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Abstract
A new paradigm has emerged recently in financial model-

ing: rough (stochastic) volatility. First observed by Gatheral

et al. in high-frequency data, subsequently derived within

market microstructure models, rough volatility captures

parsimoniously key-stylized facts of the entire implied

volatility surface, including extreme skews (as observed

earlier by Alòs et al.) that were thought to be outside the

scope of stochastic volatility models. On the mathematical

side, Markovianity and, partially, semimartingality are lost.

In this paper, we show that Hairer’s regularity structures, a

major extension of rough path theory, which caused a rev-

olution in the field of stochastic partial differential equa-

tions, also provide a new and powerful tool to analyze rough

volatility models.

Dedicated to Professor Jim Gatheral on the occasion of his 60th birthday.

1 INTRODUCTION

We are interested in stochastic volatility (SV) models given in Itô differential form

𝑑𝑆𝑡∕𝑆𝑡 = 𝜎𝑡𝑑𝐵𝑡 ≡ √
𝑣𝑡𝑑𝐵𝑡. (1)

Here, 𝐵 is a standard Brownian motion and 𝜎 (respectively, 𝑣) is the stochastic volatility (respec-
tively, variance) process. Many classical Markovian asset price models fall in this framework, including
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Dupire’s local volatility model, the SABR, Stein–Stein, and Heston models. In all named SV models,
one has Markovian dynamics for the variance process

𝑑𝑣𝑡 = 𝑔
(
𝑣𝑡
)
𝑑𝑊𝑡 + ℎ

(
𝑣𝑡
)
𝑑𝑡. (2)

Constant correlation 𝜌 ∶= 𝑑⟨𝐵,𝑊 ⟩𝑡∕𝑑𝑡 is incorporated by working with a 2D standard Brownian
motion (𝑊 ,𝑊 ),

𝐵 ∶= 𝜌𝑊 + 𝜌𝑊 , 𝜌 ∶=
√
1 − 𝜌2.

This paper is concerned with an important class of non-Markovian (fractional) SV models, dubbed
rough volatility (RV) models, in which case 𝜎𝑡 (equivalently: 𝑣𝑡 ≡ 𝜎2𝑡 ) is modeled via a fractional Brow-
nian motion (fBm) in the regime 𝐻 ∈ (0, 1∕2). The term “rough” stems from the fact that in such
models, SV (variance) sample paths are (𝐻 − 𝜅)-Hölder continuous, for any 𝜅 > 0, hence “rougher”
than Brownian sample paths. Note the stark contrast to the idea of “trending” fractional volatility,
which amounts to taking 𝐻 > 1∕2. The evidence for the rough regime (recent calibration suggests 𝐻
as low as 0.05) is now overwhelming—both under the physical and the pricing measure (see Alòs,
León, & Vives, 2007; Bayer, Friz, & Gatheral, 2016; Forde & Zhang, 2017; Fukasawa, 2011, 2017;
Gatheral, Jaisson, & Rosenbaum, 2018; Mijatović & Tankov, 2016). It should be noted, however, that
these different regimes can be easily mixed, so that rough volatility governs the short time behavior,
while trending volatility affects the long time behavior; we refer to Comte and Renault (1998), Comte,
Coutin, and Renault (2012), Alòs and Yang (2017), and Bennedsen, Lunde, and Pakkanen (2016) for
more information on this.

Much attention in the above references on rough volatility models has, in fact, been given to “simple”
rough volatility models of the form

𝜎𝑡 = 𝑓 (𝑊𝑡), (3)

𝑊𝑡 ∶= ∫
𝑡

0
𝐾(𝑠, 𝑡)𝑑𝑊𝑠, (4)

𝐾(𝑠, 𝑡) ∶=
√
2𝐻|𝑡 − 𝑠|𝐻−1∕2𝟏𝑡>𝑠, 𝐻 ∈ (0, 1∕2). (5)

(Later on, we will allow for explicit time dependence of 𝑓 in order to cover the rough Bergomi
model (Bayer et al., 2016).) In other words, volatility is an explicit function of an fBm, with fixed
Hurst parameter. More specifically, following Bayer et al. (2016), we work with the Volterra fBm,
a.k.a. Riemann–Liouville fBm, but other choices such as the Mandelbrot van Ness fBm, with suitably
modified kernel 𝐾 , are possible. Note that, in contrast to many classical SV models (such as Heston),
the SV is explicitly given, and no rough or stochastic differential equation needs to be solved (hence
the term “simple”). Rough volatility not only provides remarkable fits to both time series and option
price data, but it also has a market microstructure justification: starting with a Hawkes process model.
Rosenbaum and coworkers (El Euch, Fukasawa, & Rosenbaum, 2018; El Euch & Rosenbaum, 2018,
2019) find, in a suitable scaling limit, functions 𝑓 (⋅), 𝑣(⋅), 𝑢(⋅) such that

𝜎𝑡 ∶= 𝑓 (𝑍𝑡) ⋯ “nonsimple rough volatility (RV)” (6)

𝑍𝑡 = 𝑧 + ∫
𝑡

0
𝐾(𝑠, 𝑡)𝑣(𝑍𝑠)𝑑𝑠 + ∫

𝑡

0
𝐾(𝑠, 𝑡)𝑢(𝑍𝑠)𝑑𝑊𝑠. (7)

Such stochastic Volterra dynamics provide a natural generalization of simple rough volatility. We refer
to this class of models as “nonsimple”: in contrast to the aforementioned simple model, (7) generally
does not admit a closed-form solution.
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1.1 Markovian stochastic volatility models
For comparison with rough volatility, which will be discussed in more detail below, we first mention
a selection of tools and methods well known for Markovian SV models.

• PDE methods are ubiquitous in (low-dimensional) pricing problems, as are;

• Monte Carlo methods, noting that knowledge of strong and weak rates of convergence of time dis-
cretizations of stochastic differential equations (typically with rates 1∕2 and 1, respectively) is the
starting point of modern multilevel methods (multilevel Monte Carlo [MLMC]);

• Quasi-Monte Carlo (QMC) methods are widely used; related in spirit we have the Kusuoka–Lyons–
Victoir cubature approach, popularized in the form of the Ninomiya–Victoir splitting scheme, nowa-
days available in standard software packages;

• Freidlin–Wentzell’s theory of small noise large deviations is essentially immediately applicable, as
are various “strong“ large deviations (a.k.a. exact asymptotic) results, used, for example, to derive
the famous SABR formula.

For several reasons, it can be useful to write model dynamics in Stratonovich form: From a PDE per-
spective, the operators then take a sum-of-squares form that can be exploited in many ways (think
Hörmander theory, Malliavin calculus, etc.). From a numerical perspective, we note that the Kusuoka–
Lyons–Victoir scheme (Kusuoka, 2001; Lyons & Victoir, 2004) also requires the full dynamics to be
rewritten in Stratonovich form. In fact, viewing the Ninomiya–Victoir scheme Ninomiya and Victoir
(2008) as level-5 cubature, in the sense of Lyons and Victoir (2004), its level-3 variant is nothing
but the familiar Wong–Zakai approximation for diffusions. Another financial example that requires
a Stratonovich formulation comes from interest rate model validation (Davis & Mataix-Pastor, 2007),
based on the Stroock–Varadhan support theorem. We further note that QMC (based on Sobol numbers,
say) works particularly well if the noise has a multiscale decomposition, as obtained by interpreting
a (piecewise) linear Wong–Zakai approximation as a Haar wavelet expansion of the driving white
noise. Indeed, the naturally induced order of random coefficients, in terms of their importance, leads
to a lower “effective dimension” of the integration problem, see, for instance, Acworth, Broadie, and
Glasserman (1998).

1.2 Complications with rough volatility
Due to loss of Markovianity, PDE methods are not applicable, and nor are (off-the-shelf) Freidlin–
Wentzell large deviation estimates (but see Forde & Zhang, 2017). Moreover, the variance process
in rough volatility models is not a semimartingale, which complicates the use of several established
stochastic analysis tools. In particular, rough volatility admits no Stratonovich formulation. Closely
related, one lacks a (Wong–Zakai type of) approximation theory for rough volatility. To see this, focus
on the “simple” situation, that is, (1) and (3), so that

𝑆𝑡∕𝑆0 = 
(
∫

⋅

0
𝑓
(
𝑊𝑠

)
𝑑𝐵𝑠

)
(𝑡). (8)

Inside the (classical) stochastic exponential (𝑀)(𝑡) = exp(𝑀𝑡 −
1
2 [𝑀]𝑡) we have the martingale term

∫
𝑡

0
𝑓 (𝑊𝑠)𝑑𝐵𝑠 = 𝜌∫

𝑡

0
𝑓 (𝑊𝑠)𝑑𝑊𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

+𝜌∫
𝑡

0
𝑓 (𝑊𝑠)𝑑𝑊 𝑠. (9)
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In essence, the trouble is due to the underbraced, innocent looking Itô-integral. Indeed, any naive
attempt to put it in Stratonovich form

∫
𝑡

0
𝑓 (𝑊𝑠)◦𝑑𝑊𝑠 ∶= ∫

𝑡

0
𝑓 (𝑊𝑠)𝑑𝑊𝑠 + (It�̂� − Stratonovich correction), (10)

or, in the spirit of Wong–Zakai approximations,

∫
𝑡

0
𝑓 (𝑊𝑠)◦𝑑𝑊𝑠 ∶= lim

𝜀→0∫
𝑡

0
𝑓 (𝑊 𝜀

𝑠 )𝑑𝑊
𝜀
𝑠 , (11)

must fail for 𝐻 < 1∕2. The Itô–Stratonovich correction is given by the quadratic covariation, defined
(whenever possible) as the limit, in probability, of∑

[𝑢,𝑣]∈𝜋
(𝑓 (𝑊𝑣) − 𝑓 (𝑊𝑢))(𝑊𝑣 −𝑊𝑢), (12)

along any sequence (𝜋𝑛) of partitions with mesh-size tending to zero. Disregarding trivial situations,
this limit does not exist. For instance, when 𝑓 (𝑥) = 𝑥, fractional scaling immediately gives divergence
(at rate 𝐻 − 1∕2) of the expression (12). This issue also arises in the context of option pricing; com-
pare Theorem 1.4 and Section 6 below. All these problems remain present, of course, for the more
complicated situation of “nonsimple” rough volatility, as discussed in Section 5.

1.3 Description of main results
Motivated by singular SPDE theory, such as Hairer’s work on Kardar–Parisi–Zhang (KPZ) (Hairer,
2013) and the Hairer–Pardoux “renormalized” Wong–Zakai theorem (Hairer & Pardoux, 2015), we
provide a (necessarily renormalized) strong approximation theory for rough volatility. Rough path the-
ory, despite its very purpose to deal with low regularity paths, is not applicable to the problem at hand.
(We shall elaborate on this at the beginning of Section 2.) In essence, what one needs is a more flex-
ible type of rough paths theory, which is exactly what Hairer’s theory of regularity structures Hairer
(2014) supplies. As a consequence of fundamental continuity statements in “model” (think: “rough
path”) metrics, we will discuss short-time large deviations for rough volatility models. Following, for
example P. K. Friz and Hairer (2014, Section 9.3), we also envision support results in “rough” interest
rate models in the spirit of Davis and Mataix-Pastor (2007).

To state our basic approximation results, write �̇� 𝜀 ∶= 𝜕𝑡𝑊
𝜀 for a suitable approximation at scale 𝜀

to white noise, with the induced approximation to fBm denoted by 𝑊 𝜀. Throughout, the Hurst parame-
ter 𝐻 ∈ (0, 1∕2] is fixed and 𝑓 is a smooth function, such that (8) is a (local) martingale, as required by
standard financial theory. More precisely, let𝑊 𝜀 denote the Haar wavelet construction of the Brownian
motion 𝑊 truncated at level 𝑁 = − log2(𝜖), see Section 3.4 for details. Then, �̇� 𝜖 is simply defined
as the time derivative of the (piecewise linear) process 𝑊 𝜖 and 𝑊 𝜖 is obtained by integrating (in a
pathwise fashion) �̇� 𝜖 against the Volterra kernel 𝐾 , that is, 𝑊 𝜖

𝑡 = ∫ 𝑡
0 𝐾(𝑡, 𝑠)�̇� 𝜖

𝑠 𝑑𝑠. 𝐵
𝜖 denotes the

analogous construction for a correlated Brownian motion 𝐵, where 𝐵𝑡 = 𝜌𝑊𝑡 + (1 − 𝜌2)1∕2𝑊 𝑡, with
some independent Brownian motion 𝑊 .

Theorem 1.1. Consider a simple rough volatility model with dynamics 𝑑𝑆𝑡∕𝑆𝑡 = 𝑓 (𝑊𝑡)𝑑𝐵𝑡, that
is, driven by Brownian motions 𝐵 and 𝑊 with constant correlation 𝜌. Then, there exist 𝜀-periodic
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functions 𝒞𝜀 = 𝒞𝜀(𝑡), with diverging averages 𝐶𝜀, such that a Wong–Zakai result holds of the form
that 𝑆𝜀 → 𝑆 in probability and uniformly on compacts, where

𝜕𝑡𝑆
𝜀
𝑡

𝑆𝜀
𝑡

= 𝑓 (𝑊 𝜀
𝑡 )�̇�

𝜀
𝑡 − 𝜌𝒞𝜀(𝑡)𝑓 ′(𝑊 𝜀

𝑡 ) −
1
2𝑓

2(𝑊 𝜀
𝑡 ), 𝑆𝜀

0 = 𝑆0.

Similar results hold for more general (“nonsimple”) rough volatility models.

Remark 1.2. When 𝐻 = 1∕2, this result is an easy consequence of the well-known Itô–Stratonovich
conversion formula. In the case 𝐻 < 1∕2, Theorem 1.1 provides the interesting insight that genuine
renormalization (in the sense of subtracting diverging quantities) is required if and only if the correla-
tion parameter 𝜌 is nonzero. This is the case in equity (and many other) markets. Also note that naive
approximations without renormalization (i.e., without subtracting the 𝒞𝜀-term) will in general diverge.

Remark 1.3. Mollification of the noise by truncation of the wavelet representation of the driving Brow-
nian motion is natural for numerical purposes. First, it gives a simple sampling technique in terms of
independent, identically distributed (IID) standard normals. Second, the construction provides a canon-
ical hierarchy that is beneficial for QMC methods, compare the discussion in Section 1.1.

To formulate implications for option pricing, define the Black–Scholes pricing function

𝐶𝐵𝑆

(
𝑆0, 𝐾; 𝜎2𝑇

)
∶= 𝔼

(
𝑆0 exp

(
𝜎
√
𝑇𝑍 − 𝜎2

2
𝑇

)
−𝐾

)+
, (13)

where 𝑍 denotes a standard normal random variable. We then have following theorem.

Theorem 1.4. With 𝒞𝜀 = 𝒞𝜀(𝑡) as in Theorem 1.1, define the renormalized integral approximation

ℐ̃𝜀 ∶= ℐ̃𝜀
𝑓 (𝑇 ) ∶= ∫

𝑇

0
𝑓 (𝑊 𝜀

𝑡 )𝑑𝑊
𝜀
𝑡 − ∫

𝑇

0
𝒞𝜀(𝑡)𝑓 ′(𝑊 𝜀

𝑡 )𝑑𝑡, (14)

and also the approximate total variance

𝒱𝜀 ∶= 𝒱𝜀
𝑓 (𝑇 ) ∶= ∫

𝑇

0
𝑓 2(𝑊 𝜀

𝑡 )𝑑𝑡.

Then the price of a European call option, under the pricing model (1), (3), struck at 𝐾 with time 𝑇 to
maturity, is given by

𝔼
[(
𝑆𝑇 −𝐾

)+] = lim
𝜀→0

𝔼
[
Ψ(ℐ̃𝜀,𝒱𝜀)

]
,

where

Ψ(ℐ,𝒱) ∶= 𝐶𝐵𝑆

(
𝑆0 exp

(
𝜌ℐ − 𝜌2

2
𝒱
)
, 𝐾, 𝜌2𝒱

)
. (15)

Similar results hold for more general (“nonsimple”) rough volatility models.

Let us discuss right away how to reduce the statements of Theorems 1.1 and 1.4 to the actual con-
vergence statements that will occupy us in Section 3 of the main text. First, note that

𝑆𝑡 = 𝑆0 exp
[
∫

𝑡

0
𝑓
(
𝑊𝑠

)
𝑑𝐵𝑠 −

1
2 ∫

𝑡

0
𝑓 2
(
𝑊𝑠

)
𝑑𝑠

]
. (16)
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The approximations 𝑊 𝜀,𝑊
𝜀
, and 𝐵𝜀 ∶= 𝜌𝑊 𝜀 + 𝜌𝑊

𝜀
converge uniformly to the obvious limits, so

that it suffices to understand the convergence of the stochastic integral. Note that 𝑊 is heavily corre-
lated with 𝑊 but independent of 𝑊 . The interesting part is then the convergence

∫
𝑡

0
𝑓 (𝑊 𝜀

𝑠 )𝑑𝑊
𝜀
𝑠 − ∫

𝑡

0
𝒞𝜀(𝑠)𝑓 ′(𝑊 𝜀

𝑠 )𝑑𝑠 → ∫
𝑡

0
𝑓 (𝑊𝑠)𝑑𝑊𝑠, (17)

as stated and proved in Theorem 3.25. For the other part, no correction terms arise due to independence,
and it can be seen with standard methods that

∫
𝑡

0
𝑓 (𝑊 𝜀)𝑠𝑑𝑊

𝜀

𝑠 → ∫
𝑡

0
𝑓 (𝑊𝑠)𝑑𝑊 𝑠,

in the sense of convergence in probability, uniformly on compacts in 𝑡. The convergence result of
Theorem 1.1 then follows readily. As for pricing, in Theorem 1.4, we consider the call payoff(

𝑆0 exp
[
∫

𝑇

0
𝜎𝑡𝑑𝐵𝑡 −

1
2 ∫

𝑇

0
𝜎2𝑡 𝑑𝑡

]
−𝐾

)+

.

An elementary conditioning argument w.r.t. 𝑊 (first used by Romano–Touzi in the context of Marko-
vian SV models), and then shows that the call price is given as expectation of

𝐶𝐵𝑆

(
𝑆0 exp

(
𝜌∫

𝑇

0
𝜎𝑡𝑑𝑊𝑡 −

𝜌2

2 ∫
𝑇

0
𝜎2𝑡 𝑑𝑡

)
, 𝐾,

𝜌2

2 ∫
𝑇

0
𝜎2𝑡 𝑑𝑡

)
.

Specializing to the case 𝜎𝑡 = 𝑓 (𝑊𝑡), in combination with Theorem 3.25, then yields Theorem 1.4. Note
that extensions to nonsimple RV are immediate from suitable extensions of Theorem 3.25, as discussed
in Section 5.2.

From a mathematical perspective, the key issue in proving the above theorems is to establish con-
vergence of the renormalized approximate integrals, as 𝜀 → 0,

ℐ̃𝜀 = ∫
𝑇

0
𝑓 (𝑊 𝜀

𝑡 )𝑑𝑊
𝜀
𝑡 − ∫

𝑇

0
𝒞𝜀(𝑡)𝑓 ′(𝑊 𝜀

𝑡 )𝑑𝑡 → ∫
𝑇

0
𝑓 (𝑊𝑡)𝑑𝑊𝑡. (18)

Here, we find much inspiration from singular SPDE theory, which also requires renormalized approx-
imations for convergence to the correct Itô-object. Specifically, we see that the theory of regularity
structures (Hairer, 2014), which essentially emerged from the theory of rough paths and Hairer’s KPZ
analysis (see P. K. Friz & Hairer, 2014, for a discussion and references), is a very appropriate tool
here. In turn, we add an interesting new class of examples to the existing instances of regularity struc-
tures (polynomials, rough paths, many singular SPDEs, etc.). This new example avoids all considera-
tions related to spatial structure (notably multilevel Schauder estimates; cf. Hairer, 2014, Chapter 5),
yet comes with the genuine need for renormalization. In fact, because we do not restrict ourselves to
approximations of the white noise obtained by mollification (i.e., by convolution of �̇� with a rescaled
mollifier function, say 𝛿𝜀(𝑥, 𝑦) = 𝜀−1𝜌(𝜀−1(𝑦 − 𝑥))), our analysis naturally leads us to renormaliza-
tion functions. In case of mollifier approximations, which is the usual choice of Hairer and coworkers
(Chandra & Hairer, 2016; Hairer, 2013, 2014)—but rules out wavelet approximations—the renormal-
ization function turns out to be constant (because �̇� 𝜀 is still stationary). In this case, we would obtain

𝒞𝜀(𝑡) ≡ 𝐶𝜀 = 𝑐𝜀𝐻−1∕2,
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with 𝑐 = 𝑐(𝜌) explicitly given by an integral, compare (40). If, on the other hand, we consider a Haar
wavelet approximation of white noise, we get1

𝒞𝜀(𝑡) =
√
2𝐻

𝐻 + 1∕2
|𝑡 − ⌊𝑡∕𝜀⌋𝜀|𝐻+1∕2

𝜀
with mean 𝐶𝜀 =

√
2𝐻

(𝐻 + 1∕2)(𝐻 + 3∕2)
𝜀𝐻−1∕2. (19)

It is natural to ask if 𝒞𝜀(𝑡) can be replaced, after all, by its mean 𝐶𝜀. (Of course, this mean is still
diverging for 𝜀 → 0, as 𝐻 < 1∕2.) For 𝐻 > 1∕4, the answer is yes, with an interesting phase transition
when 𝐻 = 1∕4, compare Section 3.2.

From a numerical perspective, Theorem 1.4 avoids any sampling of the independent factor 𝑊 . A
brute force approach then consists in simulating a scalar Brownian motion 𝑊 , followed by discrete
approximation of the stochastic integral =𝑊𝑡 = ∫ 𝑡

0 𝐾(𝑡, 𝑠)𝑑𝑊𝑠. However, given the singularity of the
Volterra kernel 𝐾 , this is not advisable and it is preferable to simulate the two-dimensional Gaussian
process (𝑊𝑡,𝑊𝑡 ∶ 0 ≤ 𝑡 ≤ 𝑇 ), whose covariance function is readily available. A remaining problem is
that the speed of convergence of

∑
𝑓 (𝑊𝑠)𝑊𝑠,𝑡 → ∫

𝑇

0
𝑓
(
𝑊𝑡

)
𝑑𝑊𝑡,

with [𝑠, 𝑡] taken in a partition of mesh size ∼ 1∕𝑛, is very slow as 𝑊 has little regularity when 𝐻 is
small (Bayer et al., 2016; Gatheral et al., 2018, report 𝐻 ≈ 0.05.). Here, higher order approximations
come to help, and we include quantitative estimates, more precisely: strong rates, throughout. Such
rates are essential for the design of MLMC algorithms, as was also seen in the context of general
Gaussian rough differential equations (Bayer, Friz, Riedel, & Schoenmakers, 2016). (The important
analysis of weak rates is left for future work.) Numerical aspects are further discussed in Section 6.

The second set of results concerns large deviations for rough volatility models. Thanks to the con-
traction principle and fundamental continuity properties of Hairer’s reconstruction map, the problem
is reduced to understanding a large deviations principle (LDP) for a suitable enhancement of the noise.
This approach requires (sufficiently) smooth coefficients, but comes with no growth restrictions, which
is indeed quite suitable for financial modeling: we improve the Forde–Zhang short-time large devia-
tions (Forde & Zhang, 2017) for simple rough volatility models such as to include 𝑓 of exponential
type, a defining feature in the works of Gatheral and coauthors (Bayer et al., 2016; Gatheral et al., 2018).
(Such an extension is also subject of the recent works Jacquier, Pakkanen, & Stone, 2018; Gulisashvili,
2018.)

Theorem 1.5. Let 𝑋𝑡 = 𝑙𝑜𝑔(𝑆𝑡∕𝑆0) be the log-price under simple rough SV model, that is, (1) and
(3). Then, (𝑡𝐻−1

2𝑋𝑡 ∶ 𝑡 ≥ 0) satisfies a short-time large-deviation principle (LDP) with speed 𝑡2𝐻 and
rate function given by

𝐼(𝑦) = inf
ℎ∈𝐿2([0,1])

{
1
2
‖ℎ‖2

𝐿2 +
(
𝑦 − 𝜌𝐼1(ℎ)

)2
2𝐼2(ℎ)

}
, (20)

with 𝐼1(ℎ) ∶= ∫ 1
0 𝑓 (ℎ̂(𝑡))ℎ(𝑡)𝑑𝑡, 𝐼2(ℎ) ∶= ∫ 1

0 𝑓 (ℎ̂(𝑡))2𝑑𝑡, where ℎ̂(𝑡) ∶= ∫ 𝑡
0 𝐾(𝑠, 𝑡)ℎ(𝑠)𝑑𝑠.

Theorem 1.5 is proved below as Corollary 4.3.

Remark 1.6. A potential short coming is the nonexplicit form of the rate function. Geometric or “Hamil-
tonian” interpretations of the rate function, studied in a Markovian setting by many authors (e.g., Avel-
laneda, Boyer-Olson, Busca, & Friz, 2003; Bayer & Laurence, 2014; Berestycki, Busca, & Florent,
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2004; Deuschel et al., 2014a; Deuschel, Friz, Jacquier, & Violante, 2014b), are then lost. A partial
remedy here is to move from large deviations to (higher order) moderate deviations. Analytic tractabil-
ity is so restored and one still captures the main feature of the volatility smile close to the money. This
method was introduced in a Markovian setting in P. Friz, Gerhold, and Pinter (2018), the extension to
simple rough volatility models was given in Bayer, Friz, Gulisashvili, Horvath, and Stemper (2019),
relying either on Forde and Zhang (2017) or the above Theorem 1.5.

We next turn to nonsimple rough volatility models. Inspired by Rosenbaum and coworkers (El Euch
et al., 2018; El Euch & Rosenbaum, 2019, 2018), we consider the stochastic Itô–Volterra equation

𝑍𝑡 = 𝑧 + ∫
𝑡

0
𝐾(𝑠, 𝑡)

(
𝑢(𝑍𝑠)𝑑𝑊 𝑠 + 𝑣(𝑍𝑠)𝑑𝑠

)
,

with corresponding log-price process given by

𝑋𝑡 = ∫
𝑡

0
𝑓 (𝑍𝑠)(𝜌𝑑𝑊𝑠 + 𝜌𝑑𝑊 𝑠) −

1
2 ∫

𝑡

0
𝑓 2(𝑍𝑠)𝑑𝑠.

(For simplicity, we here consider 𝑓, 𝑢, 𝑣 to be bounded, with bounded derivatives of all orders.) For ℎ
∈ 𝐿2([0, 𝑇 ]), let 𝑧ℎ be the unique solution to the integral equation

𝑧ℎ(𝑡) = 𝑧 + ∫
𝑡

0
𝐾(𝑠, 𝑡)𝑢(𝑧ℎ(𝑠))ℎ(𝑠)𝑑𝑠,

and define 𝐼𝑧1 (ℎ) ∶= ∫ 1
0 𝑓 (𝑧ℎ(𝑠))ℎ(𝑠)𝑑𝑠 and 𝐼𝑧2 (ℎ) ∶= ∫ 1

0 𝑓 (𝑧ℎ(𝑠))2𝑑𝑠. Then, we have the following
extension of Theorem 1.5 (and also Forde & Zhang, 2017; Gulisashvili, 2018; Jacquier et al., 2018) to
nonsimple rough volatility.

Theorem 1.7. Let 𝑋𝑡 ∶= 𝑙𝑜𝑔(𝑆𝑡∕𝑆0) be the log-price under nonsimple rough SV and assume 𝐻 >

1∕4. Then, 𝑡𝐻−1
2𝑋𝑡 satisfies an LDP with speed 𝑡2𝐻 and rate function given by

𝐼(𝑥) = inf
ℎ∈𝐿2([0,𝑇 ])

⎧⎪⎨⎪⎩
1
2
‖ℎ‖2

𝐿2 +
(
𝑥 − 𝜌𝐼𝑧1 (ℎ)

)2
2𝐼𝑧2 (ℎ)

⎫⎪⎬⎪⎭. (21)

Theorem 1.7 is proved below as Corollary 5.5.

Remark 1.8. We showed in (Bayer et al., 2019, Corollary 11)—but see related results by Alòs et al. Alòs
et al. (2007) and Fukasawa (Fukasawa, 2011, 2017)—that in the previously considered simple rough
volatility models, now writing 𝜎(.) instead of 𝑓 (.), the implied volatility skew behaves, in the short

time limit, as ∼ 𝜌𝜎
′(0)
𝜎(0) ⟨𝐾1, 1⟩𝑡𝐻−1∕2, where ⟨𝐾1, 1⟩ in our setting computes to 𝑐𝐻 ∶= (2𝐻)1∕2

(𝐻+1∕2)(𝐻+3∕2) .

(The blowup 𝑡𝐻−1∕2 as 𝑡 → 0 is a desired feature, in agreement with steep skews seen in the market.)
To first order, 𝑍𝑡 ≈ 𝑧 + 𝑢(𝑧) ∫ 𝑡

0 𝐾(𝑠, 𝑡)𝑑𝑊 𝑠 = 𝑧 + 𝑢(𝑧)𝑊 =∶ 𝜎(𝑊 ), from which one obtains a skew
formula in the nonsimple rough volatility case of the form

𝜌𝑢(𝑧)𝑓
′(𝑧)
𝑓 (𝑧)

𝑐𝐻𝑡
𝐻−1∕2.

Following the approach of Bayer et al. (2019), Theorem 1.7 not only allows for rigorous justification
of these formulas, but also for the computation of higher order smile features, although this is not
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pursued in this article. In the case of classical (Markovian) SV models, 𝐻 = 1∕2, and specializing
further to 𝑓 (𝑥) ≡ 𝑥, so that 𝑍 (respectively, 𝑧) models stochastic (respectively, spot) volatility, this
formula reduces precisely to the popular skew formula from Gatheral’s book (Gatheral & Taleb, 2006,
(7.6)), attributed therein to Medvedev–Scaillet. In the case of the rough Heston model, where𝑍 models
stochastic variance, compare (54), we have 𝑓 (𝑥) =

√
𝑥, 𝑢 = 𝜂

√
𝑥 and this leads to the following short-

dated skew formula:

𝜌𝜂

2
√
𝑣0
𝑐𝐻𝑡

𝐻−1∕2.

If the above expression is multiplied with 2
√
𝑣0, we get the implied variance skew, again in agreement

with Gatheral (Gatheral & Taleb, 2006, p. 35). The formula may be independently verified via the
characteristic function obtained in El Euch and Rosenbaum (2019).

The reader may be interested in further applications of the regularity structure view on rough volatil-
ity developed in this paper. The Stratonovich formulation opens up the possibility of constructing cuba-
ture methods (in the sense of Kusuoka, 2001; Lyons & Victoir, 2004) for rough SV methods. Indeed,
our method can be seen as a level-3 Ninomiya-Victoir Ninomiya and Victoir (2008) scheme. Further,
having said much about large deviations, it is not far-fetched to think about a support theorem (another
classical application area of rough paths and regularity structures, cf. P. K. Friz & Hairer, 2014, Sec-
tion 9.3), which, in turn, invites to revisit Davis and Mataix-Pastor (2007) in a setting of “rough” interest
rate models. Another concrete application, content of the recent P. K. Friz, Gassiat, and Pigato (2018),
concerns precise asymptotics, allowing for considerable refinement of large deviations. (Translated to
financial terms, this improvement leads to higher order implied volatility expansions.)

Structure of the article. In Section 2, we explain why the classical formulation of rough paths
is not suitable for rough volatility models, and then go on to introduce essentials of the theory of
regularity structures. We use the KPZ equation as a guiding example, which offers several similarities
to rough volatility. The most basic “pricing structure” is introduced in Section 3. In Section 4, we
consider a regularity structure for two-dimensional noise, which is necessary to study the asset price
process in addition to the volatility process. Section 5 then discusses the case of nontrivial dynamics
for rough volatility. Some numerical results are presented in Section 6, followed by several appendices
with technical details. From Section 3 on, all our work relies on the framework of Hairer’s regularity
structures. There seems to be no point in repeating all the necessary definitions and terminology, which
the reader can find in Hairer (2013), Hairer (2014), Hairer (2015), and P. K. Friz and Hairer (2014)
and a variety of survey papers on the subject. (For the reader in search of one concise reference, we
recommend P. K. Friz & Hairer, 2014, Section 13.)

Participants of Global Derivatives 2017 (Barcelona) and Gatheral 60th Birthday conference (CIMS,
NYU) are thanked for their valuable feedback. We are also very thankful to anonymous referees for
their very constructive feedback.

2 ON ROUGH PATHS AND LESSONS FROM KPZ AND
SINGULAR SPDE THEORY

We already pointed out in Section 1.2 that any analysis of correlated (𝜌 ≠ 0) rough volatility models
will involve the (Itô-) integral

∫
𝑇

0
𝑓 (𝑊𝑡)𝑑𝑊𝑡, (22)



BAYER ET AL. 791

where (𝑊𝑡) is a fBm with Hurst parameter 𝐻 < 1∕2, itself given as an integral of a singular kernel
against the Brownian motion 𝑊 . Although the scalar Brownian motion 𝑊 can easily be lifted to a
Brownian rough path (of Itô-, or Stratonovich type), the integral in (22) cannot be viewed as rough
integral. Indeed, a generic integrand 𝑓 (𝑊 ), and even 𝑊 , is not at all a rough path controlled by 𝑊 (in
the sense of Gubinelli). Hence, the stochastic integral cannot be defined by standard rough path theory
as found in P. K. Friz and Hairer (2014, Section 4).

A second attempt, to view (𝑊 ,𝑊 ) as a two-dimensional Gaussian process—in order to use Gaussian
rough path theory (e.g., P. K. Friz & Hairer, 2014, Section 12)—also fails. In fact, this theory would
require 𝑊 and 𝑊 being independent (↔ here: fully correlated), the resulting lift being of geometric
(i.e., Stratonovich) type ( ↔ here: Itô integral), the Hurst parameter 𝐻 > 1∕4 ( ↔ here: any 𝐻 > 0),
and an enhancement of at most three levels (level-3 rough paths) ( ↔ here: ∼ 1∕𝐻 levels).

A third attempt, in view of the nongeometric nature of Itô integration, to use branched rough paths
is also doomed, for it requires—like classical geometric rough path theory—all iterated integrals. In
our case, there is already an obstacle at level-2, before the appearance of any branching, in that the full
set of second iterated integrals(∫ 𝑊 𝑑𝑊 , ∫ 𝑊 𝑑𝑊

∫ 𝑊 𝑑𝑊 ∫ 𝑊 𝑑𝑊

)
=
(
∗ ?
∗ ?

)
(23)

is an ill-defined object (∗ stands for well-defined Itô-integrals, ? for integrals of unclear meaning). Note
that imposition of a first-order (respectively, Itô) product rule would manifestly clash with Itô-calculus,
as 𝑊 has infinite quadratic variation when 𝐻 < 1∕2.

On the other hand, formal expansion of (22) over some interval [𝑠, 𝑡] gives

∫
𝑡

𝑠
𝑓 (𝑊𝑢)𝑑𝑊𝑢 ≈ 𝑓

(
𝑊𝑠

)
𝑊𝑠,𝑡 + 𝑓 ′

(
𝑊𝑠

)
∫

𝑡

𝑠
𝑊𝑠,𝑢𝑑𝑊𝑢 +⋯ ,

so that the troubling terms—the “?” in (23)—do not appear. What is needed then, in the general case,
is a higher order “partial” branched rough path theory (for we deal with nongeometric/Itô objects), in
which only partial information on the iterated integrals is stored. But even then, one faces failure of
canonical (Wong-Zakai type) approximations, that is,

∄ lim
𝜀→0∫

𝑇

0
𝑓 (𝑊 𝜀

𝑡 )𝑑𝑊
𝜀
𝑡 . (24)

Such failures are atypical for rough path theory. Having made all these observations, Hairer’s regularity
structures (see below for more details) provides everything we desire: a tailor-made algebraic structure
(which by construction only stores the required higher order information), together with a machin-
ery that gives continuity properties of all operations of interest and a consistent way to renormalize
approximate stochastic integrals, such as the one appearing in (24).

The absence of a canonical approximation theory, as seen in (24), is a defining feature of the singular
SPDEs recently considered by Hairer, Gubinelli, and now many others. In particular, approximation
of the noise (say, 𝜀-mollification for the sake of argument) typically does not give rise to convergent
approximations. To be specific, it is instructive to review the very example that led Hairer to regularity
structures: the universal model for fluctuations of interface growth given by the KPZ equation

𝜕𝑡𝑢 = 𝜕2𝑥𝑢 + |𝜕𝑥𝑢|2 + 𝜉
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with space-time white noise 𝜉 = 𝜉(𝑥, 𝑡;𝜔). As a matter of fact, and without going into further details,
there is a well-defined Itô-solution 𝑢 = 𝑢(𝑡, 𝑥;𝜔) (known as the “Cole-Hopf” solution), but if one con-
siders the equation with 𝜀-mollified noise, then 𝑢 = 𝑢𝜀 diverges with 𝜀 → 0. In this sense, there is
a fundamental lack of approximation theory and no Stratonovich solution to KPZ exists. To see the
problem, take 𝑢0 ≡ 0 for simplicity and write

𝑢 = 𝐻 ⋆
(|𝜕𝑥𝑢|2 + 𝜉

)
with the space-time convolution denoted by ⋆ and the heat kernel

𝐻(𝑡, 𝑥) = 1√
4𝜋𝑡

exp
(
−𝑥

2

4𝑡

)
𝟏{𝑡>0}.

One can proceed with a Picard iteration

𝑢 = 𝐻 ⋆ 𝜉 +𝐻 ⋆ ((𝐻 ′ ⋆ 𝜉)2) +⋯ ,

but there is an immediate problem with (𝐻 ′ ⋆ 𝜉)2, (naively) defined as the 𝜀-to-zero limit of (𝐻 ′ ⋆

𝜉𝜀)2, which does not exist. However, there exists a diverging sequence of real numbers 𝐶𝜀 such that, in
probability,

∃ lim
𝜀→0

(𝐻 ′ ⋆ 𝜉𝜀)2−𝐶𝜀 ⇝ (new object) =∶ (𝐻 ′ ⋆ 𝜉)⋄2.

The idea of Hairer, following the philosophy of rough paths, was then to accept

𝐻 ⋆ 𝜉, (𝐻 ′ ⋆ 𝜉)⋄2 (and a few more)

as enhancement of the noise (“model”) upon which solution depends in pathwise robust fashion. This
unlocks the seemingly fixed (and here even nonsensical) relation

𝐻 ⋆ 𝜉 → 𝜉 → (𝐻 ′ ⋆ 𝜉)2.

Loosely speaking, one has

Theorem 2.1 (Hairer). There exist diverging constants 𝐶𝜀 such that a Wong–Zakai2 result holds of the
form �̃�𝜀 → 𝑢, in probability and uniformly on compacts, where

𝜕𝑡�̃�
𝜀 = 𝜕2𝑥�̃�

𝜀 + |𝜕𝑥�̃�𝜀|2 − 𝐶𝜀 + 𝜉𝜀.

Similar results hold for a number of other singular semilinear SPDEs.

In a sense, this can be traced back to the Milstein scheme for SDEs and then rough path the-
ory. Consider 𝑑𝑌𝑡 = 𝑓 (𝑌𝑡)𝑑𝑊𝑡, with 𝑌0 = 0 for simplicity, and consider the second-order (Milstein)
approximation

𝑌𝑡𝑖+1 ≈ 𝑌𝑡𝑖 + 𝑓
(
𝑌𝑡𝑖

)
𝑊𝑡𝑖,𝑡𝑖+1

+ 𝑓𝑓 ′
(
𝑌𝑡𝑖

)
∫

𝑡𝑖+1

𝑡𝑖

𝑊𝑡𝑖,𝑠
�̇�𝑠𝑑𝑠.

One has to unlock the seemingly fixed relation

𝑊 → �̇� → ∫
⋅

0
𝑊𝑠�̇�𝑠𝑑𝑠 =∶ 𝕎,
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for there is a choice to be made. For instance, the last term can be understood as Itô-integral ∫ ⋅
0 𝑊𝑠𝑑𝑊𝑠

or as Stratonovich integral ∫ ⋅
0 𝑊𝑠◦𝑑𝑊𝑠 (and, in fact, there are many other choices, see, for example,

the discussion in P. K. Friz & Hairer, 2014.) It suffices to take this thought one step further to arrive
at rough path theory: accept 𝕎 as new (analytic) object, which leads to the main (rough path) insight

SDE theory = analysis based on (𝑊 ,𝕎).

In comparison,

SPDE theory �̀� 𝑙𝑎 𝐻𝑎𝑖𝑟𝑒𝑟 = analysis based on (renormalized) enhanced noise(𝜉,…).

Inside Hairer’s theory: 3 As motivation, consider the Taylor expansion (at 𝑥) of a real-valued smooth
function,

𝑓 (𝑦) = 𝑓 (𝑥) + 𝑓 ′(𝑥)(𝑦 − 𝑥) + 1
2
𝑓 ′′(𝑥)(𝑦 − 𝑥)2 +⋯ .

It can be written as an abstract polynomial (“jet”) at 𝑥,

𝐹 (𝑥) ∶= 𝑓 (𝑥) 1 + 𝑔(𝑥)𝑋 + ℎ(𝑥)𝑋2 +⋯ ,

with, necessarily, 𝑔 = 𝑓 ′, ℎ = 𝑓 ′′∕2,…. If we “realize” these abstract symbols again as honest mono-
mials, that is, Π𝑥 ∶ 𝑋𝑘 → (. − 𝑥)𝑘, and extend Π𝑥 linearly, then we recover the full Taylor expansion:

Π𝑥[𝐹 (𝑥)](.) = 𝑓 (𝑥) + 𝑔(𝑥)(. − 𝑥) + 1
2
ℎ(𝑥)(. − 𝑥)2 +⋯

Hairer looks for solutions of this form: at every space-time point, a jet is attached, which in case of
KPZ turns out—after solving an abstract fixed point problem—to be of the form

𝑈 (𝑥, 𝑠) = 𝑢(𝑥, 𝑠) 1 + + + 𝑣(𝑥, 𝑠)𝑋 + 2 + 𝑣(𝑥, 𝑠) .

As before, every symbol is given concrete meaning by “realizing” it as an honest function (or Schwartz
distribution). Naturally, one can take

→ 𝐻 ⋆ 𝜉𝜖(mollified noise), or: → 𝐻 ⋆ 𝜉(original noise). (25)

More interestingly, can be mapped to any of

⎧⎪⎨⎪⎩
𝐻 ⋆ (𝐻 ′ ⋆ 𝜉𝜖)2, canonically enhanced mollified noise; or
𝐻 ⋆ [(𝐻 ′ ⋆ 𝜉𝜖)2 − 𝐶𝜖], renormalized ∼ or
𝐻 ⋆ (𝐻 ′ ⋆ 𝜉)⋄2, renormalized enhanced noise.

(26)

This realization map is called “model” and captures exactly a typical, but otherwise fixed, realization of
the noise (mollified or not) together with some enhancement thereof, renormalized or not. For instance,
writing Π𝑥,𝑠 for the realization map for renormalized enhanced noise, one has

Π𝑥,𝑠[𝑈 (𝑥, 𝑠)](.) = 𝑢(𝑥, 𝑠) +𝐻 ⋆ 𝜉|(∗) +𝐻 ⋆ (𝐻 ′ ⋆ 𝜉)⋄2|(∗) +⋯
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where (∗) indicates suitable centering at (𝑥, 𝑠). Mind that 𝑈 takes values in a (finite) linear space
spanned by (sufficiently many) symbols,

𝑈 (𝑥, 𝑠) ∈ ⟨… , 1, , , 𝑋, , ,…⟩ =∶ 
The map (𝑥, 𝑠) → 𝑈 (𝑥, 𝑠) is an example of a modeled distribution, the precise definition is a mix of
suitable analytic and algebraic conditions (similar to the notation of a controlled rough path).

The analysis requires keeping track of the degree (a.k.a. homogeneity) of each symbol. For instance,| | = 1∕2 − 𝜅 (related to the Hölder regularity of the realized object one has in mind), |𝑋2| = 2,
and so on. All these degrees are collected in an index set. To compare jets at different points (think
(𝑋 − 𝛿1)3 = ⋯), a group of linear maps on  is used, called a structure group. Last not least, the
reconstruction map uniquely maps modeled distributions to functions or Schwartz distributions. (This
can be seen as generalization of the sewing lemma, the essence of rough integration, see, for example,
P. K. Friz & Hairer, 2014, which turns a collection of sufficiently compatible local expansions into one
function or Schwartz distribution.) In the KPZ context, the (Cole-Hopf or Itô) solution is then indeed
obtained as reconstruction of the abstract (modeled distribution) solution 𝑈 .

3 THE ROUGH PRICING REGULARITY STRUCTURE

In this section, we develop the approximation theory for integrals of the type ∫ 𝑓 (𝑊 )𝑑𝑊 . In the first
part, we present the regularity structure and the associated models we will use. In the second part, we
apply the reconstruction theorem from regularity structures to conclude our main result, Theorem 3.25.

3.1 Basic pricing setup
We are given a Hurst parameter 𝐻 ∈ (0, 1∕2], associated with a fBm (in the Riemann–Liouville sense)
𝑊 , and fix an arbitrary 𝜅 ∈ (0,𝐻) and an integer

𝑀 ≥ max{𝑚 ∈ ℕ |𝑚 ⋅ (𝐻 − 𝜅) − 1∕2 − 𝜅 ≤ 0},

so that

(𝑀 + 1)(𝐻 − 𝜅) − 1∕2 − 𝜅 > 0 . (27)

At this stage, we can introduce the “level-(𝑀 + 1)” model space

 =
⟨
{Ξ,Ξ(Ξ),… ,Ξ(Ξ)𝑀, 𝟏,(Ξ),… ,(Ξ)𝑀}

⟩
, (28)

where ⟨…⟩ denotes the vector space generated by the (purely abstract) symbols in {…}. We will some-
times write

𝑆 = 𝑆(𝑀) ∶= {Ξ,Ξ(Ξ),… ,Ξ(Ξ)𝑀, 𝟏,(Ξ),… ,(Ξ)𝑀}

so that  =  (𝑀) =
⨁

𝜏∈𝑆 ℝ𝜏.

Remark 3.1. It is useful here and in the sequel to consider as a sanity check the special case𝐻 = 1∕2 in
which case we recover the “level-2” rough path structure as introduced in (P. K. Friz & Hairer, 2014,
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Chapter 13). More specifically, if we take a Hölder exponent 𝛼 ∶= 1∕2 − 𝜅 < 1∕2, we may choose
𝑀 = 1. Then, condition (27) is precisely the familiar condition 𝛼 > 1∕3.

The interpretation for the symbols in𝑆 is as follows: Ξ should be understood as an abstract represen-
tation of the white noise 𝜉 belonging to the Brownian motion 𝑊 , that is, 𝜉 = �̇� where the derivative
is taken in the distributional sense. Note that because we set 𝑊𝑥 = 0 for 𝑥 ≤ 0, we have �̇� (𝜑) = 0
for 𝜑 ∈ 𝐶∞

𝑐 ((−∞, 0)). The symbol (…) has the intuitive meaning of “integration against the Volterra
kernel,” so that (Ξ) represents the integration of the white noise against the Volterra kernel, that is,

√
2𝐻 ∫

𝑡

0
|𝑡 − 𝑟|𝐻−1∕2d𝑊𝑟 ,

which is nothing but the fBm 𝑊𝑡. Symbols like Ξ(Ξ)𝑚 = Ξ ⋅ (Ξ) ⋅… ⋅ (Ξ) or (Ξ)𝑚 = (Ξ) ⋅… ⋅
(Ξ) should be read as products between the objects above. These interpretations of the symbols gen-
erating  will be made rigorous by the model (Π,Γ) in the next subsection. Every symbol in 𝑆 is
assigned a homogeneity, which we define by

|Ξ(Ξ)𝑚| ∶= −1∕2 − 𝜅 + 𝑚(𝐻 − 𝜅), 𝑚 ≥ 0,

|(Ξ)𝑚| ∶= 𝑚(𝐻 − 𝜅), 𝑚 > 0,

|𝟏| ∶= 0 .

We collect the homogeneities of elements of 𝑆 in a set 𝐴 ∶= {|𝜏| | 𝜏 ∈ 𝑆}, whose minimum is |Ξ| =
−1∕2 − 𝜅. Note that the homogeneities are multiplicative in the sense that |𝜏𝜏′| = |𝜏| + |𝜏′| for 𝜏, 𝜏′ ∈
𝑆 such that 𝜏𝜏′ = 𝜏 ⋅ 𝜏′ ∈ 𝑆 (with the product defined in the obvious way).

At last, our regularity structure comes with a structure group 𝐺, an (abstract) group of linear oper-
ators on the model space  , which should satisfy Γ𝜏 − 𝜏 =

⨁
𝜏′∈𝑆∶ |𝜏′|<|𝜏|ℝ𝜏′ and Γ𝟏 = 𝟏 for 𝜏 ∈ 𝑆

and Γ ∈ 𝐺. We will choose 𝐺 = {Γℎ |ℎ ∈ (ℝ,+)} given by

Γℎ𝟏 = 𝟏, ΓℎΞ = Ξ, Γℎ(Ξ) = (Ξ) + ℎ𝟏 ,

and Γℎ(𝜏′ ⋅ 𝜏) = Γℎ𝜏′ ⋅ Γℎ𝜏 for 𝜏′, 𝜏 ∈ 𝑆 for which 𝜏 ⋅ 𝜏′ ∈ 𝑆 is defined.

3.1.1 The limiting model (𝚷,𝚪)
Let 𝑊 be a Brownian motion on ℝ+ ∶= [0,∞) and extend it to all of ℝ by requiring 𝑊𝑥 = 0 for 𝑥 ≤ 0.
We will frequently use the notations

∫
𝑡

0
𝑓 (𝑡)d𝑊𝑡, ∫

𝑡

0
𝑓 (𝑡) ⋄ d𝑊𝑡, (29)

which denote the Itô integral and the Skorokhod integral (which boils down to an Itô integral when-
ever the integrand is adapted), respectively. For background on Skorokhod integration, we refer to
Janson (1997, Section 7.3), and Nualart’s ICM lecture (Nualart, 2006) is also highly recommended.
Skorokhod integrals have the distinct advantage of avoiding the need of an adapted integrand but coin-
cide with Itô integrals once the integrand is adapted. For a reader unfamiliar with the (beautiful) theory
of Skorokhod integration, it should be sufficient to simply think of an Itô integral with possibly non-
adapted integrands for the purposes of this article. Whenever we make usage of specific properties of
Skorokhod integration, we will make this explicit.
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From 𝑊 , we now construct the fBm 𝑊 in the Riemann–Liouville sense with Hurst index 𝐻 ∈
(0, 1∕2] as

𝑊𝑡 ∶= �̇� ⋆ 𝐾(𝑡) =
√
2𝐻 ∫

𝑡

0
|𝑡 − 𝑟|𝐻−1∕2 d𝑊𝑟 ,

where 𝐾(𝑡) =
√
2𝐻 𝟏𝑡>0 𝑡𝐻−1∕2 denotes the Volterra kernel. We also write 𝐾(𝑠, 𝑡) ∶= 𝐾(𝑡 − 𝑠).

To give a meaning to the product terms Ξ(Ξ)𝑘, we follow the ideas from rough paths and define
an “iterated integral” for 𝑠, 𝑡 ∈ ℝ, 𝑠 ≤ 𝑡, as

𝕎𝑚
𝑠,𝑡 ∶= ∫

𝑡

𝑠
(𝑊𝑟 −𝑊𝑠)𝑚 d𝑊𝑟 . (30)

𝕎𝑚(𝑠, 𝑡) satisfies the following modification of Chen’s relation.

Lemma 3.2. 𝕎𝑚 as defined in (30) satisfies

𝕎𝑚
𝑠,𝑡 = 𝕎𝑚

𝑠,𝑢 +
𝑚∑
𝑙=0

(
𝑚
𝑙

)
(𝑊𝑢 −𝑊𝑠)𝑙𝕎𝑚−𝑙

𝑢,𝑡 (31)

for 𝑠, 𝑢, 𝑡 ∈ ℝ, 𝑠 ≤ 𝑢 ≤ 𝑡.

Proof. This is a direct consequence of the binomial theorem. □

We extend the domain of 𝕎𝑚 to all of ℝ2 by imposing Chen’s relation for all 𝑠, 𝑢, 𝑡 ∈ ℝ, that is, we
set for 𝑡, 𝑠 ∈ ℝ, 𝑡 ≤ 𝑠,

𝕎𝑚
𝑠,𝑡 ∶= −

𝑚∑
𝑙=0

(
𝑚
𝑙

)
(𝑊𝑡 −𝑊𝑠)𝑙𝕎𝑚−𝑙

𝑡,𝑠 . (32)

We are now in the position to define a model (Π,Γ) that gives a rigorous meaning to the interpretation
we gave above for Ξ,(Ξ),Ξ(Ξ),…. Recall that in the theory of regularity structures, a model is a
collection of linear maps Π𝑠 ∶  → 𝐶1

𝑐 (ℝ)
′, Γ𝑠𝑡 ∈ 𝐺 for indices 𝑠, 𝑡 ∈ ℝ that satisfy

Π𝑡 = Π𝑠Γ𝑠𝑡, (33)

|Π𝑠𝜏(𝜑𝜆
𝑠 )| ≲ 𝜆|𝜏| , (34)

Γ𝑠𝑡𝜏 = 𝜏 +
∑

𝜏′∈𝑆∶ |𝜏′|<|𝜏| 𝑐𝜏′ (𝑠, 𝑡)𝜏
′, with: 𝑐𝜏′ (𝑠, 𝑡)| ≲ |𝑠 − 𝑡||𝜏|−|𝜏′| , (35)

where the loosely stated bounds in (34) and (35) hide a multiplicative constant, which can be chosen
uniformly for 𝜏 ∈ 𝑆, any 𝑠, 𝑡 in a compact set and for 𝜑𝜆

𝑠 ∶= 𝜆−1𝜑(𝜆−1(⋅ − 𝑠)) with 𝜆 ∈ (0, 1] and
𝜑 ∈ 𝐶1 with compact support in the ball 𝐵(0, 1).
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We will work with the following “Itô” model (Π,Γ), which makes our interpretations of the elements
of 𝑆 more precise. (We will [occasionally] write (ΠIt�̂�,ΓIt�̂�) to avoid confusion with a generic model,
which we also denote by (Π,Γ).)

Π𝑠𝟏 = 1, Γ𝑡𝑠𝟏 = 𝟏,
Π𝑠Ξ = �̇� , Γ𝑡𝑠Ξ = Ξ,
Π𝑠(Ξ)𝑚 =

(
𝑊 (⋅) −𝑊 (𝑠)

)𝑚
, Γ𝑡𝑠(Ξ) = (Ξ) + (𝑊 (𝑡) −𝑊 (𝑠))𝟏,

Π𝑠Ξ(Ξ)𝑚 = {𝑡 → d
d𝑡𝕎

𝑚(𝑠, 𝑡)}, Γ𝑡𝑠𝜏𝜏′ = Γ𝑡𝑠𝜏 ⋅ Γ𝑡𝑠𝜏′ , for 𝜏, 𝜏′ ∈ 𝑆 with 𝜏𝜏′ ∈ 𝑆.

We extend both maps from 𝑆 to  by imposing linearity.

Lemma 3.3. The pair (Π,Γ) as defined above defines (a.s.) a model on ( , 𝐴).
Proof. The only symbol in 𝑆 for which (33) is not straightforward is Ξ(Ξ)𝑚, where the statement
follows by Chen’s relation. The bounds (34) and (35) follow for 𝟏 trivially and for (Ξ)𝑚 by the𝐻 − 𝜅′-
Hölder regularity of 𝑊 , 𝜅′ ∈ (0,𝐻). It is straightforward to check the condition (35) by using the rule
Γ𝑡𝑠𝜏𝜏′ = Γ𝑡𝑠𝜏 ⋅ Γ𝑡𝑠𝜏′ so that we are only left with the task to bound Π𝑠Ξ(Ξ)𝑚(𝜑𝜆

𝑠 ). Along the lines of
the proof of (P. K. Friz & Hairer, 2014, Theorem 3.1), it follows that |𝕎𝑚

𝑠,𝑡| ≤ 𝐶|𝑠 − 𝑡|𝑚𝐻+1∕2−(𝑚+1)𝜅

(where 𝐶 > 0 denotes a random constant with 𝐶 ∈
⋂

𝑝<∞𝐿
𝑝), so that

|Π𝑠(Ξ)𝑚Ξ(𝜑𝜆
𝑠 )| = ||||∫ (

𝜑𝜆
𝑠

)′(𝑡)𝕎𝑚(𝑠, 𝑡) d𝑡
|||| ≤ 𝐶 ∫ 𝜑′−1(𝑡 − 𝑠))|𝑠 − 𝑡|𝑚𝐻+1∕2−(𝑚+1)𝜅 d𝑡

𝜆2

≤ 𝐶𝜆𝑚𝐻−1∕2−(𝑚+1)𝜅 = 𝐶𝜆|(Ξ)𝑚Ξ|.
□

As we will see below in Section 3.2, this model is the toolbox from which we can build pathwise Itô
integrals of the type ∫ 𝑡

0 𝑓 (𝑟,𝑊 (𝑟)) d𝑊 (𝑟). For an approximation theory for such expressions, we are
in need of a comparable setup that describes approximations, which will be achieved by introducing a
model (Π𝜀,Γ𝜀).

3.1.2 The approximating model (𝚷𝜺,𝚪𝜺)
The whole definition of the model (Π,Γ) is based on the object �̇� . It is therefore natural to build an
approximating model by replacing �̇� by some modification �̇� 𝜀 that converges (as a distribution) to
�̇� as 𝜀 → 0.

The definition of �̇� 𝜀 will be based on an object 𝛿𝜀, which should be thought of as an approxima-
tion to the Dirac delta distribution. Our goal is to build 𝛿𝜀 from wavelets, which can be as irregular
as the Haar functions. We find it therefore convenient to allow 𝛿𝜀 to take values in the Besov space
𝛽
1,∞(ℝ), 𝛽 > 1∕2 + 𝜅, which includes functions like 𝟏[0,1] ∈ 1

1,∞(ℝ).

Remark 3.4. We recall the definition of the Besov space 𝛽
1,∞(ℝ) (see, e.g., Meyer & Salinger, 1995),

even though the definition will only be explicitly used in the proof of Lemma 3.17 in the Appendix.
Given a compactly supported wavelet basis 𝜙𝑦 = 𝜙(⋅ − 𝑦), 𝑦 ∈ ℤ, 𝜓𝑗

𝑦 = 2𝑗∕2 𝜓(2𝑗(⋅ − 𝑦)), 𝑗 ≥ 0, 𝑦 ∈
2−𝑗ℤ, we set

‖𝑔‖𝛽
1,∞

∶=
∑
𝑦∈ℤ

|(𝑔, 𝜙𝑦)𝐿2 | + sup
𝑗≥0

2𝑗𝛽
∑

𝑦∈2−𝑗ℤ
2−𝑗∕2|(𝑔, 𝜓𝑗

𝑦 )𝐿2 |.
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Define 𝛽
1,∞(ℝ) ∶= {𝑔 ∈ 𝐿1| ‖𝑔‖𝛽

1,∞
< ∞} for 𝛽 > 0, and

𝛽
1,∞(ℝ) ∶=

{
𝑔 ∈ 𝐶−⌈𝛽⌉+1

𝑐 (ℝ))′||| ‖𝑔‖𝛽
1,∞

< ∞
}

for 𝛽 ≤ 0.

Definition 3.5. Let 𝛿𝜀 ∶ ℝ2 → ℝ be a measurable, bounded function with the following properties:

• 𝛿𝜀(𝑥, 𝑦) = 𝛿𝜀(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ ℝ,

• the map ℝ ∋ 𝑥 → 𝛿𝜀(𝑥, ⋅) ∈ 𝛽
1,∞(ℝ) is bounded and measurable for some 𝛽 > −|Ξ| = 1∕2 + 𝜅.

• ∫ℝ 𝛿𝜀(𝑥, ⋅) d𝑥 = 1,

• sup𝑥,𝑦∈ℝ |𝛿𝜀(𝑥, 𝑦)| ≲ 𝜀−1,

• supp 𝛿𝜀(𝑥, ⋅) ⊆ 𝐵(𝑥, 𝑐 ⋅ 𝜀) for any 𝑥 ∈ ℝ and some 𝑐 > 0.

Example 3.6. There are two examples that are of particular interest for our purposes:

• We say that 𝛿𝜀 “comes from a mollifier,” if there is symmetric, compactly supported function 𝜌 ∈
𝐿∞ ∩ 𝛽

1,∞(ℝ) integrating to 1 such that

𝛿𝜀(𝑥, 𝑦) = 𝜀−1 ⋅ 𝜌(𝜀−1(𝑦 − 𝑥)).

• A further interesting example is the case where 𝛿𝜀 “comes from a wavelet basis.” Consider only
𝜀 = 2−𝑁 and choose compactly supported father wavelets 𝜙𝑘,𝑁 ∈ 𝐿∞ ∩ 𝛽

1,∞, 𝑘 ∈ ℤ (e.g., the Haar

father wavelets 𝜙𝑘,𝑁 = 2𝑁∕2 ⋅ 𝟏[𝑘2−𝑁,(𝑘+1)2−𝑁 )) and set

𝛿𝜀(𝑥, 𝑦) ∶=
∑
𝑘∈ℤ

𝜙𝑘,𝑁 (𝑥)𝜙𝑘,𝑁 (𝑦).

Note that we could also add some generations of mother wavelets in this choice.

Locally, �̇� is contained in |Ξ|
∞,∞(ℝ) (recall: |Ξ| = −1∕2 − 𝜅), so that due to |Ξ|

∞,∞(ℝ) ⊆
(𝛽

1,∞(ℝ))′, we can define

�̇� 𝜀
𝑡 ∶= ⟨�̇� , 𝛿𝜀(𝑡, ⋅)⟩𝟏ℝ+

(𝑡),

which is a Gaussian process and pathwise measurable and locally bounded. For (maybe stochastic)
integrands 𝑓 , we introduce the notations

∫
𝑡

0
𝑓 (𝑟) d𝑊 𝜀

𝑟 ∶= ∫
𝑡

0
𝑓 (𝑟)�̇� 𝜀

𝑟 d𝑟.

If 𝑓 takes values in some (nonhomogeneous) Wiener chaos induced by �̇� , we also introduce

∫
𝑡

0
𝑓 (𝑟) ⋄ d𝑊 𝜀

𝑟 ∶= ∫
𝑡

0
𝑓 (𝑟) ⋄ �̇� 𝜀

𝑟 d𝑟, (36)

where ⋄ denotes the Wick product. Note that these two objects do not coincide in general. A complete
repetition of the definition of Wick multiplication would stray away too far from the focus of this article.
We refer to Janson (1997, Section 3.1) for more details. In essence, a Wick product combines two
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random variables𝑋 and 𝑌 (which lie in the a suitable space, namely, the Wiener chaos) in a symmetric,
bilinear manner to a new random variable 𝑋 ⋄ 𝑌 by subtracting from the usual product 𝑋 ⋅ 𝑌 a sum
of correlation terms. If 𝑋 and 𝑌 are independent, these correlations vanish, so that the Wick product
just coincides with the pointwise product 𝑋 ⋅ 𝑌 . This includes the case of 𝑋 being constant so that,
in particular, 1 ⋄ 𝑌 = 𝑌 . Another rather simple example arises if 𝑋, 𝑌 are both (centered) Gaussian
random variables. The Wick product is then simply given by

𝑋 ⋄ 𝑌 = 𝑋 ⋅ 𝑌 − 𝔼[𝑋 ⋅ 𝑌 ] .

In this article, 𝑋 and 𝑌 are themselves products of Gaussian random variables. In this case, an explicit
formula for 𝑋 ⋄ 𝑌 = 𝑋 ⋅ 𝑌 −… is given in equation (3.6) of Janson (1997).

The motivation for using the same symbol “⋄” for Wick products and for Skorokhod integrals
(cf. (29)) is that Skorokhod integrals can be seen as “infinitesimal Wick products” in the sense that
they are the limit of sums of Wick products, compare Remark 3.7 below. We sketch in Remark 3.7
shortly that one might want to read the Skorokhod integral as

∫
𝑡

0
𝑓 (𝑟) ⋄ d𝑊𝑟 = }}∫

𝑡

0
𝑓 (𝑟) ⋄ d𝑊

d𝑟
d𝑟,” (37)

where ⋄ should be read as Skorokhod integration on the left and “Wick multiplication” on the right-
hand side (which is ill-defined as d𝑊

d𝑟 only exists as a distribution). The ill-defined identity (37) can
be read as a motivation for the (well-defined) definition (36). The close relation between Skorokhod
integration and Wick multiplication plays a crucial role in the proof of Theorem 3.14 in the Appendix.

Remark 3.7. For the reader’s convenience, we briefly comment on the close relation between the
Skorokhod integral and the Wick product. Indeed, when 𝑔 =

∑
𝑋𝑠𝟏[𝑠,𝑡], with summation over a finite

partition of [0, 𝑇 ], and each 𝑋𝑠 a (nonadapted) random variable in a finite Wiener–Itô chaos, it follows
from (Janson, 1997, Theorem 7.40) that

∫ 𝑔 ⋄ d𝑊 =
∑

𝑋𝑠 ⋄𝑊𝑠,𝑡 ,

where ⋄ denotes Skorokhod integration on the left and Wick multiplication on the right-hand side
and where 𝑊𝑠,𝑡 = 𝑊 (𝑡) −𝑊 (𝑠). Passage to 𝐿2-limits is then standard, so that a Skorokhod integral

∫ 𝑔 ⋄ d𝑊 can be interpreted as the integrated Wick product “𝑔 ⋄ d𝑊
d𝑡 ,”

∫ 𝑔 ⋄ d𝑊 = “∫ 𝑔 ⋄
d𝑊
d𝑡

d𝑡, ”

which can be seen as a motivation for our definition (36). See also Nualart (2013) and the refer-
ences therein.

We now define an approximate fBm by setting

𝑊 𝜀
𝑡 ∶= 𝐾 ⋆ �̇� 𝜀(𝑡) =

√
2𝐻 ∫

𝑡

0
|𝑡 − 𝑟|𝐻−1∕2 d𝑊 𝜀

𝑟 ,

which has the expected regularity as it is shown in the following lemma.
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Lemma 3.8. On every compact time interval [0, 𝑇 ], we have the estimates

|𝑊 𝜀
𝑡 −𝑊 𝜀

𝑠 | ≲ 𝐶𝜀|𝑡 − 𝑠|𝐻−𝜅′ , |𝑊 𝜀
𝑡 −𝑊 𝜀

𝑠 − (𝑊𝑡 −𝑊𝑠)| ≲ 𝐶|𝑡 − 𝑠|𝐻−𝜅′𝜀𝛿𝜅
′

uniformly in 𝜀 ∈ (0, 1] for any 𝛿 ∈ (0, 1) and 𝜅′ ∈ (0,𝐻). Here, 𝐶𝜀, 𝐶 > 0 are random constants that
are (uniformly) bounded in 𝐿𝑝 for 𝑝 ∈ [1,∞).

Proof. The proof is elementary but a bit bulky and therefore postponed to the Appendix. □

Finally, we can give the definition of the approximating model (Π𝜀,Γ𝜀), the “canonical” model built
from the approximate (and hence regular) noise 𝑊 𝜀.

Π𝜀
𝑠𝟏 = 1, Γ𝜀𝑠𝑡𝟏 = 1,

Π𝜀
𝑠Ξ = �̇� 𝜀, Γ𝜀𝑠𝑡Ξ = Ξ,

Π𝜀
𝑠(Ξ)𝑚 =

(
𝑊 𝜀

⋅ −𝑊 𝜀
𝑠

)𝑚
, Γ𝜀𝑠𝑡(Ξ) = (Ξ) + (

𝑊 𝜀
𝑡 −𝑊 𝜀

𝑠

)
𝟏,

Π𝜀
𝑠(Ξ)𝑚Ξ = (𝑊 𝜀

⋅ −𝑊 𝜀
𝑠 )

𝑚 �̇� 𝜀
⋅ , Γ𝜀𝑠𝑡𝜏𝜏

′ = Γ𝜀𝑠𝑡𝜏 ⋅ Γ
𝜀
𝑠𝑡𝜏

′ , for 𝜏, 𝜏′ ∈ 𝑆 with 𝜏𝜏′ ∈ 𝑆.

Lemma 3.9. The pair (Π𝜀,Γ𝜀) as defined above is a model on ( , 𝐴).
Proof. The identity Π𝑡 = Γ𝑡𝑠Π𝑠 is straightforward to check. The bounds (34) and (35) on Γ𝑠𝑡 and on
Π𝑠(Ξ)𝑚 follow from the regularity of 𝑊 𝜀 as proved in Lemma 3.8. The blowup of Π𝑠Ξ(Ξ)𝑚(𝜑𝜆

𝑠 ),
however, is even better than we need, because by the choice of 𝛿𝜀, we have |�̇� 𝜀| ≤ 𝐶𝜀 on compact
sets, for some random constant 𝐶𝜀. □

The definition of this model is justified by the fact that application of the reconstruction operator
(as in Lemma 3.23) yields integrals of the form

∫
𝑡

0
𝑓 (𝑟,𝑊 𝜀

𝑟 ) d𝑊
𝜀
𝑟 . (38)

As we pointed out already in Section 1, there is no hope that integrals of this type will converge as
𝜀 → 0 if 𝐻 < 1∕2. This can be cured by working with a renormalized model (Π̂𝜀,Γ𝜀) instead.

3.1.3 The renormalized model �̂�𝜺

From the perspective of regularity structures, the fundamental reason why integrals like (38) fail to
converge to

∫
𝑡

0
𝑓 (𝑟,𝑊𝑟) d𝑊𝑟

lies in the fact that the corresponding models will not satisfy (Π𝜀,Γ𝜀) → (Π,Γ) in a suitable norm. To
see what is going on, we will first rewrite Π𝑠Ξ(Ξ)𝑘.

Lemma 3.10. For 𝜑 ∈ 𝐶∞
𝑐 (ℝ), 𝑠 ∈ ℝ, 𝑚 ∈ {1,… ,𝑀}, we have

Π𝑠Ξ(Ξ)𝑚(𝜑) = ∫
∞

0
𝜑(𝑡) (𝑊𝑡 −𝑊𝑠)𝑚 ⋄ d𝑊𝑡

−𝑚∫
∞

0
𝜑(𝑡)𝐾(𝑠 − 𝑡) (𝑊𝑡 −𝑊𝑠)𝑚−1 d𝑡,
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where ⋄ denotes the Skorokhod integral and 𝐾(𝑡) =
√
2𝐻𝟏𝑡>0𝑡𝐻−1∕2 denotes the Volterra kernel. Note

that in the second term, the domain of integration is actually (0, 𝑠).

Remark 3.11. At first glance, it might seem surprising (and maybe confusing) that we are in need of
a Skorokhod integral to write down the integrals in Lemma 3.10, especially for a reader more familiar
with rough path theory. Note that the expression ∫ ∞

0 𝜑(𝑡) (𝑊𝑡 −𝑊𝑠)𝑚 ⋄ d𝑊𝑡 is ill-defined as an Itô
integral: As we allow 𝜑 to have support below 𝑠, the domain of integration involves 𝑡 with 𝑡 < 𝑠, in
which case (𝑊 (𝑡) −𝑊 (𝑠))𝑚 is not adapted with respect to the filtration of 𝑊 at time 𝑡. The concept of
a Skorokhod integral is in such cases a natural extension of Itô’s notion of integration that boils down
to the classical Itô integral once the integrand is adapted. In the theory of rough paths, one usually
takes 𝜑(𝑡) = 𝟏[𝑠,𝑡′](𝑡) for 𝑠 < 𝑡′ (see also P. K. Friz & Hairer, 2014, Section 13.3.2), which explains
why issues of this kind never arise in the rough path framework.

There is, in fact, a way to write the integral ∫ ∞
0 𝜑(𝑡) (𝑊𝑡 −𝑊𝑠)𝑚 ⋄ d𝑊𝑡 as an Itô integral: Expand

(𝑊𝑡 −𝑊𝑠)𝑚 via the binomial theorem and “pull out” all factors depending on 𝑠 (such a point of view
is essentially behind Chen’s relation in (32)). However, as this seems like a rather nebulous definition,
we consider it more convenient to work with a more appropriate notion of integration in this article.

Proof of Lemma 3.10. We prove this by reexpressing 𝕎𝑘
𝑠,𝑡. For 𝑠 < 𝑡, we already have

𝕎𝑘
𝑠,𝑡 = ∫

𝑡

𝑠
d𝑊𝑟 ⋄ (𝑊𝑟 −𝑊𝑠)𝑘,

so that it remains to see what happens for 𝑡 < 𝑠. With relation (32), we then have

𝕎𝑘
𝑠,𝑡 = −

𝑘∑
𝑙=0

(
𝑘
𝑙

)
(𝑊𝑡 −𝑊𝑠)𝑙 ⋅ ∫ℝ d𝑟 �̇�𝑟 ⋄ (𝑊𝑟 −𝑊𝑡)𝑘−𝑙𝟏𝑡<𝑟<𝑠 ,

where we use for the sake of concision formal notation, which is easy to translate to a rigorous formu-
lation. Using the fact that for Gaussian random variables 𝑈1, 𝑉 , 𝑈2, we have

𝑈𝑙
1 ⋅ (𝑉 ⋄ 𝑈𝑘−𝑙

2 ) = 𝑉 ⋄ (𝑈𝑙
1𝑈

𝑘−𝑙
2 ) + 𝑙𝔼[𝑉 𝑈1]𝑈𝑙−1

1 𝑈𝑘−𝑙
2 (39)

(a consequence of Janson, 1997, Theorems 3.15 and 7.33), we obtain

𝕎𝑘𝑠, 𝑡 = −∫ℝ d𝑟 �̇�𝑟 ⋄ (𝑊𝑟 −𝑊𝑠)𝑘𝟏𝑡<𝑟<𝑠

−
𝑘∑
𝑙=0

(
𝑘
𝑙

)
𝑙 ⋅ ∫ℝ d𝑟𝔼[�̇�𝑟 ⋅ (𝑊𝑡 −𝑊𝑠)] ⋅ (𝑊𝑡 −𝑊𝑠)𝑙−1 ⋅ (𝑊𝑟 −𝑊𝑡)𝑘−𝑙 .

Using
(𝑘
𝑙

)
= 𝑘

(𝑘−1
𝑙−1

)
and 𝔼[�̇� (𝑟) ⋅ (𝑊 (𝑡) −𝑊 (𝑠))] = −𝐾(𝑠 − 𝑟)𝟏𝑟>0 for 𝑡 < 𝑟 < 𝑠, we can reformulate

this expression and obtain

𝕎𝑘(𝑠, 𝑡) = −∫ d𝑊 (𝑟) ⋄ (𝑊 (𝑟) −𝑊 (𝑠))𝑘𝟏𝑡<𝑟<𝑠 + 𝑘∫ d𝑟𝐾(𝑠 − 𝑟)(𝑊 (𝑟) −𝑊 (𝑠))𝑘−1𝟏𝑟>0 .

(An alternative derivation can be given following Nualart & Pardoux, 1988, Theorem 3.2.) As
Π𝑠Ξ(Ξ)𝑚(𝜑) = ∫ℝ 𝜑(𝑡) d𝑡𝕎𝑚

𝑠,𝑡, the claim follows. □

Let us also reexpress the approximating model in suitable form.
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Lemma 3.12. For 𝜑 ∈ 𝐶∞
𝑐 (ℝ), 𝑠 ∈ ℝ, 𝑚 ∈ {1,… ,𝑀}, we have

Π𝜀
𝑠Ξ(Ξ)𝑚(𝜑) = ∫

∞

0
𝜑(𝑡) (𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑚 ⋄ d𝑊 𝜀
𝑡

− 𝑚∫
∞

0
𝜑(𝑡)𝒦𝜀(𝑠, 𝑡)(𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑚−1d𝑡

+ 𝑚∫
∞

0
𝜑(𝑡)𝒦𝜀(𝑡, 𝑡)(𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑚−1 d𝑡,

where ⋄ is defined as in (36) and where

𝒦𝜀(𝑢, 𝑣) ∶= 𝔼[𝑊 𝜀(𝑢)�̇� 𝜀(𝑣)] = 𝟏𝑢,𝑣≥0 ∫
∞

0 ∫
∞

0
𝛿𝜀(𝑣, 𝑥1)𝛿𝜀(𝑥1, 𝑥2)𝐾(𝑢 − 𝑥2) d𝑥1d𝑥2 . (40)

Proof. Using that for Gaussian random variables 𝑉 , 𝑈 we have 𝑉 𝑈𝑚 = 𝑉 ⋄ 𝑈𝑚 + 𝑚𝔼[𝑉 𝑈 ]𝑈𝑚−1 (see
(39) with 𝑈2 = 1), we can rewrite

Π𝜀
𝑠Ξ(Ξ)𝑚(𝜑) = ∫

∞

0
𝜑(𝑡) (𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑚 ⋄ d𝑊 𝜀
𝑡

+ 𝑚∫
∞

0
d𝑡 𝜑(𝑡)𝔼[�̇� 𝜀

𝑡 (𝑊 𝜀
𝑡 −𝑊 𝜀

𝑠 )](𝑊
𝜀
𝑡 −𝑊 𝜀

𝑠 )
𝑚−1.

Inserting 𝔼[�̇� 𝜀(𝑡) (𝑊 𝜀(𝑡) −𝑊 𝜀(𝑠))] = 𝒦𝜀(𝑡, 𝑡) −𝒦𝜀(𝑠, 𝑡) shows the identity. □

Comparing the expressions in Lemmas 3.12 and 3.10, we see that we should subtract

𝑚∫ 𝜑(𝑡)𝒦𝜀(𝑡, 𝑡)(𝑊 𝜀
𝑡 −𝑊 𝜀

𝑠 )
𝑚−1 d𝑡

from the model, which will give us a new model Π̂𝜀. Of course, we have to be careful that this step
preserves “Chen’s relation” Π̂𝜀

𝑠Γ𝑠𝑡 = Π̂𝜀
𝑡 , see Theorem 3.14 below.

If we interpret 𝒦𝜀 as an approximation to the Volterra kernel, we see that the expression

𝒞𝜀(𝑡) ∶= 𝒦𝜀(𝑡, 𝑡), 𝑡 ≥ 0,

will correspond to something like “0𝐻−1∕2 = ∞” in the limit 𝜀 → 0. We indeed have the following
upper bound.

Lemma 3.13. For all 𝑠, 𝑡 ∈ ℝ, we have

|𝒦𝜀(𝑠, 𝑡)| ≲ 𝜀𝐻−1∕2 .

Proof. |𝒦𝜀(𝑠, 𝑡)| ≲ 𝜀−2 ∫𝐵(𝑡,𝑐𝜀) d𝑥 ∫𝐵(𝑥,𝑐𝜀) d𝑢 |𝑠 − 𝑢|𝐻−1∕2 ≲ 𝜀𝐻−1∕2 . □

Our hope is now that the new model Π̂𝜀 converges to Π in a suitable sense. Similar to Hairer (2014,
(2.17)), we define the distance between two models (Π,Γ) and (Π̃, Γ̃) on a compact time interval
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[0, 𝑇 ] as

|||(Π,Γ); (Π̃, Γ̃)|||𝑇 ∶= sup
supp𝜑 ⊆ 𝐵(0, 1),

𝜆 ∈ (0, 1],
𝑠 ∈ [0, 𝑇 ], 𝜏 ∈ 𝑆

𝜆−|𝜏||(Π𝑠 − Π̃𝑠)𝜏(𝜑𝜆
𝑠 )| + sup

𝑡, 𝑠 ∈ [0, 𝑇 ],
𝜏 ∈ 𝑆,𝐴 ∋ 𝛽 < |𝜏|

|Γ𝑡𝑠𝜏 − Γ̃𝑡𝑠𝜏|𝛽|𝑡 − 𝑠||𝜏|−𝛽 ,

(41)

where | ⋅ |𝛽 denotes the absolute value of the coefficient of the symbol 𝜏′ with |𝜏′| = 𝛽 and where the
first supremum runs over 𝜑 ∈ 𝐶1

𝑐 with ‖𝜑‖𝐶1 ≤ 1. We will also need

‖Π‖𝑇 = sup
supp𝜑 ⊆ 𝐵(0, 1),

𝜆 ∈ (0, 1],
𝑠 ∈ [0, 𝑇 ], 𝜏 ∈ 𝑆

𝜆−|𝜏||Π𝑠𝜏(𝜑𝜆
𝑠 )| .

We are now ready to give the fundamental result of this subsection. Recall that the (minimal) homo-
geneity is |Ξ| = −1∕2 − 𝜅, which corresponds to 𝑊 being Hölder with exponent 1∕2 − 𝜅.

Theorem 3.14. For every 𝑠 ∈ [0, 𝑇 ], define the linear map Π̂𝜀
𝑠 ∶  → 𝐶1

𝑐 (ℝ)
′ given by

Π̂𝜀
𝑠Ξ(Ξ)𝑚 = Π𝜀

𝑠Ξ(Ξ)𝑚 − 𝑚𝒞𝜀(⋅)Π𝜀
𝑠((Ξ)𝑚−1), 𝑚 ∈ {1,… ,𝑀},

and Π̂𝜀
𝑠 = Π𝜀

𝑠 on all remaining symbols in 𝑆. Then,

(Π̂𝜀, Γ̂𝜀) ∶= (Π̂𝜀,Γ𝜀)

defines a (“renormalized”) model on ( , 𝐴). On compact time intervals, we have

‖‖‖|||(Π̂𝜀, Γ̂𝜀); (Π,Γ)|||𝑇 ‖‖‖𝐿𝑝
≲ 𝜀𝛿𝜅 , (42)

for any 𝛿 ∈ (0, 1) and 𝑝 ∈ [1,∞). In particular, the distance between the renormalized model and the
Itô model almost decays with rate 𝐻 for 𝑀 = 𝑀(𝜅,𝐻) large enough.

Remark 3.15. In the special case of the level-2 Brownian rough path (i.e., 𝐻 = 1∕2, 𝑀 = 1 ), the
above result is in precise agreement with known results—but note that we are dealing with the simple
case of scalar Brownian motion. More specifically, we do not see the usual (strong) rate “almost”
1∕2, but have to subtract the Hölder exponent used in the rough path/model topology (here: 1∕2 − 𝜅),
which almost leads to the rate 𝜅. As 𝑀 = 1 entails the condition 1∕2 − 𝜅 > 1∕3, we see that 𝜅 < 1∕6,
exactly as given, for example, in P. K. Friz and Hairer (2014, Ex. 10.14). A better rate can be achieved
by working with higher level rough paths (here: 𝑀 > 1), and indeed, the special case of 𝐻 = 1∕2, but
general 𝑀 , can be seen as a consequence of P. Friz and Riedel (2011): at the price of working with
∼ 1∕(1∕2 − 𝜅) levels, one can choose 𝜅 arbitrarily close to 1∕2 and so recover the usual “almost” 1∕2
rate. Of course, the case 𝐻 < 1∕2 is out of reach of rough path considerations.

Proof. Due to Lemma 3.13 we have, for fixed 𝜀, that sup𝑡∈[0,𝑇 ] |𝒞𝜀(𝑡)| < ∞. As |Π𝑠(Ξ)𝑚| ≲ | ⋅
−𝑠|𝑚𝐻 , the bound (34) is still satisfied. The modification Π̂𝜀

𝑠Ξ(Ξ)𝑚 − Π𝜀
𝑠Ξ(Ξ)𝑚 does not lead to
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a violation of “Chen’s relation.” Indeed, using validity of (33) for the original model, we have

Π̂𝜀
𝑡 Γ

𝜀
𝑡𝑠(Ξ(Ξ)𝑘) = Π̂𝜀

𝑡

(
𝑘∑
𝑙=0

(
𝑘
𝑙

)
(𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑙Ξ(Ξ)𝑘−𝑙
)

= Π𝜀
𝑠(Ξ(Ξ)𝑘) −

𝑘∑
𝑙=0

(
𝑘
𝑙

)
(𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑙(𝑘 − 𝑙)𝒞𝜀(⋅)(𝑊 𝜀
⋅ −𝑊 𝜀

𝑡 )
𝑘−𝑙−1

= Π𝜀
𝑠(Ξ(Ξ)𝑘) − 𝑘𝒞𝜀(⋅)

𝑘−1∑
𝑙=0

(
𝑘 − 1
𝑙

)
(𝑊 𝜀

𝑡 −𝑊 𝜀
𝑠 )

𝑙 (𝑊 𝜀
⋅ −𝑊 𝜀

𝑡 )
𝑘−𝑙−1

= Π𝜀
𝑠(Ξ(Ξ)𝑘) − 𝑘𝒞𝜀(⋅)(𝑊 𝜀

⋅ −𝑊 𝜀
𝑠 )

𝑘 = Π̂𝜀
𝑠(Ξ((Ξ)𝑘) .

We see that (33) is also satisfied after our modification, and then easily conclude that (Π̂𝜀,Γ𝜀) is still
a model on ( , 𝐴). At last, the bound (42) is a bit technical and left to Appendix A. □

3.2 Approximation and renormalization theory
We now address the central question of how the integral ∫ 𝑡

0 𝑓 (𝑊
𝜀
𝑟 , 𝑟) d𝑊

𝜀
𝑟 has to be modified to make

it convergent to ∫ 𝑡
0 𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟. The key idea is to combine the convergence result from Theorem 3.14

with Hairer’s reconstruction theorem, which we state below.
We first recall the notion of a modeled distribution, compare Hairer (2014, Definition 3.1). We say

that a map 𝐹 ∶ ℝ →  is in the space 𝛾
𝑇
(Γ), 𝛾 > 0, for some time horizon 𝑇 > 0 if

‖𝐹‖𝛾
𝑇
(Γ) ∶= sup

𝐴∋𝛽<𝛾,𝑠∈[0,𝑇 ]
|𝐹 (𝑠)|𝛽 + sup

𝐴∋𝛽<𝛾,𝑠,𝑡∈[0,𝑇 ], 𝑠≠𝑡
|𝐹 (𝑡) − Γ𝑡𝑠𝐹 (𝑠)|𝛽|𝑡 − 𝑠|𝛾−𝛽 < ∞, (43)

where, as above, | ⋅ |𝛽 denotes the absolute value of the coefficient of 𝜏 with |𝜏| = 𝛽. Given two models

(Π,Γ) and (Π,Γ) and two 𝐹 , 𝐹 ∶ ℝ →  , it is also useful to have the notion of a distance|||𝐹 ;𝐹 |||𝛾
𝑇
(Γ),𝛾

𝑇
(Γ) ∶= sup

𝐴∋𝛽<𝛾, 𝑡∈[0,𝑇 ]
|𝐹 (𝑡) − 𝐹 (𝑡)|𝛽

+ sup
𝐴∋𝛽<𝛾, 𝑠,𝑡∈[0,𝑇 ], 𝑠≠𝑡

|𝐹 (𝑡) − Γ𝑡𝑠𝐹 (𝑠) − (𝐹 (𝑡) − Γ𝑡𝑠𝐹 (𝑠))|𝛽|𝑡 − 𝑠|𝛾−𝛽 .

The reconstruction theorem now states that for 𝛾 > 0, a map 𝐹 ∈ 𝛾
𝑇
(Γ) can be uniquely identified

with a distribution that behaves locally like Π⋅𝐹 (⋅).

Theorem 3.16. (Hairer, 2014, Theorem 3.10). Given a model (Π,Γ), 𝛾 > 0, and 𝑇 > 0, there is a
unique continuous operator4  ∶ 𝛾

𝑇
(Γ) → |Ξ|(ℝ) such that for any 𝑠 ∈ [0, 𝑇 ] and 𝜑 ∈ 𝐶1

𝑐 (𝐵(0, 1))

|(𝐹 − Π𝑠𝐹 (𝑠))(𝜑𝜆
𝑠 )| ≲ ‖Π‖𝑇 𝜆𝛾 . (44)

For two different models (Π,Γ) and (Π,Γ), we further have|||(𝐹 − Π𝑠𝐹 (𝑠) − (𝐹 − Π𝑠𝐹 (𝑠)))(𝜑𝜆
𝑠 )
|||

≲ 𝜆𝛾
(‖𝐹‖𝛾

𝑇
(Γ) |||(Π,Γ); (Π,Γ)|||𝑇 + ‖Π‖𝑇 |||𝐹 ;𝐹 |||𝛾

𝑇
(Γ);𝛾

𝑇
(Γ)

)
(45)

for 𝐹 ∈ 𝛾
𝑇
(Γ), 𝐹 ∈ 𝛾

𝑇
(Γ).
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As mentioned earlier, we prefer to work with compactly supported functions 𝜑 ∈ 𝛽
1,∞(ℝ𝑑), 𝛽 >

−|Ξ|, which includes objects like the Haar wavelets. The following lemma allows us to carry over all
bounds.

Lemma 3.17. The bounds (34), (41), (44), and (45) still hold for 𝜑 ∈ 𝛽
1,∞(ℝ𝑑), 𝛽 > −|Ξ|, with com-

pact support in 𝐵(0, 1) (after a change of constants).

Remark 3.18. This covers in particular functions like 𝟏[0,1] ∈ 1
1,∞(ℝ).

Proof. We prove this via wavelet methods in the Appendix. □

In the following, we introduce 𝑋(𝜀) to denote both 𝑋 and 𝑋𝜀. To study objects like
∫ 𝑡
0 𝑓 (𝑊

(𝜀)
𝑟 , 𝑟) d𝑊 (𝜀)

𝑟 with the reconstruction theorem, we first “expand” the integrand 𝑓 (𝑊 (𝜀)
𝑟 , 𝑟) in

the regularity structure  , obtaining

𝐹 (𝜀)(𝑠) ∶=
𝑀∑
𝑚=0

1
𝑚!

𝜕𝑚1 𝑓 (𝑊
(𝜀)
𝑠 , 𝑠)(Ξ)𝑚.

On the level of the regularity structure, these objects can be multiplied with the “noise” Ξ, which gives
a modeled distribution on  . We will analyze 𝐹 (𝜀) by writing it as the composition of a (random)
modeled distribution with the smooth function 𝑓 . To this end, we need the following.

Lemma 3.19. On the regularity structure ( , 𝐴, 𝐺) introduced in Section 3.1, consider a model (Π,Γ)
that is admissible in the sense that

Π𝑡(Ξ) = (𝐾 ∗ Π𝑡Ξ)(⋅) − (𝐾 ∗ Π𝑡Ξ)(𝑡) .

Then

Ξ(𝑡) ∶= (Ξ) + (𝐾 ∗ Π𝑡Ξ)(𝑡)𝟏 (46)

defines a modeled distribution. More precisely, Ξ ∈ ∞
𝑇

∶=
⋃

𝛾<∞𝛾
𝑇

.

Remark 3.20. Our notion of admissibility mimics (Hairer, 2014, Definition 5.9), which, however, is
not directly applicable here (due to the failure of assumption 5.4 in Hairer, 2014).

Proof. By definition of the space of modeled distribution, we need to understand the action of Γ𝑠𝑡
on all constituting symbols. As {𝟏,(Ξ)} span a sector, that is, a space invariant by the action of the
structure group, it is clear that

Γ𝑠𝑡(Ξ) = (Ξ) + (…)𝟏.

Application of the realization map Π𝑠, followed by evaluation at 𝑠, immediately identifies (… .) with

Π𝑡(Ξ)(𝑠) − Π𝑠(Ξ)(𝑠) = Π𝑡(Ξ)(𝑠) = (𝐾 ∗ Π𝑠Ξ)(𝑠) − (𝐾 ∗ Π𝑡Ξ)(𝑡),

where we used admissibility and Π𝑠Ξ = Π𝑡Ξ in the last step. As a consequence, Γ𝑠𝑡Ξ(𝑡) ≡ Ξ(𝑠) so
that trivially Ξ ∈ 𝛾

𝑇
for any 𝛾 < ∞. □
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For a given (sufficiently smooth) function 𝑓 , and a generic model (Π,Γ) on our regularity structure,
define

𝐹Π ∶ 𝑠 →
𝑀∑
𝑚=0

1
𝑚!

𝜕𝑚1 𝑓 ((Ξ(𝑠), 𝑠)(Ξ)𝑚.

Remark that Ξ(𝑠) is function-like, that is, takes values in the span of symbols with nonnegative
degree. From Hairer (2014, Proposition 3.28), we then have

Ξ(𝑠) = ⟨Ξ(𝑠), 𝟏⟩ = 𝐾 ∗ Π𝑠Ξ.

(In particular, we see that 𝐹 (𝜀)(𝑠) coincides with 𝐹Π when Π is taken as either the approximate or the
renormalized approximate model.) We can also define Ξ𝐹Π simply obtained by multiplying 𝐹Π with
Ξ. The properties of 𝐹Π and Ξ𝐹Π are summarized in the following lemma.

Lemma 3.21. Given 𝑓 ∈ 𝐶2𝑀+3
𝑏

([0, 𝑇 ] ×ℝ), there exists 𝑁 > 0 such that, for all 𝛾 ∈ (1∕2 + 𝜅, 1),

‖𝐹Π‖𝛾
𝑇
(Γ) ≲ ‖Π‖𝑁𝑇 , ‖Ξ𝐹Π‖𝛾+|Ξ|

𝑇
(Γ) ≲ ‖Π‖𝑁𝑇 .

We further have, for two given models (Π,Γ) and (Π′,Γ′),

|||𝐹Π;𝐹Π′ |||𝛾
𝑇
(Γ);𝛾

𝑇
(Γ′) ≲

(‖Π‖𝑁𝑇 + ‖Π′‖𝑁𝑇 )|||(Π,Γ); (Π′,Γ′)|||𝑇 , (47)

|||Ξ𝐹Π; Ξ𝐹Π′ |||𝛾+|Ξ|
𝑇

(Γ);𝛾+|Ξ|
𝑇

(Γ′) ≲
(‖Π‖𝑁𝑇 + ‖Π′‖𝑁𝑇 )|||(Π,Γ); (Π′,Γ′)|||𝑇 , (48)

where the proportionality constants are, in particular, uniform over all 𝑓 with bounded 𝐶2𝑀+3-norm.

Proof. The map𝐹Π is simply the composition (in the sense of Hairer, 2014, Section 4.2) of the function
𝑓 with the modeled distributions Ξ and 𝑠 → 𝑠𝟏. The result then follows from Hairer (2014, Theorem
4.16) (polynomial dependence in ‖Π‖𝑇 is not stated there but is clear from the proof). □

Remark 3.22. In the case when 𝑓 ∈ 𝐶2𝑀+3, but with no global bounds, the result still holds as we
only consider the values of 𝑓 on the range of the continuous function Ξ (which is bounded by
some 𝑅 ≥ 0). The resulting bounds then depend linearly on ‖𝑓‖𝐶2𝑀+3(𝐵𝑅×[0,𝑇 ]).

In the case of the Itô model (Π,Γ) and the approximating renormalized models (Π̂𝜀,Γ𝜀), we simply
denote 𝐹Π by 𝐹 and 𝐹𝜀, respectively. We are then allowed to apply Hairer’s reconstruction theorem
(see Theorem 3.16). Note that we have two reconstruction operators  and 𝜀, because we start with
two models. (𝜀)Ξ𝐹 (𝜀) can be written down explicitly.

Lemma 3.23. We have (a.s.)

𝐹Ξ(𝜑) = ∫ℝ 𝜑(𝑡) 𝑓 (𝑊𝑡, 𝑡) d𝑊𝑡 ,

𝜀𝐹 𝜀Ξ(𝜑) = ∫ℝ 𝜑(𝑡) 𝑓 (𝑊
𝜀
𝑡 , 𝑡) d𝑊

𝜀
𝑡 − ∫ℝ𝒦𝜀(𝑡, 𝑡)𝜕1𝑓 (𝑊 𝜀

𝑡 , 𝑡)𝜑(𝑡) d𝑡 .

Proof. The proof is in the Appendix. □

If we take 𝜑 = 𝟏[0,𝑇 ), we obtain 𝐹Ξ(𝟏[0,𝑇 )) = ∫ 𝑇
0 𝑓 (𝑊 (𝑡), 𝑡) d𝑊 (𝑡), so that it is natural to

choose ℐ̃𝜀
𝑓
(𝑇 ) = 𝜀Ξ𝐹𝜀(𝟏[0,𝑇 )) as an approximation. However, note that the key property of the
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reconstruction operator (𝜀) is that it is locally close to the corresponding model Π(𝜀), so that we,
in fact, have two natural approximations:

Definition 3.24. For 𝐹𝜀 as in Lemma 3.21 and 𝑡 ≥ 0, we set

ℐ̃𝜀
𝑓 (𝑡) ∶= 𝜀Ξ𝐹𝜀(𝟏[0,𝑡]) = ∫

𝑡

0
𝑓 (𝑊 𝜀

𝑟 , 𝑟) d𝑊
𝜀
𝑟 − ∫

𝑡

0
𝒞𝜀(𝑟)𝜕1𝑓 (𝑊 𝜀

𝑟 , 𝑟) d𝑟 .

For a fixed partitions {[𝑡𝜀
𝑙
, 𝑡𝜀
𝑙+1)} of [0, 𝑡) with |𝑡𝜀

𝑙+1 − 𝑡𝜀
𝑙
| ≲ 𝜀, we further set

𝒥𝜀
𝑓 ,𝑀 (𝑡) ∶=

∑
[𝑡𝜀
𝑙
,𝑡𝜀
𝑙+1)

Π̂𝜀
𝑡𝑙
Ξ𝐹𝜀

𝑡𝑙
(𝟏[𝑡𝜀

𝑙
,𝑡𝜀
𝑙+1)

)

=
∑

[𝑡𝜀
𝑙
,𝑡𝜀
𝑙+1)

𝑀∑
𝑚=0

1
𝑚!

𝜕𝑚1 𝑓 (𝑊
𝜀(𝑡𝜀𝑙 ), 𝑡

𝜀
𝑙 )∫

𝑡𝜀
𝑙+1

𝑡𝜀
𝑙

(
𝑊 𝜀(𝑟) −𝑊 𝜀(𝑡𝜀𝑙 )

)𝑚
d𝑊 𝜀(𝑟)

−
𝑀∑
𝑚=1

1
(𝑚 − 1)!

𝜕𝑚1 𝑓 (𝑊
𝜀(𝑡𝜀𝑙 ), 𝑡

𝜀
𝑙 )∫

𝑡𝜀
𝑙+1

𝑡𝜀
𝑙

𝒞𝜀(𝑟)
(
𝑊 𝜀(𝑟) −𝑊 𝜀(𝑡𝜀𝑙 )

)𝑚−1
d𝑟.

We might drop the indices 𝑓 and 𝑓,𝑀 on ℐ̃𝜀 and 𝒥𝜀 if there is no risk of confusion.
The following theorem, which can be seen as the fundamental theorem of our regularity structure

approach to rough pricing, shows that these approximations do both converge.

Theorem 3.25. Fix 𝑇 > 0. For 𝑓 smooth, bounded with bounded derivatives, and ℐ̃𝜀
𝑓
, 𝒥𝜀

𝑓 ,𝑀
as in

Definition 3.24, we have

(i) for any 𝛿 ∈ (0, 1) and any 𝑝 < ∞, there exists 𝐶 such that‖‖‖‖‖ sup
𝑡∈[0,𝑇 ]

|||||ℐ̃𝜀
𝑓 (𝑡) − ∫

𝑡

0
𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟

|||||
‖‖‖‖‖𝐿𝑝

≤ 𝐶𝜀𝛿𝐻 , (49)

(ii) for every 𝛿 ∈ (0, 1), we can pick𝑀 = 𝑀(𝛿,𝐻) large enough, such that for any 𝑝 < ∞, there exists
𝐶 such that ‖‖‖‖‖ sup

𝑡∈[0,𝑇 ]

|||||𝒥𝜀
𝑓 ,𝑀 (𝑡) − ∫

𝑡

0
𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟

|||||
‖‖‖‖‖𝐿𝑝

≤ 𝐶𝜀𝛿𝐻 . (50)

Remark 3.26. With regard to (i), although ℐ̃𝜀
𝑓
(𝑡) does not depend on the choice of 𝑀 , and nor does

its (Itô) limit, the choice of 𝑀 affects the entire regularity structure and so, implicitly also the recon-
struction operator 𝜀 used in the definition of ℐ̃𝜀

𝑓
, as well as the modeled distribution 𝐹𝜀. The latter,

in turn, requires 𝑓 ∈ 𝐶𝑀 for the construction to make sense. If 𝛿 is chosen arbitrarily close to 1, 𝑓
needs to have derivatives of arbitrary order, hence our smoothness assumption.

Remark 3.27. By an easy localization argument, one shows that for 𝑓 smooth (but without any further
bounds), one still has

sup
𝜀∈(0,1]

ℙ

(
sup

𝑡∈[0,𝑇 ]

|||||ℐ̃𝜀
𝑓 (𝑡) − ∫

𝑡

0
𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟

||||| ≤ 𝐶𝜀𝛿𝐻

)
→ 0
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with 𝐶 → ∞. The original rough volatility model due to Gatheral et al. (2018) makes a point that 𝑓
should be of exponential form. Now, the result with 𝐿𝑝-estimates still holds because we only consider
the values of 𝑓 on the range of the continuous function Ξ (which is bounded by some 𝑅 ≥ 0). As
pointed out in Remark 3.22, the bounds then depend linearly on ‖𝑓‖𝐶𝑀+2(𝐵𝑅×[0,𝑇 ]). Behause (Π,Γ) is

Gaussian model, Ξ is a Gaussian process (say, 𝑊 or 𝑊 𝜀), and hence we have Gaussian concentra-
tion of Fernique-type for sup𝑡∈[0,𝑇 ] |Ξ(𝑡)|. So, for instance, if 𝑓 and its derivatives have exponential
growth, we do have the 𝐿𝑝 bounds of the above theorem, for all 𝑝 < ∞. This remark justifies in partic-
ular the choice 𝑓 (𝑥) = exp(𝑥) and 𝑝 = 2 in the numerical discussion of Section 6.

Remark 3.28. In Neuenkirch and Shalaiko (2016), it is shown (in a slightly different setting) that the
strong rate for the standard Euler scheme (or, more precisely, left-point rule) is no better than 𝐻 in
general even when the fractional process is exactly simulated. In that sense, the scheme suggested in
Theorem 3.25 is almost optimal.

Proof of Theorem 3.25. Without loss of generality 𝑇 ≤ 1, otherwise split [0, 𝑇 ] into sufficiently many
subintervals. Let us show (49).

ℐ̃𝜀
𝑓 (𝑡) − ∫

𝑡

0
𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟 = (𝜀(𝐹𝜀Ξ) −(𝐹Ξ))(𝟏[0,𝑡])

= 𝑡
(
Π̂𝜀
0Ξ𝐹

𝜀(0) − Π0Ξ𝐹 (0))
)
(𝑡−1𝟏[0,𝑡])

+ 𝑡
(𝜀Ξ𝐹𝜀 − Π̂𝜀

0Ξ𝐹
𝜀(0) − (Ξ𝐹 − Π0Ξ𝐹 (0))

)
(𝑡−1𝟏[0,𝑡)) .

We then obtain that the error is of order 𝜀𝛿𝜅, 𝛿 ∈ (0, 1), using Theorem 3.14, Lemma 3.21 and (41) for
the first term, and also Theorem 3.16 for the second term. Letting 𝜅 ↑ 𝐻 and 𝑀 ↑ ∞, our total rate
can be chosen arbitrary close to 𝐻 .

To obtain the second estimate, we can bound ℐ̃𝜀
𝑓
(𝑡) −𝒥𝜀

𝑓 ,𝑀
(𝑡) with the first inequality in

Theorem 3.16. □

3.3 Nonconstant versus constant renormalization
If 𝛿𝜀 comes from a mollifier (cf. Example 3.6), then the renormalization 𝒞𝜀 = 𝒦𝜀(⋅, ⋅) that was applied
in Theorem 3.14 and thus in Definition 3.24 is a constant, which is the familiar concept one encounters
in the study of singular SPDE (Chandra & Hairer, 2016; Hairer, 2013, 2014). If 𝛿𝜀 comes from wavelets
such as the Haar basis, 𝒦𝜀(⋅, ⋅) is usually not constant but a periodic function with period 𝜀. Thus, we
see that our analysis gives rise to a “nonconstant renormalization.” It is natural to ask if one can do
with constant renormalization after all. Assume that 𝒞𝜀 is periodic with mean

𝐶𝜀 =
1
𝜀 ∫

𝜀

0
𝒞𝜀(𝑡)𝑑𝑡.

From Lemma 3.13, it follows that 𝒞𝜀 (and its mean) are bounded by 𝜀𝐻−1∕2, uniformly in 𝑡. Putting all
this together, it easily follows that |⟨𝒞𝜀 − 𝐶𝜀, 𝜑⟩| ≲ 𝜀𝛼+𝐻−1∕2, uniformly over all 𝜑 bounded in 𝐶𝛼 ,
with convergence to zero when 𝛼 > 1∕2 −𝐻 . As a consequence, taking 𝜑(𝑡) = 𝑓 (𝑊 𝜀), for smooth
𝑓 , we can clearly apply this estimate with any 𝛼 < 𝐻 . Hence, by equating the constraints on 𝛼, we
arrive at 𝐻 > 1∕4. The practical consequence regarding part (i) of Theorem 3.25 then is that we
can indeed replace nonconstant renormalization by constant renormalization, however at the prize of
restricting to𝐻 > 1∕4 and with an according loss on the convergence rate. Interestingly, our numerical



BAYER ET AL. 809

simulation suggests that no loss occurs and constant renormalization works for any 𝐻 > 0. While we
have refrained from investigating this (technical) point further,5 we can understand the mechanism at
work by looking at the following toy example: Consider the Itô-integral ∫ 1

0 𝑊𝐻
𝑡 𝑑𝑊𝑡 where 𝑊𝐻 is an

fBm, but now with Hurst parameter 𝐻 > 1∕2, built, say, as Volterra process over 𝑊 . Using Young
integration theory, one can give a pathwise argument that shows that Riemann–Stieltjes approxima-
tions converge a.s. (with vanishing rate as 𝐻 → 1∕2). However, we know from stochastic theory (Itô
integration) that this convergence holds in 𝐿2 (and then in probability) for any 𝐻 > 0. We would thus
expect that constant renormalization is still valid when 𝐻 ∈ (0, 1∕4], but now the difference only van-
ishes in mean-square sense. This conjecture was checked numerically in Section 6.

3.4 The case of the Haar basis
The following special case of the above approximations to ∫ 𝑡

0 𝑓 (𝑊𝑟, 𝑟)d𝑊𝑟 is of particular interest for
our purposes. We next collect some more concrete formulas that arise in this case.

Let 𝜀 = 2−𝑁 , 𝜙 ∶= 𝟏[0,1), and 𝜙𝑙,𝑁 = 2𝑁∕2𝜙(2𝑁 ⋅ −𝑙), 𝑙 ∈ ℤ. The corresponding approximation 𝛿𝜀

to the Dirac delta is then

𝛿𝜀(𝑥, 𝑦) =
∑
𝑙∈ℤ

𝜙𝑙,𝑁 (𝑥)𝜙𝑙,𝑁 (𝑦) = 2𝑁𝟏[⌊𝑥2𝑁⌋2−𝑁,(⌊𝑥2𝑁⌋+1)2−𝑁 )(𝑦), 𝑥, 𝑦 ∈ ℝ.

The mollified Volterra kernel (40) then takes the form

𝒦𝜀(𝑢, 𝑣) = ∫
∞

0 ∫
∞

0
𝛿𝜀(𝑣, 𝑥1)𝛿𝜀(𝑥1, 𝑥2)𝐾(𝑢 − 𝑥2)d𝑥1d𝑥2

=
√
2𝐻 ⋅ 2𝑁 ∫[⌊𝑣2𝑁⌋2−𝑁,(⌊𝑣2𝑁⌋+1)2−𝑁∧𝑢)

|𝑢 − 𝑥|𝐻−1∕2𝟏⌊𝑣2𝑁⌋2−𝑁≤𝑢 d𝑥

=
√
2𝐻

1∕2 +𝐻
2𝑁×

×
(|𝑢 − ⌊𝑣2𝑁⌋2−𝑁 |1∕2+𝐻 − |𝑢 − (⌊𝑣2𝑁⌋ + 1)2−𝑁 ∧ 𝑢)|1∕2+𝐻)𝟏⌊𝑣2𝑁⌋2−𝑁≤𝑢 .

A special role is played by the diagonal function as a renormalization,

𝒞𝜀(𝑡) = 𝒦𝜀(𝑡, 𝑡) =
√
2𝐻 2𝑁

1∕2 +𝐻
|𝑡 − ⌊𝑡2𝑁⌋2−𝑁 |1∕2+𝐻 . (51)

We additionally have

𝑊 𝜀
𝑡 = ∫

𝑡

0
𝐾(𝑡 − 𝑟) d𝑊 𝜀

𝑟 =
∞∑
𝑙=0

𝑍𝑙 ∫
𝑡

0
𝐾(𝑡 − 𝑟)𝜙𝑘,𝑁 (𝑟)d𝑟

=
∞∑
𝑙=0

2−𝑁∕2𝒦𝜀(𝑡, 𝑙2−𝑁 )𝑍𝑙 =
⌊𝑡2𝑁⌋∑
𝑙=0

2−𝑁∕2𝒦𝜀(𝑡, 𝑙2−𝑁 )𝑍𝑙 ,
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where 𝑍𝑙 = ⟨�̇� , 𝜙𝑙,𝑁⟩ are i.i.d. 𝑁(0, 1)-distributed variables. As our approximation, we can finally
take ℐ𝜀

𝑓
(𝑡) from Definition 3.24 with partition {[𝑡𝑙, 𝑡𝑙+1)} = {[𝑙2−𝑁, (𝑙 + 1)2−𝑁 ∧ 𝑡)}, which gives us

𝒥𝜀
𝑓 ,𝑀 (𝑡) =

⌈𝑡2𝑁⌉−1∑
𝑙=0

𝑀∑
𝑚=0

1
𝑚!

𝜕𝑚1 𝑓 (𝑊
𝜀
𝑡𝑙
, 𝑡𝑙)2𝑁∕2𝑍𝑙 ∫

𝑡𝑙+1

𝑡𝑙

(
𝑊 𝜀

𝑟 −𝑊 𝜀
𝑡𝑙

)𝑚
d𝑟−

−
𝑀∑
𝑚=1

1
(𝑚 − 1)!

𝜕𝑚1 𝑓 (𝑊
𝜀
𝑡𝑙
, 𝑡𝑙+1)∫

𝑡𝑙+1

𝑡𝑙

𝒞𝜀(𝑟)
(
𝑊 𝜀

𝑟 −𝑊 𝜀
𝑡𝑙

)𝑚−1
d𝑟

and

ℐ̃𝜀
𝑓 (𝑡) =

⌈𝑡2𝑁⌉−1∑
𝑙=0

∫
𝑡𝑙+1

𝑡𝑙

[2𝑁∕2𝑍𝑙 ⋅ 𝑓 (𝑊 𝜀
𝑟 , 𝑟) d𝑟 −𝒞𝜀(𝑟) 𝜕1𝑓 (𝑊 𝜀

𝑟 , 𝑟)] d𝑟.

As explained at the end of the last section, 𝒞𝜀(𝑟) in these formulas could be replaced by its local mean,
the constant

2𝑁 ∫
2−𝑁

0
𝒞𝜀(𝑟) d𝑟 =

√
2𝐻

(𝐻 + 1∕2)(𝐻 + 3∕2)
2𝑁(1∕2−𝐻) .

4 THE FULL ROUGH VOLATILITY REGULARITY
STRUCTURE

4.1 Basic setup
We want to add an independent Brownian motion, so that we take an additional symbol Ξ. We again
fix 𝑀 and define

𝑆 ∶= 𝑆 ∪ {Ξ,Ξ(Ξ),… ,Ξ(Ξ)𝑀},  ∶=
⨁
𝜏∈𝑆

ℝ𝜏. (52)

We fix |Ξ| = −1∕2 − 𝜅 and the homogeneity of the other symbols is defined multiplicatively as before.
We also set 𝑊𝑡 = ∫ 𝑡

0 𝐾(𝑠, 𝑡)𝑑𝑊𝑠 with 𝐾(𝑠, 𝑡) =
√
2𝐻|𝑡 − 𝑠|𝐻−1∕2𝟏𝑡>𝑠, where 𝑊 and 𝑊 are indepen-

dent Brownian motions.
We extend the canonical model (Π,Γ) to this regularity structure by defining

Π𝑠Ξ(Ξ)𝑚 ∶=
{
𝑡 →

d
d𝑡

(
∫

𝑡

𝑠

(
𝑊 (𝑢) −𝑊 (𝑠)

)𝑚
𝑑𝑊 (𝑢)

)}
(the above integral being in Itô sense), and6

Γ𝑡𝑠
(
Ξ(Ξ)𝑚) = ΞΓ𝑡𝑠((Ξ)𝑚).

Arguments similar to the proof of Lemma 3.9 show that this indeed defines a model on  .
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4.2 Small noise model large deviation
Given 𝛿 > 0, we consider the “small-noise” model (Π𝛿,Γ𝛿) on 𝑇 obtained by replacing 𝑊 ,𝑊 by
𝛿𝑊 , 𝛿𝑊 , which simply means that

Π𝛿𝟏 = 1,

Π𝛿(Ξ)𝑚 = 𝛿𝑚Π(Ξ)𝑚,
Π𝛿Ξ(Ξ)𝑚 = 𝛿𝑚+1ΠΞ(Ξ)𝑚,
Π𝛿Ξ(Ξ)𝑚 = 𝛿𝑚+1ΠΞ(Ξ)𝑚,

and

Γ𝛿𝑡𝑠𝟏 = 𝟏,Γ𝛿𝑡𝑠Ξ = Ξ,Γ𝛿𝑡𝑠Ξ = Ξ,

Γ𝛿𝑡𝑠(Ξ) = (Ξ) + 𝛿(𝑊 (𝑡) −𝑊 (𝑠))𝟏

Γ𝛿𝑡𝑠𝜏𝜏
′ = Γ𝛿𝑡𝑠𝜏 ⋅ Γ

𝛿
𝑡𝑠𝜏

′ , for 𝜏, 𝜏′ ∈ 𝑆.

Finally, for ℎ = (ℎ1, ℎ2) in  ∶= 𝐿2([0, 𝑇 ])2, we consider the deterministic model (Πℎ,Γℎ) defined
by

Πℎ𝟏 = 1,

Πℎ
𝑠Ξ = ℎ1, Πℎ

𝑠Ξ = ℎ2,

Πℎ
𝑠(Ξ)(𝑡) = ∫

𝑡∨𝑠

0
(𝐾(𝑢, 𝑡) −𝐾(𝑢, 𝑠))ℎ1(𝑢)𝑑𝑢,

Πℎ𝜏𝜏′ = Πℎ𝜏Πℎ𝜏′ for 𝜏, 𝜏′ ∈ 𝑆

and

Γℎ𝑡𝑠𝟏 = 𝟏,Γℎ𝑡𝑠Ξ = Ξ,Γℎ𝑡𝑠Ξ = Ξ,

Γℎ𝑡𝑠(Ξ) = (Ξ) + (∫
𝑡∨𝑠

0
(𝐾(𝑢, 𝑡) −𝐾(𝑢, 𝑠))ℎ1(𝑢)𝑑𝑢)𝟏

Γℎ𝑡𝑠𝜏𝜏
′ = Γℎ𝑡𝑠𝜏 ⋅ Γ

ℎ
𝑡𝑠𝜏

′ , for 𝜏, 𝜏′ ∈ 𝑆.

The following lemma and theorem are proved in Appendix B.

Lemma 4.1. For each ℎ ∈ , Πℎ does define a model. In addition, the map ℎ ∈  → Πℎ is
continuous.

Theorem 4.2. The models Π𝛿 satisfy a LDP in the space of models with rate 𝛿2 and rate function given
by

𝐽 (Π) ∶=

{
1
2‖ℎ‖2 if Π = Πℎ for some ℎ ∈ ,

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
.

As an immediate corollary, we have the following corollary.
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Corollary 4.3. For 𝛿 small, ℙ(𝑌 𝛿
1 ≈ 𝑦) ≈ exp[−𝐼(𝑦)∕𝛿2], in the precise sense of a large deviation

principle (LDP) for

𝑌 𝛿
1 ∶= ∫

1

0
𝑓 (𝛿𝐻𝑊𝑠)𝛿

(
𝜌𝑑𝑊𝑠 + 𝜌𝑑𝑊 𝑠

)
with speed 𝛿2, and rate function given by

𝐼(𝑦) ∶= inf
ℎ1∈𝐿2([0,1])

{
1
2
‖ℎ1‖2𝐿2 +

(
𝑦 − 𝐼1(ℎ1)

)2
2𝐼2(ℎ1)

}
(53)

where

𝐼1(ℎ1) = 𝜌∫
1

0
𝑓

(
∫

𝑠

0
𝐾(𝑢, 𝑠)ℎ1(𝑢)𝑑𝑢

)
ℎ1(𝑠)𝑑𝑠, 𝐼2(ℎ1) = ∫

1

0
𝑓

(
∫

𝑠

0
𝐾(𝑢, 𝑠)ℎ1(𝑢)𝑑𝑢

)2
𝑑𝑠.

Remark 4.4. This improves a similar result obtained in Forde and Zhang (2017). In fact, we now cover
functions 𝑓 of exponential form, as required in rough volatility modeling (Bayer et al., 2016, 2019;
Gatheral et al., 2018).

Proof. Note that

𝑌 𝛿
1 =

⟨𝛿𝐹 𝛿 ⋅ (𝜌Ξ + 𝜌Ξ), 1[0,1]
⟩
,

where 𝐹 𝛿 ≡ 𝐹Π𝛿
as defined in Lemma 3.21. By the contraction principle and the continuity estimate

from Theorem 3.16, it holds that 𝑌 𝛿
1 satisfies an LDP, with rate function given by

𝐼(𝑦) = inf{1
2

(‖ℎ1‖2𝐿2 + ‖ℎ2‖2𝐿2

)
, 𝑦 =

⟨ℎ𝐹 ℎ ⋅ (𝜌Ξ + 𝜌Ξ), 1[0,1]
⟩
},

where we used 𝐹ℎ ≡ 𝐹Πℎ
. It then suffices to note that⟨ℎ

(
𝐹ℎ ⋅ (𝜌Ξ + 𝜌Ξ)

)
, 1[0,1]

⟩
= ∫

1

0
𝑓

(
∫

𝑠

0
𝐾(𝑢, 𝑠)ℎ1(𝑢)𝑑𝑢

)(
𝜌ℎ1(𝑠)𝑑𝑠 + 𝜌ℎ2(𝑠)𝑑𝑠

)
and optimizing over ℎ2 for fixed ℎ1 we obtain (53). □

We note that due to Brownian, respectively, fractional Brownian scaling, small-noise large deviations
translate immediately to short-time large deviations, compare Forde and Zhang (2017).

Although the rate function here is not given in a very useful form, it is possible to expand it in small
𝑦 and so compute (explicitly in terms of the model parameters) higher order moderate deviations. In
Bayer et al. (2019), this was related to implied volatility skew expansions.

5 ROUGH VOLTERRA DYNAMICS FOR VOLATILITY

5.1 Motivation from market micro-structure
Rosenbaum and coworkers, (El Euch et al., 2018; El Euch & Rosenbaum, 2019, 2018) show that styl-
ized facts of modern market microstructure naturally give rise to fractional dynamics and leverage
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effects. Specifically, they construct a sequence of Hawkes processes, suitably rescaled in time and
space, which converges in law to a rough volatility model of rough Heston form

𝑑𝑆𝑡∕𝑆𝑡 =
√
𝑣𝑡𝑑𝐵𝑡 ≡ √

𝑣
(
𝜌𝑑𝑊𝑡 + 𝜌𝑑𝑊 𝑡

)
, (54)

𝑣𝑡 = 𝑣0 + ∫
𝑡

0

𝑎 − 𝑏𝑣𝑠
(𝑡 − 𝑠)1∕2−𝐻

𝑑𝑠 + ∫
𝑡

0

𝑐
√
𝑣𝑠

(𝑡 − 𝑠)1∕2−𝐻
𝑑𝑊𝑠.

(As earlier, 𝑊 ,𝑊 are independent Brownian motions.) Similar to the case of the classical Heston
model, the square root provides both pain (with regard to any methods that rely on sufficient smooth
coefficients) and comfort (an affine structure, here infinite-dimensional, which allows for closed-form
computations of moment-generating functions). Arguably, there is no real financial reason for the
square-root dynamics7 and ongoing work attempts to modify the above square-root dynamics, such
as to obtain (something close to) log-normal volatility. We note that log-normal volatility was a key
feature of the rough volatility model discussed in Gatheral et al. (2018). This motivates the study of
more general dynamic rough volatility models of the form

𝑑𝑆𝑡∕𝑆𝑡 = 𝑓 (𝑍𝑡)𝑑𝐵𝑡 ≡ 𝑓 (𝑍𝑡)
(
𝜌𝑑𝑊𝑡 + 𝜌𝑑𝑊 𝑡

)
, (55)

𝑍𝑡 = 𝑧 + ∫
𝑡

0
𝐾(𝑠, 𝑡)𝑣(𝑍𝑠)𝑑𝑠 + ∫

𝑡

0
𝐾(𝑠, 𝑡)𝑢(𝑍𝑠)𝑑𝑊𝑠, (56)

with sufficiently nice functions 𝑓, 𝑢, 𝑣. (While 𝑓 (𝑥) =
√
𝑥 is a possible choice in what follows, we

assume 𝑢, 𝑣 ∈ 𝐶3 for a local solution theory and then, in fact, impose 𝑢, 𝑣 ∈ 𝐶3
𝑏

for global existence.
One clearly expects nonexplosion under, for example, linear growth, but in order not to stray too far
from our main line of investigation, we refrain from a discussion.) Remark that 𝑓 (𝑧) plays the role of
spot volatility. Further note that the choice 𝑧 = 0, 𝑣 ≡ 0, 𝑢 ≡ 1 brings us back to the “simple” case
with (rough stochastic) volatility 𝑓 (𝑍𝑡) = 𝑓 (𝑊𝑡) considered in earlier sections.

Equation (55) fits, with some good will, into the existing theory of stochastic Volterra equations
with singular kernels (e.g., Pardoux & Protter, 1990 or Coutin & Decreusefond, 2001).8

5.2 Regularity structure approach
We insist that (55) is not a classical Itô-SDE (solutions will not be semimartingales), nor a rough
differential equation (in the sense of rough paths, driven by a Gaussian rough path as in P. K. Friz &
Hairer, 2014, Chapter 10). If rough paths have established themselves as a powerful tool to analyze
classical Itô-SDE, we here make the point that Hairer’s theory is an equally powerful tool to analyze
stochastic Volterra (respectively, mixed Itô-Volterra) equations in the singular regime of interest.

As preliminary step, we have to find the correct model space, spanned by symbols that arise by
formal Picard iteration. To this end, rewrite (55) as an equation for modeled distributions,

 = (𝑈 () ⋅ Ξ) + (… .)𝟏, (57)

from which one can guess (or rigorously derive along Hairer, 2014, Section 8.1) the need for the
symbols

𝟏,(Ξ),(Ξ)2,(Ξ(Ξ)),…
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We have degrees |𝟏| = 0, |(Ξ)| = 𝐻 − 𝜅. For subsequent symbols, the degree is computed as

(1∕2 +𝐻) × {number of } + (−1∕2 − 𝜅) × {number of Ξ}.

For a modeled distribution, (𝑡) takes values in the linear span of sufficiently many symbols, the (min-
imal) number of which is dictated by the Hurst parameter 𝐻 . Loosely speaking,  ∈ 𝛾 indicates an
expansions with 𝛾-error estimate, in practice easy to see from the degree of the lowest degree symbols
that do not figure in the expansion. For example, in case of a “level-2 expansion,” we can expect

(𝑡) = (… .)𝟏 + (… .)(Ξ) ∈ 2(𝐻−𝜅)
0

as |(Ξ)2| = |(Ξ(Ξ))| = 2𝐻 − 2𝜅. It follows from general theory (Hairer, 2014, Theorem 4.16) that
if  ∈ 𝛾

0, then so is 𝑈 (), the composition with a smooth function, and by Hairer (2014, Theorem
4.7), the product with Ξ ∈ ∞

−1∕2−𝜅 is a modeled distribution in 𝛾−1∕2−𝜅 . For both reconstruction and
convolution with singular kernels, one needs modeled distributions with positive degree 𝛾 − 1∕2 − 𝜅 >

0. Given 𝐻 ∈ (0, 1∕2], we can then determine which symbols (up to which degree) are required in the
expansion. As earlier, fix an integer

𝑀 ≥ max{𝑚 ∈ ℕ|𝑚 ⋅ (𝐻 − 𝜅) − 1∕2 − 𝜅 ≤ 0}

(so that (𝑀 + 1).(𝐻 − 𝜅) − 1∕2 − 𝜅 > 0) and see that  ∈ (𝑀+1).(𝐻−𝜅)
0 will do. When𝐻 > 1∕4, and

by choosing 𝜅 > 0 small enough, we see that 𝑀 = 1 will do. That is, the symbols required to describe
 are {𝟏,(Ξ)} and if one adds the symbols required to describe the right-hand side, one ends up with
the level-2 model space spanned by

{Ξ,Ξ(Ξ), 𝟏,(Ξ)},
which is exactly the model space for the “simple” rough pricing regularity structure, (28) in case 𝑀 =
1. When 𝐻 ≤ 1∕4, this precise correspondence is no longer true. To wit, in case 𝐻 ∈ (1∕3, 1∕4],
taking 𝑀 = 2 accordingly, solving (56) on the level of modeled distributions will require a (“level-3”)
model space given by

⟨Ξ,Ξ(Ξ),Ξ(Ξ)2,Ξ(Ξ(Ξ)), 𝟏,(Ξ),(Ξ)2,(Ξ(Ξ))⟩,
which is strictly larger than the corresponding level-3 simple model space given in (28). In general,
one needs to consider an extended model space 𝑇 = ⟨𝑆⟩, so as to have, for any 𝑚 ≥ 0,

𝜏1,… , 𝜏𝑚 ∈ �̂� ⇒ Ξ(𝜏1)…(𝜏𝑚),(𝜏1)…(𝜏𝑚) ∈ �̂�,

(with the understanding that only finitely many such symbols are needed, depending on𝐻 as explained
above). As a result, symbols such as

Ξ(Ξ((Ξ))𝑚), 𝑚 ≥ 0, (Ξ((Ξ((Ξ))𝑚)𝑚′ ), 𝑚, 𝑚′ ≥ 0, …

will appear. At this stage, a tree notation (omnipresent in the works of Hairer) would come in handy
and we refer to Bruned, Chevyrev, Friz, amd Preiß (2019) (and the references therein) for a recent
attempt to reconcile the tree formalism of branched rough path (Gubinelli, 2010; Hairer & Kelly, 2015)
and the most recent algebraic formalism of regularity structures. (In a nutshell, the simple case (28)
corresponds to trees where one node has𝑚 branches; in the present nonsimple case, symbols branching
can happen everywhere.) Carrying out the following construction in the general case of fixed 𝐻 > 0
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is certainly possible;9 however, the algebraic complexity is essentially the one from branched rough
paths, and hence, the general case requires a Hopf algebraic (Connes–Kreimer, Grossman–Larson,
etc.) construction of the structure group (a.k.a. positive renormalization). Although this, and negative
renormalization, is well understood (Bruned, Hairer, & Zambotti, 2019; Hairer, 2014, also Bruned
et al., 2019, for a rough path perspective), all complete exposition would lead us to far astray from the
main topic of this paper. Hence, for simplicity only, we shall restrict from here on to the level-2 case
𝐻 > 1∕4 (with 𝑀 = 1 accordingly) but will mention general results whenever useful.

5.3 Solving for rough volatility
We rewrite (56) as an equation for modeled distributions in 𝛾 ,

 = 𝑧𝟏 +(𝑈 () ⋅ Ξ + 𝑉 ()). (58)

(Here 𝑈, 𝑉 are the operators associated with composition with 𝑢, 𝑣 ∈ 𝐶𝑀+2, respectively.) We also
impose

𝛾 ∈ (1∕2 + 𝜅, 1)

which is clearly necessary such as to have the product 𝑈 () ⋅ Ξ in a modeled distribution space of
positive parameter, so that reconstruction, convolution, and so on, make sense. Let 𝐻 > 1∕4,𝑀 = 1
and pick 𝜅 ∈ (0, 4𝐻−1

6 ) so that (𝑀 + 1).(𝐻 − 𝜅) − 1∕2 − 𝜅 > 0. As explained in the previous section,
this exactly allows us to work in the familiar structure of Section 3.1. That is, with 𝑀 = 1,

 = ⟨Ξ,Ξ(Ξ), 𝟏,(Ξ)⟩,
with index set and structure group as given in that section. This structure is equipped with the Itô-model
and its (renormalization) approximations. Equation (58) critically involves the convolution operator 
acting on𝛾 . The general construction (Hairer, 2014, Section 5) is among the most technical in Hairer’s
work, and, in fact, not directly applicable (our kernel 𝐾 , although 𝛽-regularizing with 𝛽 = 1∕2 +𝐻

fails the assumption 5.4 in Hairer, 2014), so we shall be rather explicit.

Lemma 5.1. On the regularity structure ( , 𝐴, 𝐺) of Section 3.1 with 𝑀 = 1, consider a model (Π,Γ)
that is admissible in the sense

Π𝑡(Ξ) = (𝐾 ∗ Π𝑡Ξ)(⋅) − (𝐾 ∗ Π𝑡Ξ)(𝑡).

Let 𝛾 > 0, 𝐹 ∈ 𝛾 and set10

𝐹 ∶ 𝑠 ∈ [0, 𝑇 ] → (𝐹 (𝑠)) + (𝐾 ∗ 𝐹 )(𝑠)𝟏.

Then, (i)  maps 𝛾 → min{𝛾+𝛽,1} and (ii) (𝐹 ) = 𝐾 ∗ 𝐹 , that is, convolution commutes
with reconstruction.

Remark 5.2. Hairer (2014, Theorem 5.2) suggests the estimate  maps 𝛾 → 𝛾+𝛽 . The difference
to our baby Schauder estimate stems from the fact, unlike assumption 5.3 in Hairer (2014, p. 64), we
do not assume that our regularity structure contains the polynomial structure.
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Proof. (Sketch) The special case 𝐹 ≡ Ξ ∈ ∞ was already treated in Lemma 3.19. We only show that,
in the general case,  necessarily has the stated form but will not check the properties. It is enough to
consider 𝐹 with values in ⟨Ξ,ΞΞ⟩ and make the ansatz

(𝐹 )(𝑠) ∶= 𝐹 (𝑠) + (…)𝟏 .

Applying reconstruction, together with Hairer (2014, Proposition 3.28), we see that (𝐹 ) ≡ (…),
which, in turn, must equal 𝐾 ∗ 𝐹 , provided that we postulate validity of (ii). This is the given defi-
nition of 𝐹 . □

We return to our goal of solving

 = 𝑧𝟏 +(𝑈 () ⋅ Ξ + 𝑉 ()), (59)

noting perhaps that 𝑈 () makes sense for every function-like modeled distribution, say 𝐹 (𝑡) =
𝐹0(𝑡)𝟏 +

∑𝑀
𝑘=1 𝐹𝑘(𝑡)(Ξ)𝑘 ∈ + ∶= ⟨𝟏,(Ξ),… , (Ξ)𝑀⟩, in which case

𝑈 (𝐹 )(𝑡) = 𝑢(𝐹0(𝑡))𝟏 + 𝑢′(𝐹0(𝑡))
𝑀∑
𝑘=1

𝐹𝑘(𝑡)(Ξ)𝑘. (60)

(Similar remarks apply to 𝑉 , the composition operator associated with 𝑣 ∈ 𝐶𝑀+2). Recall 𝑀 = 1.

Theorem 5.3. For any admissible model (Π,Γ) and 𝑢, 𝑣 ∈ 𝐶𝑀+2
𝑏

(ℝ), for any 𝑇 > 0, Equation (59)
has a unique solution in 𝛾 (+), and the map (𝑢, 𝑣,Π) →  is locally Lipschitz in the sense that if
 and ̃ are the solutions corresponding, respectively, to (𝑢, 𝑣,Π) and (�̃�, 𝑣, Π̃),

|||; ̃|||𝛾
𝑇
≲ ‖𝑢 − �̃�‖𝐶𝑀+2

𝑏
+ ‖𝑣 − 𝑣‖𝐶𝑀+2

𝑏
+ |||(Π,Γ); (Π̃, Γ̃)|||𝑇 ,

with the proportionality constant being bounded when the (respectively, 𝐶𝑀+2
𝑏

and model) norms of
the arguments stay bounded.

In addition, if (Π,Γ) is the canonical Itô model (associated with Brownian, respectively, fBm, 𝐻 >

1∕4), then 𝑍 =  solves (55) in the Itô sense.

Remark 5.4. 𝑍 =  is clearly the (unique) reconstruction of the (unique) solution to the abstract
problem. We also checked that 𝑍 is indeed a solution for the Itô-Volterra equation. However, if one
desires to know that𝑍 is the unique strong solution to the stochastic Itô-Volterra equation, it is clear that
one has to resort to uniqueness results of the stochastic theory, see, for example, Coutin and Decreuse-
fond (2001).

Proof. The well-posedness and continuous dependence on the parameters essentially follows from
results of Hairer (2014), and details are spelled out in Appendix C.

The fact that the reconstruction of the solution solves the Itô equation can be obtained by considering
approximations, as is done in Hairer and Pardoux (2015, Theorem 6.2) or P. K. Friz and Hairer (2014,
Chapter 5). □

Using the large deviation results obtained in the previous subsection, we can directly obtain an LDP
for the log-price

𝑋𝑡 = ∫
𝑡

0
𝑓 (𝑍𝑠)(𝜌𝑑𝑊𝑠 + 𝜌𝑑𝑊 𝑠) −

1
2 ∫

𝑡

0
𝑓 2(𝑍𝑠)𝑑𝑠.
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For square-integrable ℎ, let 𝑧ℎ be the unique solution to the integral equation

𝑧ℎ(𝑡) = 𝑧 + ∫
𝑡

0
𝐾(𝑠, 𝑡)𝑢(𝑧ℎ(𝑠))ℎ(𝑠)𝑑𝑠.

Corollary 5.5. Let 𝐻 ∈ (1∕4, 1∕2] and 𝑓 smooth (without boundedness assumption). Then 𝑡𝐻−1
2𝑋𝑡

satisfies an LDP with speed 𝑡2𝐻 and rate function given by

𝐼(𝑥) = inf
ℎ∈𝐿2([0,1])

⎧⎪⎨⎪⎩
1
2
‖ℎ‖2

𝐿2 +
(
𝑥 − 𝐼𝑧1 (ℎ)

)2
2𝐼𝑧2 (ℎ)

⎫⎪⎬⎪⎭ (61)

where

𝐼𝑧1 (ℎ) = 𝜌∫
1

0
𝑓 (𝑧ℎ(𝑠))ℎ(𝑠)𝑑𝑠, 𝐼𝑧2 (ℎ) = ∫

1

0
𝑓 (𝑧ℎ(𝑠))2𝑑𝑠.

Remark 5.6. Concerning the case 𝐻 ≤ 1∕4, the following proof extends to any 𝐻 > 0, provided that
one builds the correct regularity structure as discussed at the end of Section 5.2. (In particular, the
proof of Theorem 4.2 for obtaining Schilder-type large deviations for the appropriate Itô-model extends
immediately.)

Proof. We ignore the second part ∫ 𝑡
0 (…)𝑑𝑠 in 𝑋𝑡, which is 𝑂(𝑡) = 𝑜(𝑡

1
2−𝐻 ) as 𝑓 is bounded. Let

𝑋𝑡 = ∫ 𝑡
0 𝑓 (𝑍𝑠)(𝜌𝑑𝑊𝑠 + 𝜌𝑑𝑊 𝑠). By scaling, we see that 𝑡𝐻−1

2𝑋𝑡 is equal in law to 𝑋𝛿
1 , where 𝛿 = 𝑡𝐻

and 𝑋𝛿 , 𝑍𝛿 are defined in the same way as 𝑋, 𝑍 with 𝑊 ,𝑊 replaced by 𝛿𝑊 , 𝛿𝑊 and 𝑣 replaced by

𝑣𝛿 = 𝛿1+
1
2𝐻 ℎ. We then note that

𝑋𝛿
1 =

⟨𝛿𝐹 (𝛿)(𝜌Ξ + 𝜌Ξ), 1[0,1]
⟩
=∶ Ψ(Π𝛿, 𝑣𝛿),

where Ψ is locally Lipschitz by Theorem 5.3. We can then directly combine the fact that Π𝛿 satisfies
an LDP (Theorem 4.2) with a contraction principle such as (Hairer and Weber, 2015, Lemma 3.3), to
obtain that 𝑋𝛿

1 satisfies an LDP with rate function

𝐼(𝑥) = inf
{1
2
(‖ℎ‖2

𝐿2 + ‖ℎ‖2
𝐿2 , 𝑥 = Ψ(Π(ℎ,ℎ), 0)

}
.

It then suffices to note that 𝑧ℎ is exactly  for  the solution to (59) corresponding to a model Π(ℎ,ℎ)

and with ℎ ≡ 0, and to optimize separately over ℎ as in the proof of Corollary 4.3. □

We also have an approximation result. (Assume 𝑢, 𝑣 to be smooth with three bounded derivatives.)

Corollary 5.7. Let 𝐻 > 1∕4 (but see remark below). Then 𝑍 = lim𝑍𝜀, uniformly on compacts and
in probability, where

𝑍𝜀
𝑡 = 𝑧 + ∫

𝑡

0
𝐾(𝑠, 𝑡)

(
𝑢(𝑍𝜀

𝑠 )𝑑𝑊
𝜀
𝑠 + (𝑣(𝑍𝜀

𝑠 ) −𝒞𝜀(𝑠)𝑢𝑢′(𝑍𝜀
𝑠 )𝑑𝑠

)
. (62)

Remark 5.8. Replacing the renormalization function 𝒞𝜀by its mean is possible, provided 𝐻 > 1∕4.
However, unlike the discussion at the end of Section 3.2, this is no more a consequence of quantifying
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the distributional convergence. In the present context, this is achieved by checking directly model-
convergence, which, fortunately, is not much harder. We leave details to the interested reader.

Remark 5.9. In contrast to the previous statement, the above result is more involved for 𝐻 ∈ (0, 1∕4]
and additional renormalization terms appear, the general description of which would benefit from pre-
Lie products, as recently introduced Bruned et al. (2019).

Proof. Thanks to Theorem 3.14 and Theorem 5.3, it follows from continuity of reconstruction that

𝑍 =  = lim
𝜀→0

𝜀𝜀,

so that the only thing to do is check that 𝑍𝜀 solves (62). Note that (59) implies that one has (omitting
upper 𝜀s at all normal and calligraphic 𝑍 …)

(𝑡) = 𝑍𝑡𝟏 + 𝑢(𝑍𝑡)(Ξ),
and, with (60),

𝑈 ((𝑡))Ξ = 𝑢(𝑍𝑡)Ξ + 𝑢′𝑢(𝑍𝑡)(Ξ)Ξ.
But then, because Π̂𝜀 is a “smooth” model in the sense of remark 3.15 in Hairer (2014), one has

𝜀(𝑈 (𝜀)Ξ)(𝑡) = Π̂𝜀
𝑡 (𝑈 (𝜀(𝑡))Ξ)(𝑡)

= 𝑢(𝑍𝜀
𝑡 )(Π̂

𝜀
𝑡Ξ)(𝑡) + 𝑢′𝑢(𝑍𝜀

𝑡 )(Π̂
𝜀
𝑡Ξ(Ξ))(𝑡)

= 𝑢(𝑍𝜀
𝑡 )�̇�

𝜀(𝑡) − 𝑢′𝑢(𝑍𝜀
𝑡 )𝒦

𝜀(𝑡, 𝑡).

As convolution commutes with reconstruction, compare Lemma 5.1, it follows that 𝑍𝜀 is indeed a
solution to (62). □

6 NUMERICAL RESULTS

We will revisit the case of European option pricing under rough volatility. Building on the theoretical
underpinnings of Section 3, we present a concise, but self-contained, description of the central algo-
rithm of this paper—for simplicity restricted to the unit time interval—and complement the theoretical
convergence rates obtained in previous sections with numerical counterparts. The code used to run the
simulations has been made available on https://www.github.com/RoughStochVol.

6.1 Implementation
Without loss of generality, set time to maturity 𝑇 = 1. We are interested in pricing a European call
option with spot 𝑆0 and strike𝐾 under rough volatility—the risk-free interest rate is assumed to satisfy
𝑟 = 0. From Theorem 1.4, we have

𝐶
(
𝑆0, 𝐾, 1

)
= 𝔼

[
𝐶𝐵𝑆

(
𝑆0 exp

(
𝜌ℐ − 𝜌2

2
𝒱
)
, 𝐾,

𝜌2

2
𝒱

)]
, (63)

https://www.github.com/RoughStochVol
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where the computational challenge obviously lies in the efficient simulation of

(ℐ,𝒱) =

(
∫

1

0
𝑓 (𝑊𝑡, 𝑡)d𝑊𝑡,∫

1

0
𝑓 2(𝑊𝑡, 𝑡)d𝑡

)
.

As explored in Subsection 3.4, we take a Wong–Zakai-style approach to simulating ℐ, that is, we
approximate the white noise process �̇� on the grid associated with the Haar basis as follows.

Let {𝑍𝑖}𝑖=1,…2𝑁−1 ∼ i.i.d.  (0, 1) and choose a Haar grid level 𝑁 ∈ ℕ such that the step size of
the grid satisfies 𝜀 = 2−𝑁 . Then, for all 𝑡 ∈ [0, 1], we set

�̇� 𝜀(𝑡) ∶=
2𝑁−1∑
𝑖=0

𝑍𝑖𝑒
𝜀
𝑖 (𝑡), where 𝑒𝜀𝑖 (𝑡) ∶= 2𝑁∕2𝟏[𝑖2−𝑁 ,(𝑖+1)2−𝑁 )(𝑡), (64)

which induces an approximation of the fBm

𝑊 𝜀(𝑡) =
2𝑁−1∑
𝑖=0

𝑍𝑖𝑒
𝜀
𝑖 (𝑡) with (65)

𝑒𝜀𝑖 (𝑡) ∶= 𝟏𝑡>𝑖2−𝑁
√
2𝐻2𝑁∕2

𝐻 + 1∕2
(|𝑡 − 𝑖2−𝑁 |𝐻+1∕2 − |𝑡 − min((𝑖 + 1)2−𝑁, 𝑡)|𝐻+1∕2). (66)

As outlined above, the central issue is that the object ∫ 1
0 𝑓 (𝑊 𝜀(𝑡), 𝑡)�̇� 𝜀(𝑡)d𝑡 does not converge in an

appropriate sense to the object of interest ℐ as 𝜀 → 0. This is overcome by renormalizing the object,
two possible approaches of which are explored in Subsection 3.4. For the remainder, we will consider
the “simpler” renormalized object given by

ℐ̃𝜀 = ∫
1

0
𝑓 (𝑊 𝜀

𝑡 , 𝑡)�̇�
𝜀
𝑡 d𝑡 − ∫

1

0
𝒞𝜀(𝑡)𝜕1𝑓 (𝑊 𝜀

𝑡 , 𝑡)d𝑡, (67)

where the renormalization object 𝒞𝜀(𝑡) can be one of

𝒞𝜀(𝑡) =
⎧⎪⎨⎪⎩

2𝑁
√
2𝐻

𝐻+1∕2 |𝑡 − ⌊
𝑡2𝑁

⌋
2−𝑁 |𝐻+1∕2,√

2𝐻
(𝐻+1∕2)(𝐻+3∕2)2

𝑁(1∕2−𝐻).
(68)

Inserting the nonconstant version of (68) into (67), we obtain

ℐ̃𝜀 =
2𝑁−1∑
𝑖=0

∫
(𝑖+1)2−𝑁

𝑖2−𝑁

[
𝑍𝑖2𝑁∕2𝑓 (𝑊 𝜀(𝑡), 𝑡) −

√
2𝐻2𝑁

𝐻 + 1∕2
|𝑡 − 𝑖2−𝑁 |𝐻+1∕2𝜕1𝑓 (𝑊 𝜀(𝑡), 𝑡)

]
d𝑡, (69)

𝒱𝜀 ∶=
2𝑁−1∑
𝑖=0

∫
(𝑖+1)2−𝑁

𝑖2−𝑁
𝑓 2(𝑊 𝜀(𝑡), 𝑡)d𝑡. (70)
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F I G U R E 1 Empirical strong errors in the sense of (71) on a log-log-scale under a nonconstant renormalization,
obtained by 𝑀 = 105 Monte Carlo samples with a trapezoidal rule delta of Δ = 2−17 and fineness of the reference Haar
grid 𝜀′ = 2−8 [Color figure can be viewed at wileyonlinelibrary.com]
Note. Solid lines visualize the empirical rates of convergence obtained by least squares regression, and dashed lines
provide visual reference rates. Shaded color bands show interpolated 95% confidence regions based on normality of
Monte Carlo estimator.

6.2 Observed convergence rates
In this subsection, we will discuss strong convergence of the approximating object ℐ̃𝜀 to the actual
object of interest ℐ as well as weak convergence of the option price itself as the Haar grid interval
size 𝜀 → 0. Specifically, we will be looking at Monte Carlo estimates of our errors, that is, in order to
approximate some quantity𝔼[𝑋] for some random variable𝑋, we will instead be looking at 1

𝑀

∑𝑀
𝑖=1𝑋𝑖

where the 𝑋𝑖 are 𝑀 i.i.d. samples drawn from the same distribution as 𝑋. In other words, we need to
generate 𝑀 realizations of the bivariate stochastic object (ℐ̃𝜀,𝒱𝜀), a task that can be vectorized as
described below, thus avoiding expensive looping through realizations.

6.2.1 Strong convergence
We verify Theorem 3.25(i) numerically, albeit in the 𝐿2(Ω)-sense and—for simplicity—with
𝑓 (𝑥, 𝑡) ∶= exp(𝑥), that is, with no explicit time dependence. That is, we are concerned with Monte
Carlo approximations of ‖‖‖‖‖ℐ̃𝜀 − ∫

1

0
exp(𝑊𝑡)d𝑊𝑡

‖‖‖‖‖𝐿2(Ω)
,

and we expect an error “almost” of order 𝐻 .
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F I G U R E 2 Empirical strong errors in the sense of (71) on a log-log-scale under a constant renormalization,
obtained by 𝑀 = 105 Monte Carlo samples with a trapezoidal rule delta of Δ = 2−17 and fineness of the reference Haar
grid 𝜀′ = 2−8 [Color figure can be viewed at wileyonlinelibrary.com]
Note. Solid lines visualize the empirical rates of convergence obtained by least squares regression, and dashed lines
provide visual reference rates. Shaded color bands show interpolated 95% confidence regions based on normality of
Monte Carlo estimator.
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F I G U R E 3 Empirical weak errors in the sense of (74) on a log-log-scale as 𝜀 → 𝜀′ = 2−8, obtained with
𝑀 = 105 MC samples with spot 𝑆0 = 1, strike 𝐾 = 1, correlation 𝜌 = −0.8, spot vol 𝜎0 = 0.2, vvol 𝜂 = 2, and
trapezoidal rule delta Δ = 2−17 [Color figure can be viewed at wileyonlinelibrary.com]
Note. Dashed lines represent LS estimates for rate estimation, and shaded color bands show confidence regions based
on normality of Monte Carlo estimator.

Remark 6.1. We choose 𝑓 (𝑥, 𝑡) = exp(𝑥) because this closely resembles the rough Bergomi model (see
Bayer et al., 2016, and below). Also, for the simplest nontrivial choice 𝑓 (𝑥, 𝑡) = 𝑥, the discretization
error is overshadowed by the Monte Carlo error, even for very coarse grids.

As (𝑊 ,𝑊 ) is a two-dimensional Gaussian process with known covariance structure, it is possible
to use the Cholesky algorithm (cf. Bayer et al., 2016, 2019) to simulate the joint paths on some grid,
and then use standard Riemann sums to approximate the integral. The value obtained in this way could
serve as a reference value for our scheme. However, for strong convergence, we need both objects to
be based on the same stochastic sample. For this reason, we find it easier to construct a reference value
by the wavelet-based scheme itself, that is, we simply pick some 𝜀′ ≪ 𝜀 and consider

‖‖‖ℐ̃𝜀 − ℐ̃𝜀′‖‖‖𝐿2(Ω)
(71)

as 𝜀 → 𝜀′. As can be seen in Figures 1 and 2, both renormalization approaches stated in (68) are
consistent with a theoretical strong rate of almost 𝐻 even for 𝐻 < 1∕4 (cf. discussion at the end of
Section 3.2).



BAYER ET AL. 823

Remark 6.2 (Weak convergence). As the model does not have the Markov property, a proper weak
convergence analysis proves to be subtle. Indeed, the rate of convergence of||||||𝔼

[
𝜑
(
ℐ̃𝜀

)]
− 𝔼

[
𝜑

(
∫

1

0
exp(𝑊𝑡)d𝑊𝑡

)]||||||
as 𝜖 → 0 (for suitable test functions 𝜑), remains an open problem. However, picking 𝜑(𝑥) = 𝑥2, Itô’s
isometry yields

𝔼
⎡⎢⎢⎣
(
∫

1

0
exp(𝑊𝑡)d𝑊𝑡

)2⎤⎥⎥⎦ = ∫
1

0
𝔼
[
exp

(
2𝑊𝑡

)]
d𝑡 = ∫

1

0
exp

(
2𝑡2𝐻

)
d𝑡, (72)

which can be approximated numerically. So, we can consider|||||𝔼
[(

ℐ̃𝜀
)2]

− ∫
1

0
exp

(
2𝑡2𝐻

)
d𝑡
||||| (73)

as 𝜀 → 0. Our preliminary results indicate that for both renormalization approaches, the weak rate
seems to be around the strong rate 𝐻 .

6.2.2 Option pricing
We pick a simplified version of the rough Bergomi model (Bayer et al., 2016), for which the instanta-
neous variance is given by

𝑓 2(𝑥) = 𝜎20 exp (𝜂𝑥)

with 𝜎0 and 𝜂 denoting spot volatility and volatility of volatility, respectively. Let𝐶𝜀 denote the approx-
imation of the call price (63) based on (ℐ̃𝜀,𝒱𝜀), fix some 𝜀′ ≪ 𝜀, and consider|||𝐶𝜀

(
𝑆0, 𝐾, 𝑇 = 1

)
− 𝐶𝜀′(𝑆0, 𝐾, 𝑇 = 1

)||| (74)

as 𝜀 → 𝜀′. Empirical results displayed in Figure 3 indicate a weak rate of 2𝐻 across the full range of
0 < 𝐻 < 1

2 .

ACKNOWLEDGMENTS

The authors acknowledge financial support from DFG research grants BA5484/1 (CB, BS) and
FR2943/2 (PKF, BS), the ERC via Grant CoG-683164 (PKF), the ANR via Grant ANR-16-CE40-
0020-01 (PG), and the DFG Research Training Group RTG 1845 (JM).

ENDNOTES
1 Other wavelet choices are possible. In particular, in the case of fractional noise, Alpert-Rokhlin (AR) wavelets have been

suggested for improved numerical behavior; compare Grebenkov, Belyaev, and Jones (2016) where this is attributed
to a series of works of A. Majda and coworkers. It would be desirable to explore this further in the context of rough
volatility models.

2 Hairer and Pardoux (2015) derive the KPZ result as special case of a Wong–Zakai result for Itô-SPDEs.
3 In the section only, following P. K. Friz and Hairer (2014), symbols will be colored.
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4 |Ξ|(ℝ) denotes the space of distributions that are locally in the Besov space |Ξ|
∞,∞(ℝ) (cf. Hairer, 2014, Remark 3.8).

5 Some computations lead us to believe that this question can be settled with the aid of mixed (1, 𝜌)-variation of the
covariance function of the Volterra process, compare P. K. Friz, Gess, Gulisashvili, and Riedel (2016), which we
expect to hold uniformly over approximation.

6 Upon setting Γ𝑡𝑠(Ξ) = Ξ, the given relation is precisely implied by multiplicativity of Γ.
7 This is also a frequent remark for the classical Heston model.
8 We are not aware of any literature on mixed Itô-Volterra systems (although expect no difficulties). Here, of course, it

suffices to first solves for 𝑍 and then construct 𝑆 as stochastic exponential.
9 We note that, as 𝐻 ↓ 0 the number of symbols tends to infinity. In comparison, among all recently studied singu-

lar SPDEs, only the sine-Gordon equation (Hairer & Shen, 2016) exhibits the similar feature of requiring arbitrarily
many symbols.

10  is extended linearly to all of  by taking 𝜏 = 0 for symbols 𝜏 ≠ Ξ.
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APPENDIX A: APPROXIMATION AND RENORMALIZATION (PROOFS)
Lemma A.1. Given 𝑎, 𝑏 > 0 and 𝛿 ∈ [0, 1], we have for 𝑥 ∉ [0, 1)

|𝑎𝑥 − 𝑏𝑥| ≤ 21−𝛿|𝑥|𝛿(𝑎𝑥−𝛿 ∨ 𝑏𝑥−𝛿) ⋅ |𝑎 − 𝑏|𝛿,
and for 𝑥 ∈ (0, 1)

|𝑎𝑥 − 𝑏𝑥| ≤ 21−𝛿|𝑥|𝛿(𝑎(𝑥−1)𝛿𝑏𝑥(1−𝛿) ∨ 𝑏(𝑥−1)𝛿𝑎𝑥(1−𝛿)) ⋅ |𝑎 − 𝑏|𝛿 .
Proof. This follows from interpolation between |𝑎𝑥 − 𝑏𝑥| ≤ |𝑥| sup𝑧∈[𝑎,𝑏] 𝑧𝑥−1|𝑎 − 𝑏| ≤ |𝑥|𝑎𝑥−1 ∨
𝑏𝑥−1|𝑎 − 𝑏| and |𝑎𝑥 − 𝑏𝑥| ≤ 𝑎𝑥 + 𝑏𝑥 ≤ 2𝑎𝑥 ∨ 𝑏𝑥. □

Proof of Lemma 3.8. Rewriting 𝑊 𝜀(𝑡) =
√
2𝐻 ∫ ∞

0 d𝑊 (𝑢) ∫ ∞
0 d𝑟 𝛿𝜀(𝑟, 𝑢) |𝑡 − 𝑟|𝐻−1∕2𝟏𝑟<𝑡, we have

𝔼|||𝑊 𝜀(𝑡) −𝑊 𝜀(𝑠)|||2 = 2𝐻 ∫
∞

0
d𝑢
(
∫

∞

0
d𝑟𝛿𝜀(𝑟, 𝑢)(𝟏𝑟<𝑡|𝑡 − 𝑟|𝐻−1∕2 − 𝟏𝑟<𝑠|𝑠 − 𝑟|𝐻−1∕2)

)2

≲ ∫
∞

0
d𝑢∫

∞

0
d𝑟|𝛿𝜀(𝑟, 𝑢)|(𝟏𝑟<𝑡|𝑡 − 𝑟|𝐻−1∕2 − 𝟏𝑟<𝑠|𝑠 − 𝑟|𝐻−1∕2)2

≲ ∫
𝑠∨𝑡

0
d𝑟
(
𝟏𝑟<𝑡|𝑡 − 𝑟|𝐻−1∕2 − 𝟏𝑟<𝑠|𝑠 − 𝑟|𝐻−1∕2)2,

where we used the Itô isometry in the first and Jensen’s inequality in the second step. Assuming 𝑠 < 𝑡,
we can split the integral in domains [0, 𝑠] and [𝑠, 𝑡] that yields the bound |𝑡 − 𝑠|2𝐻 ∫ 𝑠

0 |𝑠 − 𝑟|4𝐻−1 +|𝑡 − 𝑠|2𝐻 ≲ |𝑡 − 𝑠|2𝐻 . Application of equivalence of moments for Gaussian random variables and Kol-
mogorov’s criterion then shows the first inequality.

https://doi.org/10.1111/mafi.12233
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The second estimate follows by interpolation (and once more Kolmogorov), if we can prove that

𝔼|𝑊 𝜀(𝑡) −𝑊 (𝑡)|2 ≲ 𝜀2𝐻−𝜅′ . (A1)

We have, by Itô’s isometry,

𝔼[|||𝑊 𝜀(𝑡) −𝑊 (𝑡)|||2] = 2𝐻 ∫
∞

0
d𝑢
(
∫

∞

0
d𝑟 𝛿𝜀(𝑟, 𝑢) |𝑡 − 𝑟|𝐻−1∕2𝟏𝑟<𝑡 − |𝑡 − 𝑢|𝐻−1∕2𝟏𝑢<𝑡

)2
.

We can enlarge the inner integral such that ∫ 𝛿𝜀(𝑟, 𝑢)𝑑𝑟 = 1 by neglecting an error term that can be

estimated by ∫𝐵(0,𝑐𝜀) d𝑢(∫𝐵(0,𝑐𝜀) d𝑟 𝜀−1|𝑡 − 𝑟|𝐻−1∕2)2 ≲ 𝜀2𝐻 . Application of Jensen’s inequality then
yields

∫
∞

0
d𝑢 ∫

∞

−∞
d𝑟 |𝛿𝜀(𝑟, 𝑢)| (|𝑡 − 𝑟|𝐻−1∕2𝟏𝑟<𝑡 − |𝑡 − 𝑢|𝐻−1∕2𝟏𝑢<𝑡

)2
.

The cases where either 𝑟 > 𝑢 or 𝑢 > 𝑡 yield an error term of order 𝜀2𝐻 . Hence, an application of
Lemma A.1 ||||𝑡 − 𝑟|𝐻−1∕2 − |𝑡 − 𝑢|𝐻−1∕2||| ≲ (|𝑡 − 𝑟|−1∕2+𝜅 + |𝑡 − 𝑢|−1∕2+𝜅) ⋅ |𝑢 − 𝑟|𝐻−𝜅

finishes the proof of (A1). □

Proof (of (42)). We only consider the symbols Ξ𝑚(Ξ), amd the symbols (Ξ)𝑚 can be handled with
Lemma 3.8. In view of Lemmas 3.10 and 3.12, we have to control (for 𝑚 ≥ 0 in the first equation and
𝑚 > 0 in the second equation)

𝔼
||||∫ ∞

0
d𝑊 𝜀(𝑡) ⋄ 𝜑𝜆

𝑠 (𝑡)(𝑊
𝜀
𝑠𝑡)

𝑚 − ∫
∞

0
d𝑊 (𝑡) ⋄ 𝜑𝜆

𝑠 (𝑡)(𝑊𝑠𝑡)𝑚
||||
2
≲ 𝜀2𝛿𝜅

′
𝜆2𝑚𝐻−1−2𝜅′ , (A2)

𝔼
||||∫ ∞

0
d𝑡 𝜑𝜆

𝑠 (𝑡)
(
𝒦𝜀(𝑠, 𝑡)(𝑊 𝜀

𝑠𝑡)
𝑚−1 −𝐾(𝑠 − 𝑡)(𝑊𝑠𝑡)𝑚−1

)||||
2
≲ 𝜀2𝛿𝜅

′
𝜆2𝑚𝐻−1−2𝜅′ , (A3)

where 𝑊 (𝜀)
𝑠𝑡 = 𝑊 (𝜀)(𝑡) −𝑊 (𝜀)(𝑠) and where 𝛿 ∈ (0, 1), 𝜅′ ∈ (0,𝐻) is arbitrary. Equivalence of norms

in the Wiener chaos and a version of Kolmogorov’s criterion for models (Hairer, 2014, Proposition
3.32) then gives (42) (note that this gives a better homogeneity and then we actually need as we only
subtract 2𝜅′ and not 2𝑚𝜅′ in the exponent of 𝜆 ∈ (0, 1]). We can rewrite the random variable in the
expectation of (A2) using (Janson, 1997, Theorem 7.40) as

∫
𝑇+1

0
d𝑊 (𝑡) ⋄ ∫ d𝑢 𝛿𝜀(𝑡, 𝑢)

(
𝟏𝑢≥0𝜑𝜆

𝑠 (𝑢)(𝑊
𝜀
𝑠𝑢)

𝑚 − 𝜑𝜆
𝑠 (𝑡)(𝑊𝑠𝑡)𝑚

)
.

Using Janson (1997, Theorem 7.39) and Jensen’s inequality, we can estimate the second moment of
this Skorokhod integral by

𝔼|(𝐴2)|2 ≲ ∫
𝑇+1

0
d𝑡 ∫ d𝑢 |𝛿𝜀(𝑡, 𝑢)|𝔼(𝟏𝑢≥0𝜑𝜆

𝑠 (𝑢)(𝑊
𝜀
𝑠𝑢)

𝑚 − 𝜑𝜆
𝑠 (𝑡)(𝑊𝑠𝑡)𝑚

)2
.

In the regime 𝜆 ≤ 𝜀, every term in the parentheses can simply be bounded (using Lemma 3.8)
by 𝜆2𝐻−1 ≲ 𝜆2𝐻−1−2𝜅′𝜀𝜅

′
. If, on the other hand, 𝜀 < 𝜆, we can split off a term of order
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∫𝐵(0,𝑐𝜀) d𝑡 ∫𝐵(0,𝑐𝜀) d𝑢
𝜀
≲ 𝜆2𝑚𝐻−1−2𝜅′𝜀2𝜅

′
, drop the indicator 𝟏𝑢≥0, and can bound on the support of

𝛿𝜀(𝑡, 𝑢)

|𝜑𝜆
𝑠 (𝑢)(𝑊

𝜀
𝑠𝑢)

𝑚 − 𝜑𝜆
𝑠 (𝑡)(𝑊𝑡𝑠)𝑚| ≤ |(𝜑𝜆

𝑠 (𝑢) − 𝜑𝜆
𝑠 (𝑡)) ⋅ |𝑊 𝜀

𝑠𝑢|𝑚 + |𝜑𝜆
𝑠 (𝑡)| ⋅ |||(𝑊 𝜀

𝑠𝑢)
𝑚 − (𝑊𝑠𝑡)𝑚

|||
≲ 𝐶𝜀𝟏𝐵(𝑠,(1+2𝑐)𝜆)(𝑡) 𝜆−1−𝜅

′
𝜀𝜅

′
𝜆𝑚𝐻 + 𝐶𝜀𝟏𝐵(𝑠,𝜆)(𝑡)𝜆−1𝜆𝑚𝐻−𝜅′𝜀𝜅

′
,

where 𝐶𝜀 > 0 denote random constants that are uniformly bounded in 𝐿𝑝 for 𝑝 ∈ [1,∞). This shows
(A2). To estimate (A3), we first note that due to 𝔼|(𝑊 )𝑚−1𝑠𝑡 − (𝑊 𝜀

𝑠𝑡)
𝑚−1|2 ≲ |𝑡 − 𝑠|2(𝑚−1)𝐻−2𝜅′𝜀𝛿2𝜅

′
,

we are only left with

𝔼
||||∫ ∞

0
d𝑡 𝜑𝜆

𝑠 (𝑡)(𝒦
𝜀(𝑠, 𝑡) −𝐾(𝑠 − 𝑡))(𝑊 𝜀

𝑠𝑡)
𝑚−1||||

2
≲ ∫

∞

0
d𝑡 𝜑𝜆

𝑠 (𝑡)|𝒦𝜀(𝑠, 𝑡) −𝐾(𝑠 − 𝑡)|2 |𝑠 − 𝑡|2(𝑚−1)𝐻 ,

which is straightforward to bound with Lemma 3.13 if 𝜆 ≤ 𝜀. For 𝜆 < 𝜀 and 𝑡 > 2𝑐𝜀 with 𝑐 > 0 as in
Definition 3.5, the desired bound follows from Lemma A.2. The remaining case, however, contributes
with

∫𝐵(0,2𝑐𝜀) d𝑡 𝜑
𝜆
𝑠 (𝑡)|𝑡 − 𝑠|2(𝑚−1)𝐻 (𝜀2𝐻−1 + |𝑡 − 𝑠|2𝐻−1)

≲ ∫𝐵(𝑠,𝜆−12𝑐𝜀) d𝑡 (𝜆
2(𝑚−1)𝐻𝜀2𝐻−1 + 𝜆2𝑚𝐻−1|𝑡|2𝑚𝐻−1)

≲ 𝜆2(𝑚−1)𝐻−1𝜀2𝐻 + 𝜆2𝑚𝐻−1(𝜆−1𝜀)2𝑚𝐻 ≤ 𝜆2𝑘𝐻−𝜅′𝜀𝜅
′
,

which completes the proof. □

Lemma A.2. For 𝑐 as in Definition 3.5 and 𝑡 > 2𝑐𝜀 and 𝑠 ∈ ℝ, we have for 𝜅′ ∈ (0,𝐻)

|𝐾(𝑠 − 𝑡) −𝒦𝜀(𝑠, 𝑡)| ≲ |𝑠 − 𝑡|𝐻−1∕2−𝜅′𝜀𝜅
′
.

Proof. If 2𝑐𝜀 ≥ |𝑠 − 𝑡|∕2, the bound easily follows from Lemma 3.13. If 2𝑐𝜀 ≥ |𝑠 − 𝑡|∕2, we can
reshape

|𝐾(𝑠 − 𝑡) −𝒦𝜀(𝑠, 𝑡)| = ||||∫ ∞

−∞
d𝑢 𝛿2,𝜀(𝑡, 𝑢)(𝟏𝑡<𝑠|𝑠 − 𝑡|𝐻−1∕2 − 𝟏𝑠<𝑢|𝑠 − 𝑢|𝐻−1∕2)

|||| ,
where 𝛿2,𝜀(𝑡, ⋅) ∶= ∫ ∞

−∞ d𝑥1 ∫ ∞
−∞ d𝑥2𝛿𝜀(𝑡, 𝑥1)𝛿𝜀(𝑥1, ⋅) satisfies the properties in Definition 3.5 with sup-

port in 𝐵(𝑡, 2𝑐𝜀). Note that for 2𝑐𝜀 ≥ |𝑠 − 𝑡|∕2, either both indicator functions vanish or none so that
we only have to consider 𝑡 < 𝑠 where we obtain with Lemma A.1 up to a constant ∫ ∞

−∞ |𝛿2,𝜀(𝑡, 𝑢)||𝑡 −
𝑠|𝐻−1∕2−𝜅′𝜀𝜅

′
≲ |𝑡 − 𝑠|𝐻−1∕2−𝜅′𝜀𝜅

′
. □

Proof of Lemma 3.17. We restrict ourselves to the proof of (44), the other three inequalities follow by
similar arguments. We fix a wavelet basis 𝜙𝑦 = 𝜙(⋅ − 𝑦), 𝑦 ∈ ℤ, 𝜓𝑗

𝑦 = 2𝑗∕2 𝜓(2𝑗(⋅ − 𝑦)), 𝑗 ≥ 0, 𝑦 ∈
2−𝑗ℤ and use in the following the notation 𝜙𝑗𝑦 = 2𝑗∕2𝜙(2𝑗(⋅ − 𝑦)), 𝑗 ≥ 0, 𝑦 ∈ 2−𝑗ℤ . Within this basis,

we can express the 𝛽
1,∞ regularity of 𝜑 by∑

𝑦∈ℤ
|(𝜑, 𝜙𝑦)𝐿2 | + sup

𝑗≥0
2𝑗𝛽

∑
𝑦∈2−𝑗ℤ

2−𝑑𝑗∕2|(𝜑,𝜓𝑗
𝑦 )𝐿2 | ≲ ‖𝜑‖𝛽

1,∞
.
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Without loss of generality, we can assume that 𝜆 = 2−𝑗0 is dyadic, so that by scaling∑
𝑦∈2−𝑗0ℤ

|(𝜑𝜆
𝑠 , 𝜙

𝑗0
𝑦 )𝐿2 | + sup

𝑗≥𝑗0
2(𝑗−𝑗0)𝛽

∑
𝑦∈2−𝑗ℤ

2−(𝑗−𝑗0)𝑑∕2|(𝜑𝜆
𝑠 , 𝜓

𝑗
𝑦 )𝐿2 | ≲ 2𝑗0𝑑∕2‖𝜑‖𝛽

1,∞
. (A4)

We can now rewrite

(𝐹 − Π𝑠𝐹𝑠)(𝜑𝜆
𝑠 ) =∑

𝑦∈2−𝑗0ℤ

(𝐹 − Π𝑠𝐹𝑠)(𝜙
𝑗0
𝑦 ) ⋅ (𝜙

𝑗0
𝑦 , 𝜑

𝜆
𝑠 )𝐿2 +

∑
𝑗≥𝑗0

∑
𝑦∈2−𝑗ℤ

(𝐹 − Π𝑠𝐹𝑠)(𝜓𝑗
𝑦 ) ⋅ (𝜓

𝑗
𝑦 , 𝜑

𝜆
𝑠 )𝐿2

=
∑

𝑦∈2−𝑗0ℤ

(𝐹 − Π𝑦𝐹𝑦)(𝜙
𝑗0
𝑦 ) (𝜙

𝑗0
𝑦 , 𝜑

𝜆
𝑠 )𝐿2 +

∑
𝑦∈2−𝑗0ℤ

Π𝑦(𝐹𝑦 − Γ𝑦𝑠𝐹𝑠)(𝜙
𝑗0
𝑦 ) (𝜙

𝑗0
𝑦 , 𝜑

𝜆
𝑠 ) (A5)

+
∑

𝑗 ≥ 𝑗0,

𝑦 ∈ 2−𝑗ℤ

(𝐹 − Π𝑦𝐹𝑦)(𝜓𝑗
𝑦 ) (𝜓

𝑗
𝑦 , 𝜑

𝜆
𝑠 )𝐿2 +

∑
𝑗 ≥ 𝑗0,

𝑦 ∈ 2−𝑗ℤ

Π𝑦(𝐹𝑦 − Γ𝑦𝑠𝐹𝑠)(𝜓𝑗
𝑦 ) (𝜓

𝑗
𝑦 , 𝜑

𝜆
𝑠 )𝐿2 . (A6)

Only finitely many terms in (A5) contribute, which all can be bounded a constant times 2−𝑗0𝛾 = 𝜆𝛾 .
Moreover,

(𝐴6) ≲
∑
𝑗≥𝑗0

2−𝑗𝛾 +
∑
𝑗≥𝑗0

∑
𝐴∋𝛼<𝛾

2−𝑗𝛼2−(𝛾−𝛼)𝑗0
∑

𝑦∈2−𝑗ℤ
2𝑗𝑑∕2|(𝜑𝜆

𝑠 , 𝜓
𝑗
𝑦 )𝐿2 |

≲
∑
𝑗≥𝑗0

2−𝑗𝛾 + 2−𝛾𝑗0
∑

𝐴∋𝛼<𝛾

∑
𝑗≥𝑗0

2−(𝑗−𝑗0)𝛼2−(𝑗−𝑗0)𝛽 ≲ 2−𝑗0𝛾 = 𝜆𝛾 ,

where we used 𝛽 + 𝛼 > 0, 𝛼 ∈ 𝐴 in the last line. □

Proof of Lemma 3.23. It easy to check, using Taylor’s formula, that for scaled Haar wavelets 𝜑𝜆
𝑠 and

𝛾 ∈ (0, (𝑀 + 1)𝐻)

𝔼

[||||∫ 𝜑𝜆
𝑠 (𝑡) 𝑓 (𝑊 (𝑡), 𝑡)d𝑊 (𝑡) − Π𝑠𝐹Ξ(𝑠)(𝜑𝜆

𝑠 )
||||2
]1∕2

≲ 𝜆(𝛾−1∕2−𝜅), (A7)

uniformly for 𝑠 in compact sets. The same argument as in the proof of Lemma 3.17 then implies that
(A7) actually holds for compactly supported smooth function𝜑 (or even compactly supported functions
in 𝛽

1,∞(ℝ𝑑)). Proceeding now as in Hairer (2014), we choose test functions 𝜂, 𝜓 ∈ 𝐶∞
𝑐 with 𝜂 even

and supp 𝜂 ⊆ B(0, 1), ∫ 𝜂(t) dt = 1. We then obtain for 𝜓𝛿(𝑠) = ⟨𝜓, 𝜂𝛿𝑠 ⟩
𝔼
[|𝐹Ξ(𝜓𝛿) − ∫ 𝜓𝛿(𝑡) 𝑓 (𝑊 (𝑡), 𝑡))d𝑊 (𝑡)|2]1∕2

= 𝔼

[|||||∫ d𝑥𝜓(𝑥)
(
𝐹Ξ(𝜂𝛿𝑥) − ∫ 𝜂𝛿𝑥(𝑡) 𝑓 (𝑊 (𝑡), 𝑡))d𝑊 (𝑡)

)|||||
2]1∕2

≲ ∫ d𝑥𝜓2(𝑥) 𝛿𝛾−1∕2−𝜅
𝛿→0
→ 0,
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where we included a term Π𝑥Ξ𝐹 (𝑥) in the second step. It remains to note that

∫ 𝜓𝛿(𝑡) 𝑓 (𝑊 (𝑡), 𝑡))d𝑊 (𝑡)
𝛿→0
→ ∫ 𝜓(𝑡) 𝑓 (𝑊 (𝑡), 𝑡)d𝑊 (𝑡)

in 𝐿2(ℙ) and further 𝐹Ξ(𝜓𝛿) → 𝐹Ξ(𝜓) a.s. and thus in 𝐿2(ℙ). Putting everything together, we
obtain

𝔼
[|𝐹Ξ(𝜓) − ∫ 𝜓(𝑡) 𝑓 (𝑊 (𝑡), 𝑡)d𝑊 (𝑡)|2] = 0,

which implies the first statement. For the second identity, we proceed in the same way, but now use
Lemma A.3. □

Lemma A.3. For 𝐹 ∈ 𝐿2(ℙ × Leb), we have

𝔼

[||||∫ 𝐹 (𝑡)d𝑊 𝜀(𝑡)
||||2
]
≲ ∫ 𝔼

[|𝐹 (𝑡)|2]d𝑡.
Proof. As a consequence of Definition 3.5, we see that ∫ |𝛿𝜀(𝑥, 𝑦)d𝑥| is bounded uniformly in 𝜀 and 𝑦.
We can thus normalize |𝛿𝜀(⋅, 𝑟)| to a probability density and apply Itô’s isometry and Jensen’s inequality
to obtain

∫ 𝐹 (𝑡)d𝑊 𝜀(𝑡) = ∫
∞

0 ∫
∞

0
𝛿𝜀(𝑡, 𝑟)𝐹 (𝑡)d𝑡 d𝑊 (𝑟).

□

APPENDIX B: LARGE DEVIATIONS PROOFS
Proof of Lemma 4.1. The fact that Πℎ satisfies the algebraic constraints is obvious, so we focus on
the analytic ones. The Sobolev embedding 𝐿2 ⊂ 𝐶−1∕2 yields that ΠΞ, ΠΞ satisfy the right bounds.
Noting that (by, e.g., Samko, Kilbas, & Marichev, 1993, Section 3.1) ‖𝐾 ∗ ℎ‖𝐶𝐻 ≤ 𝐶‖ℎ‖𝐶−1∕2 gives
the bound for Π(Ξ)𝑚. Finally, we note that using Cauchy–Schwarz’s inequality

|||⟨Π𝑡Ξ(Ξ)𝑚, 𝜙𝜆𝑥⟩||| = ||||∫ ℎ1(𝑠)
(
𝐾 ∗ ℎ1(𝑠) −𝐾 ∗ ℎ1(𝑡)

)𝑚
𝜙𝜆𝑥(𝑠)𝑑𝑠

||||
≤
(

sup|𝑠−𝑡|≤𝜆 ||𝐾 ∗ ℎ1(𝑠) −𝐾 ∗ ℎ1(𝑡)||
)𝑚‖ℎ1‖𝐿2‖‖𝜙𝜆𝑥‖𝐿2

≲ 𝜆𝑚𝐻−1∕2.

The inequality for ΠΞ(Ξ)𝑚 follows in the same way, and the bounds for Γ also follow.
Continuity in ℎ is proved by similar arguments which we leave to the reader. □

Proof of Theorem 4.2. The theorem is a special case of results in Hairer and Weber (2015) for large
deviations of Banach-valued Gaussian polynomials. Let us recall the setting.

Let (𝐵,, 𝜇) be an abstract Wiener space and let us call 𝜉 the associated 𝐵-valued Gaussian random
variable, and (𝑒𝑖) an orthonormal basis of  with 𝑒𝑖 ∈ 𝐵∗. For a multi-index 𝛼 ∈ ℕℕ with only finitely
many nonzero entries, define 𝐻𝛼(𝜉) = Π𝑖≥0𝐻𝛼𝑖

(⟨𝜉, 𝑒𝑖⟩), where the 𝐻𝑛, 𝑛 ≥ 0 are the usual Hermite
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polynomials. For a given Banach space 𝐸, the homogeneous Wiener chaos (𝑘)(𝐸) is defined as the
closure in 𝐿2(𝐸, 𝜇) of the linear space generated by elements of the form

𝐻𝛼(𝜉)𝑦, |𝛼| = 𝑘, 𝑦 ∈ 𝐸.

Also, define the inhomogeneous Wiener chaos 𝑘(𝐸) = ⊕𝑘
𝑖=0(𝑖)(𝐸). Finally, for Ψ ∈ (𝑘)(𝐸)

and ℎ ∈ , we define Ψℎ𝑜𝑚(ℎ) = ∫ Ψ(𝜉 + ℎ)𝜇(𝑑𝜉), and for Ψ =
∑

𝑖≤𝑘Ψ𝑖 ∈ 𝑘(𝐸), we let Ψℎ𝑜𝑚 =
(Ψ𝑘)ℎ𝑜𝑚.

Now let 𝐸 = ⊕𝜏∈𝐸𝜏 , where  is a finite set and each 𝐸𝜏 is a separable Banach space. Let Ψ =
⊕𝜏∈Ψ𝜏 be a random variable such that each Ψ𝜏 is in 𝐾𝜏 (𝐸𝜏 ). Letting Ψ𝛿 = ⊕𝜏𝛿

𝐾𝜏Ψ𝜏 , Theorem
3.5 in Hairer and Weber (2015) states that Ψ𝛿 satisfies an LDP with rate function given by

𝐼(Ψ) = inf
{
1∕2‖ℎ‖2 , Ψ = ⊕𝜏∈Ψℎ𝑜𝑚

𝜏 (ℎ)
}
.

In our case, we apply this result with  = {Ξ(Ξ)𝑚,Ξ(Ξ)𝑚, 0 ≤ 𝑚 ≤ 𝑀} and each 𝐸𝜏 is the clo-
sure of smooth functions (𝑡, 𝑠) → Π𝑡𝜏(𝑠) under the norms

‖Π𝜏‖ = sup
𝜆,𝑡,𝜙

𝜆−|𝜏||||⟨Π𝑡𝜏, 𝜙
𝜆
𝑡

⟩|||.
To obtain Theorem 4.2, it suffices then to identify (Π𝜏)ℎ𝑜𝑚(ℎ), which is done in the following

lemma. □

Lemma B.1. For each 𝜏 ∈  and ℎ ∈ , (Π𝜏)ℎ𝑜𝑚(ℎ) = Πℎ𝜏.

Proof. We prove it for 𝜏 = Ξ(Ξ)𝑚, the other cases are similar. Note that Ψ → Ψℎ𝑜𝑚(ℎ) is continuous
from 𝑘 to ℝ for fixed ℎ (by an application of the Cameron–Martin formula), and so it is enough to
prove that

lim
𝜀→0

(
Π̂𝜀𝜏

)ℎ𝑜𝑚
(ℎ) = Πℎ𝜏, (B1)

where Π̂𝜀 corresponds to the (renormalized model) with piecewise linear approximation of 𝜉. For any
test function 𝜑, by definition, one has ⟨

Π𝜀
𝑡 𝜏, 𝜑

⟩
= −

⟨
𝐼𝜀, 𝜑′⟩,

where

𝐼𝜀(𝑠) = ∫
𝑠

𝑡
((𝐾 ∗ 𝜉𝜀)(𝑢) − (𝐾 ∗ 𝜉𝜀)(𝑡))𝑚𝜉𝜀(𝑢)𝑑𝑢 − 𝐶𝜀𝑅

𝜀
𝑚,

where 𝑅𝜀
𝑚 is a renormalization term that is valued in the lower order chaos 𝑚, so that, by definition, it

does not play a role in the value of (Π𝜏)ℎ𝑜𝑚. Now note that if Φ is a Wiener polynomial whose leading
order term is given by Π𝑘

𝑖=1⟨𝜉, 𝑔𝑖⟩ (where the 𝑔𝑖 are in ), then Φℎ𝑜𝑚(ℎ) = Π𝑘
𝑖=1⟨ℎ, 𝑔𝑖⟩. In our case,

this means that

(𝐼𝜀)ℎ𝑜𝑚(𝑠) = ∫
𝑠

𝑡

(
(𝐾 ∗ ℎ𝜀1)(𝑢) − (𝐾 ∗ ℎ𝜀1)(𝑡)

)𝑚
ℎ𝜀1(𝑢)𝑑𝑢,

where ℎ𝜀1 = 𝜌𝜀 ∗ ℎ1. In other words, we have (Π̂𝜀𝜏)ℎ𝑜𝑚 = Πℎ𝜀
𝜏 , and by continuity of ℎ → Πℎ, we obtain

(B1). □
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APPENDIX C: PROOFS OF SECTION 5
The proof of Theorem 5.3 follows from the estimates in the lemmas below, using the standard proce-

dure of taking a time horizon 𝑇 small enough to obtain a contraction and then iterating the procedure.
Note that due to the global boundedness of 𝑢 and 𝑣, the estimates are uniform in the starting point 𝑧,
so that one obtains global existence (unlike the typical situation in SPDE where the theory only gives
local in time existence).

By translating 𝑢 and 𝑣, we can assume w.l.o.g. that the initial condition is 𝑧 = 0. Then, the solution
will be an element of 𝛾

0,𝑇 (Γ) ∶= { 𝐹 ∈ 𝛾
𝑇
(Γ), 𝐹 (0) = 0.}.

Lemma C.1. Let 𝐹 and 𝐹 in 𝛾
0,𝑇 ( ) for the respective models (Π,Γ) and (Π̃, Γ̃). For each 𝛾 < 1 and

𝑇 ∈ (0,1], one has

|||𝐹 ;𝐹 |||𝛾
𝑇
(Γ),𝛾

𝑇
(Γ̃) ≲ 𝑇 𝜂|||𝐹 ;𝐹 |||𝛾+|Ξ|

𝑇
(Γ),𝛾+|Ξ|

𝑇
(Γ̃)

for some 𝜂 > 0. The constant of proportionality only depends on 𝛾 and the norms of (Π,Γ) and (Π̃, Γ̃).

Proof. The choice 𝛾 < 1 avoids the appearance of polynomial terms, compare Hairer (2014, Section
5). Note that if 𝐹 belongs to 𝛾

0,𝑇 so does 𝐹 . As 𝐾 is a regularizing kernel of order 𝛽 ∶= 1
2 +𝐻 in

the sense of Hairer (2014), it follows along the lines of Hairer (2014, Section 5) that

|||𝐹 ;𝐹 |||𝛾
𝑇
(Γ),𝛾

𝑇
(Γ̃) ≲ |||𝐹 ;𝐹 |||𝛾+|Ξ|

𝑇
(Γ),𝛾+|Ξ|

𝑇
(Γ̃),

where we pick 𝛾 ∈ (𝛾, 1) such that 𝛾 ≤ 𝛾 + |Ξ| + 𝛽 = 𝛾 +𝐻 − 𝜅. On the other hand, it is clear from
the definition of |||⋅; ⋅||| that, as 𝐹 and 𝐹 vanish at 𝑡 = 0, it holds that

|||𝐹 ;𝐹 |||𝛾
𝑇
(Γ),𝛾

𝑇
(Γ̃) ≲ 𝑇 𝜂|||𝐹 ;𝐹 |||𝛾

𝑇
(Γ),𝛾

𝑇
(Γ̃)

for 𝜂 = 𝛾 − 𝛾 . □

Lemma C.2. Let 𝐺 (respectively, 𝐺) be the composition operator corresponding to 𝑔 (respectively, 𝑔)
∈ 𝐶𝑀+2

𝑏
. Then, one has

|||𝐺(𝐹 );𝐺(𝐹 )|||𝛾
𝑇
(Γ),𝛾

𝑇
(Γ̃) ≲ ‖𝐺 − 𝐺‖𝐶𝑀+2 + |||𝐹 ;𝐹 |||𝛾

𝑇
(Γ),𝛾

𝑇
(Γ̃)

with a proportionality constant depending only on 𝛾 and the norms of (Π,Γ), (Π̃, Γ̃), 𝐹 , 𝐹 , 𝑔, 𝑔.

Proof. This follows from the estimate in Hairer (2014, Theorem 4.16). The joint continuity is not stated
there but is clear from the triangle inequality. □


