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Abstract

Liquid crystals of uniaxial and biaxial molecules are considered in the framework of
the mesoscopic description which is a general tool of continuum theory. A meso-
scopic theory introduces the fields beyond hydrodynamics as additional variables of
a configuration space, called mesoscopic space, on which the fields appearing in bal-
ances are defined. Besides the mesoscopic space, a mesoscopic distribution function is
introduced which describes the distribution of the additional variables at each time
and position. It is demonstrated, how the mesoscopic theory can be applied to liquid
crystals, and how the Ericksen-Leslie theory and the alignment tensor theory of liq-
uid crystals fit into the mesoscopic framework.

1. Introduction

Liquid crystals are phases showing an orientational order of molecules which are of
elongated or of planar shape, so that an orientational order of them can be defined.
Therefore, liquid crystals belong to the class of complex materials which need more
variables for their unique description than are used in the five-field theory of fluids.
Here in case of liquid crystals the orientational order has to be described by addi-
tional variables. Complex materials are wide-spread, and they represent even the
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general case in constitutive theory. As the following examples show, the additional
fields describing complex materials are of various kinds:

internal variables ! memory alloys

order parameters ! phase transitions

damage parameters ! fatigue problems

Cosserat triads ! steel, microcrystallites, granular media

conformation tensors ! polymers

fabric tensors ! composite materials

directors, alignment tensors ! liquid crystals.

The orientational order in liquid crystals can be di¤erently characterized. Because of
thermal fluctuations the molecules are not totally aligned, but have a certain distri-
bution around a ‘‘mean orientation’’ which can be described by a normalized mac-

roscopic director field. The name ‘‘macroscopic’’ originates from the fact that the
macroscopic director field belongs to all molecules of a volume element, whereas a
special molecule may be aligned di¤erently. So it is obvious to introduce a micro-

scopic director which describes the alignment of a single molecule and which is dif-
ferent from the local macroscopic director in general.

Besides the microscopic and the macroscopic director, other descriptions for align-
ment are in use which can be found in the following synopsis. Up to now there are
five di¤erent phenomenological concepts suitable to describe liquid crystals non-
microscopically. The first one is the well known Ericksen-Leslie theory [1, 2] whose
balance equations are formulated by use of the macroscopic director mentioned
above. But in fact this theory is not able to represent a change in the degree of ori-
entational order [3]. In general we need at each point and time a distribution function
for describing the macroscopic orientation of the fluid. Therefore the macroscopic
director has to be redefined statistically.

The second concept describes liquid crystals as micropolar media in the frame of a
3-director theory [4]. Instead of a balance equation for the macroscopic director, the
spin balance is taken into account, but no microscopic concepts are introduced.

The third concept [5] introduces besides the balance equations of a micropolar me-
dium an additional field, called microinertia tensor field. This field, satisfying its own
balance equation, is coupled to the spin balance. The form of this coupling causes all
needle-shaped molecules of a volume element to always have the same angular
velocity. Therefore the degree of alignment cannot change (in a co-moving frame)
although it is changing from a non-zero value to zero in the phase transition from
nematic to isotropic.

Consequently, the microinertia tensor field – although the molecules are not totally
aligned – is not appropriate to describe dynamical situations in which the degree of
alignment changes.
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The fourth concept describing liquid crystals uses the alignment-tensor [6, 7], a sym-
metric, traceless tensor of second order. It is defined as the first anisotropic moment
of a multipole expansion of the orientation distribution function [8] (see Section 6.1).
This of course is a more general method for describing alignment than using a one-
director theory.

The fifth concept describing liquid crystals introduces the above-mentioned micro-
scopic director related to the orientation of a single rigid uniaxial molecule. The
anisotropic fluid is formally treated as a mixture by regarding all particles of a vol-
ume element of the same orientation as one component of the fluid [9–13]. Thus the
orientation distribution function results from the fraction of the mass density of one
component by the mass density of the mixture. Because mixture theories are well
developed [14, 15], balance equations for liquid crystals can be written down very
easily by using this method. The domain on which these balances are defined is dif-
ferent from the usual one, because it contains the microscopic director as a variable.
This so-called mesoscopic concept, which is discussed in more detail below, is valid
for uniaxial as well as for biaxial molecules [16]. Also two-dimensional liquid crystals
as films and interfaces can be treated mesoscopically [17–19].

As discussed in detail, complex materials, and among them liquid crystals, need ad-
ditional fields for describing them uniquely. Now the question arises how to include
these additional fields into the theory? Generally, there are two di¤erent levels of
description: the microscopic level and the non-microscopic one. The microscopic
level makes use of statistical physics, transport theory or of quantum theory. It is out
of the scope of our considerations made here. The non-microscopic level can be split
into two sub-levels, the macroscopic level and the mesoscopic one [20]. The macro-
scopic level is that of usual continuum theory using fields and balance equations de-
fined on space-time. The mesoscopic level is in between both the others: it contains
more information than the macroscopic description, but does not use the tools of a
microscopic theory.

In the literature there is a huge flood of applications of these di¤erent theories of
liquid crystals. Out of theories with a microscopic background one can distinguish so-
called mean field theories, like the classical Maier-Saupe theory [21], theories taking
fluctuations into account like renormalization group theories of phase transitions or
theories solving the particle equations of motion by computer simulations. However,
we are interested here in macroscopic theories. Examples are the macroscopic direc-
tor theory of Frank, Ericksen and Leslie [2, 22–24], and the alignment tensor theory,
introduced by S. Hess and Waldmann [25]. The classical Ericksen-Leslie theory deals
with the field of preferred orientation in equilibrium as well as in dynamical situa-
tions in di¤erent geometries and under the action of electric and magnetic fields.
Applications are for instance the optical properties and the switching behaviour of
liquid crystal devices [26] or the director field in and the optical properties of liquid
crystals in capillaries [27, 28] and in embedded droplets [29] (polymer dispersed liq-
uid crystals). There exists a modification of the Ericksen-Leslie theory introducing a
variable order parameter [30].
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The aim of this paper is to present the mesoscopic theory which can describe a wide
class of complex media, including liquid crystals consisting of uniaxial and biaxial
molecules. The mesoscopic description of liquid crystals is compared to the Ericksen-
Leslie director theory. In the second section we introduce the mesoscopic concept
of describing liquid crystals which consists of three tools: the mesoscopic (nematic)
space, the mesoscopic (orientation) distribution function and the mesoscopic (ori-
entational) balances. The names in parentheses refer to liquid crystals. In the third
section the mesoscopic balances of mass, momentum, angular momentum, etc. are
written out and discussed. How to obtain back the macroscopic balances of micro-
polar media from the mesoscopic balances is presented in the fourth section. In the
fifth section the mesoscopic distribution function and an example of orientation dy-
namics is discussed. The family of macroscopic order parameters which result in the
alignment tensor family in the case of liquid crystals is considered in the sixth section.
The Ericksen-Leslie theory of liquid crystals and liquid crystals of biaxial molecules
are treated in the seventh and the ninth section. Constitutive properties described in
mesoscopic theory are discussed in the eighth section. The paper closes with a sum-
mary.

2. Mesoscopic concept

2.1. Mesoscopic space

The orientation of a liquid crystal is described by one or more additional fields as
discussed in the introduction. Here we choose the well defined microscopic director n,
describing the orientation of a single uniaxial molecule, thus having two independent
components, as additional field. In general we introduce a manifold M, called meso-

scopic manifold, which is spanned by the mesoscopic variables m A M (m1 n for liq-
uid crystals consisting of uniaxial molecules).

The conventional, macroscopic concept for including additional fields into the de-
scription is to define them on space-time mðx; tÞ : R3 �R1 ! M, and to invent bal-
ances or other equations of motion which are satisfied by them. The mesoscopic
concept is di¤erent and easier in the sense that fewer fields have to be defined [20, 31].
Instead of space-time, configuration spaces are introduced by the mesoscopic de-
scription. These configuration spaces are spanned by the additional variables and the
space-time variables

ð�Þ1 ðm; x; tÞ A M�R3 �R1: ð1Þ

This configuration space (�) is called a mesoscopic space on which now the usual
fields, such as mass density %, density of internal energy e, material velocity v, Cau-
chy stress tensor T, heat flux density q, . . . etc., have to be redefined. Beyond that, we
have to formulate the balances of mass, momentum, energy, . . . etc. on the meso-
scopic space (see Section 3). This procedure is often easier than to write down bal-
ances of the additional fields defined on space-time (see Section 4).
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Because not all molecules of a volume element have the same value of the meso-
scopic variable (in the case of liquid crystals the molecules have di¤erent orientation
induced by thermal fluctuation for example), we have to introduce a function de-
scribing the distribution of these di¤erent values.

2.2. Mesoscopic distribution function

The continuum hypothesis states that a volume element is associated with each event
in space-time ðx; tÞ. This hypothesis makes it possible to define macroscopic fields as
mass density %ðx; tÞ and heat flux density qðx; tÞ. Because each volume element in
space-time contains a lot of molecules having di¤erent values of the mesoscopic vari-
ables m, a distribution function f of these variables is associated to ðx; tÞ

f ðm; x; tÞ1 f ð�Þ;
ð
f ðm; x; tÞ dM ¼ 1: ð2Þ

The physical meaning of this so-called mesoscopic distribution function (MDF) is
clear by the continuum hypothesis: in the volume element associated with ðx; tÞ the
value m of the mesoscopic variables belongs to the fraction f of all molecules in the
volume element. The MDF is the statistical element which characterizes the meso-
scopic theory and which has no analog to the macroscopic description. This means
that a mesoscopic theory contains more information than a macroscopic one. In the
case of liquid crystals of uniaxial molecules, the MDF is an orientation distribution

function f ðn; x; tÞ (ODF).

The MDF allows calculation of a family of macroscopic order parameters which
represent additional fields in the conventional theory (see Section 6).

2.3. Mesoscopic fields

As the MDF f ð�Þ, the mesoscopic fields are defined on the mesoscopic space

að�Þ1 aðm; x; tÞ: ð3Þ

Especially the mesoscopic mass density is defined by using the MDF

%ð�Þ :¼ %ðx; tÞ f ð�Þ: ð4Þ

Here %ðx; tÞ is the macroscopic mass density

%ðx; tÞ ¼
ð
%ðm; x; tÞ dM: ð5Þ

The mesoscopic mass density %ð�Þ describes the mass density of all molecules in a
volume element for which the value of the mesoscopic variable is m. In the case of
liquid crystals, these are all molecules having the same orientation n.
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The relation (5) is analogous to the well-known formula of mixture theory

% ¼
X
a

%a; ð6Þ

which states that the mass density of a mixture is the sum of the mass densities of
their constituents enumerated by a. In this diction the mesoscopic theory is a mixture
theory having a continuous index describing the various species. Because mixture
theory is well developed [14, 15], the mesoscopic theory is also easy to write out.

Other mesoscopic fields are, e.g., the mesoscopic material velocity vð�Þ, the external
mesoscopic acceleration kð�Þ, the mesoscopic stress tensor Tð�Þ and the mesoscopic
heat flux density qð�Þ. The meaning of these fields is clear: they all refer to the ‘‘com-
ponent having the component index m’’. These mesoscopic fields obey mesoscopic
balance equations which are considered in the next section.

3. Local mesoscopic balances

Local mesoscopic balance equations can be derived from global ones. Because their
local form can be understood easily, we will not deal here with the global balances
which are treated in detail in [12]. From a mathematical point of view, the meso-
scopic balance equations di¤er from the local macroscopic ones only in their domain
which is enlarged by the mesoscopic variables. Therefore derivatives with respect to
these variables appear in the balances

q

qt
Xð�Þ þ ‘x � ½vð�ÞXð�Þ � Sð�Þ� þ ‘m � ½uð�ÞXð�Þ � Rð�Þ� ¼ Sð�Þ: ð7Þ

Here Xð�Þ is the balanced mesoscopic filed, while Sð�Þ and Rð�Þ are the conductive
parts of the fluxes. The analog to the material velocity is the mesoscopic change ve-

locity uð�Þ which is defined as follows

ðm; x; tÞ ! ðmþ uð�ÞDt; xþ vð�ÞDt; tþ DtÞ; ð8Þ

where vð�ÞXð�Þ and uð�ÞXð�Þ are the convective parts of the fluxes. Sð�Þ is supply and
production of Xð�Þ. In more detail the special mesoscopic balance equations are:

3.1. Mass

q

qt
%ð�Þ þ ‘x � f%ð�Þvð�Þg þ ‘m � f%ð�Þuð�Þg ¼ 0: ð9Þ

3.2. Momentum

q

qt
½%ð�Þvð�Þ� þ ‘x � ½vð�Þ%ð�Þvð�Þ � TTð�Þ�

þ ‘m � ½uð�Þ%ð�Þvð�Þ �TTð�Þ� ¼ %ð�Þkð�Þ: ð10Þ
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Here Tð�Þ is the analog to the stress tensor, the non-convective momentum flux with
respect to the mesoscopic variables m.

3.3. Angular momentum

The angular momentum is defined by the sum

Mð�Þ :¼ x� vð�Þ þ sð�Þ; ð11Þ

q

qt
½%ð�ÞMð�Þ� þ ‘x � ½vð�Þ%ð�ÞMð�Þ � ðx� Tð�ÞÞT � WTð�Þ�

þ ‘m � ½uð�Þ%ð�ÞMð�Þ � ðx�Tð�ÞÞT �W Tð�Þ�

¼ %ð�Þx� kð�Þ þ %ð�Þgð�Þ: ð12Þ

Here sð�Þ is the mesoscopic specific spin which occurs due to rotations of non-
spherical particles, and gð�Þ is the mesoscopic angular momentum exerted by external
forces on the mesoscopic sð�Þ. Wð�Þ is the mesoscopic surface torque or couple stress,
W ð�Þ the analog to Wð�Þ acting on the mesoscopic variables m.

3.4. Spin

If the balance of momentum (10) is multiplied by �x and subtracted from the bal-
ance of angular momentum (12), we obtain the spin balance

q

qt
½%ð�Þsð�Þ� þ ‘x � ½%ð�Þvð�Þsð�Þ � WTð�Þ�

þ ‘m � ½%ð�Þuð�Þsð�Þ �W Tð�Þ� ¼ e : Tð�Þ þ %ð�Þgð�Þ: ð13Þ

Here e is the Levi-Civita tensor.

3.5. Total energy

The total energy is defined by

eð�Þ :¼ 1
2
v2ð�Þ þ 1

2
sð�Þ �Y�1 � sð�Þ þ eð�Þ; ð14Þ

q

ql
½%ð�Þeð�Þ� þ ‘x � ½vð�Þ%ð�Þeð�Þ � TTð�Þ � vð�Þ � WTð�Þ �Y�1 � sð�Þ þ qð�Þ�

þ ‘m � ½uð�Þ%ð�Þeð�Þ �TTð�Þ � vð�Þ �W Tð�Þ �Y�1 � sð�Þ þQð�Þ�

¼ %ð�Þkð�Þ � vð�Þ þ %ð�Þgð�Þ �Y�1 � sð�Þ þ %ð�Þrð�Þ: ð15Þ

Here eð�Þ is the mesoscopic internal energy density, rð�Þ the mesoscopic absorption
supply and Y the moment of inertia tensor which couples the spin density with the
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local angular velocity. The mesoscopic heat flux density is qð�Þ;Qð�Þ the mesoscopic
heat flux density on M.

Taking into account the spin balance and the balance of the kinetic energy which
follows from the balance of momentum we obtain the balance of internal energy.

3.6. Internal energy

q

qt
½%ð�Þeð�Þ� þ ‘x � ½%ð�Þvð�Þeð�Þ þ qð�Þ� þ ‘m � ½%ð�Þuð�Þeð�Þ þQð�Þ�

¼ %ð�Þrð�Þ � sð�Þ �Y�1 � e : Tð�Þ þ TTð�Þ : ½‘xvð�Þ�

þTTð�Þ : ½‘mvð�Þ� þ WTð�Þ : ‘xðY�1 � sð�ÞÞ

þW Tð�Þ : ‘mðY�1 � sð�ÞÞ: ð16Þ

The mesoscopic balance of entropy is of no special interest, because its production
density is not definite in general. Hence we cannot use it for the exploitation of the
Second Law which has to be formulated as usual by the macroscopic balance of
entropy.

3.7. Macroscopic entropy

q

qt
½%ðx; tÞsðx; tÞ� þ ‘x � ½v%ðx; tÞsðx; tÞ þFðx; tÞ� � pðx; tÞ ¼ sðx; tÞb 0: ð17Þ

Here sðx; tÞ is the macroscopic entropy density and Fðx; tÞ the macroscopic entropy
flux density. The entropy supply is pðx; tÞ and sðx; tÞ the non-negative entropy pro-
duction.

The mesoscopic balances do not contain any new balance for the additional fields,
because those are included by introducing the mesoscopic space. The new four fields,
MDF f ð�Þ and mesoscopic change velocity uð�Þ, require equations for determining
them. The MDF has a balance for its own (see Section 5). The mesoscopic change
velocity is the only new balance we need. In special cases the mesoscopic spin bal-
ance may be su‰cient to determine uð�Þ (see Section 5.2).

Now we will rediscover the macroscopic balances from the mesoscopic ones.

4. Macroscopic balances

The balance equations of micropolar media can be obtained from the mesoscopic
balances by replacing the mesoscopic space by space-time

ð�Þ1 ðm; x; tÞ ! ðx; tÞ: ð18Þ
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Because the mesoscopic variables m do not appear any more, the derivatives with
respect to m have to be set to zero

‘m � ½. . .� ! 0: ð19Þ

By this formal setting we formulate the following axiom.

rAxiom: The mesoscopic balance (7) and the macroscopic balance equation

q

qt
Xðx; tÞ þ ‘x � ½vðx; tÞXðx; tÞ � Sðx; tÞ� ¼ Sðx; tÞ ð20Þ

are related to each other. r

Using this axiom we obtain from the mesoscopic balances the following macroscopic
ones:

4.1. Macroscopic mass

q

qt
½%ðx; tÞ þ ‘x � f%ðx; tÞvðx; tÞg ¼ 0: ð21Þ

4.2. Macroscopic momentum

q

qt
½%ðx; tÞvðx; tÞ þ ‘x � ½vðx; tÞ%ðx; tÞvðx; tÞ � T Tðx; tÞ� ¼ %ðx; tÞkðx; tÞ: ð22Þ

4.3. Macroscopic angular momentum

Mðx; tÞ :¼ x� vðx; tÞ þ sðx; tÞ; ð23Þ

q

qt
½%ðx; tÞMðx; tÞ� þ ‘x � ½vðx; tÞ%ðx; tÞMðx; tÞ � ðx� Tðx; tÞÞT � WTðx; tÞ�

¼ %ðx; tÞx� kðx; tÞ þ %ðx; tÞgðx; tÞ: ð24Þ

Here sðx; tÞ is the macroscopic specific spin and gðx; tÞ the macroscopic angular mo-
mentum exerted by external forces on the spin sðx; lÞ. Wðx; lÞ is the macroscopic
surface torque or couple stress.

4.4. Macroscopic spin

q

qt
½%ðx; tÞsðx; tÞ� þ ‘x � ½%ðx; tÞvðx; tÞsðx; tÞ � WTðx; tÞ�

¼ e : Tðx; tÞ þ %ðx; tÞgðx; tÞ: ð25Þ
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4.5. Macroscopic total energy

eðx; tÞ :¼ 1
2
v2ðx; tÞ þ 1

2
sðx; tÞ �Y�1 � sðx; tÞ þ eðx; tÞ; ð26Þ

q

qt
½%ðx; tÞeðx; tÞ� þ ‘x � ½vðx; tÞ%ðx; tÞeðx; tÞ � TTðx; tÞ � vðx; tÞ

� WTðx; tÞ �Y�1 � sðx; tÞ þ qðx; tÞ�

¼ %ðx; tÞkðx; tÞ � vðx; tÞ

þ %ðx; tÞgðx; tÞ �Y�1 � sðx; tÞ þ %ðx; tÞrðx; tÞ: ð27Þ

Here eðx; tÞ is the macroscopic specific internal energy and rðx; tÞ the macroscopic
absorption supply. The macroscopic heat flux density is qðx; tÞ.

4.6. Macroscopic internal energy

q

qt
½%ðx; tÞeðx; tÞ� þ ‘x � ½%ðx; tÞvðx; tÞeðx; tÞ þ qðx; tÞ�

¼ %ðx; tÞrðx; tÞ � sðx; tÞ �Y�1 � e : Tðx; tÞ þ TTðx; tÞ : ½‘xvðx; tÞ�

þ Wðx; tÞT : ‘xðY�1 � sðx; tÞÞ: ð28Þ

The macroscopic balance equations of micropolar media do not represent a five-field
theory, because the spin density is included as an additional field in conventional
treatment. Consequently, micropolar media are described by a macroscopic eight-
field theory. If the spin density is set to zero, we rediscover five-field hydrodynamics.

4.7. Comparing mesoscopic and macroscopic balances

The more formal setting by the axiom (20) can be correctly derived, if the mesoscopic
balances are integrated over the mesoscopic variables [12],ð

. . . dM ! balances of micropolar media: ð29Þ

In the case of liquid crystals, this integration is over the di¤erent orientations of the
uniaxial molecules. Because the microscopic directors span a unit sphere, the inte-
gration is over this unit sphere.

A comparison between the mesoscopic balance equations (7) and the macroscopic
balances (20) needs first of all the definitions of macroscopic quantities by their
mesoscopic back-ground, as we have defined already the macroscopic mass density
by (5).

rDefinition: The following mesoscopic fields are additive:
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%ðx; tÞ :¼
ð
%ð�Þ dM; vðx; tÞ :¼

ð
f ð�Þvð�Þ dM: ð30Þ

sðx; tÞ :¼
ð
f ð�Þsð�Þ dM; eðx; tÞ :¼

ð
f ð�Þeð�Þ dM: r ð31Þ

Using these definitions and the transport theorem

q

qt

ð
Fð�Þ dM ¼

ð
½qlFð�Þ þ ‘m � uð�ÞFð�Þ� dM; ð32Þ

a direct comparison between the mesoscopic balances integrated over M and the
macroscopic ones result in:

rProposition:

Tðx; tÞ ¼
ð
½Tð�Þ � vð�Þ%ð�Þvð�Þ� dMþ vðx; tÞ%ðx; tÞvðx; tÞ; ð33Þ

%ðx; tÞkðx; tÞ ¼
ð
½%ð�Þkð�Þ þ ‘mT

Tð�Þ� dM; ð34Þ

Wðx; tÞ ¼
ð
½Wð�Þ � sð�Þ%ð�Þvð�Þ� dMþ sðx; tÞ%ðx; tÞvðx; tÞ; ð35Þ

%ðx; tÞgðx; tÞ ¼
ð
½%ð�Þgð�Þ þ e : Tð�Þ � ‘m �W Tð�Þ� dM� e : Tðx; tÞ; ð36Þ

qðx; tÞ ¼
ð
½qð�Þ þ vð�Þ%ð�Þeð�Þ � TTð�Þ � vð�Þ � WTð�Þ �Y�1 � sð�Þ� dM

� vðx; tÞ%ðx; tÞeðx; tÞ þ TTðx; tÞ � vðx; tÞ

þ WTðx; tÞ �Y�1 � sðx; tÞ; ð37Þ

%ðx; tÞrðx; tÞ ¼
ð
f%ð�Þrð�Þ þ %ð�Þkð�Þ � vð�Þ þ %ð�Þgð�Þ �Y�1 � sð�Þ

þ ‘m � ½TTð�Þ � vð�Þ �W Tð�Þ �Y�1 � sð�Þ þQð�Þ�g dM

� %ðx; tÞkðx; tÞ � vðx; tÞ � %ðx; tÞgðx; tÞ �Y�1 � sðx; tÞ; ð38Þ

%ðx; tÞeðx; tÞ ¼
ð
%ð�Þeð�Þ þ 1

2
%ð�Þv2ð�Þ þ 1

2
%ð�Þsð�Þ �Y�1 � sð�Þ

� �
dM

� 1
2
%ðx; tÞv2ðx; tÞ � 1

2 %ðx; tÞsðx; tÞ �Y
�1 � sðx; tÞ: r ð39Þ
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More details about the connection between mesoscopic and macroscopic fields can
be found in [11].

5. Mesoscopic distribution function

5.1. Balance of the MDF

The mesoscopic distribution function (MDF) satisfies a balance equation because of
the definition (4) and of the mesoscopic mass balance (9). A straight forward calcu-
lation results in [12].

rProposition:

q

qt
f ð�Þ þ ‘x � ½vð�Þ f ð�Þ� þ ‘m � ½uð�Þ f ð�Þ�

þ f ð�Þ q

qt
þ vð�Þ � ‘x

� �
ln %ðx; tÞ ¼ 0: r ð40Þ

This balance equation of the MDF contains the macroscopic mass density. Inserting
it we can see that (40) is highly non-linear. The macroscopic influence on mesoscopic
quantities is often denoted as a ‘‘mean field’’ theory.

In the case of liquid crystals, the MDF is the orientation distribution function
(ODF). The mesoscopic variable m becomes the microscopic director n, and the
manifold M is the unit sphere S2. According to the definition (2), the ODF describes
the local alignment of the molecules. If there is no alignment, which means the mol-
ecules are locally isotropically distributed, the ODF becomes independent of n. Then
the normalization condition (2) results in f ðx; tÞ ¼ 1=ð4pÞ which is called isotropic

ODF. If the ODF has an axis of rotational symmetry, a macroscopic director d can
be introduced (see Section 6.2). This case is called the uniaxial ODF. All other pos-
sible cases which are neither isotropic nor uniaxial are called biaxial. This name has
nothing to do with the fact that the molecules themselves may have a uniaxial or
biaxial shape (see Section 9). Consequently the expression biaxial has two meanings
depending on its reference to the ODF or to the molecules of which the liquid crystal
consists.

5.2. Orientation dynamics

In the case of liquid crystals, the spin density sð�Þ is due to particle rotations and
therefore determined by the orientation change velocity uð�Þ. In this case the balance
of spin can be interpreted as the di¤erential equation for the orientation change ve-
locity. We here will solve the stationary balance of spin (13) and insert the resulting
orientation change velocity into the orientation dynamics (40) in order to have a
closed di¤erential equation for the distribution function [32]. In this example it is as-
sumed that molecules of di¤erent orientation have the same velocity ðvð�Þ ¼ vðx; tÞÞ
and that the liquid crystal is uniform, i.e., it is homogeneous, except for the macro-
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scopic flow field which has a constant velocity gradient. External fields are excluded,
although electric fields and also gradients of the orientational order can be included,
too [33, 34]. The essential simplifying assumption is that the spin is stationary
qtsð�Þ ¼ 0. This presupposition reduces the balance of spin to an algebraic equation
for the orientation change velocity uð�Þ [35],

rð�Þuð�Þ � ‘msð�Þ ¼ e : Tð�Þ: ð41Þ

The mesoscopic stress tensor Tð�Þ is a constitutive quantity which therefore is defined
on the state space (43) which depends on the considered material. From (41) we see
that e : T vanishes, if ‘nsð�Þ ¼ 0. Therefore we can write a constitutive equation of
the form

e : Tð�Þ ¼ Gð�Þ � ‘nsð�Þ: ð42Þ

The mesoscopic quantity Gð�Þ is a constitutive one which is defined on the state
space, the domain of the constitutive functions. There are di¤erent possibilities for
introducing state spaces in mesoscopic theory with respect to including mesoscopic
and macroscopic state variables (see Section 8). Here the state space has to include
mesoscopic variables, because we are in a mesoscopic description. But also macro-
scopic state variables such as temperature, velocity gradient and the second order
alignment tensor are included:

Z ¼ ðn; rð�Þ;‘n ln %ð�Þ; %ðx; tÞ;Tðx; tÞ;‘vðx; tÞ; aðx; tÞÞ: ð43Þ

The influence of the second order alignment tensor can be interpreted as the orienting
e¤ect of the orientational order of the surrounding particles. The orientation gradient
of the mesoscopic mass density describes orientation di¤usion. Finally, a representa-
tion theorem for Gð�Þ, being linear in all derivatives, gives

u ¼ o� nþ b3‘n ln %ð�Þ þ ð1 � nnÞ � ðb1‘xv

h

þ b5aÞ � n: ð44Þ

Here b3; b4 and b5 are material coe‰cients, depending on macroscopic mass density
and temperature, and o is the angular velocity between material and observer. Here
the bracket ab

�

is the symmetric traceless part of the tensor ab [8]. Inserting (44) into
the orientation balance (40) leads to the following di¤erential equation for the ODF:

d

dt
f ð�Þ þ b3‘n � ‘n f � 3f n � fb4‘xv

h

þ b5ag � n

þ ½o� nþ n � fb4‘xv

h

þ b5ag� � ‘n f ¼ 0: ð45Þ

This di¤erential equation is of the Fokker-Planck type. Orientation di¤usion, influ-
ence of the mean field and the orienting e¤ect of the flow field are included. This is
the same form of an equation derived by S. Hess [36] by a very di¤erent approach.
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Here, Eq. (45) is systematically derived in the framework of mesoscopic theory by
starting out with the mesoscopic balance equations for mass and spin and a consti-
tutive ansatz on a chosen state space.

6. Macroscopic fields of order parameters

The mesoscopic concept introduces the following fields which are beyond the mac-
roscopic description: the mesoscopic variables m included in the mesoscopic space,
the MDF f ð�Þ, and the mesoscopic change velocity uð�Þ. The form of the mesoscopic
balances is as in the macroscopic description, but now defined on mesoscopic space.
The mesoscopic background with its greater information in comparison with the
macroscopic theory has of course influence on the macroscopic description. We ob-
tain from the mesoscopic background a family of macroscopic fields, the so-called
order parameters which cannot be obtained systematically without the mesoscopic
background. They are defined as moments of the MDF

Aðx; tÞ :¼
ð
f ð�Þm dM; ð46Þ

aðx; tÞ :¼
ð
f ð�Þmm

h
dM; ð47Þ

a4ðx; tÞ :¼
ð
f ð�Þmmmm

"

dM; ð48Þ

aNðx; lÞ :¼
ð
f ð�Þm . . .N times . . .m

266666664

dM: ð49Þ

6.1. Alignment tensors

In the case of liquid crystals of uniaxial molecules, the mesoscopic variable m is the
microscopic director nðn � n ¼ 1Þ, and the MDF becomes the orientation distribution
function (ODF), which can be expanded into a series of multipoles [12, 8]

f ðn; x; tÞ ¼ 1

4p
1 þ

Xy
l¼1

ð2l � 1Þ!!am1...ml ðx; tÞnm1
� � � nml

24 !
: ð50Þ

Here is

l!! ¼ lðl � 2Þðl � 4Þ � � � : ð51Þ

Greek indices m1; . . . ; ml denote the components of the microscopic director with re-
spect to a cartesian basis and

264

marks the (totally) symmetric irreducible

part of a tensor, that means, for a given tensor bm1...ml the part bm1...ml

�

is symmetric
with respect to index permutations and will vanish for arbitrary contractions
ðbmmm3...ml

"

¼ 0Þ.
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As done in (50), we use Einsteins summation convention, but we suppress the dis-
tinction between co- and contravariant indices which can be identified in a cartesian
basis. The tensorial coe‰cients am1...ml ðx; tÞ in (50) which are analogous to (49) are
called the alignment tensors of order l: they are given by

am1...ml ðx; tÞ :¼
2l þ 1

l!

þ
S 2

f ð�Þnm1
� � � nml

24

d 2n: ð52Þ

For uniaxial molecules the ODF shows the so-called head-tail symmetry or nematic

symmetry

f ðn; x; tÞ ¼ f ð�n; x; tÞ ð53Þ

which results from the fact that head and tail of the considered molecules are indis-
tinguishable. Because of the head-tail symmetry (53), the moments of odd order of
the ODF vanish in (49) and in (52). Thus in the case of liquid crystals, only the
alignment tensors of even order can be di¤erent from zero. Interesting is, that there is
no alignment tensor of the first order which is di¤erent from zero, which means we
have to define in mesoscopic theory what a macroscopic director used in director
theories of liquid crystals may be (see Section 6.2).

Using definition (52) the eigenvalues of the alignment tensor of second order can be
estimated easily [27].

rProposition: Because of (52) and (53) we obtain for the eigenvalues l of the align-
ment tensor of second order a the following estimations

lmax a
2
3 ; lmin b� 1

3 : r ð54Þ

6.2. The macroscopic director

The easiest case to define a macroscopic director is if the ODF has an axis of rota-
tional symmetry, and a unit vector e parallel to this symmetry axis. This case is often
called uniaxial. This name has nothing to do with the property of the molecules to be
uniaxial or biaxial. ‘‘Uniaxial’’ here refers to the rotational symmetry of the ODF. If
we denote the angle between e and the microscopic director n by Y, the mesoscopic
part of the ODF depends only on cos Y because of the rotational symmetry

f ðn; x; tÞ ¼ gðcos Y; x; tÞ: ð55Þ

According to (52) the traceless alignment tensor of the second order is

am1m2
ðx; tÞ ¼ 5

2

þ
S2

gðcos YÞnm1
nm2

�

d 2n: ð56Þ

By a straight forward calculation we can prove the following [37]
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rProposition: If e is a unit vector parallel to the rotational symmetry axis of the
ODF, the alignment tensor of second order is

aðx; tÞ ¼ 5
2 ph3 cos2 Y� 1iðx; tÞeðx; tÞeðx; tÞ

26664

; ð57Þ

h3 cos2 Y� 1iðx; tÞ :¼
ð p

0

dY sin Ygðcos Y; x; tÞð3 cos2 Y� 1Þ: r ð58Þ

This proposition shows, that in the case of a uniaxial ODF, the shape of the align-
ment tensor of second order is

aðx; tÞ ¼ Sðx; tÞeðx; tÞeðx; tÞ

26664

; e � e ¼ 1: ð59Þ

Hence its eigenvalues and eigenvectors are (see (54))

a � e ¼ 2
3Se; a � e?j ¼ � 1

3Se
?
j ; j ¼ 1; 2; ð60Þ

e � e ¼ 1; e?j � e?k ¼ djk; e � e?j ¼ 0: ð61Þ

The unit vector e parallel to the rotational symmetry axis of the ODF which is
eigenvector of the corresponding alignment tensor to the greatest eigenvalue ð2=3ÞS
defines the macroscopic director. This definition makes use of the form (59) of the
alignment tensor. Thus in mesoscopic theory the macroscopic director is a derived
and not a basic quantity.

Besides the macroscopic director e, the scalar order parameter S is also essential for
describing liquid crystals [13]. Because of its normalization, the macroscopic director
cannot describe changes in the degree of orientational order as they appear during
the phase transition nematic-isotropic. These changes in the degree of orientational
order are described by the scalar order parameter. Consequently, pure director
theory of liquid crystals cannot include this aspect (see Section 7).

Now the question arises, whether in general, that is in the non-uniaxial case, a mac-
roscopic director exists. According to (52) the alignment tensor of second order is
traceless, that means, for its three eigenvalues we have

lmax b l 0
b lmin; lmax þ l 0 þ lmin ¼ 0; lmax b 0; lmin a 0: ð62Þ

If we take, as in the rotational symmetric case (60), the eigenvector belonging to the
greatest eigenvalue as a macroscopic director, this definition is not unique in two
cases: if lmax ¼ l 0 the two positive eigenvalues coincide, or if lmin ¼ 0 all eigenvalues
are zero, which corresponds to the isotropic case. As we can easily see the only re-
maining possibility for defining a macroscopic director is

lmin < 0 : d :¼ ð1 � d0bÞemax þ d0bemin; b :¼ lmax � l 0: ð63Þ
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Because the eigenvalues of the alignment tensor are macroscopic fields, it is possible
that the macroscopic director defined by (63) is discontinuous and jumps from emax

to emin and is not defined in between. This discontinuity has no physical background
because the corresponding alignment tensor is continuous. Consequently, it seems to
be more satisfactory to use an alignment tensor theory, or even the mesoscopic
theory for describing liquid crystals.

6.3. Balances of order parameters

According to their definition (49) the order parameters and also the alignment ten-
sors (52) are macroscopic fields. Balance equations for these additional macroscopic
fields can be derived as follows: if the k-th cartesian component of m is denoted by
mk, and if we want to find the equation of motion of the order parameter al of order

l we multiply (40) by mm1
� � �mml

2664

and integrate over the mesoscopic manifold M. If,
additionally, the mesoscopic manifold M is time independent, and if we introduce
the di¤erence between mesoscopic and macroscopic material velocity by

vð�Þ ¼ vðx; tÞ þ dvð�Þ; ð64Þ

we can prove [20] the

rProposition:

q

qt
al þ ‘x � vðx; tÞal þ

ð
½dvð�Þ f ð�Þmm1

� � �mml

264

� dM
� �

þ
ð
mm1

� � �mml

264
‘m � ½uð�Þ f ð�Þ� dM

þ al
q

qt
ln rðx; tÞ þ vðx; tÞ � ‘x ln rðx; tÞ

� �
¼ 0: r ð65Þ

In the case of a general mesoscopic manifold M, (65) cannot be simplified further,
but we will derive a simplified equation for the example of biaxial liquid crystals in
Section 9.

6.4. Landau-type equation of second order alignment tensor

According to (47) the second moment of the ODF is the second order alignment
tensor. Therefore, multiplying equation (45) with nn

½

and integrating over all ori-
entations results in a di¤erential equation for a.

rProposition: [35]: Introducing the abbreviation

A :¼ b4‘xv

h

þ b5a; ð66Þ

we obtain from (45)
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d

dl
a� 2o� a

�

¼ 6b3aþ
2

5
Aþ 6

7
A � a

h

� 2A : a4

�

: r ð67Þ

In this equation the fourth moment a4 of the distribution function appears, for which
we need a closure relation. Here we take advantage of the often used simple ansatz
for the fourth non-traceless momentð

S 2

f ð�Þnnnn d 2n ¼
ð
S 2

f ð�Þnn d 2n

ð
S 2

f ð�Þnn d 2n: ð68Þ

rProposition [6]: Inserting (68) into (67) we obtain for the vanishing velocity gradi-
ent the equation of motion in the following form

d

dt
a ¼ d

da
C: r ð69Þ

Here the right hand side of this equation is the derivative of the free energy density
C.

This is exactly the form of the equation of motion assumed in the dynamical
Landau-theory [38, 39]. The corresponding Landau free energy density is

C ¼ 3b3 þ 1
5
b5

� �
a : aþ 2

7
b5 Trða � a � aÞ � 1

2
b5ða : aÞ2: ð70Þ

For a non-vanishing velocity gradient it is known that such a derivation of the time
rate of the alignment tensor from a potential is only possible in very special flow ge-
ometries, but not in general [40].

On the other hand, the same type of equation (66) has also been derived from an
exploitation of the dissipation inequality with methods of Irreversible Thermody-
namics [6, 41].

7. Ericksen-Leslie theory

7.1. Mesoscopic back-ground

The Ericksen-Leslie theory of liquid crystals of uniaxial molecules uses a macro-
scopic director field dðx; tÞ for describing the local alignment of the molecules with-
out any mesoscopic background as discussed in Section (6.2). Here we now investi-
gate the conditions necessary to go from the mesoscopic theory of liquid crystals to
Ericksen-Leslie theory.

The mesoscopic spin of a needleshaped molecule is

sð�Þ ¼ In� uð�Þ ¼: Ioð�Þ: ð71Þ
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Here I is the moment of inertia belonging to an axis of rotation perpendicular to the
microscopic director n of a single molecule. We now can define the non-objective
‘‘energy of rotation’’ by

urð�Þ :¼ 1
2
I ½n� uð�Þ�2 ¼ 1

2
Io2ð�Þ: ð72Þ

Multiplication with the ODF and integration over the mesoscopic manifold, here the
unit sphere spanned locally by all possible microscopic directors, yield the macro-
scopic field of ‘‘rotation energy’’

urðx; tÞ :¼
1

2
I

þ
S 2

f ð�Þo2ð�Þ d 2n: ð73Þ

From (71) and (72) we get a relation between spin and rotation energy

s2ð�Þ ¼ 2Iurð�Þ ð74Þ

which is of course not valid for the macroscopic fields (31) and (73) for which the
inequality

s2ðx; tÞa 2Iurðx; tÞ ð75Þ

holds. This inequality is easy to prove. From (31) we obtain

s2ðx; tÞ ¼ I 2

þ
½
ffiffiffiffiffiffiffiffi
f ð�Þ

p
�½
ffiffiffiffiffiffiffiffi
f ð�Þ

p
oð�Þ� d 2n

� 	2

; ð76Þ

and by use of Schwarz inequality [42] (76) results in

s2ðx; tÞa I 2

þ
f ð�Þ d 2n

þ
f ð�Þo2ð�Þ d 2n ð77Þ

from which (75) follows immediately by (73) and by the normalization of the ODF.
As we can prove, the inequality (75) is observer-independent [3]. Consequently, it
must be valid for all macroscopic liquid crystal theories, including that of Ericksen-
Leslie.

We now will investigate, if and on what conditions (75) is satisfied in Ericksen-Leslie
theory.

7.2. Macroscopic spin and characterization

Because the Ericksen-Leslie theory has no mesoscopic background, there is no moti-
vation to introduce a microscopic director n and its ODF. Instead of that a meso-
scopically undefined normalized macroscopic director field dðx; lÞ is used [1, 2, 43]
defining spin and rotation energy by
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sELðx; tÞ :¼ Idðx; tÞ � qtdðx; tÞ; ð78Þ

uEL
r ðx; tÞ :¼ 1

2
I ½dðx; tÞ � qtdðx; tÞ�2; ð79Þ

d 2ðx; tÞ ¼ 1: ð80Þ

Consequently,

½sELðx; tÞ�2 ¼ 2IuEL
r ðx; tÞ ð81Þ

follows for the macroscopic fields, as (74) follows for single molecules mesoscopi-
cally, which is di¤erent from the inequality (75). Therefore we give the

rDefinition: Ericksen-Leslie theory of liquid crystals is characterized by the field of a
macroscopic director dðx; tÞ and by the definitions (78) to (80) for macroscopic spin
and rotation energy. r

Consequently, Ericksen-Leslie theory is the special case which satisfies just the
equality in (75). From this fact a mesoscopic characterization for the validity of
Ericksen-Leslie theory follows by the

rProposition [3]: Ericksen-Leslie theory is only valid, if the molecules are local to-
tally aligned in the directions d and �d

f ð�Þuð�Þ ¼ 1
2
½dðn� dðx; tÞÞ � dðnþ dðx; tÞÞ�qtdðx; tÞ ð82Þ

(dð�Þ is the d-function), or if they form a global planar phase2) characterized by

n � CðtÞ ¼ 0 for all ðn; x; tÞ; ð83Þ

sð�Þ ¼ sELðx; tÞ ¼ ICðtÞ: r ð84Þ

This result, that the Ericksen-Leslie theory is only valid if the molecules are totally
aligned, can be elucidated very clearly: if we have a uniaxial ODF and choose its
rotational symmetry axis as a macroscopic director d, a rotation around the macro-
scopic director does not change its direction qtd ¼ 0. Consequently, the spin belong-
ing to a uniaxial ODF is always zero in Ericksen-Leslie theory. Because the spin of
such a configuration is obviously not zero, the Ericksen-Leslie theory does not fit for
the uniaxial class of ODFs.

If now all molecules are totally aligned along d (or �d), the spin belonging to this
d-shaped ODF is indeed zero (no spin by rotation around the long axis of the mole-
cules). Here the Ericksen-Leslie theory of one-director description holds true. When-
ever the deviation of the molecules from the total alignment can be ignored, the
Ericksen-Leslie theory is a su‰cient description generated as that special case of the
mesoscopic theory in which the ODF (82) is valid.

2)There is a hint [44] that such a planar phase does not appear in nature.
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8. Constitutive properties

8.1. General remarks

The balance equations in the macroscopic as well as in the mesoscopic case are un-
derdetermined, because they are valid for arbitrary materials. Consequently, consti-
tutive equations are needed in order to close the system of balance equations. On the
mesoscopic level there are even more constitutive equations than on the macroscopic
one, because there are additional fluxes in mesoscopic space. Also for the state space,
the domain of the constitutive mappings, there are more di¤erent choices possible
than in the macroscopic case: the state space can either include only mesoscopic
variables, or mesoscopic and macroscopic variables both together.

The mesoscopic constitutive theory has not been systematically well developed up to
now. The di‰culties which appear become clear, if we consider the state space (43)
we used in Section 5.2. This state space is a mixed one, consisting of mesoscopic and
macroscopic variables. Obviously, in a mesoscopic theory mesoscopic variables must
be included in the state space. But how to introduce also macroscopic variables de-
scribing ‘‘mean field’’ e¤ects of the surrounding molecules is not evident at first.

The constitutive mappings defined on the mesoscopic level are not restricted by the
second law of thermodynamics, because the mesoscopic entropy production is not
necessarily positive definite. An exploitation of the dissipation inequality with respect
to restrictions on constitutive functions is possible only on the macroscopic level.
However, the macroscopic state space can include macroscopic quantities which are
defined by the mesoscopic background [45].

Mesoscopic and macroscopic constitutive theory are not independent of each other.
The macroscopic constitutive quantities are averages over mesoscopic ones, but in
the case of fluxes, other mesoscopic quantities also contribute, as discussed in Section
4.7. In general, a constitutive ansatz on the mesoscopic level and the averaging pro-
cedure results in a macroscopic constitutive equation containing additional informa-
tion which is not available from purely macroscopic considerations.

In the next section we will discuss as an example the dependence of the macroscopic
viscosity coe‰cients on the mesoscopic order parameters.

8.2. Example: Anisotropic viscosity

First of all we split the gradient of velocity as usual into three parts

‘xv ¼ 1
3
ð‘x � vÞ1 þ ‘xv

h

þ o; ð85Þ

‘xv

h

:¼ 1
2
½‘xvþ ‘xv

T� � 1
3
ð‘x � vÞ1; ð86Þ

o :¼ 1
2
½‘xv� ð‘xvÞT�: ð87Þ
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Here ‘xv

h

is the symmetric traceless part, o the antisymmetric part and the ‘x � v the
trace of ‘xv.

The Cauchy stress tensor is split into

T ¼ �p1 � P; ð88Þ

and the co-rotational time derivative of the macroscopic director is

N ¼ d

dt
d � o� d; o :¼ e : o: ð89Þ

Now we have to write down the macroscopic constitutive equation for the dissipative
part of the stress tensor by the ansatz [37, 46, 47]

�Pðx; tÞ ¼ a1ddd � ‘xv

h
� d þ a2dN þ a3Nd

þ a4‘xv

h
þ a5d‘xv

h
� d þ a6d � ‘xv

h

d

þ z1d � ‘xv
h

� d1 þ z2ð‘x � vÞdd þ z3ð‘x � vÞ1: ð90Þ

Here the viscosities ak and zj are constant, whereas vðx; tÞ, dðx; tÞ and Nðx; tÞ are
macroscopic fields. Because scalar order parameters do not appear in (90), the mac-
roscopic director is related to the Ericksen-Leslie theory of total alignment (see Sec-
tion 7.2). Consequently, the viscosities ak and zj are Ericksen-Leslie viscosities be-
longing to total alignment.

The mesoscopic constitutive equation for the dissipative part of the stress tensor is
now generated by analogy. The macroscopic quantities in (90) are replaced by the
mesoscopic ones [48], which means we replace

dðx; tÞ ! n; vðx; tÞ ! vð�Þ: ð91Þ

For simplicity the orientation di¤usion is ignored. Hence, vð�Þ is not introduced, and
vðx; tÞ and oðx; tÞ remain in the mesoscopic case as in the macroscopic one. The co-
rotational change of the macroscopic director (89) is replaced by that of the micro-
scopic one

Nð�Þ ¼ uð�Þ � oðx; tÞ � n: ð92Þ

Here uð�Þ is the mesoscopic orientation change velocity. Consequently, (90) trans-
forms to

�Pð�Þ ¼ f ð�Þfa1nnn � ‘xvðx; tÞ

24

� nþ a2nNð�Þ þ a3Nð�Þn

þ a4‘xvðx; tÞ

24

þ a5n‘xvðx; tÞ

24

� nþ a6n � ‘xvðx; tÞ

24

n

þ z1n � ‘xvðx; tÞ

24

� n1 þ z2ð‘x � vðx; tÞÞnnþ z3ð‘x � vðx; tÞÞ1g: ð93Þ
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Because of vð�Þ ¼ vðx; tÞ, (33) results in

Tðx; tÞ ¼
þ
S 2

Tð�Þ d 2n ! Pðx; tÞ ¼
þ
S 2

Pð�Þ d 2n: ð94Þ

The ODF in (93) appears, because in case of total alignment we have to rediscover
(90) by use of (94).

Now the question arises, what are the vicosities, if the molecules are not totally
aligned, for instance in the uniaxial case. Then the ODF in (93) is given by (55) and
the alignment tensor (59) becomes, according to (90),

aðx; tÞ ¼ S2ðx; tÞdðx; tÞdðx; tÞ

26664

; d � d ¼ 1; ð95Þ

and the alignment tensor of fourth order is in the uniaxial case

a4ðx; tÞ ¼ S4ðx; tÞdðx; tÞdðx; tÞdðx; tÞdðx; tÞ

26666666666664

: ð96Þ

We now integrate (93) over all orientations, insert (95) and (96), put uð�Þ approxi-
mately to zero, take the Onsager-Parodi relations into account and obtain an ex-
pression for �Pðx; tÞ according to (90) [49]. From this macroscopic expression for the
dissipative pressure tensor we can read o¤ the viscosities in the unixial case (marked
by uni), if the unmarked viscosities belong to the total alignment [49]

auni
1 ¼ S4a1; ð97Þ

auni
4 ¼ a4 þ 2

15
1 � 10

7
S2 þ 3

7
S4

� �
a1 þ 1

3
ð1 � S2Þða5 þ a6Þ; ð98Þ

auni
5 ¼ S4a5 þ 2

7
ðS2 � S4Þa1; ð99Þ

auni
6 ¼ S2a6 þ 2

7
ðS2 � S4Þa1; ð100Þ

zuni1 ¼ S2z1 þ 1
7
ðS2 � S4Þa1; ð101Þ

zuni2 ¼ S2z2; zuni3 ¼ z3 þ 1
3
ð1 � S2Þz2: ð102Þ

Now the material behaviour is characterized by nine material parameters, the co-
e‰cients ak, k ¼ 1; 4; 5; 6, by the order parameters S2 and S4, and by the viscosities
zj, j ¼ 1; 2; 3. In experiments usually only the Maier-Saupe order parameter S2 is
measured, and the zj can be excluded by special experiments. Therefore, in order to
compare with experiments, a closure relation S4ðS2Þ is needed for S4. Such a closure
relation for higher moments is discussed for instance in [49]. Then the equations (97)
to (102) are a theoretical prediction of the order parameter dependence of the mate-
rial coe‰cients auni

k . In this case the coe‰cients of the totally ordered phase ak are
fitting parameters to measurements.
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The number of independent coe‰cients can still be reduced by the a‰ne transfor-
mation model [49, 50]. It is assumed that the molecules are of rotation symmetric
ellipsoidal shape with axis ratio a=b. A totally ordered fluid, of parallel ellipsoids for
example, can be considered as the result of an a‰ne transformation of a fluid of
spherical particles, stretching in one direction, and compressing in the two perpen-
dicular ones. A (simple) fluid of spherical particles has two viscosity coe‰cients: a
bulk and a shear viscosity.

Applying the a‰ne transformation, the ordered fluid with five parameters is ob-
tained, but these five parameters depend only on the axis ratio, the bulk and the
shear viscosity of the simple reference fluid. In a simple Couette flow, the bulk vis-
cosity is of no importance, and there remain only two parameters: the shear viscosity
of the reference fluid and the axis ratio of the particles. With only these two fit pa-
rameters, it was possible to fit experimental curves of order parameter dependence
very closely for all viscosity coe‰cients of di¤erent substances [49].

9. Liquid crystals of biaxial molecules

As reported in Section 6.1 a prominent example for the mesoscopic variable m is the
microscopic director n in liquid crystal theory for uniaxial molecules, because the
orientation of such a molecule can be described by one direction represented by this
microscopic director. In the case of biaxial molecules we need two directions for de-
scribing the orientation of one molecule. A constraint between these two directors is
the fixed angle between them, usually chosen to be p=2. Therefore the orientation of
a biaxial molecule is fixed by three parameters, two for the orientation of the first
director, a third one for that of the second director [16]. Because of this constraint, a
two-director theory [51, 52] is clumsy to handle. Therefore it is advantageous to look
for another set of mesoscopic variables for describing the orientation of biaxial liquid
crystals. This is the subject of this section.

9.1. Set of mesoscopic variables

The orientation of a biaxial molecule is described by a proper orthogonal transfor-
mation Q which is defined on a triad of reference and which results in the actual
orientation of the molecule [53]. Because Q is characterized by three parameters, we
may choose them as a set of mesoscopic variables. But this set is di‰cult to handle,
and therefore we will replace it by another one. First of all we remember the

rProposition (Euler-D’Alembert): Each proper orthogonal transformation on R3

can be described uniquely by a 3-dimensional unit vector n0 A R3, jn0j ¼ 1, and an
angle j A ½0; p�, if we identify ðn0; pÞ1 ð�n0; pÞ:

Q � QT ¼ QT � Q ¼ 1; Q � n0 ¼ n0; ð103Þ

0 ¼ n0 � z0 ¼ n0 � QT � Q � z0 ¼: n0 � z0�; ð104Þ

z0 � z0� ¼ cos j: r ð105Þ
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According to this proposition all rotations around an arbitrary, but fixed axis of the
direction fn0;�n0g are represented by the sets ðn0; jÞ and ð�n0; jÞ.

The three free parameters of an orthogonal transformation which are included in n0

and j can be represented by quaternions [54]. A quaternion x A H3) is defined as
follows

x ¼ x0 þ x1i þ x2 j þ x3k ¼: x0 þ ~xx A H; ð106Þ

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ kðcycl:Þ; ji ¼ �kðcycl:Þ: ð107Þ

The multiplication is as usual, but non-commutative. The part x0 A Re H is called
the real and ~xx A Im H is the imaginary part of the quaternion x.

We now introduce two (basis-dependent) mappings

V : Im H ! R3; ~aa 7! a ¼ Vð~aaÞ; ð108Þ

W : H ! R4; a 7! a ¼WðaÞ: ð109Þ

The multiplication of two quaternions can be represented by use of these mappings
as

xy ¼ ðxyÞ0 þfxyxy; ð110Þ

ðxyÞ0 ¼ x0 y0 � Vð~xxÞ � Vð~yyÞ; ð111Þ

fxyxy ¼ x0 ~yyþ ~xxy0 þ V�1ðVð~xxÞ � Vð~yyÞÞ: ð112Þ

Introducing the conjugate complex quaternion by

x� :¼ x0 � ~xx; ð113Þ

we obtain for the square of its norm

xx� ¼ x�x ¼: jxj2 ¼ x2
0 þ V 2ð~xxÞ ¼W 2ðxÞ: ð114Þ

With regard to the Euler-D’Alembert proposition we now consider the special unit
quaternion

n ¼ cosðj=2Þ þ sinðj=2ÞV�1ðn0Þ A H; n�n ¼ 1: ð115Þ

According to the Euler-D’Alembert proposition 0a ja p is valid, and therefore the
real part of n is always not negative, whereas the imaginary part depends on the

3)The letter H has been chosen to honour R.W. Hamilton who invented these numbers in
the middle of the 19th century.
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direction of n0. Consequently, all n of negative real part do not represent a rota-
tion, that means, not all unit 4-vectors n0 ¼WðnÞ decribe a rotation. This is a dis-
advantageous situation because the unit 4-vectors n0 ¼WðnÞ A S3 spanning the 3-
dimensional sphere would be a suitable and easy set of mesoscopic variables.

The solution to this dilemma is to consider S3 as a universal covering C of the space
spanned by the vectors belonging to the imaginary parts of (115) which is the ball D3

of radius one (see Figure 1)

C ¼ hS3;D3;Pi; P : S3 ! D3; ð116Þ

n0 :¼ cos Qe0 þ sin Qn0 7! Pðn0Þ :¼ ½sgn cos Q� sin Qn0: ð117Þ

This procedure is now explained in more detail. According to the Euler-D’Alembert
proposition, the 3-vector

n ¼ Vð~nnÞ ¼ sinðj=2Þn0 A D3 ð118Þ

represents a rotation of angle j around the axis directed along n0. The imaginary
part of the unit quaternion (115)

~nn ¼ sinðj=2ÞV�1ðn0Þ A Im H; jn0j ¼ 1 ð119Þ

is connected to this rotation by (118). Comparison of (118) with (117) makes evident
that then also Pðn0Þ represents a rotation. Because of

Pð�n0Þ ¼ �fsgn½�cosðj=2Þ�g sinðj=2Þn0 ¼ Pðn0Þ; ð120Þ

Figure 1 The antipodes n0 and �n0 of the S3 represent by projection P the same rotation,
characterized by points of the ball D3. Thus S3 is a universal covering of D3.
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we obtain the result that by introducing the universal covering C (116), both the unit
4-vectors n0 and �n0 are mapped onto the same rotation, although only one of them
(that of cosðj=2Þb 0) is representing one. Thus two unit 4-vectors, n0 A S3, belong
to each rotation.

If we now introduce n0 as the set of mesoscopic variables, the mesoscopic space (1)
results in

ðn0; x; tÞ A S3 �R3 �R1: ð121Þ

Because n0 and �n0 belong to the same rotation, the MDF (2) has the head-tail
symmetry (53)

f ðn0; x; lÞ ¼ f ð�n0; x; lÞ1 f ð�Þ: ð122Þ

Before we can write down the local mesoscopic balances (7), we have to introduce
the mesoscopic change velocity uð�Þ defined by (8).

9.2. Angular and mesoscopic change velocity

Like the mesoscopic set n0, the mesoscopic change velocity uð�Þ is a 4-vector defined
on the mesoscopic space which indicates the change of the unit 4-vector n0. There-
fore u is an element of the tangent space of the S3, and we have according to (111)
and (113)

n0 � u ¼ 0 ¼ ðn�uÞ0: ð123Þ

This relation can easily be verified by introducing

u1 _nn ! u ¼Wð _nnÞ; ð124Þ

and inserting (115) into (123). According to (115) and (124) we obtain

Vð~uuÞ ¼ ð1=2Þ cosðj=2Þ _jjn0 þ sinðj=2Þ _nn0 ð125Þ

which consists of two parts belonging to the changes in the rotation angle and the
rotation axis. This 3-vector will appear in the balance of energy. The gradient with
respect to the set of mesoscopic variables now reads

‘m � u1‘n � u: ð126Þ

The angular velocity o is defined by the time dependent proper orthogonal transfor-
mations QðtÞ in (103)

o :¼ ð1=2Þe : W; W :¼ QT � _QQ: (127)
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Here e is the Levi-Civita tensor. Thus by introducing the tensor Y of inertia, the an-
gular momentum and the rotation energy are

N :¼ Y � o; er :¼ ð1=2Þo �Y � o; ð128Þ

and we consider the special balances for liquid crystals of biaxial molecules in the
next section.

9.3. Balances

As we can see from (122) in comparison with (53), the argument ð�Þ corresponds
to the argument ð�Þ. Consequently, the balance equations written down in Section
3 are already those for biaxial liquid crystals, if we replace all arguments ð�Þ by
ð�Þ A S3 �R3 �R1. The balances are now defined on the nematic space as a special
case of the mesoscopic one, and some of the quantities have an other interpretation
than in Section 3.

The mixed tensor T is the stress tensor on S3 represented by the linear mapping

T : S3 ! R3; a 7! a ¼ Tð�Þ � a; ð129Þ

gð�Þ is the 3-vector of angular momentum exerted by the external forces on the ori-
entation, the 3-tensor Wð�Þ and the mixed tensor

W : S3 ! R3; a 7! a ¼ W ð�Þ � a; ð130Þ

are the analogues to T and T and are called spin tensors, rð�Þ is the absorption
supply, qð�Þ the heat flux density, and Qð�Þ the heat flux density on the S3.

9.4. Alignment tensors

According to (49) the alignment tensors are introduced as the symmetric irreducible
moments of the ODF

aðkÞðx; tÞ :¼
ð
S 3

f ð�Þn0 . . . k times . . . n0

266666664

d 3n: ð131Þ

They are macroscopic fields describing the orientational order, being non-zero in the
ordered phase and vanishing in the isotropic one. Therefore they are order parame-
ters in the sense of the theory of phase transitions. Within a purely macroscopic
phenomenological theory they are internal variables independent in non-equilibrium
and depending in equilibrium on the equilibrium variables density and temperature.

The equations of motion for these internal variables can be derived in the way we
derived the equations of motion for the order parameters (65) in the general meso-
scopic theory
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q

qt
al þ ‘x � vðx; tÞal þ

ð
S 3

ðdvð�Þ f ð�Þn0
m1
� � � n0

ml

24

Þ d 3n

� �

þ
ð
S 3

n0
m1
� � � n0

ml

24

‘n � ½uð�Þ f ð�Þ� d 3n

þ al
q

qt
ln rðx; tÞ þ vðx; tÞ � ‘x ln rðx; tÞ

� �
¼ 0: ð132Þ

We now introduce the mesoscopic angular velocity which is di¤erent from (127)

oð�Þ :¼ n� uð�Þ ! uð�Þ ¼ oð�Þ � n; ð133Þ

and we write

uð�Þ ¼ W2ð�Þ � n; ð134Þ

and with help of the Levi-Civita tensor we have

W2ð�Þ :¼ �e � oð�Þ: ð135Þ

Using this we define the mean angular velocity tensor which is also di¤erent from
(127) by

W2ðx; tÞ :¼ hW2ð�Þi ð136Þ

and decompose W2ð�Þ according to

W2ð�Þ :¼ W2ðx; tÞ þ dW2ð�Þ: ð137Þ

We now can prove [53, 8, 20] the

rProposition: The di¤erential equation in time of the alignment tensor family is

d

dt
am1���ml � lWm1lðx; tÞalm2 ���ml

266664

¼ lhdWm1lð�Þn
0
ln

0
m2
� � � n0

ml

266666664

i� ‘x � hdvð�Þn0
m1
� � � n0

ml

24

i

þ hdvð�Þn0
m1
� � � n0

ml

24

i � ‘x ln rðx; tÞ: r ð138Þ

Here are some remarks on the general structure of the equation of motion (138) of
the alignment tensor family. The left hand side is Jaumanns (co-moving and co-
rotational) time derivative of a symmetric, l-th rank tensor describing the changes of
al which are noted by an observer travelling with velocity vðx; tÞ and rotating with
oðx; tÞ. The right hand side of (138) describes the non-trivial changes of al that are
the changes by alignment production and supply. If the peculiar velocities dvð�Þ and
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dW2ð�Þ vanish, the alignment tensor al will only change in time by the motion of the
observer and not by production and supply. The right hand side of (138) contains
averages with respect to f ð�Þ, and therefore it is a rather complicated function of all
alignment tensors of the family. Thus we obtain as in (65) an infinite system of par-
tial di¤erential equations which does not decouple in general. The coupling is due to
the moments of the peculiar velocities dvð�Þ and dW2ð�Þ.

10. Summary

The mesoscopic concept is a general tool of continuum physics for describing com-
plex materials which are beyond hydrodynamics and thus need additional fields to
represent their properties. A prominent example for a complex material are liquid
crystals whose orientation of the molecules is an additional field in the meaning of
the mesoscopic concept. The orientation of a single molecule, called microscopic direc-
tor, is introduced as a 2- or 3-dimensional mesoscopic variable spanning the nematic
space. The distribution of the microscopic directors in a volume element is described
by an orientation distribution function (ODF) defined on the nematic space. Viewed
historically, the mesoscopic theory of liquid crystals was developed as the last one of
all the others describing liquid crystals phenomenologically. Now it appears that the
mesoscopic theory can be considered as a root of all the others, because those are
special cases of the mesoscopic description. Consequently, we have a family of
mesoscopic theories of liquid crystals which can be characterized as follows. From
the ODF we obtain on the macroscopic level of description the family of alignment
tensors which was already partly introduced earlier [6] by alignment tensors of sec-
ond and of fourth order. If the ODF is uniaxial, a macroscopic director field can be
introduced by use of the symmetry axis of the ODF, and we obtain the so-called
Maier-Saupe approach [21]. A special case of uniaxiality is the total alignment of all
molecules. Here the macroscopic director field is identical to the microscopic one,
and we obtain the well-known Ericksen-Leslie theory [1, 2] which is the most special
case in the family of mesoscopic theories of liquid crystals.
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