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Abstract

The robust analysis of neural signals is a challenging problem. Here, we contribute a convo-

lutional neural network (CNN) for the robust classification of a steady-state visual evoked

potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs

for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts

may deteriorate decoding. The proposed CNN is shown to achieve reliable performance

under these challenging conditions. To validate the proposed method, we have acquired an

SSVEP dataset under two conditions: 1) a static environment, in a standing position while

fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a

test course wearing the exoskeleton (here, artifacts are most challenging). The proposed

CNN is compared to a standard neural network and other state-of-the-art methods for

SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivari-

ate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN)

classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for

the CNN architecture, surpassing those of other methods with classification rates of 99.28%

and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis

inspects the representation found by the CNN at each layer and can thus contribute to a bet-

ter understanding of the CNN’s robust, accurate decoding abilities.

Introduction

A brain-computer interface (BCI) allows for the decoding of (a limited set of) user intentions

employing only brain signals—without making use of peripheral nerve activity or muscles [1,

2]. BCIs allow users to harness brain states for driving devices such as spelling interfaces [3–5],

wheelchairs [6, 7], computer games [8, 9] or other assistive devices [10–12]. Recent BCI studies

have demonstrated the possibility of decoding the user’s intentions within a virtual reality

environment [13] and using an exoskeleton [14–17]. Others have investigated the decoding of

expressive human movement from brain signals [18]. Furthermore, researchers have devel-

oped several applications of BCI systems for the rehabilitation of stroke patients [19–23].
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Existing EEG-based BCI techniques generally use EEG paradigms such as the modulation

of sensorimotor rhythms through motor imagery (MI) [24–26]; event related potentials

(ERPs), including P300 [27, 28]; and steady-state visual-, auditory-, or somatosensory-evoked

potentials (SSVEPs [29, 30], SSAEPs [31, 32], and SSSEPs [33, 34]).

Of these EEG paradigms, SSVEPs have shown reliable performance in terms of accuracy

and response time, even with a small number of EEG channels, at a relatively high information

transfer rate (ITR) [35] and reasonable signal-to-noise ratio (SNR) [36]. SSVEPs are periodic

responses elicited by the repetitive fast presentation of visual stimuli; they typically operate at

frequencies between 1 and 100 Hz and can be distinguished by their characteristic composi-

tion of harmonic frequencies [33, 37].

Various machine learning methods are used to detect SSVEPs: first and foremost, classifiers

based on canonical correlation analysis (CCA), a multivariate statistical method for exploring

the relationships between two sets of variables, can harvest the harmonic frequency composi-

tion of SSVEPs. CCA detects SSVEPs by finding the weight vectors that maximize the correla-

tions between the two datasets. In our SSVEP paradigm, the maximum correlation extracted

by CCA is used to detect the respective frequencies of the visual stimuli to which the subject

attended [37]. Modified CCA-based classifiers have been introduced, such as a multiway exten-

sion of CCA [38], phase-constrained [39] and multiset [40] CCA methods. In addition, stimu-

lus-locked intertrace correlation (SLIC) [41] and the sparsity-inducing LASSO-based method

[42] have been proposed for SSVEP classification. The multivariate synchronization index

(MSI) was introduced to estimate the synchronization between two signals as an index for

decoding stimulus frequency [43, 44]. SSVEP decoding can be further extended by employing

characteristics based on phase and harmonics [35], boosting the ITRs significantly. Recently,

deep-learning-based SSVEP classification methods [45–47] have also been considered; how-

ever, all have thus far used prestructuring by employing a Fourier transform in the CNN layer.

Recently, brain machine interface (BMI) researchers have turned their focus to connecting

SSVEP-based BMIs to mobile systems with wireless EEG telemetry [14, 48] in order to explore

the feasibility of implementing online SSVEP-based BMIs. This progress has greatly facilitated

the transition of laboratory-oriented BMI systems to more practical ambulatory brain-con-

trolled exoskeletons [14].

Despite the technical and machine learning progress outlined, systematic performance

deterioration between ambulatory and static BMI-control conditions has been found [49, 50],

primarily because of the artifacts, which are caused by subject’s motion, head swing, walking

speed or sound, and the exoskeleton’s electric motors [51, 52]; these artifacts may, in addition,

differ across users [14].

We address this key challenge by exploring deep learning methods as a means to reliably

minimize the influence of artifacts on ambulatory SSVEP-BMIs. Here, we consider as artifacts

all signals that have non-cerebral origin and that might mimic non-task-related cognitive sig-

nals or that are induced by external factors (e.g., while walking, a subject’s head may be moved

by the exoskeleton which can give rise to swinging movements in the line between the elec-

trodes and EEG amplifiers, leading to disconnections or high impedance measurements in

extreme cases). These artifacts typically distort the analysis of an EEG.

Therefore, we propose a CNN-based classifier that uses frequency features as input for

robust SSVEP detection in ambulatory conditions. In the course of the CNN training process,

the model learns an appropriate representation for solving the problem [53, 54]. The receptive

field/convolution kernel structure of the trained model can then be analyzed, and we can inter-

pret the high-level features found by the deep network as we inspect each layer. Our CNN

architecture compares favorably with standard neural network and other state-of-the-art

methods used in ambulatory SSVEP BMIs.

CNN for SSVEP classification under ambulatory environment
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Materials and methods

Experiment

Experimental environment. We designed an experimental environment for SSVEP-

based exoskeleton control following [14]. In particular, we used a powered lower-limb exoskel-

eton (Rex, Rex Bionics Ltd.) with a visual stimulus generator attached to the robot for stimulat-

ing SSVEPs in an ambulatory environment. The visual stimulus generator presented visual

stimuli using five light-emitting diodes (LEDs: 9, 11, 13, 15, and 17 Hz with a 0.5 duty ratio)

which were controlled by a micro controller unit (MCU; Atmega128), as shown in Fig 1.

The EEG was acquired from a wireless interface (MOVE system, Brain Products GmbH)

using 8 Ag/AgCl electrodes at locations PO7, PO3, PO, PO4, PO8, O1, Oz, and O2, with refer-

ence (FCz) and ground (Fpz) electordes, illustrated in Fig 2. Impedances were maintained

below 10 kO and the sampling frequency rate was 1 kHz. A 60 Hz notch filter was applied to

the EEG data for removing AC power supply noise.

Subject. Seven healthy subjects, with normal or corrected-to-normal vision and no history

of neurological disease, participated in this study (age range: 24–30 years; 5 males, 2 females).

The experiments were conducted in accordance with the principles expressed in the Declara-

tion of Helsinki. This study was reviewed and approved by the Institutional Review Board at

Korea University [1040548-KU-IRB-14–166-A-2] and written informed consent was obtained

from all participants before the experiments.

Experiment tasks. We acquired two SSVEP datasets under static and ambulatory condi-

tions, respectively, to compare the performance of the SSVEP classifiers. From Task 1, we col-

lected SSVEP data with the exoskeleton in a standing position (static SSVEP). In Task 2

(ambulatory SSVEP), the SSVEP signals were acquired while the exoskeleton was walking. In

both tasks, we performed the experimental procedure described in Fig 3. After the random

auditory cue was given, a start sound was presented 3 s later, and then the subjects attended

the corresponding visual stimuli for 5 s. The auditory cue was given in random order to pre-

vent potentially biased results for the stimulation frequency, the start sound gave the subjects

time to prepare to focus on the visual stimuli. The auditory cues were guided by voice

Fig 1. Experimental environment. Subject wearing the lower-limb exoskeleton and focusing on an LED from the visual stimulus generator.

The EEG is transferred by a wireless interface to the PC. A body support system (a rail beneath the ceiling) was connected to the subject for

safety purposes. The exoskeleton was controlled by an external operator using a keyboard controller.

doi:10.1371/journal.pone.0172578.g001
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recordings to indicate commands such as “walk forward”, “turn left”, “turn right”, “sit”, and

“stand”, and were approximately 1 s in length. Note that during the experimental tasks, all

LEDs were blinking simultaneously at different frequencies.

• Task 1 (Static SSVEP): The subjects were asked to focus their attention on the visual stimulus

in a standing position while wearing the exoskeleton. Corresponding visual stimuli were

given by auditory cue and 50 auditory cues were presented in total (10 times in each class).

• Task 2 (Ambulatory SSVEP): The subjects were asked to focus on visual stimuli while

engaged in continuous walking using the exoskeleton. The exoskeleton was operated by a

wireless controller, per the decoded intention of the subject. a total of 250 auditory cues were

presented (50 in each class).

Fig 2. EEG channel layout. Channel layout using 8 channels (PO7, PO3, PO, PO4, PO8, O1, Oz, and O2)

for SSVEP acquisition with a reference (FCz) and ground (Fpz).

doi:10.1371/journal.pone.0172578.g002
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Neural network architectures

We now investigate three neural network architectures for SSVEP decoding, CNN-1 and

CNN-2, which use convolutional kernels, and NN, standard feedforward neural network with-

out convolution layers.

We show that CNN-1 has the best classification rate; in CNN-2, we included a fully con-

nected layer with 3 units for visualizing feature representations as a function of the learning

progress.

Input data. The acquired EEG data were preprocessed for CNN learning by band-pass fil-

tering from 4–40 Hz. Then, the filtered data were segmented using a 2 s sliding window (2,000

time samples × 8 channels). The segmented data were transformed using a fast Fourier trans-

form (FFT). Then, we used 120 samples from each channel, corresponding to 5–35 Hz. Finally,

data were normalized to the range from 0 to 1. Therefore, the input data dimension for CNN

learning was 120 frequency samples (Nfs) by 8 channels (Nch). The number of input data for

training depends on the experimental task and is therefore described in the Evaluation section.

Network architecture overview. The CNN-1 network has three layers, each composed of

one or several maps that contain frequency information for the different channels (similar to

[55]). The input layer is defined as Ip, j with 1� p� Nfs and 1� j� Nch; here, Nfs = 120 is the

number of frequency samples and Nch = 8 is the number of channels. The first and second hid-

den layers are composed of Nch maps. Each map in C1 has size Nfs; each map in C2 is composed

of 110 units. The output layer has 5 units, which represent the five classes of the SSVEP signals.

This layer is fully connected to C2 as in Fig 4.

The CNN-2 network is composed of four layers. The input layer is defined as Ip, j with

1� p� Nfs and 1� j� Nch. The first and second hidden layers are composed of Nch maps.

Each map in C1 has size Nfs. Each map of C2 has 110 units. To this point, CNN-2 is equivalent

to CNN-1. The difference comes in the third hidden layer F3, which is fully connected and

consist of 3 units. The each unit is fully connected to C2. The output layer has 5 units that rep-

resent the five classes of SSVEP. This layer is fully connected to F3. The 3 units in F3 are used

to visualize the properties of the representation that CNN-2 has learned, as depicted in Fig 5.

The standard NN is composed of three layers. For the input layer, we concatenated the 120

by 8 input into a 960-unit vector. The first hidden layer is composed of 500 units, the second

has 100 units, and the output layer has 5 units to represent the five classes. All layers are fully

connected, as in Fig 6.

Learning. A unit in the network is defined by xl
kðpÞ, where l is the layer, k is the map, and

p is the position of the unit in the map,

xl
kðpÞ ¼ f ðsl

kðpÞÞ; ð1Þ

Fig 3. Experimental procedure for Task 1 and 2. After a random auditory cue, a start sound follows 3 s later; then, the

subjects attended the corresponding LED for 5 s. All LEDs blinked at differing frequencies during the tasks.

doi:10.1371/journal.pone.0172578.g003

CNN for SSVEP classification under ambulatory environment

PLOS ONE | DOI:10.1371/journal.pone.0172578 February 22, 2017 5 / 20



where f is the classical sigmoid function used for the layers:

f ðsÞ ¼
1

1þ exp� s
: ð2Þ

sl
kðpÞ represents the scalar product of a set of input units and the weight connections between

these units and the unit number of p in map k in layer l. For C1 and C2, which are convolu-

tional layers, each unit of the map shares the same set of weights. The units of these layers are

connected to a subset of units fed by the convolutional kernel from the previous layer. Instead

of learning one set of weights for each unit, where the weights depend on unit position, the

weights are learned independently to their corresponding output unit. L3 is the output layer in

CNN-1 and L4 is the output layer in CNN-2.

• CNN-1

— For C1:

s1
kðpÞ ¼ wð1; k; 0Þ þ

Xj�Nch

j¼1

Ip;jwð1; k; jÞ; ð3Þ

where w(1, k, 0) is a bias and w(1, k, j) is a set of weights with 1� j� Nch. In this layer,

there are Nch weights for each map. The convolution kernel has a size of 1 × Nch.

— For C2:

s2
kðpÞ ¼ wð2; k; 0Þ þ

Xi�Nch

i¼1

Xj�11

j¼1

x1

i ðpþ j � 1Þwð2; i; jÞ; ð4Þ

Fig 4. CNN-1 architecture. CNN-1 is composed of three layers, two convolutional layers and an output layer.

doi:10.1371/journal.pone.0172578.g004
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Fig 5. CNN-2 architecture. CNN-2 is composed of four layers: two convolutional layers, one fully connected layer, and an output layer.

doi:10.1371/journal.pone.0172578.g005

Fig 6. NN architecture. The NN is composed of three layers: two fully connected layers and an output layer.

doi:10.1371/journal.pone.0172578.g006
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where w(2, k, 0) is a bias. This layer transforms the signal of 120 units into 110 new values

in C2, reducing the size of the signal to analyze while applying an identical linear transfor-

mation to the 110 units of each map. This layer translates spectral filters. The convolution

kernel has a size of 11 × 1.

— For L3:

s3ðpÞ ¼ wð3; 0; pÞ þ
Xk�8

k¼1

Xl�110

l¼1

x2

kðlÞwð3; k; lÞ; ð5Þ

where w(3, 0, p) is a bias. Each unit of L3 is connected to each unit of C2.

• CNN-2

— C1 and C2 are the same as in CNN-1.

— For F3:

s3ðpÞ ¼ wð3; 0; pÞ þ
Xk�8

k¼1

Xl�110

l¼1

x2

kðlÞwð3; k; lÞ; ð6Þ

where w(3, 0, p) is a bias. Each unit of F3 is connected to each unit of C2

— For L4:

s4ðpÞ ¼ wð4; 0; pÞ þ
Xl�3

l¼1

x3ðlÞwð4; lÞ; ð7Þ

where w(4, 0, p) is a bias. Each unit of L4 is connected to each unit of F3

The gradient descent learning algorithm uses standard error backpropagation to correct the

network weights [56–58]. The learning rate was 0.1 and weights were initialized with a normal

distribution on the interval [-sqrt(6/(Nin+Nout)), sqrt(6/(Nin+Nout))], where Nin is the number

of input weights and Nout is the number of output weights following [58]. The number of

learning iterations was 50, but training stopped once the decrease of in error rate was smaller

than 0.5% after 10 iterations.

Evaluation

In this section, we validate the three neural networks (CNN-1, CNN-2, and NN), and compare

them to previously used methods: CCA [37, 48], MSI [43] and CCA combined with k-nearest

neighbors (CCA-KNN) [14].

For each classifier, we compute the 10-fold cross-validation error, splitting the data chrono-

logically (a common method in EEG classification) to preserve the data’s non-stationarity and

avoid overfitting [27, 59]. For the test data, both datasets (50 trials of 5 s for static SSVEPs and

250 trials for ambulatory SSVEPs, randomly permuted) were segmented using a 2 s sliding

window with a 10 ms shift size, segmenting a 5 s trial into three hundred 2 s trials. As a result,

there were 1,500 static and 7,500 ambulatory SSVEP test data points in each fold. Deep neural

networks generally show higher performance for larger amounts of data [53]. Hence, we tested

the classifiers with different training data sizes; in particular, different segmentations of the

data were considered. Using a 2 s sliding window with different shift sizes (60, 30, 20, 15, 12,

and 10 ms), we obtained a trial segmentation into 50, 100, 150, 200, 250, and 300 data samples.

Thus, there were 2,250, 4,500, 6,750, 9,000, 11,250, and 13,500 training data for the static

SSVEPs, and 11,250, 22,500, 33,750, 45,000, 56,250, and 67,500 for the ambulatory SSVEPs.

CNN for SSVEP classification under ambulatory environment
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Note that although we used a small size shift, there was no overlap between training and test

data in order to prevent overfitting. The CCA method does not require a training phase. Thus,

we only show its results on test data.

We now briefly describe the CCA, CCA-KNN, and MSI methods. CCA is a multivariate

statistical method [60, 61] that finds a pair of linear combinations such that the correlation

between two canonical variables X and Y is maximized. As X(t), we chose 2 s EEG windows; as

Yi(t), we use the five reference frequencies (f1 = 9, f2 = 11, . . .,f5 = 17) from the five visual sti-

muli [14]

YiðtÞ ¼ sinð2pfitÞ; cosð2pfitÞ; sinð2pð2fiÞtÞ; cosð2pð2fiÞtÞð Þ
0
; t ¼

1

S
;
2

S
; � � � ;

T
S
; ð8Þ

where T is the number of sampling points and S denotes the sampling rate. CCA finds weight

vectors, Wx and Wy, that maximize the correlation between the canonical variants x = X0Wx

and y = Y0Wy, by solving

max
WxWy

rðx; yÞ ¼
E½x0y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x0x�E½y0y�

p ¼
E½W 0

xXY 0Wy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½W 0

xXX0Wx�E½W 0
Y YY 0Wy�

q : ð9Þ

The maximum ρ with respect to Wx and Wy is the maximum canonical correlation. The

canonical correlation ρfi
, where i = 1, . . ., 5, is used for detecting the frequency of the LED that

a subject is attending by

Oi ¼ max
i
ðrfi
Þ; i ¼ 1; . . . ; 5; ð10Þ

where Oi are the output classes corresponding to the five visual stimuli.

For CCA-KNN [14], the set of canonical correlations (ρ = (ρf1
, . . ., ρf5

)) is used as a feature

vector for subsequent KNN classification, each with a class label. In the training step, the algo-

rithm consists only of storing the feature vectors and class labels of the training samples. In

classification, an unlabeled vector is classified by assigning the label to the most frequent of the

k nearest training samples, where the Euclidean distance is used as a distance metric.

For MSI [43, 44], the S-estimator, based on the entropy of the normalized eigenvalues of

the correlation matrix of multivariate signals, was used as the index. Thus, MSI creates a refer-

ence signal from the stimulus frequencies used in an SSVEP-based BCI system similarly to

CCA.

Results and discussion

EEG signals are highly variable across subjects and experimental environments (see Figs 5 and

6 and Tables 1 and 2 in [14]). The SSVEP signals acquired from the static exoskeleton show

more pronounced frequency information than in the ambulatory environment. In the static

SSVEP, we can observe the increased frequency components that are visible at the stimulus fre-

quency. In the ambulatory SSVEP, however, because of the higher artifactual content, this

effect becomes less clearly visible (see S1 Fig for selected input and average data under both

conditions).

Static SSVEP

In Table 1, we show the 10-fold cross-validation results for 13,500 training data validated on

1,500 test data points for all subjects. CNN-1 showed the best classification accuracy of all sub-

jects in each classifier. For low-performing subjects, with a CCA accuracy under 80% in the

CNN for SSVEP classification under ambulatory environment

PLOS ONE | DOI:10.1371/journal.pone.0172578 February 22, 2017 9 / 20



ambulatory SSVEP (i.e., subjects S3–7, see Table 3), the neural network results stayed robust.

Clearly, the CCA method exhibits significantly lower performance.

With fewer training data (see Table 2 and Fig 7 (top) for the 10-fold cross-validation results

of the static task), we observe a decaying performance for the neural networks, which is to be

expected. Note that the CCA and MSI methods stay essentially constant as a function of data,

since no training phase is required because the canonical correlations and synchronization

index with reference signals are simply computed in order to find the maximum value. The

CCA-KNN classifier was trained for k = 1, 3, 5, and 7, respectively, and k was selected on the

training set to achieve the best accuracy. Fig 7 (top) presents the average accuracy of each clas-

sifier as a function of the number of training data for all subjects (a) and low-performing sub-

jects (b). Statistical analysis of these results shows a significant improvement with larger

training data sizes for the neural network classifiers. We provide more information on the dif-

ference between CNN-1 and the other methods for all subjects and low-performing subjects in

S2(a) and S2(b) Fig, respectively. CNN-1 outperforms other classifiers; however, CCA-KNN

shows better classification results for 4,500 training data samples or fewer, as we can see from

the positive values in brackets.

Fig 8(a) shows the decoding variability of the individual subjects at the minimum (dash)

and maximum (solid line) number of data samples; here, a diamond indicates a 5% or more

Table 1. 10-fold cross validation results of individual subjects with the maximum quantity of training data (i.e., 13,500) using static SSVEP.

S1 S2 S3 S4 S5 S6 S7 Low All

CCA 91.27

(-8.59)

93.78

(-6.84)

76.14

(-22.72)

92.86

(-6.3)

67.85

(-31.62)

78.22

(-20.39)

82.56

(-16.77)

79.53±9.17

(-19.55)

83.24±9.84

(-16.04)

MSI 91.54

(-8.32)

95.71

(-3.99)

78.74

(-20.12)

94.67

(-4.49)

70.61

(-28.85)

79.34

(-19.27)

83.43

(-15.91)

81.86±8.77

(-17.73)

84.86±9.41

(-14.42)

CCA-KNN 100±0

(+0.14)

99.80±0.27

(+0.1)

93.91±2.11

(-4.95)

98.97±1.11

(-0.19)

99.13±0.95

(-0.34)

93.26±3.70

(-5.35)

98.86±0.91

(-0.47)

96.83±2.97

(-2.25)

97.70±2.85

(-1.58)

NN 98.95±1.51

(-1.01)

98.85±1.9

(-0.85)

97.53±2.95

(-1.33)

98.87±1.28

(-0.29)

99.73±0.70

(+0.26)

97.11±3.42

(-1.5)

98.01±2.68

(-1.32)

98.25±1.05

(-0.64)

98.44±0.92

(-0.84)

CNN-2 98.46±1.97

(-1.4)

98.17±2.16

(-1.53)

97.90±2.24

(-0.96)

97.43±2.15

(-1.73)

99.51±0.70

(+0.04)

96.54±3.18

(-2.07)

97.50±2.75

(-1.83)

97.63±1.54

(-1.45)

97.83±1.31

(-1.45)

CNN-1 99.86±0.27 99.70±0.27 98.86±1.33 99.16±1.77 99.47±0.76 98.61±2.30 99.33±0.72 99.08±0.35 99.28±0.45

10-fold cross validation results of static SSVEP classification for 13,500 training data points with 1,500 test data for all subjects. Low indicates subjects who

have a low CCA accuracy (under 80% in the ambulatory SSVEP, i.e., subjects S3–7). Parentheses indicate accuracy the difference compared with CNN-1.

doi:10.1371/journal.pone.0172578.t001

Table 2. 10-fold cross-validation of static SSVEP classification by the quantity of training data.

2,250 4,500 6,750 9,000 11,250 13,500

Low All Low All Low All Low All Low All Low All

CCA-KNN 96.85

(+1.76)

97.71

(+1.51)

97.91

(+0.38)

98.47

(+0.48)

96.83

(-0.29)

97.60

(-0.07)

96.79

(-1.23)

97.57

(-0.78)

96.83

(-1.61)

97.59

(-1.13)

96.83

(-2.25)

97.70

(-1.58)

NN 91.82

(-3.27)

92.85

(-3.35)

96.28

(-1.25)

96.55

(-1.44)

97.00

(-0.12)

97.29

(-0.38)

97.61

(-0.41)

97.81

(-0.54)

98.04

(-0.4)

98.21

(-0.51)

98.25

(-0.64)

98.44

(-0.84)

CNN-2 90.49

(-4.6)

91.16

(-5.04)

95.74

(-1.79)

96.11

(-1.88)

93.98

(-3.14)

94.89

(-2.78)

96.45

(-1.57)

96.73

(-1.62)

96.78

(-1.66)

97.27

(-1.45)

97.63

(-1.45)

97.83

(-1.45)

CNN-1 95.09 96.20 97.53 97.99 97.12 97.67 98.02 98.35 98.44 98.72 99.08 99.28

10-fold cross-validation of static SSVEP classification, changing the amount of training data with 1,500 test data. Low indicates subjects who have a low

CCA accuracy (under 80% in the ambulatory SSVEP, i.e., subjects S3–7). Parentheses indicate the differences in accuracy when compared with CNN-1.

doi:10.1371/journal.pone.0172578.t002
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increase in classification rates. Clearly, all subjects achieved increased accuracies with neural

network models. Specifically, low-performing subjects (S3–7) show a higher increase than

other subjects (S1 and S2). Subjects S2 and S3 only increase in the CCA-KNN method.

Ambulatory SSVEP

Table 3 considers the 10-fold cross-validation results for the ambulatory SSVEP setup when

the number of training data is 67,500, with 7,500 test data for all subjects. CNN-1 showed the

best classification accuracy of all subjects in each classifier. Even the low-performing subjects

showed the highest accuracy with CNN-1. The competing classifier models showed a more

pronounced performance deterioration owing to the higher artifact presence in the ambula-

tory environment (see Figs 5 and 6 in [14]).

Table 4 and Fig 7 (bottom) presents the 10-fold cross-validation results for the ambulatory

SSVEP classification as a function of a changing number of training data with 7,500 test data.

In particular, Fig 7 (bottom) shows the averaged accuracy of each classifier with increasing

training data for all subjects (c) and low-performance subjects (d). One asterisk indicates the

5% significance level (compared to 67,500 training data samples), whereas two asterisks denote

the 1% significance level. As expected, analysis confirms the performance gains of the neural

networks as training data increases, even if the data contain large artifacts. Fig 8(b) confirms

the findings of the static setting for the more artifact-prone ambulatory setting.

Compared with the static SSVEP in CNN-1, larger training data samples are required for

the ambulatory SSVEP to accomplish high accuracy (classification performance of more than

90% at 56,250 training data samples). For the static SSVEP setup, 96.20% accuracy could be

achieved using only 2,250 training data and 99.28% accuracy was achieved using 13,500 sam-

ples. In contrast, 81.40% accuracy and 94.03% accuracy were achieved in the ambulatory con-

dition when 11,250 and 67,500 training data were used, respectively.

Fig 9 shows the learning curves of subjects S2 (black) and S4 (red) in static (solid) and

ambulatory (dash line) SSVEP environments in CNN-1. The learning iteration of subject S2

stops at the 13th and 12th epochs, whereas the iteration of subject S4 stops at the 19th and 12th

epochs in the datasets (subject S2 records the best performance with CNN-1 and subject S4

has the lowest performance in the ambulatory SSVEP.)

The appearance of the kernels differs for each individual because the network training is

subject-dependent. Unfortunately, there is no obvious and simple interpretation linked to

Table 3. 10-fold cross-validation results of individual subjects at the maximum training data (i.e., 67,500) for ambulatory SSVEP classification.

S1 S2 S3 S4 S5 S6 S7 Low All

CCA 92.43

(-5.24)

90.40

(-8.41)

73.10

(-18.3)

65.46

(-22.05)

43.99

(-47.99)

69.90

(-23.48)

75.05

(-21.85)

65.50±12.56

(-26.85)

72.90±16.29

(-21.13)

MSI 94.02

(-3.65)

92.35

(-6.46)

78.31

(-13.09)

69.22

(-18.29)

43.67

(-48.30)

71.00

(-22.95)

77.80

(-19.11)

68.00±14.18

(-24.35)

75.19±16.89

(-18.84)

CCA-KNN 97.69±0.82

(+0.02)

97.53±0.78

(-1.28)

82.77±3.05

(-8.63)

77.27±3.82

(-10.24)

68.25±3.76

(-23.73)

85.43±2.57

(-7.95)

83.58±2.05

(-13.32)

79.46±6.96

(-12.87)

84.65±10.52

(-9.38)

NN 94.77±3.48

(-2.9)

95.11±3.58

(-3.7)

91.03±6.82

(-0.37)

90.20±7.82

(+2.69)

91.35±6.51

(-0.63)

92.07±6.54

(-1.31)

95.03±3.54

(-1.87)

91.94±1.86

(-0.41)

92.80±2.11

(-1.23)

CNN-2 95.76±4.47

(-1.91)

96.99±2.51

(-1.82)

83.36±5.16

(-8.04)

80.09±4.4

(-7.42)

84.96±3.71

(-7.02)

87.32±4.92

(-6.06)

90.07±2.42

(-6.83)

85.16±3.80

(-7.19)

88.36±6.30

(-5.67)

CNN-1 97.67±1.50 98.81±0.74 91.40±3.21 87.51±4.8 91.98±3.23 93.38±2.65 96.90±1.92 92.35±3.46 94.03±4.04

10-fold cross-validation results of ambulatory SSVEP classification for 67,500 training data and 7,500 test data. Low indicates subjects who have a low CCA

accuracy (under 80%, i.e., subjects S3–7). In parentheses, the accuracy differences compared with CNN-1 are indicated.

doi:10.1371/journal.pone.0172578.t003
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Fig 7. 10-fold cross-validation performance comparison using static (top) and ambulatory SSVEP (bottom) as the number of

training data increases. (a) Average of all subjects in static SSVEP. (b) Low performing subjects. 1,500 test data were used for each fold.

One asterisk indicates indicates the 5% significance level between corresponding to the number of training data samples and 13,500

training data samples. Two asterisks are the 1% significance level. (c) Average of all subjects in ambulatory SSVEP. (d) Low performing

subjects. 7,500 test data were used for each fold. One asterisk indicates indicates the 5% significance level between the corresponding

number of training data samples and 67,500 training data samples. Two asterisks are the 1% significance level.

doi:10.1371/journal.pone.0172578.g007

Fig 8. Decoding variability across individuals. Decoding variability of individuals at the minimum and maximum number of data samples

(dash and solid line, respectively) in static (a) and ambulatory (b) SSVEP environments.

doi:10.1371/journal.pone.0172578.g008
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physiology or the experimental task (see S3 Fig which describes the convolutional kernels learned

from CNN-2 using ambulatory SSVEP data for subject S2 (top), and subject S3 (bottom)).

Fig 10 shows the decoding trends of CNN-1 compared with CCA-KNN for individuals as

a function of the number of training data in the static (a) and ambulatory (b) SSVEP setups.

The darker circles indicate more training data. As more training data were given, we

observed that the performance of the CNN-1 increased consistently and was more pro-

nounced under the ambulatory condition (more black circles are located on the right side).

However, individual CCA-KNN decoding accuracies stay relatively stable, meaning that the

accuracy of the CCA-KNN is almost independent of the amount of training data in our

experimental conditions.

Table 4. 10-fold cross-validation of ambulatory SSVEP classification by the quantity of training data.

11,250 22,500 33,750 45,000 56,250 67,500

Low All Low All Low All Low All Low All Low All

CCA-KNN 79.51

(+3.04)

84.64

(+3.24)

79.28

(-3.11)

84.49

(-1.69)

79.16

(-6.43)

84.41

(-4.38)

79.29

(-8.56)

84.52

(-6.14)

79.36

(-12.09)

84.58

(-8.72)

79.46

(-12.87)

84.65

(-9.38)

NN 75.15

(-0.88)

77.81

(-3.59)

82.63

(+0.24)

84.61

(-1.57)

86.39

(-0.8)

87.93

(-0.86)

89.21

(+1.36)

90.35

(-0.31)

91.04

(-0.41)

91.96

(-1.34)

91.94

(-0.41)

92.80

(-1.23)

CNN-2 59.21

(-17.26)

68.31

(-13.09)

73.77

(-8.62)

79.78

(-3.4)

78.95

(-6.64)

83.99

(-4.8)

82.52

(-5.33)

85.77

(-4.89)

83.91

(-7.54)

87.75

(-5.55)

85.16

(-7.19)

88.36

(-5.67)

CNN-1 76.47 81.40 82.39 86.18 85.59 88.79 87.85 90.66 91.45 93.30 92.35 94.03

10-fold cross-validation of the ambulatory SSVEP classification when changing the number of training data with 7,500 test data. Low indicates subjects who

have a low CCA accuracy (under 80%, i.e., subjects S3–7). In parentheses, the accuracy differences of the methods compared with CNN-1 are indicated.

doi:10.1371/journal.pone.0172578.t004

Fig 9. Learning curve for subjects S2 and S4. Learning curve of subjects S2 (black) and S4 (red) using static (solid) and

ambulatory (dash line) SSVEP environments in CNN-1.

doi:10.1371/journal.pone.0172578.g009

CNN for SSVEP classification under ambulatory environment

PLOS ONE | DOI:10.1371/journal.pone.0172578 February 22, 2017 13 / 20



Feature representation

Analyzing and understanding classification decisions in neural networks is valuable in many

applications, as it allows the user to verify the system’s reasoning and provides additional

information [54, 62]. Although deep learning methods are very successfully solving various

pattern recognition problems, in most cases, they act as a black box, not providing any infor-

mation about why a particular decision was made. Hence, we present the feature representa-

tion from the CNN-2 architecture. The averaged features of each layer using static and

ambulatory SSVEPs are shown in Figs 11 and 12, respectively. In both cases, the networks

focus on the stimulus frequency components. For learning in layer C1, we used a 1 × Nch

Fig 10. Decoding trends of CNN-1 compared with CCA-KNN for the individual subjects. Decoding trends of CNN1 compared with

CCA-KNN by the number of training data in static SSVEP (a) and ambulatory (b) SSVEP environments. The circles indicate a higher

quantity of training data with darker color. The more training data were given, the better CNN-1 performed (more black circles are located on

the right side).

doi:10.1371/journal.pone.0172578.g010

Fig 11. Feature representation of CNN-2 using static SSVEPs for subject S1. Representation of the average features of each layer in

CNN-2 using static SSVEP data. In layer F3, blue is 9 Hz; red, 11 Hz; green, 13 Hz; black, 15 Hz; and cyan, 17 Hz.

doi:10.1371/journal.pone.0172578.g011
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convolutional kernel, which can give channel-wise (spatial) weight. The C2 layer used an

11 × 1 convolutional kernel to detect frequency (spectral) information. The frequency compo-

nents that were most discriminated by the convolutional layers were highlighted using black-

lined boxes. With the exception of the 17 Hz class, the corresponding stimulus frequencies

were enforced through iterative training. We conjecture that the absence of second harmonics

(34 Hz) for the 17 Hz SSVEPs results from low magnitude when compared with lower fre-

quencies or outside the boundary of the ranges in the C2 layer. In the second convolutional

layer, the patterns were spread out (and slightly smoothed) when compared to the first convo-

lutional layer. The F3 layer is composed of three units that we plotted with each unit as an axis

direction. The 3D plot shows that all classes are distinguished nicely. Therefore, we can con-

clude that the CNN architecture is able to appropriately extract the meaningful frequency

information of SSVEP signals. To compare the feature distributions with CCA-KNN, we show

a scatter plot using CCA-KNN in S4 Fig. The features were extracted with CCA and classified

using KNN when k = 3 for subject S6 (85%). Test data were plotted on ρf1
, ρf2

and ρf3
axes. Blue,

red, green, black, and cyan circles indicate 9 Hz, 11 Hz, 13 Hz, 15 Hz, and 17 Hz, respectively.

Note that the feature dimension is actually 5 (the number of classes), therefore we only used

the ρf1
, ρf2

and ρf3
projection to visualize feature distributions in the plot. However, the classes

are clearly not as well spread apart when compared with CNN-2.

Conclusion

BMI systems have shown great promise, though significant effort is still required to bring neu-

roprosthetic devices from the laboratory into the real world. In particular, further advance-

ment in the robustness of brain signal processing techniques is needed [63, 64]. In this context,

constructing reliable BMI-based exoskeletons is a difficult challenge owing to the various com-

plex artifacts spoiling the EEG signal. These artifacts may be induced differently depending on

subject population and may in particular be caused by suboptimal EEG measurements or

broadband distortions due to movement of the exoskeleton. For example, while walking in the

Fig 12. Feature representation of CNN-2 using ambulatory SSVEP for subject S1. Representation of the average features of each

layer in CNN-2 using ambulatory SSVEP data. In layer F3, blue is 9 Hz; red, 11 Hz; green, 13 Hz; black, 15 Hz; and cyan, 17 Hz.

doi:10.1371/journal.pone.0172578.g012
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exoskeleton a subject’s head may move, which can give rise to swinging movements in the line

between the electrodes and EEG amplifiers, leading to disconnections or high impedance mea-

surements. Furthermore, significant challenges still exist in the development of a lower-limb

exoskeleton that can integrate with the user’s neuromusculoskeletal system. Although these

limitations exist, a brain-controlled exoskeleton may eventually be helpful for end-user

groups.

The current study made a step forward toward more robust SSVEP-BMI classification.

Despite the challenges imposed on signal processing by a lower-limb exoskeleton in an ambu-

latory setting, our proposed CNN exhibited promising and highly robust decoding perfor-

mance for SSVEP signals. The neural network model was successfully evaluated offline against

standard SSVEP classification methods on SSVEP datasets from static and ambulatory tasks.

The three neural networks (CNN-1, CNN-2, and NN) showed increased performance in both

environments when sufficient training data were provided. CNN-1 outperformed all other

methods; the best accuracies achieved by CNN-1 were 99.28% and 94.03% in static and ambu-

latory conditions, respectively. Other methods (CCA-KNN, NN, CNN-2) showed high accu-

racy in the static environment, but only CNN-1 recorded smallest low performance

deterioration for the ambulatory SSVEP task. CNN-1’s complexity is low because it has a com-

paratively simple structure (few layers, maps, and units) and the weights in the convolution

layers are shared for every unit within one map, effectively reducing the number of free param-

eters in the network. Our application is far from being data rich (N� 67,500); therefore, we

adopted neither pre-trained model, dropout, nor pooling methods, yet our relatively simple

architecture worked efficiently after a brief training period. Overall, the proposed method has

advantages for real-time usage and it is highly accurate in the ambulatory conditions. Further-

more, our method can increase in accuracy with more data, if available. Note that we consider

subject-dependent classifiers for decoding, which reflects the fact that individuals possess

highly different patterns in their brain signals. From the kernel analysis, we therefore found—

as expected—that the convolutional kernels were different for each individual. We also dem-

onstrate the feature representations, as implemented using a bottleneck layer in CNN-2. The

CNN classifiers could determine the most discriminative frequency information for classifica-

tion, nicely matching the stimulus frequencies of the respective SSVEP classes.

So far, our study has only successfully tested the performance of CNN classifiers for offline

data. Future work will also develop a real-time CNN system that can control a lower-limb exo-

skeleton based on the proposed method and evaluate its performance with healthy volunteers

as well as for end-user groups to investigate their use in gait rehabilitation. We will investigate

subject-independent classification using CNNs. A subject-independent CNN-based classifier

may be more efficient system because it could reduce long training times.

Supporting information

S1 Fig. Examples of input data. Randomly selected input data and averaged data of (a) static

and (b) ambulatory SSVEPs for a representative subject S7. Red boxes indicate the frequency

location corresponding to stimulus frequencies.

(PDF)

S2 Fig. Accuracy differences in 10-fold cross-validation performance using static (top) and

ambulatory (bottom) SSVEPs as the number of training data increases. (a) Accuracy differ-

ences for all subjects in static SSVEP. (b) Accuracy differences for low-performance subjects in

static SSVEP. (c) Accuracy differences for all subjects in ambulatory SSVEP. (d) Accuracy dif-

ferences for low-performance subjects in ambulatory SSVEP.

(PDF)
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S3 Fig. Kernel appearance. Kernels of layer C1 (left) and C2 (right) in CNN-2 using ambula-

tory SSVEPs for S2 (top) and S3 (bottom).

(PDF)

S4 Fig. A feature representation of CCA-KNN. Features were extracted from CCA and classi-

fied using KNN with k = 3 for subject S6. Test data were plotted along the ρf1
, ρf2

and ρf3
axes.

Blue, red, green), black, and cyan are 9, 11, 13, 15, and 17 Hz, respectively.

(PDF)
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