
Exploiting Motion Information for Video
Analysis in Sequences with Moving

Camera

vorgelegt von
Dipl.-Ing.

Marina Georgia Arvanitidou
geboren in Thessaloniki

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionausschuss:

Vorsitzender: Prof. Dr. Sebastian Möller Technische Universität Berlin
Gutachter: Prof. Dr. Thomas Sikora Technische Universität Berlin
Gutachter: Prof. Dr. Athanassios Skodras University of Patras
Gutachter: Dr. Lutz Goldmann imcube Labs

Tag der wissenschaftlichen Aussprache: 11. November 2014

Berlin 2015





Abstract

The processing of low-level information towards the extraction of high-level infor-
mation, and specifically object segmentation, constitutes a great challenge for image
processing and computer vision. With this respect, motion estimation is a task of
major importance, since motion constitutes arguably one of the most valuable un-
derlying clues in image sequences. Furthermore, motion is shown to be strongly
connected with the human visual system. Further possibilities are thus emerging in
the field of visual quality assessment for developing appropriate motion exploitation
strategies that are aligned with the human visual system. This thesis focuses on ex-
ploiting motion for video analysis in image sequences captured by a moving camera
and provides an appropriate evaluation framework.

Firstly, motion induced by the camera movement has to be distinguished from
motion resulting from the moving content itself. Therefore, the first part of the
thesis is devoted to global motion estimation, i.e. the estimation of background mo-
tion. Outlier regression techniques are employed for the formulation of parametric
models for global motion. It is shown that this modelling benefits from the con-
sideration of block information since it implicitly contains information regarding
foreground objects that move independently of the background region. Moreover,
the parametric modelling of global motion is shown to have a positive influence
towards enhancing conventional motion prediction.

The second part of the thesis deals with object segmentation. A short-term
object segmentation scheme that exploits bidirectional information for change de-
tection is built, based on parametric modelling of global motion. Aspects related
to the thresholding procedure, namely the spatial location of foreground candidates
and the optimal selection of the involved parameters are examined. Thus, robust
segmentation performance is achieved avoiding heuristics and training algorithms
for parameter selection. Furthermore, background classification inconsistencies oc-
curring during the independent calculation of segmentation masks over time are
addressed using adaptive filtering according to foreground motion.

Finally, the exploitation of motion features and object-knowledge on video qual-
ity assessment is investigated. Existing objective quality assessment algorithms often
rely on the calculation of quality scores ignoring such higher-level information. Thus,
possibilities of improving objective video quality assessment models’ performance
are herein examined. Specifically, the contributions on objective video quality as-
sessment are threefold; building a content-aware video quality assessment approach
that accounts for moving objects, formulating a saliency model that exploits motion
features on spatial level and furthermore proposing an approach for consideration
of global motion in the temporal dimension that leads to accuracy improvement.





Zusammenfassung

Die Verarbeitung von Informationen auf niedriger Hierarchieebene zur Extraktion
von Information auf höheren Ebenen und insbesondere die Objektsegmentierung
stellt eine große Herausforderung in der Bildverarbeitung dar. In dieser Hinsicht ist
die Bewegungsschätzung ein besonders wichtiger Prozess, da Bewegung wohl einer
der bedeutungsvollsten Aspekte in Bildsequenzen ist.

Dabei ist Bewegung von besonderer Bedeutung im menschlichen visuellen Sy-
stem. Weitere Möglichkeiten und Notwendigkeiten ergeben sich daher auf dem Ge-
biet der objektiven Qualitätsevaluierung von optischen Darstellungen, wobei die
Entwicklung von geeigneten Verfahren angestrebt wird, welche in Einklang mit der
subjektiven Wahrnehmung sind.

Der Schwerpunkt dieser Arbeit liegt in der Verwendung der Bewegung zur Ana-
lyse von Bildsequenzen, welche mit einer bewegten Kamera aufgenommen sind sowie
in der Entwicklung geeigneter Methoden zu deren Evaluierung.

Dabei wird zunächst zwischen der Bewegung, welche durch eine bewegte Kamera
verursacht wird, und der Bewegung der Objekte innerhalb des Bildes unterschieden.
Der erste Teil der Arbeit befasst sich mit der globalen Bewegungsschätzung, also der
Schätzung der Bewegung des Bildhintergrundes. Regressionsmethoden werden ein-
gesetzt, um parametrische Modelle für die globale Bewegung zu formulieren. Es wird
dabei gezeigt, dass die Berücksichtigung der Blockgröße für den Modellierungspro-
zess besonders hilfreich ist, da diese implizite Information über die sich unabhängig
vom Hintergrund bewegenden Vordergrundobjekte beinhaltet. Des Weiteren wird
gezeigt, dass die parametrische Modellierung der globalen Bewegung einen positi-
ven Einfluss auf die Qualität der Bewegungsprädiktion hat.

Im zweiten Teil der Arbeit wird die Objektsegmentierung untersucht. Eine Ob-
jektsegmentierung, welche auf der parametrischen Modellierung der kurzzeitigen glo-
balen Bewegung basiert, nutzt bidirektionale Information aus, um Änderungen zu
detektieren. Aspekte bei der Wahl eines geeigneten Schwellwertes für die Detekti-
on, nämlich die räumliche Lage der Vordergrundkandidaten sowie die Optimierung
der Parametrisierung werden untersucht. So wird eine robuste Segmentierung er-
reicht, ohne auf heuristische Methoden und Trainingsalgorithmen zurückgreifen zu
müssen. Weiterhin werden Fehlklassifikationen des Hintergrundes, welche während
der unabhängigen Berechnung der Segmentierungsmasken über die Zeit auftreten,
durch adaptive Filterung behandelt, welche sich an die Bewegung des Vordergrundes
anpasst.



Letztlich werden die resultierenden Bewegungseigenschaften und die Kenntnis
über die Objekte für die Qualitätsevaluierung untersucht. Existierende Algorithmen
zur objektiven Bewertung der Qualität basieren auf der Berechnung von Qualitäts-
indikatoren, welche Information auf höheren Ebenen meist nicht berücksichtigen.
Deshalb werden hier entsprechende Verbesserungen untersucht. Im Einzelnen sind
die Beiträge folgende: Aufbau einer inhaltsbezogenen Methode zur Bewertung der
Videoqualität, welche für sich bewegende Objekte einsetzbar ist, Formulierung eines
Modells, welches visuelle Wichtigkeit und räumliche Bewegungseigenschaften nutzt
sowie die Entwicklung einer Methode zur Berücksichtigung der globalen Bewegung
in der zeitlichen Dimension, welche die Genauigkeit der Qualitätsbewertung und die
Konsistenz mit subjektiver Evaluierung erhöht.
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Chapter 1

Introduction

Analysis of motion in image sequences is the main focus of this thesis. Especially in
the case of video content captured by a moving camera, the analysis and processing
of low-level information towards high-level information extraction needs accurate
modelling of existing motion. Towards this goal, we build a model to determine the
motion resulting from the camera movement. Based on such a modelling we propose
an object segmentation scheme and we further study the effect of object-knowledge
on visual quality perceived by the viewer and introduce further approaches for im-
provement of objective video quality assessment.

In this introductory chapter, we will first explain the motivation of this work,
and provide some background information. Furthermore, the contributions of this
thesis are summarised and the organisation of the manuscript is introduced.

1.1 Motivation and objectives

Modern technologies and electronic devices together with increased networking capa-
bilities have made it possible to experience a more advanced way of communication
using digital media. People tend to produce increasingly more multimedia content,
share it on social networks, store it and eventually utilize it. This results in an in-
creasing amount of video material that can be practically usable if users have access
to its actual content in a functional way. For instance, in case a user wishes to
find a specific video it would be convenient to avoid going through his huge video
collection, and instead be able to find the desired information in a semantically
meaningful way.

Moreover, content knowledge is influential in a numerous applications such as
object-based video coding [1, 2, 3], where depending on the content, each image
region is encoded with different coding requirements, towards more efficient com-
pression. Recently, the impact of content knowledge on the field of visual quality
assessment has also gained significant attention [4, 5, 6, 7] by exploring the poten-
tial of exploiting attributes of the human visual system in the field of computer
vision. This enables content to be redefined or more concretely defined for the spe-
cific application of designing more accurate automatic visual quality assessment
algorithms, which are highly desired as will be discussed later on.1

Content-based video representation is thus regarded as an aspect of vital im-
portance in contemporary multimedia systems. Depending on the application, the

1Extended related literature to the proposed approaches is reviewed at the respective sections
of the main chapters of this thesis.
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Object Segmentation

Content-based Video Quality Assessment

Global Motion Estimation

Video sequence

Figure 1.1: Overview of the proposed system.

definition of content, such as objects and object boundaries, may vary significantly,
hindering the generic definition of the content-based video representation problem
and hence its solution. Towards a functional solution to each scenario’s needs, exist-
ing approaches formulate the problem based on the grouping of (high-level) features
that are extracted from (low-level) visual information. The challenge is thus to bridge
the gap between human interpretation and low-level features, such as colour, motion
and texture, that can be automatically derived from the visual content itself.

In the framework of this thesis we initially build a model to determine the
motion resulting from the camera movement. Based on such a modelling we build
the proposed object segmentation scheme and we subsequently propose approaches
for improvement of objective video quality assessment by exploiting the effect of
extracted motion features as well as object-knowledge on the visual quality perceived
by the viewer. Figure 1.1 illustrates this work flow and subsequently each concept
is introduced.

Global motion estimation

In this thesis we particularly study motion, which relies on changes in the image
intensities over time. Motion provides valuable information with respect to content-
based video representation and the applications therefor. This is one of the main
motivations of this thesis. In the case of video sequences captured by a moving
camera there exist two kinds of motion; the motion induced by camera and the
motion of existing objects in the scene. In a video analysis framework with moving
camera, the effect of the moving camera on the visual scene has to be detected in
order to further analyse the video data and achieve the desired outcome. Our aim
is thus to formulate a model that describes accurately the motion between given
frames of an image sequence in order to estimate the motion caused by the moving
camera while recognising and discarding outliers.

Global motion estimation can be performed based on pixel correspondences [8, 9],
block correspondences [2, 10] or, more generally, feature correspondences [11] at
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arbitrary positions. In each case the identification of outliers is a critical step in
this task, and therefore it has to be carefully decided. Global motion estimation
approaches based on pixel correspondences may be regarded as the ones with the
highest potential for achieving a high accuracy. Nevertheless, it has been shown
that they are often outperformed by block based approaches [12]. This may be
attributed mainly to the influence of outlier rejection which is a critical stage in
global motion estimation, and determines strongly the effectiveness of the global
motion estimation performance. In the case of global motion estimation based on
block correspondences, block partitioning characteristics are often not taken into
account. The underlying block partitioning however results in a block assignment
that is determined by the image content itself. Therefore, global motion estimation
could benefit from considering further aspects of block partitioning.

Furthermore, conventional motion prediction can benefit from the parametric
representation of camera motion under specific circumstances studied in the frame-
work of this thesis. Towards estimating camera motion, in this work we deal with
three regression analysis approaches, namely the M-Estimator, the Helmholtz trade-
off estimator and RANSAC. The M-Estimator is used in the following chapter 2,
whereas the Helmholtz trade-off estimator and RASNAC are discussed in chapters
3 and 4, respectively. Comprehensive studies on robust regression theory can be
found in [13, 14] and [15]. Global motion estimation may subsequently enable the
accurate compensation of global motion which is a prerequisite for moving object
segmentation that is a major topic in this thesis.

Object segmentation

Research in the field of content retrieval is facing a wide range of challenges, driven
by the need to describe and understand video content in an automatic fashion. De-
spite the increasing computer capabilities and the fact that the community has made
substantial progress towards content understanding, it still remains a big challenge
for computers to be able to understand content automatically. Even though it may
be easy for a human to intuitively define an object region, it is quite difficult to
formulate a generic and strict definition of the segmentation problem. On a similar
context, quite early in the 5th century B.C., it was expressed by Parmenides that
"... for it is the same thing that can be thought and that can be" [16]2, indicating that
the existence of an object depends on the thoughts of the one who recognises what
it is. This statement applies aptly in the search for the "correct" content-based de-
composition of an image where the answer requires human perception. Incorporating
this functionality into an artificial vision system is though still far from becoming
reality.

In the case of video sequences, the task of object segmentation aims at a se-
mantical decomposition of the scene to regions according to its content, where the
term region denotes a set of spatially connected pixels. In this work, based on accu-
rate parametric global motion estimation we address the moving object segmentation

2
... τὸ γὰρ αὐτὸ νοεῖν ἐστίν τε καὶ εἶναι
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task, which is an early and fundamental step that one encounters in many appli-
cations of image processing. Accurate global motion estimation has enabled the
design of object segmentation algorithms [17, 11, 3] that strongly depend on the
underlying global motion estimation. In fact, global motion estimation and object
segmentation are often considered as interdependent information [18, 19], since the
knowledge about object boundaries enables more accurate global motion estimation
and on the other hand more accurate estimation of global motion enables accurate
object boundary detection. Even though it would be very convenient, this informa-
tion is typically not available a priori.

Challenges in the task of moving object segmentation are mainly associated with
the automatic determination of underlying parameters that improve the accuracy
of the segmentation results. This is considered to be a challenging task and exist-
ing approaches often focus on specific applications where it is possible to address
the problem with empirical settings [18]. Robustness in the sense of broadening
the applicability of the proposed approaches is always an important goal in this
area, since several underlying assumptions have to be usually adopted. Further-
more, consistency, i.e. stability of the derived segmentation masks, is an additional
requirement that is especially important.

Content-based video quality assessment

An important aspect in modern communication systems, with respect to the delivery
of multimedia services, is the quality of visual content. Contemporary video coding
standards, such as the recent high efficiency video coding (HEVC) [20] and the most
widely used H.264/AVC [21], enable the broad experience of multimedia data using
mobile services. In the case visual data is transmitted or stored, it undergoes distor-
tions mainly due to limited channel bandwidth and compression. However, content
has to be delivered to a certain level of quality to the users. Therefore emerges the
need to measure the delivered data quality, which is not achievable in a straight-
forward manner, since it relates to the way humans see and respectively perceive
the level of visual quality. Currently there is indeed a great deal of interest in the
research community in this topic and an effort to bring technology and neuroscience
together. With respect to seeing, the human visual system is not functioning in a
linear way, but as it is pointed out [4, 7] and shown in this thesis, it is rather strongly
influenced by the visual content itself.

To illustrate this concept with an example, in the case of a viewer watching
a football game in the television, it is rather impossible to notice a distortion
(e.g. block artefact) that happens outside of the football field during the game. On
the contrary a distortion on the field or on players, where the main focus is, will be
probably more noticeable. In this line, there is a significant amount of research effort
[4, 6] currently aiming to appropriately measure the experienced quality of the deliv-
ered content. Motivated by this idea, the last part of the thesis focuses on enhancing
quality assessment methods. Specifically, the impact of motion-related features to
the process of visual quality assessment based on global motion compensation is
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extensively explored. Since the mechanism of seeing and perceiving visual quality is
not fully understood among the research community, the goal is to improve the way
algorithms assess automatically visual quality bringing them closer to the actually
perceived quality by the user.

1.2 Contributions and organisation of the thesis

The structure of the thesis is delineated in the following, and the main contributions
of this work as well as related publications are given in this section.

Chapter 2

Dealing with sequences captured by a moving camera, the first step is to study the
parametric modelling of motion between two-dimensional images. The first part of
the thesis is thus dedicated to the calculation of the parametric model that describes
camera motion. Hence, chapter 2 provides an overview and discussion of existing
global motion estimation approaches and proceeds with the description of the pro-
posed approach for enhanced robust global motion estimation. Furthermore, it is
studied how this accurate representation can be beneficial towards motion predic-
tion.

Specifically, existing approaches on global motion estimation based on com-
pressed information deal with video frames that are partitioned in a predefined num-
ber of fixed size blocks or do not consider block partitioning characteristics. Block
partitioning though, through error minimization, results in block assignment that is
determined by the image content itself. Hence, further aspects of block partitioning
and specifically block size variability are considered in order to propose an enhanced
robust M-estimator approach for global motion estimation that improves the esti-
mation accuracy. Furthermore, it is studied how the parametric representation of
global motion can be utilized for accurate global motion prediction and how it can
be used to improve conventional motion prediction.

Part of the work presented in chapter 2 and related work in this topic have been
presented in:

. "Global motion estimation using variable block sizes and its application to
object segmentation"
M. G. Arvanitidou, A. Glantz, A. Krutz, T. Sikora, M. Mrak, A. Kondoz
in proceedings of the IEEE International Workshop on Image Analysis for
Multimedia Interactive Services, London, 2009

. "Compressed domain global motion estimation using the Helmholtz Tradeoff
Estimator"
M. Tok, A. Glantz, M. G. Arvanitidou, A. Krutz, T. Sikora
in proceedings of the IEEE International Conference on Image Processing,
Hong Kong, 2010
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Chapter 3

Having efficiently compensated motion derived from the camera movement, our goal
is to determine the foreground object regions. Therefore the next contribution of this
thesis is to investigate aspects of the segmentation process that lack robustness and
propose an algorithm that incorporates new modules, dealing with certain deficien-
cies and improves the overall segmentation performance. In chapter 3, first existing
object segmentation approaches are thus overviewed and discussed. A motion based
segmentation approach is subsequently proposed yielding improvements in terms of
efficiency and being less dependent on empirical parameter settings. Comprehensive
evaluation demonstrates the validity of the proposed approach.

Specifically, an approach for bidirectional fusion of global motion compensated
errors for inter-frame change detection is proposed. The contributions are in the fol-
lowing; spatial error localization is considered in the thresholding step for improving
the segmentation accuracy. As this thresholding scheme introduces one more thresh-
olding parameter, (two thresholds instead of one), an approach for the selection of
appropriate parameters is utilized in order to define the weights for the weighted
mean using hysteresis thresholding. This enables robust segmentation performance
that avoids heuristics and training algorithms for parameter selection that are com-
mon approaches. Furthermore, a final post processing step using adaptive filtering
according to foreground motion is proposed for mitigating temporal inconsistencies
of the segmentation masks.

In addition, a preliminary version of this segmentation framework has been suc-
cessfully applied in an audio processing framework [22] using audio similarity ma-
trices, for the task of music structure segmentation. Audio similarity matrices [23]
visualise the audio structure by its acoustic self-similarity in a two-dimensional rep-
resentation of time. The image-oriented pre-processing of similarity matrices has
proven to be beneficial for highlighting the conveyed musical information and re-
ducing their complexity. This was achieved by handling particular image charac-
teristics that resulted in meaningful spatial segments and thus enhanced the music
segmentation.

The work presented in this chapter has in part been presented in:

. "Short-term motion-based object segmentation"
M. G. Arvanitidou, M. Tok, A. Krutz, T. Sikora
in proceedings of the IEEE International Conference on Multimedia and Expo,
Barcelona 2011

. "Motion-based object segmentation using hysteresis and bidirectional inter-
frame change detection in sequences with moving camera"
M. G. Arvanitidou, M. Tok, A. Glantz, A. Krutz, T. Sikora
Elsevier Signal Processing: Image Communication Journal, 28 (10), 1420 -
1434, 2013.

. "Audio Similarity Matrices Enhancement in an Image Processing Framework"
F. Kaiser, M. G. Arvanitidou, T. Sikora
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in proceedings of the international workshop on Content-Based Multimedia
Indexing, Madrid, 2011.

Chapter 4

Object segmentation as mentioned above is often seen as a "ubiquitous prob-
lem". Humans have a complex way of understanding visual content, and it is even
known that some aspects are influenced by individuality. The mechanism behind
human perception of visual content is not completely understood by the research
community, and the influence of low- and mid-level visual features thereupon is an
attractive research topic. Inspired by such a motivation, in the final stage of the
thesis, we have been interested in studying how the extracted motion features and
the information of moving objects can have a positive impact on objective video
quality assessment. Chapter 4 thus investigates visual quality assessment method-
ologies and describes the proposed approaches towards the improvement of objective
algorithms for video quality assessment.

Specifically, the contributions are focused in three directions; a moving object-
aware video quality assessment approach is examined employing the proposed mov-
ing object segmentation algorithm. Furthermore, a motion saliency model that is
beneficial for the exploitation of motion features on spatial level is proposed. Further-
more, an approach for the consideration of global motion that leads to improvement
in the temporal dimension is proposed. Apart from motion, the incorporation of
other low-level features is additionally investigated and the performance is com-
pared.

The work presented in this chapter has in part been presented in:

. "Motion saliency for spatial pooling of objective video quality metrics"
M. G. Arvanitidou, T. Sikora
in proceedings of the International workshop on Quality of Experience for
Multimedia Content Sharing, Berlin, 2012

Chapter 5

In chapter 5 conclusions are drawn, open issues are discussed and future directions
in this field are also considered. Finally, appendices A.1, A.2 and A.3 provide a short
description of the test datasets used throughout this thesis.
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In this chapter we study the effect of block partitioning in the process of para-
metric global motion estimation. Adopting a parametric model representation, we
show that the assignment of weights to the displacements, i.e. the motion vector
field, improves the overall performance of global motion estimation. This approach
involves two adjacent frames of a video sequence. Furthermore we show that this
parametric description can be more accurate than conventional motion prediction.
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2.1 Introduction

An image sequence, also known as video sequence, is a sequence of still images that
creates the illusion of moving regions due to a property of the human visual system
to perceive the rapid change of pictures under specific circumstances as motion.1 In
the general case of a video sequence, two kinds of motions may be present; motion
induced by the movement of the acquisition device, i.e. camera and motion caused by
the captured content, i.e. observed objects. The motion of the camera, which in this
work is assumed to be the dominant motion, is widely known as global motion and is
modelled by parametric transformations of two-dimensional images. The process of
estimating the transformation parameters is called global motion estimation (GME).

Global motion leads to more efficient motion representation in image regions
that can be described by homogenous motion. This can be particularly useful in
image regions that are not on the main (contextual) focus and thus belong to
the background. When the goal is to detect objects in a scene based on motion,
the existence of global motion may mislead unsophisticated object detection algo-
rithms. Therefore, it needs to be compensated and the remaining motion information
(local motion) serves as basis for several video processing applications including ob-
ject segmentation, object tracking and video coding [24, 25, 26]. The challenge is
thus to distinguish global and local motion components contained in the captured
motion information, which can be achieved by performing an accurate estimation of
global motion.

Global motion can be estimated either in the pixel domain or in the block do-
main. Often, block-based approaches are based on fixed-size blocks while contempo-
rary compression methods tend to use variable-size block schemes during motion es-
timation. In this chapter we propose an approach for global motion estimation based
on motion vector fields that correspond to variable-size blocks. A block matching
algorithm which is able to adapt block sizes according to the motion complexity
within the frame is used. The resulting motion vectors are weighted according to
their assigned spatial area and employed for global motion estimation. Further-
more, preliminary foreground-background masks are created based on the derived
frame-by-frame motion compensated differences and by exploiting spatial conditions
through anisotropic diffusion filtering.

2.1.1 Motion modelling in video sequences

As the word geometry (measurement of the earth) indicates, Euclidean geometry is
commonly used to describe the three-dimensional world. Nevertheless, being a rather
intuitive description of the three-dimensional space, Euclidean geometry adopts that
parallel lines do not intersect, or intersect at "infinity". This is in fact an inconvenient

1This property, known as the phi phenomenon, is the optical illusion of perceiving continuous
motion between separate objects viewed rapidly in succession. The phenomenon was defined by
Max Wertheimer in the Gestalt psychology in 1912 and along with persistence of vision formed a
part of the base of the theory of cinema.
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Figure 2.1: Perspective projection example where parallel lines intersect at an ideal
point.

assumption for computer vision, where it is often that parallel lines to meet at a
specific point. Therefore, projective geometry has been established enhancing the
Euclidean plane by the addition of points where parallel lines meet, namely the
ideal points [27], as illustrated in Figure 2.1. Projective geometry, facilitates thus
the description of the projection of three-dimensional motion onto two-dimensional
planes, and specifically its projection on planar images.

The general transformation between a pair of two-dimensional images in projec-
tive geometry, is represented by a homography H. To describe motion over a long
period sufficiently, high-order polynomial models are needed, such as the parabolic
model, which is described by twelve parameters and is suitable to represent parabolic
curvature for scene deformations [24]. For consecutive frames, the motion can be suf-
ficiently described using the perspective transformation which has eight independent
variables and the homography H can be expressed as a 3× 3 matrix:

H =




m0 m1 m2

m3 m4 m5

m6 m7 1


 . (2.1)

The perspective transformation can describe translation, rotation, non-uniform
scaling and shear between two frames along with projective transformations. The
basic transformations that are described by the perspective motion model are illus-
trated in Figure 2.2. This model is often used to describe motion as a geometric
transformation in the image plane since it is considered to be a good trade-off be-
tween complexity and accuracy [28]. Another less complex, commonly used model
with six independent parameters that cannot describe perspective projections, is
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Figure 2.2: Transformation matrices H for translation, rotation, scaling and shear
that transform a position p = (x, y, 1)T to a new position p′ = (x′, y′, 1)T by
p′ = H · p.

Table 2.1: Transformations allowed in motion models.

Model Euclidian Similarity Affine Perspective
Independent parameters 2 4 6 8

Translation • • • •
Rotation • • • •
Uniform scaling • • •
Nonuniform scaling • •
Shear • •
Perspective projection •

referred to as the affine model and is formulated as:

H =



m0 m1 m2

m4 m5 m6

0 0 1


 . (2.2)

Reducing further the complexity, another popular model is the similarity model that
involves four independent parameters. It is a combination of simple transformations
(translation, rotation and uniform scaling) and can be formulated as:

H =



m0 m1 m2

−m1 m0 m3

0 0 1


 . (2.3)

The most common sub-classes of the perspective model are overviewed in Table 2.1,
where the number of independent parameters and the corresponding basic transfor-
mations described by each model are also listed.
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Figure 2.3: Feature matching based image registration. Feature correspondences are
used to estimate the image transformation of a feature point f that minimizes the
distance d between correspondence f ′ and transformed image point f̃ .

2.1.2 Global motion estimation

In the case that several motions are present, the goal of global motion estimation
is to derive the dominant one, which is assumed to be due to the respective camera
movement. The term dominant implies the association with the occupying space
rather than the associated magnitude. This is achieved by finding the transformation
that best represents motion between a pair of images, which is also referred to as
image registration.

With respect to the methodology, registration approaches can be generally clas-
sified [28] in two general categories: a) feature based and b) photometric consistency-
based approaches. In each case the goal is to minimize a registration error metric,
by finding the best parametric model which is a priori specified. Feature based ap-
proaches, whose general idea is shown in Figure 2.3, try to minimize the registration
error between feature correspondences (that are previously tracked) and the trans-
formed points. Photometric consistency-based approaches on the other hand aim
at maximizing the correlation between a given image and the transformed one with
respect to a parameter vector. The absolute or squared error between the image pair
is subsequently used as metric for energy minimization. Approaches in the first cat-
egory are based on spatial distance, whereas ones in the second category are based
on colour or illumination values. In photometric consistency-based approaches in
general all regions participate in the estimation and are thus computationally more
demanding, in contrast to feature-based ones where only the strong correspondences
between two images have impact on the result of the parameter computation. There-
fore, in this work we are going to deal with feature based approaches, which are also
an appropriate solution in the case that motion vectors are used.

In feature based approaches, in order to estimate the model that optimally de-
scribes the transformation between a pair of images, the following steps are per-
formed: a) feature extraction b) establishment of correspondences based on a match-
ing criterion, such as sum of absolute error (SAD) or sum of squared differences
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(SSD) and finally c) estimation of the best fitting transformation. Features may be
estimated based on pixel correspondences or on block correspondences, determined
by the smallest area of the image that a feature correspondence can be assigned
to. In the latter case blocks may have fixed- or variable-size.

2.1.3 Existing approaches on global motion estimation

In the literature, there exist a variety of global motion estimation approaches that
are based on pixel level. In [8] the dominant motion between two successive frames
is estimated as an affine model using the spatial intensity gradient, for shot change
detection. In [9] the approach is based on image pyramid decomposition, which
is shown to improve the performance of gradient descent. The global motion is
modelled by a perspective motion model and estimated using a robust gradient-
based technique. The approach is hierarchical and consists of three stages; after
building a low pass image pyramid and estimating the initial translation model, in
the last stage gradient descent is employed at each pyramid level and the affine
motion model is finally obtained using an M-estimator in N iterative procedure
to reduce the influence of the outliers. Similarly in [29] the previous technique is
enhanced using a window approach and phase correlation for initialisation. In [26] a
hierarchical approach has been proposed with an initial translation model estimation
using Newton-Raphson error minimization. In the final stage, outliers that have
been previously found to belong to the foreground object are rejected in order to
increase robustness. Finally an affine model is obtained and exploited for object
segmentation.

Considerable effort has been also given in the last years on exploiting - exclu-
sively or in addition to pixel information - compressed domain data. As mentioned
before, in video coding environments, motion related information may be extracted
from the encoded stream. If this information is exploited, the computational cost
of calculating the motion vectors, i.e. block matching, can be avoided and therefore
methods based on block accuracy have an obvious advantage over pixel based meth-
ods, where the calculation of each pixel correspondence has to be performed. Image
registration approaches based on pixel correspondences may be regarded as the
ones with the highest potential for achieving high accuracy, however, it has been
shown that they are often outperformed by block based approaches [12]. This may
be attributed to the fact that motion vectors may (under circumstances) serve as
accurate descriptors of motion, in addition to the fact that outlier rejection is a
critical stage in global motion estimation, and determines strongly the performance
of global motion estimation.

In video coding scenarios where the image sequence is encoded and decoded in
order to be transmitted or stored, motion vectors which represent the displacement
of predefined areas, namely blocks, between image pairs may be extracted from
the encoded stream. Motion estimation techniques for the calculation of motion
vectors can be very computational demanding, therefore efficient implementations
with respect to computational complexity have been proposed, such as the enhanced
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predictive zonal search algorithm (EPZS) [30], which is also employed in the state-
of-the-art standard H.264/AVC. Often, fixed-size blocks e.g. blocks of 16×16 pixels
are employed, as in the MPEG-2 standard. Currently compression techniques, such
as H264/AVC [21] and high efficiency video coding (HEVC) [20], use variable-size
blocks instead of fixed size blocks during motion estimation and compensation. This
allows for greater adaptivity to scene content as block sizes are adapted according
to motion characteristics and complexity, which subsequently leads to higher com-
pression efficiency. Regions with complex motion, which require multiple motion
vectors in order to describe existing motion, are assigned small blocks, especially
when high bit-rates are allowed. On the other hand, large blocks are used for regions
that correspond to homogenous motion, often belonging to the background, or in
case exceptionally low bit-rates are targeted.

Smolic et al. presented [31] a global motion estimation algorithm based on mo-
tion vectors using M-estimator for outlier rejection. Su et al. [10] used the Newton-
Raphson method to estimate the motion model based on motion vectors and in-
troduced an adaptive motion model selection. The adaptive motion model selection
relies on adaptively choosing a parametric model, from two up to eight parameters,
in order to save computational time. Another compressed domain approach is pre-
sented in [32] proposing to use discrete cosine transform (DCT) coefficients instead
of motion vectors from the MPEG stream to compute subsampled representations of
the initial images. Subsequently, feature extraction using parametric representations,
based on the generalised Hough transform was proposed. The approach targeted at
detecting predefined camera movements, namely pan, tilt, rotation and zoom, with
application to video annotation. In [33], the authors compare several feature detec-
tion and matching algorithms and achieve a robust estimation of the motion model
based on RANSAC. In [12] a two step-simplification scheme is used for robust re-
gression approaches such as RANSAC and the Helmholtz tradeoff estimator towards
complexity reduction. Approaches that fuse block and pixel information have been
also reported. Chen et al. [34] proposed a combined compressed and pixel-domain
approach, where Markov random field classification is used at first place for coarse
segmentation followed by pixel information incorporation to extract colour and edge
information for object boundary refinement.

Towards enhancing the robustness of global motion estimation, existing ap-
proaches try to exploit object segmentation information. Even though it would be
very convenient, this information is usually not a priori available. Therefore, infor-
mation regarding object boundaries, shall be assumed at the beginning of the global
motion estimation process or it may be derived from global motion and used later
towards enabling more accurate estimation. In fact, global motion estimation and
object segmentation are considered as interdependent information, which has led to
considering these two problems as a chicken and egg riddle [35, 11, 18, 19].

In line with this idea the authors in [36] adopted a block-based approach that
assigned a motion vector to each block of the image, estimated a four-parameter
global motion model and then performed an iterative elimination of foreground
blocks towards refinement of the global motion model. In [37] linear regression and
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a threshold decision were combined towards eliminating mismatching motion vec-
tors belonging to the foreground object, according to a prior segmentation step in
an iterative manner. Based on this, in the work presented in [38] discrete curve
evolution was used in order to subdivide the motion trajectory in sub-trajectories
with constant motion towards video shot detection. In [39] a pre-processing cascade
filter for motion vectors has been applied in order to enhance global motion esti-
mation and segmentation accuracy by iterating between these two interdependent
procedures.

The techniques mentioned above that estimate global motion based on com-
pressed video sequences deal with video frames that are partitioned in a predefined
number of fixed-size blocks or they do not consider block partitioning character-
istics in the global motion estimation process. Block partitioning though, through
error minimization, results in block assignment that is determined by the image con-
tent itself. Hence global motion estimation could benefit from considering further
aspects of block partitioning. In the following, we describe the proposed approach
that exploits block size variability towards more accurate global motion estimation.

2.2 Improved global motion estimation through
variable-size blocks

The proposed global motion estimation approach is based on the work of [31] where
the influence of outliers is reduced in an iterative process based on the estimation
error obtained using least-squares estimation. Further, we make the observation that
smaller blocks are assigned by motion estimation to regions with high presence of
edges, while larger blocks are assigned to homogenous regions. This may result in
associating the block size with the classification of the block in the background or in
the foreground region. Considering that this observation may be beneficial for global
motion estimation, in the following we study the influence of block size variability,
and based on this observation we propose an improved robust M-estimator approach.

The blocks are obtained using the binary partition tree which is described in
the following and has demonstrated promising results in video coding. The binary
partition tree model has been shown that it is suitable for application in 3D video
coding [40], especially for depth-maps, since it enables excellent adaptability to the
actual image content. Its main advantage is its capability to partition the frame
along the actual motion boundaries.

2.2.1 The binary partition tree

A model that offers high flexibility of frame partitioning, and therefore better adap-
tation to the actual content, is the binary partition tree (BPT) [41]. This approach
enables adaptive partitioning of video frames, originally motivated by rate-distortion
optimization requirements in compression.

In schemes based on variable-size blocks, such as the BPT, the block sizes are
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(a) 330 blocks of 16× 16 size (b) 162 variable-size blocks

Figure 2.4: Block partitioning of frame 22 of the Stefan sequence, using (a) block
matching algorithm and (b) the binary partition tree.

not predefined. Therefore, they vary in order to optimise the trade-off between
the number of bits used to encode motion vectors and the residual (rate-distortion
optimization requirements). The partitioning of a frame into blocks is described
with a tree-structure and can be achieved using a two-step algorithm. First step
is the growing of the tree by frame partitioning (top-down step). Second step is
the pruning of the tree which finds the optimal partitioning with respect to given
requirements (bottom-up step).

During the tree growing step, the entire picture is repeatedly split up to a target
number of N blocks. Initially the whole frame is considered as one block. Optimal
partitioning is achieved using motion estimation and its actual partitioning is de-
scribed in the tree root and with its two new "branches" that represent two new
blocks. Then the iterative procedure continues. At the bottom up step, the tree
is pruned in order to find the optimal partitioning, towards complying with rate-
distortion optimization requirements. Figure 2.4 illustrates an example, where as
can be seen the use of variable-size blocks, according to the binary partition tree
model allows for greater adaptivity to local scene content. The BPT model yields
less blocks that vary in size and shape.

2.2.2 Least squares estimation

Given the motion vector field between two frames of a video sequence, the goal
is to find the optimal parametric model that fits to it and which is considered to
be associated with the global motion. To achieve this, we formulate the problem by
fitting the parametric model using least squares estimation, minimizing the distance
(error) between the sampled pixel values and the estimated ones.

The perspective model can be regarded as a suitable approximation of the global
motion over a short period of time. The transformation T of a given point p = (x, y)T

to a new position T (p,H) = (x′, y′)T , based on a homography H, is given as follows:
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x′ =
m0 +m1x+m2y

1 +m6x+m7y
(2.4)

y′ =
m3 +m4x+m5y

1 +m6x+m7y
. (2.5)

For the n-th frame in an image sequence, the transformed position is estimated
based on the (n-1)-th frame and the corresponding parametric model Hn−1

n . The
error at a certain pixel position j is thus measured as:

εj = p− T (p, Hn−1
n ). (2.6)

εj consists of the error in horizontal and vertical direction respectively, combined
using the L1 norm. In the following, frame indices are omitted for brevity and H

denotes Hn−1
n except otherwise mentioned.

For a frame consisting of L pixels, the optimal parametric model is given by the
homography that minimizes the quadratic error,

H = arg min
L

L∑

j

ε2
j . (2.7)

The transformation T of (2.4),(2.5) may be written as:

(
x′

y′

)
=

(
1 x y 0 0 0 −x · x′ −y · x′
0 0 0 1 x y −x · y′ −y · y′

)
·H (2.8)

where H is the rewritten homography model of (2.1):

H = (m0 m1 m2 m3 m4 m5 m6 m7)T (2.9)

or equally

(
x′ − x+ x

y′ − y + y

)
=

(
MVx + x

MVy + y

)
=

(
1 x y 0 0 0 −x · x′ −y · x′
0 0 0 1 x y −x · y′ −y · y′

)
H. (2.10)

If (MVxi ,MVyi) denote the motion vector coordinates associated with the i-th block,
out ofN participating blocks, of a given frame and (xi, yi) and (xi

′, yi
′) are the center

coordinates of the reference and the transformed block respectively, then the relation
between the perspective motion parameters and the motion vectors is transformed
to:
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MVx1 + x1

MVy1 + y1

...

MVxN + xN

MVyN + yN




=




1 x1 y1 0 0 0 −x1 · x1
′ −y1 · x1

′

0 0 0 1 x1 y1 −x1 · y1
′ −y1 · y1

′

...

1 xN yN 0 0 0 −xN · xN ′ −yN · xN ′

0 0 0 1 xN yN −xN · yN ′ −yN · yN ′




·H (2.11)

which using matrix notation is formulated as:

V = D ·H. (2.12)

The least squares solution of (2.12) with respect to H is

H =
(
DT ·D

)−1 ·DT ·V (2.13)

The least squares approach relies on an explicit formulation of the desired para-
metric model, is however sensitive to outliers [14]. The presence of moving fore-
ground objects whose motion differentiates from the global one as well as errors
coming from other sources result in outliers that cause inaccurate global motion
estimation and have to be discarded. Therefore, the incorporation of a robust out-
lier rejection approach is necessary. In the following, the proposed improved robust
M-estimator approach that exploits size variability towards the elimination of the
outliers’ impact in global motion estimation is described.

2.2.3 Improved robust estimation through block size weighting

The least squares approach is straightforward and results in a first estimation of the
fitted model. In case that the errors are independent and normally distributed with
constant deviation, it is in fact a realistic solution [42]. Nevertheless, the existence
of outliers cannot justify this assumption anymore.

Outliers may occur due to image noise (measurement errors), lighting changes,
moving objects, model failures or mismatches due to homogenous surfaces, and
have as consequence the global motion estimation to yield unreliable results. In
order to eliminate the influence of outliers, namely of the correspondences that do
not comply with the transformation model, a robust M-estimator is employed in
[31]. We propose here an enhancement in terms of robustness for the M-estimator,
by reducing the influence of outliers in a re-weighted iteration procedure based on
the surface of the participating blocks. The procedure is described in the following.

The M-estimator, which has been introduced by Huber [13] reduces the influ-
ence of outliers in a re-weighted iteration procedure based on the estimation error
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obtained using least squares estimation. It aims at finding the parametric model
Hopt that minimizes the residual function over the N pairs of points:

Hopt = arg min
N

N∑

i

ρ(εi) (2.14)

where ρ(ε) is a function of the residual between data samples and estimated val-
ues. Function ρ(ε) determines the robustness of the estimation, and in the case
of least squares minimization it is ρ(ε) = ε2 . This results in larger values εi to
have a heavier impact on the minimization. The idea of M-estimation is to elimi-
nate the influence of extreme large error terms by forming an appropriate function
ρ(ε). Towards this direction, Tukey introduced a bisquare estimator, also known as
biweight estimator, that enforces a radical elimination of outliers’ impact. Thereby
the function ρ(ε) is defined as:

ρ(εi) =





c2

6

[
1−

[
1−

[
εi
cµε

]2
]3
]

εi < cµε

c2

6 εi ≥ cµε
(2.15)

where εi is the estimation error of the block in the j-th position, c is a tuning
constant and µε is the mean estimation error over all blocks of the frame. The
solution of equation (2.14), is given by differentiation of (2.15) with respect to the
transformation parameter matrix and set to zero. Assigning ω(εi) = ρ′(εi)/εi yields
the weighting function:

ω(j) =





[
1−

[
εi
cµεi

]2
]2

εi < cµε

0 εi ≥ cµε
. (2.16)

This weighting function is used to introduce a diagonal weighting matrix W in
equation (2.13) that subsequently becomes:

H =
(
DT ·W ·D

)−1 ·DT ·W ·V (2.17)

where

W = diag (ω(1) ω(1) ω(2) ω(2) . . . ω(N) ω(N)) (2.18)

contains the weights that correspond to each motion vector pair. Each component
ω(n) appears twice because it affects two rows of D within the computation of
the transformation model. This procedure is conducted iteratively until the weights
converge and W is calculated for each iteration k. The influence of outliers, i.e. the
weight ω(i) for the motion vector corresponding to the i-th block at each iteration
k is decreased with the estimated error as determined by equation (2.16).
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(a) Blocks selection (b) ai map

Figure 2.5: Blocks of frame 22 of the Stefan sequence depicted in Figure 2.4(b). (a)
Selected blocks after discarding the black shaded ones, (b) assigned weights ai de-
picted as grayscale intensity values. The greater the intensity (brighter tone) the
higher the assigned weight ai.

As shown in Figure 2.4(b), the binary partition tree model yields variable-size
blocks; large ones that correspond to homogeneous areas (e.g. tennis court) and tend
to belong to the background and smaller ones that correspond to regions with smaller
details (e.g. tennis player) that tend to belong to moving foreground objects. The
proposed approach, named VSBasel, reduces the influence of outliers according to
the estimation error by taking advantage of this observation. This procedure is per-
formed per frame, considering the frame’s partitioning for the weight assignment. A
similar idea has been shown in [43] but in this case the weight values were fixed and
no adaptive weighting per frame was taken into account.

Let M be the total number of blocks that a frame is divided into. We consider
only N blocks whose surface Si is Si > µS out of M blocks, where:

µs =
1

M

M∑

i

Si. (2.19)

Subsequently we assign a weight ai to each motion vector in position i out of the N
participating ones:

ai =
Si
µs

. (2.20)

In this way the participation of each motion vector in the least squares solution
is adapted according to the size of the block partition in relation to the existing
partitions of the examined frame.

Thus equation (2.17) becomes:

H =
(
DT ·A ·W ·D

)−1 ·DT ·A ·W ·V (2.21)

where A is the weight matrix that incorporates the associated block size in the
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calculation, excluding basically blocks that correspond to the moving foreground
objects.

2.2.4 Improved robust estimation through block size selection

A subcase of VSBasel is when N blocks whose surface Si is Si > µS out ofM blocks
are considered, which have uniform influence on the global motion estimation. This
approach is named VSBsel, and in this case ai = 1 for each motion vector in position
i out of the N participating ones.

An example of the weight assignment per block is illustrated in Figure 2.5 refer-
ring to the example of Figure 2.4(b). Figure 2.5 depicts the selected blocks (VSBsel),
N = 47 out of M = 162, as well as the corresponding assigned weights in grayscale
(VSBasel). It can be observed that blocks that have a higher impact on global mo-
tion estimation are mostly located in the background region and especially in the
region of the tennis court, while regions that have a slight or zero impact are mostly
located on the foreground region.

2.3 Evaluation of global motion estimation accuracy

2.3.1 Test dataset

For evaluation of the global motion estimation accuracy, we use the Stefan,Mountain
and Biathlon sequences which are described in appendix A.2. The camera motion in
these test sequences is described by a combination of pan, tilt and zoom, while the
Stefan sequence is especially complex both in terms of colour and motion. It consists
of low-frequency regions such as the tennis court as well as high-frequency ones such
as the audience. As our goal is to evaluate the estimation in the background region
of an image sequence, it is reasonable to exclude moving foreground objects for
the evaluation. For the above mentioned image sequences we employ thus manually
created ground-truth (examples are given in A.2), and perform evaluation only in
the background as explained below.

2.3.2 Evaluation methodology

The following algorithms are evaluated in this section:

• FSB Fixed-size blocks, the algorithm proposed in [31] where fixed-size 8 ×
8 blocks, created by typical block matching, are used. All blocks (i.e. the
corresponding motion vectors) participate in the estimation of global motion
using M-estimator.

• VSB Variable-size blocks, the algorithm proposed in [31] where variable-size
blocks are employed that have been created by the binary partition tree and
all blocks contribute to global motion estimation.
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• VSBsel Variable-size blocks selection refers to the proposed approach (subsec-
tion 2.2.4) that has been presented in [44]. Out of theM blocks of a frame, only
N < M blocks, whose surface is Si > µS according to equation (2.19), are uni-
formly considered. Thus, small blocks that possibly correspond to foreground
objects are excluded. It is therefore a binary decision of using or discarding
motion vectors and no weighting is involved.

• VSBasel Variable-size blocks adaptive selection refers to the proposed ap-
proach, described in subsection 2.2.3, where a selection of N < M blocks as
previously is considered that are additionally assigned a weight ai according
to equation (2.20) in the improved robust M-estimator approach. Thereby the
participation of each motion vector in the least squares solution is adapted ac-
cording to the size of the block partition in relation to the existing partitions
of the examined frame.

It is noted that in the least squares solution proposed in [31] (FSB algorithm), a
four-parameter motion model was used. Here, we employ the more accurate eight-
parameter perspective motion model into the FSB algorithm as well as for the VSB,
VSBsel and VSBasel algorithms in order to have a fair basis for comparison.

In order to evaluate the motion estimation performance, we use the following
approach: given a frame In and the reference frame In−1 of an image sequence, we
employ the estimated parametric model between them to obtain an estimation of In,
namely Ĩn−1

n . Bilinear interpolation and half-pixel accuracy are subsequently used
for image warping. As the goal is to estimate global i.e. background motion, the
evaluation is performed comparing the background regions of In and Ĩn−1

n . This is
achieved using background peak signal to noise ratio (bPSNR) that is calculated as:

bPSNR = 10 · log10
Λ2

bMSE
(2.22)

and

bMSE =
1

XY

X∑

x=1

Y∑

y=1

[In(x, y)− Ĩn−1
n (x, y)]2 (2.23)

where Λ is the maximum intensity pixel value (typically 255) and every pixel pair
(x, y) belongs to the background region Rbn of frame n, as defined by the corre-
sponding ground-truth mask.

2.3.3 Results

Table 2.2 presents the evaluation of the accuracy of global motion estimation in
terms of bPSNR. The proposed VSBasel algorithm outperforms the reference algo-
rithm FSB and it also outperforms the VSB and VSBsel algorithms. In the case of
the VSB algorithm, the uniform participation of all motion vectors derived from the
BPT model causes a decrease in bPSNR compared to the case of fixed-size blocks
(FSB algorithm). This is attributed to the fact that the BPT assigns motion vectors
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to very small regions, especially on the borders and on the foreground regions that
participate equally in the GME. By discarding such areas, illustrated as dark shaded
blocks in the example of Figure 2.5(a), the GME performance improves, resulting
in the VSBsel algorithm to bring higher performance in terms of bPSNR. Assigning
weights that are adapted according to each frame’s block partitioning, i.e. in the
VSBasel algorithm, improves further the performance of GME. Figures 2.6 - 2.8 il-
lustrate the bPSNR per frame for the examined algorithms, for the Stefan, Biathlon
and Mountain sequences respectively.

Amount of participating blocks An interesting point to be studied is the re-
lation between the amount of participating blocks in the parametric global motion
estimation and the corresponding improvement. As explained in section 2.2.1 the
binary partition tree enables free selection of block sizes, and its main advantage is
the capability to partition each frame along actual motion boundaries. The number
of produced blocks is thus not predefined and may significantly vary according to
the image detail. Figures 2.9 - 2.11 show the improvement in terms of bPSNR of VS-
Basel over VSB together with the percentage of participating blocks over frames. The
percentage of selected blocks refers to the number of selected blocks N out of M
available blocks per frame in the global motion estimation process. Studying the
relation between the relative amount of blocks in each frame that are selected to
participate in the estimation process, we observe that the increasing percentage of
employed blocks tends to have a negative impact on the quality of global motion
estimation. Comparing the bPSNR values over time (frames) and the percentage
of selected blocks over time, we observe negative correlation, specifically: −0, 444,
−0, 167, −0, 572 for the Stefan, Biathlon and Mountain sequences respectively. The
negative correlation indicates that the fewer blocks selected, the better the estima-
tion.

Size of participating blocks Next, we examine the relative block size of the
selected blocks employed for GME in each algorithm under examination. Table 2.2
reports additionally, for each algorithm and each test sequence, the rescaled relative
block size (RRBS) that refers to the ratio of the average size of the employed blocks
over the average size of all available blocks in each frame (scaled here by a factor of
two, to enable comparison). In the case of the VSBasel algorithm, we observe positive
correlation with the corresponding bPSNR improvement, specifically: 0, 571, 0, 110,
0, 502 for the Stefan, Biathlon and Mountain sequences respectively. Figures 2.12 -
2.14 present bPSNR and RRBS in more detail for each test sequence.

These two points allow us to observe that higher percentage of participating
blocks per frame results in lower accuracy of GME, while higher relative block size
results in higher accuracy of GME. It may be thus concluded that in cases where
the BPT model results in few large blocks, more accurate global motion estimation
can be achieved compared to cases where many small blocks are involved in global
motion estimation. This is consistent with the initial intuition that large blocks are
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Figure 2.6: Background PSNR in dB for the Stefan sequence for the proposed
approach (VSBasel) and reference ones (Algorithms FSB, VSB and VSBsel).

mainly observed in the background region, whereas smaller ones are mainly observed
to the foreground region.
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Figure 2.7: Background PSNR in dB for the Biathlon sequence for the proposed
approach (VSBasel) and reference ones (Algorithms FSB, VSB and VSBsel).
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Figure 2.8: Background PSNR in dB for the Mountain sequence for the proposed
approach (VSBasel) and reference ones (Algorithms FSB, VSB and VSBsel).
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Figure 2.9: Background PSNR improvement for the Stefan sequence using the pro-
posed VSBasel compared to the reference VSB algorithm. The solid red line indi-
cates the background PSNR improvement, whereas the dotted black line shows the
percentage of employed blocks N/M per frame.
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Figure 2.10: Background PSNR improvement for the Biathlon sequence using the
proposed VSBasel compared to the reference VSB algorithm. The solid red line
indicates the background PSNR improvement, whereas the dotted black line shows
the percentage of employed blocks N/M per frame.
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Figure 2.11: Background PSNR improvement for the Mountain sequence using the
proposed VSBasel compared to the reference VSB algorithm. The solid red line
indicates the background PSNR improvement, whereas the dotted black line shows
the percentage of employed blocks N/M per frame.
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Figure 2.12: The solid red line indicates the background PSNR improvement for
the Stefan sequence using the proposed VSBasel compared to the reference VSB
algorithm, whereas the dotted blue line shows the relative average size of employed
blocks (scaled by factor two) per frame.
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Figure 2.13: The solid red line indicates the background PSNR improvement for
the Biathlon sequence using the proposed VSBasel compared to the reference VSB
algorithm, whereas the dotted blue line shows the relative average size of employed
blocks (scaled by factor two) per frame.
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Figure 2.14: The solid red line indicates the background PSNR improvement for
the Mountain sequence using the proposed VSBasel compared to the reference VSB
algorithm, whereas the dotted blue line shows the relative average size of employed
blocks (scaled by factor two) per frame.
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Table 2.2: Mean background PSNR (in dB) and average block size (in pixels) of the
participating blocks (RRBS) comparing reference and proposed algorithms. FSB,
VSB are the reference algorithms, whereas VSBsel, VSBasel are the proposed
ones. The two best performances are highlighted with boldface.

Sequence Algorithm RRBS bPSNR [dB]

Biathlon FSB 64 25.380
VSB 513.14 23.041
VSBsel 1710.79 27.685
VSBasel 1710.79 27.770

Mountain FSB 64 23.894
VSB 380.19 19.149
VSBsel 2321.37 31.434
VSBasel 2321.37 31.403

Stefan FSB 64 19.836
VSB 394.04 17.188
VSBsel 1483.09 22.761
VSBasel 1483.09 22.864

average FSB 64 23.037
VSB 429.12 19.793
VSBsel 1838.42 27.293
VSBasel 1838.42 27.346
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Subjective evaluation based on segmentation performance

Once the parametric model H is computed for every pair of adjacent frames, the
subtraction of the estimated frame Ĩn−1

n from the current frame In yields the global
motion compensated frame Dn = In − Ĩn−1

n . Subsequently, we apply an object seg-
mentation algorithm based on the global motion compensated frames Dn that are
derived from the examined algorithms. Towards this goal, we employ the segmenta-
tion algorithm described in [45], which is summarized in Table 2.3.

Accurate compensation of global motion allows for precise object segmentation
in image sequences with moving camera. We can achieve thus an indirect indication
of the performance of the proposed method, as the resulting segmentation masks
reflect the accuracy of the global motion estimation for comparison.

The proposed VSBasel algorithm is compared with the case of fixed-size 8 × 8

blocks used for GME (FSB algorithm) and VSB (uniform participation of variable-
size blocks using the BPT). Figures 2.15 - 2.16 illustrate object segmentation results
for subjective evaluation. As it can be observed, the GME accuracy deterioration
in the case of VSB compared to the FSB algorithm, is reflected in the degradation
of the segmentation performance observed in the visual examples. This is especially
evident in the background region, where many small groups of pixels are falsely
marked as foreground. As it can be seen, the VSBasel algorithm outperforms VSB
and FSB, by producing more accurate segmentation results, where false detections
are eliminated.

Table 2.3: Segmentation approach [45] used for preliminary evaluation.

Objective
Foreground and background mask creation.

Algorithm
(i) Anisotropic lowpass filtering of the global motion compensated frame Dn

using diffusion.
(ii) Intensity rescaling in [0, 1] and image binarization using threshold τ =

mean(D) + τc · (max(D)− µ), where τc is a tuning constant and µ is the
mean intensity of the rescaled D.

(iii) Small objects removal and hole filling using morphological operators.
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(a) FSB (b) FSB

(c) VSB (d) VSB

(e) VSBasel (f) VSBasel

Figure 2.15: Segmentation results based (a)-(b) on 8×8 block size (FSB), (c)-(d) on
uniform participation of BPT blocks (VSB) (e)-(f) on proposed VSBasel algorithm
for the Stefan and Biathlon test sequences, frames 27 and 87 respectively.
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(a) FSB

(b) VSB

(c) VSBasel

Figure 2.16: Segmentation results based (a)-(b) on 8×8 block size (FSB), (c)-(d) on
uniform participation of BPT blocks (VSB) (e)-(f) on proposed VSBasel algorithm
for the Mountain test sequence, frame 15.
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Macroblock
paritions

Sub-macroblock 
paritions

16 x 16 16 x 88 x 16 8 x 8

8 x 44 x 8 4 x 48 x 8

Figure 2.17: Possible partition of macroblocks for motion compensation in
H.264/AVC. Top: partition of macroblocks, bottom: partition of 8× 8 blocks.

2.4 Adaptive motion prediction through global motion

Given that the parametric representation of global motion can provide an accurate
prediction of the background region of an image, one question that arises is whether
this prediction can be more accurate compared to motion vector prediction. In the
following, we deal with this question and we further study the use of global motion
information for improving conventional motion prediction. Global motion estima-
tion is performed based exclusively on motion information available at the encoder,
according to the proposed approach described in the previous section. The coding
environment is the state-of-the-art H.264/AVC and several test sequences are used
for experimental evaluation.

A brief overview of the motion compensated prediction, related issues regarding
H.264/AVC and existing approaches are provided in the following sections. Our
examined approach that serves as proof of concept by incorporating global motion
prediction through an adaptive prediction mode is subsequently described. Finally,
experimental evaluation on several test sequences follows and section 2.6 concludes
the chapter.

2.4.1 Introduction and existing approaches

Image sequences are characterised by strong temporal correlation. Therefore motion
compensated prediction (MCP), that enables the exploitation of the redundancy
between frames, is a key strategy towards efficient video coding. Predicting a region
of the current frame from a matching region of a reference one, which is displaced by
a displacement motion vector (MV) is known asmotion prediction (here also denoted
asmotion vector prediction). The search for the best MV, namely motion estimation,
is basically performed using block matching algorithms, as already mentioned, where
the idea is to locate the best match of a block of the current frame in the reference
frame according to a predefined criterion.
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Figure 2.18: Filtering for quarter pixel accurate motion compensation. Upper-case
letters indicate values at integer positions and lower-case ones indicate values at
half- and quarter pixel positions.

Motion vectors in H.264/AVC H.264/AVC, is the coding standard proposed
by the ITU-T video coding experts group and the ISO/IEC moving picture experts
group (MPEG). H.264/AVC that is well established and is currently considered as
the most widely used standard, employs variable-size blocks [21, 46]. It supports a
certain flexibility in the selection of block sizes, in contrast to its preceding standards,
with 4× 4 being the minimum block size. The macroblock partitions in H.264/AVC
are not arbitrarily chosen, partitions with block sizes of 16 × 16, 16 × 8, 8 × 16

and 8 × 8 pixels are rather supported [21]. The corresponding 8 × 8 partition is
possible to be further partitioned into partitions of 8× 4, 4× 8 or 4× 4 pixels. The
specific partitioning of macroblocks into motion-compensated blocks of varying size
is known as tree structured motion compensation [47] and is illustrated in Figure
2.17.

Motion compensated prediction Motion vector prediction within H.264/AVC
considers spatial and temporal correlations between blocks. The accuracy of motion
compensation can be in units of one quarter of the distance between pixels. If the
motion vector points to an integer-pixel position, the predicted value derives from
the corresponding pixel in the reference frame.

In the case that a motion vector points to a non integer-pixel position, the pre-
dicted pixel values are obtained as follows; at half-sample positions a 6-tap FIR filter
is employed horizontally and vertically. Predicted values at quarter sample positions
are generated by averaging pixel values at integer- and half-pixel positions. Figure
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2.18 illustrates symbolically pixels to be interpolated (a-k and n-r). Values at half
pixel positions b and h are derived by calculating intermediate values b1 and h1,
respectively by applying the 6-tap filter as follows [21]:

b1 = (E − 5F + 20G+ 20H − 5I + J) (2.24)

h1 = (A− 5C + 20G+ 20M − 5R+ T ). (2.25)

Half pixel positions values j are obtained using the intermediate values j1 as:

j1 = cc− 5dd+ 20h1 + 20m1 − 5ee+ ff (2.26)

where cc, dd, ee, m1 and ff denote the intermediate values which are obtained sim-
ilarly to h1. Quarter pixel positions values a, c, d, n, f, i, k and q are derived by
averaging the two nearest pixel values at integer and half pixel positions, whereas
the quarter pixel positions values e, g, p and r are derived by averaging the two
nearest pixel values at half sample positions in the diagonal direction.

Motivation and existing approaches

In block matching two key aspects are often considered as shortcomings. The first
is the underlying assumption that block correspondences are described by uniform
motion and thus each block is represented by a single motion vector. The second
is that the translational motion model is adopted to represent block correspon-
dences. Therefore, it fails to capture scaling, rotation and other perspective de-
formations. To alleviate the second shortcoming, the use of higher order motion
models in place of the translational model has been a field of research study over
the last years. Nevertheless, standard video codecs do not incorporate sophisticated
approaches using such models, mainly due to difficulties regarding the coding of the
estimated motion parameter set, beside the extra complications of the estimation
itself.

The motivation behind the proposed approach is that global motion estimation
enables high accuracy prediction (i.e. global motion prediction) employing higher
order model transformations. In this way, alterations in a specific area of the frame
that have been changed uniformly with respect to the reference frame can be re-
constructed using a homography resulting in better prediction of the background
region. In case there are objects in a scene whose motion is differentiated and in-
dependent of the background one, a frame can not be accurately predicted using
a single homography. The idea is thus to exploit global motion prediction in the
motion prediction process towards improving it. This is expected to be especially
beneficial in the background region and in cases there are no moving objects present.

In [48] global motion using the perspective model was considered on macroblock
basis and a decision was made, based on rate-distortion criteria, to determine
whether global motion prediction is preferred over conventional motion predic-
tion. Besides, it has been shown that sequences containing significant global motion
and no independently moving objects, can be coded exclusively using high order
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Figure 2.19: Block diagram of the examined scheme using adaptive mode selection.

motion models and the coding efficiency can be increased. In line with this idea
Yu et al. [49] showed that video sequences that are well described by a single affine
transformation per image pair, can benefit from using such a representation towards
more efficient coding. The authors in [50] introduced the affine transformation to
generate reference pictures in order to handle multiple independently moving objects
while avoiding the assignment of affine motion parameters to each image segment,
thus avoiding the image partition itself. In [51] affine motion prediction has been
used, in a post processing approach within the coding loop, combining the benefits
of affine motion prediction and the advantages of the conventional use of motion
vectors. In [52] a parametric global motion model between current and reference
frames has been used to introduce a new mode, namely the parametric skip mode,
that was incorporated into the design of H.264/AVC.

2.4.2 Adaptive mode selection

The examined scheme is illustrated in Figure 2.19. For the current frame In, the
two predicted versions of it, namely Ĩn,MV P and Ĩn,GMP , are compared in the adap-
tive mode selection (AMS) step and a block wise decision is made for the best
prediction mode, based on the lowest mean square error. For the prediction (the
predicted versions of In) the reference frame In−1 and the corresponding motion
vector field MV n−1

n , extracted from the H.264/AVC encoder, are employed using
motion vector prediction (MVP) and global motion prediction (GMP) resulting in
Ĩn,MV P and Ĩn,GMP respectively. Global motion estimation is performed, according
to the proposed approach, described in section 2.2.3.

For a given frame In (in the following the frame index is omitted) and a block
in position i, the lowest mean square error between the two prediction modes is
given as:

ei = min { ei,MV P , ei,GMP } (2.27)

where
ei,MV P = E[(Ii − Ĩi,MV P )2] (2.28)

and
ei,GMP = E[(Ii − Ĩi,GMP )2]. (2.29)
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The block size that the decision is made upon can be the macroblock size up to the
smallest block size that H.264/AVC defines.

In cases with high amount of intra predicted macroblocks in a frame, i.e. mac-
roblocks where the spatial redundancy is exploited and that are coded without
reference to other frames, the remaining macroblocks that are used for the ho-
mography estimation may mislead the calculation and produce falsely calculated
homographies. Therefore, in such cases we should expect almost no improvement in
prediction using the AMS scheme, something that is also confirmed in the experi-
mental evaluation section that follows.

In cases with significant global motion it is possible to achieve precise prediction
of the background region. Moreover, given that the foreground objects are mov-
ing independently in relation to the background, it is expected that blocks on the
foreground region will be better predicted using MVP in contrast to blocks on the
background region that are expected to be better predicted using GMP.

2.5 Evaluation of the AMS scheme

2.5.1 Test dataset

The test sequences Allstars, Biathlon, Birds, Foreman, Horse, Monaco and Stefan,
are employed for experimental evaluation of the accuracy of the AMS scheme. These
sequences contain a diversity of content characteristics that are described in detail
in appendices A.1 and A.2. With regard to the foreground size, Foreman and Horse
contain large foreground objects in relation to the size of the background, whereas
Biathlon and Stefan contain medium size objects, Allstars and Birds include small
objects and finally Monaco has no foreground objects. Concerning the relation be-
tween local (foreground) and global (camera) motion direction, in Birds, Horse and
Biathlon sequences the camera is following almost constantly the foreground object,
that remains at the center area of the frame, whereas in Allstars and Stefan the local
and the global motion are not obviously related with each other since the camera
does not always keep pace with the foreground object(s).

2.5.2 Methodology

The prediction accuracy in terms of average PSNR of each test sequence using
the adaptive mode selection (AMS) and the motion vector prediction (MVP) are
compared. The adaptive mode selection is examined for the cases that the decision
step (i.e. the block size that the decision is made) is ds = 4 and ds = 16. ∆P4 and
∆P16 denote the PSNR improvement brought by AMS compared to MVP (in dB)
for ds = 4 and ds = 16 respectively, and in each case the best results are highlighted
with boldface. Table 2.4 reports the results.

We examine cases where the motion vector fields are obtained from encoding the
test sequences using H.264/AVC, reference software KTA [53], with varying quanti-
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zation parameters (QP), namely QP ∈ {4, 16, 28, 38, 48}. The following settings are
used: IPPP... GOP structure, EPZS motion estimation with 32 × 32 search range,
4×4 smallest block size and quarter-pel precision. Figure 2.20 presents two examples
of the same sequence encoded with QP = 4 and QP = 40 showing the macroblock
assignments. Intra (I) blocks as well as skip (S) ones, which are a special case of
the prediction that exploits temporal redundancy (inter prediction), are not used
in the described global motion estimation approach. In case there is not sufficient
amount of motion vectors due to intra or skip coding, all the available motion vec-
tors are used and no weighting according to the block size is performed. Figures 2.22
and 2.23 show the PSNR curves for MVP and AMS for the examined quantization
parameters.

2.5.3 Results

As observed in Table 2.4, the most accurate motion vector prediction for each test
sequence is achieved for QP = 4. By increasing the quantisation parameter, a ten-
dency for deterioration of motion vector prediction accuracy is observed. In contrast,
this is not happening with global motion prediction. In the case of low quantization
parameters, there are many intra coded macroblocks and less motion vectors are
available for global motion estimation. This results in low accuracy global motion
estimation for very low quantization parameters e.g. QP = 4. The reason may also
rely on the fact that by increasing QP the deblocking filtering is gradually causing
more blurring of (motion) details which results in a greater quantity of larger mac-
roblocks that tend to be indicators of global motion, thus enabling more accurate
global motion estimation. This is especially obvious in sequences with homogenous
regions such as Birds, Stefan and Biathlon. For larger quantization parameters there
is a higher amount of available motion vectors enabling more accurate global motion
estimation. However, for very large quantisation parameters (i.e. beyond QP = 38)
the global motion estimation deteriorates as the amount of skipped macroblocks
may decrease and the amount of available and reliable motion vectors may gradu-
ally decrease.

The AMS introduces always improvement in the prediction accuracy. For the
majority of the sequences, the highest prediction improvement takes place for QP =

38 and for QP = 28. Figures 2.24 and 2.25 present an overview of the improvement
using the AMS compared to MVP in terms of PSNR. The adaptive mode selection
is set in such a way that a block is decided to be predicted using global motion
estimation compensation if the global motion prediction is better or equally good
in comparison with the conventional motion compensated prediction.

Figure 2.21 depicts examples showing the selected prediction mode. The blocks
where global motion prediction is preferred are marked with white. As expected,
GMP is selected mainly in the background regions of the images, while in the fore-
ground regions the conventional MVP is preferred. According to Table 2.4 the high-
est improvement is reported in the Horse sequence.

Regarding the block size ds, that the AMS decision is made, we observe that
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ds = 4 introduces higher improvement on average compared to the case where
ds = 16. This is explained mainly by the flexibility associated with smaller size
decisions which can be adjusted in more details to the frame’s content.

To conclude, we have shown that the adaptive mode selection introduces certain
improvements compared to motion vector prediction in terms of prediction accu-
racy. This is observed mainly on the background region and higher precision for the
mode selection (smaller ds) enables more accurate prediction.

2.6 Chapter summary

We have presented an improved robust global motion estimation approach that
takes into account the variable-size motion vector field. Typically, smaller blocks
are assigned by motion estimation to regions with high presence of edges, while
larger blocks are assigned to homogenous regions. Based on this observation we
have exploited aspects of the block assignment, specifically the block size, towards
improving global motion estimation. By studying the case of the binary partition
tree, we show improvements in the performance of global motion estimation in terms
of accurate background prediction by making appropriate selection and weighting
the influence of the participating motion vectors in global motion estimation. Im-
provement is also shown in comparison to the case of fixed-size blocks. Preliminary
object segmentation results reflect also the benefits of the proposed approach.

We have also reported possibilities for improving conventional motion prediction
using a parametric global motion model. The parametric representation of global
motion using high order motion models (here the perspective model) that describe a
combination of several motions (e.g. scaling, shear, projective transformation) than
merely the translational one, can be beneficial for motion prediction. The work and
particularly approaches for estimation of parametric global models will serve as basis
for the next chapters in this thesis.
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Figure 2.20: Block partitioning of frame 23 of Stefan sequence using H.264/AVC,
reference software KTA [53], for (a) QP = 4 and for (b) QP = 40. S stands for skip
macroblocks, I4 for intra macroblocks, while inter coded macroblocks are depicted
with the corresponding overlaying motion vector (in red).
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Table 2.4: PSNR (in dB) for motion vector prediction (MVP), global motion
prediction (GMP), adaptive mode selection (AMS) and the corresponding im-
provements for bs = 16 and bs = 4: ∆P16 = PSNRAMS16 − PSNRMV P and
∆P4 = PSNRAMS4 − PSNRMV P .

Sequence QP MVP GMP AMS16 ∆P16 AMS4 ∆P4

Allstars 4 38.082 25.476 38.119 0.037 38.23 0.145
16 38.081 25.475 38.119 0.038 38.23 0.146
28 33.115 24.914 33.258 0.143 33.39 0.280
38 29.102 24.652 29.280 0.179 29.38 0.280
48 25.976 22.615 25.981 0.005 25.99 0.011

Biathlon 4 35.392 18.150 35.393 0.000 35.533 0.140
16 35.709 18.770 35.720 0.011 35.886 0.176
28 31.515 18.841 31.617 0.102 31.913 0.398
38 28.205 18.948 28.294 0.089 28.506 0.301
48 24.893 18.555 24.933 0.041 25.003 0.110

Birds 4 40.611 22.535 40.611 0.001 40.74 0.134
16 38.746 23.494 38.834 0.088 39.02 0.271
28 29.769 23.738 29.949 0.180 30.30 0.534
38 28.169 23.527 28.341 0.172 28.83 0.664
48 26.973 24.491 27.020 0.047 27.04 0.072

Foreman 4 37.502 20.902 37.505 0.003 37.59 0.089
16 36.861 21.183 36.991 0.130 37.11 0.251
28 31.325 20.992 31.632 0.307 31.82 0.496
38 27.235 20.754 27.446 0.211 27.60 0.361
48 23.691 19.543 23.781 0.089 23.85 0.160

Horse 4 29.596 14.583 29.597 0.001 29.83 0.231
16 29.533 14.581 29.538 0.004 29.77 0.236
28 25.647 14.697 26.317 0.670 26.79 1.140
38 22.363 15.092 23.256 0.893 23.71 1.347
48 19.924 15.937 20.572 0.649 20.86 0.941

Monaco 4 37.469 23.268 37.474 0.005 37.53 0.064
16 37.469 23.612 37.469 0.000 37.50 0.026
28 30.290 24.361 30.367 0.077 30.41 0.117
38 26.045 23.926 26.162 0.117 26.21 0.162
48 22.489 20.299 22.495 0.006 22.50 0.010

Stefan 4 28.199 15.606 28.204 0.005 28.389 0.190
16 28.496 15.970 28.508 0.012 28.709 0.213
28 26.066 16.074 26.233 0.167 26.507 0.442
38 21.665 16.283 21.998 0.333 22.337 0.672
48 18.426 16.671 18.551 0.124 18.706 0.279
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(a) Stefan, frame 148, ds = 16 (b) Stefan, frame 148, ds = 4

(c) Horse, frame 22, ds = 16 (d) Horse, frame 22, ds = 4

(e) Allstars, frame 148, ds = 16 (f) Allstars, frame 148, ds = 4

(g) Allstars, frame 247, ds = 16 (h) Biathlon, frame 112, ds = 4

Figure 2.21: Example frames showing block mode allocation in the case of QP = 38

for several test sequences. White corresponds to blocks where global motion predic-
tion (GMP) is preferred, whereas uncovered blocks (image content) are predicted
using motion vector prediction (MVP).
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Figure 2.22: PSNR using adaptive mode selection (AMS) with ds = 16 compared
to motion vector prediction (MVP) for each test sequence, for varying QP.
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Figure 2.23: PSNR using adaptive mode selection (AMS) with ds = 4 compared to
motion vector prediction (MVP) for each test sequence, for varying QP.
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Moving Object Segmentation
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In this chapter a motion-based object segmentation algorithm for video sequences
captured by a moving camera, employing bidirectional inter-frame change detection
is presented. A three-frame approach is adopted using a simple and effective er-
ror fusion scheme and spatial error localization is considered in the thresholding
step. We derive appropriate weights for the weighted mean thresholding algorithm
that enables robust moving object segmentation. Furthermore, a post-processing
step for improving the temporal consistency of the segmentation masks is incor-
porated and thus we achieve improved performance compared to previously pro-
posed methods. The experimental evaluation and comparison with reference meth-
ods demonstrates the validity of the proposed method.
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3.1 Introduction

Approaches towards object segmentation in video sequences in the literature are
based on a wide range of features, such as motion, colour and texture. Motion was
recognised quite early as a valuable feature for segmentation and it seems that it was
first expressed when the grouping law of common fate [54] was formulated, suggest-
ing that motion provides important information for perceptual grouping. Nowadays,
studies on the human visual system consider motion among the salient character-
istics perceived by humans, and thus it has deservedly attracted much attention in
the image processing community for addressing object segmentation tasks.

An effective and straightforward approach for dealing with the object segmenta-
tion task [55] is change detection. Given a set of video frames of the same scene, the
set of pixels that are significantly different between frames is considered the change
detection mask. The change detection mask may be associated with a combination
of underlying factors, including appearance or disappearance of objects, motion of
objects relative to the background, or shape changes of objects. In this chapter we
deal with moving object segmentation in sequences with camera motion, and we
focus on change detection and the automatic determination of optimal parameter
selection for the involved thresholding step.1

3.1.1 Problem statement

As outlined, a strict and generic definition of object segmentation does not really
exist, and each class of applications may have its own specific description depending
on the requirements. The aim of the work presented in this chapter is to extract
the foreground moving objects from a video sequence. We define as foreground the
groups of pixels that exhibit distinctive motion which is substantially different in
relation to the remaining part of the image or to the neighbouring pixels. Foreground
is mostly connected with meaningful, in terms of content, objects such as people,
animals, objects. In the following we refer to the set of pixels of an image that
correspond to the largest part of the image as background. Background is mostly
considered as the part of an image that is of less importance compared to the
foreground for the viewer, for instance the green field in a soccer game, when the
players and the ball are considered to belong to the foreground.

3.1.2 Related work

In the literature there is a significant amount of work, concentrating on moving
object segmentation. There are numerous classifications of these approaches which
vary significantly. For instance, Tekalp’s classification of motion segmentation [58]
is based on the classification of the employed motion estimation: (a) direct methods
(change detection), (b) optical flow segmentation approaches and (c) simultaneous

1Aspects described in this chapter have been discussed in [56],[57].
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estimation and segmentation ones. Zhang et al. [18] classify moving object segmen-
tation approaches in two groups: (a) motion-based and (b) spatio-temporal. Further,
among motion-based segmentation techniques, they identify two subgroups: (a) 2D
approaches and (b) 3D approaches, based on the dimension of motion models em-
ployed in the segmentation. Within the second category, there are structure from
motion methods that mostly deal with rigid object motion in 3D scene, and para-
metric methods which deal with piecewise rigid motion in 2D scenes.

Based on the classification suggested by Zappella et al. [59] we classify existing
approaches into several main categories, based on the main principle of the under-
lying algorithm: (a) statistical framework, (b) optical flow, (c) layer representation
(d) factorization and (e) change detection. In the following we provide a short dis-
cussion on the most representative works in each of the above categories. It is noted
that this classification may not be strict, in the sense that some of the approaches
might be classified in more than one category.

Statistical framework Approaches in this category rely on statistical procedures,
and motion segmentation is seen as a classification problem. Approaches such as
the maximum a posteriori probability which are based on the Bayes rule [60, 61]
or expectation maximization principles are among the most popular in this cate-
gory. In [62], graph labelling is employed towards video object plane extraction,
corresponding to each moving object. The necessary initial segmentation step is pro-
vided through implementation of a watershed algorithm and labelling is modelled
as Markov random field (MRF). Chen et al. [34] proposed a motion segmentation
approach where the priors are obtained through an initial coarse quantisation of
the motion vectors into several classes and a maximum a posteriori estimate of the
MRF label process, followed by boundary refinement. The algorithms in this cat-
egory usually require sophisticated priors capable of imposing spatial coherence or
demanding knowledge that may not be a priori available. On the other hand their
advantage is that they can deal with multiple objects, occlusions and cases where
the objects stop moving for a short time (temporal stopping).

Optical flow Optical flow is based on derivatives of the image function and pro-
vides a dense field of correspondences between images. Under the assumption of
continuous flow, segmentation approaches rely on discontinuities in the flow field
[63]. Bugeau and Perez [64] combine motion information, spatial continuity and
photometric information to deal with the insufficiencies of optical flow. Due to the
heavy computational cost, many approaches [65] have studied solutions to overcome
this issue.

Layer representation Approaches in this category [66] [67] are based on the idea
of dividing the image into layers with uniform motion, and further associating them
with depth and transparency levels. The depth information enables exploitation of
these techniques to stereo vision applications, while the transparency level indicates
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the behaviour of the layers in case of overlapping. Initially such a technique was
proposed by Wang et al. [68]. Approaches of this category can handle well occlusion
problems, due to the depth information that is involved. The main drawbacks are
the level of complexity and the dependence on multiple parameters.

Factorization Tomasi and Kanade introduced [69] a factorization technique to
recover shape and motion from multi view cameras. The key issue in their work
was to avoid the computation of depth as an intermediate step, thus triggering
research on factorization methods that became attractive due to their simplicity and
efficiency [70] [71]. The idea in this category is to factorize the trajectory matrix, that
contains the position of the features tracked throughout a number of frames, into
two matrices that correspond to motion and structure. The trajectory matrix can be
decomposed with approaches such as singular value decomposition, or nonnegative
matrix factorization. Approaches of this category can provide the three-dimensional
structure of the moving object and the motion of the camera, and are often limited
in providing this information for a single object. Moreover, the segmentation is based
on features that are assumed to belong to the objects and in this way the object
boundaries are hardly detected.

Change detection Various approaches are found in the literature dealing with
change detection [72] [73] [74]. A typical method is background subtraction, where
the involved steps are the calculation of a background model, subtraction of each
frame from it and processing of the resulting information. Several background mod-
els have been introduced to deal with various related aspects, such as small motion
activity [75], dynamic backgrounds and illumination variations [76], vanishing fore-
ground objects [77] and related benchmarks have been also published [78]. These
approaches usually rely on a training step to learn the reference background model
and often take into account temporal relations between frames implicitly.

Inter-frame change detection algorithms fall also into this category. They em-
ploy the difference between temporal neighbouring video frames to perform object
segmentation, whereas no background modelling is involved. Several related algo-
rithms have been proposed that focus on inter-frame change detection employing
one adjacent frame. Kim et al. [79] derive an edge map from the difference between
two successive frames and after removing edge points which belong to the previous
frame, the remaining edge map is used to extract the video object plane. The al-
gorithm involves two thresholds, that are set heuristically and also requires manual
definition of a background edge map. In the segmentation method proposed in [1]
the change detection mask is obtained using the difference between two successive
frames and a local thresholding relaxation technique is employed to enforce spatial
continuity. In order to increase temporal stability, a buffer is incorporated such that
the previous change detection masks participate in the final segmentation decision
step. In the case of sequences captured by a moving camera, Qi et al. [26] presented
a global motion estimation approach that is using one adjacent frame towards video
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object segmentation. This global motion estimation approach is employed to per-
form object segmentation, which is also used iteratively to predict and reject outliers
for global motion estimation in the following frames.

Consideration of only one adjacent frame for inter-frame change detection yields
partial foreground detection, since only the edges of the corresponding motion direc-
tion are detected. The double change detection approach - based on three successive
frames - has thus been adopted to overcome this issue. Kameda et al. [80] proposed
to use error frames from both directions. They end up with two binary masks and
fuse them using the intersect operation. In [81] a two-stage segmentation approach
is adopted in order to perform subsequently motion estimation and segment la-
belling. Under the assumption that the number of objects is known a clustering
approach is employed to classify the motion models, and two neighbouring frames
are considered in order to deal with occlusions. Shih et al. [82] employ three adjacent
frames in a similar manner and additionally perform motion compensation followed
by optical flow estimation to address cases with non-stationary background. Huang
et al. [83] employ three successive frames for change detection in the wavelet domain
[84] and obtain the moving object edge map after applying the intersect operation
between the edge maps of significant difference pixel of each pair in each direc-
tion. Liu et al. [85] employ a similar technique to [83] using three successive frames
but they use fuzzy C-means clustering instead of frame difference to classify mo-
tion features. The change detection masks are obtained in the wavelet domain after
applying the intersect operation to the binary masks of each directions.

3.1.3 Overview of the proposed approach

In this chapter, we focus on inter-frame change detection algorithms and specifically
under the presence of camera motion. We propose a three-frame segmentation ap-
proach that employs a bidirectional fusion scheme of the global motion compensated
error. We demonstrate that our error fusion scheme outperforms the intersection fu-
sion scheme that has been commonly adopted, as seen in the previous subsection.

At first step, global motion is compensated between temporally adjacent video
frames and between their corresponding motion vector fields. The compensated
frames are employed for generating global motion compensated error maps and the
compensated motion vector fields are employed in the post-processing step for im-
proving temporal consistency. After low-pass filtering of the error maps, hysteresis
thresholding follows, exploiting spatial connectivity of global motion compensated
errors. In this step, we avoid setting the thresholding parameters heuristically, which
is commonly met in the literature. Instead, we study the problem of optimal weight
selection for hysteresis thresholding of error images using the previously proposed
weighted mean thresholding approach. Furthermore, we propose a novel adaptive
scheme for mitigating the negative effect of temporal inconsistencies while avoiding
the incorporation of a buffer. In this way, a large number of previous masks is not
necessary to be processed in the final segmentation decision step. As shown in the
experimental evaluation section, background detection accuracy is increased while
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En is filtered, and subsequently a thresholding segmentation scheme, encompassing
spatial localization of the error energy, is applied. In the obtained preliminary bi-
nary image B′n every pixel is labeled as either foreground or background. Finally,
the background classification consistency (BCC) step reinforces spatiotemporal con-
sistency, resulting in the final segmentation mask Bn.

The assumptions under which the proposed algorithm performs well, as well as
the strong points and limitations are listed below:

• The approach is designed mainly for the case of moving camera. In the case
that the camera stops moving or in the case that new objects appear in the
scene, the algorithm performs well as long as there is apparent motion differ-
entiation between foreground and background.

• The camera viewpoint is assumed to be fixed, for a valid representation of
background motion by the parametric motion model involved in global motion
estimation.

• Multiple foreground objects are detected. There is no limitation in the number
of objects in the scene that can be detected. Nevertheless, when objects are
very close to each other they tend to be classified as one combined object.

• Regarding foreground object size,due to morphological processing the objects
are not detected if they are smaller than approximately 10% of the image
frame. Additionally, if the object is larger than approximately 80% of the
frame the global motion estimation reflects inaccurately real camera motion
and thus segmentation performance decreases dramatically.

• There is no background modeling involved and the algorithm does not need
any training stage for parameter setting.

• No a priori information is assumed on the shape and texture of objects. In cases
of low textured, low coloured sequences the algorithm works well as long as
there is apparent motion differentiation between foreground and background.

3.2 Bidirectional error frame generation

3.2.1 Global motion compensation

The employed global motion estimation algorithm has been presented by Tok et
al. in [86] and is briefly described here. It is based on the Helmholtz principle and
is overviewed in Figure 3.2. The algorithm derives background motion models from
a set of local translational motion models such as motion vectors of encoded video
streams. An example for such motion vector fields is shown in Figures 2.20(a) and
2.20(b). Misestimated motion vectors and ones belonging to foreground objects are
removed by applying the Helmholtz tradeoff estimator (HTE) that can estimate
parametric models from motion vector sets that have up to ε = 80% of outliers. In
this section, frame indices are omitted for brevity.
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smallerthan52σνisdefined.ThissubsetisratedbyitsstandarddeviationσΘ,νand

sizeIΘ,ν:

Φν =
IΘ,ν
σΘ,ν
. (3.4)
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Finally the subset Θν with the highest rating Φν is taken to derive a perspective eight
parameter model as in equation (2.1) using least squares regression. This model,
as already discussed, can describe more complex deformations between two video
frames, such as translation, rotation, zoom and perspective deformation.

The probability P for selecting two vectors to derive a preliminary model H ′ν
with p = 4 parameters and an expected outlier percentage of ε is:

P = 1− (1− (1− ε)p)M . (3.5)

Thus, the iteration count M can be estimated as:

M =
log (1− P )

log (1− (1− ε)p) . (3.6)

In this work, P has been set to 99.5% and ε has been set to 70% to ensure accurate
estimation of the background motion.

The transformed pixel positions of equation (3.1) usually are not integer posi-
tions, and therefore their corresponding values have to be interpolated. Since nearest
neighbour interpolation wouldn’t provide accurate image registration, we apply the
more sophisticate and accurate third degree bicubic spline interpolation to obtain
values also at sub-pixel locations.

3.2.2 Error fusion

For the n-th frame of the video sequence, let Ĩn−1
n and Ĩn+1

n be the estimations of
In based on the corresponding eight-parameter global motion models as in equation
(2.1) between In−1 and In+1 respectively. Based on these, as depicted in Figure 3.1,
the global motion compensated error frames for the two temporal directions are
given by:

En−1
n = |In − Ĩn−1

n | (3.7)

and
En+1
n = |In − Ĩn+1

n |. (3.8)

As discussed in section 3.1.2, many inter-frame change detection algorithms in
the literature focus on motion information of one temporal direction i.e. In−1 or
In+1. In this way, only edges of one motion direction are included in the foreground
region. To overcome this issue, Kameda et al. proposed to use error frames from the
preceding and succeeding frames. In [80], they perform thresholding on the global
motion compensated errors in each direction En−1

n and En+1
n separately and then ob-

tain a "double-difference image" by a logical intersect operation between the result-
ing binary masks Bn−1

n and Bn+1
n . This concept is also adopted by [82] and [83]. The

intersect operation ensures that foreground misclassifications are drastically reduced
(resulting in high accuracy of background detection, as shown in section 3.5) in the
obtained Bn mask, but at the same time a significant amount of foreground regions
are misclassified (resulting in low accuracy of foreground detection).
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This shortcoming affects the overall segmentation quality in a bad manner as we
show experimentally in section 3.5. In this work, we overcome this issue by including
information from both directions in an accumulative manner, and thus avoid the
intersect operation. The global motion compensated errors in each direction are
combined as:

En =
En−1
n + En+1

n

2
(3.9)

and the thresholding segmentation algorithm is then applied on En. By fusing the
information of these two error frames, a more complete foreground detection is
achieved, which should be reflected in higher recall rates in the evaluation. This is
due to "approaching" each frame bidirectionally as illustrated in Figure 3.3. Ad-
ditionally, accurate global motion estimation enables the elimination of high er-
ror energy in the background region and consequently high precision rates are
achieved. Precision and recall metrics are discussed in section 3.5.

It is noted here that the incorporation of the chroma components in the global
motion error fusion step, as illustrated in the example in Figure 3.4, does not bring
substantial improvement, and thus only the luminance component that contains the
most meaningful motion information is taken into account.

3.3 Thresholding of error maps using hysteresis

The advantages of segmentation algorithms based on inter-frame change detection
are that they are straightforward to implement and enable automatic detection of
new appearing objects. Their drawbacks include noise (small misclassified regions)
and irregular object boundaries [79]. Thus, the error maps should be filtered prior
to thresholding and morphological operations such as opening and closing might be
incorporated after thresholding to alleviate noise.

3.3.1 Adaptive anisotropic diffusion filtering

In the ideal case where the motion of the camera has been compensated perfectly,
the global motion compensated error images contain noise that comes from various
sources such as lighting changes, and small movements in the static background. One
solution to this problem is to use Gaussian filtering to eliminate high frequencies
noise. Nevertheless, this solution would introduce a spatially invariant blurring of
the global motion compensated image where regions that contain noise would be
blurred in the same way as edges that (ideally) contain motion boundaries. For this
reason, we have chosen to use anisotropic diffusion which is first proposed in [87] for
denoising. Indeed, anisotropic diffusion offers a non-linear and space-variant filtering
of the error frame, that while having a low pass character preserves or enhances the
edges of the image. In this way it serves the reduction of high frequency noise due to
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(a) E197
196 (b) E195

196

(c) E196

Figure 3.3: Example global motion compensated error frames of the Stefan se-
quence. In (a) and (b) the error energy is located mostly in the left and right side
of the foreground object respectively, while in (c) error location indicates better the
moving object location.
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(a) Y component (b) U component

(c) V component (d) Combination of YUV

Figure 3.4: Example of global motion compensated error frames for luminance and
chrominance components as well as combination of them for the Mountain sequence,
frame 3.

misestimations in the background while enhancing edges. In the following we give a
brief introduction of diffusion.

Diffusion can intuitively be described as the physical process that equilibrates
concentration differences without creating or destroying mass. For a signal E, this
process can be expressed as:

∂

∂t
E(x, y, t) = div(D · ∇E(x, y, t)) (3.10)

where D is the diffusion function, x, y are the spatial coordinates and t denotes
time. Diffusion has deservedly attracted the attention of the image processing com-
munity since it works as a denoising filter while preserving or even enhancing im-
portant image features, and especially edges. A good overview on this topic can
be found in [88]. A constant value for the conduction function e.g. D = 1 leads to
Gaussian blurring. In the case that the diffusion function D is spatially constant
over the image, then the diffusion is isotropic and if D depends on the location then
the diffusion is considered anisotropic. Moreover, if the diffusion function D depends
only on the initial image, we deal with linear diffusion, otherwise if it depends on
the evolving versions of the initial image, we the diffusion is considered nonlinear.

In case of isotropic diffusion filtering, the diffusion direction is constant, and only
its strength can be adjusted. Perona and Malik [87] formulated a nonlinear diffusion
approach that reduces the diffusivity at locations that have larger likelihood to
be edges for avoiding blurring and localization problems of linear diffusion. They
suggested the diffusion function D to be a function of the magnitude of the gradient
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of the brightness function:
D = g(||∇E(x, y)||). (3.11)

Specifically, g(·) shall be a monotonically decreasing function, with g(0) = 1 and
||∇E(x, y)|| → 0⇒ g(||∇E(x, y)||)→ 1.

In the case of error images, such as the ones created after global motion compen-
sation, it is important to assign less diffusion (blurring) in regions that the image
is changing fast (i.e. edges) and more diffusion otherwise. In this work, being E in
equation (3.10) the global motion compensated error image, and t the scale-space
parameter used to enumerate the scale iterations in the discrete case, we employ the
following diffusion function:

g(||∇E(x, y)||) =
1

1 + 1(
||∇E(x,y)||

κ

)2

(3.12)

where κ is a constant that controls diffusion. This specific function is selected because
it privileges wide regions over smaller ones. Thus, (3.10) becomes:

∂

∂t
E(x, y, t) = div (g(||∇E(x, y)||)) · ∇E(x, y, t)

= div


 1

1 + 1(
||∇E(x,y)||

κ

)2


 · ∇E(x, y, t). (3.13)

The selection of κ should be based on the noise level of the error image, which is at
this point unknown. Therefore, we use an estimation of it and adapt it according
to the statistical distribution of the global motion compensated error image. More
specifically, the local contrast κ is set to the 80% value of the integral histogram of
the global motion compensated error image.

3.3.2 Weighted mean thresholding using spatial connectivity

Subsequently, thresholding is applied to the filtered global motion compensated
error frame. As discussed in section 3.1.2 thresholding is a widely used technique
for change detection. The weighted mean thresholding approach, proposed in [45],
is given by:

T (w) = w ·max(E′n) + (1− w) · µ (3.14)

where w is a constant and µ is the mean of the normalized filtered error frame
E′n (En is normalized by its maximum). This thresholding is adapted according
to the intensity histogram of every frame, but does not take into account the error
localization. In the global motion compensated error frame, e.g. as depicted in Figure
3.3(c), there are significant error values in the foreground area and errors resulting
from misestimations in the background area. To eliminate these missestimations, we
enhance the weighted mean thresholding approach, as follows.
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Figure 3.5: Thresholding example for frame 20 of the Stefan sequence. (a) Segmen-
tation initial classes using hysteresis thresholding. Pixels with E′20(x, y) > T (whigh)

are depicted in solid red (class F0). Pixels with E′20(x, y) > T (wlow) that are con-
nected with class F0 are depicted in dotted blue and with dashed grey are the
discarded pixels for which E′20(x, y) > T (wlow) and are not connected with the ones
in class F0. (b) The weighted mean (Tw), Otsu (Totsu) and hysteresis weighted mean
thresholds (Twlow, Twhigh) are depicted on the intensity histogram of the normalized
error.

At first stage, pixels assigned with high error energy are labeled as foreground (F0

region). Subsequently, pixels with lower error energy, that are spatially connected
with F0, are favoured against the ones not connected with F0, even when the latter
have high error energy. Thus, we employ two hysteresis thresholds [89]. We begin
by applying a low threshold T (wlow) using (3.14). This results in high amount of
falsely detected foreground pixels, but we can be fairly sure that most regions of
the foreground are correctly classified. We then apply a higher threshold T (whigh)

only on regions that are connected with the binary result from T (wlow). Once this
process is complete we have a binary mask where each pixel is marked as either
foreground or background. An example is illustrated in Figure 3.5(a).

Eventually, the obtained segmentation mask B′n is given by:

B′n = k(Dn,(wlow,whigh)) (3.15)

where

Dn,(wlow,whigh) = θ
(
φ ∗ E′n

)
. (3.16)

E′n is the normalized filtered error frame, φ denotes anisotropic diffusion filtering,
θ weighted mean thresholding using hysteresis and k morphological filtering. Frame
indices are omitted for brevity in the following.
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3.3.3 Weight selection

One main issue that affects the robustness of the weighted mean algorithm is the
appropriate selection of the weight parameter w involved in (3.14). In [45], it was
used w = 0.1 heuristically. By adopting hysteresis thresholding for sake of increasing
accuracy, we have one more degree of freedom, due to the fact that we have to
search for two optimal thresholding parameters i.e. the corresponding weights wlow
and whigh.

Finding the optimal generic solution for hysteresis thresholding is considered to
be a challenging issue [90, 91], mainly due to the strong dependency of the optimal
solution on the input image. A survey on this topic is presented in [92]. The method
of Yitzhaky and Peli [91] is to the best of our knowledge the method that selects
the optimal pair of hysteresis thresholds from a set of possible values. It is not a
parametric approach and it eliminates manual determination to the parameter set
selection. The algorithm performs statistical analysis on detection results produced
by different parameters, to create an estimated ground truth (EGT) and finds the
optimal pair of parameters for edge detection on images. We employ this algorithm
to find the suitable weights for weighting mean thresholding using hysteresis on the
global motion compensated error maps. As suggested in [91], the obtained optimal
parameter set is appropriate for similar images, thus we find the optimal weight set
of the first frame of a video sequence, and employ this for the rest of the frames. The
range of parameters to be tested in this work is from 0.005 to 0.4 in steps of 0.05,
which appears to be reasonable since it covers a wide range of detection results from
noisy to sparse. Given a set with ν elements and the possible combinations of κ
elements are: ν!/(κ! · (ν − κ)!). Consequently here, for ν = 8 and κ = 2 there are 28

possible combinations. The procedure is described in the following and is overviewed
in Table 3.1. Given a set of L possible weight combinations:

W = {Wj = (wlow, whigh)j |wlow, whigh ∈ [0, 1] and wlow < whigh} (3.17)

where j = 1, ..., L, use the segmentation masks D = {D1, D2, . . . , DL} derived
using (3.16), that correspond to these combinations, to construct the estimated
ground truth: A pixel location which is identified as foreground in all segmentation
masks, will be assigned the highest level in the EGT, while a location identified as
foreground only in one segmentation mask will be assigned the lowest level. Thus,
the EGT is constructed having values within [1, L]. An EGT example is shown in
Figure 3.6. The EGT is then thresholded with each threshold level i in the set
I = {1, ..., L} forming the potential ground truth (PGTi) for the corresponding
level i. Subsequently, each PGTi mask is compared to each Dj segmentation mask,
where j = 1, ..., L corresponds to each weight combination (wlow, whigh) ∈W and
generate four probabilities for each individual match:
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Figure 3.6: Estimated ground truth the first processed frame of the Biathlon se-
quence, L = 28.
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(3.18)

Now, if each PGTi is regarded as ground truth, the above statistical terms are de-
fined as: true positives (TP): correctly classified as foreground pixels, true negatives
(TN): correctly classified as background pixels, false positives (FP, also known as
Type I error): falsely classified as foreground pixels and false negatives (FN, or Type
II error): falsely classified as background pixels.

The best PGTi mask is the one that yields the best match according to the
Chi-square test metric. The Chi-square test of the optimal weight set [91] is:

χ2
PGTi =

snPGTi −QPGTi
1−QPGTi

· spPGTi − (1−QPGTi)
QPGTi

(3.19)

where
QPGTi = TPPGTi + FPPGTi (3.20)

snPGTi =
TPPGTi

P
(3.21)
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Figure 3.7: Chi-square test for finding the optimal weight pair for weighted mean
thresholding for Biathlon sequence. 3.7(a) average chi-square (χ2

PGTi
) for every

threshold level shows a maximum at level k = 12. 3.7(b) chi-square (χ2(Gj)) be-
tween the different detections and the EGT shows a maximum for the weight set
(0.055, 0.105).
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Table 3.1: Chi-square test for optimal weight selection for hysteresis thresholding.

Objective
Find the weight pair, from a set of weights W that perform optimal thresh-
olding of a given greyscale image I.

Algorithm
(i) Threshold image I L times using the set of weights W = {Wj}, j = 1, ..., L

and calculate Dj .
(ii) Calculate the Estimated Ground Truth, EGT using the masks from (i).
(iii) Threshold EGT using threshold i = 1, ..., L and produce the corresponding

PGTi.
(iv) Compare PGTi and Dj to find the optimal PGTi=k using χ2 test and cal-

culate PGTk.
(v) Find ζ for the optimal segmentation mask Dj using χ2 test and calculate

Dζ.

spPGTi =
FPPGTi
1− P . (3.22)

snPGTi is the sensitivity or true positive rate (TPR), and spPGTi is the specificity
which is equivalent to 1-FPR (where FPR is the false positive rate). prevalence P
is the average relative number of positive detections. A higher χ2

PGTi
indicates a

better parameter set selection. Figure 3.7 demonstrates an example of the values of
the Chi-square measure for different weight levels. The best match between PGTi
and the EGT is given for k = argmaxiχ2

PGTi
, thus obtaining the optimal potential

ground truth PGTk. Based on this, the following Chi-square is calculated:

χ2(Dj) =
snPGTk,Dj −QPGTk,Dj

1−QPGTk,Dj
·

spPGTk,Dj − (1−QPGTk,Dj )
QPGTk,Dj

(3.23)

where:
QPGTk,Dj = TPPGTk,Dj + FPPGTk,Dj (3.24)

snPGTk,Dj =
TPPGTk,Dj

TPPGTk,Dj + FNPGTk,Dj

(3.25)

spPGTk,Dj =
FPPGTk,Dj

FPPGTk,Dj + TNPGTk,Dj

(3.26)
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and finally the segmentation mask Dζ for ζ = argmaxjχ2(Dj) yields the optimal
segmentation mask.

3.4 Background classification consistency

The obtained segmentation mask (B′n) usually suffers from misclassifications,
i.e. falsely classified foreground pixels or falsely classified background pixels, caused
by various sources. In this section, we identify the circumstances under which such
misclassifications occur and then propose a strategy to address them.

3.4.1 Sources of errors

We consider as misclassifications, the falsely classified pixels. More specifically,
falsely classified foreground pixels are, which are called false positives and falsely
classified background pixels, called false negatives. In the following we identify the
most important cases where such misclassifications occur:

• In cases where the sequence contains background noise (e.g. spectators’ move-
ment in sports sequences) high false positives are observed.

• When motion vectors are not describing real motion (e.g. when generated to
optimize the rate-distortion trade-off) both types of misclassifications occur,
namely false positives and false negatives.

• In cases that the perspective motion model is unable to describe accurately the
undergoing camera motion, false positives and false negatives can be caused.

• If the motion of foreground objects (or part of them) matches the dominant
motion of the video frame, then their relative velocity (between foreground
and background) is almost zero and consequently false negatives are observed.

• Very high foreground velocity occurs, i.e. large displacement between adjacent
frames can cause false negatives. This effect is known as ghosting effect and
characterizes situations where the object seems to appear twice [93]. It is
present in cases of inter frame change detection due to the lack of background
modeling.

Additionally, one effect that may deteriorate the segmentation result is the
temporal coherence of the estimated sequence of segmentation masks. Non-smooth
changes between consecutive frames might cause negative side-effects, such as flick-
ering.

3.4.2 Temporal consistency

The hysteresis scheme can handle some of the above mentioned error cases to cer-
tain extend (as can be seen in figure 3.5(a)), due to the fact that it favours object
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boundaries’ connectivity. In order to deal with the above described misclassifica-
tions and temporal inconsistencies, we propose the following strategy which we
name background classification consistency (BCC). First, the obtained preliminary
binary masks B′n−1 and B′n, are filtered with a two-dimensional isotropic Gaussian
lowpass filter with standard deviation that is adapted to every frame according to
the average magnitude of the motion vectors of the current frame, which correspond
to the foreground region of the previous frame. Next, the (grayscale) mask that
is the Hadamard product (pairwise multiplication) of the filtered versions of the
preliminary masks is binarized using Otsu thresholding [94] to produce the final
segmentation mask Bn. The multiplication of the filtered preliminary masks serves
the elimination of temporal inconsistencies that are observed, when every binary
mask is produced independently of its adjacent ones. Error propagation is not an
issue here, since B′n−1 and B′n are created independently up to this point.

In more detail, filtering serves in creating a spatial attenuation of the object
boundaries so that when the filtered masks are combined, and depending on the
foreground object’s velocity, the new parts of the foreground in B′n that do not exist
in B′n−1 are maintained. Especially in cases of fast moving objects, filtering helps
towards a more complete object detection in the final mask. Filtering is adapted as
described in the following:

Hn is the estimated eight-parameter model for the n-th frame of the video se-
quence, as in equation (2.1). The corresponding global motion compensated vector
field is calculated as:

MVGMC(x, y, n) = MV(x, y, n)−MV(x, y; Hn) (3.27)

where MV(x, y, n) is the motion vector field and MV(x, y; Hn) is the motion vec-
tor field that represents the estimated global motion. MVGMC(x, y, n) and B′n−1

are used to calculate an adaptive isotropic Gaussian filter. Let Ω be the region
that B′n−1 defines and corresponds to N motion vectors. The preliminary binary
mask B′n is then convolved with Gaussian filter with kernel size (φn × φn), where
φn = d4 · σn + 1e and

σn =
1

N

N∑

i=1

√(
MVGMC

Xi

)2
+
(
MVGMC

Y i

)2 (3.28)

standard deviation. i ∈ Ω and MVGMC
Xi , MVGMC

Y i are the motion vector components
for X and Y direction respectively at frame n.

3.5 Experimental evaluation

3.5.1 Test dataset

The test sequences considered for experimental evaluation are Allstars, Biathlon,
Mountain, Race, Stefan, BBC fish and Horse. They are characterized by a variety in
content, camera motion, number and movement of objects. In order to objectively
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evaluate the performance of the proposed algorithm we employ manually created
moving objects ground-truth segmentation sequences. The test dataset is detailed
described in appendix A.2.

It is noted here to the best of the author’s knowledge there exist no publicly
available database containing video sequences with strongly moving camera and
segmentation ground-truth. The majority of the publicly available existing video
segmentation benchmarks, contain video sequences acquired by a camera, with ei-
ther no or minor background motion such as dynamic changes (i.e. lighting, contrast,
shadow alterations) or moving camera attached on moving vehicles, which does not
match the underling assumption of fixed camera viewpoint in this work due to the
moving viewpoint. Since the proposed work focuses on sequences with moving cam-
era we use a self-created video dataset for the experimental evaluation, as relevant
works in the bibliography do. Therefore, we have used several well known sequences
to evaluate our algorithm using manually created segmentation ground-truths, which
are publicly available.

In order to quantify the spatial-temporal variation of image sequences, ITU has
defined the following measures [95]. For a given image sequence, the spatial perceptual
information (SI) indicates the level of spatial information. For its computation, the
edge-detecting Sobel filter is applied on each frame In and the standard deviation
σ of the filtered version of the frames is computed. The SI indicator is then defined
as the maximum standard deviation of all frames:

SI = max {σ[Sobel(In)]} (3.29)

The temporal perceptual information (TI) indicates the temporal detail in a sequence
and is based on the motion difference featureMFn of successive frames in time, that
is defined as the difference between pixel values at the same location in space:

MFn(i, j) = In(i, j)− In−1(i, j) (3.30)

where (i, j) are the pixel coordinates of the n-th frame. The standard deviation σ
is following computed for each frame difference, and TI is given as the maximum
standard deviation over all frames as:

TI = max {σ[MFn(i, j)]} (3.31)

Higher values of SI correspond to higher spatial information content, whereas high
TI values correspond to more motion in adjacent frames. Figure 3.8 shows the test
sequences on the SI-TI plane. As it can be seen they span a large region on the
SI-TI plane indicating the variation of spatial and temporal characteristics.

3.5.2 Evaluation methodology

To evaluate the efficiency of the segmentation results, the produced segmentation
masks are compared to the manually created ground truth masks. To that end the
following quantities, already introduced in section 3.3.3, are defined as follows:
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Figure 3.8: Test dataset on the spatial - temporal perceptual information (SI - TI)
plane.

• True positives (TP): correctly classified as foreground pixels.

• True negatives (TN): correctly classified as background pixels.

• False positives (FP): falsely classified as foreground pixels.

• False negatives (FN): falsely classified as background pixels.

Based on these, the segmentation efficiency is measured in terms of precision (P ),
recall (R) and F-measure (F ), that are defined as:

P =
TP

TP + FP
(3.32)

R =
TP

TP + FN
(3.33)

F = 2

(
P ·R
P +R

)
. (3.34)

Precision indicates how exact the segmentation is, meaning how accurately the back-
ground is estimated, whereas recall shows how complete the foreground segmenta-
tion is. Balancing between these two contradictory quantities, precision and recall,
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comprisesthemainchallengethatalgorithmsdealingwiththetaskofobjectseg-

mentationmustaddress.F-measureistheharmonicmeanofprecisionandrecall

andiswidelyusedasanobjectiveoverallindicationofthesegmentationquality.

Exampleframesproducedusingthereferenceandtheproposedapproachesare

presentedinthefollowingforsubjectiveevaluationofthesegmentationresults.The

numberofcorrectlydetectedobjectsisalsoconsideredasametricforevaluatingthe

efficiencyofeachalgorithm.Furthermore,computationalcomplexityandruntime

arecompared.

Algorithmscenarios Inordertocomparetheproposedalgorithmwithother

globalmotioncompensatederrorfusionapproachesforobjectsegmentationinse-

quenceswithmovingcamera,wecomparethefollowingapproaches:

•Algorithm1 theapproachproposedin[26]whichusesoneadjacentframe

forthedetectionofobjectsegmentationmaskthatisalsousedtopredict

andrejectoutliersforglobalmotionestimation.Theauthorshereproposed

alsoaglobalmotionestimationapproachwhereineachloopstepoutliersare

detectedaccordingtothesegmentationmapandarerejected.Codeprovided

bytheauthorshasbeenusedforthecomparison.

•Algorithm2 theapproachproposedin[80]thatemploystwoframesand

theintersectionfusionschemeasdescribedinsection3.2.2andoverviewedin

Figure3.9.

•Algorithm3theproposedapproachthatisdetaileddescribedinsection3.1.3

andoverviewedinFigure3.1.

Theglobalmotionestimationalgorithmdescribedinsection3.2.1isusedforthe

errorfusionschemeofAlgorithm2,andthesegmentationofglobalmotionerror

framesasdescribedinsections3.3.2-3.4areusedineachcaseinordertohavea

faircomparisonofsegmentationperformance.
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3.5.3 Results

Segmentation performance Algorithm 1 produces segmentation masks that
suffer from background misclassifications as well as incomplete foreground detec-
tion, especially in one side of the foreground object, due to fact that one motion
direction is used for global motion compensation. This results in low precision, but
fairly good recall rates. Algorithm 2 presents improved background detection accu-
racy, since the intersect operation ensures that most of background misclassifications
are avoided, but the segmentation masks suffer from incomplete foreground detec-
tion, as described in section 3.2.2. This is reflected by high precision but very low
recall rates. Algorithm 3 enables complete foreground detection due to the proposed
error fusion scheme and at the same time produces 33.1% on average more accurate
background detection (in terms of recall) compared Algorithm 2 on the whole test
dataset.

Figure 3.12 illustrates examples of the above cases and Table 3.2 shows preci-
sion, recall and F-measure for the algorithm scenarios described above. Algorithm
2 performs on average 32.4% better than Algorithm 1 in terms of precision, but
suffers from 37.3% lower recall rates. The best performance in terms of precision is
achieved by Algorithm 2 and the best one in terms of recall is achieved by Algo-
rithm 1. Nevertheless, precision and recall are two contradictory quantities; often
increment of each one of them means decrement of the other one. Thus, by achieving
good but not the best precision and recall rates, but still above at least 59%, our
proposed algorithm outperforms the reference algorithms and clearly improves the
results in terms of F-Measure. Figure 3.10 reports a comparative overview of the
percentage of frames in each test sequence that have quality above 75% in terms
of F-measure and Figure 3.11 presents a concise overview of the performance in
terms of F-measure on the whole dataset, and a comparison between proposed and
reference algorithms. Figures 3.19 - 3.21 illustrate examples of the test dataset, as
well as F-measure curves, using the reference and the proposed algorithms.

Background classification consistency By incorporating BCC, the segmen-
tation masks are temporally more consistent, false positives are eliminated, while
foreground object detection is more complete. The ghosting effect, which appears
when foreground objects are moving fast, is also eliminated due to the filter adap-
tation according to the foreground object’s velocity, and the object boundaries are
smoothed over time as can be seen e.g. in Figure 3.12. Nevertheless, in the case of
Allstars, one of the football players is repeatedly moving and stoping in front of a
static object, and he is in some cases falsely regarded to belong to the background
together with that static object. This results in a slight (1.6%) degradation in terms
of F-measure, as can be seen in Table 3.3 which presents the performance improve-
ment in terms of F-measure by incorporating BCC, compared to the case where no
background refinement step is involved, which has been presented in [56].



3.5. Experimentalevaluation 71

Figure3.10: Percentageofframes withqualityabove 75%intermsof F-

measure.Comparisonofreferenceandproposedalgorithms.

Table3.2: Testsequencesandresultsofexperimentalevaluationintermsofav-

erageprecision(P),recall(R)andF-measure(F)ofreferenceandproposedalgo-

rithms.Thebestprecision,recallandF-measureresultsareshowninbold.

Sequence Algorithm1 Algorithm2 Algorithm3

[26] [80] Proposed

P R F P R F P R F

Allstars 0.44 0.69 0.52 0.84 0.49 0.61 0.77 0.59 0.65

Biathlon 0.24 0.83 0.36 0.92 0.63 0.74 0.78 0.87 0.82

Mountain 0.60 0.95 0.73 0.93 0.59 0.72 0.84 0.85 0.84

Race 0.69 0.84 0.75 0.89 0.41 0.53 0.74 0.83 0.78

Stefan 0.65 0.80 0.69 0.86 0.41 0.52 0.71 0.79 0.73

BBCfish 0.75 0.87 0.80 0.89 0.38 0.53 0.82 0.83 0.81

Horse 0.65 0.78 0.70 0.96 0.24 0.38 0.88 0.70 0.78

average 57.4%82.2%64.9% 89.7%45.0%57.3% 79.0%78.1%77.4%
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Figure 3.11: Comparison of F-measure distributions on the test dataset between the
proposed and reference algorithms. Each box indicates the median (central mark)
and the 25th and 75th percentiles (edges of the box), whereas the whiskers extend
to the most extreme values. The extreme values correspond to: [Q2 − 1.57(Q3 −
Q1)/

√
n,Q2 + 1.57(Q3−Q1)/

√
n ], where Q2 is the median, Q1 and Q3 are the 25th

and 75th percentiles respectively, and n is the number of values.
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Table 3.3: Contribution of the background classification consistency to the perfor-
mance improvement in terms of average precision (P), recall (R) and F-measure
(F).

Sequence Without BCC With BCC
[56] [57]

P R F P R F ∆F

Allstars 0.71 0.66 0.67 0.77 0.59 0.65 −1.6%

Biathlon 0.71 0.94 0.80 0.78 0.87 0.82 +1.6%

Mountain 0.77 0.90 0.83 0.84 0.85 0.84 +1.2%

Race 0.63 0.87 0.73 0.74 0.83 0.78 +5.2%

Stefan 0.61 0.83 0.69 0.71 0.79 0.73 +4.2%

BBC fish 0.74 0.89 0.80 0.82 0.83 0.81 +2.1%

Horse 0.81 0.65 0.72 0.88 0.70 0.78 +5.7%

(a) Original frame (b) Algorithm 3 without BCC

(c) Algorithm 3 with BCC

Figure 3.12: Original frame, segmentation example of proposed algorithm without
and with BCC for Race sequence, frame 27.



74 Chapter 3. Moving Object Segmentation

Thresholding Table 3.5 presents the evaluation of segmentation results that are
produced using three thresholding schemes generated by Algorithm 3 for all the
test sequences. The thresholding schemes compared are: i) the well known Otsu
thresholding [94], which maximizes the ratio of inter/intra-class variance, ii) the
weighted mean thresholding (WM ) [45] and iii) the hysteresis weighted mean (HWM )
as described in section 3.3.2 (an example is illustrated in Figure 3.5b). In every case,
hysteresis mean thresholding outperforms the other two thresholding algorithms in
terms of segmentation efficiency.

Anisotropic diffusion filtering Regarding anisotropic diffusion filtering, we ex-
amine the contribution of parameter κ on the segmentation performance. This pa-
rameter controls the diffusion strength in a way that low κ values allow for small
gradients to block diffusion across edges whereas large values reduce the influence
of gradients on diffusion. To study the effect of κ we group the error values in ten
equally sized intervals, that are replaced by their mean value that is representative
for each interval. Figure 3.13 shows the average performance of each test sequence
in terms of F-measure, for the range of κ between the 1-st and 10-th interval of the
global motion compensated error. In our experiments we have used the value of
the 3-rd interval as κ. It is observed that in cases of Race and Stefan sequences, a
smaller κ would be more appropriate. This can be explained by the fact that these
sequences have high TI index (Figure 3.8), so larger values do not give the optimum
performance. In fact, the selection of κ according to the global motion compensated
error is a direct way of taking into consideration into the filtering the temporal in-
formation of the foreground, which is adapted according to the motion (and size) of
foreground objects.

Number of correctly detected objects Additionally, the number of correctly
detected objects is considered as a quality measure. As described in Appendix A.2,
the test sequences contain foreground objects with various sizes that may move in-
dependently. As shown in Figure 3.14, the proposed algorithm detects foreground
objects with good accuracy. In the case of sequences with multiple objects presence,
at least 79.13% of the foreground objects are detected with the proposed algorithm,
94.44% are detected with Algorithm 1 and 77.83% with Algorithm 2, whereas in se-
quences with single object presence (Biathlon, Mountain, BBC fish and Horse) the
object is always correctly detected. As it is observed, Algorithm 1 shows higher de-
tection rates than the proposed algorithm (Algorithm 3), which is also in agreement
with the higher recall rates in Table 3.2. However, these high detection rates are
followed by high false foreground detection rates, which makes the performance of
the proposed algorithm in general better compared to Algorithm 1. In more details,
the average number of correctly detected of objects in Allstars is: 88.41%, 69.24%

and 79.74%, in the case of algorithms 1, 2 and 3 (proposed) respectively, whereas
in Race these rates are: 81.27%, 73.70% and 78.53% and finally in Stefan: 95.17%,
93.50% and 94.67% respectively.
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Figure 3.13: Dependence of performance in terms of F-measure on parameter κ in
anisotropic diffusion filtering. The selected value was equal to the mean of the 3-rd
interval of the global motion compensated error.

Computational complexity Regarding computational complexity, each part of
the proposed algorithm is examined separately. For a frame with m × n pixels,
bearing in mind that the number of iterations (motion vector outlier rejection M ,
anisotropic diffusion filtering, set of weights W etc.) is fixed, and the involved pa-
rameters (motion model, gaussian kernel, etc.) have fixed size, the computational
complexity of each part of the algorithm is presented in Table 3.4.

The n · m log(m · n) term in the global motion estimation and compensation
term derives from the Helmholtz tradeoff estimator approach, where the fitting
errors between all motion vectors and the preliminary motion model are calculated,

Table 3.4: Computational complexity of each step of the proposed algorithm.

Step Complexity

GME/GMC O(n ·m · log(n ·m))

Error generation O(n ·m)

Filtering O(n ·m)

Weight selection O(n ·m)

Thresholding O(n ·m)

Morphological processing O(n ·m)

BCC O(n ·m)
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Figure 3.14: Number of foreground objects detected with the proposed algorithm
and reference algorithms in sequences with multiple objects.
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Table 3.5: Average F-measure for Otsu, weighted mean (wm) and hysteresis weighted
mean (hwm) thresholding algorithms.

Sequence OTSU WM HWM
[94] [45]

Allstars 0.58 0.61 0.65
Biathlon 0.79 0.81 0.82
Mountain 0.82 0.82 0.84
Race 0.75 0.75 0.78
Stefan 0.69 0.71 0.73
BBC fish 0.75 0.76 0.81
Horse 0.67 0.68 0.77

for a maximum of m
4 × n

4 blocks of size 4 × 4 (pixels). After this calculation, the
set of errors has to be sorted in order to calculate the percentiles, and this sorting
results in this term. Thus, in the worst case scenario, the complexity of the proposed
algorithm is O(n ·m · log(n ·m)). Algorithm 2 involves the convergence rate, κ, of
the gradient descent [26], which determines its complexity. Assuming that κ is not
fixed, the computational complexity of Algorithm 2 is O(n ·m · κ), whereas in case
Algorithm 3 the complexity is the same as the proposed one, since the fact that
most of the included steps have to be performed twice, does not change O.

Regarding runtime, the proposed algorithm needs 1.6 sec on average for a frame
of a CIF sequence (Biathlon) under a 2.2 GHz AMD opteron 8354 with 48 GB
RAM. From this time, 0.97 sec are used for GME, 0.11 sec for GMC, 0.38 sec for
filtering, 0.05 sec for binarization, 0.01 sec for morphological processing and 0.12

sec for BCC. More concisely, 1.1 sec is needed for GME/C and 0.5 sec for segmen-
tation which is implemented in MatLab. The algorithm of Kameda et at. [80] is not
faster that the proposed algorithm, since all the steps has to be performed twice, for
each direction, before combining the segmentation masks using the intersect opera-
tion. The algorithm [26] can save 75% of time in the global motion estimation step,
based on the code provided as an executable by the authors. Comparing to the seg-
mentation performance, the proposed algorithm outperforms [80] for 20% and [26]
12% in terms of F-measure. The global motion estimation algorithm that we employ
here is based on the Helmholtz Tradeoff Estimator which ensures robustness against
noise. This is reflected to the fact that the proposed algorithm outperforms Algo-
rithm 1 in terms of segmentation efficiency and the possible employment of a faster
global motion estimation approach would enable real-time application scenarios.
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(b) Biathlon

Figure 3.15: Precision, recall and F-Measure curves per frame using proposed and
reference algorithms for the Allstars and Biathlon sequences.
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(b) Race

Figure 3.16: Precision, recall and F-Measure per frame using proposed and reference
algorithms for the Mountain and Race sequences.
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Figure 3.17: Precision, recall and F-Measure per frame using proposed and reference
algorithms for the Stefan and BBC fish sequences.
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Figure 3.18: Precision, recall and F-Measure curves per frame using proposed and
reference algorithms for the Horse sequence.
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Figure 3.19: The first row shows example frames of Mountain (frame 95) and Stefan
(frame 196). The second, third and fourth rows show segmentation examples using
Algorithms 1, 2 and 3 respectively.
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Figure 3.20: The first row shows example frames of Biathlon (frame 173) and Allstars
(frame 162). The second, third and fourth rows show segmentation examples using
Algorithms 1, 2 and 3 respectively.
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Figure 3.21: The first row shows example frames of BBC fish (frame 103) and Horse
(frame 41). The second, third and fourth rows show segmentation examples using
Algorithms 1, 2 and 3 respectively.
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3.5.4 ApplicationonH.264/AVCcompressedvideodata

Inmanyapplicationscenarioscamerasareequippedwithencodingcapabilitiesand

thereferencevideoisnotavailableatthedecodersideforprocessingandextraction

ofcontentinformation. Wetestourapproachwithvideostreamsfromthestate-

of-the-artvideocodingstandardH.264/AVCasdepictedinFigure3.22,wherethe

inputisthedecodedvideosequenceandthemotionvectorsareextractedfromthe

codedstream.ThereferencesoftwareKTA[53]hasbeenused. Weperformevalua-

tionusingmotionvectorsderivedfromH.264/AVCmotionestimation(IPPP...GOP

structure,EPZSmotionestimationwith32×32searchrange,4×4smallestblock

size,quarter-pelprecision).Auniformlysampled4×4MVfieldisobtainedbymac-

roblocksplitting(e.g.whenthereisonlyonemotionvectorper16×16macroblock,

itsvalueisassignedinevery4×4sub-blockofit).Incaseofintramacroblocks,

thereisnomotioninformationandthemacroblockisomittedfromglobalmotion

estimationandGaussianfiltercalculation.

Table3.6reportstheresults,inthecasethatmotionvectorfieldsareobtained

fromencodingthetestsequenceswithvaryingquantizationparameters:QP ∈

{4,16,28,38}andFigure3.23providesanoverview.Theresultsshowthatour

approachisquiterobustagainstbitratechanges,wheremotioninformationisnot

alwaysrepresentingrealmotionduetoratedistortionoptimization.Byincreasing

QP,thenumberofskipmacroblocksisalsoincreasedresultinginmotionvectors

withunreliablemotion.Nevertheless,theresultsappeartobequitestable;upto

QP =28themaximumloss,intermsofF-measurecomparedwiththeQP =4

case,is1%andforQP=38thecorrespondingmaximumlossis13%fortheHorse

sequence.

InthecasesofAllstars,StefanandBBCfish,aslightincrease(upto2%)in

termsofF-measureisobservedbyincreasingQP.Thiscanbeexplained,considering

thefactthatthesesequencescontainhomogenousareas(soccerfield,tennisfield,

bluesea)which,byincreasingQP,areincreasinglyblurredasaconsequenceofthe

H.264/AVCdeblockingfiltering.Thisresultsinstrongerblurringofminordetails

(spotsinthesportsfield,spotsintheseaetc.) andalsoincreasesthenumber

oflargemacroblocksthatpotentiallyfollowglobalmotion,thusbenefitingglobal

motionestimationandeventuallysegmentation.

ThisapproachcanalsobeemployedincasesofB-Framespresence.Theadvan-
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Table 3.6: Average precision, recall and F-measure for varying quantization pa-
rameters. The PSNR column indicates average PSNR values [dB] between raw
video sequences and ones coded with QP. ∆F = F4 − FQP and ∆PSNR =

PSNR4 − PSNRQP , where F4 and PSNR4 stand for F and PSNR for QP = 4

respectively.

Sequence QP PSNR P R F ∆PSNR ∆F

Allstars 4 59.03 0.76 0.60 0.66 - -
16 47.18 0.76 0.59 0.65 -11.84 -0.01
28 37.71 0.76 0.61 0.66 -21.31 0.01
38 30.89 0.77 0.63 0.68 -28.14 0.02

Biathlon 4 59.89 0.77 0.88 0.82 - -
16 47.12 0.77 0.88 0.82 -12.77 0.00
28 38.01 0.77 0.88 0.81 -21.87 -0.01
38 31.69 0.74 0.88 0.80 -28.20 -0.02

Mountain 4 59.11 0.83 0.86 0.84 - -
16 46.11 0.83 0.86 0.84 -13.00 0.00
28 34.53 0.82 0.87 0.84 -24.58 0.00
38 27.01 0.81 0.87 0.83 -32.10 -0.01

Race 4 59.76 0.74 0.84 0.78 - -
16 46.57 0.74 0.84 0.78 -13.18 0.00
28 37.43 0.74 0.84 0.78 -22.33 0.00
38 30.89 0.73 0.79 0.74 -28.87 -0.04

Stefan 4 59.87 0.74 0.80 0.75 - -
16 46.43 0.74 0.80 0.75 -13.44 0.00
28 35.93 0.72 0.80 0.74 -23.94 -0.01
38 26.75 0.76 0.78 0.76 -33.13 0.01

BBC fish 4 59.46 0.81 0.84 0.82 - -
16 49.14 0.82 0.87 0.84 -10.32 0.02
28 42.98 0.82 0.82 0.81 -16.48 -0.01
38 36.67 0.78 0.72 0.74 -22.78 -0.08

Horse 4 59.99 0.90 0.66 0.76 - -
16 46.55 0.90 0.66 0.76 -13.45 0.00
28 34.84 0.90 0.66 0.76 -25.16 0.00
38 27.92 0.76 0.55 0.63 -32.07 -0.13
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Figure 3.23: Average F-measure of segmentation at the decoder side with varying
quantization parameters.

tage in this case would be the availability of motion vector fields from two direc-
tions in the encoder, and the disadvantage that the motion vector information may
be prone to errors due to the larger distance between reference frames and subse-
quently larger displacements. Regarding I-frames, that contain no inter-frame mo-
tion displacement information, the adjacent P-frames’ segmentation masks could be
temporally interpolated in order to assign segmentation masks to them. Regarding
the MPEG-2 compression technology, when applying our segmentation approach on
MPEG-2 streams, a slight quality decrease in terms of F-measure should be expected
as MPEG-2 only uses half-pixel motion compensation, instead of quarter-pixel that
H.264/AVC uses, and does not use deblocking filters.

3.6 Chapter Summary

A motion-based object segmentation algorithm for video sequences with moving
camera has been presented. The proposed algorithm is based on bidirectional inter-
frame change detection. The proposed motion compensated error fusion scheme out-
performs existing related ones. In addition to that, spatial error localization has been
considered in the thresholding step for improving the segmentation efficiency. The
issue of appropriate weight selection for weighted mean hysteresis thresholding has
been addressed by employing a statistical approach. This enabled robust segmen-
tation performance that avoids heuristics and training algorithms for parameter
selection that are commonly used. Furthermore, a final post processing step has
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been incorporated to enable temporal consistency of the segmentation masks using
filtering of the preliminary binary masks, which is adapted according to the motion
of the foreground.

The experimental evaluation has demonstrated the validity of the proposed
method. It has been shown that proposed algorithm outperforms the reference algo-
rithms and clearly improves the results in terms of F-Measure. The efficiency of the
hysteresis weighted mean thresholding has shown superior performance compared to
the weighted mean and the well known Otsu approach, since it accounts for spatial
connectivity. By incorporating the background classification consistency step, the
segmentation masks are temporally more consistent, false positives are eliminated,
while foreground object detection has been more complete. In the case of multiple
objects presence, the reference algorithms presented higher detection rates com-
pared to the proposed algorithm. However, these high detection rates were followed
by high false foreground detection rates. This resulted in the proposed algorithm to
outperform the reference ones in terms of overall accuracy. It has also been shown
that the proposed approach is quite robust under varying quantisation parameters
that influence motion estimation quality.
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This chapter focuses on the field of video quality assessment, and specifically the
improvement of video quality assessment algorithms by considering motion. The im-
provement refers to improving computational video quality assessment algorithms in
order to be in closer agreement with the subjective evaluation of video quality. Tak-
ing into account methodologies from previous chapters, we study the effect of camera
as well as object motion on the perception of distortion in video sequences. The con-
tributions on objective video quality assessment are threefold. Firstly, we incorporate
the moving-object segmentation scheme into a moving object-aware video quality
assessment approach and examine related aspects. Secondly, we propose a motion
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saliency model that exploits motion features on spatial level. Lastly, we propose an
approach for consideration of global motion in the temporal dimension, leading to
further improvements in the accuracy of video quality assessment. We discuss the
benefits and drawbacks of each method and finally we perform evaluation by inte-
grating them in existing objective quality models and also by comparing them to
existing related state-of-the-art methods1.

The chapter is structured as follows. Section 4.1 begins with an introduction
on video quality assessment and provides an up-to-date literature review in the
topic. Section 4.2 describes the proposed moving object aware (content-aware)
methodologies, whereas section 4.3 provides a description of the proposed motion
saliency model for video quality prediction and the proposed approach for tempo-
ral consideration of global motion. Section 4.4 shows the validity of the proposed
methods by presenting the experimental evaluation of the proposed approaches and
finally section 4.5 summarises and concludes this chapter.

4.1 Introduction

The broad use of video in digital imaging and communication technologies has cre-
ated a growing range of applications, such as video conferencing and internet pro-
tocol television (IPTV), where video content is delivered to end users. The lack of
perfect communication channels, compression, and the presence of transmission er-
rors are among the factors that have as consequence the end-user to receive impaired
video content. This has triggered the increasing interest in research of video quality
assessment (VQA) methodologies. As humans are the final judges of service quality,
a key issue is the development of algorithms that efficiently assess the quality expe-
rienced by users which is widely referred to as quality of experience (QoE) [5]. QoE
encompasses many different aspects, such as:

• quality of the video

• viewing setup and conditions, display type and properties

• quality and synchronisation of the accompanying audio

• interaction of the users with the service or display device

• aspects related to the viewers’ individual interests, quality expectations and
video experience.

Video quality is just one of these aspects, but it is arguably one of the most impor-
tant. Methods for evaluating video quality play a critical role in quality monitoring
to maintain the quality of service (QoS) requirements. The commonly acceptable
way for assessing video quality is to conduct a large scale subjective study where
a group of observers are asked to provide their personal opinions on the video, un-
der laboratory conditions. This subjective evaluation can then be regarded as the

1The motion saliency model described in this chapter has been presented in [96].
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ground-truth quality evaluation of the image sequence, and is usually expressed
through the mean opinion score (MOS).

In practice, subjective experiments cannot be used in real-life scenarios, as they
are time-, effort- and resource- consuming. Therefore, algorithms that evaluate the
quality of visual content in an automated fashion are highly appreciated. Appro-
priate objective models are thus crucial to monitor the quality as experienced by
the end user. Such computational metrics, are often based on some sort of com-
parison between the reference and the distorted signal and determine the quality
degradation by accounting for signal or signal difference features. The ideal objec-
tive video quality metric should mimic the human visual system (HVS)2. Despite
the fact that the understanding and modelling of HVS has begun quite early and
the fact that there is considerable research effort on the field, the HVS itself has not
been completely understood nor modelled. Existing image and video quality assess-
ment approaches usually adopt specific assumptions related to observed properties
of the HVS before proceeding to their design In the following, we briefly present
subjective video quality assessment methodologies and proceed to objective video
quality approaches, before explaining the motivation of this work.

4.1.1 Subjective video quality assessment

The quality of visual content as well as the performance of objective metrics is
evaluated by means of specially designed subjective experiments. In subjective video
quality experiments, a number of subjects are asked to rate the quality of the visual
content presented to them. The resulting mean of all the processed individual scores,
for a given sequence under specific conditions, is called mean opinion score. The
mean opinion score, which has been initially introduced for quality assessment of
telephony networks, is the most widely used subjective measure of video quality.

A subjective quality assessment experiment may be designed in many possible
ways and there is a large variety of parameters that influence its outcome. The
international telecommunication union (ITU) is constantly making efforts towards
the creation of reliable frameworks that serve as a common basis for evaluation, by
conducting standardisation activities. Two of the most widely used standards are
the recommendations ITU-R BT.500-13 [97] and ITU-T P.910 [95] which provide
specifications for the assessment of picture quality including general methods of test,
the grading scales and the viewing conditions.

Depending on the availability of distorted content, ITU-R that is specialised for
procedures for television pictures, has specified in ITU-R BT.500-13 [97] single stim-
ulus and double stimulus methods. In the single stimulus continuous quality evalua-
tion method (SSCQE) viewers rate the quality of a video sequence having watched
only the impaired video stream. On the contrary, in double stimulus continuous
quality scale (DSCQS) both the impaired and the reference video are presented to
viewers. The DSCQS method, is claimed to be less sensitive to context, i.e. sub-
jective ratings are less influenced by the severity and ordering of the impairments

2The HVS includes the eyes, parts of the brain and the nerve fibres connecting them.
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Figure 4.1: Classification of objective quality assessment approaches [101].

within the test session [98]. By contrast, the SSCQE enables viewers to dynamically
rate the quality of an arbitrarily long video sequence (for instance using a slider
mechanism with an associated quality scale) and is claimed to yield more represen-
tative quality estimates for quality monitoring applications. Thus, the choice of a
single stimulus procedure is well suited to a large number of emerging multimedia
applications, such as quality monitoring for video on demand, IPTV and internet
media streaming. Additionally, it reduces the amount of time needed to conduct
the study as compared to a double stimulus study, given a fixed number of human
subjects.

In a similar manner, the recommendation ITU-T P.910 [95] which is indented for
multimedia applications, defines the absolute category (ACR) procedure for single
stimulus assessment and the degradation category rating (DCR) for double stimulus
assessment. In contrast to the continuous quality scale used in SSCQE and DSCQS,
in ACR and DCR the rating is provided using a discrete five-level scale. The video
quality experts group (VQEG) is also conducting studies and making efforts on
advanced specification of subjective evaluation related to technologies such as high
definition and IPTV [99]. Regarding the parameters that influence experiments’
results, a non-exhaustive list includes [100, 4]: the order of stimuli presentation, the
range of video quality, test conditions such as room illumination, viewing distance,
display properties (e.g. type, brightness, contrast, resolution) as well as personal
aspects of the viewers, for instance their age and educational level.

In order to produce accurate and reliable results, subjective experiments require
the appropriate design and precise implementation. This makes them time-, effort-
and resource- consuming and therefore computational algorithms that assess video
quality are highly appreciated.
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4.1.2 Objective video quality assessment

According to the availability of the reference (undistorted signal), objective video
quality assessment algorithms can be classified into full-reference (FR), reduced-
reference (RR) and no-reference (NR) ones. In FR objective quality assessment
algorithms the reference image sequence is available together with the impaired one
and is used to assess its quality. As a consequence, FR approaches promise closer
agreement with subjective assessment and are thus widely used. In this work we
focus on FR objective quality assessment algorithms. In contrast to FR metrics,
in the design of NR approaches, the reference information is omitted entirely, and
are thus also referred to as "blind" metrics. Good performance of NR metrics is
extremely valuable in applications such as video streaming, where (distorted) con-
tent is delivered to the users and the original signal is not available at the termi-
nals. Nevertheless, and unlike the HVS that can judge visual quality without having
knowledge of the reference, the task of designing metrics in this category is quite
complex. Therefore, universal NR metrics are rare and efforts in this direction focus
usually on application-specific metrics, such as ones focusing on particular sources of
distortions such as blocking or blurring [102, 103, 104]. RR quality metrics [105, 106]
take into account only a subset of the reference signal. In this case, only a set of
extracted features of the reference image sequence is used for quality assessment,
instead of the image sequence itself. In this way RR approaches, may be seen as a
compromise between FR and NR approaches, as they combine advantages of each
of these categories, by considering only part of the reference signal and avoiding the
necessity for the whole original one.

Taking into account further aspects of visual quality metrics, the classification
of approaches for objective visual quality assessment can be extended as depicted in
Figure 4.1, following the classification suggested by Wang et. al [101]. Depending on
the way HVS properties are incorporated in the design of the metrics, approaches are
distinguished in bottom-up and top-down ones. Approaches in the first category em-
ulate HVS properties by means of computational algorithms and incorporate them
into the metric design. In contrast, approaches following the top-down approach,
are based on high-level assumptions regarding the HVS and avoid emulating spe-
cific properties independently. An example in this case is the structural similarity
index [107], which is later on discussed and, as other approaches in this category,
treats the HVS as a black box and focuses on the input-output relation instead of
dealing with individual HVS functionalities. Another aspect taken into account for
classification is the considered visual distortions, based on which, general purpose
and application-specific metrics are distinguished. Metrics in the first category, do
not make specific assumptions related with distortions and aim to be universally ap-
plicable. On the other hand, application specific metrics, make assumptions about
specific distortions met in the visual content and are thus simplified resulting in bet-
ter performance for the specific application, with the cost of a non-uniform universal
performance. In the following a brief overview of representative existing objective
quality metrics is given.
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Among the most widely used metrics in this category are the mean square error
(MSE) and the peak signal to noise ratio (PSNR). Let R(i, n) and D(i, n) be the i-th
pixel of the n-th frame in the reference and the distorted images respectively. The
MSE between these two L-bit images is given by:

MSE(n) =
1

N

N∑

i=1

[R(i, n)−D(i, n)]2 (4.1)

and the PSNR for the whole sequence of M images is given by:

PSNR = 10 · log10
(2L − 1)2

M∑
n=1

MSE(n)

(4.2)

where N is the total number of pixels in the image. For 8-bit images the nominator
of the logarithm becomes 255.

The wide use of PSNR is mainly attributed to its simplicity while managing
to reflect satisfactorily the intended deviation between distorted and reference im-
ages. Nevertheless, PSNR has been arguably claimed [108] to be a poor predic-
tor of visual quality perceived by humans. It is regarded as fidelity rather than
quality metric, since it reflects pixel-to-pixel differentiation and does not take into
account human perception, often resulting in poor consistency with subjective eval-
uations. Several extensions of PSNR have been proposed in the past, with visual
signal to noise ratio (VSNR) [109] being such an example. VSNR considers both
low- and mid- level properties of the human visual system, by applying the results
of psychophysical experiments towards quantifying the perception of distortions in
natural images. More specifically, it operates in two stages; in the first stage contrast
thresholds for detection of distortions in images are computed using wavelet-based
methods in order to determine whether the existing distortions are perceivable. If
the distortions are not perceivable according to the calculated threshold, no fur-
ther analysis is required and the image is assumed to have perfect quality. If the
distortions are perceivable (above the calculated threshold) then a second stage fol-
lows that operates based on a non-sophisticated modeling of visual properties of the
human visual system.

The structural similarity index (SSIM), proposed in 2004 [107], is based on a
different philosophy from the error visibility (MSE based) approaches. According
to Wang et al., pixels exhibit strong dependencies, especially when they are spa-
tially proximate, and these dependencies carry important information about the
structure of the objects in the visual scene. Based on the assumption that these
dependencies are indeed correlated with functionalities of the human visual system,
it captures the structural similarity between the reference and distorted image to
estimate the perceptual quality. Given a pair of reference and distorted images,
the luminance lum(r, d), contrast con(r, d) and structural similarity str(r, d) com-
ponents are computed based on the mean, variance and covariance of small image
patches. Subsequently, they are combined using a combination function f(·):

SSIM(r, d) = f [lum(r, d), con(r, d), str(r, d)] (4.3)
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where r, d denote the image patches from original and distorted respectively, ex-
tracted from the same image location. After the above functions have been defined
(4.3) yields:

SSIM(r, d) =
(2µrµd + c1)(2σrd + c2)

(µ2
rµ

2
d + c1)(σ2

r + σ2
d + c2)

(4.4)

where µr, µd and σr, σd denote the mean intensity and standard deviation of image
signals r and d respectively, σrd denotes the covariance between r and d, and c1, c2
are small constants to avoid instability.

SSIM was extended to video-SSIM [110] where it was proposed to assign higher
weighting in darker areas and fast moving ones based on empirical parameter set-
tings. Initially, the idea of SSIM was conceived in a single scale, and multiscale
versions of it followed. The most widely used is the MS-SSIM proposed in [111]. It
incorporates SSIM computation in M scales in order to provide more flexibility in
incorporating the variations of viewing conditions, in comparison to the single-scale
case. It is formulated as:

MS − SSIM(r, d) = lumM (r, d)aM ·
M−1∏

j=1

conj(r, d)βjstrj(r, d)γj (4.5)

where a, β and γ are parameters that adjust the relative importance of the three
components lum, con and str.

Sheikh et al. introduced the visual information fidelity criterion (VIF)[112] for
quality assessment through an information-theoretic framework. Specifically, the
degradation of visual quality, seen as loss of information due to a distortion, is
quantified using the information extracted from the reference image and the amount
of this reference information that can be still extracted from the distorted im-
age. Towards this direction, the images are modelled using Gaussian scale mixtures
(GSM). Subsequently, VIF is given by:

V IF =

∑
j∈subbands

I(
−→
CN,j ;

−→
F N,j |sN,j)

∑
j∈subbands

I(
−→
CN,j ;

−→
EN,j |sN,j)

(4.6)

where I(·) denotes mutual information,
−→
C the GSM, N the number of GSM used,

s is a random field of positive scalars, and finally
−→
E and

−→
F denote the HVS model

output for the reference and the distorted image respectively.
Another approach, the video quality model (VQM) [113], which is adopted by the

american national standards institute (ANSI), analyses 3D spatio-temporal blocks to
extract features for estimating the video quality map whereas the motion-based video
integrity evaluation (MOVIE) metric [114] utilises properties of the visual cortex
neurones to track perceptually relevant distortions both spatially and temporally
and evaluates motion quality along computed motion trajectories. Relying on 3D
optical flow estimation, the latter is a rather computationally complex metric.
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(a) Distortion at the background (b) Distortion at the foreground

Figure 4.2: Deviation of objective and subjective quality assessment on the BBC
fish sequence. The distorted areas are indicated with red arrows.

4.1.3 Advances in content-aware quality assessment

Objective quality assessment models for image and video quality assessment com-
pute the quality scores based on the assumption that content over space and time
is of equal interest to the observer. It is assumed thus that distortions in different
regions in space and time contribute equally to the overall quality perception of
the video. Nevertheless, humans do not see in a way that resembles linear scan-
ning. Rather, it is claimed to sample and process the physical world in a way that
is space and temporally variant, which has led to considerable interest in visual
quality assessment approaches [115] [6] [116] in recent years. However, the mecha-
nism and functionalities of the HVS have not been completely modelled, despite the
attempts of existing objective quality assessment approaches to incorporate individ-
ually particular HVS functionalities in visual quality assessment methodologies. The
reasoning behind is that the HVS and the higher cognitive visual information pro-
cessing is not fully understood and thus very difficult to incorporate it in an objective
quality assessment metric. Thus, conventional metrics such as PSNR are still widely
used for evaluating visual quality. Nevertheless, with the advances in objective qual-
ity assessment approaches that incorporate perceptual knowledge, the broad use of
alternative metrics to PSNR is coming closer to realisation.

Towards understanding how traditional metrics can benefit from perceptual
knowledge, we illustrate some cases indicating the shortcomings of the tradition-
ally used PSNR with respect to the way visual content is in general assessed by
humans. Let us examine, the example in Figure 4.2 which depicts a fish swimming
in the seabed. The viewer will typically focus his attention mainly on the fish and
secondly on the seabed. Consequently, the blurring blemish on the sea region (bot-
tom left corner) in Figure 4.2(a) will be probably perceived only under thorough
examination. On the contrary, the blurring which takes place on the region depicting
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(a) PSNR = 32.533, distortion type: compres-
sion

(b) PSNR = 33.488, distortion type: packet
loss

Figure 4.3: Deviation of objective and subjective quality assessment under transient
and uniform distortion types on the pedestrian area sequence, LIVE video database.

the fish, in Figure 4.2(b), will be more pronouncedly perceived compared to the for-
mer case. Thus the location of the second blurring seems to play an important role
on the perceived quality, resulting in the impression that Figure 4.2(b) has worse
quality than Figure 4.2(a). Evaluation of the quality using PSNR is however not
that revealing; both images have the same PSNR (41.5 dB).

Another example is illustrated in Figure 4.3, where an image is distorted in
two different ways: Figure 4.3(a) is distorted with compression artifacts (no packet
loss) introduced by H.264/AVC coding, while Figure 4.3(b) contains distortions
coming from H.264/AVC coding along with packet loss (followed by error conceal-
ment). Therefore the distortions are considered spatially dispersed and localized
respectively. A subjective examination of the two images would probably give the
impression to the observer that the second image suffers from more severe quality
degradation, compared to the first one. However, according to the PSNR the quality
is worse in the first case compared to the quality of the second image. As it is can be
observed, the transient distortion, i.e. the packet loss, in Figure 4.3(b) takes place
on a region that corresponds to a moving person, and thus becomes more noticeable
than a possible packet loss in the background region. It would be useful thus to be
able to distinguish perceptually "important" image regions and predict the expected
impact of possible distortions on quality degradation.

Current research efforts focus on perception-aware quality metrics that are in-
creasingly adopted in video processing systems. Such metrics try to incorporate
properties of the human visual system into their design in order to achieve higher
correlation with the visual perception of quality. In the following, we discuss the ma-
jor approaches in this direction which is the field that the proposed work belongs.

The human visual system has attracted the interest of researchers from a physio-
logical and psychological point of view in the last decades. Aspects of vision science
[117] have been exploited in computer vision and particularly in the filed of quality
assessment. We mention here some of the basic characteristics that have found use-
ful application in the field of visual quality assessment [109], namely visual masking,
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contrast sensitivity, global precedence and visual attention. Visual masking is related
to enhancing the influence of specific image regions on perception based on the lu-
minance distribution and spatial localization of the visual target. This characteristic
is exploited by the widely used SSIM [107], where image distortions are assumed to
be the visual target. Another property is that in order a human to visually detect
a target (e.g. a distortion), its contrast must be higher than a certain contrast de-
tection threshold. Based on this, contrast sensitivity is considered to be the inverse
of this threshold. Global precedence is the aspect related with the visual system’s
preference for integrating edges in a coarse-to-fine-scale fashion.

Another significant property of the HVS is visual attention [6]. It refers to the
shift of visual focus across the visual scene to the most relevant regions. Humans can
perform this procedure instantaneously and unconsciously. The mechanism behind
visual attention involves complex higher cognitive processing and visual attention
is regarded to be subjective and vaguely defined by the HVS. Therefore approaches
that attempt to model it from an algorithmic point of view have been created. These
models aim principally to predict human gaze when observing visual content. One
of the most known models is the saliency model proposed by Itti et al. [118, 119]. It
is expressed using maps that represent saliency at every spatial location in the
visual field by a scalar quantity. It is based on colour, intensity and orientation
features, which are calculated and combined based on the behaviour and the neu-
ronal architecture of the early primate visual system. Specifically, the saliency maps
calculation proceeds as follows: the colour image is low pass-filtered and subsam-
pled so that nine spatial scales are created using pairs of Gaussian pyramids. The
feature maps are generated by computing the difference between a centre fine scale
sub-band and a surround coarser scale. The different modalities that the different
features represent (colour, intensity, orientation) are addressed by using a normali-
sation operation (center-surround operation), which promotes feature maps with a
small number of strong peaks and suppresses ones with numerous comparable peak
responses. The normalised feature maps at different scales are combined into the
following conspicuity maps:

I =
4⊕

c=2

4⊕

s=c+3

N (I(c, s)) (4.7)

C =

4⊕

c=2

4⊕

s=c+3

[N (RG(c, s)) +N (BY (c, s))] (4.8)

O =
∑

θ∈{0o,45o,90o,135o}

N
(

4⊕

c=2

4⊕

s=c+3

N (O(c, s, θ))

)
(4.9)

where I,C,O are the conspicuity maps for intensity, color and orientation respec-
tively, I(c, s), C(c, s), O(c, s, θ) are the intensity, color and orientation maps obtained
at the center scale e, surround scale s, and at angle of orientation θ. N (·) repre-
sents the center-surround normalization operator mentioned above, while

⊕
denotes
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the operation of point-by-point addition after interpolation to the finer scale. The
saliency maps are then obtained as:

LS =
1

3

[
N (I) +N

[
C +N (O)

]]
. (4.10)

Osberger et al. [120] studied the influence of visual attention on image quality
assessment, by weighting spatially the visible errors, depending on an importance
map of the region in which they occur. Experimental evaluation, reported improve-
ment over the conventional approach of PSNR. Following a similar perspective, in
the work of [121] the authors assume "perfect" region of interest (ROI) knowledge
by using a subjectively created ROI database. They validate the proposed theoret-
ical model by performing training and validation on given image datasets that are,
for this purpose, distorted with JPEG coding artifacts. The experimental evaluation
confirmed the initial observation that structural degradations in the ROI have more
severe impact on perceptual quality than degradations outside of it. They used four
image quality models: PSNR, SSIM, the reduced-reference image quality assessment
(RRIQA) [105] and the normalized hybrid image quality metric (∆NHIQM) [122]
and it is interesting that the specific model design concluded in different parameter
setting for each of the quality metrics. In [123] it is suggested that full-reference and
no-reference image quality metrics could benefit from content aware information,
specifically face detection. This is a very promising statement, but an elaborate
description and experimental evaluation of it has been absent. In [6] the authors
summarise existing methodologies on perceptual quality assessment through visual
attention and point out the involved challenges. They observe that visual attention
is strongly influenced by three cues that are mutually reliant and correlative; spatial
location, low-level features (e.g. colour, motion, orientation, size) and higher-level
feature (e.g. objects, faces). From another perspective, knowledge of the important
(according to content) regions is though not enough to assess the quality of an im-
age. Therefore, it is pointed out that the spatial distribution of the artifacts affects
viewers attention as well. For instance, if a distortion is distributed densely in a
small spatial region, while the rest of the image is lightly corrupted, then it is pos-
sible that this small distorted region will attract the viewers attention. Indeed, in
the case of full-reference quality metrics, it is possible through comparison of the
reference and the distorted images to decide where errors take place.

In [124] the authors used eye tracking data from an experimental setup as ground
truth saliency to study the impact of the (perceived annoyance of) the distortion du-
ration compared to distortion taking place on a salient region. They used PSNR and
an own proposed metric, namely the temporal trajectory aware video quality mea-
sure, (TETRAVQM) [125] as video quality metrics to validate experimentally that
the observers tend to distinguish annoyance levels more pronouncedly with respect
to the saliency of the distorted region compared to the duration of the distortion. In
[126] the authors used an image segmentation method, namely a ramp discontinuity
model for multi scale segmentation, to quantify the effect of intra- and inter-region
image distortions on the quality reduction of an image. They used PSNR, MS-SSIM
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and VIF and they named the proposed metric segmentation-based perceptual image
quality assessment (SPIQA). It is interesting to note that the authors’ assumption
that the size of the "important" region playing a role in the overall quality metric,
proved invalid in the experimental evaluation. In similar fashion, in [127] the authors
adopt an approach based on information theory to model visual saliency, and based
on that they determine the weighted pooling strategy for the overall video quality
metric.

Ma et al. [128] proposed a visual saliency estimation approach that incorporates
spatial and temporal information derived from motion trajectories. Specifically a
frame level Quaternion representation was proposed, that is based on the quater-
nion Fourier transform. This representation, which considers spatial content and
temporal motion trajectories, was used to construct the visual saliency map, whose
incorporation in several video quality metrics reported significant improvement in
performance. The authors in [129] proposed a video quality metric that employs the
structural information contained in two descriptors extracted from the 3D structure
tensors, and its corresponding eigenvector, whereas in [130] a model of human vi-
sual speed perception was incorporated to model visual perception in an information
communication framework.

Temporal dimension

Approaches for video quality assessment typically deliver quality scores per frame,
and this procedure is often referred to as spatial pooling. For a video sequence con-
taining TL frames, a temporal pooling approach is necessary to obtain the overall
quality score for the video sequence. The most straightforward approach and maybe
the most widely used is direct average pooling over TL frames. Which also facilitates
the wide use of image quality assessment metrics (such as PSNR) for video quality
assessment. However, more sophisticated temporal pooling approaches, that exploit
signal properties on the temporal dimension, have been studied.

An early comparison of temporal pooling methods is found in [131]. It was found
that approaches that incorporate the recency effect and the worst quality section in-
fluence yield better results. The recency effect reflects the phenomenon that the
viewers’s judgement in relation to quality is strongly influenced by what they see in
the last moments of the video sequence. The worst quality section influence reflects
the hypothesis that the most degraded part of a sequence influences more strongly
the viewers’ judgment on quality. A widely employed temporal pooling strategy that
enables the assignment of emphasis on highly distorted regions is the Minkowski
summation [132]. This strategy was used in the perceptual distortion model (PDM)
[4], where after incorporating spatial and temporal modelling aspects of the HVS
towards calculating distortion information in different channels, the Minkowski sum-
mation was used in pooling spatial as well as temporal errors between the reference
and distorted video sequences.

In [110] it was suggested that the larger the existing motion is, the smaller the
assigned temporal weight should be. In [133] it was implied that the important value



4.1. Introduction 101

for overall subjective quality judgement of a video sequence is not the duration of a
dip in quality, rather the depth. The same position is also adopted in [134]. Tempo-
ral variations of distortions are also accounted for in the work by Ninassi et al. [135]
by combining short-term and long-term temporal pooling techniques. Specifically,
short-term pooling was identified to be particularly beneficial for improving the qual-
ity prediction performance of the quality metrics. Moorthy et al. [136] proposed the
motion-compensated structural similarity index (MC-SSIM) that combines block-
based motion estimation with SSIM [107]. Each 8× 8 block of the reference and the
distorted frames is motion compensated using the corresponding preceding frame
and the results are used to compute the temporal quality.

In [137] the authors defined indicators for global and local quality and, in order
to obtain a metric over all frames, they proposed a temporal pooling approach
that adopts the following finding, based on previous studies, which is related to
the recency effect. Specifically, they take into account the phenomenon that frames
in the beginning and in the end of the video sequence influence more significantly
the overall quality. In [138] the authors proposed a temporal pooling approach, the
IQpooling, where based on computed ego motion, they classify the best and worst
values using k-means clustering and perform weighting based on the cardinality of
each cluster. Nevertheless, it is interesting that in a recent study [139] the efficiency
of the simple direct average was emphasized. Specifically, it was found that in the
context of HTTP adaptive streaming, where viewing sessions last long, the direct
average temporal pooling approach performs on par with sophisticated temporal
pooling algorithms.

4.1.4 Motivation of the proposed work.

Several approaches exist [121, 126, 127] that investigate the effect of employing
visual attention, on image quality metrics. Additionally to visual attention, which
is strongly connected to HVS properties, and low-level features such as colour and
edges, motion is a feature that is often neglected in the design of visual quality
metrics. The very important role of motion and human perception dates back at
the beginning of last century, when Koffka and Wertheimer formulated the Gestalt
principle and specifically the grouping law of common fate [54], according to which

"Humans tend to perceive elements moving in the same direction as being
more related than elements that are stationary or that move in different
directions."

Based on the established connection between motion and perception and consid-
ering that moving regions will likely attract the viewer’s attention, the main idea of
this chapter is to exploit motion for video quality assessment, in spatial and tempo-
ral level. We exploit motion between successive video frames by considering motion
features along temporal trajectories. The basic motivation is the observation that
the way humans perceive and evaluate distortions is not independent of the semantic
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information contained in a video frame. The examples in Figures 4.2 and 4.3 high-
lighted this observation. If the distortion occurs in a non-salient region, the human
observer may hardly notice the quality deterioration. However, in the case that the
distortion affects a salient region, the human observer is more likely to notice the
distortion and have the impression of a more "bad quality" video scene. These exam-
ples indicate the deficiency of considering spatially uniform approaches for quality
assessment.

Two questions have arisen at this point: a) what is a reliable way to identify
important content information based on motion in a sequence of image frames? and
b) how can this information be exploited towards visual quality assessment? In the
following, based on the assumption that object motion in a video sequence attracts
visual attention, we deal with the first question by exploiting the foreground object
motion as well as global motion information. Towards reaching an answer to the
second question, we study several approaches that are detailed described in the
next sections.

Another important aspect regarding the assessment of video quality is temporal
correlation. The consideration of only spatial correlations is satisfactory for im-
age quality assessment, more sophisticated considerations are required though in
the case of video quality assessment, where temporal correspondences constitute a
determining factor. Often in the latter case, correspondences between frames are
ignored. Thus, suitable approaches specially designed for video quality assessment
that take into consideration motion and especially global motion need to be devel-
oped.

Proposed approaches

In Method M1 the distortion maps are independently computed in the foreground
and the background regions to obtain quality measures for each region. The dis-
tortions in the foreground and background regions are then participating in the
determination of the frame quality level by taking into account each region’s prop-
erties, resulting in a moving object-aware quality metric. In the second approach,
Method M2, the foreground and the background regions are not known, and the
distortion map undergoes spatial weighting according to an importance map. We
propose a novel motion saliency model (motion saliency) that is derived from motion
information included in successive frames and is inline with properties of human vi-
sual properties. The motion saliency model is subsequently incorporated in the VQA
framework at spatial level as the importance map. By assigning higher weighting to
regions with salient motion, we expect these regions to attract humans’ attention,
and thus make distortions on these areas more perceivable. Further, in the frame-
work of Method M2, we propose a third approach for modelling of the global motion
in the temporal dimension and study its impact on perceived quality. Finally we
evaluate the performance of our proposed methods by comparing them with related
state-of-the-art approaches.
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Figure 4.4: Method 1 framework overview.

4.2 Method M1: moving object-aware VQA Improve-
ment

This section introduces a framework to incorporate the moving object segmentation
approach, proposed in chapter 3, into a moving object-aware quality model, in order
to improve the performance of existing quality metrics.

Figure 4.4 illustrates an overview of the visual quality assessment framework of
Method M1. The first step is to segment the reference (undistorted) image Rn and ex-
tract the foreground and background regions, denoted as Sfg and Sbg respectively,
of the current frame n, using the preceding frame n− 1. In the next step, based
on the derived segmentation mask, the corresponding segments in the undistorted
and distorted frames are compared using standard quality assessment approaches,
in order to obtain an indication of the distortions’ distribution in the frame. Sub-
sequently the segments’ quality values, Θn,fg and Θn,bg, are incorporated in the
foreground/background pooling stage to obtain the quality indication at frame level
(local quality). Finally, at the temporal pooling stage, the local quality values are
pooled using direct average to obtain the overall quality indication Φ. Frame indices
are following omitted for brevity.

As already pointed out, our main motivation is to avoid the assumption that con-
tent attracts equally the viewer’s attention over the frame. The proposed weighted
model incorporates moving object segmentation in its formulation, so that it depends
on the moving content. Specifically, the content is characterised by temporal features
(i.e. motion) that determine indirectly the spatial location boundaries. Thus, the is-
sue of content-aware quality assessment is addressed by assigning (motion-driven)
spatially varying weights on the impact of conventional quality metrics.

The overall quality is computed as a weighted sum of the segment’s quality
metrics (Figure 4.4). Each segment’s quality indicator is independently computed,
using a standard quality assessment approach, and contributes to the moving object-
aware quality model (MOAQM) by taking into consideration region’s features. Let Θ

be the conventional image quality metric as a general definition and Φ the content-
aware quality metric. In the general case the segmentation aware quality assessment
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metric Φ can be expressed according to [127] as:

Φ =

N∑
i=1

wi ·Θi

N∑
i=1

wi

(4.11)

where for each region i, Θi is the corresponding local quality measure and wi = f(si)

is the weight, which depends on the region’s saliency si. The challenges are thus to
express si and to find the appropriate function f that yields a content-aware quality
metric Φ that correlates well with subjective evaluation.

This formulation may involve several segments of an image and assignment of
various weights. Here we incorporate the moving object segmentation scheme de-
scribed in the previous chapter and assign different weighting to each segment Sfg
and Sbg. Thus, the (local) moving object-aware quality model Φn of the n-th frame
is given as:

Φn =
ωfg ·Θfg + ωbg ·Θbg

ωfg + ωbg
(4.12)

where Θfg is the local quality measure in the foreground region, Θbg is the local
quality measure in the background region. Of course, the case where ωfg = ωbg = 1

leads to the conventional metric.

4.2.1 Moving object segmentation

The algorithm for bidirectional motion-based object segmentation using hysteresis,
overviewed in Figure 3.1, is used to segment each reference frame of the image se-
quence into foreground Sfg and background Sbg segments. According to this segmen-
tation mask the corresponding regions of the reference and the distorted frames are
compared (to measure their quality level). Each segment is then assigned a weight
ωfg and ωbg respectively according to the corresponding properties. An example of
segmentation mask is shown in Figures 4.5 (a) - 4.5 (b).

4.2.2 Foreground and background pooling

At the frame level, in order to determine each segment’s contribution to the qual-
ity measure, we examine the following approaches. Each segment’s contribution is
quantified using an extracted feature, namely: motion, motion combined with the
segment’s size, saliency, and saliency combined with the segment’s size. Each ap-
proach is described in the following.

Motion As the goal is to incorporate an aspect of the relative motion in the scene
(between objects and background), we employ the global motion compensated er-
ror. Specifically, equation (3.7) is used for the quantification of the moving object’s
motion in relation to the camera motion. Hence, the average global motion com-
pensated error of each segment, which is normalized in equation (4.12) is taken into
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account. In this way, the weight ωi, i ∈ {bg, fg} is set equal to moti:

moti =
1

|Si|

|Si|∑

j

Ej (4.13)

where |Si| is the number of pixels in segment i and Ej (see equation (3.7)) denotes
the global motion compensated error in pixel position j based on the previous frame.

Motion and segment size In this case the size of each segment is taken into
account together with the calculated motion. We consider that the smaller segment
plays a more important role in the quality assessment, thus the segment’s weight is
given as:

ωi = moti ·
1

sizi
(4.14)

where i ∈ {bg, fg} and
sizi =

|Si|
|Rn|

(4.15)

is the relative size of the background or foreground segments (Sfg or Sbg respectively)
of reference frame Rn and |Rn| is the number of pixels in Rn.

Local saliency Itti-Koch-Niebur The LS-IKN model [118], presented in sub-
section 4.1.3, accounts for the behaviour and the neuronal architecture of the early
primate visual system, and is based on colour, intensity and orientation features. It
is expressed using maps that indicate saliency at each spatial location in the visual
field by a scalar quantity.

By the incorporation of the local saliency model, equation (4.10), we aim at
weighing each segment’s impact on the quality model design, exploiting the dif-
ferent modalities (colour, intensity, orientation of edges) that the LS-IKN model
involves. Specifically, we employ the average local saliency into each segment as the
weight ωi = lsali, where i ∈ {bg, fg} and :

lsali =
1

|Ri|

|Ri|∑

j

LSj . (4.16)

Local saliency and segment size Here, the segment’s size is taken into account
together with the segment’s saliency in the following way, similarly to (4.14).

ωi = lsali ·
1

sizi
(4.17)

where sizi is the relative size of the background or foreground segments defined in
(4.15). Figure 4.5 shows an example of a segmented frame and the weights assigned
to the corresponding segments.
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(a) Original frame

ω
fg

ω
bg

(b) Segmentation mask

ωi i = fg i = bg

moti 0.9563 0.0437
moti · 1

sizi
0.9986 0.0014

lsali 0.9076 0.0924
lsali · 1

sizi
0.9970 0.0030

Figure 4.5: Example using method M1. The segmentation algorithm is applied
on the original frame (a), and the foreground and background segments (b), Rfg
and Rfg respectively, are weighted towards a segmentation-aware quality model
design. Sun flower sequence, frame 60, LIVE video database.

4.3 Method M2: motion saliency for VQA Improvement

The main idea of the proposed method M2 is to detect regions that contain signifi-
cant relative motion between frames, and emphasize their effect to the image quality
index in the spatial pooling stage that will follow. This means that if a distortion
occurs in a region that contains motion, it is expected to attract the attention of the
viewer and to have thus negative impact on the quality assessment in comparison to
a distortion that occurs in a region not containing motion. In contrast to M1, here
the foreground and background segment regions assumed not to be known.

Under the assumption that the background (i.e. camera) motion is the dominant
motion between two frames of a video sequence, the foreground motion is likely to
attract visual attention, according to the properties of the HVS that are explored
with respect to this point of view in [130]. Based on this observation we propose the
following strategy, which is illustrated in Figure 4.6 and is subsequently described.

At first stage, the motion model Hn−1
n between two successive frames of the

reference sequence Rn−1 and Rn is computed. Based on Hn−1
n and Rn−1, the esti-

mated frame R̃n is computed and subsequently subtracted from Rn. This results in
the global motion compensated absolute error frame En where high error energy in-
dicates motion of the foreground area. En is subsequently filtered using anisotropic
diffusion resulting in theMSAn map that assigns a weight to each pixel location. In
the spatial pooling step the standard quality assessment measure, MSAn is used as
a significance map and is combined with Θn yielding the local motion saliency-aware
model Φn. Finally, the local quality metrics are combined in the temporal pooling
stage to result in the overall quality measure Φ.

4.3.1 Motion saliency model

The eight-parameter perspective motion model is used at the first stage to describe
the background motion between two successive frames of the reference sequence
Rn−1 and Rn. This is realised using a well-known feature-based global motion es-
timation approach [33] which includes detection of feature points, the computation
of correspondences between two sets of features for successive frames, and finally
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Figure 4.6: Method M2 framework overview.

the estimation of motion model (Hn−1
n ) parameters. Considering that these feature

correspondences represent motion between this pair of images, the global motion is
estimated. Following the algorithms for feature detection and feature-based global
motion estimation are described, before proceeding to the presentation of the pro-
posed motion saliency estimation.

Feature correspondences The features correspondences are established between
feature points that are detected in a pair of images, a procedure referred to as feature
tracking. Here, we employ the well known Kanade - Lucas - Tomasi (KLT) tracking
algorithm [140] which is overviewed in the following. It is a window-based approach
that minimizes the squared error differences between the current and a reference
window. The displacement vector d of a feature point x, between frames I and J , is
assumed to be small and it can therefore be approximated by a translational motion
model. Assuming image noise n(x), the relationship of two corresponding features
is defined as:

J(x) = I(x− d) + n(x). (4.18)

For small motions, I(x−d) can be approximated by a first degree Taylor series with
two dimensional gradient vector g:

I(x− d) = I(x)− g · d. (4.19)

The optimal displacement vector d is found by minimizing the mean squared error
ε between a search window W around the feature in the two frames

ε =

∫

W
[I(x− d)− J(x)]2dx =

∫

W
(h− g · d)2dx (4.20)

where h = I(x)− J(x). By interpreting the error function as as ε(d), its minimum
is given by differentiation with respect to d and setting the result equal to zero.

∫

W
(h− g · d)g dA = 0 (4.21)
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Objective
Robust estimation of the optimal model Modelopt from N feature pairs.

Algorithm
(i) Choose randomly a minimal number of feature pairs and fit the model to

this sample.
(ii) Use threshold τ to determine the number of inliers (consensus set) Si

amongst all feature pairs that have a distance greater that threshold τ .
(iii) If Si > Smax, then Modelopt = Modeli and Smax = Si.
(iv) Repeat (ii), (iii) until M subsample-based estimations have be performed.
(v) Reestimate Modelopt using all inliers of the consensus set, in order to im-

prove the estimated model.

Table 4.1: RANSAC approach description. The minimal amount of samples needed
M , i.e. the number of iterations to be performed, is given by (3.6).

since d is assumed constant within W and (g · d)g = (ggT )d, it yields
(∫

W
ggTdA

)
d =

∫

W
hgdA (4.22)

which is a system of two unknowns in two scalar equations.

Global motion model estimation Based on the detected features, we use the
random sample consensus (RANSAC) [141] approach for fast and accurate model
estimation. RANSAC is a non-deterministic approach that estimates model parame-
ters from a set of points containing inliers and outliers. An overview of the RANSAC
algorithm is provided in Table 4.1. Given a pair of images, the employment of fea-
tures to estimate global motion has considerable advantages over the use of motion
vectors for this scope. Mainly due to the fact that the resolution of motion vectors is
usually limited to half or quarter pixel, whereas feature based global motion estima-
tion has the advantage that features can be tracked at much higher resolution than
quarter pixel, thus enabling better performance. Moreover if features are selected
properly, the estimation is based only on these specific features and avoids using
motion vectors that correspond to the entire images.

Motion saliency model Based on the connection between motion and perception
and considering that moving areas will likely attract the viewer’s attention the main
idea is to exploit them for video quality estimation. Furthermore, studies on the
human visual system have shown that the human retina is highly space variant
in processing and sampling of visual information [6]. The accuracy is highest in
the central point of focus, the fovea, and the peripheral visual field is perceived
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with lower accuracy. Therefore, we consider the locations of the highest motion
compensated error energy as the central points of focus, and to address the gradually
decreasing focus, the error maps are low-pass filtered resulting in the motion saliency
map:

MSA(x, y, n) = α ∗ |R̂(x, y, n)−R(x, y, n)| (4.23)

where x, y are the pixel coordinates in the horizontal and vertical direction, and
n is the frame number. Anisotropic diffusion filtering (α), which is already de-
scribed in section 3.3.1 is interestingly related to the neural dynamics of bright-
ness perception [88, 142] that the anisotropic diffusion equation in equation (3.10)
presents. Anisotropic diffusion filtering [87] offers a non-linear and space-variant fil-
tering of the error frame, that while having a low pass character preserves the edges
of the image. In this way higher weighting can be assigned to regions that have
moved between two successive frames and we expect that they are more likely to
attract visual attention in comparison to other areas that have not moved (or have
moved with the background). As shown in Figure 4.7 the proposed motion saliency
estimation approach can detect the motion of the foreground as depicted in the MSA
map as brighter areas. Of course motion is not the only feature that attracts visual
attention. Other features such as contrast, colour and structural information will be
considered implicitly through the incorporation in standard objective metrics that
will be described in the following.

4.3.2 Spatial pooling

Conventional image quality metrics generate a quality index Θ between a reference
and a distorted image (R andD respectively) and then consider that every pixel con-
tributes equally to the overall image metric by averaging over all pixel locations. For
reasons that have been already discussed, towards avoiding uniform spatial pooling,
we employ a weighted pooling strategy where the estimated motion saliency maps
are incorporated in conventional image quality metrics in frame level. The weighted
mean for single scale metrics in (x, y) location of the n−th frame [130] is formulated
as:

Φ(x, y, n) =

Nx∑
x=1

Ny∑
y=1

w(x, y, n) ·Θ(x, y, n)

Nx∑
x=1

Ny∑
y=1

w(x, y, n)

(4.24)

where Φ is the weighted metric and Nx, Ny are the frame dimensions. The proposed
motion saliency mapsMSA(x, y, n) are used as weighting maps w(x, y, n). For mul-
tiscale models, that use M scales, the weighting map is scaled correspondingly and
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(a) pedestrian area, frame 129 (b) pedestrian area, frame 129, MSA map

(c) park run, frame 258 (d) park run, frame 258, MSA map

(e) rush hour, frame 190 (f) rush hour, frame 190, MSA map

(g) shields, frame 189 (h) shields, frame 189, MSA map

Figure 4.7: The first column depicts example reference frames Rn of the LIVE
video database. The second column depicts the corresponding motion saliency maps
MSAn as heat maps, where warmer regions indicate higher motion saliency.
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the overall metric is calculated as follows:

Φ(x, y, n) =
M∏

j=1

Nx∑
x=1

Ny∑
y=1

w(x, y, n)Θ(x, y, n)

Nx∑
x=1

Ny∑
y=1

w(x, y, n)

(4.25)

It is noted that the weighting map in method M2 assigns a weight to each pixel and
not to regions of pixels.

We use several motion saliency models in order to compare the performance
of the proposed motion saliency model in the experimental evaluation of method
M2. These models are listed below.

Motion saliency model (MSA) The proposed saliency algorithm as presented
in section 4.3.1.

Local saliency Itti-Koch-Niebur (LS) The LS-IKN model [118] as already
discussed in section 4.2 is an indicator of local saliency, incorporating modalities
such as colour, intensity and orientation of edges.

Visual saliency model (VS) The visual saliency estimation algorithm proposed
by Ma et al. [128] is based on a Quaternion representation for each frame which
incorporates spatial and temporal information derived from motion vectors. The
Quaternion Fourier transform (QFT) uses hypercomplex numbers, namely Quater-
nions, to represent colour images. Moreover the VS model based on the QFT in-
corporates the three colour channels in a holistic manner, and not for each colour
channel separately. In [128] the authors employ four image features: the luminance,
the vertical motion vector component, the horizontal motion vector component and
the corresponding motion prediction error to construct the Quaternion representa-
tion. This representation is subsequently filtered using Gaussian filtering to construct
the proposed visual saliency maps which are incorporated in several video quality
metrics for improved quality assessment.

Short term moving object segmentation masks (STMOS) In this case we
employ the segmentation maps produced using the bidirectional motion-based object
segmentation algorithm using hysteresis proposed in chapter 3 that is overviewed in
Figure 3.1. In this way pixels in the background are assigned zero weight, whereas
pixels belonging in the foreground are assigned w = 1. Thus, only foreground pixels
participate in the spatial pooling stage.

Filtered short term moving object segmentation masks (fSTMOS) To
avoid radically discarding pixels belonging to the background, as described in the
above mentioned case, we create a map that lies in the range of [0, 1] and avoids
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using "hard" decision weights {0, 1}. The centre of the foreground regions is as-
signed with the highest scale, and the values continuously decrease while moving
towards the foreground boundaries. In the background region, moving away from
the foreground boundaries results in continuous decrease of the weights. To achieve
this, the segmentation mask is Gaussian filtered with σ = 20.

LS - STMOS In this case short term moving object segmentation masks
(STMOS) are used in combination with the local saliency (LS) Itti-Koch-Niebur
model. In this case the segmentation masks are combined in frame level with the
local saliency maps using per element multiplication. This is also driven by the mo-
tivation to avoid the "hard" decision resulting from the binary segmentation maps
and enhance it using the well known local saliency model proposed in [118]. Pixels
in the background regions here are zero weighted, in contrast to the fSTMOS case.

4.3.3 Temporal pooling

After the local weighted quality scores of every frame Φn are computed, temporal
pooling follows where the local scores are considered over the TL frames of the
sequence to yield the overall quality score Φ.

The proposed temporal pooling approach is based on the variation of motion
characteristics over time. Assuming that the perception of distortions in the tempo-
ral dimension is affected by several factors, such as the velocity of the camera, the
velocity of the moving objects and the object size, the temporal pooling approach
should take into account such factors. This can be done by weighting the frame-level
(local) quality scores across time. In the general case the weighted average temporal
pooling is given by:

Φwa =

TL∑
n=1

ωn · Φn

TL∑
n=1

ωn

(4.26)

where ωn is the weight assigned in the quality score of the n-th frame Φn. In the

special case of ωn = 1, for n = 1, 2, ..., TL,
Tn∑
n=1

ωi = TL and (4.26) gives the direct

average which is the typical method to perform temporal pooling.

Proposed appoach In order to account for the perceived quality degradation
due to global motion, we propose the following approach. As observed in the de-
scription the of basic transformations involved in the perspective model (described
in section 2.1.1) certain parameters are closely related with specific transformations
exclusively. The parameter h1 reveals rotation and/or scaling, h2 and h5 indicate
translation in the horizontal and vertical direction respectively, h3 corresponds to
rotation, while the rest of the parameters (h0, h4, h6, h7) are related with more that
one basic transformations. Figure 4.8(a) shows the estimated global motion param-
eters for a test sequence over the entire length.
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Figure 4.8: Global motion parameters and the proposed global motion indicator
over frames for the mobile calendar sequence, LIVE database.

We make the hypotheses that a) the perception of distortions is affected more by
translational motion and b) the faster the camera moves the greater the impact of
distortions on perceived quality. Thus, we define the global motion indicator (gmi)
as:

gmi(n) = F · (h0 h1 h2 h3 h4 h5 h6 h7)T (4.27)

where hk, k = 0, ..., 7 denote the elements of the eight-parameter homography of
the n-th frame derived from global motion estimation using RANSAC as described
in section 4.3.1 and F is the enhancement matrix defined as:

F = (1 1 f 1 1 f 1 1) . (4.28)

Considering the behaviour of global motion coordinates in Figure 4.8(a), we set
f = 10. The gmi represents thus the attributes of global motion for the scope of
weighted temporal pooling here. Figure 4.8(b) depicts the gmi over all frames along
with the case where f = 1 (denoted as

∑
), the absolute value of it (denoted as

|∑ |), as well as the case of summation of only the translational parameters in the
horizontal and vertical direction (h2 + h5) for comparison.

Further, we describe the Minkowski summation pooling and a temporal pooling
approach based on the temporal pooling function that are commonly adopted in
video quality assessment approaches and will be used in the experimental evaluation
section for comparison with the proposed approach.

Minkowski temporal pooling The temporal pooling strategy using the
Minkowski summation [132] has been widely used in quality metrics design. It is
described as follows:

Φmink =

[
1

TL

TL∑

n=1

[Φ(n)]β
] 1
β

. (4.29)
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Figure 4.9: The temporal pooling function proposed in [137]. TL denotes the se-
quence length (in frames).

For β = 1, it equals direct average. The exponent β is often suggested to yield
good results when set to 2. Often, a few high distortions may draw the viewer’s
attention more than many lower ones [4]. This behavior can be emphasized well
with Minkowski temporal pooling and especially as the exponent β increases.

Temporal pooling function Existing studies have shown that frames at the
beginning and at the end of a video sequence have greater impact on the overall
perceived quality. This is also reflected to the tendency to perceive better quality
when increasing quality (over time) is observed. The temporal pooling scheme pro-
posed by You et al. [137] is using the temporal pooling function (TPF) to estimate
the overall quality score as follows:

Φtpf =

(
1 +

1

TV

)
·
TL∑

n=1

[Φ(n) · TPF(n)] (4.30)

where TV is the total variation of the spatial quality metric over all frames. The
TPF , illustrated in Figure 4.9, denotes the filtered version of the P (n) function
defined in (4.31), after Gaussian filtering.

P (n) =





1
TL

for n ≤ TL
3

1
2TL

for TL
3 < n ≤ 2TL

3

3
2TL

for n ≥ 2TL
3

(4.31)

where n is the frame index and TL the length of the video sequence.
In the following we compare the proposed temporal pooling approach based on

global motion indicator to the standard direct average temporal pooling approach,
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the Minkowski summation pooling and a temporal pooling approach based on the
temporal pooling function.

4.4 Experimental evaluation

Test dataset For the performance evaluation of the proposed approaches and
towards reproducible research, we employ the LIVE video quality database [143]
which is publicly available. This database is provided by the laboratory for image
and video engineering (LIVE) of the University of Texas at Austin, USA. It con-
tains 150 distorted video sequences obtained from 10 uncompressed reference videos
(768× 432 pixels, 3206 frames totally) of natural scenes. The distorted videos have
been created using four commonly encountered distortion types: MPEG-2 compres-
sion, H.264/AVC compression, simulated transmission of H.264/AVC compressed
bitstreams through error-prone IP networks, and through error-prone wireless net-
works. Each video has been assessed by 38 human subjects in a single stimulus study
with hidden reference removal, where the subjects scored the video quality on a con-
tinuous quality scale (single stimulus continuous procedure). The difference scores
of a given subject are computed by subtracting the score assigned by the subject
to the distorted video sequence from the score assigned by the same subject to the
corresponding reference video sequence.

Briefly, the following post-processing of the subjective scores takes place. Let
sijk and sijrefk denote the scores assigned by subject i to distorted video j and
the reference one jref respectively in session k = {1, 2}. The difference scores are
computed per session as:

dijk = sijrefk − sijk (4.32)

and they are converted to z-scores per session [143] as:

zijk =
dijk − µijk

σik
(4.33)

where:

µik =
1

Nik

Nik∑

j=1

dijk (4.34)

σik =

√√√√ 1

Nik − 1

Nik∑

j=1

(dijk − µik)2 (4.35)

and Nik denotes the number of videos watched by subject i in session k. Statisti-
cally unreliable subjects, according to ITU-R [97] are excluded from the procedure,
z-scores are rescaled to lie in [0, 100] and finally the difference mean opinion score
(DMOS) of each video is computed as the mean of the rescaled standardised differ-
ence scores (z-scores) of the statistically reliable subjects.

DMOSj =
1

M

M∑

i=1

z′ij (4.36)
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where the finally reliable participating subjects are M = 29.

Mapping to predicted DMOS Each objective quality metric may produce val-
ues in a different range compared to the subjective scores. To facilitate comparison
of the various models in the final stage, non linear regression analysis is performed
in order to map each objective video quality metric output (Φ) to the subjective
rating (DMOS) scale. This is performed using a four-parameter, monotonic logistic
function as suggested in [99]:

Φ′ = β2 +
β1 − β2

1 + e
−
(

Φ−β3
|β4|

) (4.37)

where Φ′ and Φ are the predicted (mapped) and initial metrics respectively. The opti-
mal parameter vector B = {β1, β2, β3, β4} is found using nonlinear least square opti-
mization. Specifically, minimizing the least square error between the vector DMOS

that contains the subjective scores (DMOSj , j = 1, 2, ..., DBL ) and the vector Φ′

that contains the fitted objective scores (Φ′j , j = 1, 2, ..., DBL) for the whole test
database with DBL videos. For the initialisation of the parameter vector B we use:

B0 =

[
max(DMOS)

σ(DMOS)
,
min(DMOS)

σ(DMOS)
, µ(Φ), 1

]
(4.38)

where σ stands for standard deviation and µ(Φ) = 1
DBL

∑DBL
j Φj .

The logistic function in equation (4.37) aims at mapping the range of a quality
metric onto the range of the subjective scores obtained from the subjective quality
assessment experiment. This is useful because each metric may produce predictions
in a different range compared to the subjective score, which may result in non
meaningful metric representation. Furthermore, non linear regression serves to re-
move nonlinearities due to the subjective rating process. It is found that human
observers tend to make more pronounced distinctions between two quality levels of
lightly distorted images than between two highly distorted ones [7]. Thus, non linear
regression using an appropriate logistic function takes account for this phenomenon.

Figure 4.10 illustrates examples of fitted objective scores Φ′ versus subjective
DMOS along with he best fitting logistic function. Subsequently, for evaluation
the fitted objective scores (Φ′) and the subjective ones (DMOS) are used for the
calculation of the prediction performance indicators (described in section 4.4.2).

4.4.1 Distortion indicators through image quality models

The proposed methodologies M1, M2 as well as the proposed temporal pooling
approach are incorporated in several quality assessment models, namely MSE, SSIM
[107], MS-SSIM [111] and VIF [112]. These models were described in section 4.1.2
and are used in the experimental evaluation as following described.

Mean square error The squared error map provided by equation (4.1) serves as
distortion indication map (quality index) in the case of MSE.
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(a) MSE
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(b) SSIM
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(c) MS-SSIM
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(d) VIF

Figure 4.10: Scatter plots of subjective DMOS versus predicted objective quality
scores Φ′ (MSE, SSIM, MS-SSIM and VIF) for the LIVE video quality database
(blue cross marks) along with he best fitting logistic function (green line) and the
corresponding 95% confidence interval (ci, orange dotted lines).
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Structural similarity index The 2D SSIM index map is employed as distortion
indication map (quality index) for SSIM.

Multiscale SSIM MS-SSIM incorporates SSIM evaluations in different scales. To
this end, the single-scale SSIM index maps are weighted in each scale, and the
weighted scaled indexes are subsequently combined as described in [111] using equa-
tion (4.25) to obtain the distortion indication map.

Visual Information Fidelity criterion In the case of VIF, the mutual infor-
mation (between the input and the output of the HVS channel) for the reference
image and the mutual information (between the input and the output of the HVS
channel) for the distorted image are separately weighted using equation (4.24). They
are subsequently scaled and finally combined over multiple scales, to finally output
the distortion indication map.

4.4.2 Prediction performance indicators

The quality prediction performance of the metrics is evaluated following the rec-
ommendation of the video quality experts group (VQEG) [99], which define the
following prediction performance indicators:

• Prediction accuracy: the ability of an objective quality model to predict the
subjective quality rating with low error.

• Prediction monotonicity: the degree to which the objective quality model
maintains prediction accuracy over the range of video test sequences.

According to the VQEG recommendation [99], for K sequences, the prediction
accuracy is determined using the Pearson linear correlation coefficient:

ρp =

K∑
k=1

(φk − φ)(sk − s)
√

K∑
k=1

(φk − φ)2

√
K∑
k=1

(sk − s)2

(4.39)

where φk, sk are the predicted score and the subjective rating corresponding to the
k-th sequence respectively, and φ, s are the corresponding averages of each set. ρp
is an indicator of the strength and the direction of the linear relationship between
the pairs of predicted scores and subjective evaluations.

The prediction monotonicity is expressed using the Spearman rank order cor-
relation coefficient:

ρs =

K∑
k=1

(χk − χ)(γk − γ)

√
K∑
k=1

(χk − χ)2

√
K∑
k=1

(γk − γ))2

(4.40)
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where χk, γk denote the ranks of the predicted scores and the subjective scores
respectively and χ, γ correspond to the midranks of each of these sets. The Spearman
correlation coefficient quantifies whether changes in one variable are followed by
changes (increase or decrease) in the other variable, irrespective of the magnitude
of the changes. In this way it is used as a prediction’s monotonicity reflector.

Moreover, we employ the root mean square error:

RMSE =

√√√√ 1

K

K∑

k=1

[DMOSk −DMOSpk]2 (4.41)

between DMOS and predicted DMOSp.
Larger ρp and ρs indicate better correlation between objective and subjective

scores, while smaller RMSE is indicator of better performance.

4.4.3 Quality prediction performance of M1

In the M1 scheme (presented in section 4.2), the first stage includes segmenting
the frames of the video sequence, using our proposed motion segmentation ap-
proach. Figure 4.5 illustrated such an example. In the next stage, in contrast to
the conventional objective quality assessment algorithms, where each image region
participates equally in the determination of quality level, in M1 each segment may
have a different impact in the quality assessment procedure. This impact is defined
in this work by the inter-segment interaction parameter, which is expressed as the
weight ωi, where i = {fg, bg} used in equation (4.12) for the following cases:

• ωi = lsali uses the local saliency model LS-IKN model [118] that incorporates
colour, intensity and orientation features

• ωi = moti uses the motion of each segment to determine inter-segment inter-
actions

• ωi = lsali · 1
sizi

accounts for the size of each segment together with its local
saliency

• ωi = moti· 1
sizi

accounts for the size of each segment together with its estimated
motion.

Table 4.2 shows the results of method M1 using the above weights ωi. For each
evaluation model we highlight the two best results with boldface. From the eval-
uation we observe that ωi = moti performs well in most cases. The incorporation
of the segment’s size does not improve the performance compared to ωi = moti or
ωi = lsali respectively, except for the case of MS-SSIM where there is a relatively
large improvement. We also observe that the motion feature as indicator of the inter-
segment interactions, appears to be more effective in most cases compared to local
saliency. Finally, the approaches show similar performance, with a small tendency
of ωi = moti to perform better in this scheme.
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Table 4.2: VQA metrics performance comparison of each case of fore-
ground/background pooling used in methodM1, described in section 4.2.2, on LIVE
video database. The direct average approach has been used in this case for temporal
pooling. The two best results are highlighted with boldface.

Algorithm ρp ρs RMSE

MSE 0.5614 0.5391 9.0839
MSE - M1, ωi = lsali 0.5387 0.5281 9.2485
MSE - M1, ωi = moti 0.5440 0.5371 9.2111
MSE - M1, ωi = lsali · 1

sizi
0.5334 0.5242 9.2856

MSE - M1, ωi = moti · 1
sizi

0.5366 0.5298 9.2630

SSIM 0.5411 0.5231 9.2315
SSIM - M1, ωi = lsali 0.5887 0.5686 8.8733
SSIM - M1, ωi = moti 0.5958 0.5744 8.8159
SSIM - M1, ωi = lsali · 1

sizi
0.5925 0.5674 8.8429

SSIM - M1, ωi = moti · 1
sizi

0.5942 0.5698 8.8295

MS-SSIM 0.7556 0.7474 7.1911
MS-SSIM - M1, ωi = lsali 0.7029 0.6911 7.8077
MS-SSIM - M1, ωi = moti 0.7047 0.6944 7.7882
MS-SSIM - M1, ωi = lsali · 1

sizi
0.7800 0.7733 6.8687

MS-SSIM - M1, ωi = moti · 1
sizi

0.7760 0.7690 6.9236

VIF 0.5322 0.5297 9.2936
VIF - M1, ωi = lsali 0.5463 0.5440 9.1943
VIF - M1, ωi = moti 0.5245 0.5177 9.3458
VIF - M1, ωi = lsali · 1

sizi
0.5336 0.5202 9.2838

VIF - M1, ωi = moti · 1
sizi

0.5109 0.5007 9.4362
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4.4.4 Quality prediction performance of spatial pooling in M2

Method M2, specifically spatial pooling, has been described in section 4.3.2. In
contrast to M1 no segmentation map is available and weighted spatial pooling is
performed in each pixel location. The proposed approach for determination of weight
is motion saliency (MSA). Pixel positions that present significant relative motion
between frames are assigned heavier weighing, since we expect that if a distortion oc-
curs in a region that contains obvious motion, it is expected to attract the attention
of the viewer and thus to have more significant impact on the quality assessment. In
this way higher weighting can be assigned to regions that have moved between two
successive frames and we expect that they are more likely to attract visual attention
in comparison to other areas that have not moved (or have not moved in relation to
the background). We compare the following cases where:

• LS-IKN denotes the local saliency Itti-Koch-Niebur model [118]

• VS denotes the visual saliency model proposed by Ma et al. [128]

• STMOS denotes the short term moving object segmentation masks

• fSTMOS denotes the filtered short term moving object segmentation masks

• MSA is the proposed motion saliency model described in section 4.3.1

• LS-STMOS denotes the short term moving object segmentation masks
(STMOS) incorporated with the local saliency Itti-Koch-Niebur model.

Figures 4.11 - 4.12 present the significance maps of the above mentioned
cases. The original frame is shown in 4.11 (a) and the overimposed heat maps of
the various weighting maps used for Method M2 are also illustrated. Figure 4.11 (b)
illustrates the local saliency LS-IKN model map. Figure 4.11 (c) shows the STMOS
mask where a binary decision is used to account for the foreground and background
regions. The use of the filtered STMOS mask in Figure 4.11(d) avoids the "hard"
boundaries and in this case the mask is smoothed along the foreground borders both
in the direction towards the centre of the foreground object and towards outside it. In
similar fashion, in the case of Figure 4.11(f) the mask is smoothed in the direction
towards the centre of the foreground object, but in this case the background remains
unaltered having zero impact as the segmentation mask defines. Figure 4.11(e) de-
picts the proposed motion saliency map that is not as solid in comparison to the
LS-IKN model and also accounts for moving edges that are discarded in the case of
STMOS masks.

Table 4.3 reports the performance evaluation of the examined cases of spatial
pooling employed in method M2, using various objective VQA algorithms. MSA
is the proposed method. VS denotes the visual saliency model proposed in [128],
whereas local saliency denotes the employment of the IKN local saliency maps
proposed in [118] for weighting in the same manner as described in the previous
section. For each evaluation model we highlight the best results with boldface.
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Table 4.3: VQA metrics performance comparison of each case of spatial pooling
method M2 on LIVE video database. The direct average approach is used in this
case for temporal pooling. Data for VS is taken from [128].

Algorithm ρp ρs RMSE

MSE 0.5614 0.5391 9.0839
MSE - M2 - LS-IKN [118] 0.5429 0.5262 9.2184
MSE - M2 - VS [128] 0.6295 0.6268 8.5310
MSE - M2 - STMOS 0.5175 0.5055 9.3931
MSE - M2 - fSTMOS 0.5128 0.5049 9.4238
MSE - M2 - MSA 0.5669 0.5593 9.0427
MSE - M2 - LS-STMOS 0.5222 0.5087 9.3619

SSIM 0.5411 0.5231 9.2315
SSIM - M2 - LS-IKN [118] 0.5995 0.5764 8.7855
SSIM - M2 - VS [128] 0.6308 0.6187 8.5310
SSIM - M2 - STMOS 0.5876 0.5602 8.8819
SSIM - M2 - fSTMOS 0.5802 0.5559 8.9406
SSIM - M2 - MSA 0.6470 0.6334 8.3698
SSIM - M2 - LS-STMOS 0.6142 0.5873 8.6630

MS-SSIM 0.7556 0.7474 7.1911
MS-SSIM - M2 - LS-IKN [118] 0.7597 0.7483 7.1382
MS-SSIM - M2 - VS [128] 0.7583 0.7468 7.1570
MS-SSIM - M2 - STMOS 0.7887 0.7819 6.7487
MS-SSIM - M2 - fSTMOS 0.7895 0.7813 6.7372
MS-SSIM - M2 - MSA 0.8009 0.7964 6.5726
MS-SSIM - M2 - LS-STMOS 0.7700 0.7620 7.0037

VIF 0.5322 0.5297 9.2936
VIF - M2 - LS-IKN [118] 0.6790 0.6687 8.0587
VIF - M2 - STMOS 0.6915 0.6863 7.9294
VIF - M2 - fSTMOS 0.6925 0.6885 7.9195
VIF - M2 - MSA 0.6946 0.6959 7.8968
VIF - M2 - LS-STMOS 0.6756 0.6637 8.0933
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It is observed that (motion and local) saliency weighted models perform better
compared to non-weighted models. Motion saliency spatial pooling proves to be more
effective compared to local saliency pooling. The proposed motion saliency model
in method M2 outperforms the local saliency model and also the recently proposed
visual saliency approach. The VS approach, is based mainly on motion modelling
whereas the LS-IKN model accounts mainly for colour and contrast variations. In
the experimental evaluation it is suggested that motion is more beneficial compared
to colour or contrast features for enhancing objective quality assessment algorithm,
since the VS as well as the MSA model outperform the LS-IKN model. Furthermore,
we studied the incorporation of the significance map as hard decision (STMOS,
where the significance map is based on binary decision) as well as two cases where the
weights are attenuating towards the inner object the boundaries. In the latter cases,
fSTMOS and LS−STMOS it was assumed that the centres of the object regions
have the strongest impact on the quality assessment procedure. Even though is was
suspected that a hard decision (STMOS) wouldn’t be more efficient that the soft
decision cases (fSTMOS and LS − STMOS) it is observed that the performance
of fSTMOS is comparable with the one of STMOS, which is also true for the case
of LS − STMOS.

Figure 4.13 illustrates example scatter plots of predicted DMOS using standard
and weighted objective metrics using the proposed method MSA for spatial pooling
M2 (green and blue marks respectively) versus DMOS. It can be observed, especially
for the case of MS-SSIM 4.13(c), that the proposed weighting method yields scores
that are closer to the angle bisector of 45◦ compared to the standard metric. Con-
firming that the proposed approach is effective for video quality assessment.

Study on each distortion class

To examine the effect of the proposed weighting on different distortion types, we
present in Table 4.4 the performance improvement, in terms of Spearman rank order
correlation coefficient, introduced by the proposed method for each distortion class
separately. As expected, our proposed approach contributes on average more in
cases of transient distortions (in the presence of packet losses, classes #1 and #2)
compared to cases with uniformly distributed distortions (no packet losses, classes
#3 and #4). The average improvement in terms of ρs for distortion classes #1 and
#2 is 0.0881, whereas for classes #3 and #4 is 0.0784, whereas the overall trend
of outperformance of motion saliency spatial pooling remains unchanged across the
various distortion types.
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Table 4.4: Performance improvement in terms of ρs of our proposed method using
motion saliency (MSA) over standard metrics using the spatial pooling method M2
on LIVE database for each distortion class.

# Distortion class MSE SSIM MS-SSIM VIF

1 H264 + wireless -0.0291 0.1328 0.0638 0.1538
2 H264 + IP 0.1139 0.1166 0.0206 0.1326

average (#1,#2) 0.0424 0.1247 0.0422 0.1432

3 H264 0.0251 0.1099 0.0901 0.1546
4 MPEG2 0.0238 0.1110 0.0662 0.0463

average (#3,#4) 0.0245 0.1105 0.0782 0.1005

All data 0.0202 0.1103 0.0490 0.1662
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(a) Original frame (b) LS-IKN model

(c) stmos (d) fstmos

(e) MSA (f) LS-stmos

Figure 4.11: Original frame 60 of sun flower of the LIVE database and weight-
ing maps, depicted as over imposed heat maps, used in Method M2. (a) Original
frame, (b) local saliency IKN model map (LS-IKN), (c) short term moving object
segmentation mask (STMOS), (d) filtered STMOS mask (fSTMOS), (e) proposed
motion saliency map (MSA) and finally (f) combined local saliency IKN and STMOS
(LS-STMOS) map.
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(a)original (b)localsaliencyItti

(c)STMOS (d)STMOSfilteredGauss

(e)MSA (f)STMOS.*LSItti

Figure4.12:Originalframe433ofmobilecalendaroftheLIVEdatabaseandweight-

ingmaps,depictedasoverimposedheatmaps,usedin Method M2.(a)Original

frame,(b)localsaliencyIKNmodelmap(LS-IKN),(c)shorttermmovingobject

segmentationmask(STMOS),(d)filteredSTMOSmask(fSTMOS),(e)proposed

motionsaliencymap(MSA)andfinally(f)combinedlocalsaliencyIKNandSTMOS

(LS-STMOS)map.
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(c) MS-SSIM
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Figure 4.13: Scatter plots of DMOS versus predicted DMOS using standard and
proposed method (blue and green marks respectively) on LIVE video database.
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4.4.5 Quality prediction performance of temporal pooling in M2

Temporal pooling follows the spatial pooling stage, as the local weighted qual-
ity scores TL frames have to be taken into account to output the overall quality
score. The proposed temporal pooling approach, weights the frame-level quality
scores across time based on the variation of global motion on the temporal dimen-
sion, assuming that large camera motion causes distortions to have a greater impact
on perceived video quality and that the perception of distortions is affected mostly
by translational motion. The proposed temporal pooling approach as well the related
approaches used for comparison have been described in section 4.3.3. Considering
MSA as the spatial pooling strategy, and towards evaluating the proposed temporal
pooling scheme, four temporal pooling approaches are examined:

• Tda is the widely used direct average approach.

• Tgms is the approach using the global motion indicator where f = 1 in equa-
tion (4.28) to allow for uniform participation of all global motion parameters
temporal pooling.

• Tgmi denotes the proposed method using the proposed global motion indicator
with f = 10 forcing the translational components of global motion to have a
stronger influence on temporal pooling.

• Tmink denotes the widely used Minkowski summation, where we obtained the
best results with the exponent β = 2 and

• Ttpf the temporal pooling function is finally reported as proposed in [137].

Table 4.5 presents the results. The proposed temporal pooling approach Tgmi
employing the global motion indicator performs better compared to the other ap-
proaches. It brings up to 0.0207 improvement in the case of SSIM in terms of Pearson
correlation coefficient, compared to the direct average. The direct average approach
Tda is in each case outperformed, whereas the performance of Tmink, Ttpf and Tpa
depends on the objective metric.

Tgmi and Tgms are the two best performing approaches, which suggests that
taking into consideration the estimated global motion brings improvement in the
performance of the quality metrics. The global motion indicator expresses the pro-
portional relation between the existing global motion and the temporal weight. This
finding is in contrast to [110] where it was suggested that the larger the existing
global motion is, the smaller the assigned temporal weight should be. In our point
of view, it seems to be more reasonable distortions to be more profoundly perceived
in cases of large global motion, but this may be also be dependent on the kind of
distortions. For instance blurring may be more noticeable in static or slowly moving
scenes compared to fast moving scenes, however, blockiness may be more noticeable
in cases of large camera movement compared to cases with slow camera movement.
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Table 4.5: Temporal pooling performance comparison. The spatial pooling method
M2 has been used. Results on the LIVE video database.

Algorithm ρp ρs RMSE

MSE - M2 - MSA - Tda 0.5669 0.5593 9.0427
MSE - M2 - MSA - Tgms 0.5700 0.5643 9.0193
MSE - M2 - MSA - Tgmi 0.5748 0.5676 8.9825
MSE - M2 - MSA - Tmink 0.5488 0.5400 9.1766
MSE - M2 - MSA - Ttpf [137] 0.5685 0.5609 9.0304

SSIM - M2 - MSA- Tda 0.6470 0.6333 8.3697
SSIM - M2 - MSA - Tgms 0.6558 0.6387 8.2876
SSIM - M2 - MSA - Tgmi 0.6678 0.6420 8.1710
SSIM - M2 - MSA - Tmink 0.6455 0.6302 8.3843
SSIM - M2 - MSA - Ttpf [137] 0.6386 0.6217 8.4477

MS-SSIM - M2 - MSA- Tda 0.8010 0.7964 6.5724
MS-SSIM - M2 - MSA - Tgms 0.8087 0.8007 6.4568
MS-SSIM - M2 - MSA - Tgmi 0.8155 0.8096 6.3527
MS-SSIM - M2 - MSA - Tmink 0.8037 0.7977 6.5314
MS-SSIM - M2 - MSA - Ttpf [137] 0.7892 0.7834 6.7410

VIF - M2 - MSA- Tda 0.6946 0.6958 7.8968
VIF - M2 - MSA - Tgms 0.6983 0.6972 7.8577
VIF - M2 - MSA - Tgmi 0.7092 0.7121 7.7391
VIF - M2 - MSA - Tmink 0.6808 0.6798 8.0408
VIF - M2 - MSA - Ttpf [137] 0.6846 0.6801 8.0020
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To conclude, our proposed approach based on the global motion indicator out-
performs the direct average and commonly used related approaches that are com-
monly used, namely the Minkowski summation, the temporal pooling function. This
indicates that more sophisticated approaches that account for the motion features
over the temporal dimension, can be very beneficial for video quality assessment. It
justifies thus our initial motivation that considering temporal dependencies between
frames is a more suitable approach for assessing the quality of video sequences com-
pared to the case of using image quality metrics. In the video quality assessment
procedure, motion plays a critical role and by applying image quality metrics on
frame level and subsequently fusing the local measures using direct average this
important aspect is ignored.

4.4.6 Comparison of method M1 and method M2

Comparing the performance of the two spatial pooling strategies Method M1 and
Method M2, we observe the following. The incorporation of the moving object seg-
mentation approach into the spatial pooling stage of VQA metrics, by means of
foreground/background pooling in method M1 has shown that the benefits are not
as consistent as expected. The improvement using a significance map in the spatial
pooling stage, as in method M2, proved to be higher and more consistent. Several
cases have been studied suggesting that accounting for motion saliency based on the
proposed modelling is improving the correlation with subjective ratings. This relies
on the fact that in method M2 the weights are assigned to pixel positions instead
of regions (scheme adopted in method M1) which enables more detailed and accu-
rate determination of salient areas. Moreover, this is also attributed to inaccuracies
occurred in the moving object segmentation step, where filtering and thresholding
may cause moving object regions to be misclassified, for instance mistakenly labeled
as background or falsely either dilated or eroded.

Table 4.6 provides a comparative overview of the performance of Method 1,
Method 2 and the conventional (content-unaware) metrics. M2 outperforms in each
case method M1 as well as the corresponding conventional metrics. Introducing the
Tgmi temporal pooling to method M2 improves the performance even more, and
MS-SSIM-M2-MSA-Tgmi presents the highest performance among the metrics.

Moreover the performance of the state-of-the-art video quality assessment mod-
els: MC-SSIM [136], VQM [113] and MOVIE index [114] are juxtaposed in Table 4.6
for comparison. The proposed method for the case of MSA-weighted MS-SSIM using
the gmi (referred as MS-SSIM - M2 - MSA - Tgmi) outperforms the state-of-the-art
motion models, which confirms the validity and the encourages further perspectives
of the proposed approach.
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Table 4.6: Comparison of methods M1 and M2 on LIVE video quality
database. MC-SSIM, VQM and MOVIE performance as reported in [136].

Algorithm ρp ρs

MSE 0.5614 0.5391
MSE - M1, ωi = moti 0.5440 0.5371
MSE - M2 - MSA 0.5669 0.5593
MSE - M2 - MSA - Tgmi 0.5748 0.5676

SSIM 0.5411 0.5231
SSIM - M1, ωi = moti 0.5958 0.5744
SSIM - M2 - MSA 0.6470 0.6334
SSIM - M2 - MSA - Tgmi 0.6678 0.6420

MS-SSIM 0.7556 0.7474
MS-SSIM - M1, ωi = lsali · 1

sizi
0.7800 0.7733

MS-SSIM - M2 - MSA 0.8009 0.7964
MS-SSIM - M2 - MSA - Tgmi 0.8155 0.8096

VIF 0.5322 0.5297
VIF - M1, ωi = lsali 0.5463 0.5440
VIF - M2 - MSA 0.6946 0.6959
VIF - M2 - MSA - Tgmi 0.7092 0.7121

MC-SSIM [136] 0.6976 0.6791
VQM [113] 0.7236 0.7026
MOVIE [114] 0.8102 0.7861
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4.5 Chapter summary

In this chapter we studied the problem of enhancing objective quality metrics’ per-
formance by improving their correlation with subjective quality scores. Particularly,
in the first part of the chapter we employed our motion segmentation algorithm us-
ing bidirectional change detection and hysteresis towards enhancing objective video
quality assessment metrics and also studied several possibilities regarding the incor-
poration segmentation features into a moving object-aware VQA scheme. Further,
we proposed a novel motion saliency estimation method for video sequences consid-
ering motion between successive frames, and their corresponding parametric camera
motion representation. This motion saliency model was incorporated in the spatial
pooling stage of several objective video quality metrics and it has been shown that it
outperforms existing state-of-the-art approaches. Finally, we have proposed a tem-
poral pooling approach that enables further improvement of objective metrics by
exploring global motion in the temporal dimension.

Experimental evaluation has shown that in the case of spatial pooling, (mo-
tion and local) saliency improves objective quality assessment models. Specifically,
motion saliency has proved to be more effective compared to local saliency and out-
performs existing motion saliency approaches. Therefore, it can be concluded that
motion saliency is a powerful approach and motion is more powerful compared to
colour or contrast features for improving objective quality assessment algorithms.

In video quality assessment, motion plays a critical role and by applying im-
age quality assessment metrics on frame level and subsequently fusing the local
measures using average this important aspect is ignored. With respect to temporal
pooling, the proposed global motion indicator, which reflects a proportional rela-
tion between global motion and temporal weighting, outperformed existing related
approaches. This indicates that sophisticated approaches that account for motion
features over the temporal dimension, are very beneficial for video quality assess-
ment. It justifies also our initial motivation that temporal dependencies between
frames should be taken into consideration for assessing the quality of video se-
quences.

To conclude, it has been shown that the discrepancy between objective metrics
and subjective evaluation is reduced, which is an indicator that objective quality
models benefit from the proposed approaches. Having explored several aspects of
incorporating motion and especially global motion into VQA, motion seems to be
an important aspect that affects the perception of visual quality assessed by humans.
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In the previous chapters novel work on analysis and processing of global motion
in video sequences captured by a moving camera has been presented. The basic ob-
jectives have been to propose an improved global motion estimation algorithm, to
extract moving object segmentation regions and finally to exploit this knowledge to-
wards improving objective video quality assessment approaches. This chapter sum-
marises the thesis, discusses approaches implemented within it and considers the
general framework in which this thesis falls. Further, improvements and extensions
that can be subject for future research are discussed and conclude the thesis.

5.1 Summary of the thesis

In the first part of this work a new approach for improving the parametric global
motion estimation based on motion vectors and exploiting the variable sizes of the
corresponding blocks has been proposed. In a contemporary video codec environ-
ment, typically a region which can be described by homogenous motion is assigned
one motion vector in contrast to a heterogeneous region, described by multiple mo-
tions, that is assigned multiple motion vectors. The latter is translated in multiple
smaller blocks that each one corresponds to a motion vector. In this way, motion
diversities in an image determine the size and shape - which is often predefined
- of the assigned blocks. In the case of block-based parametric global motion es-
timation approaches it is critical to distinguish and discard blocks belonging to
foreground. Existing approaches do not consider block partitioning characteristics
and thus valuable information that can be exploited for outlier rejection is often
neglected. Towards addressing this, the block size variability was taken into account
to select appropriate blocks for global motion estimation.

In the case of the binary partition tree, improvements in the performance
of global motion estimation in terms of accurate background reconstruction were
achieved by making an appropriate selection and controlling the influence of partici-
pating blocks in global motion estimation. Improvement is also reported in compar-
ison to the case of fixed-size blocks. Subjective evaluation based on segmentation
performance also reflected the benefits of the proposed approach. Furthermore, it has
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been shown that using a parametric global motion model, improvements in conven-
tional motion prediction are achieved. This is especially beneficial in the background
region and in cases of no moving object’s presence. A possible exploitation of this
can be in compression schemes, since it may enable compression of the background
region with less necessary information compared to conventional motion prediction
using motion vectors.

Following the first part of the thesis, a motion-based object segmentation algo-
rithm for video sequences with moving camera has been presented. The proposed
algorithm exploits short-term motion information between frames towards change
detection. It is based on bidirectional inter-frame change detection using a mo-
tion compensated error fusion scheme that outperforms previously proposed fusion
schemes. In addition to that, spatial error localization is considered in the thresh-
olding step for improving the segmentation efficiency. As the hysteresis thresholding
introduces the requirement of two thresholds instead of one, a chi-squared test on
results produced by different thresholding parameters has been used to select the
appropriate weights, out of a given set of candidates. This enables robust segmenta-
tion performance that avoids the requirement of empirically defining the threshold-
ing parameter and training algorithms that are commonly adopted for parameter
selection. Furthermore, a final post-processing step has been incorporated to enable
temporal consistency of the segmentation masks using filtering of the preliminary
outcome, which is adapted according to the motion of the foreground. The experi-
mental evaluation demonstrated the validity of the proposed approach in comparison
with existing related approaches and it was additionally shown that its performance
is quite stable in a codec framework, under varying quantisation parameters that
influence motion estimation quality.

In the last part of this thesis, approaches for enhancing state-of-the-art objec-
tive video quality metrics’ performance in terms of improving their consistency with
subjective evaluations have been proposed. Towards this direction, the incorporation
of the derived motion-related information into content-aware video quality assess-
ment schemes was proposed, by exploring two different frameworks. Specifically, in
method M1 the proposed motion segmentation algorithm using bidirectional change
detection and hysteresis has been incorporated into a moving object-aware video
quality assessment scheme. Several possibilities regarding the consideration of seg-
mentation features into the moving object-aware video quality assessment scheme
have been compared. The experimental evaluation showed that motion serves as a
powerful indicator of the inter-segment interactions and is a valuable feature towards
enhancing objective video quality assessment metrics.

Further, a novel motion saliency estimation method for video sequences consid-
ering motion between successive frames and their corresponding parametric camera
motion representation has been proposed. The motion saliency model was incorpo-
rated in the spatial pooling stage of several objective video quality metrics and it
was shown that it overperformed existing state-of-the-art approaches. Finally, a tem-
poral pooling approach that enables further improvement of objective video quality
assessment metrics has been proposed. This approach accounts for global motion
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in the temporal dimension that is a neglected feature in common approaches on
this topic, and it shown to outperform them. Experimental evaluation has shown
that in this way objective metrics are more consistent with subjective evaluation
scores, which confirms that our proposed approaches are beneficial for video quality
assessment.

5.2 Discussion and outlook

It has been shown that exploiting characteristics of the block assignment is bene-
ficial for parametric global motion estimation. For this, the size of the blocks has
been mainly used in this work. An interesting direction for future study is to in-
corporate edge and texture information in the weighting of participating blocks in
global motion estimation. Given that large homogenous blocks may contain mis-
leading motion vector information (motion vectors that do not correspond to real
motion) their influence should be reduced, and instead, increase the impact of more
reliable large blocks that contain edges and higher texture.

Under circumstances, motion prediction benefits from parametric global motion
model representations, especially in the background region of a scene that can be
better predicted compared to the conventional motion vector prediction. It is noted
here that the global parametric model is derived from the actual motion vector
field. So a question under study at this point has been whether and how can a re-
gion be better predicted using a product of post-processing than using the initial
information itself directly. It has been shown that indeed such an improvement is
achievable. The justification of this effect, relies on outlier detection and robust re-
gression. It often occurs that motion vectors are erroneously depicting real motion,
which can be caused (i) due to miscalculation, e.g. in block matching or (ii) by
rate distortion requirements in the case they are calculated within a codec frame-
work. By incorporating robust regression, the goal is to exclude these errors from
the model estimation and thus eliminate their influence. Estimators can deal with
data containing up to a certain percentage of outliers, which is also known as break-
down point. Least squares has a 50% breakdown point, M-estimator close to 50%,
Helmholtz tradeoff estimator 80% and RANSAC greater that 50%.

The motion-based object segmentation algorithm exploits bidirectional informa-
tion between successive frames. The exploitation of two frames instead of one results
in more stable segmentation results. A thresholding approach that incorporates mul-
tiple improvements on existing approaches is proposed. Along with spatial connec-
tivity, the issue of optimal weight selection for weighted mean hysteresis thresholding
is addressed towards avoiding heuristics and data training. It is to be noted that
the proposed algorithm requires the tuning by the user of a small number of pa-
rameters. Particularly, as discussed in chapter 3 we circumvent the requirement of a
thresholding parameter and instead require a broader set of parameters, which en-
ables a more wide application. In the author’s point of view, a fully automatic generic
algorithm that can deal well with all kinds of video sequences is utopian. Depending
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on the application, the desired segmentation results may also vary for a given video
sequence. Of course fully automatic approaches have been proposed to deal within
specific application frameworks that perform very effectively. For instance in cases
where specific patterns are requested (e.g. faces) or in cases where strict assumptions
are made (e.g. static cameras in surveillance scenarios) existing approaches are able
to address impressively the segmentation task. However, the good performance is
narrowed within the specific requirements.

Furthermore, a final post-processing step was incorporated to enable temporal
consistency of the segmentation masks. This was achieved using filtering of the pre-
liminary binary masks that is adapted according to the motion of the foreground. It
has been shown that the proposed motion compensated error fusion scheme out-
performs previously proposed ones. The experimental evaluation demonstrated the
validity of the proposed method.

The influence of video compression on the quality of the segmentation results has
been also studied. It has been shown that by increasing the compression rate, par-
ticularly the quantisation parameter, segmentation accuracy presents only a slight
decrease in segmentation accuracy. This shows that segmentation performance is
quite robust under the variation of quantisation parameters, which influences the
motion estimation quality. This relies on the parametric global motion estimation
approach that, by increasing the quantisation parameter up to a certain point, does
not decrease the performing accuracy mainly due to increasingly blurring of ho-
mogenous regions (due to deblocking filtering).

An interesting direction for future research on this topic is the combination of
the proposed motion-based segmentation approach with approaches based on tex-
ture and colour features. This may offer advantages in terms of segmentation ac-
curacy with the cost of increased computational complexity. Specific deficiencies of
approaches based on solely motion, colour, or texture features can be addressed by
combining them. Particularly, problematic cases that can be addressed include: (i)
moving and stoping objects - often encountered in motion-based approaches, (ii)
changing illumination conditions - from which colour-based approaches suffer, and
(iii) vague boundary definitions - which is a major deficiency of texture-based ap-
proaches. Moreover, there is room for improvement regarding implementation issues
and the computational time can be reduced by optimization of the implementation,
especially in the stage of parametric global motion estimation.

The consideration of motion information, specifically the relative motion be-
tween global and local one, in a video quality assessment framework shows very
promising results for further development of motion-perception aware video quality
assessment metrics. Indeed the rather good performance obtained by the weighted
spatial pooling using the motion saliency map suggests that the relative motion com-
prises a valuable clue towards enhancing video quality assessment approaches. The
impact of the proposed motion saliency model has shown significant improvement
in the agreement with subjective evaluations in the experimental evaluation, where
several cases have been studied. It has thus been shown that accounting for mo-
tion saliency based on the proposed modelling improves the correlation with the
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subjective evaluations.
Considering global motion has been beneficial for video quality assessment with

its incorporation in the temporal dimension. The proposed global motion indicator
presented good performance in comparison to the commonly used direct average and
existing state-of-the art techniques. This suggests that sophisticated approaches that
account for motion features over the temporal dimension, can be beneficial for video
quality assessment. Such a claim is reasonable since in video quality assessment,
motion plays a critical role. By applying image quality metrics on frame level, and
subsequently fusing the local measures using direct average, this important aspect is
ignored. Considering temporal dependencies between frames is thus a more suitable
approach for assessing the quality of video sequences compared to the case of using
image quality metrics.

The incorporation of the moving object segmentation approach into the spatial
pooling, by means of foreground and background pooling showed that this approach
is not as efficient as the case where a saliency map is used as significance map for
spatial pooling. This might rely on the fact that in the latter case the weights are
assigned to pixel positions instead of regions which enables more detailed and accu-
rate determination of salient areas. Moreover, this is also attributed to inaccuracies
occurred in the moving object segmentation step, where filtering and thresholding
may cause moving object regions to be misclassified, for instance mistakenly labeled
as background or falsely either dilated or eroded. Having studied the incorporation
of motion directly (by means of weighted spatial pooling) and indirectly (by us-
ing motion-based segmentation masks) it is concluded that motion shows promising
results in enhancing video quality assessment approaches.

To discuss possible further perspectives in this direction, an interesting direc-
tion is to combine the impact of global motion in the spatial and temporal dimen-
sion. This can be achieved by designing a proper motion-perception based metric
that will encapsulate a spatio-temporal consideration of global motion. For instance,
in this thesis the global motion indicator, used for temporal pooling, is assigned on
the entire frame. This can be extended by assigning a motion indicator to each seg-
ment (or an alternatively defined region) of the frame, allowing for spatio-temporal
pooling where each segment’s motion has an individual impact on the temporal
pooling. Furthermore, with respect to temporal pooling, specific types of temporal
artefacts that are typically met to compressed video sequences, such as jerkiness
(i.e. the perception of still images, instead of moving ones, in a video sequence) or
flickering may be studied in order to further exploit motion information.

Other aspects for further exploration include the development of a reduced-
reference metric considering for motion features in the spatial and temporal dimen-
sion. Reduced-reference metrics are a good compromise between full-reference and
no-reference ones. They combine the advantages of full-reference metrics: being accu-
rate and generic, and the advantages of no-reference ones: having broad application
in communications today. Thus, the author’s opinion is that research on the topic
of reduced-reference metrics that account for motion is very promising. Further-
more, enhancing the proposed global motion indicator for temporal pooling towards
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adopting more sophisticated approaches for consideration of global motion is an
interesting topic for future exploration. First, it would be interesting to study the
combination of an attenuation function, which can be based on human visual per-
ception, with the global motion indicator. Secondly, the use of a sliding window over
time to account for global motion would enable the flexibility to adjust the influence
of global motion alterations on the perception of temporal distortions.
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Description of datasets

A brief description of the evaluation datasets used in this thesis is given in this
Appendix.

A.1 Video Dataset 1

Test sequences that no segmentation ground truth is available.

Birds

Description:
Camera motion:
Number of objects:
Background:
Size:

Birds flying on the sky
Camera pan and tilt
Up to six objects
Varying texture background
720× 576, 110 frames

frames 24 & 97
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Monaco

Description:

Camera motion:
Number of objects:
Background:
Size:

Camera pan over the harbor of
Monaco
Slow camera pan
None
Highly textured background
352× 288, 150 frames

frames 18 & 135

Foreman

Description:
Camera motion:

Number of objects:

Background:

Size:

Close up of a talking man
No camera motion (first part),
camera pan (second part)
One large foreground object
(first part) and none (second part)
Lightly textured background (first
part), highly textured background
(second part)
352× 288, 300 frames

frames 34 & 97
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A.2 Video Dataset 2

Test sequences that segmentation ground truth is available.

Allstars

Description:
Camera motion:
Number of objects:
Background:
Size:
SI/TI index:

Soccer players playing on the field
Slow camera pan and tilt
Up to eight small objects
Lightly textured background
352× 288, 250 frames
75/15

original frames 97 (first row) &
162 (second row)

ground truth frames 97 (first
row) & 162 (second row)

Biathlon

Description:
Camera motion:
Number of objects:
Background:
Size:
SI/TI index:

A biathlon athlete skiing
Fast camera pan and slow zoom
One medium sized object
Lightly textured background
352× 288, 200 frames
89/21
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original frames 95 (first row) &
173 (second row)

ground truth frames 95 (first
row) & 173 (second row)

Mountain

Description:
Camera motion:
Number of objects:
Background:
Size:
SI/TI index:

A leopard climbing down on rocks
Camera pan, tilt and zoom
One medium object size
Highly textured background
352× 288, 100 frames
79/34

original frames 81 (first row) &
95 (second row)

ground truth frames 81 (first
row) & 95 (second row)
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Race

Description:

Camera motion:
Number of objects:

Background:
Size:
SI/TI index:

Go-kart type cars moving across
the field
Fast camera pan
Three objects that undergo size
variations (due to perspective)
Moderately textured background
544× 336, 100 frames
104/52

original frames 15 (first row) &
25 (second row)

ground truth frames 15 (first
row) & 25 (second row)

Stefan

Description:

Camera motion:
Number of objects:

Background:
Size:
SI/TI index:

A tennis player playing on a tennis
field and watching crowd
Fast camera pan and zoom
Up to two objects; a large one and
presence of a much smaller one in
several frames (ball)
Moderately textured background
352× 240, 300 frames
153/49



144 Appendix A. Description of datasets

original frames 46 (first row) &
196 (second row)

ground truth frames 46 (first
row) & 196 (second row)

BBC fish

Description:
Camera motion:
Number of objects:
Background:
Size:
SI/TI index:

A fish swimming in the seabed
Camera pan, tilt and zoom
One medium sized object
Lightly textured background
720× 576, 120 frames
29/14



A.2. Video Dataset 2 145

example frames 98 (first row) &
103 (second row)

ground truth frames 98 (first
row) & 103 (second row)

Horse

Description:

Camera motion:
Number of objects:
Background:
Size:
SI/TI index:

A person riding a horse and jumping
obstacles.
Fast camera pan, fast tilt and zoom
One large object
Highly textured background
352× 288, 120 frames
114/46
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example frames 29 (first row) &
41 (second row)

ground truth frames 29 (first
row) & 41 (second row)
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A.3 LIVE video database

The LIVE video database [143] has been developed at the University of Texas at
Austin and is publicly available 1. It contains 150 distorted videos obtained from 10

uncompressed reference videos ( 768 × 432 pixels, 3206 frames totally) of natural
scenes. The distorted videos are created using four commonly encountered distortion
types. These include MPEG-2 compression, H.264/AVC compression, simulated
transmission of H.264/AVC compressed bitstreams through error-prone IP networks,
and through error-prone wireless networks.

Each video was assessed by 38 human subjects in a single stimulus study
with hidden reference removal, where the subjects scored the video quality on a
continuous quality scale. The difference scores of a given subject are computed
by subtracting the score assigned by the subject to the distorted video sequence
from the score assigned by the same subject to the corresponding reference video
sequence. Following the difference mean opinion score (DMOS) of each video is
computed as the mean of the rescaled standardized difference scores (Z-scores) of
statistically reliable subjects.

A.3.1 Sequences Description

Blue Sky
Circular camera motion showing a
blue sky and some trees.
768× 432, 217 frames, 25 fps

River Bed
Still camera, showing a river bed con-
taining some pebbles and water.
768× 432, 250 frames, 25 fps

Pedestrian
area

Still camera, showing some people
walking about in a street intersection.
768× 432, 250 frames, 25 fps

1http://live.ece.utexas.edu/research/quality/live_video.html

http://live.ece.utexas.edu/research/quality/live_video.html
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Tractor
Camera pan, showing a tractor mov-
ing across some fields.
768× 432, 250 frames, 25 fps

Sunflower
Still camera, showing a bee moving
over a sun- flower in close-up.
768× 432, 250 frames, 25 fps

Rush hour
Still camera, showing rush hour traffic
on a street.
768× 432, 250 frames, 25 fps

Park run
Camera pan, a person running across
a park.
768× 432, 500 frames, 50 fps

Shields

Camera pans at first, then becomes
still and zooms in; shows a person
walking across a display pointing at
it.
768× 432, 500 frames, 50 fps

Mobile&
Calendar

Camera pan, toy train moving hori-
zontally with a calendar moving ver-
tically in the background.
768× 432, 500 frames, 50 fps
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A.3.2 Distortion types

The distorted videos are created using four commonly encountered distortion types.

MPEG-2 Compression This distortion category is referred to as "MPEG-
2". Four MPEG-2 compressed videos corresponding to each reference video
exist in this database with compression rates that vary from 700 kbps to 4

Mbps, depending on the reference sequence. The MPEG-2 reference software
available by the international organization for standardization (ISO) was used.

H.264/AVC Compression This distortion category is referred to as
"H.264". There are four H.264/AVC compressed videos corresponding
to each reference one, with compression rates that vary from 200 kbps to
5 Mbps. The JM reference software (version 12.3) by the joint video team
(JVT) was used.

Transmission Over IP Networks This distortion category is referred to as "IP".
Three IP videos corresponding to each reference one in the database exist
that were created by simulating IP losses on an H.264/AVC compressed video
stream. The JM reference software (version 12.3) by the JVT was used, with
compression rates 0.5− 7 Mbps. Four IP error patterns supplied by the video
coding experts group (VCEG), with loss rates of 3%, 5%, 10%, and 20%

were used and the error patterns were obtained from real-world experiments
on congested networks and are recommended by the VCEG to simulate the
Internet backbone performance for video coding experiments.

Transmission Over Wireless Networks This distortion category is referred to
as "wireless". The JM reference software (version 12.3) by the JVT was used,
with compression rates 0.5 − 7 Mbps. Four videos corresponding to each
reference one exist that were created by simulating losses sustained by an
H.264/AVC compressed video stream in a wireless environment.
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