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Abstract. Collective behavior is a fascinating phenomenon and ubiquitous in nature. A large variety
of complex dynamic structures from swarming to turbulence arise in active particle systems. In recent
investigations a set of minimal continuum equations was proposed to model mesoscale bacterial turbulence.
Numerical solutions are validated with experimental data of Bacillus subtilis bacteria. In this short paper
we present a recently used pseudo-spectral operator splitting method that directly solves the nonlinear
equations in the turbulent regime. In two and three spatial dimensions we show the resulting typical
velocity and vorticity fields as well as energy spectra to highlight the strong difference between turbulence
in ordinary fluids and in bacterial suspensions.

1. Introduction
Swimming bacteria, fish schools, moving algae or artificial microswimmers are intriguing examples of
self-propelled particle systems. Such active particles are capable to convert ambient or stored energy
into directed motion and often show coordinated collective behavior. The related phenomena range from
large scale vortex structures, clustering, giant number fluctuations to mesoscale turbulence [1, 2, 3, 4].
Mesoscale turbulence was observed in dense suspensions of Bacillus subtilis and is characterized by
self-sustained complex flow pattern. Recently, a phenomenological equation was proposed to model
self-sustained turbulence [5]. The model combines properties from the Navier-Stokes equation with a
pattern-forming instability mechanism closely related to the one in the Swift-Hohenberg equation. This
instability drives the flow even when no external forces are applied. Surprisingly, this simple model
could explain turbulent structures which are found in experiments of Bacillus subtilis suspensions in two
and three dimensions quantitatively [3, 6]. In this article we will briefly introduce the phenomenological
equation and describe in detail the numerical algorithm employed for simulations. Furthermore, we
show snap-shots of two and three dimensional self-sustained turbulence and discuss the difference to
turbulence of Navier-Stokes type on the basis of energy spectra.

2. Governing equations and numerical scheme
Dense bacterial suspensions of Bacillus subtilis or E-coli show an irregular flow behavior at mesoscales.

Recently, a continuum equation based on the effective velocity v was introduced to model the
dynamics of the dense suspensions of the bacteria [5] ,i.e.,

(∂t + λ0v · ∇)v = −∇p+ λ1∇v2 − β(v2 − v20)v + Γ0∆v − Γ2∆
2v (1)
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∇ · v = 0. (2)

Here, λi, β,Γi, v
2
0 are phenomenological coefficients, p is the hydrodynamical pressure and ∆ specifies

the Laplace operator. For the parameter values λ0 = 1, λ1 = β = Γ2 = 0 and Γ0 > 0 the Navier-Stokes
equation is obtained.

A similar theory for flocking of animals was introduced by Toner and Tu. The constant density limit
of the Toner-Tu theory is obtained when Γ0 > 0,Γ2 = 0. However, a positive Γ0 stabilizes a polar
state and does not exhibit the characteristic vortex structures observed for swimming bacteria. When
negative values are allowed the disordered state is exhibiting a Turing like irregular, turbulence like flow
pattern appear in simulations even in the absence of external forces that usually causes turbulence in fluid
flows. In the following we will explain how the nonlinear partial differential equaitons (1) are solved.
Furthermore, we discuss some specific features of bacterial turbulence.

To solve the equations for the bulk flow, we used a pseudo-spectral algorithm with periodic boundary
conditions and an operator splitting to treat the time integration of the linear part exactly. The nonlinear
part is integrated by a simple Euler scheme. In particular, the algorithm consists of the following steps:

• A Fast Fourier transformation of Eq. (1); treatment of the convection term by forward and backward
transformation, i.e., F [v · F−1[−ikF [v]]]

• Application of anti-aliasing 2/3 rule to suppress oscillation effects due truncated Fourier series of
nonlinear terms
• Splitting of the resulting terms into linear and nonlinear parts
• Exact integration of the linear part (see [7])
• Explicit Euler integration of the remaining equation
• Pressure correction routine to ensure incompressibility
• Inverse Fourier transform; store results

In the next section we will discuss results for simulations of the continuum equation Eq. (1) in two and
three dimensions.

3. Results
For simulations, we used a grid resolution of 256 × 256 points in 2D and 2563 in 3D, respectively.
Initially we generated a random flow field. Eq. (1) are scaled according to Refs. [3, 6]. We used time
steps of ∆t = 0.1 for 2D and ∆t = 0.05 for 3D. After a relaxation time of t = 10 time units we
saved velocity fields for generating snap-shots and for calculating spectra. The final simulation time was
between t = 500 and 2000 time units which corresponds to a maximum time of about one minute.

Fig. 1 shows representative snap-shots for simulations in two and three dimensions. In the three
dimensional case the figure depicts a two dimensional slice from the middle of the simulation box.
In both snap-shots the flow pattern are irregular and show vortex structures. Remarkably, the flow is
different from that found for inertial turbulence described by the Navier-Stokes equation. The reason
is the emergence of vortices of a typical size in contrast to decaying vortices that occur for inertial
turbulence found in the classical Navier-Stokes equation.

The key is that the typical vortex size in bacterial turbulence introduces a characteristic length scale
into the system. In contrast simple fluids without boundaries are scale invariant. The energy spectra of
the two dimensional bacterial turbulence pattern for different values of the parameter λ0 are shown in
Fig.2 (calculated according to [5]). For large values of λ0 changes of the energy spectra are small.

The spectra of bacterial turbulence differs qualitatively from that obtained for inertial turbulence (see
Fig. 2b) for a sketch). Two dimensional initial turbulence is characterized by an upper energy and a
lower enstrophy cascade. For bacterial turbulence, the energy injection happens at small scales by the
individual swimmer; followed by an upward cascade up to a specific maximum. From the maximum to
larger scales we observe a downward cascade. It is the maximum in the energy spectrum that corresponds
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Figure 1. Snapshots of bacterial turbulent states. The color bar encodes vorticity strength and the box
length corresponds to 200µm and 300µm for 2D and 3D, respectively. a) Two dimensional simulations
at parameter values Γ0 = −1,Γ2 = 1λ0 = 5, λ1 = 2, L = 48 ∗ π, β = 1, v20 = 0.2. b) Two dimensional
slice of three dimensional simulations. The used parameter values are Γ0 = −0.9,Γ2 = 0.9λ0 =
1.7, λ1 = 0.35, L = 24 ∗ π, β = 0.1, v20 = 0.1.

to the typical length scales of vortices. The typical length scale is encoded in the phenomenological
parameters Γ0 and Γ2, i.e.,

Λ = 2π
√

Γ2/(−Γ0). (3)

Typically values for Bacillus subtillis suspensions are 30µm to 50µm. Unfortunately, there is still no
microscopic derivation of the phenomenological equations and the microscopic meaning of the length
scale as well as the mechanism that selects the scale remains unknown.

For the three-dimensional case, calculations are challenging and we have simulated the flow pattern,
but not yet spectra. The stream lines of the two-dimensional slice of a three-dimensional flow Fig. 1b)
show spirals rather than vortices. Here, bacteria are swimming in cycles with a velocity component
orthogonal to the plane. The resulting collective motion looks like a twister. Fig. 3b, c) show a three
dimensional plot of that flow structure. Fig. 3b) shows a cut perpendicular to a twister and Fig. 3c) the
overall shape. In the turbulence regime such twister like structures spontaneously emerge and disappear
all the time. The overall flow structure in the simulation box shows isotropic turbulence seen in the
iso-energy surface plot in Fig. 3a).

In this article, we introduced phenomenological equations to model the collective flow of active
particle suspensions. We presented the numerical scheme and discussed results from two and three
dimensional simulation of the bulk flow. Bacterial turbulence is different from inertial turbulence of the
Navier-Stokes type due to a typical vortex length. A fingerprint of that vortex size can be found in energy
spectra which is also different from inertial turbulence. Finally, we discussed a new type of flow structure
that we have found in three dimensional bacterial turbulence; collective twister motion.

In further work we plan to investigate the influence of confinement to the turbulent flow structures.
There is experimental evidence that in the presence of boundaries turbulent structures are suppressed in
favor to a single vortex [9]. Furthermore, we plan to study rheological properties of the continuum model
and compare it to more complex descriptions where higher order parameters are included [8].
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Figure 2. a) Energy spectra of two dimensional bacterial turbulence simulations for different parameter
values λ0. The remaining parameters are the same as in Fig. 1. Energy is injected at the length scale of
microswimmer ( kmax) b) Sketch of a spectrum of inertial turbulence.

a) b) c)

Figure 3. Illustration of three dimensional mesoscale turbulence using Paraview. Parameter values are
the same as in Fig. 1. a) Iso-energy surface plot. b) Velocity field of a three dimensional vortex. c) Tube
graph of velocity stream lines. The twister like structure shows complex 3D collective bacterial motion.
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