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Abstract

E-government services usually process large amounts of confidential data. Therefore, secu-
rity requirements for the communication between components have to be adhered in a strict
way. Hence, it is of main interest that developers can analyze their modularized models of
actual systems and that they can detect critical patterns. For this purpose, we present a
general and formal framework for critical pattern detection and user-driven correction as well
as possibilities for automatic analysis and verification at meta-model level. The technique
is based on the formal theory of graph transformation, which we extend to transformations
of type graphs with inheritance within a type graph hierarchy. We apply the framework to
specify relevant security requirements.

The extended theory is shown to fulfil the conditions of a weak adhesive HLR category
allowing us to transfer analysis techniques and results shown for this abstract framework of
graph transformation. In particular, we discuss how confluence analysis and parallelization
can be used to enable parallel critical pattern detection and elimination.
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1 Introduction

Software systems for e-government services have to provide a platform, where internal and exter-
nal users can input and process large amounts of confidential data. Therefore it is important that
considerable efforts are made to secure such data. To improve the security of software systems,
recent research has identified that security analysis should be integrated into software engineering
techniques and security should be considered from the early stages of the software systems devel-
opment process [19]. Existing security modelling frameworks such as the UML profile UMLsec [14]
support the design of security-sensitive systems by offering stereotypes to describe policies of sys-
tem parts like communication channels or subsystems. Models then can be analyzed to check the
satisfaction of security policies, such as access control conditions. Common techniques to elicit
security requirements are based on use case modeling and goal-oriented approaches [12]. The
problem is that these techniques are better suited for the elicitation of functional requirements.
Security requirements being non-functional requirements are closely related to system architec-
ture design and frequently require architectural changes as reactions to detected critical patterns.
Moreover, the UMLsec profile specifies only core security requirements and has to be refined for
more specific application fields like secure e-government services.

In order to be able to specify flexible architectural changes as reactions to detected critical pat-
terns in the design of e-government systems, we propose in this paper a dynamic, general modelling
approach based on typed graph transformation for critical pattern detection and elimination.

Public administration is based on a strict hierarchical structure of e-government networks. We
reflect this fundamental design paradigm in our modelling approach by supporting hierarchies



along a chain of meta-model layers. The common approach of meta-modelling uses UML class
diagrams equipped with OCL constraints to model a domain-specific language’s (DSL’s) abstract
syntax in a declarative way (see e.g. the MOF approach by the OMG [20]). Graph grammars [8]
are a more constructive alternative, based on a formal categorical framework which can also be
used for formal analysis and verification. A DSL here is modelled by a type graph capturing the
definition of the underlying symbol and relation types. Instances of a DSL are given by graphs
typed over (i.e. conforming to) the type graph, and can be further restricted by defining rule-based
instance generation operations. A DSL type graph corresponds closely to a meta-model, i.e. also
inheritance relations are used'. Hence, the main technical contribution of this paper lies in solving
the challenge of transformation of graphs with inheritance hierarchies.

As running example, we consider an e-government system application which is based on a
standard given by the E-Government Manual of the Federal Office for Information Security in
Germany. In particular, we here focus on Chapter IV [9]. There are four main zones in the
architecture of an e-government system (depicted in Fig. 1), one client zone for the external view
and three security zones, which are under control of the corresponding government institution.

mEGov
(concrete syntax)
Web Application —» Directo Connection setu|
P fory || | Comestonsetp
server |-—»| server [a—»| service
Y Data flow
Legacy -

systems
Client Security Security Security
zone zone | zone zone I

Figure 1: Scenario: structure of E-Government networks

E-government services are installed on web servers in zone one, which can access actual appli-
cations of the public agency in zone two, but they are not directly connected to confidential data.
Hiding these data in zone three improves the security against external attacks. If the data was
stored in zone two already, an intrusion on a web server could directly enable scans of the data
file system and further more critical changes.

In the following sections we discuss how this standard structure of an e-government network
can be refined, customized and analyzed on the basis of formal type graph transformation with
inheritance. Transformations and analysis are performed on the type graph of the e-government
network visualized in Fig. 1. The overall model consists of a hierarchy of models with several meta-
levels, all formalized by type graphs. Type graphs with inheritance and typed graph transformation
have been introduced already in [8, 15] but without transformation of the meta-levels including
inheritance. The new formal approach in this paper concerns a generalization of typed graph
transformation to the transformation of type graphs with inheritance. The key concepts thus
are graphs with inheritance, called I-graphs, and I-graph morphisms based on clan morphisms
[15], coming up with a new category IGraphs, which is shown to fulfil the requirements of weak
adhesive HLR categories [8]. This allows us to make use of formal techniques for confluence and
dependency analysis to analyze critical pattern detection and elimination in the e-government
network model.

Graphs with inheritance could also be transformed by encoding the graphs to plain graphs
with the help of a special edge type for the inheritance relation and performing standard graph
transformation on them. But this leads to several problems. All inheritance paths have to be
translated to direct edges, and after performing a transformation step the resulting graph would
have to be extended by the edges which form the transitive closure of the inheritance relation.

INote that the type graphs used for network modelling in our previous paper [4] did not yet allow the use of
inheritance.



Furthermore, extending matching to inheritance hierarchies, as considered in this paper, is not
possible if inheritance is encoded by special edges in plain graphs.

The paper is structured as follows: In Sec. 2 we show how type graph rules and transformations
including the handling of inheritance can be used to model network configurations for secure
client-server architectures for e-government networks [9]. Thereafter, we define the basic formal
constructions for transforming type graphs with inheritance and show important properties in
Sec. 3, which will then be used in Sec. 5 for analyzing the e-government network model. Sec. 7
discusses related work, and Sec. 8 concludes the paper. This technical report is an extended
version of [13] and contains the full proofs for the presented results.

2 Modelling E-Government Networks

In this section we show how type graph transformations including the handling of inheritance can
be applied for developing and maintaining meta-models for e-governments networks [9].

Example 1 (Type Graphs for Network Configurations). Graph Grge, in the lower left corner
of Fig. 2 is an instance-level graph typed over the type graph TG ggo. for network configurations
in the area of e-government. Graph G ggoy 18 shown in concrete syntaz in the lower right corner
of Fig. 2 and describes a client, which is connected to services of the e-government institution.
TGggoy itself is typed over the more abstract type graph TG ey, which models domain specific
languages of client-server architectures. Type mappings like TGgpgoy — TG wep are denoted by
the type name following the respective node or edge name after the colon, e.g. the node “PC:Client”
in TGgaov 18 mapped to the node “Client” in TG wey,.

ConSetup

TGwe

T DataFlow

TCEGm; ——a_cl:ConSetup
p_c:ConSetup w_c:ConSetup a_dl:DataFlow> pBg-gry ||
A e B =
ST - N a_c2:ConSetup. .
|PC.CI|e|nt| |W:bS.Srv_I | | A:.Srv_ll a2 Datarlowsl DirS:Srv_lll

p_d:DataFlow w_d:DataFlow La_c3:ConSetup LegacyS:Srv_llI
L_—a_d3:DataFlow:

[srv_i] [Srv_i] [srv_n]

GEGov 7:a_cl
OracleA:AS}»| OracleD:DBS |
8:a_d1
4:w_d
5w_c 9:a_c2
BEA:AS |—»{ FTP:DIrS |
10:a_d2

Figure 2: Instance Graph G ggo, and Type Graph Hierarchy TG ggov — TGwep

The main idea of graph transformation is the rule-based modification of graphs, which represent
the abstract syntax of models. While standard graph transformation [8] considers transformations
of instances typed over a given type graph only, we present an extension in Sec. 3 to deal with
more general transformations including transformations of type graphs with inheritance, which
may be typed over a type graph of the next meta level.



The core of a graph transformation rule p = (L LAY RN R) as defined in [8] is a triple
of graphs (L, K, R), called left-hand side, interface and right-hand side, and two injective graph
morphisms L ¢ K and K s R. Interface K contains the graph objects which are not changed
by the rule and hence occur both in L and in R. Applying rule p to a graph G means to find a
match m of L in G and to replace this matched part m(L) in G by the corresponding right-hand

side R of the rule, thus leading to a graph transformation step G 22 H
Note that a rule may only be applied if the gluing condition is satisfied, i.e. the rule application

must not leave dangling edges, and for two objects which are identified by m, the rule must not

preserve one of them and delete the other one. Furthermore, a rule p may be extended by a set of

positive or negative application conditions (PACs and NACs) [11, 8]. Intuitively, a NAC forbids

the presence of a certain pattern in graph G, while a PAC requires it.

A match L -5 G satisfies a NAC with the in- NACZ 1< K

4>R

L
jective. NAC morphism n : L — NAC, if there
is no injective graph morphism NAC % G with

[1PN))

g on = m (where %“” denotes composition of
morphisms), as shown in the diagram to the right. Analogously, a PAC is satisfied if there exists

\)\:w(POQ (PO2) | m*
G<—D—H

such an injective graph morphism PAC -+ G. Our notion of graph transformation is called
double-pushout approach (DPO) since both squares in the diagram are pushouts in the category
of graphs, where D is the intermediate graph after removing m(L) in G and in (POs) H is
constructed as gluing of D and R along K.

The following examples show how changes of type graphs with inheritance, like TGy e, and
TGggoy in Fig. 2, can be defined in a formal and concise way.

Example 2 (Rules for Editing Network Meta-Models). Fig. 8 and the top line of Fig. 4 show
some typical editing rules, typed over TGy .y, where numbers specify the rule morphisms. Interface
K contains the numbered elements in L only and is not shown explicitly in Fig. 8. The first two
rules insert new nodes and connections. Note that rule “createCS()” can be applied to any pair of
nodes, because the node types are specified abstractly. Rule “setUpdateConnection()” contains a
NAC and defines the controlled extension of connections, i.e. a pair of links of types “ConSetup”
and ‘DataFlow”; starting at a server mode in zone 3. A new connection for requesting server
updates can be established, but only if there is no incoming connection via the same server, because
this would ease an attack from an external Internet connection.

createSrvIII() createCS( )
= -1 | i 0 5 i
L L) I I_R ) ! |__L_JI | LR ] I
| | :}I : | - | :ConSetup |
Lo ! | S| | | [ 1:Node | | 2:Node | | | [ 1:Node || 2:Node :
I I
Lo L J L____________J !________________J
sgtyl)dateConnectlon() O
I NAC' ‘ConSetup I L_L_JI : I:_R_J :ConSetup ]|
.|15rv||||::|2$rv |||I H[asn_n] [2snvor] | = | [msvon— 3 2snon] |
:DataFlow | | | :DataFlow |

I gt - ——— e e ———

Figure 3: Rules for Editing Type Graph TGEg_gov

Finally, rule “insertSupertype()” given by the top line in Fig. 4 specifies a sample refactor-
ing operation, where a new super type node is created having three nodes of type “Serv " as
specializations.

Example 3 (EGov Type Graph Transformation Step). Fig. 4 shows a graph transformation
step, where rule “insertSupertype()” is applied to graph G1, a part of graph TG ggoy from Fig. 2,
resulting in the transformed graph Gs.

The result of applying the rule to the complete type graph TG gao, yields the type graph
TGggove as shown in Fig. 5.
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Figure 4: Type Graph Transformation Step of rule insertSupertype()
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Figure 5: Resulting Type Graph TG ggove as update of TG ggoy

The examples show how transformations of type graphs with inheritance in e-government
networks can be defined in a concise way. After presenting the underlying formalization in the
next section we continue the example in Sec. 5 to show the relevant features of the approach for
ensuring security in e-government networks.

3 Transformation of Graphs with Inheritance

Graph transformation with node type inheritance [8, 15] provides main aspects of inheritance, in
particular inheritance of attributes and edge types from parent node types to children node types.
In this section we lift transformations from the instance level to the meta levels in order to support
a formal basis for editing and analyzing meta-models, i.e. type graphs with inheritance within
the framework of graph transformation. Recall further that meta-modelling is captured by graph
transformation using the concept of type graph hierarchy [4, 7].

Note that we use the algebraic notion of graphs, where a graph G = (V, E, s,t) is given by a
set of nodes V', a set of edges F and functions s,t: E — V specifying source and target nodes for
each edge. A graph morphism f : G; — G2 is a pair of mappings (fy : Vi — Vo, fg : E1 — E»)
compatible with source and target functions, i.e. fiy 0s1 = ss 0 fg and fy oty =ts 0 fg. In order
to improve readability of the paper we present our inheritance concepts first for graphs without
attribution, but in Sec. 6, we show how all concepts and results can be extended to attributed
graphs. Note that the following notion of I-graphs slightly differs from [8] by using a relation
for capturing the inheritance information (instead of a separate graph with distinguished abstract
nodes) in order to simplify further constructions.

Definition 1 (I-Graph). Graph with Inheritance, short I-Graph, is given by GI = (G,I). It
consists of graph G and inheritance relation I C Gy x Gy, where for v € Gy clany(v) = {v' €
Gy | (v',v) € I*} with T* being the reflexive and transitive closure of 1.

Remark 1. According to [8, 15] as well as MOF' [20] and UML [21] we do not require that the
inheritance relation is cycle free.



I-graph morphisms - not considered in [8] - are based on clan-morphisms [8] taking into account
inheritance.

Definition 2 (Clan-Morphism). Given graph G1 and I-graph GI2 = (G2, 12) a pair of mappings
f= (v, fe): G1 = G2 is called clan-morphism, written f: G1 — GI2, if Vel € Glg :
frosagi(el) € clanya(sga o fr(el)) A fyotgi(el) € clanga(tge o fr(el)).

I-graphs and I-graph morphisms define the category IGraphs.

Definition 3 (Category IGraphs). Given I-graphs GI1 = (G1,11) and GI2 = (G2,12), an I-
graph morphism [ : GI1 — GI2 is given by a clan-morphism f : G1 — GI2, which is I-compatible,
i.e. (v,w) € Il implies (f(v), f(w)) € 12*. The composition of I-graph morphisms f : GI1 — GI2
and g : GI2 — GI3 is defined by go f : GI1 — GI3 with (go f)y = gv o fy : Gly — G3y and
(gof)e=gro fr:Glg — G3g. The category of I-graphs and I-graph morphisms is denoted by
IGraphs.

Example 4 (I-graph Morphism). The following example shows I-graph morphism f : GI0 — GI1
where grey numbers indicate the mappings. According to I-compatibility the identification of nodes
vy and vy contained in GIO0 is possible, because (v45,v45) € I1*. Furthermore, inheritance between
vl and v2 of GIO can be refined into several steps as shown by node vi1 in GI1. The clan mor-
phism f can additionally map edges to edges between nodes of super types as shown by e3.

GI0 a GI1
()5 ()
/\ /\ —f—
6 3
3
IO ONON
Remark 2. 1. I-compatibility is equivalent to

(v,w) € I1* implies (fv (v), fv(w)) € 12*.

2. Given I-graph morphisms f and g then: go f : GI1 — GI3 is an I-graph morphism,
because I-compatibility of f and g implies that of g o f and we can show for all e; € Gl :
(g0 flvosai(er) =gv o fvosailer) € clanss(sas o (g0 f)e(er)).

3. Each clan-morphism f : G1 — GI2 is also an I-graph morphism f : GI1 — GI2 with
GI1 = (G1,11) and I1 = 0, because in this case I-compatibility is trivial. This implies
also that the composition of a clan-morphism f : G1 — GI2 with an I-graph morphism
g: GI2 = GI3 is a clan morphism go f: G1 — GI3.

In order to enable automatic critical pattern detection and user driven transformation for
meta-models we lift graph transformation from the instance level to all meta levels within the
abstract framework of weak adhesive HLR categories [8]. This way we can apply the well-known
results for the abstract framework, e.g. analysis and correction can be parallelized and distributed
to meta-model parts in case of several e-government networks.

For defining a weak adhesive HLR category we need to distinguish a suitable class M fulfilling
certain properties. We propose the class Mg_,.q of subtype-reflecting morphisms, because on
the one hand DPO-rules based on these morphisms are powerful enough to generate all kinds of
cycle-free inheritance graphs on the meta-model level and on the other hand (IGraphs, Mg_,cpq)
can be shown to be a weak adhesive HLR category with componentwise construction of pushouts
and pullbacks. Note that this fails to be true for the class M of all injective I-graph morphisms.

The notion of subtype reflection, short S-reflection, defines the condition that for each node n
in the image of a morphism f it holds that all subtypes of n are in the image of f as well. We
will need this condition for the proof of Thm. 4.



Definition 4 (S-reflecting Morphism). An S-reflecting morphism f1: GI0 — GI1 is an I-graph
morphism f1 : GI0 — GI1, where f1 is an injective graph morphism and has the S-reflection
property: ¥ (vi1,v1) € I1*,00 € GIO0y : v; = fly(vo) = T ver € GIOy : fly(ver) = v11 A
(1)017’()0) e 10*.

All rules in Figures 3 and 4 are S-reflecting, i.e. their rule morphisms are S-reflecting. Note
that standard graph transformation rules, i.e. rules without inheritance, can be interpreted as
S-reflecting rules by adding empty inheritance relations to their graphs.

In order to proof Thm. 4 in this section we first present main constructions and characteriza-
tions of the weak adhesive HLR category (IGraphs, Mg_,.f;) like pushouts and pullbacks along
S-reflecting Morphisms.

Theorem 1 (Pushouts in IGraphs along S-reflecting Morphisms).
Given an S-reflective morphism f1 : GI0 — GIl‘and a general Tf—graph GI0 f1 cI1
morphism 2 : GI0 — GI2 then the pushout (1) in IGraphs ezxists and

can be constructed componentwise for the V- and E-components with I3 = f2l (1) igl
(9lv x gly)(I1)U (g2v x g2v)(12). Moreover, go : GI2 — GI3 becomes

an S-reflecting morphism. GI2 — g2 GI3

Remark 3. The theorem holds also for injective graph morphisms f1 and g2 without S-reflection
property.

Proof. Given f1 and f2 as in the theorem we construct G3g with glg,
fle

Glg

|

g2 as pushout in the back square and G3y with gly, g2y  GOp
as pushout in the front square. Since f1 : GO — G1 is w\*

1
a graph morphism the top square commutes, but the left 28 GOy vl | Gly
square does not commute in general. We construct s3 : i ) J,glE ‘
G3r — G3y and t3 : G3g — G3y such that the bottom G2 — g—iG3E glv
square commutes and gl in the right square becomes a \ f2v \
. s2 s3
clan-morphism. We define G2y —— > G3y
92v

53(c3) = { g2y o s2(e2) for g2p(e2) = e3 and €2 € G2
gly o sl(el) for glg(el) = e3 ¢ g2 (G2E)
and similar for t3(e3)

By construction the bottom square commutes leading to an injective graph morphism
g2 : G2 — (3, where €2 € G2 is unique because flg and hence g2p are injective. Since
glg is injective on Glg \ flg(GOg) and glg(el) ¢ ¢g2r(G2g) we have el € Glg \ fl1g(GOg)
such that el is unique with glg(el) = e3 in case 2. For el € flg(GOg) the clan-morphism
property gly o sl(el) € clanys(s3 o glg(el)) holds using the clan-morphism property of f2
and for el € Glg \ f1g(GOg) the clan morphism properties holds, because we have directly
gly o sl(el) = s3 0 glg(el) using the construction of the pushouts for nodes and edges in Sets.
According to the definition of I3 = (gly x glyv)(I1)U(g2y x g2v)(12) g1 and g2 are I-compatible
and hence, I-graph morphisms. This allows to show the universal pushout properties in the
category IGraphs. Moreover, the S-reflecting property of g2 holds using that of f1. O

Beside existence of pushouts along M-morphisms a weak adhesive HLR category also has
pullbacks along M-morphisms. As for pushouts S-reflecting morphisms furthermore ensure the
componentwise construction of pullbacks stated in Theorem 2, thus constructions in IGraphs can
be transferred to componentwise constructions in Sets. Note, however, that there are pullbacks
in IGraphs along injective morphisms, which cannot be constructed componentwise.

Theorem 2 (Pullbacks in IGraphs along S-reflecting Morphisms).

f1
Given an S-reflecting morphism g2 : GI2 — GI3 and a general I-graph GI0 — GI1
morphism gl : GI1 — GI2 then the pullback (1) in IGraphs exists and fQi/ (1) i/gl
can be constructed componentwise for the V- and E-components with GI2 —= GI3
g2



10* defined by
(vo,v4) € 10* < (fly(vo), flv(v))) € I1* and (f2v(vo), f2v(v()) € 12*.
Moreover, f1 becomes an S-reflecting morphism.

Idea.

Given g1 and g2 as above we construct GOg with flg, f2g GOp fle Glp

as pullback in the back square and GOy with fly, f2y \ \il

as pullback in the front square. Since g2 : G2 — G3 is lESO GOy flv ‘ Gly

a graph morphism the bottom square commutes, but the i ols

right square does not commute in general. We construct 925 ‘
s0 : G0g — GOy such that the top square commutes and G2p — ;) G3g  gtv
f2 in the left square becomes a clan morphism. We define 32\ v 53\*

for e0 € GOg G2y 2y G3y

50(e0) = f1;,' (sl o f1g(e0)) and similar
t0(e0) = f13,' (t1 o f1p(e0)).

According to injectivity of f1y this definition is well-defined if s1 o f1g(e0) € f1y(GOy) and
similar for ¢1. This property holds due to the S-reflection property of g2. This implies also that
f1 becomes a S-reflecting morphism and f2 an I-graph morphism using the definition of I0*.
Finally, this construction implies the universal pullback properties in IGraphs.

O

Remark 4. Note that I0 is defined uniquely up to transitive closure only. But this is sufficient
according to the characterization of isomorphisms in IGraphs in part 1 of Thm. 8. Graphs
GI0 = (G0,10) and GI1 = (G1,I1) are isomorphic in IGraphs iff GO and G1 are isomorphic
in Graphs by some f : GO — G1 and (fy x fv)(I0*) = I1*, which implies that (GO, I0) and
(GO, 11) are isomorphic for I0* = I1*.

Theorem 3 (Characterization of Constructions in IGraphs). 1. f: GI0 — GI1 inIGraphs

is isomorphism < f : GO — G1 in 1Graphs s isomorphism in Graphs and
(fv x fv)(I0*) = I1*. This means especially id(GO0, I0) = (GO, I1) in IGraphs iff 10*
117",

2. Let diagram (1) be in IGraphs with S-reflecting g2, then: a0 an
(1) is pullback in IGraphs < ) ) )
(1) is componentwise pullback in Sets and f1 is S-reflecting. / o g

3. Let diagram (1) be in IGraphs with S-reflecting f1 and f2, then:
(1) is pushout in IGraphs <
(1) is componentwise pushout in Sets and gl, g2 are S-reflecting.

Proof. 1. Given g : GI1 — GI0 in IGraphs with go f = idgjo and fog =1idgr1 we have f is
isomorphism in Graphs and (fy x fy)(J0*) C I1* and (gv x gy )(I1*) C I0*. This implies
11 = (fy x fo)(gv % g0v)(I1%) C (fv x fy)(I0°) € I1* and hence, (fy x fir)(I0%) = I1°.
Vice versa, ¢ : G1 — GO in Graphs with go f = idgo, fog =idg and (gv x gv)(I1*) =
(9v x gv)(fv x fv)(I0*) = I0* implies I-compatibility of g and similar for f.

2. Follows from Theorem 2 and vice versa it is sufficient to show the defining property for 10*.

3. Follows from Theorem 1 and vice versa it is sufficient to show by item 1: I3* =
[(91v x glv)(I1) U (g2v x g2v)(12)]".
O



According to Thm. 1 and Thm. 2 pushouts and pullbacks along S-reflecting I-graph mor-
phisms can be constructed componentwise and the class Mg_.q is closed under pushouts and
pullbacks. Therefore, DPO transformations of S-reflecting rules are well defined and can be con-
structed componentwise in IGraphs. Furthermore theses properties are part of the conditions for
weak adhesive HLR categories and in fact, the category (IGraphs, Mg_,.q) is a weak adhesive
HLR category (see Remark 5 below).

Theorem 4 ((IGraphs, Mg_,.q) is Weak Adhesive HLR Category). The category IGraphs
of graphs with inheritance together with the class Mgs_ren of S-reflecting morphisms is a weak
adhesive HLR category.

Remark 5 (Weak adhesive HLR category). According to the definition of weak adhesive HLR
categories (see Definition 4.13 in [8]) (IGraphs, Ms_,.q) has this property if

1. Ms_req is a class of monomorphisms closed under isomorphisms, composition and decom-
position

2. 1Graphs has pushouts and pullbacks along Mg_,.q-morphisms and Mg_,.q is closed under
pushouts and pullbacks

3. (IGraphs, Mgs_,cq) has the weak VK -property, i. e. given a cube as below, where the
bottom face is a pushout with f1 € Mg_,eq and the back faces are pullbacks and one of the
following two cases is satisfied, then we have: top square is pushout < front squares are

pullbacks.

case 1 Also f2 € Mg_q.q. . GI4 —n1—— GIb
|

case 2 Also 11,12,13 € Ms_ep. Gmi Yo l‘

o

We. can concludg for eacﬁ direction of the l‘ GI0 f1 CI1

equivalence by item 2 in case 1:  also f fj’/ -

91,92,h1,h2,k1,k2 € Mg_rq and in case 2: gl

GI2 92— GI3

also g2,h1,k2,10 € Mg_.q.
In order to show the remaining conditions for a weak adhesive HLR category, we use the
above-mentioned characterization of some constructions for simplifying the next steps.

Proof of Thm. 4. We have to show properties 1-3 in Remark 5.

1. The properties hold directly by the definition of S-reflecting morphisms.

2. See Theorems 1 and 2.

3. case 1 If the top square is pushout then top and bottom are also componentwise pushouts
and back squares are componentwise pullbacks in Sets. According to the (weak) VK-property in
Sets the front squares are componentwise pullbacks. By Theorem 3.2 with k1,k2 € Mg_,cpn the
front squares are pullbacks in IGraphs. Vice versa, given pullbacks in the front squares the top
square is componentwise pushout. Now k1,k2 € Mg_,.q implies by Theorem 3.3 that the top
square is pushout in IGraphs.

case 2 If the top square is pushout we conclude as in case 1 that the front squares are pullbacks
using now Theorem 3.2 with {1,12 € Mg_,.p. Vice versa, given pullbacks in the front the top
square is as in case 1 componentwise pushout, but this time we cannot use Theorem 3.3 to show
that the top square is pushout in IGraphs, because we may have k1 ¢ Mg_,.n. According to
Theorem 1 and 3.1, however, it suffices to show I7* = [(kly x kly)(I5) U (k2y x k2v)(16)]*.
The inclusion from right to left follows because k1, k2 are I-compatible. The inclusion from left
to right follows by I-compatibility and S-reflection of {3, the pushout property in the bottom and
S-reflection of [1 and [2. O

Remark 6 (Additional Properties for M-adhesive categories). In order to obtain the results for
graph transformation based on (IGraphs, Ms_.q) in Corollary 2 below we need - according to
[8] - the following additional properties for the class M’ of injective I-graph morphisms, which are
also graph morphisms:



1. & — M’ —pair factorization with M — M'—PO-PB decomposition for M = Mg_refi
2. Initial pushouts over M’-morphisms
3. Coproducts compatible with M

In order to show the properties in Rem. 6, we use the concept of finitary categories [5] based
on M-adhesive categories, which are a generalization of weak adhesive HLR categories. An object
A in an M-adhesive category (C, M) is called finite if A has finitely many M-subobjects, where
the M-subobjects A’ of A are given by M-morphisms m : A’ — A up to isomorphism. An
Me-adhesive category (C, M) is called finitary, if each object A € C is finite. Typed graphs in
(Graphstg, M) are finite if the node and edge sets have finite cardinality, while the type graph
TG itself may be infinite. This implies that graph with inheritance in (IGraphs, Mg_,.n) are
finite, if the node and edge sets have finite cardinality.

Corollary 1 (Additional Properties for (IGraphs, Mg_,cq)). The properties in Rem. 6 hold for
the category (IGraphs, Mgs_,.q) restricted to finitary graphs with inheritance.

Proof. Let (IGraphsg, Mg_rcn r) be the M-adhesive category (IGraphs, Mg_,.z) restricted to
finitary graphs with inheritance. The empty graph GI = (&, @) is an M-initial object, meaning
that for each object HI € IGraphsg the initial morphism i : GI — HI is in M. This implies
the existence of finite coproducts with injections in M by Prop. 2 in [5]. According to Prop. 6
in [5], we further derive a construction for initial pushouts and by Prop. 5 in [5] we derive the
&' — M’ —pair factorization with M — M’—PO-PB decomposition for M’ = M = Mg_,cq;. O

As a consequence of Cor. 1 above, we derive the following additional HLR properties for
(IGraphs, Mgs_,.5) concerning the case of finitary graphs with inheritance.

Corollary 2 (Results for (IGraphs, Ms_,.q)). The following results for graph transformation
based on (IGraphs, Ms_,.q) are valid for the case of finitary graphs with inheritance:

e Local Church Rosser Theorem for pairwise analysis of sequential and parallel independence
(Thm. 5.12 in [8])

e Parallelism Theorem for applying independent rules and transformations in parallel (Thm.
5.18 in [8])

e Concurrency Theorem for applying E-related dependent rules simultaneously (Thm. 5.23 in

[8))

o Embedding and Fxtension Theorem for transferring transformations and analysis results to
more complex scenarios (Thms. 6.14 and 6.16 in [8])

e Local Confluence Theorem and Completeness of critical pairs for analyzing conflicts and for
showing local Confluence (Thm. 6.28 and Lemma 6.22 in [8])

Proof. These results are shown in [8] for weak adhesive HLR categories with the additional prop-
erties in Rem. 6. The category (IGraphs, Mg_,.q) is a weak adhesive HLR category by Thm. 4.
The properties in Rem. 6 hold for the category (IGraphs, Mg_,.q) restricted to finitary graphs
with inheritance according to Cor. 1. O

4 Flattening of Graph Transformations with Inheritance

Before we show how the results in Corollary 2 can be applied in our scenario of e-government
networks let us discuss other approaches which may avoid to work in the category IGraphs.
The intuitive semantics of an I-graph GI is the graph GI defined by closure or flattening of the
inheritance relation I in Def. 5 as considered already for type graphs with inheritance in [8]. The
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inheritance closure is a cofree construction (see Thm. 5) leading to a cofree functor from IGraphs
to Graphs. This implies that pullbacks are preserved, but as shown in Example 5 - pushouts
are not preserved in general. For this reason, transformations with inheritance cannot easily be
reduced to standard graph transformation by flattening.

Definition 5 (Closure or Flattening of I-Graph). Given I-graph GI = (G, I) then the closure GI
is a graph GI = (Glv, GIE,s@Jm) with GIy = Gy, GIg = {(v1,e,v2) € Gy x Gg x Gy |v; €

clant(sg(e),va € clani(ta(e)))}, sgp(vi, e, va) = v, tg7(vi,e,v2) = va. The closure GI is also
called flattening of GI.

A concrete example of a closure is shown by graphs H and H in Fig. 6. Furthermore, the closure
can be extended to a cofree construction (see Thm. 5 below). However, the cofree construction
using the functor (7) does not preserve pushouts in general and not even pushouts along S-reflecting
morphisms.

Graphs
ittt N [ = e bbby LT T =

[ ‘Servlll \ | |‘,,L,J [Z:Sen/llll | LR ! |

| [ |

DatiFlon } i I —1 DataFlow !

il P TSenil] |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

' Voo
77777777777 [ bbbl T —————a =TT T T
! LG Zsvn) + LA i [‘ ) }
|
: 2:Swvlll | 1] ! I sl 2:5rvill] t | [ LSl 2:Svill |
(oot —fzs) | | {[Esr—fasw] | | |}z |
DataFlow HHES |—! DataFlow vl ‘
i | | | |
| -

[DBs:Swil]} | | [DBS:SWviI] | [BSSvil} | | pagrigw DBS:SVI]

Figure 6: POs in IGraphs are not preserved by flattening

Example 5 (Flattening of Pushouts). The flattened pushout object H of H in Fig. 6 is not the
pushout object H' of the flattened span G < L — R. The overall problem is that a pushout in
Graphs does not construct the implicit edges given by inheritance relations.

In the following we show that the intuitive semantics of graphs with inheritance given by the
following flattening construction leads to a cofree construction. But since pushouts are not pre-
served by this construction it cannot be used to reduce transformations of graphs with inheritance
to standard graph transformation.

Theorem 5 (Inheritance Closure is Cofree Construction). For each I-graph GI the closure
(GI,u(GI)) is a cofree  construction with respect to the inclusion  functor
T : Graphs — IGraphs defined by Z(G) = (G,I) with I = 0, Z(f) = f. Hence, the cofree
functor (7) : IGraphs — Graphs is right adjoint Z - () : IGraphs — Graphs.

This means especially that each I-graph morphism f : GI1 — GI1 R GI2
GI2 extends uniquely to a graph morphism f : GI1 — GI2 u(gnm = ,Tu(ng)
with f ou(GI1) = u(GI2)o f. Yelsl e

Fi

Proof. See also [8]. Given I-graph GI = (G, I) with closure GI then the universal clan-morphism
uw(GI) : GI — GI is defined by u(GIy) = idgr, : GIy — GIy and u(GIg) : GIg — Glg
defined by u(GIg)(v1,e,v2) = e € Gg. Now, it suffices to show the following universal property:
for each I-graph morphism f : Z(G1) — GI2, which is a clan-morphism f : G1 — GI2, there

is a unique graph morphism f: G — (GI2) with u(GI2) o Z(f) = f. In fact, f is given by
fv =fv:Gly - G2y = GI2y and fg : Glg — GI2g defined for el € Glg by fg(el) =
(fvosailel), fe(el), fv otai(el)) € GI2g.

O
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5 Analysis of E-Government Network Meta Models

During each phase of system design critical patterns may occur, which can imply unwanted be-
haviour and possibilities for a loss of security. The earlier they can be detected and the earlier they
can be corrected the lower is the risk of a system containing critical parts in its implementation.
This motivates to apply analysis techniques as early and as abstract as during the meta-model
development. This section shows how critical patterns can be specified and automatically elim-
inated. In order to explain our approach we first describe a specific attack to an e-government
system. Even though the cause of this attack is hard to detect on the implementation level the
elimination of a suitable critical pattern in the meta-model ensures that this attack cannot occur.
For the attack we assume that an intruder got access to the web server already.

M p_c:ConSetup personalCS:ConSetup a_cl:ConSetup
| PC:Client I::I WebS:Srv_| [ 1 AS:Srv_Il [—————7173:Srv_lll
p_d:DataFlow L encrypted:DataFlow /N a_d1:DataFlow
ggnferalCS:ConSetup AS2:Srv I
plain:DataFlow =
type
|
ﬁ(&, 3:personalCs.
’7 4:encrypted

1p_c
| Dell:PC l::] Roxen:WebS I—_ng‘pel;?rl]cs > Tax:AS2
2:p_d ’

Figure 7: Configuration for possible attack

Example 6 (Intrusion Attack). Fig. 7 shows a meta-model TG ggovs and an instance G ggovs
with clan morphism type. There are two types for possible connection setups from server “Roxen”
to server “Tax”, because of the inheritance relation between “AS2” and “AS” in TG EGovs- Assume
that the application server “Tax” in GEgoevs processes both confidential requests for receiving and
updating personal information for tax declaration via secure encrypted data channel “4:encrypted”
and requests for general information regarding dates, laws and submission address for preparing a
tax declaration via unencrypted channel “6:plain”. The following sequence describes the intrusion:

o A user requests gemeral information, stays connected and performs a log-in to request in
addition also personal information.

e Because of high load of channel 4 a scheduling algorithm on web server “Roxen” decides to
transfer some personal data via channel 6.

e The user receives the data, which is not encrypted during the communication.

o The intruder with access to the web server may now observe the insecure communication and
intercept some confidential data.

A successful interception of the response is hidden. Even if misuse of confidential data for
another service is detected at a later stage, locating the error is hard. Even though the channels
were initially assigned correctly according to the kind of data the intrusion happened, because of
a side affect of the scheduling algorithm, which is hidden to the model. Hence, possibilities for
side effects on the implementation basis should be minimized.

Rule “deleteRedundantConnection()” in Fig. 8 can detect the critical pattern of web servers
that can communicate via different types of connections simultaneously. A valid match of the rule
states a detection and the developer of the model may apply the rule for automatic correction
causing the deletion of the more specific connection type. This deletion of edges “generalCS” and
“plain” in TG ggops implies in particular that instance Gggops is not typed correctly any more,
because the edges 5 and 6 cannot be mapped type consistently.

12



deleteRedundantConnection()

RT " 4Consetup "

}‘—Il 1:Node [::] 2:Node |
I
I
I
I

4:ConSetup

I L
T‘—II 1:Node [::] 2:Node |

|
|
| L ‘S:DataFIow JAN ::>
| :ConSetup. |
I 3:Node
| e — T

:ConSetup :DataFlow

3

: I

|

! Lo |

I I | - I
| = .
| | | :ConSetup :DataFlow |
: :ConSetup :DataFlow : | |
| |
| | | |
| |

2:Srv_lll

Figure 8: Checking rules for analysis

A further rule for analysis and correction is given by “deleteDirectCS()” in Fig. 8. The positive
application condition PAC' requires a possible connection setup via a proxy node, while the left
hand side L already matches a direct connection setup link between a server of zone I and a server
of zone III. This situation may easily occur, if verbal requirements for the model are realized
directly. Since communication shall only be possible between neighbouring zones this pattern is
critical and has to be corrected by applying rule “deleteDirectCS()”. Note especially that the
pattern is very flexible, because the proxy node is of the general type “Node”.

In the following we show how we can apply the well-known results for adhesive HLR systems
(see Cor. 2).

TGEGou4 w_cl:ConSetup-

/_d1:DataFlow:

p_c:ConSetup ,—W
— - w_c2:ConSetup;
[PC:Client |3 WebS:Srv_

p_d:DataFlow

A
{ 51Z3:Srv_llIl

. a cl:ConSetup
AS:Srv_lI a_dl:DataFlo

/_c3:ConSetup

Figure 9: Conflict situation for rules deleteDirectCS() and deleteRedundantConnection()

Example 7 (Critical Pair). Fig. 9 shows graph TG gGova, which demonstrates a conflict situation
for the rules “deleteDirectCS()” and “deleteRedundantConnection()” (see Fig. 8). Both rules
can be applied to this graph and the matches are indicated by dark respectively light grey marked
regions, where the first match is a proper clan-morphism. Both matches overlap on edges “w_c3”
and “w_d3” that will be deleted by the rule applications. Thus, these rule applications are parallel
dependent and there is a conflict of deciding which one to apply. This leads to a critical pair.

If in other situations the rule applications overlap only in their interfaces they are parallel
independent and according to the Local Church Rosser and Parallelism Theorem (see Corollary
2) we can apply the rules in any order or in parallel.

According to the general result on completeness of critical pairs (see Corollary 2) there is a
critical pair for each possible conflict. Hence, it suffices to calculate all critical pairs using tool
support, which is available for standard graph transformation already [23]. If all critical pairs are
strictly confluent we can apply the Local Confluence Theorem (see Corollary 2) in order to show
that different applications of the analysis rules lead to the same result. Otherwise the aim is to
group the analysis rules, such that there is no critical pair between two of the same group. In this
way the analysis in each group can be applied in parallel using one parallel rule according to the
Parallelism Theorem.
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In practical situations meta-models are more complex, which results in a higher amount of
node and edge types. Since critical patterns do normally contain only few nodes and edges it
is quite usual that several rules are independent from each other and can be put in the same
independence group. Therefore, our approach scales up for complex systems, where an automatic
critical pattern detection and elimination is highly desirable. Note in particular that pure critical
pattern detection without correction will never involve conflicts, since there is no deletion. For
this reason it can be parallelized and distributed without calculating critical pairs.

Altogether we can use the results in Corollary 2 for parallel critical pattern detection and
analyze how far different orders of the elimination of these patterns lead to the same result.

6 Theory of Attributed Graphs with Inheritance

In this section we discuss briefly how to extend the theory in Sec. 3 from graphs with inheritance
to attributed graphs with inheritance. According to Definition 8.4 in [8] an attributed graph
AG = (G, D), short A-graph, is an E-graph G combined with a data type algebra D over a data
signature DSIG, where the data nodes Vp of G are equal to the disjoint union of data domains
Dy of D. In this context an F-graph G consists of graph nodes Vi, data nodes Vp , graph edges
FE¢, node attribute edges En4 and edge attribute edges Fr4 together with the following source
and target functions:

sg : BFg = Vg,tqg : Eq — Vg for graph edges, sya : Ena — Vg, tg : Ena — VpG for node
attribute edges, and sgpa : Epa — Eg,tq : Epa — VpG for edge attribute edges.

An attributed graph morphism f : AG' — AG? for AG' = (G*,D*)(i = 1,2) is a pair
f = (fa, fp) of an E-graph morphism fg : G! — G? and an algebra homomorphism fp D! — D?
which are compatible on data nodes Vp and corresponding data domains D! (see 8.1 in [8]) for
more details.

Similar to attributed type graphs with inheritance in 13.1 of [8] an attributed graph with inher-
itance AGI = (G, D, I), short AI-Graph, is an attributed graph AG = (G, D) with graph nodes
Vi and inheritance relation I C Vg X Vg defining the (inheritance) clan
clany(v) = {v' € Vg | (v/,v) € I*} for all v € V.

Given an A-graph AG1 = (G1,D1) and an Al-graph AGI2 = (G2,D2,12) f: AG1 — AGI2
is called clan-morphism if f = (fq, fp) consists of an E-clan morphism fo : G1 — (G2,12)
(defined below) and an algebra homomorphism fp : D1 — D2, which are again compatible on
data nodes V}} and corresponding data domains D!. An E-clan morphism fg : G1 — (G2,12) is
given by
fe = (fvie, fv.ps fe.e, fe.NaA, fB.EA) With functions fy,; : V' — V2(i € {G,D}) and fg; :
E} — Ej(j € {G,NA, EA}) such that fo commutes with all source and target functions of G1
and Gy for s& 4, t% 4, and 4, (i = 1,2) and commutativity up to inheritance I2 for sk, %, and
shali=1,2), ie.
fv.gosg(el) € clana(s o frc(el)) for el € B} (and similar for ¢}, %)
fv.g o sha(el) € clanpa(si 4 © fe.na(el)) for el € EX,. Note that any E-graph morphism
fo : Gt = G? is also E-clan morphism fg : G — (G2, I?) for any I°.

Definition 6 (Category AIGraphs). Given Al-graphs AGI;, = (G;,D;, I;) for (i = 1,2) an
AlI-graph morphism f : AGI1 — AGI2 is given by a clan morphism f : AGl — AG2, which is
I-compatible, i.e. (v,w) € Il implies (fv.c(v), fv,a(w)) € I2*. The category AIGraphs consists
of all AI-graphs as objects and all AI-graph morphisms as morphisms.

The class AMg_en consists of all AI-graph morphisms f = (fq, fp) : AGI1 — AGI2,
where fp : D1 & D2 is an isomorphism and fg : G1 — G2 is an injective E-graph morphism,
fv.g : V& — V& is I-compatible and has the S-reflection property (see Def. 3 and 4).

Theorem 6 ((AIGraphs, AMg_,.q) is Weak Adhesive Category). The category AIGraphs
of attributed graphs with inheritance together with the class AMgs_req of S-reflecting AI-graph
morphisms (as defined above) is a weak adhesive HLR category.
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Proof Idea. Using the construction of pushouts and pullbacks of attributed graphs along M-
morphisms in AGraphs given in 8.2 and 8.3 of [8] for the class M of injective attributed graph
morphisms with isomorphic algebra homomorphism the construction of pushouts and pullbacks
in IGraphs (see Theorem 142) is extended to AIGraphs. Moreover, the characterization of
constructions in IGraphs in Theorem 3 is extended to AIGraphs, which allows to extend the
proof of Theorem 4 from (IGraphs, Mg_,.q) to (AIGraphs, AMgs_q). O

Finally also Theorem 5 can be extended from Z : Graphs — IGraphs to AZ : AGraphs —
AIGraphs, where the universal property for the cofree construction is shown already for the
special case of attributed type graphs with inheritance in Theorem 13.12 of [§].

7 Related Work

In this paper we consider rule-based meta-model transformations in order to change meta-models
in a way that makes them adhere to security requirements. This includes refactoring steps, such
as inserting supertype nodes. Usually, model refactorings are performed at instance model level.
Various approaches exist using graph transformation to provide a formal specification of model
refactorings [17, 18, 10, 3]. It has the advantage of defining refactorings in a generic way, while still
being able to provide tool support in commonly accepted modeling environments such as EMF
[2]. In addition, the theory of graph transformation allows the modeller to formally reason about
dependencies between different types of refactorings. Synchronized rules are applied in parallel to
keep coherence between models. Considering the special case where exactly two parts (one model
diagram and the program or two model diagrams) are related, the triple graph grammar (TGG)
approach by Schiirr et al. [22] is used frequently.

Our transformation approach at meta-model level is most useful during meta-model develop-
ment to ensure security requirements before instance graphs are created. An interesting line of
research is the co-evolution of meta-models of higher levels and the corresponding meta-models at
lower levels, down to instance models. Changing one meta level may cause implications for model
updates of lower levels to keep them consistent (migration problem) A promising approach for
automatic migration of instances is described in [16], where meta-model changes are transferred
to lower levels by pullback constructions using non-injective morphisms. In this case, the rule
morphisms K % L for the meta level transformations have to be non-injective. This leads to
non-functional behaviour of DPO rewriting. In [6], SqPO rewriting is introduced, which is an
extension of DPO rewriting taking into account this problem.

8 Conclusion

The formal basis for type graphs with inheritance was presented already in [1, 8, 15] and the
semantics given by the closure construction coincides with the one of the inheritance concept of
the meta-modelling language MOF [20]. For this reason, the presented extension of the theory
to transformations of type graphs with inheritance enables DSL modellers to define modifications
of meta-models which contain inheritance information. Apart from the presented case study
of e-government network security, a wide range of meta-model based application domains are
conceivable, in particular hierarchical and integrated systems of meta-models.

The paper showed that graphs with inheritance together with the introduced class of S-
reflecting morphisms forms a weak adhesive category. Hence, the introduced formalization of
transformations of meta-models allows modellers to apply various techniques for analysis of the
meta-modelling process, due to the fact that well-known results for confluence analysis and con-
flict detection exist for weak adhesive HLR systems [8]. For instance, in the case of the sample
scenario, when the necessary meta-model changes of several modellers conflict each other, the
formal techniques for merging and conflict detection support a consistent synchronization. And
in the case of local changes of parts or views of the model, the changes can be embedded into the
overall model if the consistency condition of the Embedding Theorem is fulfilled. Note that the
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presented approach is suited also in other application domains for checking formally the fulfillment
of security requirements during design phase.

Future work on the theoretical formalization will include an analysis of the gluing condition

and characterization of critical pairs for transformations of graphs with inheritance. Moreover,
the migration problem discussed in Sec. 7 is an important problem when meta-models have to
be modified where instance models exist which have to be kept consistent. The SqPO rewriting
approach [6] seems to be a good candidate for future extensions of the presented theory in the
context of model migration. Finally the critical pair analysis of the tool AGG shall be extended
to the case of graphs with inheritance.
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