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Chapter 1

Introduction

1.1 Semiconductor Technology

How important is the semiconductor industry for our society today? To give a quantitative
answer to this question it is useful to have a look at some economical data for the sector. In
2002 the sales of the semiconductor industry reached 70 billions $ in the US and 141 billions
$ worldwide.! Just to have an idea this corresponds to the gross domestic product (GDP)
of a nation like Finland.?2 The transistor production has been increasing exponentially
over the last decades (see Fig. 1.1). This has been possible thanks to strong investments
for research. In 2002 in the US 18% of the sales have been invested for research, this means
10 billions $. More information about the actual stand of research and new prospective
of the semiconductor industry is given by the International Technology Roadmap for
Semiconductors.? Semiconductors are used in many different industrial sectors from the
computer industry to the car and communication industry (see Fig. 1.1).

Semiconductor devices can be very complicated structures. This is the case for example
for optoelectronics devices such as light-emitting diodes (LED’s) or laser diodes. These
devices consist of vertically stacked thin films that differ by the material, alloy composition,
or doping as shown in Fig. 1.2, for the example of a vertical cavity semiconducting laser
(VCSL), which is a specialized laser diode widely used for fiber optics communications.
To employ quantum effects some of these structures are only a few atomic layers thick.
For the performance/efficiency of such devices the quality of the interfaces between the
different layers is crucial. Epitaxial growth is a key technique in fabricating these devices,
which requires a control at the atomic layer. In the next section the main characteristics
of epitaxial growth will be discussed.

1Source: www.semichips.org
*Finland’s GDP: 130.8 billions (2002), source:www.worldbank.org
Shttp://public.itrs.net
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Figure 1.1: a) Transistor production worldwide between 1989 and 2001 b) Sectors where
transistors are used.
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Figure 1.2: Scheme of Vertical Cavity Semiconductor Laser (VCSL).

1.2 Epitaxial Growth

The term epitaxy, introduced by L. Royer in 1928 [1], is used for the growth of a crys-
talline layer upon (epi) a crystalline substrate, where the crystalline orientation of the
substrate imposes an order (tazis) on the orientation of the deposition layer. In prac-
tice, an epitaxial growth system is characterized by two parallel contact planes of the two
crystal structures and by parallel crystallographic directions within these planes. If two
materials are different, the term heteroepitaxy is used, while for the growth of a crystalline
layer on a chemically identical, crystalline substrate, the term homoepitaxy is commonly
employed. Epitaxial growth is a very wide subject and it has been one of the key scientific
issues over the last decades. Books and reviews have recently appeared, which give a good
overview about the subject [2-8]. Epitaxial growth has enabled to prepare semiconductor
structures with compositional or dopant properties defined in layers with thickness down
to the atomic scale. The three most used epitaxial techniques will be briefly described here.

Chemical vapor phase deposition (CVD) has been extensively used, for example,
for silicon epitaxial layers. These layers are grown on silicon substrates by the controlled
deposition of silicon containing precursor molecules onto the surface from a chemical va-
por. In one method, silicon tetrachloride reacts with hydrogen at the surface of a heated
substrate, while the other reactant, HCI, is in gaseous form and is swept out of the reactor.



Liquid-phase epitaxy (LPE) is another epitaxial growth technique. A compound of
the semiconductor with another element may have a melting temperature lower than that
of the semiconductor itself. The semiconductor substrate is held in the liquid compound
and, since the temperature of the melt is lower than the melting temperature of the sub-
strate, the substrate does not melt. As the solution is slowly cooled, a single-crystal
semiconductor layer grows on the seed crystal.

Finally Molecular Beam Epitaxy (MBE) is conceptually the simplest way of fabri-
cating semiconductor heterostructures and the rest of this work will concentrate on this
technique. MBE is essentially a two-step process carried out in an ultra-high vacuum
(UHV) environment. In the first step, atoms or simple homoatomic molecules which are
the constituents of the growing material are evaporated from solid sources in heated cells,
known as Knudsen cells, collimated into beams and directed toward a heated substrate
which is typically a few centimeters in size. The particles within these beams neither
react nor collide with each other i.e., the deposition onto the substrate is ballistic and the
particles are said to undergo molecular flow - hence the name molecular-beam epitaxy.
The substrate is often rotated to achieve a more uniform deposition across the substrate.
The second step of MBE is the migration of the deposited species on the surface prior to
their incorporation into the growing material. This determines the profile, or morphology,
of the film and its effectiveness depends on a number of factors, including the deposition
rates of the constituent species, the surface temperature, the surface material, and its
crystallographic orientation, to name just a few.

Through experimental techniques such as field ion (FIM) [9, 10] and scanning tunnel-
ing microscopy (STM) [11], it is possible to see the surfaces during the growth at atomic
scale. Growth is a complex process and a large variety of structures can take place on
the surface during this process. Examples of different structures are illustrated in Fig 1.3
where one can see the submonolayer growth for Pt on Pt(111) surfaces. Here the shape
of the islands depends sensitively from the temperature and the coverage. Increasing the
temperature the islands change from a fractal structure to a more compact triangular and
hexagonal structure. From STM images it is also possible to get an insight on multilayer
growth. As shown in Fig. 1.4, after deposition of 37.1 ML Pt with a deposition rate
F = 1.3 x 1072 ML/s at a partial pressure pco = 1.9 x 10~ mbar of carbon monoxide
at 440 K, mounds form, which are build from the terraces scattering slightly around the
shape of an equal-sided hexagon. One can clearly see the atomic steps bounding the top
terrace and its base terrace.

Three different types of multilayer growth [14] can be distinguished as illustrated in
Fig. 1.5: the Frank-van der Merwe morphology [15], where one complete monolayer
grows after the other (also called layer by layer mode); the Volmer-Weber morphology
[16], where three dimensional islands are formed and the overlayer does not completely
cover the exposed substrate surface; and the Stranski-Krastanov morphology [17], with
three dimensional islands atop a thin flat wetting film that completely covers the substrate.
For lattice-matched systems, the Frank-van der Merwe and Volmer-Weber morphologies
can be understood from thermodynamic wetting arguments based on the interfacial free



Figure 1.3: Island shapes on Pt(111) resulting at various temperatures T after deposition
of an amount € with a typical rate of 1 x 1072 ML/s on images with a size S. (a) Ts =
200 K, 6 = 0.2 ML, S = 280 Ax400 A; (b) Ts = 400 K, # = 0.08 ML, S = 1300A x 1900 A;
(¢) Ts =455 K, 6 = 0.14 ML, S = 770 Ax1100 A; (d)Ts = 640 K, = 0.15 ML, S = 2300
Ax3300 A; (e1) Ts = 710 K, # = 0.08 ML, S = 1540 Ax1100 A; (ey) after deposition at
Ts =425 K (0 = 0.08 ML) the sample was additionally annealed to 710 K for 1 min and
than imaged (S = 630 Ax900 A)(after [12]).

energies. The Stranski-Krastanov morphology is observed in systems where there is ap-
preciable lattice mismatch between the epilayer and the substrate.

The first step towards a detailed understanding of the surface morphology during and
after growth is to map out all relevant atomic processes. A large variety of processes can
take place on the surface during growth. Fig. 1.6 illustrates the different atomic processes
encountered by adatoms. After deposition (a) atoms can diffuse across the surface (b)
and will eventually meet another adatom to form a small nucleus (c) or get captured by
an already existing island or a step edge (d). Once an adatom has been captured by an
island, it may either break away from the island (reversible aggregation) (e) or remain
bonded to the island (irreversible aggregation). An atom that is bonded to an island may
diffuse along its edge (f) until it finds a favorable site. As long as the coverage of adsorbed
material is low (say 6 < 10%), deposition on top of existing islands practically does not
occur. However, if the step down motion (g) is hindered by an additional energy barrier,
nucleation of islands on top of islands becomes likely (h).

These processes have very different time scales as illustrated in Fig. 1.7. The atoms
vibrate around their stable position with a frequency of 10~ s, which is the typical phonon
frequency. The formation of more complicated structures as quantum dots, nanocrystals
or the deposition of an entire layer on a surface can take as much as seconds. Between
these two limits there is a huge interval of 13 orders of magnitude to describe.



Figure 1.4: Typical STM image of mounds appearing on the surface after the deposition
of 37.1 Ml Pt/Pt(111) in a partial CO pressure of 1.9 x 10~ mbar. Eight top terraces
and the corresponding base terraces can be seen (after [13]).

10



T

Frank-van der Merwe

b)

Volmer-Weber
— | \
\

o W T

Stranski-Krastanov

Figure 1.5: Growth modes of heteroepitaxial growth a) Frank-van der Merwe b) Volmer-
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Figure 1.6: The different atomistic processes for adatoms on the surface: (a) deposition,
(b) diffusion at the flat regions, (c) nucleation of an island, (d) diffusion towards and
capture by the step edge, (e) detachment from an island, (f) diffusion parallel to a step
edge, (g) diffusion down from an upper to a lower terrace, (h) nucleation of an island on
top of an already existing island, and (i) diffusion of a dimer (or bigger island). For the
processes (a), (c), (g) and (h) also the reverse direction is possible, but typically less likely.
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Figure 1.7: Typical time scale for growth.

1.3 Structure of the Work

The present work is devoted to the computational modeling of epitaxial growth. The
processes involved in epitaxial growth range over a large number of orders of magnitudes
in time and space. No computational method can describe the details of epitaxial growth
from the atomic to the macroscopic scale. For this reason many different techniques have
been developed, which are suited to describe the different regimes of growth. In Chap. 2
an overview of the main simulation techniques for crystal growth will be presented. First,
microscopic methods as Density Functional Theory (DFT) will be described. In the second
part mesoscopic methods as Rate equations, continuum methods and kinetic Monte Carlo
(KMC) will be treated. In Chap. 3 the diffusion and the nucleation processes will be
presented in a density picture. For the nucleation different approximations derived from
concepts well known from electronic structure theory but so far never applied to describe
epitaxy, as Hartree and Hartree-Fock will be tested. Also a method called Hyper Jump
kinetic Monte Carlo (HJ-KMC), which can significantly reduce the simulation time of
these processes compared to standard KMC, will be described. In Chap. 4 two methods
for growth simulations will be discussed: the Adatom Probability kinetic Monte Carlo
(AP-KMC) and its faster version the Adatom Density kinetic Monte Carlo (AD-KMC).
In Chap. 5 the results for the methods presented in Chap. 4 will be given. A comparison
for the island density, the island size distribution and the island shapes between AP-KMC,
AD-KMC and KMC will be presented in this chapter. The development of these adatom-
density based simulation techniques which allow a very efficient description of epitaxial
growth is the main result presented in this work.

12



Chapter 2

Methods for crystal growth
simulations

Due to the complexity of crystal growth, a large number of methods has been developed
to simulate growth at various length and time scales. This chapter gives an overview
of the simulation methods available, their present advantages, disadvantages and range
of applications. Depending on the size of the system under study, these methods can
be divided into microscopic and mesoscopic. A schematic classification of the different
methods is given in Fig 2.1.

At the microscopic level (characteristic length of ~ 10~ m and time of the order of
the phonon frequency ~ 10712 s) ab initio methods (see Sec. 2.1.1 and Ref. [18]), which
apply directly to the system under study, are the method of choice. In ab initio calcu-
lations the principles of quantum mechanics are applied to poly-atomic systems without
using any empirical or adjustable parameters. For this reason ab initio methods are called
parameter free methods. These methods give precise results but can be applied only to
systems with a rather small number of atoms (= 10%) because they are computationally
expensive. The Hartree-Fock method and the Density Functional Theory (DFT) will be
described in Sec. 2.1.1. Density Functional Theory [19,20] is used to provide the so-
called potential energy surface (PES) as will be shown in Sec. 2.1.1. A single microscopic
process on such a PES can be characterized by doing a Molecular Dynamics (MD)
simulation. Ab initio MD runs usually can cover at most times of picoseconds, whereas
semi-empirical MD runs may extend up to nanoseconds (at the cost of the accuracy).
This is because a MD time step cannot be longer than the inverse of the highest phonon
frequency. For example, a MD run simulates the entire sequence of unsuccessful attempts
occurring between two successful diffusion events that may be separated by an interval of
the order of nanoseconds up to seconds or even longer. Thus, for the diffusion barriers
and thermal energy as characteristic for growth, MD can model only very few events and
a proper statistics cannot easily be obtained for growth processes. Moreover, since growth
patterns usually develop on a time scale of seconds, the inadequacy of MD is evident. Fi-
nally, the growth structures involve large numbers of particles (= 102 to 10%), far beyond
the reach of MD (ab initio simulations with 10? atoms are hardly feasible, and only for

13
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very short times). Instead of following with a MD simulation the entire trajectory of a
particle moving from one minimum of the PES to another one, it can be easier to describe
the process by a transition rate. This is what is done in Transition State Theory (TST)
as shown in Sec. 2.1.2. The transition rates obtained with TST are in agreement with
MD simulations as long the energy barrier is significantly larger than the thermal energy.
In this case the motion of the particle on the PES is a stochastic process as mentioned in
Sec. 2.1.2 and it can be correctly described by rates.

On the mesoscopic scale (characteristic length of ~ 10~%m or larger and time scales
of ~ 10° s) other methods are better suited. Three main methods will be described in
Sec. 2.2: Rate equations, Continuum equations, and Kinetic Monte Carlo. Approaches
based on Rate equations (see Sec. 2.2.1 and Ref. [21]) are sufficiently fast and can be
used to describe growth on the mesoscopic scale. Rate equations provide information
only about the adatom density and the density of the islands but do not provide any
morphological information about the growing surface. Besides this, Rate equations use
empirical parameters, which are hard to relate to a microscopic picture (or to microscopic
processes). Rate equations are generally used for time scales longer than 0.1 s and for
arbitrary length scales. Rate equations are a deterministic method, i.e., no random num-
bers are used. They are often used to estimate statistical quantities such as island density
and island size distributions. Continuum equations (see Sec. 2.2.3 and Ref. [4]) are
also suited to describe growth on the mesoscopic scale. They are used for length scales
larger than 10 nm. The continuum equations are solved numerically on a discrete grid
and for each grid point a differential equation has to be solved. In this way the time evo-
lution of the growing surface (surface morphology) can be directly analyzed. Continuum
methods are more elaborate than Rate equations: they are stochastic equations with a
noise term, and based on empirical parameters. They are often used to evaluate surface
roughness. The probably most widely used method for mesoscopic growth simulations is
the kinetic Monte Carlo (KMC) method (see Sec. 2.2.4 and [22-26]). The range of
applications is between 1 ps up to hours and for system sizes smaller than 1 pm. KMC is
computationally more expensive than Rate equations and continuum methods but it has
the great advantage that the parameters used are directly related to microscopic quanti-
ties/processes which can be obtained from ab initio calculations. KMC is a completely
stochastic method.

In the last years new methods have been developed with the goal to reduce the simu-
lation time. In Sec. 2.2.5 the Level Set method is described (see also Ref. [27]). It
is a hybrid method that describes diffusion in a deterministic way and nucleation in a
stochastic way. It is a continuous method in the x and y direction and discrete in the z
direction. Another approach has been proposed in a paper by Montalenti et al. who de-
veloped a method called Temperature Accelerated Dynamics (TAD). This method
boosts the efficiency by several orders of magnitude with respect to ordinary molecular
dynamics [28]. Noteworthy is also the work of Henkelman et al. who developed the dimer
method (Ref. [29]) to determine the saddle points of the different processes and used this
method together with KMC (Ref. [30]) to reach large-scale simulations.

15
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Figure 2.2: Scheme of a multiscale method. From density functional theory it is possible
to calculate the kinetic parameters (diffusion barriers Ej, desorption barriers Ege,p, etc.)
which are the input for transition state theory (TST). TST provides the hopping rates T';
which can be used in a KMC simulation to obtain the captures numbers ¢;. Finally the
capture numbers o; can be plugged into the Rate equations.

As epitaxial growth spans over more than 10 orders of magnitude a multiscale method
is be needed to describe the growth process as a whole. Unfortunately none of the pre-
vious methods can achieve this task. This could be possible only using different methods
together as illustrate in Fig. 2.2. From DFT calculations it is possible to find the PES of
the system one is interested in. The PES can be used to calculate the energy barriers for
the different processes, which can be used as input for the Transition State Theory to get
as output the hopping rates of the adatoms on the surface. These hopping rates are the
input for KMC simulations, from which one can get e.g. the capture numbers which can be
used as input for Rate equations calculations. In this way it would be possible to simulate
the growth from the atomistic level up to typical length scales of devices fabrication.

2.1 Microscopic methods for crystal growth

2.1.1 Ab initio calculation

On the most fundamental level crystal growth is a dynamic many body problem. The sys-
tem is composed of electrons and nuclei, which follow the principles of quantum mechanics.
A system of N, electrons with coordinates {r;} and N ions (nuclei) with coordinates {R;}
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will be considered here. The Hamiltonian for this system in atomic units is:

Ne pz Ny P2
H= Z ﬁ + Z ﬁ + Vee({r:i}) + Ver({rs}, {Rr}) + Vir({R1}) - (2.1)
i ¢ I

The first two terms are the kinetic energies for electrons and nuclei and the last three
terms are respectively the Coulomb contributions given by the electron-electron, electron-
nucleus and nucleus-nucleus interaction. Further on the kinetic terms for electrons and
nuclei will be respectively called T, and T. The evolution in time of this many body
problem is given by the time dependent Schrédinger equation:

_hov({ri}, {Rr},t)
i ot
U({r;},{Rr},t) is the many body wave function. This kind of calculations in which the
entire system is treated on the basis of first principles of quantum mechanics, without the
need to introduce any empirical parameters is called ” first principles” or ” ab initio” cal-
culations. To solve Eq. (2.2) for large systems (such as crystal growth) is computationally
way too expensive. It is therefore common to apply several (well justified) approxima-
tions. The first is based on the fact that the electron mass is orders of magnitudes (= 10?)
smaller than that of the nuclei. In such a case, where the change in the electronic state
occurs fast compared to nuclear motion, the assumption that the electrons are always in
the ground state holds generally. This is called the Born-Oppenheimer adiabatic ap-
proximation [31]. Using this approximation, one can completely separate the calculation
of the electronic structure from that of the ionic motion and perform the two calcula-
tions separately at each step. This is the basis of the usual ab initio molecular-dynamics
method. To calculate the total energy E of the system one has to solve the many body
equation

H({ri}, {Rr})¢({ri}) = E{Rr})p({ri}) (2.3)

To solve Eq. (2.3) a number of efficient methods have been developed which tremen-
dously simplify the many body wave function ¢ ({r;}) by decomposing it into a set of
one particle wave functions. In the Hartree method the many particle wave function is
approximated as a product of one particle wave functions:

P({ri}) = H¢z‘(1‘z’) : (2.4)

=HU({r;},{Rr},t) . (2.2)

This corresponds to assuming that the particles are non-interacting. Actually the electrons
are fermions and they follow the Pauli principle. For this reason, a better approximation
is the Hartee-Fock method where an antisymmetric wave function is introduced, which
is given by a Slater determinant:

p1(r1)  ¢2(r1) ... @n(r1)

W) = | A0 2l (2.5)

b1(ry) Ga(rn) ... dulrn)
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Figure 2.3: PES for an In adatom on the Iny/3Ga; 3As(001)-(1 x 3) surface after Ref. [34].

Here N is the number of particles. A more accurate method, which takes into account

the electronic interactions, is the Density-Functional Theory (DFT) in which the
ground state properties of the electronic system are entirely determined by its electron
density.
To study the diffusion of adatoms on the surface during growth it is important to calculate
the potential-energy surface (PES) which is the potential energy experienced by an
adatom diffusing on the surface. The PES has been calculated e.g. for GaAs(001) (see [32])
or for GaN(0001) and (0001) in Ref. [33]. In Fig. 2.3 the PES for InGaAs is shown. The
PES can be obtained with ab initio methods calculating the total energy of the ground
state for the system formed by the adatom and the surface on which it is diffusing:

EEPS(Xada Yad) = min min E(Xada Yads Zad, {RI}) (26)
Zaa {Rr}
where E(Xuq, Yad, Zad, {R1}) is the ground-state energy of the many-electron system
(also called total energy) for the atomic configuration of the adatom (X4, Yod, Zaq) and
of the surface atoms ({R;}). The PES is the minimum of the total energy with respect to
the z-coordinate of the adatom Z,4 and all the coordinates of the surface atoms {R;}.

2.1.2 Transition state theory

When an adatom is adsorbed at a site on the surface it has a certain thermal energy. Due
to this thermal energy the adatom vibrates around the adsorption site and eventually can
escape from this local minima to a neighboring site. Neglecting the vibrational effects, the
minima of the PES represent stable and metastable sites for the adatom. To jump from
one site to another an adatom must have enough energy to overcome the saddle point
between two minima. The energy difference between the minimum and the saddle point
is called energy barrier Fj, as it is illustrated in Fig 2.4.

Two different time scales determine this process: the time 1/T" an adatom waits before
escaping the potential well and the characteristic period 1/Ty of the adatom oscillations

18
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Figure 2.4: Schematic illustration of the lattice potential and its microscopic origin. The
energy barrier Fj separates two stable sites.

in the well. If the energy barriers F} are larger than the thermal energy of the particles
Ey > kT, then 1/T > 1/Ty and the adatom motion will be a stochastic process, which
can be described as a 2D random walk on a regular network Ref. [35,36]. The sites of
this network correspond to the minima of the PES. Under these conditions the diffusion
can be described by rates, i.e., by the probability that the event occurs per unit time.
This statistical tool, called transition state theory, has its origin in Eyring’s absolute Rate
Theory [37,38]. Using transition state theory (TST) (see e.g. Refs. [37,39-41]) it is
possible to write the transition rate I'; ;41 for the process of an adatom to move from site
i to site i + 1 (see Fig. 2.4) as:
Fi i+1 = @e_ﬁb_? . (27)
’ h
Here kj, is the Boltzmann constant, A is the Planck constant, T is the temperature and
AF is the difference in the Helmholtz free energy between the maximum (saddle point)
and the minimum (equilibrium site) of the potential curve along the reaction path of the
process. The free energy AF of activation needed by the system to move from the initial
position to the saddle point is given by:

AF = E, — TAS,;, . (2.8)

Here FE} is the sum of the differences in the static total and vibrational energy of
the system with the particle at the minimum and at the saddle point, and AS,; is the
analogous difference in the vibrational entropy. The rate of the process can be cast as
follows:

_ By
F/L'7fi+1 = Foe kpT (29)
ASyip

Here I'y = %eiT is the effective attempt frequency and as it will be shown in the

following, it is temperature independent. The two basic quantities in Eq. (2.9) are the
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attempt frequency I'; ;41 and the activation energy FEj. The transition rate I'; ;41 depends
on the initial position 7 and on the final position ¢ 4+ 1. In the case shown in Fig 2.4 the
energy barrier Ej to move from ¢ — ¢ + 1 is the same as that from i + 1 — 4, because
the surface is flat, so that I';;41 = I';41,;. This is in general not the case as one can
see e.g. for I'j ;11 and I'j11 ;. Here there is a step site and the energy barriers are not
the same Fp; # Eps. The energy barriers can be calculated from the PES or by using
a more crude approximation as e.g. by the bond-cutting method described in Sec. 2.2.4.
The TST allows an evaluation of I'g within the harmonic approximation. In this case the
linear temperature dependence of I'y is compensated by the term AS,;;, (see Ref. [42,43]),
thus, as mentioned before, I'g results independent of the temperature:

3.N1 Vs
— J=1"J
o=y - (2.10)
j=1 Yj
Here v; and v are the normal mode frequencies of the system with the adatom at the
equilibrium site and at the saddle point, respectively, and 3N is the number of degrees
of freedom. Experimentally the attempt frequency I'g shows a much weaker temperature
dependence than the exponential and for typical growth temperatures it is of the order of

10'2 — 103 1/s, which is a typical surface phonon frequency (see Ref. [44]).

2.2 Mesoscopic methods for crystal growth

On a mesoscopic scale growth can be considered as a stochastic process. Stochastic pro-
cesses, stochastic variables and Markov processes are key concepts for the rest of the work
presented here. A small digression will be made here to define these concepts. A stochastic
variable X is defined by specifying:

1. The set of possible values (called "range”, ”set of states”, ”sample state” or ”phase
space” );

2. The probability distribution over this set.

Once a stochastic variable X has been defined, an infinity of other stochastic variables
derives from it, namely all quantities Y that are defined as function of X by some mapping
f. These quantities Y may be any kind of mathematical object, in particular also functions
of an additional variable t,

Yx(t) = F(X,1) . (2.11)
Such a quantity Y'(t) is called a random function, or, since in most cases t stands
for time, a stochastic process. Thus a stochastic process is simply a function of two

variables, one of which is the time ¢, and the other a stochastic variable X.

The atoms can be considered in our model as balls or cubes jumping over the surface
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with a given probability. A possible configuration of the system is denoted by C and the
space of all the possible configurations in a statistical mechanical model by S = {C'}. S is
a stochastic variable which can assume different C' values/configurations. The probability
that S is in the configuration C' at time ¢ is given by P(C,t), which is a stochastic process.
If a stochastic process has the property that the probability P(Cy,t), to find the system
at time ¢ in the configuration C}, depends only from the previous configuration C;_; and
not from the other configurations Cy_o,C;_3,...,Cy_;, than it is a Markov process. To
define more rigorously a Markov process, first the conditional probability will be defined.

The conditional probability P(y,t2|y1,t1) is the probability density for the stochas-
tic variable Y to take the value yo at {2 given that its value at ¢; is y;. More generally
one may fix the values of Y at k different times ¢, - -, ¢, and ask for the joint probabil-
ity at [ other times tx41,---,txy;. This leads to the general definition of the conditional
probability Py

Pri(Yr1s tierts -5 Ukt tept |y, t1s - -5 Uk ) =
Pty tas -5 Yo B Yo 1 T 15 - - 5 Ykl Thtl)
Py(yi,tis -5 yks te)

(2.12)

Here Py (y1,t1;. .. ; Yk, tx) is the probability that the variable Y assumes the value y; at
ti and yr_1 at tx_1 and so on till y; at £;. The subscript k indicates that the probability de-
pends on k different times. Using this notation the conditional probability P(ya,ta|y1,t1)
can also be written as Py|1(y2,ta|y1,t1).

The Markov processes are a subclass of stochastic processes and they are by far the
most important in physics and chemistry. A Markov process is defined as a stochastic

process with the property that for any set of n successive times (i.e., t; < tg < -+ < ty)
one has
}%Jn—l(ynatn’ylvtl;---;yn—latn—l):: Pﬁu(ynatn’yn—lvtn—l) . (2-13)

That is, the conditional probability density at t¢,, given the value y,_1 at t,_1, is
uniquely determined and is not affected by any knowledge of the values at earlier times. A
Markov process is fully determined by the two functions Pi(y1,?1) and Py (ya, ta|y1,t1);
the whole hierarchy can be reconstructed from them. Indeed, one has for instance, taking
t] < to <13,

Py(y1,t1; 92, ta;y3,t3) = Pa(y1,t1;92, t2) Prja(ys, t3ly1, t1; ya, ta) =
Py(y1,t1) Py (yas talyn, t1) Py (ys, taly2, t2) (2.14)

Continuing this algorithm one finds successively all P,. This property makes Markov
processes manageable, which is the reason why they are so useful in many applications.
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The Markov property states that to make predictions of the behavior of a system in the
future, it suffices to consider only the present state of the system and not the past history.
For this reason one can say that no memory effects are present in a Markov process. The
Markov processes are the next more complicated class of stochastic processes beyond the
notion of fully uncorrelated processes.

If the energy barrier AFE, that the atoms have to overcome, to move from one mini-
mum of the PES to another one, is way larger than the thermal energy of the atoms,
AE > kT, than the atoms oscillate a long time around their equilibrium position before
a successful event takes place and the atom jumps to another minimum. When the atom
jumps from one position to another one the system evolves from a configuration C' to a
configuration C’. During the time the atom oscillates around the equilibrium position it
”forgets” its previous position/configuration Cy_1, which will not influence the next con-
figuration Cy4q. Thus, under the condition that AFE > kT, crystal growth is a Markov
process. Starting from the definition of the Markov process it is possible to derive the
Chapman-Kolmogorov equation, whose differential version is called Master equation. The
mathematical details to derive the Master equation for a Markov process are not trivial
and are briefly outlined in Appendix A (see also Ref. [45,46]). The important result is
that to any Markov process corresponds a Master equation which is given by:

aP(C,t)

o = L w(C = C)P(CH) + %;w(C' — C)P(C' 1) . (2.15)

C/

Here w(C' — (") is the transition probability from the configuration C' to the configu-
ration C’. This can be seen as the starting point for all the statistical mechanical methods
on a lattice for crystal growth at the mesoscopic scale. As shown in Refs. [47,48] a set
of continuum equations can be derived directly from the Master equation. Finally, the
KMC method can be seen as a direct realization of the Master equation and repeating
KMC simulation over a large number of runs it is possible to evaluate the probability
distribution. The Master equation plays a central role in this work since it provides a
direct handle on the time evolution of the growing surface and will be discussed in more
detail in Chapters 3 and 4.

2.2.1 Rate Equations

Rate equations are applied to study the time evolution of the adatom density, ni, and
the density of islands of size s, ng, for growth on a flat surface in the submonolayer
regime. They are commonly used/designed for large systems over long times. The theory
of Rate equations derives from the work of Smoluchowski [49,50], and has been applied
extensively to analyze not just growth and nucleation, but various other diffusion-mediated
processes including coagulation and chemical reactions [51]. The application to crystal
growth was developed in the sixties and seventies by Walton, Zinsmeister, Venables and
others [52-56]. A new interest in Rate equations started with the invention of scanning
tunneling microscopy (STM) [11], which allowed a direct observation of size and shapes
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of islands formed at surfaces during growth. Rate equations are a mean-field method
Ref. [57,58]. Generally, the mean-field approach ignores certain spatial correlations in the
system. In the classical mean-field treatment of nucleation and growth Ref. [55, 59, 60],
as well as recent refinements Ref. [61], the crucial mean-field assumption is that the local
environment of each island is independent of its size and shape. Rate equations are a set
of coupled differential equations for the adatom density n; and for the density of islands
containing s atoms ng.

Averaged adatom density and local adatom density

Two key concepts for the present work are going to be explained here, the adatom density
n1(t) and the local adatom density p(x,t). The adatom density is the number of adatoms
per unit surface area. It is averaged over the entire surface, i.e., the adatom density does
not depend on the position at the surface but has just a temporal dependence n4(t). The
Local Adatom Density p(z,t) is the adatom density at time ¢ at position z. The local
adatom density will be extensively used further on. The main idea of the Rate equation
model is to eliminate the explicit calculation of the position of single adatoms by just
considering their surface averaged densities. For this reason it is not possible to get any
local information from this method. Rate equations use the average value of the adatom
density instead of the local adatom density p(z,t):

na(t) = (e d) = % / (%, t)dx . (2.16)

Here A is the surface area. In the next chapter it will be described in detail the ad-
vantages and disadvantages of this ”averaged” approach for the example of the nucleation
term.

Method

To describe the Rate equations the case of irreversible growth with a critical island size
i* = 1 will be considered. The critical island size i* (see Ref. [21]) is defined such that
islands with more than i* atoms are stable while smaller islands can still break up (see [58]
for larger i*):

d

% = F —2Don? — D Z OsNiNg (2.17)
t s>i*+1

dns -

7 Dos_1nins_1 — Dogning s> 1"+ 1. (2.18)

Here F' is the deposition flux on the surface, D is the adatom diffusion coefficient and
os denotes the capture coefficient for an island of size s. The second and third term in
Eq. (2.17) represent the nucleation and the attachment term. In chapter 3 the nucleation
term will be considered in detail. From Rate equations it is possible to get the island
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density or the island size distribution. The island density N and the average capture
coefficient & are given by:

N = i ne (2.19)

s>i*+1

o
g= Y o . (2.20)
s>i* 41

Summing over s in Eq. (2.18) one gets the differential equation for the island density.
In this way the system can be described with just two equations: one for the adatom
density nq and one for the island density N. The Rate equations can be rewritten as:

dN
and
dny 2 _
ke F —201Dni — Don1N . (2.22)

Eq. (2.21) states that the number of islands increases due to the fact that new islands
are formed by monomer coalescence. Thus, the growth rate is proportional to the probabil-
ity that a monomer meets another monomer, which is given by Dn?}. Eq. (2.22) describes
the variation in the number of monomers. The monomer density is fueled continuously
by the deposition process, incorporated in the first term of the equation. However, the
number decreases, due to the dimer formation, with a rate proportional to n?. The factor
of two accounts for the fact that two monomers form a dimer which for i* = 1 is stable
and can thus be considered as island. The second mechanism leading to a decay in nq
is the capture of the monomers by islands. Thus the rate is proportional to the island
density and monomer density. A numerical solution for the Rate equations is given in
Appendix C.

2.2.2 Scaling Laws

The fact that for different fluxes and coverages the observed island morphologies are
somewhat similar suggests that scaling laws may be useful in quantitatively characterizing
the model. Therefore the basic elements of a scaling theory describing the island formation
and distribution will be discussed here following Ref. [62].

Island density

In order to study Eq. (2.21) and (2.22), it is convenient to write them in dimensionaless
units, introducing the typical length and time scales for monomer motion:

Iy = <9>1/4 e (2.23)
AR ’ YT (DR)2 '
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Rewriting the Rate equations using dimensionless variables f = t Jt1, 7 = nl3, N=N 12,
it results:

dN

— — a2 (2.24)
My on2_Nn (2.25)
di

For sufficiently short times such that # < 1 or equivalently 6 < 4/ % (it is assumed

here that % > 1 so that § < 1 where 6 is the coverage) the density of both monomers
and islands is small compared to the unit in Eq. (2.25), so the last two terms in Eq. (2.25)
can be neglected. This gives

ny~ Ft=0 (2.26)

and Eq. 2.21 gives:
N ~ F?Dt? (2.27)

At larger times, the number of monomers decreases, while the density of islands gets
larger. This is supported by Eq. (2.26) and (2.27), which show that N increases much
faster than n;. Thus one can take ny < N and the second term in Eq. 2.22 can be
neglected. These terms are relevant when they become comparable with the first term,
i.e. when Nnj ~ %, so that

~ L (2.28)
"~ 5DN '
Plugging this expression in Eq. 2.21 one gets for the island density
o1 F 1/3
N =~ |3—=—=40 2.29
[ o2 D } (2.29)

In general, for a critical island size i* the island density N scales as (see Ref. [63]):

N~ (g)x . (2.30)

Here y = % This is a central result of nucleation theory. Fig. 2.5 shows the

variation of the monomer and island densities, obtained with KMC simulations, as function
of coverage. Four distinct regimes are found:

Low coverage regime (L): At early times, the coverage and the typical island size are
both small, so the predictions of the Rate equations (2.21) and (2.22) should be valid.
From Eq. 2.26, one can see that there is a linear increase in the monomer density, while
the island density increases as t°. This regime is expected to hold if t < (DF)~'/2. Indeed,
as Fig. 2.5 illustrates, for early times one can see a much faster increase in N than ny.
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Figure 2.5: Log-Log plot of the unscaled island density N and monomer density n; as a
function of coverage 6 for % = 108 [63]. One can distinguish four different scaling regimes:
low coverage (L), intermediate coverage (I), aggregation (A), coalescence (C).
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Intermediate coverage regime (I): When the density of islands becomes comparable
with the monomer density, the Rate equations predict a slowing down in the increase of
the island density. More precisely, Eq. 2.29 implies that the island density IV increases as
t1/3 while the monomer density n; decreases as t~/3. This indeed can be observed in
Fig. 2.5.

Aggregation regime (A): As the size of the islands becomes comparable with the dis-
tance between them, Rate equations are insufficient to describe the scaling properties of
the system. The scaling behavior in this regime is quite complicated. The onset of this
regime is signaled by a rapid decrease in the monomer density, and a plateau of the island
density. In this regime, it is possible to observe a ”fattening” of the islands by capturing
the diffusing monomers, without further island creation. However, as the islands grow,
they coalesce, and eventually percolate across the entire system.

Coalescence regime (C): Finally, the number of islands decreases drastically, since they
will form a single huge cluster. The coverage approaches a full layer, and cluster formation
on the top of this layer becomes relevant.

Island size distribution

Here the concentration of islands ng, as a function of the island size s will be studied.
In particular, the case in which the average island size s is way larger than 1 will be
considered:

0
s=g >l (2.31)

Further a coverage 6 < 1 is assumed to avoid island coalescence. For this reason the
island density must be low (N < 6 < 1) and this is obtained for large values of D/F. The
island size distribution was first calculated by Zinsmeister [52]. Bartelt and Evans were
the first to propose a scaling law for the island size distribution [62]. They postulated
that the dependency of the island size distribution n, from coverage 6, diffusion D and
deposition F' enters only via the average island size 5. One can thus write:

no=Nf(2) (2.32)

Here, N, is a normalization constant which is determined by the following summation
rules:

Z sng & NC§2/ dexf(z) =6 . (2.33)
s=i*+1 0

This is fulfilled for No = 0/5% and

Nt i snsQE[/OOdef(x)]_l/Oooda:xf(x):§ . (2.34)

s=t*+1
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The function f has (besides the condition 2.33) also to fulfill:

/OOO def(@)=1 . (2.35)

Writing down the scaling function f using the normalization rules Egs. (2.33) and (2.35)
one gets:

ns = g%f(g) : (2.36)

It should be noted that Rate equations fail to describe the right behavior of the island
size distribution. As shown in Ref. [7,62,64] this is due to the assumption of a constant
capture coefficient.

2.2.3 Continuum methods

Crystal growth can be described by stochastic differential equations [4]. These equations
give the time evolution of the epitaxial layer height h(z,t) at any position z. Continuum
approaches model the surface on a coarsed-grained scale, on which every property is aver-
aged over a small volume containing many atoms. Neglecting the discrete nature of growth
processes, continuum theories attempt to capture the essential mechanisms determining
the growth morphology. Their predictive power is limited to length scales larger than the
typical interatomic distances. They provide information on the collective nature of the
growth process, such as the variation in the interface or correlation functions. An overview
about continuum methods can be found in Ref. [65]. A first approach was proposed by
Edwards and Wilkinson in 1982 Ref. [66]:

% = vV2h(z,t) + n(z,t) . (2.37)
Here v is called the surface tension because the term vV?2h tends to smooth the surface
and 7 is a noise term. This equation is called Edwards-Wilkinson (EW) equation and
it corresponds to a growth model in which the particles are randomly deposited on the
surface and where they after deposition can diffuse over a finite distance. Eq. (2.37) is
linear and it is valid in the small gradient approximation, i.e., Vh < 1. Eq. (2.37) can
be extended to include non-linear contributions. This is the case for the Kardar-Parisi-
Zhang (KPZ) equation [67]:

Oh(z,t
OET) 2, 1) + N, 0)? 4 (1) (2.38)

Here the non-linear term (Vh)? is responsible for lateral growth. These continuum
models contain more information than the Rate equations because they describe the sur-
face morphology also locally. However, the description is on a coarsed-grained scale rather
than on the atomic scale. A problem of this approach is that it still relies on empirical
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Figure 2.6: (a) Schematic side view of a general model where overhangs and holes are
allowed. (b) Same for the solid on solid model - the surface is completely described by a
single number (the number of atoms on site ¢ which gives the height).

parameters that are not related to specific microscopic processes and thus cannot be cal-
culated from ab initio principles. Continuum methods can be applied in the case where
there is three-dimensional growth with non zero roughness. They fail e.g. to describe high
temperature step flow growth or low temperature fractal growth. Modeling these growth
modes would require an atomic description of the system.

2.2.4 Kinetic Monte Carlo

A powerful method for crystal growth simulations is the kinetic Monte Carlo (KMC)
method. KMC is based on a statistical mechanical model for crystal growth, as described
at the beginning of this section. One can schematically imagine the atoms as solid particles
moving on the surface and their dynamic is described by probability rates. Many papers
have been published about these methods (see e.g. Ref. [23-26,68]). A general overview
about KMC can be found in Ref. [2,69,70].
KMC has two main features: the geometrical part and the dynamical part. First the
geometrical part will be discussed and than the dynamical part. From Eq. (2.6) one can
find the minima of the PES as illustrated in Fig 2.3. KMC is a discrete method, the
atoms occupy the minima of the PES. All the minima of the PES define a lattice, the
atoms cannot occupy any place in space but just one of these minima. This corresponds
to a lattice gas model with a lattice whose symmetry is the same as that of the crystal
surface. A more crude approximation is sometimes done in KMC simulations: a simple
cubic lattice is used, regardless of the symmetry of the crystal. Another approximation
typically used in the implementation of KMC is the solid on solid (SOS) method (see
Ref. [3]). This means, that each atom is sitting on top of another atom, no overhangs are
allowed, and the surface can be described by a single valued function h(7), which gives the
number of atoms on site ¢, as illustrated in Fig 2.6.

The dynamics is represented by the different processes (like diffusion, deposition and
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desorption) that take place on the surface. The key idea is that these processes can be
described by rates. The atoms occupy lattice sites and they can jump from a site to
another with a given rate. These rates are calculated using Eq. (2.9). The energy barriers
in Eq. (2.9) can be obtained from the PES as calculated using Eq. (2.6). This has been
done, e.g., for Al(111) by Bogicevic et al. [71]. Many different processes, with different
energy barriers Ejp, play a role in the growth process, as shown in Fig. 2.7. The activation
temperatures for the processes involved have been calculated from the energy barriers Ejp
using the formula:

By/k
T, = m : (2.39)

The prefactor ' has been chosen as I' = 1571

KMC simulations use often a computationally simpler method —the linear bond-
cutting method— to find the energy barriers [72]. This method is based on the idea that
the energy of a many-electron system can be approximated in terms of the contributions
from the individual atoms

B(R)) =Y Fr (2.40)
I

Here Ej is the contribution of the I-th atom. FE; depends on the local geometry of
atom I. In the simplest approximation one can assume that E; varies linearly with the
coordination number (number of nearest neighbors occupied). In this way the strength of
a bond is invariant with respect to the number of bonds an atom forms:

Ey,=FEy+nFEyong - (2.41)

Here Ej is the energy barrier for the diffusion on the free surface, n is the number of
nearest neighbors occupied and FEj,pg is the energy for each bond. Fig. 2.8 illustrates this
concept. Using a characteristic set of parameters (Ey = 1 eV, Epong = 1 €V) the energy
barriers and activation temperatures for a linear bond cutting model on a square lattice
are shown.

This model is very popular and has been used e.g. in Refs. [73,74]. TV are the rates
for a possible surface process i, as defined in Eq. (2.9). A KMC simulation consists of 6
steps, repeated over and over again till the simulation time has been reached. The steps
are shown in Fig 2.9:

1. Calculate the rate I''(C' — C;) of all possible processes that can be realized for a
given configuration.

2. Choose a random number r; between 0 and 1 and find the event [ for which

-1 i I i
Zi:ozf < < Zz=01; _ (2.42)
2T 2T
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Figure 2.7: Temperature scale of Al(111) homoepitaxy of elementary diffusion processes,
after Ref. [71].
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Activation A

Temperatures (K) Energy Barriers (eV)
T=1550 K E=4 eV
T=1160 K E=3 eV
T=780 K E=2 eV
T=390 K E=1eV

Figure 2.8: Energy barriers and activation temperatures for a linear bond cutting model
on a square lattice. The parameters used here are £y = 1 eV and Eyong = 1 eV. En-
ergy barriers and activation temperatures have been calculated according to Egs. (2.41)
and (2.39).
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Figure 2.9: Flow-chart of a KMC simulation. First the probabilities P; for each possible
events are calculated. Than an event is selected randomly and executed. The time is
incremented and the event list updated. The loop is repeated till the simulation time %4,

has been reached.
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3. Execute the event [ (i.e., go from the initial configuration C' to a new configuration

&)
4. Increment the simulation time ¢t =t + At.
5. Update of the list for the new configuration C".

6. Check if the simulation time t,,,; has been reached.

An important issue is the choice of the time step At in step 4. Point processes will be
introduced here to determine the time step. Point processes are processes in which at
random times an event occurs such as the impact of raindrops on a surface or the impact
of cosmic rays on a Geiger counter. Such processes are characterized by a sequence of
random times (t1,...,%,,...) at which the events take place (for details see Appendix B).
Also crystal growth is a point process because the diffusion, attachment and nucleation
events take place at random times. In particular crystal growth is a Poisson process (see
Ref. [22]). Now the following question arises: If the observation started at time ¢ = ¢;, how
long on the average one has to wait for the next event? For a Poisson process it is known
(see Appendix B) that the waiting time At between two events follows the distribution:

g(At,to) = (3 T)e (A (2.43)

i
The time step At can be obtained applying the inverse transform method [75]. The
inverse function of the integral fOA bat' gt to) yields At = —% where ¢ is a random

number between zero and unity. To evolve in the physical time a random number 0 < £ < 1
is generated and the time step is calculated as:

__In(§
AL__ZJ” (2.44)

2.2.5 Hybrid methods: The Level Set Method

The Level Set technique was first introduced by Osher and Sethian (see Ref. [76-78] for
details) and applied to the simulation of epitaxial growth by M.F. Gyure et al. (see
Ref. [27]). The model is discrete in the growth direction, but continuum in the lateral
directions and therefore, in principle, can describe growth on arbitrarily large lateral length
scales. The goal of this method is to perform large scale simulations desired to optimize
device fabrication, as described e.g. in Ref. [79]. The Level Set Method is based on the
idea that islands and steps on a surface can be described through a curve I'. This curve
can be represented as the set ¢ = 0, called the level set, of a smooth function ¢, as shown
in Fig. 2.10.
The evolution of ¢ in time is given by:

foler B
o, TVVe=0 . (2.45)
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Figure 2.10: Schematic evolution of one dimensional island morphologies (left) and the
corresponding level set function, ¢ (right): (a) two spatially separated islands; (b) the
same islands at a later time, but before coalescence; (c) the islands after coalescence; and
(d) the nucleation of a new island on top of the coalesced islands.
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Here v is the boundary velocity. v = 1i - v is the normal component of v and the vector
n points along the direction V¢. The velocity v is given by:

v=Da*(¥-Vp —h-Vp) . (2.46)

Here D is the adatom diffusion constant, a is the lattice constant, p is the adatom
density, and the superscripts label the contributions from above (+) and below (-) the
boundary (see Ref. [80]). The evolution of the adatom density is given by

dp 9 dN
pri F—DV*p—2 I (2.47)
where F' is the deposition flux, N is the island density and L is the system size. Further,
it is assumed that p = 0 at all the island boundaries. Eq. (2.47) is a diffusion equation
and it is similar to the equations derived for the adatom density as employed in Rate
equations Eq. (2.22) and (2.21). The difference is that the adatom density p(x,t) in the
level set method depends on the position while in Rate equations n(t) contains just the
time dependence as pointed out in Sec. 2.2.1. In Eq. (2.47) the second term describes the
nucleation and it is given by the equation

o= Doy (p?) . (2.48)

Here (-) defines the spatial average (i.e. (p?) = % [, p*(z,t)dz). o1 is the adatom

capture number. The nucleation term is just the same used in Rate equations except
that in Rate equations no information regarding the position/arrangement of new islands
exists. The position of the new island is found weighing each position by the local value
of p?, other nucleation spatial dependencies have been tested in Ref. [80]. The Level
Set Method is a hybrid method because it uses concepts from different methods: Rate
equations, continuum methods and KMC. The adatom diffusion is described by the adatom
density like in Rate equations, but at the same time it gives a local information about the
surface morphology, similarly to a continuum method. Finally the nucleation is done in a
stochastic way as in KMC. Extensive statistical tests have been performed for the Level Set
Method in Ref. [81]. Applications of the Level Set Method to calculate capture numbers
have been published in Refs. [82,83]. A generalization of the method to include reversible
growth has been presented in [84] and it has been applied to study homoepitaxial Ostwald
ripening Ref. [85]. For a more fundamental discussion on Ostwald ripening see Ref. [86].

36



Chapter 3

An adatom density approach to
nucleation and diffusion

Crystal growth involves a large number of particles (typically ~ 10%*+?). Instead of starting
to study the entire growth process, the focus will first be set on the single processes that
take place on the surface during growth. The two most important processes are diffusion
and nucleation. In the previous chapter it has been shown how these elementary processes
are described by the main growth simulation methods. The aim of this chapter is to
show how to describe these two processes in an adatom density picture. A density
approach can save CPU time when simulating these processes, compared to KMC. The
results obtained here will be used in the next chapter, where density based kinetic Monte
Carlo methods will be introduced. The first part of the chapter will be devoted to diffusion
processes (Sec. 3.1) and the second to nucleation processes (Sec. 3.2).

The only diffusion process that will be treated here is the diffusion of a single adatom on
the surface, the diffusion of dimers or more complicated structures will not be considered.
Then, diffusion can be regarded as a single particle process because there are no inter-
actions between two different particles that are diffusing on the surface. In this case it
is straightforward to represent the diffusion process with an adatom density, in a similar
spirit as used in the Level Set Method 2.2.5.

Nucleation is a process that happens when two or more adatoms come together and
form a stable island. The traditional theoretical analysis of nucleation is provided by Rate
equations. This is the simplest treatment of nucleation phenomena in crystal growth and
it is based on the assumption (see Ref. [87]) that the nucleation rate % is proportional
to the square! of the stationary adatom density n; in the presence of a constant flux F.

Eq. (2.21) presented already in the previous chapter is rewritten here:

aN
dt

I This is valid in the case that dimers are stable islands as introduced in Sec. 2.2.1

2
= Dong
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Rate Equations Level Set Method
Diffusion | averaged adatom density local adatom density

Nucleation | averaged nucleation term | averaged nucleation term

Table 3.1: Comparison Rate Equations vs. the Level Set Method

Such a mean-field treatment (Ref. [88]) has been used to estimate physical parameters of
materials Ref. [89-92]. The nucleation rate depends on the square of the adatom density
n1 because it is considered here that two adatoms coming together form a stable island.
Recent works have appeared on the nucleation on top of islands and terraces [88,89,93-96],
on the influence of the Ehrlich-Schwoebel barrier [97,98], on the nucleation rate and on
the limits of the mean-field approach to describe nucleation [13,96,99, 100].

Besides Rate Equations another method based on an adatom density approach, is the
Level Set Method (see Sec. 2.2.5). The Level Set Method uses a local adatom density
p(x,t) to describe the diffusion processes but for the nucleation it uses the mean-field
approach given in Eq. (2.21). In Table 3.1 a comparison between Rate Equations and
the Level Set Method is shown: while Rate equations use an averaged adatom density
to describe both processes (diffusion and nucleation) the Level Set Method uses a local
adatom density for diffusion and an averaged for nucleation. To go a step further than the
Level Set approach a method called Adatom Probability Kinetic Monte Carlo (AP-KMC)
will be introduced here, in which both diffusion and nucleation will be treated with a local
adatom density. This method is a density based KMC method. In this chapter the AP-
KMC will be described for the diffusion and nucleation processes and in the next chapter
it will be extended to construct a complete growth simulation.

The main results of this chapter will be:

1. The CPU time comparison between AP-KMC and KMC for diffusion processes,
which shows that AP-KMC allows to significantly speed up the simulation.

2. The introduction of a local nucleation term based on the single adatom density.
This nucleation term gives the probability for a nucleation event on each site on the
surface. This is the first time to our knowledge that such a local nucleation term
has been used.

In addition to the density approach, diffusion and nucleation will be treated with an-
other method called Hyper Jump KMC (HJ-KMC). This method, which has been inspired
by the density approach, is very promising and allows a further speed up of the simulation
compared to AP-KMC.
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Figure 3.1: Schematic representation of the hopping process of an adatom. This can be
described by a random walk. The particle can jump only to the next nearest lattice sites.
I'; i+1 is the particle transition rate.

3.1 A Probability interpretation of Adatom Diffusion

In this section first the AP-KMC method for diffusion processes for the one-dimensional
case will be derived from the Master equation. A CPU time comparison will show the ad-
vantage of AP-KMC over KMC. The method will then be extended to the two-dimensional
case. In Sec. 3.1.4 the HJ-KMC will be presented.

3.1.1 Diffusion coefficient

To study adatom diffusion a model will be considered that consists of a single particle
moving on a one- and two-dimensional discrete lattice as illustrated in Fig 3.1 for the
one-dimensional case.

It is further assumed that the particle is executing a random walk. Then, if the position
of the particle at time ¢ is called x(t) one gets (see for instance Ref. [101]):

(Ax(t)) = (x(t) —x(0)) =0 (3.1)
and
(|Az?) = a®N(t) . (3.2)

Here a is the step length and N(¢) the number of diffusion steps in time ¢. In two
dimensions, assuming steps in the x and y directions to be independent of each other, one
has

((Ar)?) = (|r(t) = r(0)]*) = azNu(t) + agNy(t) = a’Niot () . (3-3)

Here N, is the number of steps in the z direction and N, in the y direction. If
a; = ay = a it results:

((Ar)?) = a®T't (3.4)
where I' is the transition rate (or jump rate). The diffusion coefficient D is defined as:

((Ar)?) = Dt (3.5)
or in terms of I":

D=dT . (3.6)
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Using Eq. 2.9 D becomes

_Ep
D =a’Tge ®T . (3.7)
If the step length a is chosen equal to the unit length 1 than:
D=T . (3.8)

The calculation of the diffusion coefficient for a one-dimensional random walk and for
more complicated cases in two and three dimensions on regular and disordered lattices is
presented in Refs. [35,102,103]. For the further discussion the energy barrier Ej is assumed
to be Ej, = 1.0 eV. The value of the prefactor is Iy = 103 s~! and the step length is set
a=1,thusI' = D.

3.1.2 Master equation for diffusion processes

The diffusion of an adatom along a step can be represented by a random walk in one
dimension. The adatom jumps from one minimum to a neighboring one of the PES. At
each minimum it vibrates around the equilibrium position trying to overcome the energy
barriers by which it is surrounded, as pointed out in Sec. 2.2. As the position of the
adatom at time ¢ depends only from the position the adatom had at time t — At and not
from the previous time steps, this process is a Markov process and it is described by the
Master equation introduced in its general form in Eq. 2.15:

aP(C,t)

5 =~ > w(C = CYP(C.) + Y w(C — O)P(C'.1)
C/

C/

The Master equation will be now written for the particular case of an adatom diffusing
on the one-dimensional lattice. A configuration C' is uniquely determined by the position
of the adatom thus, P(C,t) = p(i,t) where i gives the position of the adatom on the
lattice. The nearest neighbor configurations are characterized by the adatom occupying the
position i — 1 and 7+ 1. The transition rate from one configuration to another w(C — C")

is given by the probability for the adatom to jump from site ¢ to a nearest neighbor site
I

w(C — ') =Ty (3.9)
and it can be calculated using Eq. (2.9). The Master equation for this model becomes:

dp(i,t)
ot

= [Cit1p(i +1,0) + Timap(i — 1,1) — 2Tup(i, t)] . (3.10)

In the case the coefficients I'; are the same all over the surface (which is e.g. the case
for an unreconstructed atomically flat surface) the previous equation can be written as:

w Dl 1,8+ pli— 1,8) — 2p(i, )] - (3.11)
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If the length of the vector is called L one can introduce the distance Az = (i+£)_i. In

case Az is very small (Az — 0) z; can be replaced by a continuum variable . In the
continuum limit Eq. (3.11) becomes the well known diffusion equation (for details see [45]
p.286):

op(x,t)
5~ I'V%p(z,t) . (3.12)

It will be further assumed that at time ¢ = 0 an adatom is put on site x = 0, i.e.,
P(x,0) = ;0. Then, Eq. (3.12) can be analytically solved (for details see Appendix D):

1 o2
p(x,t):\/mexp*m . (3.13)

This expression is a solution of Eq. (3.11) in the continuum limit case. Solutions of
Eq. (3.11) in the discrete form can be obtained by solving numerically the set of equations
(one for each lattice site) assuming e.g. periodic boundary conditions or by simulating the
diffusion process with KIMC over a large number of runs.? To solve numerically Eq. (3.11)
one has to discretize the time to get:

At

= T[p(i+1,8) + p(i — 1,8) — 2p(i, )] . (3.14)

Three different schemes to solve numerically this kind of equation are available: ex-
plicit, implicit and Crank-Nicholson (for details see Appendix E). The explicit scheme is
the easiest to implement. The value of p(i,t) at time ¢ can be calculated from the values of
p(t — At) at time t — At. The disadvantage is that this method can become unstable and
that a stability condition has to be considered for the time step At. The implicit method
is more complicated than the explicit. The value of p(i,t) depends also from the values
of p(i — 1,t) and p(i + 1,t). For this reason a system of linear equations has to be solved.
The advantage of the implicit method is that the solutions are stable for any At. This
is the method we used for the simulations presented here. Finally the Crank-Nicholson
method is also stable for any At and it is more accurate than a normal implicit method.
In the present work the explicit method has been used.

3.1.3 Adatom Probability KMC for diffusion processes

The Adatom Probability KMC (AP-KMC) approach will be described here for the diffu-
sion processes. In the next chapter other processes will be included in AP-KMC so that it
can be applied to perform crystal growth simulations. The AP-KMC consists essentially
of two steps:

1. Solve the difference equation for the adatom density

2. Collapse the adatom density

2 As mentioned in Sec. 2.2 the KMC method can be used to solve the Master equation.
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The difference equation can be solved to find the probability distribution for the
adatom, as described in the previous section. The solution in the continuum limit is a
Gaussian, if the diffusion coefficient D is constant everywhere or it can assume more com-
plicated shapes in case D is position dependent.

To make a working approach it is necessary to use the calculated adatom density to
find the final position of the adatom. This is done by collapsing the adatom density onto
a single lattice site. This process is similar to a measurement process in quantum mechan-
ics. Before the observation/measurement of the position of an electron, for example, the
electron is described by a wave function ¢ (z,t) and the probability to find the electron at
certain positions in space is given by ¥ (x,t)y*(z,t). After measuring the position of the
particle the wave function collapses —it is one at the measured position of the electron
and zero anywhere else. This is valid in general for the measurement of any quantity in
quantum mechanics, not only for the position of an electron. The collapse is performed
by using a random number r between zero and one and finding the collapse site ¢ so that:

i+1

Zp(l) <r< Zp(l) . (3.15)
=1 =1

Thus AP-KMC represents an alternative method to KMC to find the position of a
particle after a given time t.

The time step in KMC is proportional to the inverse of the particle’s diffusion coeffi-
cient (Eq. 2.44), which depends exponentially from the temperature (Eq 2.9). Thus, the
CPU time of a KMC simulation scales exponentially with the temperature. Note that
the CPU time of a KMC simulation does not depend on the size of the lattice that is
considered, but just on the number of particles (in this case one) on the surface and their
diffusion coefficients.

The solution of the difference equation for the adatom density is independent from the
temperature because solving the equation with an implicit method the solutions are al-
ways stable. The CPU time scales linearly with the size of the lattice considered. For
higher temperature larger lattices have to be considered because the particle is spreading
out more and more. To have a lattice large enough to include all the significant part of
the probability distribution, the lattice size L has to be proportional to the square root
of D, L ~ /D (times a factor two to include the 96% of the distribution) . Based on this
scaling analysis it is expected that for temperatures high enough AP-KMC will be faster
than KMC, because KMC is proportional to D while AP-KMC is proportional to v/D.

To check the above analysis, the CPU times of KMC and AP-KMC have been com-
pared. Fig. 3.2 shows the CPU times for the two methods for diffusion coefficients going
from 5% 10...4 % 10% s~!. From this picture it is possible to see how the CPU time
for KMC scales linearly with the diffusion coefficient. For AP-KMC the required CPU-
time is clearly lower and scales also faster (better) than linear with the diffusion coefficient.
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Figure 3.2: Comparison of the CPU times for the one-dimensional diffusion process. The
diffusion coefficient is ranging between D = 5 10°...4 % 108 s~!. The simulation time is
t = 0.01 s. The CPU times are multiplied by a factor 10 for KMC and by a factor 200 for
AP-KMC. The size of the matrix increases with temperature (see text).

In Fig. 3.3 the CPU times are plotted for simulations done at temperatures between
800...1150 K and for a total simulation time £ = 0.01 s. As expected, KMC is increasing
exponentially with the temperature. To obtain a CPU time measurable by the internal
clock of the computer the KMC simulation were performed over 10 runs and the AP-KMC
over 200 runs, for this reason in Fig. 3.3 and 3.2 the CPU times are multiplied by a factor
of 10 for KMC and by a factor of 200 for AD-KMC. As obvious from both figures AD-KMC
drastically speeds up the simulation.

3.1.4 Hyper Jump KMC

Most of the CPU time in an AP-KMC simulation is spend to solve the set of difference
equations for the adatom probability. A more efficient scheme to evaluate the adatom
probability is thus desirable. Actually, the full adatom distribution provides much more
information than needed. What can be learned from the probability distribution is that
in general the probability for an adatom to jump to the next nearest neighbors is way
smaller than the probability to jump to any other site further away. This observation
gave us the idea for a further improvement of AP-KMC. The possibility to include in a
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Figure 3.3: Comparison of the CPU times for the one-dimensional diffusion process. The
temperatures ranging between 7' = 800...1150 K. The simulation time is t = 0.01 s. The
CPU times are multiplied by a factor 10 for KMC and by a factor 200 for AP-KMC. The
size of the matrix increases with temperature.
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Figure 3.4: Multilevel scheme for Hyper Jump KMC. The particle starts at the level n = 0
and can jump to higher levels and descend than to lower levels when the simulation’s end
is approaching.

KMC simulation larger jumps —in contrast to jumps to the nearest neighbor site— will be
considered here. A multigrid approach for KMC has been developed in which the length
of the jump depends on the order/level of the grid the adatom is. This method has been
called Hyper Jump KMC (HJ-KMC). In this section HJ-KMC will be described, its results
will be compared with KMC results to test its reliability, and finally the CPU times will
be compared with KMC and AP-KMC.

A model will be considered in which an adatom is diffusing on a one-dimensional lat-
tice with a spacing Ax between sites —its position on the lattice is given by x. Here, for
simplicity Az is set equal to one (Ax = 1). As soon as the adatom reaches a site that
is a multiple of two, it can be promoted to a coarser lattice where the lattice spacing is
twice larger than the previous. A number n can be introduced to distinguish between
the two lattices, which assumes the value 0 for the original lattice and 1 for the coarser
lattice. n gives the level of the lattice. The jumps of the adatom on the coarser lattice
are twice larger than on the original lattice. From the level 1 lattice the adatom can be
further promoted to an even coarser grid, when the adatom reaches a site that is multiple
of two (just in the same way as applied at level 0). This process of promoting the adatom
to the next higher level grid can be continued further. For a lattice of level n the spacing
between sites increases like Ax = 2". The jumps an adatom can do are always equal to
the spacing of the lattice in which the adatom is. The larger the jumps an adatom can do,
the larger the time steps At associated with the jumps. Thus the time step of the adatom
depends on the level in which the adatom is:

_@"
At="r (3.16)

This model can be imagined as a stack of lattices one over the other with increasing
site spacing Ax and increasing level n, as shown in Fig. 3.4.

When the simulation starts, the adatom is at level n = 0 and time ¢ = 0. The simula-
tion time is tgm, thus 0 < t < tgim. If At,—g, the time step at level n = 0, is way smaller
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Figure 3.5: Comparison between KMC, HJ-KMC for a simulation done at T' = 550 K for
t = 0.01 s on a 256 vector. The solid line is a gaussian.

than the simulation time tgm, Atp,—o < tgim than the adatom starts an ascending process.
The time step of the level reached by the adatom has to be always compared with the
total simulation time tg,. The time step At,maee Of the highest level reached has thus to
obey the relation AAt,maz < tsim — t, where A is the ascending factor, which should be
chosen such that the adatom has sufficiently time to relax on the nmaxz lattice. When
t = tsim the adatom has to be in the lowest level (n = 0). When ¢ is approaching tgim
the adatom starts to descend. Introducing the descending factor B, if ¢t + BAt, > tgm
the adatom has to move from the level n to the level n — 1. As the development of the
HJ-KMC is still in an initial stage, the optimum values for the coefficients A and B are
still explored. For the results presented here a value of A = 15 and B = 10 has been
used. The HJ-KMC has thus three main stages. In a first step the adatom has to find
its optimal level, which should be high enough to perform rapidly the diffusion events
without exceeding the simulation time tg,. Once the highest level has been attained, the
diffusion events are performed. Finally, when the end of the simulation approaches the
adatom starts a descending process, which will bring it at the level n = 0 at ¢ = tgim.

To check the accuracy/reliability of this approach a comparison with KMC has been
performed. The results are shown in Fig. 3.5. Here the simulation has been done at
T = 550 K for t = 0.01 s on a 256 vector. The solid line in the figure is a Gaussian. As
can be seen the differences between the two methods are negligible.
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Figure 3.6: Comparison of the CPU times for the one-dimensional diffusion process. The
temperatures range between T = 800...1200 K. The simulation time is ¢ = 0.01 s. The
CPU times are for 10 runs for KMC and 200 runs for AP-KMC and HJ-KMC.

In Fig. 3.6 the CPU times for the three methods are compared for a simulation of
t = 0.01 s at temperatures between T = 800...1200 K. The CPU times for KMC are
obtained over 10 runs and for AP-KMC and HJ-KMC over 200 runs. The simulation for
HJ-KMC were performed over 200 runs to obtain a CPU time large enough to be measured
by the internal clock of the computer. This method is clearly faster than normal KMC
and it is even significantly faster than AP-KMC.

An interesting result emerged when studying the scaling with respect to the tempera-
ture: The CPU time for HJ-KMC is increasing less than linear with the temperature (see
Fig 3.7). In Sec. 3.2.4 the HJ-KMC will be extended also to the nucleation process.

3.1.5 2D diffusion

The same system as before will be now considered expect that the particle should be
moving on a two-dimensional array. The Master equation for this system can be written
as:

op(i, g, t , ) . .
% = [Liv1,p(i +1,5,t) + Dica jp(i — 1,5, 1) +

Here p(i,j,t) is the probability to find the particle at time t on site (i,j). If the

transition rate I'(4, j) is constant everywhere the Master equation simplifies to:
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Figure 3.7: CPU times of HJ-KMC for the one-dimensional diffusion process. The tem-
peratures range between 7' = 800...1200 K. The simulation time is t = 0.01 s.

op(i, gt , . . . .
OPCLD) _ Dlpfi1,5,) + pli — 1,5,1) + pli + 1,1

+p(6,5 = 1,1) = 4p(i, 4, 1)) (3.18)

Fig. 3.8 shows the probability distribution on a 2 dimensional lattice for two different
cases. First a constant diffusion coefficient D all over the surface has been considered.
The results are shown in Fig. 3.8 a) and c¢) as 3 dimensional plot and as contour plot
respectively.

In the second case the diffusion coefficient is constant all over the surface except along
the lower-left /upper-right diagonal of the surface where it is set to zero. This means that
once the particle has reached the diagonal it cannot escape: The diagonal acts like an
attractor. Figs. 3.8 b) and d) show the 3 dimensional and the contour plot for this case.
As it will be shown in Sec. 3.2 this 2 dimensional model provide direct insight into how
nucleation can be efficiently described in a density approach. For the first case the result
is a Gaussian distribution: the contour plot of the adatom density is completely spherical.
However, in the case of an attractor on the diagonal the adatom probability is no longer
spherical but gets deformed and an additional maximum along the diagonal appears. The
simulations were done for t = 0.1 s and at T' = 450 K.
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Figure 3.8: Probability distribution P(i,t) for a particle on a two-dimensional array as 3
dimensional plot (a) and as contour plot (c) for the case of a constant diffusion coefficient
D over the surface. b) and d) show the 3 dimensional and the contour plot for the case
the diffusion coefficient is constant all over the surface except along a diagonal where it is
set to D = 0. The simulations were done for ¢ = 0.1 s and T" = 450 K.
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3.2 Nucleation

To construct a density based method for growth simulations, a density description of
the nucleation is needed, similarly to what has been done in the previous paragraph for
diffusion. To study nucleation, the case of two particles moving on a one-dimensional
vector will be considered here. Even if this could seem a too simple model, it corresponds
to the crucial case of nucleation along a step. Usually when an adatom arrives at a step or
island edge it starts to diffuse along the edge until it finds a stable position, which could
be a kink site, or it nucleates with another adatom, which is also diffusing along the edge.
As a first model it will be assumed that the two adatoms nucleate when they are on the
same site. In a second step the model will be extended to the case where the two adatoms
nucleate if they occupy nearest neighbor sites. Here and in the following it is assumed
that once the nucleus has formed it cannot break up anymore i.e., detachment will not be
considered. This model for nucleation can be described by the Master equation Eq. (2.15),
which is rewritten here:

Ip(i, j, t : :
% = Fi+1—>i,jp(l + 17.]7t) +
Licimijp(i—1,5,8) + Tijjojap(i, g + 1,0) +
Lijoj—1p(i,j — 1,t) = Licigr +

Licicrj + Tijojar + Tijjojalp(i,jit) (3.19)

As the transition rate is constant everywhere and one-point islands are considered, one
can write for the transition rates:

[T i
rm_{ 0 ifi (3.20)

It is interesting to note that the problem of the two particles diffusing on a one-
dimensional vector is equivalent to study the diffusion of a single particle on a two-
dimensional vector (in fact Egs. 3.17 and 3.19 are equivalent). In the 2D case p(i,j)
can be interpreted as the probability to find the particle on site (¢,j) and I';_;41; as the
transition rate from site (i,7) to (i + 1,7). If the adatom reaches the diagonal i = j it
stops diffusing, because the transition rates on the diagonal are zero. The points along the
diagonal correspond in the one-dimensional system to the nucleation, when two particles
are on the same site.

An exact solution for this problem can be obtained by solving numerically Eq. 3.19 (as
shown in Fig. 3.9 a)) or by performing a large number of KMC simulations. In Fig. 3.9
a) the results obtained by solving Eq. 3.19 are plotted as a two-dimensional contour plot
P(i,7). This result is equivalent to that shown in Fig. 3.8 d) for a single particle in two di-
mensions. The calculations where done for a temperature T’ = 450 K and a time t = 0.1 s
on a 40 sites long matrix. The two particles where set at t = 0 s at position 15 and 25.
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Figure 3.9: Contour plot of the two particle probability P(i,7,t) for a simulation done at
T = 450 K for t = 0.1 s on a 40 sites long vector. At t = 0 s the two particles are at
position 15 and 25. In a) we have the exact solution, b) the Hartree approximation and
c¢) the Hartree-Fock approximation (see text).
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Along the diagonal ¢ = j a strong accumulation of the adatom density appears due to the
nucleation processes.

The nucleation can be described exactly using the two-particles density p(i,j). A prob-
lem with this approach is that the calculation of a two-particle density is computation-
ally rather expensive. Therefore, in the following different approaches will be tested
with respect to replacing the two-particle density by a one-particle density of single
adatoms p;(i) and pn,(j). The key step is then to identify a function f which allows
to calculate/approximate the two particle density by single particle densities: p(i,j) =
F(pm(2),p1(7)). In general the exact expression of f is unknown and approximations have
to be introduced. Thus, the results are no longer exact as for the case of the two-particle
density.

A key problem to express the two-particle density in terms of single particle densities
is commonplace in many-bodies theory and in electronic structure theory. For example
electronic structure theory treats the general problem how to write the many-electron wave
function ¥(xy,x9,...,2,,t), where x; is the coordinate of the i-th electron, as a function
of the single electron wave functions v;(z;,1):

\IJ(.’El,.’EQ,...,CCn,t) :f(¢1($1,t),¢2($2,t),...,Qf)n(xn,t)) . (321)

There are many similarities between the two-adatom system on a surface and a two-
electron system. Besides the external potential, the electrons are subject to their repulsive
Coulomb interaction. As the electrons are Fermions they obey the Pauli principle, that
states that the wave function of a system of Fermions must be antisymmetric with respect
to interchange of any two Fermions. This implies that two electrons with the same spin
have zero probability of being found at the same point in the three-dimensional space.
Thus the Pauli antisymmetry principle forces electrons of like spin to keep apart from
one another, this is often called the Pauli repulsion. The position of the electrons in the
potential can be described by the electron density |¢(x,t)[? = (2, t)* (x,t) where ¥(x, t)
is the wave function. The electron density gives the probability to find an electron at a
given position in space. In the same way the two adatoms on the surface are subject to
the Potential Energy Surface (PES, see Sec. 2.1.1). The adatoms have just a very short
range interaction in the model considered here. If they are at the same position they stick
together and form a stable nucleus, otherwise if the two adatoms are not at the same site,
there is no interaction between them. Thus, the type of interaction between the electronic
system and the adatoms is quite different. Long range and repulsive interactions determine
the electronic system while short range and attractive the adatom system. The adatom
density gives the probability to find an adatom at a given position similarly to the electron
density. As already described for the diffusion in Sec. 3.1.3, the position of the adatom
can be found collapsing the adatom density in one point, in the same way it is done for
the measurement process in quantum mechanics. Thus, in the following methods typically
used in electronic structure like Hartree, Hartree-Fock approximation will be applied to
the nucleation of the adatoms.
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3.2.1 Hartree approximation

To study a many electron system in an external potential a first approximation would be
to simplify the interactions between the electrons. Instead of considering the interactions
between each single electron ¢ and all the other it would be easier to consider the average
electrostatic repulsion exerted on the electron ¢ by all the other electrons. This is what is
done in the Hartree approximation (as mentioned in Sec. 2.1.1) where the wave function is
written as the product of single electron wave functions. Within the Hartree approximation
the Pauli principle is not respected and it can happen that two electrons with the same
spin occupy the same position. The Hartree approach can be applied to adatom nucleation
by writing the two particle probability p(i,j) as product of single adatom densities:

p(ivjv t) ~ pl(ivt)pQ(jv t) : (322)

Here, the indices 1 and 2 distinguish between the two particles. The two adatoms are
independent, there is no interaction between them. The only interaction the adatoms feel
is the one with the surface on which they are diffusing. In fact, the diffusion rates of the
adatoms depend on the PES. If the two adatoms are on the same place, no nucleation takes
place because the two adatoms do not ”see” each other. With the Hartree approximation
for an adatom system it is not possible to describe the nucleation just as for an electron
system it was not possible to respect the Pauli principle. Indeed, the Hartree approxi-
mation is a very crude approximation. If p(i, j,t) as given in Eq. 3.22 is substituted into
Eq. 3.19 one gets:

0pa iyt , . .
% = Tlpa(i+1,t) + pali — 1,t) — 2pa(i,t)] . (3.23)
Here, the index « is 1 or 2. This equation corresponds to Eq. 3.11 for the free particle
diffusion. In Fig. 3.9 b) the results for the Hartree approximation are plotted in a 2 di-
mensional contour plot. On the x and y axes the position of the two particles are plotted.

The result is a two-dimensional Gaussian as expected.

The Hartree approximation can well describe the adatom densities far away from the
1 = j diagonal, which also in the following will be called nucleation line because it is where
the nucleation events take place. Far from the nucleation line the adatom distributions in
Fig. 3.9 a) and b) look the same, because this region corresponds to the case where the
two adatoms are far away from each other and they do not interact. Under these condition
the Hartree approximation is in good agreement with the exact solution.

From Fig. 3.9 a) it is possible to see that the probability distribution is different from
zero only above the diagonal in the upper left. Further, along the diagonal are peaks due
to nucleation. Within the Hartree approximation it can happen that also the lower part
below the diagonal becomes different from zero. This adatom density below the diagonal
corresponds to an unphysical case. As a 1 dimensional simulation is considered here, at
t = 0 one adatom occupies a larger x coordinate than the other. This non zero density
below the diagonal means that at the end of the simulation time ¢ = t4,,, the adatom that
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had the higher coordinate at the beginning has now the lower coordinate and the adatom
which had the lower one has now the higher. The positions of the adatoms are inverted.
This can happen only if the two adatoms have been on the same position at the same
time, but did not nucleate. Thus, within this approximation it is not possible to obtain
any information about the nucleation.

3.2.2 Hartee-Fock approximation

As the electrons are Fermions the Hartree approximation can be extended by including the
Pauli principle in the method. This is what is done by the Hartree-Fock approximation
(see Sec. 2.1.1). The Pauli principle states that the wave function of a system of electrons
must be antisymmetric with respect to interchanging any two electrons:

U(z1,29,...,&n,t) = =W(x2,21,...,Tn,t) . (3.24)

Antisymmetric wave functions are obtained by solving the Slater determinant (see
Sec. 2.1.1) and for the case of two electrons the wave function looks like:

\Il(xl,xg,t) = ¢1($1,t)¢2($2,t) — @Z)l(xg,t)i/)z(xl,t) . (325)

If 21 = x5 the wave function ¥(x1,x2) is equal zero, thus it is impossible for the two
electrons to be at the same position.

The adatoms do not have of course to follow the Pauli principle but there is an anal-
ogy between the Pauli principle for the electrons and the nucleation for the adatoms. If
one considers that two adatoms nucleate when they are on the same position, one could say
that the probability to find two different adatoms on the same position is zero, because as
soon as they occupy the same position they are no longer adatoms but form a nucleus. For
this reason the two-adatom density p(i, j,t) can be written as an antisymmetric function

of P1 (ia t) and P2 (.]’ t):
p(ivjv t) ~ pl(ivt)pQ(jv t) - pl(jv t)pQ(iut) . (326)

Here the position of the adatoms is given by the discrete variables i and j instead
of the continuum ones x; and x5 used for the wave functions. To express the analogy
with the electronic system, Eq. 3.26 which has been derived for the adatoms will be called
Hartree-Fock approximation. Within this approach the adatom density is zero along the
diagonal ¢ = j as shown in Fig. 3.9 c).

The shape of the adatom density has changed compared to the one obtained from the
Hartree approximation. The adatom density is now deformed close to the diagonal ¢ = j
this is similar to the correct solution of Fig. 3.9 a). The Hartree-Fock approximation
describes not only the region far away from the nucleation line properly, as it was the
case for the Hartree approximation, but also close to this region. It is also possible to
get some information about the nucleation from the Hartree-Fock approximation. In fact,
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the sum of the total adatom density on the surface is now less than one. The difference
between the sum of the adatom density on the surface and one gives the probability that
the particles have nucleated:

nuc=1-— Zp(i,j) . (3.27)
i,J

From the Hartree-Fock approximation it is not possible to know how the nucleation is
distributed on the surface, as it is the case of the exact solution shown in Fig. 3.9 a).

If Eq. 3.26 is plugged into Eq. 3.19 it gives Eq. 3.23 which was obtained using the Hartree

approximation. In the continuum case (z = + with Az = % — 0) the two-particle

L
density is than given by a superposition of two Gaussians:

1 _(z—20)’+(y—yp)? _ (e—yo) +(y—xq)?

1D (exp Dt — exp Dt ) . (3.28)

Here (z9,yo) are the initial conditions. In Fig. 3.9 c¢) only the positive part of the
solution has been plotted, omitting the part with negative density. This is similar to what
is commonly done in electrostatics when applying the image method (see Ref. [104]), where
a problem with boundaries (for example a metal slab at a given potential) is replaced by an
enlarged region with fictitious charges and no boundaries. This method has been applied
to nucleation in Ref. [88].

3.2.3 Hartree approximation with a nucleation term

To have a local description of nucleation it is necessary to further improve the approaches
proposed in the last two sections. A possible idea is to introduce a nucleation term which is
position dependent. Equation (3.19) is a good starting point to find a possible nucleation
term. In fact from this equation one can evaluate the probability p(i,4,t) to find the two
adatoms at the same position, which will be called n(i,t). The nucleation rate is than
given by:

on(i,t)
ot

As each density term on the right hand side of Eq. (3.29) involves always different
sites, the diffusion rate is D = I' for all the sites. The key issue is now how to express
the two-adatom density terms appearing on the right hand side as function of the single-
adatom densities. Here again the first possibility coming to mind is to substitute the
two-adatom density by a product of the respective single-adatom densities (i.e. Hartree-
like approximation). Of course, in principle more complicated approaches could be used
to express the two-adatom density, like for example adopting an antisymmetric function
as done for the Hartree-Fock approach (see previous section). As shown there it gives
better results than the Hartree approach. However, since in this first derivation the main
concern is on keeping things as simple as possible, the discussion will be restricted to the
Hartree approximation. Performing it the nucleation term writes:

= T[p(i + 1,4,) + p(i — 1,i,t) + p(i,i + 1,8) + p(i,i — 1,1)] . (3.29)
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on(i,t)
ot

=Tlp1(i + 1, )pa(i, t) + p1(i — 1, 8)pa(is t) +
p1(i,t)p2(i+ 1,t) + p1(i,t)p2(i — L, 1)] . (3.30)

This term is added to Eq. (3.23) used in the Hartree approach, resulting in the following
two equations for the adatom densities:

% =Llp (@ +1,0) + p1(i = 1,8) = 2p1 (0, 1)] —
Tp1(i,t)[p2(i + 1,8) + pali — 1,1)] (3.31)
% = lpa(i + 1,8) + pali — 1,1) = 2p2(i, 1)) —

Fpg(i, t)[pl (i +1, t) +p1(i—1, t)] . (3.32)

In the following the performance of this approximation for the nucleation term will be
checked.

As a first test it will be compared with the Hartree-Fock approach. As mentioned
in the previous section, from the Hartree-Fock approach it is possible to get the total
nucleation Nyp correctly. The total nucleation from Hartree-Fock can be compared with
the total nucleation given by the nucleation term Np. This has been done for different
temperatures in Fig. 3.10.

Here the relative difference for the total nucleation between the exact Hartree-Fock re-
sults and the Hartree plus the nucleation term have been plotted for temperatures between
490 K and 540 K. The relative error plotted in Fig 3.10 is:

AE, = 28— 1) (3.33)

Around 540 K the relative difference is less than 0.2. For higher temperatures (which
are particularly interesting because they correspond to the step flow regime) the difference
is expected to decrease further. Simulations at higher temperatures were not performed
in this work because of the long computational time needed. For low temperatures the
difference in nucleation increases but it is still smaller than a factor 2. Around T = 490
it gets as large as 0.6. At high temperatures the distribution functions are smoother and
thus the approximations introduced give better results. The spatial distribution for the
nucleation and the adatom density obtained with the Hartree approach plus nucleation
term have been plotted in Fig. 3.11 for three different temperatures.

The simulations were done on a 500 vector for a simulation time tg;,, = 1.0 s. The
two adatoms were located at ¢ = 0 at position 200 and 300. Increasing the temperatures
the adatom densities get smoother and the nucleation distribution gets higher. From
Fig. 3.10 one can see that the relative error between the Hartree-Fock approach and the
nucleation term decreases for increasing temperatures. This is due to the fact that for high
temperatures the adatom distribution gets smoother so that the variation of the adatom
density at each site is better approximated by a constant value. To test the correctness of
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Figure 3.10: Relative difference between Hartree-Fock and Hartree plus nucleation term
as defined in Eq. (3.33) versus simulation temperature. AF,; as defined in Eq. 3.33 is a
real number. The lattice consists of 500 sites and the initial positions of the two adatoms
are 200 and 300.
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Figure 3.11: Adatom densities and nucleation distribution at different temperatures cal-
culated using the Hartree approach plus nucleation term. The lattice consists of 500 sites
and the initial positions of the two adatoms are 200 and 300.
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the spatial dependence of the nucleation term it would be necessary to compare it with a
KMC simulation or with the solution of the full two-particle equation. Both methods are
computationally demanding because to get a reasonable statistics KMC simulations have
to be performed for millions of runs and for the solution of the two-particle problems the
number of equations to solve is equal to the square of the length of the surface considered.
These tests are still under work and we are not yet at a stage to present some results. As
a further research, other local nucleation terms could be considered, for example starting
from an Hartree-Fock approach.

To simulate the more realistic case of two-point islands the following equations might
be used. The equations used are similar to Eq. (3.31) with a slightly different nucleation
term:

OPUEL) _ Dps(i - 1,8) 4 pai = 1,1) — 210, 1)] —
(i, )[pai + 2,8) + pali — 2,0) (3:34)

OP280) Dl 41,0) + poli — 1,1) — 2pa(i, )] -
Tpoiy t)pr(i + 2,8) + pr(i — 2,8)] . (3.35)

These equations are given here just to show the way one has to go to develop more
realistic models, but no tests have been performed based on this set of equations.

3.2.4 Nucleation with Hyper Jump KMC

The Hyper Jump KMC (HJ-KMC) will be here applied to nucleation. In Sec. 3.1.4 the
HJ-KMC had already been described for the diffusion processes. In the case of nucleation
the interactions between the two adatoms should be taken into account. At t = 0 the
two adatoms are at the level n = 0 and if they are sufficiently far away from each other,
they start an ascending process. Now there are two limiting conditions for this ascending
process of the adatoms. One is that the time step At, at the level n reached by the
adatom, should not get larger than the total simulation time tg;,,, as was also the case for
the diffusion. The second condition is that the spacing Ax,, at level n, where the adatom
is, should not get so large to include the second adatom in it. If the positions of the two
adatoms on the lattice are ¢ and j, it should be always valid that |i — j| > Ax,, where
Ax, is the spacing of the highest occupied level of the two adatoms. The two adatoms
can occupy different levels as long as they are far away. This is particular important in
the case of a simulation where more than two adatoms are involved, which is not the case
here, but that is what normally happens in a complete growth simulation of a surface. In
fact it could happen that two adatoms are close to each other, thus they can occupy only
a low level, while another adatom is far away isolated and it can reach a high level. As
soon as two adatoms occupy two nearest neighbor sites they are moved to the next lower
level they occupy, unless they are already at the lowest level n = 0. A nucleation process
can take place only at the level n = 0. At each time step the relative distance of the two
adatoms has to be checked.
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Figure 3.12: CPU time comparison for the nucleation between KMC and HJ-KMC. The
simulations were done for a two-particle system on a one-dimensional vector long 256 sites.
The simulation has been done for t = 0.01 s.

To check the speed of the method a CPU time comparison has been performed between
HJ-KMC and KMC for nucleation events. A system is considered in which two particles
are on a one-dimensional vector. The vector is 256 sites long and at ¢ = 0 s the two parti-
cles are at site 114 and 142. The simulation is done for ¢ = 0.01 s. Once the two particles
nucleate the simulation stops. In Fig. 3.12 the CPU time as function of the temperature
for both methods has been plotted. The CPU time is increasing exponentially as was the
case also for diffusion. For HJ-KMC the CPU time is even decreasing with temperature.
This is due to the fact that by increasing the temperature the probability that the two
particles nucleate gets higher and the simulation stops before the final time is reached, if
the nucleation takes place. The algorithm used for the HJ-KMC is more complicated than
the normal KMC because it includes the managment of particles on different levels. This
means that at every time step the relative distance has to be checked and the time step has
to be compared with the total simulation time. For these reasons the HJ-KMC is slower
than the normal KMC for low temperatures, but it gets faster for high temperatures.
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3.3 Conclusions

Diffusion and nucleation are the two main processes occurring during growth. They are
Markov processes and can be described by a Master equation. A standard way to handle
this Master equation is to realize randomly the processes included into it and following
from configuration to configuration the evolution of the system. This is exactly what
the KMC methods do. It is a straightforward way to approach the problem, but it is
not the most efficient. In particular the diffusion processes are responsible for the slow
down of the simulation at high temperatures. In this chapter it has been shown, that the
density approach is a more efficient way to describe the diffusion processes. The AP-KMC
method has been presented for diffusion. This has been a good starting point to describe
the technique, which will be extended in the next chapter for a general epitaxial growth
simulation. The comparison of the CPU times for the diffusion between AP-KMC and
KMC has been presented. The tests have been restricted to the one dimesional case,
which is computationally easier. It would be also very interesting to perform tests for
the two dimensional case, this was not done here because of time limitations. Besides
AP-KMC also HJ-KMC has been presented for diffusion. HJ-KMC can be even faster
than AP-KMC. The second part of the chapter has been dedicated to nucleation. A
system of adatoms on a surface has been compared to a system of electrons in an external
potential and techniques typically used in electronic structure theory have been applied to
the nucleation. A Hartree-like and an Hartree-Fock-like approach to nucleation has been
investigated and a nucleation term to describe the nucleation has been introduced. As
the nucleation term presented in Sec. 3.2.3 is the only one which can describe locally the
nucleation it will be used in the next chapters to derive a schema which allows a complete
growth simulation. Finally the HJ-KMC has been also applied in the case of nucleation.
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Chapter 4

Density Based KMC methods
(AP-KMC): Fundamentals and

Definitions

4.1 Master equation for crystal Growth

In the previous chapter a density approach has been presented for the diffusion and nu-
cleation processes. These results will be used here to extend this approach to describe
epitaxial growth in general. Crystal growth is a stochastic process and can be described
by a Master equation (as said already in Sec. 2.2, see also [2,3]). A SOS model (see
Sec. 2.2.4), will be used to describe the growing surface so that it can be represented by
a vector:

C ={hi,hg, -, hpr} . (4.1)

Here M is the number of sites and h; gives the number of atoms on site 7. Other models
with more complicated structures than the cubic SOS structure or also including vacancies
can be implemented but for simplicity the treatment will be limited here to the SOS model.
The Master equation will be presented here for the one-dimensional case and the adatoms
can hop only to nearest neighbors sites. As in the Master equation there are contributions
of many different configurations, to reduce its length a couple of abbreviations will be
introduced. The probability to have a configuration P(C,t) = P({h1,...hi,...,ha},t)
will be just written as Py, or if the heights of some particular sites are important, as h;_1
and h; in P({h1,...hi—1+1,h; —1,..., hpr},t), than it will be used Py, ,11,5,-1)- The
transition rates between two different configurations as w({hy,... hj—1+1,h;—1,.. . hyr} —
{h1...hi—1,hi, .. har}) will be written as W, 4+1,n,—1)—(hi_1,h;)- Lhe Master equation
looks like:

6P(hi) o
ot - Z[w(hrlvhwﬁl)ﬁ(hi7hi+1)P(hﬁ17hi+1+1) + w(hﬁl,hwl*l)ﬂ(hwl7h¢)P(hi+Lh¢+1*1)
=1
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+w(hi—1+1:hi_1)_’(hi—1:hi)P(hi—1+1:hi_1) + w(hi—l—1,hi+1)—>(hi—1,hi)P(hi—1—1,hi+1)]

M
- Z[w(hifl7hi)4’(hi71*17hi+1) + W(h;_1,hi)—(hi—1,hip1+1) + W(h;_1,hi)—(hi—1+1,h;—1)
=1
M
FW(hy 1 hi)— (it Lhior—1) P + D Wihi—1)— () Plhs—1)  (4.2)
=1

The terms in the first summation are all positive. They correspond to the probabil-
ity that the system is in a configuration C’, which is a nearest neighbor configuration of
C = (h;). C'is a nearest neighbor configuration of C' if moving one-adatom to a nearest
neighbors site, C' becomes C. The four terms in the first summation correspond to the
probability that the system, being in a configuration C’, moves to the configuration C
thanks to a diffusion process. These different contributions have been graphically repre-
sented in Fig. 4.1 for a configuration C' taken as example. The first term Py, 1 4,,,41)
for example corresponds to Fig. 4.1 b), in fact the value of i 4 1 is one unit higher than in
the configuration C and the value of ¢ one unit lower, if the adatom in ¢ 4+ 1 hops to @ it
becomes the configuration C. The other three terms in this first summation correspond
to Fig. 4.1 c-e). In the second summation there are four negative terms which correspond
to the probability that the system already is in the configuration C' and it moves away
from it, becoming one of the four configurations represented in Fig. 4.1 b-e). The term in
the last summation corresponds to the deposition as shown in Fig. 4.1 a). No desorption
has been considered here.

The Master equation includes all the information about the dynamics of the SOS system
considered. The challenging problem is now how to solve the Master equation. In principle
the Master equation describes the dynamics of any possible configuration of the system.
If the system is composed by 10* adatoms or more, as it is generally the case for epitaxial
growth, the numbers of possible configurations gets huge and the problem is not treatable.
Two different approaches are available to treat the Master equation reducing the number
of configurations. One possibility is to derive from the Master equation a set of continuum
equations and the second is to simulate the system with KMC, which corresponds to follow
just one possible configuration. In this section the first approach will be investigate, while
the KMC will be the object of the next section.

A number of papers appeared [47, 48, 105] that derived a set of continuum stochastic
equations from the Master equation. The basic idea of all these methods is that, instead
of using the probability for each configuration P({h;---h;,---hpr}) to describe the sys-
tem, how it is done by the Master equation, a set of equations for the height of each site
h; is used. This reduces considerably the complexity of the problem because the system
can be described with M equations which is way smaller than the number of possible con-
figurations. To do this, a two step procedure is applied. A brief summary of the technique
will be given here, for details see [45,48]. First, the Master equation is approximated by
the Fokker-Planck equation using a Kramers-Moyal expansion at the second order (see
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Figure 4.1: Graphical representation of the Master Equation given in 4.2. In Fig a) is
represented the contribution due to deposition and from b) to e) the contributions due to
diffusion.
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Ref. [45))

oP(C,t) c t) K 1 0? K@ p
Z ah P(C,t)] + Ziahiahj[ P (4.3)
where
KM =371~ hyw(C — ) (4.4)
C/

is the first moment and

KD =30 — ha) (b — hy)w(C — C) (4.5)
=

is the second moment of the transition matrix. Then the equivalent Langevin equation
is:
oh;(t)

_ A
o =K; "’ +ni(t) (4.6)

where 7; represents white Gaussian noise with zero mean and covariance given by the
second transition moment

(mi(t)) =0, (4.7)

(st (¢)) = K& (H)s(t —t') (4.8)

In a second step one has to go from this discrete set of equations to a continuum
equation. To obtain the Langevin equation for the function h(z) of the continuous variable
x one needs some smoothing procedure. It is made the assumption that there exists a
smooth function h(x) that is obtained from a function interpolating through the points
hi(t). The continuum Langevin equation is than:

Oh(z,t)
ot

= K (b, 1) + (1) (4.9)

From this equation it is possible to have the time evolution of the height of each site on
the surface. In the last years new papers appeared about the subject (see Ref. [106,107]).
In Ref. [106] the set of discrete Langevin equations 4.6 is used to evaluate the surface
roughness and the results are compared with KMC simulation. To our knowledge the set
of discrete equations given in 4.6 has never been used for applications to real systems.
Continuum equations like the one given in Eq. 4.9 are generally used for large scale simu-
lations in which the value of z is not related to a particular site and the parameters used
cannot be related to microscopic parameters.
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is just following one of these paths, while the Master equation keeps track of all of them.

4.2 Kinetic Monte Carlo

An alternative method to the continuum equations to solve the Master equation is the
KMC method. A KMC simulation starts from an initial configuration C; of the system
and at each time step it evolves to a new configuration till the simulation time tg;,, is
reached and the system is in a final configuration C'y. Each configuration of the system
can be seen as a point in the configuration space and a KMC simulation as a time de-
pendent path connecting the different phase space points as represented in Fig. 4.2. A
KMC simulation follows just one of the possible paths that brings the initial configuration
C; to a final one Cy. Solving the Master equation for an initial configuration C; instead
corresponds to consider all the possible paths starting with C; and find the probability
of each final configuration Cy. If KMC runs are repeated a large number of times it is
also possible to map the configuration space of the system. In this way every KMC runs
can follow a new path and from the frequency of the final configurations C'y over a large
number of runs it is possible to find the probability distribution P(hq,---h;,---hps) as
for the Master equation. Generally the probability distribution for all the possible con-
figurations is not needed and a single KMC run is enough to see how the surface looks
like. Nevertheless many KMC runs are needed every time that one has to calculate some
statistical values as the island density or the island-size distribution.

KMC follows the trajectories of each adatom diffusing on the surface. Each event cor-
responds to a new configuration. At high temperatures diffusion events play an important
role and the adatoms’ trajectories can get very complicated as shown in Fig. 4.3.

The simulation of such complicated trajectories requires a great computational effort.
The time step for KMC simulation is given by Eq. 2.43 that it is reported here in its
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Figure 4.3: Here it is shown the path followed by an adatom diffusing on a surface before
attaching to the step edge. This trajectory can be obtained with KMC. The calculation
of these trajectories can get very complicated for high diffusion coefficients.

explicit form:

__In(§)
At = _Zi T,

Here I'; are the transition rates for the different processes. The diffusion coefficients
depend exponentially on the temperature see Eq. 2.9. This implies that the time step
decreases exponentially with the temperature. In Table 4.1 the diffusion mean free path per
atom and the average time between two diffusion events are shown for KMC simulations
on a 100 x 100 matrix for a simulation time of 0.1 s with a flux of 1 monolayer (ML)/s.
A linear bond cutting model (see 2.41) was used with Ey = 1 eV and E, = 1 eV. The
simulations were done for temperatures varying between 500 K and 1150 K. As expected,
the number of jumps an adatom is doing before it is incorporated increases exponentially
and the time step between two jumps decreases exponentially.

It is important here to distinguish between two very different types of processes that
take place on the surface. On one side there are growth processes like nucleation and
attachment which contribute to the growth of the surface and than there are diffusion
processes, which do not produce any morphological change of the surface. The number of
growth events is much smaller than the number of diffusion events. The number of growth
events is of the same order as the number of adsorbed adatoms. Let us define Atgifusion
as the average time interval between two diffusion events and Atgowtn as the average time
interval between two growth events. For the simulation considered in Table 4.1 there are
roughly 1000 adatoms reaching the surface, thus the average time step between growth
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Temperature (K) | dyrp/atom (diat) | Atgiffusion (S)
500 30 3.3-107°

750 470 2.1-1076

1000 1800 5.6-1077

1150 60000 1.7-10°8

Table 4.1: Diffusion mean free path (dypp) per atom and average diffusion time step
Atgaigr, for temperatures ranging between 500 and 1150 K. dj,; is the distance between
nearest neighbor sites. The results have been obtained employing KMC on a 100 x 100
matrix (for more details see text).

events is Atgrowth ~ 10~%. In general it is possible to write Algrowth = ﬁ, where F' is the
flux (in ML/s) and L? is the total number of sites on the surface. As can be seen from Ta-
ble 4.1, for higher temperatures the time scale for growth events (which one is eventually
interested in) becomes orders of magnitude larger than that of the diffusion events. For
example comparing the results for 1150 K it appears that m ~ 10*. For this reason
at high temperature KMC is getting exceedingly slow. Due to the different time scale
between diffusion and growth events, the diffusion events will be called fast events and
the growth events slow events. In the following a method, called Adatom Probability
Kinetic Monte Carlo (AP-KMC), will be introduced to separate these two different time
scales to improve the efficiency of the simulation. It is an extension of the one used in
Chap. 3 for full growth simulation. The separation of the two time scales is obtained using
a time step of the order of Atgowin instead of Atgig as in KMC and treating the diffusion
processes, which are not interesting for the growth, with a diffusion-like equation instead

of following each trajectory.

To better understand the main ideas behind AP-KMC, a comparison will be done be-
tween KMC and Molecular Dynamics (MD) as illustrated in Fig. 4.4. In a) the AP-KMC
method is just describing the important events for growth (attachment and nucleation).
A part of the surface is enlarged in b) to show how the KMC method simulates these
processes by following each single jump of the adatom. Finally in ¢) the surface is further
enlarged to see how MD would describe all the atomic vibrations of an adatom around
each stable site. As the KMC method does not follow the motion of an adatom around its
equilibrium position and just considers the diffusion events where the adatom can escape
from the energy’s minimum, in the same way the AP-KMC method does not follow the
diffusion processes of the adatom on the surface but it describes only the growth processes.
MD, KMC and AP-KMC work on three different time scales, as illustrated in Fig. 4.5.
The typical time step At used in MD is of the order of the phonon frequency, for the KMC
it is of the order of the hopping rate and for AP-KMC it is of the order of the growth
process rate. The value shown in Fig. 4.5 for the hopping rate is for the particular case
of T'= 1000 K as shown in Table. 4.1. The growth event rate follows from the previous
discussion.
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Figure 4.4: Schematic comparison between AP-KMC, KMC and MD is shown. In a) one
can see a simulation done with AP-KMC, where only the growth processes are taken into
account. In b) it is shown an enlargement of a part of the surface shown in a). Here
one can see how KMC describe each single adatom hop. In c¢) it is presented a further
enlargement of a part of the surface shown in b) and it is possible to see how a MD
simulation describes all the adatoms vibrations around a stable site before jumping to a
neighboring site.

« >

Phonon vibration Adatom hopping Growth process rate
~10"s ~107s ~10"s

Figure 4.5: Schematic picture of the three different time scales used by MD, KMC and
AP-KMC. MD works on the time scale of the phonon frequency, KMC on the time scale
of the adatom hopping rate and AP-KMC on the growth process rate. The values for the
hopping rate and growth process rate are taken from Table 4.1.
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Figure 4.6: Picture of the surface with islands and steps where the adatoms are represented
by their adatom densities. The shapes of the adatom densities can be peaked or smooth
depending on how much time they had to spread out since the deposition moment.

4.3 Description of AP-KMC

As mentioned in the last two sections, it is possible to solve the Master equation using
two different approaches: first using a set of continuum equations, and second using KMC
simulations. A number of approximations have to be done to obtain the continuum equa-
tions and a large number of runs are necessary with the KMC method to solve the Master
equation. Here a new hybrid approach to solve the Master equation is presented. This
approach is a density based KMC and it is a mix of the previous two: the main idea is
to describe the adatoms’ dynamic on the surface through an adatom density, avoiding in
this way the need to follow the trajectory of each adatom, as it is done for KMC. It is
important to notice that the density approach affects only the adatoms, while the surface
and the islands on the surface will be treated as in a KMC approach. For this density
approach it is necessary to switch from the normal surface where the adatoms occupy a
given position to a density picture where the adatoms have a certain probability to be
in a given site. This is shown in Fig. 4.6 which shows a surface with steps and islands and
the adatoms are described through densities.

From the density picture it is possible to go back to the surface by collapsing each
single adatom density on the surface as it will be described in detail in Sec. 4.3.2. At each
time step it is necessary to switch from the surface to the adatom density picture and
back to the surface with the collapse procedure. Two methods will be proposed which
use this density based approach. Here first the adatom probability Kinetic Monte Carlo
(AP-KMC) and in Sec. 4.6 the Adatom density Kinetic Monte Carlo (AD-KMC) will be
described.
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4.3.1 Model Structure

In order to separate the two time scales (for growth events and diffusion events) the
configuration C' is rewritten in two parts: (i) the index S describing the surface without
the adatoms and (ii) the index (i1, 42, ix) which gives the position of the adatoms on
the surface:

C — {(i1,iz,---,in), S} . (4.10)

i gives the site index of the a-th adatom, the total number of adatoms is N. For
the index S a SOS model is used as before. To each adatom is associated a number so
it is possible to distinguish them and follow the evolution of every single adatom. The
Master equation will be solved for a time ¢ = Atgowtn. During this time it is assumed that
the surface S does not change, while the adatoms are moving around and (i1, g, - iy) is
changing rapidly. Under these conditions the index for the surface S can be taken out of
the Master equation and it can be written as function of the adatoms configuration only:

P(C)t) :Pad(zl)22all3))ZNat)PS(t) (411)

Here, P,4(i1,12,13,...,in,t) is the probability to find the adatoms in the configuration
(i1,12,13,....ix) at time ¢ and Ps(t) is the probability to have the surface in the configu-
ration S at time t. As during Atg.own the surface does not change it results Pg(t) = 1,
than:

P(C,t) = Py(i1, 12,13, ,in,t) . (4.12)

4.3.2 Non-Interacting adatoms

Let us first consider the case of non-interacting adatoms. This means that two adatoms
do not see each other. No nucleation events can take place on the surface. The adatoms
diffuse as free particles on the surface and they interact only with the surface. They can
be attracted by steps and kinks on the surface. Three types of processes are involved in
this situation: adsorption, diffusion and attachment. Each of these processes will be
considered in detail. The probability function can be rewritten as:

Pnonimt(l‘l, 19,13, -y LN, t) = H pa(’ia, t) = pl(’il, t)pg(ig, t)...pN(’iN, t) . (4.13)
[}
Here p;(i;, t) gives the probability to find the particle number [ at position 7; at time t.

Adsorption

The incoming flux of particles is F' (in ML/s). The adsorption time step At,q; = ﬁ
is the average time step between two adsorption events, and L? is the total number of
adsorption sites on the surface. The adsorption time is chosen deterministically:

£29 — 0 At,qq (4.14)
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where « is an integer number. It would also be possible to use a random time step for
adsorption but for simplicity a constant one has been used here. Deterministic time steps
have been used already in other methods as the Level Set Method giving good results.
The adsorption site i,4s is chosen randomly on the surface. A random number r.,,q is
picked so that 1 < rpanq < L? and it results:

Z‘ads S Trand S 'L.ads +1 . (415)

At the adsorption time 245 the adatom density is given by:

o (1, 1295) = 6, (4.16)

where 0; ;. is the Kronecker symbol. The implementation of the adsorption process is
local because a particular site of the surface is chosen for the adsorption. The adsorption
process is treated locally also by the KMC method, but other methods like Rate equation
or the level set method consider it homogeneous all over the surface.

Diffusion

Substituting Eq. 4.13 into Eq. 4.2 one gets a set of single adatom equations:

0pa(i,t . .
% =Y irsipali+6,t) — Tiiyspali )] (4.17)
5

Here, I'; 15, is the transition probability of an adatom to go from site i +6 — ¢ and ¢ is an
index which goes over all nearest neighbor sites. The initial condition for Eq. 4.17 is given
by Eq. 4.16 for adsorption. In this way each adatom is described by an adatom density.
This is what was also done in the previous chapter. In Fig. 4.7 it is illustrated how the
adatom density profile is changing during the time. Here a model system with D = 10 s~}
is used and the differential equation is solved for different times ¢ = 0.0025...0.2 s.

To discuss the diffusion process in more detail let us consider a single adatom in front
of a surface step. This is shown in Fig. 4.8 for a temperature of 500 K and in 0.03 s time
intervals on an array of 40 x 40. At t = 0 s the adatom density is unity at the deposition
site and zero everywhere else (see Eq. 4.16 and Fig. 4.8 a)). In the next two time steps
the adatom density spreads out on the surface (Figs. 4.8 b) and c)) and eventually reaches
the step. Since the probability to move away from the step is low (the barrier for jumping
from the step to the terrace is 2 eV compared to 1 eV for the jump from the terrace to the
step; see (Eq. 2.41)) the adatom density accumulates at the step edge (Figs. 4.8 d) and
e)). In the last figure of this sequence the initial peak at the deposition site completely
disappears and almost all the density is concentrated along the step edge. It should be
noted that the density correctly describes all relevant processes: diffusion on the terrace,
attachment and detachment at steps, and diffusion along the step.
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Figure 4.7: Adatom density profiles for a diffusing adatom on a flat surface. In the
beginning the adatom density is sharply localized on the initial position (0,0,0) of the
adatom and than it becomes more and more delocalized. The calculations where done for
D = 10 and ¢ = 0.0025, 0.01, 0.02, 0.05,0.2 .

Collapse

When t = Atgrowtn it is necessary to go back from this density picture to a surface in which
an adatom is occupying a given position. This is done by collapsing the adatom density.
The collapse of the adatom density is a key point of the method. It is important to
note that from the single particle density p,(i,t) it is possible to obtain the position of the
the adatom at each time. To this end the single particle density has to be collapsed on a
single site which can be done by choosing a random number p,,nq in the interval [0, 1] and
selecting the site [ such that:

l I+1
Z Pa(iy t) < Trand < Z pa(iz t) . (418)
=0 =0

Note that the integrated density is

12
Pa = Zpa(iat) =1 . (4'19)
i=0

It should be noted that the collapse is not a deterministic process but stochastic in
analogy to a measurement process of a quantum mechanical wave function. To be more
specific, let us again consider the evolution of the single particle density of an adatom
in front of a surface step. This is shown in Fig. 4.9. The simulations were done at a
temperature of 500K and the collapse took place after a time interval of At = 0.01s. As
can be seen the adatom attaches to the step already after three collapses/simulation steps.

73



a t=00 b t=0.006

Figure 4.8: Time evolution of the adatom density for an adatom close to a step. The
snapshots are taken between ¢t = 0.00 s and ¢t = 0.03 s for T' = 500 K. For ¢ > 0 the
adatom density has been multiplied by an arbitrary scaling factor for ease of viewing.
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Using KMC, where each individual jump is described, a much larger number of time steps
would have been required (for the specific case shown in Fig. 4.9 approx. 800 steps), i.e.,
this approach indeed allows to dramatically reduce the number of time steps. To perform
simulations for ¢ > Zgowtn One has to repeat this procedure by switching between the
adatom density picture and the collapse. If one starts with a surface, first one has to go to
the adatom density picture, solve the set of differential equations for the adatom density
and then collapse the system to go back to the surface and start a new cycle again. This
sequence of switches between the adatom and its density is shown in Fig. 4.10 for the
case of a single adatom. Starting from the deposition moment the adatom is alternatively
treated as density or adatom until it nucleates or gets attached to a step edge.

Some similarities between the KMC method and the density based KMC regarding the

time step and the collapse will be pointed out here. In KMC the characteristic/average
time step is of the order or smaller than Atg;g. The time step in KMC is chosen in such
a way that only one event takes place in a time interval. In density based KMC the time
step is chosen in such a way that only one growth event (nucleation or attachment) can
take place, and not any event as it was the case for KMC. The density based KMC time
step is orders of magnitude larger than the one used by KMC.
In KMC at each time step a list of the probabilities of all the new possible configurations
is built and than randomly a configuration is chosen. In the density KMC method it is
possible to evaluate the probability for each configuration of the system. This can be done
knowing the single adatom densities. When the adatom densities are randomly collapsed,
one of the possible configuration is chosen. The collapsing procedure in the density KMC
method is similar to the random choice of a possible configuration from the probability
list done in KMC. It should be noted here that if in the density KMC a time step as small
as in KMC is used, than the density KMC method is equivalent to KMC.

Attachment

To understand how the attachment process works it is useful to look at Fig. 4.8. Here
one can see how after the deposition the adatom density starts to diffuse and eventually
reaches the step edge where it accumulates because it is unfavorable for the adatom density
to move away from the step edge. After a certain time almost all the adatom density is
located along the step edge. The probability that the adatom density is collapsed along the
step is very high. If the adatom is collapsed along the step it becomes part of the surface
and it will not move anymore. This assumption corresponds to the case of irreversible
growth, which is made at this point for semplicity. The method could be easily extended
to include also detachment processes but this argument will not be discussed here. The
surface is updated, i.e. if i is the site where the attachment event takes place the following
relation holds:

S = (hiy) =8 = (hi+1,..). (4.20)
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Figure 4.9: Surface before (left) and after (right) a collapse of the adatom density. The
collapse is performed at equal time intervals of At = 0.01 s. The simulation has been

performed at a temperature of 7' = 500 K. The adatom density has been scaled for ease
of viewing,.
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Adatom’s life

a)

Deposition

) Diffusion
b) Free Adatom i

Attachment

e)

Nucleation

Figure 4.10: Schematic view of the ”life” of an adatom. First there is a deposition event
a), which creates a free on the surface b). To describe the diffusion the adatom is treated
as an adatom density c¢) and which is collapsed at d). The lifetime of an adatom ends if
the collapse places the adatom at a step edge (attachment) f) or next to another adatom
(nucleation) g), otherwise if it is still a free adatom a new cycle is started.
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The adatom density that was collapsed disappears. In general an attachment event
happens when the adatom density is collapsed in a site where at least one nearest neighbor
site is already occupied. If the adatom is collapsed on a site where all the other nearest
neighbor sites are unoccupied, than in the next time step the adatom will be treated again
as an adatom density.

4.3.3 Interacting adatoms

The method proposed for the non-interacting model in the previous section is in principal
correct. This means it would give the same results as the direct solution of the Mas-
ter equation or a KMC simulation. The interactions between the adatoms play a very
important role during crystal growth. In particular, they are responsible for nucleation
events on the surface. The interactions between adatoms is mainly due to their chemical
bond. If two adatoms occupies two neighboring sites, they form a strong chemical bond,
so that long range interactions due to elastic and/or electrostatic interactions can be often
neglected. For the simplified energy functional used here (Eq. 2.41) this assumption is
always fulfilled. In the following it will be assumed that only adatoms on nearest neighbor
sites interact with each other. Since interaction is restricted between adatoms on neigh-
boring sites it means that once interaction occurs, a cluster /nucleus consisting of 2 or more
adatoms on the surface is formed. Depending on the growth parameters (temperature,
fluxes) the minimum size of such a cluster to form a stable nucleus may vary (see e.g.
Ref. [6]). In order to keep the following discussion simple it is assumed that already a
nucleus consisting of two atoms is stable and represents an island. This means that the
critical island size is i* = 1 (see Chap. 3). A generalization to larger critical island sizes
is straightforward and will be described elsewhere [108]. Due to the interactions between
the adatoms now it is not possible to rewrite the probability function as the product of
the single adatom densities as it was done in Eq. 4.13. Because of the choice of the time
step At = Atgrowth, the probability that more than two adatoms interact at the same
time is very small and can be neglected. This means that if there are three adatoms on
the surface, the probability to find them at a given position is P(i1,1i2,43) and as just two
adatoms can interact together the third one is not correlated to the other two. For this
reason it is possible to write:

pliv, iz, i3) = p(i1,i2)p(is) - (4.21)

Here it was assumed that the adatoms one and two are interacting and adatom three
is independent. For this reason it is possible to describe all the system using a two-particle
density:

PAP=AD I (G o gy yin, ) = [ ] Pauslia: is, 1) (4.22)
a?/g

If this expression for the probability function is plugged in the Master equation Eq. 4.2,
it is possible to get a set of two-particle density equations:
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d;, 0; describe neighboring sites around sites ¢ and j. 7 and j are nearest neighbors. To
reduce the complexity of the equation it is useful to write the two-particles density as a
function of the one-particle densities. If one uses now the Hartree approximation as it was
done in Chap. 3 the previous set of equations can be written as:

0 i,7,t . )
Opaslld D) _ ™1 s spali 0 09, 1) +
0;
ZFJJr(Sjv]pa(Zut)pﬁ(] + 5]7t) . (424)
d;

This is the same nucleation term used in Eq. 3.30 for the two point island, so to describe
the system one can use the following set of equations:

% = Dlp1(i + 1,t) + p1(i — 1,) — 2p1(i,t)] —

Dpl(’i, t) [pg(i + 2, t) + pg(i — 2, t)] . (4.25)

To perform a growth simulation including adatom-adatom interaction is then straight-
forward and very similar to solving the non-interacting adatom-adatom system. The only
difference is that in addition to solving (Eq. 4.17) after each time step also all nucleation
probabilities p, (7, j,t) have to be calculated.

Similarly as for the collapse of the single particle densities one can perform also a
collapse for the nucleation density to decide whether and where a nucleation takes place.
It is possible therefore to calculate the nucleation time by:

b = — LTrand (4.26)
Ntot

Here, ny = %Zaﬂﬂ-,j Pa,p(i,j,t) is the total probability of a nucleation event (j is re-
stricted to be a nearest neighbor of 7). If t,, is larger than the simulation time step
Atgrowth 10 nucleation event occurs. If, however, ¢y, is smaller a nucleation event is per-
formed by applying a further collapse (in analogy to Eq. 4.18) to select the pair of atoms
(o and ) and the nucleation sites 7, j. On the site where the nucleation occurs the surface
is updated, i.e.:

After the nucleation event the two-adatom densities involved in the process are elimi-
nated.
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Figure 4.11: The interaction areas for the adatoms are plotted at different times. In-
creasing the time step the overlapping of the interaction areas for different adatoms are
increasing and higher density terms have to be taken into account.

4.4 Longer time steps and higher density terms

In the previous section the choice for the time step was At = Atgown. Here the possibility
to develop new methods which use a time step At larger than Atg.owin will be briefly
discussed. In this case there are more events that happen in a time step At and in
particular more than one growth event can take place within At. For example two adatoms
can nucleate together and afterwards another adatom can attach to the new islands. To
take into account the correlation between the three adatoms, the three particle density
Pa,3 (%, 4, k,t) should be considered and Eq. 4.13 can be rewritten as:

P (iy,ig,ig, .. int) = [ Pago(ia:isiy,t) (4.28)
a,B,y

As the time step is increasing the number of particles interacting with each other is
increasing as illustrated in Fig. 4.11, where it is shown how the interaction area of a
particle is increasing with time.

For longer time steps one has to include higher order adatom densities till the moment
when all the particles are interacting and the distribution probability P (i1, 9,13, ...,iN,t)
cannot be reduced anymore to lower order terms and the Master equation must be solved
for the full probability distribution. Even if a larger time step allows to reduce the number
of time steps needed to perform the simulation, the complexity of the method to take into
account larger time steps also increases, thus one should pay attention to the fact that a
larger time step could finally slow down the simulation. Concluding one should find the
time step which can perform the best for the system under study. In the present work
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only the two particle density was used because it was the easiest model to test. This
means that, referring to Fig 4.11, the time step At has to be chosen in such a way that
At = Aty = Atgrowtn < Atg, where Aty is the time for two particles to interact and At
for the three particles interaction.

4.5 Implementation of AP-KMC

To understand the implementation of AP-KMC a flow chart of the method will be pre-
sented in Fig 4.12. The method is composed by 7 steps:

1. the simulation starts at t = 0 with a given surface.

2. If there are adatoms on the surface they are going to be converted into adatom
densities.

3. The time step must be of the order of Atgowin. To do this one gets At equal to the
minimum between the deposition time step Atqep, = ﬁ and the nucleation time
step At = % where N is the probability that a nucleation event takes place on the
surface, as it will be shown in the following.

4. Check for deposition events. If AtF'L? > 1 than there is a deposition event and this
is done randomly on the surface as described in Sec 4.3.2.

5. The system of differential equations for the adatom density is solved.

6. If the nucleation term -, 5 Dpa(i, j)ps(i,j) > 1 there is a random nucleation event
on the surface

7. Collapse all the densities on the surface

The solution of the differential set of equations is the most time consuming part of the
method. Different approaches are possible to solve the system. On one side there are the
explicit methods in which to calculate p;(t+ At) one just needs to know the values of p(t).
This approach is easy to implement and fast, but it gives unstable solution for large time
steps (see App. E). On the other side implicit methods can be applied, which are more
complicated to implement, because one has to solve a system of difference equations to
find the solution, but they have the big advantage that they are stable for any time step
(for more details see App. E).

4.6 AD-KMC

Even if the method described in the previous section successfully decouples the “fast”
time scale of the diffusion events from the “slow” time scale of the growth events it is
numerically still very expensive. The most expensive computations are those of the single
particle density and of the nucleation probability (which is a two-particle density and
scales thus with the square of the number of adatoms).
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Start with a given
surface at t=0 s.

Transform the adatoms
into adatom densities

Increment the time step
At=min {1/FL’, 1/N}

If At F L*>1
deposition

Solution of the differential
equation system. Eq(4.17)

If N=X B i_iDp(x(iDj)p(}(i’j >1
nucleation event

Collpase of the
adatom densities

Figure 4.12: Flow chart for AP-KMC, see text for the description of each single step.
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In order to discuss further optimizations it will be considered the case of high growth
temperatures, which is particularly relevant for realistic growth simulations. Since the
diffusivity (the jump probability) of an adatom increases exponentially with temperature
at high temperatures an adatom quickly explores a large part of the surface and gets
quickly trapped on energetically favorable sites (such as surface steps or kinks). Under
these conditions the total adatom density and thus the nucleation rate will be small. With
other words, the one-particle density will be rather delocalized and will quickly “lose” the
information about the initial adsorption site (see e.g. Fig. 4.8 f)). In the limit of infinite
diffusivity each adatom can explore the entire surface, i.e., the single particle density will
be infinite and describe the thermodynamic probability to find an adatom on a certain
site. This probability function is of course identical for all adatoms. For conditions close
to thermodynamic equilibrium the densities are not identical but similar.

If the one-particle densities are (at least in a local region) similar to each other and
largely delocalized the adatoms can be described by the total adatom density

p(ist) =Y palit) (4.29)

rather than by the complete set of single particle densities. Using the same arguments
as in the previous section one then obtains a method which it will be called adatom-
density KMC (AD-KMC) and which completely avoids the calculation of the single particle
densities. To keep the following discussion simple aggregated growth is assumed (as it has
also been done for the AP-KMC), i.e., once an adatom has been incorporated it can not
be dislodged to become an adatom again. The equation describing the time evolution is
similar to (Eq. 4.17)
8p((91t, b _ %:[Fz‘+5,i/)(i +0,t) = Tiiysp(ist)] —

nnuc(ia t) — Natt (’L’ t) + F(Zu t) : (430)

except that nucleation nyyc(4,t), attachment nge (i, ¢) and adsorption F'(i,t) are now ex-
plicitly included. For the further discussion a constant and homogeneous flux (F'(i,t) = F)
will be assumed. Attachment is described by a deterministic event, i.e., it occurs once the
adatom density at site 7y and at time ¢ is unity (p(ip,to) = 1). If such an event occurs,
Natt (7, 1) = 4,49 0t1,, 1.€. the density on this site is reset to zero. Also, the surface and thus
the transition probabilities w;s—.; around the attached atom are modified:

S=(.hi..)=858=(.h+1.) . (4.31)
For a nucleation event on a terrace away from steps and for realistic growth parameters

(Eq. 4.24) can be further simplified. On a free terrace all transition rates are identical and
are given by the surface diffusion constant D:

Ciovsi= DR (4.32)

Here, [y is the distance between two nearest neighbor sites. If it is further assumed that the
adatom density around the nucleation site is approximately constant, then the probability
that a nucleation event takes place on site ¢ at time ¢ is given by:

Pouc(is 1) = DI2p2(i,t) (4.33)
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which is a well known relation often applied in Rate equations [6]. To calculate the
nucleation rate npyuc(4,t) needed to solve (Eq. 4.30) it is assumed:

t

Moy 1) = Prac(t) = / S puneis )t (4.34)

t_Atgrowth i

The replacement of a localized nucleation term by a delocalized term is well justified for the
high temperature conditions assumed here and avoids the formation of localized regions
with negative adatom density. For the modification of the surface and the transition states
the non-averaged nucleation term according to (Eq. 4.33) is used. As can be seen from the
above equations all quantities entering (Eq. 4.30) are either explicitly given (like the flux
F) or can be directly calculated from the total adatom density p(i,t). Thus, in contrast
to AP-KMC the explicit calculation of single particle densities and two-particle nucleation
terms is avoided making AD-KMC computationally much more efficient. Applications of
the method and a discussion about the validity of the underlying assumptions will be given
in the next chapter.

4.7 Conclusion

KMC is the standard method for atomistic growth simulations. It is very efficient and it
has been applied in many studies on different systems. Nevertheless improvements of the
method are still possible. In this chapter alternative methods within an adatom density
approach have been proposed. This allows a better description of the diffusion processes.
Two different methods have been presented here, the adatom probability kinetic Monte
Carlo (AP-KMC), in which each adatom on the surface is described by an adatom density
and the adatom density kinetic Monte Carlo (AD-KMC), in which just one-adatom density
is used for all the adatoms present on the surface. In the next chapter a comparison
between density based KMC and standard KMC will be shown.
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Chapter 5

Statistical Tests for the
Submonolayer growth

In this chapter the results of an extensive comparison between AD-KMC and AP-KMC
with KMC are presented. Simulations to check the island density, the island size distri-
bution, and the island shape in the submonolayer regime have been performed. For all
three approaches identical simulation parameters have been chosen: The simulations have
been performed on a square lattice (mesh size 80x80), the transition rates are calculated
according to (Eq. 2.9) using a prefactor I'g = 10 s~1 (Eq. 2.10) and the diffusion barrier
according to (Eq. 2.41) [109,110]. The flux of incoming adatoms is ' =1 ML/s. The total
simulation time is 0.1 s, i.e., a total of 0.1 ML is deposited on the surface. It is further
assumed that already a dimer forms a stable nucleus. This is explicitly enforced in the
KMC calculations and allows to approximate the nucleation in AD-KMC by (Eq. 4.33).
The growth temperature has been varied over a large range of temperatures (from 500
to 1000 K). Finally the application of AD-KMC to capture numbers are presented. The
comparison with the KMC simulation is the result of a collaboration with R. Kunert and
E. Scholl, who performed the KMC calculations. The results of this joined work have been
published in Ref. [111].

5.1 Island nucleation density

The first quantity which will be discussed is the island nucleation density (see Sec. 2.2.2)
which is simply the number of islands formed on the surface. Rather than using directly
the temperature as variable the ratio of D(T")/F is used as free variable to allow a direct
comparison with previous studies (see e.g. [63,112]). The calculated island nucleation
density as function of D/F is shown in Fig. 5.1. As can be seen, AD-KMC and KMC give
virtually identical results: With increasing D/F ratio the island density rapidly decreases.

Employing rate equations the slope of this curve can be described analytically by
Eq. 2.30 that it is reported here:

85



O KMC
& ADKMC
— RE

1024

10°4

10° 10* 10° 10° 10" 10° 10° 10"
DIF

Figure 5.1: Island density N obtained with AD-KMC and KMC as a function of D/F
between 10* and 107 at a coverage of § = 0.1. The solid line (RE) is an analytic approx-
imation based on rate equations and a critical nucleus size of two atoms (see text). Fig.
from Ref. [111].
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Since for our system already a dimer forms a stable nucleus i* = 1, i.e., the nucleation
density should follow a scaling law with power —1/3. This scaling relation has been
also included in Fig. 5.1. Since an analytical solution of the proportionality factor in
the scaling relation (Eq. 2.30) is not known it has been fitted to the KMC result for
D/F = 10°. As can be seen the scaling relation correctly approximates the slope of the
KMC and AD-KMC results except for very low D/F ratios. Under these conditions the
adatom diffusivity is negligible and nuclei are no longer formed by two adatoms moving
together but by adsorption of an adatom next to an existing adatom.

5.2 Island size distribution

Having verified that the nucleation density is correctly described we will now focus on
spatial information. To this purpose the island size distribution has been calculated. In
Sec. 2.2.2 it is shown that over a large range of fluxes, temperature, and diffusion barriers
the island size distribution approximately follows a universal scaling law given by Eq. 2.36,
that it is reported here:
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Figure 5.2: Island size distribution obtained from KMC (filled squares) and AP-KMC
(empty squares) for T = 630 K, D/F = 10°, with a coverage of # = 0.1 ML. Under these
conditions fractal islands are formed (see Fig. 5.4). Fig. from Ref. [111].

This scaling law was confirmed by experiments (e.g. Ref. [113]) and by KMC simu-
lations (e.g. Ref. [64]). These studies showed also that the scaling function depends also
from the critical island size ¢*. Amar and Family (Ref. [64,112]) proposed the following
expression for the scaling function

fir (@) = Cpea® exp[—i*agat/®] (5.1)
Here, a;+ and C;+ are determined by:

T[(i* + 2)ais]

nETR 2

(’L'*CLZ‘* )(i*—l—l)ai*

Cir = apT[(i* + Dag]

I" is the Gamma function.

As a first comparison between KMC and AP-KMC the island size distribution is con-
sidered. A temperature T' = 630 K has been chosen and the results are shown in Fig. 5.2.
At this temperature both methods show the formation of fractal islands. The agreement is
excellent demonstrating the accuracy of AP-KMC. Fig. 5.3 shows the island size distribu-
tion for all three approaches. A total of 45 runs on a 300 x 300 matrix has been performed
to obtain a reliable statistics. As it can be seen (see also Fig. 5.2) the island size distri-
bution as calculated by KMC and AP-KMC are identical within the statistical error bars.
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Figure 5.3: Island size distribution as obtained by KMC (empty squares), AP-KMC (filled
squares) and AD-KMC (diamonds) for T'= 630 K and a ratio D/F = 10°. The solid line
is the universal scaling relation eq. 2.36, as given in Ref. [64]. Fig. from Ref. [111].

However, AD-KMC exhibits rather large deviations: The maximum is larger and shifted
towards larger island sizes. Also, the distribution function is narrower than for KMC and
AP-KMC. An interesting behavior shown in from Fig. 5.3 is that the universal scaling
law (Eq. 2.36) describes the KMC and AP-KMC results only rather poorly, indicating the
limits of this model. Interestingly, however, it correctly reproduces the AD-KMC results.

In order to understand this puzzling behavior morphology and shape of the islands
have been analyzed in more detail. Fig. 5.4 shows example surfaces for each of the three
approaches. As can be seen both KMC and AP-KMC exhibit fractal growth, indicating
that the flux ratio chosen here corresponds to rather low temperatures. AD-KMC shows a
very different shape: islands are not fractal but more compact. The obvious failing of AD-
KMUC is related to the fact that to derive this scheme it was assumed that the system is close

- 80 ) 80 g )

40 80 40 80 40 80

Figure 5.4: Example of a growth simulation applying (a) KMC, (b) AP-KMC, and (c)
AD-KMC for 630 K. Fig. from Ref. [111].
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to thermodynamic equilibrium, i.e., temperatures are high enough to realize delocalized
adatom densities. Based on the discrepancy in the island size distribution, but also in the
island shapes (see Fig. 5.4) the temperature chosen here is much too low.

5.3 Island shapes

Let us now focus on a comparison of the different growth simulations at high temperatures.
The calculations of the island size distribution with reliable statistics at high temperatures
is computationally rather expensive and therefore the discussion will be focused here on the
island shapes. Fig. 5.5 shows characteristic surfaces as obtained from KMC and AD-KMC
simulations for temperatures between 1000 and 1200 K. For temperatures above 1100
K the agreement is excellent: Both methods show compact islands with similar features
such as density of kinks. Also, both methods show that with increasing temperature the
deviations from the equilibrium shape (which is a square for the parameters and lattice
chosen here) become smaller. Only for the lowest temperature, where KMC shows the
formation of fractal like structures AD-KMC gives too compact islands as already found
for the low temperature case. One can therefore conclude that for high temperatures
(where KMC becomes exceedingly expensive) AD-KMC is an efficient and accurate tool.
It will be now checked the choice of the time step At that was made to obtain the picture
in Fig. 5.5. For the results at 7 = 1100 K a time step At = 6.7 - 10~ has been used.
The typical growth time step for this simulation is Atgowin = 1.56 - 1073, so the time
step chosen At is roughly a factor 2 smaller than the Aty owin. In Fig. 5.6 it is shown
the same simulation for 7' = 1100 K done with At ranging between 1072 ---1.7-107%. As
one can see the simulations done with a time step At smaller than the one used before
look totally the same. Instead for larger time steps (At = 1073) the number of island is
increased. This is probably due to the fact that with such a large time step the adatom
density does not arrive to find the right place along the islands edges. This would cause
a higher nucleation rate.

5.4 Capture zones

An important quantity to analyze in growth simulations are capture zones. The capture
zone of an island defines the region around an island where adsorbing adatoms on the
average diffuse to that island and are incorporated there. An interesting feature of the
density based KMC methods described in this work is that they give direct insight into the
capture zones. As an example let us discuss Fig. 5.7 which shows a characteristic adatom
density as calculated by AD-KMC. Clearly visible are the adatom depleted regions (dark
areas) around all islands which mark the capture zones. From the picture it becomes also
clear that some capture zones coalesce (these islands compete for the same adatoms and
will grow more slowly) while others are open to higher density regions (those islands will
grow faster).
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Figure 5.5: Comparison of the island shape in KMC and AD-KMC simulations for tem-
peratures ranging from 1000 K to 1200 K. Simulations have been performed on a 80 x 80
matrix. Fig. from Ref. [111].
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Figure 5.6: AD-KMC simulations done for 7' = 1100 K with At = 1073.--1.7 - 107 to
test the validity of choice for the time step.
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Figure 5.7: Density plot of the adatom density. Dark regions mark surface areas with
low density, bright regions those with high adatom density. The island borders are easily
visible by a bright rim due to the enhanced adatom density. The dark regions around
the islands are adatom depleted areas (the adatoms have been captured by the islands).
The density has been obtained from an AD-KMC calculation with D/F = 10°. Fig. from
Ref. [111].
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Conclusions and Outlook

The goal of the present work was the development of new methods for the simulation of
epitaxial growth at the mesoscopic scale, in particular for conditions close to the thermo-
dynamic equilibrium. Epitaxial growth has been one of the hot topics of solid state physics
during the last decades. Due to the complexity of the system involved, the understanding
of epitaxial growth and its underlying mechanisms is possible only applying computational
methods. Many different methods have been developed to this purpose but there is still
a lot to do to reach a predictive computational theory for epitaxial growth. The present
work is a contribution in this sense.

Due to the different time and length scales that are relevant for the epitaxial process,
there is no single computational method available that can describe the entire process
from the micro- to the macroscopic scale. Dedicated methods have been developed for the
distinct scales. The mesoscopic scale is particularly interesting for practical applications
because this is the typical scale of semiconductor devices. A widely used method at this
scale is the Kinetic Monte Carlo (KMC) [23-26].

Starting from an accurate analysis of KMC we showed that there are large margins
to improve and optimize this method in particular at high temperature for systems close
to thermodynamic equilibrium. Based on this analysis we proposed a new method, which
can be considered an extension of KMC. This new method is a density approach to KMC.
Density approaches have proved to be very efficient in other fields like electronic structure
theory, where the Density Functional Theory (DFT) is a standard tool [19,20].

The central quantity in our approach is the adatom density (similar like the electron
density in electronic structure theory). Methods based on the adatom density for epitaxial
simulations like the Rate equation are available since a long time [52-56]. Recently, based
on it improved methods such as the Level Set Method, which uses the adatom density, have
been developed [27]. The problem of these methods is that they use empirical parameters,
which are hard to be related to microscopic quantities calculated from ab-initio principles
or obtained from experiments. This is not the case for the new method presented here
because as for KMC it is possible to use as input the microscopic parameters calculated
from ab-initio methods.

If the epitaxial growth took place at thermodynamic equilibrium, each adatom would
occupy the energetically most stable position on the surface and the entire process would
be deterministic. The thermodynamic equilibrium is hardly reachable because dynamic
effects play an important role. To obtain a smooth surface epitaxial growth is generally
performed in a layer by layer regime which is close to the thermodynamic limit. Under
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these conditions adatoms diffuse over large areas of the surface before finding a stable
position. The simulation of all these diffusion processes is very expensive from a com-
putational point of view and it takes the largest part of the CPU time needed for the
simulation. Physics suggests us a way to improve the treatment of these diffusion pro-
cesses. The motion of the adatom is a random walk. Close to thermodynamic equilibrium
it can be described by a diffusion equation for the adatom density.

The adatom density methods originate from the combination of KMC methods and
the solution of diffusion like equations for the adatom density. Two different methods
have been developed here, the Adatom Density Kinetic Monte Carlo (AD-KMC) and
the Adatom Probability Kinetic Monte Carlo (AP-KMC). The two methods are strictly
related and AD-KMC is a further approximation of AP-KMC. Both have been derived
from the master equation, from which also the KMC method derives. In AP-KMC to each
adatom on the growing surface corresponds a different adatom density. AP-KMC gives
good results at any simulation temperature. For high temperatures the adatom densities
get rapidly delocalized over the surface. Under these conditions it is possible to add all
the single adatom densities in one total adatom density. This is what is done in AD-KMC,
which is faster than AP-KMC but contains also more approximations.

Statistical tests have been done to check the validity of AD-KMC and AP-KMC.
The advantages of these methods compared to KMC have been shown comparing the
CPU times for test simulations. Developing these methods we had also to describe the
nucleation process in the adatom density picture. To do this we introduced for the first
time, to our knowledge, a local nucleation term. This is an open field and there needs still
a lot to be done to improve the local functional for the nucleation.

In these adatom density KMC methods, most of the CPU time is used to solve the
system of differential equations. To speed up this part of the algorithm we developed also
the Hyper-Jump KMC (HJ-KMC), which is a KMC method in which the adatoms are
allowed to perform jumps over many lattice sites. The method is still in an initial stage,
but the tests performed till now are very promising, showing a further decrease of the
simulation’s CPU time.

For the future it will be extremely interesting to apply these adatom density KMC
to real systems, in particular to semiconductors like Gallium Nitride (GaN) which are
grown at high temperature and for which standard KMC simulation are hardly feasible.
Another field of work is the further development of the methodology in particular for the
investigation for improved nucleation terms and finally the implementation of multigrid
schemes (see e.g. Ref. [114]), which would allow to further reduce the simulation time.
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Appendix A

Markov Processes and derivation
of the Master equation

First, a stationary stochastic process is defined which is necessary to derive the master
equation from the definition of a Markov process.

A stochastic process is called stationary when the moments are not affected by a
shift in time, i.e., when

Yt + 7)Y (a4 7). Yty + 7)) = (Y(E)Y (£2) ... Y(tn)) (A1)

for all n, all 7, and all t1,to, ..., t,. Here (Y (t)) is the average of the stochastic process
Y (t) and it is given by:

Y (e) = [ YxPx(a)ds (A.2)

Here Px(x) is the probability density of X. More generally, given n values t1,t,...,t,
for the time variable the n-th moment is:

<Y(t1)Y(t2) e Y(tn)> = /Yx(tl)YX(tg) e Yx(tn)Px(Z’)dZ’ . (A3)

Derivation of the Master Equation

Integrating Eq. 2.14 over yy one obtains for 1 < to < t3
Py(y1,t15y3,t3) = Pl(ylﬂfl)/P1|1(?/2,752|?/1,tl)P1|1(?/3,753|?/2,t2)dy2 : (A.4)
Divide both sides by P;(y1,t1),

Pyyi(y3, tslyr, 1) = /P1|1(y37t3\y2,t2)P1|1(y2,t2\y1,t1)dy2 - (A.5)

This is called the Chapman-Kolmogorov equation (also called Smoluchowski equa-
tion). It is an identity, which must be obeyed by the transition probability of any Markov
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process. For stationary Markov processes the transition probability Py; does not
depend on two times but only on the time interval; for this case a special notation is
introduced:

Pri1(y2, t2ly1, t1) = Tr (yaly1) (A.6)

with 7 = t9 — t;. The Chapmann-Kolmogorov equation then becomes

Trir (y3lyr) = /TT/(y3’y2)T’T(y2’y1)dy2 . (A7)

We want now to derive the master equation. The master equation is a more convenient
version of the Chapman-Kolmogorov equation. It is a differential equation obtained by
going to the limit of a vanishing time difference 7/. For small 7/ we can write T,/ (y2|y1)
(see [45]):

Tr(y2lyr) = (1 — aom’)6(y2 — y1) + 7'W (y2|y1) + O(7') . (A.8)

Here w(yz2|y1) is the transition probability per unit time from y; to ys. The coefficient
1 — ap7’ in front of the delta function is the probability that no transition takes place
during 7', hence

aop :/W(yQ\yl)d?ﬂ : (A.9)

Now inserting the expression for T (Eq. A.8) in the Chapman-Kolmogorov equation

Trir (yslyr) = [1 — ao(ys) ™) T (ysly1) + T’/W(y:s!yQ)TT(yz\yl)dyz : (A.10)
Divide by 7/, go to the limit 7/ — 0:

0

ETT(yglyl) = /{W(yglyz)Tf(yzlyl) W (y2ly3)Tr (yslyr) Ydy2 (A.11)

This differential version of the Chapman-Kolmogorov equation, valid for the transition
probability of any stationary Markov process obeying Eq. A.8 is called Master Equation.
Now rewriting the previous equation and suppressing redundant indices gives:

il y’ /{W yly' )\ P(y't) = W (' ly) Py, t)}dy' . (A.12)

This is the customary form of the master equation. If the range of Y is a discrete set
of states with labels n, the equation reduces to

Aon ) = S W () Warapal)) (A.13)

In this form the meaning becomes particularly clear: the master equation is a gain-loss
equation for the probability of each state n; the first term is the gain due to transitions
from other states n’, and the second term is the loss due to transitions into other states.
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Appendix B

Distributions

First the binomial distribution will be defined here and it will be shown how to derive
the Poisson distribution as a particular case of binomial distribution. Than the point
processes will be introduced as a general class of stochastic processes to which also the
Poisson processes belong. Finally the expression for the waiting time for point processes
will be shown. For more details see Refs. [45,46,115-117]

Binomial distribution

The binomial distribution is defined on the discrete set {k = 0,1...,n} and depends on
the parameters n and p. The distribution probability is:

B(n,p; k) = < Z )pk(l —p)" (B.1)

The distribution arises when there are only two possible values {x1, z2} for the random
variable X. The probability for the occurrence of the value x1 is p, and that for the value
o is then 1 — p, 0 < p < 1. Consider an n-fold realization of X. The probability that
the value 7 is obtained k times out of the n realizations is then B(n,p;k). The random
variable is here therefore K and is equal to the number of occurrences of x7.

Poisson Distribution

The Poisson distribution with the probabilities

Ak Y
p(A\ k) = ge , (B.2)

is defined on the set {k = 0,1,...} and it is dependent on the parameter \. This distri-

bution is an approximation to the binomial distribution when p becomes very small and
n very large with fixed A = pn:

p—0n—oco

lim < Z )pk(l —p) k= %e(m’) . (B.3)
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In fact it results:

(B.4)

The product (1 — %) (1 — %) e (1 — %) is going to unity. The same is for the term
(1 —p)*, but the term (1 —p)" = (1 — %)™ is going to e "?
Poisson Processes

The Poisson processes are a particular class of Markov processes and are given by the
master equation:

dpn (1)
dt

= A\pp—1(t) — A\pn(t), n>1, (B.5)

dpo(t)
dt

= —)\pl(t) . (B'G)

Suppose that
Pn(0) = pm, m<0 (B.7)

is the initial condition. Then the solution is

pu(t) = %e—w, n<m (B.8)

() =0 n<m (B.9)

A typical example of a Poisson process is given by a radioactive source which emits «
particles with an average rate of A per second. From the Poisson distribution it is possible
to calculate the probability e.g. to detect 10 « particles in 5 seconds.

Point Processes

The Poisson process is also part of a more general subclass of Markov processes, the so-
called point processes. For point processes the events, such as the impact of raindrops on
a surface or the impact of cosmic rays on a Geiger counter, occur at random times. Such
processes are characterized by a sequence of random times (t1,...,ty,...). The number

98



n(t) of events that occur in a fixed time interval [0,¢] is a random variable, as are the times
t;;i =1,...,n(t) at which the events take place. We introduce the distribution functions

{filtn), oo futas . tn)} (B.10)

where f1(t1)dt is the probability that an event takes place in the time interval [t;,¢; +
dti]. In general f,(t1,...,t,)dt;s ... dt, gives the probability that in each of the intervals
[t1,t1 + dt1], ..., [tn,tn + dt,] one event occurs, independently of how many events occur
outside these intervals. It is assumed that at most one event can occur in an interval
[ti,t; + dt;] provided the interval is sufficiently small. A particular simple and frequent
assumption is that

fn(tla---atn) :fl(tl)fl(tz)...fl(tn); (Bll)

that is, each event in the interval is independent of the other events. If in addition
f1(t) = A = const, then one speaks of a Poisson process. Then

Sty oitn) = A" (B.12)

Waiting times

Frequently the following question arises in the context of the point processes: If the
observation is started at time ¢ = tg, how long on the average does one has to wait for the
next event? In order to answer this question one has to calculate the probability

91(0,t0)dO (B.13)

that the first event after ¢y occurs in the interval [to + O, tg+ O + dO]. The probability
that in the interval [to, to+©+dO] no event occurs is po(tg, to+O+dO). The corresponding
probability for the interval [tg,to + ©] is po(to,to + ©), from which follows the probability
for an event precisely in the interval [ty + O,y + © + dO]:

91(0,t9)dO® = —po(to, to + O + dO) + po(to, to + ©) . (B.14)
Therefore
d
91(0,tg) = —%po(fo,to + 0) (B.15)

For a Poisson process

d
91(6,t) = —5e™ 7 =A™ (B.16)
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Appendix C

Numerical solution of the Rate
Equation with Mathematica

The Rate Equations given in Eq. 2.21 and 2.22 will be solved here. Let us set N = z,
n1 =y and D = Dif f. The system is solved for the following input data:
Diff =106
F=1Ml/s
time = 0.01 s

Here time is the maximum simulation time. To solve the system it is used:

sol=NDsolve[{x’ [t]==Diff*y[t] "2, y’ [t]==F-2*Diffy~ [2]-Diff*y[t]*x[t],
x[0]==y[0]==0}, {x,y}, {t, time}]

to plot the results it is used:

gl=Plot[Evaluate[y[t]/.sol], {t,0,time}, PlotStyle->RGBColor[1,0,0],
AxesLabel->{"t", "adatom density"}]

and

g2=Plot [Evaluate[x[t]/.sol], {t,0,time}, PlotStyle->RGBColor[0,1,0],
AxesLabel->{"t", "island density"}]

As expected the adatom density reach a maximum and than it decreases, while the
island density is increasing till the end of the simulation.
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Figure C.1: adatom density with rate equation for ¢t = 0.01 s, D = 10%, F = 1 ML/s.
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Figure C.2: island density with rate equation for t = 0.01 s, D = 105, F = 1 ML/s.
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Appendix D

Analytical Solution of the
Diffusion Equation

To solve the diffusion equation

OP(z,t) 118213(%,75)

ot Ox? ’

(D.1)

it is possible to use the method of separation of variables, writing P(z,t) as the product
of two functions, one dependent only from x and the other only from ¢:

P(z,t) = a(x)b(t) . (D.2)
If Eq. D.2 is now plugged into Eq. D.1 it results

1 ob(t) 1 O%a(x)
To(t) ot  a(x) Ox2 (D-3)

In Eq. D.3 the left hand side depends only from ¢ and the right hand side from z.
Eq. D.3 is equivalent to the following system:

ob(t)
= = —Tk2b(t)
20, X
66352 ) = —k2a(z) . (D.4)

Here k is a constant. Integrating the previous equations one gets:

a(x) = A(k) cos(kx) + B(k) sin(kx)
b(t) = e FTt (D.5)
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here A(k) and B(k) are integration constants depending on k. The general solution
for P(z,t) is:

P(z,t) :/ dke_kQFt[A(k) cos(kz) + B(k)sin(kx)] . (D.6)
If the initial condition is:

P(2,0) = P(x) = / ' dK[A(k) cos(kx) + B(k) sin(ka)] | (D.7)

than it results for P(x,t):
Pla,t) = — / ~deP(e) / ' dke MM [cos (k) cos(kx) + sin(ke) sin(kz)]
e 21 J - —o0
_ % / ~ deP(e) / T dke F T cosk(6—2) , (D)

as the previous integrand is a pair function:

) o0 )2
/ dke™ ¥ cos(pk) = 2/ dke ¥’ cos(fk) = ge_(gﬂt) , (D.9)
—o0 0

so using this expression P(x,t) can be written as:

2

P.t) = o= [~ acP()e T (D.10)

Now for the initial condition P(z) = §(x):

P(ac,t):\/_ffm , (D.11)

which is a Gaussian distribution.
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Appendix E

Numerical Solution of the
Diffusion Equation

Three different approaches to solve numerically the diffusion equation will be discussed
here (for details see Ref. [114]):

opP  _0*P
—=T— E.1
ot Ox? (B-1)
E.0.1 Explicit Method
Equation E.1 can be differenced as:
P —pr [Phy - 2P+ P, (£2)
At (Az)? ’
The solution of the difference equations can be written as:
I)in — gneikiAx ) (E3)

Here k is a real spatial wave number (which can have any value) and £ = £(k) is a
complex number that depends on k. The number & is called the amplification factor. If
|€(k)| > 1 for some k the difference equations are unstable. The amplification factor for
Eq. (E.2) is:

AT At kAz
=1- sin® | —— E.4
== () (E4)
The requirement || < 1 to have stable solutions leads to the stability criterion:
2I'At
<1 . E.5
(Az)? = (E.5)
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E.0.2 TImplicit Method

Eq. E.1 can also be differenced as:

+1 +1 +1
Pin+1_Pin:F ]DZT_ZH _2]3271 +]32n_1

At (Ax)?

(E.6)

This is just like Eq. (E.2), except that the spatial derivatives on the right-hand side
are evaluated at time step n + 1. Schemes with this character are called fully implicit or
backward in time. To solve equation Eq. (E.6) one has to solve a set of simultaneous linear
equations at each time step for the Pi”'H. The amplification factor is:

1

1+ 8% sin? (£52)

(E.7)

Clearly |¢| < 1 for any time step At. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for large
At, but the correct equilibrium solution is obtained. This is the characteristic feature of
the implicit methods.

E.0.3 Crank-Nicholson

Here the explicit and implicit schemes are combined together. Eq. (E.1) is differenced as:

PP pr D [(BRE — 2P 4 PP 4 (P, — 2P0 4 P )
At 2 (Ax)? '
The amplification factor is:
_ 9TAt 2 (kAx
‘- 1 (an)? Sin ( 5 ) (E9)

B TAt 2 (kA ’
L+ {apz sin (Tm)

so the method is stable for any size At and it is second-order accurate in both time
and space.
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