
Integration of Vehicle and Duty
Scheduling in Public Transport

vorgelegt von
Dipl.-Math.-oec. Steffen Weider

aus Berlin

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Dr. h.c. Martin Grötschel

Prof. Dr. Jörg Rambau

Vorsitzender: Prof. Dr. Volker Mehrmann

Tag der wissenschaftlichen Aussprache: 31.5.2007

Berlin 2007
D 83

Zusammenfassung i

Zusammenfassung

Diese Arbeit beschreibt den Algorithmus IS-OPT, welcher der erste Algo-
rithmus ist, der integrierte Umlauf- und Dienstplanungsprobleme für mit-
telgroße Verkehrsunternehmen löst und dabei alle betrieblichen Einzelheiten
berücksichtigt. Seine Lösungen können daher direkt in den täglichen Betrieb
übernommen werden.

Im ersten Kapitel werden mathematische Modelle für verschiedenen Pro-
bleme aus dem Planungsprozess von Nahverkehrsunternehmen beschrieben.
Es werden Ansätze zur Integration der einzelnen Probleme untersucht. In die-
sem Kapitel werden außerdem das Umlauf- und das Dienstplanungsproblem
eingeführt. Kapitel 2 motiviert, warum Integration von Umlauf- und Dienst-
planung hilfreich ist oder in welchen Fällen sie sogar unabdingbar ist; es gibt
einen Überblick über die vorhanden Literatur zur integrierten Umlauf- und
Dienstplanung und umreißt unseren Algorithmus IS-OPT.

Die weiteren Kapitel behandeln die in IS-OPT verwendeten Methoden:
In Kapitel 3 beschreiben wir, wie Spaltenerzeugung für lineare Programme
mit Lagrange-Relaxierung und Subgradienten-Verfahren kombiniert werden
kann. In Kapitel 4 wird unsere Variante der proximalen Bündelmethode be-
schrieben. Diese wird benutzt um näherungsweise primale und duale Lösun-
gen von lineare Programmen zu berechnen. Unsere Variante ist angepasst,
um auch mit ungenauer Funktionsauswertung und ε-Subgradienten arbeiten
zu können. Wir zeigen die Konvergenz dieser Variante unter bestimmten An-
nahmen. Kapitel 5 behandelt das Erzeugen von Diensten für das Dienstpla-
nungsproblem. Dieses Problem ist als ein Kürzeste-Wege-Problem mit nicht-
linearen Nebenbedingungen und fast linearer Zielfunktion modelliert. Wir
lösen es, indem zuerst Schranken für die reduzierten Kosten von Diensten,
die bestimmte Knoten benutzen, berechnet werden. Diese Schranken werden
benutzt, um in einem Tiefensuchalgorithmus den Suchbaum klein zu halten.
Im Kapitel 6 präsentieren wir die neu entwickelte Heuristik “Rapid Bran-
ching”, die eine ganzzahlige Lösung des integrierten Problems berechnet. Ra-
pid Branching kann als eine spezielle Branch-and-Bound-Heuristik gesehen
werden, welche die Bündelmethode benutzt. In den Knoten des Suchbaums
können mehrere Variablen auf einmal fixiert werden, die mit Hilfe einer Per-
turbationsheuristik ausgewählt werden.

In Kapitel 7 schließlich zeigen wir, daß wir mit IS-OPT auch große Proble-
minstanzen aus der Praxis lösen können und dabei bis zu 5% der Fahrzeug-
und Dienstkosten sparen können.

ii Abstract

Abstract

This thesis describes the algorithm IS-OPT that integrates scheduling of ve-
hicles and duties in public bus transit. IS-OPT is the first algorithm which
solves integrated vehicle and duty scheduling problems arising in medium
sized carriers such that its solutions can be used in daily operations without
further adaptions.

This thesis is structured as follows: The first chapter highlights mathema-
tical models of the planning process of public transit companies and examines
their potential for integrating them with other planning steps. It also intro-
duces descriptions of the vehicle and the duty scheduling problem. Chapter 2
motivates why it can be useful to integrate vehicle and duty scheduling, ex-
plains approaches of the literature, and gives an outline of our algorithm
IS-OPT.

The following chapters go into the details of the most important tech-
niques and methods of IS-OPT: In Chapter 3 we describe how we use La-
grangean relaxation in a column generation framework. Next, in Chapter 4,
we describe a variant of the proximal bundle method (PBM) that is used to
approximate linear programs occurring in the solution process. We introduce
here a new variant of the PBM which is able to utilize inexact function eval-
uation and the use of ε-subgradients. We also show the convergence of this
method under certain assumptions. Chapter 5 treats the generation of duties
for the duty scheduling problem. This problem is modeled as a resource-
constraint-shortest-path-problem with non-linear side constraints and nearly
linear objective function. It is solved in a two-stage approach. At first we
calculate lower bounds on the reduced costs of duties using certain nodes by
a new inexact label-setting algorithm. Then we use these bounds to speed
up a depth-first-search algorithm that finds feasible duties. In Chapter 6 we
present the primal heuristic of IS-OPT that solves the integrated problem to
integrality. We introduce a new branch-and-bound based heuristic which we
call rapid branching. Rapid branching uses the proximal bundle method to
compute lower bounds, it introduces a heuristic node selection scheme, and
it utilizes a new branching rule that fixes sets of many variables at once.

The common approach to solve the problems occurring in IS-OPT is to
trade inexactness of the solutions for speed of the algorithms. This enables,
as we show in Chapter 7, to solve large real world integrated problems by
IS-OPT. The scheduled produced by IS-OPT save up to 5% of the vehicle
and duty cost of existing schedules of regional and urban public transport
companies.

Preface iii

Preface

Public mass transit in Germany is in a phase of change. The competition
between the companies is becoming more intense due to the policy of the
European Union to publicly tender public transit subsidies to reduce the
number of local monopolies of public transit carriers. In fact, these tenderings
already led to significant reductions of subsidies1.

This increase in competition gives incentives to the companies to improve
the efficiency of the allocation of their resources, i.e., personnel and vehicles,
which together cause about 66-75% of the cost of a typical German public
transport bus company (see Leuthardt [1998]). In this work we propose the
algorithm IS-OPT that plans these resources together in a single step. We
will show that IS-OPT increases the overall planning efficiency of real world
planning problems in comparison to manual solutions and also in comparison
to sequential optimization of vehicle and duty schedules.

The development of IS-OPT was challenging due to the large number of
methods it utilizes: It combines methods from linear, convex, and combinato-
rial optimization, such as column generation, Lagrangean relaxation, bundle
methods, shortest path algorithms, a network simplex method, and branch-
and-bound approaches. Our contributions to these methods, in particular
with the aim to accelerate them at the cost of getting only approximate so-
lutions, and the way how we use and combine them to solve the integrated
vehicle and duty scheduling problem is the content of this work:

• We will show how we replace exact LP-methods by an inexact proximal
bundle method in a column generation context. To do this we had to
solve the problems of obtaining a useful dual solution for the pricing
problem from a Lagrangean relaxation and the handling of approximate
evaluation of the Lagrangean dual with unknown approximation quality
in the bundle method. We prove also the convergence of this new
variant of the bundle method that is able to cope with this inexactness.

• We present a new active set approach to approximate LP-relaxations
of large-scale set-partitioning-problems with the bundle method.

• We propose a two-phase algorithm to solve the pricing problem which
is modeled by a resource-constraint-shortest-path-problem with addi-
tional constraints and a non-linear objective function. In the first phase,

1In the empirical study of Resch et al. [2006] three German public transit companies
are mentioned whose subsidies were reduced by 32–44% in the last ten years.

iv Preface

we calculate bounds on this problem by Lagrangean relaxation and a
labeling-algorithm. To calculate these bounds we develop an inexact
labeling algorithm to approximate resource-constrained-shortest-path-
problems. In the second phase, we use these bounds to prune the search
tree of a depth-first-search approach.

• We introduce a primal heuristic to find an integral solution of the ISP.
This heuristic can be seen as an inexact branch-and-bound algorithm
that uses a branching rule which selects sets including many variables
to be fixed all at once.

Another highlight of this work is the practical application of the algorithm
IS-OPT. The transfer from an algorithm that works for some test instances
to an algorithm that is in daily use by planners was not always easy: The
industrial requirements for planning tools are going beyond the requirements
for typical academic software. IS-OPT has to be stable using any reasonable
data, it has to be flexible because no two public transit companies have the
same duty rules, it has to be fast because often companies have to com-
pute dozens of different scenarios for different days of operation in a limited
amount of time. At last, it is not easy to find out about all side constraints
and rules which feasible schedules have to fulfill in practice because often
some of them are only known by the planners in charge and were never set
out in writing. It was common that after presenting a solution, the planners
gave us additional rules and side constraints that have to be considered.

However, it is very satisfying when finally the practitioners of a planning
department admit to be amazed because not only our code is able to find
solutions that are usable in their daily operations without adapting them
manually, but that these solutions are also significantly better than existing
schedules.

Acknowledgments v

Acknowledgments

Most of the research for this thesis was done in a project of the program“math
& industry” of the German ministry for research and education (BMBF)2. It
was carried out at the Zuse Institute Berlin in cooperation with two compa-
nies that specialize on software for public transit, namely IVU traffic tech-
nologies AG (IVU) and Mentz Datenverarbeitung GmbH, and a carrier for
public transit, Regensburger Verkehrsbetriebe. I want to thank all project
partners for providing the test data, a deep knowledge about public trans-
portation, and for many fruitful discussions.

After the successful completion of this research project I continued to
work as one of the associates of Löbel, Borndörfer und Weider GbR closely
together with IVU and DB Stadtverkehr GmbH to improve the algorithm
IS-OPT, such that it can be used in the daily operations of regional bus
operators of DB Stadtverkehr.

I want to thank my colleagues and friends Andreas Löbel and Ralf
Borndörfer for sharing their great knowledge about mathematical optimiza-
tion methods and implementation of large-scale optimization software. I
want to thank Rainer Kuschel of the Regensburger Verkehrsbetriebe because
without him the BMBF project would not have been the success it was.
Further, I want thank Martin Grötschel to give me the possibility to work
at the Zuse Institute, which is a really great place for applied mathematics
(and mathematicians). I want to thank Marc Pfetsch, Andreas Tuchscherer
and Benjamin Hiller for encouraging me and giving helpful comments. At
last, I thank all of my colleagues at the Zuse Institute for the good work
atmosphere.

2grant no. 03-GRM2B4

vi Acknowledgments

Contents

Zusammenfassung . i

Abstract . ii

Preface . iii

Acknowledgments . v

1 Planning in Public Transit 1

1.1 Introduction . 1

1.2 Classification of Planning Steps 3

1.3 Basic Models . 3

1.3.1 Flow Based Models . 4

1.3.2 Path Based Models . 6

1.4 Network Design . 8

1.4.1 Description . 8

1.4.2 Models . 8

1.4.3 Applications . 9

1.5 Line Planning . 10

1.5.1 Description . 10

1.5.2 Models . 10

1.5.3 Approaches . 12

1.5.4 Integration . 13

1.6 Planning of Bus Stops . 13

vii

viii CONTENTS

1.7 Timetabling . 14

1.7.1 Description . 14

1.7.2 Models . 15

1.7.3 Algorithms . 16

1.7.4 Integration . 17

1.8 Planning of Public Tenderings 17

1.9 Vehicle Scheduling . 18

1.9.1 Description . 18

1.9.2 Graph Theoretic Model 19

1.9.3 Integer Programming Model 21

1.9.4 Algorithms . 21

1.9.5 Algorithm VS-OPT . 22

1.9.6 Integration . 23

1.10 Duty scheduling . 24

1.10.1 Description . 24

1.10.2 Graph Theoretic Model 25

1.10.3 Integer Programming Model 27

1.10.4 Algorithms . 28

1.10.5 Integration . 28

1.11 Rostering . 28

1.11.1 Description . 28

1.11.2 Model . 30

1.11.3 Algorithms . 30

1.11.4 Integration . 31

1.12 Conclusion . 31

CONTENTS ix

2 Integration of Vehicle and Duty Scheduling 33

2.1 Motivation . 33

2.1.1 Regional Public Transit 34

2.1.2 Vehicle and Duty Schedule Efficiency 35

2.1.3 Vehicle and Duty Costs 36

2.2 Approaches to Integrated Scheduling 37

2.2.1 Duty Scheduling with Vehicle Scheduling Constraints . 38

2.2.2 The Combined Approach 39

2.2.3 Full Integration of Vehicle and Duty Scheduling 42

2.3 Literature . 43

2.3.1 Ball, Bodin and Dial 44

2.3.2 Vehicle Scheduling Centered Approaches 44

2.3.3 Duty Scheduling Centered Approaches 45

2.3.4 Fully Integrated Vehicle and Duty Scheduling 47

2.4 IS-OPT . 50

2.4.1 Outline of our ISP-Algorithm 50

2.4.2 Contributions . 52

3 Basic Methodology 53

3.1 Column Generation . 53

3.2 Lagrangean Relaxation . 55

3.2.1 Lagrangean Relaxation in General 55

3.2.2 Linear Programming Duality 56

3.2.3 Quadratic Programming Duality 57

3.3 Lagrangean Relaxation for Column Generation 58

3.3.1 Problem Class . 59

3.3.2 Restricted Problem . 59

3.3.3 Pricing Problem . 60

3.3.4 Lagrangean relaxation 60

3.3.5 Reduced Cost Shifting 62

x CONTENTS

4 Proximal Bundle Method 65

4.1 Description . 66

4.1.1 Idea and Properties . 66

4.1.2 Subgradients, Linearizations, and Cutting Plane Models 68

4.1.3 Quadratic Subproblem 68

4.1.4 Algorithm . 72

4.1.5 Weight updating . 73

4.1.6 Notes On The Convergence 73

4.2 Comparison with other Subgradient Methods 74

4.3 Modifications and Extensions 75

4.3.1 Separable Functions 75

4.3.2 Primal Approximation of Linear Programs 76

4.3.3 Handling of Bounded Functions 78

4.4 Active Set Method . 80

4.4.1 Description . 81

4.4.2 Exact Active Sets . 83

4.5 Applications . 84

4.5.1 Approximating the Duty Scheduling Problem 85

4.5.2 Approximating the Problem ISP 87

4.6 Inexact Bundle Method . 88

4.6.1 Literature . 89

4.6.2 Vehicle Scheduling Component Function 90

4.6.3 Duty Scheduling Component Function 91

4.6.4 Combined Functions 98

4.7 Computational Results . 100

4.7.1 Testbed . 100

4.7.2 Results . 101

CONTENTS xi

5 The Generation of Duties 107

5.1 Motivation and Notation . 107

5.1.1 Master Problem . 108

5.1.2 Size of the Master Problem 108

5.1.3 The Pricing Problem 110

5.2 Description of Duties . 110

5.2.1 Duty Elements . 111

5.2.2 Duty types . 112

5.2.3 Resources . 114

5.2.4 Break rules . 115

5.2.5 Cost of a Duty . 115

5.3 Models for the Pricing Problem 116

5.3.1 Pricing Networks . 117

5.3.2 Timelines . 118

5.3.3 IP Model . 121

5.3.4 Cost and Reduced Cost of Pairings and Links 123

5.4 Literature . 124

5.5 Algorithm . 126

5.5.1 The Resource Constrained Shortest Path Problem . . . 126

5.5.2 Lagrangean Relaxation of all Resource Constraints . . 127

5.5.3 Depth-First-Search . 130

5.6 Labeling . 131

5.6.1 Graph Construction 132

5.6.2 Node Dominance . 134

5.6.3 Resource Scaling and Rounding 136

5.6.4 Cost scaling . 139

5.7 Computational Results . 139

xii CONTENTS

5.7.1 Testbed . 140

5.7.2 RCSP . 141

5.7.3 Lagrangean Relaxation 143

5.7.4 Results of the Enumeration Algorithm 146

5.8 Lower Bounds for the Duty Scheduling Problem 147

5.8.1 RCSP-lower-bound . 147

5.8.2 LP lower bounds . 148

5.9 Conclusion . 149

6 Rapid Branching 151

6.1 Overview . 152

6.2 Branch-and-Bound . 152

6.3 Perturbation Branching Rule 155

6.3.1 Motivation . 155

6.3.2 Determining the Main Branch 155

6.3.3 Calculation of the Perturbed Objective Function 157

6.3.4 Calculation of the Other Branches 158

6.3.5 Comparison with Other Branching Rules 159

6.4 Node Selection . 160

6.5 Lower Bounding . 161

6.6 Upper Bounding . 161

6.7 MIP-heuristics in the Literature 162

6.7.1 Simplex Based Heuristics 162

6.7.2 OCTANE . 163

6.7.3 Set Covering and Set Partitioning Heuristics 163

6.7.4 Branch-and-Bound Based Heuristics 163

6.7.5 Rounding Heuristics 165

6.8 Computational Results . 166

CONTENTS xiii

6.8.1 Testbed . 166

6.8.2 Observations . 168

6.8.3 Conclusion . 169

7 Computational Results 171

7.1 Running Time . 171

7.2 Computation Times per Phase 173

7.3 Algorithms . 174

7.4 RVB Instances . 174

7.5 RKH Instances . 176

7.6 Subcontractor Planning for an Regional Carrier 178

7.7 ECOPT Instances . 180

7.8 Conclusion . 182

Glossary 185

Symbols 187

Bibliography 189

Chapter 1

Planning in Public Transit

In this chapter we give an overview of the planning process in public transit.
We will describe the planning problems associated with the operation of a
network of bus lines and present state of the art mathematical models and
algorithms to solve them. We will show the general trend that the used
planning scenarios become larger either by looking at larger planning units or
by looking at more planning steps at once. Both approaches lead to potential
better solutions by more degrees of freedom in the planning problems.

Some of the problems occurring in the planning process of bus traffic are
similar to planning problems in other modes of public transportation, such as
subways, trams, trains, or even airlines. We will comment on the details of the
similarities and differences in the respective sections. Bussieck et al. [1997]
describe the use of discrete optimization in the planning process of public
rail transports. We concentrate here on recent models and algorithms. An
overview about planning in public transport until 1994 can be found in the
article of Odoni et al. [1994]. Borndörfer et al. [2006] highlight the increasing
use of OR methods for planning problems in public transport and describe
exemplarily some applications.

We use in this thesis the definitions and notations of Schrijver [2003] for
graphs, linear programs (LPs), and mixed integer programs (MIPs). A short
overview of the used symbols can also be found in the annex.

1.1 Introduction

In the last years, the budgets of the federal government, the states, and the
municipalities in Germany were very tight. Therefore the federal government

1

2 Planning in Public Transit

has cut the so called “Regionalisierungsmittel”, that is, subsidies for regional
public transport in Germany, from €7.1 billion to €6.6 per year1. Also other
subsidies were or will be reduced: Berlin has cut its subsidies to its public
transport company BVG, by €100 millions from 2005 to 20062 and further
reductions will likely follow. A study of Resch et al. [2006] reports reductions
of subsidies of 32–44% of three German public transit companies3. Also more
and more tenderings for the subsidies for public transit are put out instead
of giving them directly to the local companies. Thus, public mass transit
companies in Germany are under the pressure to reduce their costs. This
can be accomplished by either discontinuing unprofitable lines, by lowering
the wages of the personnel, or by increasing the efficiency of the schedules.
All of these measures have been taken in the past. In the following we
will examine where new mathematical methods may help to further improve
the efficiency without disadvantages for the drivers or the passengers. We
assume that even if computer based planning systems are already in use, new
mathematical approaches are able to solve larger planning problems at once
and help to integrate subsequent planning steps.

Besides the financial goals of the planning process also the general ben-
efit of public transport, summarized as public welfare, is of concern. The
following often opposing objectives are common for strategic and operational
planning in public transport:

• increasing the attractiveness of public transport,

• reducing operation cost for a given service level,

• increasing the transport capacity for a given budget,

• reducing medium term capital investment (e.g., by reducing the number
of buses, number of stops, or number of depots).

The improvement of the results of the planning process with respect to these
objectives is not the only advantage of using optimization methods. The
possibility of calculating alternative scenarios in short time is also of great
interest for public transport companies because it backs up the decision pro-
cess with reliable information.

1Haushaltsbegleitgesetz of Berlin, 2006
2business report BVG 2005
3The remaining subsidies are still about 9–21% of the total costs of the companies.

1.2 Classification of Planning Steps 3

1.2 Classification of Planning Steps

Usually the planning process in public transport is divided into strategic
and operational planning. Sometimes also tactical planning is mentioned as
an intermediate step. Strategic planning consists of problems dealing with
long term decisions about the infrastructure and the level of service, whereas
operational planning handles the problems which occur in the operation of a
given service.

We will concentrate in the sections below on the following planning steps:

1. Strategic planning:

• network design,

• line network planning,

• time table planning.

2. Operational planning:

• vehicle scheduling,

• duty scheduling,

• crew rostering.

We remark that the collection of passenger data as an input to strategic
planning problems is a different problem on its own, which we do not dis-
cuss here. Often mentioned in this context are operational problems, such
as the dispatching of vehicles or the recovery of planned schedules after de-
lays or breakdowns. These problems need specialized algorithms due to their
real time requirements, which are beyond the scope of this work. A re-
cent overview of literature about the treatment of delays in vehicle and duty
scheduling and an algorithm to deal with it can be found in Huisman [2004].

Another important planning step, which is in general not conducted by
the public transit companies but by local authorities, is the planning of public
tenderings of public transit for certain lines or regions. We cover this topic
because it can use methods of the other planning steps.

1.3 Basic Models

We introduce two basic mathematical planning models whose variants are of-
ten used in public transport planning problems or other scheduling problems.
We show the connections between those variants.

4 Planning in Public Transit

v v+ v−

kmin
a ≤ y(v+v−) ≤ kmax

akmin
a ≤ y(δin(v)) ≤ kmax

a

Figure 1.1: Modeling capacities on nodes

1.3.1 Flow Based Models

Many problems related to scheduling or transportation problems can be mod-
eled as flow problems in the following general sense: Given is a directed net-
work with a set of nodes V and a set of arcs A connecting the nodes, a source
s ∈ V , and a sink t ∈ V . Additionally, we have a minimum capacity kmin

a ≥ 0
and a maximum capacity kmax

a ≥ kmin
a as well as a cost ca per unit of flow

over each arc a ∈ A. The goal is to find a minimum cost flow from s to t
subject to the capacity constraints and eventually certain other constraints.
This task can be formulated as the following generalized minimum cost flow
problem (GMCF):

(GMCF) min cTy,

s. t.

(i) y(δin(v))− y(δout(v)) = 0, ∀v ∈ V \ {s, t},
(ii) kmin

a ≤ ya ≤ kmax
a , ∀a ∈ A,

(iii) By = b or By ≤ b,

(iv) ya ≥ 0, ∀a ∈ A,
(v) y ∈ ZA.

Here, ya is the flow variable of arc a giving the number of units of the
flow over arc a. Because the decision variables are associated to arcs, we say
(GMCF) is an arc-based model.

The flow conservation constraints (i) ensure that at every node the in-
flow is equal to the out-flow. The capacity constraints (ii) guarantee that
the arc capacities are satisfied. These constraints can also be used to en-
force minimum or maximum flows over a node as follows: Replace a node by
two new adjacent nodes and a new arc connecting these nodes. The lower
capacity on the new arc is the desired minimum flow (see Figure 1.1). Addi-
tional properties of the flow can be modeled by constraints (iii). Here either
equalities or inequalities or a mixture is possible, B ∈ R

R×A and b ∈ R
R

1.3 Basic Models 5

are an appropriate matrix and vector, and R is an index set. Inequalities
(iv) ensure the non-negativity of the flow. Constraints (v) model integrality.
This is required, e.g., to solve the problem of assigning integral resources like
vehicles or drivers to certain activities.

The minimum cost flow problem (MCF) without constraints (iii) is solv-
able in polynomial time by special network algorithms (see Ahuja et al.
[1993]) or by a specialized version of the simplex algorithm (see, e.g., Lö-
bel [1996]).

The multi-commodity flow problem is a specialization of (GMCF), for
which constraints (iii) of (GMCF) take the shape

(iiia) y(δin
g (v))− y(δout

g (v)) = 0 ∀(v, g) ∈ V \ {s, t} ×G.

Here G is the set of commodities, δin
g (v) := δin(v) ∩ Ag, and δout

g (v) :=
δout(v) ∩ Ag, whilst Ag, g ∈ G are disjoint subsets of A, and

⋃
g∈GAg = A.

The equations (iiia) partition the network into |G| subnetworks which each
give rise to independent flow conservation constraints. Thus, equations (iiia)
render equations (i) redundant. However, equations (i) are still useful when
relaxing equations (iiia).

Multi-commodity flow problems occur in the planning of telecommuni-
cation networks, where each traffic gives rise to a single commodity, or as
a subproblem of the network design problem (see next section). Also the
multi-depot vehicle scheduling problem (see section 1.9) can be modeled as
a multi-commodity flow problem.

Another specialization of (GMCF) is the minimum cost flow problem with
resource constraints. For this problem we replace constraints (iii) by

(iiib) Ry ≤ `r ∀r ∈ R.

Here R ∈ R
R×A is a matrix whose entry in the r-th row and a-th column

gives the resource consumption of a resource r ∈ R by arc a. The vector
` ∈ RR gives the maximal allowed consumption of the resources. A special
case of (GMCF) with constraints (iiib) is the resource constraint shortest
path problem. It occurs, e.g., in the duty generation subalgorithm of our
duty scheduling algorithm (see Section 5.5.1).

Another practically relevant special case of (iiib) are the following “in-
feasible path constraints” (iiic), which are used to remove a set of forbidden
paths P in feasible flows:

(iiic)
∑
a∈P

ya ≤ |P | − 1, ∀P ∈ P .

6 Planning in Public Transit

This type of constraints can be used to model complicated constraints on
subflows, as they occur for example in duty scheduling problems or in vehicle
scheduling problems with maintenance requirements, which are described
below.

The model (GMCF) with constraints (iiic) is difficult to solve in practice,
if the set P of infeasible paths is large in comparison to the set of all possible
paths. This occurs, for example, in the duty scheduling problem since here
most paths in the graph are not representing a valid duty (see Schlechte
[2003]).

1.3.2 Path Based Models

To overcome the difficulties to solve (GMCF) with many constraints of type
(iiic) the flow model can be transformed by Dantzig-Wolfe decomposition
(Dantzig & Wolfe [1960]) into a path based model. The idea of this trans-
formation is that each st-flow can be decomposed into a sum of st-paths
and cycles. Thus, the problem (GMCF) can be reformulated as a problem
of finding a (cost minimal) set of paths and cycles such that the resulting
flow fulfills all capacity constraints. We call the result of this transformation
generalized path covering problem (GPCP).

(GPCP) min dTx,

s. t.

(i) kmin
a ≤

∑
P3a

xP ≤ kmax
a , ∀a ∈ A,

(ii) xP ≥ 0, ∀P ∈ S,
(iii) x ∈ ZS .

Here S ⊂ P(A) is the set of feasible arc sets. In our applications of this
model these sets form st-paths. The variables xP , P ∈ S indicate how much
flow is routed over path P . Inequalities (i) guarantee, like the constraints
(GMCF)(ii), the compliance with the minimum and maximum capacities
kmin

a and kmax
a on every arc a ∈ A. The notation P 3 a denotes all arc sets

P ∈ S that include arc a. Constraints (ii) and (iii) ensure non-negativity
and integrality of the variable xP , P ∈ S. The cost dP , P ∈ RS , denotes the
cost of a certain arc set P . Often dP =

∑
a∈P ca, that is, the cost of an arc

set P is the sum of the cost of its arcs, or dP = 1 for all P ∈ S if only the
number of arc sets should be minimized.

1.3 Basic Models 7

In general, the set S of feasible arc sets is very large. Nevertheless models
of this kind can be solved by column generation approaches (see Barnhart
et al. [1998] or Section 3.1). Specializations of this problem are the path
packing, path partitioning, as well as the path covering problem. In these
problems the arc sets form st-paths. In the path covering problem all mini-
mum capacities are one and the maximum capacities are infinite, i.e. kmin

a = 1
and kmax

a =∞ for all a ∈ A, and in the path packing problem the maximum
capacities are one (kmax

a = 1) and the minimum capacities are zero (kmin
a = 0)

for each a ∈ A. The path partitioning problem finally has kmin = 1 = kmax.

A slightly more generalized form of these problems are the well known
set covering (SCP), set packing (SSP), and set partitioning (SPP) problems.
In these problems the paths in a graph are replaced by subsets P of a basic
set A. These problems can be formulated as follows:

(SCP) min dTx,

s. t.

(i)
∑
P3a

xP ≥ 1 ∀a ∈ A,

(iii) x ∈ {0, 1}S ,

(SSP) min dTx,

s. t.

(i)
∑
P3a

xP ≤ 1 ∀a ∈ A,

(iii) x ∈ {0, 1}S ,

and
(SPP) min dTx,

s. t.

(i)
∑
P3a

xP = 1, ∀a ∈ A,

(iii) x ∈ {0, 1}S .

A survey about those problems can be found in Borndörfer [1998].

It is problem specific whether the formulation as a GMCF or a path ori-
ented problem such as SSP, SCP, or SPP is appropriate. In our experience
the path formulations are easier to solve if the network contains many in-
feasible paths. It may also be necessary to formulate a problem path based
if the network is very large. This occurs regularly in multi-commodity flow
problems with many commodities. If there are only a few additional con-
straints of type (iii) in (GMCF) the arc based formulation seems in general

8 Planning in Public Transit

to give better results. A reason for this may be that for problems arising in
applications the LP-relaxation is often already nearly integral.

1.4 Network Design

1.4.1 Description

The network design problem (NDP) consists of selecting routes that can be
used by bus lines. The routes are meeting at the transfer points. At these
points buses can change their route. The routes have to be selected in such
a way that a given demand of traffic can be handled and that the cost for
setting up the routes and the cost for using them are minimized.

Typically only the extension or modification of an existing network is
considered since in most cases historically grown transportation networks
exist that can not be modified easily, and because any alteration of lines
involves expenses for removal or addition of bus stops, printouts of timetables,
building new parking facilities, and marketing to inform the passengers about
the changes.

1.4.2 Models

A framework for a slightly more general class of network design problems is
presented in Kim & Barnhart [1997]. The model is based on a very similar
model in Magnanti & Wong [1984]. We want to sketch here the mixed integer
programming model of Kim & Barnhart [1997] and discuss its properties.
Given is a network N = (V,A). The nodes V represent potential end points
and transfer points of bus lines which include also the origins and destinations
of traffic. The set of arcs A models the physical links between these points
called routes. The set of origin/destination pairs (OD-pairs) is denoted by
P , while O(p) and D(p) for p ∈ P are the origin or destination of p. Let
bp denote the demand of traffic from O(p) to D(p) (measured in number of
passengers). The set of potential traffic modes is denoted by F . Typical
traffic modes are different types of buses, such as articulated buses or double
deckers, trams, or different types of trains. Let uf

a denote the passenger
capacity of one unit of traffic mode f ∈ F on arc a. The cost cpa, p ∈ P, a ∈ A
and df

a, f ∈ F, a ∈ A denote the variable cost of traffic depending on p and
the fixed cost of providing one unit of traffic mode f with respect to arc

1.4 Network Design 9

a, respectively. Now the integer design variables yf
a indicate the number of

units of traffic mode f that uses arc a in the solution. The flow variables xp
a

denote the fraction of the traffic bp which is routed over arc a.

(NDP) min
∑

p∈P b
pcpTxp +

∑
f∈F d

f T
yf

s. t.

(i)
∑

p∈P b
pxp

a −
∑

f∈F u
fyf

a ≤ 0, ∀a ∈ A
(ii) x(δin

p (u))− x(δout
p (u)) = 0, ∀p ∈ P, u ∈ V \ (O(p) ∪D(p)),

(iii) x(δin
p (D(p))) = 1, ∀p ∈ P,

(iv) x(δout
p (O(p))) = 1, ∀p ∈ P,

(v) xp
a ≥ 0, ∀p ∈ P, a ∈ A,

(vi) yf
a ∈ N0, ∀a ∈ A, f ∈ F.

Inequalities (i) limit the amount of flow on an arc a to its installed ca-
pacity, determined by the design variables. The flow equations (ii), (iii), and
(iv) ensure that each traffic demand is routed from its origin to its desti-
nation. Constraints (v) and (vi) ensure non-negativity of all variables and
integrality of the design variables. The model (NDP) can be seen as a multi-
commodity flow problem with the OD-pairs as commodities and additional
slack variables yf

a for maximum capacity constraints.

This model can be seen as a network flow problem with additional setup
cost for using an arc for the first time.

Drawbacks of this model are that the flows for an OD-pair can not be
controlled, and therefore the resulting routes of the passengers may be unac-
ceptable in practice due to their length or the number of transfers. Also the
structure of the designed network may not be reasonable for the operation of
lines, because there may not exist a “good” decomposition of the solution of
the NDP into lines since the lines can, e.g., become too short to be operated
economically.

1.4.3 Applications

There are, as far as we know, no publications that apply mathematical mod-
els and methods to a real or at least realistic approximation of a problem of
a traffic company. The reason seems to be that, on the one hand, a com-
plete redesign or a construction of a traffic network from scratch occurs very
rarely. On the other hand, many design decisions are heavily influenced by

10 Planning in Public Transit

politics, which cannot be modeled properly. But we think that a mathemati-
cal approach is nevertheless useful for extensions or modifications of existing
networks or for evaluation purposes.

1.5 Line Planning

1.5.1 Description

The line planning problem (LPP) consists of designing lines and their fre-
quencies, if a network of possible end and transfer points of lines and physical
links between them and a set of OD-pairs and associated demands is given.
Eventually some of the links are only usable by certain modes of traffic, such
as roads that can only be used by buses or railways that can only be used by
trains. The set of OD-pairs is the same as in the network design problem.
The line routes and their frequencies must be constructed in such a way that
they are able to satisfy the transport volume given by the OD-pairs. The
objective is to minimize the operation cost as well as the inconvenience of
the users. That means we try to reduce their dwell times in the system, as
well as the number of transfers which are necessary to get from the origin to
the destination.

In practice, the usable links are not given by a preceding NDP optimiza-
tion but by used plus potential ones that are manually selected. In general,
the LPP does not consider set up costs for new routes.

1.5.2 Models

The LPP itself is already a problem that consists of two subproblems. On
the one hand lines and their frequency have to be selected, on the other hand
it has to be determined how the passengers utilize these lines to satisfy their
transportation needs.

In many articles the LPP is solved sequentially. At first the traffic volume
of an OD-pair is distributed over the arcs of the network by the algorithm
of Bouma & Oltrogge [1994]. This algorithm routes passengers through the
network by rules which should simulate the behavior of real travelers. Then
a path-based model for the line planning problem can be formulated where
each potential line is a path in a network N = (V,A). We use the same
network and notation for OD-pairs as for the NDP. Let now be L the set of

1.5 Line Planning 11

potential lines, c` the cost, and F` the set of potential frequencies for line
` ∈ L. In general, every set F`, ` ∈ L also includes 0 for not using the
corresponding line. Let A ∈ {0, 1}A×L be the arc-line incidence matrix, and
let finally be b ∈ RA the demand of traffic over the arcs. Then we formulate
a model for the LPP as

(LPP) min cTx,

s. t.

(i) Ax ≥ b,

(ii) x` ∈ F`, ∀` ∈ L.

The decision variables x give the frequency for the used lines and zero if a
line is not used. Variants of this of model are, e.g., used in Bussieck et al.
[2003] and Claessens et al. [1998]. There also the number of carriages of a
line plays a role because lines of railways are planned. In Goossens et al.
[2004] a model with binary decision variables is proposed by introducing a
variable for each combination of line and frequency.

Another model that integrates the determination of the passenger flows
and the finding of lines with their frequencies is proposed by Borndörfer
et al. [2004]. There two path-based models for the lines and the passengers
are coupled. It uses additional variables yp ∈ R+ for every path p ∈ P . Here
P is the set of potential paths that passengers use to get from a start point
of an OD-pair to an end-point. The variables x`, ` ∈ L are binary variables
that are one if a line is used and zero otherwise. The frequency of a line
is given by a third kind of variable, namely f` > 0, ` ∈ L. The maximum
capacity of a line is given by F`. Like in (NDP) bp denotes the traffic demand
for an OD-pair p. We denote the set of all paths from the source to the sink
of an OD-pair p by P p and the set of all paths that use an arc a ∈ A by
P (a). We denote the set of lines that uses an arc a ∈ A by L(a). The vector
κ ∈ RL+ gives the capacities of the lines in terms of passengers. To calculate
the cost of a line plan we need the inconvenience da of a passengers that uses
an arc a, the set up cost c` and the operating cost e` of a line ` ∈ L. Now
we are able to formulate model (LPP2):

(LPP2) min cTx+ dTy + eTf,

s. t.

(i) y(P p) = bp, ∀OD-pairs p,

(ii)
∑

l∈L(a)

κ`f` − y(P (a)) ≥ 0, ∀a ∈ A,

(iii) f ≤ Fx,

(iv) x ∈ {0, 1}L, 0 ≤ f ≤ F, y ≥ 0.

12 Planning in Public Transit

Constraints (i) ensure that all traffic demands are met. They are equivalent to
the flow conservation constraints (ii), (iii), and (iv) of (NDP). Constraints (ii)
couple the passenger flow and the provided capacity of the lines. Constraints
(iii) are forcing x` to one if line ` has a positive frequency.

We have left out in both models the constraints for minimum frequencies
for the sake of simplicity. In practice various additional requirements on
lines and line plans occur which are modeled as additional constraints in the
literature.

We think that (LPP2) is more appropriate for bus and especially urban
traffic, because in urban traffic the routing of the passenger is highly depen-
dent on the existing lines, since in most cases a passenger can choose between
different reasonable routes to get from one location to another. (LPP) is
more appropriate for railway traffic, because there, in general, the network
is sparser and hierarchically structured. Therefore the travel routes of the
passengers are more ore less predetermined.

1.5.3 Approaches

In Claessens et al. [1998] a variation of model (LPP) with binary decision
variables and additional constraints for maximal frequencies is used. This
problem is solved by first generating all possible lines, which have to be
“reasonable” (e.g., at most twice as long as the shortest path between its
endpoints). The resulting integer program is then solved by a branch-and-
bound approach. Other publications such as Bussieck et al. [2003] treat a
non-linear model that stems from adding variables for the number of carriages
per line. In Schöbel & Scholl [2006] two passenger centric approaches are
presented. The first minimizes the overall travel times of the passengers, the
second minimizes the number of transfers of passengers, both with a certain
budget to establish lines. Computational results to solve the second problem
with Dantzig-Wolfe-decomposition are provided. However, the maximum
number of lines considered in these computations seem to be rather small for
real world applications.

A short review of recent publications about line planning and an improved
version of the algorithm of Claessens, Dijk and Zwaneveld using Branch-and-
Cut can be found in Goossens et al. [2004]. Another model that does not
minimize cost but maximizes the number of passengers that do not have to
change a line is proposed in Bussieck et al. [1997].

1.6 Planning of Bus Stops 13

An approach to solve the LP-relaxation of (LPP2) with dynamic column
generation is proposed in Borndörfer et al. [2004]. With this approach lower
bounds for the LPP of medium public transit carriers can be calculated.

1.5.4 Integration

The model (LPP2) is already an model that integrates the line planning
problem with the passenger flows. A drawback of this model as well as of
model (LPP) is that they cannot consider the number of line changes of the
passengers in the objective function. It would be preferable to simultaneously
minimize the cost and the number of changes. However, at the moment the
models for this problem are too large to be solvable.

1.6 Planning of Bus Stops

In the line planning problem only end points of lines and transfer points are
determined, the locations of intermediate stops were not taken into account.
These locations influence the comfort of the passengers, and therefore also
the attractiveness of the line. Furthermore, additional stops are slowing down
the average trip time and are increasing the operation cost.

The literature about the determination of the number and locations of
bus stops is dealing mostly with simplified networks, such as single lines,
or finite or infinite grid networks. An example is Chien et al. [2003]. Here
a subset of possible bus stops on a segment of a bus route is selected by
complete enumeration of all possible combinations of bus stops, minimizing
user and supplier cost. Another example is van Nes & Bovy [2000], where a
section of a network is examined, in which a homogenous coverage by parallel
lines of a certain spacing is assumed. A spacing of the lines and a distance
between the bus stops is calculated which again minimizes the sum of the
cost of the supplier and the users. The non-linear models in this article were
either solved analytically or numerically by standard software.

It seems to be highly unrealistic to integrate the planning of bus stops
into the network design problem or the line planning problem, because only
simplified networks are examined here. Additional, it is unclear how potential
bus stops should be integrated into the planning network of the NDP or LPP.

14 Planning in Public Transit

1.7 Timetabling

Once the lines and the service frequencies are established, the precise arrival
and departure times of the vehicles at the stations have to be determined.
That is, the result of this planning step are the timetables of the different
lines at the stations. These timetables should often be cyclic or periodic.
The goal is to minimize the waiting times (in- and outside the vehicle) for
transfers from one line to another. Additional usual requirements are that
the departure times are distributed uniformly over a certain time period.
That means, e.g., that it is not allowed that all vehicles depart in a short
time span and then for a long time span nothing happens. Sometimes also
the number of vehicles needed to operate the resulting timetable is part of
the objective function or limited.

Since the literature on timetabling without periodicity is very sparse and
applications of it are not know to us, we will discuss it here only very shortly
and then describe the timetabling problem with periodicity in more detail.
A model for the timetabling problem without periodicity was proposed by
Ceder & Tal [1997]. They give a straightforward mixed integer program,
which maximizes the number of possible transfers without waiting time. In
this model it is possible to give minimal and maximal headways between
two adjacent bus departures at the same route. It was not possible with
a standard MIP solver to solve other than very small problems, using five
transfer nodes and five routes. Therefore a kind of greedy heuristic is given,
which subsequently fixes the departure times of the buses.

1.7.1 Description

Most European public transport companies are using periodic timetables,
i.e., the time intervals between two departures of the same line at the same
station have the same length for some period of time. The least common
multiple of these intervals (usually one hour) is the planning period T . After
this planning period, all departures at time t reoccur at time T + t. The
problem of finding these cyclic departure times minimizing the waiting time
of passengers that want to change a line is called the periodic timetabling
problem.

1.7 Timetabling 15

2min

1min

1min

2min

5min 1min

1min

2min

2min

A2

D2

A4

D4

A1 D1 A3 D3
Line 1

Line 2 Line 3

Station 1 Station 2

Figure 1.2: Graph for the Timetabling Model

1.7.2 Models

Recent models for the periodic timetabling problem are based on a model
for the periodic event scheduling problem (PESP) by Serafini & Ukovich
[1989]. Additional to the planning period T a set of events V is given. For
timetabling an event is the arrival or departure times of a directed line at
a certain location. Furthermore we have a set of arcs A connecting pairs of
interdependent events. For every event v ∈ V a time πv has to be found
such that the sum of time spans between interdependent events i and j with
ij ∈ A is minimized. The time-span between two events can be expressed by
πj − πi − `a. The constants `a, and ua, a = ij ∈ A denote the minimum and
maximum time-span between to events i and j. The term

(πj − πi − `ij) mod T

can then be interpreted as the avoidable waiting time between the events i
and j. Finally cij gives a weight how important a link between two events i
and j is. This could, e.g., be the number of passengers that attend to event i
as well as event j

(PESP) min
∑

a=(i,j)∈A

ca((πj − πi − `a) mod T),

s. t.

(i) (πj − πi − `a) mod T ≤ ua − `a, ∀a = (i, j) ∈ A,
(ii) πv ≥ 0, ∀v ∈ V.

16 Planning in Public Transit

Here `a and ua are lower and upper bounds for the duration between the
two events i and j. This model can be transformed into an mixed integer
program (see Liebchen & Möhring [2002]).

Figure 1.2 illustrates the arrival and departure of different lines at two
stations. Events A1 and D1 symbolize the arrival and departure of line 1
at station 1, and A3 and D3 the arrival and departure at station 2 of the
same line. The other events symbolize arrivals and departures of other lines.
Each time on an arc is the minimum time-span between two events. The
time between event A1 and D1 can, e.g., stem from the time needed by the
passengers to leave and enter the vehicle. The time on arcs between events
of different lines may be the walking time from one platform to the one of
the other line. The time between event D1 and A3 finally is the driving time
to get from station 1 to station 2.

1.7.3 Algorithms

In Liebchen & Möhring [2004] a survey of algorithms for periodic timetabling
can be found and an outlook of possible enhancements and integration with
line planning and vehicle scheduling are given. A practical application of
their timetabling algorithm is presented in Liebchen & Möhring [2002]. In
this article the timetables of the Berlin subway were successfully optimized
under consideration of the needed number of vehicles by a standard MIP-
solver

An extension and application of the timetabling problem for railways can
be found in Kroon & Peeters [2003]. They consider the problem of safety of
trains using the same track in the PESP. These problems were solved by a
commercially available timetabling system DONS (see Hooghiemstra et al.
[1999]), which is based on a constraint programming solver.

An approach which considers line planning issues in the timetabling prob-
lem is described in Lindner [2000]. Here a cutting plane algorithm based on
an IP-model is used.

1.7.4 Integration

The articles mentioned above show that intentions to integrate the time-
tabling either with the previous step of line planning or with the subsequent
step of vehicle planning exist. However, at the moment this integration is

1.8 Planning of Public Tenderings 17

either rudimental or academic. Also, in all these publications timetables are
optimized for a standard hour, and peak times are ignored or considered
manually in a post-processing step.

1.8 Planning of Public Tenderings

Another important topic in the planning process of public transport is the
planning of public tenderings. In the European Union it is common practice
that local authorities, such as governments of counties, cities, or even states,
subsidy the operators of public transit which in return guarantee a defined
service level. We will call these authorities orderers, since they order a certain
level of public transport from the operators, i.e., the traffic companies which
operate the public transit. Sometimes the orderers own the operators, what
can be problematic in terms of market access for competitors.

Due to a recent proposal of an amendment to the directive 1191/69 in
the version 1893/91 of the European Union, the liberalization of the mar-
ket for public transit has started in the European Union. This directive
proposes economic independence of public transit carriers and the elimina-
tion of distorting conditions of competition between them. The amendment
of this directive, which was published in February 2002, concerns “public
service requirements and the award of public service contracts in passenger
transport by rail, road and inland waterway”. The most important point in
this proposal is that most services in public transport will be obliged to be
tendered publicly by the orderers of public transit. Only subways, commuter
trains, and very small traffic networks are excluded. This means that also
the public transit companies which are in communal ownership have to face
competition.

Even if this proposal is still under discussion in the various EU bodies, it
already has the effect that an increasing amount of public transit is tendered
publicly. In such a situation the question arises, in which partitions a public
transit network should be tendered. Here two conflicting goals can be identi-
fied. On the one hand competition between the operators of public transport
is desired, on the other hand the pieces of the network which are tendered
as a unit must be economically reasonable. The size and the shape of the
partitions influences these goals. If, for example, single lines are commis-
sioned, the operator has not much potential to build good vehicle schedules
and duties. If on the other hand large regions are only operated by a single
company, the replacement of the operator is difficult, if not impossible, which
may lead to less competition and higher fares.

18 Planning in Public Transit

The tendering problem is described in more detail in Daduna [2001]. A
practical approach to take the economical aspects of the partitioning into
account would be to select different partitions of the network to be tendered
which are reasonable in terms of competitivity, and then to approximate the
operation cost of the partitions. The best partition of the network in terms
of operation cost and competitivity could then be selected and tendered. In
general, the orderers lack the detailed planning know-how of the operators.
Therefore integrated optimization tools are helpful that support the orderers
to reliably estimate the expenses needed to operate a certain part of the
network.

1.9 Vehicle Scheduling

The next problems are operational planning problems. They can be char-
acterized by planning operative resources of a company like vehicles and
duties. In this section we give an overview about vehicle scheduling. We will
describe the vehicle scheduling problem and the duty scheduling problem in
more depth than the other planning steps, because these two are the basis
for the main topic of this work, the integrated vehicle and duty scheduling
problem.

1.9.1 Description

The goal of the vehicle scheduling problem (VSP) is to find a cost minimal
assignment of vehicles to the trips stemming from the timetabling.

Input for the vehicle scheduling are the timetabled trips and the possible
deadhead trips of the vehicles. The timetabled trips are the trips of vehicles
that transport passengers. Deadhead trips give the possible concatenation
of timetabled trips into rotations. The set of timetabled trips and deadhead
trips together are simply called trips. Each trip has a start- and end-time
and a start- and end-location, further we need to know the length and the
driving time of each trip.

We use the term deadhead trip, or shortly deadhead, also for the concate-
nation of two timetabled trips without moving the vehicle. This is different
to the terminology of most public transit companies, where these concatena-
tions are called turns. Turns regularly occur after the end of a timetabled
trip, when the vehicle is stopped for a while and then restarts the next trips

1.9 Vehicle Scheduling 19

with the opposite direction. We have also special deadhead trips called pull-
out trips which model the begin of a rotation, or pull-in trips which model
the end of a rotation.

The trips will be assigned to vehicles. The set of available vehicles is called
a fleet. The maximum number of vehicles used can be a constraint of the VSP
or be part of its result. Each vehicle has a unique vehicle type. Typical vehicle
types are standard bus, double decker, or articulated bus. Each vehicle type
has a set of characteristics which is relevant for the planning process, such
as the number of seats, an average speed, minimum maintenance intervals,
or maximum length of covered distance without refueling. Not all vehicle
types are able to service all trips. For instance, long buses cannot go around
narrow curves, double deckers may not pass low bridges, or a larger bus is
preferred for trips with high passenger volume.

Each vehicle of a fleet is associated with a unique garage at a certain
location. Each garage contains vehicles of varying types in certain quantities.
We call a vehicle type/garage combination a depot. We may have a maximum
number of vehicles of certain types per garage or in total. These numbers
are called capacities of the depots or vehicle type capacities.

A rotation, sometimes also called block, is an alternating sequence of
deadhead and timetabled trips that begins and ends in the same depot. Ro-
tations can be combined to courses. A course is a set of rotations that can be
driven by a single vehicle. We call a set of courses that covers all timetabled
trips a vehicle schedule.

The cost of a vehicle schedule is composed by fix cost per used vehicle,
cost per driven distance, and cost per time outside of a garage of a vehicle.
These costs depend on the vehicle types. In the scenarios known to us, the
fixed costs of the vehicles clearly dominate the other operation cost.

1.9.2 Graph Theoretic Model

The vehicle scheduling problem can be described in terms of an acyclic di-
rected network GVSP = (VVSP ∪ {s, t}, AVSP). The nodes VVSP of GVSP are
arising by the set of timetabled trips plus two additional artificial nodes s
and t, which represent the beginning and the end of courses; s is the source
of GVSP and t the sink. The arcs AVSP of GVSP represent the deadheads, the
arcs that emanate from the source s correspond to beginnings of courses,
those entering the sink t to endings. An example of such a graph is shown

20 Planning in Public Transit

deadhead

pull-in/pull-out trip artificial node

timetabled trip

Figure 1.3: Vehicle scheduling graph

in Figure 1.3. An alternative graph model (see, e.g., Lamatsch [1992]) intro-
duces timelines. These are paths build by arcs and nodes that symbolizes
the standing of a vehicle at a garage between to rotations. Timelines help
to reduce the size of the planning graph under the drawback that certain
restrictions on courses are not modelable.

Associated with each deadhead a is a depot ga ∈ G from some set G of
depots. A depot is a unique tuple of vehicle type and garage. The cost of an
arc a is denoted by da ∈ R.

There may be parallel arcs in GVSP with different depots and costs. We
denote by Ag

VSP := {a ∈ AVSP : ga = g} the set of deadheads that can be
covered by a depot g ∈ G, by δin

g (v) := δin(v) ∩ Ag
VSP the set of arcs going

into node v, restricted to arcs in Ag
VSP, and by δout

g (v) := δout(v) ∩ Ag
VSP the

set of arcs leaving node v, restricted to arcs in Ag
VSP.

A course of type g ∈ G is an st-path in GVSP that uses only deadheads of
type g, i.e., an st-path p such that p ⊆ Ag

VSP. The vehicle scheduling problem
(VSP) is to find a vehicle schedule of minimal cost which complies with the
capacities of the depots.

1.9 Vehicle Scheduling 21

1.9.3 Integer Programming Model

We formulate the VSP now in terms of integer programming:

(VSP) min dTy,

s. t.

(i) y(δin
g (v))− y(δout

g (v)) = 0, ∀v ∈ VVSP, g ∈ G,
(ii) y(δin(v)) = 1, ∀v ∈ VVSP,

(iii) y(δout(v)) = 1, ∀v ∈ VVSP,

(iv) y(δout
g (s)) ≤ kg, ∀g ∈ G,

(v) y ∈ {0, 1}AVSP .

The variables ya ∈ {0, 1}, a ∈ AVSP are 1 if a is used in the solution and 0
otherwise. Constraints (i) ensure that every block uses only trips of the same
depot. Constraints (ii) and (iii) can either be interpreted as set partitioning
constraints, because they take care that every timetabled trip is covered by
exactly one arc starting or ending at it. Or they can be interpreted as flow
conservation constraints combined with a minimum and maximum capacity
of one per timetabled trip. One of the sets of constraints (ii) and (iii) is
redundant. However, both will become important in certain relaxations of
(VSP). Constraints (iv) enforce the capacities kg on the number of vehicles
of a certain type at a certain garage defined by the depot g.

This ILP models a multi-commodity-flow problem (see Section 1.3) with
additional capacity constraints. Each depot corresponds to one commodity.

1.9.4 Algorithms

The main problem of solving the VSP for bus traffic is the large number of
possible deadheads. In practice, many of the deadheads consist of a pull-
in trip, a stopover at a parking facility or a depot (called standing time),
and a pull-out trip. Such deadheads are called long arcs or pull-in-pull-out
trips in the literature. The number of these long arcs can in the worst case
be n(n+ 1)/2, if n is the number of timetabled trips, since every timetabled
trips can be connected to every other subsequent timetabled trip. The largest
instance in the literature solved to optimality with respect to the number of
vehicles up to now has 28,000 timetabled trips and millions of deadheads
(Löbel [1997b]).

There are two methods proposed in the literature to cope with the large
number of arcs: In Lamatsch [1992] and in the recent publications Kliewer

22 Planning in Public Transit

et al. [2004] a time-line model is proposed, which is based on the single
depot model in Desrosiers et al. [1982]. In the time-line model a long arc is
represented by a path which consists of the pull-in-trip, a path on a time-
line modeling the standing time, and the pull-out trip. This model has the
drawback that it is, e.g., not possible to restrict the maximal length of long
arcs or it is also not possible to vary the cost for long arcs that should
be preferred or avoided. The second approach is to generate the long arcs
dynamically in the process of solving the multi commodity flow problem, as
proposed in Löbel [1997b]. This approach can be seen as a column generation
(here also called arc generation) approach.

Solution methods for large real-world instances of the vehicle schedul-
ing problem are either based on Lagrangian relaxation heuristics (see Löbel
[1997b]) or by heuristic preprocessing and solving the resulting problem by
standard MIP solvers as in Kliewer et al. [2004]. In the more theoretical
oriented articles of Fischetti et al. [2001] and Hadjar et al. [2001] the polyhe-
dral structure of the flow and a path based model of the VSP are examined.
An extensive literature survey of the VSP until 1997 can be found in Löbel
[1997a].

1.9.5 Algorithm VS-OPT

We use the algorithm of Löbel [1997b] called VS-OPT to solve the VSP oc-
curring as a subproblem of the ISP. It works in two stages: At first we relax
all conditions of (VSP) concerning depots. I.e., we solve (VSP) without con-
ditions (i) and (iv). We call this relaxation one-depot-relaxation because the
remaining problem is again a vehicle scheduling problem, but all trips are
belonging to the same (artificial) depot. This relaxation yields a min-cost-
flow-problem and can be solved in polynomial time. In our case we use the
network simplex min-cost-flow solver MCF described in Löbel [1996]4. The
solution of the one-depot-relaxation gives us a lower bound on the cost of the
multi-depot problem.

In the second stage an assignment of timetabled trips to depots is found
by a tabu search. In each iteration of this tabu search an assignment of the
depots G to the timetabled trips VVSP is found. Thus, we get a partition
of VVSP by the sets V g

VSP := {v ∈ VVSP | gv = g}, for all g ∈ G. This
defines for every depot g ∈ G a subnetwork induced by V g

VSP which defines

4freely available at the URL http://www.zib.de/Optimization/Software/Mcf/ (for
academic purposes)

1.9 Vehicle Scheduling 23

a single depot problem that can again be solved by a min-cost-flow solver.
If every subproblem has a feasible solution, all these solutions together form
a solution of the original VSP. This solution gives us an upper bound on
(VSP). In general we are able to find a solution which uses the same number
of vehicles as calculated in the relaxation. Also the upper bound of (VSP)
found in the tabu search has in most cases a gap below 5% to the lower
bound given by the one-depot-relaxation. At this, we have to mention that
the dominating factor in our objective function is the number of vehicles.
I.e., the pullout-trips have significant higher cost than other arcs (about 20
times higher).

The main problem in solving the different min-cost-flow problems occur-
ring in VS-OPT is the huge number of deadheads and, thus, the number of
arcs in the planning graph GVSP. The main portion of these arcs arises by
arcs which represents the connection of two trips by a pull-in-trip of a vehicle,
a waiting time at a depot, and a subsequent pull-out-trip. We call these kind
of arcs pull-in-pull-out trip. These arcs are generated dynamically if needed
in VS-OPT in a kind of column generation. This allows a maximum of flex-
ibility to model the pull-in-pull-out trips. It is, e.g., possible to forbid line
changes for certain lines of specific depots by simply not generating the re-
spective trips or, alternatively, to make them more expensive than deadheads
that do not imply line changes.

For more details of the algorithm we refer the reader to Löbel [1997b].

The largest instance of (VSP), that we know of, arises in scheduling all
buses of the public transit carrier BVG in Berlin. It has about 50 com-
modities, 28,000 nodes, and millions of arcs. This instance was solved by
the algorithm VS-OPT described in Löbel [1997a] to optimality. Since the
BVG is one of the largest carriers in the world we assume that most of the
vehicle scheduling problems (without consideration of further constraints)
from real world applications can be solved by VS-OPT. VS-OPT is used as a
subalgorithm of our integrated duty and vehicle scheduling solver.

1.9.6 Integration

If several days of operation should be planned at once, additional constraints
to the VSP arise. Then tank stops or maintenance checks of the vehicles have
to be considered after covering a certain distance. Sometimes also a uniform
distribution of the traveled distance per vehicle is required. In Gintner et al.
[2004], among other aspects of vehicle scheduling, maintenance checks are

24 Planning in Public Transit

examined. Models and algorithms for these types of problems can also be
found in airline scheduling, see Yu [1997].

The planning of subcontractors, i.e., the decision which timetabled trips
should be operated by vehicles and drivers of the company itself and which
should be outsourced to subcontractors, demands restrictions on the sum of
the driven distance of all vehicle schedules of a certain depot. This is, e.g.,
needed to model subcontractors with a minimal guaranteed mileage.

The vehicle scheduling problem can be partially integrated with the
timetabling problem by allowing to shift timetabled trips. This is known
as trip shifting or sensitivity analysis. Trip shifting gives additional degrees
of freedom and therefore in general allows better vehicle schedules. Only few
publications about trip shifting are known to us: These are Völker & Schütze
[1995], Desaulniers et al. [1998], and Kliewer & Mellouli [2002]. Models and
computations for it can also be found in the master’s thesis Bönisch [2006].
Trip shifting algorithms are integrated in commercial planning tools for pub-
lic transit such as Microbus5 of the IVU AG or Hastus6 of Giro Inc. However,
trip shifting neglects waiting times of passengers or periodic timetables.

Computational studies (Borndörfer [2006]) show that full integration of
(aperiodic) timetabling and vehicle scheduling for single lines is possible.

1.10 Duty scheduling

After the determination of the vehicle schedules, drivers have to be assigned
to the vehicles. This is done in the duty scheduling planning step and will
be described here.

1.10.1 Description

The duty scheduling problem (DSP) consists of finding duties that cover a
set of mandatory tasks as efficient as possible. This set of tasks stems in
general from the timetabled and deadhead trips used in the vehicle schedules
and eventually also from other activities of drivers, such as being on call or
doing administrative work.

5see http://www.ivu.de
6see http://www.giro.ca

1.10 Duty scheduling 25

A duty is a set of tasks that has to comply to certain rules. In our model
each mandatory task has to be covered exactly once, in other models it is also
allowed to cover tasks more than once (this can be interpreted as a second
driver, who uses a bus as a passenger). Besides the mandatory tasks there
are activities which depend on the structure of a duty such as the so called
sign on and sign off times. They are, e.g., necessary to prepare a vehicle
before or after the change of a driver. Also obligatory driver breaks have
to be planned. In general, the breaks can be taken in the vehicle when it
is parking or at certain locations with facilities where the drivers can rest.
The rules to which a duty has to comply are, for instance, restrictions on the
duration of a duty or on the position and duration of breaks. A set of basic
rules is explained in Section 5.2, in practice variations and specializations of
these rules are used.

Global constraints on subsets of the duties may also exist, such as a
maximum number of used split duties or minimum and maximum average
paid times over certain duties in a solution. Such constraints are called
base-constraints. Sometimes deviations from these minima and maxima are
allowed within certain limits, however, these deviations are penalized and
increase the overall cost of the duty schedule.

The cost of a single duty depends mainly on the paid time. Additionally
we may have a fix cost per duty or penalties for the deviation of paid times
or duty durations from certain targets per duty. A detailed description of
the cost of a duty can be found in Section 5.2.5.

1.10.2 Graph Theoretic Model

The basic structure of the duty scheduling problem is modeled by an acyclic
network GDSP = (VDSP ∪ {s, t}, ADSP). The nodes of GDSP consist of a set
of nodes VDSP representing tasks that can be performed by drivers and two
additional nodes s and t, which mark the beginning and the end of duties;
again, like in the vehicle scheduling case s is the source of GDSP and t the
sink. A task v is in general either part of one timetabled trip in the set
VVSP, or of one deadhead trip in AVSP, or it may be a supplementary task
independent of the vehicle schedule. The supplementary tasks model, for
example, sign-on and sign-off times, walking times of a driver, or break times
outside of a vehicle. Sometimes tasks also arise by activities that are not
related to driving, this occurs only rarely and we leave out this case in our
model for the sake of simplicity. We assume that there is at least one task
associated with every timetabled trip and every deadhead trip; these tasks

26 Planning in Public Transit

connection between tasks of different trips

entering/leaving a vehicle

task of a timetabled trip

task of a deadhead trip

supplementary tasks

artificial nodes

walk

connection between tasks of the same trip

begin/end of a duty

begin/end of a vehicle course and a duty

Figure 1.4: Duty scheduling network

correspond to units of work that have to be performed by a single driver
without interruption. Several tasks for the same trip indicate that this trip
has relief opportunities where a driver can be replaced. We denote the tasks
corresponding to a (timetabled or deadhead) trip t by VDSP(t) ⊂ VDSP. Often
the relief opportunities are bound to certain locations such as depots or hubs
of a network. Locations with relief opportunities are often called relief points.

The arcs ADSP of GDSP are called links ; they correspond to possible con-
catenations of tasks in duties or to beginnings or endings of duties. An
example of a duty scheduling graph is given in Figure 1.4. Every duty p is
an st-path in GDSP, but not every st-path is also a duty, because each duty
has to obey various – sometimes very complex – rules.

More details about duties and duty generation can be found in Chapter 5.

1.10 Duty scheduling 27

1.10.3 Integer Programming Model

Our approach to the duty scheduling problem (DSP) is a path based model
(see Section 1.3.2) and can be seen as a set-partitioning problem with addi-
tional base-constraints over the set of mandatory tasks: We want to find a
set of duties, which implies a cost minimal disjoint partition of all mandatory
tasks.

We model DSP as the following integer program denoted by (DSP): Let
D be the set of all duties. Let V̄DSP be the set of mandatory tasks. A duty
p ∈ D is characterized by the set of mandatory tasks it uses, denoted by
V (p) ⊂ VDSP. The cost of a duty p is denoted by cp. Let A ∈ {0, 1}V̄DSP×D

be the task-duty incidence matrix. That is, Atp is 1 if task t ∈ V (p) and
zero otherwise. Let B be the set of base-constraints and R ∈ R

B×D is the
coefficient matrix of the base-constraints:

(DSP) min cTx + γTz,

s. t.

(i) Ax = 1,

(ii) Rx − z ≤ r,

(iii) x ∈ {0, 1}D,
(iv) z ≥ 0.

The variable xp, p ∈ D, is one if duty p is used in the duty schedule and zero
otherwise. The slack variables zb, b ∈ B, give the deviation of base constraint
b from its target rb upwards. The tasks in V̄DSP may include deadheads used
by a fixed vehicle schedule. The set of feasible duties D uses only deadheads
used by this vehicle schedule.

(DSP) (or its set covering variant) is the model which is used in most
publications about duty scheduling. Duty scheduling problems of airlines
and railways are often formulated as set covering problems. This allows to
consider passenger rides of drivers implicitly as overcoverings of certain tasks
and therefore keeps the model compact. In duty scheduling for public transit
this is often not wanted, because passenger rides are only allowed for certain
connections or not at all because bus trips are vulnerable to delays.

In the literature also flow oriented models of the DSP can be found in,
e.g., Friberg & Haase [1997]. In our applications the number of constraints
on feasible duties and the difficulties to formulate them as linear constraints
makes it inappropriate to use such kind of model.

28 Planning in Public Transit

1.10.4 Algorithms

Basically, in the recent literature the DSP is solved by column generation
approaches and various set-partitioning- or set-covering-heuristics. The ap-
proaches differ in the methods to solve the LPs that occur in the column gen-
eration, in the models of the pricing problems and their solution approaches,
and in the used heuristics to find integral solutions.

To our knowledge, the first approach to solve duty scheduling prob-
lems in public transit with a set-partitioning/column generation-approach
was Desrochers & Soumis [1989]. Further examples of such duty schedul-
ing algorithms are Desrochers et al. [1992] for bus transit (integrated in the
Hastus Crew-Opt System), Andersson et al. [1998] for airline cew scheduling
(integrated in the Carmen System), and Kroon & Fischetti [2000] for railway
transit (integrated in the Turni System). An extensive survey about duty
scheduling can be found in Ernst et al. [2004].

Our algorithm DS-OPT to solve DSP, which is based on the work of
Borndörfer et al. [2003], relies heavily on the MIP (DSP): it generates (DSP)
(or at least an approximation of it), solves its LP-relaxation by the bundle
method, and uses the information of the LP-relaxation in a heuristic to finally
find a solution of (DSP). DS-OPT is integrated in the Microbus Planning
System for public transit of the IVU AG and also an important subroutine
of our integrated vehicle and duty scheduling approach.

1.10.5 Integration

Integration of vehicle and duty scheduling is already discussed in some publi-
cations; real world applications of it have only recently emerged. A literature
survey and an overview of our algorithm IS-OPT that solves the integrated
duty and vehicle scheduling problem can be found in Section 2. In the sub-
sequent chapters important parts of IS-OPT will be described and computa-
tional results achieved by it will be reported.

1.11 Rostering

1.11.1 Description

After the completion of the duty schedule a set of anonymous duties for a
fixed planning horizon is determined. These duties have to be assigned to

1.11 Rostering 29

individual drivers. This step is called rostering and a specific assignment is
called roster. A roster has to satisfy various rules stipulated by laws and
agreements with trade unions. In the European Union the most important
rules deal with minimum rest periods between shifts, maximum shift times,
maximum weekly driving times, and minimum weekly rest periods. Addi-
tional conditions on the rosters may arise by requests of drivers, e.g., an
assignment to a certain duty or a specific type of duty at a certain date.

In some publications the rostering is split into a rostering and a crew
assignment step. Then the rostering consists of generating anonymous se-
quences of duties that have to be assigned in a second step to individual
drivers.

Drivers can not be handled uniformly with respect to the rostering prob-
lem because they may have a different history concerning rest periods, due
to their different assignments in previous planning periods. E.g., a driver
which had a late duty at the last day of the previous planning period may
not begin the new planning period with an early duty because this violates
the requirement of a minimum rest period between two duties. Moreover,
there are in general groups of drivers with different labor contracts, e.g.,
stipulating different weekly working times. Also the local knowledge or the
qualifications to drive certain vehicles may differ.

The objective of rostering step depends on the working time model of
the public transit company. If drivers have fixed working time, an important
objective of the rostering is to find a cost minimal roster, with respect to
overtime or paid time. In companies with flexible working time, it suffices
to produce rosters with certain average working times for groups of drivers
because here deviations of the contractual working time can be compensated
in later periods. Another goal is to maximize the satisfaction of the drivers
regarding wishes about the kind of duties and the time of the rest periods.
Sometimes also only the problem to find a feasible solution of the rostering
problem is considered.

In Germany and in Switzerland it is common practice to create a roster
by sorting duties into a fixed pattern of duty types, which is called rota. An
example of a rota can be seen in Figure 1.5. Such a rota may be stipulated
by agreements with trade unions or the workers council of the company. If
a rota is used, the duty scheduling planning step must produce the duties of
different duty types in the right ratio for the rotas.

30 Planning in Public Transit

Sun

late late day day early early

early late daydaylate

late lateearly early day

late lateday early early

lateday earlyday early

late day day early early

latelate day day early

late late day day early

early

Mon Tue FriWen Thu Sat

6
5

1
2
3
4

7
8

Figure 1.5: Example of a rota with six workdays followed by two days off

1.11.2 Model

The model of the rostering problem is very similar to the duty schedul-
ing problem. The duties correspond to the tasks of the DSP. Then we can
again create a planning network and formulate rules for feasible paths in this
network that corresponds to roster. These roster are corresponding to the
columns of a duty-roster-coincidence-matrix of a set-partitioning problem.
Additional constraints may arise by qualifications of drivers needed to per-
form certain rosters. So maybe there is only a limited number of drivers that
is allowed to drive a certain vehicle or the drivers only have knowledge of
certain routes and are not allowed to driver other ones. Also predetermined
rotas can be considered in such models by additional constraints.

1.11.3 Algorithms

There is an extensive literature about the rostering problem in airline traffic,
see Kohl & Karisch [2004] for a literature survey and the description of the
model and algorithm of the Carmen Crew Rostering system. There are also
some publications in rostering for train companies, e.g., Caprara et al. [1998];
Ernst et al. [2001]. An exhaustive literature survey about duty scheduling
and crew rostering in general can be found in Ernst et al. [2004]. In general,
column generation and LP-techniques are used. Literature about crew roster-
ing for bus traffic or public transport in general is sparse. A recent technical
report about a crew rostering system for public transport was presented at
the CASPT 2000 by Emden-Weinert et al. [2001]. In this article the crew
rostering problem is solved by genetic algorithms.

1.12 Conclusion 31

1.11.4 Integration

Duty rostering can be integrated with duty scheduling. This is equivalent
to using longer time horizons than one day in the duty scheduling problem.
Then additional rules stemming from rostering have to be considered, such
as minimum rest periods between duties and sufficient days off. However,
this makes the already difficult pricing problem of the duty scheduling prob-
lem considerably harder for two reasons: On the one hand additional rules
increase the complexity inherently, on the other hand the support of each
column becomes on the average larger with longer planning horizons.

Also the size of the planning problems and the number of potential duties
increases. In contrast, the size of solvable duty scheduling problems is already
limited to ones arising by large depots or medium sized public transport
companies because of the exhaustion of the computer memory.

1.12 Conclusion

We have presented an overview of mathematical models and algorithms of
problems that come up in the planning process in public transport. These
methods are in different stages of practical application. Some, such as the
network design problem, are only theoretically examined, others, such as ve-
hicle and duty scheduling, are integrated in commercial software and are in
daily use in public transport companies. Especially the operational planning
steps have reached a relatively mature stage, but we think that faster comput-
ers with more memory and new methods are enabling further improvement
of the support of the planning process by mathematical methods. We have
pointed out, where this can be done by more detailed or extensive modeling
of the planning problems, such as looking in the timetabling problem not only
at certain standard planning periods, but including the transitions between
peak hours and time of low traffic.

Another field of improvement is the enlargement of the solution space by
integrating subsequent planning steps as in the integration of

• network design and line planning,

• line planning and passenger route selection,

• time tabling and vehicle scheduling,

32 Planning in Public Transit

• vehicle scheduling and duty scheduling, and

• duty scheduling and rostering.

The integrated vehicle and duty scheduling will be examined in detail in
the remainder of this thesis.

Chapter 2

Integration of Vehicle and Duty
Scheduling

This chapter discusses approaches to and advantages of integrated vehicle
and duty scheduling in comparison to traditional sequential planning.

The chapter is structured as follows: Section 2.1 analyzes the importance
of efficient vehicle and duty schedules. We show that integrated planning
can help to improve the overall efficency of vehicle and driver schedules.
Section 2.2 describes two levels of integration. These are used to analyze
the literature about integrated vehicle and duty scheduling in Section 2.3.
In Section 2.4 our approach to integrated vehicle and duty scheduling is
sketched.

2.1 Motivation

The main motivation for integrated vehicle and duty scheduling comes from
regional scenarios where traditional sequential approaches do not lead to
feasible schedules. This is discussed in Section 2.1.1. In Section 2.1.2 we
motivate that also in other scenarios integrated scheduling can increase the
overall planning efficiency. Finally, Section 2.1.3 quantifies the cost of vehicles
and personnel of typical German public transport companies to illustrate the
potential benefits of an integration of vehicle and duty scheduling.

33

34 Integration of Vehicle and Duty Scheduling

4 h
A to B

4 h
B to A

Trip 2

Trip 1

1h

1h

s t

Figure 2.1: Regional Scheduling

2.1.1 Regional Public Transit

The main argument for integrated scheduling is that sequential approaches
often do not work in regional public transit. This section shows the cause of
this fact.

In comparison to urban public transit, regional carriers use few relief
points outside the garages. Sometimes a driver may even start or end pieces
of work only at garages. Additionally, trips are in general longer than trips in
an urban context. Traditional vehicle-first-duty-second planning often results
in vehicle rotations without possibility to grant drivers the necessary breaks
or without possibility to relieve a driver before the maximum driving time is
reached. Eventually, no feasible duty schedule can be constructed using this
approach.

An example for such a situation is illustrated in Figure 2.11. It shows a
small planning graph that consists of two timetabled trips denoted by Trip
1 and Trip 2. One of these trips starts at location A and ends at location B,
the other trip goes the opposite direction from B to A. The duration of the
trips is four hours each. The connections from A to B and vice versa require
only one hour of driving time (perhaps the timetabled trips do not take the
shortest route). The other connections have a duration of zero, that is, Trip
1 begins at the depot, Trip 2 ends there, and the end of Trip 1 is at the same
location and time as the beginning of Trip 2. Feasible vehicle rotations and
duties consist of paths from node s to t. We assume for this example that
the only condition on the feasibility of duties is that they do not exceed a
duration of seven hours.

The fleet minimal vehicle schedule uses only one vehicle. It consists of
the rotation that starts at the depot, performs Trip 1, then Trip 2, and goes
back to the depot. However, no feasible duty exists for this rotation because

1The symbols used in this figure are explained in Figure 1.4.

2.1 Motivation 35

ηv :=
time in timetabled trips

driving time

ηd :=
driving time

paid time

ηt :=
time in timetabled trips

paid time

Figure 2.2: Indicators of operational planning

the driver would have to work for eight hours. The only feasible solution for
this scheduling problem consists of two vehicle blocks. The first one covers
only Trip 1 and the needed deadheads, the second one the other trip and
the appropriate deadheads. These blocks can be assigned to two duties that
have a length of five hours each. Obviously this solution can not be found
by a vehicle-first-duty-second approach.

2.1.2 Vehicle and Duty Schedule Efficiency

A method to measure the quality of vehicle and duty schedules besides actual
costs are performance ratios. These are quotients of certain characteristics
of the schedules, which are often used to compare the efficiency of different
public transit companies in industry benchmarks.

The quality of the vehicle schedule can be measured by the ratio ηv be-
tween the total time of timetabled trips and the total time of vehicles out of
depot. This ratio is called the vehicle schedule efficiency. The duty schedule
efficiency is the ratio ηd between the driving time (which is equal to the time
the vehicles are driven) and the total paid time. Finally, the total planning
efficiency ηt(= ηv ·ηd) is the product of these two ratios. Thus, ηt is the ratio
between the total time on timetabled trips and the total paid time. These
efficiencies are summarized in Figure 2.2.

These ratios can be used to illustrate basic dependencies between vehicle
schedule efficiency, duty schedule efficiency, and the total efficiency. Fig-
ure 2.3 gives an example for a real company. Each of the lines in the figure
represents possible combinations of vehicle and duty scheduling efficiencies,
which lead to a total efficiency of 55%, 60%, or 65% respectively. One can
see that a bad vehicle schedule efficiency can be compensated by a good
duty schedule efficiency and vice versa. E.g., it is possible to build high effi-
ciency duties by building vehicle schedules including turning times that can

36 Integration of Vehicle and Duty Scheduling

du
ty

 s
ch

ed
ul

in
g

ef
fi

ce
nc

y
[%

]

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 55 60 65 70 75 80 85 90

vehicle scheduling efficency[%]

B

A C

65%

60%

55%

Figure 2.3: Vehicle scheduling efficiency vs. duty scheduling efficiency

be used by the drivers to take their breaks. This situation is represented by
point A in the figure 2.3. On the other hand, the reduction of turning times
may force the planners to schedule more breaks for the drivers at locations
with rest facilities. And the additional time needed by the drivers to get to
these facilities worsens the duty scheduling efficiency (point B). In general,
the concentration on the improvement of only one of these ratios leads not
to an optimal overall efficiency. An integrated approach, which solves the
vehicle and the duty scheduling problems at once, is able to improve the
total efficiency (point C), even if it produces, from individual points of view,
suboptimal vehicle and duty schedules.

2.1.3 Vehicle and Duty Costs

It is in general not easy to come up with cost figures for public transit.
However, in Leuthardt [1998] the cost structure for the operation of buses
of German public transport carriers is analyzed. In particular, urban and
regional public transit companies are compared.

In this article it is stated that urban carriers employ in the average 2.6
drivers and 1.2 other personnel (administration, maintenance) per bus, re-
gional carriers are having per bus 2.0 drivers and 0.6 other personnel. On
the average the crew costs of urban carriers amount to about 75% of the
total cost and to about 70% for regional carriers. Assuming that drivers and
other personnel have roughly the same average income, the crew costs (i.e.,

2.2 Approaches to Integrated Scheduling 37

driver cost vehicle cost sum

fixed fuel

urban carriers 51% 11% 5% 67%

regional carriers 54% 15% 6% 75%

Table 2.1: Vehicle and duty costs according to Leuthardt [1998]

the income of the drivers) accounts for about 50% of the costs of a public
transit company.

The fixed costs for buses (amortization and interest on invested capital) is
the second largest cost factor with about 11% and 15% of the total costs per
bus for urban and regional carriers, respectively. As the next item follows
the fuel cost with about 5–6% of the total cost. Thus, the direct costs of
vehicles are about 16–21% of the total costs. In Table 2.1 this figures are
summarized.

We conclude that the overall costs of drivers and vehicles amount to about
67–75% of the total costs of an average public transit company in Germany.
It is therefore crucial for the cost effectiveness of public transport companies
to utilize these resources efficiently.

2.2 Approaches to the Integrated Vehicle and

Duty Scheduling Problem

We have explained traditional sequential vehicle and duty scheduling in Sec-
tions 1.9 and 1.10. In practice and in the literature also other approaches are
taken:

1. The traditional approach of urban carriers is to first schedule the ve-
hicles and then the duties. We denote this approach by sequential
scheduling. Sometimes some duty scheduling constraints are consid-
ered in the vehicle scheduling step to improve total efficiency or to
improve the probability to find a feasible solution. An example for this
approach is to allow before or after some timetabled trips only connec-
tions with enough break time for drivers to locally fulfill at least one
break rule. This, of course, may lead to suboptimal schedules.

38 Integration of Vehicle and Duty Scheduling

2. In regional traffic companies usually construct at first duties such that
each piece of a duty is also a valid vehicle rotation, and then use these
rotations to build vehicle schedules. The rotations are used to construct
vehicle blocks by a greedy algorithm. This approach is called combined
vehicle and duty scheduling. The drawback in comparison to integrated
vehicle and duty scheduling is that it is not possible to control vehicles,
i.e., the number of vehicles can not be minimized and it is not possible
to set limits on numbers of vehicles of certain types or on certain depots.

3. Recently algorithms have emerged that fully integrate the problems of
vehicle and duty scheduling and solve them in one step minimizing an
objective function that considers vehicle as well as duty related costs.

At first we will give a generalized ILP model for duty scheduling that
takes deadheads into account, then we model the combined approach, which
can be solved by a slightly modified duty scheduling problem solver. In
Section 2.3 we present models and algorithms for integrated optimization
from the literature. Finally, in Section 2.4 we describe our algorithm IS-
OPT which solves fully integrated vehicle and duty scheduling problems.
Important parts of IS-OPT are analyzed in the following chapters, for example
the the proximal bundle method in Chapter 4, duty generation in Chapter 5,
and the primal heuristic in Chapter 6.

2.2.1 The Link between Duty Scheduling and Vehicle
Scheduling

In general the DSP is dependent on a vehicle schedule. So let y∗ be an
assignment of values to the variables of model (VSP) of Section 1.9 satisfying
all constraints of this model. That is, for all deadhead trips a ∈ AVSP is y∗a = 1
if deadhead trip a is used by the vehicle schedule and y∗a = 0 otherwise. We
will also denote a vehicle schedule by y∗. We define a duty schedule that is
compatible to a vehicle schedule y∗ as: a set of duties that covers all tasks
corresponding to timetabled trips exactly once and that also covers exactly
those tasks corresponding to deadhead trips that are used by the vehicle
schedule y∗. Supplementary tasks only appear in this definition indirectly:
They have to be included in single duties to make them feasible but do not
matter in the definition of a duty schedule.

The duty scheduling problem with a fixed vehicle schedule y∗, denoted
by DSPy∗ is to find a duty schedule compatible to y∗ with minimum cost.

2.2 Approaches to Integrated Scheduling 39

Let Dv := {p ∈ D : v ∈ V (p)} the set of all duties that contain some
task v ∈ VDSP and denote by a(v) ∈ AVSP the deadhead of which the task
v ∈ tasks is a part of. The problem DSPy∗ can be stated as the following
(path-oriented) integer program:

(DSPy∗) min cTx + γTz,

s. t.

(i) x(Dv) = 1, ∀v ∈ V T
DSP,

(ii) x(Dv) = y∗a(v), ∀v ∈ V D
DSP,

(iii) Rx − z ≤ r,

(iv) x ∈ {0, 1}D,
(v) z ≥ 0.

The variables x ∈ {0, 1}D are one if the corresponding duty is in the solution
and zero else. The slack variables z ∈ RB+ denote the deviation of a resource
consumption from its target. Equations (i) und (ii) guarantee, that every
task, which is part of a trip used in the vehicle schedules, is also used in
the duty schedule. At this (i) considers the timetabled trips and (ii) the
deadhead trips used in y∗. The constraints (iii) model the base constraints.
We denote the set of base constraints by B. The matrix R is an element of
R
B×D and r ∈ RB. D denotes the set of all feasible duties. The vector c ∈ RD

specifies the cost of the duties, and γ ∈ RB is the vector of the penalties to
violate a global requirement on a duty schedule. All entries of c are positive
and of p are non-negative.

If its clear which vehicle schedule is used we formulate (DSPy∗) with fixed
vehicle schedule y∗ as a “pure”DSP and denote its integer program by (DSP)
as defined in Section 1.10.

2.2.2 The Combined Approach

In the combined approach we create duties whose pieces of work are also valid
rotations. That is every piece of work starts and ends at a depot and uses
only a single vehicle without interruptions. These rotations are in a second
step merged to a vehicle schedule.

For this approach we can use a duty scheduling algorithm if automatically
every piece of work defines also a vehicle rotation. This can guaranteed if
every deadhead trip consists of exactly one task, i.e., no relief points are
allowed on deadheads, and the planning scenario must either not have more

40 Integration of Vehicle and Duty Scheduling

than one depot and one vehicle type, or otherwise relieves of drivers are only
allowed at the depots. These restrictions are due to the fact that otherwise we
probably can not construct rotations from the deadheads used in a solution.

For an ILP-model of the combined approach we replace constraints (ii)
of model (DSPy∗) by two constraints for each timetabled trip. The new con-
straints ensure that a vehicle is available at the beginning of each timetabled
trip and that it is moved away at the end.

(DSPv) min cTx+ γTz ,

s. t.

(i) x(Dv) = 1, ∀v ∈ V T
DSP,

(iia)
∑

a∈δin(v)

x(Da) = 1, ∀v ∈ VVSP,

(iib)
∑

a∈δout(v)

x(Da) = 1, ∀v ∈ VVSP,

(iii) Rx− z ≤ r,

(iv) x ∈ {0, 1}D, z ≥ 0.

Here the set δin(v) ⊂ AVSP is the set of deadheads which end in trip v and
the set δin(v) ⊂ AVSP is the set of deadheads which directly follow the trip v.
Equations (iia) and (iib) are equivalent to the flow conservations constraints
(VSP)(ii) and (iii). They ensure that each timetabled trip has an ingoing and
an outgoing deadhead. In the duty generation process we have additionally
to consider, that pieces of work are only using trips with a common valid
combination of depot and vehicle type. That is, a trip which has to be
assigned to a vehicle of type “A” and a trip which have to be assigned to
a vehicle of type “B” are not allowed in the same piece of work. This can,
e.g., be satisfied by constructing duties separately for each vehicle type. The
main drawback of this model is that it is not possible to include fixed cost per
vehicle in the objective function. An approach to overcome this problem has
been proposed by Haase et al. [2001]. They introduce additional constraints
and certain points in time Θ which count the number of vehicles. Their

2.2 Approaches to Integrated Scheduling 41

model (DSPv) reads

(DSPz
v) min cTx+ γTz + δξ,

s. t.

(i) x(Dv) = 1 ∀v ∈ V T
DSP,

(iia)
∑

a∈δin(v)

x(Da) = 1, ∀v ∈ VVSP,

(iib)
∑

a∈δout(v)

x(Da) = 1, ∀v ∈ VVSP

(iii) Rx− z ≤ r,

(iv) x(Dt) ≤ ξ, ∀t ∈ Θ,

(v) x ∈ {0, 1}D, z ≥ 0, ξ ∈ N.

The variable z counts the number of vehicles and the real number δ is the
fixed cost per used vehicle. The set Θ is the set of points in time, at which
timetabled or deadhead trips are starting. The sets Dt ⊂ D, t ∈ Θ are the
sets of duties, which contain a task, which includes driving a vehicle at time t.
The computational results in Haase et al. [2001] seem to indicate that this
extension makes the problem considerably harder to solve.

If there is no possibility of changing a vehicle outside of a depot each duty
consists of pieces of work that are simultaneously vehicle rotations. Thus,
this model also is able to solve problem instances with more than one vehicle
type and depot, because it can be guaranteed that each feasible piece of work
starts and ends at the same depot and only consists of trips which are valid
for at least one common vehicle type. Under these circumstances for every
solution to model (DSPv) (even without constraints (iia) and (iib)) vehicle
schedules can be constructed by the pieces of work of the duty schedule by,
e.g., a greedy algorithm. This approach is described in Hanisch [1990]. Its
advantage is that this problem can be solved with existing algorithms for the
DSP and VSP.

In a general context with multiple depots or vehicle types and relief points
outside depots combined scheduling can still be useful because the optimal
solution of model (DSPv) produces a lower bound for the cost of the duty
schedules in an integrated optimization problem, and it is in most cases
significantly better than the optimal value of model (DSPv) without equations
(iia) and (iib). We exploit this connection in our integrated approach.

42 Integration of Vehicle and Duty Scheduling

connection between tasks of different trips

entering/leaving a vehicle

task of a timetabled trip

task of a deadhead trip

supplementary tasks

artificial nodes

walk

connection between tasks of the same trip

begin/end of a duty

begin/end of a vehicle course and a duty

Figure 2.4: Integrated vehicle and duty scheduling graph

2.2.3 Full Integration of Vehicle and Duty Scheduling

The integrated vehicle and duty scheduling problem or shortly ISP is to si-
multaneously construct a vehicle schedule and a compatible duty schedule of
minimum overall cost.

The graph model of ISP is very similar to the model of the DSP. It only
additionally includes all possible deadheads and the corresponding walks of
the drivers to and from these, not only the ones used by a certain vehicle
schedule. An example of such a graph can be seen in Figure 2.4. These
graphs can become very large for the same reasons as the vehicle scheduling
graphs of Section 1.9. We will treat this topic in more depth in Chapter 5.

Introducing suitable constraint matrices and vectors, the model (ISP)

2.3 Literature 43

reads:
(ISP) min cTx + γTz + dTy,

s. t.

(i) Ax = 1,

(ii) Rx − z ≤ r,

(iii) Ny = b,

(iv) Bx − My = 0,

(v) x ∈ {0, 1}D, z ≥ 0, y ∈ {0, 1}AVSP .

In this model, the multi-commodity-flow constraints (ISP) (iii) correspond
to the vehicle scheduling constraints (VSP) (i)–(iii); they generate a feasible
vehicle schedule. The (timetabled) trip partitioning constraints (ISP) (i) and
(ii) are exactly the duty scheduling constraints (DSPy∗) (i) and (iii); they
make sure that each timetabled trip is covered by exactly one duty and that
the base constraints are satisfied. Finally, the coupling constraints (ISP) (iv)
correspond to the duty scheduling constraints (DSPy) (ii); they guarantee
that the vehicle and duty schedules x and y are synchronized with respect to
the deadhead trips, i.e., a task of a deadhead trip is either assigned to both
a vehicle and a duty or to none. So we define B ∈ {0, 1}V D

DSP×D as follows:
Btd is one, if task t of a deadhead is used by duty d and zero otherwise. And
M ∈ {0, 1}V D

DSP×AVSP is the incidence-matrix of tasks on deadheads. That is,
Mtd is one if task t is used by deadhead d and zero otherwise.

The model (ISP) is a generalization of a model used by Freling and coau-
thors, see Freling [1997]. There it is assumed that every deadhead consists of
exactly one task, and also constraints (ii) are not considered. Also minimum
and maximum capacities on vehicles are an addition of our model.

2.3 Literature

The literature on integrated vehicle and duty scheduling (ISP) is comparably
scant. One reason for this is that instances of ISP of practical relevant size
and complexity became tractable only a few years ago.

The existing articles on the topic differ in terms of the complexity of
the rules for vehicle and duty schedules, of the ILP-models (mainly flow or
set partitioning/covering models), in the degrees of integration, and in the
used algorithms. The following survey examines the literature with special
attention to these criteria.

44 Integration of Vehicle and Duty Scheduling

A survey of integrated approaches to duty and vehicle scheduling until
1997 can be found in Gaffi & Nonato [1997].

2.3.1 Ball, Bodin and Dial

The first article on the ISP that we are aware of was published in 1983 by Ball
et al. [1983]. They describe an ISP at the Baltimore Metropolitan Transit
Authority (MTA) and develop a mathematical model for it.

The model consists of two (directed and acyclic) networks with identical
sets of vertices, one for the vehicle scheduling problem and the other one for
the duty scheduling problem. Duties and vehicle schedules are paths in these
graphs that have to have certain properties. The compatibility of the duty
and the vehicle schedules in a solution is ensured by certain constraints. The
networks are essentially the same as the ones presented in Sections 1.9 and
1.10.

The cost function is complex. It is based on the working time in a duty,
but also considers minimum paid times and penalties for excessive short or
long duties or duties with more than one break. Additionally the number of
split duties, i.e., duties with a break of more than three hours, must be less
than the number of so called straight runs, i.e., duties that are not too short
and also do not have a long break.

This problems was solved by a sequence of matching and local improve-
ment heuristics. From today’s perspective this method resembles more a
combined duty and vehicle scheduling approach than a fully integrated algo-
rithm. This approach was mainly designed to be memory efficient because
this was the main bottleneck in the year 1980 when the paper was submit-
ted. Ball, Bodin, and Dial say: “It would be unreasonable to expect to store
a graph with more than 10 or 30 thousand edges in the core of a modern
day computer while executing a scheduling code.” Today our largest solvable
instance of ISP has about 2 Million edges in the planning graph.

2.3.2 Vehicle Scheduling Centered Approaches

We now present approaches that enhance vehicle scheduling algorithms to
take duty scheduling into account.

Scott [1985] designed a heuristic on base of the vehicle scheduling op-
timizer (see Desrosiers et al. [1982]) and the duty scheduling optimizer (see

2.3 Literature 45

Blais & Rousseau [1982]) which were part of the planning system HASTUS at
that time. His approach works as follows: At first he solves the VSP, then he
tries to improve the resulting vehicle schedule such that the cost of the best
duty schedule based on this vehicle schedule decreases. Here the crew cost are
approximated using a certain relaxation of the DSP, called HASTUS-Macro
which ignores locations and round start and end times of tasks. In the next
step the vehicle schedules are adjusted to diminish the lower bound on the
DSP calculated by HASTUS Macro by a kind of 2-Opt heuristic. No method
to generate feasible duty schedules was mentioned. The method was tested
on single lines of the transit authority in Montréal with about 54 vehicles
and 57 duties at most.

Darby-Dowman et al. [1988] present another vehicle scheduling centered
approach. They describe a method that calculates vehicle schedules on sin-
gle routes such that “crewing considerations are taken into account”. This
method also determines duty schedules. No details about the algorithm or
possible restrictions on vehicle and duty schedules are reported.

2.3.3 Duty Scheduling Centered Approaches

We now review approaches that concentrate on duty scheduling and take
vehicle scheduling constraints and costs heuristically into account.

In Tosini & Vercellis [1988] an approach for extra-urban scenarios is de-
scribed. The model and the algorithm has the following restrictions: Trans-
fers of drivers are only possible on board of vehicles. A driver has to start
and end his duty in the same depot. Every vehicle can use all deadheads and
trips. Therefore this problem can be seen as a combined vehicle and duty
scheduling problem of Section 2.2.2. Tosini & Vercellis [1988] generate the
columns of a set-covering-model analogously to model (DSPv) by a matching
based heuristic and find a solution of it by a greedy heuristic. The result-
ing vehicle rotations will be covered by a vehicle schedule calculated by a
minimum-cost-flow algorithm.

Falkner & Ryan [1992] examine the duty scheduling problem of Christ-
church, New Zealand. This problem also involves decisions about some of
the pull-in and pull-out trips of vehicles and therefore is at least partially
an integrated vehicle and duty scheduling problem. The structure of the
considered transportation network is radial, almost all changeovers happen
at the center of the network. The only other locations for changeovers are
the depots. For some vehicle blocks it has to be decided whether they end

46 Integration of Vehicle and Duty Scheduling

at the central depot or at the town center. The town center is nearer to
the endpoints of the vehicle blocks but has a limited parking capacity. The
problem is modeled as a set partitioning problem with additional constraints.
To be able to handle the size of the problem it is partitioned into groups of
lines that are scheduled separately. Each of these groups is scheduled in
three stages. In the first stage the middle and late duties are scheduled,
secondly some early duties, and in the third stage the remaining early and
split duties (called broken duties). To ensure the compatibility of the different
stages linking constraints are added to the set partitioning problems. The
individual stages are solved by a specialized set partitioning solver called ZIP.

Patrikalakis & Xerocostas [1992] propose an alternative decomposition of
vehicle and duty scheduling. Again their approach is not fully integrated,
however an integrated model similar to the one of Ball et al. [1983] is pro-
posed. This model is solved by the following algorithm: At first trips are
split up into tasks at the relief points. Then so called “duty skeletons” are
generated. These are incomplete duties without deadhead trips. I.e., a skele-
ton only defines which timetabled trips a duty contains, but it has still to be
determined how they are connected. Then schedules for morning and after-
noon duties are computed separately by a set covering approach which covers
all tasks by duty skeletons. Next, all deadheads which cannot be used by the
duty skeletons in the duty skeleton schedule are eliminated. The remaining
vehicle scheduling problem is solved by a minimum cost flow solver. At last
the duty skeletons are completed such that they cover all deadheads used in
the vehicle schedules. To be able to handle practical problems it was neces-
sary to reduce the number of relief points and possible connections between
tasks heuristically. Nevertheless improvements over manually produced so-
lutions formerly used by a public transit company in Athens were reported.
According to the authors this approach performs better when vehicle depen-
dent constraints are less important.

The approach of Patrikalakis & Xerocostas [1992] has similarities to the
combined approach of Section 2.2.2, but keeps more degrees of freedom in
the vehicle scheduling phase by fixing fewer deadheads in the duty skeleton
schedules. The drawback of the approach is that duty skeleton generation
has to be more “generous” with some constraints on maximum working time
between breaks and similar rules, because at this stage of the algorithm it
remains unclear how much work is actually done between two tasks.

Gaffi & Nonato [1997] also present an approach for integrated duty and
vehicle scheduling suitable for ex-urban public transit. The VSP and DSP
are modeled as set partitioning problems. They are coupled by constraints

2.3 Literature 47

on the deadheads similar to our approach to the ISP.

Their algorithm constructs at first a vehicle-compatibility-graph GV and
a duty-compatibility-graph GD modeling the possibilities for including pieces
of work in the same block or duty, respectively. Both graphs have the same
node sets. Every node represents pieces of work of duties and, simultaneously,
vehicle rotations. In particular it is necessary that each of these nodes begins
and ends in a (not necessary the same) depot. This implies that relief points
outside of depots are not allowed, because there it would be possible to end
or begin a piece of work without beginning or ending a vehicle rotation.

The arcs in the compatibility graphs represent the possibility to include
the pieces of work represented by the adjacent nodes in the same block or,
respectively, in the same duty. Not that the vehicle-compatibility graph has
more arcs than the duty-compatibility graph, because of the more restrictive
constraints on duties. The nodes of the graphs are calculated by solving a
resource constrained shortest path problem with respect to a dual solution
of a restricted LP-formulation of this problem. This is possible, because in
this article the cost of a duty is linear dependent on the costs of its pieces of
work .

Then many duty schedules are calculated by a greedy algorithm using
a scoring function on the duties. Vehicle cost are considered in terms of
Lagrangean multipliers for a MIP-model concerning the coupling constraints.
A feasible vehicle schedule is computed afterwards based on the best found
crew schedule.

With this approach instances of the extra-urban service of Bologna in
Italy were calculated. The largest instances consisted of 257 trips, resulting
in 36 vehicles and 45 duties or 200 trips, resulting in 44 vehicles and 65 duties.
It was reported that the two stage approach of generating at first pieces of
work and then duties caused problems, due to the large number of possible
pieces of work.

2.3.4 Fully Integrated Vehicle and Duty Scheduling

The availability of computers with large memory and computing power, as
well as the progress in Linear and Integer Programming made it possible to
develop fully integrated vehicle and duty scheduling algorithms in the past
ten years.

The complete integration of vehicle and crew scheduling was first inves-
tigated in a series of publications by Freling and coauthors (Freling [1997];

48 Integration of Vehicle and Duty Scheduling

Freling et al. [2000, 2001, 2003]). They propose a combined vehicle and duty
scheduling model and attack it by integer programming methods. Computa-
tional results on several problems from the Rotterdam public transit company
RET with up to 300 timetabled trips, and from Connexxion, the largest bus
company in the Netherlands, with up to 653 timetabled trips are reported. A
branch-and-price approach to fully integrated ISP instances involving a single
type of vehicles was also described by Friberg & Haase [1997] and tested on
artificial data. We will now describe these approaches in detail.

Freling [1997] proposes an integer programming model for the integrated
vehicle and duty scheduling problem. This model is used in a Lagrangian
heuristic with column generation to calculate lower bounds and dual infor-
mation. Feasible (integral) solutions are constructed heuristically by the
information obtained while calculating the lower bound.

The model of the ISP is very similar to the model proposed in this work.
It consists of a set partitioning problem to model the DSP. Its columns are
generated by a dynamic programming algorithm or by enumeration on a
network with levels. The VSP is constricted to a single depot. The only
objective is to minimize the number of vehicles, further costs are neglected.
The feasibility of duties depends on constraints that can be easily modeled
as linear equations like piece duration, working time, and number of pieces.
The only break rule considered is the one-block break. Lower bounds on ISP
are calculated by means of Lagrangean relaxation of the coupling constraints
resulting in a Lagrangean problem similar to (L-ISP) (see Section 2.4.1) and
a subgradient approach.

Integral solutions are calculated for various cost functions depending on
Lagrangean multipliers found by the subgradient approach. For this two
heuristics are used: The first solves at first a duty scheduling problem (DSPv),
then pieces of work based on this solution are fixed, then the resulting vehicle
scheduling problem is solved, at last again a DSP is solved based on the
solution of the vehicle scheduling problem. The other heuristic solves the
VSP with current reduced cost and then the DSP. Computational tests were
performed on a Pentium 90 with 32 MB RAM. The duties had up to 3 pieces
of work. The test-data had up to 296 trips (14 buses and 32 drivers), or 240
trips (38 buses and 90 drivers).

In the article Freling et al. [2000] scenarios with up to 476 trips and 2,260
arcs that use up to 9 buses and 23 drivers in their solutions were solved.
These scenarios use at most two pieces of work per duty. Here and in the
following publications constraints on valid duties are such that the pricing
problems are solvable in polynomial time.

2.3 Literature 49

The article Huisman et al. [2003a] treats a multi-depot VSP subproblem.
Here the feasibility of a piece only depends on its duration. The solved
scenarios include up to 653 trips (67 buses and 117 drivers). Also results on
random data that is publicly available are published there. In de Groot &
Huisman [2004] a decomposition technique for scenarios that cannot be solved
by the techniques of Huisman et al. [2003a] is presented. These technique is
tested on the same instances as before.

A different approach to solve the ISP to optimality is published in Friberg
& Haase [1997]. Here two set partitioning models for the VSP and the DSP
are coupled by constraints on deadheads. These are solved by column gen-
eration, a revised simplex algorithm for the LP-relaxations of the restricted
problems, a branch-and-bound algorithm and dynamic programming for the
pricing problem of the DSP. The pricing problem here is a resource constraint
shortest path problem with linear resource constraints. This approach allows
to solve artificially generated instances of the ISP with up to 20 trips to
optimality. Computational results for instances with up to 30 trips and 54
tasks were given. Only about 4,000 columns were generated for the largest
instance. The number of duties or vehicles were not reported.

In Haase et al. [2001] a duty scheduling centered approach is given that
only works for single depots vehicle scheduling problems with homogeneous
fleet of vehicles. In this paper the combined model of Section 2.2.2 is extended
by constraints that count the number of vehicles. The objective function of
this problem is composed by a term linear in the number of used vehicles
and cost per used duty. The solution approach is a column generation algo-
rithm in a branch-and-price-and-cut framework. Computational results on
problems with up to 350 trips, 700 tasks using 67 vehicles and 121 drivers in
the average with an integrality gap up to 1.5% were given.

Some results of this thesis were presented at the conferences Heureka ’02
(see Borndörfer et al. [2002]) and CASPT 2004 (see Borndörfer et al. [2004]).

Table 2.2 gives an overview about reported results on integrated vehicle
and duty scheduling problems in the literature. The columns #garages and
#trips gives an impression of the input size of the largest problem reported
in the respective article. In practice the degree of difficulty to solve an ISP
also depends on the number of relief points, the number of potential links
between trips, the complexity of the duty rules, and the tightness of capacity
constraints. The columns #vehicles and #duties give the size of the solution
of the problem if reported. In the last column we briefly comment the used
model.

50 Integration of Vehicle and Duty Scheduling

Article #garages #trips #vehicles #duties used model

Ball et al. [1983] 1 ~1,000 – 133 sequential heuristic
Scott [1985] 1 456 54 – only cost approximation
Tosini & Vercellis [1988] 17 300 – – multi-commodity-flow with side

constraints
Falkner & Ryan [1992] 1 182 – 41 (DSP) with add. constraints
Patrikalakis & Xerocostas [1992] – 111 20 45 set covering + min. cost flow
Gaffi & Nonato [1997] 28 257 44 65 (ISP) without relief points outside

depots
Freling [1997] 1 296 38 90 (ISP), first general approach
Friberg & Haase [1997] 1 30 – – two coupled SPP, exact method
Freling et al. [2000] 1 476 9 23 (ISP)
Haase et al. [2001] 1 350 67 121 (DSPz

v)

Huisman [2004] 653 67 117 (ISP)
Chapter 7 7 3,698 209 260 (ISP) with resource- and capacity-

constraints

Table 2.2: Computations in selected publications about the ISP

2.4 IS-OPT

In this section we give a high level view of our algorithm for integrated vehicle
and duty scheduling called IS-OPT. We also give a list of the improvements
and extensions in comparison to previous methods to solve the ISP.

The details of the subroutines are discussed below in the appropriate
chapters of this thesis.

2.4.1 Outline of our ISP-Algorithm

IS-OPT finds an integral solution for the model (ISP) of section 2.2.3. The
main loop solves approximately the LP-relaxation of (ISP) by relaxing the
coupling constraints (iv) of (ISP) in a Lagrangean way and solving the La-
grangean Problem (L-ISP)

max
λ∈RAVSP

[min (cT − λTB)x+ γTz + min (dT + λTM)y
]
,

s. t. Ax = 1, s. t. Ny = b,

Rx− z ≤ r, y ∈ {0, 1}AVSP

x ∈ {0, 1}D, z ≥ 0

by the proximal bundle method (see Chapter 4). Lagrangean relaxation is
explained in the next chapter. Problem (L-ISP) decomposes in two subprob-

2.4 IS-OPT 51

Solving the LP-relaxation of (ISP)
by the bundle method Integral Heuristic

of deadheads
fix or unfix a set

terminate?

solve VSP

neration?
duty ge-

duty
generation

terminate?

begin

end

solve DSPyxation of (DSP)
solve LP-rela-

solution
find new

Figure 2.5: Outline of the ISP Algorithm

lems, namely the duty scheduling problem with all possible deadheads, i.e.,
model (DSPv) of Section 2.2.2, and the vehicle scheduling problem modeled
by (VSP). The subproblems are only coupled by the Lagrangean multipliers
λ. Model (VSP) is solved repeatedly by VS-OPT, see Section 1.9.5, giving
lower bounds on it and, in general, non-optimal integral solutions. The LP-
relaxation of model (DSPv) is generated by a column generation approach
and approximated by the bundle method, giving lower bounds and an ap-
proximation of a primal LP-solution. The pricing problem of the column
generation and solution approaches are explained in Chapter 5. How we use
these inexact solutions of the subproblems of (L-ISP) in the bundle method to
calculate bounds and primal information of (ISP) is explained in Chapter 4.
Finally, these bounds and primal information are used as input for a branch-
and-bound like integral heuristic described in Chapter 6. Computational
results of IS-OPT on real world data are discussed in Chapter 7.

A simplified flow chart of IS-OPT is pictured in Figure 2.5. The left box
of this figure contains a simplified outline of our column generation method
to solve the LP-relaxation of (ISP). The right box depicts the primal heuris-
tic, the procedure to solve (DSPy) called rapid branching is explained in
Chapter 6.

The subproblems and techniques needed to solve the ISP used in IS-OPT
are

52 Integration of Vehicle and Duty Scheduling

• Multi-Commodity Flow Problems arising by the model of VSP, approx-
imated by Lagrangean relaxation and arc generation, see Löbel [1997b],

• Minimum Cost Flow Problems arising by single depot vehicle schedul-
ing problems that occur as subproblems solved by the network-simplex
solver MCF, see Löbel [1996],

• an inexact bundle method to solve the occurring LP-relaxations, see
Chapter 4

• a generalized Set Partitioning Problem solved by column generation,
see Chapter 3, the pricing problem itself is a generalized resource con-
strained shortest path problem and treated in Chapter 5, and

• Rapid Branching heuristic to solve the model (ISP) to integrality, see
Chapter 6.

2.4.2 Contributions

Our contributions to solution techniques for integrated vehicle and duty
scheduling problems concentrate on solving large real world instances in rea-
sonable time. In general we are not able to prove the quality of our solutions
because we are not able to calculate lower bounds of objective values of model
(ISP). Therefore we can also not guarantee the optimality of our solutions.

In detail we

• combine column generation and subgradient based methods, that is
we replace an optimal dual solution by Lagrangean multipliers in the
pricing problems,

• we use inexact subgradients in a bundle method to calculate the La-
grangean multipliers and primal information,

• we solve the pricing problems inexact by resource constrained shortest
path problem approximations, and

• we use a fast inexact branch and bound heuristic to solve ISP to inte-
grality.

Summarizing, we replace known exact LP-techniques by LP-based ap-
proximation algorithms. This has the advantage that we are able to tune
the accuracy and speed of the individual components of IS-OPT to get good
solutions in reasonable time even of large problems.

Chapter 3

Basic Methodology

In this chapter we explain the basic methodologies column generation and La-
grangean relaxation that are used by our algorithm to solve the duty schedul-
ing problem as well as by the algorithm to solve the integrated vehicle and
duty scheduling problem. We also describe how Lagrangean relaxation can
be used in column generation approaches to calculate dual variables needed
for their pricing problems.

3.1 Column Generation

Column generation can be seen as a technique of solving large LPs, whose
columns are given implicitly. These implicitly given columns will be gener-
ated throughout the solution process if it becomes necessary. The complete
LP with all its columns is called master problem. An LP consisting of a
explicitly given subset of columns of the master problem is called restricted
problem.

We now look at the following master problem:

(M) min cTx,

s. t. Ax = a,

x ≥ 0,

where the constraint matrix A is in Rm×n, c, x ∈ Rn, and a ∈ Rm. In general,
column generation is used if n is much larger than m. We now look at a

53

54 Basic Methodology

subset I ⊂ {1, . . . , n} of the columns of A, which are given explicitly. That
is, we consider the restricted problem

(R) min cI
TxI ,

s. t. A·IxI = a,

xI ≥ 0.

We are able to solve (M), if we are able to solve (R) and if additionally an
oracle is available that solves the so called pricing problem (PRICE) for any
λ ∈ Rm:

(PRICE) min
i=1,...,n

ci − λTA·i

If λ is an optimal dual solution of (R) for a given I ⊂ {1, . . . , n} and the
optimal value of (PRICE) is non-negative, then λ is also an optimal dual
solution of (M). In this case, an optimal primal solution of (R), extended
by x{1,...,n}\I = 0, is also an optimal primal solution of (M). Otherwise we
have found a column that potentially improves the objective value, so we
add it to I and solve the restricted problem again. This can be iterated until
optimality has been proven. The process terminates, because n is finite.

This column generation algorithm is stated as pseudo code in Algorithm 1.
One can show, that if (PRICE) can be solved in polynomially time also (M)

Algorithm 1 Column Generation

Input: A starting set of columns I, a method to solve (PRICE), an oracle
that gives for column i its cost ci and the column A·i of the coefficient
matrix.

Output: An optimal primal solution x of (M).
1: repeat
2: Solve (R) with columns I. This results in a optimal dual solution

λ ∈ Rm and an optimal primal solution xI ∈ RI .
3: Solve (PRICE) with respect to λ. Let i∗ ∈ {1, . . . , n} be the solution of

(PRICE).
4: Add i∗ to I.
5: until ci∗ − λTA·i∗ ≥ 0
6: Set x{1,...,n}\I ← 0.

can be solved in polynomially time, even if (M) contains an exponential
number of columns. A proof can be found in [Grötschel et al. 1993, Chapter
6].

The article Desrosiers & Lübbecke [2005] is a good primer about column
generation. A first survey about column generation has been written by

3.2 Lagrangean Relaxation 55

Barnhart et al. [1998]. A generalized branching rule for branch-and-bound
algorithms using column generation and a recent survey about column gen-
eration can be found in Villeneuve et al. [2003], a recent book about column
generation and its applications is Desaulniers et al. [2005].

3.2 Lagrangean Relaxation

Lagrangean relaxation is a tool to find upper bounds for a maximization
problem. Under certain circumstances also optimal solutions can be found.
We will highlight the basics of Lagrangean relaxation and results used in this
work. For further details see [Hiriart-Urruty & Lemaréchal 1993b, Chapter
XII] or Lemaréchal [2001].

3.2.1 Lagrangean Relaxation in General

Let us consider a combinatorial problem (P) on a set X 6= ∅:

(P) sup c(x),

s. t. aj(x) = 0, for j = 1, . . . ,m,

x ∈ X.

(P) has an objective function c : X → R, and constraint functions a1, . . . , am :
X → R. (We write also, analogously to vectors: a := (a1, . . . , am)T : Xm →
R

m.) (P) is called the primal problem. We call an x ∈ X satisfying all
aj(x) = 0 feasible. The Lagrange function or shortly Lagrangean L is defined
by

L(x, λ) := c(x)− λTa(x),∀λ ∈ Rm and x ∈ X.

The vectors λ ∈ Rm are called Lagrangean multipliers. The suprema of the
Lagrangean for fixed λ ∈ Rm are defining a function φ(λ) := supx∈X L(x, λ)
called Lagrangean dual function or shortly dual function with some interest-
ing properties: For all λ ∈ Rm and all feasible x it holds φ(λ) ≥ c(x). This
property is called weak duality. If φ(λ) is significantly easier to compute than
the optimum of (P) we are probably able to solve (or at least approximate)
the dual problem (D), also called Lagrangean dual, defined by

(D) inf
λ∈Rm

φ(λ),

faster than the original problem.

56 Basic Methodology

This gives us an upper bound on (P) that is under certain circumstances
tight, and sometimes we may even get a solution of the primal problem or
an approximation of it.

The function φ is convex and lower semicontinuous, therefore, if we are
able to compute φ(λ) efficiently, we are also able to solve (D) efficiently. If
further supx∈X L(x, λ) has an optimal solution xλ for a certain λ then gλ :=
−a(xλ) is a subgradient of φ at λ. Moreover, all subgradients of φ are defined
by maximizers of the Lagrangean if X is compact, c is semi-continuous on
X, and each aj is continuous. More precisely:

∂φ(λ) = − conv{a(x) : x is a maximizer of L at λ}. (3.1)

We denote by ∂f(λ) the set of subgradients of a function f at point λ.
Equation (3.1) is called the filling property at λ.

The next interesting question is under which circumstances the primal
and dual problem have the same optimum. That is, when does the following
equation hold:

inf
λ∈Rm

φ(λ) = sup
x∈X,a(x)=0

c(x). (3.2)

Theorem 3.1 (Hiriart-Urruty & Lemaréchal [1993b]). Equation (3.2) holds
if the filling property (3.1) is fulfilled for all λ and X is convex, c is concave
and a : X → R

m is affine.

The proof can be found in Hiriart-Urruty & Lemaréchal [1993b].

Moreover, all optimal solutions of (P) are maximizers of L at an optimal
solution λ∗ of (D). This is the basis for recovering primal solutions from the
solution of the Lagrangean dual.

How we use Lagrangean relaxation to approximate certain LPs can be
found in Chapter 4. In the next two sections we will show that Lagrangean
duality is closely related to LP duality and quadratic duality.

3.2.2 Linear Programming Duality

Here we show the connection between Lagrangean and LP duality.

Let the primal problem be an LP:

(P) max cTx,

s. t. Ax = b,

x ≥ 0.

3.2 Lagrangean Relaxation 57

Then the Lagrangean dual is

φ(λ) = max
x≥0

[
cTx+ λT(b− Ax)

]
,

= max
x≥0

[
λTb+ (cT − λTA)x

]
Here you can see that

φ(λ) =

{
∞, if λTA > c,

λTb, otherwise.

Thus the Lagrangean dual takes its optimum at the minimizer of

(D) min λTb,

s. t. λTA ≤ c.

This is exactly the LP-dual of (P).

3.2.3 Quadratic Programming Duality

Another general problem, of which a specialized version occurs in the bundle
method, is the quadratic programming problem. One of its variants can be
written as

(QP) max cTx− 1
2
xTQx,

s. t. Ax ≥ b.

Here Q is assumed to be positive semi-definite. This ensures that the ob-
jective function is convex. The Lagrangean function for (QP) is (replacing
Ax ≥ b by Ax− s = b, s ≥ 0)

L(x, s, λ) := cTx− 1

2
xTQx− λT(Ax− s− b). (3.3)

The Lagrangean dual is

φ(λ) = max
x,s≥0

cTx− 1

2
xTQx− λT(Ax− s− b),

=

{
maxx(c

T − λTA)x− 1
2
xTQx+ λTb, for λ ≥ 0,

∞, otherwise.

The Lagrangean function L takes its maximum for a fixed λ at a point xλ

with Qxλ = c−ATλ by the Karush-Kuhn-Tucker conditions (see, e.g., Nering

58 Basic Methodology

& Tucker [1993]). So the Lagrangean dual can be written directly as (see
Lemaréchal [2001]),

φ(λ) = λTb+
1

2
xλTQxλ, with Qxλ = c− ATλ. (3.4)

Thus, the Lagrangean dual of the quadratic problem (QP) denoted by
(DQ) is equal to the quadratic dual in Dorn [1960]:

(DQ) min λTb+ 1
2
xTQx,

s. t. ATλ+Qx = c,

λ ≥ 0.

This stems from (3.4) simply by adding the optimality condition ATλ+Qx =
c as a constraint. We will use problem (DQ) in Chapter 4 to find an improving
direction in the bundle method.

3.3 Lagrangean Relaxation for Column Gen-

eration

In column generation approaches there are two time consuming problems
which have to be solved repeatedly: On the one hand an optimal dual solution
of the restricted problem has to be found, i.e., LPs have to be solved. On
the other hand we have to find new columns (or prove that none exists)
depending on the solutions of the LPs by solving the pricing problems.

Using Lagrangean relaxation and subgradient methods is often faster than
LP-methods, but in general, this approach only gives bounds and approxi-
mated solutions of the original problem. We explain in this section how we
transform the Lagrangean multipliers of the LP-relaxation of (DSP) heuris-
tically such that they are useful to approximately solve the pricing problem
corresponding to the original master problem.

3.3 Lagrangean Relaxation for Column Generation 59

3.3.1 Problem Class

We consider in this section the ILP of the duty scheduling problem as pro-
posed in Section 1.10.3:

(DSP) min cTx+ γTz,

s. t.

(i) Ax = 1,

(ii) Rx −z ≤ r,

(iii) x ∈ {0, 1}n,
(iv) z ≥ 0.

A ∈ {0, 1}m′×n is a binary matrix, R ∈ R
m′′×n is a coefficient matrix of

so called resource constraints. The variables z ∈ R
m′′
+ can be seen as slack

variables of the base-constraints (ii). The cost coefficients ci, i = 1, . . . , n are
larger than zero and γi, i = 1, . . . ,m′′ are non-negative. Most of the duty and
crew scheduling problems as well as multi depot vehicle scheduling problems
can be modeled as problems of type (DSP). Also generalized assignment
problems as stated in Barnhart et al. [1998] belong to this class.

Observe that the upper bounds on x in model (DSP) are redundant be-
cause A is binary and the cost coefficients of its columns are positive.

3.3.2 Restricted Problem

In general we only know a subset I of columns of A because the total number
of columns is too large. In the following (DSPI) denotes an LP-relaxation of
(DSP) restricted to columns in a set I ⊂ {1, . . . , n}:

(DSPI) min cI
TxI + γTz,

s. t.

(i) A·IxI = b,

(ii) R·IxI −z ≤ r,

(iii) xI ∈ {0, 1}I ,
(iv) z ≥ 0.

60 Basic Methodology

3.3.3 Pricing Problem

The dual problem of the LP-relaxation of (DSPI) is (letting out the redundant
upper bounds on x):

(D-DSPI) max λTb+ µTr,

s. t.

(i) A·I
Tλ+R·I

Tµ ≤ cI ,

(ii) −γ ≤ µ ≤ 0.

Let (λ∗, µ∗) be an optimal solution of (D-DSPI). If we are able to proof that
no column i ∈ {1, . . . , n} exists such that the reduced cost of column i

c̄i := ci − λ∗TA·i − µ∗TR·i

is negative, then (λ∗, µ∗) is also an optimal solution of the dual of the LP-
relaxation of (DSP).

To proof that no column with negative reduced cost exists, we have to
solve the following pricing problem:

min
i∈{1,...,n}

ci − λ∗TA·i − µ∗TR·i. (3.5)

Observe that all columns i ∈ I have non-negative reduced cost by inequalities
(i) of (D-DSPI).

Column generation approaches are useful if problem (3.5) can be solved
in short time. Often it is again a linear program or has at least a linear cost
function. Let Y be an appropriate solution space. Then the pricing problem
can be written as:

min
y∈Y

ζTy − λ∗Ta(y)− µ∗Tr(y).

Here a(y′) and r(y′) gives the column of A or R, respectively, that corresponds
to the solution y′ ∈ Y of the pricing problem. In the duty scheduling problem
for example, the cost of a column depends often linearly on the arcs of the
underlying planning graph, which are used by the corresponding duty.

3.3.4 Lagrangean relaxation

We are able to find a lower bound of the objective value of problem (D-DSPI)
by solving a Lagrangean relaxation of (DSPI) which stems from relaxing its

3.3 Lagrangean Relaxation for Column Generation 61

equations (i) and (ii). The Lagrangean dual problem is then:

max
λ free,
µ≤0

 min
x∈[0,1]n,

z≥0

cI
TxI + γTz + λT(1− A·IxI) + µT(r −R·IxI + z)

 .
It can also be written as

max
λ∈Rm′

,
−γ≤µ≤0

[
λT1 + µTr + min

x∈[0,1]n
(cI

T − λTA·I − µTR·I)xI

]
.

We denote this problem by (L-DSPI). The variables z can be eliminated
because they are zero in every optimal solution of (L-DSPI).

For fixed Lagrangean multipliers λ and µ the subproblem

min
x∈[0,1]I

(cI − λTA·I − µTR·I)x

is easy to solve by setting xi to one if λTA·i+µ
TR·i ≥ ci and to zero otherwise.

Unfortunately a solution (λL, µL) of (L-DSPI) is in general not a solution
of (D-DSPI) because A·i

TλL + R·i
TµL ≤ ci is not guaranteed to hold. How-

ever, this solution can be complemented to a solution of the dual of (DSPI)
including the upper bounds on x:

(D-DSP2I) max λTb+ µTr + νT
1,

s. t.

(i) A·I
Tλ+R·I

Tµ+ νI ≤ cI ,

(ii) −γ ≤ µ ≤ 0,

(iii) ν ≤ 0.

This can be done by setting νL
i to ci−λLTA·i−µLTR·i if this term is negative

and to zero otherwise. Observe, that all νL
i for i ∈ {0, . . . , n} \ I are in

an optimal solution at their upper bound and therefore zero. If (λL, µL)
was optimal for (L-DSPI), (λL, µL, νL) is optimal for (D-DSP2I), because the
objective values of (L-DSPI) and (D-DSPI) are equal and we know that both
problems have no duality gap to (DSP) (see Theorem 3.1).

The pricing problem related to (D-DSP2I)

min
i∈{1,...,n}

ci − λ∗TA·i − µ∗TR·i − νi (3.6)

62 Basic Methodology

is therefore equivalent to

min
i∈{1,...,n}\{j∈I|νi<0}

ci − λ∗TA·i − µ∗TR·i. (3.7)

Problem (3.7) is in general more difficult to solve than problem (3.5), because
the exclusion of columns i with negative νi may destroy an eventually existent
structure of the solution space. E.g., the pricing problem of the duty schedul-
ing problem corresponding to (3.5) is a constrained shortest path problem.
To formulate the pricing problem corresponding to (3.7) we would have to
add constraints that prevent solutions with negative νi, i ∈ I.

3.3.5 Reduced Cost Shifting

We present now a heuristic to transform a solution of (D-DSP2I) into a solu-
tion of (D-DSPI) with hopefully only a small decrease of the function value.

Our heuristic method “shifts” the dual variables λL ∈ R
m′

of a solution
(λL, µL, νL) of (D-DSP2I) towards a dual solution (λL + δ, µL) of (D-DSPI).
The idea of this algorithm is to find negative δj, j ∈ {1, . . . ,m′} corresponding
to active rows of columns of A with negative reduced cost until the new
reduced cost of all columns are not less than zero.

Let for this S(i) be the index set of non-zero entries of A·i. The reduced-
cost-shifting algorithm is shown as Algorithm 2.

The steps 5–13 ensure that the Lagrangean multipliers (λi, µL) gets
shifted to (λi+1, µL) such that the new negative reduced cost c̄i(λ

i+1, µL)
of column i are zero. Here simply the reduced cost with respect to (λi, µL)
are added to the Lagrangean multipliers related to rows covered by column
i. The sorting of the columns by their initial reduced cost in step 2 is a kind
of greedy strategy: We adapt at first the Lagrangean multipliers with the
largest impact.

Observe, νi is exactly ci−ATλ−RTµ if negative and zero else. Therefore,
if we would be able to calculate a δ such that ATδ = ν the optimality of
(λ+ δ, µ) would follow by the equality of the objective values. However, our
heuristic only ensures ATδ ≤ ν and thus potentially decreases the objective
value. We repair this by performing a warmstart of the bundle method with
the new multipliers (λL + δ, µL, 0). This is iterated until ν is nearly zero
also in the solution of (D-DSPI). We are not able to give a guarantee of
convergence of this procedure, however in practice it works well until all −νi

are smaller than a certain threshold ε > 0. Then the reoptimizing of the
bundle method often leads again to negative νi smaller than −ε.

3.3 Lagrangean Relaxation for Column Generation 63

Algorithm 2 Reduced Cost Shifting

Input: Lagrangian multipliers λL, µL of (L-DSPI).
Output: A (in general non-optimal) dual solution λ, µ of (D-DSPI).
1: Calculate the reduced cost c̄i(λ

L, µL) := ci − (λL)TA·i − (µL)TR·i for all
columns i ∈ I.

2: Sort the columns in I by their reduced cost c̄i(λ
L, µL), such that

c̄1(λ
L, µL) ≤ c̄2(λ

L, µL) ≤ · · · ≤ c̄|I|(λ
L, µL), set λ1 ← λL. Let j be

the last column with c̄j(λ
L, µL) < 0.

3: for i = 1 to j do
4: Let c̄i ← c̄i(λ

i, µL).
5: if c̄i < 0 then
6: for all t ∈ {1, . . . ,m′} do
7: if t ∈ S(i) then
8: λi+1

t ← λi
t + c̄i/|S(i)|

9: else
10: λi+1

t ← λi
t

11: end if
12: end for
13: end if
14: end for
15: Set λ← λj+1.

Chapter 4

Proximal Bundle Method

The proximal bundle method (PBM) is a method to minimize an unbounded,
continuous, convex, and possibly non-smooth function f : Rm → R. The
PBM can be used in combination with Lagrangean relaxation to approximate
primal and dual solutions of linear programs.

We develop a variant of the PBM, that we call inexact PBM, which is
suited to large scale LPs generated by column generation, in particular if the
pricing problem can not be solved exactly. The novel extensions of the PBM
involve the use of inexact subgradients and function evaluations of the La-
grangean duals. We are able to show that our inexact PBM produces a series
of trial points that converges to a point with a function value which differs
at most by an ε ≥ 0 from the optimal value. This ε depends on the quality of
the approximated subgradients and function values. The inexact PBM can
also be used for a new active set method that speeds up the PBM. This active
set method utilizes subsets of columns of Lagrangean relaxations to calculate
the approximated function values and ε-subgradients of the Lagrangean dual.

We use the inexact PBM to approximate LP-relaxations of model (ISP)
(defined in Section 2.2.3) via the Lagrangean problem (L-ISP) of Section 2.4.1.
The corresponding computational results can be found in Chapter 7. The LP-
relaxation of (ISP) is in general too large to be solved by standard solvers such
as the barrier algorithm or the dual simplex of CPLPEX 10.0 because theses
LPs consist in general of millions of columns for the duties and deadheads
and hundreds of thousands of rows for the coupling constraints.

This chapter is organized as follows: It describes the idea behind the PBM
and discusses algorithmic details in Section 4.1. The next section compares-
the PBM with other subgradient methods. Section 4.3 gives an overview of

65

66 Proximal Bundle Method

a number of extensions of the PBM that we use in IS-OPT, such as a method
to exploit block structures of functions, handling of bounded functions, and
calculating primal information for LPs. Section 4.4 shows the novel active-set
extension of PBM developed to solve LPs with many columns. Applications
of the PBM from the literature as well as the ones originating from solving
the ISP are discussed in Section 4.5. Then follows the description of the
inexact PBM in Section 4.6.

We approximate subproblems occurring in IS-OPT, namely RCSP, see
Section 5.5.1 and DSP (Section 1.10.3) by the PBM. Computational results
on LP-relaxations of set-partitioning-problems are shown in Section 4.7, we
show that the inexact PBM is able to approximate even large problems very
fast, and that it is in most cases faster than other subgradient approaches or
exact methods.

4.1 Description

We sketch here the idea of the PBM and outline facts that we need to explain
our adaptions. The PBM is a method to minimize any unbounded convex
function f . In our context f is the Lagrangian dual of a combinatorial prob-
lem. Thus, we denote in this thesis the argument of f by λ or µ analogously
to the variables of dual linear programs. By x or y we denote a variable of
the original problem.

An overview on convex optimization algorithms including bundle methods
can be found in Hiriart-Urruty & Lemaréchal [1993a,b]. A detailed descrip-
tion of the bundle method itself can be found in Kiwiel [1990] and of its
quadratic subproblem solver in Kiwiel [1994].

4.1.1 Idea and Properties

We will first give a“high level”description of the PBM. The details will follow
as needed in the subsequent sections.

As mentioned above we want to minimize a convex function f . The idea
of the PBM is to collect a set J i of linearizations f̄ i of f . These sets are
called bundle, these are the bundles which give the proximal bundle method
its name. The linearizations in the bundles are used to construct a model
f̂Ji of f . This model is called polyhedral model or sometimes also cutting
plane model. At each iteration i of the PBM we improve the model by adding

4.1 Description 67

a new linearization at a new trial point λi+1 which is the minimizer of the
sum of the current polyhedral model f̂Ji and a quadratic term that penalizes
the deviation from a current so called stability center λ̄i. This sum is also
called quadratic model of f . If the new minimizer improves the function
value enough to guarantee convergence, the stability center is moved to this
trial point. This is called serious step. Otherwise a so called null step occurs
which only improves the polyhedral model.

It is known that the series of stability centers (λ̄i) converges to a minimizer
of f . If f is polyhedral, as it is the case for Lagrangean relaxation of LPs,
it is also known that the PBM converges in a finite number of iterations.
However, in practice the convergence is in our cases too slow to run the PBM
until optimality, such that we must terminate the PBM heuristically.

The PBM produces for the Lagrangian relaxation of LPs also a series of
approximations of primal solutions of the original LP, which converges to an
optimal primal solution. See Kiwiel [1990] for proofs of these results.

The PBM can, besides its relations to subgradient methods, be inter-
preted as a cutting plane algorithm (see [Hiriart-Urruty & Lemaréchal 1993b,
Chapter XII, 4.2]). In cutting plane algorithms at each iteration an affine
approximation of the minimized function f is calculated. Subsets and convex
combinations of these linearizations define a cutting plane model of f that is
used to find the next trial point.

The time critical parts of the PBM are the minimization of the quadratic
subproblem and the calculation of the function values and the subgradients
of f . The computation time for the quadratic problem depends mostly on
the number of active linearizations in the bundle. The time for the function
evaluations and subgradient calculations varies depending on the problems
and Lagrangean relaxation used. For set partitioning problems we need only
milliseconds to calculate a subgradient, because this only involves optimizing
over a box. For the ISP the same step may need a couple of minutes or
sometimes also hours because we have to minimize the LP-relaxations of a
vehicle and a duty scheduling problem to calculate a subgradient.

In the next Section we describe the polyhedral model in detail. In Sec-
tion 4.1.3 we describe the problem of finding the next trial point λi+1, in
Section 4.1.4 we state the PBM as pseudo-code. In Section 4.1.5 we state our
weight updating strategy. At last we sketch a proof of convergence for the
PBM.

68 Proximal Bundle Method

4.1.2 Subgradients, Linearizations, and Cutting Plane
Models

The main concept exploited in the PBM is a polyhedral model f̂J of f : Rm →
R defined by the bundle J of affine functions. Every function f̄ in the bundle
J minorizes f , that is f̄(λ) ≤ f(λ) for all λ ∈ Rm. The functions in J arise
by linearizations of f or convex combinations of linearizations.

A linearization f̄λi of f at a point λi ∈ R
m is an affine function of the

following type:

f̄λi(λ) := f(λi) + gf (λ
i)T(λ− λi), λ ∈ Rm. (4.1)

Here gf (λ
i) ∈ Rm is a subgradient of f at λi, i.e., gf (λ

i) fulfills the following
inequality:

f(λ) ≥ f(λi) + gf (λ
i)T(λ− λi), for all λ ∈ Rm. (4.2)

There may exist more than one subgradient for non-smooth functions f at
a certain point. The set of all subgradients of f at λi is denoted by ∂f(λi).
Every subgradient defines a linearization of f . For our purpose an arbitrary
subgradient suffices, however more subgradients may help to increase the
speed of the algorithm.

A polyhedral approximation f̂J of f called cutting plane model or shortly
model of f for a given bundle J of affine functions is defined by

f̂J(λ) := max
f̄∈J

f̄(λ). (4.3)

Clearly, we have f̂J(λ) ≤ f(λ) for all λ ∈ Rm. Figure 4.1 shows an example
of a convex function f , a linearization, and a cutting plane model of f .

4.1.3 Quadratic Subproblem

In every iteration i of the PBM the current bundle J i is used to find a “good”
next trial point λi+1 that has a low model value (i.e. low f̂Ji(λi+1)) and is
in the vicinity of the current stability center λ̄i. To obtain such a point the
following problem is solved:

λi+1 ∈ arg min
λ∈Rm

f̂Ji(λ) + ui‖λ− λ̄i‖2/2. (4.4)

4.1 Description 69

f

f̂J

λ1 λ2 λ3

f

f̄λi(λ)

λi

Figure 4.1: Linearization and cutting plane model of f

Here ui > 0 is a weighting of the quadratic term and J i is the current bundle
at iteration i.

It is difficult to solve the quadratic problem (4.4) directly because m is,
in general, large; the associated dual problem (QP)

α ∈ arg max
α≥0,

P
f̄∈Ji

αf̄=1

∑
f̄∈Ji

αf̄ f̄(λ̄i)− 1

2ui
‖gi(α)‖2

 , (4.5)

however, has smaller dimension.

The components of α are the coefficients of a convex combination of ele-
ments of J . That is αf̄ ≥ 0 for all f̄ ∈ J i and

∑
f̄∈Ji αf̄ = 1.

The aggregated subgradient gi(α), or shortly gi, is defined by a solution
αi of (4.5):

gi(αi) :=
∑
f̄∈Ji

αi
f̄∇f̄ . (4.6)

Here ∇f̄ = ∇f̄(λ) is the unique gradient for f̄ at any point λ because f̄ is
affine. If f̄ = f̄λi , i.e., f̄ stems from a linearization of type (4.1), then is
∇f̄ = gf̄ (λ

i).

The proof that (4.5) is the dual of (4.4) is shown as the proof of Lemma
4.1.

Lemma 4.1. Problems (4.4) and (4.5) are strongly dual: They have the
same optimal solution value if they are both feasible. If (4.4) is infeasible
then (4.5) is unbounded, and vice versa.

70 Proximal Bundle Method

Proof. We rewrite the quadratic model (4.4) as follows:

min
λ
f̂Ji(λ) +

ui

2
‖λ− λ̄i‖2 = min

λ
max
f̄∈Ji

f̄(λ) +
ui

2
‖λ− λ̄i‖2 (4.7)

= min
λ,z:f̄(λ)≤z,∀f̄∈Ji

z +
ui

2
‖λ− λ̄i‖2. (4.8)

Denoting the k := |J i| elements of J i by f̄1, . . . , f̄k and setting

c :=

(
1
0...
0

)
, Q := ui

(
0 0 ··· 0
0 1 0...

...
0 0 1

)
, A :=

(
1 (∇f̄1)T...

...
1 (∇f̄k)T

)
,

b :=

f̄1(0) +∇f̄1
Tλ̄i

...

f̄k(0) +∇f̄k
Tλ̄i

 =

f̄1(λ̄
i)

...

f̄k(λ̄
i)

 , and x :=

(
z

λ− λ̄i

)
,

(4.8) can be written as:

min cTx+ 1
2
xTQx ,

s. t. Ax ≥ b.

Its dual according to Section 3.2.3 or Dorn [1960] is then

(DQ) max αTb− 1
2
xTQx,

s. t. ATα+Qx = c,

α ≥ 0.

This is equivalent to

max
∑̄

f∈Ji

αf̄ f̄(λ̄i)− ui

2
‖λ− λ̄i‖2,

s. t.
∑̄

f∈Ji

αf̄ = 1,

gi(α) + ui(λ− λ̄i) = 0,

α ≥ 0.

Using the second equality to replace λ̄i − λ by gi(α)
ui proves the claim.

Lemma 4.2. If αi ∈ RJi

+ is an optimal solution of (4.5) then

λi+1 = λ̄i − 1

ui
gi(αi)

is an optimal solution of (4.4).

4.1 Description 71

Proof. The theorem about complementary slack implies that

αi
f̄ = 0 or f̄(λi+1) = f̂Ji(λi+1). (4.9)

Using this it follows that∑
f̄∈Ji

αi
f̄ f̄(λ̄i)− 1

2ui
‖gi(αi)‖2 = f̂Ji(λi+1) + ui‖λi+1 − λ̄i‖2/2.

By Lemma 4.1 now follows that λi+1 is an optimal solution of (4.4).

The model value at the new trial point can be directly expressed by the
linearizations in the current bundle J i and their convex multipliers αi. This
is shown in the next corollary:

Corollary 4.3. Let the cutting plane model f̂Ji of f be defined by (4.3) and
let α be an optimal solution of problem (4.5), then the following holds

f̂Ji(λi+1) =
∑
f̄∈Ji

αf̄ f̄(λi+1).

Proof. This follows directly from the definition of f̂Ji and (4.9).

The aggregated subgradient gi(αi) and the model value at the new trial
point f̂Ji(λi+1) define an affine function

f̃ i+1(λ) := f̂Ji(λi+1) + gi(αi)T(λ− λi+1) (4.10)

that minorizes by construction f̂Ji and therefore also f . Hence gi(αi) is a
subgradient of f̂ at λi+1.

The stopping criterion of the PBM is the predicted descent vi := f(λ̄i)−
f̂(λi+1) in the objective value by moving from λ̄i to λi+1. The predicted
descent is non-negative and if vi = 0, then λ̄i is already an optimal solution
of our problem.

Problem (4.5) can be interpreted as finding a convex combination of the
affine functions in J i that has an aggregated subgradient with small norm
and a large function value at the current stability center. It is easy too see
that every convex combination of affine functions below f is again an affine
function minorizing f . We will later explain how this is used to keep the
number of elements in J limited in the course of the PBM.

72 Proximal Bundle Method

4.1.4 Algorithm

Algorithm 3 states the (generic) PBM of Kiwiel [1990] as pseudo-code. Step 1
initializes the counters, the bundle, and the starting trial point λ0. This
point could be set arbitrarily, however a good estimation can reduce the
computation time significantly. In Step 2 a quadratic problem has to be
solved to find a new trial point. Then it is tested, if the current trial points
is good enough. Step 4 decides whether the stability center changes or not
by the predicted descent vi. The predicted descent depends on the weight
ui. If ui is large, the distance to the stability center is weighted heavier
and therefore the new trial point is closer to the trial point with increasing
ui. Therefore also vi is smaller. This test ensures that the descent of the
function value is large enough to guarantee the convergence of the PBM (see
Section 4.1.6). In Step 5 the new linearization is calculated and added to the
bundle. Step 6 updates the weight of the quadratic term of the quadratic
model. This step is optional. At last we increase the iteration counter and
go back to Step 2.

Algorithm 3 PBM
Input: A convex and continuous function f : Rm → R, a stopping tolerance

ε, and a parameter mL ∈ (0, 0.5], which controls the frequency of serious
steps.

Output: A point λ ∈ Rm and an objective value f(λ).
1: (Initialization) Set the iteration-counter i ← 0, select a “good” starting

solution λi, calculate a linearization f̄ i at λi, initialize the bundle J i ←
{f̄ i}, set the stability center λ̄i ← λi. Set the weight ui ← 1.

2: (Direction finding) Solve problem (4.5). This results in convex multipliers
αi, a new aggregated subgradient gi(αi), and a new trial point λi+1.

3: (Stopping criterion) If f(λ̄i)− f̂Ji(λi+1) < (1 + |f(λ̄i)|)ε terminate.
4: (Descent test) If f(λi+1) ≤ f(λ̄i)−mL(f(λ̄i)−f̂Ji(λi+1)) then λ̄i+1 ← λi+1

else λ̄i+1 ← λ̄i.
5: (Linearization updating) Select J i+1 containing a linearization of f at
λi+1, the aggregated linearization gi(αi), and arbitrary elements of J i.

6: (Weight updating) Select a weight ui+1.
7: i← i+ 1.
8: Go to Step 2.

4.1 Description 73

4.1.5 Weight updating

Any constant ui > 0 suffices to guarantee convergence of the PBM. However,
in the PBM-version of Kiwiel the weight ui depends, as indicated by notation,
on the iteration i. The adaption of the weight in the course of the algorithm
can lead to speedups.

Kiwiel [1990] proves that any sequence of weights that only increases at
iterations with serious steps and is constant or decreasing otherwise leads to
a convergent algorithm. In this article also a weight updating scheme based
on a quadratic approximation of f is proposed. In our case a simpler scheme
worked better: We increase the weight by a factor of 1.5 if fewer than iserious

iterations occurred between two serious steps, and we decrease the weight by
a factor of 0.75 if more than inull null steps in a row occurred. The values of
iserious and inull were set empirically for each class of problems.

4.1.6 Notes On The Convergence

We will sketch the proof that the sequence of stability centers (λ̄i) generated
by the PBM converges to a point in the set arg minλ∈Rm f(λ) if this set is not
empty and if the stopping tolerance ε is set to zero. As far as we know, Kiwiel
[1990] gives the first proof of convergence of this kind of bundle methods, see
also Hiriart-Urruty & Lemaréchal [1993a] for a deep examination of bundle
methods including a convergence proof, or Frangioni [2002] for a proof of
convergence of a generalized class of bundle algorithms including the PBM.

The proof consists in all cases of the following steps: It is shown that
the algorithm stops with an optimal λi if it terminates after a finite number
of iterations. That is: it is shown that if at a certain iteration i we have
f(λ̄i) = f̂(λi+1)and hence λ̄i is optimal.

Then it is shown that for a constant stability center λ̄i (assuming that at
a certain point in the course of the algorithm an infinite series of null steps
occurs) the algorithm converges to an optimum of the quadratic subproblem
(4.4). That is

λi → arg min
λ

max
x

L(λ, x) = arg min
λ

(
f(λ) +

ui

2
‖λ− λ̄i‖2

)
.

Further it is shown that vi, that is, the gap between model value f̂(λi) and
function value f(λi), converges to zero. This implies that either a descent
step is triggered after a finite number of iterations or the stability center is

74 Proximal Bundle Method

already optimal. Finally it is proven that in the case of an infinite number of
descent steps the sequence of stability centers has an optimal cluster point.
Denote: if f is polyhedral, as in our setting, we have only a finite number of
serious steps.

The actual proof needs some concepts of convex analysis, which are not
the topic of this work, or alternatively a lengthy technical proof, which in
our opinion does not give new insight to the PBM, therefore we do not want
to go into the details here.

4.2 Comparison with other Subgradient

Methods

The proximal bundle method is related to the subgradient method, which
was proposed by Shor in 1962. The subgradient method was used by Held
& Karp [1970, 1971] to solve a Lagrangean relaxation of the traveling sales-
man problem. Since then the subgradient method is often used to calculate
bounds on the optimal values and dual information of LPs and combinatorial
problems by approximating their Lagrangean relaxations. The advantages of
the subgradient method are that it is easy to implement in comparison to
interior point or simplex methods and that it is generally very fast in cal-
culating bounds on the objective value of LPs. A comparison of calculating
bounds of various LPs with CPLEX, PBM, and subgradient methods can be
found in Section 4.7.

A major disadvantage is that subgradient methods in general are not
able to give lower bounds of the same quality as the simplex or the barrier
algorithm. They also lack a good termination criterion because the quality
of the lower bounds found cannot be controlled. In addition, the convergence
speed of the subgradient method is usually rather slow if the objective value
approaches its optimum. Finally, the subgradient method does not provide
primal information which can be useful as input for primal heuristics.

These disadvantages are addressed by the PBM. It comes at the price that
at every iteration of the PBM a quadratic problem has to be solved. Solving
this quadratic problem is rather difficult and time consuming. However, the
PBM needs in general fewer iterations to reach the same objective value as the
subgradient method hence it is often faster with respecting the total running
time.

4.3 Modifications and Extensions 75

4.3 Modifications and Extensions

In the next sections we describe modifications of the PBM that either in-
tend to accelerate it for functions with special structure or that enhance its
usefulness. We describe in Section 4.3.1 the technique of Kiwiel [1995] to
handle separable functions more efficiently. We need this to approximate
LPs with block-structure like the LP-relaxation of (ISP). In Section 4.3.2 we
explain a straightforward method to recover primal information if the func-
tion f stems from the Lagrangean relaxation of an LP or ILP. We need the
primal information to guide the branching decisions of our ILP-heuristic of
Chapter 6. In Section 4.4 we show our active set technology to accelerate the
PBM if f stems from the Lagrangean relaxation of an LP with many columns.
Section 4.3.3 shows the handling of functions with restricted domain. This
technique was developed by Helmberg & Kiwiel [2002] for problems stem-
ming from semi-definite optimization problems. We adapt it to approximate
LPs with inequality constraints.

4.3.1 Separable Functions

The PBM can handle separable functions in a particularly efficient way to
speed up the convergence. The idea is to provide for each subfunction its
own bundle. We now formalize this:

Let the function f : Rm → R, which we want to minimize, be the dual
function of a separable function. That is: we want to maximize a separable
primal problem

(SP) max
∑k

j=1 ζj(xj),

s. t. ∑k
j=1 φij(xj) ≥ 0, j = 1, . . . ,m,

x = (x1, x2, . . . , xk) ∈ X := X1 ×X2 × · · · ×Xk

where ζj and φij are closed concave functions on nonempty closed convex
sets. Denote: This is exactly the setting of the ISP.

76 Proximal Bundle Method

The dual function that to (SP) that should be minimized is then

f(λ) := sup

{
k∑

j=1

(
ζj(xj) +

m∑
i=1

λiφij(xj)

)
: x = (x1, . . . , xk) ∈ X

}

=
k∑

j=1

sup
xj∈Xj

(
ζj(xj) +

m∑
i=1

λiφij(xj)

)
.

Here the Lagrangean multipliers are λ ∈ Rm, and we will write in the following

fj(λ) := sup
xj∈Xj

(
ζj(xj) +

m∑
i=1

λiφij(xj)

)
.

Then fj is convex and continuous for all j = 1, . . . , k.

The PBM is able to manage for every function fj its own bundle J i
j of

linearizations. Problem (4.5) can be written as

αi = arg min
α≥0,P

f̄∈Ji
j

αj

f̄
=1,∀j=1,...,k

 k∑
j=1

∑
f̄∈Ji

j

αj

f̄
f̄(λ̄i) +

1

ui
‖

k∑
j=1

gj(α
j)‖2

 (4.11)

and the aggregated subgradient gj(α) of function fj over the bundle J i
j is

defined analogously to g(α):

gj(α) :=
∑
f̄∈Ji

j

αj

f̄
gf̄ .

The special handling of separable functions makes the Direction finding Step
2 of Algorithm 3 more expensive, but in general reduces the total number
of iterations needed. A more complete description of this technique can be
found in Kiwiel [1995].

4.3.2 Primal Approximation of Linear Programs

If f is defined by a Lagrangean relaxation of a linear program we are able to
approximate a primal solution of it. We show in this section how this can be

4.3 Modifications and Extensions 77

accomplished. Let us look at the following linear program:

(P) max cTx,

s. t.

(i) Ax = a,

(ii) Bx = b,

(iii) x ≥ 0.

Here A ∈ R
m1×n and B ∈ R

m2×n are matrices and c, x ∈ R
n and a ∈ R

m1 ,
b ∈ Rm2 are appropriate vectors.

We relax constraints (i) by Lagrangean relaxation resulting in the follow-
ing problem (L):

min
λ∈Rm1

max
Bx=b,x≥0

cTx+ λT(a− Ax). (4.12)

The convex continuous function f : Rm1 → R which we want to minimize is
defined by

f(λ) : = max
Bx=b,x≥0

cTx+ λT(a− Ax)

= λTa+ max
Bx=b,x≥0

(cT − λTA)x.

To evaluate f at a certain trial point λ∗ we have to solve the problem

arg max
Bx=b, x≥0

(cT − λ∗TA)x. (4.13)

If this problem is significantly easier to solve than the original problem (P),
the PBM is a reasonable approach to solve problem (L).

If x∗ is a solution of (4.13) a linearization of f at λ ∈ Rm1 is given by

f̄(λ) := cTx∗ + λT(a− Ax∗), ∀λ ∈ Rm1 (4.14)

and the subgradient of f at λ∗ by a−Ax∗. Observe that in general x∗ is not
unique and therefore the subgradient is also not unique.

The primal approximation of (P) can now be calculated by convex com-
binations of solutions of (4.13) associated with the linear functions in the
bundle J i and the solution αi of the according problem (4.5). That is: Let
xf̄ be the solution of (4.13) that leads to the linearization f̄ , or if f̄ is the
result of a convex combination of such linearizations, let xf̄ be the convex

78 Proximal Bundle Method

combination of the according primal information associated with the linear
functions. Then we define

x(αi) :=
∑
f̄∈Ji

αi
f̄xf̄ . (4.15)

If we only want to calculate a primal solution of a certain subfunction fj of
a separable function f stemming from the Lagrange-relaxation of a LP with
block-structure, xj(α

i) is defined analogously to gj(α
i):

xj(α
i) :=

∑
f̄∈Ji

j

αj

f̄
xf̄ .

The series (x(αi))i=1,2,... converges to an optimal solution of (P) (see Ki-
wiel [1990]).

4.3.3 Handling of Bounded Functions

The bundle method can also be used to minimize a convex function f over a
box. That is we look at the problem

min
`≤λ≤u

f(λ). (4.16)

We use this for the Lagrangian multipliers associated with the base con-
straints of problem (DSP), see Section 1.10, (dual-DSP). Only Step 2, Direc-
tion Finding, of Algorithm 3 has to be adapted. We introduce in the following
the idea and a description of our implementation. Mathematical proofs and
further details for a similar method used in semidefinite programming can be
found in Helmberg & Kiwiel [2002].

We write Problem (4.16) as the unbounded problem

min
λ
f(λ) + ı[`,u](λ). (4.17)

The indicator function ıQ(λ) is 0 if λ ∈ Q and ∞ otherwise. Let us also
define an interval of vectors coordinatewise: Let `, u ∈ R

m, then [`, u] :=
{λ ∈ Rm | `i ≤ λi ≤ ui,∀i ∈ {1, . . . ,m}}. The indicator function can then
be described by

ı[`,u](λ) = max
η−,η+∈Rm

+

(`− λ)Tη− + (λ− u)Tη+ (4.18)

4.3 Modifications and Extensions 79

A linearization of f analogously to equation (4.1) at a point λi is:

f̄λi(λ) := f(λi) + (gf̄λi
− η−

λi + η+
λi)

T(λ− λi) + (`− λi)Tη−
λi + (λ− − u)Tη+

λi

(4.19)

= f(λi) + gf̄λi

T(λ− λi) + (`− λ)Tη−
λi + (λ− u)Tη+

λi (4.20)

with

η−
λi ∈ arg max

η≥0
(`− λi)Tη and (4.21)

η+
λi ∈ arg max

η≥0
(λi − u)Tη. (4.22)

The variables η− and η+ can be seen as Lagrangean multipliers of the lower
and upper bounds on λ.

Now we define a function that is always smaller than or equal to the
linearization f̄λi by selecting arbitrary non-negative values for η+

λi , and η−
λi :

f̄λi(λ, η+, η−) := f(λi) + gf̄λi

T(λ− λi) + (`− λ)Tη− + (λ− u)Tη+. (4.23)

This can also be written as

f̄λi(λ, η+, η−) = f(λi)− gf̄λi

Tλi + `Tη− + uTη+ + (gf̄λi
− η− + η+)Tλ.

One can see that for fixed η− and η+ the function f̄(·, η+, η−) is affine, has
the gradient gf̄λi

− η− + η+ and at the origin the function value f(λi) −
gf̄λi

Tλi + `Tη− + uTη+. Obviously the following holds by construction of
these functions:

f(λ) ≥ f̄λi(λ) ≥ f̄λi(λ, η+, η−), ∀λ, λi ∈ Rm, η+, η− ∈ Rm
+ .

We define a family of cutting plane models f̂η+,η−

J of f using its affine mino-
rants f̄λi(·, η+, η−):

f̂η+,η−

J (λ) := max
f̄∈J

f̄(λ, η+, η−) (4.24)

and a corresponding family of quadratic models

f̃η+,η−

J (λ, λ̄i) := f̂η+,η−

J (λ) +
w

2
‖λ− λ̄i‖2. (4.25)

We optimize over the family of functions f̃η+,η−

J in a two stage approach.
First, we keep the pair (η+, η−) fixed and calculate a minimizer λi+1

η+,η− of
(4.25). That is, analogously to (4.5) we want to solve

αi = arg max
α≥0,

P
f̄∈Ji

αf̄=1

∑
f̄∈Ji

αf̄ f̄(λ̄i, η+, η−)− 1

2wi
‖g(α)− η− + η+‖2

 (4.26)

80 Proximal Bundle Method

and

λi+1 = λ̄i − 1

wi

(
g(αi)− η− + η+

)
. (4.27)

Then we find the new (η+,i+1, η−,i+1) by fixing λ to λi+1 and solving the
problem

(η+,i+1, η−,i+1) := arg min
η+≥0,η−≥0

f̃η+,η−

J (λi+1). (4.28)

Using (4.27) we get

η+,i+1 := max{0,−wiλ̄i − g(αi)− wiu}, (4.29)

η−,i+1 := max{0, wiλ̄i + g(αi) + wi`}. (4.30)

The new point (λi+1, η+,i+1, η−,i+1) together with the aggregated linearization
defined by g(αi) and f(λi+1) would be already enough to ensure convergence
of the bundle method. However, alternatively solving (4.26) with fixed η−, η+

and (4.28) with a fixed αi can further improve the next trial point. The
direction finding part of the algorithm implementing this idea is presented
as Algorithm 4.

Algorithm 4 Direction Finding for bounded functions.

Input: A function f , a bundle J , a stability center λ̄i, Lagrangean multi-
pliers for the box constraints η+,i and η−,i, a weight wi. A maximum
number of iterations in the Direction Finding jmax, a threshold ε.

Output: A new trial point λi+1, and new variables η+,i+1, η−,i+1.
1: f(λ−1) = −∞, j ← 0, k ← 0, η+

j ← η+,i, η−j ← η−,i.
2: repeat
3: Solve problem (4.26) with respect to η+

k , η
−
k .

4: Set η+
j+1 and η−j+1 according to (4.29) and (4.30).

5: Set λj ← λ̄i − 1
wi

(
g(αi)− η−j + η+

j

)
.

6: if f̂ 0,0
J (λj)− f̂η+

j+1,η−j+1(λj) > 0.1(f(λ̄i)− f̂η+
j+1, η

−
j+1(λj)) then set k ←

j.
7: j ← j + 1.
8: until j = jmax or f(λj−1)− f(λj−2) < ε

4.4 Active Set Method

Active set methods are a general technique for algorithms that solve MIPs
or LPs. The idea is to select a subset of columns of the problem and then

4.4 Active Set Method 81

to make the computations on the smaller problem induced by this subset.
The active set will be adapted throughout the course of the algorithm. We
describe in this section our active set method for the PBM.

For set covering and set partitioning problems an active set heuristic is
described by Caprara et al. [1996]. Similar methods are also used in simplex
algorithms under the name sifting, e.g., in the standard solver CPLEX. The
restricted problem of a column generation approach (see Section 3.1) can also
be interpreted as an active set of the master problem.

4.4.1 Description

We look at an LP of the following type:

(P) max cTx, c ∈ Rn, x ∈ Rn,

s. t.

(i) Ax = b, A ∈ Rm×n,

(ii) 0 ≤ x ≤ 1.

We relax constraints of type (i) in a Lagrangean way to get the Lagrangean
dual function f : Rm 7→ R defined by

f(λ) := λTb+ max
0≤x≤1

(c− λTA)x. (4.31)

We now want to minimize f by the PBM.

If n is very much larger than m the computation of λTA consumes the
main part of the evaluation of f at a certain point λ ∈ Rm. Therefore we use
at an iteration i of the PBM a subset I i ⊂ {1, . . . , n} of all columns called
active set. The active set I implies a function fI by replacing the matrix
A in the definition of f by a matrix A·I restricted to columns in I and by
replacing x with xI . Then obviously fI(λ) ≤ f(λ) holds. It is easy to see
that fI(λ) = f(λ) if the reduced cost c̄j := cj −λTA·j are non-positive for all
columns j which are not included in I.

The selection of the right active set is critical to the performance of the
PBM with active sets, because large active sets consume much time evaluating
fI and missing columns in the active sets lead to additional iterations of the
PBM in which the active set is corrected. We use the following strategy
to select the active sets: The active set is only adapted at serious steps of
the PBM or if a termination is possible. The rationale behind this is that

82 Proximal Bundle Method

at null steps the Lagrangean multipliers only change slightly because the
quadratic stabilization term keeps the new trial point in the vicinity of the
stability center. Therefore also the active set remains meaningful for the
actual problem.

Algorithm 5 PBM with active set

Input: A convex and continuous function f : Rm → R, a stopping tolerance
ε, and a parameter mL ∈ (0, 0.5], which controls the frequency of serious
steps.

Output: A point λ ∈ Rm and an objective value f(λ).
1: (Initialization) Set the iteration-counter i ← 0, select a “good” starting

solution λi, select an active set I i ⊂ {1, . . . , n}, calculate a linearization
f̄ i

Ii at λi, initialize the bundle J i ← {f̄ i
Ii}, set the stability center λ̄i ← λi.

Set the weight ui ← 1.
2: (Direction finding) Solve problem (4.5).
3: Set I i+1 ← I i.
4: if fIi(λ̄i)− f̂Ji(λi+1) < (1 + |f(λ̄i)|)ε then
5: if f(λ̄i)− f̂Ji(λi+1) < (1 + |f(λ̄i)|)ε then
6: terminate.
7: else
8: Adapt the active set I i+1.
9: end if

10: end if
11: if fIi(λi+1) ≤ f(λ̄i)−mL(f(λ̄i)− f̂Ji(λi+1)) then
12: if f(λi+1) ≤ f(λ̄i)−mL(f(λ̄i)− f̂Ji(λi+1)) then
13: λ̄i+1 ← λi+1.
14: Remove some elements from the active set I i+1.
15: else
16: λ̄i+1 ← λ̄i.
17: Adapt the active set I i+1.
18: end if
19: else
20: λ̄i+1 ← λ̄i.
21: end if
22: (Linearization updating) Select J i+1 containing a linearization of fIi at

λi+1, the aggregated linearization gi(αi), and arbitrary elements of J i.
23: (Weight updating) Select a weight ui+1.
24: i← i+ 1.
25: Go to Step 2.

Algorithm 5 shows the PBM with active sets as pseudo-code. It has the

4.4 Active Set Method 83

following differences to the PBM as shown in Algorithm 3: If at an iteration
i the criterion for an abortion is fulfilled by fIi the method checks at step 4
whether this criterion is also fulfilled by f . If this is not the case that implies
that fIi(λi+1) < f((λi+1) and this is caused by columns with positive reduced
cost in Ī i := {1, . . . , n}\I i. Then we add columns with positive reduced cost
from Ī i to I i+1. We keep also all columns with positive reduced cost that are
already in I i.

If at an iteration i the criterion for a serious step is fulfilled by fIi the
method checks at step 12 if this criterion is also fulfilled by f . If this is the
case we only remove some columns from I i+1 with non-positive reduced cost.
Otherwise, again some columns with positive reduced cost are missing in the
current active set, so some are added. If the criterion for serious steps is not
fulfilled by fIi , a null step is performed without changing the active set.

In each iteration, we add only a certain number of columns per row of
matrix A to the active set. We select per row the five columns with largest
non-negative reduced cost that cover this row, add add them to I i+1. This
keeps the number of columns in the active set small even though the absolute
number of columns with positive reduced cost may be large.

If the active set changes it is possible that the linearizations in the current
bundle J i are no longer valid for the new function fIi+1 . This could be
prevented by removing all linearizations from the bundle at serious steps, and
the PBM would still converge (see Kiwiel [1990]). However, this slows down
the PBM. So we keep the bundle and “shift” the linearizations if we detect
an invalid one. The details of this strategy will be described in Section 4.6.

Our modified PBM still converges, because n is finite and we add columns
to the active set if we recognize that some are missing, and we only remove
columns after “real” serious steps. Therefore it is still guaranteed that either
a serious step occurs or the abortion criterion is fulfilled after a finite number
of iterations.

4.4.2 Exact Active Sets

We now propose an exact method for selecting columns into the active set,
such that no column not included can get positive reduced cost until the next
serious step of the PBM.

For given Lagrangean multipliers λi ∈ Rm it is easy to solve the problem

max
0≤x≤1

cTx+ (b− Ax)Tλi. (4.32)

84 Proximal Bundle Method

Any optimal solution x∗ of (4.32) depends only on the reduced cost c̄i. All
x∗ of the following form are optimal solutions of (4.32): Let j = 1, . . . , n,
then let

x∗j :=


0, c̄ij > 0,

1, c̄ij < 0,

an arbitrary value in [0, 1], c̄ij = 0.

In the PBM we find at each iteration a new trial point λi+1 in the vicinity
of the stability center λ̄i. This implies, that the reduced costs c̄i+1 are also
staying in the region of the reduced cost of the last stability center. More
precisely, let is be the iteration of the last serious step, then it holds using
λi+1 = λis − 1

ui g
i:

c̄i+1 = c− ATλis − 1

ui
ATgi.

We define now an upper bound βi on the 1-norm of the aggregated subgra-
dients of all iterations after an iteration i and before the next serious step at
an iteration i∗:

βi ≥
m∑

j=1

|g`
j|, ∀i ≤ ` ≤ i∗.

Then we know that the reduced cost of a column j changes in the iterations

until the next serious step at most by
βi‖A·j‖

ui . Here we take the 1-norm
‖A·j‖ :=

∑m
i=1 |Aij|. This follows directly from Cauchy-Schwarz.

If now at a serious step of the PBM in iteration k the reduced cost of a

column j is smaller than −βi‖A‖
ui we know, that until the next serious step

the reduced cost c̄`j, ` > k will be smaller than zero. This means, that the
variable of the corresponding column will be staying at zero. Thus we can
safely ignore this column. Therefore we only take the columns in an active

set I i := {j ∈ {1, . . . , n} | c̄ij > −
βi‖A‖

ui } into account for the calculations.

However, βi‖A‖/ui is in our cases too large to be of practical relevance,
i.e., so many columns are in the active set that no speed up of the algorithm
was observable. Therefore we use the heuristic active sets described above.

4.5 Applications

In the literature the PBM has been applied to solve semidefinite relaxations of
combinatorial optimization problems (Helmberg [2000]; Fischer et al. [2003]),

4.5 Applications 85

linear matrix inequalities (Scott [2001]), and Lagrangian relaxations of com-
binatorial problems (Lemaréchal [2001]).

We present now our adaption to the PBM to approximate the LP-
relaxations of the duty scheduling problem (DSP) and the integrated vehicle
and duty scheduling problem (ISP).

4.5.1 Approximating the Duty Scheduling Problem

In this Section we will collect some facts about approximating the LP-
relaxation of problem (DSP) of Section 1.10.3 with the PBM. We have re-
placed the cost vector c of problem (DSP) of Section 1.10.3 by ci because
we will later use this model as a subproblem of a PBM to approximate the
LP-relaxation of the ISP. In this version of the PBM the new cost vector ci

depends on the iteration i or more exactly on a current trial point λi. That
is, we set

ci := c+ λiTB. (4.33)

Problem (DSPi) is now:

(DSPi) min ciTx + γTz,

s. t.

(i) Ax = 1,

(ii) Rx − z ≤ r,

(iii) x ∈ {0, 1}D,
(iv) z ≥ 0.

Here ci ∈ R
D are the costs of duties, γ ∈ R

B are costs for the deviation
of a resource consumption from its target, r ∈ R

B are the targets of the
resource consumptions, A ∈ {0, 1}VDSP×D is the task-duty-incidence matrix,
and R ∈ RB×D gives the resource consumptions of the duties. The variables
x ∈ R

D are one if the corresponding duty is used and zero otherwise, the
slack variables z ∈ RB give the deviations of the resource consumptions of a
duty schedule from its targets.

We now look at a Lagrangean function of (DSPi) which arises by relaxing
constraints (i) and (ii):

f i
DSP(µ, ν) := min

x∈{0,1}D
[ciTx+ µT(1− Ax) + νT(r −Rx)]. (4.34)

86 Proximal Bundle Method

The slack variables z are transformed into bounds on the Lagrangean multi-
pliers corresponding to equations (ii). Thus, the domain of the function f i

DSP

is bounded to the set

dom(f i
DSP) = {(µ, ν) ∈ RVDSP × RB | νr ∈ [−γr, 0],∀r ∈ B}.

The optimum of the Lagrangean dual of the LP-relaxation of (DSPi)

max
(µ,ν)∈dom(fDSP)

f i
DSP(µ, ν) (4.35)

has the same value as the minimum of the LP-relaxation of (DSPi). And
every linearization of f i

DSP(·, ·) at a point (µ, ν) ∈ dom(fDSP) can be written
as

f̄ i
DSP(µ, ν;λ) := ciTxi + µT(1− Axi) + νT(r −Rxi)

where xi is a minimizer of minx∈[0,1]D(ciT − µTA− νTR)x.

We now maximize f i
DSP with the modified PBM for bounded functions (see

Section 4.3.3). This results in an approximate primal solution x̃i ∈ [0, 1]D

given by equation (4.15) and a solution (µi, νi) ∈ dom(f i
DSP) that is hopefully

in the vicinity of a maximizer of f i
DSP. We define the residuum h(x) of

x ∈ [0, 1]D by

h(x) :=

(
1− Ax

min{r −Rx, 0}

)
. (4.36)

Then h(xi) is by construction (see Section 4.1.3) a subgradient at (µi, νi) of
the cutting plane model of f i

DSP used in the last iteration of the PBM, denoted

by f̂ i
DSP, and therefore also an ε-subgradient of f i

DSP. By Corollary (4.3) the

value of f̂ i
DSP at the new trial point can be expressed as a convex combination

of linearizations in the current bundle:

f̂ i
DSP(µi, νi) = ciTx̃i + h(x̃i)T

(
µi

νi

)
. (4.37)

Therefore the following equation holds for all (µ, ν) ∈ dom fDSP:

ciTx̃i + h(x̃i)T

(
µ

ν

)
≥ f̂ i

DSP(µ, ν) ≥ f i
DSP(µ, ν). (4.38)

In the following (DSPi) occurs as a subproblem of the Lagrangean relaxation
of (ISP). We will need equation (4.38) to proof the convergence of the inexact
PBM for (DSP) as well as (ISP).

4.5 Applications 87

4.5.2 Approximating the Integrated Duty and Vehicle
Scheduling Problem

We now state the Lagrangean dual of the LP-relaxation of the problem (ISP)
which will be solved by our adaption of the PBM. We recapitulate (ISP) here
briefly:

(ISP) min cTx + γTz + dTy,

s. t.

(i) Ax = 1,

(ii) Rx − z ≤ r,

(iii) Ny = b,

(iv) Bx − My = 0,

(v) x ∈ {0, 1}D, z ≥ 0, y ∈ {0, 1}V D
DSP .

Constraints (i) ensure the covering of necessary tasks by duties, constraints
(ii) provide the resource constraints of the duty scheduling problem, con-
straints (iii) model the vehicle scheduling problem, and constraints (iv) cou-
ple the duty and the vehicle scheduling problem. More details can be found
in Section 2.2.3.

Let now be

PDSP := {(x, z) ∈ [0, 1]D × RB | Ax = 1, Rx− z ≤ r, z ≥ 0} (4.39)

the polyhedron associated with the LP-relaxation of the DSP and

PVSP := {y ∈ [0, 1]V
D
DSP | Ny = b} (4.40)

the polyhedron associated with the LP-relaxation of the VSP. Then a La-
grangean relaxation with respect to the coupling constraints (ISP) (iv) and
a relaxation of the integrality constraints (v) results in the Lagrangean dual

(L) max
λ

[
min

y∈PVSP

(dT − λTM)y + min
(x,z)∈PDSP

(
(cT + λTB)x+ γTz

)]
.

We now define the following functions and associated arguments by

fV : RV D
DSP → R,

λ 7→ min(dT − λTM)y; y ∈ PVSP,

fD : RV D
DSP → R,

λ 7→ min(cT + λTB)x+ γTz; (x, z) ∈ PDSP,

f := fV + fD,

(4.41)

88 Proximal Bundle Method

and
y(λ) ∈ arg min

y∈PVSP

fV (λ),

(x(λ), s(λ)) ∈ arg min
(x,s)∈PDSP

fD(λ).

We take arbitrary minimizers of the problems. With this notation, (L) be-
comes

(L) max
λ

f(λ) = max
λ

[fV (λ) + fD(λ)] .

The functions fV and fD are concave and piecewise linear. Their sum f is
therefore a separable, concave, and piecewise linear function; f is, in par-
ticular, nonsmooth. This is precisely the setting for the proximal bundle
method. The main obstacle to use the PBM straightforward is that fV and
fD are computational expensive to evaluate. Therefore we will only evaluate
them approximately. If we use the inexact subgradients and approximated
function values straightforward in the PBM it does not converge anymore.
We will describe in the next section how we handle this inexactness such
that the convergence of the inexact PBM to a near optimal minimizer of f is
guaranteed.

4.6 Inexact Bundle Method

In this Section we want to describe how the PBM can be used if f is evaluated
approximately and also ε-subgradients are used to calculate linearizations.
Approximating f is useful if function evaluation requires the solution of an
NP-hard or at least numerical difficult problem. Inexact evaluation may
also accelerate the PBM, especially if exactness of the solution is not so
important. We will in this Section also review the literature about inexact
bundle methods.

For the integrated vehicle and duty scheduling problem the situation is as
follows: Two obstacles prevent the straightforward application of the prox-
imal bundle method to the function f defined in equation (4.41). First,
the component problem for duty scheduling is NP-hard, even in its LP-
relaxation; second, the vehicle scheduling LP is computationally at least not
easy. We can therefore not expect that we can compute the function values
fV (λ) and fD(λ) and the associated subgradients gV (λ) and gD(λ) exactly.
We use the algorithms in Löbel [1997b] to approximate fV (λ) and gV (λ),
see also Section 1.9; and we use a column generation approach, sketched in
Section 1.10, to approximate fD(λ) and gD(λ).

4.6 Inexact Bundle Method 89

We now review the literature for approximate subgradient calculation in
bundle methods and then explain our approaches to handle the inexactness
in the evaluation of the component functions fV and fD.

4.6.1 Literature

The literature gives different versions of approximate bundle methods that
can deal with inexact evaluations of the component functions. In Kiwiel
[1995] a version of the PBM is stated that asymptotically produces a solution,
given that ε-linearizations of the function f to be minimized can be found
at every trial point µ ∈ Rm for all ε > 0, i.e., one can find an affine function
f̄ε(λ;µ) := fε(µ)+gε(µ)T(λ−µ) such that fε(µ) ≥ f(µ)−ε and f(λ) ≥ f̄ε(λ;µ)
for all λ ∈ Rm.

In Hintermüller [2001] another version is given, which replaces exact sub-
gradients of f by ε-subgradients. In this method it is not necessary to know
or control the value of ε; it produces solutions that are as good as the supplied
ε-subgradients. They converge, in particular, to the optimum if the linear
approximation also converges to the original function during the algorithm.

In principle, we could use these approaches in our setting, but at a high
computational cost and with only limited benefit. In fact, our vehicle schedul-
ing algorithm produces not only a primal solution, but also a lower bound and
an adequate subgradient from a certain single-depot relaxation of the vehicle
scheduling problem. The information that can be derived from the subgradi-
ents associated with this single-depot relaxation was unfortunately not very
helpful in our computational experiments. Concerning the duty scheduling
part, we are also able to compute a lower bound and adequate subgradients
for the duty scheduling component function for any fixed column set using
exact LP-techniques. However, this is a lot of effort for a bound that is not
globally valid. We remark that one can, at least in principle, also compute
a lower bound for the entire duty scheduling function fD, see Section 5.8.
Such procedures are, however, extremely time consuming and do not yield
high quality bounds for large-scale problems. Therefore we use a different,
much faster approach to approximate the component functions themselves by
piecewise linear functions. We show below how this can be done rigorously
for the vehicle scheduling part; in the duty scheduling part, the procedure is
heuristic, and we simply update our approximation whenever we notice an
error.

In a recent approach, see Kiwiel [2006], a variant of the proximal bundle
method is given that can handle approximate evaluation of f and its sub-

90 Proximal Bundle Method

gradients. The setting is: Let S be a nonempty closed convex set in R
n.

For fixed, but probably unknown, accuracy tolerances εf ≥ 0 and εg ≥ 0
we can find for every λ ∈ S an approximate value fλ and an approximate
subgradient gλ of f that produces a approximate linearization of f :

f̄λ(µ) := fλ + gλ
T(µ− λ) ≤ f(µ) + εg with f̄λ(λ) = fλ ≥ f(λ)− εf .

There also the convergence to an (εf + εg)-optimal solution of the mini-
mization problem is proven. The variant only needs an easy to implement
modification of the original PBM. However, we are not able to guarantee in
our setting that fλ ≥ f(λ) − εf because the inexact column generation for
the (DSP) does not generate lower bounds, see Section 4.6.3 for details.

4.6.2 Vehicle Scheduling Component Function

We now examine the approximate evaluation of the vehicle scheduling com-
ponent function fV at a trial point λi. This involves solving VSPi, a VSP
with modified objective function with respect to the trial point at iteration i.

(VSPi) min (dT − λiTM)y,

s. t.

(i) y ∈ PVSP,

(ii) y ∈ {0, 1}AVSP .

The vehicle scheduling polyhedron PVSP is defined by equation (4.40). Let yi

be a feasible, preferable near-optimal, solution of (VSPi). Then we define an
affine function f̄ i

V that approximates fV in the vicinity of λi:

f̄ i
V : RV D

DSP 7→ R,

f̄ i
V (λ) := (dT − λTM)yi.

The gradient gi
V of f̄ i

V can be computed by the solution yi as follows:

gi
V := −Myi.

It holds that f̄ i
V (λ) ≥ fV (λ) for all λ because yi is feasible. We can use

the functions f̄ j
V , j = 1, . . . , i to create a concave approximation f̂ i

V ≥ fV of
fV by setting

f̂ i
V (λ) := min

j=1,...,i
f̄ j

V (λ).

4.6 Inexact Bundle Method 91

fV

λ1 λ2 λ3

f̄ 1
V

f̄ 2
V

f̄ 3
V

fV

λ1 λ2 λ3

f̂ 3
V

Figure 4.2: The functions fV , f̄ i
V , i = 1, . . . , 3 and f̂3

V .

We use this approximation in the PBM (Algorithm 3) by replacing fV by
f̂ i

V . The relations of fV , f̄ i
V , and f̂ i

V are depicted exemplarily in Figure 3.

Since the function f̂ i
V depends on all linearizations calculated until the

current iteration, we must also recalculate its value f̂ i
V (λ̄i) at the stability

center in the stopping criterion and the ascent test (Steps 4 and 6) of the PBM
at every iteration. Since we have a finite number of valid vehicle schedules
for a given VSP we have also only a finite number of linearizations f̄ i

V (λ).

So, after some iteration i∗, all linearizations are known and the function f̂ i
V

is identical to all functions f̂ j
V , j > i. Hence after that iteration i∗ we are in

the setting of the standard PBM that provably converges.

Potentially, storing all linearizations f̄ i
V is very memory consuming. How-

ever, for the convergence of the algorithm it suffices to store the linearizations
that cut off a current stability center otherwise they can be recomputed if nec-
essary. We further assume that it is also sufficient to store at each iteration i
only the linearizations used in the current bundle J i

V to prove convergence of
the PBM. However, the proof of this assumption is still open. Nevertheless,
our computations seem to back this assumption.

4.6.3 Duty Scheduling Component Function

In this section we describe how we approximate the subgradients and function
values of the duty scheduling component function fD of the ISP at the trial
points of the PBM again with the PBM. Then we examine the influence
of inexact column generation on the calculated subgradients and function
values. At last we show the convergence of our modified PBM.

92 Proximal Bundle Method

Approximating the Subgradient

We approximate the duty scheduling component function fD at the trial
points λi ∈ RV D

DSP , i = 1, 2, . . . of the PBM by approximating the correspond-
ing LP again by the PBM. This gives us, as described in Section 4.5.1, an
approximation (x̃i, z̃i), z̃i := max{0, r − Rx̃i} of the arguments of fD, and
a lower bound of fD(λi) by f i

DSP(µi, νi), as defined in (4.34), where (µi, νi)
is the last stability center of the PBM used to approximate fD(λi). We now
want to motivate that the calculated x̃i helps us to approximate (ISP) using
the PBM.

We define

L(λ, µ, ν) := min
x∈{0,1}D

[
(c+ λTB)x+ µT(1− Ax) + νT(r −Rx)

]
(4.42)

for all λ ∈ R
V D

DSP and all (µ, ν) ∈ dom fDSP. Then is, by definition,
L(λi, µ, ν) = f i

DSP(µ, ν), for all trial points λi and all (µ, ν) ∈ dom fDSP.

Proposition 4.4. Let x̃i be the approximate solution of (DSPi) calculated
by the PBM and let (λi, µi, νi) be the last trial point. Then

g(x̃i) :=

 Bx̃i

1− Ax̃i

min{r −Rx̃i, 0}


is an εD-subgradient of L at (λi, µi, νi) for some εD ≥ 0.

Proof. Let

L̄i(λ, µ, ν) := L(λi, µi, νi) + g(x̃i)T

λ− λi

µ− µi

ν − νi


be the affine function for which we want to show that for a fixed εD ≥ 0
holds: L̄i + εD is above L. Let xi be an optimal solution of (DSPi). Then we
have

L̄i(λ, µ, ν) = f i
DSP(µi, νi) + g(x̃i)T

λ− λi

µ− µi

ν − νi

 , (4.43)

4.6 Inexact Bundle Method 93

now we use (4.38) setting εD := ciTx̃i + h(x̃i)

(
µi

νi

)
− f i

DSP(µi, νi) > 0:

= ciTx̃i + h(x̃i)T

(
µi

νi

)
+ g(x̃i)T

λ− λi

µ− µi

ν − νi

− εD (4.44)

(4.45)

by the definitions (4.33) of ci and (4.36) of h we get

= cTxi + g(xi)T

λµ
ν

− εD (4.46)

≥ L(λ, µ, ν)− εD. (4.47)

Equation (4.47) stems from replacing xi with the minimal argument of
L(λ, µ, ν).

The size of εD depends on the quality of the primal solution x̃i and the
dual solution (µi, νi) of the PBM. If both are optimal εD is zero. Now we use
Proposition 4.4 to estimate the quality of the linearizations

f̄ i
D(λ) := f i

DSP(µi, νi) + (Bx̃i)T(λ− λi)

of fD at a given λi. To do that we define (DSPi) analogously to (VSPi) as
follows:

(DSPi) min (cT + λiTB)x+ γTz,

s. t.

(i) (x, z) ∈ PDSP,

(ii) x ∈ {0, 1}D.

Proposition 4.5. Let x̃i be an approximate solution of (DSPi) calculated by

the PBM. Let πi :=

(
µi

νi

)
be the last trial point of the PBM to approximate

fD(λi), and let

(πλ) :=

(
µλ

νλ

)
, (µλ, νλ) ∈ arg min

(µ,ν)∈dom fDSP

L(λ, µ, ν)

a minimizer of L(λ, ·, ·). Then it follows

f̄ i
D(λ) ≥ fD(λ) + h(x̃i)T(πi − πλ)− εD.

94 Proximal Bundle Method

Proof. We have

f̄ i
D(λ) = L(λi, µi, νi) + (Bx̃i)T(λ− λi) (4.48)

≥ L(λ, µλ, νλ)− h(x̃i)T(πλ − πi)− εD (4.49)

= fD(λ)− h(x̃i)T(πλ − πi)− εD. (4.50)

Inequality (4.49) follows by Proposition 4.4. The remainder follows by using
the definitions of the used functions.

Proposition 4.5 shows how the quality of the linearization of fD at λi

depends on the quality of the approximate solution x̃i. If we would find a
solution x∗ in PDSP the residuum would be h(x∗) = 0. This would imply
by Proposition 4.5 that Bx∗ is an εD-subgradient of fD at λi. In practice,
we are only able to find an x̃i such that h(x̃i) is very close to the null-
vector. If dom(fDSP) is bounded, we can give an upper bound εh on the term
h(x̃i)T(πλ−πi). Then it follows by Proposition 4.50 that g(x̃i) is an (εD +εh)-
subgradient of fD at λi. In our case dom(fDSP) is in general not bounded,
but in practice the dual variables (µi, νi) do not change dramatically when
moving from λi to λi+1. Therefore we simply ignore the term h(x̃i)T(πλ−πi)
since it is close to zero.

Alternatively to ignoring this term, we could replace the duty scheduling
component function fD by L. If now xλ,µ,ν is a minimizer of (4.34) then
g(xλ,µ,ν) defines a subgradient of L at λ. This requires to store larger subgra-
dients and computational tests show that the overall performance does not
improve.

Column Generation

Unfortunately, we do not know all relevant duties to approximate fD at a
given trial point λ and we are also not able to compute them in reasonable
time, because the corresponding pricing problem is NP-hard (see Chapter 5).
Hence, we do not know the complete set of duties needed to approximate
(ISP), but only a subset of it denoted by I. We therefore consider here a
restriction of the duties used in problem (DSPi) leading to a problem (DSPi

I),
where I is a subset of all duties D.

(DSPi
I) min (cI

T + λiTB·I)xI + γTz,

s. t.

(i) (xI , z) ∈ P I
DSP,

(ii) xI ∈ {0, 1}I

4.6 Inexact Bundle Method 95

and P I
DSP is the associated polyhedron:

P I
DSP := {(x, z) ∈ [0, 1]D × RB | A·IxI = 1, R·IxI − z ≤ r, z ≥ 0}. (4.51)

Here X·I , I ⊂ N denotes the matrix that consists of the columns I of a
matrix X ∈ RM×N , where M and N are arbitrary index-sets. Analogously
a vector xI ∈ RI consists of the elements i ∈ I of x ∈ RN . And we treat a
vector xI , I ⊂ N as a vector x ∈ RN by setting xi = 0 for all i ∈ N \ U .

The set of duties I will be adapted dynamically after each serious step
of the PBM. We do not generate duties at every iteration of PBM because,
even though it is a heuristic, the pricing algorithm presented in Chapter 5
is still the most time consuming part of our ISP-algorithm. The optimum
of the LP-relaxation of (ISPI) may be above that of (ISP) because I may
not contain all duties with negative reduced cost. That causes also that an
optimal solution x∗I of (ISPI) may not define a subgradient of fD.

Now we formalize our approach. We introduce the function f I
D:

f I
D : RV D

DSP → R,

λ 7→ min
(xI ,z)∈P I

DSP

(cI
T + λTB·I)xI + γTz

Cutting Plane Model of fD

Let be I i now the set of duties used in iteration i of the PBM. We approximate
the function fD at the current trial point again by the PBM as described in
Section 4.5.1. Only now we restrict the duties to I i. That is, we calculate
an approximated maximizer (µi, νi) of the Lagrangean function Li

I of DSPi

restricted to the duties I i

Li
I(µ, ν) :=

min
xIi∈[0,1]Ii

[
(cIi + (λi)TB·Ii)xIi + µT(1− A·IixIi) + νT(r −R·IixIi)

]
.

Again, λi denotes the current trial point. The approximate function value
Li

I(µ
i, νi) and the primal approximation x̃i of (DSPi

Ii) is then used to build
a linear approximation of fD in the vicinity of λi:

gi
D := B·Iix̃i,

f̄ i
D(λ) := Li

I(µ
i, νi) + 〈gi

D, λ− λi〉.
(4.52)

Two problems can occur at an iteration i if we use these linearizations to
build a cutting plane model of fD:

96 Proximal Bundle Method

1. Since Li
I(µ

i, νi) is only a lower bound of DSPi
I it may happen that

some old linearization f̄ j
D, j < i cuts off the new trial point λi. That is

f̄ i
D(λi) > f̄ j

D(λi).

2. Let λ̄i be the current stability center and f ∗,iD the approximated value of
fD at the stability center. Then it is in general not true that f̄ i

D(λ̄i) ≥
f ∗,iD because we only compute ε-subgradients. That is, it may happen
that the new linearization cuts off the stability center.

These two cases may prevent convergence of the PBM, therefore we handle
them when we update the bundle J i

D of linearizations, which defines the new
cutting plane model. In both cases we translate the new linearization such
that it no more cuts off the relevant points or is cut off by an old linearization.
In the first case, we translate the function f̄ i

D by f̄ i
D(λi) − f̄ j

D(λi). In the
second case we translate it by the observed difference f̄ i

D(λi)− f ∗,iD . That is
we add the function

f̄ ∗,iD := f̄ i
D + max{0, max

j=1,...,i

(
f̄ i

D(λi)− f̄ j
D(λi)

)
, f̄ i

D(λi)− f ∗,iD }

to the bundle J i
D. The duty scheduling bundle update in Step 5 of Algo-

rithm 3 is then for the inexact bundle method implemented as

J i+1
D = J ∪ {f̃ i

D} ∪ {f̄
∗,i+1
D } (4.53)

and J ⊂ J i
D. The aggregated linearization f̃ i

D is defined analogously to
(4.10). The bundle has to include the last linearization and the aggregated
linearization f̃ i

D to converge. The cutting plane model at iteration i finally
is:

f̂ i
D(λ) := min

f̄∈Ji
D

f̄(λ). (4.54)

Convergence

We now want to show under which circumstances the inexact PBM for the
combined vehicle and duty scheduling function converges.

We assume that I1 ⊂ I2 ⊂ I3 ⊂ That is, we never remove a duty that
we have generated. In practice we have to remove duties sometimes because
of memory shortages but we only remove duties at an iteration i that are
unlikely to be non-zero in solutions of the duty scheduling problems (DSPj),
with i < j < iserious, where iserious is the iteration of the next serious step.
We only generate new columns of the underlying duty scheduling problem at

4.6 Inexact Bundle Method 97

serious steps. Therefore we know that between two subsequent serious steps
at iterations i and iserious the set of duties is constant, i.e., I i = I i+1 = · · · =
I iserious−1. This implies that the value fk

D, i ≤ k < iserious is a lower bound of
f I

D(λk), for I := I i.

Corollary 4.6. Let h(x̃i)T(πi − πλ) ≥ −εh, for a fixed εh ≥ 0, for all i, and
all λ. Then there exists an ε ≥ 0 with

f̄ i
D(λ) ≥ f I

D(λ)− ε.

for all λ ∈ RV D
DSP .

Proof. This follow directly by Proposition 4.5 if we set D = I i and ε =
εD + εh.

By this corollary it follows that the current stability center, which was set
in iteration i, is cut off by new linearizations at an iteration k ∈ [i, j] by at
most ε, that is maxk=i,...,j(f̄

k
D(λ̄i)− f ∗,iD) ≤ ε. Therefore we have to translate

the new linearizations that we add to the bundle also at most by ε. Since
f̄k

D(λk) is a lower bound of f Ik

D (λk) for all k we also know that the value of
the next stability center is at most f Ij

D (λj)+ ε. That means that the value of
the new stability center overestimates the real function value by at most ε.

The number of duties is finite. Hence, at some iteration i, no more new
duties are added. That is I i = I i+1 = I i+2 = Let now εf be the largest

difference between fD(λi) and f Ii

D (λi), i.e., the largest deviation arising by
the inexact column generation of the duty scheduling problem. Then holds
fD(λi) + εf ≥ f Ii

D (λi).

Together with Corollary 4.6 we deduce that

fD(λi) + εf ≥ f̄ i
D(λi) ≥ f I

D(λi)− ε. (4.55)

That is, the value of every trial point overestimates the real function value at
most by εf and underestimates it by at most ε. Therefore all linearizations
that were added throughout the algorithm together with their translations
build a non-smooth concave function that is an approximation of the function
to optimize. For this function the convergence results of Kiwiel [1990] hold.

98 Proximal Bundle Method

4.6.4 Combined Functions

The combined approximated function to optimize and its cutting plane model
are finally

f := fV + fD

f̂ i := f̂ i
V + f̂ i

D.

We further define symbols for the aggregated subgradients of the component
functions and the combined function:

g̃i
V :=

∑
f̄∈Ji

V
αi

f̄
∇f̄ ,

g̃i
D :=

∑
f̄∈Ji

D
αi

f̄
∇f̄ , and

g̃i := gi
V + gi

D.

(4.56)

The convex multipliers αi are the solution of the subproblem at iteration i
according to (4.11). The norm of gi gives a measure for the quality of the
primal approximation

(˜̃xi, ˜̃zi, ỹi) ∈ [0, 1]I
i × RB+ × [0, 1]AVSP ,

of (ISP) where

˜̃xi :=
∑
f̄∈Ji

D

αD
f̄ xf̄ , ˜̃zi := max{0, r −R˜̃xi}, ỹi :=

∑
f̄∈Ji

V

αV
f̄ yf̄ ,

Here f̄ are the linearizations in the current bundles J i
D and J i

V , respectively,
(αD, αV) is the solution of the quadratic subproblem, cf. (4.11), at iteration
i, and xf̄ and yf̄ are the approximated primal solutions and aggregations
corresponding to f̄ .

At last, we need the sum of the objective values of the new linearizations
at the new trial point at each iteration i: f i := f̂ i

V (λi)+ f̂ i
D(λi). The objective

value at the stability center at iteration i is denoted by f̄ i.

The PBM to maximize f is now stated as Algorithm 6.

The inexact PBM in Algorithm 6 is stated for the combined function of
the Lagrangean relaxation of model (ISP). However, it is possible to use it
for other (non-separable) concave functions f . The inexact PBM has the fol-
lowing differences to the PBM (Algorithm 3): The method does not compute
exact values of f(λi) at Steps 1 and 3 but approximates these values. They
are denoted by f̄ i

V (λi) and f̄ i
D(λi) . This notation indicates also that these

values are used to generate the approximate linearizations of f . In Steps 1

4.6 Inexact Bundle Method 99

Algorithm 6 Inexact PBM with Column Generation.

Input: Starting point λ0 ∈ RV D
DSP , duty set I0, weights u0,m > 0, optimality

tolerance ε ≥ 0.
1: Initialization: i ← 0, J i

V ← {f̄ i
V (λi)}, J i

D ← {f̄ i
D(λi)}, and λ̄i = λi. Set

f̄ i ← f̄ 0
V (λ0) + f̄ 0

D(λ0).
2: Direction Finding: Compute λi+1, g̃i

V , g̃i
D by solving problem (QP) (equa-

tion (4.11)).
3: Function evaluation: Compute f̄ i+1

V (λi+1), gi+1
V , f̄ i+1

D (λi+1), gi+1
D , and

I i+1.
4: Stopping Criterion: If f̂ i(λi+1)− f̄ i < ε(1 + |f̄ i| output λ̄i, terminate.
5: Linearization Updating: Select J i+1

V like in the standard PBM and J i+1
D

as stated in (4.53).
6: Ascent Test: if f̂ i+1(λi+1)− f̄ i > mL(f̂ i(λi+1)− f̄ i) then set λ̄i+1 ← λi+1

and f̄ i+1 ← f i+1(λi+1) else set λ̄i+1 ← λ̄i and f̄ i+1 ← f̄ i.
7: Weight Update: Compute ui+1.
8: i← i+ 1, goto step 2.

and 3 we also compute ε-subgradients of fD and fV denoted by gi
V and gi

D.
The approximate linearizations are defined by:

f̄ i
V/D(λ) := f̄ i

V/D(λi) + 〈gi
V/D, λ− λi〉.

In the stopping criterion of Step 4 and the ascent test of Step 6 the function
value at the stability center is replaced by the smallest function value of
all known approximate linearizations of f at the stability center denoted by
f̄ i. For the linearization updating (Step 5) we have to eventually translate
linearizations in the bundle to guarantee convergence.

Theorem 4.7 (Convergence of the inexact PBM). The inexact PBM (Al-
gorithm 6) produces a series of stability centers (λ̄i)i=1,2,... that converges
to a point λ̄∗ such that |f(λ̄∗)− f(λ∗)| ≤ ε for an optimal solution λ∗ of
maxλ∈RAVSP f(λ) and an ε > 0 dependend on the quality of the approxima-
tions of fD and fV .

Proof. Algorithm 6 is constructed in such a way that the linearizations f̄ i
V (λi)

and f̄ ∗,iD that are added to the bundles are forming a concave function. More
precisely

f ′(λ) := min
i=1,2,...

f̄ i
V (λ) + min

i=1,2,...
f̄ ∗,iD (λ)

is a concave function in λ. Algorithm 6 can be interpreted as an exact PBM
that optimizes over f ′. And therefore the series of stability centers converges
to a maximizer λ̄∗ of f ′.

100 Proximal Bundle Method

Setting ε1 appropriately it follows by equation (4.55) that
|f̄ i

D(λi)− f(λi)| ≤ ε1. Further we set ε2 = maxi=1,2,..., f
i
V (λi) − fV (λi),

(cf. Section 4.6.2). Thus, at all trial points λi the following holds:
|f(λi)− f ′(λi)| ≤ ε1 + ε2. If we now set ε = ε1 + ε2 the claim follows.

4.7 Computational Results

In this section, we compare our PBM code with and without the active set
method (see Section 4.4) on some set partitioning problems with the Volume
algorithm (see Barahona & Anbil [1998]), a dual ascent algorithm, sometimes
also called coordinate ascent, (see Wedelin [1995]) enhanced with active sets,
a classical subgradient approach (see Byun [2001]), and the dual simplex and
the barrier algorithm of CPLEX 10.0.

To test the Volume Algorithm we used the version from the COIN-
Homepage1. This implementation of the Volume Algorithm is part of a li-
brary of frameworks and solvers for problems in Operations Research, see
Lougee-Heimer [2003]. We removed all stopping criteria and set the maxi-
mum number of iterations to 10,000. The PBM was implemented as described
in Kiwiel [1990] with the solver for the quadratic direction finding problem
described in Kiwiel [1994]. We also used the same parameters, which are
ml = 0.1, mr = 0.5. The bundle size is limited to 5. The stopping criterion
was removed and the maximum number of iterations was also set to 10,000.
We use a simplified weight updating algorithm: If we have more than 200
subsequent null steps we multiply the current weight with 3/4. If between
two serious steps are less than 3 null steps we multiply the weight with 4/3.
If the weight is less than 0.1 the weight is set to 0.1. This worked in our tests
better then the weight updating scheme described in Kiwiel [1990]. Addi-
tionally, we present also the results of the PBM with our Active-Set-Method
of Section 4.4.

The computational results of the inexact bundle method for the ISP can
be found in Chapter 7.

4.7.1 Testbed

Our testbed consists of set partitioning problems of various size created by
column generation algorithms. We selected only problems without base con-

1see http://www.coin-or.org

4.7 Computational Results 101

problem columns rows non-zeros nz/col

ivu01 2,549 81 13,404 5.26
ivu02 25,412 185 191,819 7.55
ivu04 37,764 346 291,222 7.71
ivu05 159,438 847 1,450,704 9.10
ivu06 980,578 1,177 10,565,680 10.77
ivu41 169,524 3,570 1,031,701 6.09
ivu41b 838,500 3,570 8,796,292 10.49
ivu59 2,569,996 3,436 36,186,332 14.08

aa01 8,904 823 72,965 8.19
aa04 7,195 426 52,121 7.24
us01 1,053,137 145 13,636,541 12.95

Table 4.1: Characteristics of the Testbed

straints, because the methods of Wedelin [1995] and Byun [2001] are not able
to cope with them.

The problems beginning with “ivu” are stemming from duty scheduling
problems and were generated by our DSP-solver DS-OPT. They consist of
all columns that were generated throughout the solution process. The prob-
lems ivu41 and ivu41b represent different settings of DS-OPT for the same
scenario. For ivu41 the column generation process was handled more restric-
tive than for ivu41b, therefore, ivu41b has more columns than ivu41. We
selected these two instances to exemplarily show the influence of the number
of columns to the running time of the various algorithms.

We also show results on set-partitioning instances from the OR-Library,
see Beasley [1990]. We selected three instances considered as hard in van
Krieken et al. [2004], namely us01, aa01, and aa04. The characteristics of
these instances are shown in Table 4.1.

4.7.2 Results

Our main goal is to calculate lower bounds of set partitioning problems in
short time. For this reason, we think that it is not useful to compare only the
results at the termination of the algorithms but the development of the lower
bounds throughout the running time. A second goal is to calculate primal
information useful for branching decisions in a branch-and-bound framework.

102 Proximal Bundle Method

This is only accomplished by the PBM, the Volume method, the dual sim-
plex, and the barrier method. The dual simplex and the barrier method are
exact approaches, that is, they calculate feasible primal solutions. The PBM
and the Volume algorithm only approximate primal solutions such that the
set partitioning constraints are only nearly fulfilled. Therefore we show in
Table 4.2 for the PBM and the Volume algorithm the maximum violation of
constraints Ax = 1; x is here the current primal solution and A ∈ {0, 1}m×n is
the coefficient matrix of the SPP. We show the value of maxi=1,...,m |1− Aix|

For the two scenarios ivu41 and ivu41b, we plot the graphs of the lower
bounds over the time for all tested algorithms in Figure 4.3. The upper figure
shows the graphs for ivu41 the lower one the graphs for ivu41b. Here one
can see that the dual ascent has the fastest start but has problems to close
the gap to the optimal value. The subgradient method is also fast at the
beginning and then suffers from low convergence speed. The lower figure
shows the characteristic sharp bend in the curve as the step length of the
subgradient method is adapted. Our variant of the PBM is nearly as fast as
the subgradient method. Additionally, it is better able to close the gap to the
optimum. The PBM with active sets is faster than the PBM without them,
and the difference becomes more significant when the number of columns gets
larger.

The Volume algorithm is slower than the other subgradient algorithms.
This may be caused by the implementation, which seems to be not optimized
for speed but for readability. The other disadvantage of the Volume algorithm
in comparison to the PBM is the lack of convergence to the optimal value of
the SPP.

The barrier method is slower than the other methods in the beginning due
to the expensive factorization of the constraint matrix and converges then
very fast to the optimum. However, a major drawback of the barrier method
is the large memory consumption, the barrier method ran out of memory on
our computer while solving problem ivu59. At last, the dual simplex needs
noticeable more time than the other algorithms.

The running time of most of the algorithms seems to be roughly propor-
tional to the number of columns in our scenario. Only the running time of
the dual simplex increases disproportionately to the number of columns.

In Table 4.2 the results of all scenarios in the test bed are shown. The
times are wall clock time in seconds. The computations where done on a
Intel(R) Pentium(R) 4 CPU 3.80GHz PC with 2GB RAM. The operating
system was Linux 2.16. Our algorithms were all compiled with gcc 4.1.0 with
full optimization and loop unrolling.

4.7 Computational Results 103

prob ε dual bar pbm pbm as Volume sub ca

time time time ‖·‖1 time ‖·‖1 time ‖·‖1 time time

ivu01 0.05 0.03 0.02 0.02 0.21 0.01 0.48 0.02 1.59 0.02 0.00
0.01 0.03 0.03 0.05 0.20 0.03 0.16 0.05 0.19 0.03 0.03

0.001 0.04 0.03 0.11 0.08 0.04 0.05 0.07 0.03 0.06 0.07
last 14.223 1.000 1.000 0.00 1.000 0.10 1.000 0.00 1.000 0.999

ivu02 0.05 1.23 0.45 0.47 0.23 0.30 0.26 0.31 1.96 0.26 0.08
0.01 2.01 0.55 0.97 0.22 0.45 0.06 0.62 0.57 1.24 –

0.001 2.86 0.59 2.75 0.08 0.64 0.03 0.92 0.06 2.35 –
last 30.018 1.000 1.000 0.04 1.000 0.02 1.000 0.01 0.999 0.971

ivu04 0.05 2.55 0.87 0.76 0.37 0.34 0.33 0.62 1.32 0.72 0.13
0.01 4.24 0.98 1.32 0.28 0.64 0.29 1.11 0.25 2.76 –

0.001 5.92 1.08 3.76 0.09 0.98 0.09 2.21 0.04 – –
last 44.789 1.000 1.000 0.04 1.000 0.04 1.000 0.01 0.999 0.970

ivu05 0.05 56.95 5.41 4.63 0.99 1.68 0.32 3.30 2.59 2.42 1.24
0.01 92.03 6.85 7.97 0.28 2.93 0.18 6.03 0.47 10.39 –

0.001 134.54 9.21 16.84 0.15 4.18 0.09 25.68 0.01 – –
last 96.104 1.000 1.000 0.05 1.000 0.04 0.999 0.01 0.998 0.962

ivu06 0.05 1163.63 41.43 32.74 0.40 11.86 0.43 21.88 1.89 20.97 –
0.01 2359.98 55.28 64.72 0.20 18.47 0.18 36.45 1.03 – –

0.001 3671.59 72.21 171.20 0.12 28.65 0.06 – – – –
last 136.651 1.000 1.000 0.05 1.000 0.06 0.999 0.01 0.983 0.946

ivu41 0.05 10.03 20.22 2.65 0.75 1.98 1.00 4.43 5.92 1.50 0.62
0.01 25.36 21.80 7.97 0.36 4.52 0.29 22.64 0.03 – 3.14

0.001 44.89 25.01 49.34 0.20 12.93 0.20 – – – –
last 447.510 1.000 1.000 0.07 1.000 0.07 0.998 0.01 0.985 0.997

ivu41b 0.05 659.49 111.05 19.84 1.00 8.74 1.00 47.01 0.71 15.45 4.29
0.01 1209.06 120.52 60.29 0.45 21.96 0.46 170.54 0.01 74.87 50.59

0.001 1745.22 129.80 639.99 0.09 64.81 0.10 – – – –
last 441.363 1.000 0.999 0.07 1.000 0.08 0.999 0.03 0.990 0.990

ivu59 0.05 4630.36 – 64.03 1.00 62.54 1.00 54.58 1.29 45.02 19.46
0.01 10303.94 – 161.74 0.78 75.47 0.54 98.51 0.36 462.32 77.12

0.001 15638.01 – 2482.63 0.10 140.19 0.10 1023.12 0.02 – –
last 884.457 – 0.999 0.07 0.999 0.07 0.999 0.02 0.995 0.996

sppaa01 0.05 0.88 0.50 0.25 0.23 0.24 0.12 0.22 0.32 0.15 0.42
0.01 1.53 0.62 0.68 0.03 0.48 0.04 0.42 0.08 – –

0.001 1.86 0.69 – – – – 5.24 0.01 – –
last 55535.436 1.000 0.999 0.03 0.999 0.05 0.999 0.01 0.989 0.969

sppaa04 0.05 0.21 0.20 0.20 0.08 0.20 0.04 0.11 0.35 0.07 0.04
0.01 0.40 0.23 0.43 0.05 0.34 0.10 0.23 0.10 0.49 –

0.001 0.53 0.26 1.12 0.03 0.47 0.05 1.74 0.03 – –
last 25877.609 1.000 1.000 0.02 1.000 0.04 1.000 0.01 0.996 0.987

sppus01 0.05 9.91 17.47 27.73 0.44 12.61 0.10 16.78 1.34 21.33 34.58
0.01 11.52 18.42 52.11 0.16 15.25 0.09 33.43 0.20 97.78 171.84

0.001 12.33 18.89 176.67 0.08 18.75 0.05 54.27 0.07 – –
last 9963.067 1.000 1.000 0.02 1.000 0.02 1.000 0.01 0.997 0.995

Table 4.2: Comparing Lower Bounds on Set Partitioning Problems

104 Proximal Bundle Method

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 0 5 10 15 20 25 30

PBM
PBM with active sets

Volume
barrier

dual simplex
subgradient
dual ascent

ivu41

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 0 20 40 60 80 100 120 140

PBM

Volume
barrier

subgradient
dual ascent

PBM with active sets

dual simplex
ivu41b

Figure 4.3: Comparison of LP-Algorithms on scenarios ivu41 and ivu41b

The first column in the table shows the name of the problem. For every
combination of problem and algorithm the computation time needed to reach
a certain optimality gap is shown. The column “ε” gives the gap that should
be reached. The row with a certain ε contains the running time until the
respective algorithms found for the first time a lower bound that has at least
a value of 1 − ε times the optimal value. If no such bound was found, the
respective field of the table contains a “–”. We show the times for reaching
5%, 1%, and 1‰ gaps. The rows labeled with “last” contains the quotient of

4.7 Computational Results 105

the best value of the corresponding algorithm in comparison to the optimal
value calculated by the dual simplex of CPLEX 10.0. The column of the dual
simplex contains the optimal function value in this rows.

The row “dual” contains the results of the dual simplex algorithm, “bar”
stands for barrier algorithm, “pbm” for proximal bundle method, “pbm as”
for PBM with active set, “Volume” for the Volume algorithm, “sub” for a sub-
gradient algorithm, and“ca” for coordinate ascent. For the Volume algorithm
and the PBM we give not only the time until the thresholds are reached, but
also the maximal violation of the set partitioning constraints.

The primal approximation of the Volume algorithm is slightly better than
the ones of the PBM. This is due to the fact that the Volume algorithm
combines the subgradients with the only goal to minimize the norm of the
subgradient, while in the PBM a weighted sum of the dual objective value
and the negative norm should be maximized. This can be compensated by
performing at the end of the PBM some steps with very small weight ui in
the direction finding subproblem 4.4.

The results on the other large problems are similar to the results on
ivu41 and ivu41b. On small problems such as ivu01, ivu02, and sppaa04
and on problems with only few rows such as sppus01, the barrier method is
competitive with the subgradient methods, and on very small problems even
the dual simplex is very fast. On large problems such as ivu41b and ivu59, the
PBM has the best results at the 1% threshold, which in our experience suffices
to produce good results with our integral heuristic proposed in Chapter 6.
But also for the other thresholds the PBM is in general the fastest method
to approximate lower bounds on the testbed.

Using active sets additionally accelerates the PBM, which can be seen
best at the scenarios with many columns as ivu41b, ivu59, and sppus01. So
we can conclude that the PBM with our Active-Set-Method is for large set
partitioning problems by far the best solver if the running time is important
and exactness of the solution is not necessary.

Chapter 5

The Generation of Duties

This chapter describes the generation of duties in the duty scheduling part of
the integrated vehicle and duty scheduling problem (ISP). The methodology
described here is also used in the duty scheduling solver DS-OPT, which is
part of the Microbus suite of the IVU Traffic Technologies AG.

Generating duties is the most time consuming component of our ISP algo-
rithm. It involves various difficult side constraints on the feasibility and the
costs of duties, that are different for virtually every public transit company.
Mathematically, duty generation translates into a non-linear shortest path
problem that is not only difficult to solve, but also has to be solved very
often.

This chapter discusses duty generation in a pure DSP, because La-
grangean relaxation decomposes the ISP into vehicle and duty scheduling
parts that are only connected by costs. That is, we have to solve in our
ISP-solver IS-OPT a series of duty scheduling problems with varying costs.

5.1 Motivation and Notation

We describe in this section a framework for our discussion of duty generation:
We set up the master problem, motivate why it is in general solved by column
generation, and formalize the pricing problem.

107

108 The Generation of Duties

5.1.1 Master Problem

Recall from Section 1.10 that we have modeled the master problem of our
column generation DSP as a set-partitioning-problem with additional base
constraints:

(DSP) min cTx + γTs,

s. t.

(i) Ax = 1,

(ii) Rx − s ≤ r,

(iii) x ∈ {0, 1}D, s ≥ 0.

The set D is the set of feasible duties of DSP. The task set V̄DSP contains
all mandatory tasks that have to be performed by the drivers. These are the
atoms of the duty scheduling problem, i.e., each such task has to be assigned
to exactly one driver. The matrix A ∈ {0, 1}D×V̄DSP contains the duty-task-
incidence matrix according to constraints (i) and (ii) of (DSPy∗), i.e., the
j-th entry in column i of A is one, if task j ∈ V̄DSP is contained in duty i
and zero else. In particular, a fixed deadhead a with y∗a = 1 is treated like a
mandatory task and duties containing deadheads a with y∗a = 0 are fixed to
zero. A solution x∗ of (DSP) corresponds to a duty schedule which contains
exactly the duties d with x∗d = 1. This implies that every mandatory task
and every deadhead a with y∗a = 1 is covered exactly once by a duty. The
base constraints (ii) model requirements on the entire duty schedule, such as
limited number of drivers at certain depots or desired average duty times. B
denotes the set of all base constrains. The entry Rbd of matrix R ∈ R

B×D

gives the consumption of a resource constraint by base-constraint b of a duty
d. The variables s ∈ RB are the slack variables for the base constraints. The
cost vector γ ≥ 0 penalizes excess in a base constraint.

5.1.2 Size of the Master Problem

The number of feasible duties of a typical DSP is in general far too large to
be stored explicitly in the memory of a computer. It is, for example, possible
to construct instances of DSP where each subset of tasks is also a feasible
duty. In this case the number of duties is 2|V̄DSP|, which is also the trivial
upper bound on the number of different duties of one type for a DSP with
|V̄DSP| tasks.

Instances of real world duty scheduling problems have significantly fewer
duties than this upper bound, since, among other restrictions, the number

5.1 Motivation and Notation 109

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45 50

#d
ut

ie
s

#tasks

subway
bus

Figure 5.1: Histogram of numbers of duties per number of tasks covered

of tasks in a duty is limited. This is implied by the maximum duty duration
arising from legal conditions and by the observation that tasks have a length
of at least one minute. If we denote this maximum number of tasks in a duty
by k we would get a number of different duties of one type that is bounded by
O(nk), i.e., the number of duties may grow polynomial with a degree equal
to the maximum number of tasks in a duty. However, this number is still
huge. Once we tried to enumerate all duties of a tiny DSP with |V̄DSP| = 81
that normally is solved in about 10 seconds. After the generation of about
1,500,000 different duties, the memory of the used computer was exhausted.

In our bus transit DSP instances duties may contain up to 50 tasks and
the average number of tasks per duty in a typical solution is about 10. The
average number of tasks strongly depends on the average length of a task
and the maximum duty duration.

In duty scheduling scenarios arising in subway traffic drivers can be re-
lieved at virtually every station. In addition, the average driving time be-
tween two stations is fairly small. Thus, for this case the average number of
tasks in a duty is substantially larger than in regional scenarios, which have,
in general, few relief points. Here we have on average 16 tasks per duty in
solutions. In Figure 5.1, a histogram of the number of tasks in unique duties
that were generated in the solution process for a DSP of a subway line (with
211 duties in the solution and 3,436 tasks) and of a bus company (417 duties,
3,570 tasks) are shown. In the bus scenario, relatively few duties with many
tasks were generated (the y-axis is scaled logarithmically). Those are expen-
sive due to overtime premia and therefore rarely used in a duty schedule. In
the subway scenario, the duty with the maximum number of tasks has fewer
tasks because a maximum duty duration of only six hours was given there.
However, on the average, the duties in the solution contain more tasks than

110 The Generation of Duties

in the bus scenario, because the tasks are shorter on average.

5.1.3 The Pricing Problem

The dual problem (dual-DSP) of the LP-relaxation of (DSP) is:

(dual-DSP) max λT1 + µTr,

s. t.

(i) λTA+ µTR ≤ c,

(ii) −µ ≤ γ

Here λ ∈ RV̄DSP are the dual variables corresponding to the mandatory tasks
of the DSP and µ ∈ RB are the dual variables for the base constraints.

By the optimality criterion of LP-theory, a dual solution λ ∈ RV̄DSP , µ ∈ RR
and a primal solution x ∈ [0, 1]D, s ≥ 0 with λT1 + µTr = cTx + dTs are
optimal for the LP-relaxation of (DSP). Thus, if we have optimal primal and
dual solutions for a subproblem that contains a subset A′ of the columns
of A, we only have to prove that there exists no column i of A, such that
λTA·i + µTR·i > ci. Define now

c̃i := ci − λTA·i − µTR·i (5.1)

to be the reduced cost of a duty i. Then the optimality criterion is equivalent
to: Saying that there exists no duty i with reduced cost c̃i smaller than zero.
This gives rise to the pricing problem to find the column i of A with least
reduced cost. If the objective value of this problem is larger than zero, the
solution of the subproblem, called restricted problem (see also Section 3.1),
is also an optimal solution of the original problem. Otherwise, we may add
duties with negative reduced cost to the restricted problem, solve the new
LP-relaxation again, and so on.

If the pricing problem is solvable in polynomial time the LP can also
be solved in polynomial time (e.g.by the ellipsoid method), for a proof see
[Grötschel et al. 1993, Chapter 6].

5.2 Description of Duties

We examine in this section properties of duties in detail and how we can
efficiently find duties with small reduced cost. We classify duties by types,
look at the various attributes of a duty, the resources needed by them, and
we show how to calculate their cost.

5.2 Description of Duties 111

5.2.1 Duty Elements

A duty for a bus driver in public transport is the set of tasks that a driver
has to perform throughout a working day. A duty has to fulfill various con-
ditions given by laws and agreements with unions or workers councils. We
are focusing in this work on German regulations, although many of them are
very similar to the ones in other European countries due to directives of the
European Union.

Working conditions for drivers in the EU are regulated by the EU direc-
tive 3820/85 which is specified more precisely in national laws. In Germany,
these are the working time law (Arbeitszeitgesetz) and the driving time direc-
tive (Lenkzeitverordnung), see, e.g., Rang [2006]. These regulations specify
conditions that include maximum working and driving time, maximum driv-
ing time without a break, and the number and lengths of breaks. Further,
each public transit company has certain agreements with the unions or their
workers council about additional rules on duties.

A single duty is identified for the purpose of this chapter by a type, by the
tasks it contains, and by a cost. The tasks include driving activities arising
from timetabled trips as well as other tasks, such as sign-on and sign-off
times, times to take a break outside of a vehicle, or getting from one place
to another.

Each task has a number of attributes that are needed to decide the fea-
sibility of a duty including this task:

• duration, i.e., the time-span between the begin and the end of the task,

• driving time, i.e., the time of the task, at which the driver is actually
driving.

• working time,

• paid time,

• break time, i.e., the time, in which the driver has the possibility to take
a break,

• break location, i.e., the location where the driver stays during a possible
break. The break location is relevant, because breaks may be evaluated
differently depending on the environment of the break location.

112 The Generation of Duties

The duration and the driving time of a task are independent of the duty
in which the task is included. In contrast, the paid time, and the working
time can depend on the break rule used. In fact, the break time can be
either paid or unpaid working time or no working time at all. The specific
rules to calculate the paid time and the break time for a duty differ from one
company to another. However, driving time is actually also working time,
and working time is paid time, but paid time does not necessary count as
working time, and there may other work in a duty than driving.

At last, subsequent tasks in a duty have to be compatible, i.e., a single
driver must be able to perform them directly one after the other.

5.2.2 Duty types

Often companies do not have one set of rules that applies to all duties, but
different sets of rules. These rule-sets partition the set of all feasible duties
into sets of duties of the same duty type.

There are in general two methodologies for partitioning duties into types.
On the one hand, a duty can be categorized by its beginning and starting
time. The typical distinction is between early, middle, and late duties, which
have to begin and end in certain time windows. This is done to simplify the
next planning step, duty rostering. Here a specific driver is assigned to a
set of duties for the next weeks. These duty rosters have to fulfill certain
requirements, e.g., a late duty may not be followed by an early duty on the
next day to give the driver enough time to recover.

Another common method to partition duties into types is by the duration
of a duty and the number of its parts of work . A part of work of a duty or
simply a part of a duty is an inclusion maximal continuous time-span, which
is completely covered by a duty. A duty may be split into two or sometimes
three parts. The time between two parts, called interruption time, does not
count for the duration of the duty. It has a minimum length of typically
at least an hour. If a duty consists of more than one part we call it a split
duty contrary to a continuous duty that consists of one part. Split duties in
general have a longer span between the beginning of the duty and its end,
called shift time, than continuous duties. Common maximum shift times for
continuous duties are about 9 hours, whilst shift times of split duties are
up to fourteen hours, the most common duration is twelve hours. The total
working time of both duty types is typically about the same, the difference
in the shift time stems from the interruption time.

5.2 Description of Duties 113

Szenario 3

0

10

20

30

40

50

60

70

80

90

00
:00

01
:20

02
:40

04
:00

05
:20

06
:40

08
:00

09
:20

10
:40

12
:00

13
:20

14
:40

16
:00

17
:20

18
:40

20
:00

21
:20

22
:40

Figure 5.2: Number of timetabled trips throughout a typical work day.

Split duties are needed, since a typical work day has two peaks in the
demand for public transport. In Germany, the first one is in the morning,
when pupils get to school and the working shifts begin, the second one is in
the afternoon, not as high as the first one, but with a larger breadth, when
school is over. Bus timetables follow these peaks, i.e., in general, the intervals
between timetabled trips are shorter in the peaks than in quieter times of the
day. This can be seen in Figure 5.2, where the number of timetabled trips
at certain times of a typical workday of an urban traffic company is shown.
The interruption time of split duties lies between the peak times, where
fewer drivers are needed. Often the total number of split duties is limited
by agreements with unions or workers councils, since the drivers want to
have a continuous working time, to come home as early as possible. In some
countries, e.g., in France, split duties are preferred, since then the drivers
have the possibility to eat at home.

Another type of duties are the short duties, which have a significantly
shorter maximum duration than regular duty types. Short duties are often
used in companies which have part time employees with shorter contractual
working times. These also help to handle the peak times.

Common are also mixtures of these classifications, such as “early split
duties” and “late split duties”, which are both split duties with different time
windows for their starting and ending times.

The set of duty types is denoted in the following by D.

114 The Generation of Duties

5.2.3 Resources

Many of the conditions on duties mentioned above are minimum and max-
imum constraints on times of different activities or on other quantities in a
duty. The most important constraints are concerning the following attributes
of duties:

• shift duration, this is the time span between the begin and the end of
a duty,

• duty duration, this is the shift duration without the interruption time,

• interruption time,

• working time, this is the time, in which the driver officially works. It
includes sign-on and sign-off times as well as the driving times or times
for other activities like reserves. It is relevant for various rules,

• driving time, the time that a driver actually drives a vehicle. For ex-
ample, a driver is not allowed to drive more than 4 and a half hour
without break.

• Break time, this is the time, in which a driver officially takes his break,

• paid time, this is the time of a duty that a driver assigned to gets
paid. Usually working time is paid time. A duty may also include
paid breaks. Sometimes also only a part of a break is paid, to globally
compensate for delays,

• number of pieces of work, a piece of work is a inclusion maximal con-
tinuous subset of a duty, which a driver performs on the same vehicle,

• number of parts of work, usually one for continuous duties or two for
split duties.

• driving distance.

We call these different quantities resources and say that a resource is con-
sumed by a duty. Many rules on duties can be formulated as constraints on
the consumption of a resource by a duty. Later we will see that we are able
to treat this kind of constraints in an effective way if the consumption of a
resource is linear in the tasks used by the duty.

5.2 Description of Duties 115

5.2.4 Break rules

Besides the differences in national laws, virtually every traffic company, even
in the same country, uses their own specialization and interpretation of the
laws and directives concerning break rules for drivers. The following are the
most common rules. The first three are arising by directives of the European
Union, the last one is a German specialty refining European law:

• The working time of a driver is at most 9 hours per duty.

• The non-preemptive driving time of a driver is at most 4 1/2 hours,
after that the driving time must be interrupted by a break.

• Block-breaks: It is possible to take one break of at least 30 minutes
(1-block-breaks), two breaks of at least 20 minutes (2-block-breaks), or
three breaks of at least 15 minutes (3-block-break).

• Quotient-rules: German law allows to replace block-breaks by breaks of
the so-called quotient-rule: A duty fulfills the quotient rule, if at least
the sixth part of the working time of each continuous time span after a
certain working time on the beginning of the duty is break time. Each
of these break times must have a duration of at least 10 minutes.

Each part of work has to fulfill these rules separately. Further there are
different rules about the minimum and maximum duration of working and
driving time between breaks.

Block pauses are in general taken at facilities, where the driver can take
a meal and is able to use restrooms. Block pauses are often unpaid. Pauses
according to the quotient-rule are normally taken at the turning times of
vehicles at the endpoints of lines. Here a driver takes his break “on the
bus”. These kinds of breaks can be advantageous for a bus company, since
the driver has nothing to do anyway, but they are not liked by the drivers,
because in general there is no infrastructure for recovery at the endpoints of
lines. Therefore, this kind of breaks often counts as paid time.

5.2.5 Cost of a Duty

The obvious cost for a duty is the sum of money, which the public transit
company has to pay to the driver. This quantity is mostly proportional to the

116 The Generation of Duties

working time of the duty. However, there may be extra charges for overtime
and paid break times that are not working time. Which fraction of the break
time is paid depends on the break rule.

However, the amount of money paid to the driver is not the only criterion
for the quality of a duty. In addition, the drivers should be content with the
duty schedule. This does not only improve the working atmosphere, but also
reduces the average number of sick days of the staff. This can be modeled
by adding costs to duties that are not liked by the drivers. We can, e.g., add
a fixed cost to certain duty types such as split duties, or we can penalize the
deviation of a resource from a target value if, e.g., a certain duty duration or
paid time per duty is wanted. Sometimes also the use of unpaid break time
is penalized.

Furthermore, the duty schedule should be robust, i.e., a delay of a single
driver should have only small effects on other duties. This can be accom-
plished by penalizing the use of tight connections of tasks which are prone
to delays or by penalizing the change from one vehicle to another, since this
is spreading a delay throughout the network.

At last, each duty has typically a fixed cost depending on the duty type to
model the preference of public transport companies to not use an unnecessary
large number of duties to operate a network.

Let now the constant cfix be the fixed cost of each duty of the current
type, cpt is the cost of one unit of paid time. (We computed our solutions
with units of one second.) The function wpt(i) gives the paid time of duty i.
The set R is the set of resources of this duty. The constants κu

r and κ`
r are

factors to penalize up and down deviation of a resource from its target br.
The functions wr(i) give the consumption of resource r by duty i. Then the
cost ci of a duty i can be written as

ci := cfix+cptwpt(i)+
∑
r∈R

(
max{κ`

r(br − wr(i)), 0}+ max{κu
r (wr(i)− br), 0}

)
.

(5.2)
All constants are depending on the duty type of the specific duty. We omit
this dependency in the notation for the sake of simplicity.

5.3 Models for the Pricing Problem

In this section, the pricing problem of the DSP is modeled as a shortest
path problem with linear and non-linear side-constraints on a pricing network

5.3 Models for the Pricing Problem 117

derived from the duty scheduling network of Section 1.10.2. In particular, we
examine subnetworks valid for single duty types and we introduce timelines
to reduce the number of arcs of the networks.

5.3.1 Pricing Networks

The generation of duties is done in a pricing network dependent on the duty
type, whose nodes correspond to tasks. Its arcs correspond to compatible
tasks or to beginnings or endings of duties. These tasks and compatibilities
of tasks give rise to one directed and acyclic network for each duty type
d, which we call DSP-network of duty type d or d-DSP-network. For this
purpose, each task usable by duty type d corresponds to a node in the d-
DSP-network. These networks have in general a large number of arcs. In the
next section, however, we will discuss a technique to aggregate sets of arcs
to compress these graphs, see Section 5.3.2.

The remainder of this and the following sections focuses on an arbitrary
but fixed duty type d. That means that the following definitions depend on
the duty type d. However, for the sake of simplicity, we will drop duty types
from the notation.

A d-DSP-network Nd := (VDSP ∪ {s, t}, ADSP) can be formally described
as follows: Given is a set of tasks VDSP representing nodes of N . There are
two additional artificial nodes s and t, which are the source and the sink of
the network. The tasks are connected by a set of arcs ADSP. The node s is
connected by arcs to nodes corresponding to tasks that may be the begin of
a duty, and the node t is connected to nodes corresponding to tasks that may
be the end of a duty. The arcs beginning in s are called pull-in arcs (denoted
by Bduty) and arcs ending in t are called pull-out arcs (denoted by Eduty).
We assume that Nd does not contain parallel arcs. This is not a restriction of
the generality of this model, because parallel arcs can be removed by adding
additional nodes.

Each task v ∈ VDSP has a starting time denoted by st(v) and an ending
time denoted by et(v). The duration of a task is given by the difference of
starting and ending time. We assume that all tasks have a duration larger
than zero. The tasks and arcs also have the list of attributes described in
Section 5.2.1. These are needed to model resource consumptions and break
rules.

The d-DSP-networks have a natural topological order by starting and
ending times of the nodes in VDSP. Thus, they are acyclic, because no arc
“goes back in time”.

118 The Generation of Duties

A duty corresponds to a directed st-path in Nd, but not every such a
path is also a duty, since a duty has to fulfill requirements in addition to task
compatibility, see Section 5.2.

5.3.2 Timelines

A straight forward implementation of the network of Section 5.3.1, adding
explicitly all arcs that correspond to immediate subsequent execution of tasks
would result in a network that is too large to be handled efficiently. Some
important sources of complexity are the following:

• For split duties, there are in most cases lots of possibilities to select a
task that begins the next part of work after ending a part of work.

• Urban scenarios, in particular for subways, often feature a large number
of relief points that create a large number of possibilities for a driver
to change a vehicle.

• In integrate duty and vehicle scheduling (see Section 2) the d-DSP-
graph is significantly larger than in the case of sequential planning,
because all potential deadheads are included as tasks. Additionally
there are more possibilities for a driver to change a vehicle. In fact, a
driver may have the possibility to leave the vehicle after each deadhead
and may be able to continue his duty with an arbitrary deadhead in the
future. Since the number of deadheads may be quadratic in the number
of timetabled trips, and the number of arcs corresponding to changes
of vehicles, is quadratic in the number of tasks (including deadheads),

this could result in O(|V T
DSP|

4
) arcs.

Literature

One approach to deal with large input data is decomposition: Gaffi & Nonato
[1997] do not store the possibilities to connect pieces or parts of duties ex-
plicitly, but generate a set of pieces or parts of work, and then combine these
components of a duty are combined based on rules which define for the com-
patibility of pieces. But this brings up new problems. Namely, the number
of components may become quite large. And the problem of combining the
components may be difficult to solve, since the cost and the feasibility of a
duty is in general not separable with respect to its components.

5.3 Models for the Pricing Problem 119

original arcs
nodes in the timelinearcs in the timeline

v1 v2 v3 v4 v5

h1 h2

t1 t2

Figure 5.3: Original arcs and their timeline

A large number of arcs was also a problem in the vehicle scheduling ap-
proach of Löbel [1997b], where the number of deadhead links, especially the
so called long arcs, which represent the combination of a pull-in- and a pull-
out-trip, became too large to handle them explicitly. There, the problem was
solved by generating the needed arcs dynamically like in a column generation.

Another method to reduce the number of arcs in vehicle scheduling prob-
lems are so called timelines. They are also used in duty scheduling, see
Kliewer et al. [2004]. A timeline is a sub-network of a DSP-network whose
nodes model the dwelling of a vehicle or a driver at a certain location. Its
arcs either stand for staying at a location, going to it, or leaving it. To our
knowledge timelines are first mentioned in Desrosiers et al. [1982].

Timelines in our Algorithm

In our model a timeline P̄ is a set of nodes V̄ = {v1, . . . , vn} and arcs Ā
that replaces a set of arcs A′ ⊂ ADSP. The nodes induce a line v1, v2, . . . , v|V̄ |
where two consecutive nodes are connected by an arc vivi+1 ∈ Ā for all
i = 1, . . . , |V̄ | − 1. These nodes together with the arcs between them model
the dwelling of a driver at a certain location p. The nodes have start and
end times that are multiples of minutes, e.g., st(vi) = et(vi) = i minutes.
The arcs between the nodes V̄ have all a duration of one minute. For every
arc a = uw that is an element of A′ two arcs are added: One arc uvi that
models the time that a driver needs to get after the completion of task u to
the location p. Another arc vjw models the routing time from location p to
the start location of task w. The path from vi to vj models the dwelling time
of the driver at location p. Obviously i ≤ j must hold otherwise a would not
be a valid arc. Figure 5.3 shows an example of a set of arcs and its timeline.

120 The Generation of Duties

s t

node in VDSP

node in a timeline

arc of timeline 1

arc of timeline 2

Figure 5.4: d-DSP-network

We use timelines in the pricing problem to model transfers of a driver from
one vehicle to another one with a possible break at a rest facility in between.
For each rest facility we get one timeline. Taking a break at the rest facility
is modeled by the arcs between nodes of the timeline, the other arcs stand
for transfers to and from the rest facility. The interruption between to parts
of work in a duty is also modeled by timelines. Here the nodes stand for the
location where a part of work can end or begin. Timelines could also be used
to model deadheads which consist of driving the vehicle to a parking facility,
a standing time, and leaving the facility to begin the next trip. However,
this is not implemented yet. Figure 5.4 shows a d-DSP-network with two
timelines that, e.g., model two different locations where parts of work can
end.

Properties of Timelines

A timeline can be seen as an replacement of a set of arcs by a tree such
that each original arc is represented by a path in the timeline and vice versa.
Therefore the set of arcs that should be replaced by timelines must be selected
careful to guarantee that it is able to generate the same duties with both
networks. It is, e.g., not possible to restrict the length of paths in the timeline:
An arc that enters the timeline can be combined with all arcs leaving the
timeline at a later point in time to generate duties. If, e.g., in Figure 5.3 arc
t1h1 and arc t2h2 are elements of A′ then also a path from t1 to h2 exists,
this implies that also arc t1h2 is an element of A′.

5.3 Models for the Pricing Problem 121

Another problem are attributes and cost of arcs in A′ versus the same
costs and attributes of paths in P̄ . The cost of an arc in A′ must be linear
in the components of the corresponding path in P̄ , so that the arc in A′ and
the corresponding path in P̄ have the same cost and attributes. Thus, it
is not possible to penalize certain arbitrary arcs in A′ costwise if modeled
as a timeline. Such penalties are sometimes used to prevent unnecessary
line-changes of drivers or to penalize long routing times.

We will now compare the number of arcs in A′, versus the arcs in P̄ in
the best case. We assume that our directed network has m nodes. Since
it does not contain directed cycles, it may have at most m(m−1)

2
arcs. The

timeline needs at most tmax − 1 arcs, where tmax is the latest start time of
any task. Eventually, the number of arcs in the timeline can be reduced by
preprocessing to max{tmax − 1,m} by aggregating subpaths to arcs. There
are at most 2m arcs entering V̄ or leaving V̄ from outside the timeline. I.e.,
we have reduced the theoretical maximum number of arcs from m(m−1)

2
to

tmax + 2m− 1 by aggregating a class of arcs to a timeline.

5.3.3 IP Model

We now present a MIP-model (PRICE) for the pricing problem of (DSP) to
find duties with negative reduced cost in the network Nd or to prove that no
such duties exists.

We model the pricing problem, denoted by (PRICE) as a shortest path
problem with a non-linear objective function, additional resource constraints,
constraints for special subpaths, and a possibly exponential number of
infeasible-path-constraints. (PRICE) can be seen as a flow-based model as
explained in Section 1.3.1.

R is the set of all relevant resources of duties as explained in Section 5.2.3.
Variable ya, a ∈ links is one if arc a is used in the solution of (PRICE) and zero
otherwise, variables zu

r and z`
r, r ∈ R, give the deviation of the consumption

of a resource r from its target. For this model ζa, a ∈ ADSP is the cost of
using arc a, in Section 5.3.4 it is explained how ζa is composed. Further, κu

r

and κ`
r, r ∈ R are the penalties for using more or less of a resource r than a

certain target consumption ur or `r, respectively. The function f(y) models
the non-linear fraction of the objective function. It stems from determining
the paid time in a duty dependent on the used break rules and resource
consumptions. The set IP is a family of arcs in infeasible paths.

122 The Generation of Duties

(PRICE) min 〈ζ, y〉+ 〈κu, zu〉+ 〈κ`, z`〉+ f(y),

s. t.

(i) δout(s) = 1,

(ii) δin(v)− δout(v) = 0, ∀v ∈ V (Nd) \ {s, t},
(iii) δin(t) = 1,

(iv) Qy − zu + z` = b,

(v) 0 ≤ zu
r ≤ ur, ∀r ∈ R,

(vi) 0 ≤ z`
r ≤ `r, ∀r ∈ R,

(vii)
∑

a∈I ya ≤ |I| − 1, ∀I ∈ IP,
(viii) ya ∈ {0, 1}, ∀a ∈ ADSP.

Flow Conservation Constraints The equations (i) to (iii) are flow con-
servation constraints, they force the path to begin at the source s and to end
at the sink t.

Resource Constraints The matrix Q ∈ R
R×ADSP contains in row r and

column a the use of a resource r by arc a and its head head(a). The con-
straints (iv), (v), and (vi) ensure that the consumption of resource r of a
path is not less than br − `r and at most br + ur. The base constraints of the
master problem are linked to resource constraints: The resource consumption
of a duty i used in a base constraint b ∈ B in problem (DSP) is denoted by
Rbi. Every base constraint controls the consumption of exactly one resource
r ∈ R. It is required that the resource consumption of a duty is separable in
its used arcs, therefore it holds that for every b ∈ B exists an r(b) ∈ R such
that

Rbi =
∑
a∈i

Qr(b)a. (5.3)

Infeasible Path Constraints The infeasible path constraints (vii) are
used to model all non-linear side-constraints on duties. IP is a family of
all sets of arcs, which can not be extended to a duty. Although it suffices
to consider the inclusion-maximal subsets in IP , |IP| is in the worst case
exponential in the number of tasks.

5.3 Models for the Pricing Problem 123

5.3.4 Cost and Reduced Cost of Pairings and Links

The objective function of the pricing problem (PRICE) is dependent on a dual
solution (λ, µ) ∈ RV̄DSP×RR of a restricted dual problem D-DSPI. We have to
construct it in such a way that the objective value of a solution of (PRICE)
is equal to the reduced cost of the resulting column in the master problem.
We set:

ζa := cpt(pt(a) + pt(head(a)) + ca − λhead(a) −
∑
b∈B

µb
TQr(b)a,

cpt ∈ R+ is a cost factor for the paid time and pt(a) and pt(v) are the
minimum times on arc a and task v that have to be paid independently
from the actual duty in which a or v are used. These times are mostly the
associated working time of an arc or a task. The difference between this
time and the real paid time is mainly caused by paid breaks. The rules for
paying a break are sometimes very complicated and may depend on break
rules, the total break time in a duty, working time directly before or after a
break, and various other attributes of a duty. Finally ca is a cost of arc a
that is independent from the the paid time. E.g., arcs leaving the source s
get ca = cfix.

The non-linear function f : D 7→ R+ gives for each duty i ∈ D the
difference between the cost of the minimum paid times and its actual paid
time. That is:

f(i) := cptwpt(i)−

 ∑
a∈ADSP(i)

cpt(pt(a) + pt(head(a))


For arcs incident to the source s of Nd we add the fixed cost cfix to the

arc cost to model the fixed cost of a duty (see Section 5.2.5).

We have constructed the cost function of (PRICE) in such a way that
for every duty defined by a solution of (PRICE) its cost is equal to the re-
duced cost of the same duty in the master problem. That is, the following
proposition holds:

Proposition 5.1. Let yi be a solution of (PRICE) that corresponds to column
i of the master problem (DSP), that is, column i covers exactly the arcs
a ∈ ADSP with yi

a = 1. Let further the resource consumption of duty i be
linear in the arcs, that is wr(i) := Qr

Tyi for all resources r ∈ R. Then holds

ci − λTA·i − µTR·i = ζTyi + 〈κu, zu〉+ 〈κ`, z`〉+ f(yi)

124 The Generation of Duties

Proof. In any optimal solution y of (PRICE) it holds:

z`
r = max{br −Qry, 0} and zu

r = max{Qry − br, 0}. (5.4)

By definition of ci, definition of f , equation (5.4), and definition of ζa it holds:

ci = cfix + cptwpt(i) +
∑
r∈R

(
max{κ`

r(br − wr(i)), 0}+ max{κu
r (wr(i)− br), 0}

)
(5.5)

= f(i) +
∑

a∈ADSP(i)

(cpt(pt(a) + pt(head(a)) + ca) + 〈κ`, z`〉+ 〈κu, zu〉

(5.6)

= f(i) +
∑

a∈ADSP(i)

(
ζ(a) + λhead(a) +

∑
b∈B

µb
TQr(b)a

)
+ 〈κ`, z`〉+ 〈κu, zu〉

(5.7)

By (5.3) the claim follows.

5.4 Literature

The pricing problem for the DSP is extensive discussed in the column gen-
eration literature. It is often called pairing generation in train or air traffic
applications, since there a duty is also denoted by the term pairing.

The literature considers DSP-networks that are given implicitly by rules
for the compatibility of tasks or explicitly as a network. Various constraints
are discussed, which are mostly part of our model (PRICE). However, some
constraints needed for our applications, such as quotient-break-rules, are
quasi non-existent in the literature,

We will give now a short summary of different models and solution ap-
proaches in recent publications.

Caprara et al. [1997, 2001] describe an application for duty scheduling in
railway companies. Their duties (called pairings) have to include exactly one
break (like the 1-block-pause) per part and have to have a maximum working
time and duty duration. The cost of a duty is either 1 or 2 , if it contains
an external rest. Pricing is done in a depth-first-search algorithm with prun-
ing by minimum time constraints. Overtime is checked by calculating the
shortest vt-path with respect to the durations.

5.4 Literature 125

In Freling [1997]; Freling et al. [2001, 2003] the pricing problem is a short-
est path problem with linear resource constraints. The deviations of resource
constraints of targets are not considered, i.e., κu = κ` = 0 in (PRICE). They
also do not consider global constraints. They propose two RCSP-algorithms,
a dynamic programming approach and a branch-and-bound algorithm. He
recommends branch-and-bound in a depth-first-search manner for DSP’s with
small maximum duty length α. Here α is the maximum number of tasks any
valid duty may contain. The number of paths of length α is at most |VDSP|α
which is polynomial for a fixed α and tractable for small α. Assumptions
in Carresi et al. [1995] are α ≤ 4 for bus driver scheduling as well as air-
line crew pairing applications (ACPP). In our scenarios α is in general 40 or
larger (see Figure 5.1) and not known in advance. The dynamic programming
approach is equivalent to a labeling algorithm in the manner of Section 5.6.
The running time of this algorithm depends on the number of labels, which
is exponential in the input size. No pruning is mentioned.

In Huisman [2004]; Huisman et al. [2003b] duties have the following spe-
cial structure: Each duty has zero, one, or two breaks of a certain minimum
duration. The number of breaks depends on the duration of the duty. Addi-
tionally the duty must not exceed a certain maximum length. Changeovers,
i.e. the change from one vehicle-block to another, are only allowed at breaks.
The duration of the pieces of work has to be in a certain interval. The cost
of a duty is fixed to one. They propose a two-stage algorithm. At first a set
of feasible pieces of work is generated by a shortest path algorithm, which is
called for each pair of nodes, which span a valid time interval. Then feasible
duties are found by enumerating the valid piece combinations. This is pos-
sible, since the reduced cost of a duty is the sum of the reduced cost of its
pieces plus the fixed cost per duty of 1, and the number of pieces is restricted
to 2 or 3. Thus the pricing problem can be solved in polynomial time.

Gaffi & Nonato [1997] propose also a two stage approach, where at first
feasible pieces are generated, which are paths in the network. These pieces
together with their compatibilities are producing another graph. In this
graph feasible duties can be found with a resource constrained shortest path
algorithm considering duty time as a resource. It is mentioned that the large
number of feasible pieces causes problems.

Our pricing algorithm is based on the procedure of Borndörfer et al.
[2003]. Here duties are generate by a depth-first-search algorithm, which
utilizes the results of the Lagrangean-relaxation of a resource-constraint-
shortest-path relaxation of (PRICE), as well as heuristic pruning criteria.

126 The Generation of Duties

5.5 Algorithm

Our pricing algorithm to solve the problem (PRICE) works in two phases:

1. At first we solve a Lagrangean relaxation of (PRICE). This gives lower
bounds on the reduced cost of all duty segments beginning at tasks
v ∈ V̄DSP and ending in the sink t of the planning network.

2. Then we do a (heuristically restricted) depth first search in the planning
graph, using the information of step 1 to prune the search tree as early
as possible.

We will discuss in the next section the calculation of the lower bounds
on (PRICE) by Lagrangean relaxation, then follows the description of the
depth-first-search algorithm that solves the actual pricing problem utilizing
the lower bounds. In later sections we examine also another Lagrangean
relaxations that treats some resources exactly.

5.5.1 The Resource Constrained Shortest Path Prob-
lem

We relax model (PRICE) to the LP-relaxation of the resource constraint short-
est path problem (RCSP). We ignore equation (vii) and remove the non-linear
function f from the objective function. Moreover we replace the integrality
constraints (viii) by bounds. The resulting model (RCSP) is:

(RCSP) min 〈ζ, y〉+ 〈κu, zu〉+ 〈κ`, z`〉,
s. t.

(i) δout(s) = 1

(ii) δin(v)− δout(v) = 0 ∀v ∈ VDSP \ {s, t}
(iii) δin(t) = 1,

(iv) Qy − zu + z`, = b,

(v) 0 ≤ zu
r ≤ ur, ∀r ∈ R,

(vi) 0 ≤ z`
r ≤ `r, ∀r ∈ R,

(vii) 0 ≤ ya ≤ 1, ∀a ∈ ADSP.

The RCSP, also known as acyclic-constrained-shortest-path problem
(ACSP), is well studied in the literature, see Mehlhorn & Ziegelmann [2000]

5.5 Algorithm 127

or Dumitrescu [2002] for surveys. The problem is NP-hard already for a
single resource constraint, see [Garey & Johnson 1979, A2.3, ND30]. For any
fixed number of resources, fully polynomial approximation schemes exist, see
Warburton [1987]. Pseudopolynomial algorithms have been developed and
successfully used in practical applications, see Desrochers [1986] and oth-
ers, including penalty treatment, see Desrochers et al. [1992]. Enumerative
approaches using Lagrangean lower bounding techniques have been studied
by Handler & Zang [1980] and Beasley & Christofides [1989]. Mehlhorn &
Ziegelmann [2000] give a geometric algorithm with low computational com-
plexity to solve the LP-relaxation of (RCSP) for the case of a single resource
constraint.

5.5.2 Lagrangean Relaxation of all Resource Con-
straints

The paths found by (RCSP) are in our experience almost never feasible with
respect to the break rules and driving- or work-time regulations. Note that for
this reason a k-shortest-path-approach, which is often used in crew-scheduling
for airlines, does not work properly in a bus transit context. However, it is
possible to derive lower bounds for (PRICE) from Lagrangean relaxations of
(RCSP). The lower bounds are crucial to guide a depth-first-search algorithm
which finds solutions of (PRICE).

There are several ways to apply Lagrangean relaxation to the RCSP. Ei-
ther we relax the resource constraints (iv) completely. This results in a poly-
nomial subproblem, and one Lagrangean multiplier per resource constraint.
Or we relax only some of the resource constraints. Then we get pseudo-
polynomial subproblems, depending on the number of the resources and the
maximum resource consumptions. The more difficult subproblems, however
give more information that can be used for pruning in the depth-first-search
algorithm.

In our first model, which is also described in Borndörfer et al. [2003],
we relax all resource constraints (iv) of (RCSP) in a Lagrangean way. This

128 The Generation of Duties

results in the following Lagrange-function L:

L(µ) = min〈ζ, y〉+ 〈κu, zu〉+ 〈κ`, z`〉+ 〈µ, b−Qy + zu − z`〉,
s. t.

δout(s) = 1,

δin(v)− δout(v) = 0, ∀v ∈ VDSP \ {s, t},
δin(t) = 1,

0 ≤ zu
r ≤ ur, ∀r ∈ R,

0 ≤ z`
r ≤ `r, ∀r ∈ R,

0 ≤ ya ≤ 1, ∀a ∈ ADSP.

We have

L(µ) = 〈µ, b〉+ L1(µ) + L2(µ)

with

L1(µ) := min〈ζ − µTQ, y〉,
s. t.

δout(s) = 1,

δin(v)− δout(v) = 0, ∀v ∈ VDSP,

δin(t) = 1,

0 ≤ ya ≤ 1, ∀a ∈ ADSP.

and

L2(µ) := min
0≤zu≤u

〈κu + µ, zu〉+ min
0≤z`≤l

〈κ` − µ, z`〉.

The first subproblem is a shortest path problem on an acyclic graph which
can be solved in O(|ADSP|). The second problem has the optimal solution
(ẑ`, ẑu) where

ẑ`
r :=

{
0, κ`

r − µr ≥ 0

lr, else
(5.8)

ẑu
r :=

{
0, κu

r + µr ≥ 0

ur, else
(5.9)

This problem can be solved in time O(|R|). Thus, L(µ) is a lower bound
of (RCSP) for each µ, which can be calculated in polynomial time, and
maxµ L(µ) is equal to the optimal value of (RCSP), i.e., a lower bound of
the reduced cost of the improving duties.

5.5 Algorithm 129

Additional lower bounds will be useful for pruning in duty construction.
They can be derived from the duals associated with RCSP. More precisely
consider the dual of L1:

(SPDµ) max λt − λs,

s. t. λv − λu + µTQ·a ≤ ζa, ∀a = (u, v) ∈ ADSP.

We denote the arcs that are covered by a path P by A(P). We define
the cost of a path P with respect to cost coeffiecients ξ ∈ RADSP by ξ(P) :=∑

a∈A(P) ξa.

Proposition 5.2. Let ξµ
a := ζa−µTQ·a be the cost of arc a for all a ∈ ADSP.

Then λv − λs is a lower bound on the cost of a shortest path from source s
to node v, for all v ∈ V (Nd).

Proof. The proof is by induction on the length of the path. The claim is
trivially true for paths with v = s because the graph is acyclic. Suppose that
we have a shortest path P from s to v, v 6= s. P can be segmented into a
path P ′ from s to u and its last arc a = uv. P ′ is a shortest path from s to
u. By the induction hypothesis ξµ(P ′) is not smaller than λu−λs. Therefore
the following holds:

ξµ(P) = ξµ(P ′) + ξµ
a ≥ λu − λs + ξµ

a .

Using the constraints of (SPDµ) we get

λu − λs + ξµ
a = λu − λs + ζa − µTQ·a ≥ λv − λs.

Thus, the claim ξµ(P) ≥ λv − λs holds.

This lower bound can be interpreted as a lower bound on the contribution
of P ′ to the reduced cost of a duty including this subpath.

Analogously λt−λv gives a lower bound on the reduced cost contribution
of a path from node v to the sink t. We denote these bounds by fsv(µ) :=
λv − λs and by fvt(µ) := λt − λv, respectively.

Finally, we are able to derive lower bounds for duties that cover an arbi-
trary node v.

Proposition 5.3. Let µ ∈ R
R be arbitrary Lagrangean multipliers of the

Lagrangean function L, let λ ∈ RVDSP be an optimal solution of (SPDµ), and
let v be an arbitrary node of the d-DSP-network. Then fsv(µ) + fvt(µ) +
µTb+ L2(µ) is a lower bound on the reduced cost of all duties covering v.

130 The Generation of Duties

Proof. By proposition 5.2 holds: f(µ)sv ≤ ξµ(P ′) for all sv-paths P ′ and
f(µ)vt ≤ ξµ(P ′) for all vt-paths P ′. Therefore f(µ)sv + f(µ)vt ≤ ξµ(P) for
all st-paths P that use node v. Let now yP be the arc-incidence vector of P ,
that is yP

a = 1 if a ∈ A(P) and yP
a = 0 otherwise.

Putting this together we get:

fsv(µ) + fvt(µ) + µTb+ L2(µ) ≤ ξµ(P) + µTb+ L2(µ)

= ζTyP − µTQyP + µTb+ L2(µ)

And that is L(µ) if the shortest path uses node v and therefore a lower bound
on all shortest paths that use node v.

5.5.3 Depth-First-Search

The information from the Lagrangean-function L and from (SPDµ) can be
exploited to accelerate a depth-first-search duty enumeration algorithm. We
propose in the following such an algorithm, which we call Dutysearch, that
is used to generate duties with negative reduced cost.

We assume that the pricing network Nd is preprocessed, such that every
node in V (Nd) lies on an st-path. The algorithm Dutysearch (see Algo-
rithm 7) starts at source-node s and traverses the network Nd in a depth
first search manner. We associate with each node v ∈ V (Nd) a list of all its
outgoing arcs denoted by δout(v). Every arc in a list δout(v) has a unique
successor or is the last one in the list. We denote the first arc in δout(v) by
first(δout(v)) and a successor of arc a by succ(a). The successor of an arc is
well defined, since every arc is in exactly one list. The state of the algorithm
is determined by a stack of active arcs S, which defines an sv-path, where v
is the head of the last arc in S.

The loop defined by steps 2-11 adds arcs onto the stack S until S defines
a duty or cannot be completed to one. In Step 12 and the following steps a
backtrack is performed. Step 8 of algorithm Dutysearch prunes paths uti-
lizing the lower bound of section 5.5.1. There ξ(S) :=

∑
a∈S ζa +

∑
r∈R µrQra

is the reduced cost contribution of the sv-path induced by S.

This algorithm is generic in several ways. We may vary the ordering of
the arc lists. We can influence the search space by the parameter ε. And last
but not least we have to efficiently implement the check if S can be completed
to a feasible duty.

5.6 Labeling 131

Algorithm 7 Dutysearch

Input: A duty type d and the network Nd.
Output: A set D of duties with cost smaller then −ε.
1: D ← ∅, S is empty. v ← s,
2: a← first(δout(v)).
3: Put a onto the stack S. Let v ← h(a).
4: if v = t then
5: If S implies a feasible duty, add it to D.
6: goto step 12.
7: end if
8: if

∑
i∈S

(
ζi − µTRi

)
+ fvt(µ) + µTb+ L2(µ) + ξ(S) > −ε or

S can not be completed to a feasible duty then
9: goto step 12.

10: end if
11: goto step 2.
12: while a has no successor and S has more then one element do
13: Remove a from S and let a be the new last arc of S
14: end while
15: if a has no successor then
16: terminate.
17: else
18: Let a← succ(a). Goto step 3.
19: end if

5.6 Labeling

We propose in this section a method to improve the lower bounds of Sec-
tion 5.5.2 using labeling-techniques.

In fact the resource constraints of RCSP can be handled in an exact way by
pseudo-polynomial algorithms using labels on the nodes of Nd. This produces
better lower bounds for vt-paths depending on the resource consumption,
but may increase the computation time. To control the computation time
we scale and round at the cost of replacing exact bounds by approximations.
The details are described in the following sections. We show the methods for
the case of one resource to keep the notation simple, however, the techniques
of this chapter can be used to handle more than one resource exactly.

132 The Generation of Duties

5.6.1 Graph Construction

The starting point is that a resource constraints in problem (PRICE) can be
handled exactly by transforming the network Nd into a label-network. The
transformation is shown as Algorithm 8. It works as follows: let r ∈ R be

Algorithm 8 Creating the label-network

Input: A d-DSP-network Nd, a cost vector of its arcs ζ ∈ RA(Nd), resource
consumptions of the arcs Q ∈ RR×A(Nd) and a resource r ∈ R.

Output: A label-network N r
d .

1: Let λs0 ← 0, mark s.
2: while there are unmarked nodes in Nd do
3: Let v be one of the topologically smallest unmarked nodes in Nd.
4: for all arcs a ∈ δin(v) do
5: for all nodes (tail(a)p ∈ Λ do
6: Add node {vp+Qar} to V (N r

d).
7: Add an arc with tail tail(a)p, head vp+Qar , cost ζa, and resource

consumptions Q·a to A(N r
d).

8: end for
9: end for

10: end while

the resource that we want to treat exactly. Then we add for every node
v ∈ V (Nd) a set of nodes {vq} where q is a resource consumption of resource
r. For every arc a = uv ∈ A(Nd), u, v ∈ V (Nd) we add arcs with tail uq and
head vq+Qra to N r

d if the corresponding nodes exist in V (N r
d). The arcs in the

label-network inherit their costs and resource consumptions from the arcs in
Nd. We call the resulting network the label-network and denote it by N r

d . By
construction every s0vq-path in N r

d consumes exactly q units of resource r.

An example of a label-network is shown in Figure 5.5. There v1 - v5

denote the original nodes. The nodes vi
q are the nodes in the label-network

that correspond to node vi of the original network and need q units of resource
r to reach s0. The numbers on arcs give the resource consumption for using
the corresponding arc.

The transformation is not polynomial in the input size of RCSP, since
the size of N r

d is O(|Wr|(|ADSP| + |VDSP|)). Here Wr is the set of potential
resource consumptions of paths in Nd. The construction of a label-network
is equivalent to label-algorithms like in Dumitrescu [2002] or Desrochers &
Soumis [1988].

5.6 Labeling 133

Original network

Label-network

v1

v5

v4

1

2

2

3

2

v3

v2 1

0

0

0

1

v1
0

v3
0

v4
2

v4
1

0

0

0

1 v3
1

v5
2

v5
3

v5
4

1
2

2

v2
0

s0

1

3

3

2

2

1

1

1

s t

t4

t5

t3

Figure 5.5: A network and its label-network

We use the label-network N r
d to improve L1 to a function Lr

1 in which re-
source r is treated exactly. To this purpose, we simply replace the underlying
network Nd by the network N r

d :

Lr
1(µ) := min〈ζ − µTQ, y〉,

s. t.

δout(s) = 1,

δin(v)− δout(v) = 0, ∀vj ∈ V r
DSP,

δin(t) = 1,

0 ≤ ya ≤ 1, ∀a ∈ Ar
DSP.

The dual of Lr
1 is then:

(SPDµ
r) max λt − λs,

s. t.

(i) λv,q − λu,q+Q̄ra
+ µTQ̄·a ≤ ζa,∀a = (uq, vq+Q̄r(u,v)

) ∈ Ar
DSP ,

Here we have one Lagrangean multiplier per node in V r
DSP, that is λ ∈ RV r

DSP .

Proposition 5.4. If λ ∈ R
V r

DSP is an optimal solution of (SPDµ
r), λv,q − λs

gives lower bounds on a shortest path from node s to v that uses exactly q
units of resource r with respect to the objective function ξµ := ζa − µTQ·a.

134 The Generation of Duties

Proof. By construction of N r
d every node vq ∈ V r

DSP, q ∈ Wr can only be
reached by paths starting at s0 that are using exactly q units of resource r .
Now proposition 5.4 follows by proposition 5.2.

Analogously we are able to construct lower bounds on vt-paths that use
exactly q units of a certain resource.

If we set: f q
vt(µ) is a lower bound on the cost of all vt-paths using cost

function ξµ which consume q units of resource r we are able to replace the
condition of Step 8 of Algorithm 7 by:∑

i∈S

(
ζi − µTRi

)
+ f q

vt(µ) + µTb+ L2(µ) + ξ(S) > −ε,

where q := ur −
∑

a∈S Qra is the maximal remainder of resource r. Since
f q

vt(µ) ≥ fvt(µ) this prunes more of the search tree.

5.6.2 Node Dominance

Solving the shortest path problem on the network N r
d fast is not easy even

if this problem belongs to the computationally easy class of shortest path
problems on acyclic networks, because the network N r

d is in our applications
very large, in particular, if we create label-networks for time dependent re-
sources. Consider the following example: A feasible split duty may have a
shift duration of up to 14 hours. The typical precision of our input data is
one minute. So Wr corresponding to shift duration has 840 elements. A typ-
ical pricing-network Nd has about 50,000 nodes and 150,000 arcs. Thus, the
label-network may have up to about 100,000,000 arcs and millions of nodes.
Such large graphs turned out to be too memory consuming.

If only upper bounds on resources matter we are able to identify nodes
that can be removed from N r

d without changing the optimal value. Thus,
we relax the lower bounds on the resource r of (RCSP), i.e., we set `r = M ,
and M ∈ R is big enough. A candidate for M is, e.g., the sum of all non-
positive entries of Q. In our test instances this relaxation does seldom change
the objective value of the RCSP, because in most cases optimal solutions of
RCSP tend to consume quantities of a resource that is equal to or near the
upper bound.

We now formalize this approach:

Definition 5.5. Let λ ∈ RV (Nr
d) be an optimal solution of (SPDµ

r). A node
vq ∈ V (N r

d) is dominated by a node vp ∈ V (N r
d) if p ≤ q and λv,p ≤ λv,q.

5.6 Labeling 135

By proposition 5.4 domination of vq by vr implies that the shortest path
from t to v with resource consumption p is shorter than the shortest path
from t to v with the larger resource consumption q. Then the shortest st-
path using node vp does not consume more of resource r and is also not more
expensive than the shortest st-path using node vq. Therefore we can remove
the dominated node vq without increasing the cost of the optimal path with
respect to the maximal feasible resource consumption.

If we consider multidimensional labels for more than one resource, a label
is dominated if the consumption of every considered resource is larger than or
equal to the corresponding resource consumptions of the dominating label. In
our experience, the growth in the number of labels is magnitudes larger than
the reduction of labels by dominance, if we increase the number of considered
resources.

In the reaching algorithm, a standard label-setting algorithm (see [Ahuja
et al. 1993, Section 4.4]), dominated nodes can be removed, as soon as
their dual variables (called labels there) are computed, since the labels
λv,q, v ∈ V (N r

d), q ∈ W r will not be changed in this algorithm after they
have been computed. We show a modified version of this algorithm which
dynamically generates the label-network and calculates the dual variables of
all non-dominated nodes as Algorithm 9. The result of Algorithm 9 is a set

Algorithm 9 Shortest path reaching algorithm with label dominance.

Input: A duty type d, the (acyclic) network Nd, the resource consumption
matrix Q, a resource r and a cost vector ζ.

Output: the value of a shortest st-path and labels λv,p for each non-
dominated node vp ∈ Λ ⊂ V (N r

d).
1: Λ← {s0}, λs0 ← 0, mark s, λv,p ←∞ for all v ∈ V (Nd) \ {t}, p ∈ Wr.
2: while there are unmarked nodes in Nd do
3: Let v be one of the topologically smallest unmarked nodes in Nd.
4: for all arcs a ∈ δin(v) do
5: for all nodes (tail(a)p ∈ Λ, p arbitrary do
6: Let λv,p+Qar ← min{λv,p+Qar , λtail(a),p+Qar}.
7: Λ← Λ ∪ {vp+Qar}.
8: Remove dominated nodes from Λ.
9: end for

10: end for
11: end while

Λ ⊂ V (N r
d) of all non-dominated nodes in N r

d together with values λi, i ∈ Λ

136 The Generation of Duties

that satisfy the constraints of (SPDµ
r). Unfortunately |Λ| is in the worst case

equal to the number of nodes inN r
d and is also very large in our computations.

The dominance check of Step 8 of Algorithm 9 can be done efficiently for
one resource. Let

label(v) := (w ∈ V (N r
d) | w = vq, q arbitrary)

be the ordered set of nodes of the label-network that corresponds to a node
v ∈ V (Nd) of the original network. Let the nodes vq in label(v) be ascending
sorted by the resource consumptions q. Maintaining the ordering throughout
the algorithm costs O(log |label(v)|) computation time when adding a new
node to Λ and therefore also to the appropriate set label(v). Now holds:

Lemma 5.6. Let label(v) = (vq1 , vq2 , . . . , vqm), no node is dominated, and
λ ∈ R

V (Nr
d) is an optimal solution of (SPDµ

r). Let the qi, i = 1, . . .m be
sorted such that q1 < q2 < · · · < qm . Then the associated dual variables are
sorted in descending order, i.e., λv,q1 > λv,q2 > · · · > λv,qm .

Proof. Assume we have to nodes vqi
, vqj
∈ label(v) with i < j and λv,qi

≤
λv,qj

, then vqj
dominates vqi

. This is a contradiction to our assumption that
all labels in label(v) are non-dominated. Therefore follows: i < j is equivalent
to λv,qi

> λv,qj
for all 1 ≤ i, j ≤ m.

By this lemma the nodes vp in the sets label(v) are also sorted by their
dual values λv,p. Let us now insert node vp into V (N r

d) and also into
label(v) = (vq1 , vq2 , . . . , vqm). For the dominance check we need to find an
index i such that qi < p < qi+1 and an index j such that λv,qj

> λv,p ≥ λv,qj+1
.

If i = j then vp is not dominated and only dominated vqj+1
if λv,p = λv,qj+1

.
If i > j then follows that qk < p and λv,qk

< λv,p for all i ≥ k > j. Therefore
all nodes vk are dominated by vp. If i < j then node vp is dominated by all
nodes vk with i ≤ k < j. The indices i and j can be found in O(log(label(v)),
e.g., by binary search, because label(v) is sorted by resource consumption
and by dual values. Therefore the dominance check needs for each insertion
O(log(label(v)) time.

5.6.3 Resource Scaling and Rounding

We have seen in Section 5.6.1 that the number of labels depends linearly
on the cardinality of the resource domain. The size of the domain can be
reduced by scaling and rounding of the resource consumptions.

5.6 Labeling 137

A way to use rounding and scaling iteratively to calculate exact solutions
of the RCSP is described first in Ribeiro & Minoux [1986] and also extensively
in Dumitrescu [2002]. We are content with an approximation, because we
are primarily interested in lower bounds given by dual-variables to guide the
enumeration algorithm Dutysearch.

Scaling and rounding works as follows: assume the coefficients of the
resource-consumption matrix Q are integer. We chose a scaling factor k > 1
and replace the constraints (RCSP)(iv) by⌊

Q

k

⌋
y − zu

k
≤
⌊
b

k

⌋
. (iv b)

The resulting model is again a resource-constraint-shortest-path problem.
We denote it by (RCSPk).

Using constraints (iv b) instead of (iv) in model (RCSP) reduces the num-
ber of nodes in the labeling approach to about 1/k times the original number
of nodes because the number of nodes is linearly dependent on the cardinality
of the resource domain. By rounding and scaling this domains shrinks in the
best case by the factor k. However, solutions of (RCSPk) are not necessar-
ily also solutions of (RCSP), because they may violate constrains (iv), and
optimal solutions of (RCSP) are in general not optimal for (RCSPk).

In particular, the lower bound of a minimum cost path calculated in this
way may be arbitrarily bad in comparison to the optimal solution of RCSP. In
fact, the rounded problem may yield a lower bound of zero even if no feasible
path in the original problem exists due to a possible violation of resource
constraints. One way to overcome this problem is to use a k-shortest-path-
algorithm (see Dumitrescu [2002]). However, this is too time consuming on
our instances of the RCSP arising by duty scheduling problems.

In the following we examine the resource consumption of solutions in
(RCSP) in comparison to solutions of (RCSPk). Let y∗ ∈ {0, 1}ADSP be a solu-
tion of (RCSP). Then y∗ fulfills also all constrains of (RCSP)k but constraints
(iv b) may be violated. The resource consumption of resource r ∈ R of the
path defined by y∗ is then

Qr(y
∗) :=

∑
a∈A(Nd)

Qray
∗
a.

The rounded resource consumption is defined by

Qk
r(y

∗) :=
∑

a∈A(Nd)

k bQra/kc y∗a.

138 The Generation of Duties

Trivially Qr(y
∗) ≥ Qk

r(y
∗) holds for all k ≥ 1.

Proposition 5.7. Let y∗ ∈ {0, 1}ADSP be a solution of (RCSP) and r ∈ R an
arbitrary resource. Then there is no factor κ such that Qr(y

∗) = κQk
r(y

∗) for
all k > 1.

Proof. Assume the optimal path respecting the rounded constraints (iv b)
uses at least one arc and set Qra = 1 for all a ∈ ADSP. Then holds Qr(y

∗) > 0.
Further is bQra/kc = 0 and therefore Qk

r(y
∗) = 0.

Thus, the approximation of the resource consumption of a solution of
(RCSP) by (RCSPk) can be arbitrarily bad.

We can also make a proposition about the difference of the resource con-
sumptions:

Proposition 5.8. Let r ∈ R be an arbitrary resource. Then holds Qr(y
∗)−

Qk
r(y

∗) ≤ n(k − 1) for arbitrary solutions y∗ ∈ {0, 1}ADSP of (RCSP) with n
non-zero elements.

Proof. The largest possible difference of Qar and k bQar/kc is k − 1. Thus
Qar−k bQar/kc ≤ k−1 holds for all a ∈ ADSP. Therefore is Qr(y

∗)−Qk
r(y

∗) ≤
n(k − 1). Thus, the proposition holds.

This proof also shows that Qr(y
∗)−Qk

r(y
∗) = n(k− 1) in the worst case.

This difference is unsatisfactory from a theoretical point of view. How-
ever, if we make an additional assumption on the structure of the network we
are able to be more precise about the quality of the resource consumptions
in (RCSPk) in comparison to (RCSP).

Proposition 5.9. Let y∗ be an optimal solution of (RCSP) using n ≥ 1
arcs. Let the average resource consumption of resource r of arcs in y∗ be
p̄ := Qr(y

∗)/n. Then holds for all k ≥ 1:

Qk
r(y

∗)

Qr(y∗)
≥ 1− k − 1

p̄
.

Proof. By proposition 5.8 Qk
r(y

∗) ≥ np̄− n(k − 1) holds. Then follows

Qk
r(y

∗)

Qr(y∗)
≥ n(p̄− k + 1)

np̄
= 1− k − 1

p̄
.

5.7 Computational Results 139

If the scaling factor k is significantly smaller than the average resource
consumption p̄, the rounded resource consumption gives a reasonable approx-
imation of the real resource consumption.

5.6.4 Cost scaling

A very similar idea to reduce the number of labels is to scale and round the
arc costs, i.e., replacing the coefficients of the objective function of RCSP
(assuming that ζ, κu, κ` ∈ Z) by

ζ̃ := k

⌊
ζ

k

⌋
, κ̃u := k

⌊
κu

k

⌋
, and κ̃` := k

⌊
κ`

k

⌋
. (5.10)

This operation tends to reduce the size of the label-network since each node
v ∈ V (Nd) can produce at most |C| nodes in the label-network, where C
is the set of potential cost values. The backside of the medal is that we
underestimate the cost of an arc in the worst case by k − 1. The worst and
average gap between the rounded and the original RCSP are the same as for
the weight scaling. One has only to replace the resource consumptions on
arcs by the costs in the propositions and proofs.

If we use cost scaling in a subgradient algorithm to maximize over a
function Lr(µ) := Lr

1(µ) + L2(µ) another problem occurs. Namely, at each
iteration of the subgradient algorithm problem RCSP must be solved with
different arc costs to evaluate Lr

1 and calculate a subgradient of it. Round-
ing costs, we cannot guarantee anymore that the minimizing path yields a
subgradient for the original formulation. However, using the approximate
subgradient technique developed in Chapter 4, we are still able to produce
good lower bounds of maxµ L

r(µ).

5.7 Computational Results

We analyze in this section results for solving different instances of the RCSP
which occur as subproblems in real world duty scheduling problems. We
demonstrate in this way the influence of different scaling factors for the cost
and resource consumptions on arcs. We also want to compare the computa-
tion times and the approximation quality of different Lagrangean relaxations
of (RCSP) solved by a bundle method. Finally, we examine the influence of
the lower bounds calculated in the RCSP-algorithm on the solution of the
pricing problem.

140 The Generation of Duties

scenario ivu08 RVB-Mo-Fr

duty type short normal split normal split

min. duty time 1:00 4:00 6:00 6:30 6:30
max. duty time 6:00 8:00 8:00 9:00 9:00
max. shift time 6:00 8:00 13:00 9:00 12:00
max. num. pieces 5 5 10 3 5
nodes 9,012 9,261 10,286 61,169 155,653
arcs 272,023 272,434 230,292 391,556 461,402

Table 5.1: Characteristics of the test data

5.7.1 Testbed

Our testbed consists of a set of pricing problems arising as subproblems in
pure duty scheduling problems and in integrated vehicle and duty schedul-
ing problems. The objective function depends on the dual variables of a
restricted LP. We selected dual variables for the restricted (DSP) or (ISP)
that were generated in the iteration before we aborted the column genera-
tion process to enter the primal phase of the algorithm. We selected these
dual variables because they produce a cost structure that makes the pricing
problem difficult. In the first iterations of the column generation, we find
many different duties with negative reduced cost in short time. This makes
it difficult to compare the quality of the different approaches. Also, most of
the computation time is needed to find duties when the restricted problem
already includes most of the needed duties.

We have generated in these scenarios one instance of (PRICE) for each
duty type. The following resources are considered in model (RCSP) for the
test-scenarios: shift duration, duty duration, number of parts of work, and
number of pieces of work. The shift duration differs from the duty duration
only for split duties, also the number of parts is different from one only
for split duties. Minimal and maximal allowed resource consumptions for
the resources considered in (RCSP) and the size of the graphs are listed in
Table 5.1.

The computations were done on a PC with a Intel Xeon CPU with 2.40
GHz and 3GB RAM. The operating system is Linux 2.16. Our algorithms
were all compiled with gcc 4.1.0 with full optimization and loop unrolling.

5.7 Computational Results 141

 1e−04
 0.001

 0.01
 0.1

 1

 0

 600

 1200

−2
−1.8
−1.6
−1.4
−1.2

−1
−0.8
−0.6

objective value

kckr

Figure 5.6: RCSP-objective for ivu08 with rounding factors kr and kc

5.7.2 RCSP

We calculated approximations of shortest paths by Algorithm 9 with various
rounding factors kc for the cost and kr for the duty duration. Costs and the
factor kc are scaled by 1/36000 in our algorithm, therefore kc is fractional.
The factor kr can be interpreted as time slices of length kr (with a unit of a
second in our case) in which all labels are treated as equal. Figure 5.6 shows
the impact of different rounding factors on the approximate reduced cost of
the shortest path, i.e., the objective value of (RCSP). In all following figures,
the continuous graph shows the results of Algorithm 9 where only the duty
duration is treated exactly. The dotted graph shows the same problem, but
with exact treatment of duty duration and the number of pieces of work.
Figure 5.6 shows that small rounding factors for the cost and the resource
consumption improve the lower bounds by higher objectives. There is a steep
decrease of the objective beyond kr = 600 if pieces of work are not treated
exactly. This is due to the fact that the graph contains many sign-on- and
sign-off-elements for vehicle changes with a length of about 10 minutes that
are all treated as if they have a length of zero, if the rounding factor kr

is larger than 600. If pieces of work are considered exactly, the number of
vehicle changes is limited and these sign-on-/sign-off-times do not play such
an important role. This effect is also apparent in Figure 5.7. There, the
number of pieces of work and the duty duration in seconds of the shortest
path found by Algorithm 9 are shown. If kr is small, also the number of
pieces is relatively small, because the shortest path avoids sign-on-/sign-off
times. There is also a decrease of the objective value for kc ≥ 0.01. It has
the same reason, because the objective value predominantly depends on paid
time and cost of 0.01 represents 360 seconds paid time.

In Figure 5.8 the number of generated labels and the computation time

142 The Generation of Duties

 1e−04
 0.001

 0.01
 0.1

 1

 0

 600

 1200

 10
 20
 30
 40
 50
 60
 70

number of pieces of work in the shortest path

 1e−04
 0.001

 0.01
 0.1

 1

 0

 600

 1200

 25000
 30000
 35000
 40000
 45000
 50000
 55000

duration of the shortest path

kr kc kr kc

Figure 5.7: Number of pieces of work and duration for scenario ivu08

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

computation time

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

number of labels

kr kckckr

Figure 5.8: Number of labels and computation time for scenario ivu08

of Algorithm 9 are plotted. As expected the computation time is roughly
proportional to the number of generated labels. The number of labels is
superlinear in the rounding constants. If we consider pieces exactly we need
about ten times as many labels as if we ignore the number of pieces. This is
due to the maximal number of pieces of work, which is ten. The computation
time decreases significantly steeper than the objective value, which is due to
the fact that many similar paths with the same or nearby objective value and
resource consumption exist, which can be subsumed into one label without
much loss of precision.

Figures 5.9 and 5.10 show the results of the RCSP algorithm for continuous
and short duties of ivu08. The results are similar to the results for the split
duties. The number of labels is for these duty types a magnitude smaller,
because the maximum number of pieces of work and the maximum duty time
is smaller.

Figure 5.11 shows the results for split duties of a weekday scenario of an
urban carrier. The results are very similar to the ones described above. A
difference is that the objective value of the shortest path is not very sensitive
to the rounding factors, if the number of pieces of work is treated exactly.

5.7 Computational Results 143

number of pieces of work in the shortest path duration of the shortest path

 0.001
 0.01

 0.1
 1

 0 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.001
 0.01

 0.1
 1

 0
 30000
 40000
 50000

 70000
 80000

 600

 1200

 60000

 600

 1200

 0.001
 0.01

 0.1
 1

 0−3
−2.5

−2
−1.5

−1
−0.5

 0

objective value

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06

number of labels

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 50

 100
 150
 200
 250

computation time

 600

 1200

kr kr

kr
kc

kckc

kckr

kckr

Figure 5.9: Results for continuous duties for scenario ivu08.

Probably the resource constraints of the duty durations are not tight, that
is, if we restrict the number of pieces of work, we automatically also restrict
the duty duration.

5.7.3 Lagrangean Relaxation

Table 5.2 presents results for solving various relaxations of (RCSP). The ob-
jective value of the shortest path in the pricing-network Nd without resource
constraints is given in the first row. The second row, “RCSP best”, gives the
integral solution of the shortest path problem that treats the resources “duty

144 The Generation of Duties

 0.001
 0.01

 0.1
 1

 0

 600

 1200

−3.5

−2.5

−1.5

−0.5

objective value

 0.001

 0.001

 0.01
 0.1

 1

 0

 600

 1200

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06

number of labels

 0.01
 0.1

 1

 0

 600

 1200

 0
 20
 40
 60
 80

 100
 120

number of pieces of work in the shortest path

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 40
 80

 120
 160
 200

computation time

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 10000

 30000

 50000

 70000

duration of the shortest path

kr kc

kr kc

kckr

kr kc

kr kc

Figure 5.10: Results for short duties for scenario ivu08.

duration” and “number of pieces” exactly but ignores the other resources.
Results for the Lagrangean relaxation maxµ L(µ) of (RCSP) proposed in Sec-
tion 5.5.1 are shown in the row “without labels”. Results for the Lagrangean
relaxation maxµ L

r(µ) with scaling and rounding described in Section 5.6.4
with resource “duty duration”, resource “number of pieces”, or with both of
them treated exactly are shown in the rows “duration”, “pieces” and “both”
of Table 5.2. The used scaling factors are kr = 600 and kc = 0.01.

In every case the simple shortest path lower bound is far away from the
other lower bounds. This shows that the resource constraints are impor-

5.7 Computational Results 145

 0.001
 0.01

 0.1
 1

 0

 600

 1200

−8
−7
−6
−5
−4

objective value

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0

 2e+07

 4e+07

 6e+07

 8e+07

number of labels

 0.01
 0.1

 1

 0

 600

 1200

 0

 400

 800

 1200

 1600

computation time

 0.001
 0.01

 0.1
 1

 0

 600

 1200

 0
 10
 20
 30
 40
 50
 60
 70

number of pieces of work in the shortest path

 0.01
 0.1

 1

 0

 600

 1200

 34000

 38000

 42000

 46000

 50000

duration of the shortest path

kr

kr kr

kr kr kc
kc

kc
kc

kc

Figure 5.11: Results for split duties for scenario RVB weekday.

tant. For short and continuous duties the result of the Lagrange-relaxation
is slightly worse than the solution of“int. duration+pieces”. The Lagrangean-
relaxation gives lower bounds for the RCSP that are in the best case equal
to its LP-relaxation, and therefore a gap to the integral optimum may oc-
cur. For split duties the integral solution is slightly worse than the Lagrange-
relaxation, because for “int. duration+pieces”we ignore the shift time, which
is considered in the Lagrangean-relaxation. Another expected observation is,
that if we include more resource constraints in the subproblem of the La-
grangean relaxation, we get better results and need more computing time.

146 The Generation of Duties

ivu08 – split duty ivu08 – continuous ivu08 – short
obj. value time obj. value time obj. value time

shortest path -1.281 < 1 -1.729 < 1 -3.317 0.12
int. duration+pieces -0.632 3537.53 -0.429 225.78 -0.221 196.34
without labels -0.645 2.33 -0.500 1.67 -0.305 1.91
duration -0.628 16.49 -0.463 29.37 -0.284 26.25
pieces -0.625 48.67 -0.498 9.10 -0.302 11.40
both -0.620 270.86 -0.455 130.81 -0.259 207.32

Table 5.2: Computations of lower bounds for the RCSP

best obj. value #duties #nodes time

without labels -0.26 146,758 10,000,000 119.52
duration -0.26 161,778 7,141,051 78.90
pieces -0.29 125,000 10,000,000 86.65
both -0.30 162,781 6,019,942 72,12

Table 5.3: Depth first search for ivu08 – split duties

5.7.4 Results of the Enumeration Algorithm

Tables 5.3 and 5.4 show the influence of the different lower bounds on Algo-
rithm Dutysearch. The used test instance is again ivu08. We abort the
search after 10,000,000 examined search tree nodes, i.e., 10,000,000 different
states of S, moreover after accepting 1,000 duties with the same first arc, the
next arc incident to s has to be examined. This ensures that our algorithm
is searching in different regions of the graph. Therefore in some cases fewer
than 10,000,000 nodes were examined.

best obj. value #duties #nodes time

without labels -0.23 57,933 10,000,000 103.53
duration -0.21 65,295 10,000,000 110.98
pieces -0.23 71,694 10,000,000 102.04
both -0.23 119,095 10,000,000 115.70

Table 5.4: Depth first search for ivu08 – continuous duties

5.8 Lower Bounds for the Duty Scheduling Problem 147

In Table 5.3 one can see for split duties, that including more resources
in the shortest path problems helps Dutysearch. With duty duration and
pieces of work treated exactly in the subproblem of the Lagrangean rela-
xation, Dutysearch found the most duties in shortest time with smallest
objective value. For continuous duties, see Table 5.4 the results are similar.
However, if we take the computation times for the lower bounds into account
(see Table 5.2), the best compromise between computation time and solution
quality seems to be to treat only the duty durations exactly.

5.8 Lower Bounds for the Duty Scheduling

Problem

Related to the pricing problem is the computation of lower bounds for DSP.
We can deduce a lower bound of the master LP, if we find a solution (λ, µ) ∈
R

I × R
B of the dual problem (D-DSPI) (see Section 3.3.3) of Lagrangean

multipliers λ and µ that implies that no column i with reduced cost ci −
λTAixi − µTR smaller than zero exists. This proof can be accomplished by
the Algorithm 7, Dutysearch, if we set its parameter ε to zero and select
the appropriate objective function. However, this is in in most cases too
time consuming since it is equivalent to enumerating all feasible duties of a
scenario.

Alternatively it is also possible to calculate a lower bound of the DSP
by the lower bounds of the pricing problem. I.e., we are able to compute a
lower bound of (DSP) if we have a good lower bound on the least reduced
cost of the columns. So we try to improve the lower bound of (RCSP), which
is a lower bound of the least reduced cost of the columns of (DSP), by a
cutting-plane approach. More details about this can be found in the diploma
thesis of Thomas Schlechte (Schlechte [2003]).

5.8.1 RCSP-lower-bound

In Schlechte [2003] an idea to calculate a lower bound of (DSP) is proposed
that uses the RCSP-relaxation of the pricing problem.

This idea to calculate a lower bound for (DSP) is to find a solution (λ, µ) ∈
R

I×RB of (D-DSPI) and a real number δ ≥ 0 such that λTA+µTR ≤ (1+δ)c.

148 The Generation of Duties

Consider model (δ-DSP):

(δ-DSP) min (1 + δ)(cTx+ γTz),

s. t.

Ax = 1,

Rx− z ≤ r,

z ∈ RB+, x ∈ [0, 1]D.

(δ-DSP) is a (DSP) with a slightly modified objective function. Its dual is

max λT
1+ µTr,

s. t.

λTA+ µTR ≤ (1 + δ)c,

µ ≥ −(1 + δ)γ,

λ ∈ RVDSP .

Proposition 5.10. If λTA+µTR ≤ (1+δ)c, then λT
1+µTr is a lower bound

for (δ-DSP) and (λT
1+ µTr)/(1 + δ) is a lower bound for (DSP).

Proof. Let (x∗, z∗) be an optimal solution of δ-DSP. This is automatically
also an optimal solution of DSP. By LP-duality it holds that λT

1 + µTr ≤
(1 + δ)(cTx∗ + γTz∗) and therefore also (λT

1 + µTr)/(1 + δ) ≤ cTx∗ + γTz∗

for every optimal solution (x∗, z∗) of (DSP).

If we now find a δ such that the minimum of (RCSP) with cost (1 + δ)ζ
becomes zero or larger, than the preconditions of Proposition 5.10 are fulfilled
and we know, that the actual lower bound for the restricted (DSP) is at most
(1 + δ) times larger than the minimum value of the master problem.

Computational experiments on our scenarios have shown that typical val-
ues for δ of 5-25% can be achieved. In all cases split duties needed the largest
δ. For details see Schlechte [2003].

5.8.2 LP lower bounds

The LP-lower bound of the previous section can be improved by including
more constraints on duties, i.e. by closing the gap between the model (RCSP)
and the model (PRICE) of section 5.3.3. To model non-linear conditions on
duties such as the break rules or restrictions on the non-preemptive driving

5.9 Conclusion 149

time, (section 5.2.4) we can add constraints of the type (PRICE)(vii), called
IP-inequalities.

Adding IP-inequalities and solving the problem with the MIP-Solver of
CPLEX 9.1 turned out to be very time consuming. Problem ivu06 with
6,225 nodes and 134,453 arcs took about an hour on the average to solve the
problem (RCSP) for a single duty type to optimality on a Intel Xeon CPU
with 2.40 GHz and 3GB RAM.

To compute a lower bound for (DSP) these problems have to be solved
repeatedly in a binary search for a minimal δ such that (δ-DSP) is provably
optimal. This process was aborted for ivu06 after 36 hours resulting in a
lower bound of 21.11% below the best found primal solution of (DSP). For
the slightly smaller instance ivu05 with 4,507 nodes and 73,257 arcs we were
able to compute in 30 hours and 31 minutes a lower bound of 8.21% below
the best primal solution. Calculating lower bound for larger instances with
this technique is at the moment too time consuming.

Our computational results have shown that break rules are important and
their relaxation (i.e. simply leaving them out of the LP) leads to large gaps
between the lower bound and the best found integral solution. Especially the
6-th-break-rule seems to be computational difficult.

5.9 Conclusion

We have introduced an exact model for the pricing problem of DSP and
presented an approach to solve it. We have improved the lower bound on the
least reduced cost of all columns of (DSP). We have also shown, how labels
can be utilized to accelerate a depth-first-search algorithm to find columns
with negative reduced cost. At last we have derived a lower bound for the
DSP from a lower bound of (PRICE).

Chapter 6

Rapid Branching

In this chapter we present our heuristic, which we call rapid branching. Rapid
branching can be seen as a special variant of a branch-and-bound algorithm
for ILPs with many columns.

We developed rapid branching to solve integer programs arising by duty
scheduling and integrated duty and vehicle scheduling problems. Namely we
want to solve problem (DSP) of Section 1.10.3. The integer programs that
model these problems have a huge number of variables. Therefore we are not
able to generate all of them at once (see Chapter 5) and we have to use a
column generation approach.

Remember (DSP) was defined as

(DSP) min cTx+ γTz

s. t.

(i) Ax = 1,

(ii) Rx −z ≤ r,

(iii) x ∈ {0, 1}n,
(iv) z ≥ 0.

A ∈ {0, 1}V̄DSP×D is a binary matrix, R ∈ RB×D is a coefficient matrix of so
called resource constraints. The duty-variables xd, d ∈ {0, 1}D are one if a
duty d is selected and zero otherwise. The variables z ∈ RB+ are called slack
variables of the base-constraints (ii).

The largest duty scheduling instance solved by our heuristic has about
8,000 rows and millions of columns of which about 1,000,000 are explicitly

151

152 Rapid Branching

generated throughout the algorithm. We think that rapid branching can also
be useful for other ILPs with many columns arising in column generation
approaches.

6.1 Overview

This chapter is organized as follows: First we explain a generic branch-and-
bound algorithm in Section 6.2. Then we explain how rapid branching im-
plements the generic steps of B&B. We present a new branching rule called
perturbation branching in Section 6.3, a node selection scheme in Section 6.4
that is mainly a depth-first-search, and calculations of lower and upper bound
in Sections 6.5 and 6.6. Section 6.7 compares rapid branching with other
MIP-heuristics from the literature. Finally, in Section 6.8 we present com-
putational results of our method applied to set partitioning problems with
additional constraints stemming from duty scheduling problems and to set
partitioning problems from the literature.

6.2 Branch-and-Bound

Branch-and-Bound, in the following denoted by B&B, is the basic method to
solve combinatorial optimization problems. Descriptions of it can be found,
e.g., in Papadimitriou & Steiglitz [1982] or [Schrijver 1998, chapter 24]. The
idea of B&B is to partition the finite and discrete solution space of a problem
into subsets (“branch”) and to prune subsets which can be excluded from
containing the optimum by its bounds (“bound”). This is done recursively
until an optimal solution is found.

We give a generic variant of B&B in Algorithm 10 that solves a combi-
natorial problem (P) of the type minx∈X c(x) if lower bounds for it can be
calculated. Afterwards we will explain our implementation of the generic
steps of B&B to solve (DSP).

The sets S0, S1, . . . of Algorithm 10 partition a subset of the solution set
X of (P), which includes by construction an optimal solution, into disjoint
solution sets denoted by Qi

j, j = 1, . . . , |Si|. At every iteration i of B&B we
select one element of Si denoted by N i (Step 3). Then we either delete it
(Step 7) or partition it into disjoint sets (Step 12). The sets Qi

j, i = 0, 1, . . . ,,
j = 1, . . . , ki, are often organized as the nodes of a search tree: The children
of every N i are the sets Qi

j, j = 1, . . . , ki. This search tree has a finite depth

6.2 Branch-and-Bound 153

Algorithm 10 Branch-and-Bound (B&B)

Input: A combinatorial problem (P) and a tolerance parameter ε.
Output: A solution xub ∈ X, its objective value cub and a lower bound clb

for (P), with clb ≥ cub − ε.
1: Let S0 ← {X}. Let i← 0.
2: if Si = ∅ then terminate.
3: Node selection: Select a set N i ∈ Si.
4: Lower bounding : Calculate a cilb ≤ min

x∈N i
c(x).

5: Upper bounding : If possible, calculate a solution xi
ub ∈ N i with objective

value ciub := c(xi
ub), otherwise set ciub ←∞.

6: if cilb ≥ min
1≤j≤i

cjub then

7: Pruning : Set Si+1 ← Si \N i, i← i+ 1, goto 2.
8: end if
9: if min{cjlb | Qi

j ∈ Si}+ ε ≥ min
1≤j≤i

cjub then

10: Set cub ← min
1≤j≤i

cjub, let xub be the corresponding solution, and let

clb ← min{cjlb | N j ∈ Si}. Terminate.
11: end if
12: Branching : Partition N i into non-empty disjoint sets Qi

j, 1 ≤ j ≤ ki

with ki ≥ 2 and set Si+1 ← (Si \ {N i}) ∪
⋃ki

j=1({Qi
j}), let i← i+ 1.

13: Goto 3.

because the solution space of (P) is finite and every child has fewer elements
than its parent.

A global lower bound of (P) is given at each iteration i by the smallest
lower bound of all subproblems defined by the elements of Si. A global upper
bound is simply the smallest known one.

B&B terminates because X has a finite number of elements and at every
iteration either an element of Si is removed or split into elements of smaller
cardinality.

Algorithm 10 contains the following generic steps that we will discuss in
more detail:

Node Selection. In Step 3 we have to select an element of Si. Common
strategies are depth first search, i.e., we select an N i that was generated in
the last iteration. With this strategy the cardinality of Si, i.e., the number
of active nodes of the search tree, keeps small and also the sets N i become

154 Rapid Branching

small with few iterations. Thus, this strategy can often produce in short time
feasible solutions of the problem.

Another common strategy is to select the node with the smallest lower
bound. The lower bounds of all branches of this node together tend to
improve the global lower bound. Therefore this strategy is useful to prove
optimality of a solution by closing the gap between the objective value of the
solution and the global lower bound.

Lower Bound Calculation. Good lower bounds are crucial for the perfor-
mance of B&B algorithms because they allow to prune branches of the search
tree (see Step 6 of Algorithm 10) and thus reduce the number of iterations. If
(P) is given as a MIP, lower bounds can be calculated by the LP-relaxation
of (P) or by Lagrangean relaxation. If it is computational expensive to cal-
culate lower bounds, the lower bound cilb can be set to the lower bound of its
parent node.

Upper Bound Calculation. Good (i.e. small) upper bounds help to prune
the search tree and therefore to accelerate the algorithm. A trivial method
to calculate an upper bound is to set ciub to ∞ (or to an M ∈ R that is
“large enough”), if |Qi| > 1, and to minx∈P (Qi) c

Tx, if the current subproblem
Qi contains only one element. Furthermore, any x0 ∈ Qi defines an upper
bound cTx0, but the problem to find a solution may already be difficult.

Branching The decision how to partition a set of solutions Qi into two
disjoint sets is called branching. The solution space of MIPs is partitioned
by adding constraints to the subproblems of the new nodes. If a constraint
is added that sets a single variable to a specific value, we say the variable is
fixed. If all variables are fixed and the problem is still feasible, a solution was
found.

There is an extensive literature about branching strategies in B&B for
MIPs. Recent surveys and newly developed branching rules can be found in
Achterberg et al. [2005] and Villeneuve et al. [2003].

6.3 Perturbation Branching Rule

We define at first a new branching rule suited for the MIP (DSP) as defined
in Section 1.10.3. This branching rule selects as one branch a set of duty-

6.3 Perturbation Branching Rule 155

variables B∗ and fixes them to one. The other branches are given by fixing
exactly one of the variables in B∗ to zero and a subset of the variables in B∗

to one.

6.3.1 Motivation

Our MIPs of type (DSP) are arising in column generation approaches. Thus,
they have in general much more columns than rows. The DSP is modeled
by MIPs with typical sizes of up to 4000 rows and hundreds of thousands
of explicitly given columns in the restricted problem and an unknown (but
magnitudes larger) number of columns in the so called master problem. This
huge number of columns raises problems for B&B-algorithms: The search
tree tends to become very large. Also the computations of lower and upper
bounds of the subproblems at each node of the search tree are expensive
because of the size of the LP-relaxations and the eventually needed generation
of additional columns. Therefore we have to develop a branching rule that
emphasize the necessity to keep the search tree small.

The idea of our branching rule is to find one branch, called the main
branch, that fixes as many variables as possibles to one to quickly find a
solution of (DSP). This is done by solving a series of LP-relaxations of DSP
with varying cost functions c̄i. We perturb the cost function from one iter-
ation to the next in such a way that the solution is likely to become more
integral: The cost of variables with large primal values are reduced to move
them towards an even higher value or to keep the value at one.

The other branches are unimportant unless the main branch turns out to
either not include a feasible solution or to include only feasible solutions with
too large costs.

6.3.2 Determining the Main Branch

In this section we show how we find the next main branch, that is, we show
how to calculate a set B∗ ⊂ D of variables that will be fixed to one.

Algorithm 11 shows the calculation of the set B∗ as pseudo-code. It gets
as input a problem of type (DSP). Fixings of duty-variables to one or zero
results again in subproblems of type (DSP) with a smaller solution space.
Therefore we state our branching rule simply for (DSP) without considering
already fixed variables.

156 Rapid Branching

Algorithm 11 get as input a global upper bound cub, it can also be set
to ∞. However, it should be set as small as possible to avoid unnecessary
computations. Further the algorithm needs the integrality tolerance ε, if a
variable d has a primal value not less than 1 − ε the algorithm treats it
as “nearly one”. The integrality weight w weights the importance of the
“integrality” of a solution in comparison to its objective value. The bonus
weight M and the spacer step interval ks is needed to determine when to
perform a spacer step, as explained below.

Step 1 of Algorithm 11 initializes the iteration counter i, the counter of
iterations without improvement k, the objective function c̄i, the best score
c∗ and the current candidate for B∗. Step 2 calculates at every iteration i
an optimal primal solution of the LP-relaxation of (DSP) with the objective
function c̄i. In practice, we only approximate this solution by the bundle
method of Chapter 4. Then, in Step 3, all x-variables which are nearly one
are collected as set B(xi). Step 4 decides if a spacer step should be done, it is
performed every ks iterations without improvement: A spacer step (Step 5)
consist of selecting a variable d ∈ D that is not already in the set B∗ and
that has maximal primal value xi

d. Then we reset the objective value to the
original one for all other variables that are not in B∗. For variable d and
the ones in B∗ we set the objective value to −M . If M is large enough a
spacer step is equivalent to fixing the variables that are nearly one plus one
additional one.

Step 7 calculates the score of B(xi). This score is given by the LP-value of
(xi, zi) minus a merit for the number of nearly integral duty-variables, which
is equivalent to the the cardinality of B(xi). If the score is better than the
current best score we save B(xi) as B∗. In Step 10 the objective function for
the next iteration is calculated. This step is explained in more depth in the
next section.

After kmax iterations without improvement of the best score value we
terminate the algorithm. If we did not find any suitable variable to be fixed
to one, that is B∗ = ∅, we select a duty-variable with the largest value and
put it into B∗ (Step 12–17).

6.3.3 Calculation of the Perturbed Objective Function

In all steps of Algorithm 11, which are not spacer steps, the objective function
for the next iteration is set to c̄i+1

d := c̄id − cdαx2
d, for d ∈ D. Here α > 0

is a coefficient that controls the rate of change of the cost function. The

6.3 Perturbation Branching Rule 157

Algorithm 11 Perturbation Branching Rule

Input: A problem (DSP), a global upper bound cub ∈ R on the optimal
value of (DSP), an integrality tolerance ε ∈ [0, 0.5), an integrality weight
w > 0, a perturbation factor α > 0, a bonus weightM > 0, an interval for
iterations with spacer steps ks ≥ 1, and a maximal number of iterations
without improvement kmax.

Output: A set of variables B∗ ⊂ I which can be fixed to one such that
the objective value of the induced subproblem is not larger then cub, if
possible, or otherwise an arbitrary column.

1: Set i← 0, k ← 1, c̄i ← c, B∗ ← ∅, and c∗ ← cub.
2: Solve the LP-relaxation of (DSP) with the current objective function c̄i:

Let (xi, zi) be its solution.
3: Let B(xi) = {j ∈ I | xi

j ≥ 1− ε}.
4: if (k mod ks) = 0 then

5: Select a variable j∗ ∈ arg max
j∈D\B∗

xi
j and set c̄ij ←

{
−M, j ∈ B∗ ∪ {j∗},
cj, else.

6: else
7: if cTxi + γTzi − w|B(xi)| < c∗ then
8: Set B∗ ← B(xi), k ← 1.
9: end if

10: Set c̄i+1
j ← c̄ij − αcj(xi

j)
2 for all j ∈ I.

11: end if
12: if k = kmax then
13: if B∗ = ∅ then
14: Select a variable j∗ ∈ arg max

j∈D
xj and set B∗ ← {j∗}.

15: end if
16: Terminate.
17: end if
18: Set i← i+ 1, k ← k + 1.
19: Goto step 2.

coefficient α can be seen as a kind of step-size of the series (c̄i)i=0,1,2,.... The
idea behind this perturbation is that variables d with higher value xd get a
higher merit than variables with smaller value. A quadratic perturbation has
empirically shown to be working best for our instances in comparison with
other perturbation functions, which are, e.g., linear or cubic in x.

Such a perturbation does not guarantee that any variable will get a value
above 1−ε, if ε < 1/2 because of the occurrence, e.g., of odd cycles in A (see,
e.g., Borndörfer [1998] or Padberg [2001]). In most cases the spacer steps

158 Rapid Branching

help to overcome this problem, however if they also do not help we simply
fall back to a “greedy” strategy in Step 14.

In the literature perturbations of objective functions of LP-relaxations of
MIPs to improve integrality can be found which can be seen as a merit func-
tion of integrality of variables. An example of such a perturbation embedded
in a simplex algorithm is, e.g., Nediak & Eckstein [2001]. There, variables
are penalized by their fractionality (i.e., distance to zero or one). For our
class of problem this kind of modification of the objective function seems not
to be applicable, since there are too many variables which potentially have
a value above zero in an optimal solution of the LP-relaxation: We observed
that penalizing a fractional variable only results in setting this variable to
zero and another variable taking its place of being fractional.

A successful heuristic which perturbs the objective function of large set-
partition-problems in a dual ascent method to find integral solutions is de-
scribed in Wedelin [1995]. However, our computational results of Section 4.7
show that the PBM is better than dual ascent methods in terms of finding
better lower bounds. In our experience these better lower bounds also help
in the overall performance of DS-OPT and IS-OPT.

6.3.4 Calculation of the Other Branches

In the previous section we have shown how we select a set B∗ ⊂ D of variables
that will be fixed to one. This restricts the solution space of DSP and thus
gives us one of the new solution spaces of Step 15 of Algorithm 10. We
denote this new set of integral solutions by Qi

0. The complement of Qi
0 is

the set of solutions where at least one of the variables in B∗ is zero. This
could be formulated by adding a constraint of the type

∑
i∈B∗ xi ≤ |B∗

i | − 1
to (DSP) but this destroys the structure of the pricing problem. So we
split the complement of Qi

0 into |B∗| sets. We sort the variables in B∗ as
d1, d2, . . . , d|B∗| by their reduced cost in the root LP. Consider the solution
sets

Qi
k := N i ∩ {x ∈ [0, 1]D | xd1 = 1, . . . , xdk−1

= 1 and xik = 0},

with 1 ≤ k ≤ |B∗|. They produce a search tree as shown in Figure 6.1.

The sorting of the variables by their reduced cost is inspired by the scoring
heuristic for set-covering-problems of Caprara et al. [1996]. If the reduced
cost of a column are larger than zero the fixings to one of these column
potentially leads to an increase of the objective value. Therefore we will

6.3 Perturbation Branching Rule 159

Qi
ki

Qi
3

Qi
2

Qi
1

N i

Qi
0

Figure 6.1: The new solution sets at iteration j

“unfix” at first the columns with the highest reduced cost because we hope
that these are the ones which caused the increase.

6.3.5 Comparison with Other Branching Rules

An alternative to branching on variables is presented in Ryan & Foster [1981]
for set partitioning problems. This rule can easily be transfered to problems
of type (DSP). In the rule of Ryan and Foster on one branch of the search
tree all variables are fixed to zero that have a non-zero entry in both of two
rows r and s of the coefficient matrix corresponding to matrix A of (DSP).
On the other branch all variables are fixed to zero which support exactly one
of these rows. This branching rule is a generalization of branching on arcs for
path covering and partitioning problems (see Section 1.3). For this kind of
problems every column of the matrix A of model (DSP) is a node-incidence
vector of a path in a graph. We now either exclude all paths from a solution
that use arc rs on one branch of the search tree or all paths that include
node r or s but not arc rs on the other branch. We call the first branching
decision fixing of arc rs to zero. The second is called fixing of arc rs to one,
this is equivalent to combining nodes r and s to a single node. In Villeneuve
et al. [2003] a generalization of the concept of branching on arcs is proposed
and also a list of articles about branch-and-price can be found.

We now want to motivate why our branching rule is useful for problems
of type (DSP) in comparison to other branching rules from the literature.

1. The fixing of a single variable to zero changes the problem very slightly,
i.e., generally does not change dual variables or the lower bound, but
makes the pricing problem harder because it has to be checked that the
column associated to the fixed variable will not be generated again.

160 Rapid Branching

2. The fixing of an arc to zero also changes the problem only slightly
depending on the total number of arcs. The number of arcs is in general
magnitudes smaller than the number of columns, but may still be huge:
our largest instances of (DSP) have up to 3,000,000 arcs. However, arc
fixing is usually easy to consider in the pricing problem because fixing
of an arc to zero translates to removing it from the underlying graph
of the pricing problem.

3. Fixing of an arc to one is equivalent to fixing a set of arcs to zero. In
practice we have to make too many branching decisions if we branch
on arcs to achieve reasonable running times.

4. Fixing of a variable to one is equivalent to fixing all arcs of the corres-
ponding columns to one, so it is easy to be considered in the pricing
problem. This operation has the largest impact of all branching vari-
ants mentioned here to (DSP).

5. Finally, our branching rule fixes a set of variables at once to one. This
can be problematic if it often leads to an increase of the objective value
or to infeasible problems. In our case this is the fastest branching rule
which leads to high quality solutions.

6.4 Node Selection

We examine the search tree in a depth-first-search manner. In this process
we leave out some nodes to be able to consider more different branches of
the search tree in the available computation time. We will now explain how
we traverse the search tree by describing the node selection of our B&B-
algorithm.

In the first iteration of Algorithm 10 the set Si only has one element.
This implies the largest change in the problem. In the following iterations
in Step 3 at first the set Qi−1

0 of the previous iteration is selected if it is
available. Otherwise we select the node Qj

dkj/2e with smallest j < i that is
available.

If we fix at every iteration only one column, kj = 2 holds for all j =
0, 1, Then our node-selection-scheme would be a complete depth-first-
search. With our branching rule, however, we get in general more than two
branches of which only two will be examined. Therefore our method is an
heuristical one.

6.5 Lower Bounding 161

6.5 Lower Bounding

Rapid branching is designed to work with approximate LP-solutions as pro-
duced by the bundle method in order to reduce the computation times.

The LPs, which we use to calculate lower bounds at Step 4 of Algo-
rithm 10, are generated by the heuristic column generation approach de-
scribed in Chapter 5. Our pricing problem solver may possibly not find all
columns that would be in an optimal LP-solution. Therefore the objective
value cilb of the restricted problem only approximates the lower bound. We
use in rapid branching c0lb as the global lower bound because we virtually
never calculate the lower bounds of all branches of a nodes. If we find a
cilb that is smaller than c0lb – this is possible because of the heuristic column
generation – we use this value as global lower bound.

In the column generation process no fixed columns must be generated. If
a column is fixed to one, all related nodes can be removed from the planning
network. If a column is fixed to zero, we simply remove the column if it
is generated again. This is possible for our instances because fixed to zero
columns seldom have reduced cost that are significantly below zero.

Since the bundle method approximates a primal solution by convex com-
binations of solutions of a relaxed problem, this approximation tends to be
more fractional then solutions of a simplex algorithm which always return a
vertex of the polytope of the LP-relaxation of (DSP). Note, however, that the
perturbation of the objective function in our branching rule mitigates this
phenomenon.

6.6 Upper Bounding

The matrix A of (DSP) contains in our case by construction a unit-matrix.
The columns of the unit matrix are called slacks. They have comparable
large cost coefficients cd, such that they are not in optimal solutions if there
exists one which do not has to use slacks.

We calculate the upper bounds of Step 4 by completing the fixed variables
to a solution by fixing the slacks to one which correspond to constraints (i)
of (DSP) that are not already covered by fixed variables. Then we set the
slack variables zb to max{0, Rbx− rb}. This defines a solution of (DSP) that
gives us the upper bound.

162 Rapid Branching

6.7 MIP-heuristics in the Literature

In this section we present an overview about methods to solve large scale
mixed integer programs similar to (DSP). These are {0, 1}-MIPs, that is
MIPs whose integral variables are all binary.

A survey article that covers the developments of MIP-algorithms until
2000 is Johnson et al. [2000].

6.7.1 Simplex Based Heuristics

An alternative to B&B are simplex methods, that try to construct sequences
of pivots with all integer bases, see Nediak & Eckstein [2001] and Thompson
[2002]. They add a concave merit function to the objective function, which
penalizes fractional values of variables and is zero for the values 0 and 1. An
example of such a function is ψ(x) =

∑
i∈I xi(1 − xi) where I is the set of

integral variables. They show how one can find columns to pivot into the
basis that reduce the merit function or the sum of the merit function and
the objective value in a simplex like algorithm. However, there are in general
local minima of the merit function as well as of the merit function combined
with the original function that are not integral.

Approaches with merit functions as proposed in Nediak & Eckstein [2001]
were not successful in our problem instances. The penalization of fractional
variables leads in our experience to many iterations without improving the
integrality of the solution, because our problems are heavily degenerated.
In fact most of the columns have very small or zero reduced cost. Thus,
there are many potential variables which can get a value above zero without
becoming integral.

6.7.2 OCTANE

The method OCTANE, see Balas et al. [2001], is another approach to get from
a (fractional) solution x∗ of the LP-relaxation to a solution of a binary ILP.
It searches intersections of a half line beginning at x∗ with a cross polytope
containing x∗. The direction of the half line is selected heuristically. The first
k intersections are used to yield k {0, 1}-points as potential solutions of the
ILP. OCTANE was tested on problems with up to about 9000 variables. For
the tested problems it is shown to be able to produce in short time feasible
integral solutions with a small gap to the optimum.

6.7 MIP-heuristics in the Literature 163

This method seems to be impractical for ILPs with as many variables as
on our test instances.

6.7.3 Set Covering and Set Partitioning Heuristics

For some special problems such as set covering, which is in some aspects
similar to the DSP, polynomial approximation schemes exist.

A simple method for an O(log(k))-approximation algorithm for set cover-
ing is given by Chvátal [1979], where k is the maximum number of non-zero
entries in a column. It calculates a score for each column as the quotient
of its cost and the number of non-zero entries of uncovered rows. Then it
selects the column with the least score and adds it to the solution. This is
iterated until all rows are covered.

Similar scoring ideas have been implemented in many set partitioning
and set covering heuristics, among them Balas & Ho [1980]; Beasley [1987];
Caprara et al. [1996]; Ceria et al. [1998]; Fisher & Kedia [1990]. These heuris-
tics influenced rapid branching because you can see our branching rule as a
scoring of sets of columns. However, scoring-heuristics without the possibil-
ity of selecting another branch of the search tree lead in our test-instances to
large gaps between the lower bounds and the found solutions.

An exact algorithm for (static) set partitioning problems which relies on
B&B and preprocessing of the LPs is described in Borndörfer [1998].

6.7.4 Branch-and-Bound Based Heuristics

Many heuristics were developed which can be seen as variants of B&B. We
classify them in Table 6.1. Some of them use only special strategies for the
generic steps of B&B, such as Diving, Plunging, or Rounding.

Branch-and-Generate

The branch-and-generate heuristic (Bang) of Roy Marsten is a heuristic based
on fixing of variables. It sidesteps the problem of fixing variables to zero by
avoiding it. We have heard in a conference talk about this heuristic, but
unfortunately no citable reference is known to us. In Bang columns are fixed
to one by a scoring heuristic and after each fixation a lower bound of the new
problem is calculated. If the lower bound increases above a certain threshold,

164 Rapid Branching

Diving – Branch-And-Bound with depth-first node se-
lection and without upper bound. Aborts at
first leaf or if subproblem is infeasible.

Plunging – Diving with Strong Branching.

Branch-And-Generate – Diving with column generation at certain
nodes.

Rounding – Diving with a branching rule based on a pri-
mal LP-solution.

Branch-And-Price – Branch-And-Bound with column generation,
and suitable branching rules, see Johnson
[1989] or Barnhart et al. [1998].

Branch-And-Cut – Improve lower bounds by adding cuts.

Table 6.1: Various Branch-and-Bound based methods

new columns are generated. This is repeated until a solution is found. No
column will be fixed to zero.

Bang can be seen as a B&B based heuristic with column generation which
uses a depth first search node selection, stopping at the first leaf. Bang
branches only by fixing variables to one. The variables are selected by a
scoring heuristic. Additionally, the lower bound calculation may be heuristic
by subgradient methods and by solving of the pricing problem heuristically.
For static MIPs without column generation these kind of heuristics are known
as diving heuristics.

Similar heuristics are used by Carresi et al. [1995] and Caprara et al. [1996]
to solve set covering problems. They use the information of the Lagrangian
multipliers to calculate a score per column and then fix the columns in a
greedy fashion. Additionally, not all of the columns of an explicitly given
set covering problem are used to calculate the new multipliers, but an subset
called active set. This is very similar to column generation interpreting the
active set as the restricted problem.

The main drawback of these methods is that wrong decisions, i.e., fixings
of columns that lead to a high increase of the objective value of the master
problem, are irreversible. It leads to good results, if the problem is either
a covering problem with a “nice” cost function, e.g., uniform cost for all
columns, or many columns with small support and not too high cost. In
the DSP this is not the case, because tripper duties, i.e. duties which violate
some minimum constraints, have much larger cost then conventional duties.

6.7 MIP-heuristics in the Literature 165

Branch-and-Price

Our method can be seen as an heuristical relative of the Branch-and-Price
approach described in Barnhart et al. [1998]. Our contributions are a new
branching rule, a new node selection scheme, and the use of the proximal
bundle method in the branching rule and for the calculation of the lower
bounds.

Branch-And-Cut

A branch-and-cut algorithm is a B&B for MIPs that calculates lower bounds
by LP-relaxations and improves the integrality of solutions and the quality of
the lower bounds by adding cutting planes to the LP-relaxations. A survey
can be found in Martin [2001]. The integration of branch-and-cut and column
generation, which would be necessary to solve the DSP by branch-and-cut,
is very complex. This integration is known as branch-and-cut-and-price (see,
e.g., Ralphs et al. [2003]). It could be a topic of further research to include
cutting planes in our approach.

6.7.5 Rounding Heuristics

Rounding heuristics are a method to calculate upper bounds of MIPs. They
are often mentioned in the literature as an upper bounding tool in branch-
and-bound algorithms for set covering, cutting stock and facility location
problems. They are, e.g., mentioned in Linderoth & Ralphs [2004]. Also
generic rounding heuristics are part of many LP-based branch-and-bound
algorithms such as CPLEX.

Rounding heuristics calculate an LP-solution and round some fractional
variables of its solution deterministicly or randomly to nearby integral values.
This will be iterated until either the problem is infeasible or a solution is
found. Sometimes the feasibility of a problem can be maintained by adding
slack variables or is inherent as in set covering problems. For set covering
problems it can even be shown that fixing variables in decreasing order of
their LP-relaxation values yields a p-approximation algorithm (Hochbaum
[1997]), where p is the maximum number of columns which cover a row.

166 Rapid Branching

6.8 Computational Results

This sections attempts to do a computational evaluation of rapid branching.
For this benchmark, we export all duties generated throughout a run of DS-
OPT into an mps-file which can be read by CPLEX1. Then we solve these
static problems with the MIP-solver of CPLEX 10.0 and with rapid branching
without column generation as described in this chapter. The results of such
a test allow to make a statement on how well rapid branching does on the
set of columns that the heuristic considers explicitly.

The results that we present here all all for problems of type (DSP), that
is set-partitioning-problems with additional base constraints. We also imple-
mented rapid branching for VSP as well as for ISP, but we are not able to
compare it with standard methods, because the VSP, which is also a sub-
problem of the ISP, is solved by a special heuristic based on network flows
including column generation. At the moment we are not able to export data
from VS-OPT which is readable by other solvers.

6.8.1 Testbed

Our testbed consists of instances of (DSP) arising in duty scheduling for
public transit and of some instances from the OR-Library of Beasley [1990].
We have generated the DSP-instances by running the algorithm DS-OPT and
writing all columns generated throughout the execution of this algorithm into
an mps-file. We have selected a set of instances of different size and difficulty,
some with and some without base constraints. The names of these instances
have the prefix ivu. The three set-partitioning instances of the OR-Library
of Beasley [1990] have the original names, namely aa01, aa04, and us01.
These three instances were considered as hard in van Krieken et al. [2004]
and are the largest in the OR-library. They are all solvable to optimality
in short time, see Borndörfer [1998]. The characteristics of all instances are
shown in Table 6.2. The column“problem”contains the name of the scenario,
“columns” is the number of columns of the coefficient matrices A and B,
“SPP-rows” is the number of rows of matrix A, “bc” is the number of base
constraints (equal to the number of rows of matrix B), “non-zeroes” contains
the number of non-zero entries of matrix A. The last column “nz/col” gives
the density of matrix A defined by the quotient of the the number of non-zero
entries and the number of columns of A.

1Mps-files of similar scenarios can be found in the contributed section of MIPLIB
2003(Achterberg et al. [2006]).

6.8 Computational Results 167

problem columns SPP-rows bc non-zeroes nz/col

ivu01 2,549 81 – 13,404 5.26
ivu02 25,412 185 – 191,819 7.55
ivu04 37,764 346 – 291,222 7.71
ivu05 159,438 847 – 1,450,704 9.10
ivu06 980,578 1,177 – 10,565,680 10.77
ivu41 209,581 3,569 – 1,520,393 7.25
ivu52 117,466 2,110 6 1,619,649 13.79
ivu53 560,233 2,421 6 12,840,061 22.92
ivu60 1,148,050 1,979 2 21,384,769 18.63

aa01 8,904 823 – 72,965 8.19
aa04 7,195 426 – 52,121 7.24
us01 1,053,137 145 – 13,636,541 12.95

Table 6.2: Characteristics of the Testbed

The results of the algorithms are shown in Table 6.3. The times are all
in seconds, if not mentioned otherwise. The column LP-bound shows the
result of the barrier algorithm of CPLEX 10.0. This is a lower bound for the
best integral solution of the problem. In column DS-OPT the result of our
duty scheduling algorithm using rapid branching is shown. In column“static”
the result of the rapid branching heuristic on the static problem consisting
of all columns generated in DS-OPT is shown. In the column CPLEX the
result of the MIP-solver of CPLEX 10.0 on the same problem is shown. We
use the barrier method as start- and subproblem LP-solver, because this is
the fastest method in CPLEX to solve our type of LPs. We have set the
integrality tolerance to 1% since this is also the termination criterion of DS-
OPT.

We state in Table 6.3 for the algorithm “static” the running times until
the solutions of this table were found. For the other algorithms the total
running time is given.

6.8.2 Observations

For large problems (ivu06, ivu53, ivu60) CPLEX has problems to find good
solutions in reasonable time or is significantly slower than DS-OPT using
rapid branching. The MIP solver of CPLEX gave for ivu06 a solution with
an integrality gap of > 60% after four days of computation. For ivu60 we got

168 Rapid Branching

problem LP-bound DS-OPT static CPLEX
obj. time obj. time obj. time

ivu01 14.22 14.34 6 14.34 <1 14.32 <1
ivu02 29.87 30.29 116 30.39 13 30.06 26
ivu04 44.79 45.17 179 45.21 22 45.20 924
ivu05 96.10 96.66 448 96.18 62 96.11 276
ivu06 136.00 137.81 5,263 147.55 740 – > 4d
ivu41 447.71 448.82 3,149 450.35 380 451.13 1,101
ivu52 490.46 494.65 2,072 496.15 300 495.83 8,000
ivu53 261.33 263.90 9,098 (265.31) 609 263.57 13,238.34
ivu60 159.99 162.34 29,982 (172.22) 1353 – > 4d

aa01 55,535.43 – – 57,832 56 56,364 128
aa04 25,877.61 – – 27,202 42 26,433 34
us01 9,962.64 – – 10,098 176 10,090 335

Table 6.3: Results of integral heuristics, all times in seconds

only a segmentation fault with CPLEX, we assume that this was an issue
with the memory management because on a computer with 64GB RAM
CPLEX began the optimization, however, this computer is too slow and
not comparable with the PC used for the remainder of our computations.
Problem ivu53 seems to have a nicer structure than ivu06. CPLEX was
able to find a near optimal result in about 3h 40m. This is slower than the
time of DS-OPT, with about 2h 30min, although DS-OPT also generates the
columns of (DSP), what takes most of the computation time. This can be
seen in the computation time of the static rapid branching, which only needs
about 10min. The solutions found by DS-OPT have gaps from 0.1–1.44%
between the LP-bounds of the restricted problems and the best solutions..

The static variant is not able to reproduce the quality of the solution
of the dynamic column generation approach of DS-OPT. The cause of this
phenomenon is that DS-OPT is able to generate new columns that are missing
after the fixing of some variables, whereas in the static variant only the
columns that were previously generated for a certain search tree are available.
Thus, if the static variant makes a wrong decision, i.e.leaves the search tree
of DS-OPT, it seems that the static approach is not to able to find out what
went wrong and then to select the right node of the search tree.

For the medium problems ivu41 and ivu52 CPLEX has significantly longer
running times than static rapid branching. However, we have to admit that

6.8 Computational Results 169

static rapid branching is not able to improve this solution further after finding
the solutions shown here. Here, it becomes apparent that our algorithms
lacks sophisticated preprocessing and cutting planes which are needed to
find optimal solutions of problems with a restricted number of columns in
reasonable time. On the other hand, rapid branching with column generation,
consistently finds good solutions in short time.

The problems ivu04 and ivu05, which are solvable by CPLEX in reason-
able time, static rapid branching is also significantly faster than CPLEX in
finding solutions with small integrality gap. DS-OPT’s solution quality is
comparable to static branching, but its running time is longer because of the
column generation. These problems seemingly include enough columns such
that also static rapid branching works well.

For small problems such as ivu01, ivu02 CPLEX is faster or more ac-
curate (or both) than static rapid branching. The longer running times of
DS-OPT come from the time consuming column generation. However, the
absolute differences of the running times and the solution qualities between
the algorithms are small.

The instances aa01 and aa04 have relatively few columns, so it is not sur-
prising that our algorithm, which is tuned for problems with many columns,
had problems to improve the solutions that it found in short time. Further is
the gap of the objective value of the solution of us01 found by rapid branch-
ing to the optimal solution found by CPLEX below 0.1%. However, rapid
branching was not able to abort properly because it is not able to find a lower
bound which is within the optimality tolerance.

6.8.3 Conclusion

We have seen that we are not able to solve large problems with a standard
MIP-solver, such as CPLEX. For this problems also a static variant of rapid
branching without dynamic column generation fails. Only rapid branching
combined with a dynamic column generation approach produces good solu-
tions.

Also for medium sized instances the column generation algorithm DS-OPT
produces the best results, but here also the static variant of rapid branching
is able to produce solutions of the desired quality faster than CPLEX. For
small problems or problems as in the OR library, where a significant gap
between the LP-lower bound and the optimal solution exists, CPLEX gives
the best results.

170 Rapid Branching

Rapid branching is applicable in a column generation framework, espe-
cially for problems with a large set of columns, where the fixing of one column
probably has not so dire consequences as in integer programs with only few
columns. This is also the reason why the static version of rapid branching
produces worse solutions than DS-OPT for large instances. In the static case
the algorithm comes to a point where many columns are fixed to one and the
remaining free rows cannot be covered without increase of the lower bound.
Here the dynamic algorithm is able to generate the missing columns.

Chapter 7

Computational Results

This chapter reports on the results of computational studies with our inte-
grated vehicle and duty scheduling optimizer IS-OPT for several medium-
and large-scale real-world scenarios as well as for benchmark scenarios from
the literature.

Our code IS-OPT is implemented in C and has been compiled using gcc

version 3.3.3 with switches -O4. All computations were made single-threaded
on a Dell Precision 650 PC with 4 GB of main memory and a dual core Intel
Xeon 3.0 GHz CPU running SuSE Linux 9.0. The computation times in the
following tables are in hours:minutes.

7.1 Running Time

Figure 7.1 shows a typical runtime chart of our algorithm IS-OPT. This one
is from the subcontractor scenario of Section 7.6. The x-axis measures time
in seconds, the y-axis gives statistics in two different scales, namely, on the
right side, the number of duties generated (#columns). The scale on the
left side is for the objective value of the current approximation of ISP, that
is of function f of Section 4.6.4, which gives lower bounds on the objective
value of the integrated scheduling problem restricted to the current column
set. This scale shows also the number of deadheads fixed to one divided by 5
(#fixed deadheads) and the Euclidean norm of g̃i, cf. equation (4.56), which
can be seen as a measure for the quality of the LP-relaxation of (ISP).

In the first phase of the algorithm up to point A in Figure 7.1 a starting
set of columns is generated with all zero Lagrangean multipliers. In principle

171

172 Computational Results

#columns

objective value ‖g̃i‖
no. of columns fixed deadheads/5

700

600

500

400

300

200

100

0
0 A B 50000 100000 C

0

100000

200000

300000

400000

500000

600000

700000

800000

900000
obj.val.

Figure 7.1: IS-OPT Runtime Chart.

the DSP objective value should be strictly decreasing, while the number of
columns should grow. However, this is not the case for two reasons: in the
initial phase only rough lower bounds for the restricted DSP, which are not
completely accurate, are calculated. Second, columns with large reduced
cost are deleted if the total number of columns exceeded 900,000 to prevent
memory shortages.

Between points A and B, a series of iterations of the inexact PBM of Sec-
tion 4.6 is performed, which decreases the norm of the aggregated subgradient
g̃i and increases the ISP-value. That means, in this phase we compute an
approximation of a primal solution and an approximated lower bound of the
LP-relaxation of ISP.

Between points B and C, column generation phases alternate with PBM-
steps. If no columns are found which improve the ISP-value IS-OPT uses the
primal information collected by the PBM to fix or unfix deadheads until the
vehicle scheduling part of the problem is completely decided. This is done
by the rapid branching heuristic of Chapter 6. Only the branching rule is
simplified: We do not perturb the objective value to find variables to fix but
simply fix at each node of the search tree a set of variables with the largest
primal values.

Between C and the end of the diagram the duty scheduling component of

7.2 Computation Times per Phase 173

the algorithm is concluded by computing a compatible duty schedule again
by the rapid branching heuristic.

The peaks of the norm statistic mark serious steps of the PBM. The peaks
are caused by the shift of the stability center in combination with the possible
inclusion of additional columns in the column set I i. In fact, the new stability
center may lie in a region where the model f̂ i of the combined ISP-function
(see Section 4.6.4) of the previous PBM-iteration i is less accurate; therefore,
new columns in I i change the function f i, what worsens the model.

Figure 7.1 shows that only once the number of fixed deadheads decreases.
In fact, in our computational tests the algorithm rarely ever had to reverse
a fixing decision for a deadhead. In all our instances, the ISP objective value
is very stable with respect to “careful” fixings of deadheads. Also, the gap
between our estimated lower bound, i.e., the objective value prior to the first
fixing, and the final objective value was never larger than 5% and only 1-
2% on the average. We do, however, not know the size of the gap between
the estimated lower bound and the real minimum of (ISP); the mentioned
behavior is therefore only an indicator for the quality of the final solution
found by IS-OPT.

7.2 Computation Times per Phase

The total running time of IS-OPT on our instances is, on average, distributed
as follows:

• 50–70% for column generation in the duty scheduling subproblem,

• 10–30% for solving the LPs in the duty scheduling subproblem,

• 2–5% for solving the vehicle scheduling subproblems,

• 0.1–1% for solving quadratic problems in the PBM to calculate lower
bounds on (ISP), for preprocessing, bookkeeping, etc.

One can see that most of the computation time, i.e., 50–70%, is needed
to generate duties. This has many reasons:

• We have to perform a large number of column generation iterations (up
to 300 for large problems).

174 Computational Results

• We have to generate duties for each combination of duty type and
depot separately. It is not uncommon to have 30 different relevant
combinations, which translate into 30 pricing problems per iteration.

• In some scenarios lots of possible relief points produce very small tasks.
In combination with long duty durations (up to 14 hours), this leads to
duties that consist of up to 50 tasks. It can be observed that the the
running time to solve the pricing problem depends on the maximum
number of tasks per duty.

Simplifying duty construction rules and reducing the number of relief points
can alleviate these problems but leads in general to schedules with worse
objective value.

7.3 Algorithms

We compare our integrated scheduling method IS-OPT with two sequential
approaches. The first one, denoted by v+d , is a classical sequential vehicles-
first duties-second approach, i.e., v+d first solves the vehicle scheduling part
of the problem using our optimizer VS-OPT (Löbel [1997b]), then fixes the
deadheads chosen by the vehicle schedule, and finally solves the resulting
duty scheduling problem in a second step using the duty scheduling algo-
rithm implemented in IS-OPT. The second method d+v uses the combined
approach of Section 2.2.2. A simplified integrated scheduling problem is
set up that identifies drivers and vehicles, i.e., vehicle changes outside of
the depot are forbidden. The combined vehicle and duty scheduling prob-
lem is solved using the duty scheduling algorithm in IS-OPT. The resulting
driver-vehicle-rotations are concatenated into daily blocks using the vehicle
scheduling algorithm of IS-OPT in a second step.

7.4 RVB Instances

The Regensburger Verkehrsbetriebe GmbH (RVB) is a medium sized public
transportation company in Germany. We consider two instances that contain
the entire RVB operation for a Sunday and for a workday. The structure of
the RVB data is mostly urban. Each scenario has only four relief points. In
fact, the network of the RVB is star-shaped with nearly all lines meeting in
a small area around the main railway station. Only there or at the nearby

7.4 RVB Instances 175

Sunday workday

vehicle types 1 3
timetabled trips 794 1,414
tasks on tt 1,248 3,666
deadhead trips 47,523 57,646
duty types 3 4
break rules 4 4

Table 7.1: Statistics on the RVB Instances.

single garage the drivers can change buses and begin or end duties. The RVB
uses only one type of vehicles on Sundays, and three types on workdays, i.e.,
the Sunday scenario is fleet homogenous, while the workday scenario is a
multi-depot problem. The vehicle types can only be used on trips on certain
sets of (non-disjoint) lines. The Sunday scenario involves three different types
of early, mid, and late duties, each with four different types of break rules,
namely, block breaks of 1× 30, 2× 20, and 3× 15 minutes plus 1/6-quotient
breaks. The workday scenario contains in addition a type of split duties,
again with the mentioned break rules per part of work. Table 7.1 reports
further statistics on the number of timetabled trips, tasks, and deadhead
trips. The Sunday scenario is medium-sized, while the workday scenario is,
one of the largest and most complex instance that has been attacked with
integrated scheduling techniques.

Table 7.2 gives computational results for the Sunday scenario. The col-
umn ‘reference’ lists statistics for the solution that RVB planners had gen-
erated by hand. The next four columns give the results of two sequential
v+d -optimizations and two integrated IS-OPT-optimizations; we do not re-
port results for the method d+v , because we could not produce a feasible
solution for this scenario with this method. In the optimization runs “v+d
2” and “IS-OPT 2”, emphasis was placed on the minimization of the number
of duties, while runs “v+d 1” and “IS-OPT 1” tried to reproduce the average
duty time of the reference solution.

As expected the sequential methods reduce the number of vehicles and the
time on vehicle rotations since these are the primary optimization objectives.
They also produce quite reasonable results in terms of duty scheduling. “v+d
1” suffers from a slight increase in duties and paid time. Method “v+d 2”
even yields substantial savings in duties; the price for this reduction, how-
ever, is an increase in average paid time. Even better are the results of the

176 Computational Results

reference v+d 1 v+d 2 IS-OPT 1 IS-OPT 2

time on vehicles 518:33 472:12 472:12 501:42 512:55
paid time 545:25 562:58 565:28 518:03 531:31
paid break time 112:36 131:40 85:41 74:17 64:27
number of duties 82 83 74(1) 76 66
number of vehicles 36 32 32 32 35
average duty duration 6:39 6:48 7:38 6:40 8:03
computation time — 0:33 5:13 35:44 37:26

Table 7.2: Results for the RVB Sunday Scenario.

integrated optimizations. “IS-OPT 1” is perfect with respect to any statistic
and produces large savings. These stem from the use of short duties involving
less than 4:30 hours of driving time, which don’t need a break; this potential
improvement of the Sunday schedule is one of the most significant results
of this optimization project for the RVB. Even more interesting is solution
“IS-OPT 2”. This solution trades three vehicles and an increased average for
another 10 duties; as longer duties must have breaks, the paid time (breaks
are paid here) increases as well. Solution “IS-OPT 2” revived a discussion at
the RVB whether drivers prefer to have fewer, but longer duties on weekends
or whether they want to stay with more, but short duties.

Table 7.3 lists the results of the workday optimizations. Method d+v
could again not produce a feasible solution and is therefore omitted from
the table. The objective in this scenario is far from obvious; it is given
as a complicated mix of fixed and variable vehicle costs, fixed costs and
paid time for duties, and various penalties for several pieces of work, split
duties, etc., that can compensate each other such that one cannot really
compare the solutions by means of a single statistic. Doing it nevertheless, we
see that both optimization approaches clearly improve the reference solution
substantially. The outcome is close. In fact, v+d has less paid time than
IS-OPT; in the end, however, IS-OPT is better in terms of the composite
objective function.

7.5 RKH Instances

The Regionalverkehrsbetrieb Kurhessen (RKH) is a regional carrier in the
middle of Germany. They provided data for the subnetworks of Marburg

7.5 RKH Instances 177

reference v+d IS-OPT

time on vehicles 1037:18 960:29 1004:27
paid time 1103:48 1032:20 1040:11
granted break time 211:53 109:11 105:23
number of duties 140 137 137
number of vehicles 91 80 82
number of pieces of work 217 290 217
number of split duties 29 39 36
average duty duration 7:56 8:03 7:55
obj. value — 302.32 291.16
computation time — 8:02 125:55

Table 7.3: Results for he RVB Workday Scenario.

and Fulda which is close to production data; some deadheads are missing,
while for some others travel times have only been estimated by means of
distance calculations. In our opinion the data still captures to a large degree
the structure of a regional carrier and we therefore deem it worthwhile to
report the results of the conceptual study that we did with it.

Figure 7.2 shows the spatial structure of the line network of Fulda, which
is one part of the RKH service area. The black arcs denote the timetabled
trips (drawn straight from the line’s start to the end), the gray arcs indicate
the potential deadhead trips. It can be seen that the trip network is hub-
and-spoke-like, connecting several cities and villages among themselves and
with the rural regions around them. While the deadhead network is almost
complete, there are only few relief opportunities for drivers to leave or enter
a vehicle.

Table 7.4 gives further statistics on the RKH instances. They are similar
to the RVB Sunday scenario in terms of timetabled trips and tasks, but
contain much more deadhead trips. The scenarios involve three duty types,
two types of split duties that differ in the maximum duty length and one
type of continuous duties. Each duty type can have 1× 30, 2× 20, or 3× 15
minutes block breaks or 1/6-quotient breaks.

Table 7.5 reports the results of our optimizations. We do not report re-
sults for the method v+d as we were not able to produce a feasible solution
for either scenario with this method. Method d+v yields useful results, but
it is not able to cover all tasks/trips of the Fulda-scenario with duties and ve-
hicles; in fact, d+v left 3 tasks and 6 timetabled trips uncovered (numbers in

178 Computational Results

Marburg Fulda

depots 3 1
vehicle types 5 1
timetabled trips 634 413
tasks on TT 1022 705
deadhead trips 142,668 67,287

Table 7.4: RKH Instances for the Cities of Marburg and Fulda

Marburg Fulda
d+v IS-OPT d+v IS-OPT

time on vehicles 772:02 642:41 365:41 387:37
paid time 620:27 606:30 390:08 374:53
granted break time 120:51 103:27 88:13 57:44
number of duties 73 70 41(3) 41
number of vehicles 62 50 45(6) 37
average duty duration 10:35 10:18 10:59 11:18
computation time 5:29 17:18 1:42 7:05

Table 7.5: Solutions on Marburg and Fulda

parentheses). These deficiencies are resolved in the IS-OPT-solutions, which
also look better in terms of numbers of vehicles.

7.6 Subcontractor Planning for an Regional

Carrier

This section describes the preliminary results of an optimization project with
a regional public transit carrier. The public transit company, in the following
called contractor, does not operate all of the traffic by its own vehicles and
drivers but also concludes contracts to subcontractors. The contractor has
five depots where vehicle rotations and duties begin and end. The vehicles
of the subcontractors are stationed at another two depots. The available
personnel and vehicles of the contractor should be used to cover as much of
the trips as possible. Here not only the total numbers, but also ranges for
the quantities of drivers and buses for each depot are given. The average

7.6 Subcontractor Planning for an Regional Carrier 179

Mo-Fr

depots 7
vehicle types 2
timetabled trips 3,698
tasks on tt 6,583 (3,966)
deadhead trips 121,217
duty types 6 + 1

Table 7.6: Statistics on the instance with subcontractors.

paid time per driver should not exceed 7h 40min.

The trips that are not covered by the contractor are given to two sub-
contractors, which are paid roughly proportional to the driving time in their
rotations. The subcontractors schedule their drivers by themselves, because
they may have additional tasks from other clients which are not known by
the contractor. Thus, the main objective of this scenario is to minimize the
driving time of trips that are operated by the subcontractors.

The data used in this section is not completely correct, because some
rules are not correctly represented and some deadheads and walks may have
wrong attributes or are completely lacking. However, the provisional results
were convincing enough that IS-OPT has now been licensed by the respective
company and is used to plan the duty and vehicle schedules.

Table 7.6 shows the characteristics of the scenario. The row “tasks on tt”
shows the number of tasks on timetabled trips, these are the tasks which have
to be considered in the duty-scheduling subproblem. The number in braces
is the number of tasks driven by the contractor. This is also the number
of tasks for which IS-OPT finally has to find a duty schedule. The six duty
types stem from two sets of short, continuous, and split duties, depending
on the starting depot. Additionally we have one “free” duty type without
restrictions besides the compatibility of their tasks. This duty type can only
be used by the subcontractors and models that we do not schedule their
duties. Therefore the rotations of the contractors can also be seen as “free”
duties. These free duties are not shown in the following statistics.

The correct distribution of the drivers to the depots is guaranteed by 25
base-constraints of type (ISP)(ii), the distribution of the vehicles is given by
4 capacity-constraints of type (VSP)(iv).

Table 7.6 compares the results of IS-OPT with the combined approach

180 Computational Results

IS-OPT d+v
contractor subcontractors

driving time 890:29 463:22 895:47
paid time 1,023:16 – 1,032:43
number of duties 155 104 160
number of vehicles 105 104 –
average duty duration 7:10 – 6:45
computation time 49:55 3:28

Table 7.7: Solutions on subcontractor planning

d+v (see Section 7.3) on the subcontractor scenario. The times in this table
are in hour:minutes. These results were obtained by a computer with a Intel
Core 2 CPU with 2.93GHz and 4 GB main memory using SuSE Linux 10.2.
This computer is about twice as fast as the computer used for the other
computations in this chapter.

The columns “IS-OPT” shows the result of the integrated approach. The
first column contains the values for the duties and rotations of the contractor,
the second column shows the values of the rotations of the subcontractors.

Unfortunately we have no solution that we can compare with the one
of IS-OPT. However, the duty-scheduling solution of the combined approach
d+v is similar in its quality, it covers about 0.5% more of the driving time at
the cost of more duties. These solutions are only comparable with reserva-
tions, because d+v completely ignores the capacity constraints for vehicles,
and thus does not give a feasible vehicle schedule. It also ignores cost for
subcontractors. But we think that the similar qualities of the duty schedules
are an indicator for the quality of the solution of IS-OPT.

This scenario is the largest scenario known to us that was solved by an
integrated approach.

7.7 ECOPT Instances

Finally, we compare IS-OPT with the approach of Huisman et al. [2003b] on
the randomly generated benchmark data proposed in their article. This data
consists of four sets of instances. On the one hand, these sets differ in the
length of the trips. Variant A has about 25% shorter trips on average than

7.7 ECOPT Instances 181

trips 080 100 160 200 320 400

vehicles 9.2 11.2 14.9 18.4 26.8 33.2
duties 20.9 24.4 33.0 40.0 57.3 69.3
total 30.1 35.6 47.9 58.4 84.1 102.5
reference 29.8 35.6 48.3 59.1 86.8 106.1
time 00:06 00:07 00:19 00:25 01:04 01:59

Table 7.8: Results for ECOPT-Instances with 2 Depots Variant A

trips 080 100 160 200 320 400

vehicles 9.2 11.1 14.8 18.6 27.2 33.2
duties 20.3 24.0 32.4 39.4 55.4 68.5
total 29.5 35.1 47.2 58.0 82.6 101.7
reference 29.6 36.2 49.5 60.4 — —
time 00:07 00:10 00:22 00:33 01:34 02:57

Table 7.9: Results for ECOPT-Instances with 4 Depots Variant A

Variant B. On the other hand, the number of depots varies. Every instance
was calculated using four different depots and then again using only two of
these while the other data remains constant. Each set contains 10 instances
of 80, 100, 160, 200, 320, and 400 trips. In Huisman et al. [2003b] a detailed
description of the generation of these problems is given.

The duty scheduling rules associated with these examples are relatively
simple. Duties are allowed to have at most one break, which must be outside
of a vehicle, i.e., each break also begins a new piece of work. The only other
rule is that each piece of work must be of certain minimum and maximum
length. It is shown in Huisman et al. [2003b] that in this situation one can
solve the duty generation subproblem in polynomial time, i.e., exact column
generation is possible.

Tables 7.8 and 7.9 report average solution values for each of the 10 in-
stances of each problem class for the problem variant A; similar results for
variant B can be found in Tables 7.10 and 7.11. All computations were done
with the same set of parameters, which was optimized for speed. Row ref-
erence gives the sum of the numbers of vehicles and duties as published in
Huisman et al. [2003b]; for the problems with 4 depots and 320 and 400 trips,
no reference is given due to excessive computation time.

182 Computational Results

trips 080 100 160 200 320 400

vehicles 11.4 13.8 19.3 24.5 36.1 44.6
duties 24.8 28.9 42.1 49.5 74.7 90.2
total 36.2 42.7 61.4 74.0 110.8 134.8
reference 36.0 42.9 61.6 75.8 113.6 139.2
time 00:05 00:06 00:17 00:24 00:58 01:39

Table 7.10: Results for ECOPT-Instances with 2 Depots Variant B

trips 080 100 160 200 320 400

vehicles 11.3 13.9 19.3 24.6 36.2 45.3
duties 24.4 29.2 41.0 49.7 72.6 88.8
total 35.7 43.1 60.3 74.3 108.8 134.1
reference 36.1 43.8 62.2 76.5 – –
time 00:08 00:11 00:22 00:35 01:33 02:32

Table 7.11: Results for ECOPT-Instances with 4 Depots Variant B

Algorithm IS-OPT produces in most cases better results than that in
Huisman et al. [2003b], only for the smallest instance with two depots it is
slightly worse. IS-OPT produces comparably better results with increasing
problem size and complexity; it can also solve the largest problem instances
in reasonable time. IS-OPT is, contrary to the approach of Huisman et al.
[2003b], able to utilize the additional depots to save some more drivers and
vehicles. Another observation is that the runtime of IS-OPT increases roughly
quadratic with the number of trips of the ECOPT-instances, whereas the
runtime of the algorithm of Huisman et al. [2003b] increases more steeply.

7.8 Conclusion

We have shown that IS-OPT is able to solve real world large scale instances in
reasonable time. Further, it helps to improve the vehicle and duty schedules
of public transit companies in comparison with sequential solutions and also
with manually planned solutions. For scenarios with subcontractors the tra-
ditional sequential planning is not able to produce a feasible solution which
fulfills all base constraints and vehicle capacity constraints. IS-OPT, however,
finds good solutions.

7.8 Conclusion 183

We have shown not only here, but also in other projects, that it is possible
to improve the vehicle and duty schedules by up to 5% with respect to the
objective function defined by the planners while all their requirements are
met. In 2006, IS-OPT was deployed in several German public transport
companies as a standard tool to plan vehicle and duty schedules.

On the artificial instances published by Huisman et al. [2003b] IS-OPT is
able to compute better results than the algorithm proposed there. Especially
on the larger instances the improvements are significant.

However, further work on IS-OPT should be invested to accelerate the
column generation, perhaps by heuristical approaches or by identifying duty
types or parts of the network, which can not be used by duties with negative
reduced cost.

184 Computational Results

GLKA

GRRS
GRLDGHER

LOWH

GGWS

GWLZ

GDHRGRFA

GHUB

GNOS

GFAS

WKSM

GWBF

GABR

GCBG

GSFV

GCAF

LEPH

HGRB

GPGL

GDIL

VBRFGKAS

GPGA

SEBG

GRBT

GWLP

GMBG

DMRD

GBBF WTBS

PGSP

GBLW

GJOH

GMGM

GLIS

LGBQ

GPAH

TAKP

GPDS

GSAB
KAAS

GHOS

GALW
GRLB

GWFB
GLBF

OFKO

SRFS

GLGK

KADB

GBEW

GFBB

BBBW

GVOK

GSVP

KFKB

DSCH

GDBU

GLBU

VWBR

GGRS

GRBO

GLCO

GMPL

GGBN

GNBF
WEPE

GLIB

GBHZ

GWAW

VGRK

GFSG

GFBG

GBPL

GRBG

GNIB

GLWU

GRBK
GSDW

GPHL

LSLB

GPPW

GBMA

GMGK

GGSA

GLOL
GKKG

GWSB

GGWI

GNWB

GGBF

KGBS

GSIO

GWBB

GVIL

GHBB

GKHB

GWKG
GGRBGLIN

GGBB

Figure 7.2: The graph of scenario Fulda

Glossary

block the tour of a bus starting and ending in a depot. A block is also called
a rotation. p. 19

break a possibility for a driver in a duty to get a pause. On a break there
is no work to do, nevertheless it counts as duty time. p. 115

course a course is a sequence of blocks which can be performed by a single
vehicle. Also known in the literature as a vehicle schedule or a vehicle
duty. p. 19

DSP duty scheduling problem. p. 27

duty a sequence of tasks, connected by links, to which personnel can be
assigned to, also known as a run. p. 25

deadhead trip every trip without passengers. Also shortly denoted by
deadhead. We also call the waiting time of a vehicle between two
timetabled trips even without moving the vehicle a deadhead. p. 18

GMCF generalized minimum cost flow problem, minimum cost flow prob-
lem with additional constraints. p. 4

GPCP generalized path covering problem, path covering problem with ad-
ditional constraints. p. 6

ISP integrated vehicle and duty scheduling problem. p. 43

link if two tasks can be performed subsequently a link between the tasks is
established. p. 26

long arc an arc in the VSP-graph (Section 1.9) corresponding to a pull-out-
pull-in-trip. p. 21

185

186 Glossary

part of work a part of a duty without interruptions. A duty is in general
partitioned in one (continuous duties), two (split duties), or sometimes
even three parts. p. 112

piece of work an (inclusion-)maximal sequence of tasks on the same bus.
p. 114

PRICE pricing problem in a column generation context. p. 121

pull-in trip a trip from the depot to a time-tabled trip. p. 19

pull-out trip a trip to the depot from a time-tabled trip. p. 19

pull-out-pull-in trip the combination of a pull-out trip, a standing time
at a depot, and a subsequent pull-in trip, of a single vehicle. p. 21

RCSP resource constrained shortest path problem. p. 126

relief point is a location where drivers can be changed. p. 26

rotation the same as a block. p. 19

run the same as a duty. p. 25

split duty a duty with an interruption, sometimes also called broken run.
p. 112

SCP set covering problem. p. 7

SPP set partitioning problem. p. 7

SSP set packing problem. p. 7

supplementary task an optional activity that is eventually needed to make
a duty feasible under certain circumstances.,e.g., checking the bus and
the cash box before leaving a bus. p. 25

task an activity that has to be performed uninterrupted by a driver. Also
known as d-trip. p. 24

timetabled trip a trip carrying passengers and appearing in the timetable.
p. 18

trip activity of a single bus. We differentiate between timetabled trips and
deadhead trips. p. 18

VSP vehicle scheduling problem. p. 21

Symbols

δin(v) in-degree of a node v,

δout(v) out-degree of a node v,

A duty scheduling matrix, section 2.2.3,

Ai row i of a matrix A,

A·j column j of a matrix A,

〈·, ·〉 scalar product,

B base constraints.

a an arc in a directed graph, sometimes also a right hand side of a LP,

b right hand side of a LP,

c cost vector of a LP,

γ cost vector of slacks of (DSP)

ζ cost vector of arcs of (RCSP) and (PRICE),

d cost vector of deadhead trips,

Dv set of duties covering task v.

ei vector with an entry of one at position i and zeroes else,

f a function,

f̄ a linearization of f ,

f̂ a cutting plane model of f ,

187

188 Symbols

f̃ a quadratic model of f ,

g a subgradient,

g̃ an aggregated subgradient,

κu, κ` costs of slacks in (RCSP) and (PRICE),

Q resource matrix of arcs in (RCSP) and (PRICE),

R resource matrix of duties in (DSP),

r a resource,

s source of a network.

t sink of a network,

u, v, w nodes of a network,

x, y, z variables in an LP or ILP,

x(Y) sum over the elements in the set Y of a vector x,

xI vector that consists of the elements of x that are elements of the index
set I,

N network adjacency matrix,

α multipliers of a convex combination of vectors,

λ, µ, ν Lagrangean multipliers or dual variables,

VVSP set of timetabled trips in the VSP,

AVSP set of deadhead trips in the VSP,

VDSP set of tasks for the DSP

V T
DSP set of tasks corresponding to timetabled trips (VVSP) of the VSP for the

DSP

V D
DSP set of tasks corresponding to deadheads (AVSP) of the VSP for the DSP

ADSP set of possible concatenations of tasks in VDSP ∪ {s, t}

VDSP(t) set of tasks on the trip t.

Bibliography

Achterberg, Koch & Martin (2005). Branching rules revisited. Operations
Research Letters 33, 42 – 54.

Achterberg, Koch & Martin (2006). MIPLIB 2003. Operations Research
Letters 34(4), 1–12. See http://miplib.zib.de.

Ahuja, Magnanti & Orlin (1993). Network flows. Prentice Hall, Englewood
Cliffs.

Andersson, Housos, Kohl & Wedelin (1998). Crew Pairing Optimization. In
Yu [1997], pp. 228–258.

Balas, Ceria, Dawande, Margot & Pataki (2001). Octane: A New Heuristic
for Pure 0-1 Programs. Operations Research 49(2), 207–225.

Balas & Ho (1980). Set Covering Algorithms Using Cutting Planes, Heuris-
tics, and Subgradient Optimization: A Computational Study. Mathematical
Programming 12, 37–60.

Ball, Bodin & Dial (1983). A Matching Based Heuristic for Scheduling Mass
Transit Crews and Vehicles. Transportation Science 17, 4–31.

Barahona & Anbil (1998). The Volume Algorithm: producing primal solu-
tions with a subgradient method. Technical report, IBM Research Division,
T.J. Watson Research Center.

Barnhart, Johnson, Nemhauser, Savelsbergh & Vance (1998). Branch-and-
price: Column generation for solving huge integer programs. Operations
Research 46(3), 316–329.

Beasley (1987). An Algorithm for the Set Covering Problem. European
Journal of Operational Research 19, 379–394.

189

http://miplib.zib.de

190 BIBLIOGRAPHY

(1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society 41(11), 1069–1072.

Beasley & Christofides (1989). An Algorithm for the Resource Constrained
Shortest Path Problem. Networks 19, 379–394.

Blais & Rousseau (1982). HASTUS: A model for the economic evaluation
of drivers’ collective agreements in transit companies. INFOR 20(3), 3 –
15.

Bönisch (2006). Sensitivitätsanalyse in der Fahrzeugumlaufplanung. Mas-
ter’s thesis, TU Berlin.

Borndörfer (1998). Aspects of Set Packing, Partitioning, and Covering. PhD
thesis, TU Berlin.

(2006). A tutorial on railway optimization. Talk held at ATMOS 2006
and personal communication.

Borndörfer, Grötschel & Löbel (2003). Duty Scheduling in Public Transit.
In W. Jäger & H.-J. Krebs (Eds.), MATHEMATICS — Key Technology for
the Future pp. 653–674. Berlin: Springer Verlag.

Borndörfer, Grötschel & Pfetsch (2004). Models for Line Planning in Public
Transport. Technical report, Zuse Institute Berlin.

Borndörfer, Löbel & Weider (2002). Integrierte Umlauf- und Dienstplanung
im Öffentlichen Nahverkehr. In Boltze (Ed.), Heureka ’02, pp. 77–98. VDV,
Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln.

Borndörfer, Löbel & Weider (2004). A Bundle Method for Integrated Multi-
Depot Vehicle and Duty Scheduling in Public Transit. Technical report,
Zuse Institute Berlin. talk held at CASPT 2004, proceedings not published
yet.

Borndörfer, Grötschel & Pfetsch (2006). Public Transport to the fORe!
OR/MS Today 33(2), 30–40.

Bouma & Oltrogge (1994). Linienplanung und Simulation für öffentliche
Verkehrswege in Praxis und Theorie. Eisenbahntechnische Rundschau 43(6),
369–378.

Bussieck, Kreuzer & Zimmermann (1997). Optimal lines for railway systems.
Eur. J. Oper. Res. 96(1), 54–63.

BIBLIOGRAPHY 191

Bussieck, Lindner & Lübbecke (2003). A Fast Algorithm for Near Cost
Optimal Line Plans. Technical report, TU Berlin.

Bussieck, Winter & Zimmermann (1997). Discrete optimization in public
rail transport. Mathematical Programming 1–3(79B), 415–444.

Byun (2001). Lower Bounds for Large-Scale Set Partitioning Problems.
Technical report, Zuse Institute Berlin.

Caprara, Fischetti & Guida (1997). Solution of Large-Scale Railway Crew
Planning Problems: the Italian Experience. In Wilson [1997], pp. 1–18.

Caprara, Fischetti & Toth (1996). A Heuristic Algorithm for the Set Cov-
ering Problem. In IPCO.

Caprara, Fischetti, Toth & Vigo (1998). Modeling and Solving the Crew
Rostering Problem. Operations Research 46, 820–830.

Caprara, Monaci & Toth (2001). A Global Method for Crew Planning in
Railway Applications. In Voß & Daduna [2001], pp. 17–36. Springer Verlag.

Carresi, Girardi & Nonato (1995). Network models, Lagrangean relaxation
and subgradients bundle approach in crew scheduling problems. In Daduna
et al. [1995], pp. 188–212.

Ceder & Tal (1997). Timetable Synchronization for Buses. In Wilson [1997],
pp. 245–258.

Ceria, Nobili & Sassano (1998). A Lagrangian-based Heuristic for Large-
scale Set Covering Problems. Mathematical Programming 81, 215–228.

Chien, Qin & Liu (2003). Optimal Bus Stop Locations for Improving Transit
Accessibility. Preprint cd-rom, Transportation Research Board.

Chvátal (1979). A greedy heuristic for the set-covering problem. Mathe-
matics of Operations Research 4(3), 233–235.

Claessens, van Dijk & Zwaneveld (1998). Cost optimal allocation of rail
passenger lines. European Journal of Operational Research 110, 474–4889.

Daduna (2001). Impacts of Deregulation on Planning Processes and Infor-
mation Management Design in Public Transit. In Voß & Daduna [2001],
pp. 429–441.

192 BIBLIOGRAPHY

Daduna, Branco & Paixão (Eds.) (1995). Computer-Aided Transit Schedul-
ing, Lecture Notes in Economics and Mathematical Systems. Springer Ver-
lag.

Daduna & Wren (Eds.) (1988). Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems. Springer Verlag.

Dantzig & Wolfe (1960). Decomposition principle for linear programs. Op-
erations Research 8, 101–111.

Darby-Dowman, J. K. Jachnik & Mitra (1988). Integrated decision support
systems for urban transport scheduling: Discussion of implementation and
experience. In Daduna & Wren [1988], pp. 226–239.

de Groot & Huisman (2004). Vehicle and Crew Scheduling: Solving Large
Real-World Instances with an Integrated Approach. Technical report,
Econometric Institute, Erasmus University Rotterdam.

Desaulniers, Desrosiers & Solomon (Eds.) (2005). Column Generation.
GERAD 25th Anniversary Series. Springer.

Desaulniers, Lavigne & Soumis (1998). Multi-depot vehicle scheduling prob-
lems with time windows and waiting costs. European Journal of Operational
Research 34(3), 479–494.

Desrochers (1986). A New Algorithm for the Shortest Path Problem with
Resource Constraints. Technical Report 421A, Centre de Recherche sur les
Transports, University of Montréal.

Desrochers, Gilbert, Sauvé & Soumis (1992). Crew-Opt: Subproblem Mod-
eling in a Column Generation Approach to Urban Crew Scheduling. In
Desrochers & Rousseau [1992].

Desrochers & Rousseau (Eds.) (1992). Computer-Aided Transit Scheduling,
Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Desrochers & Soumis (1988). A Generalized Permanent Labeling Algorithm
for the Shortest Path Problem with Time Windows. INFOR 26, 191–212.

Desrochers & Soumis (1989). A Column Generation Approach to the Urban
Transit Crew Scheduling Problem. Transportation Science 23(1), 1–13.

Desrosiers & Lübbecke (2005). A primer in column generation. In GERAD
[2005], pp. 1–32.

BIBLIOGRAPHY 193

Desrosiers, Soumis & Desrochers (1982). Routes sur un réseau espace-temps.
Technical Report 236, Centre de recherche sur les transports, Université de
Montréal.

Dorn (1960). Duality in Quadratic Programming. Quarterly of Applied
Mathematics 18(2), 155–162.

Dumitrescu (2002). Constrained Path and Cycle Problems. PhD thesis,
Department of Mathematics and Statistics, The University of Melbourne.

Emden-Weinert, Kotas & Speer (2001). DISSY – A Driver Rostering System
for Public Transport. Technical report, HU Berlin. presented at the CASPT
2000.

Ernst, Jiang, Krishnamoorthy & Nott (2001). Rail Crew Scheduling and
Rostering Optimization Algorithms. In Voß & Daduna [2001], pp. 53–72.

Ernst, Jiang, Krishnamoorthy & Sier (2004). An Annotated Bibliography
of Personnel Scheduling and Rostering. Annals of Operations Research 127,
21–144.

Falkner & Ryan (1992). Express: Set partitioning for bus crew scheduling
in Christchurch. In Desrochers & Rousseau [1992], pp. 359–378.

Fischer, Gruber, Rendl & Sotirov (2003). The Bundle Method in Combina-
torial Optimization. Technical report, University of Klagenfurt, Austria.

Fischetti, Lodi, Martello & Toth (2001). A Polyhedral Approach to Sim-
plified Crew Scheduling and Vehicle Scheduling Problems. Management
Science 47, 833–850.

Fisher & Kedia (1990). Optimal Solution of Set Covering/Partitioning Prob-
lems Using Dual Heuristics. Management Science 39, 674–688.

Frangioni (2002). Generalized Bundle Methods. SIAM Journal on Opti-
mization 13(1), 117–156.

Freling (1997). Models and Techniques for Integrating Vehicle and Crew
Scheduling. PhD thesis, Erasmus University Rotterdam, Amsterdam.

Freling, Huisman & Wagelmans (2000). Models and Algorithms for Inte-
gration of Vehicle and Crew Scheduling. Technical Report EI2000-10/A,
Econometric Institute, Erasmus University Rotterdam.

194 BIBLIOGRAPHY

Freling, Huisman & Wagelmans (2001). Applying an Integral Approach to
Vehicle and Crew Scheduling in Practice. In Voß & Daduna [2001], pp.
73–90.

Freling, Huisman & Wagelmans (2003). Models and Algorithms for Inte-
gration of Vehicle and Crew Scheduling. Journal of Scheduling 6, 63–85.

Friberg & Haase (1997). An Exact Algorithm for the Vehicle and Crew
Scheduling Problem. In Wilson [1997], pp. 63–80.

Gaffi & Nonato (1997). An Integrated Approach to Ex-Urban Crew and
Vehicle Scheduling. In Wilson [1997], pp. 103–128.

Garey & Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman and Company.

Gintner, Kliewer & Suhl (2004). Line Change Considerations Within a
Time-Space Network Based Multi-Depot Bus Scheduling Model. DSOR
Arbeitspapiere/DSOR working papers, Universität Paderborn.

Goossens, van Hoesel & Kroon (2004). A Branch-and-Cut Approach for
Solving Railway Line-Planning Problems. Transportation Science 38(3),
379–393.

Grötschel, Lovász & Schrijver (1993). Geometric Algorithms and Combina-
torial Optimization (Second corrected edition ed.)., volume 2 of Algorithms
and Combinatorics. Springer.

Haase, Desaulniers & Desrosiers (2001). Simultaneous Vehicle and Crew
Scheduling in Urban Mass Transit Systems. Transportation Science 35(3),
286–303.

Hadjar, Marcotte & Soumis (2001). A Branch-and-Cut Algorithm for the
Multiple Depot Vehicle Scheduling Problem. Technical report, Les Cahiers
du GERAD.

Handler & Zang (1980). A Dual Algorithm for the Constrained Shortest
Path Problem. Networks 10, 293–310.

Hanisch (1990). Die Regionalverkehr Köln GmbH und HASTUS.
http://www.giro.ca/Deutsch/Publications/publications.htm.

Held & Karp (1970). The traveling-salesman problem and minimum span-
ning trees. Operations Research 18, 1138–1162.

BIBLIOGRAPHY 195

(1971). The traveling-salesman problem and minimum spanning trees:
part II. Mathematical Programming 1, 6–25.

Helmberg (2000). Semidefinite Programming for Combinatorial Optimiza-
tion. Technical report, Zuse Institute Berlin. also habilitation thesis.

Helmberg & Kiwiel (2002). A Spectral Bundle Method with Bounds. Math-
ematical Programming 2(93), 173–194.

Hintermüller (2001). A Proximal Bundle Method Based on Approximate
Subgradients. Computational Optimization and Applications 3(20), 245–
266.

Hiriart-Urruty & Lemaréchal (1993a). Convex Analysis and Minimization
Algorithms I, volume 305 of A Series of Comprehensive Studies in Mathe-
matics. Springer-Verlag.

(1993b). Convex Analysis and Minimization Algorithms II, volume
306 of A Series of Comprehensive Studies in Mathematics. Springer-Verlag.

Hochbaum (1997). Approximating covering and packing problems: set
cover, vertex cover, independent set, and related problems. In D. S.
Hochbaum (Ed.), Approximation Algorithms for NP-hard Problems pp. 94–
143. PWS Publishing Company.

Hooghiemstra, Kroon, Odijk, S. & Zwaneveld (1999). Decision Support
Systems Support the Search for Win-Win Solutions in Railway Network
Design. Interfaces 29(2), 15–32.

Huisman (2004). Integrated and Dynamic Vehicle and Crew Scheduling.
PhD thesis, Erasmus University Rotterdam.

Huisman, Freling & Wagelmans (2003a). Multiple-Depot Integrated Vehicle
and Crew Scheduling. Technical report, Econometric Institute, Erasmus
University Rotterdam.

(2003b). Multiple-Depot Integrated Vehicle and Crew Scheduling.
Technical report, Econometric Institute, Erasmus University Rotterdam.
Report EI2003-02.

Johnson (1989). Modeling and strong linear programs for mixed integer pro-
gramming. In Wallace (Ed.), Algorithms and model formulations in math-
ematical programming, 51, pp. 1–41. NATO ASI.

196 BIBLIOGRAPHY

Johnson, Nemheuser & Savelsbergh (2000). Progress in Linear-
Programming based Algorithms for Integer Programming: An exposition.
INFORMS Journal on Computing 12, 2–23.

Kim & Barnhart (1997). Transportation Service Network Design: Models
and Algorithms. In Wilson [1997], pp. 259–283.

Kiwiel (1990). Proximal bundle methods. Mathematical Program-
ming 46(123), 105–122.

(1994). A Cholesky Dual Method for proximal piecewise linear pro-
gramming. Numerische Mathematik 68, 325–340.

(1995). Approximation in Proximal Bundle Methods and Decompo-
sition of Convex Programs. Journal of Optimization Theory and applica-
tions 84(3), 529–548.

(2006). A proximal bundle method with approximate subgradient
linearizations. SIAM Journal on Optimization 16(4), 1007–1023.

Kliewer & Mellouli (2002). Umlaufplanung im öffentlichen Verkehr mit
mehreren Depots und Fahrzeugtypen. In Boltze (Ed.), Heureka ’02, pp.
63–76. VDV, Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln.

Kliewer, Mellouli & Suhl (2004). A time-space network based exact
optimization model for multi-depot bus scheduling. DSOR Arbeitspa-
piere/DSOR working papers, Universität Paderborn.

Kohl & Karisch (2004). Airline Crew Rostering: Problem Types, Modeling,
and Optimization. Annals of Operations Research 127, 223–257.

Kroon & Fischetti (2000). Scheduling Train Drivers and Guards: The Dutch
“Noord-Oost” Case. In HICSS.

Kroon & Peeters (2003). A Variable Trip Time Model For Cyclic Railway
Timetabling. Transportation Science 37(2), 198–212.

Lamatsch (1992). An Approach to Vehicle Scheduling with Depot Capacity
Constraints. In Desrochers & Rousseau [1992], pp. 181–195.

Lemaréchal (2001). Lagrangian Relaxation. In Jünger & Naddef (Eds.),
Computational Combinatorial Optimization, volume 2241 of Lecture Notes
in Computer Science, pp. 112–156. Springer.

BIBLIOGRAPHY 197

Leuthardt (1998). Kostenstrukturen von Stadt-, Oberland- und Reise-
bussen. Der Nahverkehr (6), 19–23.

Liebchen & Möhring (2002). A Case Study in Periodic Timetabling. Elec-
tronic Notes in Theoretical Computer Science 66(6), 14.

(2004). The Modeling Power of the Periodic Event Scheduling Prob-
lem. Technical report, TU Berlin. presented at the CASPT 2004.

Linderoth & Ralphs (2004). Noncommercial Software for Mixed-Integer
Linear Programming. Optimization Online.

Lindner (2000). Train schedule optimization in public rail transport. PhD
thesis, TU Braunschweig.

Löbel (1996). Solving Large-Scale Real-World Minimum-Cost Flow Prob-
lems by a Network Simplex Method. Technical report, Zuse Institute Berlin.

(1997a). Optimal Vehicle Scheduling in Public Transit. PhD thesis,
TU Berlin.

(1997b). Solving Large-Scale Multi-Depot Vehicle Scheduling Prob-
lems. In Wilson [1997], pp. 195–222.

Lougee-Heimer (2003). The Common Optimization INterface for Operations
Research. IBM Journal of Research and Development 47(1), 57–66.

Magnanti & Wong (1984). Network Design and Transportation Planning:
Models and Algorithms. Transportation Science 18(1), 1–55.

Martin (2001). Computational Combinatorial Optimization: Optimal or
Provably Near-Optimal Solutions, chapter General Mixed Integer Program-
ming: Computational Issues for Branch-and-Cut Algorithms, pp. 1–25.
Springer.

Mehlhorn & Ziegelmann (2000). Resource Constrained Shortest Paths. In
Proc. 8th European Symposium on Algorithms, pp. 326–337. Springer.

Nediak & Eckstein (2001). Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Technical Report RRR 53-2001, Rutgers University,
640 Bartholomew Road, Piscataway, NJ, 08854 USA.

Nering & Tucker (1993). Linear Programs and Related Problems. Computer
Sciece and Scientific Computing. Academic Press, London.

198 BIBLIOGRAPHY

Odoni, Rousseau & Wilson (1994). Handbooks in Operations Research and
Management Science, volume 6, chapter 5, pp. 107–150. Elsevier.

Padberg (2001). Almost Perfect Matrices and Graphs. Math. Oper.
Res. 26(1), 1–18.

Papadimitriou & Steiglitz (1982). Combinatorial Optimization: Algorithms
and Complexity. Englewood Cliffs, NJ: Prentice-Hall.

Patrikalakis & Xerocostas (1992). A new decomposition scheme of the urban
public transport scheduling problem. In Desrochers & Rousseau [1992], pp.
407–425.

Ralphs, Ladányi & Saltzman (2003). Parallel branch, cut, and price for
large-scale discrete optimization. Mathematical Programming 98(1–3), 253–
280.

Rang (2006). Lenk- und Ruhezeiten im Straßenverkehr. Verlag Heinrich
Vogel.

Resch, Neth & Budäus (2006). ÖPNV zwischen Ausschreibungswettbewerb
und Direktvergabe. Technical report, Hans-Böckler-Stiftung. in German.

Ribeiro & Minoux (1986). Solving Hard Constrained Shortest Path Prob-
lems by Lagrangean Relaxation and Branch-and-Bound Algorithms. Math-
ematics of Operations Research 53, 303–316.

Ryan & Foster (1981). An integer programming approach to scheduling.
In A. Wren (Ed.), Computer Scheduling of Public Transport. North-Holland
Publishing Company.

Schlechte (2003). Das Resource-Constrained-Shortest-Path-Problem und
seine Anwendung in der ÖPNV-Dienstplanung. Master’s thesis, TU Berlin.

Schöbel & Scholl (2006). Line Planning with Minimal Traveling Time.
In Kroon & Möhring (Eds.), 5th Workshop on Algorithmic Methods and
Models for Optimization of Railways. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

Schrijver (1998). Theory of Linear and Integer Programming. Interscience
series in discrete mathematics and optimization. Wiley.

Schrijver (2003). Combinatorial Optimization. Algorithms and Combina-
torics. Springer.

BIBLIOGRAPHY 199

Scott (2001). An Inexact Bundle Method for Solving Large Structured Linear
Matrix Inequalities. PhD thesis, University of California.

Scott (1985). A Large Scale Linear Programming Approach to the Public
Transport Scheduling and Costing Problem. In Rousseau (Ed.), Computer
Scheduling of Public Transport 2. Elsevier.

Serafini & Ukovich (1989). A methematical model for periodic event schedul-
ing problems. SIAM Journal of Discrete Mathematics 4(2), 550–581.

Thompson (2002). An integral simplex algorithm for solving combina-
torial optimization problems. Computational Optimization and Applica-
tions 22(3), 351–367.

Tosini & Vercellis (1988). An interactive system for extra-urban vehicle and
crew scheduling problems. In Daduna & Wren [1988], pp. 41–53.

van Krieken, Fleuren & Peeters (2004). A Lagrangean Relaxation Based
Algorithm for Solving Set Partitioning Problems. Technical Report 2004-
44, Tilburg University.

van Nes & Bovy (2000). The importance of objectives in urban transit
network design. Preprint cd-rom, Transportation Research Board.

Villeneuve, Desrosiers, Lübbecke & Soumis (2003). On Compact Formula-
tions for Integer Programs Solved by Column Generation. Technical Report
No. 2003/25, TU Berlin.

Völker & Schütze (1995). Recent Developments of HOT II. In Daduna et al.
[1995], pp. 334–348.

Voß & Daduna (Eds.) (2001). Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems. Springer Verlag.

Warburton (1987). Approximation of Pareto Optima in Multiple-Objective
Shortest Path Problems. Op. Res. 35, 70–79.

Wedelin (1995). An algorithm for a large scale 0-1 integer programming with
application to airline crew scheduling. Annals of Operations Research 57,
283–301.

Wilson (Ed.) (1997). Computer-Aided Transit Scheduling, Lecture Notes in
Economics and Mathematical Systems. Springer Verlag.

Yu (Ed.) (1997). Operations Research in the Airline Industry. Boston, MA:
Kluwer Academic Publishers.

	Zusammenfassung
	Abstract
	Preface
	Acknowledgments
	Planning in Public Transit
	Introduction
	Classification of Planning Steps
	Basic Models
	Flow Based Models
	Path Based Models

	Network Design
	Description
	Models
	Applications

	Line Planning
	Description
	Models
	Approaches
	Integration

	Planning of Bus Stops
	Timetabling
	Description
	Models
	Algorithms
	Integration

	Planning of Public Tenderings
	Vehicle Scheduling
	Description
	Graph Theoretic Model
	Integer Programming Model
	Algorithms
	Algorithm VS-OPT
	Integration

	Duty scheduling
	Description
	Graph Theoretic Model
	Integer Programming Model
	Algorithms
	Integration

	Rostering
	Description
	Model
	Algorithms
	Integration

	Conclusion

	Integration of Vehicle and Duty Scheduling
	Motivation
	Regional Public Transit
	Vehicle and Duty Schedule Efficiency
	Vehicle and Duty Costs

	Approaches to Integrated Scheduling
	Duty Scheduling with Vehicle Scheduling Constraints
	The Combined Approach
	Full Integration of Vehicle and Duty Scheduling

	Literature
	Ball, Bodin and Dial
	Vehicle Scheduling Centered Approaches
	Duty Scheduling Centered Approaches
	Fully Integrated Vehicle and Duty Scheduling

	IS-OPT
	Outline of our ISP-Algorithm
	Contributions

	Basic Methodology
	Column Generation
	Lagrangean Relaxation
	Lagrangean Relaxation in General
	Linear Programming Duality
	Quadratic Programming Duality

	Lagrangean Relaxation for Column Generation
	Problem Class
	Restricted Problem
	Pricing Problem
	Lagrangean relaxation
	Reduced Cost Shifting

	Proximal Bundle Method
	Description
	Idea and Properties
	Subgradients, Linearizations, and Cutting Plane Models
	Quadratic Subproblem
	Algorithm
	Weight updating
	Notes On The Convergence

	Comparison with other Subgradient Methods
	Modifications and Extensions
	Separable Functions
	Primal Approximation of Linear Programs
	Handling of Bounded Functions

	Active Set Method
	Description
	Exact Active Sets

	Applications
	Approximating the Duty Scheduling Problem
	Approximating the Problem ISP

	Inexact Bundle Method
	Literature
	Vehicle Scheduling Component Function
	Duty Scheduling Component Function
	Combined Functions

	Computational Results
	Testbed
	Results

	The Generation of Duties
	Motivation and Notation
	Master Problem
	Size of the Master Problem
	The Pricing Problem

	Description of Duties
	Duty Elements
	Duty types
	Resources
	Break rules
	Cost of a Duty

	Models for the Pricing Problem
	Pricing Networks
	Timelines
	IP Model
	Cost and Reduced Cost of Pairings and Links

	Literature
	Algorithm
	The Resource Constrained Shortest Path Problem
	Lagrangean Relaxation of all Resource Constraints
	Depth-First-Search

	Labeling
	Graph Construction
	Node Dominance
	Resource Scaling and Rounding
	Cost scaling

	Computational Results
	Testbed
	RCSP
	Lagrangean Relaxation
	Results of the Enumeration Algorithm

	Lower Bounds for the Duty Scheduling Problem
	RCSP-lower-bound
	LP lower bounds

	Conclusion

	Rapid Branching
	Overview
	Branch-and-Bound
	Perturbation Branching Rule
	Motivation
	Determining the Main Branch
	Calculation of the Perturbed Objective Function
	Calculation of the Other Branches
	Comparison with Other Branching Rules

	Node Selection
	Lower Bounding
	Upper Bounding
	MIP-heuristics in the Literature
	Simplex Based Heuristics
	OCTANE
	Set Covering and Set Partitioning Heuristics
	Branch-and-Bound Based Heuristics
	Rounding Heuristics

	Computational Results
	Testbed
	Observations
	Conclusion

	Computational Results
	Running Time
	Computation Times per Phase
	Algorithms
	RVB Instances
	RKH Instances
	Subcontractor Planning for an Regional Carrier
	ECOPT Instances
	Conclusion

	Glossary
	Symbols
	Bibliography

