ϕ3(Jλ)

,










• ◦ • ◦ •

• ◦ • ◦ •

• ◦ • ◦

• ◦ •

• ◦

•










︸ ︷︷ ︸

ϕ4(Jλ)

,

where “•” stands for a nonzero entry and “◦” represents a zero entry. It is easy to see
that there exist permutation matrices P2, P3 and P4 that transform ϕ2(Jλ), ϕ3(Jλ)
and ϕ4(Jλ) into block diagonal matrices with upper triangular Toeplitz blocks,










• •

• •

•

• •

• •

•










︸ ︷︷ ︸

PT
2 ϕ2(Jλ)P2

,










• •

•

• •

•

• •

•










︸ ︷︷ ︸

PT
3 ϕ3(Jλ)P3

,










• • •

• •

•

• • •

• •

•










︸ ︷︷ ︸

PT
4 ϕ4(Jλ)P4

.

Since the transformation ϕk(Jλ) → PT
k ϕk(Jλ)Pk is orthogonal, and all diagonal blocks

of PT
k ϕk(Jλ)Pk are equal, the ideal GMRES approximation Φ

Jλ

k = ‖ϕk(Jλ)‖ equals
the norm of any diagonal block of PT

k ϕk(Jλ)Pk. These observations are the key to
analyzing the kth and (n− k)th ideal GMRES approximations for Jλ when k divides
n. The following lemma formalizes the just described orthogonal transformation and
shows the connection between the singular value decompositions of ϕk(Jλ) and of a
diagonal block of PT

k ϕk(Jλ)Pk.

Lemma 4.1. Let n and k be positive integers, n > k, and let d be their greatest
common divisor. Define m ≡ n/d and ℓ = k/d. Consider the m by m upper triangular
Toeplitz matrix B,

B ≡

ℓ∑

i=0

biE
i
m , and let B = USV T(4.1)

be its singular value decomposition. Then the singular value decomposition of the n
by n matrix G,

G ≡
ℓ∑

i=0

biE
id
n is given by G = (U ⊗ Id)(S ⊗ Id)(V ⊗ Id)

T .(4.2)

Proof. Define the n by n matrix P by

P ≡ [Im ⊗ e1, . . . , Im ⊗ ed] ,
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then

PTGP = Id ⊗B = Id ⊗ (USV T ) = (Id ⊗ U)(Id ⊗ S)(Id ⊗ V )T ,

and hence

G = P (Id ⊗ U)(Id ⊗ S)(Id ⊗ V )TPT

= [P (Id ⊗ U)PT ] [P (Id ⊗ S)PT ] [P (Id ⊗ V )PT ]T

= (U ⊗ Id)(S ⊗ Id)(V ⊗ Id)
T .

In the last equation we have used [7, Corollary 4.3.10].

As described by the example of the 6 by 6 Jordan block above and by Lemma 4.1,
our strategy is as follows: Having an ideal GMRES matrix G of the special form (4.2),
we can find a permutation matrix P such that PTGP = I ⊗B (where I and B have
the appropriate sizes), and then investigate the norm and properties of G through the
norm and properties of the block B.

Lemma 4.2. Let n and k be positive integers, n > k, and let d be their greatest
common divisor. Let λ > 0 be given and define m ≡ n/d, ℓ ≡ k/d,

Jλ ≡ λIn + En , Jµ ≡ µIm + Em , µ ≡ λd.

Suppose that the ℓth ideal GMRES polynomial ϕℓ of Jµ is of the form

ϕℓ(z) =

ℓ∑

i=0

ci(µ− z)i .(4.3)

If Φ
Jµ

ℓ = Ψ
Jµ

ℓ > 0, then Φ
Jµ

ℓ = Ψ
Jµ

ℓ = Φ
Jλ

k = Ψ
Jλ

k , and the kth ideal GMRES
polynomial ϕk of Jλ is given by

ϕk(z) =

ℓ∑

i=0

ci(λ− z)id .(4.4)

Proof. Let us define the polynomial

ψ(z) ≡

ℓ∑

i=0

ci(λ− z)id .(4.5)

By assumption, ϕℓ ∈ πℓ, which implies that ψ ∈ πk.
We will now construct a unit norm vector r0 lying in the span of maximal right

singular vectors of ψ(Jλ), such that the condition (2.1) is satisfied. According to
Lemma 2.2, this means that ψ (which is equal to ϕk in (4.4)) is the kth ideal GMRES
polynomial of Jλ.

From

ϕℓ(Jµ) =
ℓ∑

i=0

ci(−Em)i, ψ(Jλ) =
ℓ∑

i=0

ci(−En)id ,(4.6)

we see that the matrices ϕℓ(Jµ) and ψ(Jλ) have a similar structure as the matrices
B and G, respectively, in Lemma 4.1 (up to the sign in case d is even).
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By assumption, Φ
Jµ

ℓ = Ψ
Jµ

ℓ > 0, and hence by Lemma 2.2 there exists a unit
norm vector w in the span of the maximal right singular vectors of ϕℓ(Jµ), such that

ϕℓ(Jµ)w ⊥ JµKℓ(Jµ, w) .(4.7)

Define Sµ ∈ Rm×m, v ∈ Rm, and B ∈ Rm×m by

Sµ ≡

{
Jµ ,
I±m Jµ I

±
m,

v ≡

{
w , if d is odd,
I±m w, if d is even,

(4.8)

B ≡ ϕℓ(Sµ).(4.9)

Then it easily follows that

Bv ⊥ SµKℓ(Sµ, v) .(4.10)

Since B is a Toeplitz matrix, the matrix IB
mB is symmetric, and hence unitarily

diagonalizable, IB
mB = V ΛV T . Therefore there exists a diagonal matrix Î±m having

entries 1 and −1 on its diagonal, such that

B = (IB

mV Î
±
m) (Î±mΛ)V T

is the singular value decomposition of B. In other words, when v is a right singular
vector of the Toeplitz matrix B, then the corresponding left singular vector is of the
form ±IB

mv.
Denoting by δ the maximal singular value of ϕℓ(Jµ),

Bv = ± δ IB

mv , and δ ≡ ‖ϕℓ(Jµ)‖ = ‖B‖ = ‖ψ(Jλ)‖ ,(4.11)

where we have applied Lemma 4.1 to obtain the last equality.
Since v lies in the span of the right singular vectors of B corresponding to δ, the

vectors v ⊗ ei, where ei denotes the ith standard basis vector for i = 1, . . . , d, lie in
the span of the right singular vectors of ψ(Jλ) corresponding to δ, cf. Lemma 4.1.
Now define eλ ≡ [1,−λ, . . . , (−λ)d−1]T , and

r0 ≡ γ

d∑

i=1

(−λ)i−1 v ⊗ ei = γ (v ⊗ eλ) ,(4.12)

where γ is chosen so that ‖r0‖ = 1. Clearly, r0 lies in the span of the right singular
vectors of the Toeplitz matrix ψ(Jλ) corresponding to δ. Then ±IB

n r0 lies in the span
of the corresponding left singular vectors. Together with the first expression in (4.11)
this yields

ψ(Jλ)r0 = γψ(Jλ) (v ⊗ eλ)

= ±γδIB

n (v ⊗ eλ) = ±γδ ((IB

mv) ⊗ (IB

d eλ))

= ±γ ((Bv) ⊗ (IB

d eλ)) .(4.13)

We next show that

ψ(Jλ)r0 ⊥ J i
λr0 , i = 1, . . . , k ,(4.14)

i.e. that ψ is a GMRES polynomial for Jλ and the initial residual r0. Since

span{Jλr0, . . . , J
k
λr0} = span{E0

nJλr0, . . . , E
k−1
n Jλr0} ,(4.15)
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the relation (4.14) holds if and only if

ψ(Jλ)r0 ⊥ Ei
nJλr0 , i = 0, . . . , k − 1 .(4.16)

Let us decompose the index i as

i = sd+ q, s = 0, . . . , l − 1, q = 0, . . . , d− 1.(4.17)

An elementary computation shows that

Jλr0 = γ Jλ(v ⊗ eλ) = γ ((Sµv) ⊗ ed) .

Multiplication of Jλr0 from the left by Ei
n shifts all entries of Jλr0 upwards by i

positions. Using (4.17), Ei
nJλr0 can be written as

Ei
nJλr0 = γ Esd

n ((Sµv) ⊗ ed−q) = γ ((Es
mSµv) ⊗ ed−q) .(4.18)

Now from (4.13) and (4.18) we obtain

(ψ(Jλ)r0)
T (Ei

nJλr0) = ±γ2 ((Bv) ⊗ (IB

d eλ))T ((Es
mSµv) ⊗ ed−q)

= ± γ2 [(Bv)TEs
mSµv] [e

T
λ I

B

d ed−q].

Similar as in (4.15), Es
mSµv ∈ SµKℓ(Sµ, v) for s = 0, . . . , l−1. Since Bv is orthogonal

to SµKℓ(Sµ, v), cf. (4.10), it holds that (Bv)TEs
mSµv = 0 for s = 0, . . . , l − 1. In

other words, we just proved (4.14).
Summarizing, ψ is the kth GMRES polynomial for the matrix Jλ and the initial

residual r0 that lies in the span of right singular vectors corresponding to the maximal
singular value of ψ(Jλ). Using Lemma 2.2, it holds that Φ

Jλ

k = Ψ
Jλ

k and, therefore,
ψ is the kth ideal GMRES polynomial of Jλ. Moreover, Lemma 4.1 implies that the
ideal GMRES matrices ϕℓ(Jµ) and ϕk(Jλ) have the same norm and thus Φ

Jµ

ℓ = Ψ
Jµ

ℓ =
Φ

Jλ

k = Ψ
Jλ

k .

As an example, consider an n by n Jordan block Jλ with λ > 0, n even and
k = n/2. This gives d = n/2, m = 2, ℓ = 1, and µ = λn/2 in Lemma 4.2. Since for the
2 by 2 Jordan block Jµ, Ψ

Jµ

1 = Φ
Jµ

1 > 0, Lemma 4.2 implies that Φ
Jµ

1 = Ψ
Jµ

1 = Φ
Jλ

n/2 =

Ψ
Jλ

n/2. Moreover, a direct computation of the first ideal GMRES approximation for

the 2 by 2 Jordan block Jµ, µ = λn/2, shows that for λ ≥ 2−2/n,

Φ
Jλ

n/2 = Φ
Jµ

1 =
4λn/2

4λn + 1
.(4.19)

Lemma 4.2 also allows to prove the following result about the radii of the polynomial
numerical hulls of Jordan blocks∗.

Theorem 4.3. Let n and k be positive integers, n > k, and let d be their greatest
common divisor. Definem ≡ n/d, ℓ ≡ k/d. Then the radius ̺k,n of the kth polynomial
numerical hull of an n by n Jordan block satisfies

̺k,n = ̺
1/d
ℓ,m .(4.20)

∗We thank Anne Greenbaum for motivating us to investigate the radii ̺k,n using our theory of
ideal and worst-case GMRES for a Jordan block.
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Proof. Let λ > 0 and consider Jordan blocks

Jλ ≡ λIn + En , Jµ ≡ µIm + Em , µ ≡ λd.

We prove the following equivalence

µ ≤ ̺ℓ,m
A

⇐⇒ Φ
Jµ

ℓ = Ψ
Jµ

ℓ = 1
B

⇐⇒ Φ
Jλ

k = Ψ
Jλ

k = 1
C

⇐⇒ λ ≤ ̺k,n.

The equivalences A and C follow from (2.9), so we only have to prove the equivalence
B. From Lemma 4.2,

Φ
Jµ

ℓ = Ψ
Jµ

ℓ = 1 =⇒ Φ
Jλ

k = Ψ
Jλ

k = 1.

On the other hand, suppose that Φ
Jλ

k = Ψ
Jλ

k = 1. Consider the polynomial ϕℓ of the
form (4.3). Then, similarly as in the proof of Lemma 4.2, the polynomial ψ defined by
(4.5) satisfies ψ ∈ πk and ‖ψ(Jλ)‖ = ‖ϕℓ(Jµ)‖, cf. (4.11). Now if Φ

Jµ

k = ‖ϕℓ(Jµ)‖ < 1,
then ‖ψ(Jλ)‖ < 1 = Φ

Jλ

k , which contradicts the optimality property of the kth ideal
GMRES polynomial ϕk of Jλ. Therefore Φ

Jµ

k = 1, which implies that Ψ
Jµ

k = 1, cf.
(2.4), and thus B must hold.

Consequently, for each λ > 0, λd ≤ ̺ℓ,m ⇐⇒ λ ≤ ̺k,n, which implies (4.20).

For example, if n is even, then (4.20) for k = n/2, d = k, m = 2, ℓ = 1 shows that
̺n/2,n = ̺1/k

1,2 = 2−2/n, cf. (2.6). The explicit value of ̺n/2,n can be used to obtain

bounds on Φ
Jλ

k for k ≤ n/2. Suppose that λ ≥ ̺n/2,n. Using (2.8) and the fact that

̺k
k,n ≥ ̺k

n/2,n = 2−2k/n ≥ 2−1 for k ≤ n/2, we obtain

λ−k ≥ Φ
Jλ

k ≥
1

2
λ−k, k ≤ n/2 .(4.21)

We will next use our above results to study the kth and (n − k)th ideal and
worst-case GMRES approximation for Jλ in case k divides n.

5. Results for k and n−k in case k divides n. First consider positive integers
k and n, such that k < n divides n. Then d = k is their greatest common divisor,
and m = n/k, ℓ = 1 in Theorem 4.3. Using the explicit form of the radius ̺1,n/k,
cf. (2.6), the relation (4.20) implies

̺k,n = ̺
1/k
1,n/k =

[

cos
(

π
n/k+1

)]1/k

.(5.1)

Since for ℓ = 1 it holds that Φ
Jµ

ℓ = Ψ
Jµ

ℓ > 0, the assumption of Lemma 4.2 is
always satisfied when the positive integer k < n divides n, so that we can apply the
lemma directly.

Theorem 5.1. Consider an n by n Jordan block Jλ with λ > 0. Let k < n be a
positive integer dividing n. Then Φ

Jλ

k = Ψ
Jλ

k , and if λ ≥ ̺k,n,

λ−k ≥ Φ
Jλ

k ≥ λ−k cos
(

π
n/k+1

)

.(5.2)

The kth ideal GMRES polynomial ϕk of Jλ can be written in the form

ϕk(z) = c0 + c1 (λ − z)k ,(5.3)

where c0 and c1 are the coefficients of the first ideal GMRES polynomial (4.3) of the
n
k by n

k Jordan block Jλk .
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Proof. All results follow from Lemma 4.2 and Theorem 4.3. The bound (5.2) is
just the bound (2.8), where for ̺k,n we substituted its exact value on the right hand
side of (5.1).

From the form of the kth ideal GMRES polynomial (5.3) it is easy to see that
for λ > ̺n,k, we have c1 6= 0, and the k roots of ϕk are uniformly distributed on the
circle around λ with radius |c0/c1|

1/k. If λ ≤ ̺n,k then ϕk(z) = 1.
Now consider the case n−k such that k < n divides n. Then the greatest common

divisor of n− k and n is k, and the parameters d, m and ℓ from Lemma 4.2 are given
by d = k, m = n/k, ℓ = m− 1. Using Theorem 4.3 we obtain

̺n−k,n = ̺
1/k
m−1,m .(5.4)

For example, if n ≥ 4 is even and k = 2, then m = n/2 and (5.4) means that

̺n−2,n = ̺
1/2
m−1,m. Using a completely different and highly nontrivial proof technique

based on complex analysis, the same result is obtained by Faber et al. in [1, p. 241].
Tight bounds on ̺m−1,m are given by (2.7).

In the following theorem we combine results of Lemma 4.2 and Theorem 3.4.
Theorem 5.2. Consider an n by n Jordan block Jλ with λ ≥ 1. If k < n is a

positive integer dividing n, then

Φ
Jλ

n−k = Ψ
Jλ

n−k =
1

λn−k





n/k−1
∑

i=0

λ−2ki4−2i

(
2i

i

)2




−1

.(5.5)

Proof. The parameters in Lemma 4.2 are given by d = k, m = n/k, ℓ = m − 1
and µ = λk. Applying Theorem 3.4 to the m by m Jordan block Jµ we see that
Φ

Jµ

m−1 = Ψ
Jµ

m−1, and this quantity is positive. Hence the assumption of Lemma 4.2 is

satisfied. Therefore, Φ
Jµ

m−1 = Φ
Jλ

n−k = Ψ
Jλ

n−k. The value of Φ
Jµ

m−1 (and also of Φ
Jλ

n−k)

is given by (3.8), where n and λ have to be replaced by m and λk, respectively.

Note that for n even and k = n/2, it can be easily checked that the rightmost
expression in (5.5) agrees with the rightmost expression in (4.19).

6. Polynomial numerical hulls and the ideal GMRES convergence. Here
we are interested in the question how closely the lower bound (1.6), which in case
of an n by n Jordan block Jλ with λ ≥ ̺k,n is identical to the lower bound in
(2.8), approximates the ideal GMRES approximation. To study this question, we
concentrate on the n by n Jordan block Jλ with λ = 1. We need the following lemma,
which can be proven by a straightforward computation; see also [14].

Lemma 6.1. The singular value decomposition of the n by n Jordan block J1 is
given by J1 = USV T , where

V = {vij}
n
i,j=1 , vij = 2√

2n+1
sin
(

2i−1
2n+1jπ

)

,(6.1)

U = {uij}
n
i,j=1 , uij = 2√

2n+1
sin
(

2i
2n+1jπ

)

,(6.2)

S = diag(σi) , σi = 2 cos
(

iπ
2n+1

)

, i = 1, . . . , n.(6.3)
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Theorem 6.2. Consider the n by n Jordan block J1, and let k < n be a positive
integer dividing n. Then the ideal GMRES approximations ΦJ1

k and ΦJ1

n−k are bounded
by

cos
(

π
2n/k

)

≤ Φ
J1

k ≤ cos
(

π
2n/k+1

)

,(6.4)

[

1 +
1

2
log(n/k)

]−1

≤ ΦJ1

n−k ≤
[
1 + 1

4 log(n/k)
]−1

.(6.5)

Proof. We first prove (6.4). In the notation of Lemma 4.2, m ≡ n/k and ℓ = 1.
Denote by J the m by m Jordan block with the eigenvalue one. Since ΦJ

1 = ΨJ
1 > 0,

Lemma 4.2 implies that ΦJ1

k = ΦJ
1 . It therefore suffices to bound ‖ϕ1(J)‖.

The upper bound in (6.4) follows from

‖ϕ1(J)‖ ≤ ‖I −
1

2
J‖ =

1

2
‖J‖ = cos

(
π

2m+1

)

,

where ‖J‖ = σ1(J) is known, cf. Lemma 6.1. For ω ∈ R, define the polynomial

pω(z) ≡ 1 − ωz.

The norm of pω(J) is the square root of the maximal eigenvalue of

pω(J)T pω(J) =








γω −βω

−βω αω
. . .

. . .
. . . −βω

−βω αω







,

where αω ≡ ω2 + (1 − ω)
2
, βω ≡ (1 − ω)ω, γω ≡ (1 − ω)

2
. Next, define the m by m

matrix Tω,m,

Tω,m ≡ tridiag(−βω, αω,−βω).

Denote the characteristic polynomials of pω(J)T pω(J) and Tω,m by

ηω,m(z) ≡ det(zIm − pω(J)T pω(J)), τω,m(z) ≡ det(zIm − Tω,n).

It is not hard to see that

ηω,m(z) = τω,m(z) + ω2τω,m−1(z).

Using results of classical polynomial theory, the roots of the polynomials τω,m and
τω,m−1 interlace. Therefore, the maximal root of ηω,m (equal to ‖pω(J)‖2) must lay
between the maximal roots of τω,m and τω,m−1 (between the maximal eigenvalues of
Tω,m and Tω,m−1). It is well known that the eigenvalues of Tω,m−1 are given by

λ(j)

ω,m−1 = αω − 2βωcos
(

jπ
m

)
, j = 1, . . . ,m− 1 .

Considering these eigenvalues as a function of ω, and taking derivatives with respect
to ω, shows that the minimum is obtained for ω = 1/2. Therefore,

‖pω(J)‖2 ≥ max
j
λ(j)

1
2 ,m−1

=
1

2
+

1

2
cos
(

π
m

)
= cos2

(
π

2m

)
.
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Taking square roots, we obtain the lower bound in (6.4).
We next prove (6.5). Using (5.5), the value of ΦJ1

n−k is given by

ΦJ1

n−k =

[
m−1∑

i=0

ϑi+1

]−1

, ϑi+1 ≡
1

42i

(
2i

i

)2

.(6.6)

We first prove that for j ≥ 2 it holds that

1

4(j − 1)
≤ ϑj ≤

1

2j
.(6.7)

For j = 2, ϑ2 = 1
4 and (6.7) holds. Suppose that (6.7) is satisfied for some j ≥ 2. We

show that this inequality holds also for j + 1. For ϑj+1 we obtain

ϑj+1 =

(

1 −
1

2j

)2

ϑj ≤
1

2j

(

1 −
1

2j

)2
j + 1

j + 1

=
1

2(j + 1)

(

1 −
3

4j2
+

1

4j3

)

≤
1

2(j + 1)
.

Similarly,

ϑj+1 ≥
1

4(j − 1)

(

1 −
1

2j

)2
4j

4j
=

1

4j

(

1 +
1

4j2
+

1

4j2(j − 1)

)

≥
1

4j
,

and (6.7) holds. Now, we can find upper and lower bounds on Φ
Jλ

n−k,

m−1∑

i=0

ϑi+1 = 1 +

m∑

j=2

ϑj ≤ 1 +
1

2

m∑

j=2

1

j
≤ 1 +

1

2

∫ m

1

1

x
x. = 1 +

1

2
log(m),

m−1∑

i=0

ϑi+1 = 1 +

m∑

j=2

ϑj ≥ 1 +
1

4

m∑

j=2

1

j − 1
≥ 1 +

1

4

∫ m

1

1

x
x. = 1 +

1

4
log(m).

Using these inequalities and (6.6) we obtain (6.5).

For simplicity, let us assume that n is even. The bounds (6.4) and (6.5) predict
that the convergence of ideal GMRES for J1 has two phases:

ΦJ1

k ∼ cos
(

π
2n/k+1

)

, for k ≤ n/2 , k divides n ,(6.8)

ΦJ1

n−k ∼ [1 + log(n/k)]
−1

, for n− k > n/2 , k divides n .(6.9)

The convergence bound based on the polynomial numerical hull (i.e. (1.6), which is
the lower bound in (2.8) in case of a Jordan block), is ΦJ1

k ≥ ̺k
k,n. For k dividing n,

we know ̺k,n explicitly, and this lower bound can be evaluated, cf. (5.2). For other
k, one can use the explicit value of ̺n/2,n resp. the lower bound on ̺n−1,n, cf. (4.21)
resp. [4, p. 88], giving

ΦJ1

k ≥ 2−2k/n ≥
1

2
, for k = 1, . . . , n/2 ,(6.10)

ΦJ1

k ≥
[

1 − log(2n)
n

]k

, for k = n/2 + 1, . . . , n− 1 .(6.11)
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Comparing (6.10) and (6.8) shows that the lower bound in (6.10) is a tight approxi-
mation of the actual ideal GMRES approximations. Hence the polynomial numerical
hull of J1 gives good information about the first phase of the ideal GMRES conver-
gence. However, the information is less reliable in the second phase. In particular,
consider the ideal GMRES approximation for n− 1. Then (6.9) shows that

ΦJ1
n−1 ∼ [1 + logn]

−1
,

while the lower bound (6.11) yields

Φ
J1

n−1 ≥
[

1 − log(2n)
n

]n−1

.

A real analysis exercise shows that

lim
n→∞

2n
[

1 − log(2n)
n

]n−1

= 1 .

Hence for large n and k = n− 1, the value on the right hand side of the lower bound
(6.11) is of order O(1/n), while the actual ideal GMRES approximation ΦJ1

n−1 is of
order O(1/ log(n)). Note that since

lim
n→∞

2n
log(n)

[

1 − log(2n)
n + log(log(2n))

n

]n−1

= 1 ,

an approximation of ΦJ1
n−1 based on the upper bound on ̺n−1,n, cf. (2.7), also would

fail to predict the correct order of magnitude of the ideal GMRES approximation.
As shown by this example, the bound (1.6) on the kth ideal GMRES approxima-

tion for a general nonnormal matrix A based on the polynomial numerical hull of A
of degree k, cannot be expected to be tight for all k.

7. Further discussion. We have shown that for k dividing n and λ ∈ C, Ψ
Jλ

k =
Φ

Jλ

k , and Ψ
Jλ

n−k = Φ
Jλ

n−k if |λ| ≥ 1. Our numerical experiments suggest that indeed

Ψ
Jλ

k = Φ
Jλ

k for λ ∈ C and each positive integer k. To prove this result, it would
be sufficient to show that Ψ

Jλ

k = Φ
Jλ

k if k and n are relatively prime (for other k
one could then apply Lemma 4.2). Numerical observations show that if k and n are
relatively prime and |λ| ≥ 1, then the ideal GMRES matrix ϕk(Jλ) has a simple
maximal singular value, which implies that Ψ

Jλ

k = Φ
Jλ

k , cf. Lemma 2.3.
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