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Kurzfassung

In dieser Dissertation wurden Strömungsphänomene in Moonpools unter verschiedensten
Zuständen untersucht. Das Verhalten der Wassersäulenoszillation wurde für Moonpools
von unterschiedlicher Größe und Längen- Breitenverhältnis, sowie für das Schiff in Fahrt
mit variierenden Froudezahlen, als auch für das Schiff ohne Fahrt analysiert. Die Un-
tersuchungen fanden für Glattwasserzustände, als auch für harmonische Wellen unter-
schiedlicher Länge und Richtung statt. Hierfür wurden sowohl Experimente mit einem
Schiffsmodel, als auch numerische Simulation mit einem viskosen Verfahren durchgeführt.
Zusätzlich wurde der dämpfende Einfluss von Lochblechgittern in Moonpools experi-
mentell analysiert. Das numerische Verfahren wurde dahingehend weiterentwickelt um
diesen Einfluss zu Berücksichtigen, ohne jedoch der Notwendigkeit von komplexen Git-
tern. Zur Validierung dieses Verfahrens wurden eigens angefertigte, vergleichbare exper-
imentelle Daten herangezogen. Der numerische Dämpfungsansatz erzielt sehr zufrieden-
stellende Ergebnisse und kann bspw. für hochgenaue Simulationen verwendet werden, bei
gleichzeitiger Vermeidung von rechenintensiven Gittern.

Die Oszillation der Wassersäule von Moonpools wird generell in eine Hub-Bewegung
und Sloshing-Bewegung unterteilt. Es ist gängige Praxis die Frequenz der Hub-Bewegung
durch vorhandene empirische oder semi-analytische Methoden zu bestimmen. Die durchge-
führten Untersuchungen in dieser Arbeit zeigten eine signifikante Abhängigkeit dieser
Frequenz von der Schiffsgeschwindigkeit. Daher wurde ein empirisches Model entwick-
elt, welches die Frequenz in Abhängigkeit der Schiffsgeschwindigkeit bestimmt und zur
Verbesserung der Genauigkeit bisheriger Methoden abzielt. Die neu entwickelte Meth-
ode erzielt zufriedenstellende Ergebnisse für das untersuchte Schiff und die jeweiligen
Moonpool Geometrien, sollte jedoch anhand weiterer Daten anderer Schiffsmodelle und
Moonpools erweitert werden, um dessen generelle Einsetzbarkeit zu stärken.
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Abstract

The flow phenomena inside moonpools under different conditions have been analysed
within this thesis. The water oscillation behaviour was investigated for moonpool ge-
ometries of different size and length to breadth ratio for the ship in transit condition
at different Froude numbers, as well as for operational condition with the ship at rest.
Calm water, as well as regular waves of different wave directions were included in the
test matrix. Investigations have been performed experimentally and numerically using
a viscous flow solver. Additionally, the damping performance of perforated bulkheads
inside moonpools was experimentally analysed. A numerical damping approach, which
mimics the effect of perforated bulkheads without the need for highly complex grids, has
been implemented into the numerical solver and validated against experimental data. The
overall performance of this new approach is very satisfactory and can be used for accurate
numerical simulations, while avoiding high computational costs.

The water column motion in moonpools can be characterised by piston or sloshing
type. It is common practice to determine the natural piston type motion by different
empirical or semi-analytical methods. The investigation within this thesis revealed a
significant dependency of the frequency on the forward ship speed. A new empirical
model for a velocity dependent piston type frequency has been developed, which aims at
improving the accuracy of existing methods. The new model performs satisfactory for the
investigated ship type and moonpool geometries. The model should however be enhanced
using more data of different ships and moonpools, to strengthen its general applicability.
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(φ, θ, ψ) . . . . . . . . Euler angles (roll,pitch,yaw)
(ξ, η, ζ) . . . . . . . . . Earth fixed cartesian coordinates
(Fx, Fy, Fz) . . . . . Ship fixed force vector components
(Mx,My,Mz) . . . Ship fixed moment vector components
(p, q, r) . . . . . . . . . Ship fixed angular velocity components
(u, v, w) . . . . . . . . Earth fixed cartesian velocity components
(U0, V0,W0) . . . . . Velocity components of the origin of the ship fixed frame of reference
(x, y, z) . . . . . . . . . Ship fixed cartesian coordinates
(x∗, y∗, z∗) . . . . . . Hybrid cartesian coordinates
(xG, yG, zG) . . . . . Ship fixed coordinates for centre of gravity
α . . . . . . . . . . . . . . . Distance function
∆Cmp . . . . . . . . . . Added resistance coefficient due to the moonpool
∆t . . . . . . . . . . . . . Time step
δ99 . . . . . . . . . . . . . Boundary layer thickness
δij . . . . . . . . . . . . . . Kronecker symbol
ε . . . . . . . . . . . . . . . Phase shift
Λ . . . . . . . . . . . . . . . Logarithmic decrement
λ . . . . . . . . . . . . . . . Scale
λW . . . . . . . . . . . . . Wave length
λmax, λmin . . . . . . Maximum/minimum wave length
µ . . . . . . . . . . . . . . . Linear viscous damping coefficient
µW . . . . . . . . . . . . . Wave direction
ν . . . . . . . . . . . . . . . Kinematic viscosity
νt . . . . . . . . . . . . . . Eddy viscosity
ω . . . . . . . . . . . . . . . Specific dissipation rate
ωW . . . . . . . . . . . . . Angular wave fequency
GM . . . . . . . . . . . . Metacentric height
Φ . . . . . . . . . . . . . . Phase shift
φls . . . . . . . . . . . . . Level set function
ρ . . . . . . . . . . . . . . . Water density
σ . . . . . . . . . . . . . . . Variance
τij . . . . . . . . . . . . . . Reynolds stress tensor
ζd . . . . . . . . . . . . . . Damping ratio
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ζI . . . . . . . . . . . . . . Initial amplitude
ζR . . . . . . . . . . . . . . Reflected amplitude
ζW . . . . . . . . . . . . . Wave amplitude
ζ0−WG . . . . . . . . . . Oscillation amplitude at piston mode frequency
ζW−WG . . . . . . . . . Oscillation amplitude at wave frequency
ζWG . . . . . . . . . . . . Wave gauge amplitude
A . . . . . . . . . . . . . . Horizontal moonpool area
bmp . . . . . . . . . . . . . Breadth moonpool
bopening . . . . . . . . . Breadth moonpool opening at keel
c . . . . . . . . . . . . . . . Damping constant
CF . . . . . . . . . . . . . Frictional resistance coefficient
ck . . . . . . . . . . . . . . Fourier transform coefficients
CP . . . . . . . . . . . . . Pressure resistance coefficient
CT . . . . . . . . . . . . . Total resistance coefficient
CM−z . . . . . . . . . . . Yaw moment coefficient
d . . . . . . . . . . . . . . . Damping term
D/Dt . . . . . . . . . . Material derivative
Dk . . . . . . . . . . . . . Dissipative turbulent kinetic energy transport term
E . . . . . . . . . . . . . . Energy spectra
f . . . . . . . . . . . . . . . Frequency
f0 . . . . . . . . . . . . . . Piston mode frequency
f1 . . . . . . . . . . . . . . First sloshing mode frequency
F1, F2 . . . . . . . . . . Blending functions
fshedding . . . . . . . . . Shedding frequency
fW . . . . . . . . . . . . . Wave frequency
f0,emp . . . . . . . . . . . Empirical piston mode frequency
Fr . . . . . . . . . . . . . Froude number
Frmp . . . . . . . . . . . Moonpool Froude number
G . . . . . . . . . . . . . . Filter function for LES model
g . . . . . . . . . . . . . . . Gravity constant
h . . . . . . . . . . . . . . . Water depth
hl . . . . . . . . . . . . . . heeling lever
Hs . . . . . . . . . . . . . Significant wave height
HW . . . . . . . . . . . . Wave height
hbasin . . . . . . . . . . . Basin water depth
Hmax, Hmin . . . . Maximum/minimum wave height
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Iij . . . . . . . . . . . . . . Inertia tensor components
k . . . . . . . . . . . . . . . Turbulent kinetic energy
kW . . . . . . . . . . . . . Wave number
kxx, kyy, kzz . . . . . Gyradii components
lDDES . . . . . . . . . . Length scale DDES model
lDES . . . . . . . . . . . . Length scale DES model
lmp . . . . . . . . . . . . . Length moonpool
lopening . . . . . . . . . . Length moonpool opening at keel
LPP . . . . . . . . . . . . Length between perpendicular
lRANS . . . . . . . . . . Length scale RANS model
Lref . . . . . . . . . . . . Reference length
LSL . . . . . . . . . . . . Sponge layer length
m . . . . . . . . . . . . . . Mass
Mh . . . . . . . . . . . . . Heeling moment
Mst . . . . . . . . . . . . Stabilising moment
ni . . . . . . . . . . . . . . Normal vector
p . . . . . . . . . . . . . . . Pressure
R . . . . . . . . . . . . . . Reflection coefficient
RG . . . . . . . . . . . . . Grid convergence ratio
rG . . . . . . . . . . . . . . Grid refinement ratio
Rt . . . . . . . . . . . . . . Timestep convergence ratio
Re . . . . . . . . . . . . . Reynolds number
Reeff . . . . . . . . . . . Effective Reynolds number
S . . . . . . . . . . . . . . . Amplitude spectra
Si . . . . . . . . . . . . . . Length of distance sensors
si . . . . . . . . . . . . . . Source term
Sw . . . . . . . . . . . . . Static wetted surface
Srmp . . . . . . . . . . . Moonpool Strouhal number
T . . . . . . . . . . . . . . Period
t . . . . . . . . . . . . . . . time
Tadd . . . . . . . . . . . . Added draught coefficient
u+ . . . . . . . . . . . . . Dimensionless velocity in viscous sublayer
ui,target . . . . . . . . . Desired/target cartesian earth fixed velocity components
ui,inf . . . . . . . . . . . Cartesian earth fixed freestream velocity components
ui,wave . . . . . . . . . . Cartesian earth fixed wave velocity components
uref . . . . . . . . . . . . Reference velocity
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1. Introduction

In the past decades, exploration of resources, research, and construction took place more
and more offshore. Whenever critical equipment needs to be handled for these operations,
a safe environment is sought onside the ship. Handling sideways or even at the aft of
the ship may imply larger relative ship motions and being exposed to waves, wind and
current. It is therefore beneficial to perform the operations towards the centre of the
ship, where especially motions due to ship rotations are at a minimum and where a
protected place from environmental conditions is granted. This has been achieved by
construction of moonpools, which have an opening at the keel and vertical walls above
the water line. They are typically of rectangular or sometimes of circular shape and need
to be large enough to allow a safe operation of the individual equipment. Common ship
types making use of moonpools are drilling-, diving-, dredging-, research- and sometimes
pleasure vessels. Drill ships have in general large moonpools, which increased in length
during the past decades to allow for dual operation of drilling equipment (van ’t Veer &
Tholen [80]).

Unfortunately, moonpools have also disadvantages, as they usually increase the resis-
tance during transit conditions. Moreover, the water column can perform severe resonant-
like behaviour under different circumstances, leading to conditions where equipment op-
eration needs to be cancelled or green water on deck endangers workers. To reduce
operational downtime, resistance increase and risk of green water, different measures can
be taken to avoid violent water column motions, which are explained in chapter 1.1.

Water motion excitation can occur for two different reasons. At first, one can think
of the ship being under operational conditions (zero ship speed) and exposed to waves.
Orbital velocity and pressure fluctuations due to waves reach below the keel and induce
fluctuations inside the moonpool. Furthermore, ship motions due to waves cause local
flow acceleration and flow separation at the moonpool opening edge, which induce vortices
and leading to disturbances. This excitation can reach resonant behaviour if the wave
frequency coincides with the resonant frequency of the moonpool water column, which
will be explained in chapter 6.1.1. Moreover, Aalbers [1] stated that due to non-linearities,
excitation at half the natural water column frequency can lead to resonant-like behaviour
as well. The second reason of water column excitation can occur during transit conditions
(ship with forward velocity), where no sea state needs to be present. If assuming a ship
fixed observation of the fluid, the water inside the moonpool is at rest, while the ship
hull is experiencing a flow velocity correlating to the ship speed. This causes a flow

1
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separation at the moonpool leading edge at the keel. A shear-layer rollup develops and
vortices, generated at the leading edge, reach the impingement edge at the aft wall of
the moonpool. Two possible possible scenarios can develop from that situation. Either
the vortices have no significant upward directed velocity and are shed below the keel,
which causes almost no disturbances inside the moonpool, but might influence propulsion
devices at the aft of the ship. More critical is the situation if the vortices hit the aft
wall and travel upwards inside the moonpool. This leads to severe disturbances and
can cause violent water column motions. The water column rises with separation at the
leading edge, which further creates and upward direction of the shear-layer. Pressure
fluctuations due to impingement of vortices at the aft wall travel back to the leading
edge and are causing again disturbances in the shear-layer. This in itself could cause new
vortex shedding and lead to a self-sustained oscillation cycle, which has been described
by Rockwell & Naudascher [62] as ’phase locking’. The mentioned authors thoroughly
investigated cavity flows, which can be compared to a moonpool being closed at the free
surface, such that no water column motions are allowed. Due to the vertical motion
in an open moonpool, vortex shedding is however strongly influenced by the oscillating
frequency of the water column. An exemplary half oscillation cycle is shown in figure 1.1,
where a combination of piston and sloshing motion is visualised from an experimental case
at Froude number Fr = 0.15 and a relative wave length of λW/LPP = 1.0. Flow direction
is from right to left. At t/T = 0.00 the cycle starts and the vortex is fully developed. Due
to the inclination of the free surface the water travels towards the front wall and hits this
in t/T ≈ 0.20 and t/T ≈ 0.30, where the free surface already starts to sink. The water
column reaches its minimum at t/T ≈ 0.50. Afterwards the surface rises again with an
inclination until it reaches the state of t/T = 0.00 and the cycle starts all over again.
Note that this cycle is still dominated by the piston mode frequency, although a sloshing
type of motion is present.

The water column motion in moonpools is typically classified between piston modes
and sloshing modes. At piston mode, the free surface has a dominating vertical motion
direction and no, respectively little phase differences exists between locations inside the
moonpool. Sloshing modes are characterised by water motions travelling between the
moonpool walls. They hence exhibit larger phase differences between different locations
and furthermore have a significant horizontal motion. Molin [56] and Fukuda [32] thor-
oughly investigated these motion modes for rectangular and in case of Fukuda also for
circular shapes of moonpools and individually derived formulations to approximate the
resonant frequencies. While Fukuda’s investigations where based on experiments, Molin
derived his equations by applying linearised potential flow theory for 2D and 3D cases
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(a) t/T=0.00 (b) t/T=0.00

(c) t/T≈0.20 (d) t/T≈0.20

(e) t/T≈0.30 (f) t/T≈0.30

(g) t/T≈0.50 (h) t/T≈0.50

Figure 1.1.: Oscillating cycle of dominating piston mode frequency with superposed slosh-
ing motion
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under the assumption of the ship being motionless. Furthermore, the case was simplified
by assuming infinite water depth and infinite length and breadth of the ship. Both of their
approximations are further discussed in chapter 6.1.1. Molin [57] recently extended his
approach to moonpools with recesses, which are explained in chapter 1.1.2. Faltinsen [26]
mentioned that natural frequencies for two-dimensional cases are over-predicted by Molin
for low ratios of moonpool draught to length, as infinite water depth has been assumed.

Several researchers used numerical methods to investigate flow phenomena inside moon-
pools within the past. Viscous damping due to vortex shedding is important to consider,
as otherwise the water motion is severely over-estimated at resonance condition. This sig-
nificantly complicates the numerical prediction, as pure potential theory based methods,
which have the advantage of fast computational time, would fail. Either viscous methods
are applied, which come at a higher computational cost, or empirical modifications need
to be applied to potential theory codes.

Aalbers [1] developed a simple mathematical 1D model for the relative water column
motion. As potential theory was used, experiments were necessary to determine quadratic
viscous damping terms. Newman [58] showed results with a diffraction/radiation code,
where artificial damping has been applied at the free surface of the moonpool to overcome
the mentioned over-estimation. The same method has been later on applied by Chalkias
& Krijger [11]. de Vries et al. [19] used radiation/diffraction boundary element method
(BEM) and viscous methods to investigate the flow in turret moonpools and mentioned
that particularly the piston mode natural period is not captured with sufficient accuracy,
when using BEM. Faltinsen & Timokha [27] presented a potential theory method, which
has been extended to modify the free surface boundary condition by making use of pres-
sure drop coefficients derived from similarity of piston type motions with the flow through
a slot of slatted screens. This method circumvents determination of external damping co-
efficients, which would normally have to be derived from experiments. A hybrid numerical
code, which couples a potential theory method to resolve far field waves and a viscous
method for the moonpool and the surrounding of the opening has been developed (Kris-
tiansen et al. [47] and Fredriksen et al. [30, 31]). Reduction of computational time of
three magnitudes have been reported, compared to fully viscous methods. Viscous meth-
ods have been used for moonpool flow investigations among others by Sauder et al. [63],
van der Heiden et al. [79], de Vries et al. [19], Krijger & Chalkias [46].

Fredriksen et al. [30] conducted experiments for a moonpool at low forward speed (Fr ≤
0.8). As the influence of forward velocities will be discussed in detail in chapter 6.1.2, it
needs to be emphasised at this point that the authors mentioned no significant change
in natural periods for the investigated velocities. Fukuda [32] and Fukuda & Yoshii [33]
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however showed a dependency of the oscillation frequency on forward velocities, but did
not further quantify the influence.

The resistance increase due to moonpools has been investigated by many of the previous
mentioned authors. van ’t Veer & Tholen [80] introduced a simple empirical method to
predict the added resistance. A linear increase of added resistance with significant surface
elevation amplitude over moonpool draught has been found. The increase is generally
found to be stronger for piston mode motions than sloshing mode motions.

1.1. Approaches to reduce oscillations in the moonpools

Numerous devices exist in order to reduce the water motion amplitude inside moonpools.
The following chapter gives an overview about the most common methods. Typical designs
to reduce the amplitude are shown in figure 1.2 with a) being the moonpool without any
modification. The individual design changes, highlighted in red, will be explained in the
following subsections. These devices can be generally divided in two categories. One, are
measurements to deflect separated vortices and prevention of entering into the moonpool
and the others are to create an additional damping of the water column oscillation, once
the vortices entered the moonpool.

1.1.1. Perforated Bulkheads

A very common method is the construction of perforated bulkheads along the walls of the
moonpool. The original moonpool size is being reduced by a chosen distance, at which a
perforated bulkhead is installed. A sketch of such a perforated bulkhead can be seen in
figure 1.2b).

The basic absorption principle of perforated bulkheads is illustrated in figure 1.3. If
the holes, shown in figure 1.3a are sufficiently sharp and the water motion horizontal,
flow separation takes place at the holes and jets are being formed when passing the
perforations. These collide with jets from neighbouring perforations, leading to a highly
turbulent flow and energy dissipation. Purely vertical motion, illustrated in figure 1.3b,
does not result in a direct damping. It causes however indirectly an absorption, as the
void fraction behind the perforated walls are being filled once the water column rises,
which causes a horizontal flow through the perforations.

The damping (respectively reflection) at these perforated walls has been studied by sev-
eral authors. Clauss & Chen [14] investigated multiple perforated walls in order to reduce
the tank wall reflection at stationary experiments in a towing tank. Sheets of different
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Figure 1.2.: Schematic overview of typical moonpool damping devices
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numbers, porosities, hole sizes and arrangements have been experimentally investigated
and reflection coefficients (which are defined in chapter 2.8.5) given for the individual
configurations over varying wave length to absorber length ratios. One finding was that
the hole size does have only a minor effect on the damping characteristics. Furthermore,
lower porosities showed a superior behaviour over high porosities in terms of absorption
efficiency. At last, higher waves are less dependent on the number of perforated sheets,
whereas smaller waves are being absorbed better with increasing number of sheets.

Plessers [60] came to similar conclusions by investigating multiple perforated walls,
using linear wave theory. He also developed a numerical method to determine the reflection
coefficients of arbitrary perforated sheets without the necessity of performing experimental
test. This method is however based on coefficients, which need to be determined else wise.
He also gave indications for optimum length of the (multiple) sheets before the solid wall
of 1/5 to 1 ·λmax, with λmax being the maximum wave length to absorb.

Theoretically, this system can be designed to damp one wave at an optimum, or to
damp a bandwidth of waves with still good efficiencies, as shown e.g. in Plessers [60]. It
should be kept in mind though, that this assumes linear waves, which are not the case
inside moonpools, where a rather complex flow takes place. Findings of the previous
authors can therefore not be transformed directly to the problem of damping the motion
inside moonpools.

Advantages of this system are high reliability, as there are no moving parts and easy
installation. Furthermore, the perforated walls extend from top to bottom, which reduces
the danger of accidentally hitting the damping device with equipment being handled inside
the moonpool. The major disadvantage is the reduced size of the moonpool.

Because of its popularity in moonpools, this damping device was chosen to further
investigate within this work. It is therefore used within experiments and numerical sim-
ulations. The latter are however performed with a numerical approach in order to avoid
a highly complex grid of the exact geometry of perforated walls. This is being further
discussed in chapter 2.8.

1.1.2. Recesses

Recesses (figure 1.2c)) are another common measurement to avoid high oscillation am-
plitudes. The horizontal area in vicinity of the free surface at rest is typically enlarged,
compared to the area of the moonpool opening at the keel. They are however also used
to assemble drilling equipment as stated by Son et al. [67]. The recess can be of different
type, as it might be placed in the front or aft side of the moonpool or even on both sides.
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(a) Horizontal motion (b) Vertical motion

Figure 1.3.: Damping mechanism in perforated bulkheads

The natural modes of moonpools using recesses has been recently analysed by Molin [57].
Similar to his approach to model natural modes for simple rectangular moonpools, he
used linearised potential flow theory to determine natural frequencies and modal shapes
of the free surface for moonpools with recesses. Variation of recess length showed drastic
decreasing of natural piston mode frequency with increasing length. Furthermore, max-
imum free surface elevation occurs at the wall of the recess and reduces on the opposite
site (which is where the moonpool opening is located and hence of benefit for equipment
handling). Variation of water height above the recess showed that the water elevation
opposite the recess wall is lowered, when decreasing the water height above the recess. It
needs to be mentioned though that non-linearities are likely to become important with
decreasing water height, which are not covered with the chosen approach. Finally the
effect of two recesses opposing each other was investigated, which does not seem to be
beneficial for piston motions, but has slightly positive effects in terms of modal shape for
sloshing motions. Recesses have been studied studied by Son et al. [67] and Yoo et al. [86].

1.1.3. Flaps and grids

Different setups of flaps and grids can be used to avoid separated vortices to move upwards
into the moonpool. Examples are illustrated in figure 1.2d) and e). They can consist of
a single hinged flap covering a part or the whole bottom opening of the moonpool, or
be split into a grid of flaps, which needs to be retractable in order open the moonpool
for operations. As the upwelling of vortices takes place towards the trailing edge of
the moonpool, these flaps or grids are most efficient if placed in that region. Gaillarde
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& Cotteleer [34] reported identical results with flaps only placed at the aft part of the
moonpool opening, compared to a full coverage with flaps. Single flaps of 30% and 50%
moonpool coverage and different inclination angles were tested as well and gave good
results in terms of oscillation behaviour.

1.1.4. Horizontal plates

Horizontal plates can be placed inside the moonpool, as shown in figure 1.2f). These
create additional vortices at their corners, if a vertical water motion is present. This
device has been investigated by e.g. Fukuda [32], where the vertical position has been
varied. Positioning at the keel proved to be least efficient, as the corners of the moonpool
opening already produce vortices and the amplification due to the plates is lowest, if
placed there. Positioning at the free surface at rest was more effective but slightly below
the free surface proved to be most effective in terms of damping the oscillation amplitude.
Similar findings are reported by Aalbers [1], who mentioned an increase in damping of
30% when placing the plates above the keel level.

1.1.5. Wedges and cut-outs

Wedges and cut-outs are measurements belonging to the category to deflect possible
vortices and avoid entering into the moonpool. A wedge is shown in figure 1.2g) and the
general idea of cout-outs in figure 1.2h). Gaillarde & Cotteleer [34] mentioned typical
wedge lengths of around 20% moonpool length and inclination angles between 5◦ - 15◦.
While wedges direct the flow at the leading edge, cut-outs do the same at the trailing
edge. The principal is similar to single flaps, which try to avoid an upwelling of vortices
through an inclined aft wall. van ’t Veer & Tholen shared their experience that wedges are
beneficial only for smaller moonpool lengths but fail for longer ones and that the additional
resistance due to the wedge is not balancing the reduced resistance through moonpool
oscillations. Other investigations of cut-outs are presented by Krijger & Chalkias [46, 11]

1.1.6. Convergent moonpools

Convergent moonpool openings have been tested by English [24] and van ’t Veer &
Tholen [80], who reported significant oscillation amplitude reductions. The basic idea
is to reduce the amount of water entering the moonpool through the geometry. Such a
layout is shown in figure 1.2i).
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Note that from the discussed mitigation devices, only perforated bulkheads, recesses
and horizontal plates have a damping effect in transit and in operational conditions,
whereas the others only work at forward speed. The latter hence aim at reducing the
added resistance through the moonpool, rather than improve operational conditions.

1.2. Contribution of this work

This work contributes on different aspects of moonpool characteristic investigations. Sev-
eral moonpool geometries are analysed through numerical simulations with a viscous flow
solver, as well es experimentally in a seakeeping basin. The variety of moonpool geome-
tries will give insights into the characteristic moonpool behaviour and their dependence
on geometry parameters.

Perforated bulkheads are a typical measure to damp oscillating water motions inside the
moonpool and will be therefore considered appropriately within this work. A numerical
damping approach will be implemented and applied inside a moonpool to mimic the
effect of previously mentioned perforated bulkheads. Numerical results are compared and
validated with experiments. The numerical approach is beneficial as the need of complex
grids and large numbers of cell size can be circumvented and hence computational costs
for such simulations improved.

Another focus is laid upon the investigation of moonpool water column oscillation
frequencies. The dependency of oscillating frequencies on the vessel forward speed will
be discussed and their relevance explained. Numerical and experimental investigations
are conducted and an empirical model to determine a velocity dependent natural piston
mode frequency proposed.

Different influences on numerical results, such as the choice of turbulence model or indi-
vidual motion restrictions are analysed and recommendations given. These investigations
will be valuable for further numerical research on moonpools, in order to conduct efficient
simulations.

At last forces, moments, motions and moonpool surface elevations are investigated for
transit and operational conditions including their influence of different wave directions,
or closure of the moonpool. The results will be of interest for shipbuilders dealing with
moonpools, as well as captains in order to prevent undesired extreme moonpool behaviours
leading to e.g. high added resistance or endangerment of operational safety.



2. Numerical method

The finite differences method based code REX, which is being developed at the Univer-
sity of Iowa / Iowa Institute of Hydraulic Research (IIHR), was used for all simulations
in this work. REX uses multi-block structured body-fitted curvilinear grids, typically
created by using hyperbolic grid generators. Several individual grids can be combined to
analyse complex geometries with an overset grid technique, using the commercial software
Suggar++. The free surface is captured with a single-phase level set approach. Turbu-
lence is modelled with a blended k-ε/k-ω model with the capability of using DES/DDES
(Detached Eddy Simulation, respectively Delayed Detached Eddy Simulation). Imple-
mentations of the most important aspects of the previous mentioned numerical methods
into REX is described in e.g. Carrica et al. [7, 9], Xing et al. [84], Bhushan et al. [3],
Ismail et al. [39], Li et al. [50] and relevant references therein.

2.1. Governing equations

The description of the governing equations for fluid dynamic investigations can e.g. be
found in textbooks like Ferziger & Perić [28]. Common conservation principles of mass
and momentum are used. The conservation of mass, also known as the continuity equa-
tion, describes the rate of change of mass and has to be zero in all cases. Considering
incompressible fluids, the conservation of mass can be written in cartesian coordinates ξi
and inertial frame of reference in tensor notation as:

∂uj
∂ξj

= 0, (1)

with uj being the cartesian velocity components of the fluid with index j = 1, 2, 3 repre-
senting the three coordinate directions. The momentum conservation describes the rate
of change of the momentum due to forces acting on the considered fluid. Written for
incompressible fluids in cartesian coordinates, the momentum equation per volume unit
yields

∂ui
∂t

+
∂ (uiuj)

∂ξj
= − ∂p

∂ξi
+

∂

∂ξj

[
ν

(
∂ui
∂ξj

+
∂uj
∂ξi

)]
+ si, (2)

The right hand side of equation (2) consists of all acting forces, namely the surface forces
composed by pressure p and shear stresses using the kinematic viscosity ν and body forces
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which are included in the source term si.
REX uses a non-dimensional form of the governing equations with uref and Lref used as

the reference velocity and length to non-dimensionalise all quantities. These are further
marked with superscript ′ . The non-dimensional form of the momentum equation can
then be written as:

∂u
′
i

∂t′
+
∂
(
u

′
iu

′
j

)
∂ξ

′
j

= −∂p
′

∂ξ
′
i

+
∂

∂ξ
′
j

[
1

Re

(
∂u

′
i

∂ξ
′
j

+
∂u

′
j

∂ξ
′
i

)]
+ s

′

i (3)

and Re being the Reynolds number defined as

Re =
urefLref

ν
(4)

The above shown piezometric pressure p′ is a combination of the gravitational force and
dimensionless pressure, which can be written as

p
′
=

pabs
ρu2

ref

+
ζ

′

Fr2
(5)

with pabs being the absolute pressure, ρ the density, ζ ′ the non-dimensional vertical carte-
sian coordinate and

Fr =
uref√
Lref · g

(6)

being the Froude number.
The derived set of equation cannot be solved analytically and is hence treated numer-

ically. Differential equations are approximated using suitable schemes. Time derivatives
are discretised in REX using a second-order backward differencing scheme. A second
order central scheme is used for the discretisation of the diffusion and pressure terms.
Convection terms can be discretised by numerous schemes such as first-order upwind,
second-order linear upwind, quadratic biased and cubic biased interpolation and a hybrid
formulation of the second-order linear upwind and the fourth-order cubic interpolation
approach. As mentioned in Ismail et al. [39] the advantage of the cubic interpolation, al-
though being only of second-order accuracy, is the reduced numerical diffusion. Coupling
of the momentum and continuity equation is done using either the pressure implicit split
operator (PISO) algorithm by Issa [41], or the projection method by Bell [2], which has
been used in this work.
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2.2. Turbulence model

The majority of flows in ship hydrodynamic aspects is turbulent. Turbulent flows can
briefly be characterised as highly unsteady, 3-dimensional, containing high vorticity with
a broad range of length and time scales. The above described general form of Navier-
Stokes equations is principally able to solve these turbulences. Direct turbulence solving
is known as Direct Numerical Simulation (DNS) where the spatial resolution needs to
be very high and time resolution very small, so that the smallest eddies can be resolved
directly, without using any model. Hence, the only source of errors results from numerical
discretisation, which can be kept small. This method obviously gives the highest possible
accuracy regarding turbulence prediction but at immense computational costs as the
numerical grids are extremely large and the time step very small. Solving such simulations
is until now and the foreseeable future restricted to simple problems with low Reynolds
numbers and has almost solely been used to produce validation data for turbulence models
in simple cases.

To overcome this, different turbulence models were developed, which are modelling the
turbulence through different methods instead of directly resolving it. The most popular
and widely used model for engineering purposes are the Reynolds-Averaged Navier-Stokes
(RANS) equations. In between DNS and RANS are other methods like DES, DDES and
LES (Large Eddy Simulations), as well as other hybrid models, which usually combine a
RANS model with an LES model. As a RANS and DDES model has been used within
this work, they will be briefly discussed in the following.

2.2.1. RANS

RANS methods provide a good level of accuracy for most engineering applications. The
underlying approach is to average all turbulent fluctuations. The averaging approach
was firstly introduced by Reynolds with the assumption, that a turbulent flow can be
described as an average value ( ) and a fluctuation about that value (∗) for any variable
χ.

χ(ξi, t) = χ(ξi) + χ∗(ξi, t) (7)

The averaging interval must be large enough compared to the fluctuation frequency to
give an accurate value. Unsteady turbulence phenomena can be handled using ensemble
averaging (see e.g. Schlichting [64]), where equation (7) changes, such that χ(ξi, t) becomes
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time dependent as well. Averaging linear terms of the Navier-Stokes equation simply
returns the identical term of the averaged value as χ∗ = 0. On the other hand, averaging
a non-linear term of the Navier-Stokes equation yields

uiχ = (ui + u∗i ) (χ+ χ∗) = uiχ+ u∗iχ
∗ (8)

The second term would only be zero if these quantities are uncorrelated, which is rarely
the case.

Substituting equation (7) into the momentum conservation equation results in

∂ui
∂t

+
∂

∂ξj

(
uiuj + u∗iu

∗
j

)
= − ∂p

∂ξi
+

∂

∂ξj

[
1

Re

(
∂ui
∂ξj

+
∂uj
∂ξi

)]
+ si (9)

Note that the superscript ′ , indicating a non-dimensional variable, has been left aside for
the sake of clarity. The general formulation of momentum conservation remains the same,
with the exemption of the newly introduced term u∗iu

∗
j , which is called Reynolds-stress

tensor. This tensor is typically written on the right hand side of the equation and included
in the viscous stress tensor. As the Reynolds-stress tensor contains six unknown terms,
but no additional equations have been stated through the averaging approach, a closure
problem of the equations results. Boussinesq [6] was the first to introduce the concept of
’eddy viscosity’, where the Reynolds stresses are modelled by an increased viscosity:

τij = −u∗iu∗j = νt

(
∂ui
∂ξj

+
∂uj
∂ξi

)
− 2

3
δijk (10)

In eq.(10) k = 1
2
u∗iu

∗
i and νt describe the unknown turbulent kinetic energy and the eddy

viscosity respectively and δij the Kronecker symbol which is 1 for i = j and zero else wise.
Once a modelling of k and νt has been stated, the conservation of momentum equation
contains only mean quantities of velocities and pressure. Equation (3) remains identi-
cal with the exemption of the Reynolds number and pressure changing to the following
description, as is e.g. shown in Bhushan et al. [3].

Reeff =
urefLref
ν + νt

(11)

p
′
=

pabs
ρu2

ref

+
ζ

′

Fr2
+

2k
′

3
(12)

There are numerous turbulence models based on eddy viscosity modelling of the Reynolds-
stress which present a solution to the closure problem. Examples of these models are
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one-equation models like Spalart-Allmaras [70] or two-equation models like k-ω from
Wilcox [81] or k-ε described in Launder & Spalding [48].

A widely used model, which was also applied in this work, is the blended k-ε/k-ω
turbulence model with the extension of the modification of the eddy viscosity to take
account of shear stress transport, originally based on Menter [54]. The k-ω model by
Wilcox [81] is specifically suitable for the sublayer of the boundary layer, but is also used
for the logarithmic part of the boundary layer. It does not involve damping functions and
allows simple Dirichlet boundary conditions. As this model shows a strong sensitivity to
the freestream value ωf outside the boundary layer, it is being turned off in favour for the
k-ε model which is superior to the k-ω model in freestream areas. The coupling between
those two models is achieved through a blending function F1, which is designed to be
one in the sublayer and logarithmic region and zero elsewhere. The original k-ω model
is multiplied with F1 and the k-ε model is being transformed into a k-ω formulation and
multiplied with (1 − F1) as shown in eq. (16). This way, the k-ω model is active in the
sublayer and logarithmic boundary layer region and the k-ε model in the free shear flow.

Additional to the simple blending of the two mentioned turbulence models (which is
called baseline model), Menter also proposed a modification of the eddy viscosity to take
account of the shear stress transport (SST). This modification was introduced due to the
effect, that the k-ω model fails to accurately predict pressure-induced separation. Again,
a blending function F2 is being used to distinguish between boundary layer flows and
free shear-layers to specify the respective eddy viscosity. This modification is supposed
to work much better in areas of adverse pressure gradients. The exact definition of the
blending function F1 and F2 can be seen in Menter [54].

The transport equation of the turbulent kinetic energy k and the specific dissipation
rate ω can be described for the baseline model of Menter by

∂k

∂t
+ uj

∂k

∂ξj
=τij

∂ui
∂ξj
− β∗kω +

∂

∂ξj

[
(ν + σkνt)

∂k

∂ξj

]
(13)

∂ω

∂t
+ uj

∂ω

∂ξj
=
γ

νt
τij
∂ui
∂ξj
− βω2 +

∂

∂ξj

[
(ν + σωνt)

∂ω

∂ξj

]
+ 2 (1− F1) σω2

1

ω

∂k

∂ξj

∂ω

∂ξj
(14)

with νt being the turbulent viscosity defined as:

νt =
k

ω
(15)

As two turbulence models are used, two sets of constants need to be provided. The con-
stants according to the k-ω and the k-ε model can be found in equation (17) respectively
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(18) and are blended using the function F1, where φ represents every single individual
constant.

φ = F1φ1 + (1− F1)φ2 (16)

σk1 = 0.5, σω1 = 0.5, β1 = 0.075, β∗ = 0.09, κ = 0.41, γ1 =
β1

β∗
− σω1κ

2

√
β∗

(17)

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, β∗ = 0.09, κ = 0.41, γ2 =
β2

β∗
− σω2κ

2

√
β∗

. (18)

Law of the wall

Wall functions have been investigated within this work, which is why they are briefly
explained in the following. The boundary layer is characterised through a velocity profile,
leading from ui = 0 at the wall to the freestream velocity ui = u∞ outside of the boundary
layer. The boundary layer thickness is a function of the Reynolds number and decreases
with increasing Reynolds number. The viscous sublayer is typically very small and the
dimensionless velocity u+ =

u||
uτ

increases linearly with the dimensionless wall distance
y+ = yuτ

ν
. Here, u|| describes the mean velocity parallel to the wall, y is the distance

normal to the wall, and uτ =
√

τw
ρ

the shear velocity with τw being the wall shear stress.

The viscous sublayer region is shown in figure 2.1 for y+ < 5.
Outside the viscous sublayer a logarithmic law describes well the velocity profile (see

e.g. Schlichting [64]), which is shown from 30 < y+ and can be generally described by

u+ =
1

κ
log
(
y+
)

+B (19)

The von Karman constant κ = 0.41 and an empirical constant B which may vary depend-
ing on the wall roughness are used for description of the logarithmic law. Two different
parameters are implemented into REX, taking account of wall roughness influence (∆B)
and pressure gradient effects (P+). Details on these parameters can be seen in Bhushan
et al. [3], but have not been used in this work.

In between the linear and logarithmic region is a buffer layer, where a transition from
linear to logarithmic form takes place.

When assuring a dimensionless wall distance of y+ < 1, the standard momentum and
turbulence transport equations can be used right up to the wall.

If a high grid resolution at the wall should be avoided, one can make use of wall
functions which model the near wall region instead of resolving it. The velocity in the
first, respectively second point away from the wall is derived using equation (19) in case
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Figure 2.1.: Turbulent boundary layer velocity profile

of y+
2,3 > 11.67 or with u+ = y+ for y+

2,3 ≤ 11.67. As this is inaccurate inside the buffer
region (5 < y+ < 30), those dimensionless wall distances should be avoided. Nevertheless,
a multi layer approach has been implemented into REX, which treats the buffer layer
between 5 < y+ < 30 separately and improving accuracy for this region (Bhushan et
al. [3]).

The definition of k and ω when using wall functions is based on Wilcox [81] when using
the two layer approach, respectively Kalitzin’s [44] and Esch & Menter [25], when using
the multi layer approach.

2.2.2. LES

The large-eddy simulation is part of DES/DDES models and is therefore briefly explained
in the following, as DDES has been investigated within this work. LES can be described
as a filtering of DNS, as only large eddies are being resolved in space and time and
smaller eddies are being modelled. This approach states its validity, as smaller eddies
provide only a small portion to the energy cascade, whereas large eddies provide the
biggest part. The velocity is defined using a filter G as shown in eq. (20) which is a
localised function and dependent on a length scale ∆ and the difference of the location
ξi − ξ̃i. A discussion of common filters can be found in Blazek [4]. The definition of ∆ is
still subject to discussions, as different approaches are used (e.g. ∆ = (∆ξ∆η∆ζ)1/3 or
∆ = max (∆ξ,∆η,∆ζ)). Eddies smaller than ∆ need to be modelled and eddies larger
are resolved directly. The velocity field ui is decomposed into the large scale eddies ui,
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which are being resolved and the sub-filter part ũi which needs to be modelled.

ui(ξi) =

∫
G(ξi, ξ̃i,∆)ui(ξ̃i)dξ̃i (20)

Filtering of the Navier-Stokes equation results in similar expressions as found in the RANS
equations, where only the large scale eddies are considered:

∂ (ui)

∂t
+
∂ (uiuj)

∂ξj
= − ∂p

∂ξi
+

∂

∂ξj

[
ν

(
∂ui
∂ξj

+
∂uj
∂ξi

)]
+ si (21)

Prediction of uiuj is being done by modelling the difference of the inequality uiuj 6= uiuj

defined by the so-called sub-grid scale (SGS) Reynolds stress τSij

τSij = − (uiuj − uiuj) (22)

SGS models need to simulate the energy transfer from large to sub-grid scales. A common
SGS model is the Smagorinsky model [65] which functions as an eddy viscosity model with

τSij −
1

3
τSkkδij = νt

(
∂ui
∂ξj

+
∂uj
∂ξi

)
= 2νtSij, (23)

where Sij is the strain rate of the large scale and τSkk represents the isotropic part of the
SGS stresses (Blazek [4]). The eddy viscosity is defined as

νt = C2
S∆2|S|, (24)

with CS being a model parameter which is approximately 0.2 but unfortunately not nec-
essarily constant in the flow field, as explained by Blazek [4]. |S| is the magnitude of
strain rate tensor and defined as |S| = (2SijSij)

1/2.
To resolve the eddies efficiently, an isotropic grid with equal spacings ∆ in every direc-

tion (∆ξ ≈ ∆η ≈ ∆ζ) is strongly advised as the maximum spacing defines the smallest
possible eddy being resolved (Spalart [68]). Pure LES hence requires a large amount of
cells to resolve the boundary layer as stated by Spalart et al. [72] with approximately
1.3 · 107 cells in the boundary layer region alone for a single wing of an air plane or
roughly 1011 grid points and 107 time steps for an airborne or ground vehicle. The un-
derlying Reynolds number for this estimation has been approx. Re = 107. Hence, similar
magnitudes could be expected for hydrodynamic simulations of ships and would lead to
enormous computational times. Also, traditional grid convergence is more subtle com-
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pared to RANS or DNS, as the partial differential equations in LES depend on the grid
spacing through the filtering process, defined by ∆.

2.2.3. DES

The detached-eddy simulation (DES) was primarily introduced by Spalart et al. [72]
in 1997. ’Detached’ refers to eddies outside boundary layers in contrast to ’attached’
eddies inside the boundary layers. DES can be described as ’a three-dimensional unsteady
numerical solution using a single turbulence model, which functions as a sub-grid scale
model in regions where the grid density is fine enough for a large-eddy simulation, and
as a Reynolds-averaged model in regions where it is not’ (Travin et al. [76]). Hence,
attached eddies will be modelled and detached eddies will be resolved. The idea to use a
RANS model within the boundary layer has its origins in the requirement of high numbers
of cells, if these regions would need to be handled using LES. Typically, attached eddies
are of less interest and smaller scale than detached eddies, which might have a significant
influence on following parts. This approach hence is aimed at fluid mechanical problems
at high Reynolds numbers and severe separation. In contrast to RANS simulations, DES
is able to resolve the three-dimensionality of the turbulence in a more accurate manner
when refining the grids, whereas RANS largely, but not completely, suppresses three-
dimensionality. Figure 2.2 shows the resolved vorticity isosurfaces of Q=100 (refer to
chapter 3.1) using a RANS method and DDES on the same grid. It can be clearly seen,
that DDES is able to resolve more vortical structures than RANS. Figure 2.2a and 2.2b
show the beginning of the vortex shedding cycle and figure 2.2c and 2.2d an intermediate
step of the cycle.
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(a) t/T = 0 with RANS (b) t/T = 0 with DDES

(c) t/T ≈ 0.5 with RANS (d) t/T ≈ 0.5 with DDES

Figure 2.2.: Comparison of vortex resolution inside the moonpool using RANS and DDES
at the beginning (upper pictures) and end (lower pictures) of a half vortex
shedding cycle.

DES can be implemented with the use of almost any RANS turbulence model, when
appropriately modifying the used length scale. The length scales lRANS respectively lDES
describe the scale of the local vortical structures and are defined to be

lRANS =

√
k

β∗ω
(25)

lDES = min (lRANS, CDES∆) . (26)
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The constant CDES can again be blended between the k-ε and k-ω model, using the
approach from Menter [54]. Therefore, CDES is defined the following way:

CDES = (1− F1)Ck−ε
DES + F1C

k−ω
DES, (27)

with Ck−ε
DES chosen as 0.61 and Ck−ω

DES as 0.78 according to Travin et al. [75]. It was
noted, that these values are valid for a hybrid upwind-central differencing scheme and
that schemes with higher dissipation may require lower values.

To finally extend the blended k-ω/k-ε turbulence model into a DES model, the dissi-
pative term of the k-transport Dk

RANS is being modified by substituting lDES for lRANS
the following way

Dk
RANS = β∗kω =

k3/2

lRANS
(28)

Dk
DES =

k3/2

lDES
(29)

Xing et al. [85] extensively validated turbulent flows around a surface-piercing NACA0024,
comparing surface-tracking methods and level set methods using RANS and DES with
the code CFDShip-Iowa. He concluded, that although RANS is able to resolve most of
the vortical structures and instabilities, DES offers a broader range of frequencies, which
matched very well the experimental data.

2.2.4. DDES

A major problem using DES is the possible failure of grid convergence due to the so called
modelled-stress depletion (MSD) or grid-induced separation (GIS) (see e.g. Caruelle [10],
Deck et al. [20] and Menter & Kuntz [55]). The source of the problem can be visualised
in figure 2.3, where the upper grid corresponds to a boundary layer grid where the wall-
parallel spacing ∆|| is much larger than the boundary thickness δ99. This is a suitable
grid for the RANS mode in DES. The lower right grid can be described as isotropic
with an equal grid spacing in all directions and much smaller than δ99. This grid is
suitable for the LES mode in DES. Spalart et al. [71] recommends a value of at least
∆ ≈ δ99/10 or better ∆ ≈ δ99/20. The problem occurs in the lower left grid, which
can be described as ambiguous and has wall-parallel grid spacings which are smaller
than δ99. These grids activate the DES limiter (lDES = CDES∆) prematurely, without
being fine enough to resolve the velocity fluctuations in the boundary layer using LES.
The premature activation of the DES limiter leads to a reduction of the eddy viscosity
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Figure 2.3.: Types of grid in boundary layers (Spalart [69])

without being balanced by LES resolved stresses.
Ambiguous grids mainly occur in three cases: First, when the grid is being refined

in order of seeking a grid convergence, second, when the distortion of the geometry re-
quires a high wall-parallel grid spacing and third, when the boundary layer thickens and
approaches separation. Several approaches have been made to circumvent MSD such as
scale-adaptive simulation (SAS) and turbulence resolved RANS (TRRANS) which do not
use the grid spacing in order to switch from RANS to LES (Travin et al. [77], Menter
& Kuntz [55]). Other approaches are zonal and hence rely on the manual definition of
boundary layers by the user, in which the DES limiter is switched off (Deck [21]). This
obviously is prone to errors and limited to simple problems. Another method is based
on using cell aspect ratios larger than unity as an indicator for boundary layers. This
however did not turn out to be robust enough, as e.g. grids in ship hydrodynamics use
high aspect ratios to resolve the free surface.

The delayed detached-eddy simulation (DDES) is based on the idea of Menter &
Kuntz [55], who are using the F2 or F1 blending function of the SST model to define
the boundary layer and ’delay’ the LES mode. These functions are one in the boundary
layer region and decrease to zero at the edge. The argument of the functions is propor-
tional to

√
k/ωy and describes the ratio of the internal length scale

√
k/ω of the turbulence

model in RANS mode (here being the k-ω model) and the wall distance y. This results
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in a modification of the length scale:

lDDES = lRANS − F1 ·max (0, lRANS − lDES) (30)

Using lDDES instead of lDES results in the significant change, that the length scale is now
dependent on the eddy viscosity additionally to the grid spacing, which makes it time-
dependent. This not only prevents the use of LES in boundary layers but also leads to a
more abrupt change from RANS to LES following separation.

2.3. Level set method

The free surface is modelled using a single-phase level set approach, which has been
discussed in Carrica et al. [9].

This approach has some advantages over multi-phase level set methods, as the interface
remains sharp and does not need a smoothing across the interface due to the jump in
density. Furthermore, the computation is performed within a single fluid with uniform
properties and the air phase only requires minor computational effort, leading to more
robust and often faster simulations. Stresses in the air phase are not captured, which is
why these should be of minor importance, as is usually the case in ship hydrodynamics.

The level set function φls is used to describe the signed distance to the captured inter-
face, which is located at φls = 0. The function is positive in water and negative in air.
The following transport equation is solved:

∂φls
∂t

+ uj
∂φls
∂ξj

= 0. (31)

The normal vector pointing into the water is defined as

ni = − ∂φls/∂ξi
|∂φls/∂ξi|

, (32)

A jump condition at the interface needs to be enforced in the single-phase approach, in
contrast to multi-phase level set methods. The dimensionless pressure at the fluid interface
reduces to p′ = ζ ′int/Fr

2 when considering the interface jump condition and neglecting
surface tensions, as shown in Carrica et al. [9]. ζ ′int represents the non-dimensional vertical
component of the earth fixed cartesian coordinates at the interface. The pressure is set
to be constant for the air phase as an approximation.

Re-initialisation is important to accurately determine the normal at the interface,
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which is used in the boundary condition and to extend velocities into the air phase.
Re-initialisation is done by applying equation (33).

ni
∂φls
∂ξi

= sign (φ0,ls) , (33)

with φ0,ls being the level set function prior to re-initialisation and ni the normal pointing
to the fluid being re-initialised. Due to the dependence of ni from φls, equation (33) is
non-linear and requires and iterative approach to converge.

2.4. Rigid body motions

Simulations in REX can be performed in an earth fixed or ship fixed frame of reference.
The earth fixed system is considered to be inertial, which is a valid simplification for most
marine hydrodynamic applications. The cartesian earth fixed reference frame (ξ, η, ζ) can
move at a constant velocity, which could be used for simulations of passing ships. In
combination with use of overset grids, which are described in chapter 2.5, this gives full
freedom over the type of simulations being performed.

Every body being investigated holds a body fixed coordinate system (xi,yi,zi), being
non-inertial for moving bodies. Index i relates to the number of objects and is one in
this work, which is why it is being neglected in further notations. Note that the following
description can be applied to each body individually, if multiple objects are investigated.

Vector transformation from cartesian ship fixed to cartesian earth fixed frame of refer-
ence can be obtained through ξη

ζ

 =

ξ0

η0

ζ0

+ T

xy
z

 , (34)

where (ξ0, η0, ζ0)T are coordinates of the origin of the ship fixed frame of reference, de-
scribed in the earth fixed frame of reference. T is the transformation matrix, composed
by three rotations using the Euler angles and is shown in equation (35). Derivation of the
transformation matrix can e.g. be seen in Fossen [29]. The Euler angles are defined such
that the ship is rotated with a yaw angle ψ around the vertical inertial coordinate axis
~ζ, pitch angle θ around a hybrid axis and roll angle φ around the longitudinal ship fixed
coordinate axis ~x. The hybrid axis is formed by the normalised cross product of ~ζ and ~x.
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The hybrid coordinate system is denoted with (x∗, y∗, z∗).

T =

cosψ cos θ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

sinψ cos θ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 (35)

Translational and rotational ship motions are described by the vector

(ξ0, η0, ζ0, φ, θ, ψ)T , (36)

Components of the angular velocity vector are defined in the ship fixed coordinate system
by: pq

r

 =

 φ̇− ψ̇ sin θ

ψ̇ cos θ sinφ+ θ̇ cosφ

ψ̇ cos θ cosφ− θ̇ sinφ

 (37)

Parameters with a dot represent time derivatives of the respective quantity. Forces and
moments are denoted with

(Fx, Fy, Fz,Mx,My,Mz)
T . (38)

The forces are computed in the inertial system, where the momentum equations are solved
and hence stresses known. After completion of force determination, they are transformed
into the ship fixed coordinate system, where needed to solve the rigid body equations.
Details on this procedure can be found in Xing et al. [84].

The rigid body equations can be derived from momentum and angular momentum
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equations and are generally described for non-inertial systems by (see e.g. Fossen [29]):

Fx = m

(U̇0 + qW0 − rV0

)
−xG

(
q2 + r2

)︸ ︷︷ ︸
=0

−yG (ṙ − pq)︸ ︷︷ ︸
=0

+zG (q̇ + pr)︸ ︷︷ ︸
=0

 (39)

Fy = m

(V̇0 − pW0 + rU0

)
+xG (ṙ + pq)︸ ︷︷ ︸

=0

−yG
(
p2 + r2

)︸ ︷︷ ︸
=0

−zG (ṗ− qr)︸ ︷︷ ︸
=0

 (40)

Fz = m

(Ẇ0 + pV0 − qU0

)
−xG (q̇ − pr)︸ ︷︷ ︸

=0

+yG (ṗ+ qr)︸ ︷︷ ︸
=0

−zG
(
p2 + q2

)︸ ︷︷ ︸
=0

 (41)

Mx = Ixxṗ− (Iyy − Izz) qr−Ixy (q̇ − pr)︸ ︷︷ ︸
=0

−Iyz
(
q2 − r2

)︸ ︷︷ ︸
=0

−Ixz (ṙ + pq)︸ ︷︷ ︸
≈0

+m

yG (Ẇ0 + pV0 − qU0

)
︸ ︷︷ ︸

=0

−zG
(
V̇0 − pW0 + rU0

)
︸ ︷︷ ︸

=0

 (42)

My = Iyy q̇ − (Izz − Ixx) pr−Ixy (ṗ+ qr)︸ ︷︷ ︸
=0

−Iyz (ṙ − pq)︸ ︷︷ ︸
=0

−Ixz
(
r2 − p2

)︸ ︷︷ ︸
≈0

+m

zG (U̇0 + qW0 − rV0

)
︸ ︷︷ ︸

=0

−xG
(
Ẇ0 + pV0 − qU0

)
︸ ︷︷ ︸

=0

 (43)

Mz = Izz ṙ − (Ixx − Iyy) pq−Ixy
(
p2 − q2

)︸ ︷︷ ︸
=0

−Iyz (q̇ + pr)︸ ︷︷ ︸
=0

−Ixz (ṗ− qr)︸ ︷︷ ︸
≈0

+m

xG (V̇0 − pW0 + rU0

)
︸ ︷︷ ︸

=0

−yG
(
U̇0 + qW0 − rV0

)
︸ ︷︷ ︸

=0

 (44)

Terms with an under-brace are zero, if the inertia tensor Iij with i = j = [x, y, z], has
only entries at the diagonal and the ship fixed coordinate system is placed in the centre
of gravity (xG, yG, zG)T . U0, V0 and W0 are the velocity components of the origin of ship
fixed frame of reference.

Solution of rigid body motion equations is done using a predictor/corrector implicit
approach, shown in Wilson et al. [83].
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2.5. Overset grids

A dynamic overset grid approach is implemented into REX. The computational domain
consists of typically multiple block-structured grids, whose cells overlap each other. Every
grid point is either marked as ’active’, ’interpolated’, or ’hole’. Hole points are excluded
(blanked) from computations as these belong to grids which lay inside of a body, or out of
the domain. Each grid with hole and active points is having interpolated points located
in between these regions, where interpolation of solutions between overlapping grids takes
place. The so called domain connectivity information (DCI) is re-computed at run time,
as the relative grid positioning changes for arbitrary body motions. The determination
of DCI is done using the code Suggar++ (Noack et al. [59]). The overlapping region can
be reduced by Suggar++ by blanking unnecessary points, which improves computational
time.

Special care needs to be taken when interpolating at the single-phase free surface. This
has been further discussed in Carrica et al. [7].

The grids follow a hierarchical structure of a parent-child approach, which e.g. allows
rudders to move along with the ship mounted to, while performing rotations around its
axis.

The grids which have been assembled and the domain connectivity information com-
puted for in this work are shown in chapter 5.2. Only single body simulations have been
performed and no moving appendages were present.

Note that each block-structured grid, used for the grid assembly, needs to be assigned to
a new processor. Reducing the number of blocks hence reduces the need of higher number
of processors. Furthermore, the number of cells in each block should be a multiple of
other block cell numbers. This ensures that after domain decomposition, each processor
has a similar number of cells assigned to, which improves parallel computation efficiency.

2.6. Boundary conditions

This section briefly describes the boundary conditions, which have been applied in the nu-
merical simulations. Table 2.1 presents an overview of the respective boundary conditions.
A description, where these conditions are used, is given in chapter 5.3. The boundary
condition of the level set equation at no-slip boundaries is defined with ∂φ/∂n = 0. This
is under certain conditions, such as submerged walls parallel to the free surface, imprecise
but especially for the geometry used within this work of minor importance and is therefore
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seen as an acceptable assumption.

2.6.1. Wave boundary condition

If waves are being investigated, they can be already initialised in the computational
domain from the first iteration on. This can save computational time, especially if the
computational domain is large and the propagation of waves from the inlet on would
take long to pass the investigated object. In these cases, the development of the flow
field and ship wave system will be quicker, than waiting for the generated waves to pass.
However, it would be also possible to initialise the domain using the solution of a calm
water simulation, generate the waves at the inlet and wait until the first developed waves
will pass the object. The former approach has been used within this work.

In both cases, the wave properties are only given at the inlet face, by superposition of
earth fixed orbital velocities and the flow velocity:

ui = ui,inf + ui,W , (45)

with ui,inf being e.g. the ship speed and ui,W being the orbital velocities due to the chosen
wave theory. ui,inf is defined by vector [ufullspd, vfullspd,wfullspd]T from table 2.1. The
simulations in this work consisted either of the ship at forward velocity or the ship at rest.
For forward velocities, ufullspd was set to 1 and the Froude number defined the velocity.
For the ship at rest, ui,inf was set to 0 and a fictitious Froude number of Fr = 0.15 was
chosen to perform the simulations. Only regular waves according to linear theory have
been used in this work, whose boundary conditions can be described for deep water in a
non-dimensional way as follows (see Carrica et al. [8]):

uW = ζW

√
kW
Fr

ekW ζ cos

(
kW (ξ cos(µW )− η sin(µW ))−

√
kW
Fr

· t+ Φ

)
cos(µW ) (46)

vW = −ζW
√
kW
Fr

ekW ζ cos

(
kW (ξ cos(µW )− η sin(µW ))−

√
kW
Fr

· t+ Φ

)
sin(µW ) (47)

wW = ζW

√
kW
Fr

ekW ζ sin

(
kW (ξ cos(µW )− η sin(µW ))−

√
kW
Fr

· t+ Φ

)
(48)

(49)

ζW represents the wave amplitude,
√
kW/Fr the non-dimensional wave frequency using the

wave number kW = 2π/λW , µW is the wave direction, Φ the phase shift and ξ respectively
η the horizontal coordinates.
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The approach of defining superposed values from freestream velocity and orbital wave
components has often been successfully applied, e.g. by Cura Hochbaum & Vogt [18], el
Moctar et al. [23], or Wilson et al. [82]. An alternative approach would be to directly
numerically model the deflection of the wave generator. This is only beneficial if experi-
ments have been conducted in close proximity to the wave generator and waves were not
fully developed yet, which could be reproduced within the numerical simulations.

The boundary conditions for waves are adjusted if numerical wave damping towards
a freestream condition is applied, as further explained in chapter 2.8. The boundary
face is then treated as without waves being present. This ensures that conditions at the
boundary face and in the sponge layer are consistent.

2.7. Moonpool field initialisation

The initialisation of the field values within the computational domain is being done at
the very beginning of the computation and can be seen as a first guess of the solution in
every cell. The initial velocity is uniformly distributed and assigned in the whole grid. If
waves are applied, the appropriate wave theory is being used to initially deflect the free
surface. Furthermore, the pressure and orbital velocities due to waves are being addressed
to every cell.

For this study, the initialisation of the field has been modified, to take account of the
moonpool in a more efficient way. No modification, especially of the velocity field, would
result in a momentum of the entrapped water in the moonpool. The non-zero velocity
and the deflected free surface would cause a strong sloshing and also piston type motion
of the entrapped water and hence strongly oscillating forces and motions, which would
be damped only slowly during the subsequent time iterations. Therefore, the moon-
pool boundaries are prescribed in the input file for REX and the field values within the
moonpool treated differently than for the rest of the initialised field. These modifications
can be seen in figure 2.4. Figure 2.4a shows a solution after the first iteration, if the
initialisation inside the moonpool is not treated differently than the rest of the domain
(ui = ui,inf +ui,W , p = pW , φ = −ζ+ζW ). Figure 2.4b on the other hand shows the initial-
isation of the moonpool with ui = 0, p = 0 and no free surface deflection (φ = −ζ), which
is the flow field initialisation inside the moonpool that has been chosen for all simulations.
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(a) Unmodified initialisation in the moonpool (b) Modified initialisation in the moonpool

Figure 2.4.: Different initialisation of flow field inside the moonpool

2.8. Wave damping

There are two areas of application, where the damping of waves should be considered in
the simulations performed during this work. First, one needs to define if the solution
domain is representing a finite or infinite region. Finite regions in seakeeping simulations
are almost non-existent, as either the domain would need to be very large, which is due to
computational reasons practically impossible, or the actual problem would need to deal
in a very restricted region around the ship. The latter problem is rarely the case, if at
all for manoeuvring investigations, but especially not when doing a seakeeping analysis.
Therefore, although an infinite region is considered, the domain needs to be restricted
to a finite domain, which results in the necessity for suitable boundary conditions. This
especially applies to the inlet and outlet face of the computational domain. The wave
properties regarding the free surface elevation and the orbital velocities need to be defined
at the inlet face. This has been explained in chapter 2.6. Important for the stability of the
simulation, but in cases of simulations with longer time durations also for the accuracy
of the numerically generated wave, is the handling of the outlet boundary condition. The
outlet boundary condition can be, similar to the inlet boundary condition, seen as an
artificial boundary condition and hence needs to ensure, that the flow travels through the
face undisturbed and unreflected. The best way to avoid reflections at the outlet and
hence to avoid computational instabilities and affection of the desired wave elevation, is
to ensure that the flow field at the outlet has purely horizontal components of the velocity
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and that the free surface elevation is zero. Therefore, the flow field needs to be modified
which can be achieved with a suitable damping approach.

A second application of wave damping in the case of investigating the flow field in a
moonpool is due to the strongly 3-dimensional flow within the moonpool. This causes
severe vortices due to separation at the leading edge of the moonpool opening at the
bottom of the ship, as well as strong surface elevations in the moonpool, even in calm
water conditions. There are several approaches to circumvent or reduce especially the
latter phenomenon as has been discussed in chapter 1.1. A common way is to install
perforated sheets before the wall of the moonpool, causing a damping of the horizontal
velocities. Modelling these perforated sheets cannot be done in a practical manner using
REX, as this would lead to an immense increase in cells and a highly complicated grid,
especially with the requirement of body-fitted block structured grids. Therefore, a suitable
approach in terms of artificial boundary conditions should be applied to consider the effect
of perforated sheets in a numerical manner.

2.8.1. Dissipation due to cell elongation

One of the most simple and also very effective ways to damp the wave field in a certain
region is to smoothly expand the cell lengths in wave travelling direction. Cell elongation
can be done solely in the horizontal plane or on all three dimensions. This results in
numerical dissipation especially of the surface elevation, as the grid gets too coarse to
further resolve waves. This strategy has e.g. been successfully applied by Cura Hocbaum
& Vogt [18]. One might argue that a disadvantage is the increase of the computational
domain due to the elongation of the cells. This usually only affects the size of the domain,
which is in most cases not critical, rather than an increasing number of cells, which would
be more difficult to justify. The approach is especially suitable for the outlet of a domain,
as one is usually not interested in the flow field far behind the ship. It can however not
be applied in the moonpool, as the boundary layer resolution at the walls prescribe the
cell size. Attention has to be paid to the factor by which the cells are elongated, as a too
rapid increase of the cell size can again lead to reflection effects. Cell elongation at the
domain outlet has been used in this work for all simulations in order to achieve a good
wave dissipation and hence little wave reflections.

2.8.2. Damping terms in the momentum equation

One solution of the radiation problem of waves is based on Sommerfeld’s method [66].
Sommerfeld argued, that the radiation problem could be modified by applying a small
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damping term which leads in infinity to the desired radiation boundary condition. The
damping could be applied by adding the terms −dui− µ∂

2ui
∂ξ2i

to the momentum equation.
These terms are dependent on u and the second-order derivatives with d and µ > 0. µ is
called by Israeli & Orszag [40] a linear viscous damping coefficient and d a linear ’Newton
cooling’ or ’friction’ coefficient. It needs to be emphasised, that in this description, d and
µ are constants and not depended on the coordinates ξi.

This leads to a continuous damping of the desired term. The problem with this approach
is that the damping term needs to be small enough to ensure the accuracy of the desired
wave field at the area of interest. This however results in the necessity for a very large
domain, to ensure that the wave is being damped effectively towards the outlet. Israeli
and Orszag [40] stated that in this way more than 99% of the computational domain is
wasted outside the area of interest, which makes it highly ineffective.

2.8.3. Sponge layers

The general idea of sponge layers are based on Chan’s [12] method and have been primarily
introduced by this name in Israeli & Orszag [40]. The main idea is that the above
mentioned terms d and µ are allowed to vary with ξi. This enables that damping terms
can be set to zero in the area of interest, to ensure a non-affected computation and non-
zero within the sponge layer to apply an efficient damping towards the outlet. If the
damping term is changed abruptly, severe reflections will be caused. Having a constant
damping term across the sponge layer hence requires a small term. Israeli and Orszag [40]
stated that choosing a constant µ and d in the sponge layer leads to a minimum width
of the sponge layer of 15 wave lengths to ensure a reflection coefficient of 1%. This is
a significant improvement compared to the steady damping mentioned above, but still
requires an undesirable large size of the domain for the damping.

It is therefore necessary to vary the magnitude of the damping terms within the sponge
layer to allow higher damping terms. This is achieved by using the distance function α,
which is zero at the beginning of the sponge layer and one at the end. Multiplication
of the damping constant c with α leads to a gradually increasing damping term d in the
sponge layer. The ’Newton cooling’ damping term is more dissipative than the ’viscous
damping’. Hence, only the damping term d(ξi) is considered in the further investigations.
Israeli & Orszag suggested a damping term with a potential distance function, which has
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been extended in this work to the choice of a cosine distance function:

0 ≤ ξi < ξi,start d(ξi) = 0 (50)

ξi,start ≤ ξi ≤ ξi,end


d(ξi) = c ·

potential distance function︷ ︸︸ ︷
(n+ 1) · (ξi − ξi,start)n

(ξi,end − ξi,start)n

d(ξi) = c · cos

[
π

2

(
ξi − ξi,start

ξi,end − ξi,start
+ 1

)]2

︸ ︷︷ ︸
cosine distance function

(51)

ξi,start is the beginning of the sponge layer, ξi,end the end, n the order of the distance
function and c is the damping constant, defining the total magnitude of d. The order
n can be chosen e.g. between n = 1, . . . , 4, which leads to the distance functions shown
in figure 2.5. Note that d is a function of the horizontal directions ξ and η, whereas it
remains constant within a given zone in vertical direction ζ. A time dependence is usually
not necessary, but may be required if the grid inside the sponge layer changes. The chosen

0
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cos

i,start i,end

Figure 2.5.: Distance functions for different orders n

potential description of d has the advantage that the integral over the length of the sponge
layer equals the damping constant c for all n∫ ξi,end

ξi,start

d(ξi)dξi = c. (52)

Hence, the same damping strength dependent on c is applied for every choice of order
equivalently.
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Israeli and Orszag have shown that, using this method, the reflection of waves can be
reduced significantly (in general by less than 5%) for sponge layer lengths up to one wave
length at a damping constant of c = 1 or slightly higher. Smaller sponge layer lengths
lead to more reflections of approximately 25% or less.

The approach of Israeli and Orszag has been implemented into REX. The source term
which is applied to the momentum equation consists of a multiplication of the damping
term d and the respective velocity difference between the ’actual’ velocity ui and the ’de-
sired’ velocity ui,target. The term ui contains all velocity contributions such as the flow
velocity, orbital velocities of the waves and grid velocity. The desired velocity can be
zero, which would be the case when applying the approach in the moonpool, or a velocity
field such as freestream or orbital velocities, when applying at the domain outlet. When
choosing the freestream velocity as target velocity, all orbital wave velocity components
will be dissipated. Using the superposed freestream and orbital wave velocity as target
velocity leads to a conservation of the undisturbed wave. Undesired velocities will be dis-
sipated following this approach. Undesired velocities are deviations of the target/desired
velocity. The momentum equation is then modified in the following manner:

Dui
Dt

= − ∂p
∂ξi

+
∂

∂ξj

[
1

Reeff

(
∂ui
∂ξj

+
∂uj
∂ξi

)]
+ si−d(ξ, η, ζ, t) (ui − ui,target) (53)

D/Dt is representing the material derivative. Note that due to the non-dimensional
description of equations within REX, the damping constant of unit [1/s] is made non-
dimensional using c′ = c · Lref/uref.

It should be mentioned that only velocities are being damped. No modification of the
level set approach to damp the wave elevation is applied.

Furthermore, the damping terms are treated implicitly. This is achieved, by splitting
the damping term and adding d(ξi) to the diagonal of the algebraic system of equation
and subtracting d(ξi) (−ui,target) from the source terms.

A visualisation of the sponge layers for the outlet and moonpool can be seen in figure 2.6.
The achieved results of this damping approach are discussed in chapter 2.8.6.

2.8.4. Analytical far field solution

Another approach to treat wave damping has been described in detail by Jacobsen et
al. [42]. The idea is very similar to the above mentioned sponge layer approach with
the difference that no modification of the momentum equation is being done in a direct
manner. Sponge layers are defined where the computational solution (’φcomputed’) of the
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(a) Visualisation of the distance function at
the domain outlet

(b) Visualisation of the distance function in
the moonpool

Figure 2.6.: Different applications of sponge layers for the wave damping

velocities and phase elevation are mixed with the analytical solution (’φtarget’), determined
by the appropriate wave theories. This is being shown in eq. (54). The mixing is being
done using the distance function α to avoid a rapid change in the solution and hence
improve the stability of the computation.

φ = (1− α)φtarget + α · φcomputed (54)

The generation and absorption of waves for harmonic and natural waves has e.g. been
investigated on ship hydrodynamical aspects by Löhrmann & Cura Hochbaum [52] using
the flow solver OpenFoam-2.3.0. Good results have been achieved using this method and
solver for incoming waves. A similar approach has been implemented into REX, but
was not successful as the damping of waves happened too fast in space, causing artificial
reflections. Therefore, the original approach of Israeli & Orszag has been used for all
further simulations.

2.8.5. Reflection coefficient

To determine the effectiveness of damping waves through the above mentioned methods, it
is necessary to define a suitable criteria for the reflection. It is almost impossible to damp
all of the generated waves. The effectiveness of the damping respectively the amount of
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reflection is characterised through the reflection coefficient R, which is defined as

R =
ζR
ζI
, (55)

with ζR being the amplitude of the reflected waves and ζI the amplitude of the initial
waves. It is therefore necessary to determine these two amplitudes from the time signals
of one or more probes. There are a number of different methods for this purpose, which
will be discussed in the following.

Regular waves

The easiest way of determining the reflection coefficient is, when only regular waves are
considered. The reflection of a regular wave results in an envelop of superposed waves,
namely the incident wave travelling in the forward direction and the reflected wave trav-
elling in the opposite direction as shown in equation (56) and (57).

ζI(ξ, t) = ζI · cos (kW ξ − ωW t+ ΦI) (56)

ζR(ξ, t) = ζR · cos (kW ξ + ωW t+ ΦR) (57)

ξ is the coordinate, ωW the circular wave frequency, t the time and ΦI and ΦR are the
phase angles of the incident and reflected wave respectively. Superposition of these waves
can simply be expressed as:

ζ(ξ, t) = ζI(ξ, t) + ζR(ξ, t), (58)

which forms an envelope such as exemplary shown in figure 2.7. It can be seen, that the
envelop has a maximum and minimum amplitude respectively height, named Hmax and
Hmin. This can be explained by the superposition and distinguishing of the amplitudes,
depending on the phase shift of the two travelling waves. Hence Hmax respectively Hmin

can be expressed as:

Hmax = 2 · (ζI + ζR) (59)

Hmin = 2 · (ζI − ζR) (60)

and the reflection coefficient results in:

R =
ζR
ζI

=
Hmax −Hmin

Hmax +Hmin

. (61)
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Figure 2.7.: Incident wave with amplitude ζI = 1 in red and a reflected wave of amplitude
ζR = 0.5 in green resulting in a envelope of the superposed wave in blue

Note that a regular wave, which is reflected and travels in the opposite direction can be
re-reflected where it has been generated. The re-reflected wave is now propagating forward
again and hence forms a new initial wave which is a superposition of the generated wave
and the re-reflected wave. Hence it is important to distinguish between reflected and
multi-reflected waves.

2-point-method

When having an irregular wave to be analysed, more complex approaches need to be
applied. Such methods have been introduced by Thornton & Calhoun [74] or Goda &
Suzuki [35], where the latter used a Fast-Fourier-Transformation to determine the incident
and reflected spectra. The wave elevation is measured at two probes of known positions
which are in line with the direction of wave propagation. The basic principle is similar to
the above mentioned approach

The main assumption is, that irregular waves are linear superpositions of a discrete
number of regular wave components, propagating at their own frequency, amplitude and
random phase. The phase velocity is described by the dispersion relation. Equation (58)
applies here in the same way, only that equation (56) and (57) are rewritten for an irregular
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wave having j harmonical components

ζI(ξ, t) =
N∑
j=1

[ζI,j cos(kW,jξ − ωW,jt+ ΦI,j)] (62)

ζR(ξ, t) =
N∑
j=1

[ζR,j cos(kW,jξ + ωW,jt+ ΦR,j)] . (63)

The signal at two wave probes is Fourier analysed and their respective coefficients can be
used to describe the energy spectra of the initial and reflected waves EI(ωW ) and ER(ωW ).
The energy spectra is derived from integration of the respective amplitude spectra SI and
SR over the frequency range. Derivation of the respective energy spectra from the Fourier
coefficients is shown in detail in appendix A.1. Setting the spectra into relation, the
overall reflection coefficient R can be expressed to be:

R =

√
ER
EI

. (64)

The frequency range for a given probe spacing is recommended as:

fmin = ∆x/λmax = 0.05 (65)

fmax = ∆x/λmin = 0.45 (66)

The method is sensitive to errors due to:

1. Transversal waves and other disturbances

2. The interaction of incident and reflected waves, which can cause non-linearities and
are not covered by the linear approach.

3. Non-linear harmonic terms which do not apply to the general dispersion relation
ω2
W = kWg tanh(kWh), with h being the water depth.

4. Signal noise or other measurement errors.

3-point-method

To overcome some of the uncertainties with the 2-point-method, Mansard & Funke [53]
proposed using a least squares method, based on analysing three or more probes and
minimising the error to determine the incident and reflected spectra. A detailed derivation
of the 3-point-method is shown in appendix A.2.
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The following probe spacings are recommended for this method:

ξ12 = λW/10 (67)

λW/6 < ξ13 < λW/3 and ξ13 6= λW/5 and ξ13 6= 3λW/10 (68)

Compared to the 2-point-method, the 3-point-method provides a broader range of fre-
quencies due to fewer critical probe spacings and less sensitivity due to noise signals and
other discrepancies as mentioned above.

The working principle is shown in figure 2.8, where the method has been tested for
an analytical solution. Five harmonic wave components with different frequencies, am-
plitudes and reflecting amplitudes (upper left picture) are composing an irregular wave
train at three different probes (upper right picture). All three signals are being Fourier
transformed (lower left picture) and using the relationship mentioned in the appendix,
the initial amplitudes, reflected amplitudes and the reflection coefficients are determined
(lower right picture). The initial and reflected amplitudes, as well as the reflection coef-
ficients and their respective errors compared to the input signal are given in table 2.2. It
can be seen, that the method is able to determine accurately all the desired values out of
a random irregular signal.

Table 2.2.: Results from the 3-point-method

Input Output

f [Hz] ζI ζR R ζI ζR R 1−∆R [%]

0.2 0.200 0.0200 0.100 0.198 0.0197 0.0993 99.3
0.5 1.000 0.4850 0.485 1.000 0.4850 0.4850 100
1.3 0.400 0.1000 0.250 0.399 0.0998 0.2500 100
2.0 0.300 0.0375 0.125 0.300 0.0372 0.1240 99.2
3.0 0.100 0.0075 0.075 0.100 0.0074 0.0735 98.0

Problems with the 2-point-method / 3-point-method

Comparing the accuracy of the results from the 2-point-method and the 3-point-method,
only minor differences can be detected for the irregular signal used in figure 2.8. Neverthe-
less, due to its nature, the 2-point-method can only examine a much smaller bandwidth of
frequency compared to the 3-point-method, as has been mentioned before. This however
very much depends on the chosen probe spacing.

It has to be noted, that the results in table 2.2 have been reached using an irregular
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Figure 2.8.: Working principle of the 3-point-method
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signal, which is periodically over the examined time frame. This is ideal for the Fourier
transformation and yields accurate results with errors of less than 2.5%. When using the
same signal, but setting the boundaries of the signal to be non-periodic, the results become
much less reliable, as can be seen in figure 2.9, where the reflection coefficients have been
determined with the same signal from figure 2.8, but cut of at 19.6s. The reflection
coefficients from the fully periodic signal are shown in grey. When focusing on the known
frequencies (indicated in figure 2.9 with dashed lines), the deviation of the determined
amplitudes and reflection coefficients is acceptable compared to the periodic signal. Only
the lowest and highest frequencies show larger deviations. Nevertheless, for unknown
signals and hence unknown main frequencies, this result cannot be seen as satisfying.
Reason for the inaccuracy is the side lobe leakage, which can be seen when comparing the
Fourier transform of figure 2.9 and 2.8. Circumvention of this effect would be necessary
to achieve acceptable results. Solutions for this might be e.g. window averaging, which
smooths the spectra but comes at cost of a reduced resolution. In general, smoothing
should be applied with caution, which has also been stated by Riekert [61].
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Figure 2.9.: Results of 3-point-method for non-periodic signal

Comparison of energies

A third method is introduced which is much less detailed as the previously mentioned
methods, but can give an indication of the reflection, once the other methods fail. The
biggest problem of the above mentioned 2-point/3-point-methods is seen to be the error
source due to side lobe leakage when using non-periodic signals.
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Therefore, a simpler method has been introduced, which determines the energy of a
wave train according to its elevation by

Eactual(t) =

∫
ξ

∫
η

ζ2
actualdξdη, (69)

where ζactual describes the measured elevation in the x-y-plane and corresponds to ζactual =

ζI + ζR. This can be compared against the target energy Etarget corresponding to ζI and
a reflection coefficient can be determined:

Etarget(t) =

∫
ξ

∫
η

ζ2
I dξdη (70)

R(t) =

√
Eactual(t)

Etarget(t)
− 1. (71)

Note that to get the correct energy, equation (69) and (70) would need to be multiplied
with (1/2ρ · g), which can be left away, due to comparison of both equations in (71). The
result is a, depending on the number of periods within the considered plane, fluctuating
energy Eactual and Etarget as well as a hence fluctuating reflection coefficient R over time.
A good indication of the reflection coefficient is the maximum value of R over time, once
the first reflecting waves arrived fully within the considered plane.

A differentiation of initial and reflected amplitude for different frequencies is not possible
with this method. Furthermore, the reflection coefficient cannot be assigned to individual
frequencies. It has to be noted as well that for the determination of the reflection coeffi-
cient, an ideal target wave is assumed to calculate Etarget. This method cannot distinguish
if the actual measured initial amplitude deviates from the desired target amplitude, which
can have an influence on the accuracy of the reflection coefficient.

2.8.6. Results of the implemented wave damping approach

Within this section, the implemented method of sponge layers into the flow solver is
verified using suitable methods for determining the reflection coefficient. Therefore, a
matrix with variations of damping constant c, length of the sponge layer LSL and different
distance functions using a cosine function or the exponential functions recommended
by Israeli & Orszag [40] with different orders n has been simulated. Simulations were
conducted in a numerical wave flume with generation of waves on one side and a solid wall
on the opposite site. Conservation of energy requires that the reflected wave amplitude
is of the same height as the initial wave amplitude if no damping is applied and no
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(a) 3-point-method (b) 2-point-method (c) Comparison of energies

Figure 2.10.: Reflection depending on c and LSL/λ for cosine weighting function

dissipation takes place. Note that this investigation only focused on damping the waves
towards a zero amplitude, as this is required when using the damping approach inside
the moonpool. The option of damping the waves towards an undisturbed wave elevation
has been implemented at the end of this work and hence was not included into this test
matrix.

Before discussing the results of this matrix, the chosen method to determine the reflec-
tion coefficient needs to be explained. As already mentioned, the 3-point-method should
be the most accurate one and being preferred over the 2-point-method and the compar-
ison of energies. Caution needs to be taken though, when applying the method to the
respective signal, due to inaccuracies because of side lobe leakage. Applying this method
generally provides good results. Nevertheless, problematic are the resulting reflection
coefficients at low frequencies, as will be shown later. The same applies to the 2-point-
method. Despite being the simplest and less detailed method, the comparison of energies
provides plausible results, which coincide well with the observations. Figure 2.10 shows
the interrelations between the damping constant c and the non-dimensional sponge layer
length LSL/λW for the cosine distance function and for all three methods. The following
damping constants have been investigated:

c = 0.1, 0.5, 1, 5, 10 (72)

It can be seen, that all three methods yield similar results. Especially the 2-point
method and 3-point-method only differ in details. The largest difference is observed
when comparing the peak of the reflection coefficient of the 2 and 3-point-method with
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the comparison of energies. The ideal reflection of 100% is almost reached using the
comparison of energies, whereas the 2 and 3-point-method only reach about 86%. The
value of the reflection coefficient for high reflections is strongly dependent on the lower
boundary of the frequency range. For this investigation ωW,min was set to 2 rad s−1.
For higher reflections, the lower frequencies contribute significant initial and reflected
amplitudes to the spectrum and hence to the overall reflection coefficient, when integrating
the amplitude spectra over the frequency range. A comparison of the result for low
reflection and high reflection is shown in figure 2.11. It can be seen, that for the case
with low reflection (left figure), reflection is correctly determined at the initial frequency,
indicated by the dashed line. For the case with higher reflection (right figure) significant
reflection coefficients are predicted at low frequencies. Furthermore, reflection also occurs
in the neighbouring frequencies of the initial frequency (dashed line). The latter is to some
extend plausible, as the reflection phenomena can likely lead to a transfer of its energy to
neighbouring frequencies, whereas reflection at low frequencies seems less plausible. Also
note that reflection coefficients higher than 1 are being determined, which is implausible.
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Figure 2.11.: Results of 3-point-method for different sponge layer lengths

Due to these uncertainties, the comparison of energies is used for the determination
of reflection coefficients. Although this method yields an integrated value and does not
distinguish between different frequencies nor distinguishes between an initial and reflected
amplitude, results are more plausible for all cases and corresponds well with observations.

It can be seen from figure 2.10, that a damping constant of 5 seems to be ideal to
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Figure 2.12.: Reflection depending on c and sponge layer length for the cosine distance
function

damp almost any wave length. Smaller damping constants especially smaller than 1 are
less effective and lead to partially severe reflections. Damping constants larger than 5
are still effective, although the reflection can increase again for some wave lengths. This
can be seen more clearly in figure 2.12a where the reflection for a damping constant of 10
increases for the cases LSL/λW = 0.5, 0.75 and 1 compared to the next smaller damping
constant of 5.

Looking at the length of the sponge layer, a general trend can be seen. The longer
the sponge layer, the fewer reflections occur. One wave length seems to be the minimum
length of the sponge layer, to damp the waves in an efficient way. If the length becomes
shorter, the momentum equations are changed rapidly over space and the solution would
need to be changed radically. Hence, waves are only damped partially and reflected more
severely for short sponge layer lengths. Longer sponge layers than 1.5 wave lengths seem
to be not necessary, as the reflection is already at a minimum. The results regarding the
minimum damping constant c and minimum length of the sponge layer agrees very well
with the results from Israeli & Orszag [40].

For these investigations, the length of the cells in ξ-direction (direction of wave travel-
ling) has been kept constant. Therefore sponge layers longer than 1.5 wave lengths would
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lead to an unnecessary high amount of grid cells.
An investigation of a combined damping approach using expanded grid cells and sponge

layers has been conducted additionally. The grid, which has been used for the previous
study has been modified, such that the cell length in wave travelling direction at the outlet
was expanded. The expansion factor was set to 1.2 and the expansion started one wave
length before the outlet. The influence of this expansion for different sponge layer lengths
has been compared to the results of the non-expanded grid and is shown in figure 2.12b.

When expanding the cell lengths, the reflection can be significantly reduced, especially
in combination with only short sponge layer lengths. Interestingly, the reflection increases
slightly for sponge layer lengths of LSL/λW = 0.25 & 0.5, compared to no sponge layer
(LSL/λW = 0 in figure 2.12b). It needs to be emphasised, that the combined damping
approach is obviously only possible at e.g. an outlet of a domain, which is not a solid
wall. It can therefore not be used in the moonpool.



3. Description of ship & moonpool
characteristics

This chapter is describing the difficulty in defining the characteristic of moonpool flows and
presents suitable measures, which have been used within this work. Also, non-dimensional
parameters such as forces or motions are defined, which will be used later on.

3.1. Vortex identification

The disturbance of the flow field within the moonpool is greatly influenced by separation
at the leading edge of the moonpool, creating vortices which are deflected at the backward
wall. These vortices are highly 3-dimensional and travel through the moonpool creating
deformation of the free surface, as well as velocity gradients in the flow field of the moon-
pool, which can be disadvantageous when lifting equipment. Therefore, the mathematical
definition of vortices and suitable visualisation of the flow field within the moonpool needs
to be defined.

Although all relevant variables like velocities, pressure and turbulence parameters are
known through the computation using a RANS code, the definition of vortical structures
remains in the interpretation of the user. In general the understanding of a vortex in this
case is the rotation of a fluid around a centre. This however does not define the strength
of the vortex, neither the beginning nor end of a vortical structure. As the investigated
flow is turbulent in all areas of interest, there will be numerous small vortices depending
on the scale of which vortices are resolved.

Numerous methods have been established to describe vortical structures such as the
∆- (Chong et al. [13]), λ2- (Jeong and Hussain [43]), or Q-criterion (Hunt et al. [37]).
The latter has been used for vortex visualisation within this work and is therefore briefly
explained in the following section. General description of vortex identification methods
can e.g. be found in Kolář [45], Haller [36] or Zhou et al.[87].

All mentioned methods to identify a vortex are based on the definition of the velocity
gradient tensor with ~v being the velocity vector

∇~v = S + Ω, (73)

48
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which can be decomposed into a symmetric and skew-symmetric part.

S =
1

2

[
∇~v + (∇~v)T

]
(74)

Ω =
1

2

[
∇~v − (∇~v)T

]
. (75)

S is called the rate-of strain tensor and Ω the vorticity tensor.
The Q-criterion has first been introduced by Hunt et al. [37] and defines a vortex if the

second invariant of ∇~v is positive, meaning the vorticity magnitude dominating over the
rate-of-strain magnitude. Hence eq. (76) forms the first requirement of the existence of a
vortex.

Q =
1

2

[
||Ω||2 − ||S||2

]
> 0, (76)

This description uses the definition of the norm of any tensor G, which is defined by
||G|| =

[
tr
(
GGT

)]1/2. A second assumption is, that the pressure in the vortex needs
to be smaller than the ambient pressure, which ensures that if the flow is rotational, the
streamlines are curved (Hunt et al. [37]). In this way, straight shear-layers can be excluded
from the solution. The isosurfaces of Q can then be used to visualise the vortex. A suitable
magnitude of Q which provides a good visualisation of the main vortical structures needs
to be found by the user. Q = 100 has been used in this work for all isosurfaces, as can e.g.
be seen in figure 2.2. Note that this procedure can only be applied to numerical simulations
where the exact flow field is known. It is unfortunately not suitable for experiments, due
to lack of informations on the flow field.

3.2. Moonpool water column oscillation

In order to describe the oscillation inside the moonpool, the free surface has been measured
at three locations. These locations are denoted with index ’WG1-3’. As will be further
explained in chapter 6.1.1, each moonpool has its own natural frequency at which it
might oscillate. These can be of piston type, denoted with index ’0’ or of sloshing type,
denoted with index ’m’. Furthermore, if the ship is exposed to waves, their respective
wave frequencies, denoted with index ’W’, can define the oscillation. For each frequency, a
respective amplitude can be assigned. It varies a lot, which amplitude is dominating or if
they are of equal size. It can be already mentioned that the amplitude corresponding to the
sloshing frequency was by far the smallest, if even present. Hence, the wave gauge signal
mainly consisted of a natural piston mode frequency and if present of a wave frequency
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Figure 3.1.: Determination of mean oscillation amplitudes from Fourier analysis

and their respective amplitudes. Figure 3.1 shows on the left side the signal of the free
surface elevation for WG2 (ζWG2) for an exemplary simulation in waves at forward speed
’RW075_0_015_MD’ (refer to chapter 4.5 for case name denotion). This signal is then
cut into a periodic one, shown in the shaded area and then Fourier transformed. This
results in the right figure, where two pronounced amplitudes are visible. One corresponds
to the known wave frequency and the other to the piston mode frequency, which can be
estimated using e.g. the method proposed by Molin [56]. All three wave gauge signals are
processed in this manner and a mean amplitude ζ0−WG respectively ζW−WG determined by
averaging the amplitudes of the three wave gauges. The respective frequencies at all three
wave gauges are identical. This procedure can be applied to experiments and numerical
simulations equally, therefore providing a good comparability.

3.3. Moonpool forces

The numerical simulations have been performed in such a way that hydrodynamic forces
on ship and moonpool surfaces where determined separately. An example is shown in
figure 3.2, where the longitudinal force component is plotted for the moonpool (green line)
and the hull (red line). The left figure shows a calm water case, where the force amplitude
on moonpool surfaces is relatively large, compared to an almost steady force on the hull.
Note that the force oscillation on the hull stems from an interaction with the moonpool
water column oscillation. The right figure shows the same moonpool geometry and Froude
number, but in regular waves of λW/LPP = 0.5 and µW = 0◦. The force amplitude on
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Figure 3.2.: Total longitudinal hydrodynamic force components on hull an moonpool sur-
faces separately

the moonpool remains similar, while the force amplitude on the hull increases drastically
due to the presence of waves. Note that both figures show the moving average in the
respective coloured dashed lines. The moving average of the calm water case has been
averaged once with the piston mode period and the case with regular waves twice (using
the piston mode period and wave period), as will be further explained in chapter 6.1.5.
The same procedure of determining forces individually has been used in chapter 6.1.7
to examine forces on the lid, when the moonpool has been closed at the free surface.
Again this procedure is only applicable to numerical simulations and could not be used
for experiments.

3.4. Definition of dimensionless parameters

This chapter contains a brief overview of dimensionless coefficients, which will be used
when analysing the results of experiments and numerical simulations. All parameters
starting with a C or having a ′ attached to it are made dimensionless. Other parameters
refer to the dimensional form.
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3.4.1. Forces & moments

Forces are usually given as mean values, determined over full periods, which might be
defined by piston motion frequencies, wave frequencies, or a combination of both. The
latter case can lead to ambiguous signals which might be difficult to cut properly, in
order to create a periodic time series. A Fourier analysis can help to understand which
frequencies are contained in the time signal and what source they are related to. Further
description of treatment of forces, especially referring to experimentally measured forces,
is given in chapter 4.3.2.

All forces Fi,j (for calm water and waves) are made dimensionless using the dynamic
pressure and static wetted surface Sw of the ship (varying slightly with the moonpool
geometry).

Ci,j =
Fi,j

ρ/2u2
refSw

, (77)

with i = T, F, P for total, frictional and pressure resistance and j = x, y, z representing
the coordinate direction. Index j is often skipped for investigations of calm water or head
seas, as transverse and vertical forces are not of interest for these cases.

Yaw moment is made dimensionless using the squared wave amplitude ζ2
W and charac-

teristic length L2
ref .

Cm,z =
MT,z

ρgζ2
w · L2

ref

(78)

Others moments have not been analysed within this work.

3.4.2. Ship motions

Motions of the ship have been analysed similarly as described in section 3.2. The time
series of the ship motions where periodically cut, Fourier transformed and the dominant
amplitude of the respective degrees of freedom determined. Although an amplitude at
piston mode frequency existed in some degrees of freedom, the dominant amplitude has
usually been found at the wave frequency and is therefore shown.

Translational motions of the ship are made dimensionless using response amplitude
operators (RAO), which relates the response with the wave amplitude ζW .

RAO(jAMP ) =
jAMP

ζW
, (79)
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with AMP referring to the motion amplitude, determined by Fourier analysis and j =

x, y, z. Rotational motions are always shown in degrees.

3.4.3. Moonpool oscillations

Moonpool oscillation amplitudes ζWG are either shown in dimensional form or in non-
dimensional form using the RAO again:

RAO(ζWG) =
ζWG

ζW
, (80)

Otherwise, they are given in dimensional form in metre and refer to the model scale.
If frequencies are shown in a non-dimensional form, relation of uref and Lref is used:

f ′ = f · Lref
uref

(81)

Mostly, frequencies are given however in dimensional form in Hertz and correspond to
model scale.



4. Experiments

Experiments have been conducted for a ship model in order to validate the numerical sim-
ulations. The experiments also allowed a larger test matrix, e.g. a variation of ship speed
in waves. These results would not have been possible to determine numerically, in an ac-
ceptable amount of time. This chapter contains a description of all experimental facilities
used, the respective measurement techniques including their individual characteristics,
the ship model and its outfitting, as well as initial tests to determine the model charac-
teristics. Results of the experiments are shown, together with the results of numerical
simulations, in chapter 6.

4.1. Experimental facility

All experiments have been conducted at the facilities of the Technical University of Berlin,
operated by the Department of Dynamics of Maritime Systems.

The major part of the experiments has been conducted at the shallow water basin. The
basin main dimensions and the wave generator capabilities are listed in table 4.1. The

Table 4.1.: Shallow water basin main characteristics

Basin

Length 120 m
Breadth 8 m
Depth 0.2 - 1.1 m

Wave Generator

Wave length 0.4 - 20.0 m
Wave height 0.05 - 0.30 m
Piston or flap type

water depth has been kept constant at 1.0 m for all experiments and the electrical wave
generator was set up to piston mode. The wave generator consists of three single flaps,
placed next to each other and which are running synchronously, producing long crested
waves of regular or irregular type. Only regular waves have been investigated in this work,
in order to simplify the understanding of the effects inside the moonpool. The carriage is
equipped with all necessary measuring equipment and reaches velocities of up to 4 m s−1.

54
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(a) Seakeeping basin (b) wave generator

Figure 4.1.: Seakeeping basin (left) and wave generator (right)

The measuring platform, which is attached to the carriage, will be described in detail in
chapter 4.3. The carriage is running with pneumatic tires on T-beams.

There are two drawbacks which come along with the shallow water facility. The first is
the water depth which can be set at most to hbasin = 1.1 m. This implies that wave lengths
of more than 2.2 m will have shallow water effects, as the ratio for deep water waves of
hbasin/λW > 0.5 will be violated. The ship model had a length of 3 m and relative wave
lengths between λW/LPP = 0.5 − 1.25 were investigated. Hence, only the shortest wave
has been a purely deep water wave. The wave with a ratio of λW/LPP = 0.75 was right on
the edge to transitional water characteristics and the two longest waves of λW/LPP = 1.0

and 1.25 had more pronounced shallow water effects. The major effect is that the wave
frequency is slightly shifted, compared to deep water waves of the same wave length.

The second drawback is due to the construction of the carriage using pneumatic tires
and T-beams as well as the control system. This results in slightly non-constant carriage
velocities and vibrations, especially at low speed. Hence, comparison of time series for
low speeds is more difficult, but does not have a major effect when investigating mean
values.

Some experiments have been conducted in the deep water towing tank, which is collab-
oratively used by several departments of the TU Berlin. This basin has a more modern
towing carriage and control mechanism and is significantly longer (250 m) and deeper
(4.5 m) which improves the testing conditions for calm water. The tank has been used for
experiments with all degrees of freedom restricted, as will be discussed in chapter 6.1.3.
However, no wave generator exists in this towing tank, which is why the shallow wa-
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ter basin has mainly been used. Furthermore, the newly developed measuring device to
determine motions and mean forces simultaneously, which will be further explained in
chapter 4.3, currently only exists in the shallow water basin.

4.2. Ship model

The investigated ship geometry has been specifically designed for this purpose and does
not represent an existing ship. The hull is designed to allow for a simple construction
and building of the model. The ship model has been designed to consist of as little three-
dimensionally curved surfaces as possible, as no milling machine has been available for
the manufacturing process. The ship is shaped similar to a barge with a moonpool at the
centre. A forefoot at the bow of the ship, a stern bulb with a propeller shaft, and a spade
rudder with a rudder dome are rigidly attached to the hull. Construction took place at the
facilities of the Department of Dynamics of Maritime Systems. The bare hull is build out
of a wooden framework and planked with wooden plates. The edges have been manually
shaped. The radii (especially of the bilge keel) have been carefully reviewed using template
plates. Although much effort has been done to build the model as accurately as possible,
one has to bear in mind that this procedure causes more geometry deviations than high
fidelity milling machines. The forefoot, stern bulb and rudder, which contain significant
three-dimensional surfaces, have been manufactured using a 3-axis milling machine and
connected to the bare hull. One deviation from the computer model geometry is that
the spade rudder and rudder dome are separated in the numerical model, while they are
joined in the experimental model. This however should not cause significant differences
in the respective results.

A sand strip turbulence stimulator has been placed at the bow, according to the ITTC
recommendations [38], which can be seen on figure 4.2c. Note that the original (yellow)
coating caused some problems, which is why the model has been grinded and recoated,
as can be seen on figures 4.2b-4.2c.

The full scale and model scale dimensions are listed in table 4.2. The dimensions
resemble a drill ships main dimension.

4.2.1. Moonpool dimensions for experimental investigations

Several different moonpools have been investigated in this work and will be described in
this section. Moonpool variation is done to investigate their characteristics and the de-
pendence on geometrical parameters. The idea of the experimental model was to allow for
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(a) Ship model (with original coating) without forefoot, sternbulb, rudder and rudder dome

(b) Sternbulb and rudder (c) Forefoot and sand strip

Figure 4.2.: Ship model

investigation of different moonpool geometries. This was accomplished by rigidly placing
a relatively large moonpool in the ship model, which will be called ’outer-moonpool’ if
combined with an insertion. When investigating e.g. different moonpol dimensions, inser-
tions with the respective dimensions can be mounted inside the outer-moonpool. These
insertions define the new moonpool geometry. Both, the outer-moonpool, as well as the
insertions have been made of plexiglass in order to ensure a high visibility.

There are in general two types of experiments, which have been conducted. One is
experiments without any damping device and the other with a damping device mounted
(perforated bulkheads in case of this work). The different setups of these two type of
experiments is discussed in the following.

If no damping device was investigated but different moonpool sizes, insertions with a
closed wall were placed inside the outer-moonpool. As can be seen exemplary in figure 4.3,
these insertions have a bottom which not only reduces the moonpool dimensions but also
the moonpool opening at the keel. The insertions can be mounted from top. As the
edge between the insertion and the ship model has not been sealed in each individual
setup, water was able to flow between the closed wall of the insertion and outer-moonpool
wall. This had no effect other than a slightly different displacement. The flow inside the
moonpool was not affected due to the trapped water.

If damping was to be investigated, one of the insertions in figure 4.3 were placed inside
the outer-moonpool, as is shown in figure 4.3d. In this case the water was able to flow
through the wall of the insertion into the damping chamber which leads to a damping
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Table 4.2.: Main dimensions of full scale and model scale

Full scale Model scale Unit

Scale λ 1 65 −
Length over all LOA 221.00 3.400 m
Length betw. perp. LPP 195.00 3.000 m
Breadth waterline BWL 42.25 0.650 m
Draught T 11.05 0.170 m
Height H 20.00 0.308 m
Block coef. CB 0.758 0.758 −
Displacement V 70,659 0.251 m3

Static wetted surface (’MP’) Sw 12,372 2.928 m2

Metacentre above keel KM 23.90 0.368 m
Metacentric height GM 7.50 0.115 m
Centre of gravity above keel KG 16.40 0.252 m
Long. centre of gravity from FP LCG 95.53 1.470 m
Long. gyradii kxx 18.73 0.288 m
Transv. gyradii kyy 49.46 0.761 m
Vertical gyradii kzz 49.46 0.761 m
Density ρ 1,025 999.1 kg m−3

Viscosity ν 1.19 · 10−6 1.14 · 10−6 m2 s−1

Design speed v 12.25 1.58 kn
Design Froude number Fr 0.15 0.15 −
Design Reynolds number Re 1.076 · 109 2.144 · 106 −

effect, as has been explained in chapter 1.1.1. These insertions are in the following denoted
by two numbers, characterising the porosity and dimension. The first two digits represent
the porosity of the perforated bulkhead in percent, while the last two digits represent
the reduction of length and breadth of the original moonpool size. Table 4.3 contains an
overview of the three insertions. The dimension of the full scale moonpool has been chosen
according to an average value of existing drillships, listed in van’t Veer & Tholen [80].

Note that additionally to the moonpool dimensions investigated in the experiments,
two more moonpool geometries were investigated in the numerical simulations. These
had a variation of length to beam ratio. This ratio was constant in the experiments and
had a value of lmp/bmp = 1.59.

Each moonpool configuration was investigated in the experiments using a camera, which
visually recorded the oscillation behaviour through the plexiglass. A set of horizontal lines
with a distance of 4 cm upwards and downwards, starting at the calm water line, is used
to visually detect the surface elevation. Accurate measurement of the water oscillation
has been done using three wave gauges, which are placed identically in each moonpool
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Table 4.3.: Main dimensions of moonpools in the experiments

Model scale Porosity Model scale Porosity

MP lmp 0.300m - 40-40 lopening 0.180m 40%
bmp 0.189m bopening 0.113m

MD lmp 0.240m - 60-40 lopening 0.180m 60%
bmp 0.151m bopening 0.113m

SD lmp 0.180m - 60-20 lopening 0.240m 60%
bmp 0.113m bopening 0.151m

(a) 40-40 (b) 60-40 (c) 60-20 (d) Insertion mounted

Figure 4.3.: Different moonpool insertions

configuration. Wave gauge # 2 (further described by index ’WG2’) is placed at the
longitudinal and transversal centre of the moonpool opening. ’WG1’ is placed 4.5 cm

upstream and ’WG3’ downstream. Note that the wave gauges were always placed along
the longitudinal ship direction and not in wave direction in case of quartering or beam
seas. Identical measurement points have been chosen in the numerical simulations.

4.3. Measuring device

The measuring device which is used in this work to determine forces and motions has
been developed at the TU Berlin and is described in full detail in Cura Hochbaum et
al. [17] and Cura Hochbaum & Lengwinat [16]. The general idea of this device was to
simultaneously measure forces and motions with high accuracy, while avoiding restrictions
in free motion of the model. To achieve this, a platform has been constructed consisting
of two individually moving ∆y-slides, two ∆x-slides which are nested in the ∆y-slides
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and two heave rods. The slides are running on semi open linear ball bearings and are
connected to springs. The heave rods are running in closed linear bearings, which are
mounted to the front and aft ∆x-slide. The construction view of the platform can be seen
in figure 4.4. The ∆y-slides are highlighted in blue, ∆x-slides in green and the heave rods
in orange.

Figure 4.4.: Construction view of measuring platform (Cura Hochbaum & Lengwinat [16])

The model is connected to the heave rods through rod ends, allowing free pitch and
roll motion as illustrated in figure 4.5. Below each rod end, a force gauge is placed, which
measures the forces at each connection in the ship fixed frame of reference. Due to the
construction, the ship is able to move freely in roll, pitch and heave, while surge, sway
and yaw are allowed to move in a certain manner and are only restricted through the
springs. The springs are marked in yellow and red respectively in figure 4.4. Several
different spring rates have been tested to determine their influence on the ship model,
which is further discussed in chapter 4.3.1. The maximum amplitude of the slides and
rods is approximately 0.2 m.

Theoretically, this construction ensures a free motion in every degree of freedom and
therefore an unrestricted point of rotation. Nevertheless, it is advised to place the rod
end to the vertical centre of gravity, as has been done in this work, or better to the mean
roll axis. The latter however is only an estimation, as there exists no (fixed) roll axis.

If oblique waves are to be investigated, the measuring platform can be rotated manually,
which causes a static yaw angle. If the carriage velocity is not equal zero, the drift angle
of the ship would coincide with the wave inclining angle.

The coordinate system is visualised in figure 4.5. The origin is placed in the centre of
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gravity (COG). The origin of coordinates of the numerical simulations is placed at the
forward perpendicular, but motions are determined for the centre of gravity and hence
coinciding with the system shown in figure 4.5. The wave heading µW is defined as 0◦ for
head seas, 90◦ for waves coming from starboard and 180◦ for following seas.

The approach using a spring system on slides mimics to a certain degree real conditions
with a self-propelled and self-controlled ship. The main reason for using this system is
however the accurate determination of mean forces, moments as well as motions, which
would be partly at least very complicated to determine for a self-propelled ship. Behaviour
in surge motion with a propelled model can be approximated with springs. Decreasing
ship speed would lead to an increase in advance ratio J and hence an increase in thrust
coefficient which can be seen as a comparable behaviour as an increase in spring force in
longitudinal direction. This does not apply for the spring force in transversal direction
when encountering beam or quartering seas. The spring system keeps the ship model on
course, while in real conditions the ship would keep course through a static drift angle by
rudder steering. This situation is hence less comparable. It should be however noted that
this simplification is expected to be of negligible importance for determining moonpool
characteristics. A propulsion system would have significantly complicated building the
model and was hence disregarded, although numerical simulation with e.g. a simple body-
force model for the propeller would have been feasible. Furthermore, although controller
options for the rudder would have been available in the flow solver, the experimental
setup with a self-controlled model would have been to complicated for the purpose. To
make a comparison between experimental and numerical simulations, the spring system
is also used in the numerics. The exact same spring coefficients in surge, sway and yaw
motion direction are applied in both methods. There are however two simplifications
within the numerical spring system. First, the additional mass of the slides has not been
taken account for. As shown in Cura Hochbaum et al. [17], this affects the amplitude of
forces in time series but not the magnitude of the mean force. As mainly mean forces are
compared in the following, this simplification can hence be seen as justifiable. Second,
the exact point of acting force through the springs was treated differently. The springs
act in the experimental measuring device at the rod ends. The numerical spring forces
are subtracted from the integral force of the respective directions and hence act in the
hydrodynamic force application point. This could cause a difference in yaw moment,
which should be kept in mind. However, the influence of this uncertainty is assumed to
be negligible.
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Figure 4.5.: Orientation of coordinate system

4.3.1. Motion determination

The motion of the model is determined using in total 10 cable actuated distance sensors.
Although less sensors would be sufficient to determine the motion, the arrangement was
chosen such that the cables are acting symmetrically on the slides, respectively the model
and hence minimising artificial forces respectively moments. A sketch of the placed sensors
is shown in figure 4.6. Two sensors are placed opposed to each other on the aft ∆x-slide in
longitudinal direction (W1 & W2) as well as on each ∆y-slide in transversal direction (W3
- W6). Furthermore, four sensors mounted on the ∆x-slides are connected to the ship
model in vertical direction (W7 - W10). Three of these sensors are needed to determine
heave, roll and pitch and the fourth is used to achieve a symmetric acting of forces induced
through the cables, albeit being small.

It is now required to determine the ship fixed motion through these sets of distance
sensors. A detailed description can be found in Cura Hochbaum, Uharek & Lengwinat [17]
and Cura Hochbaum & Lengwinat [16] but will be briefly explained in the following.

The position of the aft rod end is chosen as reference point P . W1 can be used to
directly determine ∆ξP and W3 for ∆ηP , both in an inertial frame of reference. The yaw
angle ψ directly follows from W3 & W5 and the known distance between both heave rods.

The remaining degrees of freedom roll, pitch and heave are determined by using three
of the vertical distance sensors W7 - W10. The length Si of each distance sensor can be
defined using the known earth fixed coordinates of the start points (index S) and earth
fixed coordinates of the end points (index E), which can be derived from the known ship
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Figure 4.6.: Drawing of distance sensors on the measuring platform

fixed coordinates of the end points using the transformation matrix T (equation (83)).

Si = |~ξE − ~ξS| =
√

(ξEi − ξSi)2 + (ηEi − ηSi)2 + (ζEi − ζSi)2 (82)

ξE,iηE,i

ζE,i

 =

ξ0

η0

ζ0

+ T (φ, θ, ψ)

xE,iyE,i

zE,i

 (83)

The same transformation matrix can be used to derive the earth fixed points of P :ξPηP
ζP

 =

ξ0

η0

ζ0

+ T (φ, θ, ψ)

xPyP
zP

 (84)

Subtraction of equation (84) from (83) and insertion into equation (82) yields a descrip-
tion, where only ζP , φ and θ are unknown.ξE,iηE,i

ζE,i

 =

ξPηP
ζP

+ T (φ, θ, ψ)

xE,i − xPyE,i − yP
zE,i − zP

 (85)
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This coupled non-linear system of equations can be e.g. solved iteratively at every time
step using a Newton-Raphson method.

After all coordinates of reference point P and the Euler angles are known, motions at
every point such as the origin of coordinates (index O) for the ship reference frame can
be calculated: ξ0

η0

ζ0

 =

ξPηP
ζP

− T (φ, θ, ψ)

xPyP
zP

 (86)

Influence of motion sensors

The use of cable actuated distance sensors for motion determination has been validated
in Cura Hochbaum et al. [17] using an optical measurement system and manual distance
measurements in static conditions. The system had an overall good performance and can
be seen as validated.

As the horizontal cable sensors are counteracting each other, their influence on the
motion prediction is non-existent. However, the vertical cable sensors cannot be opposed
and hence may influence the motion of the model. The heave and pitch motion are seen to
be non-affected by the cables, as their restoring forces are high, compared to the relatively
small force induced through the cables. The roll motion on the other hand is significantly
affected by the cables. A roll decay test has been conducted once using the measuring
device with the four cable sensors attached to the model and once using an inertia motion
unit (IMU) where the model was completely free to move. The model was fully equipped
and the moonpool closed. A weight has been used until a heeling angle of approximately
11◦ was reached. Afterwards, the weight was lifted rapidly and the roll decay measured
with the individual systems. The result of these experiments is shown in figure 4.7. It can
be clearly seen that both measuring systems predict the same roll frequency. However,
the roll amplitudes when measuring with cable sensors are significantly more damped,
than with the IMU. In Cura Hochbaum et al. [17] more detailed experiments have been
conducted to investigate this effect. Measurements with a variation of number of attached
cables was compared to optical motion measurements with a ship connected to the heave
rods and a completely free floating ship. The conclusion of this investigation was that
the damping of roll amplitudes drastically increases with the number of attached cables.
The connection of the model to the heave rods has no influence on the amplitudes, but
a very small influence on the roll frequency, as the weight of the heave rods was replaced
by weights in the model, which slightly changed the gyradii.
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Figure 4.7.: Comparison of roll amplitudes using cable sensors and IMU

The additional damping due to cable actuated distance sensors should be kept in mind,
when comparing numerical simulation with experimental data. Therefore, this topic will
be further discussed in chapter 5.9.

Influence of slide systems

Another influence on the motion of the ship can be assigned to the construction of the
measuring device, which uses slides. These have different effects, which need to be under-
stood, when postprocessing experimental data.

Time series of the force signal is typically oscillating with different frequencies, when
using the measurement platform. Despite the exciting frequency, which is usually the
wave frequency or in this case may also be the moonpool resonant frequency, the time
series shows higher frequencies, which at first cannot be directly assigned. Such a signal
is shown in figure 4.8 for the exemplary case RW125_0_015_MP (see chapter 4.5 for
description of case denotion). These higher frequencies have been explained in Cura
Hochbaum et al. [17] and are due to frictional effects in the slides and tolerances in the
bearings. The friction inside the horizontal bearings causes a break loose force, which
prevents the slide initially to move, once e.g. a wave hits the model. Instead, due to the
tolerance of the linear bearings, the vertical heave rods are able to pitch approximately
0.2◦. Once the maximum tolerance angle is reached, the force on the horizontal linear
bearings increases and the slide moves rapidly. Friction and springs decelerate the slides
again and the process is repeated at higher frequencies than the exciting frequency.
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Figure 4.8.: Comparison of lowpass-filtered and non-filtered signal of longitudinal force

Tests using an electric motor to pull the individual slides at a constant speed and a force
gauge to measure the break loose force and the constant frictional force were performed
in Cura Hochbaum et al. [17]. A typical break loose force of approximately 12 N for the
∆x-slide and a mean friction force of around 2 N for the ∆x-slide respectively 4 N for
the ∆y-slide were measured. These forces are independent on the slide velocity, but of
Coulomb type (proportional to the mass of the slides). These forces are typically small
compared to first order wave forces, but need to be kept in mind when investigating small
waves.

One of the objectives during development of the new measuring device was that the
mass of the slides is as low as possible. The mass of the heave rods acts directly on
the ship displacement and can be taken into account when ballasting the ship. However,
the mass of the nested slide system is moving along with the ship motions in horizontal
directions and should therefore be as small as possible. In order to reduce the weight
of the slides, ultralight aluminium profiles have been used. The mass contribution in
longitudinal direction due to both ∆x-slides is 11.56 kg while the mass contribution to
the transverse direction is 33.32 kg due to the complete nested slide system.

A complete elimination of these effects is not possible. It is therefore important to assure
that the bearings are freely running and not jammed. Furthermore, a regular lubrication
of the bearings and a cleaning of the rail needs to be done. However, caution should
be taken when lubricating the bearings. After applying the lubricant it is important
to manually move the slides and clean the rails from the excessive lubricant. This has
been checked by deflecting the individual slides approx. 15 cm and releasing them to
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Figure 4.9.: Influence on motion of slides after lubrication of bearings

oscillate until coming to a halt. This motion has been measured and is shown for each
condition in figure 4.9a to 4.9c. It can be seen, that directly after lubricating, the slides
move much worse than before, but removal of excessive lubricants improves the overall
motion again. Also note the difference between the front and aft ∆y-slide. As both are
identically constructed and hence should move similar, differences can only be explained
due to jamming of the bearings, which might have been slightly worse in case of the aft
∆y-slide.

Influence of spring rates

As already explained, the horizontal motions and the yaw motion are kept at a mean
position using a spring system. One can argue, that these springs will affect the motion
in the respective degrees of freedom. Lengwinat & Cura Hochbaum [49] investigated the
influence of spring rates and mass of the slides theoretically, using the potential based
panel method WAMIT (Wave Analysis Massachusetts Institute of Technology). Therein,
it was shown that the RAO for surge increased with springs attached, while it decreased
if the mass of the slides were added to the ship mass. Hence, both effects may cancel
each other out, if the correct spring rate is chosen. However, a significant difference only
occurred for relative wave lengths of λW/LPP > 1.0.

An experimental investigation of the influence of different spring rates was conducted
within this work. The main focus was on the motion amplitude of the water inside the
moonpool, and if different spring rates are affecting it. The chosen spring rates are listed
in table 4.4. The experiments have been performed for quartering head seas (µW = 45◦),
as all degrees of freedoms are excited. Due to the choice of wave direction, the tests have
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been only performed for zero forward velocity.

Table 4.4.: Variation of spring rates for surge, sway and yaw

configuration surge sway yaw

k0 373.4 N/m 792.0 N/m 5.40 Nm/◦

k1 185.5 N/m 374.1 N/m 2.55 Nm/◦

k2 92.8 N/m 187.0 N/m 1.28 Nm/◦

Figure 4.10 shows a comparison of the mean oscillating amplitude inside the moonpool
for all three investigated spring rates. It can be seen, that the amplitudes are almost
identical in all cases, with a slight exception for configuration k1. This deviation is
however in the range of accuracy as can be seen on the red error bar at λW/LPP = 1 and
λW/LPP = 0.5, which represents the deviation of configuration k0 to a repeating test. As
the deviation of k1 is never larger than the error bar it is assumed that the chosen spring
rates have no influence on the moonpool oscillation amplitude.

The mean drift forces, and yaw moment in figure 4.11 show larger deviations for the
different spring rate configurations. As no clear trend between the different spring rates
can be identified, it is assumed that the deviation can be assigned to measuring uncer-
tainties. Especially the longitudinal force should be taken with care, as the values are
of less than 0.6 N and hence more difficult to determine accurately. The transverse drift
force shows a more similar behaviour between the spring rates with an exemption for k1
at λW/LPP = 0.5 and k0 at λW/LPP = 1. The yaw moment shows a slightly better agree-
ment. Repeating test would have gained some more insight if the mentioned deviations
are due to force gauge sensitivity and hence in the range of accuracy, due to imprecise
measurements, or if the mean forces have been indeed accurately captured.

Figure 4.12 and 4.13 show the dominant rotating respectively translating amplitudes
of motion. All degrees of freedom are almost identical for different spring rates. Slight
deviations occur at the longest relative wave length λW/LPP = 1.25. This is in agreement
with Lengwinat & Cura Hochbaum [49] which showed that the spring rates are having a
slight influence on the RAO’s for λW/LPP > 1.

Concluding from this investigation, it seems to be of less importance, which spring
rate is chosen, as the ship motions and the oscillation amplitude inside the moonpool
are almost identical for all investigated configurations. Single deviating events are more
probably related to postprocessing differences, rather than due to the chosen spring rate.

The surge motions are much higher if a forward velocity is applied, especially when
accelerating or decelerating the ship. In order to prevent the force gauges from damage
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due to high peak loads if the slides are reaching the maximum amplitudes, the highest
spring rates (k0) are chosen for the remaining experiments.

W
/L

PP
 []

W
W

G
 [

m
]

0.5 0.75 1 1.25
0.01

0.02

0.03

0.04

0.05

k0
k1
k2

Figure 4.10.: Mean moonpool oscillation amplitude for different spring rates
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Figure 4.11.: Mean moonpool oscillation amplitude and Mean drift force in x- and y-
direction and yaw moment for different spring rates

It should be noted that an investigation on the influence of different spring rates for a
ship with forward velocity in waves has been numerically performed in Cura Hochbaum
et al. [17]. A stronger dependency of the surge motion on the spring rates was detected,
than in this work. This can also be assigned to the fact, that a much wider range of spring
rates was investigated, than practically possible in the experiments. Their investigation
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Figure 4.12.: Amplitude of rotating motions for different spring rates
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Figure 4.13.: Amplitude of translating motions for different spring rates

showed, that the surge motion was significantly influenced with increasing spring rates.
However, the added resistance in waves was almost identical for all investigated spring
rates, as the pure hydrodynamic forces remained the same despite an increasing force due
to the spring system.

4.3.2. Force determination

As already mentioned, two force gauges are installed in the ship to measure the ship fixed
forces and moments. Although being capable of measuring in all 6 degrees of freedom
(DOF), only the longitudinal and transversal forces of both gauges are used. This is due
to the free motion of the ship inside the measuring device. If all DOF are restricted, then
all 6DOF forces respectively moments can be analysed. Furthermore, by knowledge of the
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distance between the fore and aft force gauge, the yaw moment can be determined from
the transversal forces of each force gauge. The total longitudinal and transversal forces
can simple be determined by the sum of each longitudinal and transversal force gauge
component.

During development of the new device, accurate measurement of mean forces were the
biggest objective. A detailed analysis of the individual force components has been there-
fore conducted. This is e.g. shown in detail in [17, 16, 49, 78]. As the focus of this
investigation is on moonpool hydrodynamics, mean forces are of somewhat minor impor-
tance but will be compared as well. When comparing forces of experimental and numerical
sources, their respective components should be identical in order to avoid deviating re-
sults. The output of numerical simulations are usually solely the integrated stresses on
the hull and hence pure hydrodynamic forces and moments. Further, gravitational forces
may be included as well.

When conducting experiments, not only hydrodynamic forces, but also gravitational
and inertia forces are measured. As some of the inertia forces are not zero when averaging
over one wave period, they should be e.g. subtracted from the experimental data before
comparing to numerical. A brief review of the force and moment components is given in
the following:

As mentioned, the forces are determined in a ship fixed frame of reference. The relevant
equations of motion for surge, sway and yaw are shown in equation (87),(88) and (89).
These equations are stated for the centre of gravity (xG, yG, zG) and cartesian velocity
components of the origin (U0, V0,W0), respectively their time derivatives. The mass of
the system is denoted by m and Iij are the inertia products. The superscripts hydro,
grav and meas are representing components due to pure hydrodynamic forces on the hull,
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gravitational contribution and the total measured force respectively.

Fmeasx =−m


U̇0 + qW0 − rV0︸ ︷︷ ︸

6=0

− xG (q2 + r2
)︸ ︷︷ ︸

6=0

−yG (ṙ − pq) + zG

q̇ + pr︸︷︷︸
6=0




+ F hydrox + F gravx (87)

Fmeasy =−m


V̇0 + pW0 − rU0︸ ︷︷ ︸

6=0

− xG
ṙ − pq︸︷︷︸

6=0

− yG (p2 + r2
)︸ ︷︷ ︸

6=0

+zG

ṗ+ qr︸︷︷︸
6=0




+ F hydroy + F gravy (88)

Mmeas
z =− [ Izz ṙ − (Ixx − Iyy) pq︸ ︷︷ ︸

6=0

−Ixy
(
p2 − q2

)
− Iyz (q̇ + pr)

− Ixz (ṗ− qr) +mxG

V̇0 − pW0 + rU0︸ ︷︷ ︸
6=0

−myG (U̇0 + qW0 − rV0

)
]

+Mhydro
z +Mgrav

z (89)

The inertial components in all three equations are the terms inside the squared brackets.
Assuming harmonically oscillating conditions, the average value over full wave periods of
the translating and rotating velocities and accelerations become zero (U0i = U̇0i = ωi =

ω̇i = 0, with U0i representing the three cartesian velocity components of the origin and
ωi representing the three ship fixed angular velocity components). Furthermore, due to
symmetry conditions the following products of inertia become zero or small: Ixy = Ixz =

Iyz = 0. Inertia components which can be zero for certain conditions but are not generally
zero are marked in equations (87)-(89).

The following force and momentum components will be compared in the subsequent
chapters: The mentioned inertial components will be subtracted from the measured ex-
perimental data in a postprocessing step The gravitational component remains included.
This component can have substantial magnitude for large motions, which increases the
source of errors when having a time lag or imprecise motion measurements. The numer-
ical data consists of the pure hydrodynamic forces (which can be differentiated between
frictional and pressure components), as well as gravitational components. Following this
procedure, both forces can be directly compared with each other.

Uharek & Cura Hochbaum [78] further mentioned a time lag between the experimentally
determined ship motions and forces. This lag of the experimental force can be determined
from Cura Hochbaum et al. [17] with approximately 0.35 s. The exact source of this time
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lag has not yet been found, but will be due to the measuring chain, respectively the data
processing. Therefore, it should be kept in mind that time series need to be corrected
for that time lag, if comparison between numerical and experimental time traces are
conducted.

4.3.3. Calibration

A brief description of the calibration of each measuring equipment is given in the following
paragraphs. The measuring software has been developed in Cura Hochbaum et al. [17] and
Cura Hochbaum & Lengwinat [16] and slightly modified to accommodate three additional
wave gauges, which are placed inside the moonpool. The software is based on LabView and
features calibration of each signal. In total 30 signals, shown in table 4.5, are processed
through the software.

Table 4.5.: Measuring signals

channel signal channel signal

0 Force gauge 1-1 15 Cable sensor W4
1 Force gauge 1-2 16 Cable sensor W5
2 Force gauge 1-3 17 Cable sensor W6
3 Force gauge 1-4 18 Cable sensor W7
4 Force gauge 1-5 19 Cable sensor W8
5 Force gauge 1-6 20 Cable sensor W9
6 Force gauge 2-1 21 Cable sensor W1
7 Force gauge 2-2 22 Wave WG1
8 Force gauge 2-3 23 Wave WG2
9 Force gauge 2-4 24 Wave WG3
10 Force gauge 2-5 25 Moonpool WG1
11 Force gauge 2-6 26 Moonpool WG2
12 Cable sensor W1 27 Moonpool WG3
13 Cable sensor W2 28 Wave generator
14 Cable sensor W3 29 Carriage speed

The two force gauges (channel 0-11) mounted at the model have fixed calibration factors,
which are included in the measuring software.

The cable sensors (channel 12-21) typically only require a calibration at the start of
the test campaign. This is done manually by deflecting each cable and assuming a linear
behaviour of deflection to voltage.

Most sensitive are the wave gauges and their calibration. Both for wave and moonpool,
two wire resistance wave gauges are used. It is strongly advised to turn on the amplifier of
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the wave gauge signals approx. 30 min before measuring, as these are heating up, which
can cause a drift of the signal. Each wave gauge is placed at the desired location and
depth and the digital amplifier adjusted, such that the voltage is approx. 0 V at rest
and the maximum expected wave does not exceed a voltage of ±10 V. Once the digital
amplifier is correctly adjusted, the gauges are calibrated using the measuring software
by lifting each gauge and defining the distance to a certain voltage change. Again this
assumes linear behaviour. This procedure has been repeated every day, as the amplifier
and wave gauges tend to be sensitive to environmental conditions.

Before starting of every test run, a new offset of all signals has been taken. This feature
is included in the measuring software and is advised to use, as the slides may come to a
halt at a different location after each run. Note that this function only sets a possible
offset to zero, but calibration factors are not affected.

4.4. Inclining experiment

An inclining experiment has been performed in order to determine if the correct metacen-
tric height GM is reached through ballasting of the model. The model was fully equipped
and weights distributed in order to reach the desired initial vertical centre of gravity of
KG = 0.252 m and the desired gyradii kxx = 0.288 m and kyy = kzz = 0.761 m. Different
additional weights have been initially placed midships and 0.3 m above keel. This weight
has then been shifted 0.3 m to portside and the heeling angle φ measured.

From simple stability theory, the heeling momentMh and stabilising momentMst can be
determined. Using both equation (91) and (92), the metacentric height can be determined.
The results are shown in table 4.6. It can bee seen that the deviation of the measured
metacentric height is only 1.5% from the desired value.

Table 4.6.: Results of inclining experiment

Ballast Weight KG hl φ GM

1.05 kg 251.92 kg 0.2513 m −0.3 m 0.60◦ 0.1194 m
2.00 kg 252.87 kg 0.2515 m −0.3 m 1.15◦ 0.1182 m
3.05 kg 253.92 kg 0.2519 m −0.3 m 1.80◦ 0.1147 m
3.99 kg 254.86 kg 0.2522 m −0.3 m 2.35◦ 0.1145 m

Mean 0.1167 m
Target 0.1150 m
Deviation 1.48 %
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Mh = m · g · hl (90)

Mst = ρ · g · V ·GM · sin(φ) (91)

GM =
m · hl

ρ · V · sin(φ)
(92)

4.5. Test matrix

The test matrix consisted of approx. 230 tests, which have been performed experimentally.
The complete table of conducted tests can be found in the appendix B. Figure 4.14
explains the abbreviation for the individual denotion of tests. Note that this figure shows
a complete list of investigated values for each individual parameter, but not all possible
combinations have been tested. An obvious example is the wave direction µW , which can
only be set to quartering or beam seas, when being at rest (Fr = 0), due to the breadth
limitations of the facility.

Generally speaking, different moonpool configurations have been tested in calm water
and regular waves with forward velocity, to investigate transit conditions. Furthermore,
operational conditions, with Fr = 0 were tested for regular waves with varying wave
directions. The wave height has been adjusted according to the wave length, such that
a constant wave steepness defined by wave height to wave length of HW/λW = 2% has
been reached. A detailed description of the wave characteristics is shown in table 4.7.

Table 4.7.: Wave characteristics

λW/LPP h/λW kw ωW T ζW

deep water 0.50 0.66 4.189 6.410 rad/s 0.980 s 1.50 cm

transitional water
0.75 0.44 2.793 5.234 rad/s 1.200 s 2.25 cm
1.00 0.33 2.094 4.431 rad/s 1.418 s 3.00 cm
1.25 0.26 1.676 3.890 rad/s 1.615 s 3.75 cm

While most of the tests performed were repeated numerically in order to validate the
result against each other, both experimental and numerical test matrices contain some
investigations which have not been conducted in the other. In the experimental test ma-
trix a variation of Froude number for the ship in waves has been conducted, while the
Froude number in the numerics has been kept constant at Fr = 0.15, due to computa-
tional time effort. On the other hand, a variation of moonpool length to breadth ratio
lmp/bmp has been investigated only numerically, as this would have required an additional
manufacturing of moonpool insertions for the experiments.
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Figure 4.14.: Description of test name abbreviation



5. Numerical simulations

This chapter contains a description of the numerical grids, as well as initial investigations
such as time step and grid dependencies. Furthermore, some general observations are
presented, which are of importance when performing simulations with moonpools.

5.1. Ship model

A rendering of the model is shown in figure 5.1. Note that the origin of coordinates is
different than used in the experiments in chapter 4.2. The origin of coordinates is at the
forward perpendicular, midships and at the waterline with x-axis pointing towards the
stern, y to starboard and z upwards. Motions are determined for the centre of gravity,
which is located 1 % in front of the midship section. As mentioned, this coincides with
the origin of coordinates used in the experiments, making the motions of both methods
directly comparable.

x

z

(a) Side view

x

y

(b) Bottom view

Figure 5.1.: Rendered model with moonpool (MP)

5.1.1. Moonpool dimensions for numerical investigations

In total five different moonpool geometries have been investigated numerically. All moon-
pools are being placed midships. The moonpool geometries are listed in table 5.1. The size
of ’MP’ has been determined from van ’t Veer & Tholen [80] by averaging the moonpool

77
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lengths and breadths listed in their publication and re-sizing them according to the real
ship length and breadth respectively. This ensures that an average ratio of ship length
to moonpool length and ship breadth to moonpool breadth is used. The ratio of length
to breadth (lmp/bmp) is approx. 1.59. MP has been scaled down by 20% (’MD’) and 40%
(’SD’) respectively in length and breadth. They therefore have the same ratio of length
to breadth as MP, but smaller sizes. Another variation of MP has been done by changing
lmp/bmp. ’lb1’ has a ratio of lmp/bmp = 1 by keeping the breadth identical as for MP
and ’lb2’ of lmp/bmp = 2 by keeping the length identical as MP. MP, MD and SD have
been build for the respective experiments, while lb1 & lb2 have only been investigated
numerically.

Table 5.1.: Main dimensions of moonpools

Full scale Model scale Unit

MP lmp 19.50 0.300 m
bmp 12.30 0.189 m

MD lmp 15.60 0.240 m
bmp 9.83 0.151 m

SD lmp 11.70 0.180 m
bmp 7.37 0.113 m

lb1 lmp 12.30 0.189 m
bmp 12.30 0.189 m

lb2 lmp 19.50 0.300 m
bmp 9.75 0.150 m

5.2. Numerical grids

To ensure high quality grids, the whole model has been separated into smaller parts to
create individual body-fitted grids. Therefore, parts as e.g. the forefoot or stern bulb
are collar grids, which coincide with the hull surface in this instance. When oversetting
the grids using Suggar++, these grids are being assembled and a continuous grid is being
formed. The program usurp (Boger & Dreyer [5]) is then used to define panel weights
for the cells located at wall boundaries. These weights range from 0 to 1. If two panels
from different grids are at the same location of the surface, a factor between 0 and 1 is
applied to them. This ensures that integral quantities such as forces are treated correctly.
A visualisation of the assembled grid with detailed views is shown in figure 5.2 to 5.4.
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Figure 5.2.: Assembled grid after running Suggar++

The representation of the moonpool consists of several individual grids. Primarily,
there is a grid, forming the inner part of the moonpool (red) going from deck to keel and
ensuring y+ < 1 at the wall. Another grid (green) with the same dimensions is used to
refine the inner part of the moonpool, while disregarding a wall resolution of y+ < 1.
In order to prevent coarser cells at the wall due to the refinement grid, the first cell is
blanked when creating the assembled grid. Splitting the moonpool into two grids, as has
been described, has been done to reduce the number of cells. A ring at the bottom (cyan)
and top (blue) of the moonpool provides a connection of the hull and moonpool and also
ensures y+ < 1 at the walls. At last, a rectangular box at the bottom (orange) and top
(peach) ensures a vertical elongation of the moonpool, without having a wall refinement.
The latter was necessary, as a sufficient overlapping region between the moonpool and
the hull grid needed to be created, while avoiding a sudden accumulation of cells along
the x− and y−axis in the freestream area. A detailed view of the grids representing the
moonpool is shown in figure 5.3. Furthermore, figure 5.4 shows a detailed view of the
surface grid for the bow and stern section. Note that the propeller shaft grid has been
designed, such that body force simulations could have been performed. However, no self
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propulsion simulations have been conducted within this work.

(a) Perspective view of volume grid (b) Perspective view of the surface grid

Figure 5.3.: Grid of the moonpool for grid #2

(a) Perspective view of the bow section (b) Perspective view of the stern section

Figure 5.4.: Surface grid at bow and stern section for grid #2

The grids have been constructed as body-fitted single block structured grids using a hy-
perbolic grid generator. The simulations have been performed without making use of wall
functions, although these have been later on investigated, as discussed in chapter 5.6.1.
The equation defining the first cell layer thickness y1 is:

y1

Lref
=

5.5

Re0.9
(93)
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This yields for a Reynolds number of Re = 3.288 · 106, which corresponds to the highest
investigated Froude number of Fr = 0.23, y1

Lref
= 7.5·10−6. To ensure, that a dimensionless

wall distance of y+ < 1 is reached also when coarsening the grid, a distance of y1
Lref

=

2 · 10−6 has been chosen for the finest grid (grid #1).
The finest grid has been initially constructed and afterwards coarsened twice using a

refinement ratio of:

rG =
∆xG,2
∆xG,1

=
∆xG,3
∆xG,2

=
√

2, (94)

with ∆xG representing the individual cell spacing in each direction. Table 5.2 contains
the detailed information about each block structured grid, for the medium size grid (#2).
The blocks of the finer (#1) and coarser (#3) grid have each the same number of points
with a factor

√
2 increased respectively decreased. Total number of cells and the vertical

and longitudinal cell resolution of the smallest wave is shown for all three grids in table 5.3.

Table 5.2.: List of individual block structured grids for medium grid, using symmetry con-
dition at η′ = 0

# Description points in i, j, k total cells

1 Hull 170 49 83 665,814
2 Moonpool (wall resolution) 170 99 48 778,414
3 Moonpool refinement 144 36 146 725,725
4 Ring top 21 29 143 79,520
5 Ring bottom 21 29 143 79,520
6 Box top 85 36 29 82,320
7 Box bottom 85 36 29 82,320
8 Forefoot 54 45 35 79,288
9 Sternbulb 85 49 44 173,376
10 Propeller shaft 48 53 36 85,540
11 Rudder dome 39 34 64 79,002
12 Spade rudder 49 56 33 84,480
13 Background 417 60 84 2,037,152

Total 5,031,841
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Table 5.3.: Grid size for grids using symmetry condition at η′=0

Number of cells HW/∆ζ λW/∆ξ

(#1) fine 14,532,716 32 94
(#2) medium 5,031,841 24 66
(#3) coarse 1,737,000 16 47

5.3. Computational domain

The computational domain is defined by the dimensions of the background grid. In general
there are two types of simulations, where the computational domain needs to be adapted
to.

1. Domain type 1: Simulations for head seas (µW =0◦) and following seas (µW =180◦),
with or without forward velocity (no drift).

2. Domain type 2: Simulations with oblique waves, with or without forward velocity.

For the first domain type, a symmetry condition at η′ = 0 can be assumed and only one
half of the domain build. The ship is hence only performing motions within the ξ − ζ-
plane (surge, heave, pitch). The corresponding domain is shown in figure 5.5a, where
also the boundary conditions are visualised. Note that the top and bottom boundary
have a far-field respectively very far field boundary condition applied, as is described in
chapter 2.6.

As REX is using a non-dimensional form to solve the Navier-Stokes equations, the
length of the ship is used to scale the model dimensions to LPP = 1. The forward
perpendicular is placed at ξ′ = 0 the aft perpendicular at ξ′ = 1 and the centre of
the moonpool at ξ′ = 0.5. The vertical origin is always placed at the calm water line.
The domain reaches in longitudinal direction from ξ′ = −1.5 to ξ′ = 2.5, in transversal
direction from η′ = 0 to η′ = 1 and in vertical direction from ζ ′ = −1 to ζ ′ = 0.5. A
very slight elongation of grid cells in longitudinal direction is applied from ξ′ > 1. It is
however still fine enough to capture the ship wave system behind the ship as well as allows
simulations in following seas (µW = 180◦).

The second domain type is used for oblique waves where the ship is allowed to move
in all DOF. Therefore, no symmetry condition can be applied and the computational
domain needs to capture the complete surrounding of the model. The model is again
placed in longitudinal direction between ξ′ = 0 and ξ′ = 1 and midships at η′ = 0. The
domain starts in longitudinal direction at ξ′ = −1.25 and ends at ξ′ = 4.25. The cells are
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(a) Domain type 1 (grid #2) (b) Domain type 2

Figure 5.5.: Domain, boundary conditions and cell distribution

homogeneously distributed from −1.25 ≤ ξ′ ≤ 2.25 and afterwards elongated to increase
the wave damping. In transversal direction the domain starts at η′ = −2.75 and ends
at η′ = 1.25, with a homogeneous cell distribution between −1.25 ≤ η′ ≤ 1.25. The
dimensions in vertical direction are identical to domain type 1. Note that the number
of points for domain type 2 has been reduced in order to save computational time. The
cell size within the fine resolved area around the ship equals the cell size of the coarse
background grid in grid #3. As can be seen in chapter 5.4, this grid already reaches a
wave quality of 94 %. The number of points for all other blocks creating the model are
identical as in domain type 1. To build a complete ship model without having a symmetry
plane, most of the blocks have been mirrored and then assembled using Suggar++, which
then consist of two blocks (port and starboard side) sharing an averaged multi-block
boundary condition. When reducing the number of blocks, the number of processors
needed is reduced, as has been explained in chapter 2.5. Hence, if possible, blocks such
as the moonpool have been mirrored and joined within the grid generator and exported
as one block.

5.4. Grid dependency

A grid dependency study has been performed using three different grids, as shown in
table 5.3. Remember that the dimensionless wall distance y+ was smaller than 1 for all
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three grids, but is slightly changing due to grid coarsening. The study has been performed
in calm water conditions and in regular waves. The individual simulations considered
within this study ensured a reduction of residuals by several orders of magnitude. The
results of the grid study can be seen in table 5.4 to 5.5. The convergence study has been
determined following the recommended procedures by Stern et al. [73]. The change in
solution between the two grids (εG) is defined by the difference of them (ŜG):

εG,21 = ŜG,2 − ŜG,1 (95)

εG,32 = ŜG,3 − ŜG,2 (96)

The convergence ratio RG on the other hand is defined as the rate of the change:

RG,1−3 =
εG,21

εG,32

(97)

There are three classes of convergence:

i) 0 < RG < 1: Monotonic convergence

ii) RG < 0: Oscillatory convergence

iii) RG > 1: Divergence

The grid dependency analysis has been done for two different cases. Once for the fixed
ship with moonpool in calm water and once for the ship with moonpool free to heave
and pitch in waves, to include the accuracy of the generated waves and the motions. The
non-dimensional time step of ∆t′ = 0.002 has been kept constant for all investigated grids.

Table 5.4 shows results for the ship with moonpool MP in calm water at Fr = 0.15 and
with no motions allowed. The total resistance reaches an oscillatory convergence. The
frictional component is monotonically converging while the pressure component shows a
diverging behaviour. It is known that grid coarsening leads to numerical diffusion and
hence an increasing pressure resistance. Furthermore, flow separation at the relatively
strong hull curvature at the ship shoulders could further increase the separation. The
diverging pressure component can be seen as unfavourable, but the following grid study
for wave conditions will show better behaviour.

The mean oscillation of water column inside the moonpool has been investigated as
well, which is an important parameter for this work. It shows slightly oscillatory, but still
satisfying behaviour. The coarse grid overestimates the amplitude, while medium and
fine grid have almost identical magnitudes.
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Figure 5.6 shows the pressure distribution on the hull, as well as the surface elevation
for all three grids. One can see that the free surface is still not fully developed for the
medium grid. This is also due to the low Froude number of 0.15, where only small ship
waves are being produced. As the grids are designed to analyse waves rather than calm
water conditions, small ship waves are less accurately resolved. This has to be taken as a
compromise. As the focus of this work is on analysing moonpool characteristics and grid
#2 already has a converged moonpool oscillation amplitude, this deficiency is accepted.

Table 5.4.: Resistance coefficients for total resistance (T ), frictional (F ) and pressure (P )
and mean oscillation amplitude (ζ0−WG) in MP for calm water

coarse medium fine εG,21 εG,32 RG,1−3

CT 6.455 · 10−3 6.530 · 10−3 6.504 · 10−3 0.026·10−3 -0.075·10−3 -0.347
CF 3.508 · 10−3 3.647 · 10−3 3.758 · 10−3 -0.111·10−3 -0.139·10−3 0.799
CP 2.947 · 10−3 2.883 · 10−3 2.746 · 10−3 0.137·10−3 0.064·10−3 2.141

ζ0−WG [m] 2.121 · 10−3 1.788 · 10−3 1.813 · 10−3 -0.025·10−3 0.333·10−3 -0.075

Figure 5.6.: Free surface and pressure distribution on hull for grid dependency analysis
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The accuracy of wave amplitude has been determined additionally to the previously
investigated resistance coefficients and oscillation amplitude for the grid dependency of
the ship with moonpool in regular waves of λW/LPP = 0.5 coming from µW = 0◦ (head
waves) in table 5.5. The oscillation amplitude is further distinguished between the am-
plitude at piston mode resonant frequency and at wave frequency. Although the total
resistance and pressure component show an oscillatory convergence, the convergence ra-
tio is small and the results are satisfying. The frictional resistance component converges
again monotonically. The amplitude at piston mode frequency decreases for the finest
grid, causing a divergence of that parameter. The amplitudes at wave frequency are rel-
atively small, but still converge monotonically. The same applies for the wave accuracy,
which produces already for the coarse grid a non-dimensional amplitude of 0.94 and which
improves up to 0.97 for grid #1. The resolved amplitude of the incoming wave has been
analysed the following way. A Fourier-transformation of the free surface parallel to the
ship and at η′ = 0.9 (no/minor influences of the ship wave system) has been performed
and analysed over one wave period. Afterwards, the first amplitude of the Fourier trans-
form has been averaged over the length of the ship and made non-dimensional with the
incoming wave amplitude. Figure 5.7 further shows a comparison of the instantaneous
free surface elevation and velocity vector field of superposed orbital velocities and ship
velocity for the numerical result (blue) and according to linear wave theory (red). The
data from the numerical simulation has been extracted from the same slice as for the
Fourier-transformation and for the last computed time step for grid #2. One can see a
very good agreement between the analytical and computed wave characteristics. Note
that the evaluation of wave quality has been done extensively for head seas (and following
seas, as discussed in chapter 6.1.5). The waves for quartering and beam seas should be of
similar quality, due to the homogeneous cell distribution (shown in figure 5.5b) and are
hence not specifically analysed.

Table 5.5.: Resistance coefficients for total resistance (T ), frictional (F ) and pressure (P ),
mean oscillation amplitudes (ζWG) in MP and wave accuracy ζW /ζtarget

coarse medium fine εG,21 εG,32 RG,1−3

CT 6.976·10−3 7.338·10−3 7.305·10−3 0.033·10−3 -0.362·10−3 -0.091
CF 3.500·10−3 3.635·10−3 3.704·10−3 -0.069·10−3 -0.135·10−3 0.511
CP 3.477·10−3 3.703·10−3 3.601·10−3 0.102·10−3 -0.226·10−3 -0.451

ζ0−WG [m] 1.774·10−2 1.839·10−2 1.579·10−2 0.26·10−2 -0.065·10−2 -4.000
ζW−WG [m] 1.228·10−3 2.006·10−3 2.594·10−3 -0.588·10−3 -0.778·10−3 0.746
ζW/ζtarget 0.94 0.96 0.97 -0.01 -0.02 0.500
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Figure 5.7.: Comparison of analytical and numerical wave characteristics at η′ = 0.9 and
0 ≤ ξ′ ≤ 1

A symmetry plane was used at η′ = 0 for the grid dependency analysis (domain type
1). For further computations with e.g. beam seas, the size of the individual grids at least
doubles (domain type 2), which increases the necessary computational time. Furthermore,
the accuracy of the resolved amplitude is already very satisfactory for grid #2 with 96%.
The resolved wave system for the calm water case is satisfactory as well for grid #2 and
the resistance components of the individual grid dependency analyses seem to be of a high
enough accuracy. Taking into account all these circumstances and making a compromise
between accuracy and computational time, grid #2 will be used for all further simulations.

5.5. Time step dependency

A time step dependency has been performed for the ship with moonpool in calm water, as
well as in waves. The most important results, which need to show a time step convergence
are 1) the oscillating amplitudes inside the moonpool ζWG, 2) resistance coefficients of
the ship (CT , CP , CF ) and 3) the incoming wave amplitude ζW . Time step convergence
study is equally done as for the grid convergence.

The oscillation inside the moonpool can be caused by flow separation in calm water
conditions, or excited through waves, as has been already discussed in chapter 1. One
can assume that a sufficient accuracy of wave amplitude will cause an oscillation inside
the moonpool in any case. Hence, it needs to be shown that the oscillation also occurs
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Table 5.6.: Resistance coefficients for total resistance (T ), frictional (F ), pressure (P ) com-
ponents and mean dominant amplitude for moonpool ’SD’ in calm water

∆t′ 0.0005 0.001 0.002 0.005 0.01

CT 5.882 · 10−3 5.895 · 10−3 5.957 · 10−3 6.052 · 10−3 6.157 · 10−3

CF 3.907 · 10−3 3.895 · 10−3 3.882 · 10−3 3.887 · 10−3 3.881 · 10−3

CP 1.975 · 10−3 2.000 · 10−3 2.075 · 10−3 2.165 · 10−3 2.276 · 10−3

ζ0−WG [m] 1.744 · 10−2 1.725 · 10−2 1.840 · 10−2 2.517 · 10−2 3.366 · 10−2

Table 5.7.: Verification of time step convergence for moonpool ’SD’ in calm water

εt,21 εt,32 εt,43 εt,54 Rt,1−3 Rt,2−4 Rt,3−5

CT 0.013 · 10−3 0.062 · 10−3 0.095 · 10−3 0.105 · 10−3 0.210 0.653 0.905
CF -0.012·10−3 -0.013·10−3 0.005 · 10−3 -0.006·10−3 0.923 -2.600 -0.833
CP 0.025 · 10−3 0.075 · 10−3 0.090 · 10−3 0.111 · 10−3 0.333 0.833 0.810

ζ0−WG [m] -0.019·10−3 0.115 · 10−2 0.677 · 10−2 0.849 · 10−2 -0.165 0.170 0.797

in calm water conditions and that this is independent of the chosen time step. Table 5.6
shows results of the time step dependency for the calm water case and table 5.7 the
corresponding convergence ratios, both for the ship with moonpool ’SD’.

The overall time step convergence can be seen as very good. The pressure resistance
component converges monotonically with decreasing time step. The convergence ratios of
the frictional resistance component are less distinct, although it should be mentioned that
the respective differences ε are of very small magnitude. The total resistance component
converges strong monotonically for all time steps. The mean dominant amplitude inside
the moonpool converges monotonically for the larger time steps and oscillatory for the
smallest.

Furthermore, a time step dependency analysis has been done for the ship with moon-
pool ’MP’ in waves. The focus in this case laid on the investigation of the wave amplitude.
Moreover, this case has additionally to the oscillating amplitude at piston mode frequency
ζ0−WG an amplitude corresponding to the wave frequency ζW−WG. The smallest investi-
gated wave has been used for this analysis, which has a non-dimensional wave length of
λW/LPP = 0.5 and a non-dimensional amplitude of ζ ′W = 5 · 10−3. The non-dimensional
time step ∆t′ = 0.01 has been to large and caused divergence within the first time itera-
tion. Therefore, only time steps between ∆t′ = 0.005 and 0.00025 are shown. Table 5.8
contains the resistance coefficients, oscillation amplitude due to piston and wave frequency
and the accuracy of wave amplitude. The time step ∆t′ = 0.005 had some problems with
convergence and had to be run with an increased artificial diffusion coefficient for the level
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Table 5.8.: Resistance coefficients for total resistance (T ), frictional (F ), pressure (P ) com-
ponents, mean dominant amplitude for moonpool ’MP’ in regular waves of
λW /LPP = 0.5 and wave accuracy ζW /ζtarget

∆t′ 0.00025 0.0005 0.001 0.002 0.005

CT 7.135 · 10−3 7.170 · 10−3 7.264 · 10−3 7.338 · 10−3 6 .878 · 10−3
CF 3.652 · 10−3 3.654 · 10−3 3.652 · 10−3 3.635 · 10−3 3 .672 · 10−3
CP 3.484 · 10−3 3.517 · 10−3 3.612 · 10−3 3.703 · 10−3 3 .206 · 10−3

ζ0−WG [m] 1.786 · 10−2 1.800 · 10−2 1.838 · 10−2 1.839 · 10−2 1 .308 · 10−2
ζW−WG [m] 2.275 · 10−3 2.342 · 10−3 2.227 · 10−3 2.006 · 10−3 5 .253 · 10−4
ζW/ζtarget 0.96 0.96 0.96 0.96 0.78

Table 5.9.: Verification of time step convergence for moonpool ’MP’ in regular waves of
λW /LPP = 0.5

εt,21 εt,32 εt,43 εt,54 Rt,1−3 Rt,2−4 Rt,3−5

CT 0.035 · 10−3 0.094 · 10−3 0.074 · 10−3 -0.460·10−3 0.372 1.270 -1.609
CF 0.002 · 10−3 -0.002·10−3 -0.017·10−3 0.037 · 10−3 -1 0.118 -0.459
CP 0.033 · 10−3 0.095 · 10−3 0.091 · 10−3 -0.497·10−3 0.347 1.044 -0.183

ζ0−WG [m] 0.014 · 10−3 0.038 · 10−2 0.001 · 10−2 -0.531·10−2 0.368 38 -0.002
ζW−WG [m] 0.067 · 10−3 -0.115·10−3 -0.221·10−3 -1.481·10−3 -0.583 0.520 0.149
ζW/ζtarget 0 0 0 -0.18 ∞ ∞ 0

set transport equation. Therefore, the wave accuracy is poor and all other parameters
are affected. For all other results it can be seen that especially the frictional resistance
component is very similar and barely changes. The pressure resistance component de-
creases slightly with decreasing time step and hence does the total resistance component.
The respective convergence ratios are listed in table 5.9 and show a good convergence for
the three smallest time steps (Rt,1−3) and a satisfactory behaviour for the medium three
time steps (Rt,2−4). Total and pressure resistance coefficient are however diverging, yet
with small magnitude. The same applies for both oscillation amplitudes, which remain
of very similar magnitude from ∆t′ = 0.002 on. The wave accuracy is already at 96% for
∆t′ = 0.002 and is not improving further with decreasing time step. Convergence ratios
for the discussed amplitudes should be taken with care, as the absolute change is small.

Although a convergence towards the smallest time step is indicated from the time step
analysis in waves, a compromise had to be found between accuracy of the individual
results and computational time. Therefore, ∆t′ = 0.002 has been chosen for all further
simulations. Especially the oscillating amplitudes and wave amplitudes are already of
satisfactory convergence at ∆t′ = 0.002.
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At last, a comparison of cases with a constant non-dimensional time step ∆t′ and a
constant dimensional time step ∆t has been conducted for different Froude numbers.
Results are shown in figure 5.8 and 5.9. For constant non-dimensional time steps, ∆t′ =

0.002 was used for all Froude numbers investigated. The dimensional time step ∆t was
kept identical with the non-dimensional time step for the case of Fr = 0.15 and adjusted
accordingly with changing Froude numbers, as is shown in figure 5.8a. The mean piston
mode amplitudes and frequencies inside moonpool MP are compared. One can observe,
that the mean amplitude remains identical over almost all Froude numbers. The largest
deviation occurs for Fr = 0.21 with a deviation of 14 %. The simulation for constant
dimensional Froude number at Fr = 0.23 diverged and is therefore not included.

A disagreement can be seen when comparing the respective frequencies. The agreement
is still good at Fr = 0.12. For Fr = 0.09 and Fr = 0.06 the results are somewhat more
ambiguous, although it should be mentioned that their respective oscillation amplitudes
are small and hence of less significance. For both Froude numbers, the frequency of around
1.4 Hz dominate over a smaller frequency for the constant dimensional time step. The
opposite behaviour occurs for the constant non-dimensional time step, where the higher
frequency is not visible, respectively less pronounced. This higher frequency is close to the
first sloshing mode of f1 = 1.61 Hz (refer to chapter 6.1.1 for description) and visualisation
of the free surface in the numerics and experiments confirmed a sloshing type behaviour
for these Froude numbers. The time series at WG3 for both time step approaches for Fr =

0.09 are exemplary shown in figure 5.9a. The occurrence of the sloshing frequency cannot
be directly explained by the decreasing time step. The frequency of f0−WG = 1.38 Hz

equals a period of approx. 0.7 s. The dimensional time step equals ∆t ≈0.01 s and is
hence 70 times smaller than the period to be detected. As the experiments confirmed a
sloshing type behaviour, the constant dimensional time yields better results for the lowest
Froude numbers, than the non-dimensional constant time step.

The above described disagreement could not be detected for higher Froude numbers,
as can be exemplary seen in figure 5.9b, showing the time series at WG3 for Fr = 0.18.
Amplitudes are almost identical and only a slight shift in frequency is visible.

Note also from figure 5.8b that the influence on resistance coefficients is negligible for
this study.

Concluding from this study, it is better to decrease the non-dimensional time step
according to figure 5.8a for the lowest Froude numbers of Fr = 0.06 and Fr = 0.09, in
order to resolve the oscillation inside the moonpool correctly. For higher Froude numbers
than Fr = 0.12 it is of less importance which time step is kept constant, as the results
are not affected significantly.
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5.6. Influence of turbulence model

This section briefly describes the influence of different turbulence models, which have
been investigated in this work. There have been done simulations with two different tur-
bulence models, namely a RANS and a DDES model, both based on the k-ω-SST model.
Furthermore, the RANS model has been used with and without wall functions. The gen-
eral characteristics of these models have been already explained in detail in chapter 2.2.
Table 5.10 shows the differences between those two models using no wall functions. The
simulations have been conducted on the same grid, whose cell resolution is appropriate
for both turbulence models. It can bee seen, that the resistance increases slightly us-
ing DDES, compared to RANS simulations. This is mainly due to the increased pressure
resistance, resulting from a more detailed vorticity in the moonpool. The increase in com-
putational time would be acceptable with approximately 6%. The different resolution in
the vorticity can bee seen in figure 2.2 on page 20 which shows the same time step once for
a RANS simulation (left) and a DDES simulation (right). Furthermore, a slightly higher
three-dimensionality of the free surface can be seen for the DDES simulation compared
to the RANS simulation.

The time step dependency from chapter 5.5 has been repeated for the DDES model.
Figure 5.10a shows the comparison of the mean free surface oscillation amplitude inside
the moonpool for both turbulence models. While the RANS model has a very good
time step convergence towards the experimental value (shown in orange), DDES shows a
strong divergence. The oscillation inside the moonpool almost vanishes for decreasing time
steps. This also affects the pressure resistance component and hence the total resistance
component, which are shown in figure 5.10b. While the RANS model shows a good
convergence (as has already been discussed in chapter 5.5), the resistance components
diverge, when using DDES with a decreasing time step.

This result is somewhat surprising, as no direct reason has been found for divergence
of DDES. Although this does not explain the time step divergence, it should be noted
that the grid in front of the leading edge of the moonpool has a value for ∆ ≈ δ99/5,

Table 5.10.: Comparison of resistance coefficient components between RANS and DDES

RANS DDES ∆RANS

CT 5.957 · 10−3 6.123 · 10−3 +2.8%
CF 3.882 · 10−3 3.875 · 10−3 −0.2%
CP 2.075 · 10−3 2.248 · 10−3 +8.3%
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Figure 5.10.: Time step dependency for moonpool ’SD’ comparing RANS and DDES

defined through the grid spacing in longitudinal direction and is hence lower than rec-
ommended values, as mentioned on page 21. These ambiguous grids should however be
treated correctly using DDES instead of DES, as has been used in this work and would
not explain the divergence. The grid inside the moonpool can be seen as isotropic and
hence ideal for LES mode in DDES. In order to further investigate the reason for diver-
gence of DDES, the following recommendations are given. With the change from DES to
DDES, the turbulence model became time dependent. This is due to the dependency on
the boundary layer, whereas DES has been solely dependent on the grid size. The time
step dependency could be repeated using DES to check if divergence occurs again. Two
vortices originating from the forefoot are contracting the boundary layer in front of the
moonpool, as will be explained in chapter 5.8. The time step dependency could hence
be repeated without the forefoot to investigate if this boundary layer contraction is influ-
encing the turbulence model behaviour. At last, the grid could be adapted to fulfil the
above mentioned recommendations of cell length to boundary layer thickness. This could
also give an insight, if Courant numbers are playing an import role on DES respectively
DDES models.

It was expected that both models, DDES and RANS, would yield the same convergence
with slight differences in resistance components due to higher resolution of vortices using
DDES. Due to that finding, it was decided to disregard DDES and use the RANS model
for all simulations instead.
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5.6.1. Wall functions

It was tested, if use of wall functions would be feasible for this study. New grids were
generated, which mainly differed in the cell distribution in wall-normal direction. How-
ever, some other cell distributions needed to be adapted, in order for the hyperbolic grid
generator to produce valid grids. These changes were kept to a minimum, to ensure best
comparability with the grids without use of wall functions. The dimensionless wall dis-
tance was set to y+ ≈ 80. When using the settings for REX from the simulations without
wall functions, a problem with the free surface occurred. The parameter wav_blank is
used to define a distance from the wall, within which the points are blanked and solutions
taken from the next neighbouring point. If not blanked, the no-slip condition at the wall
(ξ̇i = 0) would be used for the transport of the level set equation. This would lead to a
free surface, which does not move were being in contact with a wall. Until now, wav_-
blank was set to 3 · 10−4, marked with the black dotted line in figure 5.11. The solid
red line shows the mean wave gauge amplitude inside the moonpool for the case using
wall functions for different wav_blank parameters. One can see that a small wav_blank
parameter reduces the free surface oscillation to a minimum. This is due to the effect that
the free surface remains at z = 0 were being in contact with a wall. This suppresses the
deflection of the free surface almost completely as is shown on the left side in figure 5.11a
for the free surface in the moonpool. If wav_blank is increased the contact problem van-
ishes and the free surface oscillates as expected (shown on the right side in figure 5.11a).
The red dashed line shows the mean wave gauge amplitude which has been determined
from simulations without wall functions. Figure 5.11b shows the same investigation for
the resistance components. The solid lines show the case for wall functions which remains
quite constant for small wav_blank parameters and drops when increasing wav_blank

above 10−3 until the simulation diverges. Dashed lines again show the respective values
when using no wall functions.

As the grid resolution in wall-normal direction has been decreased when using wall
functions, wav_blank smaller than 10−3 lead to no cell blanking, as the first cell thickness
is approx. 7 · 10−4. This is causing the contact problems, as the zero velocity at the walls
are used for the transport of level set equation. This parameter should hence be greater
than the smallest cell layer thickness. However, wav_blank also affects the determina-
tion of forces, which is why a drop in resistance coefficients occurs for larger wav_blank
parameters.

To overcome the uncertainty of choosing an appropriate value for wav_blank, a new
parameter nblank was implemented into REX, which uses a fixed number of points from
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Figure 5.11.: Influence of parameter wav_blank when using wall functions

the wall being blanked, instead of a distance. The result is shown in the dotted lines
in figure 5.11. Using the parameter nblank to blank the first cell at the walls, one can
choose small values for wav_blank, to maintain constant resistance coefficients. Although
the total resistance component is almost identical to the case without wall functions, the
frictional and pressure resistance deviate a little, but counteract each other.

A grid dependency analysis has been conducted using the parameter nblank and wav_-

blank of 3·10−4 as has been set when using no wall functions. Unfortunately, this analysis
showed a diverging behaviour of the pressure and hence total resistance component, as
can be seen in figure 5.12a. The oscillation frequency and mean wave gauge amplitude
inside the moonpool remain similar, which is shown in figure 5.12b.

Analysing of the pressure component for all three grids individually for the hull and
moonpool is shown in figure 5.13 for a short time span. The left figure shows the pressure
coefficient which is acting solely on the moonpool. One can see that a change in phase and
amplitude occurs from coarse to medium grid, but no significant changes happen when
using the fine grid. This leads to the conclusion that the grid resolution would be fine
enough to predict the pressure acting on the moonpool using the medium grid. The right
figure shows the pressure coefficient acting on the hull (excluding the moonpool surfaces).
Here, a significant difference can be seen between all three grids.

A significant change in pressure from medium to fine grid occurs somewhere at the hull.
One possibility would be a separation at the stern region which has not been captured



Page 96 5. Numerical simulations

cells
1/3

C
T

x
, 
C

F
, 
C

P

80 100 120 140 160 180 200 220
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

C
Tx

C
F

C
P

(a) Restistance components

cells
1/3

0
W

G
 [

m
]

f 0
 [

H
z
]

80 100 120 140 160 180 200
0.015

0.0155

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.92

0.925

0.93

0.935

0.94

0WG
 [m]

f
0
 [Hz]

(b) Mean wave gauge amplitude and piston
mode frequency

Figure 5.12.: Grid dependency for resistance components and mean oscillation amplitude
and frequency inside the moonpool ’MP’

time [s]

C
P

x

20 21 22 23 24 25

0.002

0

0.002

0.004

0.006

0.008

0.01 C
Px

  MP coarse
C

Px
  MP medium

C
Px

  MP fine

(a) Pressure component acting on the moon-
pool

time [s]

C
P

x

20 21 22 23 24 25

0.002

0

0.002

0.004

0.006

0.008

0.01 C
Px

  Hull coarse
C

Px
  Hull medium

C
Px

  Hull fine

(b) Pressure component acting on the hull

Figure 5.13.: Pressure components on moonpool and hull for grid dependency analysis



5.7 Influence of motion restrictions Page 97

until using the fine grid. To overcome this, further refinement would probably solve the
issue.

Due to these findings it was decided to use the RANS model without wall functions, as
this showed a clear time step and grid convergence and therefore the highest reliability.

5.7. Influence of motion restrictions

This section deals with the effects of restraining individual degrees of freedom. It is
especially of interest for numerical simulations to know which degree of freedom has
strong influences on the results, not only on resistance or coupled motions, but in this
case also on the moonpool characteristics. Several tests, numerically and experimentally,
have been performed. The experiments have been conducted with the ship at rest and
a wave encountering angle of µW = 45◦. Due to the measuring platform, the DOF that
could be restrained were heave & pitch combined, yaw and roll. Note that a restriction of
surge would have been feasible as well, but has not been included into this matrix. The
model was exposed to regular waves. Forces, moment, motions and oscillation amplitudes
have been measured. Comparison is made with the same situations, where no restriction
of DOF is applied and the model is kept at place using springs.

Heave and pitch could only be investigated combined, as the heave rods were fixed
using brackets, which restrains both motions. Yaw motion was suppressed by connecting
the fore and aft ∆y-slide. Most problematic was the suppression of roll motion. It is
originally allowed through the rod ends. These are further able to leave the pitch motion
unrestrained to a certain limit. To suppress the roll motion, the rod ends were turned by
90◦, which lead to a completely unrestrained pitch motion and roll motion being allowed
to certain limits. The latter was tried to suppress using spacer. This approach was only
successful to a certain limit, as the spacer caused an increasing friction in pitch motion
and could not completely suppress the roll motion. A new rod end construction would
have been necessary, to accurately restrain rolling. As it was not possible to suppress the
roll motion in a satisfactory way, the results are excluded and only the investigation of
heave & pitch as well as yaw is shown for the experimental part. The results in terms of
RAO for moonpool oscillation are shown in figure 5.14. The longitudinal and transversal
force amplitudes, as well as the yaw moment amplitudes are shown in figure 5.15. At
last, motions are presented in figure 5.16, where an influence of suppression of individual
DOF was detected. Other DOF which were not affected are listed in appendix C.1. The
results for each DOF are discussed together with the numerical analysis in the following
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Figure 5.14.: Influence of motion restriction on moonpool oscillation amplitude

subsections.
The numerical investigation focused on analysing the influence of restraining motions

at forward velocity. Simulations were conducted at Fr = 0.15 and wave encountering
angles of µW = 0◦ to investigate suppression of surge, heave and pitch, µW = 45◦ for
yaw and µW = 90◦ for roll and sway. Figure 5.17 is showing the RAO’s of oscillation
amplitudes due to piston mode frequency (dashed lines) and wave frequency (solid lines)
inside the moonpool for the three different wave angles and their respective restrained
motions. The black lines represent the case without motion restraining and the coloured
lines each individual restrained DOF. The longitudinal force amplitudes for µW = 0◦,
transversal force amplitudes for µW = 90◦ and yaw moment amplitudes for µW = 45◦

are shown in figure 5.18. Note that the forces for the case of restrained yaw motion have
a similar agreement as the moment and are therefore not shown. At last, figure 5.19
presents individual motions, where a restraining of DOF had an effect on. All other
motion parameters, which did not show significant differences between the unrestrained
and restrained case are listed in appendix C.1.

Surge

Restraining the surge motion has no effect on the moonpool characteristics. Its influ-
ence on motions is little as well. Only at λW/PP = 1.25 can be seen a slight deviation
in heave amplitude (see figure 5.19a). This is probably also the reason for a slight
deviation in longitudinal force in figure 5.18a. Other wave lengths show exactly iden-
tical mean forces. This agrees with findings from Uharek & Cura Hochbaum [78],
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Figure 5.17.: Influence of motion restriction on moonpool oscillation amplitude at piston
and wave frequency
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Figure 5.19.: Influence of motion restriction on other DOF

where different restoring forces have been investigated and no influence on mean
forces was observed.

Sway

The moonpool characteristic is not changed if swaying is suppressed. It seems to
affect however the roll and yaw amplitude at longer waves (see figure 5.19b and
5.19c). As this case has been done at µW = 90◦, the magnitudes of yaw motion
are small and hence the inaccuracy through restraining of sway negligible. The roll
motion is showing a more clear dependency on the correct swaying behaviour. A
major deviation of the side force when restraining swaying can only be detected for
λW/LPP = 0.75 (see figure 5.18c), whereas it agrees well with the unrestrained cases
for all other wave lengths.

Heave

The heave amplitude has a major influence, as can be seen in the experimental
investigation (which is combined with a restriction of pitching). The RAO of wave
induced oscillation inside the moonpool is significantly lower for λW/LPP = 0.5, than
without any restriction for the ship at rest and µW = 45◦ (figure 5.14). This effect
will be further investigated in chapter 6.2. The RAO is then slightly overestimated
for the two longest waves. For the case at Fr = 0.15 the amplitude induced by wave
frequency is underestimated for almost all wave lengths (figure 5.17a). Only the
amplitude at piston mode frequency for λW/PP = 0.75 is overestimated. Suppression
of heave influenced the surge and roll amplitude for the ship at rest (figure 5.16a and
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5.16c). Only a minor influence can be seen for the swaying motion (figure 5.16b).
An effect on other DOF through restriction of heaving has not been detected by
the conducted investigations. The influence on forces and moment when restraining
heave can be seen from the experimental cases in figure 5.15 (remember, these figures
show a combined heave & pitch restriction) and for the longitudinal force for a pure
heave restriction in figure 5.18b. Despite for the shortest wave, a clear dependence
on the correct heave motion can be seen for all forces and the yaw moment, as was
expected.

Roll

No influence can be detected on oscillating amplitudes inside the moonpool when
restricting the roll motion. Neither are other motions significantly affected (as can
be further seen in appendix C.1). When investigating the side force at µW = 90◦,
reduced magnitudes are observed for the two longest waves (figure 5.18c), when
restraining the roll motion.

Pitch

As pitching was restrained in the experimental investigation combined with heave,
no clear effect of pitching can be determined from this investigation. By compar-
ing the numerical results for restricted pitch motion with no restriction, it seems
however that pitching does not have any effect on the moonpool characteristics (fig-
ure 5.17a). A minor coupling effect can be seen for the heave motion, which is
slightly underestimated for the longest wave (figure 5.19a). A clear dependency on
the correct pitch motion can be detected from experimental results of force and yaw
moment amplitudes (figure 5.15) and numerical results for the longitudinal force
amplitudes (figure 5.18a).

Yaw

Restraining the yaw motion has barely any effect on other parameters. The moon-
pool oscillation is not affected at all, as can bee seen in figure 5.14 and 5.17b. The
same applies for the other DOF which are not affected if yaw is suppressed. Only
exemption might be rolling, which is similar from numerical simulations at forward
speed, but shows a slight deviation for longer waves in the experimental data at rest
(figure 5.16c). The forces and yaw moment are neither affected in the experimental,
nor in the numerical investigation, by a restrained yaw motion.
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Concluding from the previous discussed results heave and pitch motion are most im-
portant to correctly predict moonpool characteristics, forces and yaw moment. The surge
and yaw motion on the other hand can be restrained without causing inaccuracies in the
results. The sway and roll motion are not of importance for the moonpool oscillations,
but might play a role for correct determination of forces or coupled motions and should
hence be unrestrained if possible. Note that Gaillard & Cotteleer [34] reported that surge
motion promotes the development of sloshing modes inside the moonpool. Their recom-
mendation is to perform tests under self-propelled conditions in order to correctly consider
the surge motion. Such an effect has not been detected in this work. It might occur if
moonpools with a higher ratio of length to breadth are investigated.

5.8. Influence of vortices

It was observed during the numerical simulations that two pronounced vortices are formed
below the keel. These vortices originate from the forefoot and extend until the moonpool
opening. Their transverse location, when reaching the moonpool, is approximately at the
side walls of the moonpool. The severe oscillation inside the moonpool usually causes a
breakdown of the vortical structures behind the moonpool. These vortices are shown in
figure 5.20, where the iso-Q surface is coloured in the velocity magnitude. The turning
direction of the vortices can be seen in figure 5.21a. The differences in the flow field,
compared to a simulation without forefoot (figure 5.21b) can be clearly seen. A longitudi-
nal and transverse plane visualise the longitudinal velocity component u. The transverse
plane is placed right in front of the moonpool leading edge and shows the velocity vector
plot in this plane. The longitudinal plane further highlights the boundary layer thickness,
which is marked with δ99. The strong vertical and transverse velocities due to the two
vortices lead to a compression of the boundary layer in between them. The reduction of
boundary layer is of approx. 60%. Furthermore, the inner part of the leading edge ex-
periences a vertical velocity component, while the outer part an even stronger transverse
velocity component.

It was investigated if the different flow conditions due to the vortices have a signifi-
cant influence on the ship and moonpool performance. Figure 5.22 shows the results of
simulations in calm water for different Froude numbers with the forefoot (dashed lines)
and without (solid lines). The resistance components for both cases are shown in fig-
ure 5.22a. The overall performance is pretty similar. The frictional component (green)
is slightly reduced when disregarding the forefoot. This however is not due to a smaller
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Figure 5.20.: Vortices below the keel

(a) Simulation with forefoot (b) Simulation without forefoot

Figure 5.21.: Boundary layer development and vector plot with and without forefoot
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Figure 5.22.: Comparison of simulations with and without forefoot

wetted area, as both forces are non-dimensionalised with their respective wetted areas. It
is therefore most likely that this effect occurs due to induced velocities through the vor-
tices. The pressure component for the case with forefoot is quite similar for low Froude
numbers or slightly higher than without forefoot. Hence, the total resistance component
is slightly higher in case of considering a forefoot. This behaviour changes for higher
Froude numbers. As can be seen in figure 5.22b the mean amplitude of oscillation inside
the moonpool increases if the forefoot is disregarded. The non-dimensional frequency is
only slightly lower if no forefoot is present, with a larger drop for Fr = 0.12. It should
be noted that the ship motions are negligible small and similar in all cases and hence not
source of the change in oscillation amplitude.

In order to understand if the boundary layer thickness or the transverse and vertical ve-
locity components are causing this behaviour, further simulations with a higher Reynolds
number have been conducted for the ship without forefoot. Those simulations could be
performed using no wall functions as well, as the grid allowed increasing y+ values. The
maximum Reynolds number until reaching a y+ = 1 for Fr = 0.23 was Re = 3.294 · 107

with Lref = 14.35 m compared to Re = 3.288 · 106 for Lref = 3 m. Even higher Reynolds
numbers and hence smaller boundary layers would have been only achieved, when chang-
ing the turbulence model to wall functions and simulating the full scale ship. Due to the
above mentioned uncertainties with grid dependence for wall functions, this option was
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disregarded. The conducted simulations with a ’medium scale ship’ lead to a reduction
in boundary layer of approx. 26%. Although this equals only half of the reduction com-
pared to the case with forefoot, an indication if the boundary layer has an influence on
the moonpool characteristics should be visible. Figure 5.22b shows the non-dimensional
oscillation amplitude and frequencies for the case with high Reynolds number with the
dashed-dotted lines. Those follow the solid lines, which represent the same simulations
with lower Reynolds number and hence larger boundary layer, for almost every situation.
The amplitude for higher Froude numbers is not reduced for the case of high Reynolds
numbers, as happens for the ship with forefoot. It can therefore be concluded that the
source of drop in amplitude is not the boundary layer, but the strong vertical and trans-
verse velocities caused by the vortices originating from the forefoot.

5.9. Numerical roll decay test

As already mentioned in chapter 4.3.1, a roll decay test has been performed experimen-
tally. The influence of cable actuated distance sensors on the roll amplitude has been
shown by comparison with a roll decay test using an IMU.

The roll decay test was repeated numerically in order to determine the accuracy of
roll motion, which will be of importance when simulating beam sea conditions. Neither
the experimental model, nor the numerical model had bilge keels attached. The mass,
gyradii and initial heel angle were identical as in the experiment. Note that some heaving,
pitching and other motions might have occurred in the experiments, but were not taken
into account as exact starting conditions in the numerical simulations.

Several parameters had a significant influence on the roll characteristic in the numerical
simulations and will be discussed in the following.

A major influence on the numerical results was found in the time step integration
method, which is used to determine the ship motions out of the resulting forces respectively
accelerations. Figure 5.23a shows a comparison of the different investigated methods for
the first roll periods.

The black dashed line represents the experimental roll decay amplitude from the IMU.
The first order explicit method (red line) is typically used to find a steady state for sinkage
and trim simulations. This is because the method is either 4 point or 8 point averaged,
meaning that for the determination of the current time step velocities, the previous four
or eight accelerations are included and averaged. Therefore, this method yields increasing
roll amplitudes (approximately 1◦ after 2 roll periods), as the chosen time step is quite
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Figure 5.23.: Influencing parameters on roll decay test

large (∆t′ = 0.002) and hence the change of motion at the peaks is damped to much,
leading to an overshoot.

Afterwards higher order methods were tested. A second order explicit method (purple
line) showed some improvements as the roll amplitude did not increase any more, but
was kept steady, leading to no significant roll motion reduction. Implicit methods of
second order (blue line) and second order using the least-squares method (not shown in
the diagram) lead to further improvements. The second order implicit method showed a
clear reduction in roll motion amplitude, almost coinciding with the experimental data
regarding the amplitudes. The least-squares method lead to identical results as the second
order implicit method.

The second order implicit method has the best accuracy, while being significantly faster
than the least-squares method and has hence been chosen for all further simulations. Ex-
plicit methods and lower order methods were disregarded, due to their poor performance
in dynamic roll motion behaviour. Their advantage is a significantly shorter computa-
tional time.

A clear deviation in roll period is visible in figure 5.23a. This was reduced by adjusting
the numerical grid in vertical direction, as the initial buoyancy did not match the mass.
The improvement can be seen in figure 5.23b and 5.23c when comparing the roll motion
and heave motion for the uncorrected case (blue line) with the corrected (orange line).
The oscillation in heave motion took place around a non-zero value before correction.
At last the grid inclination approach has been changed. In the first approach Suggar++
was used to incline the grid already during the phase of grid generation. This lead to
unsymmetrical rolling, which could not be explained. Afterwards, the grid without an
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initial inclination was used and a heeling achieved using a prescribed motion for roll.
When the desired heeling angle was reached, the simulation was restarted with all DOF
free to move. This approach is shown in green in figure 5.23b and 5.23c.

Finally a good agreement between numerical and experimental results was achieved as
can be seen by comparing the green dotted line (experiment) with the solid green line
(numerics) in figure 5.24.

The majority of experiments where rolling will occur is done with the experimental set-
up as discussed in chapter 4.3. There, cable distance sensors are connected to the model
to determine all motions. These distance sensors significantly increase the roll damping.

If numerical simulations where rolling occurs are to be compared to experimental data,
an additional damping due to the effect of cable distance sensors needs to be applied in
the numerical approach. A general description for the equation of motion is:

m
d2x

dt2
+ c

dx

dt
+ k · x = 0, (98)

where c describes the damping coefficient, k the spring coefficient, m is the mass and x
the translation of motion. The damping coefficient can be expressed using the damping
ratio ζd = c

cc
, where cc = 2mωn is the critical damping and ωn the natural frequency. A

damping ratio of zero corresponds to an undamped system, 0 < ζd < 1 to an underdamped
system which is still oscillating but decaying in amplitude, ζd = 1 is the critical damping
and ζd > 1 corresponds to an overdamped system which does not oscillate any more. The
damping ratio is related to the logarithmic decrement Λ by:

ζd =
Λ

2π
(99)

with the definition of the logarithmic decrement

Λ =
1

n
ln

(
ζ(ti)

ζ(ti+n)

)
, (100)

with ζ(ti) being the amplitude of the peak at time ti and ζ(ti+n) the amplitude n-periods
away. A dimensionless damping coefficient for finite difference methods can hence be
described by:

c′ =
2Λ

Tn

Lref
uref

, (101)

where the natural Period Tn has been used instead of the natural frequency ωn and Lref
and uref are the characteristic length and velocity to non-dimensionalise all equations.
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Figure 5.24.: Roll decay amplitude for undamped (green) and damped (black) experiments
(dashed line) and numerical simulations (solid line)

The logarithmic decrement, which is necessary to mimic the damping effect of cable dis-
tance sensors in the numerical simulations, is the difference of the logarithmic decrement
from the experiments with cable sensors (black dashed line in figure 5.24) and the loga-
rithmic decrement of the undamped numerical simulation (green solid line in figure 5.24).
The numerical simulation with the applied damping coefficient is shown in figure 5.24 with
the solid black line and corresponds well with the experimental data with cable distance
sensors. A slight deviation in natural frequency of 0.8% can be seen for both numerical
simulations, which is acceptable. The damped amplitude is slightly underestimated but
also of sufficient accuracy. Table 5.11 summarises the natural frequency and logarithmic
decrement of all four cases, shown in figure 5.24.

Table 5.11.: Natural frequency and logarithmic decrement of roll decay tests

EXP IMU CFD deviation EXP cable CFDdamp_coef deviation

ωn 3.215 3.199 -0.5% 3.219 3.193 -0.8%
Λ 6.232E-2 6.723E-3 +7.9% 1.473E-1 1.246E-1 -15.4%

The determined additional roll damping coefficient has been used in all further simu-
lations, where rolling was allowed for. Certain simulations have been repeated using no
additional roll damping coefficient, in order to determine the influence on the roll am-
plitude in wave excited conditions. Figure 5.25 is showing the time series (left) and the
corresponding Fourier transformation (middle) of the roll amplitude for case RW075_-
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Figure 5.25.: Effect of additional roll damping for µW = 90◦

90_0_MP. The solid grey line represents the case with additional roll damping coefficient
applied, the dashed grey line the one without and the solid black line the experimental re-
sult. The experimental result has been determined using the new measurement device and
is hence being affected by additional damping due to the presence of cable distance sen-
sors. Both, experimental and numerical results are composed by a superposition of a roll
amplitude corresponding to the wave frequency (at fW = 0.81 Hz) and a lower frequency
at approximately f ≈ 0.55 Hz. The latter corresponds to the natural roll frequency. The
amplitude at the natural roll frequency is slightly higher in numerical simulations, albeit
it is declining over time. Longer simulation times might lead to better comparison of
experimental and numerical methods regarding the amplitude at natural roll frequency.
Comparing the numerical results for additional and no additional damping coefficients
reveals slightly higher natural roll amplitudes if the additional damping term is missing.
The roll amplitude corresponding to the wave frequency is however not significantly af-
fected. Figure 5.25c is showing the time series of a different case with longer wave lengths
(λW/LPP = 1.25) and at forward speed. Note that no experimental data is available for
the case of beam seas and forward speed, due to seakeeping basin limitations. A stronger
dependency on the additional roll damping term can be seen in these results. The roll am-
plitude is about 1.3◦ higher, if no additional roll damping is applied. The wave frequency
is in close proximity to the natural roll frequency, which is why first, high amplitudes
are occurring and second, the signal is oscillating at only one frequency, rather than two
superposed frequencies.

This leads to the conclusion that an additional numerical damping coefficient to mimic
the damping effect of cable distance sensors is of importance, when investigating the am-
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plitude at natural roll frequency. It should therefore be applied when comparing numerical
results with experimental data of the chosen measuring device. It seems to be however
of less importance if the wave excitation frequency differs from the natural roll frequency
and comparison of roll amplitudes is done for the wave excitation frequency.



6. Results

This chapter contains the summary of numerical and experimental results for different
moonpool configurations and environmental circumstances. Chapter 6.1 contains all rel-
evant results for the ship in transit condition, while chapter 6.2 all results for operational
conditions.

6.1. Transit condition

With ’transit condition’ it is referred to the ship with different moonpool configurations
at forward velocities and sailing in calm water or waves of different direction and length.
No operations would normally take place in the moonpool during transit conditions. It
is however of interest to reduce the oscillation inside the moonpool in order to reduce
the resistance but also to increase safety by avoiding green water on deck. The following
sections contain different investigated aspects for transit conditions.

6.1.1. Oscillation frequencies

Although the purpose of a moonpool is to increase the operability by providing a secured
place with reduced water motions, oscillations of the water will take place in almost any
case. This applies to transit, but also to operational condition. These oscillations can
be described, as any fluctuating time signal, by one or more frequencies and respective
amplitudes. These frequencies can be, in case of a moonpool, distinguished between the
following:

1. Shedding frequencies

2. Wave frequencies

3. Moonpool resonant frequencies

Shedding frequencies

With shedding frequencies it is referred to an oscillation, typically of low amplitude, which
is initiated solely by the separation at the leading edge of the moonpool at forward veloc-
ities. If no severe shear-layer rollup is taking place, the disturbance inside the moonpool
will be at a minimum. This makes shedding frequencies most difficult to determine as

112
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the recorded signal is mainly covered by noise and hence rather ambiguous. A clear
observance of shedding frequencies is discussed in chapter 6.1.7, where the moonpool is
closed at the free surface. No oscillation of the water column takes place and the pressure
fluctuation at the leading edge of the moonpool corresponds solely to vortex shedding.

Wave frequencies

The frequency of environmental waves can prescribe the oscillation frequency inside the
moonpool. As will be shown later, this does not have to be the case for all waves, as
the moonpool might predominantly oscillate at its resonance frequency although the only
source of disturbances is coming from waves of a different frequency. Often, the recorded
signal consists of two main frequencies, being the wave and moonpool resonant frequency,
leading to inharmonic time series.

Moonpool resonant frequencies

Each moonpool has its own resonant frequency, mainly being defined by its dimensions.
It is common practice to distinguish between piston mode motions and sloshing mode
motions. In the piston mode, the entire water surface inside the moonpool rises and sinks.
No, respectively minimum phase shifts will be detected, when recording the elevation at
different locations. This is not the case for sloshing modes, which is characterised by a
wave travelling between the moonpool walls and hence phase shifts between signals at
different locations.

The natural frequency of a piston mode motion can be estimated by describing the water
column enclosed by the moonpool as an undamped mass-spring system. The resonant
frequencies for such systems are known to be

ω =

√
c

m+madd

. (102)

c is a restoring coefficient, m the mass of the enclosed water and madd the added mass
coefficient, resulting from effects proportional to the acceleration of the water column.
The restoring coefficient can be formulated by c = ρgA and the mass with m = ρAT .
A describes the horizontal area of the moonpool and T the draught of the moonpool,
typically coinciding with the draught of the ship. Note that the index mp will be skipped
in order to simplify the following equations, although all dimensions in this chapter refer
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to moonpool dimensions. Equation (102) simplifies to

ω =

√
g

T + Tadd
(103)

This equation is simple to use and understand, as one can directly see a main param-
eter influencing the piston mode frequency, namely the draught T . The difficulty is in
accurately determining the ’added draught’ coefficient Tadd.

A widely used method to determine the added draught has been proposed by Molin [56],
whose approach has already been introduced in chapter 1. Remember that his theory is
based on linearised potential flow theory and a motionless barge with no forward velocity.
Molin’s approach yields the following description for the piston mode frequency:

ω0 ≈
√

g

T + bf3

with, (104)
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From equation (105) it can be seen that the breadth and length of the moonpool are the
other important parameters which define the resonant frequency. Fukuda [32] gave an even
simpler estimation of the added draught with Tadd = 0.41

√
A. A similar recommendation

is given from DNV-GL [22] with the added draught defined as Tadd = κ
√
A and κ being

depended on the shape and aspect ratio, ranging between 0.45 - 0.48.
Fukuda [32] also mentioned the formulation for sloshing modes with

ωm =

√
mπg

l
, (106)

whereas the formulation for sloshing modes by Molin [56] is more complex and requires
numerical integration. Index m denotes the sloshing mode and starts with 1 for a standing
wave in the moonpool with a crest on one wall and a trough at the other wall. van’t Veer
& Tholen [80] showed that the approaches of Molin and Fukuda yield similar sloshing
frequencies for different moonpool geometries.

Some general findings of Molin were that piston mode frequencies are always lower than
the first sloshing mode frequency. The latter increase unboundedly with decreasing ratios
of T/l and b/l.

When running calm water simulations, the water column of the moonpool will oscillate
at its resonant frequency, or sometimes at the shedding frequency. When performing
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Figure 6.1.: Moonpool oscillation frequencies over Froude numbers

the simulations and experiments, it turned out that the piston mode frequency was not
constant but gradually increased for increasing Froude numbers. The approach of Molin
does not take account of forward velocities and the author is not aware of any other source
dealing with the influence of forward ship speed on the natural piston mode frequency.
van’t Veer & Tholen [80] mentioned non-constant Strouhal numbers for the moonpool
(Srmp = f0 · lmp/v) in the range of 0.2 to 0.4, but did not further specify the progress
of frequencies. A slightly wider range of Strouhal numbers has been found within this
work, as can be seen in table 6.1. The non-constant resonant frequencies are shown in
figure 6.1 for the three moonpools MP, MD and SD. The coloured symbols represent the
individual dominating frequencies inside the moonpool, which have been determined by
experiments. The respective coloured dashed lines show the approximated piston mode
frequency by Molin and the dashed-doted line by Fukuda for each moonpool dimension.
The coloured solid lines are a linear fit of the experimental values. A similar behaviour
of all moonpool dimensions can be seen, although a linear trend is not the best fit. Note
that the frequencies do not converge towards the approximated frequencies by Molin or
Fukuda for low Froude numbers. Fukuda reported similar findings, where the frequency
drops below the natural frequency, depending on the forward velocity (Fukuda [32] and
Fukuda & Yoshii [33]).

For the case of moonpool SD, the differences in resonant frequency are shown in ta-
ble 6.1. The natural piston mode frequency, e.g. determined by equation (104)-(105)
leads to f0 = 1.025 Hz. The relative wave length λW/LPP , which would lead at that
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Table 6.1.: Experimental results of frequencies for moonpool SD

u Fr Frmp Srmp f0 λW/LPP λW/LPP ∆λW/LPP

[m/s] [-] [-] [-] [Hz] [-] [-] [-]
f0=var. f0=const.

0.328 0.06 0.247 0.54 0.989 0.74 0.69 -0.05
0.493 0.09 0.371 0.38 1.028 0.78 0.78 0.00
0.655 0.12 0.493 0.28 1.033 0.86 0.87 0.01
0.820 0.15 0.617 0.23 1.060 0.90 0.96 0.06
0.992 0.18 0.747 0.20 1.099 0.93 1.04 0.11
1.136 0.21 0.855 0.18 1.133 0.96 1.11 0.15
1.246 0.23 0.938 0.17 1.178 0.95 1.17 0.22

specific Froude number to a resonant behaviour inside the moonpool has been calculated
once for the observed variable frequency and once for the constant frequency.

One can see that depending on the chosen velocity of the ship, relative wave lengths
between 0.74 up to 0.95 will result in a resonant behaviour in case of head seas. For
a fictitious full scale ship with LPP = 195 m, these would correspond to wave lengths
between λW =144 m and 185 m. The differences in wave length between using a constant
and variable frequency are small for lower Froude numbers but become with ∆λW/LPP =

0.22 quite large for the highest investigated Froude number. This should emphasise the
importance of knowledge of exact resonant frequency at forward speed. With a better
knowledge of the exact velocity dependent resonant frequency, the ship could be more
safely operated during respective sea states, by adjusting the ship speed to avoid resonant
conditions. Therefore, the following work has been done in order to predict the resonant
frequency, including a dependency of the ship speed.

6.1.2. Empirical approach for velocity dependent resonant

frequency

The following chapter presents an empirical approach to determine a velocity dependent
resonant frequency of the moonpool, based on experimental and numerical results. Calm
water tests have been performed for various moonpool geometries in order to include the
different lengths and breadths of the moonpool. Note that no variation of the draught
has been conducted. It should be also mentioned at this point already that this approach
is up to now only valid for the model investigated. A wider database of models with
moonpools would enhance the empirical formulation of the velocity dependent resonant
frequency.
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Experimental investigations have been conducted for the moonpools MP, MD and SD.
The same geometries and additionally lb1 and lb2 have been simulated numerically. The
Froude number of the ship has been varied between 0.06 ≤ Fr ≤ 0.23.

Figure 6.2 shows the experimental results for the non-dimensional resonant frequency
f ′0 = f0 · lmp/uref over the moonpool Froude number Frmp = uref/

√
lmp · g. The black

symbols represent the exact experimental value and the black line the power fit curve
through these values. The red symbols (respectively blue for lb2) represent the numerical
results and again the coloured curves the power fit. One can see that the non-dimensional
frequencies match very well between experiments and numerics. Each figure shows the
equation of the respective power fit curves. The lowest goodness of fit is of 0.998 and
hence all curve fits can be seen as accurate enough. Linear and exponential curve fitting
showed less good agreements between numerical and experimental values and had lower
goodness of fit values and were hence disregarded.

The determined curve fittings were further analysed in order to state a general equation
for all geometries. The general power equation can be written as:

f ′0 = exp [A · ln (Frmp) + B] (107)

Factor A is relatively constant for all geometries and will be determined by averaging the
respective coefficients of the individual curve fits. Factor B shows a more clear tendency
between the different geometries. A linear dependency of B on the moonpool length was
found, as figure 6.3a shows with a goodness of fit of 0.887. Therefore, B is divided into

B = B1 +B2 · lmp (108)

Equation (107) hence turns to

f ′0 = exp [A · ln (Frmp) + B1 +B2 · lmp] (109)

When processing the curves shown in figure 6.2, the following coefficients could be
determined,

• A1 = −8.9835

• B1 = −2.1379

• B2 = 1.3564m−1,
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Figure 6.2.: Power fit of non-dimensional resonant frequencies for MP, MD, SD, lb1 and
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and the general equation can be stated as:

f ′0,emp = exp [−8.9835 · ln (Frmp) + (−2.1379 + 1.3564 · lmp)] (110)

Figure 6.3b shows the original power fit in solid lines and the general function using
equation 110 in dashed lines. The respective lines show a good agreement. Note that
this figure only shows the numerical power fit curves and their approximation using equa-
tion (110). Comparison to the experimental power fit curves shows similar results.

In order to exclude the dependency of the moonpool draught, equation (110) is substi-
tuted in equation (103) which yields a description for the added draught Tadd using the
above mentioned approach

Tadd =
g

ω2
0,emp

− T, (111)

with ω0,emp = 2π · f0,emp.
This approach yields velocity dependent dimensional resonant frequencies for MP, MD,

SD, lb1 and lb2, as can be seen in figure 6.4. The filled black symbols represent frequencies,
which have been excluded from the power fitting approach due to the following reasons:

As already discussed in chapter 5.5, the lowest Froude numbers sometimes show an
ambiguous behaviour in resonant frequency, as their dominant frequency sometimes cor-
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responds to sloshing modes or to the second harmonic of the piston mode. When looking
at MP in figure 6.4a, two frequencies at Frmp < 0.35, show much higher values than the
rest. These frequencies are due to sloshing type motions and are hence excluded, as this
approach is only valid for piston type motions. The two lowest moonpool-Froude num-
bers in MD and SD (figure 6.4b and 6.4c) show decreased frequencies, compared to the
other results. This decreasing cannot be explained until now. One frequency at SD and
two at lb1 are excluded for higher moonpool-Froude numbers, as they decrease to around
f0 ≈ 0.4 Hz. The oscillation amplitude at these Froude numbers is extremely small (as
will be shown in section 6.1.3) and hence no clear frequencies can be determined for these
cases. At last, the two lowest Froude numbers of lb2 are excluded. The frequency of the
lowest Froude number cannot be explained, while the one of the second lowest correlates
to the second harmonic of the piston type motion.

This approach covered a wide range of Froude numbers for the ship. As the non-
dimensional frequency f ′0 has been used for the power fitting and uref was used for non-
dimensionalisation, this approach is not valid for u → 0, as f ′0 → ∞. The approach
has been tested for one ship with several different moonpool geometries. Therefore, the
database is too small to make equation 110 applicable to all types of ships and moonpools
without further validation. A broader range of input data would enhance the equation
and could also detect other dependencies than the ones used.

6.1.3. Oscillation amplitudes

The oscillation amplitudes at transit condition appear due to the moonpool resonant
frequency. The results of all three wave gauges for the numerically and experimentally
analysed oscillation amplitudes are shown in figure 6.5. WG2 is located at the centre of
the moonpool, WG1 4.5 cm in longitudinal direction towards the leading edge and WG3
4.5 cm towards the trailing edge. All shown amplitudes are due to piston mode oscillations,
except for the frequencies discussed in the previous chapter. One can immediately see
that the longer moonpools (MP, lb2 and MD) undertake much stronger amplitudes than
the shorter ones (lb1, SD). If the amplitudes are stronger, the free surface performs the
highest oscillation at WG3 and the lowest at WG1. This is due to a strong vortex which
is deflected upwards at the trailing wall and pushes the water up. This rises the free
surface in the aft half, which then leads to a motion of the fluid towards the leading
wall. Although having similar behaviour of a sloshing motion, this cycle repeats with the
dominating piston mode and is hence of lower frequency than the first sloshing motion
according to equation (106). An exemplary cycle has been shown in figure 1.1. For the
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more moderate free surface motions of SD and lb1, all three wave gauges show mostly
similar amplitudes. The free surface hence rises and sinks at all locations with the same
amplitude and no, respectively little inclination of the free surface occurs. An observation
that can be made though, is that the free surface is for these geometries often a little
higher at the front and aft wall of the moonpool and lower in the centre.

Comparing the numerical results (coloured lines and symbols) in figure 6.5 with the
experimental (black symbols) reveals some discrepancies. For MP, the agreement is satis-
fying until a moonpool Froude number of Frmp ≈ 0.58 corresponding to Fr = 0.18. The
amplitudes of the two highest Froude numbers seem however over-predicted in the nu-
merical simulations. In both, numerics and experiments, the amplitudes keep constantly
rising with increasing Froude number. It should be noted that the wave gauges are not
placed at the front respectively aft wall, where the maximum amplitudes would occur. A
placement of WG1 & WG3 closer to the walls might have improved the agreement due to
more distinguished signals.

The largest discrepancy occurs for MD, where the numerics predict much higher am-
plitudes than the experiments. The amplitudes drop for the highest Froude number in
the numerics and already for Frmp > 0.53 in the experiments. Reason for that different
behaviour has not been found. It should be borne in mind that the experimental setup
consisted of moonpool insertions, which reduced the size of the original moonpool MP.
This comes at the cost of additional edges, which are not present in the numerical grid.
Although it is not believed that additional vortex generation due to unwanted edges in
the experiments caused this severe reduction, it might be part of an explanation. More
likely could be a different development of shear-layer rollup and propagation of this vor-
tex in numerics and experiments. If the separated vortex is more upward directed in the
numerical simulations than experiments, deflection at the trailing wall could be stronger
and cause more severe oscillations in the simulations, while being shed mostly under the
keel in experiments and hence limiting the oscillation amplitude. Further investigation of
this theory would require the experimental determination of the velocity field inside the
moonpool. This however is highly complicated, time and data consuming and has hence
not been conducted within this work. The theory would be supported by the fact that os-
cillations for the longer moonpool MP and shorter moonpool SD agree satisfactory, where
the vortex propagation might be more clearly, whereas moonpool MD might represent an
ambiguous case.

Moonpool SD shows again a fairly good agreement between experimental and numerical
results. Only Frmp ≈ 0.74 has still significant amplitudes in the experiments, while they
already vanished in the numerics, as is the case for all higher Froude numbers. It was
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Figure 6.6.: Experimental mean wave gauge amplitude for SD

not clear, if the experimental oscillation for Frmp ≈ 0.74 resulted from vibrations of
the measuring platform/carriage, causing additional disturbances and hence moonpool
oscillations. To further investigate this, experiments in the large towing tank have been
conducted, whose carriage runs much smoother and at very constant speed. Furthermore,
all DOF were restricted to check if motions are causing the higher moonpool oscillations.
Figure 6.6 shows the mean oscillating amplitude and the carriage velocity at Fr = 0.15

(left) and Fr = 0.18 (right), corresponding to Frmp ≈ 0.61 respectively 0.74. The
figures are split into three regions, I) being the acceleration phase of the carriage, II) the
development of oscillating amplitudes and III) the fully developed oscillating amplitudes.
Comparing both figures leads to the conclusion that while at Fr = 0.15 the amplitude
develops quite rapidly, it takes much longer to develop at Fr = 0.18 and further has less
steady amplitudes. Although the numerical simulation for Fr = 0.18 has been run longer
to check if the oscillation develops at a later stage, no significant oscillating amplitudes
established. The rapid collapse in oscillating amplitude seems to occur around Frmp =

0.75 for all investigated moonpool geometries (check figure 6.5). For higher moonpool
Froude numbers, the vortices separated from the leading edge, break up at the trailing
edge and are mostly carried below the keel and barely enter the moonpool any more.

The length of lb2 and MP is identical, as is lb1 and SD. The only varying parameter is
the respective breadth. As lb2 and lb1 show a very similar behaviour as MP and SD, it
can be concluded that the breadth has no significant influence on the oscillation amplitude
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at transit conditions in calm water.
Fukuda [32] gave an estimation of oscillation amplitude during transit conditions in

calm water, using the current ship speed u and the velocity at which oscillations start to
develop ustart. The latter needs to be measured and gives room for discussions. Gaillarde
& Cotteleer [34] suggest to use a method by Covert [15]. The equation Fukuda yielded is

ζ0−WG−Fukuda

lmp
=

3π

16
· u− ustart
lmp · ω0

(112)

The exact definition of amplitude is not specifically mentioned. Applying equation (112)
on the geometries investigated and using Frmp = 0.35 to calculate ustart, the amplitudes
predicted by Fukuda could be determined. These amplitudes are shown in figure 6.5 with
the respective black lines and agree well with the results obtained in this work.

6.1.4. Added resistance due to moonpool oscillations

The oscillations inside the moonpool cause an increase in ship resistance, which is generally
a function of the oscillation amplitude, as will be shown. van’t Veer & Tholen [80]
investigated the effect of moonpools on the resistance and proposed a simple model for
the added resistance, based on experiments. The added resistance coefficient ∆Cmp can be
defined by the difference between the non-dimensional resistance of the ship with (CT,w)
and without moonpool (CT,wo)

∆Cmp = CT,w − CT,wo, (113)

where the coefficients are each determined with the respective wetted surface in hydro-
static condition.

The numerical simulations have been performed with sinkage and trim free and all
other DOF restrained. The simulations for the ship without moonpool (’CL’) have been
performed for 0.12 ≤ Fr ≤ 0.21, whereas all other simulations and experiments for a
wider range of 0.06 ≤ Fr ≤ 0.23. Figure 6.7 shows the results for MP, MD, SD, lb1 and
lb2 each compared to CL. The coloured lines and symbols represent numerical simulations,
whereas the black symbols represent experimental results. Only resistance coefficients in
longitudinal direction are shown. The red lines represent the total resistance coefficient,
the green lines the frictional resistance and the blue lines the pressure resistance coefficient.
The orange lines have been determined from equation (113) and visualise the increase of
resistance due to presence of the moonpool.
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Figure 6.7.: Numerical and experimental resistance coefficients for MP, MD, SD, lb1, lb2
and CL
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The experimental results predict higher total resistance coefficients for Fr = 0.06 and
0.09 for all moonpool geometries than the numerical results. It is believed that the ex-
periments are over-predicted, probably due to laminar boundary layers and consequential
higher separation. The Reynolds numbers are very small, especially for the lowest Froude
numbers and due to the limited model length of LPP = 3 m. This effect cannot occur in
the numerical simulations, as the turbulence model is prescribing a fully turbulent bound-
ary layer. Another general observation is the lower frictional resistance of all moonpool
configurations, compared to CL. This is due to the missing shear forces at the moonpool
opening, which are not compensated by the shear inside the moonpool, where velocity
gradients are generally much smaller. The added resistance coefficients solely result from
an increase in pressure resistance, in presence of the moonpool. This can be explained
by vortex separation at the leading edge causing a pressure low at the front wall and an
impingement of vortices at the trailing edge causing a pressure high at the aft wall.

The overall agreement between numerical and experimental results for MP (figure 6.7a)
is very good. The experimental results tend to fluctuate a little for the highest Froude
numbers, whereas the numerical results show a steady increase. This deviation is accept-
able though. The added resistance also agrees well between experiments and numerics
and is steadily increasing with increasing Froude numbers.

Figure 6.7b shows the results for MD. Experiments and numerics agree for Fr = 0.12

and 0.15, whereas they are deviating for higher Froude numbers. The numerical total
resistance coefficient increases up to Fr = 0.21, whereas the experimental coefficient even
drops below the baseline of CL. It should be mentioned that the dimensional resistance
is still slightly higher in presence of the moonpool, but the larger wetted surface reduces
the coefficient, such that it can be smaller than for the case without moonpool. The
added resistance coefficient is steadily increasing for the numerical simulations, while it
is turning negative for the two highest Froude numbers in the experiments.

Moonpool SD (figure 6.7c) has a different behaviour for the highest Froude numbers,
than MD. The numerical results sink below CL while remaining almost identical to CL
in the experiments. This causes a slight negative added resistance in the numerics and
almost no added resistance in the experiments.

lb1 in figure 6.7d shows a very similar behaviour as SD and lb2 as MP. Again, the
breadth does not seem to have any influence on the resistance.

An obvious observation is the connection between the progress of the resistance co-
efficient and the moonpool oscillation amplitude. When comparing figure 6.5 with 6.7,
a direct connection between both can be made. This circumstance also explains the
occurrence of negative added resistance coefficients, which appears when the oscillation
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Figure 6.8.: Correlation of resistance coefficient and oscillation amplitude

amplitude vanishes. The dimensional resistance is then of similar magnitude, while the
non-dimensional coefficient might be lower, due to the larger wetted surface of the ship
with moonpool.

Figure 6.8 shows the total resistance coefficient CT over the mean dominating oscillation
amplitudes ζ0−WG for all numerical and experimental results. Similar findings have been
shown by van’t Veer & Tholen [80], who distinguished the added resistance coefficients
for piston and sloshing mode motions. As no pure sloshing motion occurred during this
investigation, only piston mode motions are shown in this diagram. The linear increase,
shown with the black line, is clearly visible. It is hence of interest to reduce the oscillation
amplitude by suitable measures, in order to avoid an increase in ship resistance during
transit condition.

6.1.5. Influence of incoming waves

Until now, only calm water tests have been shown. This chapter is describing the results
of the ship sailing in waves and their effect on the moonpool characteristics. Therefore,
regular waves of λW/LPP = 0.50, 0.75, 1.00 and 1.25 have been investigated. The wave
steepness has been kept constant at 2ζW/λW = 2 % leading to wave amplitudes in model
scale of ζW = 0.015, 0.0225, 0.03 and 0.0375 m. All numerical simulations have been done
for Fr = 0.15 and different wave headings of µW = 0◦, 45◦, 90◦, 135◦ and 180◦. Addition-
ally, investigations for Fr = 0.18, µW = 0◦ and a slightly wider range of wave lengths
are shown in Löhrmann et al. [51]. Conclusions are similar and will not be repeated here.
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Figure 6.9.: Total resistance coefficient

Experiments have been conducted for Froude numbers of Fr = 0.12, 0.15, 0.18, 0.21 and
0.23, but only head seas (µW = 0◦) and following seas (µW = 180◦) could be investigated,
due to limitations of the seakeeping basin. The numerical and experimental tests have
been conducted for the moonpool geometries MP, MD and SD.

Head seas

The following figures contain results for head seas, which are discussed for the case of MP.
Note that especially the ship motions are very similar for the other investigated moonpool
geometries. Only the resistance coefficients show some differences between MP, MD and
SD. All remaining results are shown in appendix C.2. For figure 6.9 to 6.12, the coloured
lines represent different Froude numbers and all results are shown for varying relative
wave lengths. The black symbols respectively lines represent the results from numerical
simulations, which have been only conducted for Fr = 0.15.

Figure 6.9a shows the total resistance coefficient. At first, a clear difference of the
investigated Froude numbers can be seen at λW/LPP = 1, whereas the coefficients are
quite similar at other wave lengths. This wave length correlates to the resonant case,
where the frequency of wave and piston mode are close to each other. Interestingly, the
resistance coefficient at λW/LPP = 1 is highest for the lowest Froude number and vice
versa. This correlates to the order of highest RAO of moonpool oscillations as can be seen
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Figure 6.10.: Experimental and numerical force signal for λW /LPP = 0.75 and λW /LPP =
1.25

in figure 6.12a, with an exemption for Fr = 0.12. A combination of both, force coefficient
and oscillating amplitude at wave frequency is shown in figure 6.9b. The gradient of
resistance coefficient is highest for lowest Froude numbers and vice versa. This behaviour
is identical for the other moonpool geometries.

The black symbols in figure 6.9a represent the numerical results and need to be com-
pared with the orange line. One can see, that both methods match very well for the longest
wave, but deviate slightly for the shorter ones. The largest difference of 24% occurs at
λW/LPP = 0.75. The force time signals at two wave lengths are investigated in detail in
figure 6.10 to understand the reason of deviation. Remember that the experimental mea-
surement has been filtered and inertia forces subtracted in order to make a comparison
with the pure hydrodynamic and gravitational forces from the numerical code. The upper
figure shows the force signal for λW/LPP = 1.25 and the lower for λW/LPP = 0.75. The
periods match for λW/LPP = 0.75 but deviate for λW/LPP = 1.25, as the longest waves
are influenced by shallow water in the experiments, whereas only deep water waves were
investigated in the numerics. The upper figure shows quite constant amplitudes oscillat-
ing at the wave frequency, with a slightly stronger non-periodicity in the experimental
data. The lower figure shows more non-periodicities in both methods. This is due to the
effect, that a pronounced amplitude at the resonant piston mode and wave frequency is
present, whereas the amplitude at wave frequency was dominating over the one at piston
mode frequency for λW/LPP = 1.25. This periodicity has been visualised using the mov-
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ing average m(t), plotted in the respective dashed lines. The normal moving average is
calculated by

m(t) =
1

n

n−1∑
i=0

CT−x(t− i), (114)

with n being the data points within one period. This method calculates the average value
at every point for a certain time range, e.g. the wave period. If the signal oscillates solely
at the wave frequency, this parameter should be ideally constant. Disturbances would
result in an oscillating moving average. If however the time signal oscillates not only
due to the wave frequency but also with the resonant piston mode frequency, the moving
average cannot turn constant. Theoretically, it should then ideally oscillate harmonically
with the piston mode frequency. Both signals have therefore been averaged twice, once
using the data points for the respective wave period nW and once for the piston mode
period n0.

m(t) =
1

n0

n0−1∑
i=0

[
1

nW

nW−1∑
i=0

CT−x(t− i)

]
(t− i), (115)

The moving average for both wave length is very constant for the numerical simulations,
whereas especially at λW/LPP = 0.75 it oscillates strongly in the experiments. This
emphasises the importance of choosing the time span for averaging. It appears less crit-
ical in the numerical results, but more critical in the experiments. The time signal at
λW/LPP = 0.75 still oscillates non-harmonically and with an approximate frequency of
0.4 Hz. This frequency can be found in the surge and pitch signal, albeit of only minor
amplitude. It might therefore be associated to one of these motions, respectively the
characteristics of the measurement platform allowing these motions, such as the ∆x-slide.
The uncertainty when averaging the discussed time signals has been plotted in figure 6.9a
for the mentioned wave lengths with error bars. The size of the error bars corresponds to
the amplitude of the moving average.

The motions in figure 6.11 show a good agreement between experiments and numerics.
The response amplitude operator (RAO) for heave shows a deviation of 27% at λW/LPP =

1 between experiments and numerics, which however correlates to an amplitude difference
of 0.2 cm. All other results for heave agree very well. The maximum deviation in pitch
motion occurs at λW/LPP = 1 with 19%, which correlates to a difference of 0.2◦ and
can be seen as satisfying too. Note that both motions do not reach their maximum at
λW/LPP = 1 but λW/LPP = 1.25, which was not expected and might be due to the barge
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Figure 6.11.: Surge, heave and pitch amplitude for MP at µW = 0◦

type form of the ship. The surge motion amplitude is shown in figure 6.11a. Note that
the surge motion was restrained for head seas in the numerical simulations, which did not
affect the results, as has been discussed in chapter 5.7.

Sway, roll and yaw are not shown, as they are of negligible magnitude for head seas.
Figure 6.12 shows the RAO’s of the mean oscillation amplitudes at piston mode fre-

quency (dashed lines and circular symbols) and wave frequency (solid lines and square
symbols) for MP, MD and SD. Again, the respective black symbols represent the numer-
ical result at Fr = 0.15. The results agree extremely well for all moonpool geometries.
The encounter wave frequency is of similar magnitude as the piston mode frequency for
λW/LPP = 1 and 1.25. It is then not possible to distinguish between both and only one
amplitude can be determined, which is assigned to the wave frequency. Note that these
amplitudes might also contain some energy due to the piston mode frequency or vice
versa.

A general observation is that the RAO’s are greater than 1 for almost any case, when
sailing at forward speed and have even a maximum value of 3.72. Some exemptions occur
for the shortest wave lengths, especially for MD but also at some Froude numbers for MP
and SD.

As expected, the amplitudes at wave frequency are relatively small for short waves,
compared to the amplitudes at piston mode frequency. They increase however drastically
for longer waves (λW/LPP > 0.75). This shift from dominating piston mode frequencies
to wave frequencies has been already mentioned by Löhrmann et al. [51].

Figure 6.12a shows the RAO’s for MP. The largest RAO’s occur for the two highest
Froude numbers and are of similar magnitude over all λW/LPP . Especially the low Froude
numbers show only small RAO’s at short wave lengths and a peak at λW/LPP = 1. Note
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Figure 6.12.: RAO’s of oscillation amplitude due to piston mode and wave frequency at
µW = 0◦

that numerical and experimental results for both RAO’s agree very well.
The results for MD are shown in figure 6.12b. The Froude numbers have less influence

in this case and RAO’s generally increase with increasing wave length. Note that for
Fr = 0.23 and λW/LPP = 1.25, the highest amplitudes have been measured. The water
motion was exceeding the wave gauge lengths, and severe green water has been recorded
during the experiments. The amplitudes at piston mode frequency are relatively small
compared to MP. The agreement between numerical and experimental results is again
very good with a minor exemption for the piston mode amplitude at λW/LPP = 0.75.

Figure 6.12c shows the results for SD. It is visible, that the peak shifts for the lowest
Froude number from λW/LPP = 0.75 towards λW/LPP = 1 for higher Froude numbers.
This agrees well, with the potential resonant wave lengths for head seas in table 6.1,
which have been determined based on the velocity dependent piston mode frequencies.
The amplitudes assigned to the piston mode frequencies are generally small with the
exemption at Fr = 0.12 and λW/LPP = 0.75. Again numerics and experiments agree
very well.

A higher resolution in relative wave lengths would have probably better highlighted
the shift in RAO peak towards longer wave lengths for higher Froude numbers. This is
especially visible at MP and MD when looking at Fr = 0.21 and 0.23.

Figure 6.13 is showing an instantaneous visualisation of the free surface for the four
investigated wave lengths, when the wave crest is approx. at the forward perpendicular.
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(a) λW /LPP = 0.50 (b) λW /LPP = 0.75

(c) λW /LPP = 1.00 (d) λW /LPP = 1.25

Figure 6.13.: Wave system for Fr = 0.15, µW = 0◦ and different wave lengths

The ship is disturbing the wave field for the two longest waves even further away in
transverse direction. The accuracy of the wave quality has been determined at a transverse
direction, outside of the shown area, in order to reach an undisturbed wave. The wave
quality for the four waves in head seas are equally of ζW/ζtarget ≈ 0.95.

Quartering & beam seas

Numerical simulations have been performed to study the effect of beam and quartering
seas on moonpool characteristics. The ship was able to move in every direction and springs
of equal strength as in the experimental setup were applied on surge, sway and yaw motion.
Simulations were conducted for Fr = 0.15 and wave directions of µW = 45◦, 90◦ and 135◦.
This study has only been done for MP.

The six DOF motions are shown in figure 6.14. The highest amplitudes in surge, roll
and yaw occur for µW =135◦. Pitch amplitude is highest at µW =45◦ and sway and heave
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Figure 6.14.: RAO’s of translational motions and motion amplitudes of rotational motions
for quartering and beam seas

for µW =90◦.
Figure 6.15 shows the RAO of mean amplitudes at piston mode (solid lines) and wave

frequency (dashed lines) as well as the respective frequencies for the three wave directions.
A clear peak for µW =45◦ at λW/LPP = 1 can be seen for the mean amplitude assigned
to the wave frequency. This peak also correspond to the highest dimensional amplitude
measured. The highest RAO is reached for µW =90◦ at λW/LPP = 0.5 and can be assigned
to the piston mode frequency. µW =135◦ shows generally low RAO’s. This behaviour can
be clearly explained by the progression of frequencies, shown in figure 6.15b. The piston
mode frequency (solid lines) is quite constant around 0.95 ≤ f0 ≤ 1.05, whereas the
encounter wave frequency changes with encountering angle µW and wave length λW/LPP .
For µW =45◦ the encountering frequency matches the wave frequency at λW/LPP ≈ 1,
which causes resonant behaviour and hence the peak in amplitude. For µW =90◦ this
effect occurs at λW/LPP ≈ 0.5. The encountering frequencies of µW =135◦ are below the
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Figure 6.15.: Moonpool characteristics for quartering and beam seas

piston mode frequency at all times, which is reason for the generally low mean amplitudes.

Comparison with results from head seas shows that the RAO of the oscillation ampli-
tudes can be decreased significantly, when changing the course. This effect is mainly due
to the change in encountering frequency.

Longitudinal forces (figure 6.16a) are as expected highest for µW = 45◦ and almost
constant for µW = 90◦ and µW = 135◦. The side force is largest for beam seas and hence
plausible as well. At last the non-dimensional moments are similar for µW = 45◦ and
µW = 90◦, whereas it oscillates around zero for µW = 135◦.

Figure 6.17 shows instantaneous free surface elevations for head-, beam- and quartering
seas of λW/LPP = 1 with the wave crest approx. at the bow.

Following seas

The simulations for following seas were conducted slightly different than for head seas. If
no damping approach is used in the background domain, severe wave reflection occurs at
the domain inlet (in front of the ship) and the wave amplitude decreases.

This problem was overcome by damping the waves at the domain inlet and outlet
towards the undisturbed wave field. Damping at the domain outlet (behind the ship)
ensures stable waves of correct amplitude, which overtake the ship. Furthermore, possible
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Figure 6.16.: Non-dimensional forces and moments for different wave encounter angles
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Figure 6.17.: Wave system for Fr = 0.15, λW /LPP = 1.0 and different encounter angles
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Figure 6.18.: Comparison of wave quality for damped (top) and non-damped case (bottom)

ship wave systems are damped and cannot be reflected at the outlet. Damping at the
domain inlet mainly prevents wave reflection.

The wave fields for the damped and non-damped approach are shown in figure 6.18
for λW/LPP = 1. The top figure shows the damped case, where the sponge layers are
visualized at the domain inlet and outlet with a black rectangle. The graph represents
the non-dimensional amplitude of the first harmonic after Fourier analysing the last wave
period on a slice at η = 0.9. As the correct wave conditions are given at the inlet and
outlet through the boundary conditions, the graph reaches an amplitude of 1 on both
ends. The ship is located between 0 < ξ < 1 and a good accuracy of amplitude can be
seen for that region (ζW/ζtarget = 0.93). The amplitude drops to ζW/ζtarget = 0.63 in front
of the ship, which is not critical, as these are waves which already passed the ship and
should not affect the results. This low in amplitude could arise naturally as the ship is
influencing the waves, but might also be due to numerical dissipation or due to the sponge
layer at the domain inlet.

The case without damping is shown in the lower part of figure 6.18. The waves travelling
towards the ship (on the right side of the figure) are of similar quality, although the
amplitude decreases further than when applying the sponge layer at the domain outlet,
which ’preserves’ the waves a little longer. The accuracy of amplitude in the area of
interest (0 < ξ < 1) is however only ζW/ζtarget = 0.86. More problematic is the wave
reflection at the domain inlet, which can be identified by the oscillating amplitude of the
first harmonic, shown in the lower graph. This happens, as waves which passed the ship
and travel towards the domain inlet, reach the domain boundary at a different phase,
than the generated wave at that face.
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Figure 6.19.: Results for resistance, motions and RAO’s of oscillation amplitude at Fr =
0.15 and µW = 180◦

Following seas condition has been tested numerically and experimentally at Fr = 0.15

and for MP. Although the above described damping approach has been used in the nu-
merical simulations, the wave quality is lower than for head or quartering seas, with the
lowest wave accuracy of ζW/ζtarget = 0.86 for λW/LPP = 0.75. The results are shown
in figure 6.19. The resistance coefficients in figure 6.19a match satisfactory between nu-
merical and experimental solutions. Slightly decreasing coefficients can be identified in
the experiments, whereas the numerics predict almost constant values. Largest deviation
occurs for the shortest wave with a 17% lower numerical resistance. The heave and pitch
motion is shown in figure 6.19b and has again satisfactory agreement between numerics
and experiments. Numerical solutions predict lower values for heave at λW/LPP = 1.25

and for pitch at the two medium wave lengths. Finally, the RAO’s for oscillation ampli-
tude in figure 6.19c have a good agreement in both the amplitudes due to piston mode
(blue dashed line) and wave frequency (turquoise solid line). All investigated wave fre-
quencies are well below the piston mode resonance frequency, due to the encountering
angle of µW = 180◦. Therefore, only modest RAO’s occur, with a maximum reached for
the shortest wave. The signals are dominated by the amplitude at piston mode frequency
and amplitudes at wave frequency are slowly increasing with increasing wave length.
Compared to results of head seas condition, these oscillations are however of generally
low amplitude.
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6.1.6. Influence of damping

The damping approach, discussed in chapter 2.8.3, has been applied to investigate the
effect of perforated bulkheads in calm water and head seas. Numerical results are com-
pared with experimental data. Two layouts of perforated bulkheads have been analysed.
The first has the moonpool dimensions of ’MD’ and is compared to the experimental case
’60-20’ (refer to table 4.3 on page 59). The second has dimension of ’SD’ and is compared
to ’60-40’. The cases where the numerical damping approach was applied will be denoted
with index c. The investigated cases differ only in the dimension of the damping chamber
behind the bulkhead, which is relatively large in case of SDc and smaller for MDc. Pre-
vious experimental investigations with insertion 60-40 and 40-40 revealed no significant
differences in damping behaviour for 60%, respectively 40% porosities and equal damping
chamber size, as has been reported in Löhrmann et al. [51]. The numerical grid had to be
adapted to be comparable with the insertions used in the experiments. These insertions
reduce the size of the moonpool bottom opening according to the damping chamber size.
The bottom opening is an import factor for the flow entering the moonpool and must
hence be made comparable between experiments and numerics. Therefore, the numerical
grids have been adapted by adding a plate with no-slip boundary condition at the moon-
pool opening, as is shown in figure 6.20. The left figure shows the plate (in red) for case
MDc and the right figure for SDc. The sponge layers are than applied vertically above
these plates, as has been illustrated in figure 2.6b. The advantage of this approach is
that the numerical grid is, with the exemption of a simple grid for the plate, not changed.
Considering the exact geometry of the perforated bulkheads through a numerical grid
would lead to a huge increase in cell size. Furthermore, as REX uses structured grids,
these grids would have to be composed due to its complexity by multiple block structured
grids and then assembled through the overset grid approach. This would also increase the
amount of necessary processors, as has been discussed in chapter 2.5 and would hence be
highly ineffective

After defining the sponge layer boundaries according to the size of insertions in the ex-
periments, the only remaining parameter to be chosen is the numerical damping constant
c. It was originally tried to find a correlation between the experimental porosity and nu-
merical damping constant, probably also depending on the size of the damping chamber.
Due to the almost identical experimental results for the two investigated porosities, this
was unfortunately not possible. It might also be that the damping constant is only de-
pendent on the sponge layer length and not of porosity. More variations of experimental
insertion layouts in porosity and chamber size would have been necessary to conduct a
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Figure 6.20.: Numerical model with plates at moonpool bottom opening for MDc (left)
and SDc (right)

more reliable analysis, but was not possible within the scope of this work. Instead, the
damping constant was varied for both cases (MDc and SDc) individually, in order to find
a comparable damping behaviour with the experimental results. This analysis is shown
in figure 6.21 and has been done for the calm water case at Fr = 0.15 for MDc and SDc.
The blue and black dotted lines represent the non-damped moonpool oscillations from
experiments respectively numerical results. The damping constant c = 0 represents the
case with no sponge layer applied but with the plate at bottom opening being present.
The damping constants had to be relatively large in order to reach the oscillation ampli-
tudes of the respective experimental damped cases, the latter being shown in the green
dotted line. In case of MDc a damping constant of c =20 s−1 lead to comparable oscillation
amplitudes as in the experiments. For case SDc, which has a larger damping chamber
and hence longer sponge layer length, a damping constant of c =10 s−1 yielded similar
oscillation amplitudes, as in the experiment.

Note the relatively small magnitude of oscillation amplitudes in the damped cases.
These amplitudes were often not possible to determine using Fourier analysis, as no
dominant frequency existed and resulting amplitudes would have been very unreliable.
Instead, the variance σ of the time signal has been determined and with the relation of
significant wave height to variance Hs = 4σ, the (significant) amplitude determined.

Results for the numerical damping approach in calm water and different Froude num-
bers are shown in figure 6.22. The green lines with squared symbols represent the case
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Figure 6.21.: Investigation of damping constant c

with no damping applied (MD respectively SD). The hollow black symbols represent the
experimental cases. The orange line indicates the reduced moonpool oscillations for only
having a plate at the moonpool bottom opening and no sponge layer applied. Note that
no comparable experimental cases have been conducted for this condition. At last, the
red lines with circular symbols represent the damped moonpool oscillations by applying a
sponge layer with c =20 s−1 for MDc, respectively c =10 s−1 for SDc. Using the numerical
damping approach to mimic the effect of perforated bulkheads leads to a significant re-
duction in moonpool oscillations, which agrees well with the experimental data. Although
the non-damped amplitudes disagree for MD, as has already been discussed, the damped
amplitudes match very well with the experimental values from insertion 60-20. The os-
cillating amplitudes for SD are already low and the damping approach further reduces
the oscillations to a minimum. Both, experiments and numerics predict amplitudes below
ζ0−WG = 0.002m. The only exemption occurs for Fr = 0.12, where the numerical sim-
ulation predicts slightly higher amplitudes than the experimental result. The oscillating
amplitude can be reduced by up to 57% for MDc respectively 85% for SDc, compared to
applying only a plate at the bottom opening. The amplitude at the non-damped case is
especially at higher Froude numbers and shorter moonpool openings decreasing rapidly.
The damped cases show hence as well almost no surface oscillation for both, experiments
and numerics at these Froude numbers.

Figure 6.23 shows results of the damping approach for head seas condition at Fr = 0.15.
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Figure 6.22.: Damping of oscillating amplitudes for calm water condition

The oscillation amplitude is now distinguished between the amplitudes corresponding to
the piston mode frequency (represented by dashed lines) and wave frequency (solid lines).
The investigation with applying only a plate and no sponge layer has not been con-
ducted for head seas. Case MDc works reasonably well, as both amplitudes match in
the experiments and numerical simulations. Only the amplitude at wave frequency and
λW/LPP = 1.0 disagrees, as the numerics only predict approx. 50% of the experimental
RAO. The numerical results yield a reduction in peak amplitude of 64% and the experi-
ments of 47%. Despite of that, all other amplitudes are very satisfying. The agreement
between experimentally and numerically damped oscillations for case SDc is very good.
Both oscillating amplitudes are reduced by the same amount in the numerical and experi-
mental case. The peak amplitude can be reduced by approx. 75%. A general observation
is that the amplitude at piston mode frequency is damped significantly and the remaining
amplitude correspond almost solely to the wave frequency.

The effect of perforated bulkheads in head seas at different Froude numbers was only
investigated experimentally. Results can be seen in figure 6.24, which is comparing the
RAO of oscillating amplitudes at wave frequency of damped case 60-20 (solid lines) with
non-damped case MD (dashed lines) for different Froude numbers (different colours).
The amplitudes at piston mode frequency are not shown for sake of clarity, as their
magnitude at λW/LPP = 0.5 was below RAO (ζ0−WG) = 0.5 and vanished completely
for longer wave lengths. The perforated bulkhead proved to work efficiently for wave
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Figure 6.23.: Damping of oscillating amplitudes for head seas condition

lengths up to the resonant wave length, which is approx. around λW/LPP = 1. Except
for the highest Froude number, this wave length produces the largest RAO, which can
be reduced by 16-51% using a perforated bulkhead. Most interesting is the behaviour at
λW/LPP = 1.25. For Fr = 0.12 − 0.18, the RAO of oscillation amplitude is higher for
60-20 than MD. It could not be determined from the experiments, which effect causes an
increasing in oscillating amplitude with perforated bulkheads at this wave length. The
RAO at Fr = 0.21 is very similar between 60-20 and MD. For Fr = 0.23 a reduction in
RAO still takes place, compared to the non-damped case. Note that at λW/LPP = 1.25

and Fr = 0.23 severe green water occurred during the experiments for case MD, as is
shown in figure 6.25.

It can be concluded that the numerical damping approach works relatively well to mimic
the effect of perforated bulkheads while avoiding complex grids. Additional computational
time due to the numerical damping is negligible, as is the increase in cell size due to
the grid for the bottom plate. This approach yields qualitatively comparable results
and could hence be used to conduct simulations with e.g. a body being handled inside
a moonpool with perforated bulkheads. There are however disadvantages, the biggest
being until now the random choice of numerical damping constant c to yield comparable
results as in the experiments. A bigger experimental variation of perforation and damping
chamber size would enable to set up a more sophisticated model of correlating damping
constants. Furthermore, the numerical approach cannot reproduce effects such as wall
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Figure 6.24.: Experimental results for damping in head seas condition for different Froude
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Figure 6.25.: Extreme oscillating event with green water at λW /LPP = 1.25 and Fr = 0.23
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reflection, which would partly happen at perforated bulkheads. It remains unknown
though, how much influence such physical effects have and how pronounced they are.
Complex experiments with a technique to measure the instantaneous velocities inside the
moonpool could give an answer. These are however even with techniques such as Particle
Image Velocimetry (PIV) difficult to perform as well as time and data intensive. The
author is not aware of any efforts of measuring the flow field inside the moonpool.

6.1.7. Closed moonpool

After analysing damping devices in moonpools, it is now investigated what effects occur
when closing the moonpool. This has been done solely numerically for calm water at
different speeds and for head seas at Fr = 0.15. The moonpool grids have been splitted
in the free surface at rest in an upper and lower part. The face at the height of the free
surface has been defined as wall and forces on that plate measured separately.

A general and expected observation is that no oscillation of the water column takes
place any more, as the moonpool can be seen as numerically sealed and no pressure
balance can take place. This implies that no resonant piston motion sets in. However,
small oscillations in e.g. force signals can be observed, as is shown in figure 6.26c, where
the hydrodynamic force component is shown for the hull (red) and moonpool (green)
individually. These are due to vortex shedding at much higher frequency, which appears
at the leading edge of the moonpool, visualised in figure 6.26a for a random time instance.
The black surface represents the closing lid of the moonpool. The shedding frequencies,
which have been determined by Fourier analysing a pressure signal, recorded close to
the moonpool leading edge, are shown in table 6.2. One can immediately see that the
shedding frequencies are much higher than piston or even sloshing type frequencies. A
large vortex is formed in the after part of the moonpool as can be seen in the streamlines
in figure 6.26b. This vortex also remains for simulations in waves. The non-dimensional
velocity magnitude plotted in this figure has been averaged over 7.37 s using 100 time
steps. One can see the generally low velocity in the moonpool front part, due to missing
water column oscillations. A medium upward directed velocity at the trailing wall is
generated through the shear-layer rollup.

Figure 6.27 contains results of resistance coefficients for the ship with closed moonpool
at the free surface (FS - solid lines), compared to the ship without moonpool (CL - dashed-
dotted lines) and the ship with open moonpool (MP - dashed lines). Figure 6.27a shows
the analysis for calm water condition and different Froude numbers. Only the longitudinal
components are shown for total resistance coefficients (red), frictional coefficient (green)
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Table 6.2.: Shedding frequencies for MP closed at free surface

u [m/s] Fr [-] fshedding [Hz] Srmp [-]

0.651 0.12 3.628 1.672
0.814 0.15 4.599 1.695
0.989 0.18 5.477 1.661
1.139 0.21 6.093 1.605
1.248 0.23 6.535 1.571

(a) Iso-Q surfaces of vortex
shedding

(b) Streamtraces in longitu-
dinal plane inside the
moonpool
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(c) Total longitudinal hydro-
dynamic forces on hull
and moonpool surfaces

Figure 6.26.: Vortices inside closed moonpool MP and resulting hydrodynamic force signal
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and pressure coefficient (blue). The lowest resistance is achieved for the ship without
moonpool, as was expected. Closing the moonpool at the FS results in a quite constant
increase in pressure resistance over Froude number. The frictional resistance is reduced
compared to CL, as has been explained already. Interestingly, the pressure resistance
of MP is lower than the closed moonpool at FS for small Froude numbers (Fr < 0.18)
and higher for larger Froude numbers (Fr > 0.18). This is can be explained when
investigating the pressure field inside the moonpool, which is shown in the appendix C.3.
The pressure field does not change for increasing Froude numbers, when the moonpool is
closed at the free surface. This is due to a steady mean vortex at all Froude numbers,
which is formed, as shown in figure 6.26b. The leading wall always experiences a low
pressure field, whereas the trailing wall a high pressure field. The highest pressures can
be measured at the trailing edge, where separated vortices hit the trailing wall. The
result is a constantly and relatively high pressure resistance. Especially the leading wall
pressure field however changes for different Froude numbers, if the moonpool is not closed.
At low Froude numbers, a high pressure field also exists at the leading wall, as the mean
location of the vortex is at the moonpool centre. This causes a reduction in pressure
resistance, when comparing with the moonpool closed at FS. Higher Froude numbers also
lead to higher moonpool oscillations, as has been shown. As explained at the beginning,
the vortex separation coincides with the upward motion of the free surface. This results
in an ’upward suction’ of the vortex for severe oscillations and hence a shift of the mean
vortex position towards the leading wall. Therefore, a strong low pressure field at the
leading wall for high Froude numbers respectively high oscillations occurs and leads to a
drastically increasing pressure resistance.

As a conclusion, closing of the moonpool at the FS is hence only favourable in terms of
resistance reduction for higher Froude numbers. The open moonpool configuration would
be beneficial for an assumed design Froude number of Fr = 0.15, where oscillations are
relatively low.

Figure 6.27b is showing the same investigation, but for a constant Froude number of
Fr = 0.15 and different relative wave lengths. Comparing CL with FS shows an identical
behaviour as for calm water. The pressure resistance is increased for the ship with the
moonpool closed at the free surface. When comparing FS and MP it appears that only
at λW/LPP = 1 the resistance for the ship with open moonpool is higher, than for the
closed moonpool at free surface. The frequency of that wave length corresponds to the
resonant piston mode frequency, producing high oscillations and hence high resistance
coefficients. For wave lengths not corresponding to the resonant piston mode, the total
resistance coefficients are lower, as was already the case for Fr = 0.15 in calm water
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Figure 6.27.: Resistance analysis of the ship with closed moonpool at free surface (FS)

condition.
The hydrodynamic forces on the plate which closes the moonpool at the FS has been

calculated separately in order to get an understanding of its contribution and occurring
full scale forces. Figure 6.28 shows the results of this investigation for calm water (left) and
waves (right). The vertical forces increase with increasing speed. As frictional forces can
be neglected when analysing vertical forces, the remaining components are hydrostatic and
dynamic pressure components. Note that the resulting forces shown in figure 6.28 are only
a fraction of the hydrostatic force due to the sinkage of the ship, as the dynamic pressure
force is counteracting. The hydrostatic force would be almost one order of magnitude
higher. Note, that the resistance coefficients are made non-dimensional using the wetted
surface of the model and not the area of the plate. The force (shown on the right axis) is
made dimensional for the full scale ship (with scale of λ = 65) and for the full ship (no
symmetry).

The same investigation has been done for the case with different wave lengths and is
shown in figure 6.28b. The mean force (dashed line) even reduces towards the longest
waves, while the force amplitude due to the oscillating wave, shown in the error bars,
increases drastically. This was expected, as increasing waves yield an increase in pressure
fluctuation at the plate. However, the force amplitude is of reasonable magnitude, com-
pared to the mean force value. A maximum force at λW/LPP = 1 of of approx. 150 kN
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Figure 6.28.: Vertical force on plate and force amplitude (error bars)

corresponds to approximately 15 t which seems to be feasible in terms of a mechanical
engineering point of view.

6.2. Operational condition

This chapter contains results for operational conditions, meaning the ship having no for-
ward velocity and being exposed to waves of different length and direction. Experimental
and numerical tests have been conducted for these conditions with a varying wave length
of λW/LPP = 0.50, 0.75, 1.00 and 1.25 and encountering angles of µW = 0◦, 45◦ and 90◦.
Due to the quite symmetric ship, encountering angles of µW = 135◦ and 180◦ were skipped.
All DOF were unrestrained in both, experiments and numerical simulations, with the ex-
emption of surge, sway and yaw, which were held at a mean position using springs. The
spring stiffness were of equal magnitude in experiments and numerics.

One difficulty in performing these measurement is dealing with reflected waves. The
case with quartering and beam seas have obviously the highest reflection. Reflection
develops in the experiments, as waves travel from the wave maker towards the ship and
when reached, are being reflected backwards towards the wave maker again. This can
be seen as comparable to real conditions, although reflected waves are being ’channelled’
in the seakeeping basin, whereas they are able to take any direction in real condition.
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Re-reflected waves from the wave maker should be avoided though in the measurements.
Problems might arise if the waves hit the object at an angle (e.g. µW = 45◦) and are
reflected between the walls of the basin. This might lead to not ideally long crested waves,
which arrive at the model. Note that no sideways wave absorber has been installed during
the experiments, which might prevent side wall reflection.

The simulations face a different problem. Waves arriving at the model are being re-
flected similar to the experimental case. Although the domain boundaries are not defined
as solid walls, numerical re-reflection at the boundaries can, but do not have to arise and
is generally difficult to examine. The problem is, that possible re-reflection would happen
much faster, as the domain boundaries are much closer to the model, due to practical
limitations in grid sizes. Reflecting waves are visualised in figure 6.29, where figure 6.29a
is showing the waves after initialisation of the simulation, figure 6.29b the waves after
reflection at the ship and figure 6.29c the solution where possible re-reflection might have
occurred. Note that this problem mainly arises at zero or low ship velocities. The loss of
long-crested waves starts already in figure 6.29b, is fully developed in figure 6.29c and can
be mainly assigned due to radiation and diffraction effects. The general wave travelling
direction is from top to bottom of the figure and a sponge layer zone can be seen at the
bottom, where the amplitude is effectively damped.

The numerical simulations have been performed by damping the waves at the outlet
of the domain (depending on the wave direction). This prevented waves to reflect at the
domain outlet. Possible re-reflection could not be circumvented using this approach. One
possible solution is to apply a sponge layer at all domain boundaries and damp towards
the undisturbed wave. This should theoretically prevent reflection of waves at the domain
outlet and possible re-reflection of waves at the domain inlet. Normal reflection of waves at
the ship would be allowed and hence a similar situation as in the experimental setup being
ensured. This approach has been tested for the wave length of λW/LPP = 0.5 and wave
direction of µW = 90◦. The results in motion, forces and moment are almost identical
as to the previous damping approach. The same applies for the oscillation behaviour
inside the moonpool. Figure 6.29d is showing the corresponding wave field. Comparison
with figure 6.29c reveals that the disturbances towards the domain boundaries decreases,
which indicates that possible re-reflection would have been prevented. It needs to be
mentioned that the wave crest is slightly overestimated and the trough underestimated.
This might result on one hand from the coarse grid at the bottom of the figure, which was
initially designed to dissipate waves, whereas in this damping approach, the waves are
numerically preserved. On the other hand, the chosen boundary conditions of wave type
at every vertical domain face for the new damping approach might have been not ideal. It



Page 152 6. Results

(a) Initial wave field (b) Reflected waves
from model

(c) Radiated,
diffracted and
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reflected waves

(d) Radiated and
diffracted waves

Figure 6.29.: Effect of reflection at zero speed in numerical simulations

can nevertheless be concluded that numerical re-reflection probably did not influence the
results, as they are still of very similar magnitude as for the previous damping approach,
where possible re-reflection could have occurred.

The following figures show the results for operational conditions. Translational motions
are presented in figure 6.31, rotational motions in figure 6.32. Forces in longitudinal and
transverse direction, as well moment around the vertical axis is given in figure 6.33. Fi-
nally, figure 6.34 shows the mean wave gauge amplitudes. The coloured lines represent
results from numerical simulations and the respective black hollow symbols the exper-
imental results. Solid lines and squared symbols are results from head sea conditions,
dashed lines and deltas for quartering seas and dashed-dotted lines with circles represent
beam sea conditions.

Overall agreement of motions can be seen as good, but there are some exemptions worth
mentioning. The surge and sway motion show some discrepancies between experimental
and numerical results. This uncertainty can be assigned to two reasons. First, side-
wall reflection in the experiments might have influenced the results more severely than
expected. Second, both motions have no restoring forces despite the virtual spring system
attached to it. Especially the surge motion takes long time to be damped from its resonant
frequency towards a motion responding solely to the wave frequency. Deviating motion
magnitudes might have been determined, when running the simulation much longer. The
slowly converging signals are shown in figure 6.30a with the red line representing the surge
amplitude and the green line sway amplitude for case RW100_45_0_MP. Roll and yaw
motion are converging slightly faster in this case towards a harmonic oscillation. Heave
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Figure 6.30.: Time traces of translational motion and rotational motion for RW100_45_-
0_MP
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Figure 6.31.: Translational motions

and pitch are due to its strong restoring forces of constant amplitude after a very short
time and hence least time critical.

The amplitude shown in the figures refers to the respective wave frequency, although
some numerical simulations had higher amplitudes in surge motion, but for the reso-
nant frequency of the spring system. This effect may influence the determination of the
amplitude at wave frequency.

The sway motion is, despite a discrepancy of 23% for beam seas at λW/LPP = 1.25,
agreeing very well between numerics and experiments.

The same applies for the heave motion, where the largest disagreement occurs at
λW/LPP = 0.75 with approximately 21%. All other points match very well.

Rotational motions also agree very well between numerics and experiments. The pitch
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Figure 6.32.: Rotational motions

and yaw motions are almost identical in all cases. The largest differences occur for the
roll motion at λW/LPP = 1.25. The numerical results show much lower amplitudes for
µW = 45◦ and 90◦ than the experiments.

The force coefficients in longitudinal and transversal direction, as well as the non-
dimensional yaw moment are shown in figure 6.33. Note that the fictitious velocity corre-
sponding to Fr = 0.15 has been used to determine the non-dimensional force coefficients
for the ship at rest. It was decided against introducing new non-dimensional coefficients
for operational conditions depending on e.g. ρgζ2

WL, which are often used for these type
of experiments.

The progression of curves for the different wave encountering angles between experi-
ments and numerics have similar trends, but are deviating partly severely. Reason for
this is most probably found in different reflection behaviour in the wave basin and the
numerical domain and the generally very low magnitude of forces and moment. Most de-
viating is the longitudinal force for µW = 45◦ and transversal force for µW = 90◦. These
encountering angles are troublesome in terms of reflection, as was mentioned. Repetition
of numerical simulations with no-slip wall conditions representing the seakeeping basin
walls could give more insight if reflection is indeed reason for the deviating forces. The
yaw moment shown in figure 6.33c agrees reasonable well for long waves but deviates
slightly between experiment and numerics for short waves.

In order to avoid reflections it might be beneficial to conduct the simulations with a
sponge layer at every domain boundary, damping the field towards the undisturbed wave
and to conduct the experiments with sideways installed wave absorbers.

The RAO’s of mean oscillation amplitude inside the moonpool are shown in figure 6.34.
The progression of all curves match well between experiments and numerics. Small dis-
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Figure 6.33.: Forces and moment coefficients

crepancies are found at shorter wave lengths, which are however acceptable. The am-
plitudes are all corresponding to the respective wave frequencies and not to the piston
mode frequency. The wave frequency at λW/LPP = 0.5 is fW ≈ 1 Hz and drops towards
fW ≈ 0.65 Hz for λW/LPP = 1.25. Hence, only the smallest investigated wave is in the
vicinity of the resonant piston mode frequency, whereas all other waves have significantly
lower frequencies. The RAO for this wave length at µW = 0◦ reaches values between
0.5 and 0.9 and is hence of similar magnitude as in transit conditions for low Froude
numbers. Interestingly, the RAO for µW = 45◦ and 90◦ is significantly higher and reaches
values of approx. 3. As shown in figure 5.14, restraining of heave and pitch motion at
µW = 45◦ lead to a severe reduction in RAO. Hence, reason for increasing RAO’s can
be found in undesirable phase shifts between ship motion, wave elevation and moonpool
water column elevation. The time series and phase shifts for all three wave directions are
shown in appendix C.4. The phase shift between the wave elevation ζW and heave motion
ζ at µW = 45◦ is ε = 180◦ and hence exactly out of phase, leading to an amplification
of moonpool water column oscillation. For µW = 90◦, this phase shift is only ε = 44◦.
However, the moonpool water column oscillates with a phase shift of approx. ε = 135◦

with regard to the wave elevation ζW , leading again to high RAO of moonpool oscillation.
For waves longer than λW/LPP = 1 the RAO for quartering and beam seas show lower

values than for head seas, although only slightly.
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Figure 6.34.: Mean oscillation amplitudes inside moonpool MP

6.2.1. Influence of damping in operational condition

It has been experimentally investigated, which effect perforated bulkheads have in op-
erational condition. This has been done for wave direction of µW = 0◦ and 45◦. The
comparison is made between MD and 60-20. Both have the same moonool opening at the
bottom of the ship, while MD has solid walls and 60-20 a perforation of 60%.

Figure 6.35 shows the RAO’s for these conditions. Note that the frequencies again all
correspond to the respective wave frequencies and not the piston mode frequency. The
solid lines represent the case without damping and the dashed lines with damping. The
progression of the non-damped case MD is similar as for MP, which was discussed in
figure 6.34. Constantly lower RAO’s than 1 are reached for µW = 0◦, while a high peak
is observed at λW/LPP = 0.5 for µW = 45◦. The perforated bulkheads have a significant
influence on short waves of λW/LPP = 0.5, where a reduction in oscillation amplitude
of approx. 80% and 60% are reached for µW = 0◦ respectively µW = 45◦. This is a
significant enhancement of operational conditions at these wave lengths. When looking at
longer waves, this advantage diminishes, as the RAO for the case with damping is slightly
larger than without damping. The peak of RAO for cases with damping is reached at
λW/LPP = 0.75 where an increase of approx. 60% and 40% is observed. This increasing
amplitude drops again for longer waves and converges towards the amplitudes of MD,
where differences between damped and non-damped case tend to get negligible.
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7. Conclusions

This work dealt with the investigation of different flow phenomena inside moonpools.
Therefore, numerical simulations have been performed for a ship with different moonpool
geometries. The investigated moonpools varied in size (MP, MD and SD) and in length
to breadth ratio (lb1 and lb2). Tests were conducted in calm water for varying Froude
numbers, regular waves of different wave length and direction and for the ship at rest.
Furthermore, the performance of damping devices inside the moonpool was analysed.
Main focus of all investigations was the oscillation behaviour of the water column inside
the moonpool. The procedure for the analysis was to Fourier transform the wave gauge
time signal and determine the spectral amplitudes at the frequencies of interest. These
frequencies were usually the natural piston mode frequency and, if present, the wave
frequency. In order to validate the numerical results, experiments have been conducted in
a seakeeping basin at the Technical University of Berlin with a newly developed measuring
device. The following conclusion can be drawn from the investigation:

The numerical method used is generally able to predict ship and especially moonpool
characteristics accurately. The water column motion of the moonpool usually agrees well
with experimentally determined results. This applies in particular when investigating the
ship in waves, where the water column oscillation is influenced by the presence of waves.
The spectral amplitude due to the piston mode motion in the moonpool is generally
dominating for small wave lengths compared to the spectral amplitude, which belongs to
the wave frequency. Increasing wave lengths however leads to a shift of dominant ampli-
tude from piston towards wave frequency. Coinciding piston mode frequencies and wave
frequencies lead to resonant behaviour. These situations should be avoided as response
amplitude operators for the free surface oscillation of RAO(ζWG) > 3 might occur and
thereby a strong amplification of the water column oscillation. This generally leads to
a drastic increase in resistance and can also cause green water on deck. The oscillation
behaviour at calm water condition is more difficult to predict than in regular waves. Some
discrepancies between experimental and numerical results occurred for that condition, al-
though general agreement can be seen as satisfactory. One discrepancy is e.g. the mean
oscillation amplitudes for moonpool MD, which were relatively high in numerical sim-
ulations, compared to the experimental results. Reason for this deviation is not clear.
One influencing factor might have been the usage of insertions in the experiments, which
produced additional edges in front of the moonpool leading edge. These edges are not
present in the numerical model and might have produced artificial vortices, leading to an
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increased damping in the experiments. Comparison of vortex generation and propaga-
tion between numerical and experimental tests would be necessary to further investigate
this discrepancy. This would imply the experimental measurement of the velocity field
inside the moonpool, being very data and time consuming and which could hence not
be conducted within this work. The agreement of amplitudes for SD and MP were sat-
isfactory, although the numerical results predicted slightly higher amplitudes for MP at
highest Froude numbers, than the experiments. The oscillating amplitude collapsed for
higher Froude numbers and almost no oscillation could be measured any more for these
velocities. The point of collapse can be roughly estimated at moonpool Froude number
of Frmp = v/

√
lmpg = 0.75.

Perforated bulkheads are commonly used to damp the oscillation amplitude inside
moonpools. Considering the exact geometry of perforated bulkheads leads to highly
complex grids and a drastic increase in computational costs. A new method has been
developed, where a numerical damping approach has been successfully implemented into
the flow solver in order to mimic the effect of perforated bulkheads. This approach avoids
the necessity of complex grids and hence reduces significantly the number of grid cells and,
in case of REX, also the amount of processors due to a reduced number of blocks. The
derived numerical oscillation amplitudes agreed very well with experimental data, where
the moonpool has been investigated with an exact geometry of a perforated bulkhead.
This new approach can hence be used to conduct highly accurate numerical simulations
under consideration of damping effects due to perforated bulkheads, without further in-
creasing grid complexity. Further valuable insight into the flow behaviour with perforated
bulkheads would be achieved, if numerical simulations for the exact represented geometry
would be conducted. This should however be done using a flow solver with unstructured
grids in order to keep the additional computational costs reasonable. The perforated bulk-
heads investigated in this work reduced the oscillation amplitude by up to 85% and hence
clearly improved the performance, especially during transit conditions. It should be noted
that experiments revealed slightly higher oscillation amplitudes for perforated bulkheads
in operational conditions and waves of λW/LPP ≥ 0.75, than without the perforated bulk-
heads. This phenomenon could unfortunately not be further investigated, due to the lack
of information on the flow field during experimental tests. Perforated bulkheads however
reduced the oscillation amplitude drastically for short waves of λW/LPP = 0.5.

Closing the moonpool at the free surface leads to a complete suppression of water
column oscillation. The influence on resistance components changes for varying Froude
numbers. The viscous pressure resistance increases for all Froude numbers compared to
the ship without moonpool, due to a steady vortex in the aft half of the moonpool. If the
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moonpool is not closed, this increase is up to 16% lower for small Froude numbers and
22% higher for larger Froude numbers. Closing of the moonpool is hence only beneficial
for higher Froude numbers. Typical design Froude numbers of such ships are in the
area of Fr = 0.18, which is were both approaches, open moonpool and moonpool closed
at the free surface, have similar resistance coefficients. If waves are being present, the
resistance of the open moonpool increases for Fr = 0.15 by 18% at point of resonance,
where the moonpool experiences strong oscillation amplitudes. For other wave frequencies,
the resistance increase/decrease remains similar as in the calm water case. A detailed
operational velocity profile of the ship including typical encounter wave spectra would be
necessary to determine, if closure of the moonpool at the free surface is advantageous.
If the ship is however seldom sailing at higher speeds than Fr = 0.18, the resistance
would be lower if the moonpool remains open. Naturally, the lowest resistance would be
achieved when closing the moonpool at the keel, which would however lead to sloshing
events if the water column remains in the moonpool.

Almost all measured oscillations of the moonpool could be assigned to the natural piston
mode frequency or wave frequency if present. Clear sloshing frequencies seldom occurred.
A strong dependency of the natural piston mode frequency on the ship speed was detected
during this investigation. Knowledge of the correct piston mode frequency can lead to
better avoidance of resonant behaviour in sea states, as has been shown. Therefore, an
empirical approach has been developed within this work, based on the moonpool length
lmp and moonpool Froude number Frmp. This method is able to predict the velocity
dependent piston mode frequencies accurately and can hence improve the correct deter-
mination of the exact resonant point. Current methods can only be applied for zero speed
conditions and hence deviate partly severely from real resonant frequencies at forward
speed. Especially for very low moonpool Froude numbers and collapsed oscillations due
to moonpool Froude numbers higher than Frmp = 0.75, these frequencies may however
deviate severely from the natural piston mode frequency. This newly developed empirical
method should be therefore applied with care for these conditions. More data from other
ship geometries and their moonpool oscillation behaviour would significantly improve the
empirical method and might also determine better dependencies from geometrical prop-
erties.

The wave direction has a strong influence on the oscillation amplitude inside the moon-
pool. This can be explained by two reasons. First, the encountering frequency changes
in transit condition, when changing the wave direction. This leads to resonant effects at
different wave lengths. A change of heading would hence lead to a different encounter
wave frequency, which could then avoid high oscillating amplitudes due to a coinciding



Page 161

frequency with the natural piston mode motion. Second, undesirable phase shifts between
the wave elevation, heave motion and moonpool water column oscillation can lead to fur-
ther amplification of the oscillating amplitude inside the moonpool. The individual phase
shifts vary for different wave directions and lengths. Strong amplification due to phase
shifts occurred in operational condition (at zero speed) for the shortest investigated wave
at µW = 45◦ and 90◦.

One additional important finding of this work has been the difference in results from
the turbulence models RANS and DDES. Although DDES provides a much higher vortex
resolution and is expected to lead to more accurate results, a severe time step divergence
occurred. This has not been the case for the RANS model. Reason for divergence has
unfortunately not been found and should be further investigated. As mentioned, DDES
is time dependent due to the definition of length scale in dependence on the boundary
layer. This is not the case for DES. A comparison should hence be conducted if DES leads
to similar time step divergence, as DDES did. Due to the dependence of DDES on the
boundary layer, the influence of vortices originating from the forefoot and contracting the
boundary layer should also be included in the investigation. At last, the grid resolution in
the area of vortex generation could be adapted according to the recommendations given
in chapter 2.2.4, which could give an answer if Courant numbers are playing an important
role for DDES simulations.

Deviating forces between experiments and numerical simulations were found for oper-
ational conditions (ship at rest). Influence of possible re-reflection was investigated by
damping towards the undisturbed wave at all domain boundaries. This approach should
avoid re-reflection but yielded similar results as when damping towards a free stream
condition. It is hence not believed that numerical re-reflection was causing the deviating
results. It is more likely that side-wall reflection was disturbing the experiments. This
should be avoided by installing perforated sheets next to the model in the seakeeping
basin. Consideration of side-walls in numerical simulations could confirm this assump-
tion. The grid had to be adapted and new simulations conducted. These would probably
need to be of longer simulation time in order to achieve a similar reflection behaviour as
in the experiments and would be hence time consuming. Furthermore to possible reflec-
tion issues, the friction in bearings of the measuring frame might be influencing the force
measurements. This especially applies for zero speed conditions, as the measured mean
forces are extremely low. At last, the surge and sway motion in the numerical simulations
is converging slowly, taking into account the attached springs. Hence, simulations should
be run much longer for these situations, or active damping in the respective DOF could
be applied, which however might tamper the results.
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Biggest drawback of the numerical simulations has been the long computational time.
This especially applies for simulations with quartering or beam seas, where the domain
doubles in size. Viscous effects are only of interest in vicinity of the ship respectively moon-
pool. This suggests the usage of either coupled potential theory and viscous methods, or
usage of e.g. SWENSE (Spectral Wave Explicit Navier Stokes Equations). Both methods
make use of the simple and accurate determination of waves using potential theory, which
is significantly faster. As mentioned, the coupled method developed in [47, 30, 31] yielded
a reduction in computational time of three magnitudes.

Extensive research has been conducted in the field of moonpool flow analysis, provid-
ing valuable data for different configurations of moonpool geometries and environmental
conditions. Both, the experimental and numerical methods were complex, above state of
the art and yielded for highest possible accuracy. Especially the numerical simulations
have until now been seldom conducted in such detail, complexity and extent for moonpool
analyses. Some important findings have been made and new approaches for numerical
consideration of perforated bulkheads and more accurate determination of natural piston
mode frequencies developed. As only one ship could be investigated, these approaches
should be further refined using additional data from other geometries.



Appendix A.

Reflection coefficient

A.1. 2-point-method

Using Fourier transformation, equation 58 can be expressed for both probes at the loca-
tions x1 respectively x2 through the respective Fourier series with the Fourier coefficients
A1,j, B1,j, A2,j and B2,j

ζ1(t) =
N∑
j=1

[A1,j cos(ωW,jt) + B1,j sin(ωW,jt)] (116)

ζ2(t) =
N∑
j=1

[A2,j cos(ωW,jt) + B2,j sin(ωW,jt)] , (117)

with

A1,j = ζI,j cos(ΦI,j) + ζR,j cos(ΦR,j) (118)

B1,j = ζI,j sin(ΦI,j) + ζR,j sin(ΦR,j) (119)

A2,j = ζI,j cos(kW,j∆x+ ΦI,j) + ζR,j cos(kW,j∆x+ ΦR,j) (120)

B2,j = ζI,j sin(kW,j∆x+ ΦI,j)− ζR,j sin(kW,j∆x+ ΦR,j), (121)

where ∆x = x2 − x1 is the distance between the two probe locations.
Correlation between (116) & (117) and ultimately (137) & (138) has been explained by

Riekert [61] and will be only repeated here:
Fourier analysis of a signal leads to the following imaginary form:

Pj = xj + i · yj = Cje
(iΦj) = Cj cos(Φj) + iCj sin(Φj) (122)
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The signal can then be written as:

ζj(t) = Cj cos(ωW,jt+ Φj) (123)

= Cj [cos(ωW,jt) cos(Φj)− sin(ωW,jt) sin(Φj)] (124)

= xj cos(ωW,jt) + (−yj) sin(ωW,jt) (125)

with xj = Cj cos(Φj) and yj = Cj sin(Φj). The coefficients in equation (116) & (117) are
hence identical to the real respectively negative imaginary part of the complex Fourier
spectrum. To determine equations (62)-(63) and (116)-(121) the relationship shown in
equation (116) & (117) is used for the signal of probe 1 and 2 individually. The coordinate
systems is placed at probe 1 and the angle sum of trigonometric functions sin(α + β) =

sin(α) cos(β) + cos(α) sin(β) as well as cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) is used.

ζ1(x, t) = ζI(0, t) + ζR(0, t)

=
N∑
j=1

[
ζI,j cos(−ωW,jt+ ΦI,j) + ζRj cos(ωW,jt+ ΦR,j)

]
=

N∑
j=1

ζI,j [cos(−ωW,jt) cos(ΦI,j) + sin(ωW,jt) sin(ΦI,j)]

+ζR,j [cos(ωW,jt) cos(ΦR,j)− sin(ωW,jt) sin(ΦR,j)]
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=
N∑
j=1

[ζI,j cos(ΦI,j) + ζR,j cos(ΦR,j)]︸ ︷︷ ︸
A1,j

cos(ωW,jt)

+ [ζI,j sin(ΦI,j)− ζR,j sin(ΦR,j)]︸ ︷︷ ︸
B1,j

sin(ωW,jt) (126)

ζ2(x, t) = ζI(∆x, t) + ζR(∆x, t)

=
N∑
j=1

[
ζI,j cos(kW,j∆x− ωW,jt+ ΦI,j) + ζRj cos(kW,j∆x+ ωW,jt+ ΦR,j)

]
=

N∑
j=1

ζI,j [cos(−ωW,jt) cos(kW,j∆x+ ΦI,j) + sin(ωW,jt) sin(kW,j∆x+ ΦI,j)]

+ζR,j [cos(ωjt) cos(kW,j∆x+ ΦR,j)− sin(ωW,jt) sin(kW,j∆x+ ΦR,j)]

=
N∑
j=1

[ζI,j cos(kW,j∆x+ ΦI,j) + ζR,j cos(kW,j∆x+ ΦR,j)]︸ ︷︷ ︸
A2,j

cos(ωW,jt)

+ [ζI,j sin(kW,j∆x+ ΦI,j)− ζR,j sin(kW,j∆x+ ΦR,j)]︸ ︷︷ ︸
B2,j

sin(ωW,jt) (127)

To determine equation (137) & (138), equations (120) and (121) need to be rewritten:

A2,j = ζI,j cos(kW,j∆x+ ΦI,j) + ζR,j cos(kW,j∆x+ ΦR,j) (128)

= ζI,j [cos(kW,j∆x) cos(ΦI,j)− sin(kW,j∆x) sin(ΦI,j)]

+ ζR,j [cos(kW,j∆x) cos(ΦR,j)− sin(kW,j∆x) sin(ΦR,j)]

= [ζI,j cos(ΦI,j) + ζR,j cos(ΦR,j)] cos(kW,j∆x)

− [ζI,j sin(ΦI,j) + ζR,j sin(ΦR,j)] sin(kW,j∆x)

= A1,j cos(kW,j∆x)− [ζI,j sin(ΦI,j) + ζR,j sin(ΦR,j)] sin(kW,j∆x)

A2,j − A1,j cos(kW,j∆x) = [ζI,j sin(ΦI,j) + ζR,j sin(ΦR,j)] sin(kW,j∆x) (129)

and similar operations lead to

B2,j − B1,j cos(kW,j∆x) = [ζI,j cos(ΦI,j) + ζR,j cos(ΦR,j)] sin(kW,j∆x) (130)
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In a second step, the derived equations are multiplied with equation (120) respectively (118):

A2,jB1,j − A1,jB1,j cos(kW,j∆x) =−
[
ζ2
I,j sin2(ΦI,j)− ζ2

R,j sin2(ΦR,j)
]

sin(kW,j∆x) (131)

A1,jB2,j − A1,jB1,j cos(kW,j∆x) =
[
ζ2
I,j cos2(ΦI,j)− ζ2

R,j cos2(ΦR,j)
]

sin(kW,j∆x) (132)

Subtraction of those two equations results in:

ζ2
I,j − ζ2

R,j =
A1,jB2,j − A2,jB1,j

sin(kW,j∆x)
(133)

Equation (118) and (119) respectively (129) and (130) squared and summed up yield

A2
1,j +B2

1,j = ζ2
I,j + 2ζI,jζR,j cos(ΦI,j + ΦR,j) + ζ2

R,j (134)

ζ2
I,j − 2ζI,jaR,j cos(ΦI,j + ΦR,j) + ζ2

R,j =
[A2,j − A1,j cos(kW,j∆x)]2 + [B2,j − B1,j cos(kW,j∆x)]2

sin2(kW,j∆x)

(135)

Summation of the last two equations yields

ζ2
I,j + ζ2

R,j =
(A2

1,j +B2
1,j) sin2(kW,j∆x) + [A2,j − A1,j cos(kW,j∆x)]2 + [B2,j − B1,j cos(kW,j∆x)]2

2 sin2(kW,j∆x)

(136)

Equation (133) and (136) can both be used to state the final expression for ζI,j respectively
ζR,j

ζI,j =

√
(A2,j − A1,j cos(kW,j∆x)− B1,j sin(kW,j∆x))2 + (B2,j + A1,j sin(kW,j∆x)− B1,j cos(kW,j∆x))2

2| sin(kW,j∆x)|
(137)

ζR,j =

√
(A2,j − A1,j cos(kW,j∆x) + B1,j sin(kW,j∆x))2 + (B2,j − A1,j sin(kW,j∆x)− B1,j cos(kW,j∆x))2

2| sin(kW,j∆x)|
(138)

Hence, the initial and reflected amplitudes can be expressed solely by the geometri-
cal relationship of the two probes ∆x and the Fourier coefficients for every individual
wave component j. To determine the reflection coefficient for every individual frequency,
equation (61) can be used. An overall reflection coefficient can be described by first
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determining the initial and reflected amplitude spectra using

SI(ωW ) =
ζI(ωW )2

2 · dωW
(139)

SR(ωW ) =
ζR(ωW )2

2 · dωW
. (140)

With those, the energy of the spectra can be expressed as the integration of the amplitude
spectra over the frequency range.

EI =

∫ ωmax

ωmin

SI(ωW )dωW (141)

ER =

∫ ωmax

ωmin

SR(ωW )dωW (142)

Goda & Suzuki [35] as well as Mansard & Funke [53] stress the following weaknesses of
this method in their publications:

1. The denominator in equation (137) and(138) leads to indetermination of these equa-
tions, if the distance between the probes ∆x is such, that x/λW = n/2, with
n = 0, 1, 2, . . . and λW being the wave length.

2. The frequency range is limited as:

a) The estimation gets less reliable if the coherency factor decreases, which hap-
pens if the distance between the probes is too large.

b) The contrast in the cross spectral analysis is reduced, when the distance gets
too small.

A.2. 3-point-method

Similar to the 2-point-method, this chapter contains additional explanations about the
derivation of the 3-point-method, which has been already explained in detail by Riek-
ert [61] and will only be repeated here.

The probe signals are being Fourier transformed and written as:

ζp(t) =
N∑
j=1

Cp,j cos(ωW,jt+ Φp,j), (143)

with Cp,j being the Fourier coefficient for every component j at every probe p. Note,
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that Mansard and Funke used a different notation of the general wave equations. Equa-
tion (143) can be written in polar or rectangular form

Bp,j = Cp,je
(iΦp,j) (144)

= [Cp,j cos(Φp,j) + iCp,j sin(Φp,j)] . (145)

Again, the elevation of irregular waves can be written as a summation of discrete harmonic
components, which is being composed of an incident wave and a reflected wave travelling
in the opposite direction

ζ(x, t) =
N∑
j=1

[ζI,j cos(ωW,jt− kW,jx− ΦI,j) + ζR,j cos(ωW,jt+ kW,jx+ ΦR,j)] + Ω(x, t),

(146)

with Ω being introduced as a noise signal considering the errors mentioned in the 2-point-
method. If the origin of the coordinate system is placed at the position of the first probe,
equation (146) results for three probes in

ζ1(0, t) =
N∑
j=1

[ζI,j cos(ωW,jt− ΦI,j) + ζR,j cos(ωW,jt+ ΦR,j)] + Ω(0, t) (147)

ζ2(x12, t) =
N∑
j=1

[ζI,j cos(ωW,jt− kW,jx12 − ΦI,j) + ζR,j cos(ωW,jt+ kW,jx12 + ΦR,j)] + Ω(x12, t)

(148)

ζ3(x13, t) =
N∑
j=1

[ζI,j cos(ωW,jt− kW,jx13 − ΦI,j) + ζR,j cos(ωW,jt+ kW,jx13 + ΦR,j)] + Ω(x13, t).

(149)

Equations (147)-(149) are Fourier transformed, written in polar form and conjugated, to
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achieve a similar expression as Mansard and Funke did:

B1,j = ζI,je
(iΦI,j)︸ ︷︷ ︸

ZI,j

+ ζR,je
(−iΦR,j)︸ ︷︷ ︸
ZR,j

+Y1,je
(−iφ1,j)︸ ︷︷ ︸
ε1,j

(150)

B2,j = ζI,je
(i(kW,jx12+ΦI,j))︸ ︷︷ ︸
ZI,je

(ikW,jx12)

+ ζR,je
(−i(kW,jx12+ΦR,j))︸ ︷︷ ︸
ZR,je

(ikW,jx12)

+Y2,je
(−iφ2,j)︸ ︷︷ ︸
ε2,j

(151)

B3,j = ζI,je
(i(kW,jx13+ΦI,j))︸ ︷︷ ︸
ZI,je

(ikW,jx13)

+ ζR,je
(−i(kW,jx13+ΦR,j))︸ ︷︷ ︸
ZR,je

(ikW,jx13)

+Y3,je
(−iφ3,j)︸ ︷︷ ︸
ε3,j

(152)

Yp,j and φp,j are the Fourier coefficient respectively the phase shift of the noise signal at
probe p. ZI,j and ZR,j are introduced, to emphasise the relevant phase differences between
the three probes and will be the variables, which need to be determined in order to define
the reflection coefficient. εp,j represents the unknown errors, which need to be minimised
through the least squares approach. The least squares method now requires, that the sum
of the squared errors of all probes p reaches a minimum. This happens, if the both partial
derivatives are zero

3∑
p=1

(εp,j)
2 = minimum ⇔

∂
[∑3

p=1 (εp,j)
2
]

∂ZI,j
=
∂
[∑3

p=1 (εp,j)
2
]

∂ZR,j
= 0 (153)

With

3∑
p=1

(εp,j)
2 = (B1,j − ZI,j − ZR,j )2

+
(
B2,j − ZI,jeikW,jx12 − ZR,je−ikW,jx12

)2

+
(
B3,j − ZI,jeikW,jx13 − ZR,je−ikW,jx13

)2 (154)

we get after differentiating and some transformations the solution for ZI,j and ZR,j, which
solely depend on the Fourier coefficients Bp,j and some trigonometrical dependencies be-
tween the probes:

ZI,j =
B1,j (R1j + iQ1j) + B2,j (R2j + iQ2j) + B3,j (R3j + iQ3j)

Dj

(155)

ZR,j =
B1,j (R1j − iQ1j) + B2,j (R2j − iQ2j) + B3,j (R3j − iQ3j)

Dj

, (156)
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using the following abbreviations:

R1j = sin2(kW,jx12) + sin2(kW,jx13) (157)

Q1j = sin(kW,jx12) cos(kW,jx12) + sin(kW,jx13) cos(kW,jx13) (158)

R2j = sin(kW,jx13) sin(kW,j(x13 − x12)) (159)

Q2j = sin(kW,jx13) cos(kW,j(x13 − x12))− 2 · sin(kW,jx12) (160)

R3j = − sin(kW,jx12) sin(kW,j(x13 − x12)) (161)

Q3j = sin(kW,jx12) cos(kW,j(x13 − x12))− 2 · sin(kW,jx13) (162)

Dj = 2 ·
(
sin2(kW,jx12) + sin2(kW,jx13) + sin2(kW,j(x13 − x12))

)
. (163)

The reflection coefficient and the spectral densities of the incident and reflected waves can
then be defined as already explained in the 2-point-method using equations (139) to (64).

From equation (155), (156) and (163) it can be seen that, unlike the 2-point method, it
is less likely that the method gets indeterminate by the denominator. This happens when
the expressions are a multiple of π and hence

1. the distance x12 equals n · λW/2 with n = 1, 2, . . .

2. and the distance x13 is a multiple of x12.



Appendix B.

Test Matrix

This section contains the list of conducted experimental tests. Green highlighted entries
refer to test, which were also conducted numerically.
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Appendix C.

Results

This chapter contains remaining results of the conducted investigations, which have not
been shown yet in the main part of this thesis.

C.1. Influence of motion restriction

The DOF, which are not affected by motion restriction and therefore not shown in the
main part are listed in figure C.1 for results from the experimental investigation at zero
speed and µW = 45◦ and in figure C.2 and C.3 for the numerical investigations at Fr =

0.15 and different wave encounter angles.
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Figure C.1.: Influence of motion restriction at zero speed and µW = 45◦
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Figure C.2.: Influence of motion restriction at Fr = 0.15 and µW = 0◦ and µW = 45◦
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Figure C.3.: Influence of motion restriction at Fr = 0.15 and µW = 90◦

C.2. Head seas

This section contains results from numerical simulations (black squares) and experimental
tests (coloured lines) which have not been shown in the main part.
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Figure C.4.: Total resistance coefficients for MD and SD
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(d) Surge amplitude for SD
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(e) Heave amlpitue for SD
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Figure C.5.: Total resistance coefficients for MD and SD

C.3. Closed Moonpool

The following figures show the pressure field of a slice in longitudinal direction inside the
moonpool. The slice is located at the centre of the moonpool in longitudinal direction.
Shown is the non-dimensional pressure field Pavg, which has been averaged over full
oscillation cycles.
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(a) Fr = 0.12, closed at FS (b) Fr = 0.23, closed at FS

(c) Fr = 0.12, MP (d) Fr = 0.23, MP

Figure C.6.: Non-dimensional mean pressure field at low and high Froude numbers for the
moonpool closed at FS and open moonpool (MP)

C.4. Operational condition

The following figures show the time series of the wave elevation ζW in red, heave motion ζ
in blue and moonpool water column oscillation amplitude ζW−WG in green for λW/LPP =

0.5 at three different wave directions µW = 0◦ (figure C.7a), µW = 45◦ (figure C.7b) and
µW = 90◦ (figure C.7c).
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Figure C.7.: Phase shift between wave elevation ζW , heave motion ζ and moonpool water
column oscillation ζW−WG for λW /LPP = 0.5
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