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Abstract

Differential equations are an important building block for modeling processes in physics,
biology, and social sciences. Usually, their exact solution is not known explicitly though.
Therefore, numerical schemes to approximate the solution are of great importance. In
this thesis, we consider the temporal approximation of nonlinear, nonautonomous evolution
equations on a finite time horizon. We present two independent approaches that can be
used to find a temporal approximation of the solution.

As the solution of a nonlinear equation typically lacks global higher-order regularity, it
cannot be expected to obtain higher-order convergence rates. Thus, we only concentrate on
schemes that are formally of first order.

In the first part of the thesis, we consider the question of how nonsmooth temporal data
can be handled. A common method for the approximation of the integral of an irregular
function is a Monte Carlo type quadrature rule. We take on this idea and use a similar
approach to approximate the solution to a nonautonomous evolution equation. If the data
is evaluated at the points of a randomly shifted grid, we can prove the convergence of the
backward Euler scheme. Moreover, we prove explicit error estimates. Here, we introduce a
second set of randomized points, where the data is evaluated, and make additional assump-
tions on the data and the solution.

Secondly, we approximate the solution via an operator splitting based scheme. We work
with both an implicit-explicit splitting and a product type splitting. First, we decompose
the operator into a monotone and a bounded part. The implicit-explicit splitting is used to
obtain one implicit equation that contains the monotone part. The bounded part is solved
in an explicit fashion. This way, we only solve as many implicit equations as necessary.
Further, we use a product type splitting on the monotone part. Even though this leads to
more problems, they are potentially easier to solve individually. For this splitting scheme,
we follow a similar approach as in the first part of the thesis. After proving the convergence
of the scheme, we provide error bounds under additional assumptions on both the data and
the solution.

In order to provide an interesting field of application, we show that the schemes can be
applied for the temporal approximation of certain nonlinear, parabolic problems.
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Zusammenfassung

Differentialgleichungen bilden einen wichtigen Bestandteil für die Modellierung von Pro-
zessen in der Physik, Biologie und Sozialwissenschaft. Allerdings lässt sich ihre Lösung nur in
seltenen Fällen analytisch bestimmen. Aus diesem Grund ist eine numerische Näherung der
Lösung von großer Wichtigkeit. In dieser Arbeit betrachten wir die Zeitdiskretisierung von
nichtlinearen, nichtautonomen Evolutionsgleichungen auf einem endlichen Zeitintervall. Wir
präsentieren zwei unabhängig voneinander anwendbare Lösungsverfahren für die zeitliche
Approximation der Lösung.

Da die Lösung einer nichtlinearen Gleichung häufig irregulär ist, können keine beson-
ders hohen Konvergenzraten erwartet werden. Aus diesem Grund konzentrieren wir uns
ausschließlich auf Verfahren, die formal eine Konvergenzordnung von eins aufweisen.

Im ersten Teil der Arbeit beschäftigen wir uns mit der Frage, wie zeitlich irreguläre
Daten behandelt werden können. Für die Approximation des Integrals einer nichtglatten
Funktion ist ein Monte-Carlo-Algorithmus häufig eine gute Wahl. Wir verfolgen hier einen
ähnlichen Ansatz, um die Lösung einer nichtautonomen Evolutionsgleichung zu approx-
imieren. Wir zeigen die Konvergenz des impliziten Euler Verfahrens unter der Verwendung
eines zufällig verschobenes Zeitgitters. Weiterhin können unter zusätzlichen Voraussetzun-
gen an die Daten und die Lösung explizite Fehlerschranken angegeben werden. Um diese zu
zeigen, wenden wir eine weitere Randomisierung an.

Der zweite Teil der Arbeit enthält ein Approximationsverfahren, das ein Operatorsplit-
ting nutzt. Wir verwenden sowohl ein implizit-explizites Splitting als auch ein Produktsplit-
ting. Hierbei zerlegen wir den Operator zunächst in einen monotonen und einen beschränk-
ten Anteil. Das implizit-explizit Splitting wird genutzt, um eine implizite Gleichung zu
erhalten, die den monotonen Anteil enthält. Der beschränkte Anteil kann in einer expliziten
Gleichung gelöst werden. Auf diese Weise entstehen nur so viele implizite Gleichungen, wie
tatsächlich notwendig sind. Weiterhin verwenden wir das Produktsplitting, um die implizite
Gleichung weiter aufzuteilen. Hierbei erhalten wir zwar mehr Gleichungen, diese sind aber
möglicherweise leichter zu lösen. Für das Splittingverfahren gehen wir ähnlich vor wie im
ersten Teil der Arbeit. Nachdem die Konvergenz des Verfahrens gezeigt ist, wenden wir uns
auch hier expliziten Fehlerabschätzungen zu, die unter zusätzlichen Voraussetzungen an die
Daten und die Lösung möglich sind.

Schlußendlich präsentieren wir für beide Verfahren ein Anwendungsbeispiel aus dem
Bereich der nichtlinearen, parabolischen Differentialgleichungen.
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Introduction

This work intends to present results on the approximation of nonlinear, nonautonomous
evolution equations on a finite time horizon. This type of equation appears when modeling
complex processes in physics, biology, and social sciences. Yet the solution can rarely be
written down explicitly. Therefore, it is important to find ways to approximate a solution
efficiently. In this thesis, we will present two independent approaches that can be helpful for
the temporal approximation of such equations. For the presented schemes, our aim is always
twofold: We begin to prove the convergence of a proposed scheme, while we do not make any
additional regularity assumptions on the solution. This verifies that our approaches work in
general settings. For practical uses, a certain classification of the size of the error becomes
important to rule out an arbitrarily slow convergence of the method. Thus, our second aim
is to show certain error bounds if the exact solution u is more regular. This quantifies the
error at least under additional assumptions.

We only concentrate on methods with a convergence order of at most one. Higher-order
schemes usually only lead to a better convergence rate if the solution is sufficiently smooth.
For general nonlinear problems, the solution usually lacks global higher-order spatial and
temporal regularity. Thus, we only concentrate on simpler schemes.

In the first part of this work, we consider a randomized scheme for the approximation of
the solution to an evolution equation. Precisely, let T ∈ (0,∞) as well as a Banach space V

and a Hilbert space H be given such that V
d
↪→ H ∼= H∗

d
↪→ V ∗. We consider the problem{

u′(t) +A(t)u(t) = f(t) in V ∗, for almost all t ∈ (0, T ),

u(0) = u0 in H.

Here, {A(t)}t∈[0,T ] is a family of operators such that A(t) : V → V ∗ for every t ∈ [0, T ].
Further, A(t), t ∈ [0, T ], is a monotone, coercive, radially continuous operator, of at most
polynomial growth. The function f : [0, T ] → V ∗ is integrable and u0 ∈ H. Our starting
point for the approximation is rather simple: We approximate the solution of the evolution
equation with the well-known backward Euler scheme. To this end, for N ∈ N, let the
equidistant temporal grid 0 = t0 < t1 < · · · < tN = T be given with tn = nk, n ∈ {0, . . . , N},
and the step size k = T

N . In order to find an approximation Un ≈ u(tn), a recursion of the
type

Un −Un−1

k
+ AnUn = fn, n ∈ {1, . . . , N}, (1)

with U0 = u0 can be solved. Here, (An)n∈{1,...,N} and (fn)n∈{1,...,N} are approximations
for the operator and the right-hand side.

The question we want to address is what kind of approximations (An)n∈{1,...,N} and
(fn)n∈{1,...,N} should be used. While standard point evaluations for merely integrable data

ix
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are not well-defined, a suitable choice is

An =
1

k

∫ tn

tn−1

A(t) dt, fn =
1

k

∫ tn

tn−1

f(t) dt, n ∈ {1, . . . , N}.

In order to obtain such values in practice, quadrature rules are applied. As these rules
mostly depend on point evaluations, irregular data remains problematic. For functions with
very low regularity, a useful approach to approximate their integral is given by Monte Carlo
integration techniques. Instead of using this approach to obtain such integrals, we include it
directly to our scheme. This can be done via randomized point evaluations and measuring
only the expectation of the error.

Here, we propose two different ways to randomize the evaluation points. First, we
consider a temporal grid, which is randomly shifted. We evaluate the data at these points.
Under general assumptions on the data and no additional regularity condition imposed on the
solution u, we can show that piecewise polynomial prolongations of the values (Un)n∈{1,...,N}
converge to the solution in a certain probabilistic sense.

Secondly, we always choose a randomized point between two randomly shifted grid points.
When the data is evaluated at these points, we can provide certain error bounds if the
solution is more regular and the data fulfills some additional assumptions. More precisely,
we assume that the solution u is an element of a fractional Sobolev space and we suppose
that the operator A(t), t ∈ [0, T ], fulfills a stronger monotonicity condition and is Lipschitz
continuous on bounded sets. Then we can provide error estimates, where we prove that the
expectation of the error is sufficiently small.

A second, independent method to improve the computation of a solution, is to decompose
the operator and consider an operator splitting. Here, we allow a monotone part A(t) : V →
V ∗, t ∈ [0, T ], as before and a Lipschitz continuous part B(t) : H → H, t ∈ [0, T ]. Then we
consider {

u′(t) +A(t)u(t) +B(t)u(t) = f(t) in V ∗, for almost all t ∈ (0, T ),

u(0) = u0 in H.

We again have the same starting point and want to solve the recursion

Un −Un−1

k
+ AnUn + BnUn = fn, n ∈ {1, . . . , N}, (2)

with U0 = uk0 . This time our aim is different and we assume that suitable approximations
uk0 , (An)n∈{1,...,N}, (Bn)n∈{1,...,N}, and (fn)n∈{1,...,N} are known. We concentrate on finding
modifications for one single backward Euler step

(I + kAn + kBn)Un = kfn + Un−1, n ∈ {1, . . . , N},

that make this step potentially easier to solve. When approximating the solution to an
operator equation that is governed by a monotone operator, it is convenient to use a back-
ward Euler scheme. Compared to the forward Euler scheme, this has much better stability
properties. The downside of the backward Euler method is that it becomes necessary to
solve an implicit equation in each step. In our setting, we assume that the operator B(t),
t ∈ [0, T ], is bounded on the pivot space H. Here, the better stability properties of the
implicit scheme are not present. Thus, we exchange BnUn in (2) by BnUn−1. We then
work with the implicit-explicit structure given by

(I + kAn)Un = kfn + Un
0 with Un

0 = (I − kBn)Un−1
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for n ∈ {1, . . . , N}. This has the advantage that not more implicit equations appear than
really necessary. As the implicit equation containing An can be complex to solve, we further
introduce M ∈ N values An

m and fnm, m ∈ {1, . . . ,M}, such that An =
∑M
m=1 A

n
m and

fn =
∑M
m=1 f

n
m. Then the backward Euler step containing An is equivalent to

(
I + k

M∑
m=1

An
m

)
Un = k

M∑
m=1

fnm + Un
0 .

An application of the well-known product splitting leads to the system of equations given
by (

I + kAn
m

)
Un
m = kfnm + Un

m−1, m ∈ {1, . . . ,M}.

Finally, we obtain a system of the type

Un
0 = (I − kBn)Un−1

and

(I + kAn
m)Un

m = kfnm + Un
m−1, m ∈ {1, . . . ,M},

with Un = Un
M for n ∈ {1, . . . , N} and U0 = uk0 . This method is not intended to lead

to an increased convergence rate. But we will see that the additional error caused by the
splitting scheme does not affect the magnitude of the error. Compared to the standard
backward Euler scheme, this approach leads to more subproblems. These can potentially
be easier to solve such that the total computational time may decrease. A suitable choice
of the decomposition for A(t) and f(t), t ∈ [0, T ], can even lead to a problem that is easier
to parallelize. In modern hardware structures, parallelization can be a powerful tool to
accelerate the algorithm.

We follow a similar intention as for the randomized scheme and prove the convergence
of piecewise polynomial prolongations of the values (Un)n∈{1,...,N}. Under the additional
regularity condition that u is Hölder continuous and that the operator A(t), t ∈ [0, T ], fulfills
a stronger monotonicity condition and a bounded Lipschitz condition, we can prove explicit
error bounds.

This thesis consists of extensions of the following works, which were developed over the
last years.

(i) M. Eisenmann and E. Hansen. [34]

Convergence analysis of domain decomposition based time integrators for degenerate
parabolic equations. Numer. Math., 140(4):913–938, 2018.

(ii) M. Eisenmann and E. Hansen. [35]

A variational approach to splitting schemes, with applications to domain decomposi-
tion integrators. ArXiv Preprint, arXiv:1902.10023, 2019.

(iii) M. Eisenmann, M. Kovács, R. Kruse, and S. Larsson. [37]

On a randomized backward Euler method for nonlinear evolution equations with time-
irregular coefficients. Found. Comput. Math., Jan 2019 (Online First).

(iv) M. Eisenmann and R. Kruse. [38]

Two quadrature rules for stochastic Itô-integrals with fractional Sobolev regularity.
Commun. Math. Sci., 16(8):2125–2146, 2018.
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In the separate chapters, we explain in more detail how the content of this thesis is related
to the works mentioned above. Furthermore, two additional papers appeared within the last
years. Their content is not included directly in this thesis.

(v) M. Eisenmann, E. Emmrich, and V. Mehrmann. [33]

Convergence of the backward Euler scheme for the operator-valued Riccati differential
equation with semi-definite data. Evol. Equ. Control Theory, 8(2):315–342, 2019.

(vi) M. Eisenmann, M. Kovács, R. Kruse, and S. Larsson. [36]

Error estimates of the backward Euler-Maruyama method for multi-valued stochastic
differential equations. ArXiv Preprint, arXiv:1906.11538, 2019.

This monograph mainly consists of variations for the well-known Rothe method, which is
used in [99]. We prove convergence results of a semidiscrete scheme in a variational setting.
Similar approaches can be found in [35, 37, 40, 41, 42, 44].

When it comes to discretizing evolution equations, different strategies can be used. It
is possible to use a semi-discretization either via a temporal discretization or a spatial
discretization. In order to obtain a full discretization, these two strategies can be combined.
This leads, in particular, to an implementable method. A more basic introduction to the
numerical approximation of linear evolution equations can be found in [80, 111]. There, the
solutions of linear parabolic equations are approximated using a fully discretized scheme
involving a Galerkin approximation.

We only concentrate on a temporal discretization in this work and use the concept of
variational solutions. A full discretization can be obtained in a somewhat natural way. One
of the main aspects of the concept of variational solutions is to look at the problem in a
certain tested way. A Galerkin scheme can easily be integrated through a finite-dimensional
space of test functions. This also includes the finite element method.

Two important classes of methods to approximate the solution of a differential equation
are Runge–Kutta and multistep methods. For a more basic introduction, we refer the
reader to [105]. Applications of Runge–Kutta methods to evolution equations can be found
in [44, 53, 60, 87, 95] and multistep methods in [40, 41, 58, 81]. The backward Euler method
is one of the most simple prototypes of these classes of algorithms. Randomized point
evaluations for both the backward and the forward Euler scheme have been considered in
[25, 37, 71, 75] for different types of problem classes.

An introduction to operator splittings can be found in [70]. There exist many different
schemes that are based on operator splittings. Similar ones to the product splitting can
be found in [34, 35, 106]. Approaches with an implicit-explicit splitting are discussed in
[2, 5, 17, 24, 64]. The main difference of an operator splitting based scheme compared to
Runge–Kutta or multistep methods is that instead of evaluating the data at different points,
we decompose the data in several parts but evaluate them at the same point. Various types
of useful decompositions can be used. For many differential equations, there exists an
intuitive choice for a splitting given by different structures within one equation. Often,
these different structures can be handled easier by themselves. For example, a linear main
part and nonlinear perturbation can be split, see [65, 107, 108]. It is also possible to split
different partial derivatives or to decompose the domain, see [34, 35, 61, 62].

In our work, we only assume that the solution of the problem fulfills an additional
regularity condition that involves a fractional derivative when proving error bounds. Similar
error bounds for linear problems can be found in [15, 69]. The analysis becomes more
involved as soon as a nonlinearity is part of the equation. A first generalization is to consider
a linear main part and allow for some nonlinear perturbation. A numerical analysis for such
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semilinear problems can be found in [3, 63, 79, 88, 92]. When the equation is only linear
with respect to the highest appearing derivative it is called quasilinear. Such problems have
been considered in [4, 53, 87]. The numerical treatment of a fully nonlinear equation has
been studied in [52, 95]. Evolution equations containing a maximal monotone main part are
treated in [58, 59, 60, 64, 66, 101].

This monograph is build up as follows. At the end of the introduction, a collection of
the used notation can be found. In Chapter 1, we begin with a short recollection of both the
solvability of evolution equations and appropriate regularity results. We give some examples
of equations, where the solution is more regular. These examples contain settings that fit
the conditions imposed for our explicit error bounds. The two approaches discussed above
are explained in detail in Chapter 2 and Chapter 3. In Chapter 2, we consider randomized
schemes to approximate the solution of an evolution equation. Here, we begin to prove
the convergence of the scheme when the temporal grid is randomly shifted. In order to
obtain more information about the magnitude of the error, we prove error bounds for the
scheme. The chapter ends with an example of a parabolic problem of p-Laplacian type. The
following Chapter 3 is build up similarly. We begin to prove the convergence of a method
that is based on an operator splitting scheme. We also prove that under some additional
assumptions, certain error bounds can be provided. Again, we show that the abstract
theory has applications for nonlinear parabolic problems. At the end of the monograph, we
collect some auxiliary results in the appendix. Here, useful inequalities can be found. This
is followed by a brief introduction to spaces of Bochner integrable functions on a general
measure space and some results from stochastic analysis that are needed for the randomized
schemes.

Notation

Let D ⊂ Rd, d ≥ 1, be a bounded domain. We denote the boundary of D by ∂D and its
closure by D. The space of uniformly continuous functions v : D → R is denoted by C(D),
while the space of continuously differentiable functions on D is denoted by C1(D). On D
we also consider the space

C1(D) =
{
v ∈ C(D) : ∂iv exists and ∂iv ∈ C(D), i ∈ {1, . . . , d}

}
,

where ∂iv := ∂v
∂xi

for i ∈ {1, . . . , d}. The space C∞c (D) contains all functions v : D → R that
are infinitely many times differentiable and have a compact support in D. Furthermore, for

a function v ∈ C1(D), we write ∇v =
(
∂1v, . . . , ∂dv

)T
for its gradient while the divergence

of a function v = (v1, . . . , vd)
T ∈ C1(D)d is denoted by ∇ · v =

∑d
i=1 ∂ivi. For T ∈ (0,∞)

and a function v : (0, T )×D → R, we write ∂tv for the partial derivative with respect to the
temporal parameter.

For p ∈ [1,∞] and ` ∈ N, we write Lp(D)` for the space of Lebesgue measurable functions
v : D → R` such that

‖v‖Lp(D)` =


(∫
D
|v|p dx

) 1
p

, p ∈ [1,∞),

ess sup
D

|v|, p =∞

is finite. If ` = 1, we just write Lp(D). Here, ess supD is the essential supremum over D.
For more details and properties, see [1, Chapter 2]. The Sobolev space W 1,p(D) consists of
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all functions v ∈ Lp(D) such that every weak partial derivative ∂iv, i ∈ {1, . . . , d}, exists
and is an element of Lp(D). This space is equipped with the norm

‖v‖W 1,p(D) =

{(
‖v‖pLp(D) + ‖∇v‖p

Lp(D)d

) 1
p , p ∈ [1,∞),

‖v‖L∞(D) + ‖∇v‖L∞(D)d , p =∞

for v ∈ W 1,p(D). If all the mixed partial derivatives up to order j ∈ N exist and are
elements of Lp(D), we denote the space of such functions by W j,p(D). Additionally, for
p ∈ [1,∞) we consider the space W 1,p

0 (D), which is the closure of C∞c (D) with respect to
the norm of W 1,p(D). Due to Poincaré’s inequality (cf. [19, Corollary 9.19]) the seminorm
‖v‖W 1,p

0 (D) = ‖∇v‖Lp(D)d , v ∈ W 1,p
0 (D), is a full norm on this space. In the case p = 2, we

also write Hj(D) = W j,2(D), j ∈ N, and H1
0 (D) = W 1,2

0 (D). More details and properties
for Sobolev spaces can be found in [1, 19, 82]. For fractional differentiability exponents, we
use the same notation and refer the reader to [26, Chapter 4] for the precise definition.

In the following, let (X, ‖ · ‖X) be a real Banach space. We write X∗ for its dual space
that is equipped with the induced norm given by

‖f‖X∗ = sup
x∈X,
‖x‖X≤1

〈f, x〉X∗×X , f ∈ X∗,

where 〈f, x〉X∗×X = f(x) stands for the duality pairing. For a finite value T ∈ (0,∞), the
space of uniformly continuous functions v : [0, T ] → X is denoted by C([0, T ];X). A norm
on this space is given by

‖v‖C([0,T ];X) = max
t∈[0,T ]

‖v(t)‖X

for v ∈ C([0, T ];X). We denote the Hölder seminorm to the exponent α ∈ (0, 1] of a function
v : [0, T ]→ X by

|v|C0,α([0,T ];X) = sup
s,t∈[0,T ],
s 6=t

‖v(s)− v(t)‖X
|s− t|α

.

We then call the space

C0,α([0, T ];X) = {v ∈ C([0, T ];X) : |v|C0,α([0,T ];X) <∞}

the Hölder space with exponent α and use the norm

‖v‖C0,α([0,T ];X) = ‖v‖C([0,T ];X) + |v|C0,α([0,T ];X)

for v ∈ C0,α([0, T ];X). For α = 1 this is the space of Lipschitz continuous functions with
values in X. For more details on continuous X-valued functions, see [39, Abschnitt 7.1] and
for Hölder continuous functions, see [6, Section 3.7].

For p ∈ [1,∞] the space of Bochner integrable functions on [0, T ] with values in X is
denoted by Lp(0, T ;X). This space is equipped with the norm

‖v‖Lp(0,T ;X) =


(∫ T

0

‖v(t)‖pX dt
) 1
p

, p ∈ [1,∞),

ess sup
t∈[0,T ]

‖v(t)‖X , p =∞
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for v ∈ Lp(0, T ;X). For more details, see [39, Abschnitt 7.1] or [96, Section 4.2]. In
Appendix A.2 there is a short explanation and collection of results for Bochner integrable
functions that are defined on a general measure space.

For p ∈ [1,∞), the space W 1,p(0, T ;X) contains the functions in Lp(0, T ;X) that possess
a weak derivative in Lp(0, T ;X). A norm for this space is given by

‖v‖W 1,p(0,T ;X) =
(
‖v‖pLp(0,T ;X) + ‖v′‖pLp(0,T ;X)

) 1
p ,

compare [99, Section 7.1]. For α ∈ (0, 1), p ∈ [1,∞), and v : [0, T ] → X we consider the
Sobolev–Slobodeckĭı seminorm

|v|Wα,p(0,T ;X) =
(∫ T

0

∫ T

0

‖v(s)− v(t)‖pX
|s− t|αp+1

ds dt
) 1
p

.

Then the Sobolev–Slobodeckĭı space is given by

Wα,p(0, T ;X) = {v ∈ Lp(0, T ;X) : |v|Wα,p(0,T ;X) <∞},

which is endowed with the norm

‖v‖Wα,p(0,T ;X) =
(
‖v‖pLp(0,T ;X) + |v|pWα,p(0,T ;X)

) 1
p

for v ∈Wα,p(0, T ;X). A full introduction and properties can be found in [26, Chapter 4] or
[27]. In [102], there is a wide range of embedding theorems for such function spaces.

The spaces V , H, and V ∗ are called a Gelfand triple if (V, ‖ · ‖V ) is a separable, reflexive
Banach space that is continuously and densely embedded into the separable Hilbert space
(H, (·, ·)H , ‖ · ‖H). The space H is identified with its dual and we consider

V
d
↪→ H ∼= H∗

d
↪→ V ∗.

For f ∈ V ∗ and v ∈ V we write 〈f, v〉V ∗×V = f(v), which is the continuous extension of the
inner product of H. On such spaces, we introduce

Wp(0, T ) = {v ∈ Lp(0, T ;V ) : v′ exists and v′ ∈ Lq(0, T ;V ∗)},

where p ∈ (1,∞), q = p
p−1 , and v′ denotes the weak derivative of v. In the case p = 2, we

write W(0, T ) =W2(0, T ). The space Wp(0, T ) is equipped with the norm

‖v‖Wp(0,T ) = ‖v‖Lp(0,T ;V ) + ‖v′‖Lq(0,T ;V ∗)

for v ∈ Wp(0, T ) and is continuously embedded into C([0, T ];H). For more details, see [39,
Abschnitt 8.1 and 8.4], [99, Section 7.2], and [96, Section 4.2].
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Chapter 1

Solvability and Properties of the
Solutions to Evolution Equations

Before we come to the numerical analysis of evolution equations, we state a general setting
with known existence results, where the solution is also unique. This is in mind, we explain
some settings where the solution fulfills additional regularity conditions.

1.1 Existence and Uniqueness

In this thesis, we work with variational solutions of evolution equations. We only give a
brief introduction to this concept. For more details, we refer the reader to the following
monographs [39, 46, 49, 99, 117, 118]. Another widely spread solution concept is the theory
of mild solutions. Sometimes, we refer to results in the literature, where this notion of
solution is used. For more details, see [16, 89, 118].

In the following, let (H, (·, ·)H , ‖ ·‖H) be a real, separable Hilbert space and let (V, ‖ ·‖V )
be a real, separable, reflexive Banach space, which is continuously and densely embedded
into H. Identifying H with its dual, we obtain the Gelfand triple

V
d
↪→ H ∼= H∗

d
↪→ V ∗.

For a finite end time T ∈ (0,∞), we consider a family {A(t)}t∈[0,T ] of operators such that
A(t) : V → V ∗ for every t ∈ [0, T ]. We assume that the mapping Av : [0, T ] → V ∗ given by
t 7→ A(t)v is Bochner measurable for every v ∈ V . Further, we suppose that A(t) is radially
continuous for every t ∈ [0, T ], i.e., the mapping s 7→ 〈A(t)(v + sw), w〉V ∗×V is continuous
on [0, 1] for every v, w ∈ V . For κ ∈ [0,∞), we assume that A(t) + κI is monotone, i.e., the
inequality

〈A(t)v −A(t)w, v − w〉V ∗×V + κ‖v − w‖2H ≥ 0

is fulfilled for all v, w ∈ V . For a fixed p ∈ (1,∞), we assume that the operator A(t) fulfills
a growth condition and A(t) + κI fulfills a semi-coercivity condition such that there exist
β, λ ∈ [0,∞) and µ ∈ (0,∞) with

‖A(t)v‖V ∗ ≤ β
(
1 + ‖v‖p−1

V

)
, 〈A(t)v, v〉V ∗×V + κ‖v‖2H + λ ≥ µ|v|pV

for every t ∈ [0, T ] and v ∈ V . Here, | · |V is a seminorm on V such that there exists
cV ∈ (0,∞) with ‖ · ‖V ≤ cV

(
‖ · ‖H + | · |V

)
. Note that since V is continuously embedded

1
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into H, it is always possible to choose | · |V = ‖ · ‖V . In this case, the operator A(t) + κI,
t ∈ [0, T ], is coercive. As pointed out in [41], it is possible to rewrite the semi-coercivity
condition as a coercivity condition of the type

〈(A(t) + (κ+ µ)I)v, v〉V ∗×V ≥ µ
(
|v|pV + ‖v‖2H

)
− λ ≥ µ

(
|v|p̃V + ‖v‖p̃H − 1

)
− λ

≥ 21−p̃µ
(
|v|V + ‖v‖H

)p̃ − µ− λ ≥ 21−p̃µc−p̃V ‖v‖
p̃
V − µ− λ

(1.1)

for v ∈ V with p̃ = min{2, p}. In Chapter 3, we will use the semi-coercivity condition as
this slightly improves some convergence results compared to using (1.1).

For a source term f ∈ Lq(0, T ;V ∗) +L1(0, T ;H), q = p
p−1 , and u0 ∈ H, we consider the

initial value problem {
u′ +Au = f in Lq(0, T ;V ∗) + L1(0, T ;H),

u(0) = u0 in H.

We are looking for a solution u that is an element of the space

Wp
1 (0, T ) = {v ∈ Lp(0, T ;V ) : v′ exists and v′ ∈ Lq(0, T ;V ∗) + L1(0, T ;H)},

where v′ denotes the weak derivative of v. This space is continuously embedded into
C([0, T ];H), compare [109, Chapter III, Section 1.5]. Thus, the initial condition is well-
defined.

The existence of a solution to the initial value problem has been proved in [99, Theo-
rem 8.9], [39, Satz 8.4.2], and [85, Section 2.7] if V is compactly embedded into H. A further
existence results for κ = 0 can be found in [118, Chapter 30]. In Chapter 2, we also only
consider this particular case. It is not a real restriction for p ∈ [2,∞) as it is possible to use
a transformation trick, compare [117, Remark 23.25] or [49, Folgerung on page 211]. For
t ∈ [0, T ], we transform A(t) and f(t) to Ã(t) = e−κtA(t)eκt + κI and f̃(t) = e−κtf(t) and
find a solution to the problem{

ũ′ + Ãũ = f̃ in Lq(0, T ;V ∗) + L1(0, T ;H),

ũ(0) = u0 in H.
(1.2)

The family {Ã(t)}t∈[0,T ] of operators Ã(t) : V → V ∗, t ∈ [0, T ], fulfills all the condition
imposed above for κ = 0. The solution of the original problem is given by u(t) = eκtũ(t) in
H for t ∈ [0, T ]. Usually, it is a requirement to assume that V is compactly embedded into
H when allowing for κ ∈ (0,∞). With this transformation, we do not have to make this
assumption.

Furthermore, the solutions of both the original and the transformed problem are unique,
compare [99, Theorem 8.31]. Thus, from an analytical point of view, it makes sense to use
the transformed problem. In applications, it might be preferable to work with the original
problem without any transformation. In Chapter 3, we allow for arbitrary κ ∈ [0,∞) in
terms of an additionally appearing family {B(t)}t∈[0,T ] of operators such that B(t) : H → H.
This kind of operator cannot easily be included in Chapter 2 due to a missing compactness
result, which we will point out later.

1.2 Regularity of the Solution

For the results in Sections 2.2 and 3.2, we need some additional regularity of the solution.
Precisely, we need that the solution is in a certain Sobolev–Slobodeckĭı space or in a Hölder
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space with values in V depending on the exact statement. These particular conditions are
not available under general assumptions on the data. We will focus briefly on some settings
where we can obtain this higher-order regularity. For a general overview, we refer the reader
to [89] and [7, Chapter III]. Some further results for a fractional derivative can be found in
[78, Chapter IV, Section 5] and [84, Chapter 4, Section 5].

For general nonlinear problems, it is difficult to state suitable regularity results that fit
our assumptions. Here, it becomes necessary to look at the specific problem more closely
to obtain any appropriate results if possible. In the following, we concentrate on known
regularity results for linear problems. For certain semilinear problems, bootstrap arguments
can be applied to recover the regularity of the linear problem, compare [110, Section 3] or
Example 1.2.4 below. Some further regularity results for more specific nonlinear problems
can be found in [28, 51].

In the following, we assume that V is a real, separable Hilbert space, which is continuously
and densely embedded into the real, separable Hilbert space H such that we again obtain a

Gelfand triple V
d
↪→ H ∼= H∗

d
↪→ V ∗. We assume that the family {A(t)}t∈[0,T ] of operators

A(t) : V → V ∗, t ∈ [0, T ], fulfills the conditions stated in the previous section for p = 2 and
that A(t) : V → V ∗ is linear for every t ∈ [0, T ]. For f ∈ L2(0, T ;V ∗), we consider the linear
equation {

u′ +Au = f in L2(0, T ;V ∗),

u(0) = u0 in H.
(1.3)

For such a linear problem, compatibility conditions lead to a more regular solution, see [39,
Abschnitt 8.5], [46, Chapter 7, Theorem 6], [48, Chapter 10, Section 6–7], and [114, §27].

To this end, we assume that the temporal derivative of f exists and it fulfills f ′ ∈
L2(0, T ;V ∗). We also need an additional assumption for the family of operators {A(t)}t∈[0,T ].
Here, we assume that the classical derivative of t 7→ 〈A(t)v, w〉V ∗×V exists on [0, T ], is
measurable, and there exists β′ ∈ [0,∞) such that | d

dt 〈A(t)v, w〉V ∗×V | ≤ β′‖v‖V ‖w‖V
for every v, w ∈ V and t ∈ [0, T ]. This derivative can be used to define the operator
A′(t) : V → V ∗, t ∈ [0, T ], by 〈A′(t)v, w〉V ∗×V = d

dt 〈A(t)v, w〉V ∗×V for v, w ∈ V . The
operator A′(t), t ∈ [0, T ], is linear and bounded independently of t. Further, if the initial
conditions u(0) = u0 in V and u′0 := f(0) − A(0)u0 in H are fulfilled, it follows that
u, u′ ∈ L2(0, T ;V ) and u′′ ∈ L2(0, T ;V ∗). This shows, in particular, that u ∈W 1,2(0, T ;V )
and u′ ∈W 1,2(0, T ;V ∗). Using embedding theorems, we obtain that

u ∈W 1,2(0, T ;V ) ↪→Wα,2(0, T ;V ) ↪→ C0,α− 1
2 ([0, T ];V ),

u′ ∈W 1,2(0, T ;V ∗) ↪→Wα,2(0, T ;V ∗) ↪→ C0,α− 1
2 ([0, T ];V ∗),

(1.4)

for every α ∈ (0, 1), cf. [102, Corollary 26]. This includes the regularity conditions stated
in Theorem 2.2.7 and 3.2.3 in the case p = 2. For a nonlinear, yet autonomous, operator, a
similar idea has been considered in [99, Theorem 8.18].

A further approach to prove higher-order regularity of the solution to the linear problem
(1.3) is the concept of maximal Lp-regularity. The initial value problem (1.3) is said to have
maximal Lp-regularity in H for some p ∈ [2,∞) if for every f ∈ Lp(0, T ;H) the unique
solution u ∈ W(0, T ) fulfills that u′ ∈ Lp(0, T ;H) and Au ∈ Lp(0, T ;H). Suitable regularity
results can be obtained by embedding theorems as we will see in one of the examples below.
A survey about this concept can be found in [93]. Sufficient conditions to obtain maximal
Lp-regularity are stated in [9, 10, 11, 32, 47, 55].

Another approach is to only look for local regularity. Due to the parabolic smoothing
property, it is possible to prove certain regularity results away from the initial data. If
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we assume that f ∈ L2(0, T ;V ∗) fulfills t 7→ tf ′(t) ∈ L2(0, T ;V ∗) and A′(t) : V → V ∗,
t ∈ [0, T ], is linear and bounded independently of t, then the solution of (1.3) fulfills that
t 7→ tu′(t) ∈ W(0, T ). See [39, Satz 8.5.3] and [111, Chapter 3] for more details. For a fully
nonlinear problem, a regularity result of this type can be found in [95, Lemma 3]. These local
results are not enough for our analysis and are more useful in a non-smooth data analysis
as has been done in [79, 88, 111]. Still, they indicate that after a certain time the methods
should work well if the error from the beginning has not become too large. Moreover, under
the assumption that the solution is bounded, it is possible to prove local Hölder regularity
for nonlinear problems, compare [28, Chapter III].

In the following, we present a few different examples and discuss the regularity of the
solution.

Example 1.2.1. For a finite end time T ∈ (0,∞) and a bounded Lipschitz domain D ⊂ Rd,
d ∈ N, we look at the problem

∂tu(t, x)−∇ ·
(
a(t, x)∇u(t, x)

)
+ b(t, x, u(t, x)) = f(t, x), (t, x) ∈ (0, T )×D,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂D,
u(0, x) = u0(x), x ∈ D.

We assume that a = (aij)i,j∈{1,...,d} : [0, T ]×D → Rd,d is an element of L∞((0, T )×D;Rd,d)
and there exists µ ∈ (0,∞) with

a(t, x)z · z =

d∑
i,j=1

aij(t, x)zizj ≥ µ|z|2 (1.5)

for all t ∈ [0, T ], almost all x ∈ D, and all z ∈ Rd. We assume that b : [0, T ] × D × R → R
fulfills b(·, ·, z) ∈ L∞((0, T )×D) for every z ∈ R and there exist κ, ρ ∈ [0,∞) such that

|b(t, x, z)− b(t, x, z̃)| ≤ κ|z − z̃|, |b(t, x, 0)| ≤ ρ (1.6)

for all t ∈ [0, T ], almost all x ∈ D, and all z, z̃ ∈ R.
We choose the Hilbert spaces V = H1

0 (D) and H = L2(D) equipped with the norms given

in the introduction. We obtain the Gelfand triple V
d
↪→ H ∼= H∗

d
↪→ V ∗, where we identify H

with its dual space. We introduce the operators A(t) : V → V ∗ and B(t) : H → H, t ∈ [0, T ],
which are given by

〈A(t)v, w〉V ∗×V =

∫
D
a(t, ·)∇v · ∇w dx, v, w ∈ V, (1.7)

(B(t)v, w)H =

∫
D
b(t, ·, v)w dx, v, w ∈ H. (1.8)

We assume that for f : [0, T ] × D → R the abstract function [f(t)](x) = f(t, x), (t, x) ∈
(0, T )×D, is an element of L2(0, T ;V ∗). For u0 ∈ H, we obtain the variational formulation
of the problem {

u′ +Au+Bu = f in L2(0, T ;V ∗),

u(0) = u0 in H.
(1.9)

In the following, we verify that this equation fits into the setting introduced in the previous
section. The proof for this is quite basic. As all the examples mentioned in this section have
the same underlying structure, we add it for the sake of completeness.
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First, we prove that t 7→ B(t)v is measurable for every v ∈ H. The measurability of
t 7→ A(t)v for v ∈ V can be argued analogously. By assumption, t 7→ b(t, x, z) is measurable
for almost every x ∈ D and every z ∈ R. Thus, there exists a sequence (bi)i∈N of functions
bi : [0, T ] × D × R → R, i ∈ N, that are simple with respect to the first argument such
that bi(t, x, z) → b(t, x, z) as i → ∞ and |bi(t, x, z)| ≤ |b(t, x, z)|, i ∈ N, for almost
every (t, x) ∈ (0, T ) × D and every z ∈ Rd. For t ∈ [0, T ], we defined the simple operator
Bi(t) : H → H given by

(Bi(t)v, w)H =

∫
D
bi(t, ·, v)w dx, v, w ∈ H.

Applying the conditions from (1.6), it follows that∣∣(b(t, ·, v)− bi(t, ·, v)
)
w
∣∣ ≤ 2|b(t, ·, v)||w|
≤ 2|b(t, ·, v)− b(t, ·, 0)||w|+ 2|b(t, ·, 0)||w|
≤ 2κ|v||w|+ 2ρ|w| (1.10)

for every v, w ∈ H, for almost every t ∈ (0, T ), and almost everywhere in D. As (1.10) is
an integrable function on D, we can apply Lebesgue’s dominated convergence theorem to
obtain that

lim
i→∞

(B(t)v −Bi(t)v, w)H =

∫
D

lim
i→∞

(
b(t, ·, v)− bi(t, ·, v)

)
w dx = 0

for every v, w ∈ H and almost every t ∈ (0, T ). This implies that t 7→ B(t)v, v ∈ H, is
weakly measurable. As H is also separable, the mapping is Bochner measurable.

It is easy to see that v 7→ A(t)v is linear and inserting the definition of A(t) implies

〈A(t)v, w〉V ∗×V =

∫
D
a(t, ·)∇v · ∇w dx ≤ ‖a‖L∞((0,T )×D;Rd,d)‖v‖V ‖w‖V (1.11)

for every v, w ∈ V and t ∈ [0, T ]. Hence, this shows that v 7→ A(t)v is continuous because
‖A(t)‖L(V,V ∗) ≤ ‖a‖L∞((0,T )×D;Rd,d) holds true for every t ∈ [0, T ], where ‖·‖L(V,V ∗) denotes
the induced operator norm. Further, the Lipschitz continuity of b in the third argument
shows

(B(t)v1 −B(t)v2, w)H =

∫
D

(
b(t, ·, v1)− b(t, ·, v2)

)
w dx ≤ κ‖v1 − v2‖H‖w‖H

for every v1, v2, w ∈ H and t ∈ [0, T ]. Therefore, we see that B(t) : H → H is Lipschitz
continuous, as ‖B(t)v1 − B(t)v2‖H ≤ κ‖v1 − v2‖H is fulfilled for every v1, v2 ∈ H and
t ∈ [0, T ]. This shows that v 7→ A(t)v + B(t)v is continuous and A(t) + B(t) radially
continuous for every t ∈ [0, T ].

Next, we prove that A(t)+B(t)+κI, t ∈ [0, T ], is monotone. To this end, we first notice
that

〈A(t)v, v〉V ∗×V =

∫
D
a(t, ·)∇v · ∇v dx ≥ µ

∫
D
|∇v|2 dx = µ‖v‖2V

is fulfilled for every v ∈ V and t ∈ [0, T ] due to (1.5). Thus, we see that

〈A(t)v1 −A(t)v2 +B(t)v1 −B(t)v2, v1 − v2〉V ∗×V + κ‖v1 − v2‖2H

=

∫
D
a(t, ·)

(
∇v1 −∇v2

)
·
(
∇v1 −∇v2

)
dx

+

∫
D

(
b(t, ·, v1)− b(t, ·, v2)

)
(v1 − v2) dx+ κ‖v1 − v2‖2H

≥ µ‖v1 − v2‖2V
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holds for every v1, v2 ∈ V and t ∈ [0, T ].
Using (1.6), it follows that

(B(t)0, w)H =

∫
D
b(t, ·, 0)w dx ≤ ρ|D| 12 ‖w‖H (1.12)

and together with the Lipschitz continuity of B(t)

‖B(t)v‖H ≤ ‖B(t)v −B(t)0‖H + ‖B(t)0‖H ≤ κ‖v‖H + ρ|D| 12 (1.13)

for every v, w ∈ H and t ∈ [0, T ], where |D| denotes the Lebesgue measure of D. Thus, we
see that A(t) +B(t) + (κ+ 1)I is coercive since

〈A(t)v +B(t)v, v〉V ∗×V + (κ+ 1)‖v‖2H ≥ µ‖v‖2V − ‖B(t)v‖H‖v‖H + (κ+ 1)‖v‖2H
≥ µ‖v‖2V − κ‖v‖2H − ρ|D|

1
2 ‖v‖H + (κ+ 1)‖v‖2H

≥ µ‖v‖2V −
ρ2

4
|D|

is fulfilled for every v ∈ V and t ∈ [0, T ], where we applied the weighted Young inequality.
Combining (1.11) and (1.13), the operator A(t)+B(t), t ∈ [0, T ], is bounded in the sense

that

‖A(t)v +B(t)v‖V ∗ ≤ ‖a‖L∞((0,T )×D;Rd,d)‖v‖V + c1
(
κ‖v‖H + ρ|D| 12

)
,

holds. Here, c1 ∈ (0,∞) denotes the embedding constant of H into V ∗.
In [39, Satz 8.3.5], it is shown that there exists a unique u ∈ W(0, T ) that solves (1.9).

Example 1.2.2. We consider the same setting as in Example 1.2.1 with b ≡ 0. Additionally,
we assume that for every i, j ∈ {1, . . . , d} the function t 7→ aij(t, x) is absolutely continuous
for almost every x ∈ D, aij(0, ·) ∈ W 1,∞(D), and ∂taij ∈ L∞((0, T ) × D). The operator
A′(t) : V → V ∗ fulfills

〈A′(t)v, w〉V ∗×V =

∫
D
∂ta(t, ·)∇v · ∇w dx ≤ ‖∂ta‖L∞((0,T )×D;Rd,d)‖v‖V ‖w‖V

for every v, w ∈ V and t ∈ [0, T ]. This implies that A′(t) : V → V ∗, t ∈ [0, T ], is linear and
bounded independently of t. Moreover, we choose f ∈ W 1,2(0, T ;V ∗) with f(0) ∈ H and
u0 ∈ H2(D)∩ V . Then it follows that u′0 := f(0) +∇ ·

(
a(0, ·)∇u0

)
∈ H. We can apply [39,

Satz 8.5.1], where regularity is obtained through compatibility conditions of the data. Then
we obtain that u ∈ W 1,2(0, T ;V ) and u′ ∈ W 1,2(0, T ;V ∗). Using the embedding theorem
from [102, Corollary 26], it follows that

u ∈W 1,2(0, T ;V ) ↪→Wα,2(0, T ;V ) ↪→ C0,α− 1
2 ([0, T ];V ),

u′ ∈W 1,2(0, T ;V ∗) ↪→Wα,2(0, T ;V ∗) ↪→ C0,α− 1
2 ([0, T ];V ∗).

for every α ∈ (0, 1).

Example 1.2.3. We consider the same setting as in Example 1.2.1 with b ≡ 0. We apply
[29, Corollary 7.1] for α ∈ (0, 1

2 ), f ∈ L2(0, T ;H2α−1(D)), u0 ∈ H2α
0 (D). Further, we assume

that for ε ∈
(
0, 1

2

)
the coefficients aij , i, j ∈ {1, . . . , d}, are in Wα+ε, 1α (0, T ;L∞(D)) and

therefore continuous. Then it follows that u ∈Wα,2(0, T ;V ) ∩W 1,2(0, T ;H2α−1(D)).
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Additionally, we can find a corresponding result for the derivative u′. To this end, we
use that in [29, Theorem 6.2, Corollary 7.1] it is noted that A ∈ Wα+ε, 1α (0, T ;L(V, V ∗)).
Together with a suitable result for the Nemytskĭı operator of A from [29, Lemma 5.3] and an
extension result from [27, Theorem 5.4], it follows that Au ∈Wα,2(0, T ;V ∗). For a function
f ∈Wα,2(0, T ;V ∗), this also shows that u′ ∈Wα,2(0, T ;V ∗).

Example 1.2.4. Again, we consider the same setting as in Example 1.2.1. At first, we
set b ≡ 0 but show later that we can recover the regularity for more general b. In the
following, we denote the Friedrichs extension of an operator A(t) by AF (t) : dom(AF (t))→
H, AF (t)u = A(t)u, where dom(AF (t)) = H2(D) ∩H1

0 (D) for every t ∈ [0, T ]. We assume
that there exists p ∈ (2,∞) such that a fulfills the additional condition

|aij(t, x)− aij(s, x)| ≤ ω(|t− s|)

for every i, j ∈ {1, . . . , d}, s, t ∈ [0, T ], as well as almost every x ∈ D. Here, ω : [0, T ] →
[0,∞) is a non-decreasing function that fulfills∫ T

0

ω(t)

t
3
2

dt <∞ and

∫ T

0

(ω(t)

t

)p
dt <∞.

Then we can apply [55, Theorem 2] and find that (1.9) has maximal Lp-regularity for all
u0 within the interpolation space (H, dom(AF (0)))1− 1

p ,p
. As a proper explanation of the

concept of interpolation spaces is out of place in this section, we only refer the reader to [90,
Chapter 1] and [112, Chapter 1] for further details.

This means that for every f ∈ Lp(0, T ;H) the solution u is an element of W 1,p(0, T ;H)
and Au ∈ Lp(0, T ;H). Analogously to [37, Theorem 7.2], it follows that u ∈ C0,α([0, T ];V )
for every α ∈ [0, 1

2 −
1
p − ε) and an arbitrary ε ∈ (0, 1

2 −
1
p ). Note that using the first

embedding result from [8, Theorem 5.2] in the proof of [37, Theorem 7.2] instead, it also

follows that u ∈ Wα+ 1
p ,2(0, T ;V ). Regularity results for u′ can be obtained analogously as

in the previous example after possibly asking for some additional regularity for the data.
Using a similar idea as in [37, Theorem 7.8] and [92, Theorem 2.10], we can allow for a

nontrivial function b and can still recover the same regularity for the solution. To this end,
let u ∈ C([0, T ];H) be the unique solution of (1.9). The function g = f −Bu fulfills

‖g‖Lp(0,T ;H) ≤ ‖f‖Lp(0,T ;H) + ‖Bu−B0‖Lp(0,T ;H) + ‖B0‖Lp(0,T ;H)

≤ ‖f‖Lp(0,T ;H) + κ‖u‖Lp(0,T ;H) +
(∫ T

0

‖B(t)0‖pH dt
) 1
p

≤ ‖f‖Lp(0,T ;H) + κ‖u‖Lp(0,T ;H) + T
1
p ρ|D| 12 ,

where we use the Lipschitz continuity of B(t), t ∈ [0, T ], and (1.12). Thus, we have g ∈
Lp(0, T ;H) and it follows that the solution v of{

v′ +Av = g in L2(0, T ;V ∗),

v(0) = u0 in H
(1.14)

is an element of C0,α([0, T ];V ) and Wα+ 1
p ,2(0, T ;V ) as we have seen above.

Now, we can use a bootstrap argument to show that the solution u of (1.9) has the same
regularity. Both (1.9) and (1.14) have a unique solution. Inserting u in (1.14), we see that
u also solves this problem. Thus, u and v coincide and fulfill the same regularity condition.
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Chapter 2

Randomized Schemes for Nonlinear,
Nonautonomous Evolution Equations

In this chapter, we introduce randomized schemes that can be used to approximate the so-
lution of a nonlinear, nonautonomous evolution equation on a finite time interval. Precisely,
for T ∈ (0,∞), we consider{

u′(t) +A(t)u(t) = f(t) in V ∗, for almost all t ∈ (0, T ),

u(0) = u0 in H
(2.1)

for a Gelfand triple V
d
↪→ H ∼= H∗

d
↪→ V ∗ as well as a family {A(t)}t∈[0,T ] of monotone

operators A(t) : V → V ∗, t ∈ [0, T ], a source term f : [0, T ]→ V ∗, and an initial value u0 ∈
H. The approach presented here mainly offers advantages for a temporal approximation.
Hence, we only consider a discretization in time. This leads to a semidiscrete problem. We
begin to follow a standard approach given by the backward Euler scheme. For N ∈ N,
we consider an equidistant partition 0 = t0 < · · · < tN = T with k = T

N and tn = nk,
n ∈ {0, . . . , N}, of the interval [0, T ] to find an approximation Un of u(tn), n ∈ {1, . . . , N}.
To this end, we solve the recursion

Un −Un−1

k
+ AnUn = fn in V ∗, n ∈ {1, . . . , N},

for U0 = u0, where (An)n∈{1,...,N} and (fn)n∈{1,...,N} are approximations of the data. A
common choice of such values is of the form

An =
1

k

∫ tn

tn−1

A(t) dt, fn =
1

k

∫ tn

tn−1

f(t) dt, n ∈ {1, . . . , N}.

These values prove themselves to be very suitable if they are known. In practice though,
they are not necessarily available and additional approximation techniques are needed. An
easy to get, yet not always well-defined, alternative of merely integrable data would be

An = A(tn), fn = f(tn), n ∈ {1, . . . , N}.

Due to the low regularity, point evaluations will in general not offer a suitable approximation.
As a pre-designed grid and even the amount of points in a sequence of such grids is only
a null set, it is possible to find functions that ”fool” the scheme. This can be done by

9
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redefining the data on the grid points. In order to bypass this problem, we will work with
two different types of randomization. The first is ideal for proving convergence in a setting
without any further regularity assumptions on the solution. For a complete probability space
(Ωθ,Fθ,Pθ) and a uniformly distributed random variable θ : Ωθ → [0, 1], we consider the
randomly shifted grid

0 = tθ0 < tθ1 < · · · < tθN = T − k(1− θ) with tθn = tn−1 + kθ, n ∈ {1, . . . , N}.

Note that we write θ as an index to the probability space. This is not supposed to show
any dependence on θ but only means that this is the probability space that θ is defined
on. Later, we also introduce a further family of random variables on a different probability
space. This second probability space is also indexed so there will be no mix up between the
two spaces. For

An = A(tθn), fn = f(tθn), n ∈ {1, . . . , N},

we prove in Section 2.1 that the piecewise polynomial prolongations of (Un)n∈{1,...,N} con-
verge to u pointwise strongly in L2(Ωθ;H). Furthermore, depending on the monotonicity
condition imposed on A(t), t ∈ [0, T ], we obtain weak or strong convergence in the space
Lp(0, T ;Lp(Ωθ;V )), where the value p depends on A(t), t ∈ [0, T ]. Measuring the expecta-
tion of the error on a randomly shifted grid, offers a way to handle data that is non-smooth
with respect to the temporal input. This convergence result can be obtained with fairly
general assumptions on the data and no additional regularity requirements on the solution.
If higher regularity of the solution might be available though, we prove in Section 2.2 that a
simple modification of the scheme leads to explicit error bounds with an order that depends
on the Sobolev–Slobodeckĭı regularity of the solution. Here, a second randomization can
be used to exploit the additional regularity. To this end, for a second complete probabil-
ity space (Ωτ ,Fτ ,Pτ ), let (τn)n∈{1,...,N} be a family of independent, uniformly distributed
random variables with τn : Ωτ → [0, 1]. For

ξn = tθn−1 + (tθn − tθn−1)τn, n ∈ {1, . . . , N}, (2.2)

we use

An = A(ξn), fn = f(ξn), n ∈ {1, . . . , N},

to prove that there exists C ∈ (0,∞), which depends on u and u′, such that

max
n∈{1,...,N}

E
[
‖u(tθn)−Un‖2H

]
+

N∑
n=1

E
[
(tθn − tθn−1)‖u(tθn)−Un‖pV

]
≤ Ckα

p
p−1 (2.3)

is fulfilled for every N ∈ N. Here, p depends on A(t), t ∈ [0, T ], and α ∈ (0, 1) denotes the
differentiability exponent of the Sobolev–Slobodeckĭı spaces that contain u and u′. We write
E for the expectation on the product probability space (Ωθ ×Ωτ ,Fθ ⊗Fτ ,Pθ ⊗Pτ ). Even
though, we have to make additional regularity assumptions on the solution, we will see that
they are rather low. In order to demonstrate the relevance of these theoretical convergence
results and error bounds, we show how they can be applied to a nonlinear parabolic problem.
This includes, in particular, the well-known parabolic p-Laplacian equation. Note that the
porous media equation in a very weak formulation as considered in [34, 45] also fits in the
abstract framework.

The approach of using randomized schemes has already been studied for certain classes
of problems in the literature. Within the context of Monte Carlo algorithms, these methods
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are well-known for the approximation of integrals. See [94] for an introduction. The concept
of stratified sampling was first introduced in [56, 57]. There, a subdivision of the domain of
integration is made and one random value within each subset is chosen. This approach is
useful to make sure that the random variables are distributed more evenly compared to a
standard Monte Carlo algorithm. In [103, 104], a randomization was used to approximate
the solution of an ordinary differential equation for the first time. There are many works
thereafter that continue this approach. The use of explicit randomized schemes was further
studied in [25, 71, 75]. When compared to deterministic schemes, randomized schemes can
often handle low regularity assumptions on the data better while their complexity does not
increase. In the theory of information-based complexity, upper and lower bounds of classes
of randomized schemes are studied, see [68, 72]. Similar to ours, yet explicit, schemes for
stochastic ordinary differential equations have been considered in [77, 97, 98] or for stochastic
partial differential equations in [76]. In [18], a randomized grid was used for this type of
problem. Note that a randomization of the grid is only helpful if the regularity is measured
in an appropriate way. As pointed out in [50], there are problem classes where an additional
randomization does not yield any advantages compared to a deterministic time grid. Data
from a Sobolev–Slobodeckĭı space seems to be well suited for this kind of scheme.

The central idea of the work in the following chapter is based on both [37] and [38]. In [38],
a randomized grid was used to prove the convergence of a quadrature rule to approximate a
stochastic Itô-integral. It was shown that the rate of convergence depends on the Sobolev–
Slobodeckĭı regularity of the integrand instead of the Hölder regularity. In [67], it is even
pointed out that the obtained rate is optimal. Therefore, better error estimates can be
proved if the differentiability exponent of the Sobolev–Slobodeckĭı space is higher than of
the Hölder space. In [37], a randomization of the type ξ̃n = tn−1 + kτn, n ∈ {1, . . . , N},
with tn−1 and τn as introduced above, was used to approximate the solution of a problem
like (2.1) with a Lipschitz continuous operator A(t), t ∈ [0, T ]. There, the solution is
assumed to be Hölder continuous to prove a result like (2.3) with an error bound whose
order depends on the Hölder regularity of the solution. The results of this chapter are a
combination of these works. More precisely, in Theorem 2.1.11 and Theorem 2.1.12, we prove
the convergence of the piecewise polynomial prolongations of the solution to the semidiscrete
problem to the exact solution of the evolution equation (2.1). Here, the data is evaluated
on a randomly shifted grid. This expands the theory from [37] to a more general problem
class and shows that even without any additional regularity assumptions made on the exact
solution a randomized scheme leads to a useful numerical approximation. In Theorem 2.2.6
and 2.2.7, we evaluate the data at the points (ξn)n∈{1,...,N} explained in (2.2) and obtain
error bounds that depend on the Sobolev–Slobodeckĭı regularity of the exact solution. This
lowers the regularity assumptions from [37] and allows for operators A(t), t ∈ [0, T ], which
fulfill a bounded Lipschitz condition instead of a global Lipschitz condition.

This chapter is organized as follows. In Section 2.1, we begin to state the precise assump-
tions made. Then we prove the convergence of the scheme with evaluations on a randomly
shifted grid. This is followed by a setting where explicit error estimates are proved in Sec-
tion 2.2. For these bounds, we need to make additional assumptions on the solution and the
data. The chapter is concluded with an example of a p-Laplacian type problem. Here, we
show that the abstract theory can be applied to such a problem.

2.1 Convergence on a Randomly Shifted Grid

In this section, it is our overall goal to prove the convergence of the backward Euler scheme on
a randomly shifted grid. We allow for a fairly general setting without any further regularity
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assumption on the solution. First, we introduce a nonlinear, nonautonomous operator A(t),
t ∈ [0, T ], and a source term f .

Assumption 2.1.1. Let T ∈ (0,∞), p ∈ [2,∞) be given. Let (H, (·, ·)H , ‖ · ‖H) be a real,
separable Hilbert space and (V, ‖ · ‖V ) be a real, separable, reflexive Banach space, which
is continuously and densely embedded into H. Let {A(t)}t∈[0,T ] be a family of operators
A(t) : V → V ∗ such that the following conditions are fulfilled:

(1) The mapping Av : [0, T ]→ V ∗ given by t 7→ A(t)v is measurable for every v ∈ V .

(2) The operator A(t) : V → V ∗, t ∈ [0, T ], is radially continuous, i.e., the mapping
s 7→ 〈A(t)(v + sw), w〉V ∗×V is continuous on [0, 1] for every v, w ∈ V .

(3) The operator A(t) : V → V ∗, t ∈ [0, T ], is monotone, i.e.,

〈A(t)v −A(t)w, v − w〉V ∗×V ≥ 0

is fulfilled for every v, w ∈ V .

(4) The operator A(t) : V → V ∗, t ∈ [0, T ], is uniformly bounded such that there exists
β ∈ [0,∞), which does not depend on t, with

‖A(t)v‖V ∗ ≤ β
(
1 + ‖v‖p−1

V

)
for every v ∈ V .

(5) The operator A(t) : V → V ∗, t ∈ [0, T ], fulfills a coercivity condition in the sense that
there exist µ ∈ (0,∞) and λ ∈ [0,∞), which do not depend on t, such that

〈A(t)v, v〉V ∗×V ≥ µ‖v‖pV − λ

for every v ∈ V .

In the following, we always identify H with its dual space and consider the Gelfand triple

V
d
↪→ H ∼= H∗

d
↪→ V ∗.

In applications, it can be of advantage to generalize the conditions (3) and (5) of the previous
assumption in such a way that there exists κ ∈ [0,∞) such that A(t) + κI, t ∈ [0, T ], fulfills
these conditions. Here, I : V → V ∗ denotes the identity mapping. Then it is necessary
to suppose that V is compactly embedded into H. Due to the randomization, we cannot
use this compact embedding in a straight forward way. If the underlying problem contains
strictly positive κ, we can still use the transformation from (1.2) to obtain data that fulfills
our requirements.

Furthermore, it is also possible to consider the case p ∈ (1, 2) in Assumption 2.1.1,
compare also [40, 41, 42]. Here, it will become necessary to work with slightly different
function spaces. In the second section of this chapter, we impose a stronger monotonicity
condition on the operator A(t), t ∈ [0, T ]. It is possible to show, that there exists no operator
that fulfills this condition for p ∈ (1, 2). Thus, we concentrate on p ∈ [2,∞) for simplicity
and to be more consistent throughout this chapter.

We consider a source term f ∈ Lq(0, T ;V ∗) with q = p
p−1 , where p is the same as

in Assumption 2.1.1. Note that it is not trivial to allow for a more general source term
f ∈ Lq(0, T ;V ∗) + L1(0, T ;H). We will explain this in more detail at a later point. In
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Section 1.1, we have seen that the evolution equation (2.1) is uniquely solvable under the
imposed conditions on A(t), t ∈ [0, T ], and f for an initial value u0 ∈ H.

It will also be important to consider the operator A(t), t ∈ [0, T ], as a mapping on the
space of Bochner integrable functions Lp(0, T ;V ) into its dual space. To this end, we collect
some properties of the Nemytskĭı operator in the following lemma. We omit the proof as it
can be found in [39, Lemma 8.4.4] or [118, Section 30].

Lemma 2.1.2. Let Assumption 2.1.1 be fulfilled. Then v 7→ Av with (Av)(t) = A(t)v(t)
maps Lp(0, T ;V ) into Lq(0, T ;V ∗), where q = p

p−1 . Then the operator is radially continuous,

i.e., the mapping s 7→ 〈A(v+sw), w〉Lq(0,T ;V ∗)×Lp(0,T ;V ) is continuous on [0, 1] for all v, w ∈
Lp(0, T ;V ). Further, A fulfills a monotonicity, a boundedness, and a coercivity condition
such that

〈Av −Aw, v − w〉Lq(0,T ;V ∗)×Lp(0,T ;V ) ≥ 0,

‖Av‖Lq(0,T ;V ∗) ≤ β
(
T

1
q + ‖v‖p−1

Lp(0,T ;V )

)
,

〈Av, v〉Lq(0,T ;V ∗)×Lp(0,T ;V ) + λT ≥ µ‖v‖pLp(0,T ;V )

hold true for all v, w ∈ Lp(0, T ;V ).

For the temporal discretization of (2.1), we introduce a randomly shifted grid to bypass
classical point evaluations at the points of a predetermined temporal grid.

Assumption 2.1.3. Let T ∈ (0,∞) and N ∈ N be given. Consider the equidistant partition
0 = t0 < · · · < tN = T with k = T

N and tn = nk, n ∈ {0, . . . , N}. Further, let (Ωθ,Fθ,Pθ) be
a complete probability space such that L1(Ωθ) is separable. Let θ : Ωθ → [0, 1] be a uniformly
distributed random variable. The randomly shifted grid is denoted by 0 = tθ0 < tθ1 < · · · <
tθN = T − k(1− θ) with tθn = tn−1 + kθ for n ∈ {1, . . . , N}.

The expectation on the probability space (Ωθ,Fθ,Pθ) is denoted by Eθ. It is necessary
to assume that L1(Ωθ) is a separable space to argue that some of the Bochner spaces, which
will appear further below, are separable. For applications, this assumption is unproblematic.
We only need one uniformly distributed random variable θ : Ωθ → [0, 1] in this section.
Thus, we could simply take Ωθ = [0, 1] equipped with the Lebesgue σ-algebra Fθ and the
Lebesgue-measure Pθ and choose θ(ω) = ω for ω ∈ [0, 1].

Under Assumptions 2.1.1 and 2.1.3 as well as f ∈ Lq(0, T ;V ∗), we can now consider the
recursion{

Un + kA(tθn)Un = kf(tθn) + Un−1 almost surely in V ∗, n ∈ {1, . . . , N},
U0 = u0 in H,

(2.4)

which is the classical backward Euler scheme, but on a randomly shifted grid. In the follow-
ing, we will prove that (2.4) admits a unique solution (Un)n∈{1,...,N}. For n ∈ {1, . . . , N}
the mapping Un : Ωθ → V is Fθ-measurable and its expectation fulfills an a priori bound.
We begin by proving a general auxiliary result to show the Fθ-measurability of a solution to
such an implicit equation. A similar result can be found in [54, Lemma 3.8]. The structure
of the proof is comparable to [31, Proposition 1] and [37, Lemma 4.3]. We adapt it to fit
our setting in an infinite-dimensional space.

Lemma 2.1.4. Let (Ω,F ,P) be a complete probability space and let (V, ‖ · ‖V ) be a real,
separable Banach space. Further, let h : Ω×V → V ∗ fulfill the following conditions for some
N ⊂ Ω with P(N ) = 0:
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(1) The mapping u 7→ 〈h(ω, u), v〉V ∗×V is continuous for every v ∈ V and ω ∈ Ω \ N .

(2) The mapping ω 7→ h(ω, u) is F-measurable for every u ∈ V .

(3) For every ω ∈ Ω\N , there exists a unique element U(ω) ∈ V such that h(ω,U(ω)) = 0.

Consider the mapping U : Ω → V , ω 7→ U(ω), where U(ω) is the unique element in V
described in (3) for ω ∈ Ω \ N and U(ω) = 0 for ω ∈ N . Then U is F-measurable.

Proof. For ε > 0 and an arbitrary v ∈ V , we introduce the multivalued function Uv
ε : Ω →

P(V ) by

Uv
ε(ω) =

{
u ∈ V : 〈h(ω, u), v〉V ∗×V ∈ Iε

}
,

where P(V ) denotes the power set of V and Iε = (−ε, ε). Note that when considering
measurability conditions for set-valued mappings, it is usually necessary to work with an
image that is a closed set, compare [14, Section 8.1]. Since we do not use any specific results
imposed on such mappings, it is unproblematic to define it like this.

Let C be an open set within the Borel σ-algebra B(V ) of V . It is our first intention to
prove that for C the set

(Uv
ε)
−1(C) = {ω ∈ Ω : there exists u ∈ C such that u ∈ Uv

ε(ω)}
= {ω ∈ Ω : there exists u ∈ C such that 〈h(ω, u), v〉V ∗×V ∈ Iε}

is an element of F . Note that if C only consists of a single element, it follows that

(Uv
ε)
−1({u}) = {ω ∈ Ω : u ∈ Uv

ε(ω)} =
(
〈h(·, u), v〉V ∗×V

)−1(
Iε
)

is an element of F since ω 7→ 〈h(ω, u), v〉V ∗×V is measurable. If C contains more than one
element, we can still write

(Uv
ε)
−1(C) =

⋃
u∈C

(
〈h(·, u), v〉V ∗×V

)−1(
Iε
)
.

For a countable set C, it is easy to see that (Uv
ε)
−1(C) ∈ F as it is a countable union of

sets in F . By assumption, the space V is separable. Thus, there exists a countable, dense
subset Q of V such that

(Uv
ε)
−1(C ∩Q) =

⋃
u∈C∩Q

(
〈h(·, u), v〉V ∗×V

)−1(
Iε
)

is an element of F . Using the continuity of u 7→ 〈h(ω, u), v〉V ∗×V for every ω ∈ Ω \ N , we
will justify that (Uv

ε)
−1(C ∩Q) = (Uv

ε)
−1(C). As C ∩Q ⊂ C holds true, (Uv

ε)
−1(C ∩Q) ⊆

(Uv
ε)
−1(C) follows directly. Thus, it only remains to prove (Uv

ε)
−1(C) ⊆ (Uv

ε)
−1(C ∩ Q).

Here, we consider two cases. In the first case, we assume that (Uv
ε)
−1(C) ⊆ N . Then the

completeness of the probability space yields (Uv
ε)
−1(C) ∈ F . Else, for ω ∈ (Uv

ε)
−1(C) \ N ,

there exists u1 ∈ C such that u1 ∈ Uv
ε(ω). As u 7→ 〈h(ω, u), v〉V ∗×V is continuous,

D = Uv
ε(ω) =

(
〈h(ω, ·), v〉V ∗×V

)−1(
Iε
)

is an open set in V and u1 ∈ C ∩ D. Since both C and D are open, their intersection is
open and, as we have just seen, it is nonempty. Thus, there exists u2 ∈ C ∩ D ∩ Q such
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that 〈h(ω, u2), v〉V ∗×V ∈ Iε. Altogether, this implies ω ∈ (Uv
ε)
−1(C ∩ Q) and therefore, in

particular, (Uv
ε)
−1(C) = (Uv

ε)
−1(C ∩Q).

For every ω ∈ Ω \ N there exists a unique element U(ω) ∈ V such that h(ω,U(ω)) = 0
in V ∗. Hence, there exists at least one element u ∈ V such that u ∈ Uv

ε(ω) for every v ∈ Q
with ‖v‖V ≤ 1. For such an element u, it follows that

‖h(ω, u)‖V ∗ = sup
v∈V,
‖v‖V ≤1

|〈h(ω, u), v〉V ∗×V | = sup
v∈Q,
‖v‖V ≤1

|〈h(ω, u), v〉V ∗×V | ≤ ε,

as every element of V ∗ is continuous. This in mind, we obtain that the following intersection
fulfills⋂

v∈Q,
‖v‖V ≤1

Uv
ε(ω) =

⋂
v∈Q,
‖v‖V ≤1

{
u ∈ V : 〈h(ω, u), v〉V ∗×V ∈ Iε

}
=
{
u ∈ V : h(ω, u) ∈ Bε,V ∗(0)

}
,

where Bε,V ∗(0) denotes the open ball in V ∗ with radius ε and center 0 ∈ V ∗. Therefore, we
can write for the unique element U(ω) ∈ V such that h(ω,U(ω)) = 0 in V ∗ that

U(ω) ∈
⋂
i∈N

⋂
v∈Q,
‖v‖V ≤1

Uv
i−1(ω) ⊆

⋂
i∈N

{
u ∈ V : h(ω, u) ∈ Bi−1,V ∗(0)

}
= {U(ω)}.

For an arbitrary open set C ∈ B(V ), we then obtain

U−1(C) = {ω ∈ Ω : there exists u ∈ C such that h(ω, u) = 0}

=
⋂
i∈N

⋂
v∈Q,
‖v‖V ≤1

{ω ∈ Ω : there exists u ∈ C such that 〈h(ω, u), v〉V ∗×V ∈ Ii−1}

=
⋂
i∈N

⋂
v∈Q,
‖v‖V ≤1

(Uv
i−1)−1(C) =

⋂
i∈N

⋂
v∈Q,
‖v‖V ≤1

(Uv
i−1)−1(C ∩Q) ∈ F ,

since we have a countable intersection of measurable sets. This proves the measurability of
ω 7→ U(ω).

Lemma 2.1.5. Let Assumptions 2.1.1 and 2.1.3 be fulfilled and for q = p
p−1 , let f ∈

Lq(0, T ;V ∗) be given. Then there exists a unique solution (Un)n∈{1,...,N} to the recursion

(2.4). The mapping Un : Ωθ → V , ω 7→ Un(ω) is Fθ-measurable for every n ∈ {1, . . . , N}.

Proof. The set

N = {ω ∈ Ωθ : there exists n ∈ {1, . . . , N} such that ‖f(tθn(ω))‖V ∗ =∞} (2.5)

is a null set in Ωθ due to the integrability of f . In the following, let n ∈ {1, . . . , N} and
ω ∈ Ωθ \ N be arbitrary but fixed. Assuming that Un−1(ω) exists, we apply the Browder–
Minty Theorem, see [99, Theorem 2.14]. To this end, we consider the equation(

I + kA(tθn(ω))
)
U = kf(tθn(ω)) + Un−1(ω) in V ∗. (2.6)

The operator I + kA(tθn(ω)) is radially continuous, as both I and A(tθn(ω)) are radially
continuous (cf. Assumption 2.1.1 (2)). Moreover, I is strictly monotone and A(tθn(ω)) is
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monotone (cf. Assumption 2.1.1 (3)), so the operator I+kA(tθn(ω)) is also strictly monotone.
For arbitrary v ∈ V , we obtain

〈
(
I + kA(tθn(ω))

)
v, v〉V ∗×V ≥ ‖v‖2H + k(µ‖v‖pV − λ)→∞ as ‖v‖V →∞,

due to Assumption 2.1.1 (5). Thus, I + kA(tθn(ω)) is radially continuous, strictly monotone
and coercive. So there exists a unique element U = Un(ω) ∈ V such that (2.6) is fulfilled.

It remains to prove the Fθ-measurability of the mapping ω 7→ Un(ω). This can be done
by applying Lemma 2.1.4 to the function

hn : Ωθ × V → V ∗, hn(ω,U) =
(
I + kA(tθn(ω))

)
U− kf(tθn(ω))−Un−1(ω)

for n ∈ {1, . . . , N}. By Assumption 2.1.1 (2) and (3), the operator A(t), t ∈ [0, T ], is radially
continuous and monotone. Thus, it is also hemicontinuous (cf. [49, Kapitel III, Lemma 1.3]),
i.e., U 7→ 〈hn(ω,U), v〉V ∗×V is continuous for every ω ∈ Ωθ \ N and v ∈ V . Moreover, the
mapping ω 7→ hn(ω, v) is Fθ-measurable for every v ∈ V due to Assumption 2.1.1 (1) and
the measurability of f and tθn. By the argumentation above, there exists a unique element
Un(ω) ∈ V that is the root of hn(ω, ·). Thus, it follows that Un : Ωθ → V , ω 7→ Un(ω) is
Fθ-measurable.

Now that the existence of a unique Fθ-measurable family (Un)n∈{1,...,N} is proven, we
need a priori bounds for the solution. First, we state a result that shows that the appearing
terms containing f are bounded.

Lemma 2.1.6. Let Assumption 2.1.3 be fulfilled and let (X, ‖ · ‖X) be a real Banach space.
For f ∈ Lq(0, T ;X), q ∈ [1,∞),

k

N∑
n=1

Eθ
[
‖f(tθn)‖qX

]
= ‖f‖qLq(0,T ;X)

is fulfilled.

Proof. For n ∈ {1, . . . , N}, we use a substitution as in (A.2) and can write

Eθ
[
‖f(tθn)‖qX

]
=

∫ 1

0

‖f(tn−1 + ks)‖qX ds =
1

k

∫ tn

tn−1

‖f(s)‖qX ds.

Thus, it follows that

k

N∑
n=1

Eθ
[
‖f(tθn)‖qX

]
=

N∑
n=1

∫ tn

tn−1

‖f(s)‖qX ds =

∫ T

0

‖f(s)‖qX ds.

The following lemma is a central part of our argumentation. These bounds in mind,
we can prove the boundedness of sequences of prolongations of the values obtained in
our semidiscrete scheme (2.4). The structure of the proof to these bounds consists of
standard techniques. However, in our setting, it is not trivial to include a source term
f ∈ Lq(0, T ;V ∗) + L1(0, T ;H), as in [109, Chapter III, Section 1.5], or a semi-coercivity
condition as in [99, Theorem 8.9]. The main difficulty consists of the additional expectation
we have to include to the bounds. Whereas it is easy to see that ‖w‖2H <∞ for w ∈ H im-
plies that ‖w‖pH <∞ for every p ∈ [2,∞), it is not possible to conclude that Eθ

[
‖W‖2H

]
<∞

also implies Eθ
[
‖W‖pH

]
<∞ for a random variable W : Ωθ → H. The techniques proposed

in [21, Lemma 3.1] could offer a possibility to allow for these more general assumptions.
This remains a question for future work.
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Lemma 2.1.7. Let Assumptions 2.1.1 and 2.1.3 be fulfilled. Further, let f ∈ Lq(0, T ;V ∗),
q = p

p−1 , and u0 ∈ H be given. Then there exists K ∈ (0,∞) such that for all k = T
N ,

N ∈ N, the unique solution (Un)n∈{1,...,N} of (2.4) fulfills

max
n∈{1,...,N}

Eθ
[
‖Un‖2H

]
+

N∑
n=1

Eθ
[
‖Un −Un−1‖2H

]
+ k

N∑
n=1

Eθ
[
‖Un‖pV

]
≤ K (2.7)

and

k1−q
N∑
i=1

Eθ
[
‖Ui −Ui−1‖qV ∗

]
= k

N∑
i=1

Eθ

[∥∥∥Ui −Ui−1

k

∥∥∥q
V ∗

]
≤ K. (2.8)

Proof. In the following, let i ∈ {1, . . . , N} be fixed. Furthermore, for the set N defined in
(2.5), we consider the following calculations for ω ∈ Ωθ \ N without explicitly stating ω in
each step. For a single Euler step (2.4), it holds true that

Ui −Ui−1 + kA(tθi )U
i = kf(tθi ) in V ∗.

Testing this equation with Ui, we obtain

(Ui −Ui−1,Ui)H + k〈A(tθi )U
i,Ui〉V ∗×V = k〈f(tθi ),U

i〉V ∗×V . (2.9)

Recalling the identity from Lemma A.1.4 and applying it to (2.9), it follows

1

2

(
‖Ui‖2H − ‖Ui−1‖2H + ‖Ui −Ui−1‖2H

)
+ k〈A(tθi )U

i,Ui〉V ∗×V

= k〈f(tθi ),U
i〉V ∗×V .

(2.10)

The weighted Young inequality applied to the right-hand side of (2.10) shows

k〈f(tθi ),U
i〉V ∗×V ≤ kc1‖f(tθi )‖

q
V ∗ + k

µ

2
‖Ui‖pV ,

where c1 = (pµ)1−q

q21−q . Inserting this bound and the coercivity condition from Assump-

tion 2.1.1 (5) in (2.10), it follows that

1

2

(
‖Ui‖2H − ‖Ui−1‖2H + ‖Ui −Ui−1‖2H

)
+ k

µ

2
‖Ui‖pV ≤ kλ+ kc1‖f(tθi )‖

q
V ∗ .

Multiplying both sides with the factor two and summing up this inequality from i = 1 to
n ∈ {1, . . . , N}, yields

‖Un‖2H +

n∑
i=1

‖Ui −Ui−1‖2H + kµ

n∑
i=1

‖Ui‖pV

≤ ‖U0‖2H + 2tnλ+ 2kc1

n∑
i=1

‖f(tθi )‖
q
V ∗ .

(2.11)

Taking the expectation, it follows that

Eθ
[
‖Un‖2H

]
+

n∑
i=1

Eθ
[
‖Ui −Ui−1‖2H

]
+ kµ

n∑
i=1

Eθ
[
‖Ui‖pV

]
≤ ‖u0‖2H + 2Tλ+ 2kc1

N∑
i=1

Eθ
[
‖f(tθi )‖

q
V ∗

]
= ‖u0‖2H + 2Tλ+ 2c1‖f‖qLq(0,T ;V ∗),
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due to Lemma 2.1.6. It remains to prove the second a priori bound (2.8). To this end, let
v ∈ V be arbitrary but fixed. Then we test (2.4) with v to obtain(Un −Un−1

k
, v
)
H

= 〈f(tθn)−A(tθn)Un, v〉V ∗×V ≤ ‖f(tθn)−A(tθn)Un‖V ∗‖v‖V ,

n ∈ {1, . . . , N}. Together with the boundedness condition from Assumption 2.1.1 (4) this
implies∥∥∥Un −Un−1

k

∥∥∥
V ∗
≤ ‖f(tθn)‖V ∗ + ‖A(tθn)Un‖V ∗ ≤ ‖f(tθn)‖V ∗ + β

(
1 + ‖Un‖p−1

V

)
.

Taking the q-th power and the expectation as well as summing up the inequality from n = 1
to N shows that

N∑
n=1

Eθ

[∥∥∥Un −Un−1

k

∥∥∥q
V ∗

]
≤

N∑
n=1

Eθ
[(
‖f(tθn)‖V ∗ + β

(
1 + ‖Un‖p−1

V

))q]
.

We then multiply by k and take the 1
q -th power again in order to use the triangle inequality

and obtain the desired bound(
k

N∑
n=1

Eθ

[∥∥∥Un −Un−1

k

∥∥∥q
V ∗

]) 1
q

≤
(
k

N∑
n=1

Eθ
[
‖f(tθn)‖qV ∗

]) 1
q

+
(
k

N∑
n=1

βq
) 1
q

+ β
(
k

N∑
n=1

Eθ
[
‖Un‖pV

]) 1
q

= ‖f‖Lq(0,T ;V ∗) + T
1
q β + β

(
k

N∑
n=1

Eθ
[
‖Un‖pV

]) 1
q

.

This is bounded independently of the step size k due to Lemma 2.1.6 and the first a priori
bound (2.7).

For the time discrete solution (Un)n∈{1,...,N} to (2.4) corresponding to the shifted grid
stated in Assumption 2.1.3, we construct piecewise polynomial prolongations defined on the
entire interval [0, T ]. To this end, we introduce the piecewise constant prolongations for
t ∈ (tn−1, tn], n ∈ {1, . . . , N},

Ūk(t) = Un, Ak(t) = A(tθn), fk(t) = f(tθn) (2.12)

as well as the piecewise affine-linear function

Uk(t) = Un−1 +
t− tn−1

k
(Un −Un−1) (2.13)

on Ωθ\N , whereN is defined in (2.5). For t = 0, we set Ūk(0) = Uk(0) = U0, Ak(0) = A(tθ1),
and fk(0) = f(tθ1). Then we have{

(Uk)′(t) +Ak(t)Ūk(t) = fk(t) in Lq(Ωθ;V
∗), t ∈ (0, T ),

Uk(0) = u0 in H,
(2.14)

where (Uk)′ denotes the weak derivative of Uk. Here, the weak derivative coincides with
the classical derivative, where the latter exists. Note that due to the a priori bounds of
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Lemma 2.1.7, the boundedness condition for A(t), t ∈ [0, T ], from Assumption 2.1.1 (4),
and the fact that f ∈ Lq(0, T ;V ∗) the equation is indeed fulfilled in Lq(Ωθ;V

∗).
In the following, we always consider step sizes k = T

N`
, where (N`)`∈N is a sequence of

natural numbers such that N` → ∞ as ` → ∞. We abbreviate the corresponding sequence

(Ū
T
N` )`∈N by (Ūk)k>0 and analogously for the other functions introduced above.
This in mind, we can prove the convergence of Ūk and Uk to the exact solution pointwise

strongly in L2(Ωθ;H). Further, we can prove that Ūk converges to u in Lp(0, T ;Lp(Ωθ;V )).
The Bochner spaces L2(Ωθ;H) and Lp(Ωθ;V ) appear because of the additional dependence
of the solution (Un)n∈{1,...,N} to values of the space Ωθ. More information on a Bochner
space defined on a general measure space can be found in Appendix A.2. There, a collection
of the properties and important results can be found. This information available, a space
Lp(0, T ;Lp(Ωθ;V )) or alike has a similar structure. Since (0, T ) equipped with the Lebesgue
σ-algebra and the Lebesgue measure is a finite measure space, the properties of Lp(Ωθ;V )
can be transferred to Lp(0, T ;Lp(Ωθ;V )).

Lemma 2.1.8. Let Assumptions 2.1.1 and 2.1.3 be fulfilled and let f ∈ Lq(0, T ;V ∗), q =
p
p−1 , and u0 ∈ H be given. Further, let (N`)`∈N be a sequence of natural numbers with

N` → ∞ as ` → ∞, let k = T
N`

be the corresponding step sizes, and let the sequences of

piecewise constant and piecewise linear prolongations be given as in (2.12) and (2.13). Then
there exists a subsequence of step sizes, again denoted by k, such that

Ūk ⇀ U in Lp(0, T ;Lp(Ωθ;V )),

Ūk
∗
⇀ U, Uk

∗
⇀ U in L∞(0, T ;L2(Ωθ;H)),

(Uk)′ ⇀ U ′ in Lq(0, T ;Lq(Ωθ;V
∗))

as k → 0. The function U is an element of Lp(0, T ;Lp(Ωθ;V )) ∩ L∞(0, T ;L2(Ωθ;H)) and
U ′ is the weak temporal derivative of U , which is an element of Lq(0, T ;Lq(Ωθ;V

∗)).

In particular, this shows that U is an element of the space

Wp
Ωθ

(0, T ) = {W ∈ Lp(0, T ;Lp(Ωθ;V )) :

W ′ exists and W ′ ∈ Lq(0, T ;Lq(Ωθ;V
∗))},

(2.15)

which is continuously embedded into C([0, T ];L2(Ωθ;H)).

Proof of Lemma 2.1.8. For simplicity, we do not denote every subsequence differently within
this proof and we drop the index `. Due to the a priori bound (2.7) from Lemma 2.1.7, the
sequence (Ūk)k>0 of piecewise constant prolongations is bounded in both Lp(0, T ;Lp(Ωθ;V ))
and L∞(0, T ;L2(Ωθ;H)). Further, the sequence (Uk)k>0 of piecewise linear prolongations
is bounded in the space L∞(0, T ;L2(Ωθ;H)). Using the second a priori bound (2.8) from
Lemma 2.1.7, it follows that the sequence ((Uk)′)k>0 is bounded in Lq(0, T ;Lq(Ωθ;V

∗)).
As Lp(0, T ;Lp(Ωθ;V )) is a reflexive Banach space, there exists a subsequence of (Ūk)k>0

and an element U ∈ Lp(0, T ;Lp(Ωθ;V )) such that Ūk ⇀ U in Lp(0, T ;Lp(Ωθ;V )) as k → 0.
An analogous argumentation yields that there exists a subsequence of

(
(Uk)′

)
k>0

and W ∈
Lq(0, T ;Lq(Ωθ;V

∗)) such that (Uk)′ ⇀W in Lq(0, T ;Lq(Ωθ;V
∗)) as k → 0.

As stated in Assumption 2.1.1, the space L1(Ωθ) is separable. Applying the fact that H
is separable as well as [96, Proposition 2.3.24, Proposition 4.2.22], it follows that L2(Ωθ;H)
is separable. Thus, the space L∞(0, T ;L2(Ωθ;H)) is the dual space of the separable Banach
space L1(0, T ;L2(Ωθ;H)), compare Appendix A.2. Thus, we can extract weakly∗ converging
subsequences of (Ūk)k>0 and (Uk)k>0. Due to the uniqueness of the limit of weak and
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weak∗ convergent sequences, it follows that Ūk
∗
⇀ U in L∞(0, T ;L2(Ωθ;H)) as k → 0

and therefore U ∈ Lp(0, T ;Lp(Ωθ;V )) ∩ L∞(0, T ;L2(Ωθ;H)). Furthermore, there exists an

element Ũ ∈ L∞(0, T ;L2(Ωθ;H)) such that Uk
∗
⇀ Ũ in L∞(0, T ;L2(Ωθ;H)) as k → 0.

In order to prove that the two limits U and Ũ coincide, we consider∫ T

0

Eθ
[
‖Ūk(t)− Uk(t)‖2H

]
dt =

N∑
n=1

∫ tn

tn−1

Eθ

[∥∥∥Un −Un−1 − t− tn−1

k

(
Un −Un−1

)∥∥∥2

H

]
dt

=
1

k2

N∑
n=1

Eθ
[
‖Un −Un−1‖2H

] ∫ tn

tn−1

(tn − t)2 dt

=
k

3

N∑
n=1

Eθ
[
‖Un −Un−1‖2H

]
→ 0 as k → 0,

where we also used the a priori bound (2.7) from Lemma 2.1.7. This shows that U = Ũ
in L2(0, T ;L2(Ωθ;H)). The spaces L∞(0, T ;L2(Ωθ;H)) and Lp(0, T ;Lp(Ωθ;V )) are contin-
uously embedded into L2(0, T ;L2(Ωθ;H)) and U is an element of Lp(0, T ;Lp(Ωθ;V )) ∩
L∞(0, T ;L2(Ωθ;H)) and Ũ of L∞(0, T ;L2(Ωθ;H)). This shows that U = Ũ in both
Lp(0, T ;Lp(Ωθ;V )) and L∞(0, T ;L2(Ωθ;H)) as the embedding is always injective.

It remains to prove that W is the weak derivative of U with respect to the temporal
input. For arbitrary v ∈ Lp(Ωθ;V ) and ϕ ∈ C∞c (0, T ), it follows that

Eθ

[ ∫ T

0

(
(Uk)′(t), v

)
H
ϕ(t) dt

]
= Eθ

[ ∫ T

0

(Uk(t), v)Hϕ
′(t) dt

]
since (Uk)′ is the weak derivative of Uk almost surely. Thus, an application of Fubini’s
theorem then yields∫ T

0

Eθ
[
〈W (t), v〉V ∗×V

]
ϕ(t) dt = lim

k→0

∫ T

0

Eθ
[(

(Uk)′(t), v
)
H

]
ϕ(t) dt

= − lim
k→0

∫ T

0

Eθ
[
(Uk(t), v)H

]
ϕ′(t) dt

= −
∫ T

0

Eθ
[
(U(t), v)H

]
ϕ′(t) dt.

Applying [49, Kapitel IV, Lemma 1.7], it follows that W = U ′ in Lq(0, T ;Lq(Ωθ;V
∗)) and,

in particular, that U ∈ Wp
Ωθ

(0, T ).

Lemma 2.1.9. Let Assumption 2.1.3 be fulfilled, let (X, ‖ · ‖X) be a real Banach space, q ∈
[1,∞), and v ∈ Lq(0, T ;X). Then the piecewise constant function vk : [0, T ] → Lq(Ωθ;X)
given by vk(0) = v(tθ1) and vk(t) = v(tθn) in Lq(Ωθ;X) for t ∈ (tn−1, tn], n ∈ {1, . . . , N},
fulfills

vk → v in Lq(0, T ;Lq(Ωθ;X))

as k → 0.

Proof. As the space C([0, T ];X) is dense in Lq(0, T ;X), for every ε > 0, there exists a
function vε ∈ C([0, T ];X) such that

‖vε − v‖Lq(0,T ;X) <
ε

4
.
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In particular, the function vε is uniformly continuous and there exists k0 > 0 such that

‖vε(s)− vε(t)‖X <
ε

2T
1
q

is fulfilled for all s, t ∈ [0, T ] with |s− t| ≤ k and k ≤ k0. In order to prove the assertion, we
notice that

‖vk − v‖qLq(0,T ;Lq(Ωθ;X)) =

N∑
n=1

∫ tn

tn−1

Eθ
[
‖v(tθn)− v(t)‖qX

]
dt.

Then for n ∈ {1, . . . , N} and almost every t ∈ (tn−1, tn], a substitution as in (A.2) yields

Eθ
[
‖v(tθn)− v(t)‖qX

]
=

∫ 1

0

‖v(tn−1 + ks)− v(t)‖qX ds =
1

k

∫ tn

tn−1

‖v(s)− v(t)‖qX ds,

such that for k ≤ k0(1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

‖v(s)− v(t)‖qX ds dt
) 1
q

≤
(1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

‖v(s)− vε(s)‖qX dt ds
) 1
q

+
(1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

‖vε(s)− vε(t)‖qX dt ds
) 1
q

+
(1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

‖vε(t)− v(t)‖qX dt ds
) 1
q

≤ 2
(∫ T

0

‖v(s)− vε(s)‖qX ds
) 1
q

+
(1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

εq

2qT
dt ds

) 1
q

< ε.

Altogether, we have proved that

‖vk − v‖Lq(0,T ;Lq(Ωθ;X)) < ε,

which verifies the statement of the lemma as ε > 0 can be chosen arbitrarily.

The next lemma contains a comparable result for the operator Ak. Note that in con-
trast to deterministic methods that use values 1

k

∫ tn
tn−1

A(t) dt instead of A(tθn) for n ∈
{1, . . . , N}, we prove that Akvk → Av in Lq(0, T ;Lq(Ωθ;V

∗)) rather than Akv → Av in
Lq(0, T ;Lq(Ωθ;V

∗)) as k → 0 for v ∈ Lp(0, T ;V ), where vk is a piecewise constant function
similar to the one introduced in the previous lemma. In the proof, Akvk leads to a function
t 7→ A(t)v(t) whereas Akv leads to a function (s, t) 7→ A(s)v(t), which is harder to compare
to the claimed limit.

Lemma 2.1.10. Let Assumptions 2.1.1 and 2.1.3 be fulfilled and let an arbitrary v ∈
Lp(0, T ;V ) be given. Then for Ak defined in (2.12) and the piecewise constant func-
tion vk : [0, T ] → Lp(Ωθ;V ) given by vk(0) = v(tθ1) and vk(t) = v(tθn) in Lp(Ωθ;V ) for
t ∈ (tn−1, tn], n ∈ {1, . . . , N}, it follows that

Akvk → Av in Lq(0, T ;Lq(Ωθ;V
∗))

as k → 0.
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Proof. In order to estimate Akvk −Av in the norm of Lq(0, T ;Lq(Ωθ;V
∗)), we use a substi-

tution as in (A.2) to obtain

‖Akvk −Av‖qLq(0,T ;Lq(Ωθ;V ∗))

=

N∑
n=1

∫ tn

tn−1

Eθ
[
‖A(tθn)v(tθn)−A(t)v(t)‖qV ∗

]
dt

=

N∑
n=1

∫ tn

tn−1

∫ 1

0

‖A(tn−1 + ks)v(tn−1 + ks)−A(t)v(t)‖qV ∗ ds dt

=
1

k

N∑
n=1

∫ tn

tn−1

∫ tn

tn−1

‖A(s)v(s)−A(t)v(t)‖qV ∗ ds dt.

Using the function h(s) := A(s)v(s), we can follow an analogous argumentation as in the
proof of Lemma 2.1.9.

The previous lemmas show that the single summands in (2.14) are converging as k → 0.
The remaining question is how these limits relate to equation (2.1). And indeed, combining
the results, shows that the limit U from Lemma 2.1.8 is the solution of the initial value
problem (2.1).

Theorem 2.1.11. Let Assumptions 2.1.1 and 2.1.3 be fulfilled and let f ∈ Lq(0, T ;V ∗),
q = p

p−1 , as well as u0 ∈ H be given. Further, let (N`)`∈N be a sequence of natural numbers

with N` →∞ as `→∞ and let k = T
N`

be the corresponding step sizes. Then the sequences

of piecewise constant and piecewise linear prolongations as given in (2.12) and (2.13) fulfill

Ūk ⇀ u in Lp(0, T ;Lp(Ωθ;V )),

Ūk
∗
⇀ u, Uk

∗
⇀ u in L∞(0, T ;L2(Ωθ;H)),

(Uk)′ ⇀ u′ in Lq(0, T ;Lq(Ωθ;V
∗)),

AkŪk ⇀ Au in Lq(0, T ;Lq(Ωθ;V
∗))

as k → 0, where u is the solution to (2.1) and u′ its weak derivative. Furthermore, it holds
true that Ūk(t) ⇀ u(t) and Uk(t) ⇀ u(t) in L2(Ωθ;H) as k → 0 for all t ∈ [0, T ].

Note that it is also possible to prove that Uk ⇀ u in Lp(0, T ;Lp(Ωθ;V )) as k → 0 if we

choose Uk(0) = uk0 in V , where uk0 → u0 in H as k → 0 and
(
k

1
p ‖uk0‖V

)
k>0

is a bounded
sequence. Such a sequence always exists because V is densely embedded into H. A short
construction of such a sequence can also be found in Chapter 3. If in this case a scheme
without randomization is used, the sequence of piecewise linear prolongations is bounded
in the space Wp(0, T ). Due to the Lions–Aubin lemma, this space is compactly embedded
into L2(0, T ;H) if V is compactly embedded into H. Such a compact embedding is useful
when H-valued perturbations are considered. In our setting, it is not possible to apply the
Lions–Aubin lemma because of the additional Ωθ dependence. We could still obtain that
the sequence (Uk)k>0 is bounded in the space

Wp
Ωθ

(0, T ) = {W ∈ Lp(0, T ;Lp(Ωθ;V )) : W ′ exists and W ′ ∈ Lq(0, T ;Lq(Ωθ;V
∗))}

if the initial value is approximated with values in V . But now Lp(Ωθ;V ) does not have to
be compactly embedded into L2(Ωθ;H) even if V is compactly embedded into H. Thus, if
we want to consider equations with an H-valued perturbations, a transformation as in (1.2)
has to be used. Even without the compact embedding from the Lions–Aubin lemma, we
will see in Theorem 2.1.12 below that certain strong convergence results can be obtained.
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Proof of Theorem 2.1.11. For simplicity, we again do not denote the subsequences differently
within this proof and we drop the index `. In the following, let U ∈ Wp

Ωθ
(0, T ) be the

limit of the sequences of piecewise constant and piecewise linear prolongations obtained
in Lemma 2.1.8. An application of the a priori bound (2.7) from Lemma 2.1.7 and the
boundedness condition from Assumption 2.1.1 (4) yields

‖AkŪk‖Lq(0,T ;Lq(Ωθ;V ∗)) =
(
k

N∑
n=1

Eθ
[
‖A(tθn)Un‖qV ∗

]) 1
q

≤
(
k

N∑
n=1

Eθ
[
βq
(
1 + ‖Un‖p−1

V

)q]) 1
q ≤ βT

1
q + βK

1
q .

As Lq(0, T ;Lq(Ωθ;V
∗)) is a reflexive Banach space, we can extract a weakly converging

subsequence such that

AkŪk ⇀ b in Lq(0, T ;Lq(Ωθ;V
∗)) as k → 0

for b ∈ Lq(0, T ;Lq(Ωθ;V
∗)). Next, we identify f − b with the weak derivative of U . To this

end, for arbitrary v ∈ Lp(Ωθ;V ) and ϕ ∈ C∞c (0, T ) we see that∫ T

0

Eθ
[
〈U ′(t), v〉V ∗×V

]
ϕ(t) dt = lim

k→0

∫ T

0

Eθ
[
〈(Uk)′(t), v〉V ∗×V

]
ϕ(t) dt

= lim
k→0

∫ T

0

Eθ
[
〈fk(t)−Ak(t)Ūk(t), v〉V ∗×V

]
ϕ(t) dt

=

∫ T

0

Eθ
[
〈f(t)− b(t), v〉V ∗×V

]
ϕ(t) dt,

where we also used fk → f and (Uk)′ ⇀ U ′ in Lq(0, T ;Lq(Ωθ;V
∗)) as k → 0, compare

Lemma 2.1.8 and Lemma 2.1.9. Thus, b = f − U ′ in Lq(0, T ;Lq(Ωθ;V
∗)) is fulfilled.

Due to the a priori bound (2.7) from Lemma 2.1.7, for t ∈ [0, T ] we can again extract a
weakly converging subsequence of (Uk(t))k>0 such that

Uk(t) ⇀ Ũ(t) in L2(Ωθ;H) as k → 0

with Ũ(t) ∈ L2(Ωθ;H). Assuming that t ∈ [0, T ], ϕ ∈ C1([0, T ]), and v ∈ Lp(Ωθ;V ), we can
see

Eθ
[
(U(t), v)H

]
ϕ(t)−Eθ

[
(U(0), v)H

]
ϕ(0)−

∫ t

0

Eθ
[
(U(s), v)H

]
ϕ′(s) ds

=

∫ t

0

Eθ
[
〈U ′(s), v〉V ∗×V

]
ϕ(s) ds

= lim
k→0

∫ t

0

Eθ
[
〈(Uk)′(s), v〉V ∗×V

]
ϕ(s) ds

= lim
k→0

(
Eθ
[
(Uk(t), v)H

]
ϕ(t)−Eθ

[
(Uk(0), v)H

]
ϕ(0)−

∫ t

0

Eθ
[
(Uk(s), v)H

]
ϕ′(s) ds

)
= Eθ

[
(Ũ(t), v)H

]
ϕ(t)−Eθ

[
(u0, v)H

]
ϕ(0)−

∫ t

0

Eθ
[
(U(s), v)H

]
ϕ′(s) ds.

In the single steps, we use (Uk)′ ⇀ U ′ in Lq(0, T ;Lq(Ωθ;V
∗)) as well as Uk

∗
⇀ U in

L∞(0, T ;L2(Ωθ;H)), compare Lemma 2.1.8. As for every k > 0 the equality Uk(0) = U0 =
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u0 in H holds true, this implies U(t) = Ũ(t) in L2(Ωθ;H). For the piecewise constant
prolongation Ūk, we see that

Eθ
[
‖Ūk(t)− Uk(t)‖qV ∗

]
= Eθ

[∥∥∥Un −Un−1 − t− tn−1

k

(
Un −Un−1

)∥∥∥q
V ∗

]
=
( tn − t

k

)q
Eθ
[
‖Un −Un−1‖qV ∗

]
≤

N∑
i=1

Eθ
[
‖Ui −Ui−1‖qV ∗

]
≤ kq−1K

for all t ∈ (tn−1, tn], n ∈ {1, . . . , N}, where we applied the a priori bound (2.8) from
Lemma 2.1.7. Thus, it follows that Eθ

[
‖Ūk(t)−Uk(t)‖qV ∗

]
→ 0 as k → 0 for every t ∈ [0, T ].

This implies that the limits of (Ūk(t))k>0 and (Uk(t))k>0 coincide in Lq(Ωθ;V
∗). Since the

sequence (Ūk(t))k>0, t ∈ [0, T ], is bounded in L2(Ωθ;H) due to the a priori bound (2.7)
from Lemma 2.1.7, we can extract a weakly converging subsequence. The L2(Ωθ;H)-valued
limit of (Ūk(t))k>0 then coincides with the weak limit U(t) of (Uk(t))k>0 in Lq(Ωθ;V

∗) for
every t ∈ [0, T ]. Since L2(Ωθ;H) is continuously embedded into Lq(Ωθ;V

∗), it follows that
(Ūk(t))k>0 converges weakly to U(t) in L2(Ωθ;H) for every t ∈ [0, T ].

It remains to verify that b = AU in Lq(0, T ;Lq(Ωθ;V
∗)). Testing the differential equa-

tion in (2.14) with Ūk ∈ Lp(0, T ;Lp(Ωθ;V )) and integrating from 0 to t ∈ (tn−1, tn],
n ∈ {1, . . . , N}, we can write that∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

=

∫ t

0

Eθ
[
〈fk(s)− (Uk)′(s), Ūk(s)〉V ∗×V

]
ds

=

∫ tn

0

Eθ
[
〈fk(s)− (Uk)′(s), Ūk(s)〉V ∗×V

]
ds

−
∫ tn

t

Eθ
[
〈fk(s)− (Uk)′(s), Ūk(s)〉V ∗×V

]
ds.

Next, we insert the structure of the prolongations as well as the identity from Lemma A.1.4
to obtain that ∫ tn

0

Eθ
[
〈(Uk)′(s), Ūk(s)〉V ∗×V

]
ds

=
1

k

n∑
i=1

∫ ti

ti−1

Eθ
[
(Ui −Ui−1,Ui)H

]
ds

=

n∑
i=1

Eθ
[
(Ui −Ui−1,Ui)H

]
=

1

2

n∑
i=1

(
Eθ
[
‖Ui‖2H

]
−Eθ

[
‖Ui−1‖2H

]
+ Eθ

[
‖Ui −Ui−1‖2H

])
≥ 1

2
Eθ
[
‖Un‖2H

]
− 1

2
‖U0‖2H =

1

2
Eθ
[
‖Ūk(t)‖2H

]
− 1

2
‖u0‖2H .

Recall that fk → f in Lq(0, T ;Lq(Ωθ;V
∗)) and Ūk ⇀ U in Lp(0, T ;Lp(Ωθ;V )) as k → 0. As

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}, we have that Ūk(tn) = Ūk(t) ⇀ U(t) in L2(Ωθ;H)
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as k → 0, the lower semi-continuity of the norm then implies that

lim sup
k→0

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

= lim sup
k→0

(∫ tn

0

Eθ
[
〈fk(s)− (Uk)′(s), Ūk(s)〉V ∗×V

]
ds

−
∫ tn

t

Eθ
[
〈fk(s)− (Uk)′(s), Ūk(s)〉V ∗×V

]
ds
)

=

∫ t

0

Eθ
[
〈f(s), U(s)〉V ∗×V

]
ds− lim inf

k→0

∫ tn

0

Eθ
[
〈(Uk)′(s), Ūk(s)〉V ∗×V

]
ds

≤
∫ t

0

Eθ
[
〈f(s), U(s)〉V ∗×V

]
ds− lim inf

k→0

1

2

(
Eθ
[
‖Ūk(t)‖2H

]
− ‖u0‖2H

)
≤
∫ t

0

Eθ
[
〈f(s), U(s)〉V ∗×V

]
ds− 1

2

(
Eθ
[
‖U(t)‖2H

]
− ‖u0‖2H

)
.

Here, we also used that (〈fk − (Uk)′, Ūk〉V ∗×V )k>0 is bounded uniformly with respect to k
in L1((0, T )×Ωθ). As U is an element of the space Wp

Ωθ
(0, T ), which is defined in (2.15), it

follows that

1

2

(
Eθ
[
‖U(t)‖2H

]
− ‖u0‖2H

)
=

1

2

∫ t

0

d

ds
Eθ
[
‖U(s)‖2H

]
ds =

∫ t

0

Eθ
[
〈U ′(s), U(s)〉V ∗×V

]
ds,

for every t ∈ [0, T ]. This implies that

lim sup
k→0

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

≤
∫ t

0

Eθ
[
〈f(s)− U ′(s), U(s)〉V ∗×V

]
ds =

∫ t

0

Eθ
[
〈b(s), U(s)〉V ∗×V

]
ds.

(2.16)

In order to prove that AU = b in Lq(0, T ;Lq(Ωθ;V
∗)), it is problematic to apply the Minty

monotonicity trick directly. Without further information, the limit U is a random variable
that might have a dependence on Ωθ. This makes it difficult to apply Lemma 2.1.10 as the
function v in the statement has to be independent of Ωθ. But we can use the fact that we
already know that the initial value problem (2.1) has a unique solution u ∈ Wp(0, T ), which
is constant with respect to Ωθ. We then define the piecewise constant function uk : [0, T ]→
Lp(Ωθ;V ) given by uk(0) = u(tθ1) and uk(t) = u(tθn) in Lp(Ωθ;V ) for t ∈ (tn−1, tn], n ∈
{1, . . . , N}. Because of the monotonicity condition from Assumption 2.1.1 (3), we see that∫ t

0

Eθ
[
〈Ak(s)Ūk(s)−Ak(s)uk(s), Ūk(s)− uk(s)〉V ∗×V

]
ds ≥ 0.

Rearranging the terms yields the inequality∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

≥
∫ t

0

Eθ
[
〈Ak(s)Ūk(s), uk(s)〉V ∗×V

]
ds+

∫ t

0

Eθ
[
〈Ak(s)uk(s), Ūk(s)− uk(s)〉V ∗×V

]
ds.
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Using the definition of b as well as (2.16), Lemma 2.1.9 and Lemma 2.1.10, we obtain that∫ t

0

Eθ
[
〈b(s), U(s)〉V ∗×V

]
ds

≥ lim sup
k→0

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

≥ lim
k→0

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), uk(s)〉V ∗×V

]
ds

+ lim
k→0

∫ t

0

Eθ
[
〈Ak(s)uk(s), Ūk(s)− uk(s)〉V ∗×V

]
ds

=

∫ t

0

Eθ
[
〈b(s), u(s)〉V ∗×V

]
ds+

∫ t

0

Eθ
[
〈A(s)u(s), U(s)− u(s)〉V ∗×V

]
ds.

This implies ∫ t

0

Eθ
[
〈b(s)−A(s)u(s), U(s)− u(s)〉V ∗×V

]
ds ≥ 0. (2.17)

This in mind and employing that U and u are elements of Wp
Ωθ

(0, T ), we see that

1

2

d

ds
‖U(s)− u(s)‖2L2(Ωθ;H) = Eθ

[
〈U ′(s)− u′(s), U(s)− u(s)〉V ∗×V

]
= Eθ

[
〈f(s)− b(s)− f(s) +A(s)u(s), U(s)− u(s)〉V ∗×V

]
= −Eθ

[
〈b(s)−A(s)u(s), U(s)− u(s)〉V ∗×V

]
for almost every s ∈ (0, T ). Integrating this equality from 0 to t ∈ [0, T ] and applying (2.17),
shows that

1

2
‖U(t)− u(t)‖2L2(Ωθ;H) −

1

2
‖U(0)− u(0)‖2L2(Ωθ;H)

= −
∫ t

0

Eθ
[
〈b(s)−A(s)u(s), U(s)− u(s)〉V ∗×V

]
ds ≤ 0.

Since we have already seen that U(0) and u(0) coincide in L2(Ωθ;H), it follows that U(t) =
u(t) in L2(Ωθ;H) for all t ∈ [0, T ]. This shows, in particular, that U is constant in Ωθ.

The last step is to prove that Au = b in Lq(0, T ;Lq(Ωθ;V
∗)). This also proves that b is

constant on Ωθ. As we have seen that U = u in L∞(0, T ;H) and both U ′ and u′ exist it
follows that U ′ = u′ in Lq(0, T ;Lq(Ωθ;V

∗)) and because u′ is constant on Ωθ the same is true
for U ′. Also we have seen that b = U ′−f in Lq(0, T ;Lq(Ωθ;V

∗)). Since U ′−f = u′−f = Au
in Lq(0, T ;V ∗), it follows that b = Au in Lq(0, T ;V ∗).

So far, we have only proved that every converging subsequence of (Ūk)k>0 converges
to u weakly in Lp(0, T ;Lp(Ωθ;V )). An application of the subsequence principle, see [116,
Proposition 10.13] or [49, Kapitel I, Lemma 5.4], yields that the original sequence converges
weakly to u in Lp(0, T ;Lp(Ωθ;V )). Analogously, it is possible to prove that the other
assertions of this theorem hold true for the original sequence.

The previous theorem verifies that the sequences of prolongations converge to the solution
of (2.1) in the weak sense. We can strengthen the result from this theorem and show that
we obtain a strong pointwise convergence in L2(Ωθ;H). If A(t), t ∈ [0, T ], fulfills a stronger
monotonicity assumption, we can even show a strong convergence result for the piecewise
constant prolongation in Lp(0, T ;Lp(Ωθ;V )).
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Theorem 2.1.12. Let Assumptions 2.1.1 and 2.1.3 be fulfilled and let f ∈ Lq(0, T ;V ∗),
q = p

p−1 , as well as u0 ∈ H be given. Further, let (N`)`∈N be a sequence of natural numbers

with N` →∞ as `→∞ and let k = T
N`

be the corresponding step sizes. Then the sequences

of piecewise constant and piecewise linear prolongations given in (2.12) and (2.13) fulfill
that

Ūk(t)→ u(t), Uk(t)→ u(t) in L2(Ωθ;H) as k → 0

for every t ∈ [0, T ], where u is the solution to the initial value problem (2.1). Furthermore,
under the additional assumption that A(t), t ∈ [0, T ], fulfills a p-monotonicity condition such
that there exists η ∈ (0,∞), which does not depend on t ∈ [0, T ], with

〈A(t)v −A(t)w, v − w〉V ∗×V ≥ η‖v − w‖pV (2.18)

for every v, w ∈ V , the sequence (Ūk)k>0 satisfies that

Ūk → u in Lp(0, T ;Lp(Ωθ;V )) as k → 0.

Proof. For simplicity, we drop the index ` within this proof. The main idea of this proof is to
use the weak convergence results proved in Theorem 2.1.11 to deduce the strong convergence
in the same space. We combine the monotonicity conditions from Assumption 2.1.1 (3)
and from (2.18). We notice that the case η = 0 in (2.18) is exactly the monotonicity
condition from Assumption 3.1.2 (3). Thus, we include η = 0 to (2.18). We point out
the additional result for η ∈ (0,∞) later in the proof. We consider the piecewise constant
function uk : [0, T ] → Lp(Ωθ;V ) given by uk(0) = u(tθ1) and uk(t) = u(tθn) in Lp(Ωθ;V ) for
t ∈ (tn−1, tn], n ∈ {1, . . . , N}. Using the p-monotonicity condition from (2.18), yields

Eθ
[
‖uk(t)− Ūk(t)‖2H

]
+ 2η

∫ t

0

Eθ
[
‖uk(s)− Ūk(s)‖pV

]
ds

≤ Eθ
[
‖uk(t)− Ūk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)uk(s)−Ak(s)Ūk(s), uk(s)− Ūk(s)〉V ∗×V

]
ds

= Eθ
[
‖uk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)uk(s), uk(s)〉V ∗×V

]
ds

− 2Eθ
[
(uk(t), Ūk(t))H

]
− 2

∫ t

0

Eθ
[
〈Ak(s)uk(s), Ūk(s)〉V ∗×V

]
ds

− 2

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), uk(s)〉V ∗×V

]
ds

+ Eθ
[
‖Ūk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

=: Γk1(t) + Γk2(t) + Γk3(t),

for every t ∈ [0, T ], where

Γk1(t) = Eθ
[
‖uk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)uk(s), uk(s)〉V ∗×V

]
ds,

Γk2(t) = −2Eθ
[
(uk(t), Ūk(t))H

]
− 2

∫ t

0

Eθ
[
〈Ak(s)uk(s), Ūk(s)〉V ∗×V

]
ds

− 2

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), uk(s)〉V ∗×V

]
ds,

Γk3(t) = Eθ
[
‖Ūk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds.
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As u is an element of Lp(0, T ;V ), we can apply Lemma 2.1.10 to obtain that Akuk → Au
in Lq(0, T ;Lq(Ωθ;V

∗)) as k → 0. We can apply Lemma 2.1.9 to obtain that uk → u
in Lp(0, T ;Lp(Ωθ;V )) as k → 0. The solution u to (2.1) is, in particular, an element of
C([0, T ];H). For t ∈ [0, T ], we always choose n ∈ {1, . . . , N} such t ∈ (tn−1, tn] or n = 1 if
t = 0. Then it follows that

‖u(t)− uk(t)‖L2(Ωθ;H) = ‖u(t)− u(tθn)‖L2(Ωθ;H) → 0 k → 0.

This means that uk(t) → u(t) in L2(Ωθ;H) as k → 0 for every t ∈ [0, T ]. Thus, it follows
that

lim
k→0

Γk1(t) = ‖u(t)‖2L2(Ωθ;H) + 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

= ‖u(t)‖2H + 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds.

Recall that in Theorem 2.1.11 it was proved that Ūk(t) ⇀ u(t) in L2(Ωθ;H) for every
t ∈ [0, T ], Ūk ⇀ u in Lp(0, T ;Lp(Ωθ;V )) and AkŪk ⇀ Au in Lq(0, T ;Lq(Ωθ;V

∗)) as k → 0.
Together with the convergence results mentioned for Γk1 , this yields

lim
k→0

Γk2(t) = −2(u(t), u(t))H − 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds− 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

= −2‖u(t)‖2H − 4

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds.

Handling Γk3 needs a little more attention. For every t ∈ (tn−1, tn], n ∈ {1, . . . , N}, we can
write

Γk3(t) = Eθ
[
‖Ūk(t)‖2H

]
+ 2

∫ t

0

Eθ
[
〈Ak(s)Ūk(s), Ūk(s)〉V ∗×V

]
ds

= Eθ
[
‖Un‖2H

]
+ 2

∫ tn

0

Eθ
[
〈Ak(s)Ūk(s)− fk(s), Ūk(s)〉V ∗×V

]
ds

+ 2

∫ t

0

Eθ
[
〈fk(s), Ūk(s)〉V ∗×V

]
ds

− 2

∫ tn

t

Eθ
[
〈Ak(s)Ūk(s)− fk(s), Ūk(s)〉V ∗×V

]
ds.

Inserting equation (2.14), it follows that∫ tn

0

Eθ
[
〈Ak(s)Ūk(s)− fk(s), Ūk(s)〉V ∗×V

]
ds = −

∫ tn

0

Eθ
[
〈(Uk)′(s), Ūk(s)〉V ∗×V

]
ds.

Applying the specific structure of the piecewise constant and piecewise linear prolongation
from (2.12) and (2.13), the integral containing the weak derivative of Uk can be estimated
by

−2

∫ tn

0

Eθ
[
〈(Uk)′(s), Ūk(s)〉V ∗×V

]
ds = −2

n∑
i=1

Eθ
[
(Ui −Ui−1,Ui)H

]
≤ −

n∑
i=1

(
Eθ
[
‖Ui‖2H

]
−Eθ

[
‖Ui−1‖2H

]
= −Eθ

[
‖Un‖2H

]
+ Eθ

[
‖U0‖2H

]
.
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Here, we used the telescopic structure of the sum as well as the identity from Lemma A.1.4.
A combination of the previous arguments then gives us the bound

Γk3(t) ≤ ‖u0‖2H + 2

∫ t

0

Eθ
[
〈fk(s), Ūk(s)〉V ∗×V

]
ds

− 2

∫ tn

t

Eθ
[
〈Ak(s)Ūk(s)− fk(s), Ūk(s)〉V ∗×V

]
ds

(2.19)

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. In Lemma 2.1.9, we proved that fk → f in
Lq(0, T ;Lq(Ωθ;V

∗)) as k → 0. Further, in Theorem 2.1.11, we showed that Ūk ⇀ u in
Lp(0, T ;Lp(Ωθ;V )) as k → 0. Thus, it follows that the first integral on the right-hand side

of (2.19) converges to
∫ t

0
〈f(s), u(s)〉V ∗×V ds. For the second integral, we notice that

〈Ak(s)Ūk(s)− fk(s), Ūk(s)〉V ∗×V
≤ ‖Ak(s)Ūk(s)‖V ∗‖Ūk(s)‖V + ‖fk(s)‖V ∗‖Ūk(s)‖V

≤ β
(
‖Ūk(s)‖V + ‖Ūk(s)‖pV

)
+

1

q
‖fk(s)‖qV ∗ +

1

p
‖Ūk(s)‖pV =: g(s)

for almost all s ∈ (0, T ). The function g is bounded by a function in L1((0, T )×Ωθ), compare
Lemma 2.1.6 and the a priori bound (2.7) from Lemma 2.1.7. Thus, the second integral in
(2.19) tends to zero as |tn − t| → 0. Thus, it follows that

lim sup
k→0

Γk3(t) ≤ ‖u0‖2H + 2

∫ t

0

〈f(s), u(s)〉V ∗×V ds.

Now, it remains to combine all these results to find that

lim sup
k→0

(
Eθ
[
‖uk(t)− Ūk(t)‖2H

]
+ 2η

∫ t

0

Eθ
[
‖uk(s)− Ūk(s)‖pV

]
ds
)

≤ ‖u(t)‖2H + 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

− 2‖u(t)‖2H − 4

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

+ ‖u0‖2H + 2

∫ t

0

〈f(s), u(s)〉V ∗×V ds

= ‖u0‖2H − ‖u(t)‖2H + 2

∫ t

0

〈f(s)−A(s)u(s), u(s)〉V ∗×V ds

= ‖u0‖2H − ‖u(t)‖2H + 2

∫ t

0

〈u′(s), u(s)〉V ∗×V ds.

Since u ∈ Wp(0, T ), we can apply a partial integration rule to obtain

‖u0‖2H − ‖u(t)‖2H + 2

∫ t

0

〈u′(s), u(s)〉V ∗×V ds = ‖u0‖2H − ‖u(t)‖2H +

∫ t

0

d

ds
‖u(s)‖2H ds = 0.

As uk(t)→ u(t) in L2(Ωθ;H) as k → 0 for every t ∈ [0, T ], an application of the triangular
inequality yields that Ūk(t) → u(t) in L2(Ωθ;H) as k → 0 for every t ∈ [0, T ]. In the case
of η ∈ (0,∞), a similar argumentation yields that Ūk → u in Lp(0, T ;Lp(Ωθ;V )) as k → 0
as the same thing is true for (uk)k>0.
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It remains to prove that Uk(t) → u(t) in L2(Ωθ;H) as k → 0 for every t ∈ [0, T ]. This
is mainly due to the fact that the limit of both the sequence of the piecewise constant and
piecewise linear prolongations coincide in a suitable sense, see also [43] for some further re-
sults. Recall the definition of Ūk and Uk from (2.12) and (2.13), respectively. An application
of the triangle inequality then yields that

‖Uk(t)− u(t)‖L2(Ωθ;H)

≤
∥∥∥ tn − t

k

(
Ūk(t− k)− u(t)

)∥∥∥
L2(Ωθ;H)

+
∥∥∥ t− tn−1

k

(
Ūk(t)− u(t)

)∥∥∥
L2(Ωθ;H)

≤ ‖Ūk(t− k)− u(t)‖L2(Ωθ;H) + ‖Ūk(t)− u(t)‖L2(Ωθ;H)

≤ ‖Ūk(t− k)− u(t− k)‖L2(Ωθ;H) + ‖u(t− k)− u(t)‖L2(Ωθ;H) + ‖Ūk(t)− u(t)‖L2(Ωθ;H)

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. Using that u ∈ Wp(0, T ) ↪→ C([0, T ];H) and
Ūk(t)→ u(t) in L2(Ωθ;H) as k → 0 for every t ∈ [0, T ], it also follows that Uk(t)→ u(t) in
L2(Ωθ;H) as k → 0.

2.2 Explicit Error Estimates

Having proved convergence under no additional regularity assumptions, we now consider
a second type of randomization. This is appropriate to prove explicit error estimates of
the scheme. Here, the size of the error depends on the regularity of the exact solution.
In the previous section, we used a randomized grid. Now, we still use a randomized grid
but evaluate the data at a randomized point in between the randomly shifted grid points.
Precisely, the random points are given in the following assumption.

Assumption 2.2.1. Let T ∈ (0,∞) and N ∈ N be given. Consider the equidistant partition
0 = t0 < · · · < tN = T with k = T

N and tn = nk, n ∈ {0, . . . , N}. For a complete probability
space (Ωθ,Fθ,Pθ) and a uniformly distributed random variable θ : Ωθ → [0, 1], the randomly
shifted grid is denoted by 0 = tθ0 < tθ1 < · · · < tθN = T − k(1 − θ) with tθn = tn−1 + kθ for
n ∈ {1, . . . , N}. The step size is denoted by kn = tθn − tθn−1 for n ∈ {1, . . . , N}.

Let (Ωτ ,Fτ ,Pτ ) be a second complete probability space and let (τn)n∈{1,...,N} be a family
of independent, uniformly distributed random variables such that τn : Ωτ → [0, 1]. On the
product probability space (Ω,F ,P) = (Ωθ × Ωτ ,Fθ ⊗ Fτ ,Pθ ⊗ Pτ ), let ξn : Ω → [0, 1] be
given by ξn = tθn−1 + knτn for n ∈ {1, . . . , N}.

The expectations on the probability spaces (Ωτ ,Fτ ,Pτ ) and (Ω,F ,P) are denoted by
Eτ and E, respectively. Note that the grid is not equidistant since k1 = θk but kn = k for
n ∈ {2, . . . , N}. We still have kn ≤ k for every n ∈ {1, . . . , N}. This specific structure of
randomization will be used to show our desired error bounds. We evaluate the data at the
randomized points ξn, n ∈ {1, . . . , N}, and compare (Un)n∈{1,...,N} with u(tθn)n∈{1,...,N}.

This randomization is a mixture of the one considered in [37] for the approximation of
nonautonomous evolution equations and the one in [38] for the quadrature of stochastic
Itô-integrals. Similar to [38], we can now weaken the regularity assumption on the solution.
Instead of asking for a Hölder continuous solution as has been done in [37], we now assume
that it is an element of a Sobolev–Slobodeckĭı space. Since the exponent for the fractional
derivative in a Sobolev–Slobodeckĭı space can be larger than the exponent in a Hölder space,
our setting can fill a gap between rates of convergence that are seen in numerical examples
and rates that are theoretically derived.

In order to prove error estimates of schemes for nonlinear problems, it is possible to
use a linear approximation of the operator given by its derivative. In [86] or [95], the fully
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nonlinear equation u′(t) = F (t, u(t)) for t ∈ (0, T ) with an initial condition is linearized
along the exact solution u. If the partial derivative A(t) = ∂uF (t, u) exists, we can work
with it instead of the fully nonlinear problem. In the following, we want to work with an
approach that does not rely on such an approximation via a partial derivative. But we follow
an approach that uses the fact that A(t), t ∈ [0, T ], is Lipschitz continuous on a bounded set.
Our starting point is to generalize the approach from [37], where error estimates are proved
for a globally Lipschitz continuous operator. This is extended to a generalized Lipschitz
condition, see (2.23) below. Now, we can also consider operators A(t), t ∈ [0, T ], that do
not have to be of linear growth. An example, which fits in our framework, is the classical
p-Laplacian in a variational formulation. Note that for p = 2, the framework is nearly the
same as in [37]. In [41, 42, 44] error estimates are provided without the additional bounded
Lipschitz condition for the operator A(t), t ∈ [0, T ]. One advantage of our approach is
that we do not have to impose any temporal regularity on f and A. This could be of
advantage if u′ = f −Au fulfills a stronger regularity condition than the functions f and Au
separately. The case where a function u′ is more regular than f and Au separately probably
does not contain many relevant problems. Thus, it would also be interesting to consider the
techniques from [41, 42, 44] in the context of randomized schemes.

With the random point (ξn)n∈{1,...,N} from Assumption 2.2.1, we consider the scheme{
Un + knA(ξn)Un = knf(ξn) + Un−1 almost surely in V ∗, n ∈ {1, . . . , N},
U0 = u0 in H,

(2.20)

for an initial value u0 ∈ H and a source term f ∈ Lq(0, T ;V ∗).
In Assumption 2.2.1, we introduced N+1 independent random variables. In this section,

it becomes necessary to consider two filtrations (Fτn)n∈{0,...,N} ⊂ Fτ and (Fn)n∈{0,...,N} ⊂
F = Fθ ⊗Fτ . The first is given by

Fτ0 := σ
(
N ∈ Fτ : Pτ (N ) = 0

)
Fτn := σ

(
σ
(
τi : i ∈ {1, . . . , n}

)
∪ Fτ0

)
, n ∈ {1, . . . , N},

(2.21)

where σ denotes the generated σ-algebra, compare (A.4). Further, we consider

Fn := Fθ ⊗Fτn , n ∈ {0, . . . , N}. (2.22)

In particular, it is clear that Fτn ⊂ Fτm and Fn ⊂ Fm for n ≤ m. Note that, for every
n ∈ {1, . . . , N}, the mapping ξn : Ω → [0, 1] is Fn-measurable as a composition of measur-
able functions. Also, ξn(ωθ, ·) : Ωτ → [tθn−1(ωθ), t

θ
n(ωθ)] is a uniformly distributed random

variable, which is Fτn -measurable for every n ∈ {1, . . . , N} and ωθ ∈ Ωθ. We begin by prov-
ing that (2.20) is uniquely solvable and its solution is adapted to the filtrations introduced
above.

Lemma 2.2.2. Let Assumptions 2.1.1 and 2.2.1 be fulfilled and let f ∈ Lq(0, T ;V ∗) as well
as u0 ∈ H be given. For a step size k = T

N , there exists a unique solution (Un)n∈{1,...,N}
to the recursion (2.20). For every n ∈ {1, . . . , N}, the mapping Un : Ω → V , ω 7→ Un(ω)
is Fn-measurable, while Un(ωθ, ·) : Ωτ → V , ωτ 7→ Un(ωθ, ωτ ) is Fτn-measurable for almost
every ωθ ∈ Ωθ.

Proof. The existence of (Un)n∈{1...,N} can be proved analogously as in Lemma 2.1.5.
In order to prove the measurability conditions, we again use Lemma 2.1.4. For n ∈

{1, . . . , N}, we consider the mappings

hn : Ω× V → V ∗, hn(ω,U) =
(
I + kn(ω)A(ξn(ω))

)
U− kn(ω)f(ξn(ω))−Un−1(ω)
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as well as

hτn : Ωτ × V → V ∗, hn(ωτ ,U) =
(
I + kn(ωθ)A(ξn(ωθ, ωτ ))

)
U

− kn(ωθ)f(ξn(ωθ, ωτ ))−Un−1(ωθ, ωτ )

for almost every ωθ ∈ Ωθ. Note that for hn, we consider kn : Ω→ [0, 1] given by kn(ωθ, ωτ ) =
kn(ωθ). This mapping is also measurable with respect to Fn. As in the proof of Lemma 2.1.5,
we obtain that ω 7→ Un(ω) is Fn-measurable and ωτ 7→ Un(ωθ, ωτ ) is Fτn -measurable for
almost every ωθ ∈ Ωθ.

Now that the existence of a solution to (2.20) is covered, let it be mentioned that the a
priori bound from Lemma 2.1.7 holds true for this scheme if Eθ is replaced by the expectation
E on the probability space (Ω,F ,P). It remains to make sure that we have a bound for
the terms containing f . To this end, we also mention a counterpart to Lemma 2.1.6 for the
second randomization.

Lemma 2.2.3. Let Assumption 2.2.1 be fulfilled and let (X, ‖ · ‖X) be a real Banach space.
Then for f ∈ Lq(0, T ;X), q ∈ [1,∞), the bound

N∑
n=1

E
[
kn‖f(ξn)‖qX

]
≤ 2‖f‖qLq(0,T ;X)

is fulfilled.

Proof. For the first summand, we use a substitution as in (A.2) and k1 = tθ1 = kθ to obtain
that

Eθ
[
k1Eτ

[
‖f(ξ1)‖qX

]]
=

∫ 1

0

ks

∫ 1

0

‖f(kst)‖qX dt ds

=
1

k

∫ t1

0

s

∫ 1

0

‖f(st)‖qX dt ds

=
1

k

∫ t1

0

∫ s

0

‖f(t)‖qX dt ds ≤
∫ t1

0

‖f(t)‖qX dt.

For n ∈ {2, . . . , N}, we can argue similarly but notice that the step size kn is equal to the
maximal step size k. Then we see that

Eθ
[
knEτ

[
‖f(ξn)‖qX

]]
= k

∫ 1

0

∫ 1

0

‖f(tn−2 + sk + kt)‖qX dt ds

=

∫ tn−1

tn−2

∫ 1

0

‖f(s+ kt)‖qX dt ds

=
1

k

∫ tn−1

tn−2

∫ s+k

s

‖f(t)‖qX dt ds ≤
∫ tn

tn−2

‖f(t)‖qX dt.

Thus, altogether this proves the bound

N∑
n=1

E
[
kn‖f(ξn)‖qX

]
≤
∫ t1

0

‖f(t)‖qX dt+

N∑
n=2

∫ tn

tn−2

‖f(t)‖qX dt ≤ 2

∫ T

0

‖f(t)‖qX dt.
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In order to use the higher-order regularity of a function in the error estimates, we consider
the following two lemmas.

Lemma 2.2.4. Let Assumption 2.2.1 be fulfilled and let (X, ‖ · ‖X) be a real Banach space.
For α ∈ (0, 1) and q ∈ [1,∞), let v ∈Wα,q(0, T ;X) be given. Then the bound

N∑
n=1

E
[
kn‖v(ξn)− v(tθn)‖qX

]
≤ kqα|v|qWα,q(0,T ;X)

is fulfilled.

Proof. Since we do not work on an equidistant grid, there are two cases that need to be
considered separately. The distance between 0 and tθ1 is given by the random value k1 = θk.
After a substitution as in (A.2), we see for the first summand using ξ1 = tθ0 + k1τ1 = kθτ1

Eθ
[
k1Eτ

[
‖v(ξ1)− v(tθ1)‖qX

]]
=

∫ 1

0

ks

∫ 1

0

‖v(kst)− v(ks)‖qX dt ds

=
1

k

∫ t1

0

s

∫ 1

0

‖v(st)− v(s)‖qX dt ds

=
1

k

∫ t1

0

∫ s

0

‖v(t)− v(s)‖qX dt ds

≤ kqα
∫ t1

0

∫ s

0

‖v(t)− v(s)‖qX
|t− s|qα+1

dt ds.

For n ∈ {2, . . . , N}, we use that the distance between tθn and tθn−1 is always given by k.
Thus, all further terms can be estimated by

Eθ
[
knEτ

[
‖v(ξn)− v(tθn)‖qX

]]
= k

∫ 1

0

∫ 1

0

‖v(tn−2 + ks+ kt)− v(tn−1 + ks)‖qX dt ds

=

∫ tn

tn−1

∫ 1

0

‖v(s+ kt− k)− v(s)‖qX dt ds

=
1

k

∫ tn

tn−1

∫ s

s−k
‖v(t)− v(s)‖qX dt ds

≤ kqα
∫ tn

tn−1

∫ s

s−k

‖v(t)− v(s)‖qX
|t− s|qα+1

dt ds.

Combining these estimates, yields

N∑
n=1

E
[
kn‖v(ξn)− v(tθn)‖qX

]
≤ kqα

∫ t1

0

∫ s

0

‖v(t)− v(s)‖qX
|t− s|qα+1

dt ds+ kqα
∫ T

t1

∫ s

s−k

‖v(t)− v(s)‖qX
|t− s|qα+1

dt ds

≤ kqα
∫ T

0

∫ T

0

‖v(t)− v(s)‖qX
|t− s|qα+1

dt ds = kqα|v|qWα,q(0,T ;X).
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Lemma 2.2.5. Let Assumption 2.2.1 be fulfilled and let (X, ‖ · ‖X) be a real Banach space.
For α ∈ (0, 1) and q ∈ [1,∞), let v ∈Wα,q(0, T ;X) be given. Then the bound

N∑
n=1

E
[ ∫ tθn

tθn−1

‖v(t)− v(ξn)‖qX dt
]
≤ 2kqα|v|qWα,q(0,T ;X)

is fulfilled.

Proof. The proof is very similar to the proof of Lemma 2.2.4 but an additional integral
appears in the estimates. Again, we consider the first summand separately. A substitution
as in (A.2) and using the equality ξ1 = tθ0 + k1τ1 = kθτ1 yields

Eθ

[
Eτ

[ ∫ tθ1

0

‖v(t)− v(ξ1)‖qX dt
]]

=

∫ 1

0

∫ 1

0

∫ ks

0

‖v(t)− v(ksr)‖qX dt dr ds

=
1

k

∫ t1

0

∫ 1

0

∫ s

0

‖v(t)− v(sr)‖qX dt dr ds

=
1

k

∫ t1

0

1

s

∫ s

0

∫ s

0

‖v(t)− v(r)‖qX dt dr ds

≤ 1

k

∫ t1

0

sqα
∫ s

0

∫ s

0

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr ds

≤ kqα
∫ t1

0

∫ t1

0

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr.

Similarly, for n ∈ {2, . . . , N}, we see that

Eθ

[
Eτ

[ ∫ tθn

tθn−1

‖v(t)− v(ξn)‖qX dt
]]

=

∫ 1

0

∫ 1

0

∫ tn−1+ks

tn−2+ks

‖v(t)− v(tn−2 + ks+ kr)‖qX dt dr ds

=
1

k

∫ tn−1

tn−2

∫ 1

0

∫ s+k

s

‖v(t)− v(s+ kr)‖qX dt dr ds

=
1

k2

∫ tn−1

tn−2

∫ s+k

s

∫ s+k

s

‖v(t)− v(r)‖qX dt dr ds

≤ kqα−1

∫ tn−1

tn−2

∫ s+k

s

∫ s+k

s

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr ds

≤ kqα
∫ tn

tn−2

∫ tn

tn−2

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr.

A combination of the estimates then shows

N∑
n=1

E
[ ∫ tθn

tθn−1

‖v(t)− v(ξn)‖qX dt
]

≤ kqα
∫ t1

0

∫ t1

0

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr + kqα
N∑
n=2

∫ tn

tn−2

∫ tn

tn−2

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr

≤ 2kqα
∫ T

0

∫ T

0

‖v(t)− v(r)‖qX
|t− r|qα+1

dt dr = 2kqα|v|qWα,q(0,T ;X).
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The previous lemma can also be proved with the help of Lemma 2.2.4. Using the trian-
gular inequality yields

( N∑
n=1

E
[ ∫ tθn

tθn−1

‖v(t)− v(ξn)‖qX dt
]) 1

q

≤
( N∑
n=1

E
[ ∫ tθn

tθn−1

‖v(t)− v(tθn)‖qX dt
]) 1

q

+
( N∑
n=1

E
[
kn‖v(tθn)− v(ξn)‖qX

]) 1
q

= 2
( N∑
n=1

E
[
kn‖v(tθn)− v(ξn)‖qX

]) 1
q ≤ 2kα|v|Wα,q(0,T ;X).

For large q, this leads to a worse constant though.

Now, we are well prepared to prove the two main statements of this section. Both show
error bounds for the expectation of the distance between the exact solution at a shifted
grid point and the numerical approximation. The magnitude of the error depends on the
regularity of the exact solution u. Here, we measure the temporal regularity of u and u′

within a space of Sobolev–Slobodeckĭı functions. In the first theorem, we assume that the
temporal derivative of the exact solution is H valued. In the second theorem, we show that
this can be weakened to values in V ∗. To obtain the same error bound, we require more
temporal regularity for the V ∗-valued result though.

Further, we state two different bounded Lipschitz conditions in each theorem. In the
first one, the operator is Lipschitz continuous on bounded sets in H. Alternatively, it is also
possible to ask for a Lipschitz condition on a bounded set in V . As every bounded set in V is
also bounded in H, but not necessarily the other way around, the second condition is more
general. For the second Lipschitz condition, we additionally need that the solution u is an
element of L∞(0, T ;V ). Note that this assumption is fulfilled directly if the differentiability
exponent of the Sobolev–Slobodeckĭı space is large enough (cf. [102, Corollary 32]). In
this section, we only make the assumption that the specific regularity is fulfilled without
any further explanation. Some information for additional regularity and more concrete
examples that fit this setting can be found in Section 1.2.

Theorem 2.2.6. Let Assumptions 2.1.1 and 2.2.1 be fulfilled and let f ∈ Lq(0, T ;V ∗),
q = p

p−1 , as well as the initial value u0 ∈ H be given. Let the operator A(t), t ∈ [0, T ],

fulfill a bounded Lipschitz condition in the sense that for every R ∈ (0,∞) there exists
L(R) ∈ [0,∞) such that

‖A(t)v −A(t)w‖V ∗ ≤ L(R)‖v − w‖V (2.23)

is fulfilled for all t ∈ [0, T ] and v, w ∈ V with ‖v‖H , ‖w‖H ≤ R. If the exact solution u is
an element of L∞(0, T ;V ), then it is sufficient that (2.23) is fulfilled for all v, w ∈ V with
‖v‖V , ‖w‖V ≤ R. Furthermore, let A(t), t ∈ [0, T ], satisfy a p-monotonicity condition such
that there exists η ∈ (0,∞) with

〈A(t)v −A(t)w, v − w〉V ∗×V ≥ η‖v − w‖pV (2.24)

for all v, w ∈ V and t ∈ [0, T ].

Let the exact solution u be an element of Wα,q(0, T ;V ) for α ∈ (0, 1). Further, let the
temporal derivative u′ of the exact solution be an element of W γ,2(0, T ;H) for γ ∈

(
0, 1

2

)
.

Then there exists C ∈ (0,∞) such that for every maximal step size k = T
N , N ∈ N, the error
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estimate

max
n∈{1,...,N}

E
[
‖u(tθn)−Un‖2H

]
+

N∑
n=1

E
[
kn‖u(tθi )−Un‖pV

]
≤ C(k2γ+1 + kqα)

is fulfilled for the solution (Un)n∈{1,...,N} to (2.20).

Due to the boundedness condition from Assumption 2.1.1 (4), for the relevant exam-
ples that fulfill (2.23), we get L(R) = L0(max

{
‖v‖H , ‖w‖H

}
)
(
1 + ‖v‖p−2

V + ‖w‖p−2
V

)
with

L0 : R → [0,∞). It is also possible to include the case γ = 0 to the assumptions of the
theorem in the sense that we assume u′ ∈ L2(0, T ;H). The proof remains similar. Instead
of applying Lemma 2.2.5 to the terms containing the derivative u′, it then becomes necessary
to apply Lemma 2.2.3.

Proof of Theorem 2.2.6. In the following, let i ∈ {1, . . . , N} be fixed. As the exact solution
is an element of Wp(0, T ) its derivative is in Lq(0, T ;V ∗). Further, u(tθi )−Ui is an element
of Lp(Ω;V ) and we can write

E
[
(u(tθi )− u(tθi−1), u(tθi )−Ui)H

]
= E

[ ∫ tθi

tθi−1

〈u′(t), u(tθi )−Ui〉V ∗×V dt
]
. (2.25)

Here, we technically do not have any point evaluation of u as we consider the expectation
of the equality. The scheme (2.20) tested with u(tθi )−Ui yields the equality

E
[
(Ui −Ui−1, u(tθi )−Ui)H

]
= E

[
ki〈f(ξi)−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]
. (2.26)

Using the identity from Lemma A.1.4, the difference of the left-hand sides of (2.25) and
(2.26) can be written as

E
[
(u(tθi )−Ui − u(tθi−1) + Ui−1, u(tθi )−Ui)H

]
=

1

2

(
E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
+ E

[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

])
.

The difference of the right-hand sides of (2.25) and (2.26) can be rewritten by adding and
subtracting terms containing A(ξi). This allows us to use the structure of the operator A(ξi)
more efficiently. We then obtain

E
[ ∫ tθi

tθi−1

〈u′(t), u(tθi )−Ui〉V ∗×V dt
]

−E
[
ki〈f(ξi)−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]

= E
[ ∫ tθi

tθi−1

〈u′(t), u(tθi )−Ui〉V ∗×V dt
]

−E
[
ki〈f(ξi)−A(ξi)u(ξi), u(tθi )−Ui〉V ∗×V

]
−E

[
ki〈A(ξi)u(ξi)−A(ξi)u(tθi ), u(tθi )−Ui〉V ∗×V

]
−E

[
ki〈A(ξi)u(tθi )−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]

= E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui〉V ∗×V dt
]

−E
[
ki〈A(ξi)u(ξi)−A(ξi)u(tθi ), u(tθi )−Ui〉V ∗×V

]
−E

[
ki〈A(ξi)u(tθi )−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]

=: Γ1 + Γ2 + Γ3,
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where

Γ1 = E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui〉V ∗×V dt
]
,

Γ2 = −E
[
ki〈A(ξi)u(ξi)−A(ξi)u(tθi ), u(tθi )−Ui〉V ∗×V

]
,

Γ3 = −E
[
ki〈A(ξi)u(tθi )−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]
.

(2.27)

Thus, we obtain that

E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
+ E

[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
= 2Γ1 + 2Γ2 + 2Γ3.

(2.28)

Since we added and subtracted the terms containing A(ξi)u(ξi) and A(ξi)u(tθi ) above, we
can now estimate Γ1, Γ2, and Γ3 more easily. For Γ1, we use the regularity of u′. In order
to estimate Γ2, we use the bounded Lipschitz condition and the regularity of u, while for Γ3

we use the monotonicity of A(ξi). Precisely, for Γ1, we obtain that

Γ1 = E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui〉V ∗×V dt
]

= E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui − u(tθi−1) + Ui−1〉V ∗×V dt
]

(2.29)

+ E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi−1)−Ui−1〉V ∗×V dt
]
. (2.30)

Using the Cauchy–Schwarz inequality as well as the weighted Young inequality, we find the
estimate for (2.29)

E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui − u(tθi−1) + Ui−1〉V ∗×V dt
]

≤ E
[( ∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
) 1

2 (
ki‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

) 1
2

]
≤
(
E
[
ki

∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]) 1

2 (
E
[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]) 1
2

≤ 1

2
E
[
ki

∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]

+
1

2
E
[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
.

This structure is useful, as we can absorb the second summand in the last row using one of
the terms on the left-hand side of (2.28). Further, we can write for (2.30)

E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi−1)−Ui−1〉V ∗×V dt
]

= Eθ

[
Eτ

[ ∫ tθi

tθi−1

〈u′(t), u(tθi−1)−Ui−1〉V ∗×V dt
]]

−Eθ
[
kiEτ

[
〈u′(ξi), u(tθi−1)−Ui−1〉V ∗×V

]]
.
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In the following, we denote the conditional expectation with respect to Fτi−1 by Eτ
[
· |Fτi−1

]
,

compare Appendix A.3. We notice that Ωτ 3 ωτ 7→ u(tθi−1(ωθ))−Ui−1(ωθ, ωτ ) is measurable
with respect to the σ-algebra Fτi−1 for almost every ωθ ∈ Ωθ, compare Lemma 2.2.2. Thus,
we use the tower property for the conditional expectation to obtain

Eτ
[
〈u′(ξi), u(tθi−1)−Ui−1〉V ∗×V

]
= Eτ

[
Eτ
[
〈u′(ξi), u(tθi−1)−Ui−1〉V ∗×V |Fτi−1

]]
= Eτ

[
〈Eτ

[
u′(ξi)|Fτi−1

]
, u(tθi−1)−Ui−1〉V ∗×V

]
almost surely in Ωθ. As the generated σ-algebra σ(τi) is independent of Fτi−1, it follows that
Eτ
[
u′(ξi)|Fτi−1

]
= Eτ

[
u′(ξi)

]
almost surely in Ωθ. Then we find that

〈Eτ
[
u′(ξi)|Fτi−1

]
, u(tθi−1)−Ui−1〉V ∗×V = 〈Eτ

[
u′(ξi)

]
, u(tθi−1)−Ui−1〉V ∗×V

=
1

ki

∫ tθi

tθi−1

〈u′(t), u(tθi−1)−Ui−1〉V ∗×V dt

almost surely in Ω and therefore, in particular,

E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi−1)−Ui−1〉V ∗×V dt
]

= 0.

Altogether, this proves a bound for Γ1 that is given by

Γ1 ≤
1

2
E
[
ki

∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]

+
1

2
E
[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
.

In order to estimate Γ2, we apply the bounded Lipschitz condition of the operator A(t),
t ∈ [0, T ], from (2.23). Thus, we see that

Γ2 = −E
[
ki〈A(ξi)u(ξi)−A(ξi)u(tθi ), u(tθi )−Ui〉V ∗×V

]
≤ L(R)E

[
ki‖u(ξi)− u(tθi )‖V ‖u(tθi )−Ui‖V

]
≤ c1E

[
ki‖u(ξi)− u(tθi )‖

q
V

]
+
η

2
E
[
ki‖u(tθi )−Ui‖pV

]
,

for c1 = (pη)1−qL(R)q

21−qq . Here, we can choose the parameter R for (2.23) as R = ‖u‖L∞(0,T ;H).

Recall that a weak solution u of (2.1) is an element of Wp(0, T ) ↪→ C([0, T ];H). Thus, this
particular R is finite. If the solution fulfills u ∈ L∞(0, T ;V ), we can choose R = ‖u‖L∞(0,T ;V )

and it is sufficient that (2.23) is fulfilled for v, w ∈ V with ‖v‖V , ‖w‖V ≤ R. Last, observe
that

Γ3 = −E
[
ki〈A(ξi)u(tθi )−A(ξi)U

i, u(tθi )−Ui〉V ∗×V
]
≤ −ηE

[
ki‖u(tθi )−Ui‖pV

]
is fulfilled due to the monotonicity condition from (2.24). After an insertion of these bounds
into (2.28), we see that

E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
+ E

[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
= 2Γ1 + 2Γ2 + 2Γ3

≤ E
[
ki

∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]

+ E
[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
+ 2c1E

[
ki‖u(ξi)− u(tθi )‖

q
V

]
− ηE

[
ki‖u(tθi )−Ui‖pV

]
.
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This implies, in particular,

E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
+ ηE

[
ki‖u(tθi )−Ui‖pV

]
≤ E

[
ki

∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]

+ 2c1E
[
ki‖u(ξi)− u(tθi )‖

q
V

]
.

Summing up the inequality from i = 1 to n ∈ {1, . . . , N}, we can make use of the telescopic
sum structure, the fact that u(0) − U0 = u(0) − u0 = 0, as well as Lemma 2.2.4 and
Lemma 2.2.5 and obtain

E
[
‖u(tθn)−Un‖2H

]
+ η

n∑
i=1

E
[
ki‖u(tθi )−Ui‖pV

]
≤ k

N∑
i=1

E
[ ∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖2H dt
]

+ 2c1

N∑
i=1

E
[
ki‖u(ξi)− u(tθi )‖

q
V

]
≤ 2k2γ+1|u′|2Wγ,2(0,T ;H) + 2c1k

qα|u|qWα,q(0,T ;V ). (2.31)

The next theorem contains a comparable result, where the temporal regularity condition
of u′ changes while the spatial regularity condition can be relaxed to V ∗.

Theorem 2.2.7. Let Assumptions 2.1.1 and 2.2.1 be fulfilled and let f ∈ Lq(0, T ;V ∗),
q = p

p−1 , as well as the initial value u0 ∈ H be given. Furthermore, let the operator A(t),

t ∈ [0, T ], fulfill the bounded Lipschitz condition (2.23) and the p-monotonicity condition
(2.24) as in Theorem 2.2.6.

Let the exact solution u be an element of Wα,q(0, T ;V ) for α ∈ (0, 1). Further, let the
temporal derivative u′ of the exact solution be an element of W γ,q(0, T ;V ∗) for γ ∈ (0, 1).
Then there exists C ∈ (0,∞) such that for every maximal step size k = T

N , N ∈ N, the error
estimate

max
n∈{1,...,N}

E
[
‖u(tθn)−Un‖2H

]
+

N∑
n=1

E
[
kn‖u(tθn)−Un‖pV

]
≤ C(kqγ + kqα)

is fulfilled for the solution (Un)n∈{1,...,N} to (2.20).

Proof. Analogously to the proof of Theorem 2.2.6, we can write

E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
+ E

[
‖u(tθi )−Ui − u(tθi−1) + Ui−1‖2H

]
= 2Γ1 + 2Γ2 + 2Γ3,

(2.32)

where Γ1, Γ2, and Γ3 are given in (2.27). Again, we consider Γ1, Γ2, and Γ3 separately,
where we can use analogous bounds as in the proof of Theorem 2.2.6. First, we obtain

Γ2 = −E
[
ki〈A(ξi)u(ξi)−A(ξi)u(tθi ), u(tθi )−Ui〉V ∗×V

]
≤ c1E

[
ki‖u(ξi)− u(tθi )‖

q
V

]
+
η

4
E
[
ki‖u(tθi )−Ui‖pV

]
,

for c1 = (pη)1−qL(R)q

41−qq . Again, we choose the parameter R for (2.23) as R = ‖u‖L∞(0,T ;H).

If the solution fulfills u ∈ L∞(0, T ;V ), we choose R = ‖u‖L∞(0,T ;V ) and only require that
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(2.23) is fulfilled for v, w ∈ V with ‖v‖V , ‖w‖V ≤ R. For Γ3, we apply the monotonicity
condition (2.24) and find

Γ3 ≤ −ηE
[
ki‖u(tθi )−Ui‖pV

]
.

When estimating Γ1, we now have to use the different regularity assumption on u′. Here,
we apply the weighted Young inequality to see that

Γ1 = E
[ ∫ tθi

tθi−1

〈u′(t)− u′(ξi), u(tθi )−Ui〉V ∗×V dt
]

≤ E
[ ∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖V ∗‖u(tθi )−Ui‖V dt
]

≤ c2E
[ ∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖qV ∗ dt
]

+
η

4
E
[
ki‖u(tθi )−Ui‖pV

]
,

with the constant c2 = (pη)1−q

41−qq . Inserting the bounds in (2.32), shows that

E
[
‖u(tθi )−Ui‖2H

]
−E

[
‖u(tθi−1)−Ui−1‖2H

]
≤ 2Γ1 + 2Γ2 + 2Γ3

≤ 2c2E
[ ∫ tθi

tθi−1

‖u′(t)− u′(ξi)‖qV ∗ dt
]

+ 2c1E
[
ki‖u(ξi)− u(tθi )‖

q
V

]
− ηE

[
ki‖u(tθi )−Ui‖pV

]
.

The remainder of the proof can be done analogously to the end of the proof of Theorem 2.2.6.

Note that in the proof of Theorem 2.2.7 we do not use the independence of {τn}n∈{1,...,N}.
Thus, here it would also be possible to choose the same random variable τn = τ for every
n ∈ {1, . . . , N}, which is uniformly distributed in [0, 1].

When we compare the two results from the previous theorems, different error rates
can be seen. If u′ is an element of W γ,2(0, T ;H) then the error can be smaller than for
u′ ∈ W γ,q(0, T ;V ∗) if u is smooth enough. Still, the first result is not necessarily stronger.
In [90, Proposition 6.6], it is demonstrated how the temporal regularity decreases when
the spatial regularity becomes higher. Thus, in practice, the two results should lead to
comparable error estimates.

2.3 Example: A Problem of p-Laplacian Type

For a finite end time T ∈ (0,∞) and a bounded Lipschitz domain D ⊂ Rd, d ∈ N, we regard
∂tu(t, x)−∇ · a(t, x,∇u(t, x)) = f(t, x), (t, x) ∈ (0, T )×D,
u(t, x) = 0, (t, x) ∈ (0, T )× ∂D,
u(0, x) = u0(x), x ∈ D.

(2.33)

Here, the mapping a : [0, T ]×D×Rd → Rd fulfills the assumption below and f : [0, T ]×D → R
as well as u0 : D → R will be specified later.

Assumption 2.3.1. Let p ∈ [2,∞) be given and q = p
p−1 . Let a : [0, T ] × D × Rd → Rd

fulfill the following conditions:
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(1) The map (t, x) 7→ a(t, x, z) is measurable for every z ∈ Rd, while z 7→ a(t, x, z) is
continuous for every t ∈ [0, T ] and almost every x ∈ D.

(2) The map a fulfills a monotonicity condition in the sense that the inequality (a(t, x, z)−
a(t, x, z̃)) · (z − z̃) ≥ 0 is satisfied for every t ∈ [0, T ], almost every x ∈ D, and every
z, z̃ ∈ Rd.

(3) The map a fulfills a growth condition in the sense that there exist d1 ∈ [0,∞) and a
nonnegative function d2 ∈ Lq(D) such that for every t ∈ [0, T ], almost every x ∈ D,
and every z ∈ Rd the inequality |a(t, x, z)| ≤ d1|z|p−1 + d2(x) is satisfied.

(4) The map a fulfills a coercivity condition in the sense that there exist d3 ∈ (0,∞) and
a nonnegative d4 ∈ L1(D) such that for every t ∈ [0, T ], almost every x ∈ D, as well
as every z ∈ Rd the condition a(t, x, z) · z ≥ d3|z|p − d4(x) is satisfied.

Assumption 2.3.2. Let Assumption 2.3.1 be fulfilled. Additionally, there exists d5 ∈ (0,∞)
such that

(a(t, x, z)− a(t, x, z̃)) · (z − z̃) ≥ d5|z − z̃|p

is satisfied for every t ∈ [0, T ], almost every x ∈ D, and every z, z̃ ∈ Rd.

Assumption 2.3.3. Let Assumption 2.3.1 be fulfilled. Additionally, there exists d6 ∈ [0,∞)
such that

|a(t, x, z)− a(t, x, z̃)| ≤ d6

(
1 + max{|z|p−2, |z̃|p−2}

)
|z − z̃| (2.34)

is satisfied for every t ∈ [0, T ], almost every x ∈ D, and every z, z̃ ∈ Rd.

A prototype example for the function a is given by a(t, x, z) = a(z) = |z|p−2z. Then
(2.33) is the p-Laplace equation. It is easy to see that a fulfills Assumption 2.3.1. In [28,
Chapter I, Lemma 4.4] it is proved that this a fulfills Assumption 2.3.2. In order to see that
the function fulfills Assumption 2.3.3, we notice that for z ∈ Rd with z 6= 0

∂ia(z) =
p− 2

2

( d∑
j=1

z2
j

) p−4
2

2ziz + |z|p−2ei = (p− 2)|z|p−4ziz + |z|p−2ei

is fulfilled for i ∈ {1, . . . , d} and the i-th unit vector ei in Rd. Moreover, we have ∂ia(0) = 0
for every i ∈ {1, . . . , d}. Then the Jacobian matrix fulfills

|∇a(z)| =
∣∣(p− 2)|z|p−4zzT + |z|p−2I

∣∣ ≤ (p− 1)|z|p−2

for z ∈ Rd. An application of the mean value theorem then shows that (2.34) is fulfilled.
In order to formulate the problem (2.33) in a weak formulation, we consider the spaces

V = W 1,p
0 (D) and H = L2(D), where p ∈ [2,∞) is chosen as in Assumption 2.3.1. We equip

the spaces with the norms introduced in the notation section in the introduction. Then we
assume that for f : [0, T ]×D → R the abstract function [f(t)](x) = f(t, x), (t, x) ∈ (0, T )×D,
is an element of Lq(0, T ;V ∗) and u0 ∈ H. Further, the operator A(t) : V → V ∗ is given by

〈A(t)v, w〉 =

∫
D
a(t, ·,∇v) · ∇w dx

for t ∈ [0, T ] and v, w ∈ V . Then we consider the variational formulation of (2.33) given by{
u′ +Au = f in Lq(0, T ;V ∗),

u(0) = u0 in H.
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Theorem 2.3.4. Let Assumption 2.3.1 be fulfilled. Let f ∈ Lq(0, T ;V ∗) and u0 ∈ H be
given. Further, let (N`)`∈N be a sequence of natural numbers with N` → ∞ as ` → ∞,
k = T

N`
, tn = nk, n ∈ {0, . . . , N`}, and consider the corresponding randomly shifted grid

introduced in Assumption 2.1.3. Then the backward Euler scheme{
1
k

(
Un −Un−1

)
+A(tθn)Un = f(tθn) in Lq(Ωθ;V

∗), n ∈ {1, . . . , N`},
U0 = u0 in H

admits a unique solution (Un)n∈{1,...,N`} in Lp(Ωθ;V ). All the convergence results from
Theorem 2.1.11 and Theorem 2.1.12 hold true. In particular, the sequences of piecewise
constant and piecewise linear prolongations of (Un)n∈{1,...,N`} converge to the weak solution
u of (2.33) pointwise strongly in L2(Ωθ;H) as k → 0.

If Assumption 2.3.2 is satisfied additionally, then the sequence of piecewise constant
prolongations converges to u strongly in Lp(0, T ;Lp(Ωθ;V )) as k → 0.

Proof. In order to apply Theorem 2.1.11 and Theorem 2.1.12 from Section 2.1, it only
remains to verify that A(t), t ∈ [0, T ], fulfills Assumption 2.1.1. To this end, let v, w ∈ V be
given. Then we see that

〈A(t)v, w〉V ∗×V =

∫
D
a(t, ·,∇v) · ∇w dx

≤
∫
D

(
d1|∇v|p−1 + d2

)
|∇w| dx

≤ max
{
d1, ‖d2‖Lq(D)

}(
1 + ‖v‖p−1

V

)
‖w‖V , (2.35)

which proves both that A(t), t ∈ [0, T ], is well-defined and that the boundedness condition
from Assumption 2.1.1 (4) is fulfilled.

Since t 7→ a(t, x, z) is measurable for almost every x ∈ D and every z ∈ Rd, there
exists a sequence (ai)i∈N of functions ai : [0, T ] × D × Rd → Rd, i ∈ N, that are simple
with respect to the first argument such that ai(t, x, z) → a(t, x, z) in Rd as i → ∞ and
|ai(t, x, z)| ≤ |a(t, x, z)|, i ∈ N, for almost every (t, x) ∈ (0, T )×D and every z ∈ Rd. Then
Ai(t) : V → V ∗ given by

〈Ai(t)v, w〉V ∗×V =

∫
D
ai(t, ·,∇v) · ∇w dx, v, w ∈ V

is a simple function with respect to t ∈ (0, T ). Using a similar bound as in (2.35), it follows
that

(
a(t, ·,∇v) − ai(t, ·,∇v)

)
· ∇w is bounded by a function that is integrable on D. We

can apply Lebesgue’s dominated convergence theorem to obtain that

lim
i→∞
〈A(t)v −Ai(t)v, w〉V ∗×V =

∫
D

lim
i→∞

(
a(t, ·,∇v)− ai(t, ·,∇v)

)
· ∇w dx = 0

for every v, w ∈ V and almost every t ∈ (0, T ). This implies that t 7→ A(t)v is weakly mea-
surable since V ∗ is reflexive. As V ∗ is also separable, the mapping is Bochner measurable.

In order to prove that A(t) : V → V ∗, t ∈ [0, T ], is radially continuous, let (si)i∈N be a
convergent sequence in [0, 1] with the limit s ∈ [0, 1]. Using the fact that (2.35) is finite,
it follows that a(t, ·,∇v + si∇w) · ∇w is bounded by an integrable function on D for every
v, w ∈ V . Then we can apply Lebesgue’s dominated convergence theorem and it follows
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that

lim
i→∞
〈A(t)(v + siw), w〉V ∗×V = lim

i→∞

∫
D
a(t, ·,∇v + si∇w) · ∇w dx

=

∫
D

lim
i→∞

a(t, ·,∇v + si∇w) · ∇w dx

=

∫
D
a(t, ·,∇v + s∇w) · ∇w dx

for every v, w ∈ V and t ∈ [0, T ] due to Assumption 2.3.1 (1).
The monotonicity condition for A(t), t ∈ [0, T ], is a direct consequence of Assump-

tion 2.3.1 (2). This can be seen as

〈A(t)v −A(t)w, v − w〉V ∗×V =

∫
D

(a(t, ·,∇v)− a(t, ·,∇w)) · (∇v −∇w) dx ≥ 0

is fulfilled for every v, w ∈ V and t ∈ [0, T ]. Analogously, the condition from Assump-
tion 2.3.2 implies that

〈A(t)v −A(t)w, v − w〉V ∗×V ≥ d5

∫
D
|∇v −∇w|p dx = d5‖v − w‖pV

for every v, w ∈ V and t ∈ [0, T ]. So we see that (2.18) is fulfilled.
It remains to verify the coercivity condition from Assumption 2.1.1 (5). Here, we apply

Assumption 2.3.1 (4) to see that

〈A(t)v, v〉V ∗×V ≥
∫
D

(
d3|∇v|p − d4

)
dx = d3‖v‖pV − ‖d4‖L1(D)

for every v ∈ V and t ∈ [0, T ]. Therefore, as the operator A(t), t ∈ [0, T ], fulfills all
the necessary conditions, we can apply Theorem 2.1.11 and Theorem 2.1.12 to finish the
proof.

To prove explicit error bounds, we make an additional regularity assumption on the
solution of (2.33). We do not discuss this condition here. In Section 1.2, more details and
suitable examples can be found.

Theorem 2.3.5. Let Assumptions 2.3.1, 2.3.2, and 2.3.3 be fulfilled and let f ∈ Lq(0, T ;V ∗)
and u0 ∈ H be given. For α ∈ (0, 1) and γ ∈ (0, 1), assume that the exact solution u is
an element of Wα,2(0, T ;V ) for p = 2 and of L∞(0, T ;V ) ∩Wα,q(0, T ;V ) for p ∈ (2,∞)
while its temporal derivative u′ belongs to W γ,2(0, T ;H). For every N ∈ N, k = T

N , and the
corresponding random values (ξn)n∈{1,...,N} introduced in Assumption 2.2.1, the scheme{

1
kn

(
Un −Un−1

)
+A(ξn)Un = f(ξn) in Lq(Ω;V ∗), n ∈ {1, . . . , N},

U0 = u0 in H

admits a unique solution (Un)n∈{1,...,N} in Lp(Ω;V ). Then there exists C ∈ (0,∞) such
that

max
n∈{1,...,N}

E
[
‖u(tθn)−Un‖2H

]
+

N∑
n=1

E
[
kn‖u(tθn)−Un‖pV

]
≤ C(kqγ+1 + kqα)

is fulfilled.
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Proof. The proof can be carried out by applying Theorem 2.2.6. To this end, it only remains
to verify that A(t), t ∈ [0, T ], fulfills (2.23). The proof of the other conditions for A(t),
t ∈ [0, T ], has already been done for Theorem 2.3.4. To this end, we use the bounded
Lipschitz condition from Assumption 2.3.3. For p = 2, (2.34) is a global Lipschitz condition.
We obtain that

〈A(t)v1 −A(t)v2, w〉V ∗×V =

∫
D

(
a(t, ·,∇v1)− a(t, ·,∇v2)

)
· ∇w dx

≤ 2d6

∫
D
|∇v1 −∇v2||∇w| dx

≤ 2d6‖∇v1 −∇v2‖L2(D)d‖∇w‖L2(D)d = 2d6‖v1 − v2‖V ‖w‖V

for every v1, v2, w ∈ V and t ∈ [0, T ]. This proves the global Lipschitz condition

‖A(t)v1 −A(t)v2‖V ∗ ≤ 2d6‖v1 − v2‖V

for every v1, v2 ∈ V and t ∈ [0, T ]. In the case p ∈ (2,∞), we can argue in a similar fashion
but have to handle the Lipschitz constant that depends on the input v1, v2 ∈ V . Here, we
use Lemma A.1.3 to obtain that

〈A(t)v1 −A(t)v2, w〉V ∗×V

=

∫
D

(
a(t, ·,∇v1)− a(t, ·,∇v2)

)
· ∇w dx

≤ d6

∫
D
|∇v1 −∇v2||∇w| dx+ d6

∫
D

max
{
|∇v1|p−2, |∇v2|p−2

}
|∇v1 −∇v2||∇w| dx

≤ d6‖1‖
L

p
p−2 (D)

‖∇v1 −∇v2‖Lp(D)d‖∇w‖Lp(D)d

+ d6

(∫
D

max
{
|∇v1|p, |∇v2|p

}
dx
) p−2

p ‖∇v1 −∇v2‖Lp(D)d‖∇w‖Lp(D)d

for every v1, v2, w ∈ V and t ∈ [0, T ]. Since p−2
p ∈ (0, 1) for p ∈ (2,∞) we get that

(∫
D

max
{
|∇v1|p, |∇v2|p

}
dx
) p−2

p ≤
(∫
D
|∇v1|p dx+

∫
D
|∇v2|p dx

) p−2
p

≤
(∫
D
|∇v1|p dx

) p−2
p

+
(∫
D
|∇v2|p dx

) p−2
p

= ‖∇v1‖p−2
Lp(D)d

+ ‖∇v2‖p−2
Lp(D)d

≤ 2 max
{
‖∇v1‖p−2

Lp(D)d
, ‖∇v2‖p−2

Lp(D)d

}
.

Thus, for R ∈ (0,∞) and all v1, v2 ∈ V with ‖v1‖V , ‖v2‖V ≤ R, we obtain the bound

‖A(t)v1 −A(t)v2‖V ∗ ≤ d6

(
‖1‖

L
p
p−2 (D)

+ 2 max
{
‖v1‖p−2

V , ‖v2‖p−2
V

})
‖v1 − v2‖V

=: L(R)‖v1 − v2‖V ,

which proves the weaker form of (2.23) that is needed if u ∈ L∞(0, T ;V ).

Theorem 2.3.6. Let Assumptions 2.3.1, 2.3.2, and 2.3.3 be fulfilled and let f ∈ Lq(0, T ;V ∗)
and u0 ∈ H be given. For α ∈ (0, 1) and γ ∈ (0, 1), assume that the exact solution u is
an element of Wα,2(0, T ;V ) for p = 2 and of L∞(0, T ;V ) ∩Wα,q(0, T ;V ) for p ∈ (2,∞)
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while its temporal derivative u′ belongs to W γ,q(0, T ;V ∗). For every N ∈ N, k = T
N , and

the corresponding random values (ξn)n∈{1,...,N} introduced in Assumption 2.2.1, the scheme{
1
kn

(
Un −Un−1

)
+A(ξn)Un = f(ξn) in Lq(Ω;V ∗), n ∈ {1, . . . , N},

U0 = u0 in H

admits a unique solution (Un)n∈{1,...,N} in Lp(Ω;V ). Then there exists C ∈ (0,∞) such
that

max
n∈{1,...,N}

E
[
‖u(tθn)−Un‖2H

]
+

N∑
n=1

E
[
kn‖u(tθn)−Un‖pV

]
≤ C(kqγ + kqα)

is fulfilled.

Proof. The proof can be done analogously to the proof of Theorem 2.3.6, where we now use
Theorem 2.2.7.
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Chapter 3

An Operator Splitting Based Scheme
for Nonlinear, Nonautonomous
Evolution Equations

An operator splitting offers the opportunity to obtain easier solvable subproblems, which in
some settings can even be solved in parallel. Due to modern hardware structures, methods
that are based on parallelization become more and more useful for a faster computation.
To this end, we will present a numerical scheme based on an operator splitting in order to
discretize a nonlinear, nonautonomous evolution equation on a finite time horizon. Precisely,
for T ∈ (0,∞), we consider{

u′(t) +A(t)u(t) +B(t)u(t) = f(t) in V ∗, for almost all t ∈ (0, T ),

u(0) = u0 in H
(3.1)

for a Gelfand triple V
d
↪→ H ∼= H∗

d
↪→ V ∗ as well as families {A(t)}t∈[0,T ] and {B(t)}t∈[0,T ]

of operators A(t) : V → V ∗ and B(t) : H → H. Here, A(t), t ∈ [0, T ], is an operator
of monotone type and B(t), t ∈ [0, T ], is Lipschitz continuous. Further, we allow for an
integrable source term f : [0, T ] → V ∗ and an initial value u0 ∈ H. Standard examples for
our problem class contain p-Laplacian type and porous media type problems with lower order
perturbations. As the solutions of such nonlinear equations usually lack global higher-order
temporal and spatial regularity, we concentrate on a lower-order scheme.

As in the previous chapter, our starting point is to look at the well-known backward
Euler scheme. For N ∈ N, we consider an equidistant grid 0 = t0 < t1 < · · · < tN = T
for points tn = nk, n ∈ {0, . . . , N}, as well as a step size k = T

N . Then the solution to the
recursion

Un −Un−1

k
+ AnUn + BnUn = fn in V ∗, n ∈ {1, . . . , N},

with U0 = uk0 in H can be used to obtain an approximation Un ≈ u(tn), n ∈ {1, . . . , N}.
Here, uk0 , (fn)n∈{1,...,N}, (An)n∈{1,...,N}, as well as (Bn)n∈{1,...,N} are approximations of
the data that we assume to be known. This scheme is formally of first order and we want
to present modifications that preserve the order but lead to several subproblems, which
can potentially be solved more efficiently. For the first modification, we notice that from
a numerical point of view, on first sight, it could seem like a good option to exchange
AnUn and BnUn by AnUn−1 and BnUn−1, respectively. This leads to a similar scheme

47
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as the forward Euler method. In terms of an implementable full discretization, it has the
advantage that no nonlinear, implicit equation has to be solved. But note that if an operator
An : V → V ∗ is interpreted as an H valued operator in terms of the restriction An

F given
by An

F : dom(An
F ) ⊂ H → H, An

F v = Anv with dom(An
F ) = {v ∈ V : An

F v ∈ H}, it
can be unbounded. Thus, in a fully discretized scheme, it can become necessary to choose
a temporal discretization parameter that depends on the spatial discretization parameter.
This coupling is highly undesirable in applications. Due to the monotonicity of the operator
A(t), t ∈ [0, T ], the backward Euler method has better stability properties as the underlying
physical system is dissipative. Here, no coupling of the discretization parameters appears.
Therefore, we do not exchange AnUn by AnUn−1. As the operator Bn is bounded in H,
these problems do not appear. Hence, we use BnUn−1 and propose the implicit-explicit
scheme

Un −Un−1

k
+ AnUn + BnUn−1 = fn in V ∗, n ∈ {1, . . . , N},

with U0 = uk0 in H. Altogether, this yields the equations

(I + kAn)Un = kfn + Un
0 in V ∗ with Un

0 = (I − kBn)Un−1 in H

for n ∈ {1, . . . , N} and U0 = uk0 in H. Next, we decompose the operator A(t), t ∈ [0, T ], and
the source term f . To this end, we assume that there exist M ∈ N families {Am(t)}t∈[0,T ]

of operators Am(t) : Vm → V ∗m and functions fm : [0, T ] → V ∗m for m ∈ {1, . . . ,M}, where

Vm ⊂ H and
⋂M
m=1 Vm = V . These operators and functions have to fulfill the sum property

M∑
m=1

Am(t)v = A(t)v,

M∑
m=1

fm(t) = f(t) in V ∗

for every v ∈ V and almost every t ∈ (0, T ). For m ∈ {1, . . . ,M} and approximations
(fnm)n∈{1,...,N}, (An

m)n∈{1,...,N}, which also fulfill a corresponding sum property, we use a
product splitting scheme to approximate a backward Euler step containing An and fn. The
idea of such a scheme is that for real numbers am, m ∈ {1, . . . ,M}, some basic calculations
show that

(
1 + k

M∑
m=1

am

)−1

−
M∏
m=1

(
1 + kam

)−1

= k2
(

1 + k

M∑
m=1

am

)−1( M∑
j,m=1,
j<m

ajam

) M∏
m=1

(
1 + kam

)−1

is fulfilled. This suggests that the splitting error, i.e., the difference of one Euler step(
I + kAn

)−1
=
(
I + k

∑M
m=1 A

n
m

)−1

and the product
∏M
m=1

(
I + kAn

m

)−1
, is sufficiently

small. Altogether, this gives rise to consider the following system of equations

Un
0 = (I − kBn)Un−1 in H

and

(I + kAn
m)Un

m = kfnm + Un
m−1 in V ∗m, m ∈ {1, . . . ,M},
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for n ∈ {1, . . . , N} with

Un = Un
M in H, n ∈ {1, . . . , N}, and U0 = uk0 in H.

This structure has some similarities to a Runge–Kutta method. In such a scheme, for one
temporal step, the data can be evaluated at different points to receive several explicit or
implicit equations. A linear combination of the solutions of them is used to obtain Un. In
contrast to this, we decompose the data into different parts. The decomposed data is used
to receive several equations that are used to obtain Un.

Under no additional regularity assumptions on the solution, we can prove that se-
quences of piecewise polynomial prolongations of the values (Un)n∈{1,...,N} converge point-
wise strongly to the solution in H. Depending on the monotonicity condition, we can also
show that the sequence of piecewise constant prolongations converges weakly or even strongly
to the solution in Lp(0, T ;VM ), where p depends on the operator A(t), t ∈ [0, T ].

Under the assumption that the exact solution is more regular and the operators Am(t),
t ∈ [0, T ] fulfill a bounded Lipschitz condition and a stronger monotonicity condition for
m ∈ {1, . . . ,M}, we even obtain explicit error estimates. Precisely, there exists C ∈ (0,∞),
which depends on u, such that

max
n∈{1,...,N}

‖u(tn)−Un‖2H + k

N∑
n=1

‖u(tn)−Un‖pVM ≤ Ck
p
p−1α

for all N ∈ N and k = T
N , where α ∈ (0, 1] is the exponent of the Hölder space that contains

the solution u and p depends on A(t), t ∈ [0, T ]. In particular, we see that the order of
the error bounds can be the same as the convergence rate of the classical backward Euler
scheme for suitable data.

Splitting schemes offer a useful tool in decreasing the computational costs of algorithms.
A general introduction can be found in [70]. A well-known field of applications to operator
splittings is given by evolution equations with different structures. In order to name a few
examples, reaction-diffusion equations have been studied in terms of an operator splitting
in [12, 64, 74], the Riccati differential equation in [65, 108], and the Navier–Stokes problem
in [107]. Another useful way of splitting operators is a dimension splitting, where each
Am(t), t ∈ [0, T ] and m ∈ {1, . . . ,M}, contains different partial derivatives, see [62, 106].
A modern alternative to dimension splitting is given by domain decomposition schemes, see
[13, 34, 61, 91, 113]. This approach is even more suitable for a parallel implementation as
the communication between subproblems is smaller. Moreover, in contrast to a dimension
splitting, non-Cartesian spatial domain can be considered in a domain decomposition based
scheme.

The analysis of splitting schemes for evolution equations has mostly been done in a
semigroup framework. General results as presented in [20, 23] can be used to prove the con-
vergence of several schemes. In [34, 61, 64, 66], a convergence analysis with these techniques
for the product splitting, sum splitting, Douglas–Rachford scheme, Peaceman–Rachford
scheme, Crank–Nicolson scheme, and implicit-explicit splitting can be found. Thus, this ap-
proach can be used for many examples. When it comes to a setting, where we want to allow
for a temporal dependence of the operator or a time-dependent source term, the results from
[20, 23] cannot be applied directly anymore. In the spirit of the work of [35, 106], we want
to prove the convergence of a splitting scheme in a variational framework. This enables us
to also look at a nonautonomous problem.

The structure of this work is comparable to [35], where a sum splitting scheme was
analyzed. The product splitting scheme in a variational approach has been considered in
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[106]. Both the sum and the product splitting in a mild framework have been analyzed [34].
The main advantage of this work is the additional, possibly non-monotone, operator B(t), t ∈
[0, T ], which is handled in terms of a forward Euler step. Similar implicit-explicit splittings
can be found in [2, 5, 17, 24, 64]. In a similar fashion to [35], we prove in Theorem 3.1.18
and Theorem 3.1.19 that sequences of piecewise polynomial prolongations of (Un)n∈{1,...,N}
converge to the solution of the evolution equation (3.1).

In Theorem 3.2.3, we provide error estimates for the method. While there are known
results for this in the semigroup setting, see [61, 64], this is still new within a variational
approach to splitting schemes.

These results are well applicable to dimension splitting and domain decomposition meth-
ods if B ≡ 0. For a nontrivial operator B(t), t ∈ [0, T ], a compact embedding result remains
to be proved within this context. In the last section of this chapter, we provide an example
where the necessary compact embedding can easily be obtained.

In the first section of this chapter, we begin by introducing the exact assumptions needed
on the data and prove the convergence of the piecewise polynomial prolongations without
any further regularity assumptions made on the solution. In the second section, we show that
under an additional bounded Lipschitz condition and a stronger monotonicity assumption on
the operators Am(t), t ∈ [0, T ] and m ∈ {1, . . . ,M}, we can even prove explicit error bounds.
The size of the error depends on an additional regularity assumption on the solution. At
the end of the chapter, we show that the theoretical results from the first two sections can
be applied to a nonlinear parabolic problem.

3.1 Convergence of the Splitting Scheme

In this first section, we focus on proving the convergence of the implicit-explicit product
splitting in a general framework. To this end, we begin to state the exact assumptions that
have to be made on the data. This in mind, we can introduce our scheme and prove that it
is has a unique solution. The solution also fulfills a priori bounds. Using these bounds, we
can argue that the piecewise constant and piecewise linear prolongations of the solution to
the semidiscrete problem are bounded in suitable spaces. Therefore, we can extract weakly
or weakly∗ converging subsequences. It remains to identify the limit with the equation,
where among other things the Minty monotonicity trick will be used. The following setting
is similar to both [35] and [106]. Let us begin by introducing the structure of the spaces
which will be used in the following.

Assumption 3.1.1. Let (H, (·, ·)H , ‖·‖H) be a real, separable Hilbert space and (V, ‖·‖V ) be
a real, separable, reflexive Banach space, which is continuously and densely embedded into H.
Further, there exist a seminorm |·|V on V and cV ∈ (0,∞) such that ‖·‖V ≤ cV

(
‖·‖H+|·|V

)
is fulfilled.

For M ∈ N and m ∈ {1, . . . ,M}, let (Vm, ‖ · ‖Vm) be real reflexive Banach spaces, which

are continuously embedded into H, such that
⋂M
m=1 Vm = V and

∑M
m=1 ‖ · ‖Vm is equivalent

to ‖ · ‖V . For every m ∈ {1, . . . ,M}, there exist a seminorm | · |Vm on Vm and cVm ∈ (0,∞)

such that ‖ · ‖Vm ≤ cVm
(
‖ · ‖H + | · |Vm

)
and

∑M
m=1 | · |Vm is equivalent to | · |V .

Note that asking for the existence of the seminorms in the previous assumption is no
additional restriction on the spaces. As V and Vm, m ∈ {1, . . . ,M}, are continuously
embedded into H it is possible to use the full norm as the seminorm. If we consider, for
example, H = L2(D) and V = W 1,p(D) for p ∈ [1,∞) on a bounded domain D ⊂ Rd, d ∈ N,

it is possible to use the seminorm |v|V =
( ∫
D |∇v|

p dx
) 1
p . In this case, the seminorm is
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not a full norm. This setting is closely related to [99, Chapter 8] and allows for a different
coercivity condition for the operators defined below.

These spaces in mind, we can identify H with its dual space H∗ and obtain the Gelfand
triples

V
d
↪→ H ∼= H∗

d
↪→ V ∗ and Vm

d
↪→ H ∼= H∗

d
↪→ V ∗m, m ∈ {1, . . . ,M}.

Note that for every m ∈ {1, . . . ,M}, Vm is densely embedded into H because Vm ⊇ V and
V is densely embedded into H. The operator A(t), t ∈ [0, T ], acts on the spaces defined
above and fulfills the next assumption.

Assumption 3.1.2. Let the spaces H and V be given as stated in Assumption 3.1.1. Fur-
thermore, for T ∈ (0,∞) as well as p ∈ [2,∞), let {A(t)}t∈[0,T ] be a family of operators
A(t) : V → V ∗ that satisfy the following conditions:

(1) The mapping Av : [0, T ]→ V ∗ given by t 7→ A(t)v is continuous almost everywhere in
(0, T ) for all v ∈ V .

(2) The operator A(t) : V → V ∗, t ∈ [0, T ], is radially continuous, i.e., the mapping
s 7→ 〈A(t)(v + sw), w〉V ∗×V is continuous on [0, 1] for all v, w ∈ V .

(3) The operator A(t) : V → V ∗, t ∈ [0, T ], is monotone, i.e.,

〈A(t)v −A(t)w, v − w〉V ∗×V ≥ 0

is fulfilled for all v, w ∈ V .

(4) The operator A(t) : V → V ∗, t ∈ [0, T ], is uniformly bounded such that there exists
β ∈ [0,∞), which does not depend on t, with

‖A(t)v‖V ∗ ≤ β
(
1 + ‖v‖p−1

V

)
for all v ∈ V .

(5) The operator A(t) : V → V ∗, t ∈ [0, T ], fulfills a uniform semi-coercivity condition
such that there exist µ ∈ (0,∞) and λ ∈ [0,∞), which do not depend on t, with

〈A(t)v, v〉V ∗×V + λ ≥ µ|v|pV

for all v ∈ V .

The assumption p ∈ [2,∞) can be weakened to p ∈ (1,∞) for this section, compare
[40, 41, 42] for more details. It will then be necessary to choose some of the appearing
function spaces differently to ensure that the spaces are embedded into each other. In
Section 3.2, we cannot directly consider the case p ∈ (1, 2). Here, we make a stronger
monotonicity condition, compare (3.48) below. There exists no operator that fulfills this
condition for p ∈ (1, 2). Altogether, for simplicity and to keep the assumptions consistent,
we concentrate on the case p ∈ [2,∞) throughout the entire chapter.

For the existence of a solution, Assumption 3.1.2 (1) can be generalized to assuming that
the mapping Av : [0, T ] → V ∗ given by t 7→ A(t)v is Bochner measurable for every v ∈ V ,
compare [118, Chapter 30]. We use a stronger condition to keep the proof of Lemma 3.1.15
below more simple. Furthermore, we use a semi-coercivity condition instead of a standard
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coercivity assumption, which contains the full norm. A similar condition was imposed in
[99, Chapter 8]. As pointed out in [41] such a condition implies, in particular, that

〈A(t)v, v〉V ∗×V + ν̃‖v‖2H + λ̃ ≥ µ̃‖v‖2V

is fulfilled. This implies that A(t), t ∈ [0, T ], fulfills an ordinary coercivity condition but
with different exponents. See (1.1) for the exact definition of the coefficients. We will use
the semi-coercivity condition as this enables us to prove certain bounds in Lp(0, T ;V ) while
the coercivity condition above only allows for bounds in L2(0, T ;V ).

In the following, we want to decompose the operator A(t), t ∈ [0, T ], in M operators
that all have the same structure and act on the spaces Vm, m ∈ {1, . . . ,M}, from Assump-
tion 3.1.1.

Assumption 3.1.3. For M ∈ N, let H, V and Vm, m ∈ {1, . . . ,M}, be as stated in
Assumption 3.1.1. For T ∈ (0,∞), let {A(t)}t∈[0,T ] be a family of operators A(t) : V → V ∗

as given in Assumption 3.1.2. For m ∈ {1, . . . ,M}, let Am(t) : Vm → V ∗m, t ∈ [0, T ], also
fulfill Assumption 3.1.2, with V replaced by Vm such that the sum property

M∑
m=1

Am(t)v = A(t)v in V ∗

is satisfied for all t ∈ [0, T ] and v ∈ V .

Remark 3.1.4. Note that the optimal coefficients β, λ, µ for the operators A(t) and Am(t),
t ∈ [0, T ] and m ∈ {1, . . . ,M}, do not necessarily have to coincide. For the sake of simplicity,
we assume that the set of coefficients is the same for all appearing operators.

A comparable setting can be found in [83, Chapitre 2, Section 1.7]. Here, the operators
Am(t), t ∈ [0, T ] and m ∈ {1, . . . ,M}, fulfill a similar assumption as Assumption 3.1.2. But
p can be a different value pm for each operator. This could be an interesting generalization
for our proposed operator splitting.

Additionally, we introduce a Lipschitz continuous operator B(t), t ∈ [0, T ], stated below.

Assumption 3.1.5. Let H be given as stated in Assumption 3.1.1. Furthermore, for T ∈
(0,∞), let {B(t)}t∈[0,T ] be a family of operators B(t) : H → H that satisfy the following
conditions:

(1) The mapping Bv : [0, T ] → H given by t 7→ B(t)v is continuous almost everywhere in
(0, T ) for every v ∈ H.

(2) The operator B(t) : H → H, t ∈ [0, T ], fulfills a uniform Lipschitz condition such that
there exists κ ∈ [0,∞), which does not depend on t, with

‖B(t)v −B(t)w‖H ≤ κ‖v − w‖H

for all v, w ∈ H.

(3) The operator B(t) : H → H, t ∈ [0, T ], is uniformly bounded in 0 ∈ H such that there
exists ρ ∈ [0,∞) with ‖B(t)0‖H ≤ ρ for all t ∈ [0, T ].

Moreover, if κ is strictly larger than zero, then let the space VM from Assumption 3.1.1 be
compactly embedded into H.
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Remark 3.1.6. Observe that every operator B(t), t ∈ [0, T ], which fulfills Assumption 3.1.5,
also fulfills

‖B(t)v‖H ≤ κ(1 + ‖v‖H),
∣∣(B(t)v, v)H

∣∣ ≤ κ(1 + ‖v‖2H)

for all v ∈ H and t ∈ [0, T ] after possibly enlarging κ.

We also want to consider the operators of Assumptions 3.1.2, 3.1.3, and 3.1.5 as operators
acting on Bochner spaces. To this end, we consider their Nemytskĭı operators and state some
useful properties in the lemma below. A proof can be found in [39, Lemma 8.4.4] or [118,
Section 30].

Lemma 3.1.7. Let the spaces V and H be given as in Assumption 3.1.1. For T ∈ (0,∞) and
p ∈ [2,∞), let A(t) : V → V ∗ be an operator as stated in Assumption 3.1.2 and B(t) : H → H
as in Assumption 3.1.5 for t ∈ [0, T ]. Then for q = p

p−1 the operators (Av)(t) = A(t)v(t)

and (Bv)(t) = B(t)v(t) map Lp(0, T ;V ) into Lq(0, T ;V ∗) and L2(0, T ;H) into L2(0, T ;H),
respectively.

The operator A : Lp(0, T ;V ) → Lq(0, T ;V ∗) is radially continuous, i.e., the mapping
s 7→ 〈A(v + sw), w〉Lq(0,T ;V ∗)×Lp(0,T ;V ) is continuous on [0, 1] for all v, w ∈ Lp(0, T ;V ).
Furthermore, A fulfills a monotonicity, a boundedness, and a coercivity condition such that
it holds true that

〈Av −Aw, v − w〉Lq(0,T ;V ∗)×Lp(0,T ;V ) ≥ 0,

‖Av‖Lq(0,T ;V ∗) ≤ β
(
T

1
q + ‖v‖p−1

Lp(0,T ;V )

)
,

〈Av, v〉Lq(0,T ;V ∗)×Lp(0,T ;V ) + µ‖v‖pLp(0,T ;H) + λT ≥ 21−pµc−pV ‖v‖
p
Lp(0,T ;V )

for all v, w ∈ Lp(0, T ;V ). The operator B : L2(0, T ;H)→ L2(0, T ;H) is Lipschitz continu-
ous and bounded at 0 ∈ L2(0, T ;H) such that

‖Bv −Bw‖L2(0,T ;H) ≤ κ‖v − w‖L2(0,T ;H)

‖B0‖L2(0,T ;H) ≤ T
1
2 ρ

is fulfilled for all v, w ∈ L2(0, T ;H).

Note that for every m ∈ {1, . . . ,M}, the Nemytskĭı operator of Am(t), t ∈ [0, T ], intro-
duced in Assumption 3.1.3 maps Lp(0, T ;Vm) into Lq(0, T ;V ∗m) and fulfills the same bounds
stated in the previous lemma with V replaced by Vm. It remains to state the assumptions
on the source term f and its decomposition.

Assumption 3.1.8. Let V and Vm, m ∈ {1, . . . ,M}, be given as in Assumption 3.1.1 and
q = p

p−1 , where p ∈ [2,∞) is the same as in Assumption 3.1.2. Let f ∈ Lq(0, T ;V ∗) be

given and assume that there exist functions fm ∈ Lq(0, T ;V ∗m), m ∈ {1, . . . ,M}, such that

M∑
m=1

fm(t) = f(t) in V ∗, ‖fm(t)‖V ∗m ≤ ‖f(t)‖V ∗ , for almost all t ∈ (0, T ).

It is also possible to allow for a more general source term f ∈ Lq(0, T ;V ∗) +L1(0, T ;H),
compare [106] and [109, Chapter III, Section 1.5]. For simplicity, we only concentrate on
functions from Lq(0, T ;V ∗). As discussed in Section 1.1, the evolution equation (3.1) is
uniquely solvable if Assumptions 3.1.2 and 3.1.5 are fulfilled, f is an element of Lq(0, T ;V ∗),
and u0 ∈ H.
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In order to discretize the equation, we consider an equidistant grid on [0, T ], where
N ∈ N, k = T

N , and tn = nk, n ∈ {0, . . . , N}. For m ∈ {1, . . . ,M} and n ∈ {1, . . . , N}, we
introduce

An
mv =

1

k

∫ tn

tn−1

Am(t)v dt in V ∗m, Bnw =
1

k

∫ tn

tn−1

B(t)w dt in H (3.2)

for v ∈ Vm and w ∈ H as well as

fnm =
1

k

∫ tn

tn−1

fm(t) dt in V ∗m. (3.3)

We use these values to construct an approximation Un ≈ u(tn) of the solution u of the
evolution equation (3.1) at the grid points. To this end, we examine the semidiscrete problem

Un
0 −Un−1

k
+ BnUn−1 = 0 in H, (3.4)

and

Un
m −Un

m−1

k
+ An

mUn
m = fnm in V ∗m, m ∈ {1, . . . ,M}, (3.5)

for n ∈ {1, . . . , N} with

Un = Un
M in H, n ∈ {1, . . . , N}, and U0 = uk0 in H. (3.6)

Depending on the statement, uk0 has to be in VM or H. In order to prove that the approxi-
mation converges to the solution, we require that uk0 → u0 in H as k → 0. For some results,

we further need that (k
1
p ‖uk0‖VM )k>0 is uniformly bounded with respect to k. In order to

see that such a sequence exists, let (ui0)i∈N be a sequence in VM such that ui0 → u0 in H as
i→∞. This sequence exists because VM is densely embedded into H. For the construction
of a sequence that fulfills this boundedness condition, we use a sequence (kj)j∈N such that

kj → 0 as j →∞. Then we set uk10 = u1
0 in VM . As k

− 1
p

j →∞ as j →∞ there exists j1 ∈ N

such that ‖u2
0‖VM ≤ k

− 1
p

j1
. This in mind, we write uk10 = · · · = u

kj1−1

0 and u
kj1
0 = u2

0 in VM .

Analogously, there exists j2 ∈ N such that ‖u3
0‖VM ≤ k

− 1
p

j2
and we write u

kj1
0 = · · · = u

kj2−1

0

and u
kj2
0 = u3

0 in VM . Repeating this argument, we obtain an appropriate sequence to
approximate the initial value.

The following two lemmas show that the discrete values (An
m)n∈{1,...,N}, m ∈ {1, . . . ,M},

and (Bn)n∈{1,...,N} fulfill the same properties as their underlying operators Am(t), m ∈
{1, . . . ,M}, and B(t) do for every t ∈ [0, T ].

Lemma 3.1.9. Let Assumptions 3.1.1, 3.1.2, and 3.1.3 be fulfilled. For n ∈ {1, . . . , N}
and m ∈ {1, . . . ,M}, the operator An

m : Vm → V ∗m defined in (3.2) is radially continuous,
i.e., the mapping s 7→ 〈An

m(v + sw), w〉V ∗m×Vm is continuous on [0, 1] for all v, w ∈ Vm.
Furthermore, it fulfills a monotonicity, a boundedness, and a coercivity condition such that

〈An
mv −An

mw, v − w〉V ∗m×Vm ≥ 0, (3.7)

‖An
mv‖V ∗m ≤ β

(
1 + ‖v‖p−1

Vm

)
, (3.8)

〈An
mv, v〉V ∗m×Vm + λ ≥ µ|v|pVm (3.9)

are fulfilled for all v, w ∈ Vm.
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Proof. Let (si)i∈N be a sequence in [0, 1] that converges to s ∈ [0, 1]. Then we see that

〈Am(t)(v + siw), w〉V ∗m×Vm ≤ ‖Am(t)(v + siw)‖V ∗m‖w‖Vm
≤ β

(
1 + ‖v + siw‖p−1

Vm

)
‖w‖Vm

≤ β
(
1 + 2p−2‖v‖p−1

Vm
+ 2p−2‖w‖p−1

Vm

)
‖w‖Vm .

for v, w ∈ Vm due to the boundedness condition of A(t), t ∈ [0, T ], from Assumption 3.1.2 (4).
We can then apply the radial continuity of A(t), t ∈ [0, T ], from Assumption 3.1.2 (2) and
Lebesgue’s dominated convergence theorem to obtain

lim
i→∞
〈An

m(v + siw), w〉V ∗m×Vm = lim
i→∞

1

k

∫ tn

tn−1

〈Am(t)(v + siw), w〉V ∗m×Vm dt

=
1

k

∫ tn

tn−1

lim
i→∞
〈Am(t)(v + siw), w〉V ∗m×Vm dt

=
1

k

∫ tn

tn−1

〈Am(t)(v + sw), w〉V ∗m×Vm dt

= 〈An
m(v + sw), w〉V ∗m×Vm

for v, w ∈ Vm. Therefore, An
m is radially continuous. In order to prove (3.7)–(3.9), we apply

Assumption 3.1.2 (3)–(5) and obtain the monotonicity condition

〈An
mv −An

mw, v − w〉V ∗m×Vm =
1

k

∫ tn

tn−1

〈Am(t)v −Am(t)w, v − w〉V ∗m×Vm dt ≥ 0,

the boundedness condition

‖An
mv‖V ∗m ≤

1

k

∫ tn

tn−1

‖Am(t)v‖V ∗m dt ≤ β
(
1 + ‖v‖p−1

Vm

)
,

and the coercivity condition

〈An
mv, v〉V ∗m×Vm =

1

k

∫ tn

tn−1

〈Am(t)v, v〉V ∗m×Vm dt ≥ 1

k

∫ tn

tn−1

(
µ|v|pVm − λ

)
dt = µ|v|pVm − λ

for all v, w ∈ Vm.

Lemma 3.1.10. Let Assumptions 3.1.1 and 3.1.5 be fulfilled. The operator Bn : H → H
defined in (3.2) fulfills

‖Bnv −Bnw‖H ≤ κ‖v − w‖H , ‖Bn0‖H ≤ ρ, (3.10)

as well as

‖Bnv‖H ≤ κ
(
1 + ‖v‖H

)
,
∣∣(Bnv, v)H

∣∣ ≤ κ(1 + ‖v‖2H
)

(3.11)

for all v, w ∈ H and n ∈ {1, . . . , N}.

We omit the proof of this lemma. It can be done analogously to the proof of Lemma 3.1.9,
where we also use the bounds proposed in Remark 3.1.6. Now, we are well prepared to prove
that the operator splitting scheme (3.4)–(3.6) is uniquely solvable and its solution fulfills a
priori bounds.
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Lemma 3.1.11. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled. For a
step size k = T

N , N ∈ N, and uk0 ∈ H, the semidiscrete problem (3.4)–(3.6) is uniquely
solvable.

Proof. Let n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} be fixed in the following. Assuming that
Un−1 ∈ H exists, then Un

0 ∈ H is given by the explicit equation

Un
0 =

(
I − kBn

)
Un−1 in H.

If now Un
m−1 ∈ H exists, we want to show that there exists a unique element Un

m ∈ Vm that
solves (

I + kAn
m

)
Un
m = kfnm + Un

m−1 in V ∗m. (3.12)

As proven in Lemma 3.1.9 the operator An
m is radially continuous. This implies that I+kAn

m

is radially continuous. Applying the monotonicity condition (3.7) from Lemma 3.1.9, it can
be seen that I + kAn

m is strictly monotone. Using the inequality ‖v‖Vm ≤ cVm
(
‖v‖H +

|v|Vm
)

for the Vm-norm stated in Assumption 3.1.1 and the coercivity condition (3.9) from
Lemma 3.1.9, we obtain

〈(I + kAn
m)v, v〉V ∗m×Vm
‖v‖Vm

≥
‖v‖2H + µ|v|pVm

cVm
(
‖v‖H + |v|Vm

) − λ

‖v‖Vm

≥ min{1, µ}
cVm

·
‖v‖2H + |v|pVm
‖v‖H + |v|Vm

− λ

‖v‖Vm
→∞ as ‖v‖Vm →∞.

Hence, there exists a unique element Un
m ∈ Vm that solves (3.12) due to the Browder–Minty

theorem, see [99, Theorem 2.14].

Lemma 3.1.12. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled and let
uk0 ∈ H be given. Then there exists K ∈ (0,∞) such that for every step size k = T

N , N ∈ N,
the unique solution of (3.4)–(3.6) fulfills the a priori estimates

max
n∈{1,...,N}

‖Un‖2H +

N∑
n=1

M∑
m=1

‖Un
m −Un

m−1‖2H ≤ K, (3.13)

max
n∈{1,...,N}

‖Un
0‖2H +

N∑
n=1

‖Un
0 −Un−1‖2H ≤ K, (3.14)

max
n∈{1,...,N}

‖Un
m‖2H + k

N∑
n=1

‖Un
m‖

p
Vm
≤ K, m ∈ {1, . . . ,M}, (3.15)

as well as

k1−q
N∑
n=1

‖Un −Un−1‖qV ∗ = k

N∑
n=1

∥∥∥Un −Un−1

k

∥∥∥q
V ∗
≤ K. (3.16)

In order to prove the a priori bounds, we follow a similar structure as in [99, 106].
Since we only assumed that Am(t), t ∈ [0, T ], fulfills a semi-coercivity condition for every
m ∈ {1, . . . ,M} a Gronwall-like-argument becomes necessary. In [99, Lemma 8.6], the
classical Gronwall lemma leads to a step size restriction, which is f depended. For some
appearing terms, we avoid the classical Gronwall argument and use Lemma A.1.2 instead.
The main advantage of this argumentation is that we do not have a restriction for the step
size k.
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Proof of Lemma 3.1.12. Let i ∈ {1, . . . , N} and m ∈ {1, . . . ,M} be fixed in the following.
We test (3.4) with Ui

0 ∈ H and use the identity from Lemma A.1.4 to obtain that

1

2

(
‖Ui

0‖2H − ‖Ui−1‖2H + ‖Ui
0 −Ui−1‖2H

)
= −k(BiUi−1,Ui

0)H . (3.17)

An application of the conditions in (3.11) yields

−(BiUi−1,Ui
0)H = −(BiUi−1,Ui−1)H − (BiUi−1,Ui

0 −Ui−1)H

≤ κ
(
1 + ‖Ui−1‖2H

)
+ k‖BiUi−1‖2H +

1

4k
‖Ui

0 −Ui−1‖2H

≤ κ
(
1 + ‖Ui−1‖2H

)
+ kκ2

(
1 + ‖Ui−1‖H

)2
+

1

4k
‖Ui

0 −Ui−1‖2H

≤ c1
(
1 + ‖Ui−1‖2H

)
+

1

4k
‖Ui

0 −Ui−1‖2H

for c1 = κ+ 2κ2T . We insert this bound into (3.17) to obtain

‖Ui
0‖2H − ‖Ui−1‖2H +

1

2
‖Ui

0 −Ui−1‖2H ≤ 2kc1
(
1 + ‖Ui−1‖2H

)
. (3.18)

Similarly, we test (3.5) with Ui
m ∈ Vm and again use the identity from Lemma A.1.4 to find

that

1

2

(
‖Ui

m‖2H − ‖Ui
m−1‖2H + ‖Ui

m −Ui
m−1‖2H

)
+ k〈Ai

mUi
m,U

i
m〉V ∗m×Vm

= k〈f im,Ui
m〉V ∗m×Vm ≤ k‖f

i
m‖V ∗m‖U

i
m‖Vm .

(3.19)

We then multiply the inequality by two, insert the coercivity condition (3.9) stated in
Lemma 3.1.9, and the inequality ‖v‖Vm ≤ cVm

(
‖v‖H + |v|Vm

)
for the Vm-norm from As-

sumption 3.1.1 as well as Young’s inequality to obtain that

‖Ui
m‖2H − ‖Ui

m−1‖2H + ‖Ui
m −Ui

m−1‖2H + 2kµ|Ui
m|
p
Vm

≤ 2kcVm‖f im‖V ∗m
(
‖Ui

m‖H + |Ui
m|Vm

)
+ 2kλ

≤ 2kcVm‖f im‖V ∗m‖U
i
m‖H + kc2‖f im‖

q
V ∗m

+ kµ|Ui
m|
p
Vm

+ 2kλ,

with c2 =
(2cVm )q(pµ)1−q

q . After absorbing the summand containing the Vm-seminorm, it
follows that

‖Ui
m‖2H − ‖Ui

m−1‖2H + ‖Ui
m −Ui

m−1‖2H + kµ|Ui
m|
p
Vm

≤ 2kcVm‖f im‖V ∗m‖U
i
m‖H + kc2‖f im‖

q
V ∗m

+ 2kλ.

We sum up the inequality from m = 1 to M , add (3.18), and insert Ui
M = Ui in H to see

that

‖Ui‖2H − ‖Ui−1‖2H +

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2
‖Ui

0 −Ui−1‖2H + kµ

M∑
m=1

|Ui
m|
p
Vm

≤ k
M∑
m=1

(
2cVm‖f im‖V ∗m‖U

i
m‖H + c2‖f im‖

q
V ∗m

)
+ 2kλM + 2kc1

(
1 + ‖Ui−1‖2H

)
.
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Summing up the previous inequality from i = 1 to n ∈ {1, . . . , N}, shows that

‖Un‖2H − ‖U0‖2H +

n∑
i=1

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2

n∑
i=1

‖Ui
0 −Ui−1‖2H + kµ

n∑
i=1

M∑
m=1

|Ui
m|
p
Vm

≤ k
n∑
i=1

M∑
m=1

(
2cVm‖f im‖V ∗m‖U

i
m‖H + c2‖f im‖

q
V ∗m

)
+ 2TλM + 2kc1

n−1∑
i=0

(
1 + ‖Ui‖2H

)
.

(3.20)

The sums containing f im can be bounded using Assumption 3.1.8 as well as Hölder’s inequal-
ity. Then we see that

k

n∑
i=1

M∑
m=1

‖f im‖
q
V ∗m

= k

n∑
i=1

M∑
m=1

∥∥∥1

k

∫ ti

ti−1

fm(t) dt
∥∥∥q
V ∗m

≤
n∑
i=1

M∑
m=1

∫ ti

ti−1

‖fm(t)‖qV ∗m dt ≤M‖f‖qLq(0,T ;V ∗)

(3.21)

and

k‖f im‖V ∗m ≤ k
∥∥∥1

k

∫ ti

ti−1

fm(t) dt
∥∥∥
V ∗m

≤
∫ ti

ti−1

‖f(t)‖V ∗ dt. (3.22)

Inserting these inequalities and U0 = uk0 in H to (3.20), we obtain that

‖Un‖2H +

n∑
i=1

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2

n∑
i=1

‖Ui
0 −Ui−1‖2H + kµ

n∑
i=1

M∑
m=1

|Ui
m|
p
Vm

≤ ‖uk0‖2H + k

n∑
i=1

M∑
m=1

(
2cVm‖f im‖V ∗m‖U

i
m‖H + c2‖f im‖

q
V ∗m

)
+ 2TλM + 2kc1

n−1∑
i=0

(
1 + ‖Ui‖2H

)
≤
(
1 + 2Tc1

)
‖uk0‖2H + 2c3

n∑
i=1

∫ ti

ti−1

‖f(t)‖V ∗ dt

M∑
m=1

‖Ui
m‖H + c2M‖f‖qLq(0,T ;V ∗)

+ 2T (λM + c1) + 2kc1

n−1∑
i=1

‖Ui‖2H

≤
(
1 + 2Tc1

)
‖uk0‖2H + 2c3‖f‖L1(0,T ;V ∗) max

i∈{1,...,N}

M∑
m=1

‖Ui
m‖H + c2M‖f‖qLq(0,T ;V ∗)

+ 2T (λM + c1) + 2kc1

n−1∑
i=1

‖Ui‖2H ,

where c3 = maxm∈{1,...,M} cVm . This can now be estimated using Lemma A.1.1 such that
we arrive at

‖Un‖2H +

n∑
i=1

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2

n∑
i=1

‖Ui
0 −Ui−1‖2H + kµ

n∑
i=1

M∑
m=1

|Ui
m|
p
Vm

≤
((

1 + 2Tc1
)
‖uk0‖2H + 2c3‖f‖L1(0,T ;V ∗) max

i∈{1,...,N}

M∑
m=1

‖Ui
m‖H + c2M‖f‖qLq(0,T ;V ∗)

+ 2T (λM + c1)
)

exp(2Tc1).
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As the right-hand side is independent of n, the inequality is also fulfilled if we take the
maximum over all n ∈ {1, . . . , N} on the left-hand side. A telescopic sum argument and
Ui = Ui

M in H imply that

‖Ui
m‖2H =

∥∥∥Ui −
M∑

j=m+1

(
Ui
j −Ui

j−1

)∥∥∥2

H
≤M

(
‖Ui‖2H +

M∑
j=m+1

‖Ui
j −Ui

j−1‖2H
)

≤M
(
‖Ui‖2H +

M∑
j=1

‖Ui
j −Ui

j−1‖2H
) (3.23)

and therefore

M∑
m=1

‖Ui
m‖H ≤M

3
2

(
‖Ui‖2H +

M∑
j=1

‖Ui
j −Ui

j−1‖2H
) 1

2

.

We then abbreviate the terms

x2 = max
n∈{1,...,N}

(
‖Un‖2H +

n∑
i=1

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2

n∑
i=1

‖Ui
0 −Ui−1‖2H

+ kµ

n∑
i=1

M∑
m=1

|Ui
m|
p
Vm

)
,

a = c3M
3
2 ‖f‖L1(0,T ;V ∗) exp(2Tc1),

b2 =
(
(1 + 2Tc1)‖uk0‖2H + c2M‖f‖qLq(0,T ;V ∗) + 2T (λM + c1)

)
exp(2Tc1)

to obtain x2 ≤ 2ax+ b2. An application of Lemma A.1.2 then yields the bound x ≤ 2a+ b.
This means that there exists K1 ∈ (0,∞), which does not depend on the step size, such that

‖Un‖2H +

n∑
i=1

M∑
m=1

‖Ui
m −Ui

m−1‖2H +
1

2

n∑
i=1

‖Ui
0 −Ui−1‖2H + kµ

n∑
i=1

M∑
m=1

|Ui
m|
p
Vm
≤ K1

(3.24)

for every n ∈ {1, . . . , N}. Using (3.18) and (3.23), it follows that

‖Un
0‖2H ≤ 2Tc1 +

(
1 + 2Tc1

)
K1, ‖Un

m‖2H ≤MK1 (3.25)

for every m ∈ {1, . . . ,M}.
In order to prove a bound for (Un

m)n∈{1,...,N} in Vm for every m ∈ {1, . . . ,M}, we use

the previous estimate as well as the inequality ‖v‖Vm ≤ cVm
(
‖v‖H + |v|Vm

)
for the Vm-norm

from Assumption 3.1.1. Then we obtain that

(
k

N∑
i=1

M∑
m=1

‖Ui
m‖

p
Vm

) 1
p ≤

(
k

N∑
i=1

M∑
m=1

cpVm
(
‖Ui

m‖H + |Ui
m|Vm

)p) 1
p

≤ c3
(
k

N∑
i=1

M∑
m=1

‖Ui
m‖

p
H

) 1
p

+ c3

(
k

N∑
i=1

M∑
m=1

|Ui
m|
p
Vm

) 1
p

≤ c3T
1
pM

1
2 + 1

pK
1
2
1 + c3

(K1

µ

) 1
p

=: K2.

(3.26)
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In order to prove the a priori bound (3.16), we rewrite the difference Un−Un−1 using (3.5)
as well as (3.4) and insert Un

M = Un in H to obtain

Un −Un−1 =

M∑
m=1

(
Un
m −Un

m−1

)
+ Un

0 −Un−1 = k

M∑
m=1

(
fnm −An

mUn
m

)
− kBnUn−1

in V ∗ for n ∈ {1, . . . , N}. Testing the equation with v ∈ V , shows that

(Un −Un−1, v)H

= k

M∑
m=1

〈fnm −An
mUn

m, v〉V ∗m×Vm − k(BnUn−1, v)H

≤ kc4‖v‖V
M∑
m=1

(
‖fnm‖V ∗m + ‖An

mUn
m‖V ∗m

)
+ kc4‖v‖V ‖BnUn−1‖H

≤ kc4‖v‖V
M∑
m=1

(
‖fnm‖V ∗m + β

(
1 + ‖Un

m‖
p−1
Vm

))
+ kc4κ‖v‖V

(
1 + ‖Un−1‖H

)
,

where c4 ∈ (0,∞) is the maximal embedding constant from the embeddings of V into V ∗m,
m ∈ {1, . . . ,M}, and H into V ∗. This implies∥∥∥Un −Un−1

k

∥∥∥
V ∗
≤ c4

M∑
m=1

(
‖fnm‖V ∗m + β

(
1 + ‖Un

m‖
p−1
Vm

))
+ c4κ

(
1 + ‖Un−1‖H

)
.

Taking the q-power, summing up from n = 1 to N , multiplying by the step size k and again
taking the 1

q -power, it follows that

(
k

N∑
n=1

∥∥∥Un −Un−1

k

∥∥∥q
V ∗

) 1
q

≤ c4
(
k

N∑
n=1

( M∑
m=1

(
‖fnm‖V ∗m + β

(
1 + ‖Un

m‖
p−1
Vm

))
+ c4κ

(
1 + ‖Un−1‖H

))q) 1
q

≤ c4
(
k

N∑
n=1

M∑
m=1

‖fnm‖
q
V ∗m

) 1
q

+ c4

(
k

N∑
n=1

M∑
m=1

βq
) 1
q

+ c4

(
k

N∑
n=1

M∑
m=1

βq‖Un
m‖

p
Vm

) 1
q

+ c4

(
k

N∑
n=1

M∑
m=1

κq
) 1
q

+ c4

(
k

N∑
n=1

M∑
m=1

κq‖Un−1‖qH
) 1
q

≤ c4M
1
q ‖f‖Lq(0,T ;V ∗) + c4(β + κ)(TM)

1
q + c4βK

1
q

2 + c4κK
1
2
1 (TM)

1
q ,

where we used (3.21), (3.24), and (3.26). A combination of (3.24), (3.25), (3.26), and the
previous inequality shows the desired bounds.

For the time discrete solutions (Un)n∈{1,...,N} and (Un
m)n∈{1,...,N}, m ∈ {1, . . . ,M},

to (3.4)–(3.6) corresponding to the grid 0 = t0 < t1 < · · · < tN = T with k = T
N and

tn = nk, n ∈ {0, . . . , N}, we construct piecewise polynomial prolongations defined on the
entire interval [0, T ]. To this end, we introduce the piecewise constant prolongations for
t ∈ (tn−1, tn], n ∈ {1, . . . , N},

Akm(t) = An
m, Bk(t) = Bn, fkm(t) = fnm (3.27)
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with Akm(0) = A1
m, Bk(0) = B1, and fkm(0) = f1

m for m ∈ {1, . . . ,M} and

Ūkm(t) = Un
m, Ūk(t) = Un, Uk(t) = Un−1 (3.28)

for m ∈ {0, . . . ,M} as well as the piecewise affine-linear function

Uk(t) = Un−1 +
t− tn−1

k
(Un −Un−1), (3.29)

with

Ūkm(0) = Ūk(0) = Uk(0) = Uk(0) = uk0 in H, m ∈ {0, . . . ,M}. (3.30)

In the following, we always consider step sizes k = T
N`

, where (N`)`∈N is a sequence of natural

numbers with N` → ∞ as ` → ∞. For simplicity, a sequence (Ū
T
N` )`∈N is abbreviated by

(Ūk)k>0 and analogously for the other functions introduced above.
The function Uk is weakly differentiable. Note that its weak derivative coincides with

the classical derivative at the points where the latter exists. Using (3.4) and (3.5) as well as
Un = Un

M in H, its weak derivative can be rewritten as

(Uk)′(t) =
1

k

(
Un −Un−1

)
=

1

k

M∑
m=1

(
Un
m −Un

m−1

)
+

1

k

(
Un

0 −Un−1
)

=

M∑
m=1

(
fnm −An

mUn
m

)
−BnUn−1 in V ∗

for t ∈ (tn−1, tn), n ∈ {1, . . . , N}. Therefore, we see that{
(Uk)′ +

∑M
m=1A

k
mŪ

k
m +BkUk =

∑M
m=1 f

k
m in Lq(0, T ;V ∗),

Uk(0) = uk0 in H.
(3.31)

For every m ∈ {1, . . . ,M}, the operator Akm maps Lp(0, T ;Vm) into Lq(0, T ;V ∗m), compare
Lemma 3.1.7. Together with the a priori bounds from Lemma 3.1.12 this shows that (3.31)
is well-defined. For the following calculations, it will be helpful to have an integrated version
of (3.31).

Lemma 3.1.13. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled. For
N ∈ N, k = T

N , and grid points tn = nk, n ∈ {0, . . . , N}, as well as uk0 ∈ H, let the
piecewise constant and piecewise linear prolongations be given as in (3.27)–(3.29). Then

1

2
‖Ūk(tn)‖2H −

1

2
‖Ūk(0)‖2H +

M∑
m=1

∫ tn

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt

+

∫ tn

0

(Bk(t)Uk(t), Ūk0 (t))H dt ≤
M∑
m=1

∫ tn

0

〈fkm(t), Ūkm(t)〉V ∗m×Vm dt

is fulfilled for every n ∈ {1, . . . , N}.

Proof. In order to prove the inequality, we test (3.4) with Ui
0 ∈ H to get

1

k
(Ui

0 −Ui−1,Ui
0)H + (BiUi−1,Ui

0)H = 0, (3.32)
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and (3.5) with Ui
m ∈ Vm to obtain

1

k
(Ui

m −Ui
m−1,U

i
m)H + 〈Ai

mUi
m,U

i
m〉V ∗m×Vm = 〈f im,Ui

m〉V ∗m×Vm (3.33)

for i ∈ {1, . . . , N} and m ∈ {1, . . . ,M}. Summing up (3.33) from m = 1 to M and adding
(3.32), yields

1

k

M∑
m=1

(Ui
m −Ui

m−1,U
i
m)H +

1

k
(Ui

0 −Ui−1,Ui
0)H

+

M∑
m=1

〈Ai
mUi

m,U
i
m〉V ∗m×Vm + (BiUi−1,Ui

0)H =

M∑
m=1

〈f im,Ui
m〉V ∗m×Vm

for i ∈ {1, . . . , N}. Another summation of this equality from i = 1 to n ∈ {1, . . . , N} and a
multiplication with k shows that

n∑
i=1

M∑
m=1

(Ui
m −Ui

m−1,U
i
m)H +

n∑
i=1

(Ui
0 −Ui−1,Ui

0)H (3.34)

+ k

n∑
i=1

M∑
m=1

〈Ai
mUi

m,U
i
m〉V ∗m×Vm + k

n∑
i=1

(BiUi−1,Ui
0)H (3.35)

= k

n∑
i=1

M∑
m=1

〈f im,Ui
m〉V ∗m×Vm . (3.36)

We can write for (3.34)

n∑
i=1

M∑
m=1

(Ui
m −Ui

m−1,U
i
m)H +

n∑
i=1

(Ui
0 −Ui−1,Ui

0)H

≥ 1

2

n∑
i=1

M∑
m=1

(
‖Ui

m‖2H − ‖Ui
m−1‖2H

)
+

1

2

n∑
i=1

(
‖Ui

0‖2H − ‖Ui−1‖2H
)

=
1

2

n∑
i=1

(
‖Ui

M‖2H − ‖Ui
0‖2H

)
+

1

2

n∑
i=1

(
‖Ui

0‖2H − ‖Ui−1‖2H
)

=
1

2

(
‖Un‖2H − ‖U0‖2H

)
=

1

2

(
‖Ūk(tn)‖2H − ‖Ūk(0)‖2H

)
,

due to the identity from Lemma A.1.4, the telescopic structure, and Ui
M = Ui in H.

Inserting the definition of the piecewise constant prolongations from (3.27) and (3.28) in
(3.35) and (3.36), yields

1

2
‖Ūk(tn)‖2H −

1

2
‖Ūk(0)‖2H +

M∑
m=1

∫ tn

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt

+

∫ tn

0

(Bk(t)Uk(t), Ūk0 (t))H dt ≤
M∑
m=1

∫ tn

0

〈fkm(t), Ūkm(t)〉V ∗m×Vm dt.
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It remains to look closer at the behavior of the prolongations from (3.27), (3.28), and
(3.29) as the step size k tends to zero. The following lemma shows that the sequences of
such prolongations converge in a suitable sense.

Lemma 3.1.14. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled. Further,
let (N`)`∈N be a sequence of natural numbers with N` → ∞ as ` → ∞, let the step sizes be
given by k = T

N`
, and let (uk0)k>0 be a bounded sequence in H. Then for the sequences of

piecewise constant and piecewise linear prolongations as given in (3.28) and (3.29), there
exists a subsequence of step sizes, again denoted by k, such that

Ūkm ⇀ U in Lp(0, T ;Vm), m ∈ {1, . . . ,M},

Ūkm
∗
⇀ U, Ūk

∗
⇀ U, Uk

∗
⇀ U in L∞(0, T ;H), m ∈ {0, . . . ,M},

(Uk)′ ⇀ U ′ in Lq(0, T ;V ∗)

as k → 0. The limit U is an element of Lp(0, T ;V ) ∩ L∞(0, T ;H) and its weak derivative
fulfills U ′ ∈ Lq(0, T ;V ∗). This implies, in particular, that U is an element of Wp(0, T ).

Furthermore, let VM be compactly embedded into H, let uk0 be in VM for every k > 0,

and let (k
1
p ‖uk0‖VM )k>0 be uniformly bounded. Then it additionally follows that

Uk ⇀ U in Lp(0, T ;VM ),

Ūk → U, Uk → U, Uk → U in L2(0, T ;H)

as k → 0.

Note that the compact embedding of VM into H is only necessary to prove that the
sequences of piecewise constant and piecewise linear prolongations converge strongly in
L2(0, T ;H). If Assumption 3.1.2 is generalized to p ∈ (1,∞), it is still possible to prove
Uk → U in L2(0, T ;H). We can use the compact embedding argument from the Lions–
Aubin lemma (cf. Lemma A.2.5) to obtain strong convergence in Lp(0, T ;H). Together
with the a priori bound (3.13) from Lemma 3.1.12 and Lemma A.2.3, it follows that the
sequence converges strongly in L2(0, T ;H).

Proof of Lemma 3.1.14. For simplicity, we do not denote the subsequences differently within
this proof and we drop the index `. Using the a priori bound (3.15) from Lemma 3.1.12,
it follows that the sequence (Ūkm)k>0 of piecewise constant prolongations is bounded in
Lp(0, T ;Vm) and L∞(0, T ;H) for every m ∈ {1, . . . ,M}. Since Lp(0, T ;Vm) is a reflexive
Banach space and L∞(0, T ;H) is the dual of the separable Banach space L1(0, T ;H), there
exists an element Um ∈ Lp(0, T ;Vm) ∩ L∞(0, T ;H) such that

Ūkm ⇀ Um in Lp(0, T ;Vm), Ūkm
∗
⇀ Um in L∞(0, T ;H)

as k → 0 for every m ∈ {1, . . . ,M}. Analogously, there exists U0 ∈ L∞(0, T ;H) such that

Ūk0
∗
⇀ U0 in L∞(0, T ;H) as k → 0,

where we use the a priori bound (3.14) from Lemma 3.1.12. In the following, we will prove
that U0 = U1 = . . . = UM =: U in Lp(0, T ;V ) and L∞(0, T ;H) is fulfilled. To this end,
it is sufficient to show that U0 and U1 coincide in Lp(0, T ;V1) and L∞(0, T ;H). The other
equalities follow analogously. For the difference of the two functions, we see that

Ūk1 (t)− Ūk0 (t) = Un
1 −Un

0 = k
(
fn1 −An

1U
n
1

)
=

∫ tn

tn−1

(
f1(s)−Ak1(s)Ūk1 (s)

)
ds



64 CHAPTER 3. OPERATOR SPLITTING

in V ∗ for t ∈ (tn−1, tn], n ∈ {1, . . . , N}, due to the definition of the scheme (3.5). Therefore,
we obtain

‖Ūk1 (t)− Ūk0 (t)‖V ∗1 =
∥∥∥ ∫ tn

tn−1

(
f1(s)−Ak1(s)Ūk1 (s)

)
ds
∥∥∥
V ∗1

≤
∫ tn

tn−1

‖f1(s)−Ak1(s)Ūk1 (s)‖V ∗1 ds

≤ k
1
p

(∫ tn

tn−1

‖f1(s)−Ak1(s)Ūk1 (s)‖qV ∗1 ds
) 1
q

,

where we can bound the integral by(∫ tn

tn−1

‖f1(s)−Ak1(s)Ūk1 (s)‖qV ∗1 ds
) 1
q ≤

(∫ tn

tn−1

‖f1(s)‖qV ∗1 ds
) 1
q

+ k
1
q ‖An

1U
n
1‖V ∗1

≤ ‖f1‖Lq(0,T ;V ∗1 ) + k
1
q β
(
1 + ‖Un

1‖
p−1
V1

)
.

This is bounded independently of the step size k and n ∈ {1, . . . , N} due the a priori bound
(3.15) from Lemma 3.1.12. Thus, we have proved that ‖Ūk1 (t)− Ūk0 (t)‖V ∗1 → 0 as k → 0 for

every t ∈ [0, T ]. Further, this also shows that
(
‖Ūk1 (t)− Ūk0 (t)‖V ∗1

)
k>0

is uniformly bounded

independently of t ∈ [0, T ]. Thus, we can apply Lebesgue’s dominated convergence theorem
to see

‖Ūk1 − Ūk0 ‖Lq(0,T ;V ∗1 ) → 0 as k → 0.

Hence, U0 and U1 coincide in Lq(0, T ;V ∗1 ). Both spaces Lp(0, T ;V1) and L∞(0, T ;H) are
embedded into Lq(0, T ;V ∗1 ). This implies that U0 = U1 is fulfilled in all three spaces as the
embedding is always injective and U0 ∈ L∞(0, T ;H) and U1 ∈ Lp(0, T ;V1) ∩ L∞(0, T ;H).

The fact that U := U0 = U1 = · · · = UM in
⋂M
m=1 L

p(0, T ;Vm) and L∞(0, T ;H) can be

proved analogously. Due to Assumption 3.1.1, we know that
⋂M
m=1 Vm = V and the norm∑M

m=1 ‖·‖Vm is equivalent to ‖·‖V . This shows, in particular, that U ∈
⋂M
m=1 L

p(0, T ;Vm) =
Lp(0, T ;V ). Note that the functions ŪkM and Ūk coincide by definition. Therefore, it follows

that Ūk
∗
⇀ U in L∞(0, T ;H) as k → 0.

Another application of the a priori bound (3.13) from Lemma 3.1.12 shows that (Uk)k>0

is bounded in L∞(0, T ;H). Again, we find a subsequence and Ũ ∈ L∞(0, T ;H) such that

Uk
∗
⇀ Ũ in L∞(0, T ;H) as k → 0.

Furthermore, the difference of Ūk and Uk converges to zero in Lq(0, T ;V ∗) since∫ T

0

‖Ūk(t)− Uk(t)‖qV ∗ dt =

N∑
n=1

∫ tn

tn−1

∥∥∥Un −Un−1 − t− tn−1

k
(Un −Un−1)

∥∥∥q
V ∗

dt

=
1

kq

N∑
n=1

‖Un −Un−1‖qV ∗
∫ tn

tn−1

(tn − t)q dt

=
k

q + 1

N∑
n=1

‖Un −Un−1‖qV ∗ ≤
kq

q + 1
K → 0 as k → 0,

where we used the a priori bound (3.16) from Lemma 3.1.12. Therefore, the limits of
(Ūk)k>0 and (Uk)k>0 coincide in Lq(0, T ;V ∗). The limits U and Ũ are elements of the
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space L∞(0, T ;H). This space is continuously embedded into Lq(0, T ;V ∗). It then follows
that Ũ = U in L∞(0, T ;H) because the embedding is injective.

The sequence ((Uk)′)k>0 is bounded in Lq(0, T ;V ∗) due to the a priori bound (3.16)
from Lemma 3.1.12. As this space is a reflexive Banach space, we can extract a subsequence
and find W ∈ Lq(0, T ;V ∗) such that

(Uk)′ ⇀W in Lq(0, T ;V ∗) as k → 0.

In order to prove that the sequence (Uk)′ converges to the weak derivative of U weakly in

Lq(0, T ;V ∗), we use that Uk
∗
⇀ U in L∞(0, T ;H) as k → 0 and see

−
∫ T

0

〈W (t), v〉V ∗×V ϕ(t) dt = − lim
k→0

∫ T

0

〈(Uk)′(t), v〉V ∗×V ϕ(t) dt

= lim
k→0

∫ T

0

(Uk(t), v)Hϕ
′(t) dt =

∫ T

0

(U(t), v)Hϕ
′(t) dt

for v ∈ V and ϕ ∈ C∞c (0, T ). Applying [49, Kapitel IV, Lemma 1.7], it follows that W = U ′

in Lq(0, T ;V ∗) and therefore, in particular, U ∈ Wp(0, T ).
In the following, we require that VM is compactly embedded into H. We use the a priori

bound (3.15) from Lemma 3.1.12 and Un = Un
M in H for every n ∈ {1, . . . , N} to see

‖Uk‖Lp(0,T ;VM )

=
( N∑
n=1

∫ tn

tn−1

∥∥∥Un−1 +
t− tn−1

k

(
Un −Un−1

)∥∥∥p
VM

dt
) 1
p

=
( N∑
n=1

∫ tn

tn−1

∥∥∥ tn − t
k

Un−1 +
t− tn−1

k
Un
∥∥∥p
VM

dt
) 1
p

≤
( 1

kp

N∑
n=1

‖Un−1‖pVM

∫ tn

tn−1

(tn − t)p dt
) 1
p

+
( 1

kp

N∑
n=1

‖Un‖pVM

∫ tn

tn−1

(t− tn−1)p dt
) 1
p

≤
( k

p+ 1

N∑
n=1

‖Un−1‖pVM
) 1
p

+
( k

p+ 1

N∑
n=1

‖Un‖pVM
) 1
p

≤
( k

p+ 1

) 1
p ‖uk0‖VM + 2

( K

p+ 1

) 1
p

.

This is bounded as
(
k

1
p ‖uk0‖VM

)
k>0

is uniformly bounded with respect to k. As the weak

limit of a sequence is unique, this implies that Uk ⇀ U in Lp(0, T ;VM ) as k → 0, where
we again choose a suitable subsequence if necessary. Since (Uk)′ ⇀ U ′ in Lq(0, T ;V ∗) as
k → 0, it follows that Uk ⇀ U in the space

Wp
M (0, T ) = {v ∈ Lp(0, T ;VM ) : v′ exists and v′ ∈ Lq(0, T ;V ∗)}

as k → 0. By assumption, the space VM is separable, reflexive, and compactly embedded
into H. Furthermore, H∗ is embedded into the reflexive space V ∗ and we see that

VM
d
↪→ H ∼= H∗

d
↪→ V ∗

is fulfilled. Thus, we can apply Lemma A.2.5 and obtain that Wp
M (0, T ) is compactly

embedded into L2(0, T ;H). As the embedding is compact, it follows that Uk → U in
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L2(0, T ;H) as k → 0. This in mind, we can also prove that Ūk → U and Uk → U in
L2(0, T ;H) as k → 0. We use the a priori bounds (3.13) and (3.14) from Lemma 3.1.12 and
Un = Un

M in H to see that

( N∑
n=1

‖Un −Un−1‖2H
) 1

2

=
( N∑
n=1

∥∥∥ M∑
m=1

(
Un
m −Un

m−1

)
+ Un

0 −Un−1
∥∥∥2

H

) 1
2

≤
( N∑
n=1

( M∑
m=1

‖Un
m −Un

m−1‖H + ‖Un
0 −Un−1‖H

)2) 1
2

≤
( N∑
n=1

M∑
m=1

‖Un
m −Un

m−1‖2H + ‖Un
0 −Un−1‖2H

) 1
2

≤ (2K)
1
2 .

(3.37)

Considering the difference of Ūk and Uk in the L2(0, T ;H)-norm squared, it follows that

‖Ūk − Uk‖2L2(0,T ;H) =

N∑
n=1

∫ tn

tn−1

∥∥∥Un −Un−1 − t− tn−1

k
(Un −Un−1)

∥∥∥2

H
dt

=
1

k2

N∑
n=1

‖Un −Un−1‖2H
∫ tn

tn−1

(tn − t)2 dt

=
k

3

N∑
n=1

‖Un −Un−1‖2H ≤
2k

3
K → 0 as k → 0.

Therefore, we have shown that

‖Ūk − U‖L2(0,T ;H) ≤ ‖Ūk − Uk‖L2(0,T ;H) + ‖Uk − U‖L2(0,T ;H) → 0 as k → 0.

Similarly, we consider the difference of Uk and Ūk in L2(0, T ;H) to find

‖Ūk − Uk‖2L2(0,T ;H) =

N∑
n=1

∫ tn

tn−1

‖Un −Un−1‖2H dt

= k

N∑
n=1

‖Un −Un−1‖2H ≤ 2kK → 0 as k → 0,

where we again use the bound from (3.37). The last desired convergence result then is
fulfilled as we have shown

‖Uk − U‖L2(0,T ;H) ≤ ‖Uk − Ūk‖L2(0,T ;H) + ‖Ūk − U‖L2(0,T ;H) → 0 as k → 0.

Lemma 3.1.15. Let Assumptions 3.1.1, 3.1.2, and 3.1.3 be fulfilled. Then for every m ∈
{1, . . . ,M} the operator Akm defined in (3.27) fulfills that

Akmv → Amv in Lq(0, T ;V ∗m)

as k → 0 for every v ∈ Lp(0, T ;Vm).
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Proof. Let m ∈ {1, . . . ,M} be arbitrary but fixed in the following. We want to estimate
Akmv −Amv within the Lq(0, T ;V ∗m)-norm. To this end, we notice that

‖Akmv −Amv‖
q
Lq(0,T ;V ∗m) =

∫ T

0

‖Akm(t)v(t)−Am(t)v(t)‖qV ∗m dt

=

N∑
n=1

∫ tn

tn−1

∥∥∥1

k

∫ tn

tn−1

(
Am(s)v(t)−Am(t)v(t)

)
ds
∥∥∥q
V ∗m

dt.

For t ∈ [0, T ] such that s 7→ Am(s)w is continuous for all w ∈ Vm, we always choose
n ∈ {1, . . . , N} such that t ∈ (tn−1, tn]. Then it follows that∥∥∥1

k

∫ tn

tn−1

(
Am(s)v(t)−Am(t)v(t)

)
ds
∥∥∥
V ∗m

≤ 1

k

∫ tn

tn−1

‖Am(s)v(t)−Am(t)v(t)‖V ∗m ds→ 0

as k → 0. Furthermore, an application of the boundedness condition for Am(t), t ∈ [0, T ],
from Assumption 3.1.2 (4), shows that∥∥∥1

k

∫ tn

tn−1

(
Am(s)v(t)−Am(t)v(t)

)
ds
∥∥∥
V ∗m

≤ 1

k

∫ tn

tn−1

‖Am(s)v(t)−Am(t)v(t)‖V ∗m ds

≤ 1

k

∫ tn

tn−1

‖Am(s)v(t)‖V ∗m ds+
1

k

∫ tn

tn−1

‖Am(t)v(t)‖V ∗m ds

≤ 2β
(
1 + ‖v(t)‖p−1

Vm

)
=: g(t)

for almost all t ∈ (tn−1, tn), n ∈ {1, . . . , N}. Since ‖v(t)‖(p−1)q
Vm

= ‖v(t)‖pVm and v ∈
Lp(0, T ;Vm), it follows that g ∈ Lq(0, T ). Now, we can apply Lebesgue’s dominated conver-
gence theorem and see

lim
k→0
‖Akmv −Amv‖

q
Lq(0,T ;V ∗m) =

∫ T

0

lim
k→0
‖Akm(t)v(t)−Am(t)v(t)‖qV ∗m dt = 0.

Lemma 3.1.16. Let Assumptions 3.1.1 and 3.1.5 be fulfilled. Then the operator Bk defined
in (3.27) fulfills that

Bkv → Bv in L2(0, T ;H)

as k → 0 for every v ∈ L2(0, T ;H).

We omit the proof, as it can be done analogously to the proof of Lemma 3.1.15.

Lemma 3.1.17. Let Assumptions 3.1.1 and 3.1.8 be fulfilled. For every m ∈ {1, . . . ,M},
it follows that fkm defined in (3.27) fulfills fkm → fm in Lq(0, T ;V ∗m) as k → 0.

Again, we omit the proof as it is essentially the same as the proof of Lemma 2.1.9.
The previous lemmas in mind, we are well prepared to prove that the limit U ∈ Wp(0, T )
from Lemma 3.1.14 is the solution to the initial value problem (3.1). At first, we show in
Theorem 3.1.18 that the sequences of piecewise constant and piecewise linear prolongations
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of the solution from (3.4)–(3.6) converge to the solution u of the evolution equation (3.1)
in a weak sense. Also, a strong convergence result can be proved. If VM is compactly
embedded into H, we can argue directly that certain strong convergence results are fulfilled.
This compact embedding is only necessary if the Lipschitz continuous, H-valued operator
B(t), t ∈ [0, T ], is not constantly zero. If this operator is constantly zero and the embedding
from VM into H is not compact, we can still show a pointwise strong convergence result in
Theorem 3.1.19 below.

Theorem 3.1.18. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled and let
u0 ∈ H be given. For a sequence (N`)`∈N of natural numbers with N` →∞ as `→∞, step
sizes k = T

N`
, and a bounded sequence (uk0)k>0 in H such that uk0 → u0 in H as k → 0,

let the sequences of piecewise constant and piecewise linear prolongations from (3.28) and
(3.29) be given. If κ in Assumption 3.1.5 (2) is zero, then

Ūkm ⇀ u in Lp(0, T ;Vm), m ∈ {1, . . . ,M},

Ūkm
∗
⇀ u, Ūk

∗
⇀ u, Uk

∗
⇀ u in L∞(0, T ;H), m ∈ {0, . . . ,M},

(Uk)′ ⇀ u′ in Lq(0, T ;V ∗),

M∑
m=1

AkmŪ
k
m ⇀ Au in Lq(0, T ;V ∗),

BkUk → Bu in L2(0, T ;H)

as k → 0. Here, u is the solution of (3.1) and u′ its weak derivative. Also, it holds true that
both Ūk(t) ⇀ u(t) and Uk(t) ⇀ u(t) in H as k → 0 for every t ∈ [0, T ].

Furthermore, let (uk0)k>0 be in VM , let
(
k

1
p ‖uk0‖VM

)
k>0

be uniformly bounded with re-
spect to k, and let the space VM be compactly embedded into H. Then it follows for an
arbitrary value κ ∈ [0,∞) from Assumption 3.1.5 (2) that the results above are fulfilled and
additionally it follows that

Uk ⇀ u in Lp(0, T ;VM ),

Ūk → u, Uk → u, Uk → u in L2(0, T ;H)

as k → 0.

It would also be possible to prove Uk(t) ⇀ u(t) and Ūkm(t) ⇀ u(t), m ∈ {0, . . . ,M}, in
H as k → 0 for every t ∈ [0, T ]. For simplicity, we concentrate on the sequences (Ūk(t))k>0

and (Uk(t))k>0.

Proof of Theorem 3.1.18. For simplicity, we do not denote the subsequences differently in
this proof and we drop the index `. In the cases that κ from Assumption 3.1.5 (2) is zero, it
is easy to see that BkUk = BkU → BU in L2(0, T ;H) as k → 0 due to Lemma 3.1.16. If κ is
strictly larger than zero and VM is compactly embedded into H, we can apply Lemma 3.1.14
to obtain that Uk → U in L2(0, T ;H) as k → 0. Since the inequality

‖BU −BkUk‖L2(0,T ;H) ≤ ‖BU −BkU‖L2(0,T ;H) + ‖BkU −BkUk‖L2(0,T ;H) (3.38)

is fulfilled for every k > 0, we can consider the two summands separately. For the first
summand, we can apply Lemma 3.1.16 to obtain

‖BU −BkU‖L2(0,T ;H) → 0 as k → 0.
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For the square of the second summand on the right-hand side of (3.38), we use the Lipschitz
continuity of the operator Bn, n ∈ {1, . . . , N}, compare (3.10) of Lemma 3.1.10, and the
fact that Uk → U in L2(0, T ;H) as k → 0. Then we see that

‖BkU −BkUk‖2L2(0,T ;H) =

N∑
n=1

∫ tn

tn−1

‖BnU(t)−BnUn−1‖2H dt

≤ κ2
N∑
n=1

∫ tn

tn−1

‖U(t)−Un−1‖2H dt

= κ2‖U − Uk‖2L2(0,T ;H) → 0

as k → 0. Altogether, this proves that

BkUk → BU in L2(0, T ;H) as k → 0. (3.39)

Due to the a priori bound (3.15) from Lemma 3.1.12 and the boundedness condition (3.8)
from Lemma 3.1.9, we find that

‖AkmŪkm‖Lq(0,T ;V ∗m) =
(
k

N∑
n=1

‖An
mUn

m‖
q
V ∗m

) 1
q

≤
(
k

N∑
n=1

βq
(
1 + ‖Un

m‖
p−1
Vm

)q) 1
q ≤ β

(
T

1
q +K

1
q
)
.

As Lq(0, T ;V ∗m) is a reflexive Banach space, we can extract a weakly converging subsequence
such that

AkmŪ
k
m ⇀ bm in Lq(0, T ;V ∗m) as k → 0

for bm ∈ Lq(0, T ;V ∗m). Next, we identify the derivative of U with the equation. Using

Lemma 3.1.14, Lemma 3.1.17, (3.39), and b :=
∑M
m=1 bm in Lq(0, T ;V ∗), we obtain the

following equality

U ′ = w-lim
k→0

(Uk)′ = w-lim
k→0

( M∑
m=1

(
fkm −AkmŪkm

)
−BkUk

)
= f − b−BU

in Lq(0, T ;V ∗). By w-lim we denote the limiting process with respect to the weak topology in
Lq(0, T ;V ∗). Since U ∈ Wp(0, T ) andWp(0, T ) is continuously embedded into C([0, T ];H),
we can work with the continuous representative of U in the following.

Another application of the a priori bound (3.13) from Lemma 3.1.12 shows that the
sequence (Uk(t))k>0, t ∈ [0, T ], is bounded in H. As H is reflexive, for every t ∈ [0, T ] there
exist a subsequence and an element Ũ(t) ∈ H with

Uk(t) ⇀ Ũ(t) in H (3.40)

as k → 0. This in mind, we prove U(t) = Ũ(t) and U(0) = u0 for every t ∈ [0, T ]. First,

we recall that (Uk)′ ⇀ U ′ in Lq(0, T ;V ∗) and Uk
∗
⇀ U in L∞(0, T ;H) as k → 0, compare
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Lemma 3.1.14. For arbitrary but fixed x ∈ V and ϕ ∈ C1([0, T ]), we then find that

(U(t), x)Hϕ(t)− (U(0), x)Hϕ(0)−
∫ t

0

(U(s), x)Hϕ
′(s) ds

=

∫ t

0

〈U ′(s), x〉V ∗×V ϕ(s) ds = lim
k→0

∫ t

0

((Uk)′(s), x)Hϕ(s) ds

= lim
k→0

(
(Uk(t), x)Hϕ(t)− (uk0 , x)Hϕ(0)−

∫ t

0

(Uk(s), x)Hϕ
′(s) ds

)
= (Ũ(t), x)Hϕ(t)− (u0, x)Hϕ(0)−

∫ t

0

(U(s), x)Hϕ
′(s) ds

for t ∈ [0, T ]. This implies U(t) = Ũ(t) and U(0) = u0 in H. For the piecewise constant
prolongation Ūk, we see that

‖Ūk(t)− Uk(t)‖qV ∗ =
∥∥∥Un −Un−1 − t− tn−1

k

(
Un −Un−1

)∥∥∥q
V ∗

≤
( tn − t

k

)q
‖Un −Un−1‖qV ∗ ≤

N∑
i=1

‖Ui −Ui−1‖qV ∗ ≤ k
q−1K

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. For the last inequality, we use the a priori bound
(3.16) from Lemma 3.1.12. Thus, it follows that ‖Ūk(t) − Uk(t)‖V ∗ → 0 as k → 0 for
every t ∈ [0, T ]. This means that the limits of (Ūk(t))k>0 and (Uk(t))k>0 coincide in V ∗.
Due to the a priori bound (3.13) from Lemma 3.1.12, (Ūk(t))k>0 is bounded in H for every
t ∈ [0, T ]. Thus, we can extract a subsequence that converges weakly to an element of H.
As H is continuously embedded into V ∗, the limit has to coincide with U(t) in H as the
embedding is injective. This implies that Ūk(t) ⇀ U(t) in H as k → 0 for every t ∈ [0, T ].

It remains to prove that b = AU in Lq(0, T ;V ∗). Recall that for every m ∈ {1, . . . ,M},
the sequence (Ūkm)k>0 converges weakly to U in Lp(0, T ;Vm), (Ūk0 )k>0 converges weakly∗ to
U in L∞(0, T ;H), and U is an element of Wp(0, T ), compare Lemma 3.1.14. Using (3.39),
the statements of Lemma 3.1.13 and Lemma 3.1.17 as well as the lower semi-continuity of
the norm, it follows that

lim sup
k→0

( M∑
m=1

∫ T

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt
)

≤ lim sup
k→0

( M∑
m=1

∫ T

0

〈fkm(t), Ūkm(t)〉V ∗m×Vm dt−
∫ T

0

(Bk(t)Uk(t), Ūk0 (t))H dt

+
1

2
‖Ūk(0)‖2H −

1

2
‖Ūk(T )‖2H

)
≤

M∑
m=1

∫ T

0

〈fm(t), U(t)〉V ∗m×Vm dt−
∫ T

0

(B(t)U(t), U(t))H dt+
1

2
‖U(0)‖2H −

1

2
‖U(T )‖2H

=

∫ T

0

〈f(t)−B(t)U(t), U(t)〉V ∗×V dt−
∫ T

0

〈U ′(t), U(t)〉V ∗×V dt =

∫ T

0

〈b(t), U(t)〉V ∗×V dt,

which implies

lim sup
k→0

M∑
m=1

∫ T

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt ≤
∫ T

0

〈b(t), U(t)〉V ∗×V dt. (3.41)
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Due to the monotonicity condition for Am(t), t ∈ [0, T ] and m ∈ {1, . . . ,M}, from Assump-
tion 3.1.2 (3) we can write

M∑
m=1

∫ T

0

〈Akm(t)Ūkm(t)−Akm(t)v(t), Ūkm(t)− v(t)〉V ∗m×Vm dt ≥ 0

for every v ∈ Lp(0, T ;V ). Therefore, an application of Lemma 3.1.14 and Lemma 3.1.15
shows

M∑
m=1

∫ T

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt

≥
M∑
m=1

∫ T

0

(
〈Akm(t)Ūkm(t), v(t)〉V ∗m×Vm + 〈Akm(t)v(t), Ūkm(t)− v(t)〉V ∗m×Vm

)
dt

k→0−→
M∑
m=1

∫ T

0

(
〈bm(t), v(t)〉V ∗m×Vm + 〈Am(t)v(t), U(t)− v(t)〉V ∗m×Vm

)
dt

=

∫ T

0

(
〈b(t), v(t)〉V ∗×V + 〈A(t)v(t), U(t)− v(t)〉V ∗×V

)
dt,

which implies

lim inf
k→0

M∑
m=1

∫ T

0

〈Akm(t)Ūkm(t), Ūkm(t)〉V ∗m×Vm dt

≥
∫ T

0

(
〈b(t), v(t)〉V ∗×V + 〈A(t)v(t), U(t)− v(t)〉V ∗×V

)
dt.

Applying (3.41), this yields∫ T

0

〈b(t), U(t)− v(t)〉V ∗×V dt ≥
∫ T

0

〈A(t)v(t), U(t)− v(t)〉V ∗×V dt.

We then choose v = U − sw for s ∈ (0, 1) and w ∈ Lp(0, T ;V ) and apply the Minty
monotonicity trick, see [99, Lemma 2.13], to prove that AU = b in Lq(0, T ;V ∗). To this
end, we notice that∫ T

0

〈b(t), sw(t)〉V ∗×V dt ≥
∫ T

0

〈A(t)
(
U(t)− sw(t)

)
, sw(t)〉V ∗×V dt,

implies ∫ T

0

〈b(t), w(t)〉V ∗×V dt ≥
∫ T

0

〈A(t)U(t), w(t)〉V ∗×V dt.

In the previous step, we divided by s > 0, considered s→ 0, and used the radial continuity
of A(t), t ∈ [0, T ], from Assumption 3.1.2 (2). Together with the same argumentation for
s ∈ (−1, 0), this proves that∫ T

0

〈b(t), w(t)〉V ∗×V dt =

∫ T

0

〈A(t)U(t), w(t)〉V ∗×V dt
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for every w ∈ Lp(0, T ;V ). This shows that AU = b in Lq(0, T ;V ∗). Therefore, U = u is the
unique solution of the evolution problem (3.1).

Since every converging subsequence of (Ūkm)k>0 converges to the unique solution u of
(3.1), we can apply the subsequence principle, see [116, Proposition 10.13] or [49, Kapi-
tel I, Lemma 5.4], to prove that the original sequence (Ūkm)k>0 converges to the solution u
of (3.1). Analogously, we see that every other convergence result claimed in the theorem is
fulfilled for the original sequence.

Theorem 3.1.19. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled and let
u0 ∈ H be given. For a sequence (N`)`∈N of natural numbers with N` →∞ as `→∞, step
sizes k = T

N`
, and a bounded sequence (uk0)k>0 in H such that uk0 → u0 in H as k → 0,

let the sequences of piecewise constant and piecewise linear prolongations from (3.28) and
(3.29) be given. If κ from Assumption 3.1.5 (2) is zero, then it follows that

Ūk(t)→ u(t), Uk(t)→ u(t) in H as k → 0,

for every t ∈ [0, T ], where u is the solution of (3.1). Under the additional assumption that
for m ∈ {1, . . . ,M} there exists η ∈ (0,∞), which does not depend on t, with

〈Am(t)v −Am(t)w, v − w〉V ∗m×Vm ≥ η|v − w|
p
Vm

(3.42)

for all v, w ∈ Vm the sequence (Ūkm)k>0 converges strongly to the solution u of (3.1) in
Lp(0, T ;Vm).

Furthermore, let uk0 be in VM for every k > 0, let
(
k

1
p ‖uk0‖VM

)
k>0

be uniformly bounded
with respect to k, and let the space VM be compactly embedded into H. Then the statement
above is fulfilled for an arbitrary operator B(t), t ∈ [0, T ], that fulfills Assumption 3.1.5.

Proof. For simplicity, we drop the index ` within this proof. In order to estimate the
error, we split it up in separate parts, which can be handled more easily. We combine
the monotonicity conditions from Assumption 3.1.2 (3) and from (3.42). This can be done
by including η = 0 to (3.42). The case η = 0 is exactly the monotonicity condition from
Assumption 3.1.2 (3). We point out the additional result for η ∈ (0,∞) at the end of the
proof. Using the condition (3.42), we then obtain that

‖u(t)− Ūk(t)‖2H + 2η

M∑
m=1

∫ t

0

|u(s)− Ūkm(s)|pVm ds

≤ ‖u(t)− Ūk(t)‖2H + 2

M∑
m=1

∫ t

0

〈Akm(s)u(s)−Akm(s)Ūkm(s), u(s)− Ūkm(s)〉V ∗m×Vm ds

= ‖u(t)‖2H + 2

M∑
m=1

∫ t

0

〈Akm(s)u(s), u(s)〉V ∗m×Vm ds

− 2(u(t), Ūk(t))H − 2

M∑
m=1

∫ t

0

〈Akm(s)u(s), Ūkm(s)〉V ∗m×Vm ds

− 2

M∑
m=1

∫ t

0

〈Akm(s)Ūkm(s), u(s)〉V ∗m×Vm ds

+ ‖Ūk(t)‖2H + 2

M∑
m=1

∫ t

0

〈Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds

=: Γk1(t) + Γk2(t) + Γk3(t)
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with

Γk1(t) = ‖u(t)‖2H + 2

M∑
m=1

∫ t

0

〈Akm(s)u(s), u(s)〉V ∗m×Vm ds,

Γk2(t) = −2(u(t), Ūk(t))H − 2

M∑
m=1

∫ t

0

〈Akm(s)u(s), Ūkm(s)〉V ∗m×Vm ds

− 2

M∑
m=1

∫ t

0

〈Akm(s)Ūkm(s), u(s)〉V ∗m×Vm ds,

Γk3(t) = ‖Ūk(t)‖2H + 2

M∑
m=1

∫ t

0

〈Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds

for every t ∈ [0, T ]. Recall that in Theorem 3.1.18, we proved that Ūkm ⇀ u in Lp(0, T ;Vm)

and
∑M
m=1A

k
mŪ

k
m ⇀ Au in Lq(0, T ;V ∗) as k → 0. Applying the result from Lemma 3.1.15,

it follows that

lim
k→0

Γk1(t) = ‖u(t)‖2H + 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds,

lim
k→0

Γk2(t) = −2‖u(t)‖2H − 4

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

for every t ∈ [0, T ]. In order to estimate Γk3 , we need a few additional arguments. Here, we
assume that t ∈ (tn−1, tn], n ∈ {1, . . . , N}, and obtain

Γk3(t) = ‖Ūk(t)‖2H + 2

M∑
m=1

∫ tn

0

〈Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds

− 2

M∑
m=1

∫ tn

t

〈Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds.

(3.43)

For the first appearing sum of integrals, we can apply Lemma 3.1.13 to see that

2

M∑
m=1

∫ tn

0

〈Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds

≤ 2

M∑
m=1

∫ tn

0

〈fkm(s), Ūkm(s)〉V ∗m×Vm ds− 2

∫ tn

0

(Bk(t)Uk(s), Ūk0 (s))H ds

−
(
‖Ūk(tn)‖2H − ‖Ūk(0)‖2H

)
,

which we can reinsert in (3.43). Together with the fact that Ūk(0) = uk0 and Ūk(tn) = Ūk(t)
in H, we obtain a bound for Γk3(t) given by

Γk3(t) ≤ ‖uk0‖2H + 2

M∑
m=1

∫ t

0

〈fkm(s), Ūkm(s)〉V ∗m×Vm ds

− 2

∫ t

0

(Bk(s)Uk(s), Ūk0 (s))H ds− 2

∫ tn

t

(Bk(s)Uk(s), Ūk0 (s))H ds

+ 2

M∑
m=1

∫ tn

t

〈fkm(s)−Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm ds

(3.44)
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for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. As proven in Lemma 3.1.17, the sequence (fkm)k>0

converges strongly to fm in Lq(0, T ;V ∗m) as k → 0. Thus, together with Theorem 3.1.18 it
follows that

M∑
m=1

∫ t

0

〈fkm(s), Ūkm(s)〉V ∗m×Vm ds→
M∑
m=1

∫ t

0

〈fm(s), u(s)〉V ∗m×Vm ds

=

∫ t

0

〈f(s), u(s)〉V ∗×V ds as k → 0.

Similarly, we see that∫ t

0

(Bk(s)Uk(s), Ūk0 (s))H ds→
∫ t

0

(B(s)u(s), u(s))H ds as k → 0,

since BkUk → Bu in L2(0, T ;H) and Ūk0
∗
⇀ u in L∞(0, T ;H) as k → ∞, compare Theo-

rem 3.1.18. For the remaining integrals in (3.44), we notice that the functions gkm : [0, T ]→
R, m ∈ {0, . . . ,M}, given by

(Bk(s)Uk(s), Ūk0 (s))H ≤ κ
(
1 + ‖Uk(s)‖H

)
‖Ūk0 (s)‖H =: gk0 (s)

and

〈fkm(s)−Akm(s)Ūkm(s), Ūkm(s)〉V ∗m×Vm
≤ ‖fkm(s)‖V ∗m‖Ū

k
m(s)‖Vm + ‖Akm(s)Ūkm(s)‖V ∗m‖Ū

k
m(s)‖Vm

≤ 1

q
‖fkm(s)‖qV ∗m +

1

p
‖Ūkm(s)‖pVm + β

(
‖Ūkm(s)‖Vm + ‖Ūkm(s)‖pVm

)
=: gkm(s)

for almost every s ∈ (0, T ) are bounded by an L1(0, T )-function uniformly in k due to the a
priori bounds (3.13), (3.14), and (3.15) from Lemma 3.1.12. Thus, the remaining integrals
in (3.44) tend to zero as 0 ≤ tn − t ≤ k → 0 and it follows that

lim sup
k→0

Γk3(t) ≤ ‖u0‖2H + 2

∫ t

0

〈f(s), u(s)〉V ∗×V ds− 2

∫ t

0

(B(s)u(s), u(s))H ds.

The previous arguments have shown

lim sup
k→0

(
Γk1(t) + Γk2(t) + Γk3(t)

)
≤ ‖u(t)‖2H + 2

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

− 2‖u(t)‖2H − 4

∫ t

0

〈A(s)u(s), u(s)〉V ∗×V ds

+ ‖u0‖2H + 2

∫ t

0

〈f(s)−B(s)u(s), u(s)〉V ∗×V ds

= −‖u(t)‖2H + ‖u0‖2H + 2

∫ t

0

〈f(s)−A(s)u(s)−B(s)u(s), u(s)〉V ∗×V ds

= −‖u(t)‖2H + ‖u0‖2H + 2

∫ t

0

〈u′(s), u(s)〉V ∗×V ds

= −‖u(t)‖2H + ‖u0‖2H +

∫ t

0

d

dt
‖u(s)‖2H ds = 0
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for every t ∈ [0, T ]. We also use the fact that u ∈ Wp(0, T ) and therefore a partial integration
rule can be applied. Altogether, this implies the strong convergence of (Ūk(t))k>0 in H for
every t ∈ [0, T ] as we have proved

lim
k→0

(
‖u(t)− Ūk(t)‖2H + 2η

M∑
m=1

∫ t

0

|u(s)− Ūkm(s)|pVm ds
)

= 0. (3.45)

Recall the definition of Ūk and Uk from (3.28) and (3.29), respectively. Then we obtain that

‖Uk(t)− u(t)‖H ≤
∥∥∥ tn − t

k

(
Ūk(t− k)− u(t)

)∥∥∥
H

+
∥∥∥ t− tn−1

k

(
Ūk(t)− u(t)

)∥∥∥
H

≤ ‖Ūk(t− k)− u(t)‖H + ‖Ūk(t)− u(t)‖H
≤ ‖Ūk(t− k)− u(t− k)‖H + ‖u(t− k)− u(t)‖H + ‖Ūk(t)− u(t)‖H

for every t ∈ [0, T ]. Using that u ∈ Wp(0, T ) ↪→ C([0, T ];H) and Ūk(t) → u(t) in H as
k → 0 for every t ∈ [0, T ], it also follows that Uk(t)→ u(t) in H as k → 0.

Now, we consider the case η ∈ (0,∞) for m ∈ {1, . . . ,M} and prove Ūkm → u in
Lp(0, T ;Vm) as k → 0. The difference of the piecewise constant prolongations Ūkm and
Ūk converges to zero in L2(0, T ;H). This is true as

‖Ūk − Ūkm‖2L2(0,T ;H) = k

N∑
n=1

‖Un −Un
m‖2H ≤ kM

N∑
n=1

M∑
j=1

‖Un
j −Un

j−1‖2H → 0 as k → 0,

where we used the a priori bound (3.13) from Lemma 3.1.12. Since (Ūk)k>0 is bounded
in L2(0, T ;H) and converges to u pointwise strongly in H, this shows that Ūk → u in
L2(0, T ;H) as k → 0. We see, in particular, that Ūkm → u in L2(0, T ;H) as k → 0 due
to the previous estimate. The a priori bound (3.15) from Lemma 3.1.12 even shows that
the sequence (Ūkm)k>0 is bounded in L∞(0, T ;H). Therefore, it converges to u also in
the space Lp(0, T ;H) as k → 0, compare Lemma A.2.3. Using (3.45) and the inequality
‖v‖Vm ≤ cVm

(
‖v‖H + |v|Vm

)
for the Vm-norm stated in Assumption 3.1.1, it follows that

‖u− Ūkm‖Lp(0,T ;Vm) =
(∫ T

0

‖u(t)− Ūkm(t)‖pVm dt
) 1
p

≤ cVm
(∫ T

0

(
‖u(t)− Ūkm(t)‖H + |u(t)− Ūkm(t)|Vm

)p
dt
) 1
p

≤ cVm‖u− Ūkm‖Lp(0,T ;H) + cVm

(∫ T

0

|u(t)− Ūkm(t)|pVm dt
) 1
p → 0

as k → 0. This proves that Ūkm → u in Lp(0, T ;Vm) as k → 0 if (3.42) is fulfilled for η that
is strictly larger than zero for Am(t), t ∈ [0, T ].

3.2 An Explicit Error Estimate

After a convergence analysis of the implicit-explicit product splitting scheme under no ad-
ditional regularity assumptions on the solution, we now regard the question whether a more
regular solution u of the evolution equation (3.1) will lead to explicit error bounds. In the
following, we assume that for α ∈ (0, 1] the function u is an element of the space of Hölder
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continuous functions C0,α([0, T ];V ). Here, we will not go into detail to explain when this
condition is fulfilled. More information about additional regularity of the solution and some
examples that fit this setting can be found in Section 1.2. In the following, we will need a
similar condition for a counterpart to the approximations Ūkm, m ∈ {0, . . . ,M}. To this end,
we introduce the functions below.

Assumption 3.2.1. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, and 3.1.8 be fulfilled and
let u0 ∈ V be given. For α ∈ (0, 1], let the solution u of the evolution equation (3.1) be an
element of C0,α([0, T ];V ). For N ∈ N, consider tn = kn for n ∈ {0, . . . , N}, where k = T

N .
Moreover, for every m ∈ {0, . . . ,M}, let the function Um : [0, T ]→ V ∗ be given by

Um(t) = u(tn−1) +

m∑
j=1

∫ t

tn−1

(
fj(s)−Aj(s)u(s)

)
ds−

∫ t

tn−1

B(s)u(s) ds in V ∗,

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N} with Um(0) = u0. Suppose that for m ∈ {1, . . . ,M},
the function fulfills

‖Um(t)− u(tn−1)‖Vm ≤ Lα,m|t− tn−1|α (3.46)

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}.

Note that we use the convention
∑0
j=1 = 0. It does not make sense to assume that

a function Um, m ∈ {1, . . . ,M}, fulfills a Hölder condition like u. The functions Um do
not even have to be continuous for m ∈ {1 . . . ,M − 1} as limt↘tn Um(t) does not have to
coincide with Um(tn). Thus, we only ask for a corresponding condition on subintervals. This
assumption is not necessary for U0.

When it comes to verifying such a condition in applications, first note that UM = u in
C0,α([0, T ];V ). Thus, the condition (3.46) does not impose any additional regularity on the
function UM . For m ∈ {1, . . . ,M − 1}, the condition means that

∥∥∥ m∑
j=1

∫ t

tn−1

(
fj(s)−Aj(s)u(s)

)
ds−

∫ t

tn−1

B(s)u(s) ds
∥∥∥
Vm
≤ Lα,m|t− tn−1|α

has to be fulfilled. In our example from Section 3.3, this follows with the help of an em-
bedding argument. Also, a suitable order of appearance of Am and fm can be helpful when
proving (3.46). These regularity conditions in mind, we can get the following bounds.

Lemma 3.2.2. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, 3.1.8, and 3.2.1 be fulfilled. Then
for every r ∈ [1,∞) there exists a constant C ∈ (0,∞) such that∫ T

0

‖u(t)− Um(t)‖rVm dt ≤ Ckαr

and

N∑
n=1

∫ tn

tn−1

‖Um(t)− Um(tn)‖rVm dt ≤ Ckαr

are fulfilled.
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Proof. For the first estimate, we use the Hölder continuity of u and the regularity condition
(3.46) from Assumption 3.2.1 to obtain that

‖u(t)− Um(t)‖Vm ≤ ‖u(t)− u(tn−1)‖Vm + ‖u(tn−1)− Um(t)‖Vm
≤ c1‖u(t)− u(tn−1)‖V + ‖u(tn−1)− Um(t)‖Vm
≤ c1Lα|t− tn−1|α + Lα,m|t− tn−1|α

for every t ∈ (tn−1, tn]. The constant c1 ∈ (0,∞) is the embedding constant from V into
Vm and Lα ∈ [0,∞) is the Hölder seminorm of u. Thus, it follows∫ T

0

‖u(t)− Um(t)‖rVm dt ≤
N∑
i=1

∫ tn

tn−1

kαr
(
c1Lα + Lα,m

)r
dt = kαrT

(
c1Lα + Lα,m

)r
.

For the second estimate, we again use (3.46) to see that

( N∑
n=1

∫ tn

tn−1

‖Um(tn)− Um(t)‖rVm dt
) 1
r

≤
( N∑
n=1

∫ tn

tn−1

‖Um(tn)− u(tn−1)‖rVm dt
) 1
r

+
( N∑
n=1

∫ tn

tn−1

‖u(tn−1)− Um(t)‖rVm dt
) 1
r

≤ 2
( N∑
n=1

∫ tn

tn−1

kαrLrα,m dt
) 1
r ≤ 2kαLα,mT

1
r .

This auxiliary statement in mind, we can now turn to the main statement of this section.
We prove explicit error bounds for the approximation of a nonlinear evolution equation.
In [86] or [95], a fully nonlinear problem u′(t) = F (t, u(t)) for t ∈ (0, T ) with an initial
condition is linearized along the exact solution u in order to find an approximation of u.
Then it is possible to use the partial derivative A(t) = ∂uF (t, u) if F is smooth enough. In
the following, we do not rely on a linear approximation of our nonlinear equation but use
a similar approach as in Section 2.2. Again, we use the analysis from [37] for a globally
Lipschitz continuous operator A(t), t ∈ [0, T ], as a starting point. We suppose that u
and Um, m ∈ {1, . . . ,M}, fulfill the additional regularity condition from Assumption 3.2.1.
Further, we assume that for every m ∈ {1, . . . ,M} the operator Am(t), t ∈ [0, T ], fulfills a
bounded Lipschitz condition and a p-monotonicity condition. Then we can obtain an explicit
error bound. The size of the error depends both on q = p

p−1 and the Hölder exponent α of

the exact solution u. The assumption that an operator A(t), t ∈ [0, T ], fulfills a bounded
Lipschitz condition is fulfilled in standard examples as the p-Laplacian. Note that in contrast
to Section 2.2, we do not ask for any regularity conditions for u′. This is technically not
necessary since we assume that the integrals from (3.2) and (3.3) are known. To obtain such
values in practice, usually requires a certain temporal regularity condition on the data. We
exchanged this by a regularity condition for u′ in Section 2.2.

Note that for p = 2 and α = 1, we have an error bound of order one. This is also the
formal rate of convergence of the standard backward Euler scheme. Thus, the additional
splitting error of our proposed scheme only affects the error in terms of constants, which do
not depend on the step size.

Theorem 3.2.3. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.5, 3.1.8, and 3.2.1 be fulfilled and
let the initial value u0 ∈ V be given.
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For every m ∈ {1, . . . ,M}, let the operator Am(t), t ∈ [0, T ], fulfill a bounded Lipschitz
condition in the sense that for every R ∈ (0,∞) there exists L(R) ∈ [0,∞) such that

‖Am(t)v −Am(t)w‖V ∗m ≤ L(R)‖v − w‖Vm (3.47)

is fulfilled for all t ∈ [0, T ] and v, w ∈ Vm with ‖v‖Vm , ‖w‖Vm ≤ R. Furthermore, let every
Am(t), t ∈ [0, T ], satisfy a p-monotonicity condition such that there exists η ∈ (0,∞) with

〈Am(t)v −Am(t)w, v − w〉V ∗m×Vm ≥ η‖v − w‖
p
Vm

(3.48)

for all v, w ∈ Vm and t ∈ [0, T ]. Then there exists C ∈ (0,∞) such that for every step size
k = T

N , N ∈ N, with 2κk ∈ [0, 1) and uk0 = u0 in V the solution of (3.4)–(3.6) fulfills that

max
n∈{1,...,N}

‖u(tn)−Un‖2H + k

N∑
n=1

M∑
m=1

‖u(tn)−Un
m‖

p
Vm
≤ Ckαq (3.49)

for q = p
p−1 , tn = nk, n ∈ {0, . . . , N}.

The bounded Lipschitz condition we require is more general than a Lipschitz condition
on bounded sets in H. Since Vm is continuously embedded into H, there exists a constant
c1 ∈ (0,∞) such that ‖v‖H ≤ c1‖v‖Vm for every v ∈ Vm. Thus, if (3.47) is fulfilled for every
v, w ∈ Vm with ‖v‖H , ‖w‖H ≤ c1R, it is also fulfilled for v, w ∈ Vm with ‖v‖Vm , ‖w‖Vm ≤ R
since ‖v‖H ≤ c1‖v‖Vm ≤ c1R.

Proof of Theorem 3.2.3. In the following, let i ∈ {1, . . . , N} be fixed. Recalling the defini-
tion of the function Um from Assumption 3.2.1, we first notice that Um ∈ L∞(0, T ;Vm) for
every m ∈ {1, . . . ,M} since

‖Um‖L∞(0,T ;Vm) = ess sup
t∈[0,T ]

‖Um(t)‖Vm

≤ max
n∈{1,...,N}

(
ess sup
t∈(tn−1,tn]

‖Um(t)− u(tn−1)‖Vm + ‖u(tn−1)‖Vm
)

≤ kαLα,m + ‖u‖L∞(0,T ;Vm) <∞

due to (3.46) and the fact that u is also bounded in Vm. Further, we can write that

Um(ti)− Um−1(ti) =

∫ ti

ti−1

(
fm(t)−Am(t)u(t)

)
dt in V ∗m

for m ∈ {1, . . . ,M} and

U0(ti)− u(ti−1) = −
∫ ti

ti−1

B(t)u(t) dt in H.

These equations can now be tested with the corresponding element Um(ti) − Ui
m ∈ Vm,

m ∈ {1, . . . ,M}, and U0(ti)−Ui
0 ∈ H, respectively. Then we obtain

(Um(ti)− Um−1(ti), Um(ti)−Ui
m)H

=

∫ ti

ti−1

〈fm(t)−Am(t)u(t), Um(ti)−Ui
m〉V ∗m×Vm dt

(3.50)
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for m ∈ {1, . . . ,M} and

(U0(ti)− u(ti−1), U0(ti)−Ui
0)H = −

∫ ti

ti−1

(B(t)u(t), U0(ti)−Ui
0)H dt. (3.51)

We now sum up (3.50) from m = 1 to M and add (3.51). This yields

M∑
m=1

(Um(ti)− Um−1(ti), Um(ti)−Ui
m)H + (U0(ti)− u(ti−1), U0(ti)−Ui

0)H

=

M∑
m=1

∫ ti

ti−1

〈fm(t)−Am(t)u(t), Um(ti)−Ui
m〉V ∗m×Vm dt

−
∫ ti

ti−1

(B(t)u(t), U0(ti)−Ui
0)H dt.

(3.52)

We show a corresponding equality for the numerical scheme. Here, we test the equation
(3.5) with Um(ti)−Ui

m ∈ Vm to obtain

(Ui
m −Ui

m−1, Um(ti)−Ui
m)H = k〈f im −Ai

mUi
m, Um(ti)−Ui

m〉V ∗m×Vm (3.53)

for m ∈ {1, . . . ,M}. Further, we test (3.4) with U0(ti)−Ui
0 ∈ H and get

(Ui
0 −Ui−1, U0(ti)−Ui

0)H = −k(BiUi−1, U0(ti)−Ui
0)H . (3.54)

Then we sum up (3.53) from m = 1 to M and add (3.54) to see

M∑
m=1

(Ui
m −Ui

m−1, Um(ti)−Ui
m)H + (Ui

0 −Ui−1, U0(ti)−Ui
0)H

= k

M∑
m=1

〈f im −Ai
mUi

m, Um(ti)−Ui
m〉V ∗m×Vm − k(BiUi−1, U0(ti)−Ui

0)H

=

M∑
m=1

∫ ti

ti−1

〈fm(t)−Am(t)Ui
m, Um(ti)−Ui

m〉V ∗m×Vm dt

−
∫ ti

ti−1

(B(t)Ui−1, U0(ti)−Ui
0)H dt.

(3.55)

In the last step, we inserted the definition of Ai
m, f im, m ∈ {1, . . . ,M}, and Bi from (3.2).

In order to estimate the error, we consider the difference of (3.52) and (3.55). We can write
for the difference of the left-hand sides

M∑
m=1

(Um(ti)− Um−1(ti), Um(ti)−Ui
m)H + (U0(ti)− u(ti−1), U0(ti)−Ui

0)H

−
M∑
m=1

(Ui
m −Ui

m−1, Um(ti)−Ui
m)H + (Ui

0 −Ui−1, U0(ti)−Ui
0)H

=

M∑
m=1

((
Um(ti)−Ui

m

)
−
(
Um−1(ti)−Ui

m−1

)
, Um(ti)−Ui

m

)
H

+
((
U0(ti)−Ui

0

)
−
(
u(ti−1)−Ui−1

)
, U0(ti)−Ui

0

)
H
.
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After inserting the identity from Lemma A.1.4, we see that this is equal to

1

2

M∑
m=1

(
‖Um(ti)−Ui

m‖2H − ‖Um−1(ti)−Ui
m−1‖2H

)
+

1

2

M∑
m=1

‖Um(ti)−Ui
m − Um−1(ti) + U im−1‖2H

+
1

2

(
‖U0(ti)−Ui

0‖2H − ‖u(ti−1)−Ui−1‖2H + ‖U0(ti)−Ui
0 − u(ti−1) + Ui−1‖2H

)
=

1

2

(
‖u(ti)−Ui‖2H − ‖u(ti−1)−Ui−1‖2H

)
+

1

2

M∑
m=1

‖Um(ti)−Ui
m − Um−1(ti) + Ui

m−1‖2H

+
1

2
‖U0(ti)−Ui

0 − u(ti−1) + Ui−1‖2H ,

(3.56)

where we insert UM (ti) = u(ti) and Ui
M = Ui in H. Next, we rewrite the right-hand side

of the difference of (3.52) and (3.55). Then we see that

M∑
m=1

∫ ti

ti−1

〈fm(t)−Am(t)u(t), Um(ti)−Ui
m〉V ∗m×Vm dt

−
M∑
m=1

∫ ti

ti−1

〈fm(t)−Am(t)Ui
m, Um(ti)−Ui

m〉V ∗m×Vm dt

−
∫ ti

ti−1

(B(t)u(t)−B(t)Ui−1, U0(ti)−Ui
0)H dt

= −
M∑
m=1

∫ ti

ti−1

〈Am(t)u(t)−Am(t)Ui
m, Um(ti)−Ui

m〉V ∗m×Vm dt

−
∫ ti

ti−1

(B(t)u(t)−B(t)Ui−1, U0(ti)−Ui
0)H dt

=: Γ1 + Γ2 + Γ3 + Γ4,

where

Γ1 = −
M∑
m=1

∫ ti

ti−1

〈Am(t)u(t)−Am(t)Um(t), Um(ti)−Ui
m〉V ∗m×Vm dt,

Γ2 = −
M∑
m=1

∫ ti

ti−1

〈Am(t)Um(t)−Am(t)Um(ti), Um(ti)−Ui
m〉V ∗m×Vm dt,

Γ3 = −
M∑
m=1

∫ ti

ti−1

〈Am(t)Um(ti)−Am(t)Ui
m, Um(ti)−Ui

m〉V ∗m×Vm dt,

Γ4 = −
∫ ti

ti−1

(B(t)u(t)−B(t)Ui−1, U0(ti)−Ui
0)H dt.

We added and subtracted the terms containing Am(t)Um(t) and Am(t)Um(ti) in order to
estimate Γ1, Γ2, Γ3, and Γ4 more easily. For Γ1 and Γ2, we can use the bounded Lipschitz
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condition and the results from Lemma 3.2.2. In order to estimate Γ3, we use the monotonicity
of Am(t), t ∈ [0, T ], while for Γ4 we use the Lipschitz continuity of B(t), t ∈ [0, T ].

Precisely, for Γ1, we obtain that

Γ1 ≤
M∑
m=1

∫ ti

ti−1

‖Am(t)u(t)−Am(t)Um(t)‖V ∗m‖Um(ti)−Ui
m‖Vm dt

≤ LA(R)

M∑
m=1

∫ ti

ti−1

‖u(t)− Um(t)‖Vm‖Um(ti)−Ui
m‖Vm dt

≤ c1
M∑
m=1

∫ ti

ti−1

‖u(t)− Um(t)‖qVm dt+ k
η

4

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm
,

where c1 = LA(R)q (pη)1−q

41−qq and we choose R for the condition (3.47) to be

R = max
{
‖u‖L∞(0,T ;V1), . . . , ‖u‖L∞(0,T ;VM ), ‖U1‖L∞(0,T ;V1), . . . , ‖UM‖L∞(0,T ;VM )

}
. (3.57)

For Γ2, we can argue similarly to obtain that

Γ2 ≤
M∑
m=1

∫ ti

ti−1

‖Am(t)Um(t)−Am(t)Um(ti)‖V ∗m‖Um(ti)−Ui
m‖Vm dt

≤ LA(R)

M∑
m=1

∫ ti

ti−1

‖Um(t)− Um(ti)‖Vm‖Um(ti)−Ui
m‖Vm dt

≤ c2
M∑
m=1

∫ ti

ti−1

‖Um(t)− Um(ti)‖qVm dt+ k
η

4

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm
,

where c2 = LA(R)q (pη)1−q

41−qq and R can again be chosen as in (3.57). For Γ3, we use the

monotonicity condition from (3.48) to see that

Γ3 ≤ −kη
M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm
.

Furthermore, the Lipschitz continuity of B(t), t ∈ [0, T ], shows that

Γ4 ≤ κ
∫ ti

ti−1

‖u(t)−Ui−1‖H‖U0(ti)−Ui
0‖H dt

≤ κ

2

∫ ti

ti−1

‖u(t)−Ui−1‖2H dt+ k
κ

2
‖U0(ti)−Ui

0‖2H

≤ κ
∫ ti

ti−1

‖u(t)− u(ti−1)‖2H dt+ kκ‖u(ti−1)−Ui−1‖2H

+ kκ‖U0(ti)−Ui
0 − u(ti−1) + Ui−1‖2H + kκ‖u(ti−1)−Ui−1‖2H

≤ κ
∫ ti

ti−1

‖u(t)− u(ti−1)‖2H dt+ 2kκ‖u(ti−1)−Ui−1‖2H

+
1

2
‖U0(ti)−Ui

0 − u(ti−1) + Ui−1‖2H
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for 2κk ∈ [0, 1). We can now combine the calculations for both the left-hand side and the
right-hand side of the difference of (3.52) and (3.55). The difference of left-hand sides can
be found in (3.56), while the difference of the right-hand sides is given by Γ1 + Γ2 + Γ3 + Γ4.

1

2

(
‖u(ti)−Ui‖2H − ‖u(ti−1)−Ui−1‖2H

)
+

1

2
‖U0(ti)−Ui

0 − u(ti−1) + Ui−1‖2H

+
1

2

M∑
m=1

‖Um(ti)−Ui
m − Um−1(ti) + Ui

m−1‖2H

= Γ1 + Γ2 + Γ3 + Γ4

≤ c1
M∑
m=1

∫ ti

ti−1

‖u(t)− Um(t)‖qVm dt+ k
η

4

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

+ c2

M∑
m=1

∫ ti

ti−1

‖Um(t)− Um(ti)‖qVm dt+ k
η

4

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

− kη
M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

+ κ

∫ ti

ti−1

‖u(t)− u(ti−1)‖2H dt+ 2kκ‖u(ti−1)−Ui−1‖2H

+
1

2
‖U0(ti)−Ui

0 − u(ti−1) + Ui−1‖2H .

This inequality can be rearranged to a suitable bound. Further, we multiply by two to
obtain

‖u(ti)−Ui‖2H − ‖u(ti−1)−Ui−1‖2H + kη

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

≤ 2c1

M∑
m=1

∫ ti

ti−1

‖u(t)− Um(t)‖qVm dt+ 2c2

M∑
m=1

∫ ti

ti−1

‖Um(t)− Um(ti)‖qVm dt

+ 2κ

∫ ti

ti−1

‖u(t)− u(ti−1)‖2H dt+ 4kκ‖u(ti−1)−Ui−1‖2H .

A summation from i = 1 to n ∈ {1, . . . , N} and the fat that u(0) = u0 = U0 in V then
implies that

‖u(tn)−Un‖2H + kη

n∑
i=1

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

≤ 2c1

M∑
m=1

∫ T

0

‖u(t)− Um(t)‖qVm dt+ 2c2

N∑
i=1

M∑
m=1

∫ ti

ti−1

‖Um(t)− Um(ti)‖qVm dt

+ 2κ

N∑
i=1

∫ ti

ti−1

‖u(t)− u(ti−1)‖2H dt+ 4kκ

n−1∑
i=1

‖u(ti)−Ui‖2H .

As the function u is Hölder continuous with values in V , it is also an element of the space
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C0,α([0, T ];H). Together with the results from Lemma 3.2.2, it then follows that

‖u(tn)−Un‖2H + kη

n∑
i=1

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm
≤ c3

(
kαq + k2α

)
+ 4kκ

n−1∑
i=1

‖u(ti)−Ui‖2H

for a constant c3 ∈ (0,∞), which does not depend on the step size k. An application of
Lemma A.1.1 shows that

‖u(tn)−Un‖2H + kη

n∑
i=1

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm
≤ c3

(
kαq + k2α

)
exp(4κT ). (3.58)

Moreover, applying (3.46) from Assumption 3.2.1 and the Hölder continuity of u, it follows
that

‖u(ti)−Ui
m‖Vm ≤ ‖u(ti)− u(ti−1)‖Vm + ‖u(ti−1)− Um(ti)‖Vm + ‖Um(ti)−Ui

m‖Vm
≤ cm|u|C0,α([0,T ];V )k

α + Lα,mk
α + ‖Um(ti)−Ui

m‖Vm
≤ c5kα + ‖Um(ti)−Ui

m‖Vm ,

where cm ∈ (0,∞) is the embedding constant from V into Vm and

c5 = max
m∈{1,...,M}

(
cm|u|C0,α([0,T ];V ) + Lα,m

)
.

Altogether, this implies

k

n∑
i=1

M∑
m=1

‖u(ti)−Ui
m‖

p
Vm
≤ k

n∑
i=1

M∑
m=1

(
c5k

α + ‖Um(ti)−Ui
m‖Vm

)p
≤ 2p−1kc5

n∑
i=1

M∑
m=1

kαp + 2p−1k

n∑
i=1

M∑
m=1

‖Um(ti)−Ui
m‖

p
Vm

≤ 2p−1c5k
αpTM + 2p−1c3

(
kαq + k2α

)exp(4κT )

η
.

Together with (3.58) this finishes the proof as p ∈ [2,∞).

3.3 Example: A Nonlinear Parabolic Problem

In order to demonstrate that our abstract theory applies to more concrete problems, we
consider a nonlinear parabolic problem and split the equation into the appearing terms.
This enables us to look at different problems that can be solved more efficiently individually.
A similar example was presented in [35]. The abstract theory in the previous two sections
now offers a possibility to allow for a somewhat more general setting. Here, we can also
permit non-monotone lower-order terms due to the additional Lipschitz continuous operator
B(t), t ∈ [0, T ], from the theory above. Furthermore, we obtain explicit error bounds under
some additional assumptions.

For a finite end time T ∈ (0,∞) and a bounded Lipschitz domain D ⊂ Rd, d ∈ N, we
consider the problem

∂tu(t, x) + a1(t, x, u(t, x))−∇ · a2(t, x,∇u(t, x)) + b(t, x, u(t, x)) = f(t, x),

(t, x) ∈ (0, T )×D,
u(t, x) = 0, (t, x) ∈ (0, T )× ∂D,
u(0, x) = u0(x), x ∈ D.

(3.59)
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Further, a1 : [0, T ]×D×R→ R and a2 : [0, T ]×D×Rd → Rd fulfill Assumption 3.3.1 below
and b : [0, T ] × D × R → R fulfills Assumption 3.3.4 below. Moreover, f : [0, T ] × D → R
and u0 : D → R are functions we will be specify later.

Assumption 3.3.1. Let p ∈ [2,∞) and ` ∈ {1, d} be given and q = p
p−1 . Let a : [0, T ] ×

D × R` → R` fulfill the following conditions:

(1) The mapping t 7→ a(t, x, z) is continuous almost everywhere in (0, T ) for almost every
x ∈ D and every z ∈ R`, x 7→ a(t, x, z) is measurable for every t ∈ [0, T ] and z ∈ R`,
while z 7→ a(t, x, z) is continuous for every t ∈ [0, T ] and almost every x ∈ D.

(2) The mapping a fulfills a monotonicity condition such that for every t ∈ [0, T ], almost
every x ∈ D, as well as every z, z̃ ∈ R` the inequality (a(t, x, z)−a(t, x, z̃)) · (z− z̃) ≥ 0
is satisfied.

(3) The mapping a fulfills a growth condition in the sense that there exist d1 ∈ [0,∞) and
a nonnegative function d2 ∈ Lq(D) such that for every t ∈ [0, T ], almost every x ∈ D,
as well as every z ∈ R` the inequality |a(t, x, z)| ≤ d1|z|p−1 + d2(x) is satisfied.

(4) The mapping a fulfills a coercivity condition in the sense that there exist d3 ∈ (0,∞)
and a nonnegative d4 ∈ L1(D) such that for every t ∈ [0, T ], almost every x ∈ D, as
well as every z ∈ R` the condition a(t, x, z) · z ≥ d3|z|p − d4(x) is satisfied.

Assumption 3.3.2. Let Assumption 2.3.1 be fulfilled. Additionally, there exists d5 ∈ (0,∞)
such that

(a(t, x, z)− a(t, x, z̃)) · (z − z̃) ≥ d5|z − z̃|p

is satisfied for every t ∈ [0, T ], almost every x ∈ D, and every z, z̃ ∈ R`.

Assumption 3.3.3. Let Assumption 2.3.1 be fulfilled. Additionally, there exists d6 ∈ [0,∞)
such that

|a(t, x, z)− a(t, x, z̃)| ≤ d6

(
1 + max{|z|p−2, |z̃|p−2}

)
|z − z̃|

is satisfied for every t ∈ [0, T ], almost every x ∈ D, and every z, z̃ ∈ R`.

As explained in Section 2.3, a standard example that fulfills all the assumptions above
is a(t, x, z) = a(z) = |z|p−2z.

Assumption 3.3.4. Let b : [0, T ]×D × R→ R fulfill the following conditions:

(1) The mapping t 7→ b(t, x, z) is continuous almost everywhere in (0, T ) for almost every
x ∈ D and every z ∈ R and x 7→ b(t, x, z) is measurable for every t ∈ [0, T ] and z ∈ R.

(2) The mapping b fulfills a Lipschitz condition in the sense that there exists e1 ∈ [0,∞)
such that for every t ∈ [0, T ], almost every x ∈ D, as well as every z, z̃ ∈ R the
inequality |b(t, x, z)− b(t, x, z̃)| ≤ e1|z − z̃| is satisfied.

(3) The mapping b fulfills a growth condition at the point zero in the sense that there
exists a nonnegative function e2 ∈ L2(D) such that for every t ∈ [0, T ] and almost
every x ∈ D the inequality |b(t, x, 0)| ≤ e2(x) is satisfied.
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Next, let H = L2(D) and V = W 1,p
0 (D) be equipped with the norms introduced in

the notation section in the introduction. The value p is the same as in Assumption 3.3.1.
Further, we consider V1 = Lp(D) equipped with the standard norm and V2 = V with the
same norm as for V . The seminorms are all chosen as the full norm in the corresponding
space.

For t ∈ [0, T ], the operators Am(t) : Vm → V ∗m, m ∈ {1, 2}, and B(t) : H → H are given
by

〈A1(t)v, w〉V ∗1 ×V1
=

∫
D
a1(t, ·, v)w dx, v, w ∈ V1, (3.60)

〈A2(t)v, w〉V ∗2 ×V2
=

∫
D
a2(t, ·,∇v) · ∇w dx, w, v ∈ V2 (3.61)

(B(t)v, w)H =

∫
D
b(t, ·, v)w dx, v, w ∈ H (3.62)

and A(t) : V → V ∗ is given by A(t) = A1(t) +A2(t). We assume that for f : [0, T ]×D → R
the abstract function [f(t)](x) = f(t, x), (t, x) ∈ (0, T ) × D, is an element of Lq(0, T ;V ∗).
This function is decomposed into f1 = 0 and f2 = f in Lq(0, T ;V ∗). For u0 ∈ H, we can
now state (3.59) in a variational formulation given by{

u′ +Au+Bu = f in Lq(0, T ;V ∗),

u(0) = u0 in H.
(3.63)

This evolution equation in mind, we obtain convergence results for the product splitting
scheme.

Theorem 3.3.5. Let a1 : [0, T ]×D×R→ R and a2 : [0, T ]×D×Rd → Rd fulfill Assump-
tion 3.3.1 and let b : [0, T ]×D × R→ R fulfill Assumption 3.3.4. Let f ∈ Lq(0, T ;V ∗) and
u0 ∈ H be given.

Furthermore, let (N`)`∈N be a sequence of natural numbers with N` → ∞ as ` → ∞,
k = T

N`
, tn = nk, n ∈ {0, . . . , N`}, and (uk0)k>0 in V such that uk0 → u0 in H as k → 0 and

(k
1
p ‖uk0‖V )k>0 is uniformly bounded with respect to k. Then the scheme,

Un
0 −Un−1

k
+ BnUn−1 = 0 in H,

Un
m −Un

m−1

k
+ An

mUn
m = fnm in V ∗m, m ∈ {1, 2},

for n ∈ {1, . . . , N`} with Un = Un
2 and U0 = uk0 admits a unique solution (Un)n∈{1,...,N`}

in H. Here, the discretizations of the data are given by

An
m =

1

k

∫ tn

tn−1

Am(t) dt, m ∈ {1, 2}, Bn =
1

k

∫ tn

tn−1

B(t) dt,

fn1 = 0, and fn2 = 1
k

∫ tn
tn−1

f(t) dt. Then all the convergence results from Theorem 3.1.18 and

3.1.19 hold true. In particular, the sequences of the piecewise constant and piecewise linear
prolongations of (Un)n∈{1,...,N`} converge to the solution u of (3.63) pointwise strongly in
H as k → 0.

If a2 also fulfills Assumption 3.3.2, then the sequence of piecewise constant prolongations
of the values (Un)n∈{1,...,N`} converges to u strongly in Lp(0, T ;V ) as k → 0.
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In our scheme, the order of the appearing operators A1(t) and A2(t), t ∈ [0, T ], is
important. As we need the embedding of V2 into H to be compact, it is not possible to
change their order. Moreover, as the solution (Un)n∈{1,...,N`} is in the space V2, it makes
sense to choose the smallest space as the last. Then we obtain the best regularity result
for our numerical approximation. The choice of (fn1 )n∈{1,...,N`} and (fn2 )n∈{1,...,N`} is not
unique. Choosing one function as zero, seems like a good choice when it comes to computing
a solution. If only a function f ∈ Lq(0, T ;V ∗1 ) is given, it is also possible to set fn2 = 0 in

V ∗2 and fn1 = 1
k

∫ tn
tn−1

f(t) dt in V ∗1 for n ∈ {1, . . . , N`}.

Proof of Theorem 3.3.5. In order to apply Theorem 3.1.18 and Theorem 3.1.19, it only re-
mains to verify that Am(t), t ∈ [0, T ] and m ∈ {1, 2}, fulfill Assumption 3.1.2 and 3.1.3 and
B(t), t ∈ [0, T ], fulfills Assumption 3.1.5. For the decomposition of f , it is easy to see that
Assumption 3.1.8 is fulfilled.

In order to prove that the operator A1(t), t ∈ [0, T ], is well-defined, we apply Assump-
tion 3.3.1 (3), which yields that

〈A1(t)v, w〉V ∗1 ×V1 =

∫
D
a1(t, ·, v)w dx ≤

∫
D

(
d1|v|p−1 + d2

)
|w| dx

≤ max
{
d1, ‖d2‖Lq(D)

}(
1 + ‖v‖p−1

V1

)
‖w‖V1

(3.64)

for every v, w ∈ V1 and t ∈ [0, T ]. This also proves that A1(t), t ∈ [0, T ], fulfills the
boundedness condition from Assumption 3.1.2 (4).

Next, we prove the continuity of t 7→ A1(t)v almost everywhere in (0, T ) for every v ∈ V1.
To this end, let t ∈ [0, T ] and (ti)i∈N with ti → t be such that a1(ti, x, z) → a1(t, x, z) as
i→∞ for almost every x ∈ D and every z ∈ R. An application of Hölder’s inequality yields

〈A1(ti)v −A1(t)v, w〉V ∗1 ×V1
=

∫
D

(
a1(ti, ·, v)− a1(t, ·, v)

)
w dx

≤
(∫
D
|a1(ti, ·, v)− a1(t, ·, v)|q dx

) 1
q ‖w‖V1

for every v, w ∈ V1 and t ∈ [0, T ]. Similarly to (3.64), we can obtain |a1(ti, ·, v)− a1(t, ·, v)|q
is bounded by a function that is integrable on D. Then we can apply Lebesgue’s dominated
convergence theorem and it follows that

lim
i→∞

‖A1(ti)v −A1(t)v‖V ∗1 = lim
i→∞

(∫
D
|a1(ti, ·, v)− a1(t, ·, v)|q dx

) 1
q

= 0

for every v ∈ V1 and t ∈ [0, T ].
In order to prove that A1(t) : V1 → V ∗1 , t ∈ [0, T ], is radially continuous, let (si)i∈N be

a convergent sequence in [0, 1] with the limit s ∈ [0, 1]. As (3.64) is finite, it follows that
a1(t, ·, v+siw)w is bounded by an integrable function on D. Thus, we can apply Lebesgue’s
dominated convergence theorem and it follows that

lim
i→∞
〈A1(t)(v + siw), w〉V ∗1 ×V1 = lim

i→∞

∫
D
a1(t, ·, v + siw)w dx

=

∫
D

lim
i→∞

a1(t, ·, v + siw)w dx =

∫
D
a1(t, ·, v + sw)w dx

for every v, w ∈ V1 and t ∈ [0, T ] due to Assumption 3.3.1 (1). The monotonicity condition
for A1(t), t ∈ [0, T ], from Assumption 3.1.2 (3) is a consequence of Assumption 3.3.1 (2).
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Here, we see that

〈A1(t)v −A1(t)w, v − w〉V ∗1 ×V1 =

∫
D

(a1(t, ·, v)− a1(t, ·, w))(v − w) dx ≥ 0

for v, w ∈ V1 and t ∈ [0, T ]. In order to verify the coercivity condition from Assump-
tion 3.1.2 (5), we apply Assumption 3.3.1 (3) to see that

〈A1(t)v, v〉V ∗1 ×V1
≥
∫
D

(
d3|v|p − d4

)
dx = d3|v|pV1

− ‖d4‖L1(D).

The proof that A2(t) : V2 → V ∗2 is well-defined and fulfills Assumption 3.1.2 (1)–(5) can be
done analogously to A1(t), t ∈ [0, T ]. The functions v, w ∈ V1 just have to be replaced by
∇v,∇w for v, w ∈ V2.

In order to see that B(t), t ∈ [0, T ], fulfills Assumption 3.1.5, we notice that the con-
tinuity of t 7→ B(t)v almost everywhere in (0, T ) for every v ∈ H is a consequence of
Assumption 3.3.4 (1) and can be proved analogously to the corresponding condition for
t 7→ A1(t)v, v ∈ V1. The Lipschitz condition from Assumption 3.1.5 (2) is fulfilled as

(B(t)v1 −B(t)v2, w)H =

∫
D

(
b(t, ·, v1)− b(t, ·, v2)

)
w dx

≤
∫
D
e1|v1 − v2||w| dx ≤ e1‖v1 − v2‖H‖w‖H

holds true for all v1, v2, w ∈ H and t ∈ [0, T ]. Therefore,

‖B(t)v1 −B(t)v2‖H ≤ e1‖v1 − v2‖H

is fulfilled for all v1, v2 ∈ H and t ∈ [0, T ]. In a similar fashion, we can show Assump-
tion 3.1.5 (3) since

(B(t)0, w)H =

∫
D
b(t, ·, 0)w dx ≤

∫
D
|e2||w| dx ≤ ‖e2‖L2(D)‖w‖H

is fulfilled for every w ∈ H and t ∈ [0, T ] because of Assumption 3.3.4 (3). This implies
‖B(t)0‖ ≤ ‖e2‖L2(D) and t ∈ [0, T ]. A combination of the two inequalities also shows that

the operator is indeed well-defined. Also the space V2 = W 1,p
0 (Ω) is compactly embedded

into H = L2(Ω), compare [1, Theorem 6.3].
Therefore, for t ∈ [0, T ] the operators A1(t), A2(t), A(t) = A1(t) +A2(t), and B(t) fulfill

all the necessary conditions and we can apply Theorem 3.1.18 and Theorem 3.1.19.
Moreover, if the stronger monotonicity condition from Assumption 3.3.2 is fulfilled, we

see that (3.42) is satisfied for A2(t), t ∈ [0, T ], since

〈A2(t)v −A2(t)w, v − w〉V ∗2 ×V2 =

∫
D

(a2(t, ·,∇v)− a2(t, ·,∇w)) · (∇v −∇w) dx

≥ d5

∫
D
|∇v −∇w|p dx = d5‖v − w‖pV2

for v, w ∈ V2 and t ∈ [0, T ]. Thus, the sequence of piecewise constant prolongations
(Ūk)k>0 = (Ūk2 )k>0 converges strongly to the exact solution u in Lp(0, T ;V2) = Lp(0, T ;V )
as k → 0 due to Theorem 3.1.19.
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It remains to verify that the results from Section 3.2 are also applicable to the nonlinear
parabolic problem. In order to obtain explicit error bounds, we need to make additional
assumptions on the mappings am, m ∈ {1, 2}, and on the exact solution u of (3.63). At
this point, we do not explain how the additional regularity of u can be obtained. For more
information about additional regularity and some examples, see Section 1.2.

Theorem 3.3.6. Let all the assumptions from Theorem 3.3.5 be fulfilled and consider the
same scheme. In addition, let p be either an element of [2,∞)∩ [d,∞) or

[
2, 2d−p

d−p
)
∩ [2, d),

where d is the dimension of the underlying space Rd ⊃ D. Assume that a1 and a2 fulfill
Assumptions 3.3.2 and 3.3.3 and let the nonnegative functions d2 and e2 from the bounded-
ness condition for a1 and b in Assumption 3.3.1 (3) and Assumption 3.3.4 (3) be elements
of Lp(D). For α ∈ (0, 1], let the solution u of (3.63) be an element of C0,α([0, T ];V ).

Then the scheme obtains a unique solution (Un)n∈{1,...,N} in H and there exists a con-
stant C ∈ (0,∞) such that

max
n∈{1,...,N}

‖u(tn)−Un‖2H + k

N∑
n=1

‖u(tn)−Un‖pV ≤ Ck
αq

is fulfilled for every step size k, which is small enough.

Proof. In order to prove this theorem, we will apply Theorem 3.2.3. In the proof of Theo-
rem 3.3.5 we have already seen that A1(t), A2(t), and B(t) fulfill Assumptions 3.1.2, 3.1.3,
and 3.1.5 for t ∈ [0, T ]. The stronger monotonicity condition from (3.48) is fulfilled as an
application of Assumption 3.3.2 yields

〈Am(t)v −Am(t)w, v − w〉V ∗m×Vm ≥ d5‖v − w‖pVm
for m ∈ {1, 2}.

Next, we use Assumption 3.3.3 to prove the bounded Lipschitz condition for A1(t),
t ∈ [0, T ], from (3.47). Here, we consider two cases, at first we prove the condition for p = 2
and after that for p ∈ (2,∞). In the case p = 2, we have a global Lipschitz condition.
Inserting the definition of A1(t), t ∈ [0, T ], we obtain that

〈A1(t)v1 −A1(t)v2, w〉V ∗1 ×V1
=

∫
D

(
a1(t, ·, v1)− a1(t, ·, v2)

)
w dx

≤ 2d6

∫
D
|v1 − v2||w| dx ≤ 2d6‖v1 − v2‖V1‖w‖V1

and therefore

‖A1(t)v1 −A1(t)v2‖V ∗1 ≤ 2d6‖v1 − v2‖V1

for every v1, v2, w ∈ V1 and t ∈ [0, T ]. For p ∈ (2,∞), we obtain a Lipschitz constant, which
depends on the inserted functions. Thus, an additional application of Lemma A.1.3 becomes
necessary to obtain

〈A1(t)v1 −A1(t)v2, w〉V ∗1 ×V1

=

∫
D

(
a1(t, ·, v1)− a1(t, ·, v2)

)
w dx

≤ d6

∫
D

(
1 + max

{
|v1|p−2, |v2|p−2

})
|v1 − v2||w| dx

≤ d6

(
‖1‖

L
p
p−2 (D)

+
(∫
D

max
{
|v1|p, |v2|p

}
dx
) p−2

p
)
‖v1 − v2‖Lp(D)‖w‖Lp(D)
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for every v1, v2, w ∈ V1 and t ∈ [0, T ]. Since p−2
p ∈ (0, 1) for p ∈ (2,∞), it follows that(∫

D
max

{
|v1|p, |v2|p

}
dx
) p−2

p ≤
(∫
D
|v1|p dx+

∫
D
|v2|p dx

) p−2
p

≤
(∫
D
|v1|p dx

) p−2
p

+
(∫
D
|v2|p dx

) p−2
p

= ‖v1‖p−2
Lp(D) + ‖v2‖p−2

Lp(D) ≤ 2 max
{
‖v1‖p−2

V1
, ‖v2‖p−2

V1

}
.

Thus, for R ∈ (0,∞) and all v1, v2 ∈ V1 with ‖v1‖V1 , ‖v2‖V1 ≤ R, we obtain the bound

‖A1(t)v1 −A1(t)v2‖V ∗1 ≤ d6

(
‖1‖

L
p
p−2 (D)

+ 2 max
{
‖v1‖p−2

V1
, ‖v2‖p−2

V1

})
‖v1 − v2‖V1

=: L(R)‖v1 − v2‖V1 ,

which proves (3.47). An analogous bound for A2(t), t ∈ [0, T ], can be proved by replacing
v1, v2, w with their gradient ∇v1, ∇v2, ∇w ∈ Lp(D)d.

In order to prove the required regularity conditions from Theorem 3.2.3, recall that
by assumption u is an element of C0,α([0, T ];V ). The function U2 defined in Assump-
tion 3.2.1 coincides with u in C0,α([0, T ];V ). Thus, it follows by the regularity assumption
u ∈ C0,α([0, T ];V )

‖U2(t)− u(tn−1)‖V2
= ‖u(t)− u(tn−1)‖V ≤ |u|C0,α([0,T ];V )|t− tn−1|α

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. The function U1 defined in Assumption 3.2.1 is
given by

U1(t) = u(tn−1)−
∫ t

tn−1

(
A1(s)u(s) +B(s)u(s)

)
ds

for every t ∈ (tn−1, tn], n ∈ {1, . . . , N}. We then obtain that

‖U1(t)− u(tn−1)‖pV1
≤ |t− tn−1|p−1

∫ t

tn−1

‖A1(s)u(s) +B(s)u(s)‖pLp(D) ds,

where the integrand can be bounded by

‖A1(s)u(s) +B(s)u(s)‖Lp(D)

≤ ‖a1(s, ·, u(s))‖Lp(D) + ‖b(s, ·, u(s))‖Lp(D)

≤ d1‖|u(s)|p−1‖Lp(D) + ‖d2‖Lp(D) + e1‖u(s)‖Lp(D) + ‖e2‖Lp(D) (3.65)

for every s ∈ [0, T ]. In order to prove that the last row is finite, we use the fact that d2, e2 ∈
Lp(D) and the Sobolev embedding theorem, compare [1, Theorem 4.12]. If p ∈ [d,∞), then
V = W 1,p

0 (D) is continuously embedded into Lr(D) for every r ∈ [p,∞). Thus, for u(s) ∈ V
it follows that ‖|u(s)|p−1‖Lp(D) and ‖u(s)‖Lp(D) are finite. If p ∈ [2, d), then the space V

is continuously embedded into Lr(D) for r ∈
[
p, dp

d−p
]
. As we assume that p ∈

[
2, 2d−p

d−p
]

in
this case, it follows that

p(p− 1) ≤ p
(2d− p
d− p

− 1
)

= p
(2d− p
d− p

− d− p
d− p

)
=

dp

d− p
and therefore the terms containing u(s) in (3.65) are finite. This shows that

‖U1(t)− u(tn−1)‖V1 ≤ c2|t− tn−1| ≤ c2T 1−α|t− tn−1|α

for c2 ∈ (0,∞), which does not depend on the step size k.
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Appendix A

Appendix

A.1 Useful Inequalities

In the following, we collect a few inequalities and identities that appear throughout the
analysis in the chapters above. We begin by a discrete Gronwall lemma.

Lemma A.1.1. Let (un)n∈N and (bn)n∈N be two nonnegative sequences that satisfy, for
given a ∈ [0,∞) and N ∈ N, that

un ≤ a+

n−1∑
i=1

biui, n ∈ {1, . . . , N}.

Then it follows that

un ≤ a exp
( n−1∑
i=1

bi

)
, n ∈ {1, . . . , N}.

In the case that a sum
∑0
i=1 appears, we use the convention that it is zero. A proof

of this lemma can be found in [22]. In some settings, it is possible to use the following
inequality as an alternative.

Lemma A.1.2. Let a, b, x ∈ [0,∞) be given such that x2 ≤ 2ax + b2 is fulfilled. Then it
also follows that x ≤ 2a+ b.

Proof. Since x2 ≤ 2ax+ b2 is fulfilled, it follows that

(x− a)2 = x2 − 2ax+ a2 ≤ a2 + b2.

Taking the square root on both sides, this yields

|x− a| ≤
√
a2 + b2 ≤ a+ b.

As x − a ≤ |x − a| is fulfilled, we obtain the desired bound after adding a to both sides of
the inequality.

The following lemma is a Hölder type inequality. We omit the proof, it can be done by
an inductive application of the ordinary Hölder inequality.
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Lemma A.1.3. Let D ⊆ Rd, d ≥ 1, and N ∈ N be given. Then for pn ∈ [1,∞], n ∈
{1, . . . , N}, such that

∑N
n=1

1
pn

= 1 it follows that

∫
D

N∏
n=1

|un| dx ≤
N∏
n=1

‖un‖Lpn (D)

for un ∈ Lpn(D).

Last, we state an identity, which appears several times throughout the analysis. Again,
we omit the proof. It can be done by rewriting the right-hand side of the equality with the
definition of the norm via the inner product.

Lemma A.1.4. Let (H, (·, ·)H , ‖ · ‖H) be a real Hilbert space. The identity

(v − w, v)H =
1

2

(
‖v‖2H − ‖w‖2H + ‖v − w‖2H

)
is fulfilled for every v, w ∈ H.

A.2 Bochner Integral

We shortly recall the main statements for Bochner integrable functions on a general measure
space. For a complete introduction, we refer the reader to [115, Chapter V, Section 4–5],
[30, Chapter II.2], [96, Section 4.2], and [100, Kapitel 2].

In the following, we assume that (X, ‖·‖X) is a real Banach space and (Ω,F , µ) is a finite
measure space. Then we consider an abstract function v : Ω→ X and call it simple if for a
finite number N ∈ N there exist x1, . . . , xN ∈ X and mutually disjoint sets C1, . . . , CN ∈ F
such that v =

∑N
n=1 xnχCn , where χCn is the characteristic function with respect to the

set Cn, n ∈ {1, . . . N}. We call a function v Bochner measurable if there exists a sequence
(vn)n∈N of simple functions such that vn(ω) → v(ω) in X as n → ∞ for almost every
ω ∈ Ω. A function v : Ω→ X is called weakly measurable if ω 7→ 〈f, v(ω)〉X∗×X is Lebesgue
measurable for every f ∈ X∗. Under suitable assumptions, these two concepts are equivalent
as we see in the next theorem.

Theorem A.2.1. Let (Ω,F , µ) be a finite measure space and let (X, ‖ · ‖X) be a real,
separable Banach space. For a function v : Ω→ X, the following statements are equivalent:

(a) The function v is Bochner measurable.

(b) The function v fulfills that v−1(C) ∈ F for all open sets C ⊆ X.

(c) The function v is weakly measurable.

This theorem is a consequence of Pettis theorem. A proof can be found in [96, The-
orem 4.2.4]. We are foremost interested in functions that are also Bochner integrable.
A Bochner measurable function v : Ω → X is called Bochner integrable if there exists a
sequence (vn)n∈N of simple functions such that vn(ω) → v(ω) in X as n → ∞ for al-
most every ω ∈ Ω and for every ε > 0 there exists N ∈ N such that for all n,m ≥ N
the inequality

∫
Ω
‖vn − vm‖X dµ < ε is fulfilled. The integral of v is then given by
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∫
Ω
v dµ = limn→∞

∫
Ω
vn dµ. Moreover, for p ∈ [1,∞] we introduce the space Lp(Ω;X)

that consists of all Bochner measurable functions v : Ω→ X such that

‖v‖Lp(Ω;X) =


(∫

Ω

‖v‖pX dµ
) 1
p

, p ∈ [1,∞),

ess sup
Ω
‖v‖X , p =∞

(A.1)

is finite. This function space fulfills the following properties.

Lemma A.2.2. Let (Ω,F , µ) be a finite measure space and let (X, ‖ · ‖X) be a real Banach
space. Then the following properties are fulfilled:

(a) The space Lp(Ω;X) equipped with the norm given in (A.1) is a Banach space for every
p ∈ [1,∞].

(b) The set of simple X-valued functions is dense in Lp(Ω;X) for p ∈ [1,∞).

(c) If both L1(Ω) and X are separable, it follows that Lp(Ω;X) is separable for p ∈ [1,∞).

(d) If X is reflexive, then the space Lp(Ω;X) is reflexive for every p ∈ (1,∞).

(e) If X is continuously embedded into (Y, ‖ ·‖Y ), then Lq(Ω;X) is continuously embedded
into Lp(Ω;Y ) for p, q ∈ [1,∞] and p ≤ q.

These statements can be found in [30] and [96, Proposition 2.3.24, Proposition 4.2.22].
Furthermore, if X is continuously and densely embedded into a space Y , then the simple X-
valued functions are also dense in Lq(Ω;Y ) for every q ∈ [1,∞). Thus, the space Lp(Ω;X) is
continuously and densely embedded into Lq(Ω;Y ) for q ∈ [1,∞) and p ∈ [q,∞]. Moreover, if
X has the Radon–Nikodym property, it follows that

(
Lp(Ω;X)

)∗
= Lq(Ω;X∗) for p ∈ [1,∞)

and q = p
p−1 . Note that the Radon–Nikodym property is fulfilled if, for example, X is

reflexive or separable, compare [96, Theorem 4.2.25 and 4.2.26].

Lemma A.2.3. Let (Ω,F , µ) be a finite measure space, let (X, ‖ · ‖X) be a real Banach
space, and let p, r ∈ [1,∞] be such that p < r. For a sequence (vn)n∈N that is bounded in
Lr(Ω;X) and v ∈ Lp(Ω;X) such that vn → v in Lp(Ω;X) as n→∞, it follows that vn → v
in Lq(Ω;X) as n→∞ for every q ∈ [p, r).

Proof. Since 1
q ∈ ( 1

r ,
1
p ] there exists θ ∈ [0, 1) such that 1

q = θ
r + 1−θ

p . Choosing α = r
θq and

α̃ = p
(1−θ)q , it follows that 1

α + 1
α̃ = 1 and we can apply Hölder’s inequality to

‖w‖qLq(Ω;X) =

∫
Ω

‖w‖θqX ‖w‖
(1−θ)q
X dµ

≤
(∫

Ω

‖w‖rX dµ
) 1
α
(∫

Ω

‖w‖pX dµ
) 1
α̃

= ‖w‖θqLr(Ω;X)‖w‖
(1−θ)q
Lp(Ω;X)

for w ∈ Lr(Ω;X). Then we obtain

‖vn − vm‖Lq(Ω;X) ≤ ‖vn − vm‖θLr(Ω;X)‖vn − vm‖
1−θ
Lp(Ω;X) → 0 as m,n→∞,

since the sequence (vn)n∈N is bounded in Lr(Ω;X) and convergent in Lp(Ω;X). This shows
that (vn)n∈N is a Cauchy sequence in Lq(Ω;X) and therefore convergent to v due to the
uniqueness of the limit.

A proof of the next theorem can be found in [96, Proposition 4.2.12].
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Theorem A.2.4. Let (Ω,F , µ) be a finite measure space and let (X, ‖·‖X) be a real Banach
space. Further, let v : Ω → X be a Bochner measurable function. Then v is Bochner
integrable if and only if ‖v‖X : Ω→ R is integrable.

In the special case that Ω = [0, T ] equipped with the Lebesgue sets and the Lebesgue
measure, we can state the lemma of Lions–Aubin. This gives us a compact embedding
argument for Bochner integrable functions. We refer the reader to [99, Lemma 7.7] for a
proof of this statement.

Lemma A.2.5. Let X−1, X0, and X1 be real Banach spaces such that X1 ↪→ X0 ↪→ X−1,
X1 is separable, reflexive, and compactly embedded into X0, and X−1 is reflexive. For
p ∈ (1,∞) and q ∈ [1,∞], the space

W = {v ∈ Lp(0, T ;X1) : v′ exists and v′ ∈ Lq(0, T ;X−1)}

is compactly embedded into Lp(0, T ;X0).

A.3 Stochastic Background

As we are dealing with a randomized scheme in Chapter 2, we will give a short overview of
the probabilistic results needed. For more details, we refer the reader to [73].

In the following, let (Ω,F ,P) be a probability space. For a real, separable Banach space
(X, ‖ · ‖X), we call a mapping U : Ω→ X a random variable if it is measurable with respect
to the σ-algebra F and the Borel σ-algebra B(X) in X. Precisely, this means that for every
C ∈ B(X) the set

U−1(C) = {ω ∈ Ω : U(ω) ∈ C} ⊆ Ω

is an element of F . The expectation, i.e., the integral of a random variable U with respect
to the measure P is denoted by

E[U ] =

∫
Ω

U(ω) dP(ω).

In our theory, we often work with random variables ξ : Ω → [a, b], a, b ∈ R, a < b, that are
uniformly distributed. For such a mapping, the density is given by 1

b−a and a substitution
yields that

E[v(ξ)] =

∫
Ω

v(ξ(ω)) dP(ω) =
1

b− a

∫ b

a

v(t) dt, (A.2)

where v : [a, b]→ X is a Bochner integrable function. Note that the theory from the previous
section applies as every probability space is, in particular, a measurable space.

Within the theory of Monte Carlo algorithms, it will be important to consider indepen-
dent random variables. To this end, let us recall the concept of independence. We call a
family (Cn)n∈N of elements in F independent if for every finite subset I ⊂ N

P
( ⋂
n∈I

Cn

)
=
∏
n∈I

P(Cn) (A.3)

is fulfilled. Similarly, we call a family (Fn)n∈N of σ-algebras independent if again for every
finite subset of I ⊂ N and (Cn)n∈I such that Cn ∈ Fn, n ∈ I, it follows that the family
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(Cn)n∈I is independent in the sense of (A.3). This at hand, we can now transfer the concept
of independence to a family (Un)n∈I , I ⊂ N and finite, of random variables. If the generated
σ-algebras

σ(Un) = {U−1
n (C) : C ∈ B(X)}, n ∈ I, (A.4)

are independent, we also call (Un)n∈I independent.
In some settings, it can be important to consider a certain family (Fn)n∈N of σ-algebras.

It is called a filtration if Fn is a subset of F and Fm for every n,m ∈ N with n ≤ m.
A random variable U : Ω → X can be measurable with respect to Fm but not with

respect to Fn for n < m, n,m ∈ N. It can then be helpful to consider the conditional
expectation E[U |Fn] : Ω → X of U with respect to Fn. More precisely, the Fn-measurable
mapping E[U |Fn] is uniquely determined by the relation

E[UχC ] = E[E[U |Fn]χC ]

for every C ∈ Fn. A useful property of the conditional expectation is the tower property.
This states that for two σ-algebras Fn and Fm of the filtration (Fn)n∈N with n ≤ m we
obtain that

E[E[U |Fn]|Fm] = E[E[U |Fm]|Fn] = E[U |Fn].

If the random variable U is measurable with respect to Fn, then the conditional expectation
is the function itself, i.e., E[U |Fn] = U . Furthermore, if σ(U) is independent of Fn, we
obtain that E[U |Fn] = E[U ].
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