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Kurzzusammenfassung

In der vorliegenden Dissertation wird der Markov’sche quantenmechanische Mas-
tergleichungsansatz benutzt, um die Transporteigenschaften unterschiedlicher ex-
perimenteller Aufbauten zu untersuchen.

Motiviert durch die Suche nach méglichen physikalischen Implementierungen
die Quanteneigenschaften fiir zukiinftige Maschinen zur Quanteninformationsver-
arbeitung und Quantenkommunikation nutzbar machen kdnnen, untersuchen wir
zundchst ein spezielles System aus Quantenpunkten, dass als Basis fiir solche Ap-
paraturen dienen konnte. Bei der industriellen Produktion grof3flachiger Struktu-
ren 1alt sich jedoch das Auftreten ungewollter Defekte kaum vermeiden. Daher un-
tersuchen wir speziell den Fall von elektronischem Transport durch zwei parallele
Doppelquantenpunkte, die sowohl kapazitiv, als auch durch ein senkrecht zwischen
ihnen liegendem Ladungsqubit gekoppelt sind. Dieses Ladungsqubit reprasentiert
dabei einen ungewollten Defekt in einer regelméfligen Struktur aus Doppelquan-
tenpunkten, welcher die kohdrenten Tunnelamplituden der Doppelquantenpunkte
modifiziert. In der Folge, studieren wir den Einfluss des Qubits auf die stationdren
Strome durch das System, die Verschrinkung der Doppelquantenpunkte und de-
ren Riickwirkung auf das Ladungsqubit. Ein Resultat dieser Untersuchung, ist die
Beobachtung eindeutiger Signaturen des Ladungsqubits in den stationédren Stro-
men. Zusdtzlich finden wir, dass der stationdre Qubitzustand durch extern ange-
legte Spannungen justiert werden kann und sowohl reine Qubitzustidnde als auch
reine, verschrankte Doppelquantenpunktzustdnde erzeugt werden kénnen.

Angeregt durch die eindrucksvollen Fortschritte in der Produktion und Manipu-
lation kalter Atome und dem im bosonischen Fall auftretenden kritische Phdnomen
der Bose-Einstein Kondensation, untersuchen wir zusétzlich die Transporteigen-
schaften eines Aufbaus, bei dem Bédder aus ultrakalten bosonischen und fermio-
nischen Teilchen an ein Quantensystem mit nur wenigen Energieniveaus gekop-
pelt sind. Um das kritische Verhalten in den Badern korrekt beschreiben zu konnen,
leiten wir zunédchst das temperatur- und dichteabhédngige chemische Potential der
Reservoire im groBkanonischen Ensemble ab. Anschliellend bestimmen wir die sta-
tiondren Strome durch das System unter Beriicksichtigung dieser abhéngigen che-
mischen Potentiale. Sowohl im Falle fermionischer als auch bosonischer Teilchen
beobachten wir stationdre Stréme die gegen den externen Temperaturgradienten
zwischen den Béddern flieen. Zur weiteren Charakterisierung dieser Strome stel-
len wir das linearisierte Onsager-Gleichungssystem auf und berechnen die linearen
Transportkoeffizienten. Diese Koeffizienten zeigen im Fall des bosonischen Trans-
portes eindeutige Signaturen der Bose-Einstein-Kondensation.
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Abstract

In this thesis we first review the Markovian quantum master equation approach and
its underlying theoretical arguments and, subsequently, utilize it in order to investi-
gate two different transport setups.

On the on hand, motivated by the ongoing search for physical implementations
of possible information processing or communication devices which can harness
quantum mechanical properties, we first investigate a candidate for a basic build-
ing block of such a machine based on quantum dots. Large-scale structures of many
such quantum dots have been suggested as fundamental architecture for quantum
computers. However, a large-scale industrial production is likely to face the prob-
lem of unwanted defects. Therefore, we particularly study the electronic transport
through a system of two parallel double quantum dots coupled both capacitively
and via a perpendicularly aligned charge-qubit. We assume that the presence of the
qubit leads to a modification of the coherent tunneling amplitudes of each double-
quantum dot. Subsequently, we study the influence of the qubit on the electronic
steady-state currents through the system, the entanglement between the transport
double quantum dots, and the back action on the charge- qubit. As a result we find
that the obtained steady-state currents show signatures of the qubit. Additionally,
the stationary qubit state may be tuned and even rendered pure by applying suit-
able voltages and we find that it is also possible to stabilize pure entangled states of
the transport double-quantum dots in the Coulomb diamonds.

On the other hand, motivated by impressive advances in the field of ultra-cold
atoms and the phenomenon of Bose-Einstein condensation, we also study trans-
port setups, where reservoirs of massive fermionic or bosonic particles are in con-
tact with a few-level quantum system. In order to resolve a potentially critical be-
havior in these atomic reservoirs, we review the properties of ultra-cold quantum
gases in the grand-canonical ensemble and derive their temperature- and density-
dependent chemical potentials. Consequently, we calculate the steady-state par-
ticle and energy currents through the system. Considering ideal Fermi and Bose
gas reservoirs, we observe steady-state currents against the thermal bias as a result
of the non-linearities introduced by the constraint of a constant particle density in
the reservoirs. Applying a linear response argument, we establish the correspond-
ing Onsager system of equations from which we are able to extract the transport
coefficient that characterize the steady-state currents. Most importantly, we find
signatures of the on-set of Bose-Einstein condensation in the transport coefficients
of the bosonic setup.
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Chapter 1

Introduction

Transport processes, where energy and/or matter is exchanged between connected
subsystems, are very widespread and commonly occur in many fields of physics,
e.g., nonequilibrium thermodynamics [1], of chemistry, e.g., reaction-diffusion sys-
tems [2] and of biology, e.g., biological metabolism processes [3]. Ever since their
discovery they have drawn the attention of both theorists and experimentalists, who
try to gain a better insight into the laws of nature, and, based on their research,
develop new applications. In fact, the advances over the last decades have con-
siderably deepened our knowledge of the underlying physical mechanisms and al-
lowed us to strongly improve the experimental capabilities to model such systems.
Especially, these technical improvements have allowed not only to study macro-
scopic systems but to design systems of smaller and smaller dimensions. Nowa-
days, one can routinely produce and manipulate systems with dimensions of the
order of a few nanometers, a length scale comparable to the size of a few atoms or
molecules, the wavelength of visible light, or the wavelength of the electron enve-
lope wave function in semiconductors [4]. Consequently, the transport processes
through such tiny structures are affected by their quantum properties which can
not be neglected any longer. Therefore, quantum transport in contrast to the clas-
sical transport incorporates quantum effects such as superposition of states, inter-
ference, entanglement, nonlocality and uncertainty. The fundamentally different
nature of quantum systems compared to classical systems has raised an immense
interest and lead to a complete new field of physics, namely the study of mesoscopic
transport through open quantum system.

1.1 Mesoscopic solid-state systems

Most prominent examples for experimental systems where quantum transport can
be observed are mesoscopic solid-state systems like quantum wells [5], quantum
dots [6-8], nanowires / nanotubes [9-11], nanocrystals [12] or optical microcavi-
ties [13], to name but a few. We especially point out the systems defined in two-
dimensional electron-gases (2DEG) which are generated in doped semiconductors.
They can be used to define a wide range of different quantum dot setups. To this
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Figure 1.1: Left picture taken from Ref. [18]: Metallic surface gates deplete the 2DEG
in the semiconductor substrate and define a DQD in the central region.
Additional gates on the left and right side of the DQD define QPCs as
charge sensors. Right picture taken from Ref. [11]: InSb nanowire hang-
ing between metallic source and drain leads. The metallic gates LB, CB,
and RB below the beam define a DQD within the nanowire. Additionally,
one can tune the electron number in each dot via the gates LP and RP.

end, one usually applies additional metallic surface gates on top of the semicon-
ductor substrate containing the 2DEG, as can be seen in Fig. 1.1. Applying a voltage
to these additional gates locally depletes the 2DEG and, thus, enables one to de-
fine almost arbitrary nanostructures within the 2DEG such as single quantum dots
(QD), quantum-point contacts (QPC) [14, 15], double-quantum dots (DQD) [16-18],
triple-quantum dots [19, 20] or even more complicated structures. Furthermore,
the afore mentioned transport systems allow for a high degree of control over all
relevant system parameters, due to their tuneability via the external gates. Other
methods which are used nowadays to produce quantum dots on a large scale are,
for example, lithographic methods [21-23] or self-assembled growth [12].

Based on these experimental advances a multitude of new effects and applica-
tions have been developed over the recent decades. They cover a wide field reaching
from single electron-, spin- and photon-sources [24, 25], detectors [26-28], sources
of entangled electrons [29], to many-body quantum simulators [30-32] and artificial
atoms and molecules [33]. Especially the capability to harness the potential power
of quantum properties, such as superposition of states and entanglement, for quan-
tum information and communication technologies [34-36], has raised the interest
in such experimental implementations. Encouraged by the latest progress in their
fabrication and manipulation, semiconductor quantum dots have been proposed
as possible candidates [37, 38]. Scalability, the feasibility of coherent control, and
non-destructive read out of quantum states, as well as robustness against decoher-
ence are among the key features for such candidates [39, 40].

For these reasons double quantum dots [41], which are used to model two-level
qubit states [42-44], are of special interest. It has been shown that coherent control



1.2 Trapped ultracold gases

[33,45-47] and read out [28, 48, 49] are achievable in these systems. Together, this al-
lows to implement electronically accessible quantum gates based on quantum dots
[35, 36, 50]. Even entanglement, which is crucial for quantum computation, can be
produced [27], manipulated [51] and detected [52, 53] in several quantum-dot se-
tups. In consequence, quantum dots provide a promising candidate for a quantum
computation architecture [54].

Unfortunately, all these fabrication methods can not completely avoid unwanted
defects that might destroy the desired properties of the double quantum dots. This
problem inspired some recent studies of the effects of impurities in such systems.
The effects of charge impurities on coupled quantum-dot systems have been re-
cently studied theoretically using molecular orbital and configuration interaction
methods [55]. Furthermore, the possibility of screening charge impurities by using
multi-electron quantum dots were theoretically investigated [56]. In addition, spin
impurities have been observed experimentally via transport spectroscopy in a car-
bon nanotube DQD [57].

However, more research is still necessary in order to pave the way to scalable
quantum dot systems, which could be used in large scale quantum communication
and quantum information devices. This is our motivation to study another kind of
elementary defect which is commonly present in a large scale production of meso-
scopic solid-state systems, namely charge-qubit (CQB) impurities. In contrast to the
static charge impurity studied in Ref. [55], this defect also possesses a dynamical de-
gree of freedom that introduces coherences in the impurity states. The dynamical
behavior of the charge in the defect region can influence the properties of nearby
quantum dot structures. Therefore, having possible quantum computation devices
in mind, we investigate the influence of such a CQB impurity on a system of coupled
parallel DQDs. We especially consider its effect on the entanglement properties of
the DQDs since entanglement provides a valuable resource for quantum computa-
tion [58, 59].

1.2 Trapped ultracold gases

Parallel to the advances in the production and control of mesoscopic solid-state sys-
tems, there also has been a lot of progress in the production and manipulation of
trapped ultracold quantum gases. Here, a cloud of massive particles is held in an
magneto-optical trap in a ultrahigh vacuum chamber and subsequently is cooled
down to ultracold temperatures, just a few nano-Kelvin above absolute zero. De-
pending on the density of the cloud, in this low temperature regime the de Broglie
wavelength of the massive particles can become of the same order as their mean
free path. Hence, the quantum properties of the particles become relevant, as it
has been impressively shown by the Nobel Prize awarded creation of the first Bose-
Einstein condensate (BEC) of cold atoms [60-62]. In order to give an impression
of the formation of a Bose-Einstein condensate, we show some experimental data
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Figure 1.2: Left picture taken from Ref. [61]: Formation of a Bose-Einstein conden-
sate of bosonic atoms below a critical temperature 7, in the velocity-
distribution of the particles. The upper row shows the experimentally
observed absorption images. Right picture taken from Ref. [84]: Sketch
of a transport setup for ultracold particles. Two particle reservoirs with
different temperatures are connected by a quasi 2D channel. The particle
flow through the channel can be tunned by an external gate laser-beam.
The channel itself is defined by a laser TEM mode (not shown) applied
perpendicular to the gate beam.

obtained in the group of W. Ketterle in the left picture of Fig. 1.2.

This groundbreaking experiment has initiated an intense research of the proper-
ties of ultracold gases and especially BECs in different setups. For example, one has
investigated the interference of BEC clouds [63, 64], rotating BECs [65, 66], spinor
condensates [67], Bose-Fermi mixtures [68] and probed the properties of BECs in
zero gravity [69]. Furthermore, it boosted the development of new techniques for
the manipulation and control of three-dimensional (3D) cold gases using stand-
ing light fields. Here, counter propagating laser fields generate a standing electro-
magnetic wave pattern which interacts with the ultracold atoms. This method al-
lows to superpose various structures on the particle cloud with a very high degree
of control. An example is the realization of cold bosonic [70, 71] and fermionic [72]
atoms trapped in optical lattices which allow for a simulation of many-body systems
with Hubbard-like dynamics [73]. Since their experimental realization, optical-lattice
systems have been used to successfully study, e.g., the entanglement of atoms [74,
75], quantum teleportation [76], Bell state experiments [77], disorder [78-81] or ul-
tra cold molecules [82, 83].

In fact, after these systems have been studied in quasi equilibrium situations for
quite a while and with huge success nowadays the focus shifts to investigating the
nonequilibrium properties of such systems. The good experimental control of the
relevant parameters, as well as the possibility to produce different lattice geometries
in 1D, 2D or 3D, make these kind of systems an interesting candidates for quantum-
transport setup.



1.3 Structure of the thesis

First attempts successfully induced diffusive processes in the closed setup with-
out additional reservoirs by introducing density inhomogeneities, i.e., disorder [80,
85] or local losses [86—-88], applying a potential gradient via the optical lattice [89,
90], distortion [91] or displacement [92] of the confining potential, using interac-
tions within the system [93, 94] or by external driving [95, 96]. Accompanying this
experimental advances, there has been also theoretical research [97-101] predicting
different interesting effects that might soon be observable experimentally.

More recently there have been first investigations of transport experiments with
ultra cold fermionic and bosonic atoms that explicitly involve additional particle
reservoirs as sketched in the right picture of Fig. 1.2. In these setups, the transport
processes are driven by at least two reservoirs which are initialized in different equi-
librium states and attached to the system of interest, e.g., a lattice system [102], a
potential trap [103-106] or even quantum dot systems [107].

An interesting feature of this approach is the fact that the reservoirs themselves
can posses critical quantum properties and, for example, undergo a phase transi-
tions to an BEC. However, in order to correctly model this critical behavior, espe-
cially for the case of bosonic particles, the chemical potential can not be treated as
a free parameter but becomes a function of the temperature and particle number in
the trap [108].

1.3 Structure of the thesis

We start this dissertation by presenting the fundamental theoretical concepts which
we use throughout this thesis in Chap. 2. Here, we show that the transport setups
discussed in Sec. 1.1 and Sec. 1.2 can be described by Markovian master equations
under the assumption of weak system-bath couplings. Subsequently, we use these
master equations to calculate the steady-state of the system from which we derive
several interesting steady-state properties such as the particle current, transport co-
efficients and the entropy production.

In Chap. 3 we apply this theoretical formalism to a setup of two coupled parallel
DQDs that are disturbed by an additional CQB. We investigate the steady-state cur-
rents through the DQD. In particular, we focus on the effect of the CQB impurity on
the purity of the system and its entanglement properties.

In Chap. 4 we apply the theoretical formalism from Chap. 2 to a transport setup
for ultracold atoms. Here, we consider two, either fermionic or bosonic, particle
reservoirs which are connected to a few-level quantum system. In order to correctly
describe the particle reservoirs, we review the properties of ultracold quantum gases
in the grand-canonical ensemble. Subsequently, we investigate the steady-state
transport properties of the setups. We particularly study the difference between
fermionic and bosonic transport through such systems and especially focus on the
signatures of a critical behavior in the reservoirs.

Finally, we summarize our results within Chap. 5.






Chapter 2

Open quantum systems in
nonequilibrium

Within this chapter, we review the system-bath theory under a weak coupling as-
sumption. The results and derivations presented herein provide the basic theoreti-
cal framework we use throughout this thesis.

The main idea behind the system-bath theory
(see, e.g., [109]) is to divide a given thermody-
namic system into two parts. One part is the sys-
tem in whose dynamics one is interested. The
other part is the environment in whose dynam-
ics one is usually not so interested. In general,
the small system will have considerably less de-
grees of freedom than the environment. In fact,
we will often treat the environment in the ther-
modynamic limit which assumes an infinitely interest
large volume V filled with infinitely many par- ‘
ticles V under the constraint that the particle
density n = N/V remains constant. Figure 2.1: Sketch of the system-

The environment is usually coupled to the bath decomposition.
system by some matter- or energy-exchange processes. Hence, it can act as a reser-
voir providing particles and energy to the system. This fact makes it in general more
difficult to extract the system dynamics of interest as they tend to be influenced by
the reservoir. One possibility to analyze the influence of the environment on the
system in a controlled way is to apply a perturbation theory in the system-bath in-
teraction. For a sufficiently weak coupling one can truncate the perturbation series
at low orders. Such approaches are called weak coupling approximations. They
have been proven to be very successful since in many experimental setups one can
isolate the system of interest quiet well from its surrounding. Furthermore, one can
in principle include higher orders of the perturbation series which results in correc-
tions to the weak coupling limit.

Unfortunately, analyzing a given setup by means of a perturbation theory can still
be very complicated. To obtain analytic or numeric results one might need further
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approximations regarding the system and/or the environment. Within this chapter,
we derive a master equation in the weak coupling limit which describes the reduced
system dynamics of a few-level quantum system coupled to multiple reservoirs. In
order to establish this weak coupling approach, we need the so-called Born, Markov
and secular approximations which we derive in the following sections.

Note that throughout this thesis we make use of the natural units. Therefore, we
set in the following ¢ = kg = h = 1.

2.1 System-bath Hamiltonian

In the spirit of the system-bath theory, we assume that the whole Hamiltonian of a
given setup can be written as a sum

7:[:7:[5+7:[1+7:[B. 2.1

The small system of interest is described by the Hamiltonian 75 which we assume
to be diagonalizable in a suitable basis such that

Hs|n) = E,|n), 2.2)

with eigenvector |n) and corresponding eigenvalue F,,. Thus, a general system state
is described by the density matrix ps = ¥, p, [n) (n| which is normalized such that
Tr{ps} = 1. Here, the coefficients p, represent the probability to find the system in
the eigenstate |n).

The system is coupled to the surrounding bath, described by the Hamiltonian
Hp, via the interaction Hamiltonian ;. We assume that the reservoir is in a grand-
canonical thermal equilibrium state

) —B(?:lB—uNB)
PB = Tr{ (”HB N )},

which is characterized by the inverse temperature $ = 1/7 and the chemical poten-
tial 4. The operator Ng is the total number operator of the particles in the bath.
Obviously, when [z, N] = 0, this density matrix commutes with the bath Hamilto-
nian, i.e., [7:[]3, ps] =0, as expected for an equilibrium state.

For completeness, we also mention that a general state of the whole system, i.e.,
the system of interest plus the surrounding bath, is given by the corresponding den-
sity matrix

(2.3)

X = 2065 [v5) (. (2.4)



2.2 Interaction picture

From this density matrix one could in principle obtain the evolution of the whole
system and calculate all desired expectation values. However, the states [¢;) involv-
ing both system and bath are usually very hard to find due to the large amount of the
bath degrees of freedom involved. Thus, in general one has to rely on approximation
methods.

2.2 Interaction picture

A systematic approximation method which describes the transport through the few-
level system, starts by considering the dynamics of the full density matrix y. To
describe its evolution, we first note that the eigenstates |¢/;) evolve according to the
Schrodinger equation

.0 ~
i) = 7). 2.5)

From this observation and the definition of the density matrix in Eq. (2.4) follows
that the evolution of the density matrix is described by the Liouville-von-Neumann
equation

0 iy
oo = [H.x]. (2.6)

Assuming that we can diagonalize the system and bath Hamiltonians separately, it
is convenient to switch to the Dirac interaction picture. Then, the evolution of the
now explicitly time dependent density matrix is only governed by the interaction
Hamiltonian. This structure allows to derive a perturbation series in powers of the
interaction Hamiltonian.

The density operator in the Dirac interaction picture is obtained via a unitary
transformation and reads as

%(t) = ot (7:[5+7:[B)t>2(t)6—i (?—A[s+7:LB)t' 2.7)

Here and in the following sections, we denote operators in the interaction picture
by bold characters. The transformed density matrix from Eq. (2.7) now obeys the
Liouville-von-Neumann equation in the interaction picture

%)Z(t) =i [Hi(t), %(1)]. (2.8)

In order to proceed further, we need to assume a specific structure of the interac-
tion Hamiltonian. A quite general structure of this Hamiltonian can be obtained if
we suppose that it is composed of a sum over direct products of system and bath
operators, respectively. Hence, we define the interaction Hamiltonian as

Hi=> A, ®B,, 2.9)
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where the system operators A, and the bath operators B, act on their respective
Hilbert spaces only. Here, we want to point out that the hermiticity of the interaction
Hamiltonian #; = ”HIT imposes some restrictions on the system and bath operators.
Splitting these operators into hermitian and anti-hermitian parts

Ay=A"+ A% and B, =BY+ B2 (2.10)
with
; 1,2 - ~ 1, .
AT = Z (A, + AT AA = Z (A, - AT 2.11
o 2 ( + a) 9 (67 2 ( a) Y ( )
- 1,4 - 1,4 .
B§=§(BQ+B;), BS:E(BQ—B;), (2.12)
respectively, leads to
1, . . . .
H= o (i) = 2 (Ad @ Bl -iAR @i By). (2.13)
For an anti-hermitian operator OA we have ((A)A)T = —OA and, thus, we see that

ot LA - .
(1OA) = 10A is hermitian. This allows us to always redefine the system and bath
operators in terms of hermitian operators

A, = A}, B, =B}, (2.14)

Therefore, we can safely assume in the following, that the interaction Hamiltonian
consists of hermitian system and bath operators

Hi=Y A, ®B,=> A, ®B,=> Al ® B} (2.15)
In fermionic systems one usually needs to perform an additional Jordan-Wigner
transformation of the annihilation and creation operators to establish an interac-

tion Hamiltonian of the form assumed in Eq. (2.9) (see Sec. 3.2). This decomposi-
tion yields for the interaction Hamiltonian in the Dirac picture the expression

Hi(t) = > efst A e iMst @ Bt B o-itint (2.16)
=2 Aa() ®Ba(). (2.17)

Note that the system and bath operators are transformed in the interaction picture
by an unitary transformation with respect to their corresponding Hamiltonian only.
Now, we can proceed and formally integrate the Liouville-von-Neumann equation
in Eq. (2.8) which results in

t
() =%o-i [t [Fu(®), %), 2.18)
0

10



2.3 Born approximation

with the initial density matrix x, = x(0). Thus, we obtain the time dependent den-
sity matrix of the whole system in the Dirac picture. However, usually one is in-
terested in the dynamics of the system only. To obtain an expression for the time
dependent system density matrix only, we introduce the partial trace Trp {e} over
the bath degrees of freedom. Applying this partial trace to the total density operator
leads to the reduced system density matrix

p() = Trg {x(1)} . (2.19)

Reinserting the formal solution from Eq. (2.18) together with the von-Neumann
equation in Eq. (2.8) in the above definition of the reduced system density matrix
yields

9 (1) = 1T ([0, %0}~ [t T ([0, [F) xCO]T) . (2200

Here, we could insert Eq. (2.18) again for the density matrix x(¢') and so on and
so forth. This procedure results in an infinite power series for the reduced system
density matrix with respect to the interaction Hamiltonian. In general, this power
series can not be solved exactly. Hence, we need to apply additional approximations
in order to close the above integro-differential equation. One possible approxima-
tion is the so-called Born approximation, which we discuss in more detail within the
following paragraph.

2.3 Born approximation

First, we note that the evolution of the density operator described in Eq. (2.20) ex-
plicitly depends on the initial state y, of the whole system. If we assume that initially
system and bath are well separated such that they can not interact with each other,
the initial state of the whole system can be written as a direct product state

)A(O = pAU ® ﬁB- (221)

Here, p is the initial state of the system and gy, is the initial bath equilibrium density
matrix from Eq. (2.3). Furthermore, we assume that the bath is very large and inter-
acts only weakly with the system. This implies that the bath approximately remains
in its respective equilibrium state during the evolution of the whole system. Thus,
we use the approximation

X(t) = p(t) ® pg + O(Hy). (2.22)

This assumption is known as Born approximation. More specifically, this approx-
imation assumes that there is no back-action from the system on the state of the

11



Chapter 2 Open quantum systems in nonequilibrium

reservoir. Inserting this result into the evolution of the system density matrix in
Eq. (2.20) yields

%ﬁ(t) = ~i Trg {[Hi(t), po ® pn ]} - f dt' Teg {[Ha(t), [Fu(t)), p(t') ® p]]} + O(FLy).
(2.23)

Assuming that the weak coupling approximation which is comprised in Eq. (2.21)

and Eq. (2.22) is valid, we can neglect the higher order terms (9(7—1?) in the above
integro-differential equation. Using the definition of the interaction Hamiltonian
from Eq. (2.9) and the properties of the trace, the above relation simplifies to

gﬁ(o =1 3 Tre {Ba (1)} [Aa(). o]
- zﬁ: / czt'{ [Aa(t), As()p(t)] Trp {Ba(t)Bs(t') s }
+[P() A1), Au(t)] Trg {Bﬁ(t,)Ba(t)pB}}

= Z,; f dt’ { [As()B(t), Aa(t) ] Cap(t,t') + [Aa(t), A(E)A5(H)] Cpalt', t)}-
(2.24)

In the second equality we introduced the equilibrium bath correlation functions of
the reservoir which are defined as

Cag(t, t’) = TI"B {Ba(t)ﬁﬁ(tl)ﬁ]g} . (225)

Additionally, we used the fact that the equilibrium expectation values over single
bath operators vanish, i.e.,

(Ba(t)) = Trs {Ba(t)ps} = 0. (2.26)

This can always be achieved by a suitable transformation of the bath operators and
the system Hamiltonian. The transformation

Hs »Hi=Hs+ > A (B.), (2.27)

A A A

B, - B, =B, - (B.), (2.28)

«

leaves the total Hamiltonian # invariant and guarantees the vanishing of the expec-
tation values of the bath operators.

Obviously, the Born approximation closes the integro-differential equation (2.20)
as both sides of Eq. (2.23) involve the reduced system density matrix only. This
approximation corresponds to the second order perturbation theory in the system-
bath interaction Hamiltonian.

12



2.4 Markov approximation

2.4 Markov approximation

Although the integro-differential equation in Eq. (2.24) is closed, it still depends on
the reduced system density matrix of previous times p(¢'). This memory effect of
the reduced system density matrix makes it still difficult to determine its evolution
even in Born approximation. Therefore, we utilize an additional assumption known
as the Markov approximation.

In the Markov approximation we suppose that the variation of the reduced density
matrix is slower than the decay of the bath correlation function. Then, only system
states close to the time ¢ contribute to the memory kernel such that we can in a first
step substitute p(¢') — p(t) and find

9 p(1) = ) [ ar { [As(t)p(1). Aa(D)] Cas(t,1') + [Aa(t), () AS(1)] cﬁau',w}.
(2.29)

This assumption is especially well satisfied for large reservoirs with many degrees of
freedom. Here, the bath correlations can rapidly decay due to scattering processes.
The resulting time-local expression in Eq. (2.29) for the reduced system density ma-
trix is known in the literature as the Redfield equation [110-112].

Using the fact that [’HB, ﬁB] = 0, and that the trace remains invariant under cyclic
permutation, one can show that the bath correlations depend only on time differ-
ences

Cop (1,1) =Tr {e 1O B MO Bype | = O (1-1') (2.30)

Moreover, recalling the argument from Egq. (2.15), we note that for hermitian bath
operators one additionally obtains the relation

as(7) = Cpa(-T7), (2.31)
which describes the time-reversal symmetry of the reservoir correlations.
We can rewrite Eq. (2.29) by substituting 7 = ¢ — ¢/ which yields

0

aegf; / dT{[Aﬁ(t—T),s(t),Aa(t)]Cag(r)+[Aa(t),ﬁ(t)Aﬁ(t—T)]Caa(—f)}-

(2.32)

In a second step, we now shift the upper integration limit to infinity assuming that
the value of the time integration remains unchanged. As before, this is well justified
if the bath correlations decay sufficiently fast. Thus, we obtain the Born-Markov
master equation in its full Markovian form

% = ; f dT{ [As(t=7)p(t), Aa(t)] Cap(r) + [Aa(t), p()As(t - T)] Cﬁa(_T)}

(2.33)

13



Chapter 2 Open quantum systems in nonequilibrium

Here, the reduced system density matrix at time ¢ is completely uninfluenced by
the system state at former times. Unfortunately, this master equation does not nec-
essarily preserve the positivity of the density matrix [113, 114]. This may lead to
unphysical results as for example discussed by Yu et al. in Ref. [115]. In order to
obtain a Lindblad master equation which, according to G. Lindblad [116], by defini-
tion preserves the properties of a density matrix, we additionally need the so-called
secular approximation.

2.5 Secular approximation

The secular approximation is needed in order to obtain a master equation that pre-
serves the positivity of the density matrix. This approximation is widely used in the
field of quantum optics where it is sometimes synonymously termed as the rotating-
wave approximation [117]. The essence of this simplification is to neglect the fast
oscillating terms in the master equation. To be able to identify these fast oscillating
terms, we evaluate the Markovian master equation presented in Eq. (2.33) using the
system eigenbasis from Eq. (2.2). Inserting the completeness relation of the system
eigenstates we obtain

So=- Y [ar {%(r) [ (alAa(t)1) 01 ke (el A2 = 7l (0]
af} abed 0
+ Coa(=7) [A(1)]e) (c|Ap(t = 7)|d) {d], |a) (al Aa(t)]b) (8] } (2.34)

Furthermore, using the definition in Eq. (2.16) of the system- and bath operators in
the interaction picture, we find

p=-3 3 [ dral Aalb) (el Aslaye GrEr g Femre=)

aff abed 0

|

x {Ca5<7>[|a> (bl 1e) {d] () | + Ca (=) A1) ) (] ) <b|]}. (2.35)

Now, we can identify the oscillating terms in the Markovian master equation. We
note that for large times ¢ the terms proportional to e¢«! average out. Therefore, the
secular approximation is performed by neglecting all terms that oscillate with time
t. Hence, we replace ¢« — §,, o and get

%ﬁ == 3 {a Aalb) {c| Ag |d) { [ dr Cas(r)e EE a) (0 e (dl 5(1)

af abed
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2.6 Lindblad master equation

v [ dr Cou(=r) B (1)) (] o) (0 ]}aEaEb,EdEc
0

== 303 (al Aa ) (c] As |d) {rgﬁ (Ba—E)| la (8] e) (d] p(1)]

af abed

+ 50 (B~ E9)|p(0) ) (d)a) (v ]}5 (2.36)

In the last equality we introduced the half-sided Fourier transformed bath correla-
tions functions which are defined as

I (w) = f dr © (£7) Cop(T)e™T. (2.37)

In order to further shorten our notation, we now introduce the operator
[y = |a) (8], (2.38)
and the transition frequencies
Wap = By — B (2.39)

With these definitions, we can rewrite the master equation in Eq. (2.36) as

QJ|Q;

=~ 3 3 ol Aulb) c|Aﬂ|d>{r;B<wd,c>[ - eap (1)

af abed

+ FBa (_wd,C) [ﬁ(t)ﬂcda 1£[ab:| }5wa,b7wd,c' (2.40)

This equation preserves the positivity of the reduced system density matrix. How-
ever, it still involves the rather unconventional half-sided Fourier transformed bath
correlations which we like to link to the Fourier transforms. This representation also
enables one to show that Eq. (2.40) is of Lindblad form.

2.6 Lindblad master equation

To obtain the Lindblad form of the Born-Markov-Secular (BMS) master equation
from Eq. (2.40), we split the half-sided Fourier transformed correlations into her-
mitian (y,5) and anti-hermitian (o,3) parts according to

1 1
“Vap(w) §0aﬁ(w)- (2.41)

Fég (w) = 5
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Chapter 2 Open quantum systems in nonequilibrium

The full even and odd Fourier transformed bath correlation functions are defined

by
Yap(w) =1 () + Ty () = /dTCag(T)eiW, (2.42)
oap(w) =l (W) —Tpp (w) = / dr Cop(T)sgn(7)e'T, (2.43)
where
+1, for >0
= ’ ’ 2.44
sen(e) {—1, for x <0, ( :
is the sign function. Inserting these results in Eq. (2.40), we obtain
J.,. 1 . . N
—p== 52 Y (al Aalb) (dl As|d) { [as(wae) + 0as(wae)] [ Tas, Tead ]
ot 2 af abed
+ [Pyﬁa(_wd,c) - O_ﬁa(_wd,c)] [ﬁﬂcd7 ﬂab]}é‘wayb,wdyc- (2.45)

Subsequently, by shifting the summation indices and collecting the terms which are
proportional to the even and odd Fourier transform, respectively, we get the desired
master equation in Lindblad form [116] which reads as

0. i L £
5P =1 [’HLS,p]+a§d%b7cd [Hcdpﬂga—g{ﬂzaﬂcd, }] (2.46)

Here, we introduced the so-called Lamb-Shift Hamiltonian

. 1 . . R
s = 57 32 30 s el Aal8) (el As 0 LT, 2.47)
and the rates
Yabed = Y, Yap (Wae) (a] Aa[b) (c| Ag |d) 0y y .- (2.48)
af

The Lamb-shift Hamiltonian in Eq. (2.47) renormalizes the system Hamiltonian due
to the interaction with the environment. Using the properties of the bath correla-
tion functions and the definitions of their even and odd Fourier transforms, one can
show that the Lamb-shift Hamiltonian is a self-adjoint operator, i.e., 7—AlLs = 7:L£S, and
it commutes with the system Hamiltonian, i.e., [Hys, Hs] = 0.

Furthermore, the rate matrix 4,5 (w) is positive definite and, therefore, the BMS
master equation presented in Eq. (2.46) is of Lindblad form and preserves the posi-
tivity of the density matrix [118].
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2.7 Effective rate equation

In order to gain physical insight to the effect of the Lamb-shift Hamiltonian, we
assume that the system eigenstates are orthogonal, i. e. (a|b) = 04. Then, we find
that the Lamb-shift Hamiltonian in Eq. (2.47) becomes

1 i -
o7 22 2 O (wav) {al A D) (B] Ap |d) Taads, (2.49)
af abd

His =
Additionally, if the system has non-degenerate eigenvalues, i. €. g, g, = d,.4, Wwe find
that the Lamb-shift Hamiltonian becomes diagonal in the system eigenbasis and
reads as

. 1 . .
s =55 & B 0us(ena) (ol A ) 01 Ay ) ) o (2.50)

Hence, for systems where the density matrix p is also diagonal with respect to their
eigenbasis, the commutator in Eq. (2.46) vanishes. Within the next section, we show
that for systems with non-degenerate eigenvalues an effective rate equation for the
reduced system density matrix can be established. From this rate equation descrip-
tion follows that the reduced system density matrix is also diagonal in the system
eigenbasis. Consequently, systems with non-degenerate eigenvalues are described
by the Lindblad master equation

0 . Lo 1 jmg o

Tl Y Vabed [HcdeZa - 5 {I, 1, P}] : (2.51)
t abed 2

Throughout this thesis, we investigate transport systems that can be described by

the above Lindblad master equation.

2.7 Effective rate equation

The appearance of the operators II,, in Eq. (2.46) suggests to evaluate the above
equation in the system eigenbasis. We assume that this eigenbasis consists of or-
thogonal eigenstates and non-degenerate eigenvalues. Then, by calculating the ma-
trix elements in the system eigenbasis, i.e., determining p,,,,, = (n|p|m) , the commu-
tator with the Lamb-shift Hamiltonian in Eq. (2.46) vanishes and we find

. 1
Prm = Z Yab,cd |:6n,05b,mpda - 561),0 {6n,apdm + 5m,dpna}:|
abed

1

= Z Yam,ndPda ~ 5 Z [’an,bapam + P)/ab,bmpna] . (2.52)
ad ab

Using the assumption that the system eigenspectrum is non-degenerate together
with the definition of the rates in Eq. (2.48), we see that some of the rates become
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Chapter 2 Open quantum systems in nonequilibrium

proportional to Kronecker deltas, e.8., Vb 40 ~ 0an @0 Yap pm ~ dam- This leads to the
simplified equation

. 1
Pnm = Z Yom,naPab — 3 Z [7nb,bn + W/mb,bm] Prm - (253)
ab

2 b
If we just consider the populations of the system density matrix, i.e., p, = (n|p|n),
the above equation collapses to an effective rate equation which reads as

P = Eb: [%n,nbpb - %b,zmpn], (2.54)

with positive rates 7, ., > 0. Obviously, the populations do not couple to the coher-
ences. We obtain two systems of coupled differential equations for the populations
and the coherences, respectively. Consequently, for long times the coherences just
decay and the system steady-state is determined by the dynamics of the populations
only. Note that since the rates v, , are just the diagonal elements of the rate matrix
Yabca the above equation (2.54) also preserves the positivity of the density matrix.

2.8 Liouville space

In formal analogy to the Schrédinger equation one commonly rewrites the Lindblad
master equation in Eq. (2.51) in the form

d . A
50 =L17). (2.55)

Here, we introduced the Liouville super-operator £ [5] that acts on the system den-
sity matrix. This super-operator is defined as

L [ﬁ] = ;d Yab,cd [HcdﬁHZa - % {HZchw ﬁ}] ' (256)
Due to the linearity of the Liouville super-operator with respect to the reduced den-
sity matrix it is convenient to switch to the so-called Liouville space representation.
In this representation one transforms the system density matrix to a vector, i.e.,
p — p, and the Liouville super-operator to a matrix. For a system of dimension d
the density matrix in the Liouville space is a vector with d? entries and the Liouvil-
lian £ - W becomes a (d2 x d?) matrix. This matrix is in general not self-adjoint and
has complex eigenvalues.

The transformation to Liouville space is achieved by choosing a specific ordering
of the elements of the density matrix in a vector. Normally, one chooses an ordering
where the populations come first followed by the coherences in increasing order of
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2.8 Liouville space

the system eigenstates:

P11 \
: d populations
P11 P12 .- Pid pad
P12
b= p:21 P:22 P:2d —p=| : (2.57)
Dl Paz - Pad Z 141 d(d-1) coherences
21
Pdd-1

Of course this choice of ordering is not unique. However, in this specific choice the
Liovillian corresponding to Eq. (2.53) assumes block form, immediately indicating
the decoupling of populations and coherences.

Another advantage of the Liouville space representation is that the evolution of
the reduced system density matrix now reads as

0
ap =Wp, (2.58)

and can thus be formally solved by the matrix exponential
p(t) = e™ip(0). (2.59)

Solving the matrix exponential is in general a rather difficult task since the Liou-
villian is non-hermitian and there is no spectral decomposition. However, for sys-
tems that can be described by an effective rate equation consistent with Eq. (2.53),
the Liouvillian assumes block-form with at least two decoupled blocks, Wrep for the
populations and W< for the coherences of the reduced system density matrix. For
such systems the calculation of a matrix exponent eV**** involving only the popula-
tion block of the Liouvillian is much easier to calculate than the full expression from
Eq. (2.59).

Comparing Eq. (2.58) with Eq. (2.54), we see that the matrix elements of the block
wrop which describes the evolution of the populations of the reduced system den-
sity matrix, is given by

ngp = Ynnnn — Z Ynb,bn (2.60)
b
WEP = 5 nmm , OTm # n. (2.61)

It is straightforward to show that this implies the property

> R = (), (2.62)

which guarantees the preservation of the trace of the reduced density matrix.
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Chapter 2 Open quantum systems in nonequilibrium

2.9 Multi-terminal setups

So far we only considered a single reservoir which is weakly coupled to the system.
Since the reservoir is in the thermal equilibrium state given by Eq. (2.3), such a setup
never results in a nonequilibrium steady-state. In fact, letting the system density
matrix evolve for sufficiently long times one always observes a thermalization with
the surrounding bath. The steady-state of the system would be a thermal state with
the same temperature and chemical potential as the reservoir. This behavior can be
traced back to the property

Cap(7) = Cpa(-7-10), (2.63)

of the equilibrium bath correlation functions known as the Kubo-Martin-Schwinger
condition [119-121].

In order to generate the more interesting case of nonequilibrium steady-states
of the system, one needs at least two reservoirs with different thermal equilibrium
states. Here, the system tries to thermalize with each reservoir separately which is
of course not possible. Provided that there is a steady-state for such a two-terminal
setup, itis in general not a thermal state. However, there are counterexamples where
the system equilibrates with respect to a single effective, but in general non-thermal,
reservoir [122-124]. Analogously, this argumentation holds for setups with more
than two terminals.

If we assume a multi-terminal 2

M-1

transport setup with M reser-

voirs as sketched in Fig. 2.2, \S Z/

we first note that the respec- . \J} ) ‘
tive reservoirs enter the whole g p % é

Hamiltonian A from Eq. (2.1) ~~ -
additively such that the full
bath Hamiltonian is given by

R M . . . .
A=Y H](;)' (2.64) Figure 2.2: Sketch of a multi-terminal setup.

The corresponding equilibrium state of the full environment can be written as a

tensor product p = ﬁg) ®...® p](3M ) where each reservoir v is characterized by its

corresponding thermal state

(v) 6_6”(¢‘1(3V)—HUN1(3V))
P = . (2.65)
Tr {e‘ﬁ”(ﬂg N >)}

with its respective inverse temperature 3, = 1/7, and chemical potential x,. These
reservoirs are weakly coupled to the system by their respective coupling Hamiltoni-
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2.10 Conditioned master equation

ans 7—2%”), which sum up to the total interaction Hamiltonian
A M A A M A
H=SHY =Y A, 05 BY. (2.66)

Due to the tensor product form of the above interaction Hamiltonian the A reser-
voirs enter the Lindblad master equation in Eq. (2.46) via the bath correlation func-
tions C,s3(7) defined in Eq. (2.25). These multi-terminal bath correlation functions
become

M
Cas(r) = Y. CU)(7), (2.67)
with the respective reservoir correlation function
O (r) = Tr) {B;”(T)ng pg>} . (2.68)

In consequence, the BMS master equation (2.46) is formally not changed and the
total Liouvillian in Eq. (2.58) can be decomposed into a sum over the respective
single reservoir Liouvillians, i.e.,

M
W=y w. (2.69)

Using these results, we can now analyze the transport properties of multi-terminal
setups for weak coupling in the framework of a BMS master equation in Lindblad
form.

2.10 Conditioned master equation

Often, one finds that the full system composed of all reservoirs and the small system
of interest obey some conservation laws. The most prominent examples are the
conservation of particle number and energy. Except for some generic models which
fulfill [#s, H;] = 0 and [Hg, H1] # 0, like pure dephasing models as discussed, e.g., in
Refs. [125-127], this observation implies that a loss of particles and/or energy in the
system is accompanied by a corresponding gain in the attached reservoirs and vice
versa. Hence, in order to characterize the flow of particles and energy between the
system and a specific reservoir it is sufficient to count the quantities that enter or
leave the respective bath. Since the reservoirs enter the master equation additively,
we can uniquely identify the contributions from each reservoir. Therefore, it suffices
for now to consider the transfer of particles and/or energy between the system and
a single reservoir only.

To resolve the number of particles and energy quanta that are exchanged between
the system and the surrounding environment, we rewrite the rate equation for the
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Chapter 2 Open quantum systems in nonequilibrium

populations in Liouville space from Egq. (2.58), as a rate equation for the evolution
of the probability p; to find the system in state |i) which yields

pi= zWijpj- (2.70)
J

Hence, the probability changes according to

dpz = ZWUp]dt (271)
J

Here, we can interpret the expression W;;p;dt as the probability to reach the state
i) starting from the state |j) via a jump W,; within the time d¢. Then, we see that
the change dp; of the probability to find the system in state |i) is given as a sum over
the probabilities for all possible jumps which result in state |;) within the time dt.
Furthermore, we note that due to the conservation of the total number of particles
and the total amount of energy each jump W,; in the system is accompanied by an
exchange of a certain number of particles An;; = n; - n; and a certain amount of
energy AL;; = E;, - E; with the reservoir.

Now, we denote the probability to find the system in state |i) under the condi-
tion that n particles and the energy F have been transfered to the reservoir as p(" B),
Obviously, this probability has to fulfill the relation

-3 )f . 2.72)
n=—oop, <

From our discussion of the Eq. (2.71), we now find that these conditioned probabil-
ities p(" ) obey a rate equation of the form

dp

Zn E) _ ZW(AnU,AEw) (n+An”’E+AE1J)dt. (2.73)
We can interpret the right hand side of the above rate equation as follows: Before
the jump occurs, the system is in state |j) with n; particles and an energy E; in the
system. At the same time there are (n + An;;) particles and the energy (£ + AE;;) in
the bath. When the jump occurs An;; particles and the energy AE;; are transfered
between bath and system. After the jump the system is in state |i) with n; particles
and the energy F; whereas in the bath there are now n particles and the energy F.
Since, in the summation in Eq. (2.73) only the allowed system transitions con-
tribute, we additionally assume that the jump operators W(JA”” AFi) change the par-
ticle number in the system at most by one, i.e., An;; € {-1,0,1}. Thus, we explicitly
neglect pair tunneling and higher order tunneling processes which is well justified
for most microscopically derived transport setups. For the energy transfered in a
single jump there is in general no such restriction. Each jump can transfer the en-
ergy AE;; aslong as the corresponding transition from state |¢) to state |j) is allowed.
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2.10 Conditioned master equation

Using these assumptions, we can deduce from Eq. (2.73) a master equation for the
conditioned density matrix in Liouville space which reads as

HE) = Wy pE) 4 Z [WEE p(LE-AB) Ly~ p(n+1,E+AE)]_ (2.74)
AE

This master equation describes the evolution of the density matrix p("-#) under the
condition that n particles and the energy FE have been transported through the sys-
tem to the monitored reservoir. The operator W, does not induce any particle or
energy exchange between the considered reservoir and the system. Contrary, the
operators Wj . and Wy . induce a transfer of a single particle and the amount of en-
ergy AFE between system and reservoir. The summation in the above master equa-
tion runs over all possible energy transitions AF in the system.

Note that this energy- and particle-number conditioned master equation can also
be obtained by introducing projection operators as virtual detectors [128].

Noticing that the rates contained in the operators W,, W5 ;, neither depend on the
number n of transfered particles nor on the amount of transfered energy F, sug-
gests to further simplify Eq. (2.74) by a suitable Fourier transformation. Therefore,
assuming a continuous energy spectrum in the bath, we simultaneously perform a
discrete and a continuous Fourier transformation of the form

p(x.m,t)= > f dE pmE) (1) el (x+En) (2.75)

The corresponding inverse Fourier transformation is given by

1 2 +7 + 00 .
p(”’E)(t):(%) f dx f dn p(x, 1, t)e (HED, (2.76)

The continuum assumption is justified for systems with various incommensurable
transition frequencies where the spectrum of the exchanged energy becomes dense
in the limit of a large number jump processes. It clearly breaks down in the so-called
tight coupling limit where only a single transition in the system is possible. There-
fore, depending on the transport setup one has to discard the continuous energy
integration in Eq. (2.75) in favor of a discrete summation. However, this ambiguity
does not affect our general argument.

The Fourier transformation (2.75) transforms the conditioned master equation
(2.74) to an ordinary differential equation that reads as

0 . _
EP(X; n,t) = {Wo +y [WEE e OAED) Lyt el(X+AE”)]} p(x,n,t). (2.77)
AE

W(x:m)
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Chapter 2 Open quantum systems in nonequilibrium

On the one hand, we see that the transformation in Eq. (2.75) strongly reduces the
dimension of the system of equations as the reduced density matrix does not de-
pend on £ and n anymore. On the other hand, it introduces the two new parameters
x and 7 via some complex phases linked with the jump operators W5 .. Hence, ev-
ery transfer of a particle or a quantum of energy is associated with a corresponding
complex phase. These new parameters y and 7 are also called particle- and energy-
counting fields as introduced by L. S. Levitov [129] and L. Nicolin and D. Segal [130],
respectively.

Finally, we note that multiple reservoirs enter in the above rate equation (2.73)
additively according to Eq. (2.69) such that we can write

(n E) _ Z Z W(V) (‘”"'An” E+AE“) (2.78)

When deriving the corresponding counting field resolved master equation, we can
proceed as described before. However, we need to introduce particle- and energy-
counting fields for each reservoir, respectively. This yields the multi-terminal differ-
ential equation

p(x;m,t) =W(x,nm)p(x,n,1), (2.79)

where x = (x1,...xm) and i = (11, ...,my ) are the counting field vectors containing
the particle and energy counting fields for all reservoirs. This equation is formally
solved by

p(x,m,t) = VXM p(x n,0) = VMl (2.80)

where in the second equality we assume that initially no particles and energy is ex-
changed between system and environment, i.e., p("#)(0) = pod,, 00z 0-

The explicit role and use of these counting fields introduced within this paragraph
is discussed in more detail within the following section.

2.11 Full counting statistics

In the previous section, we derived a rate equation for probabilities conditioned on
the number of transfered particles and energy quanta. This derivation is of course
closely related to measurable transport properties. In fact, information about the
particle- and energy currents flowing in nonequilibrium between the system and
the attached reservoirs can be obtained by monitoring the exchanged quanta [131].
We therefore disregard now the internal state of the system and ask for the probabil-
ity p(™E) () that at time ¢ the reservoirs (1,..., M) and the system have exchanged
n =(ny,...,ny) particles and E = (E1,. .., E)) quanta of energy. This probability is
given by

PR = P () - T (P 1) 28)

24



2.12 Steady-state currents

We can use the inverse Fourier transformation from Eq. (2.76) for the multi-terminal
setup to relate the above probability distribution to the particle and energy counting
fields. We obtain the expression

1 oM +7 +00 '
p("’E)(t)z(%) f dxy ... dyu f dipy . dnp T { V06 po) i mxsBn) - (2,89)

From the above expression, we can easily calculate the corresponding moments of
the probability distribution using derivatives with respect to the counting fields. The
moments of the particle and energy distribution are given by

(nf) =2 n'p™ (1) = (0) MGent)| . (2.83)
(BY) = [ aB B™ 20 = (o) MOcmb| @.8)

respectively. Here, we introduced the moment-generating function as

M (., t) =T {p(x.n,t)} = Tr {VxMlpy} . (2.85)

From this moment-generating function the full distribution can be established by
calculating the full Fourier transform. For a single reservoir v these transformations
read

+
(v) _i —inxy
Pn (t)—%fdxu M (x,n,t)e om0 (2.86)
1 +00
(V) — _iE'r]u
(O =5 [ dn MOy ] (287

We will be mostly interested in the first moment which corresponds to the respective
current. These currents measured at the bath v can be calculated according to

v i . 0 .
V(1) = (), = —le{aX p(x,'mt)} . (2.88)
v X=N=
v - . a .
(1) = (E), = —1Tr{an p(x,n,t)} 0 (2.89)
v X=N=

Nevertheless, the calculation of higher moments, which for example reveal informa-
tion about the variance and skewness of the distribution, is straightforward. How-
ever, they are usually harder to measure experimentally.

2.12 Steady-state currents

The presence of more than two reservoirs which are connected to the same system
may lead to the emergence of nonvanishing steady-state currents. These currents
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Chapter 2 Open quantum systems in nonequilibrium

result from the fact that such setups can assume nonequilibrium steady-states for
long times. In particular, the nonequilibrium steady-state properties of a transport
system can be used for example to extract information about the system or per-
form some kind of work. These properties motivate our studies within the following
chapters.

Starting from the evolution of the reduced system density matrix in Liouville-
space representation as introduced in Eq. (2.79), the steady-state of the system of
interest p is defined as the solution of the equation

2[) =0=W(0,0)p. (2.90)
ot

In order to obtain a valid density matrix, we additionally require that the steady-
state is normalized such that Tr {5} = 1. Together, these relations define the steady-
state of the system. If we additionally disregard bistable systems, the steady-state is
uniquely determined by the above conditions.

Considering the analysis of transport setups using the full-counting-statistics ap-
proach, we are mostly interested in the first moment corresponding to the steady-
state currents through the system. These steady-state currents can be obtained from
the moment generating function in Eq. (2.85) which for long times reads as

lim M (x,n.t) = Tr {eVemipy (2.91)

Subsequently, we can calculate the steady-state particle current .J ](\}’ ) = ]_](\}’), accord-
ing to the Eq. (2.88) and Eg. (2.89) and obtain

d

.0 _
dy,  \ldt = —i5—Tr {W(x, )’ 5}

X

x=n=0 x=n=0

]ew(o’o)tﬁ}—iTr{W(0,0)[ 0 Voemt 5
x=1=0 aXV

=—1Tr {[ 6iy W(X7 77)

)

] p} . (2.92)
x=1=0

Here, we used the property Tr {)/(0,0)} = 0 and the relation Exp[W(0,0)t]p = p in
the last step. Therefore, we find

=—iTr {l 6?(VW(X’ n)

I\ =i Tr{ % Wix, n)p} , (2.93)
aXV x=n=0
and analogously for the steady-state energy current we obtain
JY =i Tr aW( 5
P X:M)p (2.94)
8771/ x=1=0
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2.13 Entropy production

Since the above steady-state currents have to respect the conservation of the total
particle number and the total energy, we find that this implies the relations

S I =S I =o. (2.95)

v v

Especially for the case of a two-terminal transport setup with aleft (L) and aright (R)
reservoir, this yields the correspondences J\ = —J{ and J{") = —J{". Therefore,
we define the currents flowing from left to right through the few-level system as

Jy=JP and Jp=J0) (2.96)

such that we can mostly neglect the bath index within the discussions in Ch. 4. Note
that the currents /"’ and J{") are counted positive for particles that tunnel from the
left reservoir into the system. Hence, in a two-terminal setup, a positive current Jy
corresponds to particle transport from the left reservoir through the system into the
right reservoir.

2.13 Entropy production

The existence of nonvanishing steady-state particle and energy currents through
a thermodynamic device usually gives rise to a heat flow .J, from which one can
extract a work. This work is in general defined as

W = _Fl'7 (2.97)

where F' is a conservative force and = the conjugate variable. Such open systems
which are also called thermo-elements are very useful as sensors or as power gen-
erators. They are well known and have been studied in the framework of classical
thermodynamics for almost two centuries. Nowadays, these studies have been ex-
tended to open nanoscale quantum systems, e.g., [132-137], and most recently have
been also addressed in transport experiments with ultracold atoms [105].

In order to analyze the properties and efficiency of such quantum thermo-elements,
one needs to identify the heat flow and power generated in the transport system.
These flows can be identified using their classical relation to the entropy S accord-
ing to

TdS =dU - oW, (2.98)

that allows to relate the entropy production S to the energy flow U and the power I/
via the equation

S=—(U-W). (2.99)

27



Chapter 2 Open quantum systems in nonequilibrium

Therefore, in order to identify the steady-state energy flow and power, we need to
investigate the steady-state entropy production.

Note, that we use the entropy as a starting point for this discussion since it directly
connects to the BMS master equation [138]. This can bee seen by considering the
Shannon entropy of the system which is defined as

S(t) = an In(py), (2.100)

where p, is the probability to find the system in its eigenstate |n). Assuming that the
probabilities obey a rate equation of the form presented in Eq. (2.70), we find that
the time derivative of the Shannon entropy is given by

S(t) ==Y paln(p,) == 3 WEhpm In(py). (2.101)

v,nm

Furthermore, we can use the trace-preserving property (2.62) of the rate matrix to
rewrite the above equation in the form

4y < L (v (v PV Wi,
S(t)—ﬁygm[wnmpm Wmnpn]ll (an&”% +1In W (2.102)

The reason for the transformation to this form becomes clearer when we introduce
the fluxes JTS,”,ZL(t) and their corresponding driving forces X,Sf%(t) according to

TEN(E) =W (£) = WS (2), (2.103)
)

Xn(t) =In p—m(t)W?’T . (2.104)
pn(t)Wme

These definitions allow to rewrite the system entropy flow in Eq. (2.101) as a sum
over an internal entropy production S; and an entropy flow S, to the environment
into the system, i.e.,

S(t) = S.(t) + Si(t). (2.105)

Here, we defined the entropy flow to the environment according to

y W,
S.(t) _QMZmJé,L £)1n (Wé%) (2.106)
and the internal entropy production as
oy L @) (1) x @)
Sz(t)—2 Y T () Xnon (1) (2.107)

v,n,m
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2.13 Entropy production

From the definition in Eq. (2.102), we observe that in systems where the relation
Wi = Whhn, (2.108)

is fulfilled, the total change of the entropy flow S vanishes. Therefore, in such sys-
tems the internal entropy production becomes the negative entropy flow to the en-
vironment, i.e.,

Si(t) = -S.(1). (2.109)

Within the following sections, we show that this relation is fulfilled for the consid-
ered systems. In fact, we find that the transition rates fulfill the local detailed bal-
ance relation

— eﬁu(wm,nﬂuv} (2.110)

where w,, , = E,,, — E, is the involved transition energy. Therefore, we conclude that
the steady-state entropy production of these system is given by the entropy flow
from the environment to the system, which can be written as

_ - jéu% J_T(Lyn)l
Sl:_ 62_;6y(7;wm7n 9 ,Ulz/nz;n 27
? ’
-8 (1 -m I, (2.111)

where we identified the steady-state particle and energy currents J{ and J{", re-
spectively. Furthermore, using the conservation of the total number of particles and
the total energy in the steady-state from Eq. (2.96), we find

Si = —AgJp + Ngudy, (2.112)
where we define the differences as
Ag =1, - Br,
AIBM :ﬁL,UL_ﬂRﬂR- (2113)

Subsequently, introducing the potential bias A, = i, - g, and, without loss of gen-
erality, assuming a symmetric detuning, we rewrite the bath temperature and chem-
ical potential as

Ag Ag
5L—5+77 Br = BN
A A
153 :,u+7”, MR:M—T“. (2.114)
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Chapter 2 Open quantum systems in nonequilibrium

Inserting these results into Eq. (2.112), we find that the steady-state entropy pro-
duction can be decomposed into

Si(T, ) = —(JE - uJN)AB + InBA,, (2.115)

We note that the above equation assumes the usual flux and affinity form of the
entropy flow [139]. In particular, we can identify the heat flow

Q=-JoTAg, (2.116)
with the usual heat flux given by
Jo=Jg -y, (2.117)
and the additional power
W= JnA,. (2.118)

The Eq. (2.115) allows to calculate the linear response transport coefficients of the
thermocouple by applying the Onsager theorem, which we discuss in more detail
within the next section.

2.14 Onsager theorem

From classical electronic transport it is well known that the Onsager theorem [140,
141] is very useful for describing linear, purely resistive systems. This theorem has
been analyzed and proven to be also valid for open quantum systems [133, 142]. In
particular, the Onsager theorem holds for open quantum systems which can be de-
scribed by Markovian master equations [143-145], i.e., for the systems we discuss
within this thesis. Such systems are the quantum mechanical analog to purely resis-
tive classical systems, i.e., systems without memory. Within this section, we demon-
strate how to apply this theorem in order to extract the linear response transport co-
efficients for Markovian quantum systems. In particular, we compare the Onsager
theorem for a constant chemical potential and a chemical potential that depends on
temperature and particle density as obtained from a full grand-canonical derivation
(compare with Sec. 4.1.1)

2.14.1 Constant chemical potential

In order to appropriately describe an irreversible transport process, one rewrites the
steady-state entropy production as a sum

2
i=> T Fj, (2.119)
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2.14 Onsager theorem

over generalized fluxes J; and their corresponding affinities F; [139]. In classical
electronic transport theory the chemical potential is assumed to be constant and
thus independent of the reservoir temperature and particle number. Comparing
with Eq. (2.115) and using the definitions from Egs. (2.116)-(2.118), we conclude
that the generalized fluxes are given by

Ji=-Jg, J2=Jn, (2.120)
with the corresponding affinities
Fi=Ap,  F2=PA, (2.121)

In the following, we focus on the linear response equations only, i.e., we assume
that the bias Ag and A, are small. By linearizing the currents in Eq. (2.120) with
respect to the affinities from Eq. (2.121) around the equilibrium (Az = 0, A, = 0),
we can describe the linear response of generalized fluxes to small variations of the
affinities. This procedure yields the so-called linear Onsager system of equations in

the form
—JQ LH L12 Aﬁ A@
= =M 2.122
( In ) (L21 L22) (ﬁAM BAL) (&122)
where the entries of the Onsager matrix M with constant chemical potential . are
defined as partial derivatives evaluated at the equilibrium values,

aJ;
Lij=—| . 2.123
1= a7, ( )
These so-called kinetic coefficients fulfill the Onsager reciprocal relation
Ly = Loy, (2.124)

which is related to the time reversal symmetry of physical laws [139]. Furthermore,
the Onsager matrix is positive-definite, which in the linear response regime guaran-
tees the positivity of the entropy production in accordance with the second law of
thermodynamics.

From the Onsager system in Eq. (2.122), one can subsequently extract the linear
transport relations for different setups. Considering the particle current if no ther-
mal bias, i.e., Ar = T}, — Tk, is present, one finds Ohm’s law

Jy =04, for Ar=0, (2.125)
with the linear conductance determined by

L22
O =—.

T (2.126)
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Chapter 2 Open quantum systems in nonequilibrium

Similarly one finds Fourier’s law in the form
Jo = —kAp, for Jy =0, (2.127)

for a thermocouple under the constraint of vanishing particle current. This defines
the linear heat conductance

D

= 2.128
T2L227 ( )

Y
where D = det(M) is the determinant of the Onsager matrix in Eq. (2.122). Here, we
emphasize the fact that for systems in the tight-coupling limit, where Jy = wJg, the
determinant and, thus, linear heat conductance vanishes. This behavior correctly
reflects the fact, that in systems with a single transition frequency there can not be
an energy transport without an accompanied particle transport.

Additionally, systems with more than one single transition frequency can produce
a potential bias

A, = SAq, for Jy =0, (2.129)

as a linear response to a thermal bias at vanishing particle current. This so-called
Seebeck effect is characterized by the coefficient ¥, also known as thermopower,
which is defined by

L21

Y= .
T Lo

(2.130)

The reverse process, where a thermal bias is created by applying a bias in the chem-
ical potentials, is known as Peltier effect which is characterized by the Peltier coeffi-
cient

I=7x. (2.131)

The efficiency of these processes can be characterized by the dimensionless figure-
of-merit [146]
2 L2

T =—"—="22
L D’
with the Lorenz number L = x/(To) defined by the Wiedemann-Franz law [147].
Although this quantity is widely used in theoretical and experimental studies, it is
mainly a qualitative measure since it has no upper bound in contrast to the effi-
ciency 1, which can only assume values in the range [0, 1]. Therefore, we also con-
sider the proper efficiency which is defined as the ratio between extracted power
and applied heat energy; i.e.,

(2.132)

W
=, 2.133
n To ( )
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2.14 Onsager theorem

Using the affinity-flux form from Eq. (2.119), and the linearized Onsager system
from Eq. (2.122), we find the linear response relation

i: T _ L21~7:12f2+L22-7:22 :KL21+KL227 (2.134)
ne  JiF L11-7:1 + Lo F1 Fy Ly + KLy

with the Carnot efficiency

_Ar

, 2.135
T ( )

Ul
and the abbreviation K = F,/F;. Most interesting is the efficiency for the configura-
tion of thermodynamic forces that yield the maximum power. From the equation

W = BFoT = (LnFiFa+ Lo F3) T, (2.136)

we see that the power assumes a maximum at F*»* = 75'°" /2, half the stopping force
F3'P = Loy Fi1 /Ly, for which the particle current vanishes, i.e., Jy = 0. With this
result, we calculate the efficiency at maximum power [148] which reads as

1 q>

n= §Uc2_q2

> 0. (2.137)

Here, we define the dimensionless coupling

Lo | ZT
= = : 2.138
! V' L1 Lo 1+ZT ( :

which is restricted to the values -1 < ¢ < 1. This result relates to the fact that the
Onsager matrix is positive-definite and, hence, the relation |Ls| < /L1 Lo is ful-
filled. We note, that the efficiency at maximum power can at most be equal to half
the Carnot efficiency. This maximum is reached for the ideal coupling |¢| = 1, i.e., in
the limit Z7 — oo. It corresponds to the maximum possible value in the framework
of linear response theory, the Curzon-Ahlborn [149] upper bound

[T, A
Nmax = 1- ,_ZTQ ~ 2_;; for Tl > T2' (2139)
1

2.14.2 Temperature and density dependent chemical potential

In the previous section, we derived the linear transport coefficients assuming that
the only present forces which drive the system are given by the inverse temperature
bias Ag and the chemical potential bias A,. However, there are transport setups
where such a treatment is not entirely correct. For example, in setups that require a
grand-canonical description, one usually obtains a chemical potential ;(7',n) that
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Chapter 2 Open quantum systems in nonequilibrium

depends on the reservoir temperature 7" and the particle density n. Respective trans-
port setups are discussed in Ch. 4. Here, the forces that drive the generalized cur-
rents through the system depend on the difference in temperature and/or a differ-
ence in the particle densities of the attached reservoirs. Therefore, on has to rewrite
the potential bias A, in the entropy production from Eq. (2.115) in terms of this
new basis. In general, the chemical potential does not depend linearly on the tem-
perature and density bias, which results in a nonlinear dependence of the entropy
production on these driving forces.

Nevertheless, since we are only interested in the linear response transport regime
where the applied potential bias is assumed to be very small, we can safely assume
that it depends linearly on temperature and density differences. Hence, we can ex-
pand the potential bias around the equilibrium to lowest order, i.e.,

o

AH;%

where we introduce the particle density bias A,, = n;—ny between the two reservoirs.
Inserting this expansion into Eq. (2.115) yields

o 0 0
Si(T,n) = - (JE—MJN—@ﬁJN)AN@JNﬁAn. (2.141)
Comparing this result with the decomposition from Eq. (2.119), we find that for
the case of a temperature- and particle density dependent chemical potential the
generalized fluxes are given by

J=-Jog, TFo=Jn, (2.142)
with the corresponding affinities
Fi=0g, Fp= s2LA, (2.143)
on
In analogy to Eq. (2.117), we define the generalized heat flux as
. 0
JszE_(N+B£)JN7 (2.144)

which formally corresponds to the conventional heat flux with a modified chemi-
cal potential. Now, we can also identify the power generated by the thermocouple.
Comparing Eq. (2.141) with Eq. (2.99), we obtain the power

LN, (2.145)
on

which is generated under the influence of the heat flow

Q= -JoTAp. (2.146)

34



2.14 Onsager theorem

Note that the choice of the affinities in Eq. (2.143) is not unique. Because the deriva-
tive Ou/On is evaluated at the equilibrium it can be also absorbed in the definition of
the current. In fact, this specific derivative can be related to the inverse compress-
ibility at constant volume ¢y [150] of the gas

1 on
=5 Gl (2.147)
Due to dimensional reasons, we choose the affinities as defined in Eq. (2.143). As a
result, all transport coefficients we derive below, have the same physical dimension
as for the case of a constant chemical potential. Additionally, we can immediately
identify the physical meaning of the generalized fluxes as particle and heat currents,
which are measurable in an experiment. Finally, we note that the affinity 7, can be
interpreted as an effective chemical potential bias which is induced by a density
imbalance between the reservoirs. Hence, the generated powers in Eq. (2.118) and
Eq. (2.145) have also the same physical meaning.
In order to extract the transport coefficients, we again linearize the generalized
fluxes from Eq. (2.142) with respect to the affinities from Eq. (2.143) and obtain a
Onsager system of equations in analogy to Eq. (2.122) which reads as

—jQ f/ll f/lg Ag ~ Aﬁ
== - =M 2.148
(JN) (L21 L22)(5%An BEA,) (2.148)

where the kinetic coefficients L;; = 0.7;/0F; are now functionals of the chemical
potential p(7,n). Due to the linearity of the system of equations in Eq. (2.122)
and Eq. (2.148), and the respective generalized currents and their affinities, we can
find a linear mapping which transforms the Onsager matrices M and M into each
other. Hence, we can rewrite the matrix M using the kinetic coefficients defined
in Eq. (2.122), which now become functionals of the temperature- and density-
dependent chemical potential, i.e., L;; () — L;;[1«(T,n)]. This yields

op op op
wr-| it hes (QLBH + L) Lo+ B3l | (2.149)
Loy + 8 ﬁ[xm Lo
We observe that the Onsager reciprocal relation is preserved, i.e.,
Lig = Ly = le = L21. (2.150)

Note that for another choice of the affinity 7, and the corresponding current, the ki-
netic coefficients in Eq. (2.148) become modified, such that the Onsager reciprocal
relation might be violated. Furthermore, it becomes more complicated to relate the
currents, and subsequently the transport coefficients, to physical observables.

The linear response transport coefficients are obtained in analogy to the previous
section. Hence, the particle current in the absence of a thermal bias is described in
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Chapter 2 Open quantum systems in nonequilibrium

analogy to Ohm’s law by the relation

In__ Lx
BN, T

G =o[u(T,n)], for Ar =0, (2.151)
for the matter conductance (7', n). In a similar way to the matter conductance, we

can extract the analog of the thermal conductance & from the modified Fourier’s law
Jo = —kAr under the constraint of a vanishing particle current, which yields

= k[u(T,n)], for Jy = 0. (2.152)

Here, D = det(M) is the determinant of the Onsager Matrix M from Eq. (2.149). In
analogy to the Wiedemann-Franz law, we define the modified Lorenz number as

B D
R (2.153)
To (T ng)

L=

Furthermore, we find that a vanishing particle current for finite thermal and density
bias implies
0 L

H A 21

A, =—=——Ay, for Jy =0. 2.154
o r, 7, for Jy ( )

g
Therefore, such a thermodynamic device produces a density induced chemical po-
tential bias as a response to a thermal bias. This allows us to define ¥ analogous to
the thermopower by

oA, I
D e (LR 522—;. (2.155)
22

This coefficient characterizes the linear density response to a temperature differ-
ence at vanishing particle current. It is related to the analog of the modified Peltier
coefficient IT by the Thomson relation

=T, (2.156)

Using the transport coefficients defined in Eq. (2.153) and Eq. (2.155), we can cal-
culate the dimensionless figure-of-merit Z7 which characterizes the efficiency of
the thermodynamic device. It is given by

ng_g(gzg_g +22[u(T,n)])

=ZT[u(T,n)]+ Liu(T,n)]

(2.157)
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2.14 Onsager theorem

Finally, we can calculate the efficiency at maximum power for this setup which reads
as

21 G . N Lo
n=-Nc——= 2> O7 with q=——. (2-158)
272-¢ V L11Las

From the definitions in the Egs. (2.151)-(2.158), we see that for an independent
chemical potential, where the derivative with respect to temperature 0u/03 van-
ishes, we recover the usual linear response transport coefficients from Sec. 2.14.1.
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Chapter 3
Interacting transport qubits

Within this chapter we extend the research that cumulated in the publication in
Ref. [151].

The weak-coupling master equation approach derived in the previous chapter is
well suited to describe quantum transport through mesoscopic structures. This cat-
egory of physical systems is basically defined by their physical dimensions which
normally are in the range of a few nanometers to hundreds of microns. Hence,
such systems are usually much larger than microscopic structures like atoms or
molecules but not large enough to be described as classical ohmic conductors.

Nowadays, such mesoscopic systems can be routinely fabricated using a variety
of different materials and geometries. The fact that these systems cover a wide field
of interesting applications, for example as detectors [26, 27, 152], single quanta-,
particle- and spin sources [24, 25, 127], constituents of quantum computers [35, 37,
39, 46, 49, 50] or quantum simulators [30, 153-157], to name but a few, has lead to in-
tensive studies over the last decades. Consequently, the quantum master equation
theory has been very successfully applied to several of these systems.

Motivated by the ever increasing interest and ongoing advances in this field of
physics, we now study the steady-state transport properties of a mesoscopic setup
consisting of two capacitively coupled double quantum dots (DQDs) which are ad-
ditionally exposed to an impurity. We decided to investigate this DQD system due
to its possible utilization as building block of a future quantum computer. In such
devices the classical bit is replaced by a quantum mechanical qubit (QB) as the ba-
sic unit of computation and these qubits can for example be experimentally im-
plemented by DQDs [40, 43, 44, 48]. They are interesting candidates, since their
solid-state implementation is in principle scalable. However, industrial production
of such quantum dots (QDs) on a large scale will inevitable face the problem of un-
wanted impurities [55]. Therefore, we additionally include an impurity between the
two coupled DQDs, which we model as charge-qubit (CQB).

In the first part of this chapter, we study the effect of the impurity on the trans-
port properties of the double quantum dot system and in the second part, we focus
on the question if the impurity can also have desirable effects for example in the
context of the creation of entanglement.
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Chapter 3 Interacting transport qubits

Figure 3.1: Two double quantum dots 1 and 2 with electronic dot energies ¢, coher-
ent tunneling amplitude (solid lines) 7;, and on-site Coulomb interac-
tion (dashed lines) U} interact capacitively via perpendicular and diago-
nal Coulomb interactions U, and Uy, respectively. Transport is enabled
by tunnel coupling the quantum dots (i, «) to adjacent fermionic reser-
voirs of chemical potential y; , and inverse temperature § with the tun-
neling rate I'; ,. A charge-qubit with detuning 2 and tunneling ampli-
tude J modifies the tunnel amplitudes of both DQDs by G (wavy lines)
depending on the position of the CQB electron.

3.1 System Hamiltonian

We consider an experimental setup as depicted in Fig. 3.1, which consists of two
parallel double quantum dots that are coupled both capacitively and via a perpen-
dicularly aligned charge qubit (CQB) impurity. These DQDs are coupled to leads
that act as reservoirs for electrons and, thus, allow for electronic transport when
their parameters, i.e., their chemical potentials are chosen differently. To simplify
the calculations, we explicitly assume spin-polarized electronic leads and neglect
the spin degree of freedom throughout this chapter. This implies that spin-selection
effects as observed in Ref. [57] do not matter.

The Hamiltonian of the full system can be decomposed accordlng to Eqg. (2.1) into
a sum over the system Hamiltonian #s, the bath Hamiltonian Hp and the Hamilto-
nian %, describing the coupling between system and bath. In the considered setup,
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3.1 System Hamiltonian

the system Hamiltonian consist of several contributions from the two DQDs, which
we label by i € {1,2}, the CQB and their respective couplings. It can be written in the
form

Hg = 7:lDQDs + 7:lCQB + Hine, (3.1
where the Hamiltonian that describes the DQDs reads as
A 2 A () A A
Hoaps = ) Hpop + Mo + Hy. (3.2)
=1

For convenience, we use here and in the following discussion the notation i = 1 for
the upper and i = 2 for the lower transport channel in Fig. 3.1, whereas the labels
L, R denote the left and right quantum dots and electronic baths, respectively. In
consequence, each single DQD is described by the Hamiltonian

,}:[]()%D =¢ (CszOZzL + CZZRCZ@R) + T (UZZLCZ@R + CZZRCZZ',L) + U||dj,chi,chZRczi,R’ (3.3)

where the operators d, , and olT annihilate and create electronsinthe QD a € {R, L}
of the DQD i€ {1,2}. They fulfill fermionic anti-commutation relations

(dd! )} = 6,605, and {d!,,d!,} = {d,..d,,} =0. 3.4)

Furthermore, we assume that all quantum dots have the same dot energy ¢ and
each DQD has the same coherent tunneling amplitude 7. and Coulomb interaction
strength U. Additionally, the two DQD can interact capacitively with each other
which gives rise to the DQD cross coupling Hamiltonians

H,=U, (CZJ{,LCil,LdA;LCZZ,L + CZJ{,RCZLRCZ;,RCZQ,R) , (3.5)

that describes the capacitive interaction between charged parallel aligned quantum
dots parametrized by the interaction strength U, and

Ty = Uy (CZI,LCZLLJ;RCZQ,R + CZI,RC?I,RJ;LCZZL) g (3.6)

which describes the capacitive interaction between the charged transverse aligned
quantum dots parametrized by the interaction strength Uy.

The CQB is introduced in the setup as an effective DQD filled with exactly one
electron which is perpendicularly aligned with respect to the two parallel transport
DQDs. Thus, it can be described as an effective two-level Hamiltonian of the form

~ Q
,HCQB = 5(3'2 + J&x, (37)

where we introduce the Pauli matrices &, and ¢, which are defined as

~

6.=cle,—éle,, and 6, =éle, +éle,. (3.8)
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The operators ¢, and ¢ annihilate and create an electron in the QD i of the CQB.
They also obey fermionic anti-commutation relations of the form

{¢,.él} =0y, and {el.el} ={¢,.¢,} =0. (3.9)

The CQB is characterized by the detuning (2 and coherent tunneling amplitude J.

In the considered setup, the electronic transport through each DQD is altered by
the state of the nearby CQB impurity. In particular, the current through the DQD
closest to the charge of the CQB is suppressed due to Coulomb repulsion. We ac-
count for this interaction by phenomenologically introducing the additional cou-
pling Hamiltonian ;.. between the DQDs and the CQB which reads as

Hint = 5[ (1+0) (dI,Ldl,R + dI,Rdl,L) +(1-6.) (d;,LdQ,R + d;RdQ,L) ] (3.10)

According to this Hamiltonian, the influence of the CQB on the transport DQDs
is as follows: The intrinsic tunneling processes of the DQDs are modified by the
parameter G in the presence of an electron in the respective dot of the CQB. Due
to Coulomb repulsion, it is reasonable to assume that the presence of an electron in
the CQB leads to a suppression of the tunneling amplitude 7. in the respective DQD.
Thus, we phenomenologically restrict the parameter G to negative values, i.e.,

0>G>-T.,. (3.11)

Furthermore, we assume that each QD of the setup can at most be filled with one
electron. Thus, the minimum amount of electrons in the whole system is 1, cor-
responding to the electron contained within the CQB, and the maximum amount is
4+1, with four electrons in the two DQDs and one electron in the CQB. This assump-
tion fixes the dimension of the system Hamiltonian to d = 2° = 32. Since the electron
in the CQB is always present, we focus in the following only on the electrons in the
DQDs. We introduce the local basis of the system in the form

la,b,c) = |a), ® |b)y, ® |c),with a,be{ 0, L,R, LR}, ce{t |} (3.12)
—_— —— = —— —— ——
DQD, DQD, CQB Oe~  1le~ 2e~

Thus, the basis states are given by a tensor product of the local states of the two
DQDs and the CQB where the labels L, R denote a filled left or right QD, respec-
tively. Using this definition, we can extract the explicit representation of the full
system Hamiltonian from Eg. (3.1) in the local basis. We find that in this represen-
tation the system Hamiltonian assumes a block diagonal form. Along the diagonal
of the Hamiltonian there are 9 blocks each representing a subspace with fixed elec-
tron number in the DQDs. There are four (2 x 2) blocks corresponding to the sit-
uation that both DQD are completely filled, completely empty or one of the DQDs
is completely filled whereas the other one is completely empty. Then there are four
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3.1 System Hamiltonian

(4 x 4) blocks corresponding to the situation that one DQD is completely filled or
completely empty whereas the other DQD is filled with exactly one electron. Fi-
nally, there is one (8 x 8) block which corresponds to the situation that both DQDs
are filled with exactly one electron. Obviously, this specific block structure emerges
because we do not allow for electrons to tunnel between the DQDs and the CQB.
Therefore, transitions between the different electronic subspaces can only be in-
duced by the environment due to the tunneling of electrons from the reservoirs into
the system and vice versa. Accordingly, we lastly take a look at the environment
which is connected to the system.

Each quantum dot of the DQD system is weakly coupled to an electronic bath,
which we model as a free electron gas of spin-polarized electrons. Hence, the full
bath Hamiltonian is given as a sum

~ 2 ~N g
He=> > #HEY, (3.13)

i=1 ae{L,R)}
over all connected reservoirs (i, «) that are described by the Hamiltonians

HY =3 Viaw Q) o ok (3.14)
k=0

respectively. Here, we introduce the operators ¢/, and ¢, _ , that create and anni-

hilate an electron with momentum k and energy v; , , in the reservoir (i, «). Each of
the reservoirs is in a thermal equilibrium state described by the density matrix

(A i, N )

Tr {eﬂ(ﬁg’“)—;%ami,@)} )

with the global inverse temperature 5 = 1/7" and the local chemical potentials f; »
which fixes the mean electron number N = (N(®)) in each lead. Furthermore,

the reservoirs obey the commutator [7-2](3"’0‘), N (W)] = 0, such that the steady-state
fulfills

Pio = (3.15)

(A, pia] = 0. (3.16)

The quantum dots couple weakly to their respective reservoirs via quantum me-
chanical tunneling processes, such that we can define the full system-bath interac-
tion Hamiltonian as

i = > (ti,a,k dz‘,a (ﬁ,a,k +h. C') ; (3.17)

i,00,k

where the tunneling amplitude of an electron hopping from the lead (7, «) into the
system or vice versa is proportional to ¢; , , and t; ., x, respectively.
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Chapter 3 Interacting transport qubits

3.2 Liouvillian

In order to derive the BMS master equation for the considered fermionic setup ac-
cording to the results within Sec. 2, we start by rewriting the interaction Hamilto-
nian from Eq. (3.17) in the form presented in Eq. (2.9). Here, the complete interac-
tion Hamiltonian reads as

7-21 = ZdAi,ozZti,oc,k Cj;r,a,k - Zczj,azti,a,k in,a,k’ (318)
1,00 k i, k

where the (-) sign arises due to the anti-commutation relation {czw, gl .} =0 We
note that the fermionic interaction Hamiltonian contradicts the form postulated in
Eqg. (2.9). However, we can use, e.g., a Jordan-Wigner transformation [158, 159] that
decomposes the fermionic operators dm and g, , , into tensor products of Pauli ma-

trices. This allows to define new fermionic operators in the form

dip=0_©1010101, dp=0.00.08101el,
dy;=0.®0, 000101, dyp=0.90.00,00_®]1, (3.19)
and
Giak=0.®...80,80_-®1®...01 (3.20)
—

Here, we introduced the composite Pauli matrices o, = % (0, £i0,) which have the
property (¢_)" = o,, and the unity matrix in two dimensions 1. Now, using the fact
that the Pauli matrix o, is self adjoint and that the products with the composite Pauli
matrices is given by o_o, = 0_ and 0,0, = —0,, we find that the interaction Hamilto-

nian assumes the desired form

Y 7 ~ 7t ~
HI - Z (di,a ® Zk:ti,a,k qi,a,k + di,a ® Ek:ti,a,k qi,a,k) : (321)

i,00k

In the following, we implicitly assume that the fermionic operators are given in their
Jordan-Wigner representation shown in Eq. (3.19) and Eq. (3.20), Therefore, we now
drop the tilde above the new fermionic operators again.

By comparing the transformed interaction Hamiltonian from Eq. (3.21) with the
decomposition in Eq. (2.9), we can identify the system operators

~

Al = dl,L’ 142 = CZI,L’ Ag = (fLR, 1214 = CZ;R,ALB = dAQ,L’ A(; = Ci;L, 147 = CZ2,R7 Ag = CZ;,R’
(3.22)

and their corresponding bath operators
A ~t D _ * ~ S _ ~F Do _ * q
By = Ztl,LJc 411k B, = Ztl,L,k 411k Bs = Ztl,RJc 91,R k> By = Ztl,R,k 41 R k>
3 3 k k

5 o A . “ S ~t > * ~
By = Zk:tQ,L,k SN By = Zk:tz,L,k 45 1 k> Br = Zk:tzR,k 45 Rk> Bg = Zk:tQ,R,k 45 R k- (3.23)
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3.3 Transport characteristics

These bath operators can subsequently be used to determine the Fourier transform
equilibrium bath correlation functions according to Eq. (2.42) as

Yas(w) = f To {77 B,e 71707 By p } b7, (3.24)

where pg = ¥, , pi.o. We find that the nonvanishing contributions assume the form
of Fermi’s Golden rule and read

Y2 (W) =Tz (-w) fir (-w), 721 (w) =T (W) [1 - fiz (W)],

Y34 (W) =T r (~w) fi,r (~w), a3 (W) =T r (W) [1- fir(W)],
Y56 (W) = Doz (W) fo,r (~w), Y65 (W) = Tor (W) [1 = fo,r ()],
Y8 (w) = Lo r (—w) for (~w), Y7 (w) =Tor (W) [1 - for(w)]. (3.25)

Here, the abbreviation f; ,(w) defined as

1

Bt +1° 320

J i (w) =
is the Fermi function of each reservoir evaluated at the transition frequency w, and

Tia(w) =20 S ik’ 0 Wik —w), (3.27)
k

are the energy dependent tunneling rates between the reservoir (i,«) and the QD
(i, ). With this results, we can now proceed to calculate the rate matrix elements
from Eq. (2.48). However, to do this, we need to find the eigensystem of the sys-
tem Hamiltonian which is in general difficult to obtain analytically, except for some
special limits. Therefore, in order to diagonalize the full system Hamiltonian from
Eqg. (3.1) and calculate the expectation values over the system operators, we resort
to numerical methods.

3.3 Transport characteristics

Within the following sections, we will apply the master equation formalism derived
in Ch. 2 to the system Hamiltonian in Eq. (3.1) and analyze its steady-state proper-
ties both analytically and numerically. Motivated by the well known transport prop-
erties through DQD structures [41, 160-164], we especially focus on the steady-state
particle currents. Here, we expect to find a so called Coulomb diamond (CD) pattern
in dependence of externally applied gate- and bias potentials.
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Chapter 3 Interacting transport qubits

3.3.1 Full transport characteristics

In order to analyze the steady-state transport spectrum of the full Hamiltonian from
Eg. (3.1), we need to evaluate Eq. (2.93). Therefore, we numerically determine the
eigenspectrum of the full system Hamiltonian. This allows to calculate the rates de-
fined in Eq. (2.48). Subsequently, we establish the corresponding Liouvillian for the
populations of the reduced system density matrix. Thus, we obtain a Liouvillian of
dimension 32 x 32, which we insert in Eq. (2.93). Using this result, we numerically
calculate the steady-state particle current through the system. Since a particle ex-
change between the DQDs is not possible, we find that the conservation of the total
particle number yields the steady-state current relation

JSE O (3.28)

for each transport DQD, respectively.

We obtain the transport spectrum by calculating the steady-state particle current
for varying gate voltage V... = €, which shifts the energy levels of all transport DQDs
according to Eq. (3.1), and varying external bias voltage Vg;.s. The bias voltage en-
ters the Liouville super operator through the Fermi functions via the chemical po-
tentials. For convenience, we henceforth assume symmetric chemical potentials

(3.29)

for both transport channels in all further calculation.

To understand the idea behind transport spectroscopy, we point out that in the
limit of vanishing temperatures the Fermi-Dirac distribution from Eq. (3.26) can be
approximated by the Heaviside step function ©(x) according to

%ii%fi,a(w) = O(fhia —w). (3.30)

From this observation, we see that for configurations where the two leads connected
to a single DQD ¢ have the chemical potentials 4, » and g, ,, only such electrons
which lie in the transport window Vg5 = (145, — it;,r) can participate in the trans-
port. Only in this energy range there are occupied energy levels in one reservoir and
empty energy levels in the other reservoir. For transition energies where the corre-
sponding energy levels in both reservoirs are filled, no electron transport is possible
due to the Pauli exclusion principle. This argument also holds for finite tempera-
tures. However, for 7" > 0 the transport window is smeared out due to the thermal
melting of the Fermi edge. Therefore, the conclusive identification of the width of
the transport window with the bias voltage V5;.s is only approximately valid for small
finite temperatures.

Additionally to a finite transport window, the transport theory described by the
BMS master equation from Eq. (2.51) requires that at least a single transition fre-
quency of the system lies within this transport window in order to observe trans-
port through this setup. By carefully adjusting the gate- and bias voltages one can
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Figure 3.2: Unitless steady-state currents through channel 1 (left) and channel 2
(right). We observe Coulomb Diamond (CD) structures where the cur-
rents vanish (black). Outside of the CDs the currents increase nearly
stepwise for low temperatures. The system parameters are fixed to:
B =100/T;, Uy =201, U, =Ux =10T;, J=Q =T, ,=T.and G = -T..

select the transition energies of the system through which transport is possible, i.e.,
which lie in the transport window. Thus, plotting the steady-state currents for dif-
ferent values of V3,5 and V.. reveals information about the energy-level structure
of the system. This method represents the foundation of transport spectroscopy
[165-167].

For this reason, we plot the numerically calculated steady-steady particle current
versus the gate- and bias potential in Fig. 3.2. We observe diamond shaped re-
gions where the particle current vanishes. This vanishing current is caused by the
Coulomb repulsion between electrons in the system that prevent the entering of
an additional electron [153]. Hence, one can also associate a fixed number of elec-
trons to each of these regions which are known in the literature as Coulomb dia-
monds [168-170]. In order to overcome this repulsive barrier one has to increase
the bias- and/or gate potentials. Thus, starting in such a Coulomb diamond and
subsequently increasing or diminishing the gate- and/or the bias potential beyond
a certain threshold yields a finite current. The value of these threshold and, hence,
the size of the Coulomb diamonds mostly depends on the strength of the Coulomb
repulsions. Further increasing the potential bias allows for even more system tran-
sition energies to enter the transport window. For the case of, e.g., a single DQD,
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Figure 3.3: Unitless, differential steady-state currents through channel 1 (left) and
channel 2 (right). Most prominent are the CD structures with a differ-
ent number of electrons (inset: numbers) loaded into the system. The
dashed circles indicate the presence of gaps between the CDs and the
dashed vertical lines correspond to Fig. 3.4. The other parameters are
fixed to: g = 100/T,, Uy = 20T;, U, = Ux = 10T, J = Q =1, = T, and
G =-T..

this usually leads to an increased particle current through the system. For suffi-
ciently low temperatures the increase in the current is approximately stepwise in
accordance with the statement from Eq. (3.30).

In transport spectroscopy the physical quantity of interest is the energy spectrum
of the system. Therefore, one prefers to investigate the differential change of the
steady-state current with respect to the potentials, rather than its absolute amount.
For the considered setup we show the differential transport spectra for both trans-
port channels in Fig. 3.3. Both panels in this figure show a structure composed of
two sets of parallel lines which cross each other to form a pattern of tetragons. Each
line represents a system transition energy in the transport window.

In each of the two panels we see three partially closed CDs labeled 1,2, 3 and two
open CDs labeled by the numbers 0 and 4. As explained before, within these regions
the respective steady-state currents vanish due to Coulomb blockade effects [171-
173] that prevent electronic transport through the system. For a suitable choice of
gate- and bias voltages, this blockade can be overcome leading to finite steady-state
currents. Since we assume a relatively small temperature, the current changes ap-
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proximately step-wise indicated by the lines outside of the CDs. The Coulomb dia-
monds can be associated with specific electronic subspaces reaching from the vac-
uum state with zero electrons in the DQDs up to the maximal number of four elec-
trons in the DQDs. These electron subspaces are indicated by the number insets in
Fig. 3.3. Note that distinct CDs can only be observed for low temperatures. As the
temperature is raised the CDs become smeared out making it hard to distinguish
them.

Additionally to the CD structure, we observe a multitude of additional lines cor-
responding to higher transitions in the system. Depending on the chosen system
parameters they can be relatively close to each other which makes it difficult to re-
solve them. The largest differential currents d//dVg;.s are observed at the edges of
the Coulomb diamonds where the current changes from zero to some finite value.
Moreover, we also observe that there are transitions that yield a negative differential
current (blue lines), meaning the current is diminished despite the fact that the ex-
ternal potentials are raised. Finally, we notice that the CDs are just partially closed
and that there is a certain symmetry between the two transport channels shown in
the left and right panels of Fig. 3.3, respectively.

In order to gain a better physical insight and understanding of these observations,
we focus on some analytically solvable limits of the system Hamiltonian in the fol-
lowing sections.

3.3.2 Ultra-strong Coulomb blockade regime

Since the full system Hamiltonian from Eq. (3.1) is complicated to analyze analyt-
ically, we first consider the case of a high Coulomb repulsion in the whole system,
ie, U,U,Ux » {e,T.,G,Q}. Here, only the system transition energies from the
zero-to-one electron subspace lie within the transport window. Hence, using this
limit, we can describe the section in the vicinity of the Coulomb diamonds 0 and 1
in Fig. 3.3. We refer to this limit as the ultra-strong Coulomb blockade limit (USCB).
In this limit, we can model the system by an effective Hamiltonian which reads as

. 2
Huscs = Z(

i=1

S el [Tor 5 {1 (10} [0 cz;Rdi,L]) Heop. (331)

«

This Hamiltonian is block diagonal and consist of three blocks corresponding to the
electronic subspaces. Due to this block structure it is sufficient to find the eigen-
spectrum of each block separately in order to construct the full eigenspectrum of
the Hamiltonian from Eq. (3.31). Concerning these blocks, we see that the block
with 0 electrons in the two DQDs in the CQB basis {||), |1)} reads as

Q
2

P[0

o[ -
i (J

) : (3.32)
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Additionally, the two blocks with 1 electron in the DQD i respectively, assume in the
basis {|L), ® [l),|L); ® 1) ,|R); ® |l),|R); ® 1)} the form

e-% J (i-1)G+T, 0
Q .
(1) J e+% 0 (2-9)G+T,
H=1 i-ne+r 0 e— ¢ J (53:33)
0 (2-0)G+T, J e+ 4

All of these blocks can be diagonalized analytically such that the eigenvalue prob-
lems

AO15)© = B9 1) and AP |, 3) = BD o, 5D, (3.34)

result in the eigenvalues

Q 2
Ej(:o)::l:J 1+(§),

B, a1y (1+ ) e a1+ (S92 apeiay e

and the corresponding non-normalized eigenvectors

|i><°>=|o>1®|o>2®{[—%i 1+(55) |¢>+|¢>},

Iozﬂ)i”=(|R>1+a|L)1)®I0)2®{5\/ (Cro) o (Gro) ¢>+|¢>},

B\/ G”‘Q a(G;J‘)‘Q) |¢>+|¢>}.(3.36)

. 8)8 = [0), @ (|R), - a|L),) @

Here, the states |R), and |L), are the local, single electron states of the DQD i and
|1),]4) are the eigenstates of the CQB. From the tensor product form of the above
eigenstates, we see that for the considered set of parameters there is no entangle-
ment between the transport DQDs and the impurity in the USCB regime. Further-
more, due to the ultra-strong Coulomb blockade limit, there is also no entangle-
ment between the two DQDs themselves. Additionally, we see that in the absence
of the CQB, i.e,, in the limit {G, 2} — 0, we obtain the corresponding results for non-
interacting parallel DQDs.

With these results, we can subsequently calculate the rates in Eq. (2.48) and con-
struct the corresponding Liouvillian. Unfortunately, without a specific choice for
the system parameters, we can not write down the Liouvillian in a compact form.
Therefore, we proceed by considering additional limits and restrictions within the
following subsection.
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3.3.2.1 High-bias currents

The matrix elements of the Liouvillian that we can construct from the eigenvectors
defined in Eq. (3.36), obviously depend on the impurity parameters G,2 and J.
Furthermore, from Eq. (3.25), we see that these entries also depend on the Fermi
functions of the leads. Now, for the purpose of simplifying the structure of the Li-
ouvillian, one often applies a high-bias limit where Vg;,s > 1 such that all system
transitions lie within the transport window. For sufficiently low temperatures, this
limit implies that we can approximate the Fermi functions of the leads as

> 1 vBlas

foo(wy B> Ly ey Ve > L (3.37)

Additionally, assuming the wide-band limit I'; ,(w) = I';,, we obtain a Liouvillian
which is independent of the transition frequencies in the system and the occupa-
tions of the leads. Fixing the basis of the density vector according to

0 0 1 1 1 1 1 1 1 1
pP= (pﬁ O O N R iR Y S ,p§+)+) , (3.38)

where the density matrix elements pl(;% are labeled in correspondence with the en-
ergy eigenstates in Eq. (3.36), this Liouvillian for the USCB regime in the high-bias
limit reads as

“I'yp-Tor 0 Ldep, p L, p Hhep p Lhep,p LA, p BAD p LDy g BT,

0 Tip-Typ 58Ty g BMT,p HMT,p 2D, AT, p 2N, A, LA,
%FLL l_f*FL,L —FIZ‘R 0 0 0 0 0 0 0
==T e 0 0 e 0 0 0 0 0
wW(0) = h. FLL 1+%«+ FLL 0 0 02 Do 0 0 0 0

1 2L 1 L2 = K
H.iL FZ,L %FZ,L 0 0 0 0 _ ;R 0 0 0
S ST s OY? 0 0 0 0 0 -8 0 0
%FZ,L 1+4A7_ FQ,L 0 0 0 0 0 0 _FZR 0
%Fl,L %FLL 0 0 0 0 0 0 0 71“;3
(3.39)

To keep our notation as compact as possible, we introduced the abbreviations

A+: 1+ﬁ(612t79) A = 1- QS?J(GZJQ) . (340)

\/[1+(2§3) ][1+(G2TJQ)2]7 \/[1+(%) :||:1+(G’2__JQ)2:|

This limit allows one to calculate the steady-state density matrix and particle current
analytically. As an example we show the steady-state density matrix populations in
the wide-band limit which are given by

-<°>_ir r 0 _1pop 0 _L1pop 3.41
po- = 5ol irlon, Prag = gplclor, paag = 5plhrla (3.41)
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with the normalization constant
=2 (F17LF27R + F17RF27L) + FLRF27R‘ (342)

From the rates appearing in the steady-state populations, we see that the particles
enter the system from the left leads and leave it through the right leads in accor-
dance with the high-bias limit from Eq. (3.37).

In this ultra-strong Coulomb blockade regime, we make use of Eq. (2.93) and find
that the high-bias steady-state current through the transport channel i becomes

(i,R) _ Fz’,LFz’,RFE,R

_ ,oie{1,2} |i#1. (3.43)
USCB ~ 5 (Fz‘,RFE,L " Fi,LF{,R) +IirlG R .2}

Here i labels the opposite transport channel.

From Eq. (3.43), we see that the current Igé}ég explicitly depends on the tunneling
rates of the opposite channel. This is to be expected for a configuration with dynam-
ical channel blockade [152, 174]. This intermediate coupling is lifted, for example, if
the DQD 1 is almost immediately reloaded from the left lead, i.e., I'; , > I'; z. Then,
the system tends to be always occupied by an electron: The steady-state current in
channel ; becomes proportional to the coupling to the right lead, i.e.,

. Lpe>ip T
(i,R) i,L iR iR
Iy 5 (3.44)

whereas the current through the other transport channel vanishes. In the oppo-
site case, when the DQD ¢ is not refilled from the left lead, i.e., I'; , - 0, while the
other tunneling rates remain nonvanishing, the steady-state current through chan-
nel i vanishes and the other current takes on the form of Eq. (3.56). Considering a
similar configuration where the electrons almost instantly leave the transport chan-
nel i via the right lead, i.e., I', g > I, 1, we find that the channel coupling is only
partially lifted. In fact, in this limit, the opposite channel decouples and the respec-
tive steady-state current takes on the form of Eq. (3.56). However, the steady-state
current i becomes

16 Lin>Tir Tiplig

3.45
USCB i, +Lip ( )

and, hence, is still proportional to tunnel couplings of both transport channels. Fi-
nally, if the couplings to the left leads and the couplings to the right leads are the
same for both channels, i.e, I'; , - T',, the steady-state currents are the same for
each channel reading
'l
8, =5 3.46

USCB 4FL + FR ( )
Finally, we note that due to electron-hole symmetry, one finds analogous results to
Eq. (3.43) if the system transition energies from the three-to-four electron subspace
lie within the transport window.
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3.3.3 Strong Coulomb blockade regime

In addition to the USCB limit, we now consider a less restrictive limit where we as-
sume that each transport DQD can at most be filled with one electron. Thus, we
are considering the situation that Uy » {¢,7.,G,Q,U}, where we, for the sake of
simplicity, assume U = U, = Uy. Consequently, in this approximation the 0- and
1-electron states as well as some of the 2-electron states lie within the transport
window. Hence, this limit is capable to describe the section from the CD 0 up to
the beginning of the CD 2 in Fig. 3.3. In this limit, to which we refer as the strong
Coulomb blockade limit (SCB), the system can be described by the effective Hamil-
tonian

Hson = Huscs + U > cf{,adLacZ;ﬂcZw. (3.47)
a,Be{L,R}

This Hamiltonian is also block-diagonal, consisting of the same three blocks found
in the USCB limit according to Eq. (3.32) and Eq. (3.33). Moreover, since we now
also allow for a total of 2 electrons in the two DQDs, we find an additional block
corresponding to the 2-electron states of the system. In the two-electron basis

{1L,L,1),|L, L, 1), |L, R, 1), |L, R, 1), |R, L, 1), [R, L,1) | R, R, 1) IR, R, 1) |, (3.48)
this block explicitly reads as

v-2 J G+T. 0O T. 0 0 0
J U+%2 0 T. 0 G+T. 0 0
G+T. 0o U-% J 0 0 T. 0
~ i 0 T, J U+2% 0 0 0 G+T,
HO2=1n 0 0 o0° 0-2 g g+m o | G4
0 G+T. 0 0 J ﬁ+% 0 T.
0 0 T. 0o G+T. 0 U-% J
0 0 0 G+T. 0 T, J  U+%

where we used the abbreviation U = (U + 2¢). Solving the corresponding eigenvalue
equation

H? i 0, 8)® = EZ) i, 8)?, (3.50)

results in the eigenvalues

. 2G+B0 2
E(Q) Ji=1, 25+aJ\/1+( 2J5 ) o, B e {-1,+1} (3.51)
i=2, 2e+a(G+2T.)+BJ\/1+()

with the respective non-normalized eigenstates

1,0, 8)® =(|R), + BIL),) ® (IR}, — B|L)y) ® (Bag 1) + 1)),
12,0, 8)® =(|R), + a|L),) ® (|R), + a|L),) ® (Bs L) + 1)) - (3.52)
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The emerging coefficients are defined as

2 2
O RV B FRAR V) A
We notice that the eigenstates assume again a tensor product form indicating that
the subspaces of the DQDs and the CQB are not entangled. However, contrary to
the USCB limit results, here this behavior is caused by our choice of the Coulomb
interactions U, = Ux. Assuming even a small difference between these interactions
would result in partially entangled eigenstates.

Following the same procedure as in the previous section, we can now calculate the
rates according to Eq. (2.48) and construct the corresponding Liouvillian. However,
again we can not write down the Liouvillian in a compact form and, thus, consider
the high-bias limit for this Liouvillian within the following subsection.

3.3.3.1 High-bias currents

Applying the high-bias limit from Eq. (3.37) and assuming energy independent tun-
neling rates I'; ,, we can analytically determine the steady-state system populations
in the SCB limit, which read

SONLE 0~ Lpop ;0 _Lpop ;2 Lp 3.54
pa = o5lirlar, Prag = opbiilon, paag = 55lhrlar, Piap = o510 la (3.54)

where the normalization constant is defined as
9_ = 4F17LF27L + 2 (FLLFQ,R + FLRF27L) + FLRF27R' (355)

Inserting these results into Eq. (2.93), we find that in the high-bias limit, where
all transition energies from the zero-to-one and one-to-two electron subspace lie
within the transport window, the SCB steady-state current through the transport

channel ; is of the form
7GR _ INNARN:

SCB 2Fi,L + Fi,R‘

This result corresponds to the high-bias steady-state current one obtains for se-
quential electronic transport through a two-level system in the SCB regime [128].

Both results presented in Eq. (3.46) and Eq. (3.56) demonstrate that in the high-
bias regime, the steady-state currents are not sensitive to the asymmetry induced by
the CQB.

(3.56)

3.3.4 Current anti-correlation

In this section, we further analyze the transport properties of the system in the USCB
regime for small bias voltages. Thus, we focus on the region in the vicinity of the
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Figure 3.4: Plot of the steady-state currents for both transport channels 1 (red,
dashed line) and 2 (solid line). The plot corresponds to the dashed ver-
tical line in Fig. 3.3 at Vgae = 0.87.. We indicated the high-bias cur-
rents in the ultra-strong Coulomb blockade (/yscg), and strong Coulomb
blockade (Iscp) regimes. The insets compare the steady-state current of
channel 2 (solid line) with the results for parallel DQDs without impurity
(black, dashed line) and a single DQD coupled to a CQB (dotted line).
The system parameters are fixed to: g = 100/Tc, Uy = 20T, U, = Ux = 107,
J=Q=1,,=T.and G = -T..

edge of the 0-electron CD of the transport spectra in Fig. 3.3. A first interesting
feature in this region is the occurrence of negative differential conductance, i.e., the
blue lines in Fig. 3.3, which indicates blocking effects in the transport channels. To
clearly show this effect, we plot in Fig. 3.4 the IV -curves which correspond to the
green, dashed lines in Fig. 3.3. Due to the symmetry of the particle current with
respect to the bias voltage, it suffices to investigate, e.g., the positive voltage regime
Vaias 2 0in Fig. 3.4. In this plot, we observe a negative differential conductance in
both channels for certain bias voltages.

We demonstrate in the inset in Fig. 3.4 that this is an intrinsic feature resulting
from the CQB impurity as negative differential conductance is not present in par-
allel DQDs without impurity. Consequently, we also observe a negative differential
conductance for low bias voltages in a system where the second DQD is removed
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Chapter 3 Interacting transport qubits

(inset: dotted line). Effectively, the asymmetry induced by the impurity leads to the
fact that the two possible transport channels become accessible at different gate
voltages. Consequently, in which channel this negative differential current occurs
depends on the sign of the CQB detuning (2.

Furthermore, since the total number of electrons in the system is constrained
by Coulomb interactions, as soon as the second transport channel becomes avail-
able, the current in the first channel decreases, leading to a negative differential
conductance. Consistently, this property is most prominent in the Coulomb block-
ade regime. Therefore, by comparing the steady-state currents for the two transport
channels, we find that this feature is accompanied by an anti-correlation between
the steady-state currents in the different transport channels. This anti-correlation
can be clearly observed in Fig. 3.4 for a small bias voltage in the range 0 < Vg, < 5.

3.3.5 Coulomb diamond gaps

The most striking feature of the plots in Fig. 3.3 is the fact that some of the observed
Coulomb diamonds do not close, as indicated by the dashed circles. We expect this
effect to occur for coupled DQDs with asymmetries in the quantum-dot energies or
in their tunneling amplitudes [175-177]. Because we explicitly exclude this kind of
asymmetry in the transport DQDs, this effect clearly suggests a blocking induced by
a finite energy barrier at zero bias voltage that stems from the presence of the CQB.
Consistently, we find that it depends on the sign of the detuning (2 in which channel
the gap appears.

Since all changes in the steady-state currents are associated to transition ener-
gies between eigenstates of the system Hamiltonian, it is possible to calculate the
position of the lines shown in Fig. 3.4 if the eigenvalues of the respective Hamil-
tonian Hg are known. Hence, a diagonalization of Eq. (3.1) allows one to calculate
the position and width of the gap. Since the system Hamiltonian is block-diagonal,
as discussed in Sec. 3.1, one can diagonalize each block separately to obtain the
full eigenspectrum of the system. As a consequence, we can use the results for the
eigenvalues and eigenstates calculated in the USCB and SCB limits in Sec. 3.3.2
and Sec. 3.3.3. Therefore, by identifying the involved transition energies using the
eigenvalues from Eq. (3.35), we can analyze the gap between the 0- and 1-electron
Coulomb diamond in the second transport channel. By comparison we find that
the transitions energies responsible for this gap are given by

W i(EEO) _E2(1+)_> W@ - i<EE°) —Eé,l_),_). (3.57)

These are the transitions from the energetically lowest vacuum state |-)'”) to the 1-
electron states |-, —)gl) and |+, —)gl). All properties of the CD gap can subsequently be

determined from these transition energies. For example the gate voltage for which
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Figure 3.5: Plot of the width of the gap between the 0- and 1-electron Coulomb di-
amond in dependence of the parameters of the charge-qubit. All the re-
maining parameters are set equal to 7, except for G which is set to -T..
Note that the negative gap width for a negative detuning indicates that
the gap appears in the opposite channel.

the gap between the 0-electron and 1-electron CD is minimal, is given by

i G+2T. 1 G-Q\° G +Q)\° Q)
VGate“]{ 27 +§[\/1+( 2] ) +\/1+( 27 )]_ 1+(5)}' (5:58)

Subsequently, we derive the other parameters of the gap such as the upper bias
voltage at this point, which reads as

wpper G—Q)Z_\/ (G+Q)2
yuep —J[\/1+(—2J (25 ] (3.59)

Due to the choice of our parameters, the gap is symmetric with respect to Vg;.s = 0
and thus the lower bias voltage satisfies VoV = V3PP Hence, the width of the gap
is given by

G- Q) G+Q\°
Acap_zJNH( O ()

In an analogous way, we can determine the point of contact of these Coulomb dia-
monds in the opposite channel. We find that this position is given by the relation

woss 1| G+ 2T, 0—92\/ %
e[S e (G ()

From Eq. (3.60) and the results in Fig. 3.5, we see that for the considered experimen-
tal setup, the appearance of the gap results solely from the CQB since it depends on
both, the detuning 2 and the modification G of the intrinsic tunnel amplitudes. If

= 2V PP, (3.60)

Bias

1
= Ve SVemT. 36D
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Figure 3.6: Plot of the position of the minimum gap between the 0- and 1-electron
Coulomb diamond in dependence of the parameters of the charge-qubit.
All the remaining constants are set equal to 7, except for G which is set
to -T..

one of these quantities is zero, the gap vanishes. On the contrary, the width of the
gap is completely independent of the intrinsic tunnel amplitudes 7. of the transport
DQDs. Moreover, we find that the gap not only vanishes as G or {2 approaches zero,
but also if J becomes very large. This behavior can be understood since the rapidly
oscillating CQB on average affects both transport channels in the same way and the
energy barrier vanishes.

Investigating the position of the gap according to Eq. (3.58) yields a more com-
plicated behavior in dependence of the CQB parameters as shown in Fig. 3.6. For
example, we find that, as the hopping amplitude J is increased from zero, the gap
is shifted from an initial finite value to higher gate voltages up to a maximal value.
A further increase of J results in a shift of the minimum gap to lower gate voltages,
which in the limit / - o becomes a constant that equals the position for J = 0.
Likewise the gap position is maximally shifted for a small detuning and approaches
the value 1/2T, for large detuning ). Therefore, we conclude that the system is most
sensitive to the CQB for a small tunneling amplitude J and detuning 2.

In general, we note that measuring the quantities described by Egs. (3.58)-(3.61)
in a real experiment enables one to calculate the tunneling amplitude J and the
detuning €2 of the CQB as well as the modification G of the tunnel amplitudes 7, of
the DQDs.

3.4 Preparation of pure states

After we analyzed the transport properties of the steady-state currents within the
previous section, we now shift our focus and treat the CQB not as an unwanted im-
purity but as a crucial part of the system of interest.

Here, we first notice that the SCB limit includes configurations where the trans-
port DQDs can also be treated as CQBs, giving rise to an effective system composed
of three coupled CQBs. In the following, we refer to this specific subspace as the
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3.4 Preparation of pure states

strong Coulomb blockade qubit (SCB-QB) limit which corresponds to the SCB limit
from Sec. 3.3.3, where additionally the vacuum- and 1-electron states are elimi-
nated. These coupled qubits represent possible candidates for basic constituents of
quantum information technologies that use entangled qubit states for calculations
or communication. Since by measuring a system state its entanglement is usually
destroyed, one can think of it as a kind of resource: By carefully preparing the sys-
tem state one can generate entanglement, which is afterwards used for the desired
operation, and finally gets exhausted by the measurement [178].

Encouraged by this specific application, we study the possibility to prepare the
system in a pure state and use it as an entanglement resource within the following
sections. In order to better understand the eigenstates of the considered system
in the long-time limit, we start by analyzing the purity of its reduced steady-state
system density matrix and investigate some of the system expectation values.

3.4.1 Purity of the full system

In order to decide whether a given system state p is a pure eigenstate of the system
or rather a mixture of several such pure states one needs to calculate the trace

P=Tr{p*} <1, (3.62)

where the equality only holds if p is a pure state. Note that the purity of a state can be
related to its linear entropy Sy, defined via S;, = 1-P, which is a lower approximation
for the von-Neumann entropy [179].

In Fig. 3.7, we plot the purity P of the reduced system density matrix for fixed
system parameters versus the gate- and bias voltages. We find that in the interior
of the Coulomb diamonds and for low temperatures, the system enters a pure en-
ergy eigenstate with the lowest possible energy. This behavior causes the vanishing
steady-state currents in this region.

In general, these eigenstates, which are obtained from a diagonalization of the
system Hamiltonian in Eq. (3.1), are entangled states. However, for the special
choice of Coulomb interactions U, = Uy, we find that the eigenstates become sepa-
rable and, thus, are not entangled [180]. Therefore, the eigenstates S; of the system
in the CDs in Fig. 3.7 have a tensor product representation that reads as

So=[0); ®[0)y ® (ag[{) = bo 1)),

S1=(IL), - [R)y) ®[0); ® (a1 [l) b1 1)),

Sy =(|L), —[R),) ® (|L), = |R),) ® (az[1) = b2|L)),

Sy =|LR), ® (|L), —|R)y) ® (az|i) - b3[1)),

Sy =|LR), ® |LR), ® (as|l) —b4]1)), (3.63)

where {a;,b;} € R are the respective normalization coefficients. We note that the
purity plotted in Fig. 3.7 looks qualitatively the same, if we consider the cases where
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Figure 3.7: Density plot of the purity of the steady-state density matrix for low tem-
peratures 5 = 100/7.. Here, white indicates a total mixture of states,
whereas black corresponds to a pure system state. The picture also shows
the respective normalized eigenvectors of Hg indicated in the CDs by the
labels Sy, S1, Sz, S3, and Sy, which are given in Eq. (3.63). The system
parameters are fixed to Uy = 207, U, = Uy = 10T;, J = Q =T, = T; and
G =-T..

U, # Ux. Therefore, in general the preparation of the system in an entangled pure
state is possible.

If the temperature is raised, the region within a Coulomb diamond where purity
is reached shrinks in favor of a mixture of states with the same number of electrons.
Outside of the Coulomb diamonds, eigenstates belonging to different electron sub-
spaces always mix together. This is not surprising since a mixture of several states is
necessary to have electronic transport and a finite current. Thus, the Coulomb dia-
monds are in general the only regions where the preparation of a pure system state
is possible.
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Figure 3.8: State analysis of the charge qubit for low temperatures 5 = 100/7.. The
left picture shows the modulus of the Bloch vector and the right picture
shows the o, component of the CQB. The system parameters are fixed to
Uy=20T,U, =Ux=10T, T, =J =Q=T.and G = -T...

3.4.2 Purity of the charge-qubit

The observation that one can prepare pure states of the whole system within the
CDs, leads to the question if the same is true for the CQB. A pure density matrix of
the whole system together with a mixed CQB density matrix would imply entangle-
ment between the transport DQDs and the CQB. In order to answer this question,
we calculate the stationary expectation values of the CQB occupation operators ac-
cording to

(6;)=Tr{6;p}. (3.64)

Since the CQB represents a two-level system, these expectation values can be in-
terpreted as the components of a Bloch vector. A pure CQB state corresponds to a
Bloch vector with modulus one, i.e., the state lies on the surface of the Bloch sphere.
Because in the steady-state the CQB component 4, vanishes, the modulus of the
Bloch vector is defined by

[(6) ] =\ {5:)? +(5.)" (3.65)

In the left panel of Fig. 3.8, we plot this quantity for fixed system parameters and
the assumption that Uy = U,, versus the gate- and bias voltages. We find that it is
possible to tune the CQB to a pure qubit state for suitable combinations of gate-
and bias voltage. The regions with large CQB purity coincide with the Coulomb
diamonds, which indicates that the CQB is not entangled with the rest of the system.
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Figure 3.9: State analysis of the charge qubit for low temperatures 5 = 100/7.. The
left picture shows the modulus of the Bloch vector and the right picture
shows its o.-component. The system parameters are fixed to U = 20T,
U =107, Ux=070,T;,=J=Q=T,and G = -T..

Furthermore, there are regions outside of the Coulomb diamonds where the elec-
tron is completely delocalized in the CQB, indicated by the vanishing modulus of
the Bloch vector. However, as shown in the right panel of Fig. 3.8 the eigenstates
that the CQB can take on within the Coulomb diamonds, do not correspond to lo-
calized electron states as the 4,-component never takes on the value +1 in these
regions. Nevertheless, we observe that there are regions where the ¢.-component
of the CQB is strongly enhanced indicating a polarization. These regions coincide
with the odd electron number Coulomb diamonds. This behavior indicates a back
action of the electronic occupation in the DQDs on the CQB. Consistently, the 7 ,-
component of the CQB is completely undetermined in most of the regions outside
of the CDs due to the electron transport through the DQDs. These properties re-
main qualitatively unchanged if other system parameters are considered. However,
the purity and localization can be increased when lower temperatures are consid-
ered.

For comparison, we also consider a situation where the Coulomb interactions Uy
and U, differ and, thus, the corresponding eigenstates are in general entangled. The
results are shown in Fig. 3.9. Here, we observe that outside of the CDs the purity of
the CQB is partially decreased. However, within the Coulomb diamond regions the
purity of the CQB is still preserved. Therefore, we find that there is no entanglement
between the CQB and the DQDs even for U, # Uy. For the expectation value of the o -
component of the CQB, the difference we observe between the two cases in Fig. 3.8
and Fig. 3.9 is more striking. In fact, we see that for Uy # U, the o.-component
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can assume negative values, which we do not observe for equal interactions. This
effect is most obvious in the 2-electron CD where now the CQB-electron is mainly
trapped in the opposite channel compared to Fig. 3.8. Additionally, the increased
expectation value of the o,-component in the odd CDs of Fig. 3.8 is completely
reduced in Fig. 3.9. This comparison shows that there is indeed a strong back action
of the DQDs on the CQB

Finally, we note that in general the purity properties of the CQB as well as of the
DQDs, are sensitive to thermal fluctuations and thus the stability of the correspond-
ing regions will decrease as the temperature increases. This effect is strongest for the
2-electron CD and weakest for the 4-electron and 0-electron CDs.

3.5 Entanglement

In contrast to the separable eigenstates in Eq. (3.63), we can also change the Hamil-
tonian parameters to stabilize entangled states in the 2-electron CD. Thus, moti-
vated by investigations of the entanglement of a system of parallel DQDs without
the CQB impurity [51, 181], we explore the effect of the presence of the CQB on the
entanglement of the transport channels within the following section.

In order to qualitatively and quantitatively determine the entanglement between
the two transport DQDs, we project the steady-state density matrix onto the two-
qubit subspace where exactly one electron is present in each transport DQD. Sub-
sequently, tracing out the CQB degrees of freedom yields an effective 4 x 4 matrix

P2 = Trrest {P} (3.66)

for the two coupled qubits represented by the transport DQDs. Here, the trace over
“rest" includes the 0-, 1-, 3-, and 4-electron subspaces as well as the 2-electron states
corresponding to a doubly occupied transport DQD. For this effective system of two
coupled qubits, there exist a few well-defined entanglement measures [179]. One of
these measures, which is known as the concurrence [182], is defined as

C = max [0, /A1 = Vs = Vs = V/Ad (3.67)

where ); are the eigenvalues of the matrix
p=p2o,®0,)p; (0, ®0) (3.68)

arranged in decreasing order, i. e., \;;; < \;. Testing the above definition on the Bell
states [183]
1
\I/i = — + s ®:!: =
0.) ﬁ(IH) ), |®.)

1

7 (L) £111)), (3.69)
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Figure 3.10: The left picture shows the concurrence of the four energy eigenstates
in the qubit sector of Hamiltonian (3.1) as a function of the ratio « of
the Coulomb interaction strengths. For comparison the inset shows the
concurrence for the system without CQB impurity. The right plot shows
the generalized transport concurrence with « = 0.7 for the full transport
spectrum. All other parameters are set to § = 100/, Uy = 207, U, =
107, T0=J=0=T.and G = -T..

which are maximally entangled, we notice that the spin flip facilitated by o, does
not change the considered Bell state except for an overall sign. Therefore, the corre-
sponding matrix p has only a single nonvanishing eigenvalue ) = 1 and the concur-
rence assumes its maximum value C = 1. Contrary, applying the spin flip to a state
of the local basis {|{1),]tl),{!),[11)} yields a different local basis state and hence
the matrix 5 has no finite eigenvalue. Hence, we see that the concurrence equals 1
for maximally entangled states and 0 for completely unentangled states.

In the following, we use the concurrence defined in Eq. (3.67) to characterize the
amount of entanglement stored in the system.

3.5.1 Eigenstate concurrence

For the system of two coupled transport DQDs it is known that the strength of entan-
glement depends on the strength of the on-site Coulomb interaction [51]. Addition-
ally, the entanglement of two parallel DQDs can also be influenced by asymmetric
interactions or external driving [184]. Hence, this property depends on the choice
of Coulomb interactions between the quantum dots. In our numerical evaluation
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in Fig. 3.3, we explicitly assume that the Coulomb interaction between parallel dots
has the same strength as the diagonal interactions, i. e., Uy = U,. However, with this
choice entanglement can hardly be achieved.

In order to investigate the dependence of the entanglement of the pure states on
the interaction strength, we introduce the ratio

a= = (3.70)

between parallel and diagonal Coulomb interaction in the system Hamiltonian from
Eqg. (3.1). First, we investigate the concurrence of the pure qubit eigenstates in the
SCB-QB limit in dependence of this ratio «. In this limit, we obtain an effective sys-
tem composed of three coupled CQBs. Tracing out the CQB impurity in the middle
results in an effective 4 X 4 matrix for the remaining two coupled DQDs. The corre-
sponding 4 eigenstates and their entanglement now depend on the ratio « and on
the CQB parameters. The results for their respective concurrence are presented in
the left panel in Fig. 3.10.

In general, we find that for the highly asymmetric case of « = 0 the concurrence for
parallel DQDs with CQB impurity is maximal and reaches almost 1. With increasing
ratio o the concurrence decreases until it completely vanishes at « = 1, the point
of maximum symmetry. Furthermore, we see that two eigenstates show exactly the
same concurrence (dashed line) in dependence on the ratio a. Contrary, one of the
remaining two eigenstates possesses an increased concurrence (dot-dashed line)
and the concurrence of the other one is mostly lowest (dotted line). Additionally,
the concurrence of this last eigenstate vanishes at o ~ 0.8 in contrast to all other
eigenstates.

In order to clearly elaborate the effect of the CQB impurity on the concurrence, we
added an analysis for two coupled qubits without CQB impurity in the inset. Here,
always two of the four eigenstates show the same entanglement in dependence of «
due to the symmetry of the setup. We specially observe that the two Bell states |V _)
and |®_) from Eq. (3.69) corresponding to the solid line in the inset in Fig. 3.10, have
a constant concurrence of 1 over almost the full range of a. Hence, these eigenstates
are maximally entangled states except near the point « = 1 where the concurrence
vanishes discontinuously.

Comparing with the concurrence for the different qubit eigenstates, we find that
the Bell states are destroyed due to the influence of the tunneling amplitude J and
the detuning 2 of the CQB. This result is in agreement with recent theoretical work
using a configuration interaction method to analyze impurity effects on quantum
bits [55]. In addition, we observe that in general the concurrence of non-Bell states
is raised for all values of «. This effect mainly results from the modification param-
eter G. The concurrence is maximally enhanced for G = -7, and approaches the
value of the unperturbed system as G approaches zero.
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3.5.2 Generalized transport concurrence

Lastly, we investigate the concurrence for the whole transport spectrum, which in-
cludes mixed states as well. This fact contradicts the definition of the concurrence
which is basically only valid in the SCB-QB limit where the two DQDs can be treated
as CQBs. In order to study entanglement in the whole transport spectrum, we there-
fore need to define a generalized transport entanglement measure first.

From the definition of the concurrence, it is obvious that this quantity is linear in
the norm of the reduced density matrix p,. Hence, if the reduced density matrix is
not renormalized after tracing out the CQB, the concurrence is only exact if evalu-
ated in the transport qubit sector where a single electron is in each transport DQD.
Otherwise, the calculation yields a product of the exact concurrence multiplied by
the probability for being in a transport qubit state. Due to this special property,
we will in the following use the non-renormalized concurrence C' as a generalized
transport concurrence to characterize the entanglement of the DQDs in the full gate
and bias regimes.

In the right picture of Fig. 3.10, we plot the resulting concurrence versus gate and
bias voltage. Since both cases with o = 0 and 1 are experimentally hard to achieve
and also represent rather special configurations, we choose « = 0.7 for numerical in-
vestigations. We observe that the presence of the CQB diminishes the concurrence
within the 2-electron Coulomb diamond and slightly decreases the concurrence of
the mixed states outside of this Coulomb diamond. Moreover, we see that in the
exterior of the 2-electron Coulomb diamond, the concurrence vanishes almost ev-
erywhere except for the regions associated with transitions from the 1- or 3-electron
to the 2-electron subspace. Here, the transport qubit eigenstates enter the steady-
state reduced density matrix contributing their high concurrence to the mixture of
states. However, since we do not re-normalize the effective two-qubit density ma-
trix, this high concurrence gets multiplied by the 2-electron fraction of the mixed
state which corresponds to the probability to be in such a 2-particle state. Going
deeper into the 2-electron subspace allows for more 2-electron eigenstates to mix
in the steady state reduced density matrix and hence rapidly reduces the respec-
tive entanglement. In an experiment the DQD entanglement could be measured for
example via construction of a Bell inequality as suggested in Ref. [51] or by qubit
spectroscopy and quantum state tomography [185].
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Transport with ultracold atoms

Within this chapter we extend the research outlined in Ref. [186].

After studying electronic transport through nano-structures during the first half
of this thesis, we now aspired to combine the methods presented in Chap. 2 with
the field of ultra cold gases. This field of physics has attracted an ever increasing in-
terest of both theorists and experimentalist over the recent years. In particular, the
fact that these systems can nowadays be produced routinely in the lab and allow
for a very high degree of control over the experimental parameters, makes them an
interesting subject to study. Furthermore, some of these systems show a critical be-
havior, as for example the phase transition to a Bose-Einstein condensate or a quan-
tum phase transition in lattice systems like the Bose-Hubbard model [73] and the
Jaynes-Cummings-Hubbard model[31, 187]. Usually, such systems and their criti-
cal behavior are studied in equilibrium. Hence, there is not much known about their
properties in nonequilibrium situations.

Therefore, we posed ourself the question if one can use transport experiments
to observe signatures of the critical behavior in the transport properties such as
the currents and its matter and heat conductances. Since the critical phenomena
such as quantum phase transitions are only possible in very large systems it is com-
mendable to treat the critical system-of-interest as a reservoir which is coupled to
a much smaller quantum system. Finally, motivated by some recent experiments
conducted in the group of Tilman Esslinger in Ziirich which can be regarded as the
first transport experiments with ultracold gases [104, 105], we focused on modeling
the transport with ultracold quantum gases. Here, the bosonic gas is especially in-
teresting since it shows a transition to a Bose-Einstein condensate for sufficiently
low temperatures or high particle densities.

However, in order to correctly consider the experimental implementation of such
transport setups and also to correctly describe the critical behavior of the quan-
tum gas, one has to assume a constant mean particle density. In the framework of
the grand-canonical ensemble theory, this assumption leads to a chemical poten-
tial that depends on the temperature and the particle density of the gas. This is in
contrast to the usual scheme of a constant chemical potential used to describe elec-
tronic transport through nano-structures as for example discussed in the previous
chapter.
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Chapter 4 Transport with ultracold atoms

Therefore, we start by calculating the density and temperature dependent grand-
canonical chemical potential in Sec. 4.1. Subsequently, we apply this result first
to a transport setup with fermionic reservoirs in Sec. 4.2, in order to analyze the
modifications in comparison to the conventional approach with constant chemi-
cal potential. Afterwards, we apply it to a bosonic setup and explore the transport
properties for signatures of Bose-Einstein condensation in Sec. 4.3.

4.1 ldeal quantum gases at constant density

We model the reservoirs, which are connected to the system-of-interest, as ideal
quantum gases. To correctly describe the properties of these reservoirs, we review
the thermodynamics of ideal quantum gases within this section.

The bath Hamiltonian that describes the ideal quantum gas assumes the form

Hp = erblb,, 4.1)
k

where the operators ZA)Z and by, create and annihilate particles with momentum k in
the reservoir. The energy spectrum of an ideal quantum gas consisting of particles
with mass m is given by

er=—, k=Kl 4.2)
2m

The thermal mean occupation of these energy levels obeys the distribution

1

eBlex—1) + f’ (4.3)

n(ex) =
with inverse temperature § = 1/7" and chemical potential x. The parameter ¢ as-
sumes the value +1 for an ideal Fermi gas, resulting in the Fermi-Dirac statistics.
For an ideal Bose gas the parameter ¢ assumes the value -1 resulting in the Bose-
Einstein statistics. In Fig. 4.1, we plot both statistics versus the frequency fw for
different chemical potentials. We note that the mean occupations fulfill the relation

n(w+p) { e v for fermions (4.4)

n(-w+pu) |-eP  for bosons

implying a thermal detailed balance. The additional minus sign for bosons enters
this relation to ensure the positivity of the mean occupations because the Bose-
Einstein statistics is formally negative for negative frequencies whereas the Fermi-
Dirac statistics remains always positive. From the condition that the mean occu-
pation can only take on positive values, we immediately conclude that for bosonic
particles the chemical potential is restricted to values below the lowest eigenenergy.
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Figure 4.1: Plot of the Bose-Einstein (left) and Fermi-Dirac statistics (right) for dif-
ferent chemical potentials versus energy.

Since the ground-state energy of an ideal quantum gas is given by ¢, = 0 the bosonic
chemical potential is limited to negative values, i.e.,

—o0 < <0, for bosons. (4.5)

This observation for bosons is in contrast to the Fermi distribution where the chem-
ical potential can in principle take on arbitrary values, i.e.,

—00 < 1 < +00, for fermions. (4.6)

The chemical potential explicitly enters the mean occupation in Eq. (4.3), since we
allow for matter exchange processes between the system and its environment. Due
to these exchange processes a grand-canonical thermodynamic description of the
whole system is required. Within the framework of the grand-canonical ensemble
theory the chemical potential is introduced as a Lagrange multiplier fixing the mean
total amount of particles N in the reservoir. Therefore, the correct values for the
chemical potential have to be determined self-consistently for a given mean num-
ber of particles and a fixed temperature in the reservoirs.

4.1.1 Grand-canonical chemical potential
Let us consider the situation of an ideal quantum gas confined in a 3D box of volume

V. Then the mean total number of particles can be calculated according to

o0

N=g52ﬁ(€k), (47)

k=0

where we introduced the factor gs = 25 + 1 which accounts for the spin-degeneracy
of a particle with spin S. Using the thermodynamic limit where N - co and V' — oo
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Chapter 4 Transport with ultracold atoms

such that the mean particle density n = N/V remains constant, we can transform
the summation over the k-modes in Eq. (4.7) into a continuous energy integral

(295)3 Zk: S fg(E)dE. (4.8)

The function ¢g(F) is the density-of-states which can be obtained from the phase
space volume (). For a given energy F this phase space volume can be calculated
by integrating over the whole available volume VV and summing over all momenta k
which lie within the corresponding energy surface Sg. This results in the expression

d3k
aE) = [ dx [ =5 4.9)
Vf £ (27?)3

from which we can determine the density-of-states as a derivative with respect to
the energy, i.e.,

dQ(E)
dE

9(E) = gs (4.10)

The k integral in Eq. (4.9) can be solved using the energy dispersion relation from
Eq. (4.2). It follows that

kg 5
A3k ~ A _— 1 »
/ (2m)° (27’ [ hdk = (2m)? (2m) Ofﬁdgk’ (4.11)

Sg 0

which yields for the phase-space volume 2 the expression

E
O(E) = (2m)2V f JErder. 4.12)
0

(2m)°

Consequently, the density-of-states of an ideal quantum gas in 3D reads as

9(E) = éS—7XQ (2m)** VE, (4.13)

with the usual dependence on the square root of the energy. With this result, we can
now calculate the mean density of particles n = N/V in the reservoir according to

r VE .
n= (29;)2 (2m)3/2 f mdﬁ? = —gs/\%mg/z(—gz). (4.14)
0
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Figure 4.2: Plot of the temperature dependence of the chemical potential (left)
and its derivative, with respect to the normalized reservoir temperature
(right), for fermions (dashed line) and bosons (solid line) for a fixed par-
ticle density.

Here, we introduced the thermal de-Broglie wave length A\ = \/273/m, the fugacity
z = efr, and the polylogarithm (see, e.g., Ref. [188])

1 oaze-1 © 2k
Li,(z) = f dr =S 2, 4.15
ta(2) I'(a) y e[z -1 v kz::lko‘ (4.15)
where
F(a)=fdxxa_le_$, (4.16)
0

is the Gamma function.

The above equation (4.14) implicitly defines a temperature and density depen-
dent chemical potential x(n,T). However, due to the highly nonlinear behavior of
the polylogarithm the chemical potential can not be obtained analytically and we
have to resort to numerical methods [189-194]. The resulting chemical potential as
a function of the gas temperature is plotted in Fig. 4.2.

Moreover, using the properties of the polylogarithm

d . 1.
£L1a(z) = ;Lla_l(z), (4.17)

we are able to calculate the derivatives of the chemical potential with respect to
temperature and density from Eq. (4.14). Performing a derivative with respect to
temperature on both sides of Eq. (4.14) and rearranging the resulting terms, we find
the relation

Oou(T,n) p  3Lizp(=E2)

o T 2Lijp(-¢2) (4.18)
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Chapter 4 Transport with ultracold atoms

Figure 4.3: Mean occupation for ideal quantum gases with temperature- and
density-dependent chemical potential. Left: For an ideal Bose gas at
w = 0.57. (dashed line), w = T, (solid line) and w = 1.37. (dot-dashed
line). Using a constant chemical potential , e.g., w — ¢ = 0.57, (thin,
dashed line) the occupation increases exponentially with the tempera-
ture. Right: For an ideal Fermi gas at w = 0.57F (dashed line), w = Tf
(solid line) and w = 1.37% (dot-dashed line). The fermionic occupa-
tion for a constant chemical potential approaches 1/2 for large temper-
ature. This value is approached, either from above if w - 1 < 0, e.g.,
w — = =T (thin, dashed line), or from below ifw - > 0, e.g., w—p =Tk
(thin, dotted line). The circles indicate a set of temperatures with the
same occupation for a given transition frequency (see Fig. 4.6 and fi-
grefC3:F:BoseSteadyStateCurrent) .

In the same way we can calculate the derivative with respect to the density and ob-
tain

op(T,n) T Lizjp(-€2)

an n Liyp(=€2) (4.19)

Hence, we see that the derivatives of the chemical potential with respect to the reser-
voir temperature and particle density can be obtained as analytic functions of the
chemical potential, leaving its determination to be the only numerical problem we
have to solve.

Within the following analysis, we will often observe dependencies on the mean
occupations of the reservoirs. It is therefore instructive to investigate the influence
of the temperature and density dependent chemical potential on these mean occu-
pations. Hence, we insert the numerical result for the chemical potential as depicted
in Fig. 4.2 into the definition of the mean occupations in Eq. (4.3). In Fig. 4.3, we
plotted the resulting occupations of different energy levels in fermionic and bosonic
reservoirs.
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4.1 Ideal quantum gases at constant density

In the bosonic case, we observe that the mean occupation of a given energy level
is peaked around a specific characteristic temperature. For temperatures lower than
this characteristic temperature the mean occupation of the considered energy level
is decreased. This effect is related to the fact that for lower temperatures the parti-
cles occupy lower energy levels. Since the density is fixed, this increase of the occu-
pations of lower levels is accompanied by a decrease of the occupation of the higher
energy levels. Analogously, for high temperatures the particles are excited to higher
energy levels and the mean occupation of the lower energy levels decreases. Thus,
the occupation of a given energy level approaches zero for large temperature. This
high temperature behavior is in strong contrast to the conventional mean occupa-
tion with fixed chemical potential. Here, one would expect an exponential growth
(thin, dashed line) with temperature which appears linear in the logarithmic plot
for high temperatures.

In case of ideal Fermi gases, we find a similar behavior if the considered energy
level lies above the Fermi energy (dot-dashed line). The reasons for this behavior
are the same as discussed for bosons. However, the situation changes if one con-
siders the occupation of an energy level which lies below the Fermi energy (dashed
line). Here, the occupation becomes constant as the temperature is decreased. This
is caused by the Pauli principle which forbids that the fermions can occupy an en-
ergy level which is already filled. Thus, further decreasing the temperature does not
result in a decrease of the occupation of the monitored energy level as we observed
for the bosonic case, since the lower energy levels are already filled. Contrary, for a
constant chemical potential, we find a different high temperature behavior. Here,
the mean occupation assumes the value 1/2 with increasing temperature indepen-
dent of the monitored energy level. This constant value is either approached from
above if w - i < 0, or approached from below for w - i > 0.

We therefore find that the temperature dependent chemical potential strongly af-
fects the high temperature behavior of the mean occupations for both, bosons and
fermions.

4.1.2 Bose-Einstein condensation

The derivation for the mean total particle number in Eq. (4.14) presented in the pre-
vious paragraph is actually only valid for fermions. If we consider bosonic particle
reservoirs, it is not completely correct, since it does not correctly account for the
bosonic ground-state.

Taking a look at the bosonic mean occupation as plotted in Fig. 4.1, we observe
that as the chemical potential approaches zero, i.e., S — 0, the mean occupation of
the ground-state, where w = 0, becomes macroscopic. This macroscopic occupation
of the bosonic ground-state is known in literature as Bose-Einstein condensation.
Despite the fact that the ground-state becomes macroscopically occupied, the cor-
responding spectral weight +/E in the energy integral in Eq. (4.14) becomes zero.
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Chapter 4 Transport with ultracold atoms

Therefore, one has to take special care of the bosonic ground-state when replacing
the summation over the k-modes with an integral in order to correctly describe the
phenomenon of Bose-Einstein condensation. Adding the ground-state occupation
no = gsz/(1 - z) to the mean total particle number in Eq. (4.14) yields the correct
expression for the mean particle density n = N/V which reads as

. z
n = —QS%Lls/z(—fz) +gs—0¢+1,0, (4.20)
Ay, 1-2
—_——
no

Tex

where the first part n., represents the fraction of particles that are in excited energy
levels whereas the second part n, is the fraction of particles in the ground-state. As
indicated by the Kronecker delta function this additional ground-state contribution
is only present for bosonic particles. Furthermore, we note that the fraction of par-
ticles in the ground-state diverges as z approaches one, i.e., when Gu — 0.

In the left panel of Fig. 4.2, we plot the chemical potential for a fixed mean particle
density as a function of the reservoir temperature for both, bosonic and fermionic
reservoirs. We observe that for bosons there exists a critical temperature 7. below
which the chemical potential vanishes. Consequently, at this critical temperature
the bosonic ground-state starts to be macroscopically occupied and Bose-Einstein
condensation sets in. This density-dependent critical temperature can be obtained
from Eq. (4.20) with ny = 0 and z = 1. This yields

2m n %

T, =T.(n) = —(—) , (4.21)
m \ gs¢(3/2)

where Lis;»(1) = ((3/2) and ((x) is the Riemann zeta function. For the case of a

fixed temperature, we can rewrite this expression to obtain a corresponding critical

particle density n. which is defined as

ne = ne(T) :i—ic (3/2). (4.22)
T

Here, it is convenient to introduce the dimensionless temperature 7 = 7'/, and the
dimensionless density v = n/n. for the bosonic reservoirs. We note that the dimen-
sionless temperature and density fulfill the relation

=23, (4.23)

Subsequently, reformulating Eq. (4.20) with the help of these dimensionless vari-
ables results in the fact that the chemical potential can be treated as a function of
a single dimensionless variable only. Additionally, we can deduce the ground-state
occupation as a function of the dimensionless temperature which results in the fa-
mous relation

no=n(1-7%?), for T<T, (4.24)
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4.1 Ideal quantum gases at constant density

Figure 4.4: Plot of the occupation of the bosonic ground-state (solid line) and the
excited states (dashed line) versus the dimensionless temperature (left)
and the dimensionless density (right). Below the critical temperature 7,
and above the critical density n., Bose-Einstein condensation sets in. At
T =0 the ideal Bose gas forms a pure Bose-Einstein condensate.

which we plot in Fig. 4.4. We observe that Bose-Einstein condensation sets in at
the critical values for the temperature and the particle density. As the ground-state
becomes occupied the number of thermally excited particles decreases. Since the
particles in the ground-state do not posses enough energy they can not participate
in the transport process. Thus, transport is only facilitated by the particles in the
excited states. Only at 7" = 0 or for n — oo all particles are in the ground-state and the
reservoir forms a pure Bose-Einstein condensate.

Correspondingly, we can find a density-dependent characteristic temperature 7%
in the case of fermionic particle reservoirs as well. This Fermi temperature is defined
as

2 2/3
! (6” ”) . (4.25)

TF = Tp(n) = —
2m\ gs
It relates to the Fermi energy which is the value of the chemical potential at absolute
zero, i.e., u(T = 0) = Ef, according to Er = Tr. Again, we can reformulate Eq. (4.25)
to obtain a temperature dependent characteristic Fermi density that is defined as

_ 4gs
EENZIYE
Introducing these characteristic temperature and energy for the fermionic system
allows to introduce dimensionless variables 7 = T'/Tr and v = n/ny in correspon-
dence to the bosonic ones. Keeping either the temperature or the particle density
constant and inserting the dimensionless variables 7 or v into Eq. (4.20) leads to the
chemical potential as a function of a single dimensionless variable only, for both,
the ideal Fermi and the ideal Bose gas.

ng =np(T) (4.26)
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Chapter 4 Transport with ultracold atoms

4.2 Transport with ultracold fermions

After we reviewed the properties of ideal quantum gas reservoirs in 3D within the
previous section, we now apply these results to a fermionic transport setup. Hence,
in the following, we consider a few-level fermionic quantum system connected to
two fermionic terminals. In particular, we investigate the effect of the temperature
and density dependent chemical potential on the steady-state transport properties
through this system.

4.2.1 Transport system

w w
pr(Toyng) |- Tr, N
(07 B N A —
N Yy
nr, nR

Figure 4.5: Fermionic transport setup (left) and the corresponding energy represen-
tation in the system eigenbasis (right). The atomic reservoirs « € {L, R}
are in thermal equilibrium characterized by temperature 7, and chemi-
cal potential p,, = u(T,, N, ) for fixed particle number N,. The mean oc-
cupation 7n,, of energy w is given by the Fermi-Dirac distribution. The sys-
tem is composed of two identical quantum dot-like structures with on-
site energy ¢, that are coherently coupled with an amplitude g. The cou-
pling to the reservoirs is facilitated via the rates I',(w). In the Coulomb
blockade regime this double quantum-dot structure has two internal
transitions with the energiesw_=c¢-gand w, = ¢+ g.

We consider a fermionic system as shown in the left panel of Fig. 4.5. This sys-
tem is composed of a double quantum dot which is held in the Coulomb blockade
regime and coupled to two fermionic terminals. The corresponding energy repre-
sentation of this setup is sketched in the right panel of Fig. 4.5.

The transport double-dot system is described by the Hamiltonian

Hlermi = ¢ (e +éheg) + g (6l ey +ehe)) + Uetechey. (4.27)
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4.2 Transport with ultracold fermions

Here, the operators ¢, and ¢, which obey the fermionic anti-commutation relation
s oAt Aoa L [af Aty
{ca,cﬁ} =048, and {ca,cﬁ} = {cl,cﬁ} =0, (4.28)

annihilate and create a fermionic particle in quantum dot «, respectively. The two
quantum dots are denoted by the labels L and R and they are coupled via a coherent
tunneling process with amplitude g. Each dot can be empty or occupied by a single
particle. A filled quantum dot increases the system energy by the amount . In order
to have a brief notation, we explicitly consider the case that both quantum dots have
the same energy ¢ when filled. The corresponding eigenstates for each dota € {L, R}
are the Fock-states

| ):{|1>, if dot « is filled 1.29)

|0), ifdotaisempty

Subsequently, the Fock-states of the double-dot are obtained as a direct product of
the single-dot Fock-states, which yields the definition

laa) = o) ® |a'). (4.30)

In the Coulomb blockade limit the Coulomb repulsion U > ¢, g is the dominating
energy scale. Hence, the state |11) corresponding to a doubly occupied double quan-
tum dot does not take part in the long-time dynamics and can be safely neglected.
The remaining energy eigenstates of the system are the vacuum state

0) = 100}, (4.31)
and the superposition states
1 1
-)=—=(|01) - 1]10)), |+)=—=(|01)+|10)), (4.32)
|>ﬂ(|>|>) I)ﬂ(|>|))
with the eigenvalues
wp=0, w_.=e-g, w,=¢c+g. (4.33)

As shown in Fig. 4.5, each quantum dot is coupled to a respective reservoir. Hence,
the total system-bath interaction Hamiltonian for the fermionic setup is given by

Hi=) (taxb ,éa+h.c.), (4.34)
a,k

where the tunneling amplitude of a particle hopping from mode k of reservoir « into
the respective quantum dot or vice versa is proportional to ¢}, and ¢, , respectively.
We can split this interaction Hamiltonian into a sum over direct products of system-
and bath operators only, according to Eq. (2.9). We find the decomposition

Hi= S Y AW e B, (4.35)
1€{1,2} ae{L,R}
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Chapter 4 Transport with ultracold atoms

where, in correspondence with Sec. 3.2, we introduce the system- and bath opera-
tors in their Jordan-Wigner representation as

A =e - B = Ztakbak,

Aéa) = é;; ; (0‘) Z ty kba k- (436)
Each reservoir is assumed to be in its respective thermal equilibrium state defined
as

o 1 5 (g, j@
p = e ), (4.37)
(6%

Here, Z, is the partition function of an ideal Fermi gas which can be calculated to

(@) () 1 ()
Z, - Tr{e_ﬁa(HB g )} SIS el e T[4 e Pen)] (4.38)

k ni=0 k

Note, that in the last equality we assumed e,io‘) = ¢4, i.e., that both reservoirs consist
of the same type of particles with the same mass m,, = m. This choice is not essential
for the further calculations, however it corresponds to the actual experimental real-
ization [104]. Now, we can use these bath properties to calculate the bath correlation
functions according to Eq. (2.68). We find that the only non vanishing correlations
are given by

Cl(;)(r) =Y Na (&) [tan?e ™ = / dw p' (W) g (w)e'T, (4.39)
k )

O () = Z 1= @ aaPe 7 = [ (@) [L-na@)]e ™7, @440)
k —o0

where the mean occupation 7,, (w) for each bath is given by the Fermi-Dirac statis-
tics defined as
1

eﬁa(w_lla) + 17 (4-41)

Mo (W) =

in correspondence with Eq. (4.3). Additionally, in the above equations we intro-
duced the density-of-states

Pl(w) = D |tarl?d (e —w), (4.42)
ks

for each reservoir, respectively. Using these results, we can calculate the even Fourier
transform bath correlation functions in the intuitive Fermi golden rule form [195]

1P (~w) = To(w)iia(w),
W (w) = Ta(w) [1 - ia(w)] (4.43)
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4.2 Transport with ultracold fermions

with the energy dependent bare tunneling rates
I (w) = 2mp @ (w). (4.44)

We observe that each bath separately fulfills a detailed balance condition, i.e.,

15 (-w) | Ta(w) _ oBa(wma) (4.45)
(@) 1— 1 (w) ' '
Y21 (W) «

Note, in order to shorten our notation, we henceforth work in the so called wide-
band limit. This limit assumes that the rates I',(w) = T',, are independent of the
energy, i.e., that the density-of-states is approximately flat.

4.2.2 Liouvillian

In Sec. 2.7, we showed that in the energy eigenbasis of the system the BMS-master
equation for the populations becomes an effective rate equation of the form pre-
sented in Eq. (2.54). In Liouville space the rate matrix is defined by the rates in
Eq. (2.48) via Eq. (2.61). For the fermionic setup shown in Fig. 4.5, we already intro-
duced the eigensystem in the previous section 4.2.1. Together with the system-bath
interaction Hamiltonian from Eq. (4.34) and the rates from Eq. (4.43), we find

~ 2

Tt = X[ 48 (as) (el A )

«

~ 2
) @) [0l A7) | @as)

Here, the states |a) and |b) have to be chosen from the set of system eigenstates
{]0),]-),|+)}. Obviously, the only nonvanishing transition rates are

1 1
Yo+,+0 = 3 Z Lo (wi) fia (We),  Yo--0 = 3 Z Lo (w-) Na (w-) (4.47)
1 1
Ye0,04 = 521“& (wi) [1=7a(ws)],  Y-00-= QZFQ (wo) [1-7a(w)]. (4.48)

Inserting these results into the rate equation for the populations in Eq. (2.54) and
subsequently performing the Fourier transform from Eq. (2.75) leads to the evo-
lution of the reduced system density matrix in the Liouville-space representation

which reads as
o Po Lo
prd Gl A aR VA § (4.49)

P+ P+

Here, the particle- and energy-counting field dependent Liouvillian can be decom-
posed into

W(Xv 77) = _WO + W+(X7 77) + W—(Xv 77) (450)
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Thus, we can uniquely identify the coherent evolution and the jump terms which in
the wide-band limit are given by

r N (w-) + 1o (wy) 0 0
W = 27"‘ 0 1 - g (w) 0 :
o 0 0 1 - 7ig (ws)
p [0 e [1-ng (w)] eaa) [1 -7 (w,)]
W) =25 | 0 0 0 ,
a 0 0 0
r 0 00
W-(xm) = 27| et emeeIng (w) 00 . (4.51)

e ie=maws)n, (wy) 0 0

Using the above equations, we find that the steady-state of the system according to
Eq. (2.90) is given by

Po 1 7Y-0,0-7+0,0+ 1 [1 —Na (w—)] [1 - ﬁﬁ(w+)]
p=1p-|=2|"--07+00+|= _Zrarﬁ ﬁIOz(W—) [1 - ﬁﬁ(w+)] ) (4.52)
- 0 053 - -

P+ Y-0,0-"Y0+,+0 @ [1-7na(w-)]ns(ws)

where we defined the normalization constant ¢ as

1 1 _ _
0 = Yo+,+07-0,0- + 3 (T'L +T'r) V40,04 = erarﬁ [1-na(ws)ng(w-)]. (4.53)
a76

These steady-state populations have the property

& _ Y0-,-0 _ za Faﬁa (w—) & _ Y0+,+0 _ Za Faﬁ@t (w‘*') (4 54)

50 - ’Y—0,0— - Za Fa []- - ﬁa (w—)]’ ﬁO - 7—%—0,04— - Za Fa []- - ﬁa (w+)]’

which results in a global detailed balance relation if only a single reservoir would be
present, in full accordance with our finding in Eq. (4.45).

4.2.3 Steady-state currents

We start our investigation of the effect of a temperature and density dependent
chemical potential by calculating the steady-state particle and energy currents ac-
cording to Eq. (2.93) and Eq. (2.94). This yields for the steady-state currents mea-
sured at reservoir « the relations

S LD 42O, 02 10,1, (.55

where we defined the abbreviation

o) _ Ta . - 5
Ié ) = _7 {na(wn)po - [1 - na(wn)] p”} ) (4.56)
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and used the wide-band limit, i.e., ', (w) = ', again.
With the steady-state density vector given in Eq. (4.52) the full expressions for
these currents can be obtained resulting in

JIo. % {[ﬁa(w_) 70 (w:)] = [1 = 7a(w-)] f,— ~[1=Ta(w.)] Z_}p
[1 - nalw-)] EsTsns (w-)
Ysls[1-ng(w-)]
} SO0 [1 = fg(w-)] [1 - 7y (wy)]

= QPQ{ [Rla(w-) + M (w,)] -

[1 - ﬁa(w+)] ZB Lgng (W+)

dyy
— (4.57)
Ypls[1-ng(ws)]

grgry[l—m(mm(w-)] ’

and

[1-7a(w-)] 25T sns (w-)
Ysls[1-ns(w-)]

. [1-7a(ws)] X Tsnp (ws) }%F‘SF” sl m(w+)], (4.58)

Z,B I's [1_ﬁ6 (W+)] grérv[l_ﬁé(w+)ﬁw(w—)]

Jéa) =- 21"a{ [W_Tig(w_) +wifig(wy)] —w_

We find that steady-state currents respect energy and particle conservation, i.e.,
Jy=JE =-J and Jp=JP =0, (4.59)

in accordance with Eg. (2.95). However, since the complete expressions for the cur-
rents in Eq. (4.57) and Eq. (4.58) are quite complicated, we start by investigating
the currents in the limit of a single transition frequency only in order to gain a bet-
ter physical insight. Effectively, this limit can be obtained by shifting the second
transition energy to high values such that transport trough this level is strongly sup-
pressed. In consequence, we find steady-state currents involving the lowest transi-
tion energy only which read

: @ I'il'r e
wl+1£noo Iy 3T, i) [ (w-) —ng(w-)], (4.60)
lim J =0 [ lim J](VL)] . (4.61)

Note that the exact currents through a system with a single transition frequency w
calculated in the BMS approximation are given by

r,r
IO = [ (@)~ 7 ()], I = wI . (4.62)
PL+PR
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Hence, by comparison, we find that the limit currents in Eq. (4.60) and Eq. (4.61)
correspond to half the exact current through a system with a single transition fre-
quency. The additional pre-factor arises due to the limiting procedure which disre-
gards the correct normalization of the steady-state density matrix.

We observe that for systems with a single transition frequency, we enter the tight-
coupling limit where energy- and particle current are proportional to each other.
Furthermore, the particle current through a system with a single transition energy is
proportional to the difference of the mean occupations of the corresponding energy
level in the reservoirs. Hence, there will be always a finite particle and energy current
as long as there is a nonvanishing difference in the occupations of the reservoirs.
The steady-state currents only vanish if the mean occupation of the energy levels in
the reservoirs are the same.

In order to analyze if this effect is also visible if more transition frequencies are
present in the system, we plot the particle current through a double-dot system with
two transition frequencies in Fig. 4.6 according to Eq. (4.55).

We observe two different regimes reflecting the different behavior of the mean
occupations for energies below and above the Fermi energy. If at least one transition
energy lies below the Fermi energy, as shown in panel (a) of Fig. 4.6, we observe a
finite steady-state current which flows with the chemical potential bias but against
the thermal bias. This is due to the fact that in the hotter reservoir the particles
are excited to higher energy states. Since the density is fixed there are not enough
particles to refill the depleted energy levels. The occupation in these levels decreases
leading to a flow from the colder reservoir, where the energy levels are occupied, to
the hotter reservoir. This behavior is a consequence of the mean occupation under
the constraint of constant particle density. However, one obtains qualitatively the
same result for an independent chemical potential as long as the condition w_ -y < 0
is fulfilled.

If all transition energies are above the Fermi energy, as shown in the panels (b) and
(c) of Fig. 4.6, this behavior changes such that for a small reservoir temperatures the
steady-state current flows against the chemical potential bias and with the thermal
bias. However, if the temperatures are increased above a critical value the current
flows against the thermal bias again.

To illustrate how the temperature dependent chemical potential affects the Fermi
statistics such that increasing the temperature in one reservoir changes the direc-
tion of the particle current through a single transport channel, we sketch the mean
occupations in both reservoirs for different temperatures in Fig. 4.7.

Moreover, in order to understand the emergence of the regions where the steady-
state current vanishes, it is recommendable to study the case of a single system tran-
sition frequency first. Taking a look at Eq. (4.60), we see that the critical lines where
the current vanishes are defined by the relation 7, (w_) = g (w_). This is trivially
fulfilled in equilibrium where Ag = A, = 0.

AgzﬂL—BRZO and AMZML—/LRZO. (463)
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Figure 4.6: Logarithmic plot of the steady-state particle current through the

fermionic system with different transition frequencies, versus the di-
mensionless temperatures 7, = T, /T of the reservoirs at fixed density. In
the plots, we setc = 0.7Er (a), ¢ = 1.5EF (b) and ¢ = 1.2EF (d) and use the
same tunneling amplitude g = 0.2Er. In plot (c), we use ¢ = 11.3E and set
the tunneling amplitude to g = 10EF, such that the current can approx-
imately be described by the single-level approximation from Eq. (4.60).
For all plots the rates are set to I';, = I'r = I'. The circles in the plots (b)
and (c) correspond to the set of temperatures marked in the right panel
of Fig. 4.3. The dashed curves indicate a vanishing of the corresponding
energy current Jg.
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Figure 4.7: Sketch of the Fermi statistics 7, in dependence of the frequency w for
different reservoir temperature configurations at constant, equal particle
density. In all panels the temperature of the right reservoir 7% is fixed to
Tr. The temperature of the left reservoir 77, increases from left to right.
We show an explicit fixed transition energy of the system (thin, solid line)
and indicates the maximum occupation in each lead (dashed line). The
arrow inset (orange) reveals the direction of the particle flow according
to the single-frequency limit result from Eq. (4.60).

Away from equilibrium, we find that the particle current between reservoirs with
fixed mean particle density from Eq. (4.60), only vanishes if the mean occupation
of a specific transition energy in the reservoirs takes on the same value for different
temperatures. Comparing with the result presented in Fig. 4.3 we can immediately
deduce that this condition can only be satisfied for transition frequencies above the
Fermi energy. In this case one always finds a set of two different temperatures for
the left and right reservoir where the current vanishes. As an example, we indicate
such a set of temperatures in the right panel of Fig. 4.3 (circles) and show the corre-
sponding points in the current plots in panel (b) and (c) of Fig. 4.6.

In panel (c), we chose the dot energy ¢ and the tunneling amplitude g in such a
way that the transition energy w, is shifted to high energies compared to w_. Thus,
the corresponding particle current can be approximately described by the single-
level limit given in Eq. (4.60). Comparing the currents plotted in the panels (b)
and (c) in Fig. 4.6, we see that for a system with two transition frequencies (b) the
line of vanishing particle current it shifted to higher temperatures compared to the
effective single-level result from panel (c). This effect results from the additional
transport channel which modifies the condition for a vanishing particle current. In
fact, depending on the number and values of the transition frequencies in the sys-
tem there can also be more lines where the particle current vanishes as indicated in
panel (d)).

Finally, we note that the energy current Jg in general vanishes (dashed lines) for
different parameters than the particle current Jy. Thus, we can observe a finite
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energy current even for a vanishing particle current in a fermionic system with two
transition frequencies. Moreover, in the upper right corner of panel (c), we even find
a regime for high temperatures where the energy current flows against the particle
current.

4.2.4 Linear transport coefficients

In this section, we calculate the linear transport coefficients for the fermionic trans-
port setup with a temperature and particle density dependent chemical potential
using the Onsager equations from Sec. 2.14.2. For reasons of brevity, we continue
to use the wide-band limit with energy independent rates I', (w) = T',,.

Using the results for the steady-state particle and energy currents from Eq. (4.57)
and Eq. (4.58) and the derivative of the chemical potential with respect to temper-
ature from Eq. (4.18), we can construct the generalized heat current .J, according
to Eq. (2.144). Linearizing the generalized heat current .J, and the particle current
Jy with respect to their affinities Az and g—gAn, yields the corresponding Onsager
matrix with the kinetic coefficients

- Il [1-n(w)][1-n(w)]

_ _ ol 2
L R 21 =7 (w )7 ()] ie{;}n(wz)(u—TﬁT—wz) >0, (4.64)

L DT (ea@)l-n()] «w o0
b= Lo = o T n oy ()] ie{;-}”(w’)(” Tor-w) 6o

i I Tr [1-n(wo)][1-n(w)]

2T Al on(wn(w)] L) rnlw)]=0. (4.66)
and the determinant
o[ Dule [-a@)]-a@)]® ,
D_{FL+FRR 2[1-n(w)n(w)] }”(”‘)”(w+)(W——W+) 20. (4.67)

Here, we drop the bath index of the mean occupations since the kinetic coefficients
are evaluated in equilibrium. We see that the diagonal elements are strictly positive
whereas the sign of the off-diagonal elements depends on the transition frequen-
cies, temperature and particle density. With these matrix elements, we can calculate
the linear transport coefficients following the procedure outlined in Sec. 2.14.2.

Motivated by the results of the previous paragraph, we mostly focus on the anal-
ysis of the transport properties for three different system configurations. The first
configuration corresponds to a system with transition energies below the Fermi en-
ergy of the reservoirs. The second configuration corresponds to a system with tran-
sition energies above the Fermi energy of the reservoirs and in the third configu-
ration, we analyze a system whose lowest transition energy is exactly equal to the
Fermi energy of the reservoirs.
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4.2.4.1 Matter conductance

Using the coefficient Loy, from Eqg. (4.66), we can calculate the matter conductance
¢ in the wide-band limit with the help of Eq. (2.151) which results in the equation

Dol (1= ()] [1-7 (@] [ (@) + 7 ()]
I'p+Tg 2T [1 -7 (w-) 7 (wy)]

o= > 0. (4.68)
From the above equation, we can immediately read off the limit for a single tran-
sition frequency which is obtained as w, — oo, i.e., n(w,) — 0. We find that the
respective expression coincides with

i 2 el () [1=n ()]

= 4.69
W+ —>00 FL + FR 2T ( )

This is the well-known Coulomb blockade conductance peak for a single resonant
level [196] up to a pre-factor 1/2 which results from the limiting procedure. Simi-
larly, in the limit ¢ — 0, i.e., for w. - w,, the matter conductance approaches the
limiting value from Eq. (4.69). However, exactly at g = 0 the energies w_ = w, = ¢
are degenerate and our BMS rate equation approach can not be applied. Further-
more, we note that the whole temperature and density dependence of the chemical
potential enters only implicitly via the mean occupations of the energy levels in the
reservoirs in compliance with Eq. (2.151).

In general, the fermionic matter conductance is proportional to the total number
of particles 7 (w_) + 7 (w, ) that can participate in the transport. In addition, it is pro-
portional to the number of available places in each energy level. This implies that
free spaces in both energy levels are needed in order to have a finite particle trans-
port through the system. From the discussion of the mean occupationsin Sec.4.1.1,
we can immediately conclude that independent of the transition frequencies the
matter conductance vanishes for high temperatures.

In the left panel of Fig. 4.8, we plot the matter conductance for a constant particle
density as a function of the normalized temperature for different on-site energies
¢ and a constant tunneling amplitude g. For a configuration where at least one of
the two transition energies lies below the Fermi energy of the reservoirs (dashed
line), we observe a maximal conductance at a specific temperature which basically
depends on the frequency . Decreasing the temperature below this characteris-
tic temperature diminishes the conductance as the respective energy levels in the
reservoirs become occupied. We observe a similar behavior for a configuration
where both transition energies lie above the Fermi energy of the reservoirs (dot-
dashed line). In this situation the conductance vanishes for decreasing temperature
due to the fact that the energy levels in the reservoirs get exponentially depleted.
Hence, the total number of particles available for transport is diminished.

Finally, we show the result for a configuration where the lower transition energy
equals the Fermi energy of the reservoirs (solid line). Only in this case we observe a
nonvanishing conductance as the temperature approaches 0. This is due to the fact
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Figure 4.8: Plot of fermionic matter conductance ¢ at a constant particle density
(left) and at a constant temperature (right) versus the normalized tem-
perature and particle density, respectively. In both plots we assume equal
tunneling rates ', = ' = I'. In the left panel, we use a constant coherent
coupling strength of g = 0.2E'r and the on-site energies ¢ = 0.7FEr (dashed
line), ¢ = 2EF (dot-dashed line) and ¢ = 1.2E (solid line). In the right
panel, we use a constant coherent coupling strength of g = 0.27" and the
on-site energies ¢ = 0.77 (dashed line), ¢ = 1.57 (dot-dashed line) and
e = 1.2T (solid line). For the conductance ¢ with constant chemical po-
tential, we use € = 1.2EF, g = 0.2Er and additionally set ;1 = 0.5EF (thin,
dotted line).

that the Fermi energy level in the reservoirs is at most half filled for vanishing tem-
perature. Contrary, the other energy level is completely empty for vanishing tem-
perature. Therefore, the corresponding matter conductance approaches for 7' < Tr
the value

%j_r}é 0(w_ = FEp,w, > Ep) = 1T1_I% 16LT’ (4.70)
and particle transport is in principle possible. However, we observe that in this
case the matter conductance ¢ diverges like I'/T which is obviously unphysical. We
conjecture that this unphysical behavior stems from the break down of the Born-
Markov-Secular master equation for 7' «< I" [109].

As expected, in all three situations the matter conductance vanishes for increas-
ing temperature due to the reduction of the occupation of the energy levels in the
reservoirs in accordance with our findings presented in Fig. 4.3.

For comparison, we also plotted the conductance ¢ for a constant chemical po-
tential (dotted line). In this situation, we find qualitatively the same behavior as
for the temperature dependent matter conductance. For low temperatures the re-
spective energy levels in the reservoirs are depleted and, hence, the conductance
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vanishes. Contrary for high temperatures the energy levels are equally filled which
leads to a vanishing net current. Thus, the modified matter conductance ¢ basically
follows 0. However, the high temperature behavior is changed due to the tempera-
ture dependence of the chemical potential.

In the right panel of Fig. 4.8, we plot the matter conductance for a constant tem-
perature as a function of the normalized density for different on-site energies ¢ and a
constant tunneling amplitude g. Independent of the transition frequencies the mat-
ter conductance vanishes for high densities since increasing the density increase
the occupation of each energy level. Analogously, independent of the transition fre-
quencies the conductance has to vanish as the temperature approaches zero since
all energy levels are depleted at sufficiently low densities. In between there is a char-
acteristic density where the matter conductance is highest. This characteristic den-
sity increases with increasing transition energy. Note, that we can not observe any
divergences in this plot since the temperature is used to scale the energy of the tran-
sition frequencies and the chemical potential.

4.2.4.2 Heat conductance

Using the results from Eq. (4.66) and Eq. (4.67) in the definition in Eq. (2.152), we
find that the heat conductance in the wide-band limit is given by

ICOLICAICATS S, (4.71)
T[n(w)+7n(w,)]

This expression has no explicit dependence on the chemical potential and, thus,
formally corresponds to the thermal conductance for an independent chemical po-
tential as shown in Sec. 2.14.2. Furthermore, we immediately see that the above
equation obeys the Wiedemann-Franz law, i.e., & = TL&, with the dimensionless
Lorenz number

A (w )7 (ws) (w-—w.)”  4g? A(w)a(w,)

L= = — - = >0. (4.72)
T2 n(w) +a@)l T2 [aw) @)l

In the limit of a single transition frequency, i.e., for w, - o or w, - w_, the heat
conductance & vanishes trivially because there is no pure heat flow through a single
level without particle flow. Due to the proportionality from the Wiedemann-Franz
law, we find that the heat conductance has similar properties as the matter con-
ductance discussed within the previous paragraph concerning the dependence on
the energy level occupations in the reservoirs. However, the heat conductance ad-
ditionally is proportional to the occupation of each energy level, respectively. That
implies that the thermal conductance vanishes as soon as one energy level is com-
pletely filled or empty, which is in contrast to the matter conductance where one
can observe a finite transport even if one of the energy levels is completely empty.
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Figure 4.9: Plot of fermionic heat conductance # at a constant particle density (left)
and at a constant temperature (right) versus the normalized tempera-
ture and particle density, respectively. In both plots we use equal tunnel
rates I'; = ' = I'. In the left panel, we use a constant coherent coupling
strength of ¢ = 0.2EF and the on-site energies ¢ = 0.7Fr (dashed line),
e = 2EF (dot-dashed line) and ¢ = 1.2EF (solid line). In the right panel, we
use a constant coherent coupling strength of g = 0.27" and the on-site en-
ergiesc = 0.77 (dashed line), ¢ = 1.57 (dot-dashed line) and ¢ = 1.27 (solid
line). For the heat conductance x with constant chemical potential, we
usee = 1.2EF, g = 0.2Er and additionally set ;1 = 0.5EF (thin,dotted line).

This behavior emphasizes the fact that both transport channels are needed in order
to transport a finite amount of heat without transporting particles.

In Fig. 4.9, we plot the thermal conductance at constant particle density versus
the normalized temperature (left) and at constant temperature versus the normal-
ized particle density (right) for different on-site energies and different tunneling
amplitudes according to Eq. (4.71). For all considered configurations, we observe
qualitatively a similar behavior as for the matter conductance. The heat transport
is maximal at a characteristic temperature and density. This maximum is shifted
to higher densities with increasing transition energies. For low densities and high
temperatures the thermal conductance vanishes as the reservoir energy levels be-
come less occupied. For high densities the heat conductance vanishes because the
transition energies in both reservoirs become maximally occupied and the matter
conductance vanishes. Analogously, for low temperatures the energy levels become
either completely filled or empty. In both cases the matter conductance and hence
the thermal conductance vanish. Therefore, we see that the thermal conductance
basically follows the matter conductance.

The only qualitative difference occurs for the configuration where the lowest en-
ergy level equals the Fermi energy and the matter conductance diverges for low tem-
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perature. This divergence does not occur for the heat conductance since it is also
proportional to the occupation of the higher energy level which is depleted as the
temperature approaches zero.

Finally, we want to point out that the heat conductance % as well as the matter
conductance & are always positive. This results from the fact that the Onsager ma-
trix is positive definite. Consequently, within the linear response theory, we can
not resolve the negative conductances observed in the nonequilibrium currents in
Fig. 4.6.

4.2.4.3 Thermopower

Besides analyzing the typical transport quantities measurable in an experiment like
the currents and their associated conductances, another interesting application of
transport setups is their potential use as power converters. Therefore, within this
paragraph, we investigate the possibility to use the proposed setup in order to con-
vert density differences into a thermal bias at vanishing matter current. Hence, we
determine the analogue to the thermopower as defined in Eq. (2.155). Using the
results from Eq. (4.65) and Eq. (4.66), we find for our setup the expression

lﬁ(w,) ¢- +n(wi) P

ST i (w) (@) (4.73)
where we introduced the abbreviations
Gi =~ Ta—ﬂ —w; = ¢;(T,n), (4.74)

orT

which have the physical dimension of an energy and implicitly depend on tempera-
ture and particle density. We observe that the analog of the Peltier coefficient I = TS
corresponding to Eq. (4.73) assumes the form of a weighted arithmetic mean of the
energies ¢;. Here, the weights are given by the occupation of the energy levels in the
reservoirs. From an energy balance consideration, we notice that the expressions
¢; defined in Eq. (4.74) describe the amount of energy that one particle traveling
through a transport system with only a single transition energy w; takes from one
reservoir to the other. The influence of the temperature dependent chemical po-
tential explicitly enters this transported energy in form of the term 701/0T. It ba-
sically describes the potential difference between the reservoirs that is induced by
the applied temperature bias which the particle has to compensate in order to travel
trough the setup. Thus, we can formally recover the result for the conventional ther-
mopower with an independent chemical potential by setting du/0T = 0, since here
no additional compensation is needed.

Contrary to the analog of the Peltier coefficient which considers the absolute av-
eraged energy transported through the system, the Seebeck coefficient sets the av-
eraged energy in relation to the temperature. Looking at the behavior of the energies
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Figure 4.10: Plot of the density- and temperature-dependent fermionic ther-
mopower 3 and the conventional thermopower ¥ versus the normal-
ized temperature (left), and the normalized density (right), for an ideal
Fermi gas. In the left panel, we use a constant coherent coupling
strength of ¢ = 0.2Er and the on-site energies ¢ = 0.7EFr (dashed line),
e = 2EF (dot-dashed line) and € = 1.2E (solid line). In the right panel,
we use a constant coherent coupling strength of g = 0.27" and the on-site
energies ¢ = 0.77 (dashed line), ¢ = 27" (dot-dashed line) and ¢ = 1.2T
(solid line). For the thermopower ¥ with constant chemical potential,
we use € = 1.2EF, g = 0.2FEr and additionally set i = 0.5EF (thin, dotted
line).

¢; athigh temperatures and low densities, we find that independent of the transition
frequency they increase linearly with the temperature according to

¢Z(T > TF) = gbl(n < TLF) ~ gT — Wj. (4.75)

We conclude that for high temperatures the analog to the Peltier coefficient in-
creases linearly according to Eq. (4.75) whereas the analog to the thermopower X%
assumes the constant value 3/2. Contrary, in the limit of a vanishing temperature,
we find

(T 2 0) ~ Ep — w;, (4.76)

i.e., the influence of the temperature dependence of the chemical potential ceases
to play a role. This implies that the analog to the Peltier coefficient assumes a con-
stant value for vanishing temperature, whose sign depends on the differences from
Eq. (4.76).

In the left panel of Fig. 4.10, we plot the temperature dependence of the modi-
fied thermopower ¥ for different transition energies in the case of Fermi reservoirs
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according to Eq. (4.73). When the temperature decreases, we observe different be-
havior for the modified thermopower depending on the transport system. If the
lower transition energy is below the Fermi energy the modified thermopower re-
mains positive for all temperatures. As the temperature approaches zero the analog
to the Peltier coefficient approaches a constant positive value and, thus, the mod-
ified thermopower diverges like 1/7. If the transition energies are above the Fermi
energy, we observe a similar behavior but the coefficient becomes negative since
below some critical temperature the transition frequencies exceed the chemical po-
tentials. Only for the case when the lower transition energy equals the Fermi energy
the average energy and hence the modified thermopower vanishes at 7" = 0.

As discussed before, for high temperatures the analog to the thermopower is dom-
inated by the classical thermal energy contribution of 3/2k 5T per particle, leading to
a constant positive value of the thermopower for high temperature, independent of
the respective transition energies. This behavior can not be predicted if the chemi-
cal potential is treated as an independent parameter. In this conventional approach
the thermopower vanishes for high temperatures independent of the transition fre-
quencies (dotted line). Furthermore, the conventional thermopower never changes
its sign as a function of the temperature. In this situation the sign is fixed by the
choice of the constant chemical potential.

Finally, in the right panel of Fig. 4.10, we plot the dependence of the analog to
the thermopower on the particle density in the reservoirs. We observe that in the
limit of low densities the thermopower assumes constant values that depend on the
transition frequencies according to

~ 113 1 1
lim> = — —T—w(1—ﬁ)—w (ﬁ)] 4.77
n=0 T[Q l+e 7 T\ et @7
We find that for a small difference w, — w_ the sign of the thermopower in the low
density limit mainly depends on the dot energy . Approximately, if we assume that

[1+e—)/T]" »~ 1/2, we find that the thermopower in the limit of small particle
densities reads as

= 3 2
IOEEE % for ?9 «1. (4.78)
Hence, if the energy ¢ is smaller than 3/27 the thermopower assumes positive values
whereas for higher frequencies it assumes negative values. This effect can be seen
in the right panel of Fig. 4.10.

In the limit of very high densities the energies ¢, scale like
¢i(n > np) ~n?, (4.79)

and, in consequence, the analog to the thermopower increases exponentially with
the density. Both, the limits in Eq. (4.77) and in Eq. (4.79) imply that for high tran-
sition frequencies the modified thermopower in general changes its sign at a char-
acteristic particle density.
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Figure 4.11: Plot of the fermionic figure-of-merit for dependent and constant chem-
ical potential versus the normalized temperature (left) and versus the
normalized particle density (right) for an ideal Fermi gas. In the left
panel, we use a constant coherent coupling strength of ¢ = 0.2E, and
the on-site energies ¢ = 0.7Er (dashed line), ¢ = 2Fr (dot-dashed line)
and ¢ = 1.2FEF (solid line). In the right panel, we use a constant coherent
coupling strength of g = 0.27" and the on-site energies ¢ = 0.77" (dashed
line), e = 2T (dot-dashed line) and ¢ = 1.27 (solid line). For the figure-of-
merit ZT with constant chemical potential, we use ¢ = 1.2EF, g = 0.2ER
and additionally set i = 0.5E, (thin, dotted line) and = -0.5EF (thin,
dashed line).

From the above analysis, we find that with the proposed fermionic transport setup
the conversion of a density bias into a thermal bias is possible. However, we do not
yet know how efficient this process can be. This question is addressed within the
next subsection.

4.2.4.4 Thermodynamic performance

In order to investigate the efficiency of the conversion of a density bias into a ther-
mal bias, we analyze the figure-of-merit for the thermodynamic device. This coeffi-
cient is defined in Eq. (2.157). Using the coefficients from Eq. (4.73) and Eq. (4.72),
the figure-of-merit for the considered fermionic setup reads as

o @) o rn(w)o) (4.80)

(W) 7 (wr) (w-—ws)”

In the left panel of Fig. 4.11, we plot the linear response figure-of-merit in depen-
dence of the normalized reservoir temperature for different on-site energies. We
find that the figure-of-merit increases exponentially for high temperatures inde-
pendent of the transition frequencies which is caused be the behavior outlined in
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Eq. (4.75). In contrast, for a constant chemical potential the figure-of-merit ap-
proaches a constant value for high temperatures. Additionally, we see that there
are specific temperatures where the figure-of-merit vanishes. These are the temper-
atures for which the linear response particle current vanishes and, hence, no power
can be extracted. In accordance with Fig. 4.6, we find that the figure-of-merit van-
ishes at a single temperature when both frequencies lie above the Fermi energy, at
two temperatures if the lower frequency equals the Fermi energy and never if both
frequencies lie below the Fermi energy.

If the temperature approaches zero, we observe that the figure-of-merit increases
again except for the situation where the transition frequencies lie below the Fermi
energy of the reservoir (dashed line). In this case the figure-of-merit assumes a finite
value

QEF—w—cu)Q_(EF—e

2
) , for w_,w, < Ep. (4.81)
g

lim ZT = (
T%O w_ - W+

This is again caused by the fact that the relevant energy levels in the reservoirs are
occupied for low temperatures.

In the right panel of Fig. 4.11, we additionally plot the figure-of-merit for a con-
stant temperature versus the dimensionless particle density. For high densities we
also observe an exponential increase independent of the transition frequencies, that
is related to Eq. (4.79). In the limit of small densities, we observe that the figure-of-
merit approaches a finite positive value which depends on the transition frequen-
cies according to

2

w—

_ —w4 W Wt
e~ ot (%T—w_)+e T (%T—er)

Wy — w_

(4.82)

lim Z7T =
n—0

In both panels of Fig. 4.11, we see that the conversion of a thermal bias into a po-
tential bias is very efficient as high figure-of-merits can be reached for low and high
temperatures and densities. Usually in experiments figure-of-merits of about Z7" ~ 2
and higher are considered as efficient.

To quantitatively verify this effect, we additionally look out for the efficiency at
maximum power [148, 197-199]. Inserting Egs. (4.64)-(4.66) into the definition from
Eq. (2.158) yields

1

e [ 1w )61 + 7w, )6, 2ﬁ<w_>¢%+ﬁ<w+>¢z_J Al ) + (w03 |

2 n(w.) +n(wy) n(w_ )1 + n(wy ) oo n(w_) +n(wy)

n= . (4.83)

Some results for the efficiency at maximum power are plotted in Fig. 4.12 for the
same parameters as the figure-of-merit in Fig.4.11. We observe similar behavior for
both performance measures. However, we can now confirm that for high tempera-
tures and densities the thermocouple generates power very efficient independent of

94



4.2 Transport with ultracold fermions

) S O .5 2. O . L. N 5.3, 0,5 ]
0.4+ 104 :
O N
: [ .
~ L _ | O | i |
sT0,3 :0,3 i
S| z:— !
S 020 15 02k ! .
~ 1
= i o i
0.1 Tt T 1
I \\ i
0 0 | L I
0,1 1 10
n/n

Figure 4.12: Plot of the fermionic efficiency at maximum power for dependent and
constant chemical potential versus the normalized temperature (left)
and versus the normalized particle density (right) for an ideal Fermi
gas. In the left panel, we use a constant coherent coupling strength
of ¢ = 0.2EF and the on-site energies ¢ = 0.7Er (dashed line), ¢ = 2EF
(dot-dashed line) and ¢ = 1.2FF (solid line). In the right panel, we use a
constant coherent coupling strength of g = 0.27" and the on-site energies
e = 0.7T (dashed line), € = 27" (dot-dashed line) and ¢ = 1.27" (solid line).
For the efficiency at maximum power ; with constant chemical poten-
tial, we use ¢ = 1.2Ey, g = 0.2Fr and additionally set ;1 = 0.5EF (thin,
dotted line) and y = —-0.5F (thin, dashed line). The thin, solid lines
shown in both panels correspond to the limit values 7¢/2 and ¢ /6.

the transition frequencies. This situation changes for small temperatures where the
maximum efficiency depends on the transition frequencies. In this limit, we find
that he efficiency at maximum power becomes

%770 , for w_, w, > Ep
lim = %T]C , for w_ < Ep, w, > Ep
= -1
T-0 2 2 2 2
1 ((EF_M(_%FJ:(;E;QF_M) - \/(EF_Z_()E;Ef)g_w*) ) , for w_, w, < Ep

(4.84)
For the configuration where the lowest transition frequency equals the Fermi en-
ergy, we observe an increase of the efficiency for very small temperatures up to the
maximum value of 7,,.x = 1¢/2, where no = Ar/T is the Carnot efficiency. This
is the optimum efficiency in linear response theory [137]. For the configuration
where both transition frequencies lie above the Fermi energy, we observe that the
efficiency at maximum power assumes a constant value of 7-/6 indicating a par-
tial decoupling of particle and heat transport due to the depletion of the respective
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Chapter 4 Transport with ultracold atoms

energy levels in the reservoirs.

We also observe that the efficiency at maximum power assumes constant values in
the limit of vanishing density that depend on the monitored transition frequencies
according to

S 40*nc
= e 20 (485

where we defined the abbreviations

2 2
a= %\l (e% JrewT+)[ewT+ (gT—w_) +eT (;T—M) ],

b 1 [ewT+ (§T —w_) teT (gT —w+)] . (4.86)

T 9T 2

Finally, we plot the efficiency at maximum power for constant chemical potentials
in the left panel of Fig. 4.12 (thin lines). Here, we observe that this conventional
approach underestimates the efficiency especially in the limit of high temperatures
because the correct dependence of the chemical potential on the temperature is not
taken into account.

4.3 Transport with ultracold bosons

Having analyzed the effect of a temperature and density dependent chemical po-
tential in a fermionic transport setup in Sec. 4.2, we now focus on a transport setup
involving bosonic reservoirs within the present section. As explained in Sec. 4.1,
these bosonic reservoirs can undergo a quantum phase transition from a normal
gas to a Bose-Einstein condensate. Therefore, contrary to the fermionic transport
setup, here, we expect that this critical behavior of the reservoirs leads to character-
istic signatures in the transport properties.

4.3.1 Transport system

We analyze the transport characteristics of a bosonic transport system as shown in
Fig. 4.13. The bosonic transport system is described by the Hamiltonian

- U
HEe = Ea*a (a'a-1)+Qa'a. (4.87)

Here, the operators a' and a which obey the commutator relations

la,a']=1, [a,a |=[a%a'] =0, (4.88)
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Figure 4.13: Left: Sketch of a bosonic transport setup. External lasers (blue, yellow)
define the few-level quantum system (dashed box) between two clouds
of ultracold atoms. Right: Sketch of the corresponding energy repre-
sentation in the system eigenbasis. The reservoirs are characterized by
their respective temperature 7, and particle density n,, which define
the chemical potentials . The particle exchange between reservoirs
and system is proportional to the rates I',(w). Each particle adds a po-
tential energy €. If two particles are present in the system they interact
with strength U. The two lowest transitions in the system are given by
w1 :Qande:U+Q.

create and annihilate a Boson in the system, respectively. If more than one Boson
is present in the system, they interact via a two-body interaction with interaction
strength U. Note, that this Hamiltonian corresponds to a single lattice site of a Bose-
Hubbard lattice [73, 200].

Obviously, the system Hamiltonian in Eq. (4.87) is diagonal in the local bosonic
Fock basis, i.e.,

HE® n) = E, |n), (4.89)

with corresponding energy eigenvalues
U
E,= En(n -1)+Qn. (4.90)

Due to the particle interaction with interaction strength U, the above energy spec-
trum is nonlinear. Therefore, the suggested system generates, in principle, infinitely
many nonequivalent transport channels.

Analogously to the transport setups discussed so far, the bosonic system is tunnel-
coupled to the reservoirs via an interaction Hamiltonian that, due to the commuta-
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tion relation [a , b/ , ] = 0, reads as

Hi= 3 (tap b, + 15,070, ). (4.91)

a,k

Here, the tunneling amplitude of a Boson hopping from the £-mode in reservoir «
into the system or vice versa is proportional to ¢!, and ¢, , respectively. We can
split this interaction Hamiltonian into a sum over direct products of system- and
bath operators only, according to Eq. (2.9). We find the decomposition

Hi= > A;®B, (4.92)
1€{1,2}

where we introduce the bosonic system- and bath operators

Aj=a, Bi= 3 Y tadl,
ae{L,R} k=0

,212:&*’ EQZ Z Ztak ok (4.93)
ae{L,R} k=0

We assume that each reservoir is in its respective thermal equilibrium state as de-
fined in Eq. (4.37). Now, the partition function of an ideal Bose gas enters this ther-
mal state which can be calculated according to

~ Ba(F - an) ,Ba —pa ) 1
Za—Tr{e (B H } Hze N)k_gm, (4.94)

nkO

Here, we assumed again that s( @) - = ¢, i.e., that both reservoirs consist of the same
type of particles with the same mass m, = m. We can use these bath properties to
calculate the bath correlation functions according to Eq. (2.68). The only nonvan-
ishing correlations are given by

(a)(T) Zna (€k |tak|2 iepT _ [dwp(a)(w)na(w) 1w7' (4.95)

C5 () = Z [1+ 7iq ()] [tapl?e 7 = f dw p (W) [1+7a(w)] e, (4.96)

where the mean occupation 7, (w) for each bath is now given by the Bose-Einstein
statistics defined as

1

eﬁa(w_lla) _ 17 (4-97)

o (W) =
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4.3 Transport with ultracold bosons

in correspondence with Eq. (4.3). Additionally, in the above equations we used the
density-of-states for each reservoir as defined in Eq. (4.42). Using these results, we
can calculate the even Fourier transform bath correlation functions and obtain

75 (-w) = La()71a ().
71 (@) = Ta(@) [1+7a(w)] (4.98)
with the energy dependent rates I',(w) defined in Eq. (4.44). We observe that each

bath separately fulfills a local detailed balance condition again, i.e.,

1)) _ Tal@) e

WD) 1+ne(w) (4.99)

For the sake of a brief notation, we work in the wide-band limit with I',(w) = ',
throughout the following sections.

4.3.2 Liouvillian

In order to derive the respective Liouvillian for the considered bosonic transport
setup, we start by calculating the rate matrix from Eq. (2.54). Using the results de-
rived in Sec. 4.3.1, we find for the rates the explicit expressions

Yavso = 2 [15) (wan) [fal Ax D) + 555 (wap) (0] A [a) ] (4.100)
analogue to fermionic result from Eq. (4.46). Note, that here and in the follow-
ing, we use the abbreviation w; ; for transition energies with respect to the bosonic
eigenbasis as introduced in Eq. (2.39).

The eigenstates |a) and |b) correspond to local bosonic Fock states. Due to the
effect of the system operators from Eq. (4.93) on these Fock states, the only nonva-
nishing transition rates are

Tn(n+1),(n+1)n = (n + ]—) ZVS) (_Wn+1,n)a Y(n-1)n,n(n-1) =N Z’Vf;) (_wn,n—l) )
Vin+1ynn(ne1) = (n+ 1) 272(?) (Wns1n)s  Yn(n-1),(n-1)n =10 ngf‘) (Wnn-1). (4.101)

Inserting these results into the rate equation for the populations given in Eq. (2.54),
we still need to calculate the summation over all possible populations n. For bosons
this number is unbounded, i.e., 0 < n < o0, and hence the corresponding Liouvillian
is infinitely large. This makes it in general impossible to solve the steady-state ex-
actly. Except for some generic systems as for example the harmonic oscillator where
the summation in Eq. (2.54) can be solved exactly.

For this reason, we truncate the system Hilbert space at small particle numbers.
We explicitly consider in the following the case of a system where at most n,, = 2
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Chapter 4 Transport with ultracold atoms

particles can enter. Then, we can calculate the sum in Eq. (2.54) and subsequently
perform the Fourier transform according to Eq. (2.75). This leads to the correspond-
ing equation in Liouville-space

o Po Po
5|71 ] = Vo W) + W-Oem)] | o |- (4.102)
P2 P2

Here, the coherent evolution 1V, and the jump terms W, and W._ in the wide-band
limit T, (w) = I, are given by

T_La(wl,o) 0 0
Wy = ZFQ 0 2n0(w21) + [1+ g (W10)] 0 ) , (4.103)
o 0 0 2(1+7q (w21))
0 e (Xa=maw10) [1+ 7, (wi)] 0
W.i(x,n) = ZFQ 0 0 2et (Xammaw2,1) [1 + 7, (wo 1) ] ) ,
o 0 0 0
(4.104)
0 0 0
W-(x,m) = ) Ta| e Oemmerodn, (wip) 0 0 ) : (4.105)
o 0 2e7i (xa=naw2. )y (wyq) 0

The steady-state of the system defined in Eq. (2.90) can then be calculated to
0 1 (7211271001 1 [1+na(wio)][1+ns(w2,1)]
p=1p1|= 20 Y21,12701,10 | = gzrar,ﬁ Na(w1,0) [1+75(wa1)] ) (4.106)
o,

2 Y12,21701,10 Na (w1 0)g(wa1)
where the normalization constant ¢ is given by

D

0 = ZI‘&F@ {]. + ﬁﬂ(u}Q’l) + T_La(wLo) [2 + 37@6(&)271)]} . (4107)
a,B

Considering the ratios

p1 _Norio P2 _Tiz P2 _P1p2

- y T , T ——, (4.108)
Po 710,01 P1 V21,12 Po  PoP1

we find that they result in a global detailed balance relation, if only a single reservoir
would be present.

4.3.3 Steady-state currents

Using the results from Eq. (4.101), we can now calculate the bosonic steady-state
currents according to Eq. (2.93) and Eq. (2.94). We find that in general the steady-
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4.3 Transport with ultracold bosons

state currents through the Bose system measured at reservoir « are given by

@) _ Z(” 1T, (4.109)

g4 = Z wWnin(n+ 1T, (4.110)

with an infinite sum over all possible system populations n. Here, we use the wide-
band limit ', (w) = ', again and introduce the abbreviation

1-7(101) :Foc {[ﬁa(wn+1,n) + 1] ﬁn-*-l - ﬁa(wn*'lﬂ’b)IBN} : (4111)

As expected for the steady-state currents, we find that they respect particle and en-
ergy conservation analog to the fermionic currents in Eq. (4.59). Hence, we focus
in the following on the left reservoir only and drop the bath index. As discussed in
Sec. 4.3.2, we can not in general solve the infinite summation in the above expres-
sion. Therefore, we use the truncation scheme introduced in the previous section
and restrict the bosonic Hilbert space to at most two particles. This gives rise to two
distinct transition frequencies, which we label by

w1 Ewl,(] = El - EO = Q,
W9 E(,dg,l:EQ—El:Q-FU. (4112)

With the restriction of the maximum particle number the steady-state currents in
the wide-band limit are explicitly given by

J¢
Lo

= 1o (wy) + [2710(w2) — Tig(wy) — p_ +ﬁaw2@70
= (o) + 270 2) = o) = 1) 2 - 214 o ()] 2 ) 2

i i i Y518 (-wi)

=l ng(wy) + [2n4(we) — o (wy) - 1| ————=
(( )+ [20 () - () ]zm$Wm>

28 ’712) (~w1) X 712 (_W2))
Zﬁ%l)(w) 26’721 (w2)

=l no(wy) +12n,(wo) —Nolwy) — Zﬂrﬁnﬁ(m)

(o) + 200 n) - 1) - 1)

oM 4 (w Ya Ll (W), (w2) )
2 nele) ) s E e [ m (@)

8 Yaplals [1+ R (wi)][1+np (w2)]
Yo p Lol {1+ 0g (W) + Mg (wr) [2 + 37 (w2) ]}

- 2[1+7a(w2)]

(4.113)
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Figure 4.14: Logarithmic plot of the steady-state particle current of the bosonic
system with different transition frequencies, versus the dimensionless
temperatures of the reservoirs at fixed, equal density. In both plots, we
set ) = T, and use equal tunneling rates I';, = 'y = I'. For the particle
interaction we assume U = 0.017, (left panel) and U = 107, (right panel).
The solid lines (thin, green) indicate the on-set of Bose-Einstein con-
densation in both reservoirs. We also show where the corresponding
steady-state energy currents vanish (dashed line).

_ wa _ _ P11 W2 _ P2\ _
= o 22— —Nq -1t —-2—n, +1]—
Wl(n (W1)+{ wln (w2) = g (wr) },00 o [7a(w2) ]pO)Po

25 Upns(wn)
Yals 1 +ns(wr)]
Yo Ul (wi)ny (w2) )
YLl [1+7g(wi)][1+17,(w2)]

STl [+ ()] [+ ()]

Yar g Lol {1+ np(w2) + Ras(wr) [2+ 30 (w2)]}
In order to gain a better physical insight for the above currents, we first discuss the
limit of a single transition frequency in the system only. Therefore, assuming a very
strong particle interaction, i.e., U >»> {Q, T}, restricts the Hilbert space to at most
one bosonic particle in the system . Thus, the system can be either empty or single
occupied which gives rise to a single transition frequency (2. In this case, we obtain
the tight-binding limit, i.e., limy . Jr = Qlimy .« Jy, where the steady-state particle
current takes on the form

=W (ﬁa(wl) + [QZ—jﬁa(wg) =N (wr) - 1]

—25—? [Fie (w5) + 1]

(4.114)

- _ LLlr [L(2) - 1R ()]
P S T T 2mu()] + Tn L+ 20m()] (4.118)
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4.3 Transport with ultracold bosons

which coincides with the result found in Ref. [134] for a single bosonic transport
channel. Analogous to the fermionic case, we find that the current through a trans-
port channel with energy (2 is proportional to the difference in the correspond-
ing mean occupations in the left and right reservoir. Nevertheless, in the bosonic
case, we find a different normalization compared to the fermionic limit current in
Eq. (4.60).

As an example we plotted the steady-state particle current for different transition
energies in Fig. 4.14. We observe that the current amplitude is strongest if the inter-
action strength U is weak. Increasing the interaction strength shifts the correspond-
ing transport channel to higher energies which are less occupied in the reservoirs.
Therefore, the contribution of these transport channels to the current is diminished.
Additionally, we see two lines where the steady-state particle current vanishes. The
diagonal line reflects the thermodynamic equilibrium, i.e., if A7 = 0. The reason for
the emergence of the second line lies in the temperature dependence of the mean
occupations as discussed for the fermionic setup in Sec. 4.2.3.

For the energy current, we find qualitatively the same behavior as for the particle
current. However, depending on the system parameters the energy current can be
finite even for vanishing particle current. We indicated the temperatures where the
energy current vanishes by dashed lines in both plots of Fig. 4.14. We observe that
the nonequilibrium lines where the energy current vanishes, are shifted to higher
temperatures compared to the vanishing particle current. Contrary to the fermionic
steady-state current plotted in Fig. 4.6, we do not observe a qualitative change in
the bosonic particle current in dependence of the transition energies. This behavior
stems from the fact that there is no equivalent of the Fermi energy and no Pauli ex-
clusion principle in bosonic systems. Hence, the bosonic mean occupations look
qualitatively the same for all energy levels (see Fig. 4.3). The thin, solid, green
lines in Fig. 4.14 indicate the onset of Bose-Einstein in each reservoir, respectively.
Within the condensate phase we observe a finite particle current, which results from
the thermal fraction of the Bose gas. This thermal fraction decrease with tempera-
ture like 7%/2 and, therefore, the current exactly vanishes at 7" = 0.

In our BMS master equation approach the coherences decouple from the popu-
lations and, thus, can be neglected. However, if one enters the condensate phase
the coherences between the particles become stronger with decreasing tempera-
ture. Therefore, the higher orders of the expansion from Eq. (2.23) should become
important and the decoupling between coherences and populations is not expected
to hold anymore. Hence, we do not expect that our results remain valid deep in the
condensate phase.

4.3.4 Linear transport coefficients

Since in the tight-binding limit we can not calculate all the linear response trans-
port coefficients, we consider in the following the truncation scheme presented in
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the previous section, which is established by truncating the bosonic Hilbert space
at a maximum number of two particles. The resulting steady-state currents from
Eq. (4.113) and Eq. (4.114) can then be used to establish the Onsager system of
equations according to Eq. (2.148). Using the wide-band limit I',(w) = I', and lin-
earizing the generalized heat current from Eq. (2.144) and the particle current from
Eq. (4.113) with respect to their corresponding affinities results in the kinetic coeffi-
cients

b Tulan(en) (1 ifwa)] [1+ i) (=T —en)" +20(s) (1 =T ~ )’

T, +0, 1+ 7(wn) + n(wn) [2 + 30(wn)] 20,
(4.116)
7. Pelri(w) [1+7(wy)] (147 (wi)] (p-T5% - wi) +2n (ws) (11— T —wy)
2 T, +1x 1+7 (w2) + 7 (wr) [2 + 37 (w2)] ’
4.117)
Lyg = Ly, (4.118)
i22 B FLFR ﬁ(wl) [1 +ﬁ((JJ2)] [1 +ﬁ(w1) + 277L (UJQ)] > O, (4119)

T+ L+7(wy)+7(wy)[2+37(wy)]

and the determinant of the Onsager matrix becomes

D=2 (FI;LEFRR) 7 (z) (1 ()] (1?5?(132)[12?&)2)[]2&%; (fz))]) =0 (4120

Here, we drop the bath index again since the kinetic coefficients presented above
are all evaluated in equilibrium, i.e., the energy-levels in both reservoirs have the
same mean occupations. With these results, we can calculate the linear transport
coefficients following the procedure outlined in Sec. 2.14.2.

4.3.4.1 Matter conductance

First, we take a look at the linear response matter conductance for the bosonic sys-
tem. Using the result from Eq. (4.119), we find that the bosonic matter conductance
for the considered transport setup according to Eq. (2.151) reads as

FLFR ﬁ(wl) [1 + ﬁ(WQ)] [1 + ﬁ(wl) + Qﬁ(WQ)]

Lp+Tr T{l1+n(w2)+n(w)[2+3n(w)]} 2 0. (4.121)

o=

In Fig. 4.15, we plot this transport coefficient for different transition energies ver-
sus the normalized temperature (left) and the normalized particle density (right).
Depending mostly on the lowest transition frequency (2, the matter conductance
has a maximum value at a finite temperature above the critical value 7,.. Decreas-
ing the lower transition frequency (2 shifts the maximum to smaller temperatures
whereas increasing the transition frequency shifts the maximum away to higher
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Figure 4.15: Bosonic matter conductance & at a constant particle density (left) and at
a constant temperature (right) versus the normalized temperature and
particle density, respectively. In both plots, we assume equal tunneling
rates ', = ' = I'. In the left panel, we use a constant on-site energy
Q2 = T, and different interaction strengths U = 0.57, (dashed line) and
U =T. (solid line). In the right panel, we use a constant on-site energy
of 2 = T and different particle interactions U = 0.57 (dashed line) and
U =T (solid line). In both plots the dot-dashed lines correspond to the
limit U — oo. For the conductance with constant chemical potential o,
we use () =T,, U = T, and additionally set ;» = —0.57 (thin, dotted line).

temperatures. Increasing the temperature leads to a decrease of the matter con-
ductance since the occupation of the transition energy level in the reservoirs is re-
duced. The influence of the second transport channel is mainly reflected in the
maximum value of the transport coefficient. This value is increased if the transport
channels are close together, i.e., if the interaction strength U is small. If the inter-
action strength is increased the respective transport channel is shifted to higher en-
ergies and contributes less to the current because of the lower occupations in the
reservoir. Thus, the maximum conductance decreases to a minimum value result-
ing from the lower transport channel (dot-dashed line).
We can also determine this limit analytically which yields

.. ' T'r 1
lim o =

- . (4.122)
Useo 't +T'g 2Tsinh (%)

For comparison, we also included a plot for the conductance with constant chem-
ical potential (thin, dotted line). Here, the conductance takes on a constant finite
value

limazl( L + 2 ), (4.123)

Tooo  3\wWi—p wW2—p
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in the limit of high temperature. This is caused by the fact that for a constant chem-
ical potential the occupations of energy levels in the reservoirs increase approxi-
mately linear with the temperature in the high temperature limit. If the tempera-
ture approaches zero the conductance vanishes due to the depletion of the transi-
tion energy levels in the reservoirs. Furthermore, we notice that due to the vanish-
ing of the chemical potential at the critical temperature the matter conductance is
non-analytic at 7' = T,. This effect is more emphasized for smaller transition fre-
quencies. This non-analytic behavior is well known from the heat capacity of the
ideal Bose gas [201] which allows to characterize the Bose-Einstein condensation as
a third-order phase-transition according to the Ehrenfest-classification of thermal
phase-transitions.

In the right panel of Fig. 4.15, we plot the bosonic matter conductance for a con-
stant temperature versus the normalized particle density for different transition en-
ergies. In the limit of small densities, we observe an almost linear increase of the
conductance with the particle density. As the critical density is approached the
slope decreases and exactly vanishes at the critical density. Here, the matter con-
ductance assumes its maximum value given by

I';Tr et [eLT1 (ewT"2 + 1) —2]
FLﬂLFRT(l—ew*Tl)(l—ewT*Q)[ewT*2 (e% +1)+1].

G(n>nc)= (4.124)

For densities above the critical density the matter conductance remains constant
since the occupations in this regime are independent of the particle density. All
additional particles occupy the reservoir ground-state and, thus, do not contribute
to the currents. As before the maximum value is mostly affected by the energy Q2. In
general, we find that the smaller the energies €2 and U, the higher is the maximum
matter conductance.

4.3.4.2 Heat conductance

Inserting the kinetic coefficient from Eq. (4.119) and the determinant of the Onsager
matrix from Egq. (4.120) into the definition in Eq. (2.152), we find the bosonic heat
conductance for the considered transport setup which reads as

' g 271 (w1 ) [1+ 7 (w)] 7 (ws) [1 + (ws)] (wi — ws)?
DL +TrT2[1+7 (wr)+270 (wo)] {1+ 7 (w2) + 7 (wy) [2+ 37 (w2)]} >0. (4.125)

K=

Comparing this expression with the bosonic matter conductance from Eq. (4.121),
we find that it fulfills the Wiedemann-Franz law with the bosonic density dependent
Lorenz number

7o 2[1+n(w)]n(w2) (w1 —o.;g)z _ 2072 [1+n(wp)]n(ws) >0, (4.126)
T2[1+7 (w) + 27 (w2)] T2 [1+7(w) + 27 (w2)]
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Figure 4.16: Left: Plot of bosonic heat conductance & at a constant particle density
for () = T, and different interaction strengths U = 0.57, (dashed line),
U =T, (solid line) and U = 57, (dot-dashed line). Additionally, we plot
the conventional heat conductance ~ with constant chemical potential
pu = —0.5T, for U = 0.57, (dotted line). Right: Plot of bosonic heat con-
ductance & at a constant temperature for 2 = 7" and different interac-
tion strengths U = 0.57" (dashed line), U = T (solid line) and U = 57 (dot-
dashed line). In both plots we assume equal tunnelingrates ', =T'g = T".

which is proportional to the square of the particle interaction strength.

In the right panel of Fig. 4.16, we plot the bosonic thermal conductance for dif-
ferent transition energies versus the normalized density. We observe that this trans-
port coefficient increases with increasing density and reaches a maximum value at
the critical density when Bose-Einstein condensation sets in. The value of the max-
imum depends on the transition energies of the system according to

witwo

I';T'r 2e7 T (wy —w2)2
'y +T'r T2 [6%2 (1 +e%1) + 1] [ewa1 (1 +ewT"2) —2]

> 0. (4.127)

R(n>n.) =

In general, there is a finite interaction strength that maximizes the heat conduc-
tance. For a low interaction strength the heat conductance is strongly decreased
since it is proportional to (w; — w9)? = U2. For a high interaction strength the heat
conductance is also diminished because the occupation of the upper transition en-
ergy is decreased. For densities above the critical value the thermal conductance
remains constant since the thermal gas fraction in this phase is independent of the
density and depends on the temperature only.

We also show the dependence of the thermal conductance on the normalized
reservoir temperature in the left panel of Fig. 4.16. Here, we observe the vanish-
ing of the thermal conductance for high and low temperatures. In between these
limits the thermal conductance obtains a finite maximal value at a characteristic
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temperature which depends on the system transition frequencies. Since the ther-
mal conductance & is proportional to the matter conductance 6 according to the
Wiedemann-Franz law, we also find that this transport coefficient is non-analytic at
the critical temperature.

Comparing our density dependent transport coefficient with the conventional re-
sult for a constant chemical potential (dotted line), we find qualitatively the same
behavior. However, the high temperature properties are slightly different. In fact,
we observe that due to the temperature dependent chemical potential the modi-
fied coefficient « vanishes faster with increasing temperature than the conventional
thermal conductance.

4.3.4.3 Thermopower

Using the results from Eq. (4.119) and Eq. (4.117) and the definition in Eq. (2.155),
we can calculate the analog to the thermopower for the considered bosonic trans-
port setup. In the wide-band limit this linear response transport coefficient reads
as

5 [1+ﬁ(w_1)]¢1+272(w2)¢2’ (4.128)
T[1+n(w)+2n(ws)]
where we used the abbreviation ¢; as defined in Eq. (4.74).

In the left panel of Fig. 4.17, we plot the temperature dependence of this trans-
port coefficient for different values of the interaction strength. Analogously to the
fermionic case, we find that the modified Seebeck coefficient takes on a finite pos-
itive value in the high temperature limit where the average transported energy per
particle becomes 3/2kgT. When the temperature is lowered the thermopower de-
creases. At a temperature where the chemical potential contribution starts to dom-
inate over the transport channel energies, the modified thermopower changes its
sign. When the temperature is decreased further the modified thermopower crosses
the critical temperature of the phase transition continuously. However, at the crit-
ical temperature the modified thermopower is not analytic. Thus, the derivative
with respect to temperature shows a jump when the condensate phase is entered.
In the condensate phase the modified thermopower decreases further and diverges
like —-1/7 when the temperature approaches absolute zero. Hence, the Peltier coef-
ficient I becomes constant as the temperature approaches zero and we find

limIl = —w; = -O. (4.129)
T—-0

In general, the particle current is mainly influenced by the lower transport channel.
Hence, the modified thermopower just weakly depends on the interaction strength
U. For high and low values of the interaction strength the modified thermopower
approaches the single frequency limit result (dashed line) which reads as

5 8 —T
(1}11%2: hmgzﬁ:w'

4.130
Jim % = 2 - ( )
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Figure 4.17: Plot of the density-dependent bosonic thermopower ¥ and conven-
tional thermopower ¥, versus the normalized temperature (left) and the
normalized density (right) for an ideal Bose gas. In the left panel, we use
Q2 = U =T, (solid line). In the right panel, we set 2 = U = T (solid line).
For the thermopower with constant chemical potential ¥, we addition-
ally set © = —0.57, (thin, dotted line). In both plots, we also show the
limit curves for U - oo (dashed line).

In between, there is a finite interaction strength that maximizes the modified ther-

mopower at the critical temperature (solid line). However, the relative increase in
the thermopower output is still small. On the contrary, the approach with a con-
stant chemical potential predicts a vanishing thermopower for high temperatures
(dotted line), and there is no change of sign of the thermopower in dependence of
the reservoir temperature. Additionally, the conventional thermopower is continu-
ous and differentiable at the critical temperature and, thus, it is not sensitive to the
quantum phase transition of the ideal Bose gas.

Analogously to the behavior for decreasing temperature, we find a monotonous
decrease of the thermopower with increasing particle density, which we show in
the right panel of Fig. 4.17. For small densities the thermopower assumes a finite
positive value given by

e 3w

gi%il— 5 T (4.131)
As the density is increased the thermopower decreases, eventually changes it sign
and reaches its minimum at the critical density. For even higher densities this trans-
port coefficient remains at the finite value

- — (4.132)
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n/n
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Figure 4.18: Plot of the bosonic figure-of-merit for constant density (left) and con-
stant temperature (right), versus the normalized temperature and the
normalized density for an ideal Bose gas. In the left panel, we use Q2 = T,
and different interaction strengths U = T, (solid line), U = 0.57, (dashed
line) and U = 57, (dot-dashed line). For the figure-of-merit Z7 with
constant chemical potential, we use 2 = U = T, and additionally set
p = —0.5T, (thin,dotted line). In the right panel, we set {2 = 7" and use
U =T (solid line), U = 0.57 (dashed line) and U = 5T (dot-dashed line).

since the chemical potential becomes independent of the particle density in the
reservoirs. Note that the result from Eq. (4.132) relates to the modified thermopower
at the critical temperature via

(T =T.)=%(n=nc)|,_, - (4.133)

4.3.4.4 Thermodynamic performance

Finally, we analyze the figure-of-merit that characterizes the performance of the
bosonic thermodynamic device. Inserting the results presented in Eq. (4.128) and
Eq. (4.126) into the definition in Eq. (2.157), we find that the figure-of-merit is given
by

- _ 2
o (L4 (w)]ér+20 (W) da} (4.134)

2[1+7 (wi)] 7 (w2) (w1 —w2)®

where we make use of the abbreviation ¢; as defined in Eq. (4.74). We plot some
results of the bosonic figure-of-merit in Fig. 4.18. In the left panel of Fig. 4.18,
we plot the temperature dependence of the figure-of-merit for different values of
the interaction strength. We observe that the figure-of-merit vanishes for vanishing
linear response particle current. At the critical temperature of the phase transition
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Figure 4.19: Plot of the bosonic efficiency at maximum power for a constant particle
density (left) and a constant temperature (right), versus the normalized
temperature and the normalized density, respectively. In the left panel,
we use () = T, and different interaction strengths U = T, (solid line),
U = 0.5T, (dashed line) and U = 5T, (dot-dashed line). For the efficiency
n with constant chemical potential, we use U = T, (thin, dashed line),
U = 5T, (thin, dotted line) and additionally set y = -0.57,. In the right
panel, we set Q2 = 7" and use U = T (solid line), U = 0.57 (dashed line)
and U = 5T (dot-dashed line).

the figure-of merit is non-differentiable but continuous. In the limit of high and
low temperatures the figure-of-merit increases exponentially. In general, we find
the same qualitative behavior for different interaction strengths. However, in the
condensate phase for 7' < T,, the configuration with high interaction strength yield
higher figure-of-merits, whereas in the normal phase for 7" > 7., configurations with
small interaction strengths yield higher figure-of-merit. At the transition tempera-
ture the figure-of-merit assumes the positive value

{[1 + 71 (w:) ] wy + 27 (w2 )ws }

ZIT=1o) = [1+ 7(w0n)] 7i(ws) (w1 —w2)?

(4.135)

For comparison, we also plot the figure-of-merit for a constant chemical potential
(thin, dotted line). Again, we find that in this case the high temperature behavior
is modified as the figure-of-merit becomes constant. Additionally, this quantity re-
mains analytic when crossing the critical temperature.

In the right panel of Fig. 4.18, we plot the density dependence of the bosonic
figure-of-merit at constant temperature. Again, we see that this quantity vanishes
at the density where the particle current is zero. Apart from this point the figure-
of-merit increases, both, for higher and lower densities. As the density is increased
above the critical value n., the figure-of-merit remains constant since the chemical
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potential becomes independent of the particle density.

For a quantitative analysis we also consider the efficiency at maximum power ac-
cording to Eq. (2.158). Some results are plotted in Fig. 4.19 for the same parameters
as in Fig. 4.18. Comparing with the figure-of-merit, we can confirm that the ther-
modynamic device becomes maximally efficient in the limit of high temperatures,
ie.,

o1
Aim 7 = nc, (4.136)
independent of the transition frequencies. Moreover, we find that in the conden-
sate phase the efficiency at maximum power also approaches a fixed finite value
independent of the system energies which reads as

|
%}_I)I(I)U = 6770. (4.137)
These two limiting values for the efficiency at maximum power can also be recov-
ered in the single-frequency limit where the transition energy w, is shifted to high
values and the efficiency becomes

lim 77 = e
Useol 4+ 2sgn (T9k - i+ Q)

>0, (4.138)

where sgn(z) is the sign function as defined in Eq. (2.44). Hence, we find that, de-
pending on the temperature and on the energy 2 the efficiency approaches one of
the values from Eq. (4.136) and Eq. (4.137). A similar behavior can be observed in
the case of a small particle density where we find

limdj = e > 0. (4.139)

n0" 4 -2sgn (37 - Q)

Hence, for system energies smaller than the average thermal energy per particle,
i.e., Q < 3/2kgT, the device works with half the Carnot efficiency which is the linear
response optimum efficiency at maximum power. For energies that lie above this
value the efficiency is reduced to 7-/6 and hardly changes in dependence of the
particle density. Nevertheless, for all cases we find a non-analytic but continuous
crossing at the critical temperature and particle density.
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Chapter 5

Summary

In this thesis, we used a Markovian master equation approach to derive and investi-
gate the steady-state transport properties of several few-level quantum system, that
are weakly coupled to multiple surrounding reservoirs, which are held at different
temperatures and/or chemical potentials.

In the first part of this thesis, we studied the electronic transport properties of
a system of two parallel double-quantum dots which are subject to a charge-qubit
impurity. This additional defect affects the electronic transport through the double-
quantum dot structure. In particular, we investigated its effect on the steady-state
particle currents in the ultra-strong and strong Coulomb blockade regimes with one
electron in both or each double-quantum dot, respectively.

We find that the charge-qubit detuning gives rise to an asymmetry that prevents
the closing of Coulomb diamonds and leads to negative differential conductance
and a anti current-correlation in the low electron-number subspace. This result is in
accordance with other theoretical [176, 202, 203] and experimental [204, 205] works
which investigate highly asymmetric quantum dot structures. The width as well
as the position of the gaps depend on the parameters of the charge-qubit. In the
ultra-strong and strong Coulomb blockade regimes, we were able to extract analytic
results for the steady-state current in the high-bias regime. Moreover, from the re-
spective system energy eigenvalues, we could analytically determine the width and
position of the gap in dependence of the parameters of the charge-qubit.

Additionally, we analyzed the purity of the reduced system steady-state density
matrix and found that the purity of the system is preserved. Hence, for low enough
temperatures it is possible to prepare the system in a pure eigenstate. In addition,
the back-action on the charge-qubit allows us to render its eigenstates pure as well.
Furthermore, we find that by carefully tuning the parameters in the system it is pos-
sible to influence the steady-state localization of the charge-qubit electron.

Finally, we studied the impact of the charge-qubit on the entanglement between
the two transport channels. Here, we observe on the one hand a destruction of Bell
states due to the charge-qubit tunneling amplitude J and detuning (2. On the other
hand, we find an increase of entanglement of the remaining eigenstates due to the
modification parameter GG. Besides investigating the entanglement in the Coulomb
diamonds, we analyzed the generalized transport concurrence in the exterior of the
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Coulomb diamond, and found that the entanglement is slightly decreased by the
charge-qubit.

In the second part of this thesis, we calculated the steady-state particle- and en-
ergy fluxes and derived the linear response transport coefficients for a two-terminal
transport setup with both, ultra-cold bosons and ultra-cold fermions. In particular,
we took into account that in the framework of a grand-canonical ensemble theory
the chemical potential of these reservoirs depends on their respective temperature
and particle density.

We found that the non-linearity introduced by the temperature- and density de-
pendent chemical potential strongly influences the steady-state particle and energy
currents through the system. Since we keep the particle density in the reservoirs
fixed, we always observe finite steady state currents through the system. More-
over, depending on the energy spectrum of the system we could observe multiple
regimes where the steady-state currents flow with or against an externally applied
thermal bias. This counterintuitive result stems from the temperature- and density-
dependence of the mean occupations in the reservoirs induced by the chemical po-
tential.

Subsequently, we established the respective Onsager system of equations from
which we derived the linear response transport coefficients of the steady-state cur-
rents. A comparison of these coefficients with the ones obtained for a constant
chemical potential, we noticed that the temperature- and density-dependent chem-
ical potential yields modifications mainly for high temperatures. Furthermore, by
comparing the results for fermionic and bosonic transport, we found clear signa-
tures of criticality in the bosonic transport coefficients. This criticality relates to the
thermal phase transition to a Bose-Einstein for low temperatures. Thus, we under-
stand that transport measurements provide new tools to study critical phenomena
in non-equilibrium setups in accordance with the findings in Ref. [32].

Finally, we investigated the potential utilization of the proposed setups as thermo
element by analyzing the figure-of-merit and efficiency at maximum power for both
the bosonic and fermionic systems. In correspondence with experimental results
[105], we found that high figure-of-merits at maximum power can be obtained in
both systems. In a more detailed analysis we could in fact show that the maximal
possible linear response efficiency can be reached in these systems. This suggests
a possible application of transport setups using ultra-cold atomic gases in view of
efficient thermopower devices.
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