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Abstract

This thesis describes the development of a new P2P Overlay called Papnet, which
combines the advantages of Distributed Hash Tables with those of Order-Preserving
P2P Overlays. Papnet does not require any hashing and is thus able to store ob-
ject keys in a sorted manner. This enables the efficient processing of range queries
as well as the implementation of a load balancing technique that guarantees a
constant global load imbalance ratio.

Papnet is latency-aware. Given a uniform distribution of latencies it is able to
route between arbitrary nodes within only twice their direct latency, independent
of the actual network size. We show, that in contrast to other Overlays Papnet is
able to guarantee a fast convergence towards latency-optimal routing links.

As a direct application of Papnet we present a new algorithm to process window-
and k-nearest-neighbor queries on spatial point data, which is able to scale asymp-
totically linear with the total query load. In contrast to existing solutions, the
construction and maintenance of an explicit distributed spatial structure is not
required.
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Zusammenfassung

Diese Dissertation entwickelt ein neues P2P Overlay Netzwerk namens Papnet,
welches die einzelnen Vorzüge bestehender Typen von P2P Overlays vereint und
erweitert. Im Unterschied zu den meisten der existierenden P2P Overlays erfordert
Papnet kein Hashing und kann somit einzelne Datenelemente sortiert nach einem
Primärschlüssel speichern. Dies ermöglicht sowohl effiziente Bereichsanfragen als
auch die Implementierung einer Lastbalancierungs-Technik welche ein konstantes
Lastungleichgewicht garantiert.

Papnet berücksichtigt Nachrichtenlaufzeiten und ist bei globaler Gleichverteilung
der Latenzen in der Lage die zuständigen Knoten zu beliebigen Objektschlüsseln
unabhängig von der Größe des Netzwerks in circa zweifacher direkter Laufzeit zu
erreichen. Wir zeigen, dass Papnet im Unterschied zu bestehenden P2P Lösungen
hierbei eine schnelle Konvergenz zu einem Laufzeit-Optimum garantiert.

Als direkte Anwendung von Papnet stellen wir einen neuen Algorithmus zur verteil-
ten Bearbeitung von geospatialen Daten vor. Dieser ermöglicht eine praktisch
lineare Skalierung mit zunehmender Anfragelast und erfordert im Gegensatz zu
existierenden Lösungen nicht den Aufbau und die Pflege einer speziellen verteilten
räumlichen Datenstruktur.
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1 Introduction

Contents

1.1 Problem Definition and Contribution . . . . . . . . . . 4

Having a special focus on systems that incorporate large quantities of machines,
many structured Peer-to-Peer (P2P) overlay networks have been developed over
the past years. Typically, P2P networks consist of large numbers of autonomous
computers that share resources to reach a common goal. They feature redundancy
and automated repair mechanisms, enabling them to tolerate machine failures
because there is no single-point-of-failure in the system. Each peer can join or leave
at any time without serious impact on the other peers or the common goal. P2P
technologies can be used in various scenarios like distributed data management,
resource discovery, semantic reasoning, audio and video streaming, keyword search,
spatial processing and even social networking. P2P Overlay networks provide data-
oriented address spaces which are independent of the actual underlying physical
network. They enable the efficient lookup of arbitrary addresses using only a
small number of forwarding steps (so-called hops), while each participating node
is required to know only a small portion of the global network state.

An important P2P application is distributed data management, where each peer
stores only a small fraction of the overall data but still has efficient access to the
complete set of data. Such distributed P2P databases are often realized through
Distributed Hash Tables (DHT). A DHT stores key-value pairs in a very large hash
table that is hold distributed over all peers participating in the network and each
peer is responsible for a well defined part of the hash table’s id space. DHTs allow
for routing towards arbitrary nodes within a bound number of hops. When nodes
join or leave the network, the routing information is updated through maintenance
protocols.

An example DHT application is a distributed phone book stored in a system com-
prising n nodes. Each phone book record consists of a key representing a person’s
name and a value representing his/her phone number. The DHT partitions the
phone book into disjunctive “chapters” and each node in the network is responsible
for exactly one such chapter. A user can look up a phone number by issuing a
query for a person’s name at an arbitrary node of the network.

1



1 Introduction

(a) Partitioning into “Chapters”

Forward

Forward

Forward

Answer

?

(b) Phone number search

Figure 1.1: DHT Phone Book Example.

The DHT structure and routing algorithm ensure that the node being responsible
for the “chapter” of the corresponding record (if any) will be found within an
efficiently small number of message forwarding steps. Figure 1.1 illustrates the
phone book DHT.

DHTs usually provide implicit storage load balancing by using hash functions
to map object names to identifiers within the id space, resulting in a uniform
distribution. Due to the need for hash-mapping, it is only possible to retrieve
elements if their exact key is known. DHTs thus lack an important feature: they
do not natively provide so-called range-queries.

In the phone book example, this means that the “chapters” are not chapters in
the classical sense, i.e. ordered names ranging from some letter A to some letter
B. Instead, each “chapter” may contain arbitrary names. Queries can be answered
quickly if the full name of the person is known, but given only the first name, it
is impossible to lookup all matching entries, since their hashed identifiers cannot
be predicted solely from the first name. Even though two entries “Smith Joe” and
“Smith John” are very similar, they will get mapped to completely distinct keys
in the finite key space of the DHT, making it impossible to answer wildcard- and
range-queries such as get(“Smith Jo*”) and getRange(“Smith”,“Snyder”).

Since each node in the network should be responsible for an equal share of records,
care must be taken when partitioning the phone book into “chapters”. In DHTs, a
reasonable load balance is accomplished implicitly, by utilizing the aforementioned
hash function that distributes keys uniformly in key space.

2



Thus, equally sized portions of the key space can be expected to contain equal
amounts of data records, but the global imbalance (ratio of most- to least-loaded
node) can still vary in magnitudes of O(log n) [1]. Even worse, there is a problem
with this strategy when it comes to our phone book example, where certain names
are far more popular than others, e.g. “John Smith”. To be retrievable, all “John
Smith” entries need to be stored at the very same (hash-)key, which inevitably
creates so-called load hotspots that cannot be split.

ForwardForward

Forward

?

Forward

Forward

Answer

Figure 1.2: Non-Latency aware DHT routing example.

Another important property of a P2P Overlay is its latency awareness. Without
routing tables being optimized for proximity, the total routing path latency is likely
to grow proportionally to the path length (number of hops).

Imagine our phone book system consists of n peers that are spread across the
world. Then even if the utilized P2P system guarantees an efficient routing path
of length O(log n), each such routing step may result in a message transmission
from one continent to another, resulting in a very bad total path latency. Figure
1.2 illustrates the routing in such a non-latency-aware DHT.

Fortunately, there exist techniques such as Proximity Neighbor Selection which
enable DHTs to prefer low-latency routing links. Assuming a uniform distribution
of latencies in the network, using this optimization technique the total path latency
can be reduced to a constant factor of the direct latency between source and target
node, independent of the actual network size.

3



1 Introduction

1.1 Problem Definition and Contribution

Distributed Hash-Tables, which enable the distributed storage and retrieval of (key,
value)-pairs, are the most common application of structured P2P Overlay net-
works. Chord [2], Pastry [3], and Tapestry [4] are popular overlay networks that
allow for the implementation of a DHT. However, applications such as the phone
book example do require range queries, which are not supported by the above net-
works. Further, these Overlays are not capable to relax load hotspots that arise
from the lack of range query support due to key hashing.

There is a second type of Overlay networks, allowing for the implementation of
DHT-like distributed data stores, which do not require hashing and thus can store
keys in an order-preserving way. Example networks are SkipNet [5] and Chord#
[6], which both support range queries. Further, they allow for an integration of
sophisticated load balancing such as the On-Line load balancing proposed in [7] by
Ganesan et al., which provides a constant global imbalance ratio. However, existing
order-preserving networks establish their Overlay topology strongly deterministic
and do not allow for Proximity Neighbor Selection as in classic DHTs. Thus, the
total path latency depends on the total network size.

Figure 1.3 depicts the properties of both Overlay types and links them to the
phone book example requirements. The figure also lists the property Proximate
Node Discovery. Note that even though Proximity Neighbor Selection enables the
optimization of routing links for proximity in DHTs, there is no guarantee that
any node will eventually learn about the actual existing most proximate peers.

Key Hashing, 

Node ID Randomization

Natural support

Proximity Neighbor 

Selection

Node ID adjustment

Queries such as 

FindAll(Smith Jo*)

 Query Response Time 

(Ideal Case)

Partitioning phone book 

into chapters

Logarithmic in network 

size
Constant

Ratio: Max/Min phone 

book chapter

Range Queries

Latency-Awareness

Load Balancing

Load Imbalance

Proximate Node 

Discovery

Distributed Hash Tables
Order-Preserving 

Overlays
Phone Book Example

Query Response Time 

(Normal Case)

?

?

?

Figure 1.3: Properties of Overlay Types in relation to Phone Book Example
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1.1 Problem Definition and Contribution

The main part of this thesis, Chapters 3-5, covers the problem of how to com-
bine the advantages of classic DHTs with those of order-preserving Overlays. In
particular, we will tackle all of the three question marks depicted in Figure 1.3.

Chapter 3 presents a solution to the problem of missing range query support in
classic DHTs. We extend the classic DHT Pastry [3] to avoid key hashing, so
that the resulting overlay is capable of storing data in a totally ordered manner.
Therewith, range queries become possible, as well as constant-imbalance load bal-
ancing. We demonstrate the feasibility of our DHT extension in an evaluation with
simulations and also discuss encountered problems.

In Chapter 4 we pursue the complementary direction, introducing Proximity Neigh-
bor Selection into order-preserving Overlays. We present a detailed description of
a new Overlay network called Papnet, which is a hash-free and latency-aware P2P
Overlay that supports range-queries and realizes an infinite alphanumeric address
space that can be used to store arbitrarily skewed data. Further, it is suitable
for constant-imbalance load balancing. We evaluate Papnet in a real distributed
environment with a network comprising 50,000 nodes.

In Chapter 5, we will focus on the active discovery of proximate neighbors. We
present a new low-cost discovery protocol utilizing the Papnet topology and show,
that hash-free networks such as Papnet can achieve very low path latencies, com-
parable to those of the well-known latency-aware but hash-based overlay Pastry.
Moreover, we show that our approach guarantees eventual convergence to optimal
routing tables, a property not yet achieved in previous Overlays.

Chapter 6 presents an application that benefits from Papnets latency awareness,
order-preserving properties and load distribution capabilities. We propose a new
distributed system based on a P2P architecture to store and process spatial data,
in particular so-called window- and k-nearest-neighbor queries. Our system is very
simple in that it solely manages a range-partitioned linear data space defined by
a Hilbert Curve mapping and neither requires explicit hashing, clustering or the
maintenance of a dedicated distributed spatial structure at all. Our main focus is
on the inherent quad-tree structure of the 2d Hilbert Curve and how it suffices to
efficiently evaluate nearest-neighbor queries in a distributed manner. We evaluated
our approach using real-world data from Open Street Map and demonstrate our
system to scale asymptotically linearly with the network size.

5
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Parts of this thesis have been published in the following publications:

1. Dominic Battré, André Höing, Martin Raack, Ulf Rerrer-Brusch,
Odej Kao
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Computing and the Grid (CCGRID’09), pp.36–43, acceptance rate 21%, 2009

2. Martin Raack, Dominic Battré, André Höing, Odej Kao
Papnet: A Proximity-aware Alphanumeric Overlay Supporting Ganesan On-
Line Load Balancing
In: Proceedings of the 15th International Conference on Parallel and Dis-
tributed Systems (ICPADS’09), pp.440–447, acceptance rate 29.5%, 2009

3. Martin Raack, Christian Würtz, Philipp Berndt, Odej Kao
A hash-free overlay with eventually optimal locality
In: Proceedings of the Annual International Conference on Network Tech-
nologies and Communications (NTC’10), pp.N59-N64, 2010

4. Martin Raack, Odej Kao
Scalable distributed processing of spatial point data
In: Proceedings of the 17th International Conference on Parallel and Dis-
tributed Systems (ICPADS’11), acceptance rate n/a yet, to appear, 2011
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2 Peer-to-Peer Basics
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2.7 Distributed RDF Stores . . . . . . . . . . . . . . . . . . 25

The term Peer-To-Peer (P2P) refers to distributed systems consisting of au-
tonomous participants that implement both client and server functionality. While
there is no single comprehensive definition that characterizes P2P systems in all
aspects, the term often describes the paradigm of decentralized network organiza-
tion comprising functionally equal entities, which is a complementally approach to
classic Client/Server architectures. This chapter will provide an introduction to
P2P networks, starting with a brief P2P history.

2.1 History

P2P networks of the so-called first generation were systems based on classic Client/
Server architectures that only partly utilize P2P mechanisms. The most prominent
representative was Napster1, which enabled users to share music files. The actual
file transfers took place using direct TCP connections between the end users, so
large numbers of parallel transfers without server involvement became possible. A
major disadvantage of Napster was the necessity of a central server instance that
managed the user accounting and the central file index. Due to this centralization,
Napster could almost instantly be shut down after judicial decision. Without the
central server and its provided search functionality, Napster ceased existence.

After recognizing the vulnerability of centralized systems, research towards de-
centralized failure-resilient networks flourished. The first representatives of such

1http://www.napster.com
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2 Peer-to-Peer Basics

systems were unstructured networks with arbitrary ad-hoc topologies like Gnutella
[8] and FastTrack [9]. A major disadvantage of unstructured P2P networks is the
absence of performance and availability guarantees. They neither allow to specifi-
cally address a certain participant in the network, nor do they enable lookup paths
of bounded length. Search operations in these networks always involve a flooding
of the global network, which results in large communication overhead. Thus, these
networks are unable to scale with query load.

In contrast to unstructured Networks, so-called structured P2P networks provide
a well-defined topology and common id space. This enables an efficient routing
towards arbitrary IDs as well as to provide performance guarantees. Most such
networks realize a so-called Distributed Hash Table (DHT) which allows to store
and efficiently retrieve data objects in a globally partitioned address space. DHTs
utilize so-called hash functions [10] such as SHA [11], which map data object names
onto keys in the global address space. The usage of hash functions is necessary
to ensure a uniform distribution of both data objects and participants (nodes) in
key space. Section 2.3 will provide a classification of structured second generation
P2P overlays.

2.2 Applications

P2P Overlays are nowadays used in many different application scenarios. The
probably most well-known application is the Voice-over-IP (VoIP) software Skype
[12], which is presumed to be based on an unstructured P2P Overlay similar to the
FastTrack network, which has previously been developed by the Skype founders.
Since Skype uses a proprietary protocol, little is known about the exact protocol,
but it seems to incorporate so-called Super-Peers with good latency and large
bandwidth which serve as Hubs for the normal users. While Skype is the most
prominent P2P VoIP example, there are further approaches such as OpenVoIP
[13] which uses a DHT directory service, or extension to SIP (Session Initiation
Protocol [14]) servers using a DHT like Chord as proposed in [15].

Another field of application is distributed data storage. Dynamo [16] is a dis-
tributed key/value store based on a P2P Overlay that provides O(1) routing com-
plexity, but on the other hand each node has linear state complexity of O(n),
i.e. each node knows all other nodes. This approach is feasible for small clusters
of nodes but not at large scale. Dynamo has been developed and published by
Amazon, but no publically available implementation has yet been released.

Cassandra [17] is another key/value store with O(1) routing similar to Dynamo,
that has been developed at Facebook and was publicly released as open source.

8



2.2 Applications

It since has become a major project of the Apache Foundation2 and is/has been
in productive use at Facebook, Twitter, Digg, Reddit, Rackspace, Cisco and a lot
more companies [18].

Large scale systems however require a sub-linear node state to coop with increasing
system size. Current clusters still comprise only low numbers of nodes, so the need
for routing path guarantees and efficient node state is still quite low. However, as
hardware costs will decrease and demand for compute time as well as storage will
increase, future systems will eventually need to scale to very large numbers. A
non-commercial structured Overlay that is already used by up to several hundreds
of thousands of people each day is Kademlia.

Kademlia [19] is a prefix-oriented structured overlay that has been used in several
P2P file sharing applications, e.g. the eMule Kad network, Overnet and in Bittor-
rent as a distributed Tracker [20]. Further, even remotely controlled Bot Networks
have been observed to employ Kademlia [21]. Its failure resistance due to its re-
dundant link maintenance and routing, as well as its latency optimizations and
scalability make it an ideal candidate in scenarios that consist of large numbers of
geospatially distant nodes.

In general, P2P networks are ideally suited to provide a foundation for content
distribution systems. A survey by Liu et al. [22] lists several video streaming
solutions based on P2P Overlays. Some construct multicast tree structures e.g.
SplitStream [23] which the authors apply to Pastry; others facilitate mesh struc-
tures for efficient distribution without depending on a particular P2P substrate,
e.g. Bullet [24].

There have also been efforts to realize fault-tolerant and censorship-resistant, de-
centralized replacements for the currents internets Domain Naming System [25].
One such system is DDNS [26], which is based on DHash[27] – an extended Chord
network that provides latency-awareness. Another example is CoDoNS [28] that
utilizes Beehive [29], a framework for classic DHTs that achieves O(1) routing
complexity through data replication. A comparison that includes further systems
is given in [30].

Another promising application scenario is a distributed social network. While there
exist plenty of popular centralized solutions like MySpace3 or Facebook4, there are
also numerous approaches to decentralize such services to respond to Orwellian
fears of surveillance and to retain control over one’s own data. One example is
LifeSocial [31] which is based on the Pastry Overlay. Another network is PeerSoN

2http://cassandra.apache.org
3http://www.myspace.com
4http://www.facebook.com

9



2 Peer-to-Peer Basics

[32] which uses OpenDHT/Bamboo [33], a structured Overlay also based on the
Pastry geometry. Safebook [34] is yet another example using the Kademlia Overlay
[19].

While the applications mentioned above are based on one-dimensional Overlays,
there are also lots of applications utilizing multi-dimensional Overlays. An example
is PRoBe [35], which enables multidimensional keyword searches and range queries
by implementing a multidimensional constant node degree topology similar to CAN
[36].

Another multidimensional application are geographic data stores, where each spa-
tial axis corresponds to a dimension in the overlay. SONAR [37] implements such a
functionality and is based on a multidimensional logarithmic degree Chord# Over-
lay [6]. But multidimensional application scenarios not necessarily require multi-
dimensional Overlay topologies. Instead, P2P information retrieval system such
as the one presented in [38] utilize so-called space-filling-curves to map domains
of higher dimension down to a single one. We will elaborate more on multidi-
mensional applications and distribution approaches in chapter 6, which presents a
spatial data processing service based on the new Overlay Papnet.

2.3 Classification

There are several types of structured P2P overlays and it is not trivial to classify the
various structures, because they exhibit different state and routing complexities,
have different requirements and provide different features. An essential distinction
can be made regarding space complexity, where we distinguish three classes of
overlays: networks with linear, constant and logarithmic node degree. Table 2.1
gives an overview over a representative selection of network structures from these
classes and their specific properties. Further comparison studies that classify more
networks and overlay types can be found in [39] and [40].

Linear Degree Networks

In networks with linear degree, each node knows all other nodes. The state of the
entire system is periodically exchanged between the nodes by means of so-called
Gossip protocols [41], [42]. These protocols ensure that state updates disseminate
throughout the network in an epidemic way, reaching each node in a time that is
logarithmic in the number of nodes in the system [42]. Since each node knows the
entire network, the routing complexity is in O(1) which guarantees the shortest
possible latency. Also, these systems exhibit very good fault tolerance properties.
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2.3 Classification

Overlay Space Routing Dimensions, Assump- Fault Latency
Network Compl. Compl. Key Space tions Tolerance Aware

Cassandra O(n) O(1) 1, finite Hashing Max Max
Dynamo O(n) O(1) 1, finite Hashing Max Max

CAN O(1) O( d
√
n) d, finite Hashing Low Low

Viceroy O(1) O(logn) 1, finite Hashing Low No
Koorde O(1) O(logn) 1, finite Hashing Low No

Chord, O(logn) O(logn) 1, finite Hashing High No
HyperCup O(logn) O(logn) 1, finite Hashing High No

Pastry O(logn) O(logn) 1, finite Hashing High Med
Tapestry O(logn) O(logn) 1, finite Hashing High Med
Kademlia O(logn) O(logn) 1, finite Hashing High Med

DHash O(logn) O(logn) 1, finite Hashing High Med
Bamboo O(logn) O(logn) 1, finite Hashing High Med
P-Grid O(logn) O(logn) 1, infinite Trie-Mapping High Med
SkipNet O(logn) O(logn) 1, infinite None High No
Chord# O(logn) O(logn) 1, infinite None High No
Papnet O(logn) O(logn) 1, infinite None High High

Figure 2.1: Comparison of different P2P Overlay Networks

However, the utilized gossiping protocols require communication overhead of O(n)
with each gossip message exchange, which is fine for small clusters of tenth to
hundreds of nodes, but is certainly not applicable in true large-scale systems (e.g.
today’s peer-to-peer file-sharing systems with millions of participating nodes [43]).
Assuming a node state descriptor of ≈ 20 Bytes and a system size of 1,000,000
nodes, each gossip message would comprise ≈ 20 Megabytes of data. Nonetheless,
most of the P2P systems being in production use belong to this class of Overlays.
Examples are Cassandra [17], Dynamo [16] and Riak [44]. Up to now, the largest
reported cluster size of the most prominent representative Cassandra is 400 nodes5.
Since linear node degree networks are essentially not scalable to large node counts,
we neglect them in the context of this thesis.

Constant Degree Networks

Networks with constant node degree provide the advantage, that the overhead
induced by peer-link maintenance is independent from the actual network size.
A major disadvantage is the lack of link redundancy. Failures of nodes can cause
temporary unavailability and since certain links are used more frequent than others
for messages routing, severe node overloads may arise.

One of the first constant-degree networks was CAN (Content-Addressable Network)
[36], which provides a d-dimensional continuous key space, e.g. a 2-dimensional

5http://gigaom.com/cloud/cassandra-snags-u-s-government-runs-on-amazon-ec2/
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torus surface. It requires the maintenance of only 2 · d links to other peers, but
also provides only a sub-optimal routing path length of O( d

√
n). CAN allows for

Proximity Route Selection (PRS) [45], which means that low latency links may be
preferred when routing a message, while the actual routing link establishment is
deterministic. However, this kind of latency-awareness is limited by the lack of
choice due to the constant number of outbound links. For load balancing reasons,
CAN requires the usage of a hash-function so that nodes and objects can be as-
sumed to be distributed uniformly in key space. This effectively limits keys to be
of finite length and also prevents range queries.
Viceroy [46] and Koorde [47] are further examples for constant degree networks
and they even enable an efficient routing complexity of O(log n). Viceroy is based
on a Butterfly Network [48], while Koorde implements a DeBruijn Graph [49].

Logarithmic Degree Networks

Networks with logarithmic node degree introduce redundancy and thus robustness
and fault tolerance into the overlay topology. There are basically two sub-classes
of such networks: Those that require a special key mapping (e.g. Hash-function)
or make assumptions about the availability of initial sample data, and those that
are able to handle arbitrary data without initial or runtime assumptions.

Logarithmic Degree Networks with Mapping Requirements

Chord [2] is the most prominent and also most simple representative of a P2P net-
work with logarithmic node degree. Each node establishes links, so called Fingers,
to O(log n) other nodes in exponentially increasing distances in key space. A uni-
form distribution of nodes in the key space is assumed (and achieved by requiring
a key mapping via a Hash function). Further, each node maintains links to its
direct successors in key space, which provides additional robustness.

HyperCup [50] is a network based on a Hypercube topology, where each node
maintains links in log n (Hypercube-)dimensions. Both HyperCup and Chord im-
plement a 1-dimensional finite key space, but depend on assumptions about the
key distribution and therefore require the utilization of Hash-function mappings.
Neither one provides means to minimize routing latency.

Pastry [3], Tapestry [4] and Kademlia [19] all define topologies that enable prefix-
oriented routing using digit-by-digit target key matching. The requirements on the
peer links are loose, so that peers are able to choose proximate nodes with regards
to latency as routing links. This flexibility is called Proximity Neighbor Selection
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(PNS) [45] and provides better locality than PRS. In section 2.4 we will describe
the representative network Pastry in more detail and will provide the reader with
more insight into prefix-oriented routing.

P-Grid [51] is a network that also enables prefix-oriented routing by implementing
a virtual binary search tree over the key space. In contrast to the aforementioned
networks, P-Grid allows keys to be stored in a sorted manner, but requires an order-
preserving mapping of keys using a structure called Trie. The latter is assumed
to be constructed based on an initial training data set, which therefore needs
to be available. Other more advanced networks that do not require such initial
assumptions will be covered in the next section.

While all prefix-oriented networks allow for latency optimization through PNS,
they do not guarantee that any node will ever learn about its most proximate
neighbors. Links are optimized passively by measuring round trip times each time
a message from a yet unknown peer is received. In contrast, the network presented
in this thesis – Papnet – is able to guarantee fast eventual convergence against the
most proximate links by introducing a unique active optimization technique that
induces only an efficiently small overhead (see Chapter 5).

Assumption-free Logarithmic Degree Networks

This class of networks does not make any initial assumptions on the data set and
does not require a transformation of keys. Networks of this class define their
overlay topology independent of the actual key space and can thus store keys in
a sorted manner and allow for range queries. An example network is SkipNet [5],
which constructs efficient routing links based on a probabilistic schema. SkipNet
will be covered in detail in section 2.5.

Chord# [6] is an extension to Chord that explicitly constructs routing links in
exponentially distances in node space instead of the key space. The latter is
achieved by constructing the kth Finger of a node by asking the (k−1)th Finger for
its own (k−1)th Finger. This cooperative construction of exponentially increasing
links effectively enables a decoupling of network topology and key space.

Papnet is the network presented in this thesis. It uses the same deterministic
construction schema for its routing links as Chord#, but has been developed inde-
pendently. There are, however, key differences: Papnet provides a latency-aware
routing and implements bi-directional links, which enable an active optimization
techniques that guarantees an eventually optimal routing latency.

13
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2.4 Pastry

Pastry was one of the first structured second generation overlays. The topology
and routing algorithm of Pastry are based on Plaxton’s Algorithm [52], a prefix-
based routing method that is also used in the Tapestry [4] Overlay. Pastry was
proposed as early as 2001 and provides a good introduction into P2P Overlay net-
works. Although the Chord Overlay [2] is often preferred as an introduction to
P2P Overlays because of its simplicity, we chose Pastry because we believe it to be
very simple as well and because of its strong relations to Papnet, the new Overlay
we present in this thesis. The detailed introduction of Pastry will provide the
reader with background information and understanding that will be useful when
reading the later chapters.

Figure 2.2: Pastry Key Space, b = 2.

Pastry defines a circular key space of cardinality 2128. Each participating node is
assigned a random 128 bit id in the key space. All keys represent sequences of 128

b
digits from a digit set of cardinality 2b. b is a global constant that needs to be a
factor of 128. Implementations of Pastry often set b = 4, so that the digit set is the
hexadecimal numbers. Figure 2.2 shows an exemplary key space where b = 2.

Leafset and Routing Table

Each Pastry node manages a set of pointers to known neighbors, called the leafset.
This set has cardinality l and its components point to the l

2 numerical closest
neighbor nodes in both directions along the circular key space. Leafsets ensure the
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(a) Leafset (b) Routing Table

Figure 2.3: Pastry Node State.

basic connectivity of the overlay network and guarantee termination when routing
messages. Figure 2.3a illustrates a leafset of cardinality l = 4.

To provide efficient routing towards arbitrary keys, each node also maintains a local
Routing Table containing pointers to other nodes in exponentially increasing key
space distances. Essentially, these pointers allow to halve the numerical distance
to any target key in each routing step. Figure 2.3b visualizes the routing table
entries in the circular key space.

The routing tables consist of 128
b rows and 2b columns of pointers to other nodes

with each entry satisfying two properties:

1. An entry in row j has a prefix of exactly j digits with the local node’s ID.

2. The (j + 1)th digit of the ID of an entry in row j and column i is i.

Figure 2.4 shows an example routing table of a pastry node in network where b = 2
and the key bitlength is 8, i.e. keys are strings of 4 digits.

j \ i 0 1 2 3

0 0102 1321 – 3113

1 – 2 131 2 202 2 333

2 20 01 – 20 23 20 31

3 201 0 201 1 201 2 –

Figure 2.4: Routing table of node 2013.
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Routing

Pastry employs a prefix-oriented message forwarding to enable an efficient routing
towards arbitrary addresses. The asymptotic number of forwardings required to
reach arbitrary targets is in O(log2b n) [3]. This is accomplished by continuously
forwarding messages to nodes having a longer common prefix with the destina-
tion.

The routing table provides a row for any given prefix length p, 0 ≤ p < 128
b

that contains nodes that share a common prefix of length p with the local node
id. This row contains one column with a node that has a common (p+1)th digit
with the target address and whose prefix with the target address is thus one digit
longer. If the corresponding table entry is empty, Pastry uses the leafset to perform
numerical routing to a node that shares at least an equally long prefix with the
target key, but is numerically closer to the target. If the target key is contained
in the key space range covered by the local leafset, the above routing is skipped
and the message is being forwarded to the responsible leaf node, which is the node
numerically closest to the target key. Figure 2.5 shows an example routing.

Figure 2.5: Pastry message routing example.

Pastry always delivers messages to the node that is globally most numerically close
to the target id. Thus each pastry node is responsible for an exclusive partition
of the global key space, which is defined by its own id and the ids of its directly
neighboring nodes. Algorithm 1 shows the pseudocode of the routing algorithm,
where D is the target id, A the id of the current node, L the current nodes leafset,
L−, L+ the most numerically distant nodes in the leafset and Rj,i the routing table
entry in row j, column i.
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Algorithm 1: Route(D, msg)

1 if D ∈ [L−..L+] then
2 // D lies within the leafset range
3 Forward msg to Li ∈ L, where |Li −D| is minimal.

4 else
5 // Use Routing Table
6 Let p = Length of shared digit prefix of A and D
7 Let z = the (p+ 1)th digit of D
8 if Rp,z = null then
9 Forward msg to the unique node in {A}∪R∪L, that shares at least

a common prefix of length p with D and is numerically closest to D.
10 else Forward mgs to node Rp,z.

Bootstrapping a new node

A new node at first chooses a unique id X, e.g. randomly or by calculating the
SHA-1 hash [11] of its IP address. Then, it contacts an arbitrary known node A
that is already a member of the network. A will then send a special join message
towards the key X, which will get routed like a normal Pastry message and deliv-
ered on the node Z whose ID is closest to X. Z will then acknowledge the join
request to X. In case both X and Z are equal, Z will deny the join request and X
will need to choose a new ID and restart the join process. Figure 2.6a illustrates
the join sequence.

(a) Join Sequence (b) Routing Table Construction

Figure 2.6: Bootstrapping in Pastry.
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Each node that is visited by the join request sends its routing table to the new node
X (as depicted in Figure 2.6b). Using this information, X is able to construct its
own initial routing table. The last node on the join path provides an initial leafset
to X. As soon as X has successfully initialized its table, it notifies all known other
node about its arrival. These nodes will in turn update their own tables.

Node Failure

Pastry periodically sends heartbeat messages to detect failed leafset nodes. In
case a node failure has been detected, the leafset will be filled up by asking the
numerically most distant node in the local leafset for its own leafset. Note that
heartbeat messages are only exchanged between leafset nodes. Failures of nodes in
the routing table will be detected on the fly, i.e. when a message routing using a
table link does not get acknowledged. To repair the routing table entry, candidates
will be requested from the other entries of the same routing table row j. In case
there is no such node, entries in rows j′ > j will be asked for candidates. Using
this strategy, it is highly likely that a replacement node will be found.

Latency Awareness

The prefix oriented routing allows Pastry to optimize the routing table entries for
proximity, e.g. lowest latency. Since node IDs are assigned randomly and the
row number corresponds to the length of the common prefix, there are on average
n
b candidates for each of the b columns in row 0. More generally, the expected
number of candidates C(r) for a particular entry in row r is

C(r) = n
br+1 .

Let ρ denote the mean latency between any two nodes. Assuming a uniform
distribution of latencies, we can expect half of the candidates C(r) to have a
latency lower than ρ. Further, we can expect that half of this half candidates do
have a lower latency than ρ

2 . In general, this extends to C(r)
2k

candidates having a
latency lower than ρ

2k−1 after k halvings.

Thus, the routing steps using the lower-prefix routing table rows – those where the
candidate sets are large – will only induce exponentially decreasing latency costs.
Considering a typical routing path, the average total routing latency thus amortizes
to a constant factor of the mean latency. In particular, the lowest possible path
latency is 2 · ρ. A more detailed derivation is given in section 4.3 of [27].
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2.5 SkipNet

In contrast to Pastry, SkipNet by Harvey et al. [5] is a P2P Overlay that does
not require any hashing of object/node keys. It is thus able to store objects in a
sorted manner and also allows for range and wildcard queries. SkipNet is based
on the concept of Skip Graphs, which are themselves based on Skip Lists [53]. In
the following, we will describe these three structures.

Skip List

A C D G I L X0

1

2

L
e

v
e

l

Figure 2.7: Skip List

Figure 2.7 shows an example Skip List of nodes. On the bottom, one can see that
a Skip List is based on a classic linked list. In order to make lookups (as well
as inserts and deletions) more efficient, a Skip List constructs multiple additional
levels of lists that only contain subsets of nodes. These additional lists can be used
to skip ranges of nodes and thus speed up the lookups of keys.

Each node in a Skip List is part of the linked list at level 0 and in a number of
higher levels. In particular, a node is a member of the list at level l with a fixed
probability p, given that it is also part of level l − 1. The total probability of
a node being a member of the list at level x thus calculates to pl. The higher
levels of lists represent ”Express Lanes” which skip numbers of nodes that grow
exponentially with increasing level. These lists therefore enable fast lookups which
result in logarithmic search time complexity. In particular, the expected average
search time is in O(log n 1

(1−p) log 1
p

) [54].

Skip Lists are however not very well suited to be used in a distributed system,
because the nodes having links at higher levels tend to get overloaded and their
failure can have severe impacts on the routing performance due to the lack of
redundancy. In [54] the authors discuss the above disadvantages and propose a
new structure called Skip Graph.
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Skip Graph
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Figure 2.8: Skip Graph

A Skip Graph [54] extends the concept of Skip Lists by introducing multiple lists
per level. In contrast to Skip Lists, all nodes are part of some list at each level,
except for the basic list at level 0, which is unique. The list memberships for any
node x are defined by a (infinite) random membership vector m(x) over a finite
alphabet, e.g. binary values. The different lists at some level l are identified by a
unique finite string w of length l over the same alphabet. At level l, a node x is
part of the list w, iff |w| = l and w is a finite prefix of m(x).

Figure 2.8 depicts an example Skip Graph of 7 nodes. There are six lists: the base
list that contains all nodes, two lists at level 1 and three at level 2. Lists that only
consist of a single node are not shown (i.e. the list that only contains node I at
level 2). Note that all nodes in a list at some level l are also in common lists at
all levels lower than l, since they share a common membership prefix. The (finite)
membership vectors for the depicted scenario are: m(A) = 000, m(C) = 010,
m(D) = 110, m(G) = 011, m(I) = 101, m(L) = 111 and m(X) = 001.

In practice, each node in a network of size n is only part of O(log n) lists, because
higher list levels do not contain any other nodes and can therefore be neglected.
The routing in a Skip Graph is performed exactly as in Skip Lists, with the excep-
tion that different lists are used as ”Express Lanes” at higher levels. A Skip Graph
thus introduces redundancy and fault tolerance to Skip Lists, while preserving a
routing complexity of O(log n) and keeping the state of each node efficiently small
(O(log n) links).
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SkipNet
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Figure 2.9: SkipNet

SkipNet implements a distributed Skip Graph structure according to the descrip-
tion given in the last section, with the difference that all lists are extended to
wrapping ring structures (i.e. the last node in each list has a pointer to the first
node and vice versa). Each node has a so-called Name ID that determines its
position in each ring that it is a member of. The ring memberships of a node are
defined by a binary string of fixed length, which is called the Numerical ID.

In addition to the routing by Name IDs in O(log n), SkipNet also enables an
O(log n) routing by Numerical ID. This is achieved by simply following the links
of a ring in one direction until a node with a larger common prefix with the target
ID is found. The algorithm starts at the level 0 ring and each time such a node
with larger prefix is found, the algorithm will continue with the next higher level.
Since all nodes in a ring at level l share a common prefix of length l and the
numerical IDs are chosen randomly, the probability that the (next) node has a
common prefix of at least l+1 with the target is 50% (using a binary alphabet).
Therefore, it is highly probable to reach any Numerical target ID with O(log n)
routing steps.

While SkipNet is able to handle any distribution of Name IDs and thus does not
require any normalization of IDs through a Hash function mapping, it does not
support Proximity Neighbor Selection (PNS) [55]. PNS is the ability to prefer
proximate neighbors as routing links to minimize the routing latency and can be
applied to classic DHTs such as Pastry, but not to SkipNet. This is because the
static Numerical IDs of SkipNet nodes need to be chosen randomly and the derived
ring memberships lead to a strongly deterministic establishment of routing links.

21



2 Peer-to-Peer Basics

2.6 Ganesan Online Load Balancing

The Online Load Balancing of range-partitioned Data proposed by Ganesan/Bawa/
Garcia-Molina in [7] is a load balancing algorithm that operates on range-partitioned
data. The core algorithm only requires local knowledge and is thus suitable to be
implemented on top of a P2P overlay.

Model

Consider a relation that has been partitioned into n segments, that are defined by
a set of n+ 1 (or n, in case of a wrapping domain) range boundaries R0 ≤ R1 ≤
· · · ≤ Rn. Each range [Ri−1,Ri) is assigned to a single node Ni in the distributed
system. The special case Ri−1 = Ri is called an empty range. The load of a node
Ni is denoted by L(Ni) and represents e.g. the number of objects stored in its
responsibility range [Ri−1,Ri).

Load Thresholds

As objects are inserted and deleted, the loads of the nodes change. Whenever
major imbalances arise in the network, load balancing operations need to be per-
formed. The algorithm defines a series of thresholds Ti∈N that are used to trigger
the execution of such operations, whenever they are crossed. The thresholds are
defined based on a global parameter δ and constant c:

Ti∈N = bcδic.

The lowest possible value of δ is the golden ratio (
√

5 + 1)/2 ' 1.62 [7]. In case
δ = 2 and c = 1, the thresholds are the powers of two:

⋃
i∈N

Ti = {1, 2, 4, 8, ...}.

The Ganesan Online Load Balancing algorithm defines exactly 2 operations that
utilize these load thresholds: NeighborAdjust and Reorder.

Operation NeighborAdjust:
Two adjacent nodes A and B that have a load difference of at least 1 threshold
perform a load balancing by transferring data objects and readjusting the range
boundary in-between them. Figure 2.10 visualizes this operation. Note, that this
is a purely local operation that only involves these two neighboring nodes.
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Figure 2.10: NeighborAdjust

Operation Reorder:
A low loaded node C that has at least 2 thresholds less load that an overloaded
node A transfers all its data to one of its neighboring nodes so that its partition
becomes empty. Then, it changes its position to become a neighbor of A, splitting
its responsibility range [RA−1,RA) at some key X within that range, so that C
becomes responsible for [RA−1, X), while node A is now responsible for a smaller
range [X,RA). Figure 2.11 illustrates this operation.

Figure 2.11: Reorder()

Local Knowledge

In order to execute the Reorder operation, the globally least loaded node needs
to be determined. In a distributed P2P setting this is a challenging task, since
each node only has partial local knowledge about the network. However, in [7] the
authors also present a randomized version of the algorithm, that only requires a
sample set of log n nodes to pick the least loaded node from. They show that the
randomization only slightly influences the load distribution.
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Load Balancing

Each time the insertion of an object causes the load of a node Ni to rise to a value of
L(Ni) = Tm+1 for some m, a load balancing is triggered by executing AdjustLoad.
If the lighter loaded of the directly neighboring nodes Nj has a load L(Nj) ≤ Tm−1,
then Ni will transfer some of its load to Nj , using the NeighborAdjust() operation
to equalize both nodes loads. In case both neighbors have a higher load, a global
balancing operation becomes necessary by looking up the least loaded node in the
network. This node will then execute the Reorder() operation, i.e. transfer its
local load to one of its own neighbors, relocate to become a neighbor of Ni and
take over half of its load. Algorithm 2 presents the corresponding pseudocode.

Algorithm 2: AdjustLoad(Ni)

1 Let L(Ni) = x ∈ (Tm, Tm+1]
2 Let Nj the lighter loaded neighbor Ni−1 or Ni+1 of Ni

3 if L(Nj) ≤ Tm−1 then
4 Transfer data from Ni to Nj

5 AdjustLoad(Nj)
6 AdjustLoad(Ni)

7 else
8 Lookup the globally least loaded node Nk

9 if L(Nk) ≤ Tm−2 then
10 Transfer all data from Nk to N = Nk±1

11 Transfer data from Ni to Nk, so that L(Ni) = dx2 e, L(Nk) = bx2 c.
12 AdjustLoad(N)
13 Rename nodes appropriately

Imbalance guarantees
The presented algorithm provides an upper constant bound on the global load
imbalance ratio σ, which depends on the chosen threshold base δ and calculates
to σ = δ3. The total load imbalance invariant is defined by:

∀Ni,j , L(Ni) > L(Nj) : L(Ni) ≤ σ · L(Nj) + c0, for some constant c0.

Thus if δ = 2 the maximum imbalance is σ = 8, which means that the most
loaded node has at most 8 times as much load as the least loaded node. The
lowest possible imbalance ratio is ≈ 4.236 using the golden ratio as threshold base:
δ = (

√
5 + 1)/2 ' 1.62. Further, the load balancing algorithm has only constant

amortized costs for insertion and deletion of data objects.
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2.7 Distributed RDF Stores

A mostly academic application scenario for P2P Overlays is the realization of a
distributed RDF store. RDF stands for Resource Description Framework and can
be used to define and reason about ontologies [56]. An RDF graph can be entirely
expressed by so-called Triples. These consist of 3 three attributes called Subject,
Predicate and Object (S, P,O) and describe relations between entities in the RDF-
Graph, e.g.

(Stop Signal, blinks, Red)
or

(Red, is, Color).

A typical query in an RDF store requires joins of triple sets that are each described
by only two attributes. An example query for the Color of a blinking Stop Signal
could be expressed as

(Stop Signal, blinks, ?x ) ∧ (?x, is, Color)
or more generally

(S1, P1, ?x ) ∧ (?x, P2, O2)

Distributed RDF stores enable the processing of such a query by storing each triple
three times at keys calculated from two attributes, e.g. at h(S · P ), h(P · O) and
h(O · S), where h is a hash function.
Given an example query with two known attributes (S, ?, O) all matching candi-
dates can be found at key h(O · S). However, popular triples such as (*, is, Red)
do create load hotspots. When using a classic DHT, all such triples need to be
stored at the very same node, which inevitably leads to load imbalances. Example
RDF stores using the DHT approach are RDFPeers [57] and Babelpeers [58].

Using an order-preserving Overlay, the DHT-strategy can be refined to avoid
hotspots and distribute load evenly. Still, all triples will be stored at three different
keys

k1 = S · P ·O,
k2 = P ·O · S,
k3 = O · S · P ,

but now all such keys are unique. All candidates for a query like (?, P , O) can
be found in a consecutive range of keys, starting at key P · O. This application
motivated the development of an extension to the classic Pastry Overlay that allows
for a continuous ID space, which eventually lead to the invention of Papnet.
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Figure 3.1: Overlay Properties

3.1 Introduction

In this chapter, we present the idea to combine the advantages of Pastry including
locality and both low routing and space complexity of O(log n) with the advantages
P2P networks that store objects based on a total order, e.g. SkipNet [5]. To answer
the question of how to enable range queries in classic DHTs (as depicted in Figure
3.1), we introduce an alphanumerical id space over Pastry’s numeric id space. Each
peer is assigned a second identifier from the alphanumerical id space: its name.
Thus, besides the standard routing using hashed ids, the network is also able to
route using these name ids and thus able to perform range queries.
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Further, an alphanumeric overlay allows for the implementation of Ganesan Online
Load Balancing (GLB) [7], since it provides means to dynamically change the
responsibility between two neighboring nodes to balance the load. We show how
our extension can be used to apply GLB and which limitations do arise.

The remainder of the chapter is structured as follows: Section 3.2 gives an overview
about the related work. In Section 3.3 we introduce the alphanumerical ids includ-
ing the changes in Pastry that are necessary for routing. The next section explains
how load balancing can be performed and discusses advantages and disadvantages.
The performance of this new routing possibility is examined in Section 3.5 and Sec-
tion 3.6 concludes the chapter.

3.2 Related Work

One special goal of our approach is to apply Ganesan Online Load Balancing [7], a
load balancing technique that is able to guarantee a constant load imbalance ratio.
Up to now, this algorithm cannot be applied to most Overlay networks.

Classic DHTs assume a uniform distribution of both nodes and data in the ID space
and try to equalize storage load by optimizing imbalances in the responsibility
ranges of nodes. One possibility is the introduction of Virtual Servers [59], which
is the concept of running multiple overlay nodes per physical node. Since each
real node’s responsibility becomes the sum of all its overlay nodes’ ranges, the
overall imbalance decreases. The approach has been used by Ledlie and Seltzer in
the context of their k-choices algorithm [60]. However, it requires a maintenance
overhead proportional to the number of virtual instances that each node runs.

Another way is the usage of “Power of two” strategies as suggested in [61] or [62,
59, 63]. Here, the key idea is to use up to k hash functions instead of a single one.
Other DHT-specific load balancing strategies e.g. those proposed in [62, 59, 63]
attempt to repartition the ID space among nodes. All strategies mentioned so far
do however only work under the assumption of uniform distribution of data keys
in the ID space, but in case data is skewed, an equalization of responsibility ranges
helps little to balance the load distribution.

SkipNet [5] is an overlay network that provides a numeric as well as a dynamic
alphanumeric ID space and is able to process efficient range queries. Further,
it allows for the implementation of GLB. The SkipNet structure, however, lacks
useful locality properties provided by other overlay networks such as Pastry [3],
since routing links are established strongly deterministic and symmetric.
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3.3 Alphanumerical Extension

Before describing the extensions for alphanumerical routing, we introduce some
definitions. First of all we need a globally known arbitrary but fixed character
set denoted by C. We use ⊥, > to denote the minimum and maximum character
in C, so that ∀c ∈ C : ⊥ ≤ c ≤ >.

Now, we define the set of all possible alphanumerical ids (names) by K := C+

as sequences of characters. Hence, a nameID w ∈ K is defined as c1 · c2 · c3 · · · ck
with c1..k ∈ C with length |w| := k.

To enable sorting of all name ids, we will now introduce a relation ≺ that defines a
total order on all elements in K. At first, we demand that ∀w ∈ K : w = w · ⊥+,
which means that we are allowed to append arbitrary numbers of ⊥ to any name.

Now that we can treat any two names a, b ∈ K as if they had equal character
length, we define a ≺ b, iff |a| = |b| and a is smaller than b according to a classic
lexicographical order. �, �, � are defined analogously. Note that ∀a, b ∈ K and
w.l.o.g. a ≺ b we can construct a new nameID c for that holds a ≺ c ≺ b.
At last we define the alphanumerical distance. Let a, b ∈ K and w.l.o.g. |a| ≥
|b| then the alphanumerical distance |a − b| is defined as the numerical distance
between a and the id of equal length b′, which is constructed by appending ⊥ digits
to b: b′ = b · ⊥|a|−|b|.
With these definitions, we can introduce alphanumerical names for peers. Each
node has a nameID beside the existing numerical id assigned through the Pastry
network. The nameID of peer n is denoted as name(n). It marks the end of
the responsibility range R concerning key-value pairs stored in the alphanumerical
overlay. Thus, peer n is responsible for the range [name(pred(n)),name(n)) with
pred(n) being defined as the predecessor of peer n (the counterclockwise neighbor
in the Pastry ring). Just like the numerical ids, the node names increase along the
ring, say name(pred(n)) ≺ name(n).

Now, we can define the responsibility range Rn: Each node is responsible for
all instances w ∈ K for which the following equation holds:

Rn :=

{
w | name(pred(n)) � w ≺ name(n) if n 6= n0

w | w ≺ name(n0) ∨ name(pred(n0)) � w if n = n0

Using this definition name(n0) is not necessarily bigger than the biggest key stored
on node n0. It rather marks the end of the responsibility range for each peer.
The set of objects which is actually stored on the node is denoted by On. Thus
On ⊂ Rn.
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last(n) denotes the last existing key in the responsibility range of peer n. This
means that no further element lies between last(n) and name(n). If On is empty,
then last(n) is defined to be the name of the predecessor node.

last(n) :=

{
o ∈ On, so that ∀o′ ∈ On : o′ ≤ o if On 6= ∅
name(pred(n)) if On = ∅

Figure 3.2 shows a cutout of an example alphanumerical ring around node n0

including the responsibility range of peer n0.

The nameID of a node is not fixed as a numerical id. Due to load balancing it is
possible that the name ids of nodes are adjusted and therewith causing a shift of
data from one node to its neighbor.

Join and Leave Algorithms

In most cases a P2P network is subject to continuous join and leave activities of
peers. Pastry needs to handle this “churn” by executing a maintenance protocol
that repairs dead links and ensures the coherence of the ring. To keep nameID
information up to date this maintenance protocol is used to propagate the current
names of peers. This section describes how a joining peer gets its initial name and
what happens when a peer unexpectedly leaves the network.

As can be seen in Figure 3.2, there is always a gap between elements existing
at two neighbored peers (last(pred(n)) and name(pred(n))): Because of the not
limited length of alphanumerical ids and the total order, we can always generate

last(pred(n0))

name(pred(n0))

name(n0)

gap

X Y
Z

A
B

C

Rn0

Figure 3.2: Responsibility Range of peer n0
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a nameID that fits into this gap. If e.g. last(pred(n)) = Y and name(pred(n)) =
Z as depicted, then the gap is be defined to be the range (Y,Z ) of all nameIDs
between these two nameIDs which for example contains the fresh nameIDs YA.

When a new peer joins the network, it has no initial content but a fixed numerical
id generated by Pastry. This numID determines the node’s position in the ring.
Standard join protocols are used to find neighbors and to fill the routing table
with initial entries. The gap between the neighbors nameIDs is used to find a
valid initial nameID matching the position on the ring.

Let n be the node joining the alphanumerical overlay. pred(n) and succ(n) are
the direct neighbors of n. n sends a join message to pred(n) and asks for its
nameID. pred(n) chooses a new name from the gap so that the responsibility
range of pred(n) gets a bit smaller but still comprises all existing instances Opred(n).
At last, n chooses the former nameID of pred(n) as its own nameID. Using this
algorithm, no movement of data is necessary. n gets responsible for some data
subsequently via load balancing operations or new inserted elements that fall into
its responsibility range.

Peers are allowed to leave the network at any time, without notifying other peers.
The maintenance mechanisms of Pastry are responsible to repair the overlay in
case of node departure and arrival of new nodes. Our extensions propagate newly
introduced nameIDs as part of the node identifiers.

Routing

As described above, each routing information now also includes the nameID of
the node besides its standard numerical id. Figure 3.3 shows an example for
such routing entries in a Pastry network. Each node provides two data structures
where routing information is stored, the leafset (dashed arrows) and the routing
table (solid arrows).

The leafset of peer n stores information about nodes that are located in the neigh-
borhood with respect to the position on the ring. In contrast, the routing table
contains information about peers in other parts of the ring. How exactly Pastry
finds these links is described in chapter 2.4. Note that Pastry has a certain degree
of freedom when choosing peers for the routing table: it chooses the most proxi-
mate node that is located in a certain constrained area of the id space. Leafsets
guarantee a better robustness of the network against unplanned node departures
and do already enable a simple but slow alphanumeric routing algorithm: For-
ward the message to that node in the leafset whose alphanumerical distance to the
destination is the smallest.
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Figure 3.3: Example routing links of peer “B” (numID 422)

The routing algorithm for alphanumerical routing is given in Algorithm 3. Let D
be the destination nameID and A the current node where the routing algorithm is
performed. succ(A) and pred(A) are the clockwise and counterclockwise neighbors
of A. Rleaf and Rroute denote the set of nodes contained in the leafset, respectively
routing table of node A. As long as nodes are distributed evenly on the ring, rout-
ing performance for the alphanumerical routing is the same as the DHT routing:
O(log n). Effects of a load balancing algorithm on the routing performance are
discussed in Sections 3.4 and 3.5.

Algorithm 3: Alphanumerical Id Routing

1 if D ∈ [pred(A), A) then
2 Deliver message to myself
3 else if D ∈ [A, succ(A)) then
4 Route message to succ(A)
5 else
6 // Forward to closest node of routing links and leafset
7 Route message to node Z ∈ Rleaf ∪Rroute, where |Z −D| is minimal
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3.4 Load Balancing

Load balancing is crucial for the performance in P2P networks. We can distinguish
between storage and query load. Storage load refers to the number of elements
a node is responsible for and query load to the amount of queries a node has to
manage in a certain period of time. In DHT P2P networks, problems arise if data is
not distributed evenly across the id space, or if there are many objects that map to
the very same key. Heterogeneity of nodes introduces an additional parameter to
this problem. Load detection is not in the focus of this paper but necessary for load
balancing. In our simulations, we thus tested two different settings: Firstly, the
(unrealistic) case where global knowledge of load information is used and secondly,
the case of only local knowledge of nodes in the routing table.

The total order in the alphanumerical overlay enables a load balancing as pre-
sented by Ganesan et al. in [7] (GLB). A detailed description of the GLB is given
in section 2.6. The algorithm defines two balancing operations: “NeighborAdjust”
and “Reorder”. Load balancing is triggered when new data elements are inserted
or deleted and a node crosses a load threshold or nodes arrive or leave the net-
work. Firstly, an affected node tries a NeighborAdjust operation, and if this is not
possible, it tries the more expensive Reorder operation. For determining whether
a node is over- or underloaded, the algorithm uses globally known load thresholds
defined as Ti = bcδic with a constant c and a load imbalance parameter δ. Load
balancing is triggered every time a node crosses a threshold. Throughout this
chapter, we instantiate δ = 2 and c = 1, so that the thresholds become powers of
2.

NeighborAdjust flattens load between neighbored nodes. If the load of a node
is one threshold boundary higher than the load of a neighbor, the nodes move
load by modifying their responsibility ranges through a change of a single node’s
name id. After NeighborAdjust both nodes have the same load. Reorder balances
load by removing and rejoining a low loaded node. It is applicable, if another
node is known, whose load is at least two thresholds lower than its own load.
The less loaded node m shifts all data to its neighbors, leaves the network and
rejoins as a neighbor of the overloaded node n. Thus, it joins with a previously
determined numID and not with a random numID. The rejoined node chooses
the nameID X that is the element that splits the content of n exactly in the
middle. If the node joins as predecessor (w.l.o.g.), its responsibility ranges become
Rm = [name(pred(n)), X) and Rn = [X,name(n)); name(m) = X. The numID
must be from within the range between the numIDs of pred(n) and n. As long as
the distribution of newly inserted data keys is similar to the current distribution
in the network, only few Reorder operations are necessary.
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The Reorder operation affects the numerical Pastry overlay because of the deter-
mined numIDs. Whenever load imbalance is concentrated in a certain area of the
id ring, a lot of nodes will get moved to this area by Reorder operations, causing a
skewed distribution of nodes on the ring. With a growing skew, the load balance of
the DHT suffers from load imbalance and possibly becomes not usable any longer.
The numerous movements of peers into a small part of the numerical id ring can
have several side effects. Firstly, the nodes are not longer distributed evenly on the
ring, which is a basic assumption for routing performance estimations of O(log n).
Nevertheless, we assume that the actual effect on Pastry’s numerical routing per-
formance is rather small and analyze this in simulations. Results are presented
in Section 3.5. Secondly, if load balancing causes reinsertion of nodes always as
successors of peers, we soon encounter a lack of available numerical ids. This is
discussed in the following.

Consider two nodes n and pred(n) = m. Now, the insertion of data causes a
Reorder operation and moves a new node l between m and n exactly into the
middle of both nodes’ numIDs. Now a second Reorder operation again inserts a
peer between pred(n) = l and n, again exactly at the middle. Thus, the number of
available numIDs between n and pred(n) is reduced by half for every Reorder oper-
ation. Pastry has a limited number of numIDs, large enough to provide numIDs for
a quasi arbitrary number of peers (if numIDs are chosen randomly). Usually, the
size of the numerical id space is 2128. It is obvious, that this id space can be halved
only 128 times. This leads to only 128 possible Reorder operations like presented
in the worst case above before ids run out. We can construct an example with
391 nodes and only 776 well directed insert operations to prevent the feasibility of
further load balancing for a node in the network.

Through this fact, we conclude that the presented load balancing can cause prob-
lems in worst case. For the normal case, that can be constructed easily by insert-
ing data in a random order, this situation never appeared during our simulations.
Since we need to tackle this problem, we decided to modify the Pastry protocol
(until now, we did only minor changes by propagating the name of nodes with the
help of the maintenance protocols). We decided to change the finite numerical id
space to an infinite id space because any restriction concerning the length of the
numID will result in a restriction of the number of worst case Reorder operations.
If there is no available numID for the node inserted through a Reorder operation,
the reinserted node gets a numID that is one digit longer than the numIDs of the
direct neighbors. The added digit is the middle element of the set of numerical id
digits. Note, that by this change the numIDs become in fact nameIDs too (with
exactly the same properties as defined in 3.3), but with a different character set.
Nevertheless we still need both, static numIDs for the construction of the Pastry
overlay and dynamic nameIDs for load balancing operations.
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Figure 3.4: Densely Populated Area

Changes in the id space must be made very carefully and analyzed well, because
these changes can have grave impacts on the routing performance. Note that
Pastry’s numerical routing algorithm is not directly affected by longer numIDs.
The major problem is a possible growth in the size of routing tables, when multiple
reorder operations lead to densely populated areas.

Figure 3.4 shows a fraction of an artificial example Pastry ring with b = 2 and
(initial) numerical id length of 1 digit. There are already nodes at id 0 and 1 but
load balancing requires more nodes between both. Therefore, nodes are inserted
and their numIDs get extended. The numbers depicted inside the nodes denote the
order of insertion. The numbers below the nodes are the numIDs. Furthermore,
the links for node 0333 are shown for all nodes in the densely populated area.

A routing table with a high number of entries (larger than O(log n)) may produce
higher maintenance costs as well. On the other hand, Pastry utilizes a lazy update
mechanism to fix routing table entries, which only causes maintenance costs when
routing fails. Due to the numID extension, it is hard to give exact estimations
about the size of a routing table and the routing performance, because the proofs
of Pastry’s storage and routing efficiency are based on the finite address space and
therewith an assessable size of the routing table. For evaluation of the impacts,
we implemented a simulation of Pastry with the alphanumerical overlay including
the described modifications.
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3.5 Evaluation

We implemented a lightweight and idealized version of the pastry protocol to per-
form our simulations, that does neither simulate bootstrapping of nodes, nor their
departure. The routing tables were generated using global knowledge of all exist-
ing nodes, setting each entry in a table to a random node picked from the set of
matching nodes. This way, the tables got filled to their maximum, which greatly
allows for worst case evaluation in terms of table size as well as best case evalu-
ation concerning path lengths. The Pastry specific parameters used in all of the
simulations were: b = 4 (hexadecimal set of digits), |leafset| = 32 and numerical
IDs of (initial) length 128 Bit.

As scenario we simulate a distributed Resource Description Framework (RDF)
database. RDF information are given through triples with Subject (S), Predi-
cate (P) and Object (O). Each triple is one data unit and must be accessible if
only one part of a triple is known. Several implementations of DHT RDF databases
like RDFPeers [57], Babelpeers [58], and Atlas [64] exist and all distribute each
triple at least three times by hashing each component (S, P, and O). RDF triples
are connected through common Subjects and Objects to form a graph and some
predicates with a special semantic occur very often. Thus, there are a lot of triples
that are mapped to the very same hash value, which can cause a crucial imbalance
that can not be flattened by a DHT.

When RDF data is stored in our alphanumerical overlay, each triple must be in-
serted in three different orders: Subject·Predicate·Object (SPO), Predicate·Object·
Subject (POS) and Object·Subject·Predicate (OSP). Thus, each information is also
accessible using range queries with wild cards for the unknown components if only
one component is known.

The data set used in all of our simulations comprises an artificial RDF-graph gen-
erated by the Lehigh University Benchmark[65] (Lumb-10) that has been written
to a file containing 1, 272, 764 triples by Sesame 2.0[66]. This file has been used
to create the actual list of data elements (SPO1, POS1, OSP1, SPO2, ...), which
results in a total of 3, 818, 292 elements. The order of this list is what we call the
unaltered Order of Data Inserts (OoDI). We define two additional orders which
represent extreme cases: The sorted OoDI, where the data elements form an as-
cending list with respect to ≺ and the randomized OoDI, where the elements have
been randomly permuted.
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Figure 3.5: Lorenz-Curves of Load Distribution

Load Balance

To provide evidence for the necessity and efficiency of the alphanumerical overlay,
we evaluated the performance of the Ganesan load balancing algorithm against a
DHT in terms of the storage load balance.

Since the load-balancing algorithm requires global knowledge of the least loaded
node, which might not be available in a distributed P2P environment, we performed
two different tests: One where we simply assumed global knowledge and one, where
we used only local knowledge about the load of nodes contained in each node’s
routing table.

Figure 3.5 shows the resulting Lorenz curves of storage load distribution after data
insertion for about 16k and 65k nodes. It depicts what fraction of nodes stores what
fraction of data. The area between the bisecting line and the curve provides a scalar
load imbalance measurement. The outstanding good performance of the Ganesan-
Balancing itself is no surprise, since the algorithm provides a proven upper bound
on the ratio of least to most loaded node. The interesting observation is, that the
use of local knowledge indeed suffices to reach a load distribution similar to the
one with global knowledge (confirming the prediction made in [7] that a sampling
of O(log n) random nodes should suffice). In contrast to the former, the load
distribution of the ordinary DHT turns out to be poorly balanced and tends to
get worse as the node count increases.
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Routing Performance

After presenting the benefits, we have to discuss the impacts of the alphanumerical
overlay on the underlying P2P network. As already discussed, Reorder operations
cause the movement of nodes to a certain area of the numerical pastry ring result-
ing in a non uniform distribution of nodes. We examined the routing performance,
meaning the number of hops needed to route a message from the source to its
responsible node. Furthermore we discuss the impact of too many reorder opera-
tions on the routing table size as already mentioned in Section 3.4. The strength
of the impact depends on the OoDI where sorted is a worst case and randomized
is assumed as best case scenario.

In particular we have tested the average path lengths for the classic numerical rout-
ing and the new alphanumeric routing as well as the average memory consumption
per node for different numbers of nodes and the three different OoDIs. The av-
erage numerical path length has been measured by sending 10, 000 test messages
from randomly picked nodes towards the numeric ID of another randomly chosen
node and averaging the resulting lengths afterwards. This simulates lookups to
elements that hit the responsibility ranges of the nodes we route to. The average
alphanumerical path length has been measured by sending 10, 000 test messages
as well, but this time towards a randomly chosen name of a data element (that
has been previously inserted).
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Figure 3.6: Routing Performance.
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Figure 3.6a depicts the recorded average path lengths using numerical routing
depending on the number of nodes in the network. It shows one curve for each
OoDI tested and one curve with the tested numerical routing performance of a
classic Pastry network (without data insertion and load balancing) for comparison
purpose. The curve for the sorted OoDI ends with a node count of 16, 384 due to a
scalability problem (which we’ll discuss below) that prevented us from simulating
higher node counts.

All of the three curves show an average path length that grows only sublinear with
the number of nodes in the network. The unaltered and randomized OoDI curves
show performances that are, however, worse than the one of a classic pastry, but
with a maximum surcharge in path length of only ≈ 35% in a network of 262, 144
nodes (compared to the classic pastry performance). The sorted OoDI curve shows
a path length that tends to perform better than the classic pastry with increasing
network size. This can be explained with a heavy increase in the average routing
table population (see below). In general the different path lengths can be explained
with a degeneration of the uniform distribution of nodes in the numeric ID space.
The peculiarity of this degeneration depends on the respective OoDI.

Figure 3.6b shows the average path lengths of the alphanumeric routing as pre-
sented, depending on the network size. All pictured curves tend to grow only
sublinear with the node count, with the surcharge in hop count being reasonably
small compared to the classic numerical Pastry routing (which is depicted in Figure
3.6b for comparison purpose as well). In particular, with a network size of 262, 144
nodes the average alphanumeric routing path was still less than twice as long as the
average numeric routing path in a classic pastry (more precisely we encountered a
maximum average surcharge of ≈ 74% at that specific network size).

Routing Table Population

The memory consumption has been measured in terms of routing table population,
that is by counting the existing links in each node’s routing table and averaging
the sum. This is a valid measurement, since the routing table is the only entity of a
node’s state whose size may change dynamically - the leafset of a node always has
a fixed size. As one can see in Figure 3.7, our alphanumeric ID space extension can
have a crucial impact on the memory consumption when the Ganesan on-line load
balancing algorithm gets applied (note that both axis are in logarithmic scale).
The figure shows three different curves that depict the average number of existing
links in each node’s routing table depending on the OoDI used, as well as one curve
with the average table population of a classic Pastry network.
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Figure 3.7: Routing-Table Population (Average Number of Entries)

The worst results were achieved by using the sorted OoDI, where a linear growth
with the number of nodes can be observed. This happens due to a continuous
insertion of data elements on a single node, which results in a continuous execution
of the Reorder()-Operation that splits a narrow portion of the numerical ID space
over and over. This leads to an elongation of the numeric IDs of the inserted nodes
proportional to the number of data elements inserted.

Now those elongated IDs are ultimately responsible for a growth in the row count
of the routing tables and thus also their population, limited only by the number of
nodes in the network. This rapid growth also prevented us from simulating higher
node counts than 16, 384 for the sorted OoDI, since the memory consumption of
the entire network simulation thus grew quadratic in the number of nodes.

The average table populations of the two other OoDIs tested do however look
promising. In particular, with a node count of 262, 144 nodes we observed an
average population that was only roughly twice as high as the one of a classic
Pastry in the case of the unaltered OoDI and even lower in case of the randomized
OoDI.
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3.6 Conclusion

In this chapter, we presented a simple way to use the routing structures of a ring
based DHT network like Pastry to introduce an additional overlay using a total
order of keys instead of hashing. The overlay enables load balancing as presented
by Ganesan et al. Additionally, it is now possible to evaluate range queries, which
is an important requirement of many application scenarios.

Our evaluation with simulations showed that the impacts of Reorder operations
do affect routing performance, but not in a crucial way. Both, numerical and
alphanumerical routing still reach their targets within only few hops. Problems
arise if the insertion order of data is “bad”, causing a lot of Reorders within a
narrow area of the numerical ring. This results in an elongation of numerical
ids and a clustering of nodes in this area. Choosing a randomized order of data
insertion avoids this worst case.
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This chapter presents a new kind of overlay structure that does not rely on a
DHT and can handle arbitrary skewed node and key distributions. In contrast
to existing Overlays, the presented network Papnet provides range queries, allows
for the implementation of Ganesan Online Load Balancing and is able to perform
Proximity Neighbor Selection to optimize routing paths for latency (Figure 4.1) –
a property not achieved by any previous hash-free overlay.

Key Hashing, 

Node ID Randomization

Natural support

Proximity Neighbor 

Selection

Node ID adjustment

Queries such as 

FindAll(Smith Jo*)

 Query Response Time 

(Ideal Case)

Partitioning phone book 

into chapters

Logarithmic in network 

size
Constant

Ratio: Max/Min phone 

book chapter

Range Queries

Latency-Awareness

Load Balancing

Load Imbalance

Proximate Node 

Discovery

Distributed Hash Tables
Order-Preserving 

Overlays
Phone Book Example

Query Response Time 

(Normal Case)

Extendable with 

side effects

?

?
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4.1 Related Work

Many P2P overlay networks have been described in the literature with CAN [36],
Chord [2] and Pastry [3] being some of the most prominent ones. The latter
two both realize a discrete circular address space that is partitioned amongst the
participating nodes. Efficient routing towards arbitrary addresses is provided by
establishing links that skip exponentially growing portions of the address space.
The discrete address space however puts major restrictions on applications that
use the overlay: each participating node needs to have a static numeric id and each
key that an application wants to store within the overlay has to be mapped onto
such a discrete id as well.

Chord# [6, 67] is an extension to Chord which eliminates the need for a discrete
address space and uniformly distributed addresses of nodes and keys (and thus the
need for hashing). The authors show how efficient routing links can be constructed
that skip exponentially growing numbers of nodes and thus allow for an arbitrarily
skewed id space and range queries. The description however lacks detail in the
definition of the id space and join algorithm, and often refers the reader to the
original description of Chord. However, it must be pointed out that Papnet and
Chord# are closely related in the way they set up links to skip exponential numbers
of nodes.

Papnet allows for the implementation of the On-Line load balancing by Ganesan
et al. [7] (GLB), which is a sophisticated load balancing algorithm that provides
proven bounds on the global imbalance ratio of most- to least-loaded node. To our
knowledge, Papnet is the first latency-aware hash-free overlay that natively allows
for and demonstrates an implementation of the GLB.

SkipNet by Harvey et al. [5] is an overlay network that provides an alphanumeric
address space as well and also allows for the implementation of the GLB. The
major drawback of SkipNet is that participating nodes connect to each other in
a strongly deterministic and symmetric fashion, leaving no space to prefer nearby
nodes as routing links. In contrast to SkipNet, we will show how Papnet is able to
reduce routing latencies by applying proximity routing, which is the preference of
close by nodes as routing links. Such techniques have been studied and described
in various publications and a good summary can be found in [27].

In its original form the GLB requires the knowledge of the globally least loaded
node for the execution of the Reorder()-Operation. To find this node in a P2P
overlay network is hard and expensive, if at all possible. Luckily [7] shows that
the algorithm performs equally well if only the least-loaded node out of a sample
set of O(log n) random nodes is chosen.
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4.2 Papnet in a nutshell

Papnet is a P2P overlay that is able to construct an efficient routing structure
independent of the actual key space. Looking at classic networks, we observe
that all logarithmic node degree networks (such as Chord, Pastry, Kademlia, etc.)
define two kinds of links:

• Local Neighbor-Links
These links point to nodes that are direct neighbors in the address space and
thus ensure the basic connectivity of the network. The more of these links a
node establishes, the more failure resistant is the network.

• Far-Distance links
These links point to nodes in increasing key space distances. They allow for
efficient routing, since with each forwarding the distance to any arbitrary
target key can be reduced by a constant fraction. Given that nodes are
distributed uniformly in the key space, a typical routing path will have a
length in O(log n).

Papnet also uses these two types of links, but constructs its Far-Distance links in
exponentially increasing distances of nodes – not keys. This allows us to remove the
assumption of uniform node and key distributions while preserving the O(log n)
routing and memory complexities of classic networks.

In Papnet, we call the Far-Distance links the Boundary Links. They skip exponen-
tially increasing numbers of nodes and are constructed strongly deterministically,
which at first prevents latency-optimizations. However, Papnet introduces a third
set of links called the actual Routing Links, which are located in-between any two
succeeding boundary links. These links can be compared to Pastry’s routing links,
which are selected from certain ranges of the key space that contain exponentially
increasing numbers of candidate nodes. In Papnet, the Boundary Links also define
exponentially increasing ranges of candidate nodes, of which we can always choose
the most proximate one to become a routing link. No matter which of the candi-
dates are selected, the routing links still skip exponentially increasing numbers of
nodes and therefore still allow for efficient, but now also latency-aware routing.

Figure 4.5 visualizes the links of a Papnet node. The long dashed arrows are the
neighbor links that ensure stability and connectivity of the network. The outer
short dashed arrows represent the constructed Boundary Links which skip 1, 2, 4, 8,
..., say exponentially increasing numbers of nodes. In-between any two succeeding
boundary links you can see solid arrows that represent the actual Routing Links.
Note how they still skip exponentially increasing numbers of nodes.
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4.3 Formal Description

Papnet is an overlay network that provides a wrapping circular alphanumeric ad-
dress space that can be imagined as a ring. In this section we will define this id
space in detail and continue with a description of Papnet’s topology and routing
algorithm. For the sake of simplicity, we will at first describe a static network
where no node arrivals or departures nor failures occur. The handling of arrivals,
departures and network stabilization will be covered in the subsequent sections.

Key Space

The ID space of Papnet is an infinite linear Domain K (keys). Each key k ∈ K is
a sequence of characters from a globally known character set C. The smallest
character in C is denoted by ⊥, formally defined by the property ⊥ ∈ C : ∀c ∈
C : ⊥ ≤ c. In particular, ⊥ is a special zero character that may be arbitrary often
appended to a key without changing the uniqueness of the key.

K := {c1 · c2 · · · ci | c1..i ∈ C}
∀k ∈ K : k = k · ⊥+.

With the help of ⊥ we can treat any two keys as if they had equal digit length.
Now we can define a total order ≺ on K in the sense that k1 ≺ k2, iff |k1| = |k2|
and k1 is smaller than k2 according to a classic lexicographical order. With this
total order we are able to define wrapping ranges and half-open ranges of keys
that use a directional parameter d ∈ {−1, 1}:

∀k1, k2 ∈ K : Keys(k1, k2) :=

{
{k ∈ K | k1 � k � k2} if k1 � k2

{k ∈ K | k1 � k ∨ k � k2} otherwise

∀d ∈ {−1, 1} : KeyRanged(k1, k2) :=

{
Keys(k1, k2)\{k2} if d = 1

Keys(k2, k1)\{k2} otherwise

Since ∀k ∈ K : k = k · ⊥∗, we gain the useful property that for any two distinct
keys k1, k2 ∈ K a fresh key can be constructed, which lies in-between them:

∀k1, k2 ∈ K, k1 6= k2 : ∃k ∈ Keys(k1, k2) : k1 6= k 6= k2

The above definitions describe the key space properties of Papnet formally. Figure
4.2 illustrates these properties for a concrete character and key set.
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4.3 Formal Description

Character Set: C = {⊥, a, b, c, d}
Object Keys: O := {bad, cab, dad} ⊂ K
Total Order: bad ≺ cab = cab⊥ = cab⊥⊥ ≺ dad
Key Ranges: Keys(dad, bad) ∩ O = {bad, dad}

KeyRange−1(bad, cab) ∩ O = {bad,dad}

Figure 4.2: Example Domain Properties

Node Space

The set of all existing nodes is denoted by I. Each node i ∈ I possesses an
arbitrary key i.key ∈ K as well as a unique identifier i.uid ∈ N that makes him
distinguishable from any other node (and can be chosen at random). Having the
unique identifier as a tiebreaker, we can define a total order ≺ on I as well:

∀i, j ∈ I : i ≺ j :=

{
i.key ≺ j.key if i.key 6= j.key

i.uid < j.uid otherwise

Figure 4.3 shows an example for node names and unique identifiers. The nodes
(circles) are depicted from left to the right with respect to the order ≺ on I.

Figure 4.3: Example: Node identifiers and order

As for keys, we define ranges and half-open ranges of nodes:

∀i, j ∈ I : Nodes(i, j) :=

{
{x ∈ I | i � x � j} if i � j
{x ∈ I | i � x ∨ x � j} otherwise

∀d ∈ {−1, 1} : NodeRanged(i, j) :=

{
Nodes(i, j)\{j} if d = 1

Nodes(j, i)\{j} otherwise
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A Neighbor Nk(i), k ∈ Z of a node i is the k-closest node to i with respect to
≺. It is thus the |k|’th node in the direction given by sgn(k). More precisely, we
define Nk(i) implicitly like this:

∀i ∈ I, k ∈ Z : |NodeRangesgn(k)(i,Nk(i))| = |k|

Conventionally, we callN1(i) clockwise andN−1(i) counter-clockwise neighbor of i.

Neighbor-Links: Each node knows its immediate neighborhood, which is all
k-closest nodes with − l

2 ≤ k ≤ l
2 for a fixed constant l ∈ N:

∀i ∈ I,− l
2
≤ k ≤ l

2
: i.neighbork := Nk(i)

These links ensure the basic connectivity of Papnet and guarantee routing termi-
nation.

Boundary-Links: Besides the neighbor-links, Papnet establishes sets of links of
a second type which skip exponentially growing numbers of nodes and are used to
detect the skewness of the id space. They are defined recursively in the following
way:

∀d ∈ {−1, 1}, k ∈ N : i.boundarydk :=

{
i.neighbord if k = 0

(i.boundarydk−1).boundarydk−1 otherwise

Each node possesses two sets of boundary-links. The directional parameter d con-
trols which one of the neighbors is taken to serve as the first boundary-link; higher
boundary-links are constructed from lower boundary-links residing on other nodes
as can be seen in the above definition. Figure 4.4 shows example boundary-links.

Figure 4.4: Boundary-Links for d = 1 and d = −1

Since I is a finite set of nodes there will eventually be a first link that wraps around
in the circular node-space. The index of the directly preceding link is what we call
the maximum boundary index κ = dlog2 |I|e − 1.
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4.3 Formal Description

It is easy to observe, that the number of nodes that lie between two succeeding
boundary links grows exponentially: ∀i ∈ I, d ∈ {−1, 1}, k < κ :

|NodeRanged(i, i.boundarydk)| = 2k

|NodeRanged(i.boundarydk, i.boundary
d
k+1)| = 2k

Routing-Links: Each node further possesses sets of so called Routing-Links.
These links can be chosen arbitrarily and are constrained only to the corresponding
boundary-links. They must satisfy the following condition:

∀i ∈ I, d ∈ {−1, 1}, k < κ : i.routedk ∈ NodeRanged(i.boundarydk, boundary
d
k+1)

Note that the number of nodes that each routing link skips still grows asymptot-
ically exponentially:

∀i ∈ I, d ∈ {−1, 1}, k < κ : |NodeRanged(i, routedk+1)| ≥ 2k

The freedom in node choice greatly allows for locality optimizations (e.g. by
preferring nodes with low latency). How these nodes are found will be described
in Section 4.4.

Figure 4.5 shows a complete example of a node’s state in a Papnet with neighbor-
hood size l = 4. The nodes the routing-links point to are highlighted as grey circles.

Figure 4.5: Example: State of a node in Papnet. (l = 4)
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Responsibility and Routing

Each node in Papnet is responsible for the range of names that lie between the
name of its immediate counter-clockwise neighbor (inclusive) and its own name
(exclusive). As simple as this might sound, the precise definition is a bit more
complicated due to the fact that Papnet allows multiple nodes to have the same
name:

∀i ∈ I, j = i.neighbor−1 : Resp(i) :=


NameRange1(j.name, i.name) , if j.name 6= i.name

∅ , else if j.uid ≤ i.uid

W , else

The special case Resp(i) = W only occurs, when all nodes have the same name
and i is the node with the lowest uid.

Papnet employs a very simple and straightforward routing algorithm: A message
is delivered locally, if the destination is within the local responsibility range or oth-
erwise forwarded to the closest known node whose name succeeds the destination.
The pseudocode is shown in Algorithm 4.

Algorithm 4: i.RouteMsg(dest ∈ W, msg)

1 R := {i} ∪ ⋃
i.route∗∗ ∪

⋃
i.neighbor∗

2 Q := {q ∈ R | dest ≺ q.name}
3 if Q = ∅ then Q := R
4 j := min≺(Q)
5 if j 6= i then j.RouteMsg(dest, msg)
6 else i.Deliver(msg)

The usage of neighbor-links ensures that the message will eventually terminate
at the node being responsible for the destination name. The routing-links on the
other hand ensure that the routing path will have an efficient length, since the
distance to the destination node is at least lowered by half with every hop in the
average case. In the worst case it is only lowered by 1

4 per hop, but will nevertheless
stay logarithmic with less than log 3

4

1
n hops in a network of n nodes.
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4.4 Arrivals, Departures, Maintenance

This section covers the bootstrapping of new nodes and the maintenance- and
repair-mechanism of Papnet, including pseudo-code algorithms based on the formal
definitions of the previous chapter.

Uniqueness and Propagation of names

Papnet allows nodes to have the same name due to the dynamic nature of its
address space: Names of nodes are not static and may change over time. Even
if nodes would try to avoid names that already exist in the network, duplicated
names may occur because network communication is unreliable and no node has a
complete and correct view on the global network state. This is why we explicitly
allow nodes to have the same name.

But this does not mean that equal names are desirable in Papnet. In fact it’s the
opposite: Each node in Papnet periodically checks, whether its name equals the
name of its immediate clockwise neighbor. If that is the case, it tries to rename
itself by choosing a fresh name out of the range between the name of its counter-
clockwise neighbor and its own old name. This renaming mechanism ensures that
all nodes will eventually possess unique names. Algorithm 5 shows the pseudocode
for this periodic name correction.

Algorithm 5: i.CorrectName()

1 if i.name = i.neighbor1.name 6= i.neighbor−1.name then
2 Let freshName ∈ Resp(i)\{i.neighbor−1.name}
3 i.name = freshName

Since nodes are allowed to change their names at runtime, other nodes need to learn
these new names. In Papnet, we use passive propagation where each keepalive-
message (see the following sections) contains a hash-value of the sender’s name.
The recipient is able to compare this value with a hash-value computed from the
sender’s last known name. If the values differ, the recipient requests a name update
from the sender.

Bootstrapping

An important part of Papnet is the bootstrapping algorithm. Since the system
should be able to recover even in the presence of massive node failures, it must
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be ensured that any set of arbitrarily related failing nodes will be distributed
uniformly along the ring of nodes. By placing a new node next to a node selected
randomly from the set of existing nodes, Papnet ensures that failures of whole id
space segments are very unlikely.

Classic overlays like Chord or Pastry place new nodes implicitly on (quasi-)random
positions in node space by assigning them uniformly distributed ids in their finite
id space. This method however does not work in Papnet, since its id space is
infinite and can be arbitrarily skewed and thus provides no solid basis for the
determination of a random node position. The boundary-links, however, can be
utilized to reach a random position in node space.

A joining node x contacts an arbitrary first node ifirst which is already a member
of the network and sends him a join request. ifirst then initiates a forwarding
chain by a call to ifirst.ForwardJoin(x, ifirst, κ) with κ being the index of its highest
boundary link. Algorithm 6 shows the Pseudocode for ForwardJoin.

Algorithm 6: i.ForwardJoin(x, ifirst ∈ I, k ∈ N ∪ {−1})
1 if k ≥ 0 then
2 Let inext := i

3 if BinaryRandom() = 1 then inext := i.boundary1
k

4 if i ∈ Nodes(ifirst, inext) then inext.ForwardJoin(x, ifirst, k − 1)
5 else x.RestartJoin()

6 else if Resp(i)6= ∅ then
7 x.AcceptJoin(i.name, ...)
8 Let freshName ∈ Resp(i)\{i.neighbor−1.name}
9 i.name := freshName;

10 else i.neighbor−1.ForwardJoin(x, ifirst, -1)

Any node i executing ForwardJoin(x, ifirst, k) will forward the request to its k’th
boundary-link with a chance of 50% (lines 1-3). With each forwarding k gets
decremented (line 4) and once k = −1 the forwarding terminates. i will then
choose a fresh name from its responsibility-range and let the new node join under
i’s former name (lines 7-9). In the rare case that i is responsible for an empty
range, it will forward the join message to its counter-clockwise neighbor (line 10).
Note that for every node j on the ring, a pattern of random forwardings (line 3)
exists that terminates at j. Furthermore, if we demand that the join-process will
be canceled and restarted if a forwarding occurs that wraps around the ring (by
crossing the start node ifirst) (line 5) we will reach every node on the ring with an
equal probability.
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(a) Failing (b) Succeeding

Figure 4.6: Join sequences. (κ = 3)

The probability p that a single join sequence fails can be bound to p ≤ 0.5, since
it depends on the probability that a forwarding occurs at stage k = κ. Otherwise,
the sum of nodes that can be skipped by forwardings at the stages k < κ is smaller
than the total number of nodes in the ring and the join must therefore succeed.
The probability that m consequent join sequences fail is thus bound by pm ≤ 0.5m.
Therefore, the repetitive join procedure will eventually (and quickly) succeed (the
expected number of attempts is ≤ 2). Figure 4.6 shows examples for a failing
(4.6a) and succeeding (4.6b) join sequence.

The last node ilast that receives and finally answers the join request sends its entire
state to the new node. Since the new node is going to become a direct neighbor of
ilast the sets of boundary- and neighbor-links it receives provide an excellent initial
state.

Neighbor-link maintenance

To preserve a globally connected ring of nodes, each node periodically checks
the liveness of its immediate neighborhood by sending keepalive-messages every
δneighbor seconds to each of its neighbors j = i.neighbork with − l

2 ≤ k ≤ l
2 . Along

with this ping message, i passes k, indicating that i knows j as its k-closest neigh-
bor. If in turn j knows i as its (−k)-closest neighbor, everything is fine and j will
reply with a simple acknowledgement message. If on the other hand i is not the
(−k)-closest neighbor of j (or even unknown to j), the reply will contain the set
of all neighbors j knows of.
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This simple mechanism ensures the detection of failed nodes in the neighborhood
and that the arrival of new nodes will get propagated properly. Algorithms 7 and 8
show pseudocodes for the above mechanism. The command VerifyLiveness() used
in the pseudo-code stands for a liveness-check by a simple ping message.

Algorithm 7: i.RecvNeighborPing(j ∈ I, k ∈ Z)

1 i.InsertNeighbor(j)
2 if i.neighbor−k = j then j.RecvNeighborPong(∅)
3 else j.RecvNeighborPong({i.neighbork | − l

2 ≤ k ≤ l
2})

Algorithm 8: i.RecvNeighborPong(M ⊆ I)

1 foreach j ∈M do if 6 ∃k : i.neighbork = j then
2 if j.VerifyLiveness() then i.InsertNeighbor(j)

Boundary-link maintenance

Boundary-Links are reconstructed periodically every δboundary seconds in an iter-
ative fashion. The first boundary-link i.boundaryd0 with d ∈ {−1, 1} is always an
immediate neighbor of i. The k’th boundary-link i.boundarydk can be constructed
by asking the node i.boundarydk−1 for this node’s own (k − 1)’th boundary link.
This can be done until either a wrapping in the circular address space is encoun-
tered or the asked node is not able to return any link. Algorithms 9 and 10 show
the pseudocodes for the boundary-construction.

Algorithm 9: i.RequestBnddk(j ∈ I)

1 j.ReturnBndd
k(i, i.boundaryd

k)

Algorithm 10: i.ReturnBnddk(jcur ∈ I, jnext ∈ I ∪ {null})
1 if ∀k′ < k : i.boundarydk′ ∈ NodeRanged(i, jcur) then

2 i.boundaryd
k := jcur

3 if jnext 6= null then jnext.RequestBndd
k+1(i)

In the presence of message loss or node failure, a node i might not receive a reply
for a request sent to a node jnext. In this case, i will send an overlay-lookup request
towards jnext.name to find an adequate boundary-link and the recursive procedure
will continue.
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Routing-link maintenance

The routing-links can be chosen with a large degree of freedom, since they are
only constraint to their corresponding set of boundary-links. An empty routing-
link i.routedk will always be initialized when the boundary-links get rebuilt and will
be set to its corresponding boundary-link i.boundarydk.

The routing-links are also periodically checked for liveness. Every δroute seconds
each node increases a cycling counter m and sends a ping message to every j =
i.routedm with d = ±1. When a routing-link has been detected to have failed, it
is set to null and will be reinitialized once the next boundary-link rebuilding is
performed.

There is room for optimizations here to fix failed routing-links faster, e.g. by
caching addresses of suitable nodes, but we won’t discuss them here. Our results
show that fixing at the time when boundary-links are rebuilt suffices to keep a
good routing performance in times of churn.

4.5 Latency Optimizations

One of the key features of Papnet is its proximity-awareness, which we understand
as the preference of nearby nodes according to a “closeness”-function distance :
I × I → R. This function can be based on a-priori knowledge (e.g. geographic
location) or be provided by an external source (e.g. ISP), but in the in the most
common case, the values of this function are determined at runtime, being simply
the round-trip-times between any two nodes. In this section we will describe the
optimization of routing links based on the latter method, by using ping messages
to determine the distance.

Finding close nodes

Each node i periodically tries to improve one of its routing links j = i.routedk.
The set of valid candidate nodes that are suitable to replace j is defined by the
following set:

R := NodeRanged(i.boundarydk, i.boundarydk+1)

To find suitable close nodes in R we make use of the assumption that the routing
links of each node are already close to that node.
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j

j’

i

Figure 4.7: 2D geospatial view of the network

Figure 4.7 illustrates this assumption and depicts a geospatial view of the nodes. It
shows the node i, its current routing link j and the routing links of j. In particular,
one of these links (j’) is also close to i and may replace j as a routing link of i.

Following the assumption of proximity transitivity, the node i will ask its current
routing link j for one of its own routing links. Along with the request i passes the
boundary index k. j then picks a random node s out of the set

Q := {j.routed′k′ | d′ ∈ {−1, 1}, 0 ≤ k′ < k}

and sends s’s physical address to i. Figure 4.8 visualizes the nodes i and j and
their boundary links, as well as the sets R and Q. Note that at half the nodes in
Q (light grey nodes) are also in R.

ji
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k kk-1
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i.boundary

1
:

j.boundary
-1/1

:

Figure 4.8: Logical view of the network

The advantage of this probabilistic discovery approach is that it does not require
any transfer of node keys defining the candidate range. Such keys could easily
dominate the message payload size, since Papnet allows for keys of arbitrary length.
Instead, the presented approach requires only messages of constant size and is
nevertheless very likely to return a suitable candidate.
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After having received the address of a candidate j′ Node i will simply send a ping
message towards j′ to measure its distance. Only if the distance is lower than
that of the previous routing link j, it will ask for j’s name ID and test if it indeed
lies within the candidate range R. The overhead of the presented algorithm is
extremely low since discovery comes at almost no costs, but is yet very effective,
as the results in the next chapter will demonstrate.

Discovery Efficiency

We now need to show that the above mechanism will provide good candidates to
i. In particular, we will show the probability that the returned link s lies within
the candidate range R is at least 50%, since at least half the nodes in Q also lie
within R.

This can be shown by looking at unique node pairs in Q:

Let m ∈ [0..k − 1], m′ = k − 1−m so that p = j.route−1m and q = j.route1m′

Each such p and q lie in opposite directions to j on the ring and the union of all p
and q is Q. We want to show, that at least one of them also lies in R. Therefore,
we consider the range

S = Nodes(p, q) = Sp ∪ Sq with Sp = Nodes(p, j) and Sq = Nodes(j, q)

We observe that |S| = |Sp|+ |Sq| − 1 because both Sp and Sq contain j. Further
we know that |R| = 2k, |Sp| ≤ 2m+1 and |Sq| ≤ 2m

′+1. Because both Sp and Sq
contain j and the bounding nodes of S are p and q, the only way that neither p
nor q are in R is that R lies entirely in S.

This in turn requires that |S| ≥ |R| + 2 = 2k + 2, which we will now show to be
impossible:

(I) If max(m,m′) < k − 1 then |Sp|+ |Sq| ≤ 2 · 2k−1 = 2k.
(II) If max(m,m′) = k−1 then min(m,m′) = 0 and |Sp|+|Sq| ≤ 2k+21 = 2k+2.

In both cases |Sp| + |Sq| ≤ 2k + 2 and thus |S| ≤ 2k + 1. This violates the
requirement |S| ≥ 2k + 2 and thus R cannot lie entirely in S and must contain at
least p or q.

Summing up, this means that at least half the nodes in Q are also in R. Therefore,
the discovery mechanism will provide suitable candidate nodes with a reasonable
probability of at least 50%.
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4.6 Evaluation

To evaluate Papnet’s performance we deployed a large-scale network on the stu-
dents’ computer lab of the math faculty of TU Berlin. We made use of 100 real
machines and ran 500 virtual nodes per real machine, resulting in a total network
size of 50,000 nodes. For communication we used UDP datagrams. The virtual
nodes located on the same physical machine used a shared network layer to dis-
patch in- and outbound messages, but still communicated with each other using
the network layer of the operating system.

In our tests we instantiated the adjustable parameters of Papnet in the following
way: The neighborhood-size was set to l = 16 nodes. The neighbors were tested
for liveness every δneighbors = 24 seconds. The boundary-links were rebuild every
δboundary = 60 seconds. The routing links were incrementally tested for liveness
and asked for replacement candidates every δrouting = 5 seconds. As character set
C we simply used bytes s.t. C = [0..255]. The first node of the network was given
a random name consisting of 160 characters. The resulting average name length
of all 50,000 nodes was thus also roughly 160 characters.

We evaluated Papnet by a test comprising 7 phases:

1. Join-phase: 50,000 nodes joined over 60 minutes (833.3 joins per minute).

2. Stabilization-phase: No arrivals/departures occurred.

3. Churn-phase: 30,000 nodes joined and left (mixed) within 30 minutes
(1000/min).

4. Reorder-phase: Random nodes sent reorder requests to a random boundary-
link. 30,000 reorders were requested within 30 minutes (request rate =
1000/min).

5. Rename-phase: Random nodes changed their name within the bounds of
their neighboring node’s names. 30,000 renames were performed within 30
minutes (rename rate = 1000/min).

6. 50%-failure-phase: Half the nodes failed at once.

7. Shutdown-phase: All nodes left (rate = 416.6/min).

Measurements of key system properties throughout these phases are depicted in
Figures 4.9-4.11.

58



4.6 Evaluation

Time in minutes

A
ve

ra
ge

 n
um

be
r 

of
 li

nk
s 

pe
r 

no
de

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

0
5

10
15

20
25

30
35 Phase: Join Stabilization Churn Reorder Rename 50% Fail Shutdown

Boundary−Links
Routing−Links
Neighbor−Links

Figure 4.9: Average node state
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Figure 4.9 shows the average node state in terms of link counts. Each node main-
tains only an efficiently small state throughout all phases. Even in the presence of
massive node failure (phase 6), the system is able to recover very quickly.

We tested the routing performance after the actual test, based on the states that
each node wrote to a logfile every minute. We simulated the routing of about
100,000 messages starting at a random node towards the name of another random
node and recorded the average path length. For every forwarding to a nonexistent
node we added one penalty hop. Figure 4.10 shows the encountered numbers
of hops. As we can see, the average routing path length stays efficiently small
throughout all phases and rises only slightly in times of churn.

To test the proximity-optimization, we could not utilize real latencies, since they
were simply too small (less than 1ms). Instead, we assigned each node a random
finite position (x, y) ∈ [0..65535]2 and simulated latencies by calculating the Eu-
clidean distance between two node’s positions. Figure 4.10 shows the encountered
stretch-ratios, which are calculated by dividing the sum of latencies of the routing
path by the direct latency between first and last node. As we can see (especially
in phase 2), the ratio quickly drops towards a value close to 2, which is optimal
according to [27].

While performing very well in general, Papnet requires only little maintenance
overhead. Figure 4.11 shows the average traffic (in- plus outbound) of a node we
encountered throughout the phases. As you can see, each node’s traffic (solid line)
stays below 1kB most of the time. Since the virtual nodes on each real machine
used a shared message-dispatching layer (which also handled packet fragmentation)
the figure shows two graphs: The traffic encountered at node-level (solid line) and
the actual UDP payload (dashed line), which is a little higher due to virtual node
addressing and fragmentation overhead.

Ganesan Load Balancing

On top of Papnet we implemented a simplified version of the GLB, which only
considers the clockwise instead of both neighboring nodes in the NeighborAdjust()-
operation, because a shift of load to the clockwise neighbor involves only a local
change of the own name. A shift to the counter-clockwise neighbor would require
a message being sent to that neighbor, asking it to change its name. The initiating
node would have to wait for a reply and would therefore need to save state infor-
mation. This can be avoided through our restriction to consider only the clockwise
neighbor. The algorithm itself is only slightly (if at all) affected by this change, as
can be seen in the test results.
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The GLB Reorder()-operation requires a random node sample set of size O(log n).
To find such a set, we first lookup a random node in the ring, using the very
same forwarding strategy as in the bootstrapping algorithm (see 4.4). Then we
use this node’s boundary-links to sample the least loaded node from, because they
provide the right number of nodes and a good distribution: No two node’s sets of
boundary-links are equal and since nodes are placed at random positions in node
space, they provide a truly random sample set.

As a scenario we have a distributed Resource Description Framework (RDF)
database like BabelPeers [58] in mind. RDF information is given through triples
with subject, predicate, and object (SPO). The used data set is an artificial RDF-
graph generated by the Lehigh University Benchmark[65] (Lumb-10) comprising
1,272,764 triples. Each triple is one data unit and must be accessible if only one
part of a triple is known. Therefore, it is inserted under 3 different names: (SPO),
(POS), (OSP). Thus, information is also accessible using range queries with wild
cards for the unknown components if only one or two components are known.

Figure 4.12 shows the final load distribution after inserting the 3,818,292 data
objects in a network of 50,000 nodes. The old method BabelPeers and other
DHT-based RDF-stores use to store RDF information is to hash each triple to 3
different keys calculated from S, P and O. For comparison purpose we also inserted
the data into a simulated Pastry network consisting of 50,000 nodes using this old
method and show the resulting (bad) load distribution in Figure 4.12 as well.
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4.7 Conclusion

In this chapter we presented a detailed description of Papnet, the first proximity-
aware order-preserving overlay network allowing for the implementation of Gane-
san on-line load balancing. We presented a unique join algorithm which ensures
a random node distribution and provides Papnet with high fault-tolerance prop-
erties. We demonstrated that Papnet is able to scale up to 50.000 nodes (and
beyond) while producing maintenance costs of only about 1 kilobyte per second
per node. Further, we presented a low-cost proximity-optimization strategy being
solely applicable to Papnet, which our results show to perform nearly optimal and
enables to reach every participating node with a latency being only roughly twice
the direct latency.
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5.1 Introduction

In this chapter, we will show how Papnet has been extended to provide a fast
discovery of most proximate nodes and to guarantee eventual optimality of its
routing tables (Fig. 5.1). In particular, we make the following contributions:

• We show that hash-free overlay networks are able to provide efficient path
latencies as good as hash-based overlays (using Pastry as a representative).
• We introduce an efficient algorithm to discover proximate peers.

We compare Papnet and Pastry using simulations based on generated as well as
real latency data measured on the Internet.
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5.2 Related Work

A crucial property of P2P overlays is their awareness of the underlay network.
Without routing tables being optimized for proximity, the total routing path la-
tency is likely to grow linearly with the path length (number of hops).

A common strategy to optimize path latencies in overlay networks is called Prox-
imity Neighbor Selection (PNS) [55]. The key idea is to put loose constraints on
the routing links, so that multiple nodes qualify for a routing entry and the most
proximate one can be chosen. This technique has been intensively studied by
Castro et al. in [68] and utilized in the locality-aware overlay network Pastry [3].
However, Pastry makes assumptions about the proximity of nodes at join time and
optimizes its routing links only when there is message traffic. It is thus not able
to guarantee eventual optimality (see section 5.3) of its routing tables.

In [69] Milic and Braun describe an algorithm for topology aware choice of peers
in overlay networks. Their approach uses a gravity analogy to construct a local
network view called the fisheye view of constant size. The fisheye view contains
many near and few far away nodes and the authors argue that this property makes a
fisheye view the ideal view that an end-system should have in any overlay network.
In that sense, the routing tables of Pastry as well as Papnet do represent fisheye
views. However, their paper unfortunately does not evaluate the scalability of the
approach, which would be of special interest since their views are of constant size.
Furthermore, it lacks a discussion on how to embed an ID space into their overlay
network that allows for the implementation of efficient DHT-like functionality.

In [70] Wu et al. propose to improve locality by proximity-aware assignment of
IDs. They use a peers Autonomous Systems Number (ASN) to generate the higher
bits of its ID, resulting in a clustering of nodes from the same autonomous system
(AS) in the ID space. While this method indeed leads to shorter path latencies, the
authors do not discuss the impact of the clustering on the network’s fault tolerance
properties. Failing nodes from the same AS are no longer distributed uniformly
in the ID space, but most likely clustered in near regions, that way failures of
complete ID space partitions are more likely to occur.

There are only few overlay networks that explicitly avoid hashing. Skipnet by
Harvey et al. [5] is an example of such a hash-free overlay, but it does not support
proximity optimizations at all. The closest relative of Papnet is Chord# by Schütt
et al. [6], a hash-free overlay that sets up links in exponentially growing node
distances similar to Papnet, but is not optimized for node proximity as well. Within
the class of hash-free overlay networks, Papnet is the first that is able to perform
PNS.
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5.3 Papnet

In chapter 4, we introduced a novel overlay network called Papnet. In contrast to
classic DHTs, Papnet supports the implementation of a DHT-like storage function-
ality without the need of hashing tuple names onto address keys. In fact, Papnet
decouples the address space from the logical node space and allows for an arbi-
trarily skewed address space. This becomes possible, because Papnet constructs
its efficient routing links explicitly and independently from the actual keyspace,
while the efficiency of routing links in networks like Chord or Pastry depends on
the assumption that all nodes are distributed uniformly in key space. Our ap-
proach has several advantages: It allows for efficient range queries, as well as the
relocation and renaming of nodes. Papnet therefore is ideally suited for the im-
plementation of Ganesan Online Load Balancing [7], which provides a constant
global load imbalance ratio.

Structure

A Papnet is an overlay network consisting of n participants (nodes). Each node
is free to choose an arbitrary address from a global address space (key space) W.
There exists a total order < on W which allows to arrange all nodes in a ring
shape and determine each node’s successor and predecessor. Each node in Papnet
is responsible for a unique partition of the key space W that is determined by the
node’s address i and the address of its predecessor j: resp(i) = [j, i). The union
of all partitions covers the complete key space. In contrast to other networks, the
key space of Papnet is infinite and allows for keys of arbitrary length. Further, it
has the unique property that between any two distinct keys a and b with a < b, a
third key c can be constructed so that a < c < b.

Each Papnet node stores and maintains only an efficiently small set of links to
other nodes of size O(log n). Nevertheless, each node is able to send messages
towards arbitrary addresses and the path taken by each message is guaranteed to
consist of only an efficient small number of forwarding steps (hops), which is also
in O(log n). Further, Papnet uses a technique called Proximity Neighbor Selection
[55] that allows for optimizing the latency induced by the forwarding steps.

The routing table of a Papnet node has three components: so-called neighbor-
links which ensures the basic connectivity of the network and boundary-links that
enable efficient routing. The third component are the proximity-optimized routing-
links.
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The neighbor-links of a node i point to the closest nodes preceding and succeeding
i in the key space. These links are periodically tested for liveness and get properly
adjusted in case of node arrival, departure or failure. The actual repair mechanism
is trivial, so we refer the interested reader to a detailed description in [71].
A simple explicit scheme is used to construct so-called boundary-links in expo-
nentially growing node distances. The boundary link at level 0 B(i)0 of node i
is defined to be its immediate neighbor. The boundary link at level 1 B(i)1 is
constructed by asking the node j = B(i)0 for its own level-0 boundary link B(j)0.
The boundary link at level 2 B(i)2 is constructed by asking the node j = B(i)1

for its own level-1 boundary link B(j)1. This procedure continues until a link is
constructed that skips more than the total of nodes in the network. Thus, the
number of boundary links is in O(log n).
Using the boundary-links, efficient routing in terms of forwarding steps can be real-
ized. However, the routing will not be efficient in terms of latency. This is because
each boundary link B(i)x is constructed deterministically and the latency between
i and B(i)x is expected to be the median latency δ between two arbitrary nodes
in the network. Using only the boundary links for routing will therefore induce a
total latency of |p| ∗δ, where |p| is the length of the path. To avoid these expensive
routing costs, Papnet defines a third set of links called the (actual) routing-links.
These links are very similar to the boundary links, except that each routing link
is free to be any node in-between two succeeding boundary links.

Figure 5.2 illustrates the state of a Papnet node. It shows two views of the
very same network: the key space view, where nodes are positioned on a uni-
form (unskewed) ring and the logical node-space view, where nodes are positioned
in uniform distances on a skewed key space ring.

Figure 5.2: Key- and node-space view of a Papnet network.
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5.4 Papnet Extensions

In chapter 4 we described a simple routing algorithm for Papnet that provides an
efficient average path length of log 4

3
n hops:

Any node i that receives a message for destination key d forwards the message
to the node j taken out of i’s neighbor- and routing-links that is the closest node
succeeding d.

While this simple algorithm works very well, it does not take full advantage of
Papnet’s bi-directional routing links. Therefore, we will now refine the routing
algorithm:

Any node i that receives a message for destination key d first checks if i or any
of i’s immediate neighbors is responsible for d. If that is the case, i delivers the
message to the respective node. If not, i chooses the set of boundary links B(i)left

or B(i)right, so that d ∈ [B(i)dir
k , B(i)dir

k+1) and k gets minimal and forwards the

message to R(i)dir
k or any known closer node that lies in-between the chosen bound-

aries.

The major difference to the previous routing algorithm is that the node x that
is chosen for forwarding does not necessarily have to succeed the destination d
anymore. Instead, it may be any node that lies inbetween the interval of boundary
links B(i)k and B(i)k+1 for the direction where the remaining distance is smallest.
Algorithm 11 describes the new routing in a more precise way:

Algorithm 11: i.RouteMsg(d ∈ W, msg)

1 if d ∈ resp(i) then i.Deliver(d, msg)
2 if d ∈ resp(nbr(i)) then nbr(i).RouteMsg(d, msg)

3 Let dir ∈ {left, right}, so that d ∈ [B(i)dir
k , B(i)dir

k+1) and k is minimal

4 Let C := {x ∈ R(i) ∪ N(i) | x ∈ [B(i)dir
k , B(i)dir

k+1)}
5 Pick j from C where distance d(i, j) is minimal
6 j.RouteMsg(d, msg)

The above algorithm guarantees termination after a maximum of blog2
n
2 c hops.

This can be shown in the following way: Consider the first routing step on some
node i: the maximum node distance s to the node being responsible for the des-
tination key is s = bn2 c. The destination key therefore lies between two boundary
links B(i)k and B(i)k+1 where k ≤ blog2 sc.
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By forwarding the message to some node j that is located in-between these bound-
aries, the remaining node distance s′ is lowered to be strictly smaller than 2k.
Therefore, in the next routing step j will consider an interval of boundary links
[B(j)k′ , B(j)k′+1) where k′ ≤ blog2 s

′c < blog2 2kc = k, pick one node out of that
interval and forward the message.

The key observation is that with each routing step, the level k′ that is used in
the next step is strictly smaller than the currently used level k. We can therefore
bound the maximum path length by blog2

n
2 c.

Optimal proximity

The goal of Papnet’s proximity optimization is to find the most proximate routing
links. Any routing link of a Papnet node has to satisfy the condition of lying inbe-
tween two of this node’s boundary links. Thus, there exists a fixed deterministic
set of candidate nodes for any routing link of a node. We say that a routing link of
a node i is optimal, if there is no other candidate node that is closer to i according
to a distance function d(x, y).

All routing links are initialized with their corresponding boundary link: R(i)k :=
B(i)k for all levels k, so that the structural condition R(i)k ∈ [B(i)k, B(i)k+1)
is satisfied. As nodes will learn about more proximate nodes from the set of
candidates, they will replace their routing links with those nodes. However, this
also means that the distance of any particular routing link can only decrease, but
never increase. Thus, once a node has learned about all candidate nodes for one
of its routing links, this link will be optimal. Once all routing links of a node are
optimal, we say that the node is optimal. Finally the network is optimal, if all
nodes are optimal.

We can guarantee the eventual optimality of the network, if we can ensure that
all nodes will eventually learn about all candidates of any particular routing link.
Eventual optimality can be achieved easily by successively testing all other nodes
in the network. However, this trivial solution will not converge fast towards an
optimal state. In contrast, Papnet uses a candidate discovery protocol that allows
for fast optimality convergence and eventual optimality. Note that we only con-
sider static networks that are not subject to churn (node arrivals and departures).
However, even in dynamic networks convergence towards optimal tables can be
guaranteed once no more churn occurs.
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Optimization Protocol

Papnet utilizes the simple assumption that the routing-links R(i) of any node i
are close to i. Now if j is any routing link of i, then we expect that the routing
links R(j) are not only close to j, but also to i, since j is close to i. Therefore,
whenever a node wants to optimize a routing link j = R(i)k on some level k, it
will ask j for some node x that may be suitable to replace j in i’s routing table.

The node j will return a random one of its routing links x = R(j)k′ , where k′ < k.
By restricting the level k′, we ensure that the probability that x satisfies the
structural requirement x ∈ [B(i)k, B(i)k+1) is at least 0.5, as we have shown in
section 4.5.

Node i will therefore learn about a close node x that is likely to be from the set of
candidate nodes for its routing link R(i)k.

While this optimization technique already provides a fast discovery of nearby can-
didate nodes, it does not guarantee eventual optimality of the link. To guarantee
that all possible candidates will eventually be discovered, we modified the above
protocol slightly.

The node j that is asked by i now will immediately return the node x as described
above only with a probability of 0.5. Alternatively, it will forward the discovery
request to a random routing link j′ = R(j)f , where f<k. In that case, j′ will
proceed in the same way as j, either reply to i with a random x = R(j′)k′ where
k′<k or forward to some random j′′ = R(j′)f ′ with f ′<f . In order to guarantee
termination, we restrict the level f to get strictly smaller with each forwarding.

For every node in the candidate set, it is possible to construct a sequence of
forwarding steps using only routing links of strong monotone decreasing level that
will result in that very node to be discovered. The construction is similar to the
routing algorithm: Consider the node j as above and some node x that we want
to be discovered. Now since j and x are from the candidate set of the routing-link
j = R(i)k, we know that the node distance between both is < 2k, because the
candidate set is of size 2k. Now there are two cases: either the distance is already
also lower that 2k−1, or j has a routing link R(j)k−1 that points to a node whose
distance to x is lower than 2k−1. In the second case, R(j)k−1 will be the first
forwarding step on our path towards x, otherwise we stay on j. Now we consider
the next lower distance 2k−2 and proceed in an analogue way, either forward or
stay. Eventually, we will reach the destination node x by that strategy and the
path will consist of forwardings using strongly decreasing levels of routing links.
The randomization of forwarding finally ensures, that this path will eventually be
taken.
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Figure 5.3: Optimization Example

Figure 5.3 illustrates the discovery procedure: Node i wants to discover a new
routing link that lies in-between the boundaries [B(i)1

k, B(i)1
k+1). Thus, it sends

a discovery message to its current routing link j, which in turn forwards it to a
random own routing link j′. j′ forwards the message even further to one of its
own routing links j′′. The strictly monotone-decreasing boundary index k ensures
an eventual termination of forwardings. Along the path, the decision to forward a
message is randomized and happens with a probability of 50%. In the remaining
50% of cases, a node will not forward, but answer directly to i.

The described optimization protocol ensures that most close nodes are found fast
and that all candidates of any routing link will be discovered eventually. Therefore,
the network must eventually converge to an optimal state.

Costs

Each optimization step is expected to cause three messages. The first one is caused
by the initial discovery request of i to one of its routing links j. The second message
follows from the expected number of forwarding steps, which equals 1. This is
because the probability that the forwarding terminates after 0,1,2... forwarding
steps is 1

2 ,
1
4 ,

1
8 ... and thus the expected value calculates to

∑∞
i=0

i
2i+1 = 1.0. The

third message is the final reply containing the potential candidate x. In case
latency is used to determine the distance d(i, x), two more messages are required
to measure the round-trip-time.
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5.5 Evaluation

In this section, we evaluate the performance of Papnet and compare it with the
well-known hash-based and proximity-aware overlay network Pastry. Both net-
works have been implemented as simulations in Java. Comparing Papnet and
Pastry is not easy since both use different rules to setup their routing links. Pas-
try also has a configurable parameter b that has a large influence on the size of the
routing table as well as the number of neighbor-links. We decided to instantiate
Pastry with values of b = 1 . . . 4 and 2b neighbors each. In Papnet we used a
fixed number of 16 neighbors. In all comparison tests, we filled each nodes rout-
ing table with optimal links using the following strategy: For any possible entry
in the routing table, lookup the subset of nodes in the network that are possible
candidates for that very entry and pick the most proximate one according to the
latency metric. This leads to optimal routing tables in both, Papnet and Pastry.

In order to make both networks comparable, we measured the number of unique
node links in each nodes routing table (which is the union of routing- and neighbor-
links), the so-called node state. Figure 5.4 a) shows the encountered average node
states for Papnet and four different instances of Pastry with network sizes ranging
from 250 to 4000 nodes. We observe that Papnet has a slightly larger average
node state than a Pastry network with b = 3, but fewer entries than one with
b = 4. Note that Papnets Boundary links are not included in the node state, since
these are not used for routing. Figure 5.4 b) depicts the average number of routing
steps needed to route a message between arbitrary nodes. Clearly, paths in Papnet
consist of more hops than in a Pastry network with b ≥ 3. However, both figures
show that Papnet is able to scale in a similar way as Pastry.

(a) Average node state (b) Number of hops

Figure 5.4: Comparison between Papnet and Pastry.
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Figure 5.5: Median stretch at different network sizes

We evaluated the path latencies of both overlays by measuring the so-called stretch,
which is the sum of latencies encountered on the path, divided by the direct latency
between the first and last node on the path. Figure 5.5 illustrates the median
stretch of 10, 000 test messages encountered at different network sizes. Note that
the routing performance in terms of latency is better in Papnet than a Pastry
network with b = 3, even though the actual routing paths are longer.

The Figures 5.4 and 5.5 show average values from 10 separate runs, measured in
steps of 250 nodes. The shown tests were conducted using a simulated Euclidian
latency metric. Additionally, we also made tests using real Internet latencies. In
particular, we used the following two metrics:

Simulated latencies based on Euclidean coordinates
We assigned each node a random position in a two-dimensional coordinate system.
The actual latency was calculated as the Euclidean distance between any two nodes
coordinates.

Real latencies based on the King dataset
The King dataset [72] provides a matrix of real latencies between ca. 1200 real
world DNS servers. Unfortunately, the King dataset is incomplete and approxi-
mately 6.6% of the matrix entries contain an invalid value of −1. For our tests, we
selected 1, 000 nodes with a preference for those having the fewest invalid latency
samples. We replaced any remaining entry where L(x, y) = −1 with its counter-
part L(y, x) if it was not invalid as well. All other invalid entries were replaced by
L(x, y) = L(x, z)+L(z, y) by looking up a node z so that the sum gets minimal.

72



5.5 Evaluation

(a) Simulated latencies (b) King Dataset latencies

Figure 5.6: Latency stretch CDFs for n=1000.

Figure 5.6 shows the cumulative distribution functions (CDF) of the latency stretch
of 10,000 test messages in a network of 1,000 nodes using either a) simulated or
b) real latencies from the King dataset. In order to make Papnet and Pastry
comparable, the average node state of each network has been measured and is
depicted in the figure’s legend.

Note that using real latencies, stretches less than 1.0 become possible. This is
because the triangle inequality not necessarily holds in real world networks and
thus an overlay path may be shorter than a direct connection.

The figure clearly shows that Papnet is able to provide low path latencies that are
comparable to those of Pastry. In the case of simulated latencies, Papnet provides
path latencies that are better than a Pastry network with b = 3 but worse than a
network with b = 4. This seems feasible, since the average actual node state of the
tested Papnet (27.7 unique links) lies in-between the states of the pastry networks
with b = 3 and b = 4 (24.0 and 42.7 unique links).

Using real latencies from the King dataset, Papnet seems to provide less very low
path latencies than the Pastry networks with b ≥ 3. We suspect this to be caused
by Papnet’s average number of hops, which is higher than those of a Pastry network
with b ≥ 3 (see Figure 5.4b)). However, concerning probabilities higher than 0.85,
Papnet seems to provide lower path latencies than any tested Pastry network.

Note that the comparison has been done using optimal routing tables for both,
Papnet and Pastry. In Pastry, however, there is no guarantee that this optimal
state will ever be reached.
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Convergence to optimal state

Figure 5.7 demonstrates the performance of Papnets proximity optimization pro-
tocol over time for different network sizes. The horizontal axis represents time,
measured in optimization steps. In each step, all nodes optimize exactly one level
of routing links in a round-robin manner. The actual time between any two opti-
mization steps can be freely adjusted, so that arbitrary tradeoffs between overhead
and convergence speed are possible. In our tests we performed 1 optimization step
each second and observed a constant message traffic of about 250 byte/s per node,
caused by the optimization. This constant rate was observed in all of the tests and
appears to be independent of the network size.

Notice how fast Papnet optimizes the links. In networks of up to 4, 096 nodes, only
100 optimization steps suffice to let more than 60% of all routing-links become
optimal. After 300 steps, more than 90% are optimal. Overall, the measurements
indicate an eventual convergence against an optimality of 100%.

Figure 5.7: Optimality convergence
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Effects of Latency Awareness

To demonstrate that latency awareness is crucial, we also compared Papnet to the
non-latency-aware Overlay Chord. The properties of example networks of 10,000
nodes measured with our simulator1 are given in Figure 5.8.

Nodestate Path Length Latency Stretch
Min Med Max Min Med Max Min Med Max

Chord 12 15 18 1 8 14 1.0 7.62 894.11

Papnet 32 34 36 0 5 9 1.0 1.28 13.26

Figure 5.8: Chord vs. Papnet (10, 000 nodes).

Figure 5.9 depicts the routing tables of example nodes in the simulated networks.
As one can see, each network sets up a different number of routing links, which
makes the different Overlays incomparable in principle. However, despite the differ-
ent link count, one can observe that Papnet sets up more proximate links whereas
Chords links exhibit a more uniform distribution.

Figure 5.10 illustrates the consequences of the latency awareness when routing
messages. Chord is completely unaware of link latency and thus each routing step
may result in large delays. Papnet on the other hand is latency-aware and induces
only small delays with each step. While Papnet provides latency stretches as low as
those in Pastry, only Papnet is able to guarantee an eventual convergence against
the optimal state.

5.6 Conclusion

In this chapter, we have presented the proximity optimizations of Papnet. We
have shown, that hash-free overlay networks are able to provide fast path laten-
cies, comparable to those of hash-based overlay networks like Pastry. Furthermore,
we presented a new algorithm that allows Papnet to guarantee eventual routing
link optimality as well as fast optimality convergence. This guaranteed eventual
optimality is a unique feature of Papnet and to our knowledge has not been ac-
complished in other Overlay networks yet, may they be hash-based or hash-free.

1Publically available online at http://www.papeer.net:8000/papnet/Papnet.html.
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(a) Chord

(b) Papnet

Figure 5.9: Example Routing-Tables in networks of 10, 000 nodes..
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Example routes in Chord (left) and Papnet (Right).
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In this chapter, we will present an application that greatly benefits from the prop-
erties of the Papnet P2P Overlay. In particular, we will use range queries and show
how the constant global imbalance allows for a linear scaling with query load.

6.1 Introduction

The efficient processing of spatial data is a vast field of research that is being
studied since many decades ago. Many centralized spatial structures have been
developed to efficiently partition spatial search spaces and thus enable fast query
evaluations. However, these structures hardly allow for distribution, since they
often assume an initial knowledge of the total spatial data in order to construct
the index or require a lot of rebalancing when dealing with dynamically changing
data. Further, the need for top-down evaluation of these structures results in
non-uniform load distributions in distributed settings.

We propose a distributed system that is solely based on the Hilbert curve, a so-
called space-filling curve that is able to map any d-dimensional bound domain down
to the unit interval [0, 1). By utilizing the inherent space-partitioning structure of
the Hilbert Curve, we demonstrate how approximations of spatial bounding rect-
angles can be computed in an ad-hoc manner that allow for an efficient evaluation.
Our approach avoids the costly setup and maintenance of explicit data structures
like R-Trees [73], while at the same time allowing for large-scale distribution and
parallel query evaluation.
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6 Scalable spatial data processing with Papnet

Further, we show how our approach can be implemented on top of a Peer-to-Peer
(P2P) overlay that provides scalability and fault tolerance. Our approach differs
from the usual mapping of spatial data to a Distributed Hash Table (DHT) that
has been described several times in the literature in that we do not require any
hashing or mapping layer that transforms data keys into entities suitable to be
stored in a hash table. Instead, we utilize a p2p overlay that is capable of storing
arbitrarily distributed data keys in a natural order and also allows for latency-
optimized routing. Further, the P2P structure allows for the implementation of a
simple but yet sophisticated and efficient load balancing strategy that guarantees
a constant maximum data imbalance ratio throughout the distributed system.

In particular, our main contribution is the following: We show that a space fill-
ing curve such as the Hilbert curve alone provides sufficient space partitioning
properties to allow for efficient evaluation of window- and k-nearest-queries in a
distributed setting. To our knowledge, all other systems capable of processing
such queries that have been described in the literature so far require the setup and
maintenance of additional explicit spatial structures.

This chapter is structured in the following way: Section 6.2 gives an overview on
related work. In Section 6.3 we describe our approach and how window- and k-
nearest-queries can be evaluated in a distributed manner. Section 6.4 covers our
prototype implementation and Section 6.5 presents measurements acquired using
a real life data set. Section 6.6 concludes the chapter.

6.2 Related Work

Up to now, there exist a variety of approaches and publications on how to im-
plement distributed spatial indexes using P2P architectures. There are basically
two different paradigms [74]: (1) either a centralized spatial index (e.g. an R-Tree)
is being partitioned and distributed, or (2) the multidimensional data may be
mapped to fit the dimensionality of the P2P systems key space and is then being
partitioned according to the topology and properties of the P2P system, e.g. a
distributed hash table (DHT).

Systems of type 1 implement a distributed hierarchical spatial structure that needs
to be evaluated in a top-down manner. Thus, the nodes that are located close to
the root level of the spatial structure tend to get overloaded. Further, such index
structures require costly rebalancing procedures upon node joins and leaves.

In [75], Mondal et al. propose a distributed spatial index of type 1 called P2PR-
Tree. The index consists of rectangular blocks that are organized in a hierarchical
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set of levels and assumes that the top two levels are constructed statically. This
requirement however casts doubts whether the index is able to handle arbitrary
dynamic data.

Another index of type 1 is proposed by Tanin et al. in [76]. They propose a
distributed quadtree structure and create a hierarchy of quadtree cells whose cen-
troids are hashed to keys in a classic DHT P2P overlay. To tackle the problem of
overloads and single-points-of-failure that arise from the need of queries being eval-
uated top-down from the root of the quadtree, they introduce an explicit concept
to keep the top tree levels free of data.

Examples for approaches of type 2 are CAN [36] and Murk [7], which both use
multidimensional P2P overlays. In [74], Kantere et al. propose a multidimensional
spatial index of type 2 that can be implemented atop arbitrary DHTs. However,
they require a static partitioning into regular grid cells, which can be identified
by hashed values and therefore assigned to specific nodes in a DHT. Due to the
regular grid structure, it remains questionable if the system is able to adapt to
locally clustered data at arbitrary scale.

The probably closest approach to our own is SCRAP [77] which also uses a space
filling curve to map spatial data to one dimension and then performs a partitioning
of the linear space amongst nodes. To evaluate a window query, SCRAP calculates
the curve segments relevant to the query (those that cover regions of the query
window) and then evaluates the nodes responsible for these segments. The authors
explicitly mention the usage of a query mapping technique that may produce false
positives (curve segments not covered by the query window) and thus leads to
evaluation of nodes that are actually not relevant to the query. The problem of
k-nearest query processing is not addressed in the paper.

In contrast to SCRAP, we propose an iterative query evaluation technique that
does not require an initial determination of all curve segments relevant to a query.
Our technique avoids false positives as well as the processing of curve segments
that do not contain any data. Further, we show how our approach is able to
efficiently process k-nearest queries.
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6.3 Spatial Partitioning

To simplify the problem of processing multidimensional spatial data, we make use
of a so-called space-filling curve (SFC). Such curves are a class of bijective functions
that map arbitrary dimensional but bound data down to the unit interval: SFC:
[0..1)k ↔ [0..1). Note that this linearization of space does not induce any loss of
information, since any bound multidimensional space contains just as many points
as the unit interval [0..1).

SFCs provide the nice property to preserve locality throughout the reduction of
dimensionality. Spatial points that are close in the multidimensional domain are
thus highly likely to also have close coordinates on the 1-dimensional curve. Thus,
queries for arbitrary spatial areas are highly likely to require only the evaluation
of small subsets of these partitions. Another key advantage of this approach is
that a single linear data domain ideally allows for non-complex partitioning and
distribution.

Figure 6.1: Hilbert curves of first, second and third order.

In particular, we use the Hilbert Curve (HC) which is depicted in Fig. 6.1. We
prefer it over other SFCs, because it has been shown [78] to provide much better
locality properties than other known SFCs, e.g. the Z-Curve [79]. The Hilbert
Curve is defined in terms of orders, where each order can be constructed based
on the previous lower order in a recursive manner using the following (informal)
rule:

• Divide curve into 4 equal-sized copies.
• Rotate the start quarter counter-clockwise.
• Rotate the end quarter clockwise.
• Connect appropriately.

Figure 6.2 illustrates the above transformation.

82



6.3 Spatial Partitioning

Figure 6.2: Hilbert Curve construction step.

The Hilbert Curve is a fractal curve that assigns each spatial point a unique one-
dimensional coordinate (Hilbert value/path) and vice versa. This linear coordinate
does not necessarily need to have a finite representation, i.e. the point x = 0.5,
y = 0 gets approximated by the curve as the orders increase, but there is no finite
Hilbert value that represents the corresponding curve point. However, given that
we describe and process spatial coordinates only by variables of fixed precision (i.e.
64 bit doubles), we can assign finite Hilbert values to all such spatial points.

Using an SFC for reduction of dimensionality, we gain a natural order on any set
of spatial points. Figure 6.3 gives an example mapping, where 2500 Points (left)
are mapped using a Hilbert Curve (middle, showing a lower order for illustration)
resulting in an ordered set of spatial points (right, connected).

Figure 6.3: Mapping spatial data to a Hilbert curve.

Any ordered set of points on the Hilbert Curve is embedded into the unit interval
[0..1). This interval may be thought of as forming a key space with ring topology,
which can be partitioned into (nearly-) equal-sized segments, either by key range or
element count. We prefer the latter, because we want to distribute the total data
to autonomous nodes that shall manage equal shares. An example partitioning
can be seen in Figure 6.4.
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6 Scalable spatial data processing with Papnet

Figure 6.4: Partitioning a mapped set of spatial points by element count.

The single segments of the partition can largely differ in key space size, because
there may exist clusters of data keys. This is because real world data is not likely
to be distributed uniformly across the spatial dimensions and the curve mapping
preserves clusters to a large degree. This effect can be visualized by mapping the
segment boundaries back to spatial coordinates as depicted in Figure 6.5 (the labels
a-h are only for illustration and do not exactly resemble those in Fig. 6.4). As
the number of segments is increased, densely populated spatial areas will contain
a larger fraction of segments.

Since the curve mapping preserves locality, queries for rectangular windows will
only need to evaluate highly co-located segments. An example query for the area
around Berlin/Germany is shown in Figure 6.5 (right). This query only affects the
highlighted 3 of the total 64 segments. Note that there is indeed a third segment
in the center which is barely visible, because it only covers the small-in-area but
densely populated center of the German capital.

Figure 6.5: Partitioning German OSM data into 8, 32 and 64 segments
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Quad Tree Structure and Window-Queries

The Hilbert Curve is by definition a structure that partitions space into regular
subspaces. Each partition step can be identified by a binary string of length d,
where d is the dimensionality of the spatial source domain. If d = 2, each step is
from the set S = {00, 01, 10, 11}. Figure 6.6a) illustrates this quad tree structure.

Figure 6.6: a) Quadtree structure. b) Example window query

We call the set of sequences of such steps the Hilbert paths P = S∗. Each path
p ∈ P identifies a unique spatial cell in the source domain. Formally, any particular
paths p and p′ may be concatenated to form another path q := p · p′. Paths also
allow for comparison using a lexicographical order, e.g. 01 > 00 and 1100 > 11.
Queries for arbitrary rectangular spatial areas (so-called window queries) can be
evaluated iteratively by traversing this quadtree structure. One way to do this, is
to calculate a set of disjunctive quad tree cells that entirely cover the spatial query
window and then evaluate them along the curve. Figure 6.6 b) shows an example
evaluation of the query-window w0 = (0.375, 0.25), w1 = (0.75, 0.875).

To find all relevant spatial cells in order we can use Algorithm 12, which takes 4
parameters: the current Hilbert path p, the minimum Hilbert path pmin and the
corners of the query window w0 and w1. The current path p is initially empty,
gets extended by two bits in each recursion and ultimately identifies the resulting
spatial cell we are looking for. The minimum Hilbert path pmin is used to exclude
cells that we already processed, i.e. if pmin = 10 then we are only interested in the
second half of the Hilbert curve. The algorithm returns the path of the next cell
to process, or null in case there is none left.
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Algorithm 12: P nextCell(p, pmin ∈ P , w0, w1 ∈ [0..1)2)

1 // test if current cell contains cells ≥ pmin

2 if 6 ∃p′ : p · p′ ≥ pmin then return null

3 // test for window intersection
4 Let c0, c1 ∈ [0..1)2 := spatialCorners(p)
5 if intersect(c0, c1, w0, w1) = ∅ then return null

6 // test if cell is entirely contained in window
7 if p ≥ pmin ∧ (c0, c1)⊆(w0, w1) then return p

8 foreach d ∈ {00, 01, 10, 11} do
9 Let psub := nextCell(p · d, pmin, w0, w1)

10 if psub 6= null then return psub

11 return null

Algorithm 12 first checks whether there exists any path suffix p′ that can be con-
catinated to the current path p to form a path that is greater that pmin (line 2).
If, for example, p = 00 (upper left quarter of the Hilbert curve, cf. Fig 6.6) and
pmin = 10, then obviously there is no path with prefix 00 that is greater than pmin

(meaning that the upper left quarter of the curve does not contain any cells that
belong to the second half of the Hilbert curve). Next, we calculate the spatial min-
imum and maximum corner c0, c1 of the cell defined by the current path p (line
4) and check if the cell intersects with the query window (line 5), e.g. in Fig. 6.6
the cell p = 00 has corners c0 = (0, 0), c1 = (0.5, 0.5) and intersects with the query
window. Then, we test if the current cell is entirely contained in the query window
and if its path is not lower than pmin (line 7). If both can be confirmed, we found
the next cell. Otherwise, we will recurs (lines 8-10) and search all sub-cells of the
current cell by concatenating 00, 01, 10, 11 to the current path p (in exactly that
order). If no matching cell was found, a null value is returned (line 11).

Using Algorithm 12, the window query depicted in Figure 6.6a) expands to:

p0 := nextCell(∅, ∅, w0, w1),
p1 := nextCell(∅, inc(p0), w0, w1),
p2 := nextCell(∅, inc(p1), w0, w1),

... ,
p9 := nextCell(∅, inc(p8), w0, w1) = null.

Note how we raise the minimum path pmin with each iteration by incrementing the
path of the previously processed cell. The inc(p) operation looks up the rightmost
step s < 11 in p, cuts all following steps and then increments, e.g. inc(00) = 01,
inc(0101) = 0110, inc(0011) = 01, inc(110011) = 1101, inc(1111) = null.
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Algorithm 13: windowQuery(w0, w1 ∈ [0..1)2, data ⊂ P )

1 Let results ⊂ P := ∅ // result set
2 Let i ∈ N := 0 // data index
3 while i < |data| do
4 // test if data element is in query window
5 if notInWindow(w0, w1, coordinate(data[i])) then
6 // calculate next cell
7 Let p ∈ P := nextCell(∅, data[i], w0, w1)
8 // get index of first element ≥ p
9 i := data.ceilingIndex(p)

10 else results += data[i++]

Of course there are lots of spatial query windows where an evaluation as described
above results in large numbers of cells. The number of cells can however be bound
by the number of actually existing data elements, simply by skipping empty cells.
Algorithm 13 efficiently evaluates a window query. The algorithm takes the query
window (w0, w1) and a data set (e.g. a nodes partition) as input. The data set
is a sorted list of ascending Hilbert values representing the spatial positions of
data objects, which is being iterated using an index counter (lines 2-3). In each
iteration, the current data object will be tested against the query window (line 5)
and being added to the result set (line 10) if it is contained (increasing the index
counter afterwards). If not, then the Hilbert path of the next spatial cell where
the Hilbert Curve re-enters the query window will be calculated using the current
objects Hilbert value as minimum path (line 7). Finally, we increase the index
counter to point to the next data element whose Hilbert values is at least as high
as the value of the calculated cell (line 9).

Assuming the data space has been partitioned into n partitions R1 · · ·Rn, the
window query algorithm easily extends to a distributed evaluation. After calcu-
lating the first query cell p0 = nextCell(∅, ∅, w0, w1), the query is forwarded to
the node responsible for the partition Rx that p0 lies in: p0 ∈ (Rx−1, Rx]. This
node will then process its local data (using Algorithm 13 and forward the query
afterwards to the node being responsible for p1 := nextCell(∅, inc(Rx) , w0, w1).
The forwarding continues until the entire query window has been evaluated.

We thus have defined a sequential processing order for window queries that can
be implemented in a distributed system. Note that while the traversal order is
sequential, the actual data processing can be parallelized by postponing local data
processing and forwarding the query first. This parallelization will pay off when-
ever the local evaluation is expensive, e.g. when processing k-nearest queries.
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Remark: We think that even the node traversal itself does not necessarily need to
be strongly sequential, but can be efficiently parallelized by using local knowledge
about the global partition provided by the underlying network structure and load
balancing technique. In our case, each Papnet [71] node (see Section 6.4) sets up
links in exponentially increasing node distances, i.e. each node knows the 2kth
node for k ≥ 0 in both directions on the ring. Further, our used load balancing
technique ensures a constant maximum data load imbalance. We are thus able to
estimate the total data amount stored between two linear addresses. Now the key
idea is to 1) calculate the first and last cell relevant to the query, respectively their
corresponding minimum and maximum Hilbert value, 2) estimate the amount of
data elements between these values 3) estimate the node that is responsible for
the median element 4) send the query to both nodes being responsible for the
minimum and median value and 5) repeat the procedure at those nodes. However,
this strategy requires further investigation and we leave it as future work.

K-Nearest Queries

Provided with an efficient technique to evaluate window-queries, we will now show
how to process so-called k-nearest queries (knn), which means to find the k nearest
points to a given query pivot. Our technique uses the assumption that a query
window is provided which bounds the spatial area to search. It extends to an
assumption-free algorithm by starting with a small window and repeated execution
with a larger window in case less than k points have been found.

The classic approach to efficiently calculate the k closest entities to a given query
pivot is to utilize an explicit spatial data structure from a family called Regional
Trees or R-Trees [73]. An R-Tree clusters groups of close nodes within minimum
bounding rectangles (MBR) and assembles a hierarchical structure of enclosed
MBRs. At each tree node, an R-Tree can be efficiently searched in a depth-first
manner by calculating the minimum distance (query pivot to MBR) for each child
and processing them according to proximity. During the search, most nodes can
eventually be pruned (as soon as k data elements of closer distance are found).

R-Trees however require costly maintenance and rebalancing operations due to
dynamic inserts and deletions of data. Especially in a distributed setting, this can
result in complex message exchange protocols. Further, R-Trees are designed to
be evaluated in a top-down manner, which is fine for a centralized system, but
results in overloaded nodes in a distributed system – those that are located close
to the root level of the tree.
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Figure 6.7: Augmented Red/Black-Tree

We take a different approach and require nothing but a simple red/black tree data
structure to store the Hilbert values of the spatial entities. This structure provides
a worst case complexity of O(log n) for search, insert and delete operations. Addi-
tionally, we keep track of the cardinality of the subtree below each tree node. This
extended structure is known as the Augmented Red/Black-Tree (cf. [80]) and can
be seen in Figure 6.7. Note, that keeping track of subtree cardinalities is only a
simple extension which does not alter the complexities of the trees operations.

The augmented tree structure allows us to efficiently retrieve elements of arbi-
trary rank, especially the median element of arbitrary element ranges with known
boundary ranks. This in turn enables us to perform an efficient on-the-fly binary
partitioning of the data stored at a node, whenever a k-nearest query is being
evaluated.

Figure 6.8: PBC Calculation throughout dataset halving
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The second ingredient to our strategy is the on-the-fly approximation of minimum
bounding rectangles just as they are explicitly constructed in R-Trees. This is
achieved by calculating the smallest cell of the Hilbert Quadtree that entirely
covers the elements of a specific range of data. We call this minimum cell the
prefix bounding cell (PBC).

Figure 6.8 illustrates the PBCs of a data set that is being binary partitioned. Note
that the PBC size is not necessarily lowered in each halving step, i.e. the PCS of
half the data (Fig. 6.8 left) and the total data (not shown) are identical. However,
as we will explain later, some of the PBCs must shrink.

The PBCs allow us to utilize the very same search algorithm usually applied to
R-Trees to efficiently calculate the k nearest points. In particular, we keep a
priority queue of PBCs that is sorted by minimum distance to the query pivot and
process the closest PBC first. Initially, the queue only contains the root PBC that
comprises all of a nodes data. Whenever we process a PBC that contains more
than a threshold element count t, we determine the median element of that PBC,
split the data, calculate the two child PBCs and reinsert them into the queue. Note
that each time a PBC is split, there is at least one child PBC where all elements
share a common Hilbert prefix that is at least one bit longer than in the initial
PBC. Therefore, if we split any arbitrary PBC into two children and then split
those again, we end up with a set of 4 PBCs where at least 1 has a smaller side
length than the initial PBC. Since we are splitting using the median element, all
of the 4 PBCs contain 1

4 of the data elements contained in the initial PBC.

Figure 6.9 shows the evaluation of an example query for the k nearest entities to a
query pivot. You can see the PBCs and their corresponding distance to the pivot
for a partitioning using a threshold of t = 2 (max. elements in a PBC).

Figure 6.9: Query evaluation with distances to PBCs
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Time Complexity

To analyze the complexity of our knn-query evaluation approach, we will consider
the reduced problem of finding the single nearest data point to a given query pivot.
The worst case complexity of such a nearest-point query in a spatial tree structure
of dimension d is O(d ·n1− 1

d ) [81]. The average case is however of lower complexity.
We will now try to give an intuitive justification on why our approach is able to
provide at least an average complexity of O(log2 n) for nearest-point queries.

First, we assume the existence of an ideal guessing function g(A,B) that is able to
decide which one of two disjoint data sets associated with spatial areas A and B
contains the closest point to the query pivot. Now we take the PBC that contains
the entire data set and perform a repeated binary partitioning. In each step we
split the current PBC, apply g to both children, pick the one that contains the
closest point and discard the other. Since each partitioning halves the set of data,
it is easy to see that we will find the desired nearest point after log2 n steps.

Of course, in reality no such ideal guessing function g exists. What however does
exist, is the observation that given two areas A and B, the closest point is more
likely to be in the cell having the smaller minimum distance to the query pivot. We
assume the existence of such a (more realistic) guessing function g′(A,B) which,
provided with two distinct areas A and B, is able to correctly decide based on the
minimum distance of the pivot to A and B. If A = B then there is no candidate g′

can decide on, since both are of equal distance to the pivot. We thus need to show
that our partitioning method will provide distinct areas as suitable input to g′.

A single PBC that is split twice results in 4 PBCs that contain 1
4 data points

each and at least one of them covers an area that comprises only 1
4 of the initial

PBC area or less. Let A be exactly this smaller PBC and B be the smallest PBC
that contains the three remaining PBCs. Since A and B must be distinct and
we assume g′(A,B) to guess correctly, we can thus prune at least 1

4 of the search
space: either A or B. In the worst case, only 1

4 of the data can be discarded while
3
4 remain. The time needed for one iteration (partitioning) thus calculates to

T (n) = 3 · T (n4 ) + c

which results in a complexity of O(log n). Note that so far, we have ignored any
processing costs but those of the partitioning. Each split of a PCB requires a
lookup of the median element of its data set and also the priority queue of PCBs
needs to be maintained. The complexity of these operations is at most in O(log n).
We can thus estimate a processing complexity of O(log2 n) for an average nearest
point search (given that g′ guesses right).

91



6 Scalable spatial data processing with Papnet

6.4 Implementation

The methods described in the previous chapters may be implemented using a
classic master-slave architecture, where a central site manages the space partition.
However, for fault-tolerance and scalability reasons, we favor a fully distributed
implementation based on a peer-to-peer (P2P) architecture.

P2P Overlay

Our approach requires an overlay network that allows for both data and nodes to
be non-uniformly distributed in key space. Classic P2P-Overlays like Chord [2] and
Pastry [3] do not fulfill these criteria – their routing structure suffers severely from
non-uniform distributions as we have shown in [82]. There are, however, alternative
overlays like SkipNet [5], Chord# [6] and Papnet [71], that are able to handle non-
uniform key distributions while providing the same routing and space complexities
as classic DHTs. Out of those, we prefer our own development Papnet, because of
its latency-optimized routing abilities and load-balancing capabilities.

Figure 6.10: Key space and node space view of a Papnet

Figure 6.10 illustrates the network views of a single Papnet node: The key space
view (left) which allows for arbitrary skewed key distributions and the logical view
(right) that enables efficient routing without assumptions on the key distribution.
There are three types of links: 1) Neighbor-Links that ensure network connectivity,
2) Boundary links enabling routing in O(log n) and 3) Routing links that allow
for latency-optimized routing. A more detailed description of Papnet was given in
chapters 4 and 5.

92



6.5 Evaluation

Balancing the partitions

So far, we have assumed that all partitions manage an equal share of the global
data. Keeping such a uniform load distribution in a distributed setting can require
many load balancing operations which is often not feasible. There are however load
balancing techniques, that are able to maintain very good load distributions with
only constant amortized costs for insertion and deletion. One such technique is the
On-Line Load Balancing of range-partitioned data (OLB), proposed by Ganesan
et al. [7], which ensures a global constant imbalance ratio of most- to least-loaded
node. While the OLB cannot be applied to classic DHT-like overlays, hash-free
overlays such as Papnet naturally allow for an integration (as shown in [71]).

6.5 Evaluation

We evaluated the performance of our solution on a cluster consisting of eight
machines, each equipped with two Intel Xeon 5355 CPUs running at 2.66GHz,
32GB of RAM and interconnected by Gigabit Ethernet. Each CPU had 4 cores so
that we were able to deploy up to 64 worker instances, each assigned to a single
exclusive core. A ninth identical machine was used to generate the workload for
our tests.

In our tests we used real world data from the publically available Open Street Map
project1 (OSM). Since this data set is very large (> 1 Billion objects), we only used
the extract of Germany2 (ca. 70 Million objects). To avoid long data stage-ins
(and thus valuable computing time on the cluster) we ran our tests using a random
sub-extract of 1 Million objects.

We tested our system by issuing 5,000 * size(network) queries for the 10 nearest
objects around a pivot location. The pivot locations were selected randomly from
the set of 1 Million objects. This selection ensures a realistic query distribution in
that densely populated areas will be queried far more often than lightly populated
ones. To maximize the throughput, we ran 20 queries in parallel and set the PBC
split threshold to t = 200 (see Section 6.3).

1http://www.openstreetmap.org
2http://download.geofabrik.de/osm/europe/germany.osm.bz2
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6 Scalable spatial data processing with Papnet

Data Distribution

In order to provide scalability we require a very good data partitioning that assigns
each node an almost equal share of the global data load. We greatly benefit from
the Ganesan online load balancing [7], which guarantees a constant load imbalance
ratio, even upon dynamic data changes.
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Figure 6.11: Data imbalance ratio

Figure 6.11 shows the imbalance ratios we encountered at different network sizes
throughout all of our tests. As the number of nodes increases, the ratio rises
due to the fact that a larger quantity of partitions is more likely to differ in size.
However, the imbalance does and will not cross the upper maximum bound shown
and proven in [7].

The constant imbalance ratio results in a very good data load distribution and
is the basis for the scalability of our approach. In particular, we encountered a
highly stable mean load per node, which can be seen in Figure 6.12 for different
total amounts of data. Notice how the mean load exhibits a perfect linear decrease
with increasing node count.
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6.5 Evaluation

Processing Costs

As we explained in section 6.3 there are two ways to evaluate a query: either
sequentially, with each node passing the query to the next node after performing
a local k-nearest search, or in parallel with all nodes performing a local search
at nearly the same time. The former has the advantage that intermediate results
are passed from node to node and can thus be used for an iterative reduction
of the search space, while in a parallel evaluation, each node performs a local
search without external knowledge. Thus in parallel evaluation – which we used
throughout our tests – the number of nodes relevant to a query can affect the total
number of distance calculations that need be performed throughout the system.
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Figure 6.13: Total distance calculations

This impact can be seen in Figure 6.13, where queries for radii ≥ 20 km induce
rising numbers of distance calculations with increasing node count. Note that the
figure shows a total number of distance calculations, whereas the costs per node
are much lower, as can be seen in Fig. 6.14. Again, an asymptotic linear decrease
is noticeable.
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6 Scalable spatial data processing with Papnet

Query Latencies and Locality

The benefit of parallel query processing is fast round trip times (RTT), i.e. the
time passing from submission of a query until its full evaluation.
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Figure 6.15: Query RTTs

Figure 6.15 shows the RTTs encountered in our tests. Since we ran multiple
queries in parallel, the processing queues quickly fill up in low network sizes. As
the number of nodes increases, a query is more and more likely to be immediately
processed instead of being queued, so that response times ≤5ms can be reached.

Figure 6.16 shows the average number of nodes visited by a query. To allow for
global scaling, each query should require an evaluation on as few nodes as possible.
The number of nodes relevant for a query depends on two parameters: the query
radius and the network size. As the system size is increased, the graphs seem to
converge towards a fixed percentage of nodes. We presume the relative spatial area
queried to be a lower bound of the convergence value, which in case of Germany
(area ≈ 357, 111km2) calculates to ≈ 0.044%, 0.18%, 0.70%, 2.8% and 11.3% for
radii 5-80 km. The non-uniform distributions of both data and query pivots lead
to an increased convergence percentage.
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6.5 Evaluation

Throughput and Efficiency

Last but not least, we present throughput measurements acquired with our proto-
type. We calculated the throughput in queries per second by dividing the number
of queries by the time it took for all queries to complete. As in all of our other
tests, the total amount of data stored in the system was 1,000,000 records.

#nodes: 1 2 4 8 16 32 64

knn(10, 5km) 91 191 300 601 1224 2101 3928
knn(10, 10km) 91 170 285 537 1175 1820 3453
knn(10, 20km) 90 170 264 485 1006 1510 2788
knn(10, 40km) 90 145 227 381 766 1178 1996
knn(10, 80km) 90 116 184 323 563 792 1236

Figure 6.17: Queries per second for different radii

Figure 6.17 shows the average resulting throughput encountered in 3 runs for 5
different radii. The corresponding graphs are depicted in Figure 6.18. It turns out
that our approach scales almost linear with the number of nodes in the system.

It does not scale exactly linear because the further the system size is increased,
the larger the set of nodes managing the objects in the area of interest will get.
Because of the steadily increasing number of visited nodes, the communication
overhead will eventually dominate the gain in processing speed resulting from the
parallelization of query evaluation. However, the larger the problem space (total
amount of data in the system), the later this effect will be noticeable when scaling
the system.
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6 Scalable spatial data processing with Papnet
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Finally, we evaluate the scalability of our approach in terms of data count. To
get unbiased results, we ran this test separately on a single node and reduced
the split-threshold t to 1, so that cells get split until they contain only a single
element (see Section 6.3). Fig. 6.19 shows the resulting average processing costs
of single queries for different total amounts of data. Clearly, a sublinear growth of
processing costs with increasing data amount can be observed, which fits a function
y = a + b · log x + c · log2 x (also depicted) with a coefficient of determination of
R2 = 0.998. Therefore, the results confirm our average time complexity estimation
of O(log2 n) (see Section 6.3).

6.6 Conclusion

In this chapter, we presented a novel strategy for distributed processing of spatial
point data. It is to our knowledge the first such technique that avoids the con-
struction (and maintenance) of an explicit spatial data structure. Using only the
implicit spatial quad-tree that is inherent to the 2D Hilbert Curve, we have shown
how to efficiently process the two most important spatial query types: window-
and k-nearest-queries.

Our evaluation based on real world data and realtime processing has shown our
solution to scale almost linearly with the number of processing nodes in the sys-
tem. Further, we have shown that our system can be implemented on top of a
decentralized P2P system that provides scalability and fault tolerance. In contrast
to other P2P approaches, our solution is not based on a DHT and does not require
hashing at all.
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7 Conclusion

This thesis presented the new P2P Overlay network Papnet. It is one of the few
Overlay networks that are able to store keys in a natural order and do not require
any Hash mapping of keys. The natural order broadens the field of applications,
going beyond the capabilities of current DHT Overlays by introducing support for
range queries. As an example application, we demonstrated that a distributed
RDF store can greatly benefit from such a natural order to perform join queries
and avoid load hotspots.

The natural order stabilizes the scaling behavior of the global system by allowing
for load balancing with guaranteed constant imbalance. We have shown that classic
DHT systems too can be extended to support this kind of load balancing, as well as
range queries, but their topologies rely on a restricted finite id space and degenerate
under worst case conditions, e.g. extremely skewed data and node distributions.
The cooperative topology creation schema of Papnet, however, is well-suited for
any data and node distribution since its structure is independent of the actual key
space.

In contrast to other order-preserving P2P Overlays, Papnet is latency-aware. We
have shown that Papnet is able to provide a constant path stretch of only 2 and
guarantees a fast convergence against that value. The path latency is independent
of the actual network size – a property that makes Papnet superior to any existing
order-preserving P2P Overlay. The convergence guarantees have been confirmed
using simulated as well as real internet latency data and the scalability of our
approach has been demonstrated for up to 50, 000 nodes.
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7 Conclusion

Further, we proposed a new algorithm for processing dis-
tributed window- and k-nearest-neighbor queries on spatial
point data. Using Papnet as the core routing layer, the new
algorithm greatly benefits from ordered keys and the constant
data imbalance guarantees, which result in an asymptotically
linear scalability of throughput with node count. The latency
optimizations of Papnet ensure it can be deployed in large
clusters without causing severe routing overhead or packet
congestion. We have shown that the system provides short
query response times and query load scalability, especially for
compute-intensive computations such as k-nearest-neighbor
queries. The proposed algorithm is superior to existing solu-

tions in that it can handle arbitrarily skewed spatial data and does not require the
setup and maintenance of an explicit spatial data structure.

Papnet has been successfully deployed and tested in local environments, scaling
up to 50,000 nodes on 100 physical machines, but it still needs to be evaluated
in true large-scale and real-life settings. Further, since it strongly relies on node
cooperation, Papnet is currently only suitable for entirely controlled and trusted
environments. Impacts of non-cooperative and misbehaving nodes, as they are
likely to occur in publically accessible deployments on the Internet, have yet been
out of our focus and need further investigation.
Another interesting aspect for future research is the definition of load metrics
other than the classic element count. We presume metrics taking access frequency
into account to be more suitable for real life deployments, since they are able to
express load more fine-grained, which is required to coop with massive popularity
imbalances e.g. so-called flash-crowd effects.
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