
Technische Universität Berlin

Institut für Mathematik

Algorithmic Sensitivity Analysis in the

Climate Model Climber 2

Thomas Slawig

Technical Report 29-2006

Preprint-Reihe des Instituts für Mathematik

Technische Universität Berlin

Report 29-2006 December 2006

Algorithmic Sensitivity Analysis in the Climate Model

Climber 2

Thomas Slawig

Contents

1 Introduction 2

2 Basics of Algorithmic Differentiation 3
2.1 Basic concept . 3
2.2 Forward and reverse mode . 4
2.3 Source transformation vs. Operator overloading . 4
2.4 The seed matrix . 5
2.5 AD tools on the market . 6
2.6 Choice of tools for the project . 6

3 Algorithmic Differentiation of Climber 2 8
3.1 Description of the model . 8
3.2 State at the beginning of the project . 8
3.3 Aims of this part of the project . 9
3.4 Used AD tools – overview . 9

3.4.1 Adifor . 9
3.4.2 Tamc and Taf . 11
3.4.3 Odyssee . 11
3.4.4 Adol-C . 12

3.5 Critical code sections in Climber and resulting changes in the source code 12
3.5.1 Treatment of include files . 12
3.5.2 Splitting of common blocks . 13
3.5.3 Parameter list and dimension mismatches 13
3.5.4 Multiply defined variables . 13
3.5.5 Keyword used as variable name . 14
3.5.6 Function passed as parameter . 14
3.5.7 Use of Ibm xl Fortran intrinsics . 14
3.5.8 Numerical instabilities . 14
3.5.9 Points of non-differentiability . 15
3.5.10 Jump statements . 15
3.5.11 Reorganization of the main time loop . 16
3.5.12 Implicit typing and initialization . 16
3.5.13 Static use of automatic variables . 17

3.6 A guide for programming in view of Algorithmic Differentiation 18
3.7 Applications – Overview . 19
3.8 Application 1: Single input – single output variable (forward mode Adifor) . . . 19

3.8.1 Use of Adifor . 20

1

3.8.2 Comparison with finite difference derivatives 20
3.9 Application 2: Multiple input – single output variable (forward mode Adifor) . . 21

3.9.1 Computation of the full gradient . 22
3.9.2 Code preparations to save storage in the derivative code 23
3.9.3 Comparison with finite difference derivatives 24
3.9.4 Computation of the weighted gradient/directional derivative 24
3.9.5 Numerical results of sensitivity calculations 26

3.10 Results with Tamc and Taf . 26
3.10.1 Forward mode . 27
3.10.2 Reverse mode . 27
3.10.3 Perspectives using Taf . 28

3.11 Results with Adol-C . 28
3.11.1 Generating the C version of Climber . 28
3.11.2 Use of Adol-C . 29
3.11.3 Remaining problems and perspectives using Adol-C 29

4 Summary and Perspectives 29

References 30

1 Introduction

This report summarizes the results of the project Algosense performed at the Institut für Math-
ematik, Technische Universität Berlin, from July 2001 to June 2002.

Aim of the project was to analyze the applicability of tools for Algorithmic (or Automatic)
Differentiation (AD) to two climate models developed at the Potsdam Institute for Climate Impact
Research (PIK). These were the so-called Box Model, a small model of the North Atlantic stream,
and the more complex model Climber 2 which is a so-called model of intermediate complexity
consisting of atmosphere, ocean, ice, and vegetation components. Applications that are considered
start from pure sensitivity calculations over uncertainty estimations to optimization runs. First
and higher order derivatives are of interest.

The outline of this report is the following: In the next section we describe the basic tools and
techniques of Algorithmic Differentiation. The following two sections deal with the two models
studied in this project. In each of them the corresponding model and its special features important
for Algorithmic Differentiation are briefly introduced. Then the used Algorithmic Differentiation
tools and technical details of the AD process are presented. At last numerical results are given.
Further emphasis is put on the necessary code preparations to apply the AD tools. The last
section of the report gives a summary and deals with the perspectives and opportunities of the
application of Algorithmic Differentiation to these and maybe other climate models.

Some information regarding AD tools are outdated, they reflect the standard of 2002.

Acknowledgments

Part of the work was financed by PIK in the project Algosense. Computations were performed
by Sven Peth and Sebastian Schlenkrich. Some scripts were written by Cezar Ionescu.

We would like to thank the researchers at PIK for the interesting theme of investigation, their
support and collaboration during the last year, specifically Prof. Dr. Stefan Rahmstorf, Prof. Dr.
Rupert Klein, Dr. Hermann Held, and Dr. Victor Brovkin.

2

We are indebted to Dr. Ralf Giering and Dr. Thomas Kaminski from FastOpt GbR Hamburg
for their extensive support in using Tamc and Taf.

2 Basics of Algorithmic Differentiation

Algorithmic (or Automatic) Differentiation (AD) is a software technology that provides a means
to compute the derivative of a function given in the form of a computer programme.

One characteristic advantage of an AD-generated derivative is that it is exact, i.e. it does not
incorporate any approximation errors. This is an important difference compared to other ways of
computing (or approximating) derivatives, for example finite difference (FD) calculations.

In this section we first describe the basic concepts of AD. Then we explain the difference be-
tween the two basic modes (forward and reverse). The decision between them is crucial for efficient
derivative computations, specifically for large-scale applications as complex climate models. It ba-
sically depends on the relation of the number input and output variables. Then we describe the
two ways of code generation used by the different AD tools (source transformation and operator
overloading). This choice affects the efficiency of the code as well. We continue with an overview
of available AD tools and end this section with the consequences of these considerations on the
project.

2.1 Basic concept

In this section we want to briefly describe the basic idea of Algorithmic Differentiation: Let us
consider a function

y = F (x), F : Rn → Rm,

realized in a computer programme with

• a vector of independent (or input) variables x ∈ Rn

• and a vector of dependent (or output) variables y ∈ Rm.

The two vectors x and y shall incorporate the relevant input and output variables, respectively, in
the sense that we are interested in computing the derivative of y with respect to x. The function
F may depend on other quantities and may produce additional output, but since in this context
these additional quantities are not relevant we skip them.

The function F can be represented as a concatenation

F = Fk ◦ . . . ◦ F2 ◦ F1

of k elementary intrinsic functions and operators Fi (e.g. sin, cos,+,−, ∗ etc.) of the used pro-
gramming language. Note that k usually is very large.

Each Fi can be differentiated exactly by standard rules of calculus. Using the chain rule of
differentiation the derivative of the concatenated function F then can be written as the matrix
product

y′ :=
dF

dx
(x) =

dFk

dxk−1
(xk−1) · · ·

dF2

dx1
(x1)

dF1

dx
(x) (2.1)

where the xi := Fi(xi−1), (x0 = x, xk = y) denote intermediate variables. All these xi lying on
the path from x to y are thus needed to compute y′ and therefore called active.

3

2.2 Forward and reverse mode

There are two alternative ways of evaluating (2.1), influencing fundamentally the performance of
the derivative computation: It is possible to propagate the derivatives

• from F1 to Fk in so-called forward mode or

• backwards from Fk to F1 in reverse mode.

In the AD context the derivative code of a model generated by forward mode is called a tangent
linear model, whereas one obtained by reverse mode is called an adjoint model.

The most important consequence can be easily seen by analyzing the dimensions of the matrices
dFi

dxi−1
and their intermediate products in (2.1). It concerns the efficiency with respect to cputime

and storage of the generated derivative code:

• Forward mode results in code whose computational effort is proportional to the
number n of input values, compared to the time for a function evaluation. If n is
large the proportional factor often is smaller than 1 since compiler optimization may take
advantage of common subexpressions. Thus forward mode is preferable if n < m or at least
n 6� m.

• Reverse mode results in code whose computational effort is proportional to the
number n of output values. Thus it is preferable in the opposite case, i.e. n � m.

To estimate the computational effort of the reverse mode it has to be considered that either
storage or recomputation (or a combination of both) of the intermediate values xi becomes
necessary. This can be easily seen in (2.1), too. For models with a huge number of time
steps this fact has to be considered to obtain the desired efficiency. Optimal combination of
both result in the placement of so-called checkpoints where intermediate values are stored
and used for partial recomputations. These checkpointing strategies are current topics of
research in the AD and control community.

Moreover the reverse mode requires an invertible control flow of the programme, i.e. jump
statements as e.g. goto statements have to be avoided or replaced.

Note that the effort of generating the derivative code itself is negligible. These considerations
result in the following

Rule of thumb for applying Algorithmic Differentiation:

• Start with forward mode.

• If the relation n � m is given and forward mode-generated code becomes too big (in the
sense that the executable needs to much storage) or too slow, apply reverse mode and if
necessary use checkpoint schemes.

Let us give two typical examples: If AD derivatives shall be used for optimization of a single-valued
functional with a high number of control parameters the reverse mode is appropriate. If a model
time step shall be linearized forward mode is sufficient.

2.3 Source transformation vs. Operator overloading

There are two ways of differentiating elementary functions and operators of a programming lan-
guage, i.e. the Fi in (2.1). They also influence the efficiency of the generated AD code:

4

• In the so-called source transformation method additional variables

x′i :=
dxi

dx

are introduced. Based on the chain rule
dxi

dx
=

dFi

dxi−1
(xi−1)

dxi−1

dx

a corresponding derivative statement

x′i =
dFi

dxi−1
(xi−1) x′i−1

for every statement

xi = Fi(xi−1)

is explicitly added in the source code. In this way a new source code computing both y and
y′ is generated.

Second derivatives can be computed by applying the tool twice, usually first in reverse and
then in forward mode.

• In the second approach based on Operator Overloading a new data type for the pairs (xi, x
′
i)

of values and derivatives is introduced. A library provides the implementations of the ele-
mentary functions and operators for this data type. Hence this approach does not generate
new source code, but the original one is run with all active variables declared with a different
type and linked with the AD library. During the run of the differentiated model a tape is
generated which contains the values and functions that were used. Afterwards this tape is
evaluated to compute the derivative, if desired also of higher order.

Crucial points for efficiency are that overloaded operations are more difficult to optimize for
a compiler, and that the tape generation takes time and storage. On the other hand once
the tape is generated multiple evaluations (for example for higher order derivatives or at
different input values) are cheap, if they do not lie on a different control flow branch of the
code.

For more details on technical issues of AD see e.g.[GK98],[Gri00].

2.4 The seed matrix

Computing the object

dF

dx
=
(

∂F

∂xi

)
i=1,...,n

for x = (xi)i=1,...,n ∈ Rn can be – depending on the dimension n – a quite time-consuming process.
Sometimes it may not be necessary or desirable to compute all these partial derivatives. To avoid
redundant computation and storage the so-called seed matrix S ∈ Rn×k is used. Its entries

sij , i = 1, . . . , n, j = 1, . . . , k,

and the dimension k ≤ n may be defined arbitrarily. An AD tool computes in forward mode

dF

dx
S =

(
n∑

i=1

∂F

∂xi
sij

)
j=1,...,k

(2.2)

which is a n-dimensional vector if F is a scalar-valued function. Choosing S in an appropriate
manner determines which derivative object the AD-generated code will compute:

5

• If k = 1 and S is defined as the l-th unit vector, i.e. S = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, then
(2.2) gives the l-th partial derivative of F :

dF

dx
S =

∂F

∂xl
.

• If k = n and S is the identity matrix in Rn×n, then (2.2) gives the full gradient, i.e. the
vector of all partial derivatives.

• Consequently any number k of weighted linear combinations, i.e. directional derivatives can
be computed by choosing the elements of the seed matrix appropriately.

If F is vector- or matrix-valued, relation (2.2) applies for every component of F . The gradient
then becomes the Jacobian.

As an important consequence in view of performance it is not necessary to compute e.g. the
whole Jacobian if only Jacobian-vector products are needed. This often is the case for example in
optimization algorithms.

Basically the same is true for reverse mode calculations, with the only difference that the
entries in the seed matrix are transposed since the derivative evaluation is started from the other
end.

2.5 AD tools on the market

An overview of some of the available AD software is given in Tables 1 and 2. Both tables reflect
our knowledge and assessment, other author may judge differently.

Among the free (for academic applications) tools for Fortran 77 Adifor 2 is very robust,
requires no code preparation, but is restricted to forward mode. For its successor Adifor 3

only one application (performed by the developers) is known to the authors. Tamc which can be
accessed remotely has restrictions on code size and is not developed any further. Its successor Taf

is a commercial tool. Both have been frequently used in climate modeling since their developers
stem from this research area. Odyssee is widely used in France, but the tool is not developed any
further.

For C or C++ the choice of tools is very limited, the same is true for Matlab.

2.6 Choice of tools for the project

Besides the considerations made in the last subsections the experience with the tools listed above
and the connections and collaborations of the Forschungsgruppe Optimierung bei partiellen Dif-
ferentialgleichungen at TU Berlin with the tool developers were additional criteria in the choice
and strategy during the project:

• Since there is only one AD tool for Matlab free available, Admat was used for the Box
Model.

• Following the strategy suggested above, for Climber the forward mode of Adifor 2 was
used first. Later on Tamc and Taf were tested in forward and reverse mode. Furthermore
Adol-C was applied because it is free and allows higher order derivatives that can be useful
in uncertainty computations and optimization. Furthermore we wanted to have a comparison
with a tool based on operator overloading.

6

Adifor 2 Adifor 3 Odyssee TAMC TAF
developer Rice University INRIA R. Giering FastOpt

Argonne Nat. Lab. GbR
Fortran 77 77+90 77+90 77+90 77+95
standard

add. features some MPI some MPI
technique ST ST ST ST ST

modes fwd fwd+rev (1 D) fwd+rev fwd+rev fwd+rev
usage local local local remote local

availability free developer free free commercial
version

successful ++ ? ++ ++ +
applications
... in climate + – + ++ +

models
future – + – – +

development

Table 1: AD tools for Fortran. ST: Source transformation, fwd: forward mode, rev: reverse mode

Adic Adol-C ADMAT
developer Argonne Nat. Lab. TU Dresden Cornell Univ.
language C C++ Matlab ≥ 5
technique ST OO OO

modes fwd fwd+rev fwd+rev
usage local library library

availability free free free
successful ? + +

applications
... in climate models∗ ? ? ?

future + + –
development

Table 2: AD tools for C, C++, and Matlab. ST: Source transformation, OO: Operator over-
loading, fwd: forward mode, rev: reverse mode, ∗: at the beginning of this project

7

3 Algorithmic Differentiation of Climber 2

The second part of the project was devoted to the application of Algorithmic Differentiation to
the more complex climate model Climber in version 2. The task of deriving a tangent linear or
adjoint version of this model was much more challenging than for the Box Model since Climber

is a coupled model incorporating ocean, ice, vegetation and atmosphere components.
In this section we first give a brief description of the model. Then we describe the state with

respect to AD at the beginning of the project and the aims concerning Climber. Afterwards
we present the different tools for Algorithmic Differentiation we used for this model. These tools
required different levels of changes made to the source code of the model. Moreover during the
application of AD to Climber several critical programme sections in the source code were detected.
Most of them were changed during the runtime of the project. These changes are described in
detail. Other crucial programme sections might be responsible for severe difficulties that were
observed in the AD process, specifically in reverse mode. This is pointed out in more details
in the applications that are presented next. We give an overview and detailed descriptions of
all applications that were studied for Climber. For each we describe the use of the AD tool
and necessary code preparations. Then we present the numerical results concerning accuracy and
performance.

3.1 Description of the model

The model climber was developed at PIK. Therefore here only a short description is given, for
more details we refer the reader to [PGB98]. We want to emphasize the important features of
the model concerning automatic differentiation. The first one is the high number of times steps
in a typical model run. Since the model takes time steps of one day a number of 360000 steps is
necessary for computing 1000 years model time. The second point is the coupled model structure.
Climber consists of an atmosphere, an ocean, an ice, a special coupling, a vegetation, and an
averaging and output component. These components can be combined in a flexible way using flags
that are set in an input file. Atmospheric and coupling component are called every time step (i.e.
every day model time). The ocean usually is called every five days. The vegetation component is
called at the end of every year.

Climber can be run in two ways:

• Starting from arbitrary initial conditions the model is run into an equilibrium (or stationary)
state. This may take several thousand years model time.

• Starting e.g. from a stationary state read from an input file transient runs are performed.
These can be of shorter model run time.

Obviously implementation details are important in the AD process as well. Climber in the
provided version uses some special compiler-dependent Fortran features. They may lead to diffi-
culties in the AD process, specifically in reverse mode. Among them are jump statements, implicit
variable initializations, and more. Furthermore some numerical instabilities were encountered that
do not influence the usual model code, but lead to useless results in the derivative computations.
These points are studied in more details in Section 3.5.

The overall length of the code we obtained (without comments and empty lines) was 10200
lines Fortran.

3.2 State at the beginning of the project

At the beginning of the project a version of Climber 2 was provided by PIK. There was a collection
of test examples for derivative calculations. At PIK the model was successfully differentiated using

8

Adifor with one input and one output variable.

3.3 Aims of this part of the project

The aims of the project concerning Climber can be summarized as follows. The different tasks
and aims are listed with respect to difficulty and complexity:

• Test the applicability of AD tools on the model at all. Since the model is far more complex
and challenging at first pure sensitivity calculation were in the focus of interest. Optimization
runs (as for the Box Model) using the computed derivatives were not our focus. Nevertheless
a successful optimization strategy is based on a efficient derivative calculation and should
be possible once the latter is done.

• Typical scenarios with distributed input variables and one output variable should be tested.

• Performance issues, concerning both computational time and storage requirements, were
crucial points of investigation. This is due to the high number of variables, the complex
coupled structure, and the necessity of runs with long model time to compute stationary
states.

• User-friendliness or easy usability of the AD tools for the researchers at PIK who are not
familiar with this technology was another goal. This point specifically refers to current and
future code changes, model extensions, and replacement of model components.

• Higher order derivatives are of interest for the uncertainty group at PIK. Of course they
only make sense if satisfying first order derivative code could be generated.

3.4 Used AD tools – overview

Three Algorithmic Differentiation tools were used for Climber: We started with Adifor because
of its robustness and our experience in using it. As described in the second section of this report
Adifor is only capable of forward mode. Since in our second application we had a high number
of output, but only one input variables, there was the necessity of using a reverse mode tool. Here
we tested Tamc and its successor Taf. Furthermore we algorithmically generated a C version of
Climber and tested the tool Adol-C working with Operator Overloading. This was done to test
the competitiveness of a tool based on this method, specifically in computing higher derivatives
that may be interesting for the uncertainty studies also performed at PIK.

In the following subsections we describe the usage and code preparations that were necessary
for these three tools.

3.4.1 Adifor

Adifor in version 2 requires only small code preparation. The tool takes all Fortran 77 code,
only one named do-loop had to be replaced. Adifor can be obtained free of charge for academic
purposes under [Adifor]. It is installed at PIK.

For the use of Adifor one has to perform the following steps:

1. In a composition file that must have the suffix .cmp simply all source files that are needed
to compute the output variable that shall be differentiated from the input variable have to
be listed.

9

AD_TOP=climber

AD_PMAX=1

AD_IVARS=cco2

AD_DVARS=tsga

AD_PROG=climber.cmp

Table 3: Necessary variables in a .adf file .

2. In a second file with the suffix .adf, e.g. climber.adf, variables and options for Adifor

have to be set. They define the top-level subroutine, the names of input and output variables,
the maximal dimension etc. A simple example is given in Table 3.

The variables set in the file are:

• AD TOP: sets the top-level routine

• AD PMAX: max. number of independent/input variables

• AD IVARS: name(s) of independent or input variable(s)

• AD DVARS (same as AD OVARS): name(s) of dependent or output variable(s)

• AD PROG: file with the list of source code files

More variables or options may be useful or necessary. Detailed examples are given in the
applications.

3. The top-level routine must not be the main programme and the dependent/output variable
tsga has to be a global variable or a parameter in the top-level subroutine.

4. Adifor is then invoked in a shell with

Adifor -AD SCRIPT=climber.adf

where climber.adf is the file described above in Table 3.

Adifor analyzes the original programme and generates the derivative code. All variables
that represent derivatives obtain the prefix g , and for all active subroutines/functions lying
on the path from input to output variable corresponding new subroutines/functions with
the same prefix g are generated.

5. The user than has to write a simple main programme or modify the existing one. In it the
seed matrix has to be initialized, compare Section 2.2. The standard variable name for the
seed matrix is the name of the input variable with prefix g , in our example in Table 3 thus
g cco2. Moreover the g version of the top-level subroutine has to be called. For examples
see again the applications below.

Adifor offers the opportunity to invoke special routines that report on exceptions due to points
of non-differentiability. For details see [AdiMan]. A further advantage of Adifor is that points
of non-differentiability (e.g. evaluation of the square-root at zero) are detected and the critical
values are treated separately to avoid arithmetic overflow.

A disadvantage of Adifor is that common blocks are regarded as completely active even if
only one variable in them is active. This leads to redundant derivative variables and may result
in a very huge executable programme. We had this problem in our second Adifor application,
see Section 3.9.

10

3.4.2 Tamc and Taf

Tamc is a source transformation tool developed by Ralf Giering. It is capable of forward and
reverse mode, and can be accessed remotely by invoking a small script available at [Tamc]. The
tool is not developed any further, its successor Taf [Taf] is now commercially distributed by the
company FastOpt. Since Taf and Tamc have the same roots the usage of the tools is similar.
Tamc has the bottleneck of the capacity of the server, so sometimes a complex code as Climber

leads to an error due to lack of storage on the server. We had the opportunity to use FastOpt’s Taf

server which has no such problems. A commercial license of course is installed on the customer’s
computer and will not lead to that kind of problems anyway.

The necessary steps to differentiate a programme are listed below:

1. Tamc and Taf require that code from Fortran include files have to be explicity included.
In the package of Tamc, Taf a script is provided. We extended this an finally wrote our
own one named pre taf to perform these and some other changes.

2. As for Adifor the top-level subroutine must not be the main programme and the output
variable must be global or a parameter.

3. Both tools are steered via options in which input and output variables, top-level subroutine
and differentiation mode are specified. A typical call of Taf in a shell has the form

taf -toplevel climber -input cco2 -output tsga -forward *.f

for forward or

taf -toplevel climber -input cco2 -output tsga -reverse *.f

for reverse mode. Both tools produce log files (named tamc output and taf.log, repsce-
tively) which report on errors or give warnings. Specifically in reverse mode these can be
used to detect hot spots in view of performance. In Forward mode the variables are named
with the prefix g , in reverse mode with ad. The generated derivative source code files get
the suffixes ftl, ad, respectively.

4. The last step is the same as for Adifor: The main programme has to be modified to initialize
the seed matrix and call the generated new top-level routine.

An advantage of Tamc and taf is that the tools can parse and write Fortran 90 code which
may lead to more readable code. Moreover they generate code that is explicitly typed and very
nicely written. A further plus concerning storage use is that common blocks are not entirely
declared as active if one variable is active as it is done by Adifor, see the subsection above.

3.4.3 Odyssee

We only briefly tested the French AD tool Odyssee which allows forward and reverse mode. It
is available at [Odyssee] free of charge and can be installed under Sun Solaris and Linux. The
Solaris version even has a graphical user interface. Otherwise the tool is used in command line
mode. We did not further studied the tool since it has some problems with the Climber code.
Moreover the analysis took quite long. Since the tool is not developed any further we did not
continue the application of Odyssee on Climber.

11

3.4.4 Adol-C

This tool is based on operator overloading and is developed and maintained at the Insititut für
Wissenschaftliches Rechnen at TU Dresden. It offers forward and reverse mode and derivatives
of arbitrary high order. The conceptual difference of an operator overloading tool has several
consequences. The first one is that Adol-C is not invoked as the tools described in the last two
subsections. Moreover it does not generate new code. Adol-C is a library that can be obtained
for free from [Adolc]. This library is linked with the model source code. In the source code some
changes have to be made. Basically three steps have to be performed:

1. Declare all variables that lie on the path from input to output as adouble, i.e. active double
instead of C++ double.

2. Insert trace on, trace off statements around the relevant code parts, i.e. those where the
output value is computed from the input variable. These start and stop the taping of the
relevant operations and variables.

3. Extract the derivative(s) from the tape by calling special routines provided by Adol-C.

3.5 Critical code sections in Climber and resulting changes in the source

code

The original idea of AD is to alter as little as possible in the model source code that should be
differentiated. In fact it turns out that maybe

• an AD tool requires some code preparation,

• an AD tool is much more strict with the language standard than the compiler itself is,

• numerical instabilities are detected when running the derivative code,

• some source code changes are required to revert the control flow graph for reverse mode,

• some changes turn out to be necessary to increase performance.

The Fortran programming language has some features that are on one hand flexible, but on
the other hand error prone and thus not recommended. Moreover most Fortran compilers allow
inconsistencies that are detected by AD tools since may disturb code analysis and the derivative
code generation. In this subsection we list the problematic code sections detected in Climber

and describe how they were replaced. All changes were tested successfully against the results of
the original Climber version. If changes in the results occurred they are documented. We give
an overview of all problems and changes made in Table 4.

A general change we made for convenience was to put every subroutine/function in a separate
file with the name of the routine as filename.

3.5.1 Treatment of include files

Tamc and Taf require explicit incorporation of the source of Fortran include file *.inc in the
Fortran source files *.f. This can be done by a script provided with the tool or with one we have
written.This change is not recommended for other tools since it decreases the readability of the
code.

12

see type of problem/change Adifor Adifor reverse Tamc

Section performance mode Taf

general general
3.5.1 include files −− −− −− ++
3.5.2 splitting of common blocks + ++ −− −−
3.5.3 declaration mismatches ++ ++ ++ ++
3.5.4 multiply defined variables + + + +
3.5.5 reserved word as variable + + + ++
3.5.6 function as parameter ++ ++ ++ ++
3.5.7 Ibm intrinsic functions - - - ++
3.5.8 numerical instabilities ++ ++ ++ ++
3.5.9 non-differentiabilities - - - ++
3.5.10 jump statements - - ++ -
3.5.11 reorganization of time loop - - + -

Table 4: Overview of problems and corresponding changes in Climber source code. Changes are
++: required, +: recommended, -: optional, −−: not recommended if not necessary.

3.5.2 Splitting of common blocks

We split up the common blocks such that every variable is in one alone. The names of variable
and common block are the same. This was necessary only to obtain performance with Adifor,
see Section 3.9.2. For other tools it was not necessary, but had no negative effect either. This was
also performed by a script.

3.5.3 Parameter list and dimension mismatches

Many Fortran compilers allow mismatches between the numbers of variables in a parameter list in
the definition of the subroutine/function and its actual calling statement. AD tools detect these
mismatches and report on them as errors. The same is true for mismatches in the dimensions of
common block variables.

Both of these inconsistencies were detected in Climber. They could be eliminated easily:

1. The parameter btime was eliminated in the calls of the subroutines sinsol and solcon in
subroutine climber. The declaration of both subroutine has no parameter list, whereas the
call in climber passes one parameter. This parameter is redundant since it is already in a
common block.

2. The dimension of variable PCO2M was adjusted: In subroutines PCO2 and DATA CO2 it was
declared with different dimensions (1000 and 1200). The dimension was changed to 1200 in
PCO 2, too.

3.5.4 Multiply defined variables

Variables were multiply used with different dimensions in different common blocks. This is not
generally a problem, but unsafe, and thus was changed:

1. Double appearance of variable TSUR i eliminated:
Variable occurs twice as three-dimensional array in common block coup in include file
coup.inc and as scalar variable in common block semic in file semi.inc. First one, i.e
the array, was renamed as tsur i2. This refers to the include file coup.inc and the subrou-
tines init coup, sflux o, trans a, restart, rewrite, coupler.

13

2. Double appearance of variable USUR I eliminated:
Variable occurs twice as array and a scalar. Array was renamed as USUR I2 in include file
coup.inc and subroutines coupler and sflux o.

3. Double appearance of variable V2 eliminated:
Variable occurs twice as array and a scalar. Scalar variable was renamed as v2u in include
file bio.inc and subroutines initcpar, ccparam.

4. Double appearance of variable PRCS I eliminated:
Variable occurs twice as array and a scalar. Array variable was renamed as prcs i2 in
include file coup.inc and subroutines coupler, trans o.

5. Double appearance of variable PRC I eliminated:
Variable occurs twice as array and a scalar. Array variable was renamed as prc i2 in include
file coup.inc and subroutines coupler, trans o.

6. Double appearance of variable TAM I eliminated:
Variable occurs twice as array and a scalar. Array variable was renamed as tam i2 in include
file coup.inc and subroutines coupler and sflux o.

7. Triple appearance of variable sst i eliminated:
Variable occurs as scalar, 2-, and 3-dimensional array.

(a) The 2-dimensional array sst i in subroutines coupler, sdown, sflux o, ocn dat

and include file coup.inc was renamed to sst i2.

(b) Scalar variable sst i in subroutine inter sic renamed as sst i3.

3.5.5 Keyword used as variable name

In subroutine ocnout a variable is called SAVE which is a reserved Fortran keyword. The name
was changed to SAVE1. Most compilers do not recognize that as an error, but the AD tools do.

3.5.6 Function passed as parameter

This lead to errors both with Adifor and Tamc/Taf. In subroutine incche the subroutine
rtsafe is called and the external function hydfunc is passed to it as parameter funcd. Since this
is the only occurrence, i.e. rtsafe calls always hydfunc, the parameter funcd was eliminated and
hydfunc was called directly in rtsafe.

3.5.7 Use of Ibm xl Fortran intrinsics

In subroutine dfluxo the functions derf and srand computing random numbers are called. Tamc

and Taf had problems with them since they are Ibm xl Fortran intrinsics. They were put in
comments during the AD process.

3.5.8 Numerical instabilities

In a derivative additional numerical instabilities may occur. A simple example is the function
f(x) = 1/x. If the value of x is close to the smallest machine number then the value of the
function is a machine number, but the derivative f ′(x) = −1/x2 will give Infinity. Problems of
this type occurred in Climber.

Operations leading to numerical instabilities and floating point exceptions detected in Climber

were:

14

1. Division by zero occurred in subroutine dyno in the lines

VCW1=-ZZ(1)/(HOCY(i,n)-ZZ(1))*VCW(i,1,n)

for some indices. In the original the resulting value was not used. The code section was
replaced by an if-else-endif statement.

2. Division by zero occurred in in subroutine dyno in the lines

vsum=vsum/HOCY(i,n)

for some indices. In the original the resulting value was not used. The line was moved to
the following loop which has an entry condition avoiding the problematic index values.

3. The code lines in subroutine ccdyn

dst=forshare_st-fd*exp(-1./t2t)-st(lat,lon)

st(lat,lon)=st(lat,lon)+dst

which led to cancellation for some values of lat, lon were replaced by

dst=forshare_st-fd*exp(-1./t2t)-st(lat,lon)

st(lat,lon)=forshare_st-fd*exp(-1./t2t)

This caused a slight change of results in Climber. Nevertheless the new results should be
more accurate.

3.5.9 Points of non-differentiability

A typical point of non-differentiability is the evaluation of the square-root, e.g. for calculation
of norms, at the point x = 0 where the function is not differentiable, its derivative would give
Infinity. The same is true for the functions f(x) = xα with α < 1. Adifor automatically treats
this problem by an if-statement, for the use of other tools we changed the corresponding code
sections themselves.

This refers to the subroutines berger, bergor, calc k1, calc k2, calc kb, calc kw, cdrg,
crisa, geo ocn, geo upd, mbiodyn, orbit, secm, trns, u2d, u3d, and zslp.

3.5.10 Jump statements

We already mentioned in Section 2.2 that jump statements in the code flow lead to problems when
using reverse mode. In Fortran the following statements are critical:

• goto statements

• return in functions used before the end of the function in an if block

• break statement in an if block.

Tamc and Taf in reverse mode can treat most of these jumps. If this is not possible the error
irreducible control graph appears in the output file.

Nevertheless for our reverse mode computations with Tamc and Taf we replaced all jumps
by equivalent features, making use of the Fortran 90 do while statement. Also arithmetic if
statements which occurred in one Climber subroutine berger were replaced.

Comment lines including the original code where inserted. This refers to subroutines berger,
cadj, dfluxo, geo ocn, lwr s, orbit, root, sdown, u3d, zlsp.

15

3.5.11 Reorganization of the main time loop

In Climber some components, e.g. the ocean model, are called only every five days (i.e time-
steps). This is realized in the programme by an integer flag that is set to one every step can be
divided by five without remainder. This realization makes it very difficult to analyze the code’s
flow graph backwards as it is necessary for reverse mode AD. Thus we changed the realization
of the time loop subroutine time loop itself and the subroutine climber that realizes one year
model time. They now consist of three nested loops, namely

• an innermost performing five days model time, i.e. five time steps and then calling the ocean.

• a middle loop which performs 72 calls of the innermost and thus represents one year model
time, calling at the end vegetation, averaging and output routines. Both are realized in a
subroutine climber mod replacing the original climber.

• Finally the outer loop counting the years model time in time loop mod which replaces the
original time loop.

Moreover the averaging routine gaver was moved from the output in subroutine out to climber mod

to separate averaging (where output values to be differentiated are computed) and the pure writing
of output.

The detailed list of changes is:

1. Subroutine time loop was replaced by time loop mod, see Table 5:

(a) The main counter in the routine was changed from days to years (now inyr).

(b) time loop mod calls a new subroutine climber mod (see below) and passes the current
value of the year inyr as parameter to it.

2. The subroutine climber was replaced by climber mod, see Table 6:

(a) climber mod now computes one year model time (instead of one day in climber)

(b) There are two main loops in climber mod: An outer loop computing one year in 72 steps
of each 5 days and an inner loop for 5 days is realized as a call to the new subroutine
day 1 (see below). At the end of the outer loop routines are called that are needed only
once a year (e.g. vegetation).

(c) A new subroutine day 1 performs one day time-step, see Table 7.

3. The separation of output and calculation was achieved in the following way: The averaging
routine gaver was moved to the main loop in climber mod. The same was done for subrou-
tine slr which now is also called in climber mod. Subroutine out now has only real output
statements and becomes passive for AD.

3.5.12 Implicit typing and initialization

Fortran allows implicit typing, i.e. variables do not have to be declared explicitly. AD tools do
not need explicit typing, but it is highly recommended not to use this opportunity because of
programme errors that are often introduced just by simple typing errors in the programme source
code.

A more dangerous feature that for example the IBM Fortran compiler (xlf, f77) in its stan-
dard configuration uses is the automatic initialization with zeros of all variables in the beginning
when the programme is started. This feature leads to non-portability to compilers that do not ini-
tialize automatically (e.g. the g77). But this feature becomes even more dangerous in combination
with the effect described in the next subsection.

16

SUBROUTINE TIME_LOOP_mod

...

integer inyr

* NYRMX - number of years

* inyr - count unit of years

**

do inyr=0,NYRMX-1

call climber_mod(inyr)

enddo

return

end

Table 5: Additional parameter in subroutine time loop mod.

SUBROUTINE CLIMBER_mod(inyr)

...

integer inyr,day1,day5

...

if (inyr.eq.0) nts=1

do day5=1,72

do day1=1,5

call day_1(day5,day1)

enddo

if (KOCN.ne.0) then

... ! unchanged

endif

enddo

if (KTVM.ne.0) call CLIM_TVM

if (KBIO.eq.1) call TVM

if (KTIME.eq.1.or.KSOLC.eq.1) call SINSOL

call SLR

call gaver(kendy) ! call was previously in OUT

call slr ! call was previously in OUT

call out ! output separrated from averaging

nts=nts+1

return

end

Table 6: New structure of main time loop in subroutine climber mod.

3.5.13 Static use of automatic variables

The Fortran 77 standard defines that local variables, i.e. variables used in a subroutine/function
that are not in a common block and not passed as parameters, have the status of so-called au-
tomatic variables. That means they are created every time the subroutine/function is called and
(and least should be) destroyed after it is finished. This implies that the values of these variables
are lost after the finishing of the subroutine. If one wants such a variable to retain its value from
one call of a subroutine/function to the next (e.g. in a time loop as in Climber), they have to be
declared as static variables. This in Fortran is done by giving the variable a save attribute.

17

Subroutine day_1(day5,day1)

...

integer inyr

integer day5,day1

if (.not.((day5.eq.1).and.(day1.eq.1))) then

if (KTVM.ne.0) call CLIM_TVM

call gaver(kendy) ! call previosly in OUT

c call OUT ! only writing

nts=nts+1 ! day counting

endif

...

c==

c Modules

call PCO2

call ATM

call COUPLER

return

end

Table 7: Inner most loop computing 5 days model time in new subroutine day 1.

Compilers allow to implicitly define all local variables as static or automatic. The Ibm Fortran
compiler has the -qautosave, -qnoautosave options.

It turned out that both the xlf and the g77 compilers save local variables defined as automatic,
i.e. without explicit save statement nor -qautosave compiler option, from one subroutine call
to the next one. We believe that this is due to the fact that once the programme is loaded, the
physical space the variable occupies remains the same during the whole programme lifetime, and
that the variable in fact is never destroyed explicitly.

This e.g. is true for the annual global mean temperature tsga and is used in Climber to
compute the sum of temperatures over the daily time steps in one year. This variable is no global
variable in a common block nor passed as parameter. Nevertheless in every time step and every call
of the corresponding subroutine gaver the value of tsga is preserved. Obviously this is important
for the correctness of the intended value of the variable. But it is obviously as well that making
use of this feature is rather dangerous, for example if the subroutine is used in a programme with
a more dynamic structure.

An AD tool that has to detect dependencies between variables, and furthermore to conform
with the language standard, may generate code that does not compute the correct derivative.
A possible step for the future thus seems to use totally explicit typing and initialization of all
variables, a strategy that is highly recommended in programming anyway.

3.6 A guide for programming in view of Algorithmic Differentiation

In this section we want to summarize the most important guidelines for model developers and
programmers in view of the use of a possible algorithmic differentiation of a model:

• Use explicit typing.

• Use explicit variable initialization.

18

• If variables should be used as static, i.e. they should keep their value from one call of a
subroutine to the next, make them global or declare them as save. This refers to Fortran
programmes.

• For reverse mode avoid all jump statements, i.e. goto, break, exit statements. Avoid
return statements in an if block in subroutines/functions. Use do while loops instead.

• Avoid old Fortran features as arithmetic if’s.

• If periodically called subroutines/functions arise in loops, do not realize this with flags that
are set to 1 or 0 depending on the index of the loop. Use nested loops instead.

• For reverse mode keep in mind whether your programme’s control flow graph can be reversed.

• Check your model code for numeric instabilities before you differentiate it. You may use the
options (on Ibm’s xlf):

-g -qflttrap="ov:zero:inv:en" -qsigtrap=xl__ieee

which displays the code lines where overflow (ov), division by zero (zero) and invalid oper-
ations, i.e. operations on infinite values (inv) are performed. For more details see the xlf

manual or the info data base.

Summarizing we can say that the more structured and safely written a programme is, the easier
is it to pass through an AD tool successfully.

3.7 Applications – Overview

The first and simplest application that was tested with Climber was to compute the derivative of
the global mean temperature (tsga in the model code) with respect to changes in CO2 emissions
(cco2 in the model). Since the value of the CO2 is fixed once at the beginning of the model run
this application has one input and one output variables. Therefore it is the easiest case for AD.

The second application was to compute the derivative of the global mean temperature (again
tsga) with respect to the zonal area of forest (stte in the model code). Since the zonal area of
forest is a weighted sum of the variable st in fact the derivative of the global mean temperature
tsga with respect to the latter has to be computed. The variable st is a two-dimensional array
of size 126. Therefore this is a classical application for the reverse mode. Nevertheless we started
with Adifor and forward mode because of the robustness of the tool, and to test its limits with
respect to performance and storage requirements. Moreover this gives us the opportunity to obtain
results for the derivatives that can be used for comparison.

Climber contains several more variables which are similarly computed as the global mean
temperature tsga. Thus it should be easily possible to obtain similar results in cases where the
global mean temperature tsga is replaced by those.

3.8 Application 1: Single input – single output variable (forward mode

Adifor)

The aim of this application was to compute the sensitivity of the global mean temperature (tsga
in the model code) with respect to CO2 (cco2). This example is the simplest case for an AD tool
since it has only one input and one output variable. Thus here the forward mode is preferable.

19

AD_TOP=climber_mod

AD_PMAX=1

AD_IVARS=cco2

AD_DVARS=tsga

AD_PROG=climber.cmp

AD_SCALAR_GRADIENTS=TRUE

AD_EXCEPTION_FLAVOR=reportonce

Table 8: File climber.adf for application 1.

3.8.1 Use of Adifor

In this case the file climber.adf looks as in Table 8.
Here we used two options additional to those already described in Section 3.4.1, namely:

• AD SCALAR GRADIENTS: set to TRUE if the derivative/gradient is a scalar (only possible for
AD PMAX = 1, but in this case recommended for performance reasons).

• AD EXCEPTION FLAVOR: set to REPORTONCE this option enables the user to obtain non-differentiability
points in derivative code (if a special subroutine from the Adifor library is called)

To ensure that the dependent/output variable tsga is global an additional common block named
tsga was introduced in climber mod.

The seed matrix S = g cco2 in this case is just a scalar and was set to 1. The routine were
the derivative code is invoked is sketched in Table 9.

common /g_cco2/g_cco2

c seed "matrix":

g_cco2=1.

do inyr=0,NYRMX-1

call g_climber_mod(inyr)

enddo

Table 9: Relevant lines of the subroutine time loop mod calling the AD-generated subroutine
g climber mod.

3.8.2 Comparison with finite difference derivatives

We compared the results obtained with the AD-generated derivative with finite difference com-
putations. The results are depicted in Figure 1 for 10 years model time with and without restart
from the equilibrium state. These two figures show the dependency of the finite difference (FD)
derivatives with respect to the used step size. As already pointed out before the choice of the step
size is not easy. Here the value h = 10 showed the less oscillating behavior. The result of the AD
derivative fits closely to the FD derivative with this step-size. Figure 2 shows the FD derivative
with this (in this case somehow appropriate) step size for a 1000 year run with restart.

Summarizing the result obtained with AD are quite reasonable and show their superiority
compared to finite diffrence approximations were the appropritae step-size is always difficult to

20

find. In that sense also in performance their is a gain using AD here since it avoids tests with
different FD step-sizes.

1 2 3 4 5 6 7 8 9 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
Vergleich Adifor vs. Diff. Quotient (restart=1)

Jahre

∆
T

na
ch

 ∆
 c

co
2

1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Vergleich Adifor vs. Diff. Quotient (restart=0)

Jahre

∆
T

na
ch

 ∆
 c

co
2

Figure 1: Derivative of global mean temperature with respect to CO2 at the value cco2=280
with (left) and without (right) restart from an equilibrium state. Derivative obtained by AD (in
dark blue) and central finite differences with step-size h = 0.1 (bright blue), h = 1 (red), h = 10
(green).

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16
x 10−3 Vergleich Adifor vs. Diff. Quotient (restart=1)

Jahre

∆
T

na
ch

 ∆
 c

co
2

Figure 2: AD- (in dark blue) and FD-generated derivatives (in green) with step-size h = 10 of
global mean temperature with respect to CO2 with restart.

3.9 Application 2: Multiple input – single output variable (forward

mode Adifor)

This second application is much more challenging than the one described above. Aim was to
compute the sensitivity of the annual global mean temperature tsga with respect to the zonal
area of forest (variable stte in the model code). The latter is computed in subroutine gaver as
a linear combination of variable st:

sttei =
ns∑

n=1

stincareain(1− frglcin), (3.3)

21

see the code fragment in Figure 10.

do i=1,IT

do n=1,NS

STTE(i)=STTE(i)+ST(i,n)*carea(i,n)*(1.-FRGLC(i,n))

enddo

enddo

Table 10: Calculation of stte as linear combination of st. The variables carea and frglc are
constants.

Thus we had do define variable st as input variable. Because of the dimensions of input and
output variable and the facts we pointed out in Section 2.2, this is a classical application for reverse
mode. Nevertheless we started with Adifor; reverse mode was tested later on.

3.9.1 Computation of the full gradient

At first we computed the full gradient of tsga with respect to all components of st. Since st is a
matrix itself the resulting object

g tsga =
dtsga

dst
=
(

∂tsga

∂stij

)
ij

∈ Rit×ns

is a matrix as well. Nevertheless we refer to it as the gradient since the mapping to be differentiated
in this case is

F : Rit×ns → R
st 7→ tsga.

In this case the file climber.adf looks as in Table 11. The variable st has the dimension it ·ns =
126.

AD_TOP=climber_mod

AD_PMAX=126

AD_IVARS=st

AD_DVARS=tsga

AD_PROG=climber.cmp

AD_SCALAR_GRADIENTS=FALSE

AD_EXCEPTION_FLAVOR=performance

Table 11: File climber.adf for computation of the full gradient of tsga with respect to st.

Computation of the full gradient implies that the seed “matrix” S is in fact not a matrix
anymore but formally a tensor of fourth order, i.e. S ∈ Rit×ns×it×ns. Following the definition in
(2.2) we have

dF

dx
S =

dtsga

dst
S =

 it∑
i=1

ns∑
j=1

∂F

∂stij
sijkl

k=1,...,it,l=1,...,ns

. (3.4)

22

To compute the full gradient we have to set S to the identity tensor, i.e.

sijkl =

{
1, (i, j) = (k, l)

0, elsewhere

In reality the storage of the seed matrix is done in a slightly different way: Adifor requires that
the seed matrix is provided as an array that has one index more than the input variable itself.
The additional index (let us call it r) in fact represents the first two indices i, j in (3.4) using the
formula

(i, j) 7→ i + (j − 1) · it =: r.

This is the way Fortran stores a two-dimensional array of size it× ns (rows × columns), namely
column-wise.

This implies that the initialization of the seed matrix in our case had to be done as

srkl = g strkl =

{
1, r = k + (l − 1) · it
0, elsewhere

The realization in code in this case can be found in Table 12.

parameter (g_pmax_=126)

real g_st(g_pmax_, it, ns)

common /g_st/ g_st

g_st=0.0

do k=1,it

do l=1,ns

g_st((l-1)*it+k,k,l)=1.0

enddo

enddo

Table 12: Seed matrix used by Adifor for the full gradient. The fourth line is a Fortran 90 array
assignment.

Note that the total number of elements in the seed matrix is it2ns2 = 15876. Moreover
several objects of this or similar size are generated in the AD process. It is obvious that this may
lead to storage problems. A disadvantage of Adifor in this case is (as already mentioned) that
the tool makes an entire common block active, even if only some variables in it really lie on the
computational graph from input to output variable. As a result the executable compiled from the
derivative code generated by Adifor could not be loaded into memory.

3.9.2 Code preparations to save storage in the derivative code

To overcome the above mentioned high requirements of at least partially redundant storage we
separated all common blocks. This avoids the generation of unnecessary active variables. All
common block variables were put in a separate common block named as the variable itself. More-
over we compiled and run the derivative code on a 64-bit machine (using the Ibm compiler’s -q64
option) and set

limit memoryuse unlimited

limit datasize unlimited

23

to provide sufficient memory. Note that the libraries containing the Adifor exception handler
routines are not available in 64 bit version. Thus the AD EXCEPTION FLAVOR has to be set to
performance in this case. It was then possible to compute the full gradient.

Concerning performance the relation between the time used for a function evaluation and a
gradient computation was 1 : 22, where both values were obtained with -O3 optimization flag.
This already much better than the theoretical value of 1 : 126 for forward mode or finite difference
gradient computation.

3.9.3 Comparison with finite difference derivatives

We tested the accuracy of the partial derivatives of tsga with respect to st. The results for one
component of the gradient can be seen in Figures 3 and 4. Both pictures indicate convergence
of the finite difference derivatives to the AD derivative. Moreover they give an impression of the
significant oscillations and dependency on the step-size of the FD derivative, whereas the AD
derivatives are rather smooth.

3.9.4 Computation of the weighted gradient/directional derivative

The original aim of this application was not to compute the full gradient of the annual global mean
temperature tsga with respect to st, but with respect to the zonal area of forest stte defined as
the linear combination (3.3). Thus we are interested in

g tsga =
dtsga

dstte
=
(

∂tsga

∂sttei

)
i

∈ Rit.

From (3.3) we deduce that tsga does not directly depend on stte, but both tsga and stte

depend on st. The influence of a change in stte on the change in tsga thus depends on the sum
of the changes induced by variation in the corresponding components of st. We therefore have

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Difquo vs. Adifor, restart=1

Jahre

∆
ts

ga
 n

ac
h

∆
st

dif+−10%
dif+−4%
dif+−1%
adi

Figure 3: Comparison of AD and FD derivative of tsga with respect to st21 with restart from an
equilibrium state in a run over 100 years model time. Red: Adifor, magenta: central FD with
step-size 0.1 · st21 blue: 0.04 · st21, green: 0.01 · st21.

24

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Difquo vs. Adifor, restart=0

Jahre

∆
ts

ga
 n

ac
h

∆
st

dif+−4%
dif+−1%
adi

Figure 4: Same as in Figure 3, but without restart.

to differentiate tsga with respect to st, but we do not need the complete gradient of dimension
it · ns = 126, but only the it = 18 weighted combinations have to be computed.

The file climber.adf now looks as in Table 13. The only difference to the one in Table 11 is
the lower dimension of the gradient objects defined in AD PMAX.

AD_TOP=climber_mod

AD_PMAX=18

AD_IVARS=st

AD_DVARS=tsga

AD_PROG=climber.cmp

AD_SCALAR_GRADIENTS=FALSE

AD_EXCEPTION_FLAVOR=performance

Table 13: File climber.adf for computation of the weighted gradient.

Now we use the seed matrix

S = g st = (g stikl)ikl ∈ Rit×it×ns

and initialize it as follows:

sikl := g stikl :=

{
careakl(1− frglckl), i = k

0, i 6= k.

}
i, k = 1, . . . , it,

l = 1, . . . , ns.

The realization in the code is shown in Table 14.
This initialization saves a factor ns = 7 storage and of course also some computational effort

compared to the computation of the full gradient. The relation between the time used for a
function evaluation and a computation of this weighted gradient (or directional derivative) is now
about 1 : 7, where again both values are obtained with -O3 optimization flag.

25

parameter (g_pmax_= 18)

real g_st(g_pmax_, it, ns)

common /g_st/ g_st

g_st=0.0

do i=1,it

do k=1,ns

g_st(i,i,k)=carea(i,k)*(1.-FRGLC(i,k))

enddo

enddo

Table 14: Seed matrix used by Adifor for the weighted gradient

3.9.5 Numerical results of sensitivity calculations

Here we show the result of the sensitivity calculations with respect to the whole two-dimensional
array st in Figure 5 and with respect to the weighted array stte in Figure 6.

−0.1

−0.05

0

0.05

0.1

0.15
tsga nach st, Adifor, 10 Jahre

1 2 3 4 5 6 7

2

4

6

8

10

12

14

16

18

Figure 5: AD derivative of tsga with respect to st (with restart) after 10 years model time.

3.10 Results with Tamc and Taf

Let us briefly recall the considerations already made in Section 2.2: The application we considered
in the last section, namely to compute the sensitivity of the annual global mean temperature which
is a scalar variable (tsga) with respect to the variable st which is an array with 126 elements, is
a classical case for the reverse mode of AD.

It is nevertheless recommended to analyze a code with forward mode first, even if one plans to
use reverse mode for the above reasons.

26

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
tsga nach st, Adifor, 1000 Jahre, restart=0

2 4 6 8 10 12 14 16 18

10

20

30

40

50

60

70

80

90

100

Figure 6: AD derivative of tsga with respect to stte(1:18) without restart for 1000 years in
steps (on the vertical axis) of 10 years model time.

3.10.1 Forward mode

Using a script all necessary changes for Tamc and Taf (we from now on mention only the latter)
were made, e.g. the incorporation of the Fortran include files in the .f files themselves. The script
moreover puts all needed source file in one named taf.f.

Then we applied Taf in forward mode by calling first

taf -toplevel climber -input cco2 -output tsga -forward taf.f

which was our first test for Adifor, too (compare Section 3.8).
Initialization of the seed matrix and building the new main programme for forward mode is

done in the same way as for Adifor in this case with one input and one output variable. Even
the name of the subroutines (with prefix g) and active variables are the same, the file names have
the suffix ftl for forward tangent linear.

Unfortunately the results were not correct compared to the ones obtained by Adifor and finite
difference computations in Section 3.8.2.

3.10.2 Reverse mode

Even though the results with the forward mode were not promising we tested the reverse mode
(our original goal) by invoking

taf -toplevel climber -input st -output tsga -reverse taf.f

after we made the code preparations that are necessary. They were already mentioned in Sec-
tion 3.5. Most important among them are

• the elimination of jump statements

27

• and the reorganization of the main time loop.

The files Taf generates in reverse mode have the suffix ad and contain subroutines with prefix
ad (referring to adjoint code or model). The seed matrix initialization in this case is simple: In
reverse mode it has the dimension m ×m where m is again the number of output variables. Its
variable name in Taf is the name of the output variable with the prefix ad. In our case the seed
matrix thus is just a scalar and was initialized as

S = adtsga = 1.0

The result of the derivative of tsga with respect to st is to be found in the two-dimensional array
adst generated by Taf.

Unfortunately Taf had problems here, too: The generated code did not run without errors.
We were in contact with the developers from FastOpt Hamburg. Some problems could be solved,
but at the end of this project no successful run could be finished.

3.10.3 Perspectives using Taf

The results presented above at first sound very disappointing. Nevertheless it has to be taken
into account that Taf is successfully working for several other climate models, compare the Tamc

and Taf homepages [Tamc],[Taf]. It was also successfully applied to and used for optimization in
a fluid mechanics code at TU Berlin. The generated code was very efficient and fast. Moreover
the tool is one of the rare tools that are under steady development. Summarizing it will take
some more time , effort, and collaboration with the developers themselves to obtain a running AD
version of Climber differentiated with Taf. We will come back to this point in the summary of
this report, see Section 4.

3.11 Results with Adol-C

The operator overloading tool Adol-C is one of the most modern AD software. It is under
steady further development. Moreover it is free and provides the opportunity to compute higher
order derivatives with not much additional effort. This was the reason why we included it in our
investigations.

Since it is a tool working for the C/C++ language we needed a C version of Climber. Its
derivation is described in the next section. Afterwards we describe how the tool is used which –
since it is based on operator overloading – is more similar to Admat than to Adifor or Taf. We
close this section with the remaining problems and perspectives of the use of Adol-C.

3.11.1 Generating the C version of Climber

We used the tool f2c (see [f2c]) to generate a first basic C version of Climber. The code this
tool produces is not very readable. Moreover it did not run at first and when it did (after some
changes in write and read statements) it produced wrong results. Therefore a debugging process
was necessary which was successful in the end. Moreover we made additional changes to delete
the use of the f2c libraries from the code. We do not want to mention the changes we made in
detail, since they are not that important with respect to AD.

At the end we obtained a C version of Climber that produces the same results as the original
Fortran version and is independent from any (machine-dependent) f2c libraries.

28

3.11.2 Use of Adol-C

Since Adol-C only uses double variables a first additional change we had to made was to change
the C version of Climber to double precision variables. This version was tested against the old
one. Some minor changes in the results occur, but they were to be expected due to the bigger
accuracy and different rounding. The main task when preparing code for Adol-C is that all active
variables, i.e. those who lie on the path from input to output variable, have to be declared as
such. They should be of type adouble. Since in such a complex model as Climber it is not easy
to distinguish active from passive variables we in a first approach simply set all variables to be
active.

3.11.3 Remaining problems and perspectives using Adol-C

The problems occurred when using Adol-C are that the tape generation took too much storage.
This clearly is due to the fact that all variables have been made active (adouble) in the first step.
Thus a tape necessary for an evaluation of the AD derivative in forward or reverse mode could not
successfully generated. The available storage was exceeded already after some days model time.
The minimal time would be one year to record all model components at least once. The logical
consequence is to write a tool or script that detects active variables and only declares them as
adouble. This should be possible to write, even more since some scripts analyzing Fortran code
are available at PIK, written by Cezar Ionescu for different purposes. We already made use of
them for preparing code for Adifor.

4 Summary and Perspectives

The results obtained for Climber can be separated in two parts:

• The forward mode computations with Adifor were successful. The tool is free, robust and
not very difficult to use. After some minor changes in the code that improve efficiency it was
possible to generate derivative code with respect to up to 126 independent variables. The
results are reliable and show their superiority compared to finite difference derivatives. Nev-
ertheless forward mode comes to its limitations when the number of independent variables
becomes too high.

• For reverse mode applications at first all code changes that are necessary prior to applying
a tool at all were completed.

Concerning the tested tools the results are the following:

– Among the reverse mode tools Taf by now did not work in a satisfying manner. The
generated code did not run successfully, even in forward mode there are errors in the
results. Further investigations will be necessary if the tool should be used. On the other
hand there are results for other models differentiated by Taf which are very satisfying,
specifically concerning performance issues, compare e.g. [HS02].
The problems that Taf have might be induced by some Fortran features Climber uses.
Here we refer to the points described in Sections 3.5.12 and 3.5.13. A recommended
first step would be a full explicit typing and initializing throughout Climber.

– Adol-C at first needs a detection of the active variables to become feasible. The
question how effective it is is difficult to answer in the current state of the investigation.
The advantage of Adol-C of course is its free availability.

29

A general point when thinking of reverse mode is the incorporation of so-called checkpointing
schemes to exploit computer power and storage in an optimal way in long time model runs,
even more if parallel machines are available. This topic is under current study in the AD and
optimization/control community. The group developing Adol-C, for example, is working
in this area, see [GW00].

References

[Adifor] Adifor homepage, Argonne National Laboratory, Argonne IL, USA, [http://www-
unix.mcs.anl.gov/autodiff/ADIFOR]

[AdiMan] Adifor User’s Guide, Argonne Nat. Lab., IL, USA: [http://www-
unix.mcs.anl.gov/autodiff/ADIFOR/AdiforDocs.html].

[Admat] Homepage of Arun Verma/Admat, Cornell Univ., Ithaca, NY, USA. :
[http://www.tc.cornell.edu/ averma/AD]

[Adolc] Adol-C homepage, Institut für Wissenschaftliches Rechnen, Technische Universität
Dresden: [http://www.math.tu-dresden.de/wir/project/adolc/index.html]

[f2c] f2c available from netlib: [http://elib.zib.de/netlib/f2c/index.html]

[GK98] R. Giering, and T. Kaminski (1998): Recipes for Adjoint Code Construction. ACM
Transactions on Math. Software, 24(4), 437–474.

[Gri00] A. Griewank (2000): Evaluating Derivatives - Principles of Algorithmic Differentia-
tion, SIAM Frontiers in Appl. Math., Philadelphia, USA.

[GW00] A. Griewank, A. Walther (200): Revolve: An Implementation of checkpointing for
the reverse or adjoint mode of differentiation. ACM Transactions on Mathematical
Software 26(1), pp. 19 - 45.

[HS02] M. Hinze, T. Slawig (2002): Adjoint gradients compared to gradients from algorithmic
differentiation in instantaneous control of the Navier-Stokes equations, TU Berlin,
Institut für Mathematik, Technical report 735-2002.

[Odyssee] Odyssee homepage. INRIA France: [http://www-sop.inria.fr/safir/SAM/Odyssee]

[Opt96] Optimization Toolbox For Use with Matlab User’s Guide Version 1, The Mathworks
Inc., Natick, MA, USA 1996.

[Opt00] Optimization Toolbox For Use with Matlab User’s Guide Version 2, The Mathworks
Inc., Natick, MA, USA 2000.

[PGB98] V. Petoukhov, A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, S.
Rahmstorf: CLIMBER-2: A climate system model of intermediate complexity. Part
I: Model description and performance for present climate, PIK Report No. 35.

[Rah96] S. Rahmstorf (1996): On the freshwater forcing and the transport of the Atlantic
thermohaline circulation, Climate Dynamics 12: 799-811.

[Tamc] Tamc homepage: [http://www.autodiff.com/tamc]

[Taf] Taf homepage, FastOpt GbR Hamburg, Germany: [http://www.fastopt.de]

30

[Ver] A. Verma: ADMAT: Automatic Differentiation in MATLAB using object oriented
methods, [http://www.tc.cornell.edu/ averma/AD/admatoo.ps]

31

