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1Introduction

Many parts of our daily routine that we expect to “just work” rely on certain optimization processes
that most of the time take place in a network. Switching on the light or – more importantly – the
coffee machine first thing in the morning relies on a functioning network of power lines, and water
can only flow through our showers because of the underlying network of pipes.
The newspaper that some of you still might pick up from your doorsteps every morning has already
traveled a long way through different networks when it is opened at the breakfast table: from the
printing facility it has been brought to a local distributor that organizes the newspaper carriers, one
of whom has delivered the paper to your house. Obviously, multiple optimization problems need
to be solved in order for the paper to find the way into your hands: to maximize the number of
distributed papers and to minimize the personnel expenses, the route of the carrier has probably
been optimized in such a way that they can deliver as many papers as possible during their shift.
In the more likely case that you do not receive a printed newspaper anymore, you might read it
in a digital form on a tablet or smartphone or you maybe just want to check the news (or the
latest tweets of certain politicians) in your favorite social network. Either way, multiple networks
and optimization processes on them are intertwined with the content you want to pop up on your
displays. There is the figurative network of telecommunications cables and the more abstract digital
network of the Internet that make sure that it only takes a fraction of a second for a news article
to load or for the latest tweet to appear in your news feed. In case of a social network there is, as
the name suggests, also your personal network of friends or people you follow (your filter bubble),
which is optimized towards the objective of only presenting you news (or advertisements) that are
probably of interest to you.
Once you are on your way to work after reading the latest news using the medium of your choice, you
might have to navigate on your bike or in your car through the morning traffic in a street network or
– if you use public transport to get to work – through a network of local trains. No matter which form
of transportation you use, arriving at work relaxed and on time probably relies on an optimization
process in the specific network. When riding your bike through a city, the most important objective
is often not to find the shortest route, but the way with the smallest amount of motorized traffic. In
your car your navigation system might lead you along the quickest way to work – which might be
the route with the smallest rate of bike traffic. In order to find the best public transport connection,
many people rely on a smartphone application that calculates the best connection with respect to a
suitably chosen objective (e.g., finding a connection without any changes, the fastest route, or the
route which requires the shortest walking distances towards and from the train stations).
The list of network optimization problems we rely on every day goes on and on. From the order we
make at Amazon to the invitation to a birthday party we get via Facebook: optimization problems
in networks are omni-present in our daily life.
In many network optimization problems, also in most of the problems we mentioned above, the goal
is to transport a commodity through the network in an efficient manner, e.g., people, objects, or
more abstract commodities like the information you receive over a social network, or the movie you
want to stream. Often a huge amount of the same commodity needs to be transported at once, like
the large number of newspapers that are delivered each morning, the amount of data that travels
through the communications network when you stream the latest episode of your favorite TV show,
or the electricity that is needed to power the local hospital.
Such transportation problems gave rise to the development of static network flows more than 90
years ago [Tol30]. An abstract mathematical network (or graph) consist of nodes that are for
example used to model houses in the power network, street crossings in road networks, computers in
telecommunications networks, train stations in the networks of public transportation, or user accounts
in social networks. The nodes of a network are connected by edges – if the connection don’t have a
direction – or arcs – if the connections have a direction. Arcs can for instance model roads, cables,
train tracks, or the friendship or follower relations in social networks. Additionally, the arcs often
also have bounded capacities that give an upper bound on the amount of a commodity that can be
transported along the specific arc: clearly, only a bounded number of cars fits on a road, the amount
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of information that you can send our receive via the Internet is bounded through the transmission
rate at which signals can travel along the fiber optic (or copper) cables of the telecommunications
network you are connected to (a fiber optic cable can reach – by using a technique of sending signals
at 4 different wavelength – a transmission rate of 100 Gbit/s, while a copper cable only allows for
10Gbit/s), the number of posts or tweets that can be sent simultaneously through a social network
is on the one hand also bounded by the transmission rate of the underlying telecommunications
network, but on the other hand also by the properties of the used server infrastructure.
Usually, the commodities are supposed to be transported from special nodes (e.g., certain storage
areas) – the sources – to certain other nodes – the sinks – where for example the customers are
located. A flow in such a mathematical network can be viewed as a transportation plan that tells
us how a specific transportation problem can be solved. Such a transportation plan has to fulfill
two properties in order to be feasible: it is never allowed to exceed the capacity of an arc (capacity
constraint), and for every node (except for the sources and sinks) the same amount of the transported
good that has traveled into this node also has to travel out of this node (flow conservation). For
example a delivery plan in which a newspaper is just dropped at a street crossing, or an information
signal is lost at a switch that connects fiber optical cables would not be valid, as well as a public
transportation plan which requires more than one train to drive on the same track at the same time.
If supplies and demands are given, it is usually the goal that each source sends exactly its supply
while each sink receives exactly its demand. For instance, the newspaper carrier should deliver each
paper in order to satisfy the supply of his employer while also making sure that every person with a
subscription of the paper receives one.
Flows in networks have been an active field of research during the past 90 years. From the beginning
this research was strongly connected with or motivated by real life problems. In fact, the whole
research area of network flows was basically born out of the military driven question of how to most
efficiently cut off the Soviet railway network from “the west” [HR55]. In spite of its strong connection
to practical applications, classical network flows often turn out to be too static to be useful when
wanting to model certain scenarios. Which properties classical networks lack, can best be understood
when imagining that our daily morning routine does not go as planned: Imagine, you open your
door in the morning and your newspaper – due to some planning mistake – has not yet arrived
preventing you from reading the news during your breakfast. Or, in case you are a more digital
person, maybe the server of the newspaper’s website is so slow that you cannot download the articles
you want to read on time, or the social network of your choice is experiencing such a high amount
of traffic that you cannot refresh your timeline or news feed. Once you are on your way to work
without having read the paper or having checked your news online, you might be stuck in a traffic
jam or miss your connecting train so that you do not arrive at work on time. This unsatisfactory
day could end with your Amazon order not arriving during the promised time window. As you see,
all of these transportation problems as well as many other transportation problems – besides their
objective of transporting goods, people or information through a network – also need to meet a
more or less fixed deadline. Classical static network flows cannot be used to solve transportation
problems that need to meet a deadline because the underlying model does not take into account that
it usually takes time to transport a commodity along an arc. There are networks in which the delay
of a commodity resulting from the transit time along an arc seems to be negligible. For example, a
signal can travel along a fiber optics cable at a velocity of around 69% of the speed of light [Fin] and
thus it might only need fractions of a second to traverse the cable. For instance, a signal traveling
along a straight cable spanned from Berlin to New York would need about 30.9ms to traverse this
distance. There are applications in which such a short travel time could be neglected, in some cases
however tiny periods of time can make a huge difference: for example, in high frequency trading,
where an advantage of a few milliseconds due to a faster fiber network can result in winning millions
of dollars instead of losing this amount of money, financial firms go to surprising lengths to make
the fiber network they use only a tiniest bit faster than the networks of their competitors [Tov].
In many other applications it is immediately clear that the travel time along arcs should be taken
into account. One prominent example is the network optimization problem of evacuation planning:
When devising a strategy of how to evacuate people from a burning building or out of a stadium
after a bomb threat, it is vital for the life of the people to carefully incorporate the time needed to
walk certain distances into the evacuation plan. Failing to do so might result in failing to rescue all
the people before the (in this case very fixed) time horizon, i.e., before the building burns down or
the bomb detonates. Thus, just assuming that people in a dangerous situation magically walk along
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the planned evacuation roads without needing any time to do so (this is what a classical flow would
imply), will most likely lead to the death of many people.
There is a recent example which shows that it can be most disturbing if time is not taken into
account when distributing goods or information throughout a network. In January 2018 the Hawaii
Emergency Management Agency mistakenly dispatched an alert warning of an incoming ballistic
missile attack to cellphones across Hawaii. Not surprisingly, this alarm set off widespread panic
throughout this state [Joc]. Within minutes of the alert people flocked to shelters, crowding highways
in scenes of helplessness. Only minutes after the wrongly sent alert the agency and the governor
began posting notices on Facebook and Twitter announcing the mistake. However, a flaw in the alert
system delayed sending out the correction to cellphones, which finally happened 38 minutes after
the emergency alert. The problem of sending the correction message to the inhabitants of Hawaii
can clearly be modeled as a network problem in which the agency is the single source and the sinks
are the people that need to be informed. The underlying network is a combination of different social
networks and the cellphone network. When modeling the problem as a classical flow problem, the
agency did a good job: the message was distributed to all people eventually. However, when taking
time into account the agency failed miserably as one can be sure that 38 minutes is way past the
deadline until when a correction message regarding a wrongfully sent ballistic attack alert should
have been received by a major part of the population. The agency should have taken time into
account.
A second aspect that cannot be modeled by classical networks flows is the variance of flow over
time. For example, traffic is going to be much more intense during the rush hours in the morning and
at night than in the middle of the day. In telecommunications networks there can be spikes in traffic,
for example when the next season of a popular TV show is released. Power management obviously
sees variation during the day and also during the season and social networks also should take the
posting or tweeting habits of their users into account when optimizing their server infrastructure.
Clearly, those two aspects – delays and variance – should be incorporated into the flow model in
order to make it more applicable in practice. This was first done by Ford and Fulkerson 60 years
ago [FF58] at the same time when also the first peak regarding research about classical (static)
network flows occurred. Instead of fixing one flow value per arc, the so-called dynamic flows that
they introduced allow for specifying a flow rate at which flow travels into an arc for each point in
time. Thus, in this model the flow can vary over time. Furthermore, they also added transit times
to the arcs of the considered network which model the time it takes for flow to completely traverse
an arc in the network – flow that enters an arc at some point in time can only leave the arc after the
specified transit time. Finally, they also introduced the term of the time horizon which acts as a
deadline for the flow: all flow needs to have arrived at the sinks within the given time horizon. A
dynamic flow in such a dynamic network network needs to fulfill all the properties of a static
flow: the capacities of arcs need to be respected, and the overall amount of flow that has traveled
into a specific node (except for the sources and sinks) immediately (or eventually, depending on
the model) also has to leave this node. Additionally, when flowing through the network, the flow
needs to respect the transit times of the arcs and it has additionally to fulfill the condition that
after the time horizon no flow remains in the dynamic network. Consider again the wrongfully sent
missile attack warning in Hawaii. If a time horizon had been incorporated into the dynamic network
flow problem of distributing the correction message, a lot of distress for many people could have
been prevented. In order to prevent misunderstanding, nowadays the term flows over time is
used instead of dynamic flows, because the term dynamic is also often used in the context of graph
problems where the input changes after having solved the problem and the objective is to adapt
the solution efficiently to reflect the change in the input [Ber09]. Using flows over time is widely
accepted in applications. Examples can be found in Aronson [AD86], Powell et al. [PJO95], Dressler
et al. [Dre+11; Dre+10], Hamacher and Tjandra [HT02], Choi et al.[CHT88] and Berlin [Ber78].
Depending on the setting at hand, flow over time problems can have different objectives. The most
straightforward flow over time problem is the maximum flow over time problem that has the
objective to send as much flow as possible from a given set of sources to a given set of sinks within
a specified time horizon. Closely related to this problem is the quickest flow problem. Given a
dynamic network with a single source and a single sink with a fixed supply and demand, respectively,
the goal of this problem is to find a flow over time that fulfills the given supply (and demand) as
quickly as possible. One possible application of such a flow are special kinds of evacuation scenarios
in which the people have to be rescued from a single endangered area at the source to a safe area

3



at the sink (see for example [CFS82; CHT88; HT02]). However, in many evacuation scenarios it is
not sufficient to be restricted to dynamic networks with a single source and a single sink. This is
where the quickest transshipment problem comes into play. It consists of a dynamic network
with multiple sources and sinks, each of which has a bounded supply or demand, respectively. The
goal is to find a flow over time that satisfies all supplies and demands as fast as possible. Clearly,
quickest transshipments are at least suited to model one important aspect of a successful evacuation
strategy: they rescue all the people from the endangered locations at the sinks to multiple safe areas
at the sources as quickly as possible. As an example one can think of a cruise ship that is at risk of
sinking. Of course, the goal is to bring all the passengers from their cabins into the safety of the
life boats before the ship sinks. Also the distribution of the correction of the wrongly sent warning
in Hawaii could have been modeled as a quickest transshipment problem. This way it would have
been ensured that all people would have received the correction over some medium as quickly as
possible. This would have spared many people a lot of fear and worry. The first and so far only
known efficient algorithm for solving quickest transshipment problems has been devised by Hoppe
and Tardos [HT00] in 1995.
Relying on quickest transshipments is, however, not sufficient for many evacuation scenarios. Consider
again the case of the sinking cruise ship. It might be known that the ship will sink eventually, but it
is usually not known when exactly this will happen. Only focusing on the minimal time horizon
necessary to rescue all passengers will not lead to a satisfactory evacuation strategy if the ship
sinks before all people could be rescued. In such a setting one should try to optimize multiple
objectives, namely to maximize the number of people that have reached a lifeboat for every point in
time simultaneously. This way – even if not all people can be rescued – it is made sure that the
number of surviving passengers is at least maximized. This property is captured by earliest arrival
transshipments, which are a special case of quickest transshipments. Sending the correction of
the missile warning in Hawaii according to an earliest arrival transshipment would have been even
more people-friendly. However, in case of earliest arrival transshipments the crux is that they do
not always exist. For the special case of dynamic networks with a single source and a single sink
earliest arrival flows have been introduced by Gale in 1959 [Gal59]. In this setting earliest arrival
flows generalize maximum flows over time with respect to a time horizon by making sure that the
flow that has arrived at the sink is maximal for each point in time until the time horizon (in this
case no supply or demand is given). Gale also gave an existence proof for this special class of
networks. Later, it was shown that also in dynamic networks with a single sink but multiple sources
earliest arrival transshipment (with supplies and demands) do always exist [RT]. However, finding
an efficient algorithm for computing earliest arrival transshipments turned out to be problematic.
In fact, it is not clear at all how to efficiently compute flows over time that are optimal with respect
to any given objective. The problem is that flows over time are very flexible and hence there are
many degrees of freedom: at every point in time we can choose a different flow value for each arc. We
need (at least part of) this freedom in order to capture the needed variance that distinguishes flows
over time from classical static network flows. However, it is also essential to bound this freedom in a
smart way so that we can compute optimal solutions to flow over time problems efficiently. Ford
and Fulkerson already introduced two solutions to this problem. The first and more straightforward
approach is the use of time expansion. The main idea is that, instead of computing flows over
time using the given dynamic network, we create one copy of the original network for each point in
time and connect the different “layers” of this network by arcs according to the transit times of the
arcs in the original network. This way the dynamic network is turned into a static network, which
does not incorporate the temporal dimension anymore. A given flow over time problem can now be
solved using algorithms from classical network flow theory in a static network. However, the size of
the network gets blown up by the time horizon. This leads to a huge need of storage and to an at
least pseudo-polynomial running time for every algorithm using the time-expanded network to solve
flow over time problems.
The other approach developed by Ford and Fulkerson is to search for repetitive behavior in optimal
solutions for flow over time problems that can be exploited. This reduces the degrees of freedom
and allows us to find a solution more efficiently. In their algorithm for solving the maximum flow
over time problem Ford and Fulkerson compute temporally repeated flows that send flow along
paths from the source to the sink in the original dynamic network at a constant rate, and they show
that the maximum flow over time problem can be solved by a flow over time with this structure.
Hoppe and Tardos extend this notion to generalized temporally repeated flows in which flow
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is also allowed to be sent along backwards arcs.
Coming back to algorithms for solving the earliest arrival transshipment problem with multiple
sources, the first algorithm presented in [RT] used time expansion. Several years later, Baumann and
Skutella [BS09] presented an algorithm that works without explicit time expansion but nevertheless
requires pseudo-polynomial space due to the need to attach pseudo-polynomially many super-sinks
to the network in the worst case in order to compute the earliest arrival transshipment. Moreover,
the algorithm of Baumann and Skutella does not compute a (generalized) temporally repeated flow.
Note, that it is unlikely that an algorithm with polynomial running time solving the earliest arrival
transshipment problem in dynamic network with a single sink exist does exist as it was recently
shown by Disser and Skutella [DS15] that it is NP-hard to solve earliest arrival flow problems.
However, it is a relevant task to come up with an algorithm for the earliest arrival transshipment
problem in dynamic networks with only a single sink that only requires a polynomial amount of
space. This is what part of this thesis focuses on.
In dynamic networks with multiple sinks it was first noted by Fleischer [FS07] that earliest arrival
transshipments do not always exist. Due to this fact not much research has been put into the exact
computation of earliest arrival transshipments in this class of networks. Except for the case of
dynamic network with all zero transit times (see [SS14]) not much is known about such flows over
time. The complexity of deciding whether an earliest arrival transshipment problem has a solution is
unknown and also no algorithm (without using time expansion) is known to compute earliest arrival
transshipments in multiple sink networks in case of existence. We can, however, answer a lot of the
open questions regarding earliest arrival transshipment problems in dynamic networks with multiple
sinks in this thesis, by settling the complexity – it is NP-hard to determine whether a given earliest
arrival transshipment problem has a solution – and presenting PSPACE algorithms for special cases.
In this thesis we focus on the three classical flow over time problems mentioned above: quickest
transshipment problems (Chapter 4), earliest arrival transshipment problems in networks with a
single sink (Chapter 5) and earliest arrival transshipment problems in networks with multiple sinks
(Chapter 6). For each of these problems we develop new and more efficient algorithms that also
compute structurally nice solutions.

Outline of this Thesis and Our Contributions
In this section we give a detailed overview of the structure of this thesis and its new contribu-
tions.

Chapter 2: Preliminaries. In this chapter we briefly introduce important notations and definitions
that we use throughout this thesis. In particular, we give an introduction to parametric search, the
foundations of submodular function minimization as well the basic definitions and results about
static network flows that are relevant for our purposes. In particular, we review the successive
shortest path algorithm and static lexicographically maximum flows. Finally, we introduce flows over
time, formalize the concept of the time-expanded network and introduce the algorithm of Ford and
Fulkerson [FF58; FF62] for the maximum flow over time problem.

Chapter 3: Flow Over Time Problems. In this chapter we give an introduction to the flow over
time problems that we consider throughout this thesis and give a survey of the state of the art for
these problems, as well as a more detailed overview of our contributions. Regarding the quickest
transshipment problem we concentrate on explaining the algorithm of Hoppe and Tardos for solving
such problems. This in particular entails defining the lexicographically maximum (lex-max) flow
over time problem and the strongly polynomial time algorithm of Hoppe and Tardos [HT00] for
computing such flows over time.
Regarding earliest arrival flows in dynamic networks with a single source and a single sink we review
Minieka’s algorithm [Min73], which works in the time-expanded network, and the algorithm of
Wilkinson [Wil71], which relies on the successive shortest path algorithm.
Considering earliest arrival transshipments in networks with a single sink we in particular intro-
duce the algorithm of Baumann and Skutella [BS09] for computing the earliest arrival pattern
and we review their results regarding the structure of the pattern. Finally, we shortly explain
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how Baumann and Skutella solve earliest arrival transshipment problems by using a (pseudo-
polynomial) expansion of the original network that relies on the structure of the earliest arrival
pattern.

Chapter 4: Solving Quickest Transshipment Problems. This chapter focuses on our main contri-
butions regarding the quickest transshipment problem. The algorithm by Hoppe and Tardos [HT00],
which has been the best and only known strongly polynomial time algorithm for this problem for
the past 20 years, works in two phases. First the minimal feasible time horizon T ∗ of a quickest
transshipment problem is computed and afterwards the actual quickest transshipment is determined
by reducing the problem to a lex-max flow over time problem. Due to this division of the algorithm
into two phases this chapter is also divided into two parts.
At first we concentrate on determining the minimal feasible time horizon. Based on a feasibility
criterion of Klinz [Kli] the so far most efficient approach to solve this problem relies on pairing
submodular function minimization with the parametric search framework of Megiddo [Meg79], which
results in a very expensive computation. For the special case of quickest transshipment problems
in dynamic networks with only a single source or only a single sink we present a new approach to
determine the minimal feasible time horizon that gets rid of using the parametric search framework
and only needs to solve, in the worst case, number of terminals many (non-parametric) submodular
function minimizations. The main fact that our algorithm exploits is a structural property of the
parametric submodular functions that occur in the context of the quickest transshipment problem in
this special class of networks: they are connected by a so-called strong map.
In the second part of this chapter we present two new algorithms for solving the quickest transship-
ment problem, both of which improve upon the worst case running time of the algorithm of Hoppe
and Tardos. The faster of these algorithms needs essentially only one special parametric submodular
function minimization, in contrast to Hoppe and Tardos’ algorithm, whose bottleneck are two times
number of terminals many calls to a black box for parametric submodular function minimization.
The key idea of our approach is to not only use the actual result of the parametric submodular
function minimization, but also to exploit the intermediate steps of this expensive computation and,
in particular, the dual optimality certificate, which is a vector in the submodular function’s base
polytope. The vertices of this base polytope correspond to lex-max flows over time such that our
solution to a quickest transshipment problem is simply a convex combination of these and therefore
structurally somewhat simpler and certainly easier to analyze than the solution found by Hoppe and
Tardos. More precisely, our quickest transshipment is a generalized temporally repeated flow. On
the negative side, this implies that our quickest transshipment must be necessarily fractional, while
the solution of Hoppe and Tardos is always integral.
The other algorithm we present also relies on the fact that the vertices of the base polytopes we
consider correspond to lex-max flows over time while the supply/demand vector is – in case of a
feasible transshipment problem – contained in this polytope. In order to find a suitable convex
combination of lex-max flows over time solving our quickest transshipment problem, we present an
implementation of Carathéodory’s theorem that relies on a recent result about line search over the
base polytope of a submodular function [GGJ17].
Some of the results from this section have been published in [SS17b].

Chapter 5: Earliest Arrival Transshipments in Networks with a Single Sink. In this chapter we
focus on the earliest arrival transshipment problem in dynamic networks with a single sink – that
is we only consider dynamic networks in which earliest arrival transshipments do always exist. In
the first part of the chapter we present a faster algorithm for computing the parts of the earliest
arrival pattern that we are interested in. The earliest arrival pattern is a function corresponding
to a given earliest arrival transshipment problem that tells us for each point in time the value of an
earliest arrival transshipment. This algorithm exploits the same facts as our algorithm for computing
the minimal feasible time horizons for quickest transshipment problems in dynamic networks with a
single source or a single sink.
Afterwards, we concentrate on developing a PSPACE algorithm for the earliest arrival transshipment
problem in dynamic networks with only a single sink. Note that developing such an algorithm has
been an open problem since Baumann and Skutella presented their algorithm for this flow over time
problem more than a decade ago [BS09]. Overall, we present two PSPACE algorithms for solving
the earliest arrival transshipment problem. The first algorithm produces a fractional solution but
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does not require any parametric submodular function minimization, whereas the second approach
produces an integral solution while relying on many parametric submodular function minimizations.
The first algorithm we derive is of a similar flavor as our new algorithm for the quickest transshipment
problem, which, in particular, relies on a correspondence between the vertices of a submodular
function’s base polytope and lex-max flows over time. For the case of earliest arrival transshipments
we do not only consider one base polytope but a product of several base polytopes of suitably
chosen submodular functions. The precise definition of this polytope for a given earliest arrival
transshipment problem strongly depends on the specific structure of its earliest arrival pattern. We
will show that the vertices of this polytope correspond to generalizations of lex-max flows over time
(called generalized lex-max flows over time) that we introduce in this chapter and for which
we also derive a strongly polynomial time algorithm for computing them. Using the correspondence
between the vertices of the suitably defined polytope and of the generalization of lex-max flows over
time, we can deduce the structural result that earliest arrival transshipment problems in dynamic
networks with only a single sink can always be solved by a convex combination of these flows.
Furthermore, we will deduce that a suitable convex combination can essentially be computed while
computing the required amount of information regarding the earliest arrival pattern. Despite the
fact that the output size of the algorithm is necessarily pseudo-polynomial in the input size, it indeed
runs in polynomial space and produces the output sequentially.
The second algorithm we present in this chapter is an adaptation of the algorithm of Hoppe and
Tardos for the quickest transshipment problem that computes integral earliest arrival transshipments
in polynomial space. In contrast to our other algorithm this algorithm needs number of sources
many parametric submodular function minimizations and is thus a lot less efficient.
As a corollary of our results we are able to deduce the first FPTAS for earliest arrival transshipment
problems that does not rely on any form of time expansion.

Chapter 6: Earliest Arrival Transshipments in Networks with Multiple Sinks. In the first part
of this chapter we derive the earliest arrival pattern for earliest arrival transshipment problems in
dynamic networks with only a single source but multiple sinks, and for the special case of tight
problems in general dynamic networks. It turns out that the pattern construction is essentially
symmetric to the patten construction of Baumann and Skutella [BS09].
In the remainder of this chapter we focus on devising a PSPACE algorithm that checks whether a
given earliest arrival transshipment problem has a solution and that computes a suitable flow over
time in case of existence. We distinguish between tight problems and non-tight problems. For tight
problems we achieve such an algorithm for general networks. For non-tight problems our presented
algorithm only works for earliest arrival transshipment problems in dynamic networks with multiple
sources but only a single sink. It turns out that tight problem have a structural similarity to quickest
transshipment problems. In order to achieve our results for the tight case, we at first concentrate on
single source networks and in the end extend our results to general networks.
For single source networks we essentially define a suitable submodular function and show that a
tight earliest arrival transshipment problem in such a network has a solution if and only if the
demand vector is contained in the base polytope of this submodular function. Using our new
PSPACE algorithm for evaluating the submodular function, we can thus check in PSPACE whether
a given tight earliest arrival transshipment problem has a solution. To compute the solution we
again show that the vertices of the considered base polytope correspond to a certain class of flows
over time. Thus, we can deduce that – in case of existence – a tight earliest arrival transshipment
problem can be solved by a convex combination of such flows. To obtain solutions of tight earliest
arrival transshipment problems in PSPACE, we at first present a PSPACE algorithm for computing
flows from the special class of flows over time that we defined, and we show that a suitable convex
combination can essentially be computed during the submodular function minimization that is
necessary to check whether the given problem has a solution.
Achieving a similar result for general networks requires to consider a more complicated class of
flows over time, a more sophisticated polytope and also the feasibility criterion we achieve is more
complicated. Overall, we show again that an earliest arrival transshipment problem can be achieved
as a convex combination of special flows over time in case of existence.
At the end of the chapter we settle the complexity of the problem of deciding whether a given
earliest arrival transshipment problem has a solution by showing that it is an NP-hard prob-
lem.
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Concluding Remarks. This thesis is supposed to be self-contained, however, we assume our reader to
be familiar with the basic concepts of combinatorial optimization, complexity theory, approximation
algorithms and linear programming.
For an introduction, see for example Schrijver [Sch03], Korte and Vygen [KV12] and Grötschel,
Lovász and Schrijver [GLS88]. For classical network flow theory we specifically refer to the book by
Ahuja, Magnanti, and Orlin [AMO93]. An introduction to complexity theory can be found in [WP05],
and a thorough introduction to approximation algorithms is given in the book of Williamson and
Shmoys [WS11].
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2Preliminaries

This chapter focuses on giving a formal introduction into the basic concepts that
are required to understand the later chapters. In Section 2.1 we start by introducing
graphs and our notations for them. Hereby, we solely focus on directed graphs
as undirected graphs are not relevant throughout this thesis. In Section 2.2 we
briefly introduce parametric search – a strongly polynomial time search framework
developed by Megiddo [Meg79] in the 1970s, which is often used in the context
of flow over time problems. Understanding the basics of submodular function
minimization is essential throughout this thesis. This is why we give a short
introduction into the theoretical foundation of submodular function minimization
in Section 2.3. Before we introduce flows over time – the main topic of this thesis –
in Section 2.5, we give a short survey of classical (static) network flows (Section 2.4)
and present important static flow problems and techniques for solving them that
are relevant throughout this thesis.

Contents
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Parametric Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Submodular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Theoretical Foundations for Submodular Function Minimization . . . . . 12
2.3.3 Submodular Function Minimization in Strongly Polynomial Time . . . . 14
2.3.4 Parametric Submodular Function Minimization . . . . . . . . . . . . . . 16

2.4 Classical Network Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Basic Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 The Maximum Flow Problem . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 The Minimum-Cost Flow Problem . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Lexicographically Maximum Flows . . . . . . . . . . . . . . . . . . . . . 28

2.5 Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 The Time-Expanded Network . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3 The Maximum Flow Over Time Problem . . . . . . . . . . . . . . . . . . 37

2.1 Graphs
Usually, classical static flows (and also flows over time) are defined in directed graphs and this is
why we only concentrate on these types of graphs in this section. In the literature directed graphs
are sometimes called networks and vice versa. However, the distinction between these two terms is
not always clear. Normally, a networks consists of a directed graph together with different attributes,
like capacities, costs or transit times. In this thesis we will use the term network only when referring
to a directed graph together with given attributes while always making sure that it is clear which
attributes are used. The term directed graph will be used when we just refer to a directed graph
without being interested in any potentially given attributes.

Directed Graphs. A directed graph, digraph or just graph is a pair D = (V,A) where V is a
finite set and A is a family of ordered pairs of elements from V . That is, A consists of elements in
V × V . The elements in V are called the vertices of D. Sometimes they are also denoted as nodes.
The elements in A are called arcs or directed edges. Since each arc a ∈ A is an element in V × V
there are always nodes u, v ∈ V with a = (u, v). For an arc a = (u, v) ∈ A with u, v ∈ V we refer to
u as the start node or head of a and to v as its end node or tail with the notation tail(a) := u
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and head(a) := v.
If not stated otherwise, we usually denote the number of vertices of a directed graph D = (V,A)
by n := |V | and the number of arcs by m := |A|. By definition, the arcs in A of a directed graph
D form a family and hence it is possible that multiple copies of the same arc may occur. Hereby,
two arcs with the same start and end node are called parallel arcs, i.e., a = (u, v) and a′ = (u, v)
for u, v ∈ V are parallel arcs. Arcs of the form (v, v) for v ∈ V are called loops. If not stated
otherwise, we will assume throughout this thesis that the directed graphs we consider have neither
parallel arcs nor loops. This restriction can usually be done without loss of generality because we
can split parallel arcs and loops by introducing additional nodes (see Figure 2.1). Due to this

u v

u v

u′

(a) Two parallel arcs and a construction to remove
parallel arcs

u

u v

(b) A loop and a construction showing how to
remove it

Figure 2.1: How to remove parallel arcs and loops

assumption we can identify arcs by their start and end node. Given a directed graph D = (V,A),
we define δ+

D(v) as the set of arcs of D leaving a node v ∈ V . We refer to this set as the set of
outgoing arcs. Similarly, we define δ−D(v) to be the set of arcs of D entering a node v ∈ V . This
set is denoted as the set of incoming arcs of the node v. The set δD(v) is defined to be the union
of both sets:

δ+
D(v) := {a ∈ A | a = (v, w) for some w ∈ V },
δ−D(v) := {a ∈ A | a = (u, v) for some u ∈ V },
δD(v) := δ+

D(v) ∪ δ−D(v).

This notations extends to subsets U ⊆ V of nodes of D as follows,

δ+
D(U) :=

⋃
v∈U
{a ∈ δ+

D(v) | head(a) 6∈ U}

δ−D(U) :=
⋃
v∈U
{a ∈ δ−D(v) | tail(a) 6∈ U}.

Thus, δ+
D(U) is the set of arcs leaving U , while δ−D(U) is the set of arcs entering U . We call the arcs

a ∈ δD(v) for v ∈ V incident to v, and we refer to nodes u, v ∈ V with (u, v) ∈ A as adjacent. If
the graph D can be inferred from the context, we just write δ+(v), δ−(v) and δ(v).
Given a directed graph D = (V,A) and an arc a ∈ A with a = (u, v), the corresponding backwards
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arc ←−a is defined by ←−a = (v, u). The reverse directed graph ←−D corresponding to D = (V,A) is
defined by

←−
D := (V,←−A ) with ←−A := {←−a | a ∈ A}.

The bidirected graph←→D is the directed graph induced by a directed graph D = (V,A) in which all
arcs occur in both directions. That is←→D = (V,←→A ) with←→A := A∪

←−
A .

Cuts. Let D = (V,A) be a directed graph. A subset C ⊆ A is called a cut if C = δ+(U) for
some U ⊆ V . Thus, in particular the empty set ∅ is a cut. If ∅ 6= U 6= V , then δ+(U) is called a
nontrivial cut. If s ∈ U and t 6∈ U , then δ+(U) is called an s-t cut or a cut separating s and
t. If S ⊆ U and T ⊆ V \ U , δ+(U) is similarly called an S-T cut or a cut separating S and T .
When the arcs have assigned costs ca for all a ∈ A, the cost or value of a cut C is defined by∑

a∈C ca.

Paths and Cycles. Let D = (V,A) be a directed graph. An u-v sequence S = (a1, a2, . . . , a|S|)
in D is a sequence of arcs such that the arcs are connected, i.e., head(ai) = tail(ai+1) for i ∈
{1, 2, . . . , |S| − 1} with u = tail(a1) and v = head(a|S|). The sequence S is called a (directed) u-v
path if ai 6= aj for all i, j ∈ {1, 2, . . . , |S|}. If additionally each vertex on a path is visited exactly once,
i.e. head(ai) 6= head(aj) for all i 6= j and head(a|S|) 6= tail(a1), the path is called simple. A cycle is
a path whose last arc ends at the first arc, i.e., head(a|S|) = tail(a1).

2.2 Parametric Search
Often optimization problems occur depending on a linear parameter λ and the goal is to find the
minimal or maximal value of λ such that the given optimization problem becomes feasible, i.e.,
the minimal or maximal value for λ such that a solution to the optimization problem exists. In
the context of flows over time a common problem of this sort is the problem of determining the
minimal feasible time horizon T such that the supplies and demands of a given dynamic network
can be fulfilled within the time horizon T . If an upper bound λ+ and a lower λ− for the optimal
value λ∗ are known and λ∗ is an integer, i.e., λ∗ ∈ [λ−, λ+], and if we have a decision algorithm to
check feasibility for a fixed value of λ, then λ∗ can be found using binary search by O(log(λ+ − λ−))
calls of the decision algorithm. However, this usually does not lead to an algorithm with strongly
polynomial running time.
This is where the parametric search framework published by Megiddo in his seminal paper in 1979
comes into play [Meg79], see also [Meg83; VV02]. With this search framework the optimal λ∗ for
a parametric feasibility problem can be found in strongly polynomial time even if no upper and
lower bounds on λ∗ are known. That is, if the only thing known is that λ∗ ∈ (−∞,∞) (provided we
have a strongly polynomial time decision algorithm that checks whether the optimization problem is
feasible for a fixed value of λ).

Assume we are given some decision problem D(λ) that monotonically depends on a parameter λ.
That is, if D(λ0) is a Yes-instance, then D(λ) is Yes-instance for all λ > λ0. Our goal is to compute
the minimal λ∗ such that D(λ∗) is a Yes-instance. Additionally, suppose that we have an algorithm
Adec that solves the decision problem D(λ) and that can check whether λ > λ∗, λ = λ∗ or λ < λ∗

for any given λ. We also assume that the flow of control of the algorithm depends on comparisons
each of which depends on the sign of a polynomial in λ.
The main idea of Megiddo’s framework is to run Adec generically on the unknown input λ∗. During
the execution we maintain an interval I, initially defined to be (−∞,∞), in which λ∗ has to lie.
Whenever a comparison depending on the parameter λ needs to be done, we need to know the sign
of a polynomial p at λ∗. This sign can be determined without knowing the concrete value of λ∗ as
follows: to determine the position of λ∗ among the roots of p we run the concrete version of Adec
on the roots of p. This either gives us two consecutive roots ri and ri+1 such that ri < λ∗ < ri+1
or we find out that λ∗ is a root of p. In the latter case, we are done while in the first case we can
find out the sign of p(λ∗) by evaluating p at any x ∈ (ri, ri+1). This determines the outcome of a
comparison and after updating I we proceed with the generic execution of the algorithm. During
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the execution of the algorithm the interval I successively gets smaller and we either run Adec to
completion or we find λ∗ prematurely. If Cλ(Adec) is the number of comparisons of Adec that depend
on the given parameter λ, we thus have to run Adec at most O(Cλ(Adec)) times during parametric
search.

Theorem 2.1 (Parametric Search).
Let D(λ) be a decision problem that monotonously depends on the parameter λ. The goal is to
find the minimal parameter λ∗ such that D(λ∗) is a Yes-instance. Let Adec be an algorithm to
solve this decision problem for a given parameter λ and Cλ(Adec) the number of comparisons of
the algorithm that depend on λ. The optimal λ∗ can be found in running time O(Cλ(Adec) ·R)
using parametric search. Here R is the running time of Adec .

Given an algorithm A and a parameter λ, we will denote by Cλ(A) the number of comparisons
depending on λ during the execution of the algorithm A.

2.3 Submodular Functions
Submodular functions and their minimization play an important role in many problems from
combinatorial optimization. Also in the context of the topic of this thesis – flows over time – different
submodular functions occur, which have to be minimized. This is why we give a short introduction
into the theory of submodular function minimization. For a thorough introduction into submodular
function minimization see [McC05].

2.3.1 Basic Definitions
Given a finite ground set S, we say that a set function g : 2S→ R is submodular if

g(A) + g(B) ≥ g(A ∩B) + g(A ∪B) for all A,B ⊆ S (2.1)

or equivalently

g(A ∪ {e})− g(A) ≥ g(B ∪ {e})− g(B) for all A ⊆ B ⊆ S and e ∈ S \B. (2.2)

By 2S we denote the powerset of the set S. The set function g is supermodular if −g is
submodular and modular if it is both super- and submodular. Thus, a set function is supermodular
if and only if it satisfies (2.1) (or (2.2)) with the reversed inequalities, and modular if and only if
(2.1) is satisfied with equality.

A well known example of a submodular function is the cut function in a directed graph.

Example 2.2. Let D = (V,A) be a directed graph and w : A→ R a weight function on the arcs. Define
g : 2V → R≥0 by U 7→ w(δ+(U)). Then,

g(U) + g(U ′) ≥ g(U ∪ U ′) + g(U ∩ U ′) for all U,U ′ ⊆ V,

and thus g is submodular.

2.3.2 Theoretical Foundations for Submodular Function Minimization
Let g : 2S→ R be a submodular function. Submodular function minimization (SFM) is the
problem of determiningX ⊆ S such that g(X) is minimal over all subsets of S:
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Submodular Function Minimization (SFM)

Instance: A submodular function g : 2S→ R over a ground set S.
Task: minX⊆S g(X) and the set X∗ ⊆ S at which the minimum is

attained.

For some special cases of submodular functions (e.g., the cut function) strongly polynomial time
algorithms for submodular function minimization are known. However, for general submodular
functions it is not straightforward at all how to minimize them efficiently. The brute force approach
of checking all 2n values of a submodular function g over a ground set of size n is clearly not a
practical idea.

Let g : 2S → R be a submodular function over a ground set S. In the following we always assume
that g(∅) = 0. We can ensure this without loss of generality by redefining g(U) to be g(U)− g(∅)
for all U ⊆ S. This change clearly does neither affect the submodularity of g nor its minimizer.
Each submodular function gives rise to a polyhedron, the submodular polyhedron defined as
follows

P(g) := {x ∈ RS | x(U) ≤ g(U) for all U ⊆ S}. (2.3)

In the context of submodular function minimization the face of P(g) defined by the equation x(S) =
g(S) turns out to useful. We define the base polytope B(g) of g by

B(g) := {x ∈ P(g) | x(S) = g(U)}
= {x ∈ RS | x(U) ≤ g(U) for all U ⊆ S and x(S) = g(S)}.

(2.4)

By x(U) for x ∈ RS we denote the sum of the corresponding components of x, x(U) =
∑
u∈U x(u)

and by 0 the zero vector in the considered vector space. Given weights w ∈ RS , it is a natural
question to wonder about maximizing the linear objective function wTx over the two polyhedra P(g)
and B(g). It is a remarkable property of submodularity that a simple Greedy Algorithm (see
Algorithm 1) can be used to solve this problem in strongly polynomial time. This fact was already
shown by Edmonds [Edm70] in 1970.
Given a linear order ≺ on the elements of S, assume that S = {s1, s2, . . . , sn} such that s1 ≺ s2 ≺
. . . ≺ sn and define Si := {s ∈ S | s � si} = {s1, s2, . . . , si} for all i ∈ {0, 1, . . . , n}

Algorithm 1: The Greedy Algorithm Greedy(g, ≺)
Input : A submodular function g : 2S→ R on the ground set S, a linear order ≺ on S
Output : A vector v≺ ∈ RS

1 for i = 1, 2, . . . , n do
2 vi ← g(Si)− g(Si−1)
3 end
4 v≺ ← (v1, v2, . . . , vn)
5 return v≺

In order to maximize the linear objective wTx with w ∈ RS , note at first that we can assume w ≥ 0
as otherwise the optimum value would be unbounded:
Assume we have ws < 0 for some s ∈ S and let y ∈ P(g). If y′ ≤ y, then – by definition of P(g) – it
also holds that y′ ∈ P(g). Thus, max{wTx | x ∈ P(g)} is unbounded, because we can let y′e go to
infinity, y′e → −∞.
To use the Greedy Algorithm to maximize wTx over P(g) (or B(g)) with w ∈ RS and w ≥ 0, we
proceed as follows: index the elements in S as s1, s2, . . . , sn such that ws1 ≥ ws2 ≥ . . . ≥ wen , define
a linear order ≺w on S by s1 ≺w s2 ≺w . . . ≺w sn and perform Greedy(g,≺w) to obtain v≺w (see
Algorithm 2). The running time of GreedyOpt(g, w) clearly is O(n log n+nEO(n)), where n = |S|
and EO(n) is the running time of an evaluation oracle for the submodular function g. Note that
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Algorithm 2: The Greedy Algorithm for Optimization GreedyOpt(g, w)
Input : A submodular function g : 2S → R on the ground set S, a weight vector w ∈ RS
Output :A vector vw ∈ RS maximizing wTx over P(g) or Unbounded

1 if ∃s ∈ S with ws < 0 then
2 return Unbounded
3 end
4 index the elements in S as s1, s2, . . . , sn such that ws1 ≥ ws2 ≥ . . . ≥ wsn
5 define a linear order ≺w on S by s1 ≺w s2 ≺w . . . ≺w sn
6 vw ← Greedy(g, ≺w)
7 return vw

if w ≥ 0, the vector vw returned by GreedyOpt(g,w) lies in B(g), because vw(S) =
∑n
i=1 g(Si)−

g(Si−1) = g(Sn) = g(S). It is due to Edmonds [Edm70] that GreedyOpt in fact optimizes wTx
over P(g) for a given submodular function g.

Theorem 2.3 ([Edm70]).
Given a submodular function g : 2S→ RS on a finite ground set S, w ∈ RS with w ≥ 0, and
vw := GreedyOpt(g, w), it holds that

wT vw = max{wTx | x ∈ P(g)} = max{wTx | x ∈ B(g)}

and vw is a vertex of B(g).

It is an immediate consequence of Theorem 2.3 that the vertices of B(g) correspond to linear orders
on S – and thus B(g) can have as many has n! vertices:
Given a linear order ≺ on S the corresponding vertex v≺ of B(g) can be computed using the
Greedy Algorithm and on the other hand, for each vertex v of B(g) there is an corresponding linear
order ≺ on S such that Greedy(g,≺) = v≺ = v. That we are able to compute vertices of B(g)
using the Greedy Algorithm is an important fact used in many algorithms for submodular function
minimization.
A second important building block for algorithms for submodular function minimization is the
following theorem that gives a dual characterization of the minimum of a submodular function:

Theorem 2.4 ([Edm70]).
Let g : 2S→ R be a submodular function on a finite ground set S. We have

min
U⊆S

g(U) = max{z(V ) | z ∈ P(g), z ≤ 0}

= max{x−(S) | x ∈ B(g)},
(2.5)

with x−(s) = min{0, x(s)}.

2.3.3 Submodular Function Minimization in Strongly Polynomial Time
Since the 1970s, when Edmonds came up with the first results regarding submodular function
minimization, this problem has been an object of research in the area of combinatorial optimization.
However, no efficient algorithm was found for submodular function minimization until the ellipsoid
method for solving linear programming problems arrived.

SFM and the Ellipsoid Method. In 1981 Grötschel, Lovász and Schrijver [GLS81] used the
ellipsoid method to derive the equivalence of optimization and separation. This fact turned out to be
immensely useful in the context of submodular function minimization. Using the Greedy Algorithm
(Algorithm 2) we can optimize over the base polytope B(g) of a given submodular function g in
strongly polynomial time. Thus, the equivalence of optimization and separation immediately implies
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that the separation problem corresponding to B(g) can be solved in polynomial time using the
ellipsoid method. Note that this is in particular nice as the description of B(g) as the intersection of
hyperplanes (see (2.4)) contains exponentially many hyperplanes in the worst case.
An observation of Cunningham [Cun83] showing that the minimization of a submodular function
g can be reduced to a separation problem corresponding to B(g̃), where g̃ is another submodular
function, finally implied that submodular function minimization can be solved in weakly polynomial
time using the ellipsoid method. However, it remained an open question whether a strongly
polynomial time algorithm for submodular function minimization exists. In 1988 Grötschel, Lovaász
and Schrijver [GLS88] finally showed that the ellipsoid method can be adapted to submodular
function minimization to achieve an algorithm with strongly polynomial running time Õ(n5EO +
n7) [McC05].

SFM with the Framework of Cunningham. Although the ellipsoid method can be used to solve
submodular function minimization in strongly polynomial time, this result was not completely
satisfactory since the ellipsoid method is not useful in practice and it does not give much insight
into the structural properties of submodular function minimization problems. In 1985 Cunningham
[Cun85] stated that “it is an outstanding open problem to find a combinatorial algorithm to minimize
a general submodular function, which runs in polynomial time”.
It was also Cunningham who laid the foundation for many combinatorial strongly polynomial
time algorithms for submodular function minimization that were developed in the subsequent
years. He used Theorem 2.4 to develop a framework for SFM and his application of it yielded a
combinatorial pseudo-polynomial algorithm for submodular function minimization with running
time O(Mn6 log nM ·EO) [BCT85; Cun84; Cun85], where M is the largest value of the submodular
function.
The question whether a combinatorial (strongly) polynomial time algorithm for SFM existed,
remained open until 1999, when nearly simultaneously two working papers appeared giving two
different combinatorial strongly polynomial time algorithms for submodular function minimization.
The algorithms were published by Schrijver [Sch00] (O(n8EO + n9)), and Iwata, Fleischer and
Fujishige [IFF01] (O(n7 log n · EO)) and both were based on the framework of Cunningham. In
the following years a sequence of combinatorial algorithms with strongly polynomial running time
for SFM using Cunningham’s framework were released. The current fastest combinatorial strongly
polynomial time algorithm for SFM that relies on the framework of Cunningham is due to Orlin
and has running time O(n5 · EO + n6) [Orl09].
Since the main ideas of Cunningham’s framework are central throughout this thesis, we will shortly
introduce them. For this purpose let g : 2S→ R be a submodular function. The key element in
Cunningham’s framework is Theorem 2.4, which states that

min
X⊆S

g(X) = max{x−(S) | x ∈ B(g)}.

Thus, instead of minimizing g, we can equivalently maximize the function x−(S) over all x ∈ B(g),
i.e., we want to find the point x∗ in B(g) such that the sum of all negative valued components is
maximized. The main structure of all algorithms relying on the framework of Cunningham is as
follows: Given a vector x ∈ B(g) inside the base polytope, the aim is to update the vector such
that the value of the function x−(S) is increased and the updated vector x′ still lies within the base
polytope. To make sure that the vector remains inside the base polytope, the current vector x ∈ B(g)
is maintained as a convex combination of vertices of B(g), i.e., we are given x as x =

∑
i∈I λiv

i

where the λi for all i ∈ I are convex coefficients and the vi for i ∈ I are vertices of B(g). In each
iteration the convex combination gets updated by some smart update procedure in which new vertices
are added to the convex combination and others are removed. To avoid that the current convex
combination gets too large a “Carathéodory” subroutine is necessary that gets a convex combination
of vertices as the input and returns a minimal convex combination of vertices representing the same
point in the polytope. A key factor here is that each vertex of B(g) is characterized by a total order
≺ on S and that, given this order, the corresponding vertex can be computed efficiently using the
Greedy Algorithm 1 (provided we have an efficient evaluation oracle for the submodular function).
Thus, in the first iteration of an algorithm for SFM just an arbitrary linear order ≺ on the ground
set S is chosen and the corresponding vertex is computed using the Greedy Algorithm. In the
subsequent iterations the vertices in the convex combination are usually updated by choosing new
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more suitable linear orders on S.
One main feature of SFM algorithms relying on the framework of Cunningham is that during the
computation of the minimum of a submodular function g, not only the minimum value is computed,
but also a convex combination of vertices B(g) giving the vector x∗ = argmax{x−(S) | x ∈ B(g)}
(see Theorem 2.4).
The algorithm of Orlin is denoted by SFMOrlin throughout this thesis. It returns an inclusion-wise
maximal subset X∗ ⊆ A minimizing a submodular function g, a vector x∗ ∈ B(g) maximizing x−(S)
over all x ∈ B(g) given as a minimal convex combination of vertices of B(g), and the minimal value
vmin of the submodular function.

SFM without the Framework of Cunningham. Until recently, all combinatorial algorithms for
submodular function minimization with strongly polynomial running time relied on the framework
of Cunningham. However, the current fastest algorithm for submodular function minimization does
not use this framework. This algorithm is due to Lee, Sidford and Wong [LSW15] and it improves
upon the algorithm of Orlin by a factor of n2 (O(n3 log n · EO + n4 logO(1) n)). The authors state
that the fact that they do not maintain a point inside the base polytope as a convex combination of
vertices during the computation is what leads to the running time improvement. However, what
turns out to be a downside in context of our flow over time computations is that we do not get
the “optimal” point inside the base polytope as a convex combination of vertices by minimizing the
submodular function.
Throughout this thesis we denote the algorithm of Lee, Sidford andWong by SFMLee.

2.3.4 Parametric Submodular Function Minimization
Often a submodular function g occurring in the context of some optimization problem is also linearly
dependent on an additional parameter λ. Thus, gλ is a parametric or parametrized submodular
function. In such a setting the main objective is often to determine the maximal or minimal value
of the parameter λ such that the minimum value of the submodular function is below or above a
certain threshold.
We say that a submodular function gλ : 2S → R monotonically depends on the parameter λ
if gλ(A) monotonously grows with λ for each A ⊆ S. By Parametric Submodular Function
Minimization we denote the problem of determining the minimal value of λ ≥ 0 such that gλ(A)
lies above a certain threshold for all A ⊆ S. If for all A ⊆ S the function λ 7→ gλ(A) decreases
monotonically with increasing λ we can similarly look at the problem of determining the maximal
value λ ≥ 0 such that gλ(A) lies above a certain threshold.

Parametric Submodular Function Minimization (gλ, v)

Instance: A submodular function gλ : S → R that monotonously depends
on a parameter λ ∈ R, and a vector v ∈ RS

Task: Determine the minimal parameter λ∗ ≥ 0 such that

gλ
∗
(A)− v(A) ≥ 0 for all A ⊆ S.

and a maximal or minimal minimizing subset of gλ∗ − v.

The straightforward way to solve a parametric submodular function minimization problem efficiently
is to couple a strongly polynomial time algorithm for submodular function minimization with
the parametric search framework of Megiddo. We can do this, as by assumption the parametric
submodular function gλ monotonously depends on the parameter.
The fastest strongly polynomial running time that can be achieved this way is O(Cλ(SFMLee) ·
(k3 log k ·EO +k4 logO(1) k)), where k is the size of the ground set S of the submodular function, EO is
the running time of an evaluation oracle for the given submodular function for a fixed parameter and
Cλ(SFMLee) is the number of comparisons that are done in the submodular function minimization
algorithm of Lee, Sidford and Wong [LSW15] depending on λ. Clearly, the number of comparisons
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depends on the implementation of the specific algorithm, but in the worst case this number is in the
same order as the running time of the algorithm. Hence, using the parametric search framework
together with the algorithm of Lee et al. could in the worst case square the running time of this
algorithm. This is why it often makes sense to try to develop faster algorithms for parametric
submodular function minimization when considering a specific problem.

The Strong Map Property. Especially interesting for us are submodular functions that are con-
nected by a strong map.

Definition 2.5 (The Strong Map Property).
Let g1,g2 : 2S→ R be two submodular functions defined over the same finite ground set S. We
write g1 ← g2 or g2 → g1 if A ⊆ B ⊆ S implies

g1(B)− g1(A) ≤ g2(B)− g2(A).

The relation is called a strong map. Submodular functions g1, g2, . . . , gk form a strong map
sequence if g1 ← g2 ← . . .← gk.

In [Top78] was one of the first to consider submodular functions that form a strong map sequence and
its properties. Given submodular functions g1, g2, . . . , gk : 2S → R that form a strong map sequence,
one might want to minimize all of them simultaneously. We denote this problem by Strong Map
Submodular Function Minimization. Note that in the literature, what we denote as Strong
Map Submodular Function Minimization, is also often called Parametric Submodular
Function Minimization.

Strong Map Submodular Function Minimization
Instance: g1, g2, . . . , gk : 2S → R that form a strong map sequence,

g1 ← g2 ← . . .← gk.
Task: A minimal or maximal minimizer Xi for the submodular gi for

all i ∈ {1, . . . , k} together with the minimal value of gi for all
i ∈ {1, . . . , k}.

Fleischer and Iwata [FI00] give an algorithm for this problem with running time O((n7+kn2) EO +n8)
by extending their push/relabel algorithm for submodular function minimization. A faster algorithm
for minimizing all submodular function from a strong map sequence is provided by Nagano who
extended the submodular function minimization algorithm of Orlin [Orl09]. The running time
Nagano achieves is O((n5 + kn3) EO +n6). Thus, this algorithm has the same asymptotic running
time as a single execution of the algorithm of Orlin as long as k ∈ O(n2). The algorithm of Nagano
also works if the submodular functions from the strong map sequence are computed in an on-line
fashion during the execution of another algorithm.

Fact 2.6. Using the algorithm of Nagano all submodular functions from a strong map sequence
g1 ← g2 ← . . . ← gk can be minimized in running time O((n5 + kn3) EO +n6). During the
minimization a minimal or maximal minimizer of each submodular function gi for all i ∈ {1, . . . , k}
is computed.

2.4 Classical Network Flows
The main topic of this thesis are flow over time problems. However, many ideas and methods that
are used in the context of flows over time origin from the theory of classical network flows, which we
call static network flows throughout this thesis.
The first book covering network flows is the book “Flows in Networks” by Ford and Fulkerson
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Figure 2.2: Figure from Tolstŏı [Tol30] to illustrate a negative cycle

[FF62] published in 1962. In this book they also already introduced the concept of flows over
time. For a thorough introduction to static network flows we refer the reader to Orlin et. al.
[AMO93].

The History of Network Flows. As already stated, the first book on the topic of network flows was
published in 1962 following a first peak of research regarding networks flows in the 1950s. However,
the origins of network flow theory go back as far as 1930 when the Russian mathematician A.N.
Tolstŏı [Tol30] published a study on a transportation problem for which he developed a negative
cycle criterion that he used to solve the problem to optimality (see Figure 2.2). Tolstŏı was probably
the first to notice that the negative cycle criterion is necessary for the optimality in a minimum-cost
flow problem.
In the 1950s also the Americans became interested in the Soviet rail system. Instead of being actually
interested in computing a maximum flow in this network, their objective was indeed to “cut off” the
Soviet railway system from the western part of Europe in the cheapest way. This task was first posed
in a RAND report by Harris and Ross [HR55] in 1955. Since the Soviet railway system was too large
to handle, they at first describe a way to aggregate parts of the network to reduce the network size.
The instance they achieve is shown in Figure 2.3. To find a maximum flow (or minimum cut) in this
network they used a heuristic due to Boldyreff [Bol54], the so-called “flooding technique”. In a their
basic paper “Maximal Flow through a Network”, which was first published as a RAND report in
1954 [FF54], Ford and Fulkerson suggest the simplex method for solving the maximum flow problem.
However, Harris and Ross remark that the calculations required in the simplex method would be
too cumbersome. In the same paper Ford and Fulkerson also show that the value of a minimum cut
and the value of a maximum flow are equal. The same result was independently observed by Elias,
Feinstein and Shannon [EFS56]. The well known augmenting path algorithm of Ford and Fulkerson
was published a year later [FF55].

2.4.1 Basic Definitions and Results
The main object in the study of static network flows is the so-called static network N = (D =
(V,A), u, S+, S−) that consists of a directed graph D = (V,A), an integral capacity function
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Figure 2.3: The network that Harris and Ross considered. The dashed line is the minimum cut.

u : A→ Z≥0 and subsets S+, S− ⊆ V of vertices with S+ ∩ S− = ∅ denoted as sources and sinks,
respectively. We denote the union of sources and sinks, S+ ∪ S−, as the set of terminals while the
nodes v in V \(S+∪S−) are called intermediate nodes. In the case of networks with a single source
s ∈ V and a single sink t ∈ V \ {s} we also write N = (D,u, s, t) instead of N = (D,u, {s}, {t}). To
simplify the notation we set ua := u(a) for all a ∈ A.
One straightforward application of such networks is to model the transportation of goods from
suppliers to customers. In such a setting the suppliers (sitting at the sources) usually can only
deliver a limited number of goods, whereas the customers (located a the sinks) also have a limited
demand. Such applications motivate to consider networks in which each source has some supply and
each sink some demand. This is also the problem that Tolstŏı considered in the 1930s.
The supplies and demands on the terminals are given by an integral supply/demand-function
b : S+ ∪ S−→ Z with

b(s) > 0 for all s ∈ S+, b(t) < 0 for all t ∈ S− and
∑

u∈S+∪S−
b(u) = 0.

To simplify the definition of static flows in networks we will throughout this thesis assume that the
sources have no ingoing and the sinks no outgoing arcs. The following construction shows that we
can make this assumption without loss of generality.
For a given static network N = (D,u, S+, S−) we create the modified static network N ′ := (D′ =
(V ′, A′), u′, S+′, S−

′) which is constructed as follows: To each source s ∈ S+ we attach a super-source
s′ by an arc (s, s′) with infinite capacity and to each sink t ∈ S− we attach a super-sink t′ by an arc
with infinite capacity. The sources and sinks of N ′ consist of these newly added super-sources and
super-sinks, respectively. Overall we define,

S′
+ := {s′ | s ∈ S+} and S′− := {t′ | t ∈ S−}
V ′ := S′

+ ∪ S′−

A′ := A ∪ {(s′, s) | s ∈ S+} ∪ {(t, t′) | t ∈ S−}.
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The new capacity function u′ : A′ → Z+ is defined as follows,

u′a :=
{
ua if a ∈ A
∞ if a 6∈ A.

If for the original network N a supply/demand-function b was given, we shift these supplies and
demands to the newly created sources and sinks, i.e. we define a new supply/demand-function
b′ : S′+ ∪ S′−→ Z by setting b′(s′) := b(s) for all s ∈ S+ and b′(t′) := b(t) for all t ∈ S−. Clearly,
the sources in N ′ do not have ingoing arcs and the sinks in N ′ do not have outgoing arcs. During
the construction of N ′ at most n = |V | new vertices are added to the original network N . Thus,
this construction can be done in running time O(n). Relying on the assumption that the sources do
not have incoming arcs, whereas the sinks do not have outgoing arcs, static flows in networks are
defined in the next paragraph.

Arc Flow. A (static) flow f in a static network N = (D = (V,A), u, S+, S−) is a function
f : A → R≥0 such that on each arc the capacity is respected and for each intermediate node
v ∈ V \ (S+ ∪ S−) it holds that exactly as much flow as flows into the node v also flows out of this
node. Thus, f has to fulfill the capacity constraint

f(a) ≤ u(a) for each a ∈ A,

and flow conservation∑
e∈δ−(v)

f(a) =
∑

e∈δ+(v)

f(a) for each v ∈ V \ (S+ ∪ S−).

A network flow that also fulfills flow conservation on the terminals is called a circulation. The
value |f | of a flow f is the net amount of flow that flows out of the sources (and thus into the
sinks),

|f | :=
∑

a∈δ+(S+)

f(a).

Note, here we use the fact that the sources do not have incoming arcs.
For each v ∈ V we denote by netf (v) the net amount of flow that leaves the node v ∈ V ,
i.e.,

netf (v) :=
∑

a∈δ+(v)

f(a)−
∑

a∈δ−(v)

f(a).

Clearly, in a static flow f we have that netf (v) = 0 for all v ∈ V \ (S+ ∪ S−) because of the flow
conservation. Thus, a static flow f in a static network N flows from the sources in S+ to the sinks
in S−. This is why f is said to be a S+-S− flow. If the network N only has a single source s and a
single sink t, then f is said to be an s-t flow.
If for each a ∈ A the flow value f(a) is integral, we say that f is an integral flow. To simplify notation,
we set fa := f(a) for all a ∈ A and a given static flow f in N .

Path Flow. The previous definition of a static flow in a static network N is an edge based definition:
A flow f in N fixes a flow value on each arc of N such that flow conservation and capacities are
satisfied. However, intuitively in an S+-S− flow, f flow that contributes to the value of f travels
along s-t paths for s ∈ S+ and t ∈ S− (some flow also might travel along cycles). This motivates the
following path based definition of a static flow in a static network N .
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Definition 2.7 (Path Flow).
Let N = (D = (V,A), u, S+, S−) be a network and P the set of all s-t paths for any pair of a
source s ∈ S+ and a sink t ∈ S−. By Pa we denote the subset of paths using the arc a ∈ A,
i.e., Pa := {P ∈ P | a ∈ P}. A path flow x in N is an function x : P → R≥0 that respects the
capacity constraints, ∑

P∈Pa

x(P ) ≤ ua for all a ∈ A.

The value of x is defined to be |x| :=
∑
P∈P x(P ). The set {P ∈ P | x(P ) > 0} is called the set

of flow carrying paths.

Note that in the above definition the flow conservation constraint is not explicitly stated. A path
flow x fulfills this constraint by definition as flow is only sent along s-t paths. Clearly, each path
flow x in a static network N induces an edge flow f by defining f(a) :=

∑
P∈Pa x(P ) for all

a ∈ A. The other direction of this statement is not as straightforward but a consequence of the fact
that each edge flow f in N can be decomposed into flow on S+-S− paths and flow along cycles:

Theorem 2.8 (Flow Decomposition, [Gal58; FF62]).
Let N = (D = (V,A), u, S+, S−) be a static network and f a static S+-S− flow in N . Then there
exists a family P of S+-S− paths in N , a family C of cycles in N and weights w : P ∪ C → R+
such that

f(a) =
∑

P∈P∪C : a∈P

w(P ) for all a ∈ A,

|f | =
∑
P∈P

w(P ),

|P|+ |C| ≤ |A|.

Additionally, it holds that if f is integral, then all weights can be chosen integral.

The proof of Theorem 2.8 can for example be found in Schrijver [Sch03]. It also yields an algorithm
with running time in O(mn) to compute a flow decomposition of a given static flow f in a static
network N .
Given an edge flow f in N we can thus construct a corresponding path flow x with the same value
as follows: compute the flow decomposition of f , given by paths P and cycles C and afterwards
define for all P ∈ P

x(P ) :=
{
w(P ) if P ∈ P
0 if P ∈ P \ P

.

Note that we do not have x(a) = f(a) for all a ∈ A. Overall, the following lemma holds:

Lemma 2.9. For each static arc flow f in a static network N there exists a path flow x with the same
value and vice versa.

2.4.2 The Maximum Flow Problem
The by far most famous network flow problem is the Maximum Flow Problem that has already
been introduced in the 1950s by Harris and Ross [HR55]. The aim of this problem, which is usually
defined in networks with a single source s and a single sink t, is to compute an s-t flow with the
maximum possible value:
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Maximum Flow Problem
Instance: A static network N = (D = (V,A), u, s, t)

Task: Find a network flow f in N with maximum value |f |

Max-Flow Min-Cut Theorem. The max-flow min-cut theorem (a generalization of Menger’s Theo-
rem [Men27]), which states that the value of a maximum flow in N equals the minimal capacity of
a cut in N separating the sources from the sinks, was first established in 1956 independently by
Ford and Fulkerson [FF56], and Elias, Feinstein and Shannon [EFS56]. Both proofs are combina-
torial proofs. Moreover, the max-flow min-cut theorem is also a special case of the strong duality
theorem of linear programming because the LPs for the max-flow problem and the min-cut problem
are in fact dual LPs. As the name suggests the minimum cut problem is the problem of finding
a cut with minimal capacity that separates the source s from the sink t of a given network N .

Minimum Cut Problem
Instance: A network N = (D = (V,A), u, s, t)

Task: Find the cut C with minimal capacity separating s and t

The max-flow min-cut theorem states that the capacity of a minimal cut is equal to the value of a
maximum flow in a given static network N .

Theorem 2.10 (Max-Flow Min-Cut Theorem, [FF56; EFS56]).
Let N = (D = (V,A), u, s, t) be a network. The maximum value of an s-t flow equals the
minimum capacity of an s - t cut.

Usually, maximum flow problem is defined in static networks with only a single source s and a
single sink t. This, however, is no restriction, as was already noted by Ford and Fulkerson [FF62].
Let N = (D = (V,A), u, S+, S−) be a static network with multiple sources and sinks and assume
that we want to compute a maximum S+-S− flow in N . Using an extended network N ∗ that
arises from the original network N by attaching a super-source s∗ and a super-sink t∗ we can
define an equivalent maximum flow problem in the network N ∗ (see Figure 2.4 for a visualization
of N ∗). More precisely, the extended network N ∗ = (D∗ = (V ∗, A∗), u∗, s∗, t∗) is obtained by

S+

...

S−

...s∗

u
=

∞

u = ∞

u = ∞

u
= ∞

t∗

u
= ∞

u = ∞

u = ∞

u
=
∞

Figure 2.4: The extended network N ∗
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adding two new nodes s∗ and t∗ to V , i.e., V ∗ := V ∪{s∗, t∗}. The super-source s∗ is connected to
every node in S+ by an arc with infinite capacity and t∗ to every sink in S− by an arc with infinite
capacity. Thus,

A∗ := A ∪
⋃
s∈S+

{(s∗, s)} ∪
⋃
t∈S−
{(t, t∗)},

while the new capacity function u∗ is defined as

u∗(s∗,s) :=∞ for all s ∈ S+,

u∗(t,t∗) :=∞ for all t ∈ S−,
u∗a := ua for all a ∈ A.

We conclude with the following observation that yields that a maximum flow in N can be obtained
from a maximum flow in the extended network N ∗.

Observation 2.11 ([FF62]). Let N = (D = (V,A), u, S+, S−) be a static network. The values of a
maximum flow in N and in the extended network N ∗ are the same and a maximum flow in N can
be obtained from a maximum flow on N ∗ and vice versa.

During this thesis we denote by maxN (S, T ) the value of a maximum flow from S to T in a static
network N = (D = (V,A), u, S+, S−) for S ⊆ S+ and T ⊆ S−.

The Transshipment Problem. A problem related to the maximum flow problem is the so-called
Transshipment Problem. Assume we are given a static network N = (D = (V,A), u, S+, S−)
together with a supply/demand function b : S+ ∪ S−→ Z on the terminals. Now, the goal is not to
find a maximum S+-S− flow in N but a flow satisfying all supplies and demands. Such a flow is
called a transshipment, a b-flow or b-transshipment. For the transshipment problem given by
N and b we shortly write (N , b). An application that can be modeled by transshipment problems
is the transportation of goods from suppliers with bounded supplies to customers with bounded
demands.

Transshipment Problem (N , b)

Instance: A static network N = (D = (V,A), u, S+, S−) and a sup-
ply/demand function b on the terminals

Task: Find a static network flow f in N that satisfies the given
supplies and demands, i.e.,

∑
a∈δ+(s) f(a) = b(s) and∑

a∈δ−(t) f(t) = −b(t) for all sources s ∈ S+ and sinks t ∈ S−,
respectively

Using an extended network, we can transform a given transshipment problem into a maximum
flow problem. We again construct the extended network N ∗ as above but now we set the ca-
pacities on the arcs connected to the super-source s∗ according to the capacities of the specific
original source. The same is done for the arcs connected to the super-sink t∗. More precisely, we
define

u∗(s∗,s) := b(s) for all s ∈ S+,

u∗(t,t∗) := −b(t) for all t ∈ S−,
u∗a := ua for all a ∈ A.

The new supply on s∗ is defined to be b∗(s∗) :=
∑
s∈S+ b(s) and the new demand of t∗ is b∗(t∗) :=∑

t∈S− b(t∗).
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Observation 2.12. Let N = (D = (V,A), u, S+, S−) be a static network, b a supply/demand function
on the terminals S+ ∪ S−, and N ∗ the corresponding extended network with the new supply/demand
function b∗. A transshipment solving (N , b) does exist in N if and only if a transshipment solving
(N ∗, b∗) does exist in N ∗. A transshipment solving (N ∗, b∗) does exist in N ∗ if and only if the value
of a maximum s∗-t∗ flow in N ∗ is equal to

∑
s∈S+ b(s).

Computing Maximum Flows. Clearly, one way to compute maximum flows is to solve the cor-
responding linear program using for example the simplex method. In this section we are giving
a brief introduction into the main ideas behind combinatorial algorithms for the maximum flow
problem.

A concept central to many network flow algorithms is the residual network of a given static
network flow f . Using the residual network allows algorithms to essentially take back flow that has
been sent in earlier iterations of an algorithm. The main idea of the construction is to consider
the bidirected digraph and to let the reverse arcs account for the flow that has already been
sent.

Definition 2.13.
Let N = (D = (V,A), u, S+, S−) be a static network and f an edge based static flow in N .
The residual network Nf := (←→D ,uf , S

+, S−) consists of the bidirected graph ←→D , the original
sources S+ and sinks S− and the residual capacity uf with respect to f defined as

uf (a) :=
{
ua − fa if a ∈ A
fa if a ∈ ←→A .

Most algorithms for the maximum flow problem are executed in the residual network. There are
essentially two classes of maximum flow algorithms: the algorithms that rely on augmenting flow
along so-called augmenting paths and the so-called push/relabel algorithms. The first algorithm
for the maximum flow problem, which was developed by Ford and Fulkerson [FF62], belongs to the
first class.

Definition 2.14.
Let N be a static network and f a static low in N , P a path or a cycle in Nf and γ > 0. To
augment f by γ along P means to increase the flow by γ on each arc a ∈ P with a ∈ A and
to decrease the flow value by γ on each a ∈ P with ←−a ∈ A.
An s-t path P for s ∈ S+ and t ∈ S− in the residual network Nf with γ := mina∈P uf (a) > 0 is
called an s-t augmenting path, because augmenting f along P by γ yields a network flow with
a strictly larger value.

If for a given flow static f there exists an s-t augmenting path with s ∈ S+ and t ∈ S− in Nf , then
f cannot be a maximum flow. The converse direction of this statement also holds as was shown by
Ford and Fulkerson in [FF55].

Theorem 2.15 ([FF55]).
A static S+-S− flow f is a maximum flow in a given static network N if and only if there is
no augmenting path in the residual network Nf .

The first maximum flow algorithm incorporating Theorem 2.15 was the algorithm of Ford and
Fulkerson [FF55; FF62]. It just consists of a loop that augments flow along an arbitrary augmenting
path in the residual network until no such path can be found anymore. When the algorithm
terminates, the current flow in the network is maximal according to Theorem 2.15. Ford and
Fulkerson already noticed that their algorithms does not necessarily terminate if the arc capacities
are irrational numbers and even if all arc capacities are integers, a bad way of choosing the augmenting
path in each iteration might result in an exponential worst case running time. In general the running
time of the algorithm of the maximum flow algorithm of Ford and Fulkerson is in O(U ·m · n) with
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n and m being the number of nodes and arcs, respectively and U being the highest arc capacity,
and thus the running time may be pseudo-polynomial.
Edmonds and Karp (1972) [EK72], and independently Dinic (1970) [Din70], observed that the
running time of the algorithm of Ford and Fulkerson can be considerably improved if the augmenting
paths are not chosen arbitrarily but in a smart way. Edmonds and Karp obtain a maximum flow
algorithm with a strongly polynomial running time in O(m2 ·n) by choosing the shortest augmenting
path in each iteration. Dinic does not only use augmenting paths in his algorithm but augments
along so-called blocking flows achieving an even better running time in O(n2 ·m). Two years later
Dinic’ algorithms was improved by Karzanov yielding a running time in O(n3) [Kar74; MKM78].
In the subsequent years faster algorithm using blocking flows have been developed by Cherkassk̆ı
[Che77] (O(n2 ·

√
n)), Galil [Gal78] (O(n · (nm)2/3)), Shiloach [Shi78] , Galil and Naamad [GN80]

(O(nm log2 n)), Sleator [Sle80], and Sleator and Tarjan [ST83] (O(nm log n)). More running time
improvements were obtained with a new technique introduced by Goldberg and Tarjan [GT88].
They developed the first algorithm relying on the push-relabel (or preflow-push) technique and
obtained a running time in O(nm log(n2/m)). By constructing better selection rules and using
more sophisticated data structures eventually the algorithm of King, Rao and Tarjan [KRT94] was
obtained with a running time of O(nm · logm/n log(n) n). Note that a decomposition of flows into
paths can have a size of Ω(nm). Thus O(nm) is natural target bound for algorithms solving the
maximum flow problem. It was a long-standing open question whether an algorithm with this
running time exists which was answered by Orlin in 2013 who developed a maximum flow algorithm
with a running time in O(nm). However, the flow decomposition size is not a lower bound for
computing maximum flows as a flow can be represented in O(m) space and dynamic trees can be
used to augment flow on a path in logarithmic time. The algorithm of Orlin is the fastest known
algorithm for the maximum flow problem with strongly polynomial time running time. However,
in the recent years also much improvement has been achieved regarding weakly polynomial time
algorithms:
The unit capacity problem on a graph with no parallel arcs can be solved in O(min{n2/3,

√
m} ·m)

(which is much faster than O(mn)), which was shown independently by Karzanov [Kar74] and
Even and Tarjan [ET75]. For 25 years there was a big gap between the unit capacity case and
the general case which was narrowed in 1998 by Goldberg and Rao [GR98], who obtained an
O(min{n2/3,

√
m} · m log(n2/m) log(U)) algorithm for the problem with integral capacities. In

the context of undirected graph a recent series of papers, including Christiano et al. [Chr+11],
Kelner et al. [Kel+14], Lee et al. [LRS13] and Sherman [She13] studied the problem of finding an
approximately maximum flow (within a factor of (1 + ε) of maximum) in undirected graphs. This
line of work was culminated by Sherman [She13] and Kelner et al. [Kel+14] who independently
achieve an approximation algorithm for maximum flows with nearly linear running time. All these
papers used linear algebraic techniques and electrical flows. Building on this work, Mądry [Mąd13]
in 2013 obtained an exact algorithm for unit capacity flows in directed graphs with a running time
in Õ(m10/7). The first improvement over the algorithm by Goldberg and Rao was achieved in 2014
by Lee and Sidford [LS14] who developed a new interior point method which led to an algorithm
for the maximum flow problem with a running time in Õ(m

√
n logO(1) U). For the special case of

solving the maximum flow problem in dense directed graphs with unit capacities their algorithm also
improves upon the algorithm of Mądry. Two years later Mądry [Mąd16] published a new algorithm
for the maximum flow problem in directed graphs with integer capacities with a running time in
Õ(m10/7U1/7). This algorithms improves over the algorithm of Lee and Sidford whenever U is
moderately large and the graph is sufficiently sparse.

2.4.3 The Minimum-Cost Flow Problem

Another classical network flow problem is the Minimum-Cost Flow Problem, which appears
in the literature in many different variants. It is sometimes (especially in old papers from the
beginnings of network flow theorem) referred to as transportation problem. The minimum-cost
flow problem is as old as the theory of network flows. One of the first to study this problem was the
Russian mathematician Tolstŏı[Tol30].
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Let N = (D = (V,A), u, S+, S−) be a static and c : A→ R a cost function on the arcs. For any
static flow f in N the cost of f is defined to be

c(f) :=
∑
a∈A

c(a) · f(a).

Using this notion of cost, we define two variants of the minimum-cost flow problem. Given a static
network N = (D = (V,A), u, S+, S−), a supply/demand function b and a cost function c : A→ R on
the arcs, a minimum-cost flow in this setting is a static flow f that satisfies all supplies and demands
while being of minimum cost.

minimum-cost flow Problem (N , b, c)

Instance: A static network N = (D = (V,A), u, S+, S−), a sup-
ply/demand function b on the terminals and a cost function c
on the arcs, or shortly (N , b, c).

Task: Find a static network flow f in N that satisfies the given
supplies and demands with minimum cost c(f)

In other words the minimum-cost flow problem given by (N , b, c) is the problem of finding a b-
flow of minimum cost. A special case of the minimum-cost flow problem is the Minimum-Cost
Circulation Problem:

Minimum-Cost Circulation Problem
Instance: A static network N = (D = (V,A), u, S+, S−) and a cost

function c on the arcs A
Task: Find a circulation f in N with minimum cost c(f)

Clearly, an instance of the minimum-cost circulation problem can be transformed to an instance of
the minimum-cost flow problem by defining an all zero supply/demand function, b ≡ 0.

Another straightforward observation is that, given an instance of the minimum-cost circulation
problem in a static network N , it is only possible to obtain a circulation f that is different from the
zero flow if N contains a cycle of negative cost. In the general variant of the minimum-cost flow
problem we might, however, also have to send flow along expensive paths with positive costs in order
to be able to fulfill the supplies and demands.
For solving the minimum-cost flow problem and the minimum cost circulation problem, again the resid-
ual networkNf corresponding to a given b-flow or circulation f is central.

The residual network Nf corresponding to some static flow f in a static network N with a cost
function c on the arcs is defined exactly as in Definition 2.13 with the addition that we also extend
the cost function to Nf by setting

c(←−a ) := −c(a) for all a ∈ A.

If f is a circulation or a b-flow in N and Nf contains a cycle C of negative cost with 0 < γ :=
mina∈C uf (a), we can augment f along C by γ = mina∈P ua and obtain a new circulation or b-flow
with lower cost. Thus, if Nf contains a cycle of negative cost, then f is not a minimum cost
circulation or a b-flow of minimal cost, respectively. Again it turns out that the other direction of
this statement also holds:
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Theorem 2.16 ([Kle67]).
Let (N , b, c) be an instance of the minimum-cost flow problem and f a b-flow with respect to
that. Then f is of minimal cost if and only if Nf contains no cycle of negative cost.

The above negative cycle criteria was for example derived by Klein in 1967 [Kle67]. The idea however
goes back to Tolstŏı [Tol30] and was rediscovered several times in different forms for example by Robin-
son [Rob50], Gallai [Gal58], Busacker and Gowen [BG60] and Fulkerson [Ful61].

Solving the minimum-cost flow Problem. The minimum-cost flow problem can be formulated
as a linear program and can thus be solved in strongly polynomial time by using the ellipsoid
method. Historically, before combinatorial algorithms for the minimum-cost flow were developed,
specializations of the simplex algorithm for this specific problem were found.
In 1941 Hitchcock studied a variant of the minimum-cost flow problem – the Hitchcock Problem
– and also developed a solving procedure inspired by Dantzig’s simplex algorithm[Hit41]. Ten
years later Dantzig showed how his simplex algorithm specializes to yield an algorithm for the
minimum-cost flow problem [Dan51] and thus developed the first version of the Network Simplex
Algorithm. Although network simplex algorithms perform fast in practice, the existence of a
provable efficient network simplex algorithm was a long-standing open problem. The first network
simplex with a polynomial running time in O(n2m log(nC)), where C is the maximal cost on the
arcs, was provided in 1995 by Orlin [Orl97]. His algorithm was improved 2 years later by Tarjan
[Tar97] who achieved a running time of O(nm log(n log(nC))) using dynamic trees. It is still an
open problem whether there is a strongly polynomial time network simplex algorithm.
In contrast to that, a strongly polynomial time dual network simplex algorithm has already been
developed in 1985 by Orlin [Orl85].
For a combinatorial algorithm to solve the minimum-cost flow problem it is a straightforward idea
to use Theorem 2.16. In their book about network flows Ford and Fulkerson published the first
minimum-cost flow algorithm relying on the negative cycle criterion. However, in the worst case
their algorithm is of exponential running time.
The first combinatorial weakly polynomial time algorithm for the minimum-cost flow problem is due
to Edmonds and Karp [EK72], who also raised the question whether a strongly polynomial time
algorithm for the minimum-cost flow problem does exist.
This question was answered in 1985 by Tardos who gave the first strongly polynomial time algorithm
for this problem. The currently fastest known strongly polynomial time algorithm for the minimum-
cost flow problem with a running time of O((m logm) · (m+ n log n)) is due to Orlin [Orl93].
The algorithm which is of most interest throughout this thesis – the successive shortest path
algorithm (SSPA) – is not of polynomial running time. However, it plays a central role
in the context of many flow over time problems and this is why we describe it in more de-
tail. The following theorem, which has been shown independently by Jewell [Jew58], Iri [Iri60]
and Busacker, and Gowen [BG60], immediately leads to the successive shortest path algorithm.

Theorem 2.17 ([Jew58; Iri60; BG60]).
Let (N , b, c) be an instance of the minimum-cost flow problem and f a b-flow of minimal cost.
Let P be augmenting s-t path in Nf for s ∈ S+ and t ∈ S− that is of minimum cost with respect
to c. Let f ′ be the flow in N that is the result of augmenting f along P by at most the minimal
residual capacity of P . Then f ′ is a b′-flow of minimal cost for a suitable choice of b′.

The above theorem leads towards the successive shortest path algorithm shown in Algorithm 3.
For the algorithm we assume that the cost function is nonnegative. This assumption can be made
without loss of generality (see [AMO93]).

Clearly, the algorithm terminates after at most B :=
∑
sS+∪S− |b(s)| augmentations resulting in a

pseudo-polynomial running time in O(nm+B(m+ n log n)) [Tom71; EK72]. An example instance
in which the successive shortest path algorithm needs pseudo-polynomially many iterations was
first given by Zadeh [Zad73] in 1973. A more compact construction is given in [DS15]. However, if
B ∈ O(n) the successive shortest path algorithm is the fastest known algorithm for the minimum-cost
flow problem.
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Algorithm 3: Algorithm for solving a given minimum-cost flow problem, SSPA(N , b, c)
Input : An instance (N , b, c) of the minimum-cost flow problem
Output :A b-flow with minimal costs if a b-flow exists, False otherwise

1 b′ ← b and f(a) ← 0 for all a ∈ A
2 while b′ 6≡ 0 do
3 choose a node s with b′(s) > 0
4 choose a node t with b′(t) < 0 such that t can be reached from s in Nf
5 if such a t does not exist then
6 return False
7 else
8 choose an augmenting s-t path P in Nf of minimal cost with respect to c
9 γ ← min{mina∈P uf , b′(s),−b′(t)}

10 b′(s) ← b′(s)− γ and b′(t) ← b′(t) + γ and augment f along P by γ
11 end
12 end
13 return f

2.4.4 Lexicographically Maximum Flows
Let N = (D = (V,A), u, S+, S−) be a static network. For some applications it is important that
not just a maximum flow from the sources to the sinks is computed, but that the terminals also
have an internal priority order with respect to which the net flow out of the terminals should be
maximized. Hence, we now additionally assume that we are given a total order ≺ on the terminals
S+ ∪ S−. For simplicity we also assume that S+ ∪ S− = {s1, s2, . . . , sk} with si ≺ sj for all
i, j ∈ {1, . . . , k} with i < j. If s ≺ s′ for s, s′ ∈ S+ ∪ S− we say that s has a higher priority than
s′. A flow f2 in N is lexicographically bigger than a flow f1, or f1 ≤L f2, with respect to ≺
if

∃l ∈ {0, 1, . . . , k − 1} : | netf1(si)| = | netf2(si)| for all i ∈ {1, 2, . . . , l} and
| netf1(sl+1)| < | netf2(sl+1)|,

or if

| netf1(si)| = | netf2(si)| for all i ∈ {1, 2 . . . , k}.

A static flow f in N is a lexicographically maximum (lex-max) flow with respect to ≺ if it
is lexicographically bigger than any other static flow f ′ in N . The lexicographically maximum
flow problem is the problem of finding a lexicographically maximal flow with respect to some total
order on the terminals.

Lexicographically Maximum Flow Problem
Instance: A static network N = (D = (V,A), u, S+, S−) and a total

order ≺ on the terminals S+ ∪ S−

Task: Compute a static flow f in N that is a lexicographically maxi-
mum flow with respect to ≺

A lex-max flow with respect to a given order ≺ on the terminals is thus a flow that maximizes the
amount of flow sent out of the sources within the given order but minimizes the amount of flow sent
into the sinks within the order ≺.
The existence of a lex-max um flow with respect to any total order ≺ on the terminals has been
shown by Minieka [Min73] and Megiddo [Meg74]. Minieka also gives an algorithm to compute
lex-max flows that relies on at most |S+ ∪ S−| many maximum flow computation. Thus, such flows
can be obtained in strongly polynomial time. One theorem that the existence proof of Minieka relies
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on is the following results which basically states that the arrival and departure patterns of maximum
flows are independent.

Theorem 2.18 ([Min73]).
Let f1 and f2 be two maximum flows in N . There exists a third maximum flow f3 in N with

netf3(s) = netf1(s) for all s ∈ S+ and netf3(t) = netf2(t) for all t ∈ S−.

That is, f3 has the departure pattern of f1 and the arrival pattern of f2.

For the proof of this theorem, the whole existence proof of lex-max flows and the algorithm of
Minieka [Min73] for computing lex-max flow we refer to [Min73]. As already stated the algorithm
of Minieka [Min73] needs |S+ ∪ S−| many maximum flow computations in order to compute a
lex-max flow with respect to a given order. In static networks with a single sink t (or a single
source s) there is a faster way to compute static lex-max flows that uses an algorithm by Gallo,
Grigoriadis and Tarjan for computing parametric maximum flows [GGT89]. Gallo et al. address the
problem of computing maximum flows for each member of an increasing sequence of parameter values
λ1 < λ2 < . . . < λl in a static network Nλ = (D,uλ, {s}, {t}) in which the arc capacities depend
on a parameter λ. Their main result is to extend the maximum flow algorithm of Goldberg and
Tarjan to find maximum flows in a special class of parametrized networks for O(n) ordered values
of the parameter in O(nm log(n2/m)) with n = |V |. That is, Gallo et al. show how to compute
O(n) maximum flows in the same running time that only one maximum flow computation using
the algorithm of Goldberg and Tarjan requires. The class of parametrized static networks that
Gallo et al. consider are those in which the capacities of arcs leaving the source are non-decreasing
functions of the parameter, and those of arcs entering the sink are non-increasing functions of the
parameter, and those of all other arcs are constant. Thus, they regard parametrized static networks
Nλ = (D,uλ, {s}, {t}) with

• uλ(a) is a non-decreasing function of λ for all a ∈ A with a = (s, u) for some u ∈ V ,

• uλ(a) is a non-increasing function of λ for all a ∈ A with a = (v, t) for some v ∈ V ,

• uλ(a) is constant for all a ∈ A with a = (u, v) for u ∈ V \ {s} and v ∈ V \ {t}.

A parametrized static network Nλ with these properties is called a GGT network. Denote by
Cλ ⊆ V \ {t} a subset of vertices that induces a minimum s-t cut in Nλ for the parameter value λ.
The main structural property of such parametrized networks that Gallo et al. exploit is that the sets
Cλ are nested with growing λ, that is Cλ1 ⊆ Cλ2 with λ1 ≤ λ2. Summarizing, given a parametrized
static GGT network Nλ = (D,uλ, {s}, {t}) and λ1 < λ2 < . . . < λl with l ∈ O(|V |) , the algorithm
of Gallo et al. returns maximum flows f1, f2, . . . , fk and minimum cuts Cλ1 , Cλ2 , . . . , Cλl for all
parameter values λ1, . . . , λl, respectively, in the same running time as required by the maximum
flow algorithm of Goldberg and Tarjan. We will now argue how to solve a lex-max flow problem in a
static network with only a single sink t using the algorithm of Gallo et al. (the case with only a single
source works symmetrically). For this purpose let N be a static network with only a single sink t
and ≺ a total order on S+ ∪ {t}. The goal is to compute a static lex-max flow in N with respect to
≺. In order to obtain a GGT network we at first attach a super-source s∗ to the sources of N . The
capacities of the arcs by which the super-source is connected to the sources of N are parametrized
by a parameter λ. Without loss of generality let S+ = {s1, s2, . . . , sk} with s1 ≺ s2 ≺ . . . ≺ sk ≺ t.
We define for all i ∈ {1, . . . , k},

uλ(s∗, si) :=
{

0 for all λ ∈ [0, i)
∞ for all λ ∈ [i,∞).

The capacities of all other arcs remain constant in λ. We denote the resulting parametric network
by Nλ. By definition this network is a GGT network. We now define a sequence of parameters
λ1 < λ2 < . . . λk by λi := i. When looking into the way the algorithm of Gallo et al. works in more
detail, it turns out that when applying this algorithm to Nλ and λ1 < λ2 < . . . λk defined as above,
this algorithm in fact computes a static lex-max flow with respect to ≺ in N . More precisely, the

2.4 Classical Network Flows 29



flow fk returned by this algorithm is a suitable lex-max flow when restricted to N . We conclude
this section with the following lemma about static lex-max flows.

Lemma 2.19. Let N be a network, ≺ an order on the terminals and f≺ a lex-max flow with respect
to ≺. The flow f≺ fulfills for all s ∈ S+ ∪ S−,

netf ({s′ ∈ S+ ∪ S− | s′ � s}) = maxN (S+ ∩ {s′ ∈ S+ | s′ � s}, S− \ {s′ ∈ S− | s′ � s}).

For the proof we again refer to Minieka [Min73]

2.5 Flows Over Time
With classical network flows it is possible to obtain excellent results in static situations. However,
once an application depends on a temporal dimension, static networks flows are not able to capture
this dependence on time.
In order to be able to model applications that depend on time. Ford and Fulkerson introduced
flows over time [FF58; FF62]. In contrast to the setting in static network flows, in the dynamic
setting each arc a additionally has a transit time τ(a). Flow entering an arc at time θ ≥ 0 will
leave the arc after time θ + τ(a). In this time-dependent setting the capacity of an arc is not an
upper bound on the overall amount flow that is allowed to be on an arc, but it represents the flow
that can enter an arc per time. A flow over time f now specifies a flow value (that is, the rate at
which flow enters the arc) for each arc a for each point in time. In Ford and Fulkerson’s setting time
is discrete and also the flow is discrete: a discrete flow unit enters an arc and travels along this arc
as a whole arriving at the end of the arc according to the transit time. Later, a continuous model
was introduced, in which the time and also the flow “flows continuously”.
In this section we present the most basic definitions and techniques in the context of flows
over time. In the next chapter we will give a more thorough presentation of the more ad-
vanced problems that concern us throughout this thesis. For an introduction to flows over time
see [Sku09].

2.5.1 Basic Definitions
As in the study of static flows, the main object when considering flows over time is a network, which
we call the dynamic network denoted by N = (D = (V,A), u, τ, S+, S−). Here, D = (V,A) is a
directed graph with vertices V and arcs A and S− and S+ are disjoint subsets of vertices denoted
as the sources or sinks, respectively. We again call the union of sources and sinks, S+ ∪ S−, the
set of terminals while the nodes in V \ (S+ ∪ S−) are called intermediate nodes.
We associate with each arc an integral capacity u(a), or ua, that is u : A → Z≥0. The only thing
in which a dynamic network differs from a static network is that in the dynamic setting each arc
also has an integral transit time given by the integral function τ : A→ Z≥0. We write τ(a) or τa
for the transit time of an arc a. The transit time of an arc a captures the dynamic effect of the
passing of time while flow travels along an arc. Flow that enters a a time θ ≥ 0 leaves the arc at
time θ + τa. The dynamic aspect of the networks is additionally covered by the given capacities
on the arcs, because – in contrast to static networks – the capacity in the dynamic setting is not a
bound on the overall amount of flow that is allowed on an arc, but it is an upper bound on the rate
at which flow can travel into an arc. If only a single source s or a single sink t is given, we write
N = (D,u, τ, s, t) instead of N = (D,u, τ, {s}, {t}).
Thus, a dynamic network N can be imagined as a system of pipes, where the transit time of an
arc is the analogue to the length of a pipe, while the capacity of an arc can be imagined as the
width of a pipe. A flow over time (in the continuous setting) is then similar to a liquid flowing from
the sources in S+ to the sinks in S− through the pipe system given by a dynamic network N . All
definitions needed in the context of flows over time are given in the following paragraphs.
Clearly, we can also consider static flows in a given dynamic network N = (D = (V,A), u, τ, S+, S−)
by just ignoring the transit times on the arcs. However, usually when we compute static flows in
a dynamic network the transit times are considered as costs on the arcs. Let x be a static flow
in N , then we can again consider the corresponding residual network Nx := (Df , uf , τ, S

+, S−).
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The dynamic network Nx is defined completely similar to the static case, with the sole difference
that in this case in Nx the transit times are extended to ←→A by setting τ(←−a ) := −τa for all
a ∈ A.

Discrete and Continuous Flows Over Time. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic
network. A flow over time in the dynamic network is a function that assigns a flow value to each
arc in A for each point in time. In the literature two settings of flows over time are considered.
When Ford and Fulkerson introduced flows over time in the 1950s [FF58; FF62] they considered a
discrete setting. In this setting only discrete points in time are considered, i.e., {1, 2, . . . , T} are
the first T points in time. In the continuous setting time is continuous and thus the whole real
interval [0, T ) has to be considered until time T . Clearly, the intervals [0, 1), [1, 2), . . . , [T − 1, T )
in the continuous setting can be identified with the first T points in time in the discrete setting.
Overall, we obtain the following two definitions of a flow over time with time horizon T .
A discrete flow over time in N is a function

f : A× {1, 2, 3, . . . , T} → R≥0,

while a continuous flow over time inN is a Lebesque integrable function

f : A× [0, T )→ R≥0.

From now on we will only consider the continuous setting and we assume that T is rational if not
stated otherwise. See Figure 2.5 for an illustration of a dynamic network and a flow over time. In
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Figure 2.5: A dynamic network and visualization of a flow over time that is obtained by sending flow at rate 1/2 into
the upper path and the horizontal path for three time units visualized at time θ = 3. In all the flow pictures
throughout this thesis, we assume that the arcs are directed from left to right.

contrast to static flows, a flow value f(a, θ) of a flow over time in a dynamic network N does not
give the overall amount of flow on arc a at time θ > 0 but the rate at which flow travels into the
arc a at time θ. Note that no flow is allowed in the network before time 0 and after time T . We also
say that a flow over time f in a dynamic network N has time horizon T if no flow remains in the
network after time T , i.e., it has to hold f(a, θ) = 0 for all a ∈ A and θ ≥ T − τa.
A flow over time f in N is feasible if it respects the capacities, i.e., f(a, θ) ≤ ua for all a ∈ A
at all times θ ∈ [0, T ), and flow conservation. Similar to flow conservation in the case of static
flows, flow conservation in the dynamic setting means that flow that travels out of an intermediate
node at some point in time θ has to have traveled into the node at some point before time θ.
Formally, we define the inflow inf (v, θ) of a continuous flow over time f into a node v ∈ V at time
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θ ≥ 0 to be the overall amount of flow that has traveled into node v until time θ in the flow over
time f ,

inf (v, θ) :=
∑

a∈δ−(v)

∫ θ−τa

0
f(a, ξ)dξ.

Similarly, the outflow outf (v, θ) from a node v ∈ V at time θ ≥ 0 is defined by,

outf (v, θ) :=
∑

a∈δ+(v)

∫ θ

0
f(a, ξ)dξ.

For v ∈ V the excess at a node v ∈ V and time θ ≥ 0 is the net amount of flow that has entered
the node v up to time θ, i.e.,

exf (v, θ) := inf (v, θ)− outf (v, θ).

Similarly, we define for all v ∈ V the net amount of flow that has left the node v up to time θ
by,

netf (v, θ) := − exf (v, θ).

The flow over time f fulfills weak flow conservation if exf (v, θ) ≥ 0 for each v ∈ V \ (S+ ∪ S−)
and all θ ∈ [0, T ) and exf (v, T ) = 0 for all intermediate nodes v. The flow satisfies strict flow
conservation if the stronger requirement

exf (v, θ) = 0

holds for all intermediate nodes v ∈ V \(S+∪S−) and all θ ≥ 0. Intuitively, if weak flow conservation
is allowed it means that we are allowed to store flow for some time at an intermediate node. The
value of a flow over time f at time θ is the overall amount of flow that has reached the sinks until
time θ and is defined as,

|f |θ :=
∑
t∈S−

exf (t, θ).

The total value of f is the value of f at time T .

Throughout this thesis, whenever we speak of a flow over time f in a network N , we mean
that f is a continuous feasible flow over time satisfying weak flow conservation if not stated
otherwise.

Path Flows Over Time. The above definition of a flow over time is an arc based definition: A flow
over time f in a given dynamic network N is a function specifying a flow value for each arc for each
point in time θ ∈ [0, T ) or θ ∈ {0, 1, 2, ..., T}. Similar to static flows we can, however, again consider
a path based definition. Given a dynamic network N = (D = (V,A), u, τ, S−, S+) recall that the set
of all s-t paths for every pair of s ∈ S+ and t ∈ S− is denoted by P.
A path flow over time f assigns a flow value to each path in P for each point in time θ ≥ 0.
The flow value at time θ ≥ 0 at some path P ∈ P specifies the inflow rate into this path at time
θ. Additionally, in a path flow over time flow travels along a path without waiting in between. To
ensure that the resulting flow is feasible, we have to make sure that not too much flow enters an arc
at the same time.
Before we get to the formal definition of path flows over time, we need some preliminary definitions.
For a path P ∈ P in a dynamic network N we define the length of P to be the overall transit time
τ(P ) of this path,

τ(P ) :=
∑
a∈P

τa.
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If P is a path from s ∈ S+ to t ∈ S− and v ∈ P is a node on that path, we denote the
corresponding sub-path from s to v by P[s,v] and the sub-path from v to t by P[v,t]. For an arc
a ∈ A and a given point in time θ ≥ 0, we denote the set of paths using arc a = (u, v) at time θ
by

Pθa := {P ∈ P | a ∈ P and τ(P[s,u]) ≤ θ and τ(P[u,t]) < T − θ}.

A path flow over time with time horizon T is a function x : P × [0, T )→ R≥0. Again, the flow
over time x has to satisfy the capacity constraint, i.e.,∑

P∈Pθa

x(P, θ − τ(P[s,u])) ≤ ua

for all arcs a = (u, v) and times θ ∈ [0, T ), and no flow arrives too late, i.e. x(P, θ) = 0 for all θ ∈
[T − τ(P ), T ). The total value of a path flow over time is given by

|x|T :=
∑
P∈P

∫ T

0
x(P, ξ)dξ.

Note that sending flow along a path automatically enforces strict flow conservation. Hence, we
do not have to worry about flow conservation here. However, path flows thus cannot be used to
model situations in which waiting at intermediate nodes is required without changing the underlying
network structure. It is clear that each path based flow over time x induces an arc based flow over
time f of the same value. On the other hand it is not immediate, how an equivalent path based flow
over time can be constructed from an arc based flow over time.

The Encoding Size Of Flows Over Time. One downside of flows over time is that the dependence
on time yields a super-polynomial natural encoding size. For an arc based flow over time f in a
network N with time horizon T we have to store one flow value per arc for each point in time, i.e.
for each θ ∈ [0, T ). The same clearly holds for a path based flow over time x. That there are in
the worst case exponentially many paths from S+ to S− in a dynamic network N is an additional
problem for a path based flow over time. The super-polynomial encoding size of a flow over time
seems unavoidable. However, nicer descriptions of flows over time are possible. In the next paragraph
we describe an especially useful class of flows over time.

(Generalized) Temporally Repeated Flows. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic
network and x a static flow with flow composition (xP )P∈P∪C according to Theorem 2.8. The
corresponding temporally repeated flow f with time horizon T is obtained by sending flow at a
constant rate into the (polynomially many) flow carrying paths from the flow decomposition of x as
long as possible, that is

f(a, θ) :=
∑
P∈Pθa

x(P ) for all a ∈ A and θ ∈ [0, T ).

Unfortunately, not many flow over time problem can be solved by temporally repeated flows as the
restriction that we have to start sending flow into a path at time zero is too limiting. However, all flow
over time problems considered in this thesis can be solved by generalized temporally repeated
flows that we define in the following. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and
x a static flow in the underlying static network. Recall that by ←→P , we denote the set of s-t paths in
the bidirected graph←→D for all pairs of s ∈ S+ and t ∈ S−. The collection (xP )

P∈
←→
P is a generalized

path decomposition of x if xP ≥ 0 for each P ∈ ←→P and

xa =
∑

P∈
←→
P :a∈P

xP −
∑

P∈
←→
P :←−a ∈P

xP for all a ∈ A.
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The generalized temporally repeated flow f corresponding to such a generalized path decom-
position is defined as

f(a, θ) :=
∑
P∈
↔
Pθa

x(P )−
∑

P∈
←→
P θ
←−a

x(P ), for all a ∈ A and θ ∈ [0, T ).

Thus, again we obtain f by sending flow at a constant rate xP along all flow carrying paths in the
generalized path decomposition xP . Note that the paths from the generalized path decomposition
are paths in Nx and hence also contain backwards arcs with negative transit time.
A temporally repeated flow f corresponding to a static flow x is a feasible flow over time by definition
as flow conservation is clearly fulfilled and the flow value on an arc a is bounded by the static flow
value x(a) at each point in time. For a generalized temporally repeated flow the same observation is
not necessarily true. It is possible that the flow value of an arc might be negative at some point
in time. This happens whenever flow along a backwards arc is sent when there is no flow on the
corresponding forward arc.
Temporally repeated flows were already introduced by Ford and Fulkerson [FF58] while generalized
temporally repeated flow were first considered by Hoppe and Tardos [HT00].

2.5.2 The Time-Expanded Network

One straightforward way to solve flow over time problems is using the so-called time-expanded
network. Time expansion is a concept to transform a dynamic problem with transit times and a
time horizon into a static problem without transit times and a time horizon that can be solved by
methods of static network flow theory. The downside of such a reduction is however that it usually
causes an exponential blow-up of the network size such that the resulting algorithms for flow over
time problems using time expansion are usually not of polynomial running time. The concept of
time expansion was introduced by Ford and Fulkerson in the same paper in which they introduced
the concept of flows over time [FF58].
The general idea behind time expansion is to remove the dependency on time from a given dynamic
network by introducing one copy of the underlying static network for each point in time. Thus,
we create one copy of each node in the dynamic network for each point in time, starting from
time θ = 1 on. These nodes are then connected by arcs according to the transit times of the
arcs from the original dynamic network. The resulting network is the time-expanded network.
When we want to allow storage of flow at intermediate nodes, holdover arcs are added to the
network. The holdover arcs connect two copies of the same node in adjacent time layers. Thus,
flow traveling through a holdover arc can be interpreted as flow waiting at a node for one time
step.

Definition of the Time-Expanded Network. Let N = (D = (V,A), u, τ, u, S+, S−) be a dynamic
network and T ≥ 0 an integral time horizon. For the construction of the time-expanded net-
work we additionally assume that we are given an integral supply/demand-function on the
terminals, i.e., b : S+ ∪ S−→ Z with b(s) > 0 for all s ∈ S+, b(t) < 0 for all t ∈ S− and
b(S+ ∪ S−) =

∑
s∈S+∪S− b(s) = 0. The corresponding time-expanded network is denoted

by
N T := (DT = (V T , AT ), uT , s∗, t∗)

while the time-expanded network with holdover arcs is denoted by

N T
h := (DT = (V T , ATh ), uT , s∗, t∗).

We will introduce all components of both versions of the time-expanded network in the follow-
ing paragraph. The set of nodes V T consists of T copies of the nodes from the original dy-
namic network N T , the original terminals S+ ∪ S−, a super-source s∗ and a super-sink t∗, that
is,

V T := {vθ | v ∈ V, θ ∈ {1, 2, . . . , T}} ∪ S+ ∪ S− ∪ {s∗, t∗}.
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The super-source s∗ forms the sole source of the time-expanded network while t∗ is its only sink.
For each arc a ∈ A from the dynamic network we create T − τa copies connecting a node copy
on layer θ with another node copy on layer θ + τa if the arrival time lies withing the given time
horizon. I.e., an arc a = (u, v) with transit time τa from the dynamic network results in T − τa
arcs in the time-expanded network originating from the nodes u1, u2, . . . , uT−τa . Overall we
define

A′ := {aθ = (uθ, vθ+τa) | a = (u, v) ∈ A and θ ∈ {1, 2, . . . , T − τa}}.

The original terminals S+ ∪S− of N are connected to their copies in each layer and the super-source
s∗ and super-sink t∗ are linked with the nodes in S+ and S−, respectively. The arcs connected to
S+ and s∗ are defined as follows,

A+ := {(s∗, s) | s ∈ S+} ∪ {(s, sθ) | s ∈ S+ and θ ∈ {1, 2, . . . , T}}.

The arcs connected to S− and t∗ are analogously defined by

A− := {(t, t∗) | t ∈ S−} ∪ {(tθ, t) | t ∈ S− and θ ∈ {1, 2, . . . , T}}.

The whole set of arcs AT is then defined by

AT := A′ ∪A+ ∪A−.

If we want to allow storage at intermediate nodes, we additionally add holdover arcs between copies
of intermediate nodes to the network,

H := {(vθ, vθ+1 | v ∈ V \ S+ ∪ S− and θ ∈ {1, 2, . . . , T − 1})}.

In this case we define ATh := A′ ∪A+ ∪A− ∪H . It remains to define the capacity function uT on the
arcs in AT . All arcs aθ corresponding to an arc a ∈ A from the dynamic network N get the capacity
ua of the arc a and the holdover arcs and the arcs connecting S+ and S− with their respective
copies get infinite capacity. The capacities of the arcs connecting s∗ and t∗ to S+ and S− depend on
whether we were given supplies/demands b for the terminals in the dynamic network, or not. If we
are not given a supply/demand function, we define for all a′ ∈ AT

uT (a′) := uTa′ :=
{
ua if a′ ∈ A′ with a′ = aθ for a ∈ A and θ ∈ {1, 2, . . . , T − τa},
∞ else .

If we are given a supply/demand function b, the arc linking s∗ to a source s ∈ S+ gets capacity b(s),
while an arc linking a sink t ∈ S− to t∗ gets capacity −b(t), i.e.,

uTa′ :=


ua if a′ ∈ A′ with a′ = aθ for a ∈ A and θ ∈ {1, 2, . . . , T − τa},
bs if a′ = (s∗, s) with s ∈ S+,

−bt if a′ = (t, t∗) with t ∈ S−,
∞ else.

See Figure 2.6 for an illustration of the time-expanded network.

The Time-Expanded Network for Rational Time Horizons. The construction of the time-expanded
network we described above only works if the given time horizon is integral. We will now briefly
describe how we can construct a time-expanded network for rational time horizons. For this purpose
assume that N is a dynamic network and T = p/q with p, q ∈ Z such that p ≥ 0 and q ≥ 1 is a
rational time horizon. The construction of the time-expanded network N T (or N T

h ) now works
mostly similar as above, but with two differences. First, we now construct a time layer for each
θ ∈ {1/q, 2/q, . . . , p/q}. The second difference are the capacities of the arcs connecting the time
layers. Let a ∈ A be an arc in N . In the rational version of the time-expanded network this arc get
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Figure 2.6: A dynamic network N with the corresponding time-expanded network N 4

q · (T − τa) copies. One copy, for each θ ∈ {1/q, 2/q, . . . T − τa}. Instead of giving each copy aθ of
this arc capacity ua in N T or (N T

h ), we define

uT (aθ) := 1
q
· ua.

All other arc capacities are defined similar to the integral case.

Flows Over Time and Static Flows in the Time-Expanded Network. Our next goal is to connect
flows over time in a given dynamic network N with static flows in the time-expanded network N T for
a given rational time horizon T = p/q. Essentially, we can find an equivalent flow over time without
storage in N for a given static flow in N T and vice versa. Analogously, we can find an equivalent
flow over time with storage for a static flow in N T

h and vice versa. Ford and Fulkerson [FF58] already
showed that given a static flow xT in N T (or N T

h ) we can find a flow over time f without storage
(or with storage) in N of the same value, i.e., |xT | = |f |T , and vice versa. We need slightly stronger
result.

Lemma 2.20. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and T = p/q with p, q ∈ Z,
p ≥ 0 and q ≥ 1 a rational time horizon. Each feasible static flow xT in N T (or N T

h ) yields a flow
over time f in N without storage (or with storage) with time horizon T such that

netxT ({u1/q, u1/q, . . . , uθ}) = netf (u, θ) for all u ∈ S+ ∪ S− and θ ∈ {1/q, 2/q, . . . , T}, (2.6)

i.e., in particular

|f |T = |xT |,

and vice versa. The same statement also holds if supplies and demands are given.

We do not give the proof of this lemma but refer to [Kap14]. We will, however, how to obtain the
corresponding flows.

Given a flow over time f with time horizon T in a dynamic network N , the static flow xT in
N T (or Nh) is defined as follows: We define the flow value on a copy aθ of an arc a ∈ A to be
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the the overall amount of flow that enters arc a in the flow over time f during [θ − 1/q, θ) for all
θ ∈ {1/q, 2/q, . . . , θ − τa},

xT (aθ) :=
∫ θ

θ−1/q
f(a, ξ)dξ, for all a ∈ A and θ ∈ {1/q, 2/q, . . . , T − τa}.

For any source s ∈ S+ and every θ ∈ {1/q, 2, /q . . . , θ/q} we define

xT ((s, sθ)) := outf (s, θ)− outf (s, θ − 1/q),

Similarly, we define for each t ∈ S− and θ ∈ {1/q, 2/q, . . . , θ}

xT ((tθ, t)) := inf (t, θ)− inf (t, θ − 1/q).

Accordingly, we define xT ((s∗, s)) to be the amount of flow that leaves the source s ∈ S+

in f ,

xT ((s∗, s)) := outf (s, T ) for all s ∈ S+,

and

xT ((t, t∗)) := inf (t, T ) for all t ∈ S−.

If holdover arcs are present, we define

xT ((vθ, vθ+1/q)) := exf (v, θ) for v ∈ V \ (S+ ∪ S−) and θ ∈ {1/q, 2, /q . . . , T − 1/q}.

On the other hand, let xT be a static flow in the time-expanded network N T (or N T
h ). Denote by r

the function that rounds down θ ∈ [0, T ) to the element in {1/q, 2/q, . . . , T} that is nearest to θ.
We define the flow over time f in N as follows,

f(a, θ) := xT (ar(θ)+1/q) · q,

for all a ∈ A and θ ∈ [0, T ).
A lot of flow over time problems can be solved by using methods from static flow theory in the
time-expanded network. However, algorithms for flow over time problems obtained in this way are
usually not of polynomial running time, because the size of the time-expanded network depends
linearly on T and T is generally not polynomially bounded.

2.5.3 The Maximum Flow Over Time Problem

We will illustrate the techniques defined in the previous section on the Maximum Flow over
Time Problem, the most basic extension of a static network flow problem to the temporal setting.
The maximum flow over time problem was already introduced by Ford and Fulkerson in the 1950s.
Given a dynamic network N = (D = (V,A), u, τ, S+, S−) and a time horizon T ≥ 0, the goal of the
maximum flow over time problem is to compute a flow over time f in N from S+ to S− with time
horizon T with maximal value.

Maximum Flow over Time Problem
Instance: A dynamic network N = (D = (V,A), u, τ, S+, S−) and a time

horizon T
Task: A flow over time f with time horizon T maximizing the total

flow value |f |T
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By attaching a super-source and a super-sink we can again reduce the general maximum flow over
time problem to the maximum flow over time problem in networks with only a single source
and a single sink. The new arcs added to create the extended network all get zero transit
time.

Solving the Maximum Flow Over Time Problem in the Time-Expanded Network. It is easy to
see that a maximum flow over time can be computed in the time-expanded network using Lemma 2.20.
The lemma states that any flow in the time-expanded network yields a flow over time of the same
value. Thus, a maximum flow over time corresponds to a maximum flow in the time-expanded
network. Hence, we obtain the following algorithm for computing a maximum flow over time using
the time-expanded network. The size of the time-expanded network is not necessarily bounded in the

Algorithm 4: Algorithm for the maximum flow over time problem using the time-expanded network
Input :A dynamic network N = (D = (V,A), u, τ, S−, S−) and a (rational) time horizon T
Output :A maximum flow over time f with time horizon T

1 N T ← time-expanded network corresponding to N and T
2 xT ← maximum s∗-t∗ flow in N T

3 f ← flow over time with time horizon T corresponding to fT
4 return f

original input size because T is not bounded. Thus, the algorithm above only has pseudo-polynomial
running time.

The Algorithm of Ford and Fulkerson. Because of the natural exponential encoding size and the
dependence on T in a maximum flow over time problem, it might be surprising that this problem
can be solved fairly simple in strongly polynomial time using temporally repeated flows. It is a
result by Ford and Fulkerson [FF58] that a maximum flow over time problem can always be solved
by a temporally repeated flow and hence in order to solve such a problem it suffices to compute a
temporally repeated flow with time horizon T of maximal value. Note that a temporally repeated
flow with time horizon T can only send flow along paths of length at most T . For such a temporally
repeated flow, we make the following observation: Let N = (D = (V,A), u, τ, S+, S−) be a dynamic
network and T ≥ 0 a time horizon. Let x be a static flow from S+ to S− in the static network
underlying N with flow decomposition (xP )P∈P∪C such that xP = 0 for all P ∈ P with τ(P ) < T .
We get for the value of the corresponding temporally repeated flow f

|f | =
∑
P∈P

(T − τ(P )) · xP

= T ·
∑
P∈P

xp −
∑
P∈P

∑
a∈P

τa · xP

= T · |x| −
∑
a∈A

τa ·
∑

P∈P:a∈P
xP

= T · |x| −
∑
a∈A

τa · xa.

In particular, note that the value of such a temporally repeated flow does not depend on the specific
path decomposition.

In fact, the main idea of the algorithm of Ford and Fulkerson for the maximum flow over time
problem is to compute a temporally repeated flow f with time horizon T corresponding to a static
flow x that maximizes T · |x| −

∑
a∈A τa · xa. It turns out that a static flow x maximizing this value

can be computed by just one minimum-cost flow computation in a slightly extended network Ñ .
The extended network Ñ is obtained by attaching a super-source s∗ and a super-sink t∗ to N
by arcs with infinite capacity and zero transit time. Additionally, we add an arc (t∗, s∗) with
infinite capacity and transit time −T . Let x be a minimum-cost circulation in Ñ where the
transit times are regarded as the cost function. The flow value on the arc (t∗, s∗) equals the
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Algorithm 5: Ford-Fulkerson algorithm for the maximum flow over time problem, FF(N , T )
Input :A dynamic network N = (D = (V,A), u, τ, S−, S−) and a time horizon T ∈ Z+
Output :A maximum flow over time f with time horizon T given as a temporally repeated flow

1 Ṽ ← V ∪ {s∗, t∗}
2 Ã ← A ∪ {(s∗, s) | s ∈ S+} ∪ {(t, t∗) | t ∈ S−} ∪ {(t∗, s∗)}
3 define τ((s, s∗)) := 0 for all s ∈ S+, τ((t, t∗)) = 0 for all t ∈ S− and τ((t∗, s∗)) = −T
4 define u((s, s∗)) :=∞ for all s ∈ S+, u((t, t∗)) =∞ for all t ∈ S− and u((t∗, s∗)) =∞
5 Ñ ← (D = (Ṽ, Ã), u, τ, s∗, s−)
6 x′ ← static minimum-cost circulation in Ñ with τ as costs
7 x ← static s∗-t∗ flow corresponding to x
8 (xP )P∈P∪C ← flow decomposition of x
9 f ← temporally repeated flow corresponding to (xP )P∈P∪C

10 return f

overall flow value of the corresponding s-t flow in N , that is the overall cost of the static flow x
is ∑

a∈A
τaxa − T · |x|.

Thus, since x is a minimum cost circulation, it maximizes T |x| −
∑
a∈A τaxa as required. To deduce

that a corresponding temporally repeated flow also maximizes this value, we need to argue that a
path decomposition of x cannot contain a path of length at least T . But this is straightforward as
such a path in the flow decomposition would induce a negative cycle in the residual graph and hence
would contradict the fact that x is a minimum cost circulation.
Our arguing above directly implies that Algorithm 5 returns a temporally repeated flow with time
horizon T of maximal value. It is not directly clear that the returned flow over time f is also a flow
over time with an overall maximal value. However, this was shown by Ford and Fulkerson [FF58] in
1958 by using a generalization of the max flow - min cut theorem for flows over time. We can thus
conclude with the following fact:

Fact 2.21. Let N a dynamic network and T ≥ 0 a time horizon. The corresponding maximum flow
over time can be solved by one minimum-cost flow computation in the underlying static network.

2.5 Flows Over Time 39





3Flow Over Time Problems

In this chapter we give a thorough overview over the state of the art regarding
the two classical flow over time problems that we mainly focus on throughout
this thesis: The Quickest Transshipment Problem and the Earliest Arrival
Transshipment Problem. For both problems we precisely describe the currently
best known algorithms for exactly solving these problems and in case of the earliest
arrival transshipment problem we also shortly review the state of the art regarding
approximation algorithms. Moreover, we give a short overview over our main
contributions in the context of both problems.

Contents
3.1 The Quickest Transshipment Problem . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Checking Feasibility of a Transshipment Over Time Problem . . . . . . . 44
3.1.2 Lexicographically Maximum Flows Over Time . . . . . . . . . . . . . . . 47
3.1.3 The Algorithm of Hoppe and Tardos . . . . . . . . . . . . . . . . . . . . 50
3.1.4 Summary and Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Earliest Arrival Flows and Earliest Arrival Transshipments . . . . . . . . . . . 53
3.2.1 Earliest Arrival Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Earliest Arrival Transshipments. . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Approximation of Earliest Arrival Transshipments . . . . . . . . . . . . 62
3.2.4 Summary and Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 The Quickest Transshipment Problem
In the previous section we introduced flows over time as an extension of classical (static) network
flows that also incorporates a time component. In many applications connected with network flows
time plays a vital role, for example in routing problems or problems from logistics. Flows over time
are much better suited to model real life problems from such areas than static network flows, which
simply ignore the time dependence of the problems they are used to model. One application of
flows over time, where their advantage over classical network flows becomes most apparent, are
evacuation scenarios. Taking time into account is obviously essential when trying to rescue people
from life threatening situations. Imagine, for example, a cruise ship on the ocean that gets into
distress such that all the passengers have to be evacuated into the lifeboats. Of course, the goal in
such a situation is to lead all passengers to the safety of the lifeboats as quickly as possible. In order
to create a suitable evacuation strategy, one could model the cruise ship as a dynamic network in
which the lifeboats are located at the sinks and the cabins of the passengers at the sources of the
network. Clearly, the number of people that fit into a lifeboat is bounded while also only a certain
number of passengers can stay in a cabin. An evacuation strategy needs to respect these bounds, i.e.,
it doesn’t make sense to try to evacuate more people from a cabin than are accommodated there,
whereas it is even life-threatening to put more passengers into a lifeboat than it is safe to carry. This
leads to the quickest transshipment problem in which we are given a dynamic network N and
a supply/demand function on the terminals which gives each source a positive supply and each sink
a negative demand. The goal is to find a flow over time that satisfies all supplies and demands as
quickly as possible.
In contrast to the static transshipment problem with multiple sources and sinks the quickest
transshipment problem with multiple sources and sinks cannot be reduced to the case with only
a single source and a single sink. Adding super terminals is of no use in the dynamic setting as
shifting the supplies and demands to them leaves us with no guarantee that the computed flow over
time respects the original supplies and demands. Adding suitable capacities to the arcs connected to
the super-terminals also does not help as these capacities only bound the rate at which flow might
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travel into them.
Thus, it makes sense to distinguish between the general quickest transshipment problem in networks
with multiple sources and sinks (we will also separately consider networks with only one source or
one sink) and the quickest transshipment problem in networks with a single source and a single sink,
which is also called the quickest flow problem.

The Quickest Flow Problem. As already stated above, in the quickest flow problem we are given a
dynamic network N = (D = (V,A), u, τ, s, t) with a single source s and a single sink t with a supply
b(s) and a demand b(t) such that b(s) = −b(t). The goal is to find the minimal time horizon T such
that a flow over time that fulfills the supply and demand exists and to compute the corresponding
flow. In other words, we want to find the minimal time horizon T such that the value of a maximum
flow over time with time horizon T in N is b(s). One application of such a flow are evacuation
scenarios in which people need to be brought from one isolated endangered area at the source to
a safe location at the single sink [Ber78; CFS82; CHT88; HT02]. An example for a quickest flow
problem can be seen in Figure 3.1.

The Quickest Flow Problem, (N , s)

Instance: A dynamic network N = (D = (V,A), u, τ, s, t) with only a
single source s and a single sink t together with a supply b(s)
and a demand b(t) such that b(s) = −b(t)

Task: Compute a flow over time f with minimal time horizon T that
fulfills the supply and demand.
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(b) A quickest flow with respect to the given dy-
namic network is obtained by sending flow at
rate 1 into both of the indicated paths during
[0, 3). This results in a minimal time horizon of
8.

Figure 3.1: An example for a quickest flow problem

An algorithm with pseudo-polynomial running time for the quickest flow problem can clearly be
achieved by doing (static) maximum flow computations in the time-expanded network paired with
binary search to determine the minimal time horizon. For this purpose denote by d(N , s, t) the
length of a shortest path from s to t with respect to τ in a dynamic network N and let P ∈ P be a
corresponding shortest s-t path. The maximal rate at which we can send flow into P is mina∈P ua
and we can send flow into P for at most b(s)/mina∈ ua time units until the supply is exhausted.
This implies that d(N , s, t) + b(s)/mina∈ ua gives an upper bound on the minimal time necessary to
be able to fulfill the supply and demand.
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Observation 3.1. Let (N , b) with N = (D = (V,A), u, τ, s, t) be an instance of the quickest flow
problem. The minimal time horizon necessary to be able to fulfill all supplies and demands is at
most d(N , s, t) + b(s)/mina∈ ua.

This upper bound can be incorporated into the binary search framework. A weakly polynomial
time algorithm can be achieved by coupling the maximum flow over time algorithm by Ford and
Fulkerson (see Algorithm 5) with binary search using the upper bound on the minimal time horizon
from Observation 3.1. For a strongly polynomial time algorithm the algorithm of Ford and Fulkerson
can be paired with the parametric search framework of Megiddo (see Section 2.2). Applying the
parametric search framework without any adaption leads to an algorithm for the quickest flow
problem with running time O(CT (FF(N , T )) · FF(N , T )). Here, CT (FF(N , T )) is the number of
comparisons depending on the parameter T needed when applying the algorithm of Ford and
Fulkerson to a dynamic network N with time horizon T . We denote this algorithm by by FF(N , T )
(see also Section 2.5.3). Burkhard, Dlaska and Klinz [BDK93] specifically tailor the parametric search
framework of Medgiddo [Meg79; Meg83] to the quickest flow problem and achieve an algorithm with a
strongly polynomial running time in O(m2(log n)3(m+n log n)). Their algorithm needs to repeatedly
call subroutines that solve static minimum-cost flow problems. In 2015, Lin and Jaillet [LJ15] devised
a polynomial time algorithm for the quickest flow problem whose worst case running time is the
same as the one of the cost scaling algorithm of Goldberg and Tarjan [GT87; GT90] for solving static
minimum-cost flow problems. Their result showed that quickest flow problems can be solved in the
same time bound as one of the fastest algorithm for the minimum-cost flow problem. The algorithm
of Lin and Jaillet gives a weakly polynomial running time in O(nm log(n2/m) log(nC)) where C is
the maximum transit time of an arc. Recently, Saho and Shigeno [SS17a] achieved an algorithm
with strongly polynomial running time in O(nm2(log n)2) by replacing the scaling phases in the
algorithm of Lin and Jaillet with procedures of the cancel-and-tighten algorithm for minimum-cost
flows. The algorithm of Saho and Shigeno is currently the fastest known algorithm for the quickest
flow problem with a strongly polynomial running time.

Fact 3.2. An instance (N , b) of the quickest flow problem with N = (D = (V,A), u, τ, s, t) can be
solved in strongly polynomial running time O(nm2(log n)2) using the algorithm of Saho and Shigeno
[SS17a].

When considering evacuation scenarios being limited to networks with only a single source and a
single sink is clearly too restrictive. Usually, the evacuees are not located in a single area. For
example, in order to devise an evacuation strategy for a huge building or a stadium filled with
people, it clearly does not suffice to assume that all people are located on a single floor or in a
certain area of the stadium. However, it might be sufficient to assume that there is only one safe
area to which all endangered people are evacuated, i.e., the outside of the building. The version of
the quickest transshipment problem with multiple sources with supplies but only a single sink is
sometimes referred to as evacuation problem. There has been some research towards algorithms
for special cases of the evacuation problem. Mamada et al. [Mam+06] gave an O(n log2 n) algorithm
for tree networks. Hall et al. [HHS03] studied the case called uniform path-lengths where there exists
a single sink t and for any vertex v the sum of transit times of arcs on any path from v to t takes
the same value. Kamiyama et al. [KKT06] devised an O(n log n) time algorithm for grid networks
of size

√
n×
√
n with uniform path lengths. In a later paper Kamiyama [KKT09] generalized the

class for which they achieve efficient algorithms to the class of dynamic networks with a single sink
t with uniform path-lengths and with the property that for each vertex v the minimum v-t cut is
determined by the arcs incident to t whose tails are reachable from v. However, the best known
algorithm for the evacuation problem in general dynamic networks is still also the best possible
algorithm for the general quickest transshipment problem for which we device a new algorithm
throughout this thesis.

The Quickest Transshipment Problem. An instance (N , b) of the quickest transshipment
problem consists of a dynamic network N = (D = (V,A), u, τ, S+, S−) and a supply/demand
function b : S+ ∪ S−→ Z on the terminals such that b(s) > 0 for all s ∈ S+ and b(t) < 0 for all
t ∈ S− and

∑
s∈S+∪S− b(s) = 0. The goal is to compute a flow over time f in N with minimal time

horizon T that fulfills all supplies and demands.

3.1 The Quickest Transshipment Problem 43



The Quickest Transshipment Problem (N , b)

Instance: A dynamic network N = (D = (V,A), u, τ, S+, S−) with a
supply/demand function b : S+ ∪ S−→ Z on the terminals

Task: Compute a flow over time f in N that fulfills all supplies and
demands with minimal time horizon.

Of course, quickest transshipment problems can be solved using time expansion and a search
framework in pseudo-polynomial running. However, coming up with (strongly) polynomial running
time algorithms for this problem is much more complicated. In 1995 Hoppe and Tardos published
the first algorithm for this problem with a strongly polynomial running time. Afterwards no
improvements regarding algorithms for the general version of the quickest transshipment problem
have been made for more than 20 years. The only results published in the meantime all considered
special settings (see the results about the quickest and the evacuation problem that we mentioned
above and [Fle01]). In Chapter 4 of this thesis we present the first improvement upon the algorithm
of Hoppe and Tardos for the quickest transshipment problem.
Understanding the foundations of Hoppe and Tardos’ algorithm is vital to understanding the
contributions of this thesis. Thus, in the following we give an overview over the results that the
algorithm of Hoppe and Tardos is based on.

The algorithm of Hoppe and Tardos works in two phases. In the first phase the minimal feasible
time horizon of a given quickest transshipment problem (N , b) is determined and in the second phase
the actual flow over time solving the quickest transshipment problem is computed. The minimal feasi-
ble time horizon is the minimal time needed to be able to fulfill all supplies and demands. In the second
phase a so-called transshipment over time problem is solved:

The Transshipment over Time Problem (N , b, T )

Instance: A dynamic network N = (D = (V,A), u, τ, S+, S−) with a
supply/demand function b : S+ ∪ S−→ Z on the terminals and
a time horizon T ≥ 0

Task: Compute a flow over time f in N with time horizon T that
satisfies all supplies and demands if such a flow exists.

It is not straightforward how to solve such a transshipment over time problem (N , b, T ) in
strongly polynomial time. As we already mentioned before, introducing super terminals and then
using the algorithm of Ford and Fulkerson for the maximum flow over time problem with time
horizon T in the extended network does not help in this case. Hoppe and Tardos manage to reduce
transshipment over time problems (N , b, T ) to lexicographically maximum (lex-max) flow over time
problems, for which they present a strongly polynomial time algorithm. Before we describe this
reduction, which relies on 2|S+ ∪ S−|+ 1 many parametrized submodular function minimizations
and their algorithm for the lex-max flow over time problem in more detail, we explain how the
minimal feasible time horizon of a quickest transshipment problem can be found by using a feasibility
criterion of Klinz [Kli]. This is also how Hoppe and Tardos find the minimal feasible time horizon in
their algorithm.

3.1.1 Checking Feasibility of a Transshipment Over Time Problem
Let (N , b, T ) be a transshipment over time problem corresponding to a dynamic network N = (D =
(V,A), u, τ, S+, S−), b : S+ ∪ S−→ Z a supply/demand function on the terminals, and T a time
horizon. The transshipment over time feasibility problem is the decision problem of checking
whether there exists a flow over time f in N with time horizon T that satisfies all supplies and
demands.
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The transshipment over Time Feasibility Problem
Instance: A dynamic network N = (D = (V,A), u, τ, S+, S−) with a

supply/demand function b : S+ ∪ S−→ Z on the terminals and
a time horizon T

Task: Return Yes if a flow over time solving the transshipment
problem (N ,b, T ) exists and No, otherwise

A criterion for the feasibility of a given transshipment problem (N , b, T ) is due to Klinz [Kli]. It relies
on the parametrized set function oT defined in the following.

Definition 3.3.
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and T ≥ 0 a time horizon. The set
function oT : 2S+∪S−→ R is defined as follows,

oT (X) :=
the maximal amount of flow that can be sent
from the sources in S+ ∩X to the sinks in S− \X until time T,

for all X ⊆ S+ ∪ S−.

Before we present some deeper results about the set function oT , we start with the following
observation:

Observation 3.4. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network, T ≥ 0 a time horizon,
and N T = (DT = (V T , AT ), uT , s∗, t∗) the corresponding time-expanded network as defined in
Section 2.5.2. We have

oT (X) = min{uT (δ+(U)) | U ⊆ V T , X ∩ S+ ⊆ U and (S− \X) ∩ U = ∅}.

Proof. By definition oT (X) is the maximum value of flow that can be sent from S+ ∩X towards
S− \X until time T . Let f be a flow over time with time horizon T in N that sends a flow of value
oT (X) from the sources in S+ ∩X to the sinks in S− \X until time T and assume that no flow is
sent out of or towards the other terminals.
By Lemma 2.20 there exists a corresponding static flow xf in the time-expanded network N T , in
which the same amount of flow is sent from S+ ∩X towards S− \X. This is also the maximum
amount of flow that can be sent between these sets of terminals in the time-expanded network.
Applying the max-flow min-cut theorem (Theorem 2.10) thus yields

oT (X) = |f |T = |xf | = min{uT (δ+(U)) | U ⊆ V T , X ∩ S+ ⊆ U and (S− \X) ∩ U = ∅}.

Assume we are given a transshipment over time problem (N , b, T ). If there exist subsets U ⊆ S+

and X ⊆ S− such that oT (U ∪ X) < b(U ∪ X), then it is obvious that a flow over time solving
(N , b, T ) does not exist: The maximum amount of flow that the sources in U can send towards the
sinks in S− is clearly upper bounded by oT (U ∪X)− b(X). Thus, if oT (U ∪X) < b(U ∪X) , then
the sources in U in a flow over time respecting the supplies and demands can never send more than
oT (U ∪X)− b(X) < b(U). Thus, the supply of U can never be satisfied. It is due to Klinz [Kli] that
the other direction also holds.

Theorem 3.5 (Feasibility Criterion, [Kli]).
A transshipment problem (N , b, T ) is feasible if and only if

oT (X) ≥ b(X) for all X ⊆ S+ ∪ S−.
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Proof. This theorem is a consequence of Gale’s (see e.g., [Sch03]) feasibility theorem for trans-
shipments in static networks and Observation 3.4. We denote by N T the time-expanded network
corresponding to N and the time horizon T . In contrast to the definition of N T in Section 2.5.2 we
now assume that S+ ∪ S− are also the terminals of N T . Additionally, we assume that there is a
supply/demand function bT on V T which is equal to b on S+ ∪ S− and zero, otherwise.
By Lemma 2.20 the dynamic transshipment problem (N , b, T ) is feasible if and only if the corre-
sponding static transshipment problem (N T , bT ) is feasible. Gale’s theorem [Sch03] now states that
(N T , bT ) is feasible if and only if

uT (δ+(U)) ≥ bT (U) for all U ⊆ V T . (3.1)

Assume at first that (N , b, T ) is not feasible, i.e., (N T , bT ) is not feasible and by Gale’s theorem there
exists a subset U∗ ⊆ V T with uT (δ+(U∗)) < bT (U∗). This immediately implies that some terminals
have to be contained in U∗ as otherwise we would have bT (U∗) = 0 and thus uT (δ+(U∗)) ≥ bT (U),
because uT (δ+(U∗)) ≥ 0 by the definition of uT .
Let X ⊆ S+ ∪ S− be the set of terminals contained in U∗, i.e., δ+(U∗) is a cut in N T separating
S+ ∩X and S− \X. Observation 3.4 thus yields oT (X) < b(X).
If (N T , bT ) is feasible, then the fact that all inequalities in (3.1) are fulfilled implies together with
Observation 3.4 that oT (X) ≥ b(X) for all X ⊆ S+ ∪ S−.

It was first observed by Megiddo [Meg74] that the function oT is in fact a submodular function for
every time horizon T ≥ 0.

Theorem 3.6 ([Meg74; HT00]).
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and T ≥ 0 a time horizon. The
function oT : 2S+∪S−→ R is a submodular function.

Proof. This theorem is a consequence of Observation 3.4 and the fact that cut functions in directed
graphs are submodular. Let X ⊆ S+ ∪ S− and Y ⊆ S+ ∪ S−. Observation 3.4 states that oT (X)
equals the value of a minimum cut separating X ∩ S+ and X \ S− in the time-expanded network
N T (again with terminals S+ ∪ S−), the similar statement holds for oT (Y ). Let U,U ′ ⊆ S+ such
that δ+

NT (U) is a minimum cut corresponding to oT (X) and δ+
NT (U) a minimum cut corresponding

to oT (Y ). Using the fact that cut functions in directed graphs are submodular we achieve

oT (X) + oT (Y )Obs. 3.4= uT (δ+
NT (U)) + uT (δ+

NT (U ′))
Ex. 2.2
≥ uT (δ+

NT (U ∪ U ′)) + uT (δ+
NT (U ∩ U ′)).

In order to show the submodularity of oT it thus remains to be shown that oT (X∪X) ≤ uT (δ+
NT (U ∪

U ′)) and oT (X∩X) ≤ uT (δ+
NT (U∩U ′)), i.e., it suffices to deduce that δ+

NT (U∪U ′) is a cut separating
S+ ∩ (X ∪ Y ) and S− \ (X ∪ Y ) while δ+

NT (U ∩ U ′) is a cut in N T separating S+ ∩ (X ∩ Y ) and
S− \ (X ∩ Y ).
For this purpose note that we have by assumption S+ ∩X ⊆ U , (S− \X) ∩ U = ∅, S+ ∩ Y ⊆ U ′
and (S− \ Y ) ∩ U = ∅. Thus, we get

S+ ∩ (X ∪ Y ) = S+ ∩X ∪ S− ∩ Y ⊆ U ∪ U ′,
(S− \ (X ∪ Y )) ∩ (U ∪ U ′) = (S− \X) ∩ (S− \ Y ) ∩ (U ∩ U ′) = ∅ and

S+ ∩ (X ∩ Y ) ⊆ U ∩ U ′,
(S− \ (X ∩ Y )) ∩ (U ∩ U ′) = ((S− \X) ∪ (S− \ Y )) ∩ (U ∩ U ′) = ∅.

In order to check whether a given transshipment over time problem (N , b, T ) is feasible, we can
thus just minimize the submodular function oT − b. If the minimum is at least zero, then according
to Theorem 3.5 the problem is feasible. If the minimum is smaller than zero, Theorem 3.5 implies
the infeasibility of the problem. Fortunately, submodular functions can be minimized in strongly
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polynomial time if we have a strongly polynomial time evaluation oracle for the submodular function.
Thus, in order to be able to efficiently minimize the submodular function oT − b, we need an efficient
algorithm to evaluate this function at arbitrary subsets of S+ ∪S−. The following observation shows
that we can compute the value of oT at every subset of S+ ∪ S− by just one static minimum-cost
flow computation in the static network corresponding to N .

Observation 3.7. Let N = (D,u, τ, S+, S−) be a dynamic network, T ≥ 0 a time horizon, U ⊆ S+

and X ⊆ S−. The value of a maximum s-t flow over time with time horizon T in the network Ñ in
which we attach a super-source s to the sources in U and a super-sink t to the sinks in S− \X by
arcs with zero transit time and infinite capacity is equal to oT (U ∪X). Thus, we can compute the
value of oT (U ∪X) by using the algorithm of Ford and Fulkerson (see Algorithm 5) in the dynamic
network Ñ .

Putting together Theorems 3.5, and 3.6 and Observation 3.7 thus yields that the feasibility of a given
transshipment problem can be checked in strongly polynomial running time by doing submodular
function minimization of oT − b.

Fact 3.8. Given a transshipment over time problem (N , b, T ), its feasibility can be checked in running
time O(k3 log k ·MCF(n,m)+k4 logO(1) k) by using the submodular function minimization algorithm
of Lee, Sidford and Wong [LSW15] with k := |S+ ∪ S−|.
Given an instance (N , b) of the quickest transshipment problem, the minimal feasible time horizon
T ∗ can be determined in strongly polynomial time by pairing a submodular function minimization
algorithm with strongly polynomial running time with Megiddo’s parametric search framework.
The best overall running time that can be achieved this way is O(CT (SFMLee)·(k3 log3 k ·MCF(n,m)+
k4 logO(1) k)) where CT (SFMLee) is the number of comparisons depending on the parameter T done
in the algorithm of Lee, Sidford and Wong.

In order to better understand the worst case running time of parametric search paired with the
algorithm of Lee et al. for determining T ∗, we need to look at the number of comparisons CT (SFMLee)
in this algorithm that depend on the parameter T . Recall, that each such comparison leads to a new
execution of the algorithm of Lee at al. during the parametric search framework (See Section 2.2).
In the worst case the algorithm SFMLee does O(k3 · log k) calls to an evaluation oracle for the
submodular function at hand, i.e., in our case it does in the worst case O(k3 · log k) minimum-cost
flow computations in a network in which the cost of one arc is linearly parametrized by our parameter
T (see Observation 3.7 and Algorithm 5). That is, each of these minimum-cost flow computations
will contain at least one comparison depending on our parameter T (and probably more). We can
thus conclude with the following observation:

Observation 3.9. Let (N , b) be an instance of the quickest transshipment problem. The best known
strongly polynomial time algorithm to determine T ∗ has a running time in O(CT (SFMLee) · (k3 log k ·
MCF(n,m) + k4 logO(1) k)) with k := |S+ ∪ S−|, n = |V | and m = |A|. Additionally we have

CT (SFMLee) 6∈ O(k3−ε log k · CT (MCF(n,m)))

for every ε > 0 and CT (MCF(n,m)) ≥ 1.
Overall, for this specific example, pairing the algorithm of Lee et al. with parametric search increases
the worst case running time of this algorithm by at least a factor of k3 log k.

3.1.2 Lexicographically Maximum Flows Over Time
In the previous section we described the first part of the algorithm of Hoppe and Tardos for
determining the minimal feasible time horizon T ∗ of a quickest transshipment problem (N , b).
The second part of their algorithm is the computation of the actual flow over time f solving
the transshipment over time problem (N , b, T ∗). The main idea of the flow computation is to
efficiently reduce it to a lexicographically maximum flow over time problem and to solve
this problem efficiently. In this section we define the lexicographically maximum flow over time
problem and shortly present the algorithm that Hoppe and Tardos developed in [HT00] to solve
such problems.
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Definition and Existence of Lexicographically Maximum Flows Over Time. Let N = (D =
(V,A), u, τ, S+, S−) be a dynamic network. Lexicographically maximal flows over time have, similar
to their static equivalent (see Section 2.4.4), the property that they maximize the net amount of flow
that leaves the terminals during a given time horizon with respect to a linear ordering on the terminals.
For the formal definition of lexicographically maximum flow over time we assume that we are given
a total order ≺ on the set of terminals S+ ∪ S−. For simplicity, say S+ ∪ S− = {s1, s2, . . . , sk} with
si ≺ sj for all i, j ∈ {1, . . . , k} with i < j. We say that s ∈ S+ ∪ S− has a higher priority than
s′ ∈ S+ ∪ S− with respect to ≺ if s ≺ s′.
A flow over time f with time horizon T is a lexicographically maximum (lex-max) flow over
time with respect to the ordering ≺ if it maximizes the net amount of flow leaving the terminals within
the given order ≺. For the sinks this means that f minimizes the flow entering the sinks within the
given order. A flow over time f1 in N with time horizon T is lexicographically bigger than a flow
over time f2 with time horizon T with respect to ≺, or f1 ≥lex f

2, if

∃l ∈ {0, 1, . . . , k − 1} with | netf1(si, T )| = | netf2(si, T )| for all i ∈ {1, 2, . . . , l} and
| netf1(sl+1, T )| > | netf2(sl+1, T )|,

or if

| netf1(si, T )| = | netf2(si, T )| for all i ∈ {1, 2 . . . , k}.

A flow over time f in the dynamic network N with time horizon T is a lexicographically maximum
flow over time with respect to ≺ if it is lexicographically bigger than any other flow over time f ′
in N with time horizon T . The lexicographically maximum flow over time problem is the
problem of finding a lexicographically maximal flow over time with respect to some linear order on
the terminals and some time horizon T .

Lexicographically Maximum Flow Over Time Problem (N ,≺, T )

Instance: A dynamic network N = (D = (V,A), u, τ, S+, S−), a linear
order ≺ on S+ ∪ S−, and a time horizon T ≥ 0

Task: Compute a flow over time f in N with time horizon T that is
lexicographically maximal with respect to the linear order ≺

Minieka [Min73] and Megiddo [Meg74] derived the existence of static lexicographically maximal flows
(see also Section 2.4.4). Their result also implies the existence of lexicographically maximal flows
over in using the time-expanded network. As the time-expanded network is exponentially larger
than the underlying original dynamic network, the algorithms of Minieka or Megiddo, and also the
method using the algorithm of Gallo et al. [GGT89] (see Section 2.4.4) cannot be used directly to
solve the lexicographically maximum flow over time problem efficiently. In [HT00] Hoppe and Tardos
present a strongly polynomial time algorithm for this problems that only works on the original
dynamic network without using any significant forms of expansion.

The Algorithm of Hoppe and Tardos for the Lexicographically Flow Over Time Problem. As
the lexicographically maximal flow over time algorithm of Hoppe and Tardos will be important
throughout this thesis, we will give a verbal description of the workings of this algorithm and also
its formal formulation (see Algorithm 6).

Let (N ,≺, T ) be a lex-max flow over time problem and assume that S+ ∪ S− = {s1, . . . , sk} with
s1 ≺ s2 ≺ . . . ≺ sk. Note that a lex-max flow over time (as a consequence from our knowledge
regarding static lex-max flows) fulfills the property that in such a flow over time a source s ∈ S+

only sends flow towards a sink t ∈ S− if we have s ≺ t. The first step of the algorithm of Hoppe
and Tardos is to attach a super-source s to all the sources in S+. TThus, the algorithm of Hoppe
and Tardos iterates over all terminals starting with the terminals with lower priority. Basically
nothings happen before the first sink si is found in iteration i of the algorithm. The sources that
appeared in the previous iterations are ordered behind all the sinks in the ordering ≺ and thus
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do not need to send any flow according to our remark above. Thus, all that is done in these
iterations is to disconnect these sources from the super-source s such that they are ignored in the
following iterations. The first sink si intuitively needs to receive as much flow as possible until
time T from all the sources that have a higher priority than si. Thus, this is what is computed
in iteration i: a max-flow over time with time horizon T from s to si using the algorithm of Ford
and Fulkerson. In the subsequent iterations the flow towards si is not changed. Assume that in
iteration j the next sink is found. Thus, the sources sj+1, . . . , si−1, only need to send flow towards
si. However, the amount of flow sent out of these source needs to respect the given order ≺. In each
iteration l ∈ {i − 1, . . . , j + 1} it is made sure that the flow out of sl respects the given order by
rerouting as much flow as possible towards the sources with a higher priority than sl. Afterwards sl
is disconnected from the super-source s in order to ensure that in the subsequent iterations the flow
out of sl is not changed. For the next sink sj it again holds that it is only supposed to receive flow
from the sources that have a higher priority than itself. So, in iteration j a maximum flow over time
from the super-source s (to which only the sources with a higher priority than sj remain connected)
to sj with time horizon T is computed in the residual network of all the static flow computations
from the previous iterations. This way we make sure that sj receives the correct amount of flow. In
the following iterations the flow originating from the sources that only send flow towards sj and si
is again rerouted accordingly, and so on. Algorithm 6 shows a formal description of this algorithm.

Algorithm 6: Algorithm for the lex-max flow over time problem, LexMax(N ,≺, T )
Input :A dynamic network N = (D = (V,A), u, τ, S−, S−), a linear order ≺ on

S+ ∪ S− = {s1, s2, . . . , sk} with si ≺ sj for i < j, and a time horizon T ≥ 0
Output :A flow over time f solving the lex-max flow over time problem (N ,≺, T )

1 k ← |S+ ∪ S−|
2 V ← V ∪ {s}
3 Ak+1 ← A ∪ {(s, s′) | s′ ∈ S+}
4 extent u to Ak+1 by defining u(s,s′) =∞ for all s′ ∈ S+

5 extent τ to Ak+1 by defining τ(s,s′) = 0 for all s′ ∈ S+

6 xk+1 ← 0
7 Xk+1 ← ∅
8 for i ∈ {k, k − 1, . . . , 1} do
9 Ai ← Ai+1

10 if si ∈ S− then
11 Ai ← Ai ∪ {(si, s)} with u(si,s) =∞ and τ(si,s) = −T
12 N i ← (V,Ai)
13 yi ← minimum-cost circulation in N i

xi+1 with τ as costs
14 else
15 Ai ← Ai \ {(s, si)}
16 N i ← (V,Ai)
17 yi ← minimum-cost s-si flow in N i

xi+1 with τ as costs
18 end
19 xi ← xi+1 + yi

20 compute a path decomposition of the static flow yi in N i
xi+1 given by (Pi, wi)

21 Xi+1 ← Xi ∪ (Pi, wi)
22 end
23 return generalized temporally repeated flow f corresponding to X1

Theorem 3.10 (Hoppe and Tardos, [HT00]).
Let N be a dynamic network with k terminals, ≺ a total order on the terminals of N , and
T ≥ 0 a time horizon. The lex-max flow over time problem (N ,≺, T ) can be computed via k
minimum-cost flow computations using Algorithm 6.

In order to understand the second part of the algorithm of Hoppe and Tardos for solving quickest
transshipment problems, we need the following lemma about the characteristic vectors of lex-max
flows over time.
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Lemma 3.11. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network, T ≥ 0 a time horizon, ≺ a
total order on S+ ∪ S−, and f≺ a lex-max flow over time in N with time horizon T with respect to
≺. For each v ∈ S+ ∪ S− we have

netf≺({v′ ∈ S+ ∪ S− | v′ � v}, T ) = oT ({v′ ∈ S+ ∪ S− | v′ � v}),

i.e.,

netf≺(v, T ) = oT ({v′ ∈ S+ ∪ S− | v′ � v})− oT ({v′ ∈ S+ ∪ S− | v′ ≺ v}).

On the other hand, a flow over time with time horizon T fulfilling these equation is a lex-max flow
over time with respect to ≺.

Proof. Using Lemma 2.20, the flow over time f≺ induces a static flow x≺ in the time-expanded
network N T . For the purpose of the proof we assume the set of terminals of N T is given by S+∪S−.
Because of Lemma 2.20, since f≺ is a lax-max flow over time in N , the static flow x≺ is a static
lex-max flow in N T with respect to the same order on the terminals S+ ∪ S−. By Lemma 2.19 we
know that

netx≺({v′ ∈ S+ ∪ S− | v′ � v})Lem. 2.19= maxNT ({v′ ∈ S+ | v′ � v}, S− \ {v ∈ S− | v′ ≺ v})

for all v ∈ S+ ∪ S−.
Using the correspondence of x≺ and f≺ and the definition of oT , this implies

netf≺({v′ ∈ S+ ∪ S− | v′ � v}, T ) Lem. 2.20= netx≺({v′ ∈ S+ ∪ S− | v′ � v})
Lem. 2.19= maxNT ({v′ ∈ S+ | v′ � v}, S− \ {v ∈ S− | v′ ≺ v})

= oT ({v′ ∈ S+ ∪ S− | v′ � v}),

for all v ∈ S+ ∪ S−. The last statement of the lemma is immediate.

3.1.3 The Algorithm of Hoppe and Tardos
The next main step of the algorithm of Hoppe and Tardos for solving quickest transshipment
problems is the reduction of a given feasible transshipment over time problem (N , b, T ) to a lex-max
flow over time problem, which is then solved using Algorithm 6.
Let (N , b) be a quickest transshipment problem with minimal feasible time horizon T ∗. We call a
subset X ⊆ S+ ∪ S− a tight subset if

oT (X) = b(X),

i.e., in this case the maximal amount of flow that can be sent from the sources in X ∩ S+ towards
the sinks in S− \X until time T exactly equals the sum of the supplies and demands of the terminals
in X. The empty set trivially is a tight subset, because b(∅) = 0 = oT (∅). The second trivial tight
subset is the whole set of terminals S+ ∪ S− because by assumption we have b(S+ ∪ S−) = 0 and
clearly also oT (S+ ∪ S−) = 0.
The central observation for the reduction of Hoppe and Tardos is that when we are given a complete
chain of subsets of terminals, i.e.,

∅ = S0 ( S1 ( S2 ( . . . ( Sk = S+ ∪ S−

with k = |S+ ∪ S−| and all of these subsets are tight, then the corresponding transshipment over
time problem can be solved by a single lex-max flow over time computation. This observation is
summarized in the following lemma.

Lemma 3.12. Let (N , b) be a quickest transshipment problem with minimal feasible time horizon T ∗.
Assume that S+ ∪ S− = {s1, s2, . . . , sk}, Si = {s1, . . . , si} for all i ∈ {1, . . . , i}, and that the chain
∅ =( S1 ( S2 ( . . . ( Sk = S+ ∪ S− is a chain of tight subsets. Then a flow over time solving
(N , b, T ∗) can be obtained by computing a lex-max flow over time solving (N ,≺, T ∗), where ≺ is
defined by si ≺ sj for all i, j ∈ {1, . . . , k} with i < j.
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Proof. Let f be a flow over time with time horizon T ∗ solving (N , b, T ∗). The flow over time f
clearly has to fulfill

netf ({s1, . . . , si}, T ∗) = b({s1, . . . , si})
tight set= oT

∗
({s1, . . . , si}),

for all i ∈ {1, . . . , r} and thus the flow over time f is a lex-max flow over time with respect to the
order ≺ by Lemma 3.11. On the other hand, for a lex-max flow over time f≺ with respect to ≺ and
T ∗ the following holds for all i ∈ {1, . . . , k},

netf (si, T ∗)
Lem. 3.11= oT

∗
({s1, . . . si})− oT

∗
({s1, . . . si−1})

tight sets= b({s1, . . . si})− b({s1, . . . si−1) = b(si),

which implies that f≺ is a transshipment solving (N , b, T ∗).

The algorithm of Hoppe and Tardos for solving a quickest transshipment problem (N , b) with feasible
time horizon T start with the chain ∅ ⊆ S+ ∪ S− (which is a trivial chain of tight sets) and by
successively attaching new sources and sinks by arcs with suitably chosen capacities and transit
times to N , they manage to obtain a new extended dynamic network N ′ with a new set of terminals
S′+ ∪ S′−, new supplies/demands b′ on this set of terminals together with a complete chain of tight
subsets of S′+ ∪ S′− with respect to b′. The dynamic network N ′ also has the property that a flow
over time with time horizon T in N ′ can be turned into an equivalent flow over time with time
horizon T in N .
The algorithm of Hoppe and Tardos terminates after at most |S+∪S−| iterations and in each iteration
at most two new sources or sinks are attached to the network. In order to compute the suitable capaci-
ties or transit times of the arcs by which these new terminals are attached to the network, a parametric
submodular function minimization problem has to be solved.

Theorem 3.13 (Hoppe and Tardos, [HT00]).
The algorithm of Hoppe and Tardos solves a feasible transshipment problem (N , b, T ) in strongly
polynomial time with the help of at most 2|S+∪S−| parametric submodular function minimization
and a single lex-max flow over time computation.
An instance of a quickest transshipment problem (N , b) can thus be solved in strongly polynomial
time with the help of at most 1 + 2|S+ ∪ S−| parametric submodular function minimizations
and a single lex-max flow over time computation.

3.1.4 Summary and Our Results
We conclude with a summary of the problems presented in this section. All of these problems are
listed in Table 3.1. After that we compare the results we achieve in this thesis with the previously
best known results.

Table 3.1: Overview over all flow over time problems introduced in this section

Problem Setting Objective

Quickest Flow single source, single sink
with supply/demand

flow over time with minimum
time horizon fulfilling supply/demand

Minimum Feasible Time Horizon multiple sources and sinks
with supplies and demands

minimum time horizon such that
supplies/demands can be fulfilled

Transshipment Over Time
multiple sources and sinks
with supplies and demands,

a time horizon T

flow over time with time horizon T
that fulfills supplies/demands

Quickest Transshipment multiple sources and sinks
with supplies and demands

flow over time with minimal time horizon
that fulfills supplies/demands
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Minimal Feasible Time Horizon Problem.

Previously best known algorithm: The algorithm of Lee et al. for SFM coupled with the
parametric search framework with an overall running time of

O
(
CT (SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

)
,

where k = |S+ ∪ S−| and CT (SFMLee) is the number of comparison done in the algorithm SFMLee
that depend on the parameter T .

Our Results:

• Dynamic networks with only a single source s: |S−| many submodular function minimizations
are needed, resulting in an running time of

O(|S−|4 log |S−|) ·MCF(n,m) + |S−|5 logO(1) |S−|).

This yields a running time improvement of at least a factor of |S−|2 · log |S−| (see Observa-
tion 3.9).

• Dynamic networks with only a single source t: |S+| many submodular function minimizations
are needed, resulting in an running time of

O(|S+|4 log |S+|) ·MCF(n,m) + |S+|5 logO(1) |S+|).

This yields a running time improvement of at least a factor of |S+|2 · log |S+| (see Observa-
tion 3.9).

The Transshipment Over Time Problem.

Previously best known algorithm: One submodular function minimization to check the feasibility
and afterwards one execution of the algorithm of Hoppe and Tardos (requiring 2|S+ ∪ S−| many
parametrized submodular function minimizations) to compute the transshipment. This results in an
overall running time of

O
(
(1 + 2kCλ(SFMLee)) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

)
,

where k = |S+ ∪ S−| and Cλ(SFMLee) is the number of comparisons done in the algorithm SFMLee
depending on the parameter λ.

Our Results: One execution of a submodular function minimization algorithm using the framework
of Cunningham, for example the Algorithm of Orlin SFMOrlin, resulting in an overall running time
of

O(k5 ·MCF(n,m) + n6).

This yields a running time improvement of at least a factor of k2·log k (see Observation 3.9).

The Quickest Transshipment Problem.

Previously best known algorithm: One parametrized submodular function minimization to
determine the minimal feasible time horizon T ∗ and afterwards one execution of the algorithm
of Hoppe and Tardos (requiring in the worst case 2|S+ ∪ S−| many parametrized submodular
function minimizations) to compute the transshipment. This results in an overall running time
of

O
(
(1 + 2k) · Cλ(SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

)
,

where k = |S+ ∪ S−| and Cλ(SFMLee) is the number of comparison done in the algorithm SFMLee
that depend on the parameter λ.
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Our Results:

• Dynamic networks with multiple sources and multiple sinks: One parametrized submodular
function minimization to determine the minimal feasible time horizon T ∗ and afterwards
one execution of a submodular function minimization algorithm relying on the framework of
Cunningham, for example the algorithm of Orlin, SFMOrlin. This results in an overall running
time of

O
(
CT (SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k) + k6 + k5 ·MCF(n,m)

)
,

with k = |S+∪S−|, yielding an overall running time improvement of at least a factor of k · log k
(see Observation 3.9).

• Dynamic networks with only a single source s: Using our results for the computation of the
minimum feasible time horizon, we obtain an overall running time of

O
(
(k4 · log k + k5) ·MCF(n,m) + k4 logO(1) k + k6),

with k = |S−|, resulting in a running time improvement of at least a factor of a factor of k2.

• Dynamic networks with only a single source t: Using our results for the computation of the
minimum feasible time horizon, we obtain an overall running time of

O
(
(k4 · log k + k5) ·MCF(n,m) + k4 logO(1) k + k6),

with k = |S+|, resulting in a running time improvement of at least k2.

3.2 Earliest Arrival Flows and Earliest Arrival Transshipments
We already introduced the maximum flow over time problem and the quickest transshipment problem.
In both of these flow over time problems exactly one objective is optimized: a maximum flow over
time in a dynamic network N maximizes the amount of flow that has reached the (single) sink t until
a given time horizon T , while a quickest transshipment f ′ fulfills all supplies and demands as fast as
possible, i.e., with the minimal possible time horizon. Both problems have in common that they are
only interested in the result at the time horizon. However, one can easily imagine many applications
for which it is also important how much flow has reached the sinks at points in time before the time
horizon. We already described how quickest transshipments can be used for evacuation planning.
An evacuation strategy obtained from a quickest transshipment has indeed the property that all
endangered people are rescued as quickly as possible. However, there are emergencies for which this
is not sufficient. Assume, for example, that an earthquake occurred and severely damaged a large
building. It might be foreseeable that the damaged building will collapse in the near future, but the
precise point in time when this disaster will happen is of course not known. The goal of an efficient
evacuation strategy is to lead as many people as possible to safety. However, what might happen in
such a situation is that the time until the building collapses (which is not known) is shorter than
the minimal time needed to bring all people out of the building. Thus, in such a situation it is
advisable to resort to a different strategy. Since it is not known whether all people can be saved, it
should at least be made sure that as much people as possible are rescued. This can be achieved by
ensuring that for each point in time as much people as possible have been lead out of the building
(of course while still making sure that supplies and demands are not violated). This property is
modeled by a flow over time, which is a special case of a quickest transshipment, called earliest
arrival transshipment.
A similar special case can be defined for the maximum flow over time problem: an earliest arrival
flow is a flow over time with the property that for each point in time until the given time horizon T
the amount of flow that has reached the sink is maximized.
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Definition 3.14.
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and T ≥ 0 a time horizon. We say
that a flow over time f in N fulfills the earliest arrival property if as much flow as possible
has arrived at the sinks for each point in time θ ∈ [0, T ) simultaneously, with the additional
property that potentially given supplies and demands b on the terminals are not violated.

The earliest arrival pattern corresponding to a quickest transshipment problem (N , b) is the next
important concept in the context of earliest arrival flows. Let N = (D = (V,A), u, τ, S+, S−) be a
dynamic network, b a supply/demand function on the terminals, and T the minimal time horizon
required to fulfill all supplies and demands. Assume f is a flow over time with time horizon T inN that
also fulfills the given supplies and demands b on the terminals. A pattern is a function p : [0, T )→
R≥0. The arrival pattern pf of the flow over time f is defined by

pf (θ) := |f |θ for all θ ∈ [0, T ).

Let f∗θ be a flow over time in N with time horizon θ with maximal flow value subject to the constraint
that the supplies and the demands are not violated. The earliest arrival pattern for (N , b) is
then defined as

p∗(θ) := |f∗θ |θ for all θ ∈ [0, T ).

Similarly, one can define the earliest arrival pattern corresponding to a maximum flow over time
problem with time horizon T in a dynamic network N . In this case the only thing that changes is
that there are no supplies and demands that need to be respected. A network flow over time f with
a given time horizon T is an earliest arrival flow if its arrival pattern equals the earliest arrival
pattern. A dynamic transshipment adhering to the earliest arrival pattern is an earliest arrival
transshipment.

3.2.1 Earliest Arrival Flows
We start by giving a short introduction to earliest arrival flows. Let N = (D,u, τ, s, t) be a dynamic
network with only a single source s and a single sink t and T a time horizon. In contrast to a
maximum flow over time with time horizon T in N , an earliest arrival flow in N with time
horizon T is a flow over time that maximizes the amount of flow that has reached the sink t
at each point in time θ ∈ [0, T ) simultaneously. The problem of computing an earliest arrival
flow with time horizon T in a dynamic network N is called earliest arrival flow problem.

Earliest Arrival Flow Problem
Instance: A dynamic network N = (D = (V,A), u, τ, s, t) with a single

source s, a single sink t, and a time horizon T ≥ 0 simultane-
ously

Task: Compute a flow over time f that is maximal for each point in
time θ ∈ [0, T )

As for the case of the maximum flow over time problem we can assume without loss of generality
that the dynamic network we consider has only a single source and a single sink. If this it not the
case, we can just attach a super-source and a super-sink by arcs with zero transit time and infinite
capacity to the dynamic network.

The history of research regarding earliest arrival flows is nearly as long as the history of flows
over time themselves. In fact, these flows have first been studied by Gale [Gal59] in 1959 shortly
after Ford and Fulkerson introduced flows over time. Gale showed the existence of earliest arrival
flows for the discrete time model. Existence in the continuous setting has been derived by Philpott
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in [Phi90] in 1990. Gale’s existence proof was however not constructive, it relied on the Supply-
and-Demand-Theorem that has been proven by Ford and Fulkerson [FF62]. Thus, it remained an
open problem how to compute earliest arrival flows until Minieka [Min73] and Wilkinson [Wil71]
came up with the first pseudo-polynomial algorithms to compute such flows. Minieka showed that
an earliest arrival flow problem corresponding to N = (D,u, τ, s, t) and T ≥ 0 can be solved by
computing a static lexicographically maximal flow in the time-expanded network N T . To simplify
notation, we assume that T is integral. The same algorithm, however, also works for rational
time horizons. Recall that in the time-expanded network N T there are T copies t1, t2, . . . , tT of
the sink t and an over super-source s∗. In order to compute an earliest arrival flow f using N T ,
we define a linear order ≺ on {s∗, t1, t2, . . . , tT } by s∗ ≺ tT ≺ tT−1 ≺ . . . ≺ t1 and compute the
corresponding static lexicographically maximum flow xT in N T . Note that we in this case consider
{t1, t2, . . . , tT } to be the set of sinks of N T . The earliest arrival flow f is then obtained using
Lemma 2.20.

Algorithm 7: Algorithm for the earliest arrival flow problem with time expansion
Input : A dynamic network N = (D = (V,A), u, τ, s, t) and a time horizon T ≥ 0
Output : An earliest arrival flow f

1 N T ← the time-expanded network corresponding to N and T
2 ≺ ← the linear order on {s∗, t1, t2, . . . , tT } defined by s∗ ≺ tT ≺ tT−1 ≺ . . . ≺ t1

3 xT ← a static lexicographically maximum flow in N T corresponding to ≺
4 f(a, θ) ← xT (abθc+1) for all a ∈ A and θ ∈ [0, T )
5 return f

That Algorithm 7 indeed returns a discrete earliest arrival flow follows immediately from the
properties of static lexicographically maximum flows and Lemma 2.20. However, the returned flow
is also an earliest arrival flow in the continuous setting. To see this we have at first to investigate a
few properties of the earliest arrival pattern p∗ corresponding to a maximum flow over time problem
given by N and a time horizon T . Recall that oθ({s}) is the maximal amount of flow that can be
sent from the source s towards the sink t until time θ.

Observation 3.15. Let N = (D = (V,A), u, τ, s, t) be a dynamic network and T a time horizon. The
earliest arrival pattern p∗ corresponding to N and T is given by

p∗(θ) = oθ({s}) for all θ ∈ [0, T ),

which is a continuous piecewise linear and convex function.

Proof. The only thing that needs to be shown is that p∗ is piecewise linear and convex. We know
that oθ({s}) equals the maximal possible value of

θ · |x| −
∑
a∈A

τa · xa =
∑
P∈P

(T − τ(P )) · xP ,

where x is a static s-t flow in N . Thus, the problem of computing oθ({s}) can also be formulated as
a parametric linear programming problem, for which it is known that the optimal objective value
parametrized by θ is a continuous piecewise linear convex function [DT03].

We can now argue that the flow over time f obtained from the static lex-max flow xT (which can
assumed to be an integral flow) in N T is also a continuous earliest arrival flow. By definition, in
the flow over time f obtained from xT the rate at which flow travels into an arc a ∈ A is constant
during [θ, θ+ 1) for all θ ∈ {0, 1, . . . , T − 1}. This implies that the function θ 7→ |f |θ for θ ∈ [0, T ) is
a piecewise linear function in which breakpoints only occur at integral points in time because of the
integrality of the transit times of the arcs. Thus, we have that oθ({s}) and |f |θ are both piecewise
linear functions in θ that are equal at all points at which breakpoints can occur. This implies that
both functions are equal and thus f is an earliest arrival flow.
Note that this algorithm of Minieka is of pseudo-polynomial running time, as it works in the
time-expanded network. Because of this fact, it also needs a pseudo-polynomial amount of space.
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Wilkinson [Wil71] observed that it is possible to compute earliest arrival flows without the use
of time expansion using the successive shortest path algorithm. He showed that sending flow
along the paths occurring in the successive shortest path algorithm from s to t that only aug-
ments along paths of length at most T yields an earliest arrival flow. The rate at which we send
flow along the paths is given by the flow value they obtain during the successive shortest path
algorithm.

Algorithm 8: Algorithm for the earliest arrival flow problem without time expansion, EAF(N , T )
Input :A dynamic network N = (D = (V,A), u, τ, s, t), and a time horizon T ≥ 0
Output :A generalized temporally repeated flow resulting in an earliest arrival flow

1 xP ← 0 for all P ∈
↔
P

2 x ← static s-t flow with generalized path decomposition (xP )
P∈
↔
P

3 P ← shortest s-t path in N
4 while τ(P ) < T do
5 γ ← min{τ(a) | a ∈ P}
6 augment x along P by γ
7 P ← shortest s-t path in Nx
8 end
9 f ← generalized temporally repeated flow with time horizon T corresponding to (xP )

P∈
↔
P

10 return f

See Figure 3.2 for an example of the earliest arrival flow obtained from Algorithm 8. Comparing
Figure 3.2 and Figure 3.1 also shows two maximum flows over time with time horizon 8, where
the former fulfills the earliest arrival property and the latter doesn’t. Algorithm 8 clearly only
requires polynomial space as it is executed on the original network. However, because of the
pseudo-polynomial worst case running time of the successive shortest path algorithm, this algorithm
is still also of non polynomial running time. The complexity of the earliest arrival flow problem
was open until 2015 when Disser and Skutella [DS15] managed to prove that computing an earliest
arrival flow is NP-hard by showing that it is NP-hard to obtain the average arrival time of flow in
an earliest arrival flow. Note that a flow over time minimizes its average arrival time if and only if it
is an earliest arrival flow [JR82]. For special classes of networks it is however possible to find efficient
algorithms for the earliest arrival flow problem. For example, for series-parallel graphs such an
algorithm was described by Ruzika, Sperber and Steiner [RSS11].

A generalization of earliest arrival flows are flows over time that maximize the amount of flow that
has arrived at the sink at multiple different points in time but not necessarily at all point in time.
Such flows are called multiple deadline flows which have been introduced in 2010 by Stiller and
Wiese [SW10]. It is clear that multiple deadline flows can also be computed using the successive short-
est path algorithm. However, Stiller and Wiese also give an algorithm that only needs k minimum-cost
flows computation in the underlying dynamic networks, and hence their algorithm requires only
polynomial space and is even of strongly polynomial running time. Here, k is the number of points
in time at which the flow over time is supposed to be maximal.

3.2.2 Earliest Arrival Transshipments.
In this section we look at the earliest arrival transshipment problem.

Earliest Arrival Transshipment Problem (N , b)EAT

Instance: A dynamic network N = (D = (V,A), u, τ, S+, t) and a sup-
ply/demand function b : S+ ∪ S−→ Z on the terminals

Task: Compute a transshipment over time f that fulfills all supplies
and demands with the additional property that for each point
in time as much flow as possible has reached the sink t.
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(a) In the first iteration of the successive shortest
path algorithm in the depicted dynamic net-
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(b) In the second iteration the yellow path in the
residual network is chosen.
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(c) The earliest arrival flow with time horizon T obtained from the results of the successive shortest path algorithm

Figure 3.2: An example for an earliest arrival flow with time horizon 8 obtained using the successive shortest path
algorithm
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It is not inherently clear that earliest arrival transshipments solving a given problem (N , b)EAT do
always exist and it turns out that in dynamic networks with multiple sinks, they don’t. This was
first observed by Fleischer [Fle01] and a simple counter example is given by Baumann and Skutella
in [BS09] (see also Figure 3.3). However, in dynamic networks with only a single sink earliest arrival
transshipments do always exists.

Networks with a Single Sink. The existence of earliest arrival transshipments in dynamic net-
works with a single sink was shown in 2002 by Richardson and Tardos [RT] who observed that
Minieka’s existence proof of earliest arrival flows based on static lexicographically maximal flows in
the time-expanded network can be extended to networks with several sources and a single sink. In
fact, an earliest arrival transshipment solving a given problem (N , b)EAT in a single sink network N
can be solved as in Algorithm 7. We only need to choose a sufficiently large time horizon T (as the
minimal feasible time horizon T ∗ is not known) and the regarded time-expanded network N T needs
to implement the supplies and demands of the terminals. However, using time expansion to solve
earliest arrival transshipment problems does neither lead to a polynomial time algorithm (which
cannot be expected due the NP-hardness result of Disser and Skutella [DS15]) nor to an algorithm
which requires only polynomial space. Using the successive shortest path algorithm in the original
network also does not lead to a suitable algorithm for the earliest arrival transshipment problem as
it cannot be made sure that the flow our of the sources does not exceed their supplies.
In 2009 Baumann and Skutella [BS09] present the first algorithm for the earliest arrival transshipment
problem that does not rely on explicit time expansion. They achieve an algorithm with a running
time bounded by the size of the input and the output. The algorithm consists of two parts:
At first the earliest arrival pattern p∗ corresponding to an instance (N , b)EAT of the earliest arrival
transshipment problem is computed. Afterwards (N , b)EAT is reduced to a quickest transshipment
problem (N ′, b′) in an extended network N ′. While the dynamic network N ′ is not a result of time
expansion, it is the result of the attachment of several new super-sinks, which might in the worst
case be exponentially many. Thus, the algorithm of Baumann and Skutella [BS09], although it is
not relying on time expansion, does in the worst case need an exponential amount of space.
Understanding the intuition behind the algorithm of Baumann and Skutella will be important
to understand the results of this thesis. In particular, we heavily use the structure of the ear-
liest arrival pattern p∗ corresponding to a given problem (N , b)EAT. This is why we describe
the pattern computation and the reduction to a quickest transshipment problem in more detail
below.

Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with only a single
sink t. We start by explaining the intuition behind the pattern computation. Imagine, we start at
time θ = 0 to send as much flow as possible from the sources towards the sink t, i.e., we send flow
such that the resulting pattern is oθ(S+). For some time we can send flow like this without violating
any supplies on the sources, but eventually the supply of some sources will be exceeded. This is the
point in time at which we have to stop to send flow with the highest possible rate. What we can do
after the overall supply of a subset of sources S′ ⊆ S+ is fulfilled at some point in time θ′, is to keep
on sending flow at the highest possible rate from the remaining sources until the overall supply of
the next subset of sources is fulfilled, and so on.
This is the main idea upon which the pattern computation of Baumann and Skutella relies. More
precisely, in the first iteration of their algorithm Baumann and Skutella compute the maximal
time horizon θ1 such that the overall supply of every subset S ⊆ S+ of sources is not violated
when the amount of flow sent towards t until time θ1 is oθ1(S+) (i.e., as much flow as possible),
whereas the sources in S send as little flow as possible with respect to this (which means that
the sources in S have to send oθ1(S+)− oθ1(S+ \ S), whereas the sources in S+ \ S have to send
oθ1(S+ \ S)). Formally, in the first iteration of the pattern computation the maximal value θ1 ≥ 0
such that

oθ1(S+)− oθ1(S+ \ S) ≤ b(S) for all S ⊆ S+ (3.2)

is computed. Define gθ : 2S+ → R by gθ(S) := oθ(S+ \ S) − oθ(S+) + b(S). Computing θ1 thus
amounts in finding the maximal value θ ≥ 0 such that

gθ(S) ≥ 0 for all S ⊆ S+.
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Since the function oθ is submodular and the function S 7→ b(S+ \ S) − oθ(S+) is modular, the
parametrized function gθ is also submodular for every θ ≥ 0. Also gθ(S) is monotonically decreasing
in θ for a fixed set X ⊆ S+. Hence, determining θ1 is nothing but a parametrized submodular
function minimization problem. We can evaluate gθ in strongly polynomial time by two minimum-cost
flow computations in the original network N and thus, we can determine θ1 in strongly polynomial
time by using the submodular function minimization algorithm of Lee et al. [LSW15] together with
Meggido’s parametric search framework. One main result of Baumann and Skutella [BS09] is that
there is an inclusion-wise maximal subset S1 ⊆ S+ with

oθ1(S+)− oθ1(S+ \ S1) = b(S1).

Intuitively this means that there is a subset of sources S1 that have sent exactly their overall supplies
to t until time θ1 when they send as little flow as possible while not violating the earliest arrival
property. The set S1, which is the maximal minimizer of gθ1 , is also computed by the algorithm of
Lee at al. during the submodular function minimization. The main result of Baumann and Skutella
is that the earliest arrival pattern corresponding to (N , b)EAT has the following recursive structure:

Theorem 3.16 (Structure of the Earliest Arrival Pattern, [BS09]).
Let N = (D = (V,A), u, τ, S+, t) be a dynamic network with supplies and demands b on the
terminals. Denote by θ1 the maximal value such that all inequalities in (3.2) hold and denote
by S1 ( S+ the maximal minimizer of the submodular function oθ1(S+ \ S1)− oθ1(S+) + b(S1).
Let p′ be the earliest arrival pattern corresponding to (N ′, b′)EAT where N ′ is obtained out of
N by removing the sources in S+ \ S1. Then,

p∗(θ) =
{
oθ(S+) if θ ≤ θ1,

p′(θ) + b(S1) if θ > θ1.

The proof of Theorem 3.16 can be found in the thesis of Nadine Baumann [Bau07]. A straightforward
corollary of this theorem is that the pattern p∗ corresponding to (N , b)EAT is a piecewise linear,
monotonically increasing continuous function because oθ is piecewise linear, convex and continuous.
Note that p∗ is not necessarily convex.

Corollary 3.17. Let N = (D = (V,A), u, τ, S+, t) be a dynamic network with supplies and demands b
on the terminals. The earliest arrival pattern p∗ corresponding to (N , b)EAT is a piecewise linear,
monotonically increasing and continuous function.

According to Theorem 3.16 computing the earliest arrival pattern p∗ corresponding to (N , b)EAT
amounts in computing subsets of sources S1, S2, . . . , Sk ⊆ S+ and times θ1, θ2, . . . , θk such that we
have

oθi
(
S+ \

i−1⋃
j=1

Sj

)
− oθi

(
S+ \

( i−1⋃
j=1

Sj ∪ S
))
≤ b(S) for all S ⊆ S+ \ (S1 ∪ S2 ∪ . . . ∪ Si−1).

and

oθi
(
S+ \

i−1⋃
j=1

Sj

)
− oθi

(
S+ \

( i⋃
j=1

Sj ∪ Si
))

= b(Si),

together with computing the function θ 7→ oθ(S+ \ (S1 ∪ . . . ∪ Si−1)) on the interval [θi−1, θi). Note
that it is not obvious that θi < θi−1 for all i ≥ 0. This is a property that needs to be proved (see
[Bau07]). To compute the function θ 7→ oθ(S+ \ (S1 ∪ . . . ∪ Si−1)) in [θi−1, θi) it suffices to compute
all breakpoint of this piecewise linear function within this interval. The algorithm to compute these
breakpoints is described in [BS09]. Overall, this yields Algorithm 9. For our purpose, only the
computation of the sets Si ⊆ S+ and the times θi will be important.
In order to reduce the problem (N , b)EAT to a quickest transshipment problem in an extended
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Algorithm 9: Algorithm for the earliest arrival pattern, Pattern((N , b)EAT)
Input : A dynamic network N = (D = (V,A), u, τ, s, t) and a supply/demand function b on the

terminals
Output : The earliest arrival pattern p∗ corresponding to (N , b)EAT

1 i ← 0, Si ← ∅, θi ← 0
2 while S1 ∪ . . . ∪ Si 6= S+ do
3 Compute the maximal value θi+1 ≥ 0 such that

oθi+1

(
S+ \

( i⋃
k=1

Sk

))
− oθi+1

(
S+ \

( i⋃
j=1

Sj ∪ S
))
≤ b(S) for all S ⊆ S+ \

( i⋃
k=1

Si

)

4 Compute an inclusion-wise maximal set Si+1 ( S+ \
(⋃i

k=1 Si

)
with

oθi+1

(
S+ \

( i⋃
k=1

Sk

))
− oθi+1

(
S+ \

( i+1⋃
k=1

Sk

))
= b(Si+1)

5 Compute the function θ 7→ oθ(S+ \ (S1 ∪ . . . ∪ Si)) on the interval [θi, θi+1) and set

p∗(θ) := oθ(S+ \ (S1 ∪ . . . ∪ Si)) + b(Si) for all θ ∈ [θi, θi+1)

6 i ← i+ 1
7 end
8 return p∗

dynamic network, Baumann and Skutella attach one new super-sink to N for each breakpoint of
the earliest arrival pattern p∗. Assume we are given p∗ as a list of breakpoints (x0, f0), (x1, f1),. . . ,
(xl, fl), i.e.,

p(θ) =


0 if θ ≤ x0

fi + θ−xi
xi+1−xi (fi+1−fi) if xi ≤ θ ≤ xi+1 for 0 ≤ i < k

fl if θ ≥ xl.

The extended dynamic network N ′ is obtained by attaching a super-sink ti to t for each i ∈ {1, . . . , l}.
For all i ∈ {1, . . . , l} we connect ti with t by an arc (t, ti) with transit time xl − xi and capacity
(fi−fi−1)(xi−xi−1). The extended supply/demand function b′ is the result of removing the demand
of t and giving ti the demand −(fi − fi−1) for all i ∈ {1, . . . , l}. Baumann and Skutella now show
that a quickest transshipment f ′ solving (N ′, b′) can be turned into an earliest arrival transshipment
solving (N , b)EAT. We can thus just solve (N ′, b′) using the algorithm of Hoppe and Tardos [HT00]
to solve (N , b)EAT. Note that Algorithm 10 is only of pseudo-polynomial running time as in the

Algorithm 10: Algorithm for the earliest arrival transshipment problem by Baumann and Skutella
Input :A dynamic network N = (D = (V,A), u, τ, s, t) and a supply/demand function b on the

terminals
Output :An earliest arrival transshipment f

1 p∗ ← Earliest arrival pattern returned by Algorithm 9
2 N ′ ← Extended network constructed using the breakpoints of p∗
3 b′ ← Supply/demand function extended to the added super-sinks of N ′
4 f ′ ← Quickest Transshipment solving (N ′, b′) computed by the algorithm of Hoppe and Tardos
5 f ← Restriction of f ′ to N
6 return f

worst case we add pseudo-polynomial many new sinks to the dynamic network N to obtain N ′.
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Thus, the algorithm of Baumann and Skutella does require pseudo-polynomial space in the worst
case.

Fact 3.18. Using the algorithm of Baumann and Skutella, a given problem (N , b)EAT in a dynamic
network N with only a single sink t can be solved in a running time that is polynomial in the input
size plus the number of breakpoints of the corresponding earliest arrival pattern p∗. Moreover, their
algorithm does in general not work in polynomial space.

Networks with Multiple Sinks. We already stated that in a dynamic network with multiple sinks
it can happen that no earliest arrival transshipment solving (N , b)EAT does exist. The reason is
quite simple: In a dynamic network with multiple sinks it might happen that flow on paths arriving
at sink t at time θ blocks all paths arriving at another sink t′ at the same time. If the earliest arrival
property at the first sink t is maintained, all blocked flow units have to wait to reach t′ and thus fail
to satisfy the earliest arrival property. A simple example for a dynamic network with this property
is depicted in Figure 3.3.
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sinks. This is achieved by
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yellow path during the time
interval [0, 1) and one flow
unit into the magenta path
during [1, 2).

Figure 3.3: An example for an earliest arrival transshipment problem in a dynamic network with two sinks that does
not have a solution: clearly, we cannot send flow such that one flow unit has arrived at the sinks at time 3 and
two flow units have arrived at time 4 while respecting the demands.

That earliest arrival transshipments in networks with multiple sinks do not always exist was
first observed by Fleischer [Fle01]. The example in Figure 3.3 is due to Baumann and Skutella
[BS09]. Figure 3.3 also shows that even in dynamic networks with a single source earliest arrival
transshipment do not always exists while the following example in Figure 3.4 shows that earliest
arrival transshipments in networks with multiple sources and multiple sinks do not always exist
even if all transit times are zero. In [SS14] Schmidt and Skutella give a characterization of dynamic
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(a) An earliest arrival transship-
ment problem in a dynamic
network with two sources and
two sinks. All arcs are sup-
posed to have zero transit
time and capacity one.
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(b) At time 1 at most three flow
unit can have arrived at the
sinks. This is achieved by
sending one flow unit into
the magenta paths during the
time interval [0, 1).
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(c) At time 2 at most four flow
unit can have arrived at the
sinks. This is achieved by
sending two flow units into
each of the yellow path during
the time interval [0, 2).

Figure 3.4: An example for an earliest arrival transshipment problem in a dynamic network with all zero transit times
that does not have a solution: clearly, we cannot send flow such that 3 flow units have arrived at the sinks at time
1 and 4 flow units have arrived at time 2 while respecting the demands.

network with τ ≡ 0 that allow for earliest arrival transshipments for all choices of transit times

3.2 Earliest Arrival Flows and Earliest Arrival Transshipments 61



and supplies and demands. Their results in particular imply that in dynamic networks with a
single source and all zero transit times earliest arrival transshipments do always exist. However, all
their results are non-constructive, i.e., they do not give an algorithm to compute earliest arrival
transshipments. Besides this, not much is known about earliest arrival transshipments in dynamic
networks with multiple sinks: The complexity of deciding whether an earliest arrival transshipment
solving (N , b)EAT does exist is still an open problem, and it is also not known how to come up with
a suitable earliest arrival transshipment solving (N , b)EAT in case of existence. We focus on solving
these problems throughout this thesis.

3.2.3 Approximation of Earliest Arrival Transshipments
For dynamic network with a single sink it was shown by Disser and Skutella [DS15] that solving
earliest arrival transshipment problems is NP-hard. It is thus unlikely that algorithms with polyno-
mial running time for solving earliest arrival transshipment or earliest arrival flow problems do exist.
In light of this fact it makes sense to come up with polynomial time algorithms that produce flows
over time that are not “too far off” from fulfilling the earliest arrival property for every point in
time, i.e., that compute an approximation of an earliest arrival flow or transshipment.
For networks with multiple sinks, looking at approximations of earliest arrival transshipments makes
even more sense, as in this case earliest arrival transshipment do not always exist and it is interesting
to see whether flows over time that are “nearly” earliest arrival transshipments do exist and how to
compute them efficiently in case of existence.
There are two variants of approximation for earliest arrival flows. The first variant relaxes the time,
i.e., we are allowed to send the flow by a factor later than the optimal pattern requires. In the second
variant the value of the flow is relaxed, i.e., we only have to send a given factor of the maximum
flow at each given point in time.
Since earliest arrival transshipments or earliest arrival flows optimize multiple objectives at once, ap-
proximation algorithms for them should also approximate all of these objectives.

Definition 3.19 (α-time-approximation).
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and b a supply/demand function.
Denote by p∗ the corresponding earliest arrival pattern. A flow over time f is a α-time-
approximation if at every point in time θ ∈ [0, T ) we have

|f |θ ≥ p∗
(
θ

α

)
.

Time-approximation allows flow to be late. The notion of an α-time approximation was introduced
by Baumann and Köhler [BK04]. They derived a 4-time-approximation for earliest arrival flows
in dynamic networks with flow-dependent transit times. In this model, the transit time of an arc
depends on the flow that is already on the arc. In this setting, earliest arrival flows do not always exist.
The notion of β-value-approximation was introduced by Groß et al. [Gro+12] for earliest arrival trans-
shipments in dynamic networks with multiple sinks.

Definition 3.20 (β-value-approximation).
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and b a supply/demand function.
Denote by p∗ the corresponding earliest arrival pattern. A flow over time f is an β-value-
approximation if at every point in time θ ∈ [0, T ) we require

|f |θ ≥
p∗(θ)
β

,

i.e., at least a β-fraction of the maximum possible flow is sent until time θ.

Both variants are visualized in Figure 3.5. These two models of approximation have already been
used before without being named explicitly. For example, Hoppe and Tardos already gave a value
approximative FPTAS for the earliest arrival flow problem, whereas Fleischer and Skutella [FS07]
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Figure 3.5: An illustration of both variants of approximation of earliest arrival transshipments.

describe a time-approximative FPTAS for earliest arrival transshipments using a condensed version
of the time-expanded network. Groß et al. [Gro+12] showed that even in dynamic networks with
multiple sinks and arbitrary transit times it is still possible to find approximations of earliest arrival
transshipments. They present a 2-value approximation for earliest arrival transshipments together
with a family of instances in which no value-approximation better than 2 is possible. Regarding
time-approximation Groß et al. extend the technique of Baumann and Köhler [BK04] to achieve
a 4-time-approximation of earliest arrival transshipments in dynamic networks with only a single
source and multiple sinks. The best known lower bound for this case is 2. For dynamic networks
with multiple sources and sinks they present a lower bound that is linear in the time horizon. An
overview of these results is given in Table 3.2. In addition to these results Groß et al. also give an

Table 3.2: An overview of existence results for approximate earliest arrival transshipments

Approximation single source
single sink

multiple sources
single sink

single source
multiple sinks

multiple sources
multiple sink

α-time 1
[Gal59; RT]

[2, 4]
[Gro+12]

Ω(T )
[Gro+12]

β-time 1
[Gal59; RT]

2
[Gro+12]

FPTAS for computing the best possible approximation factor for a given instance. For an arbitrary
ε > 0 it incurs additional (1 + ε)-factors for both time and value.

3.2.4 Summary and Our Results
In this section we again shortly summarize the problems we presented in this section (see Table 3.3)
and describe our contributions.
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Table 3.3: Overview over all flow over time problems introduced in this section

Problem Setting Objective

Earliest Arrival Flow single source, single sink
with time horizon T

flow over time that is maximal
at all times θ ∈ [0, T )

Earliest Arrival Transshipment multiple sources and sinks
with supplies and demands

a quickest transshipment that is also
maximal at all points in time

Earliest Arrival Transshipments in Networks with a Single Sink.

Previously best known algorithm for computing the earliest arrival pattern: The
algorithm presented by Baumann and Skutella [BS09] that relies in the worst case on number of
terminals many parametrized submodular function minimizations.

Our result: A variation of the algorithm of Baumann and Skutella (see Section 5.1). When computing
the earliest arrival pattern for (N , b)EAT, we replace every parametrized submodular function mini-
mization by at most |S+|2 many (non parametrized) submodular function minimizations, which results
in a speed-up of a factor of at least |S+| (see Observation 3.9).

Previously best known exact algorithm: The algorithm of Baumann and Skutella [BS09] which
requires in the worst case a pseudo-polynomial expansion of the original network.

Our results:

1. A polynomial space algorithm that computes an earliest arrival transshipment as convex
combination of generalized temporally repeated flows (see Section 5.3.2).

2. A polynomial space algorithm that computes an integral earliest arrival transshipment by
reducing an earliest arrival transshipment problem to a generalization of the lexicographically
maximum flow over time problem (see Section 5.3.3).

Previously best known approximation algorithm: The time-approximative FPTAS of Fleis-
cher and Skutella [FS07] that relies on a condensed version of the time-expanded network.

Our result: A new time-approximative FPTAS that does not require any form of time expansion
(see Section 5.4.2).

Earliest Arrival Transshipments in Networks with a Multiple Sinks.

Previously best known algorithm for computing the earliest arrival pattern: Nothing
was known about the structure of the earliest arrival pattern corresponding to earliest arrival
transshipment problems in dynamic networks with multiple sinks.

Our results: We derive the structure of the earliest arrival pattern corresponding to earliest
arrival transshipment problems (N , b)EAT in dynamic networks with multiple sources and only
a single sink and for the special case of tight problems in general dynamic networks (see Sec-
tion 6.1).

Previous algorithmic or complexity results regarding earliest arrival transshipments in
multiple sink networks: Until now, there did not exist any algorithmic results regarding earliest
arrival transshipments in multiple sink networks: There is no algorithm known for checking whether
a given earliest arrival transshipment has a solution and also none that computes an earliest arrival
transshipment in case of existence. Furthermore, the complexity of deciding whether a given earliest
arrival transshipment problem has a solution is unknown.

Our results: A polynomial space algorithm that checks whether a given earliest arrival transshipment
problem (N , b)EAT in a dynamic network with only a single source has a solution and computes a
solution in case of existence as a convex combination of special generalized temporally repeated flows.

64 Chapter 3 Flow Over Time Problems



For tight problems, we also give such an algorithm for general dynamic networks (see Section 6.27).
Further, we also show that it is NP-hard to decide whether a given earliest arrival transshipment
problem has a solution (see Section 6.4).

Results regarding approximation algorithms: It is known that each earliest arrival trans-
shipment problem (N , b)EAT in a dynamic network with only a single source allows for a 4-time
approximation. The best known lower bound is 2 (see [Gro+12]).

Our results: We show that each earliest arrival transshipment problem (N , b)EAT in a dynamic
network with only a single source allows for a 2-time approximation. Hence, we present a tight
result.
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4Solving Quickest Transshipment
Problems

The quickest transshipment problem is a classical flow over time problem that
captures an important aspect of evacuation planning: given a dynamic network
with supplies on the sources and demands on the sinks, a quickest transshipment
is a flow over time that fulfills all supplies and demands as quickly as possible. In
a 1995 landmark paper Hoppe and Tardos describe the first strongly polynomial
time algorithm solving the quickest transshipment problem. Their algorithm relies
on repeatedly calling an oracle for parametric submodular function minimization.
The first oracle call is needed to determine the minimal time T ∗ needed to fulfill
all supplies and demands, while the subsequent parametric submodular function
minimizations are necessary to come up with the quickest transshipment.
Our results in this chapter are twofold. In the first part we present a new algorithm
to determine the minimal feasible time horizon for a given quickest transshipment
problem for the special cases in which the underlying network has only a single
source or a single sink. Instead of solving a parametric submodular function
minimization problem to determine this time horizon, our algorithm only needs
to solve at most number of terminals many submodular function minimization
problems. This makes our approach considerably more efficient.
In the second part of this chapter we present a simpler and more efficient algo-
rithm for the quickest transshipment problem. Our algorithm (i) relies on only
one parametric submodular function minimization and, as a consequence, has
considerably improved running time, (ii) uses not only the solution of a submodular
function minimization but actually exploits the underlying algorithmic approach
to determine a quickest transshipment as a convex combination of simple lex-max
flows over time, and (iii) in this way determines a structurally easier solution in
the form of a generalized temporally repeated flow.

Publication Remark: Some of the results from this chapter have been published
in [SS17b].
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Quickest transshipments have many important applications: one straightforward example is that
they can be used to devise good evacuation strategies, but also many logistic problems that require to
send goods from suppliers to customers as quickly as possible essentially result in solving a quickest
transshipment problem. Thus, it is relevant to come up with more efficient ways to solve quickest
transshipment problems.
Recall, that the objective of a quickest transshipment problem (N , b) in a dynamic network N with
supplies/demands b is to compute a flow over time f that sends flow from the sources to the sinks
such that it meets all supplies and demands as quickly as possible. In 1995 Hoppe and Tardos [HT00]
developed the first strongly polynomial time algorithm for this problem. Subsequently, more efficient
algorithms for some special cases have been devised [Fle01; KKT06; KKT09; Mam+06], but no
improvement has been obtained for the general quickest transshipment problem.
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One strategy to solve a given quickest transshipment problem (N , b) is to at first determine the
minimal feasible time horizon T ∗ such that (N , b, T ∗) has a solution, and, in the second step, to come
up with the actual transshipment. We will propose improvements for both parts, determining the
minimal feasible time horizon, and computing a transshipment once a feasible time horizon is known.
Altogether this leads to a more efficient algorithm for the quickest transshipment problem. In the
following we shortly recap the state of the art regarding algorithms for solving quickest transshipment
problems and describe our contributions in this context.

Determining the Minimal Feasible Time Horizon. In Section 3.1.1 we introduced the only known
efficient way to determine the minimal feasible time horizon T ∗ for a quickest transshipment
problem (N , b), which relies on coupling the submodular function minimization algorithm of Lee
et al. [LSW15] with the parametric search framework of Megiddo [Meg79], see Fact 3.8. However,
using the parametric search framework to determine T ∗ can in the worst case dramatically increase
the running time of the algorithm of Lee et al. Moreover, Megiddo’s search framework is hard to
implement and thus not applicable in practice.
These two facts make it an interesting task to come up with new ways to determine T ∗ that do not
rely on the framework of Megiddo. This is what Section 4.1 focuses on. We describe a new and faster
strongly polynomial time algorithm to determine the minimal feasible time horizon T ∗ for a quickest
transshipment problem in a dynamic network with only a single source or a single sink. In contrast
to the classical approach, our algorithm does not need to call an oracle for parametric submodular
function minimization, but only needs number of terminals many (non-parametric) submodular
function minimizations in the worst case. This results in a huge running time improvement. The
main feature that our algorithm exploits is that the submodular functions occurring in the context
of the quickest transshipment problem in a dynamic network with only a single source or a single
sink are related by the strong map property (see Section 2.3).

Computing Transshipments. So far, the only known strongly polynomial time algorithm for solving
a given transshipment problem (N , b, T ) is the algorithm of Hoppe and Tardos [HT00]. The key
idea of this algorithms is to reduce (N , b, T ) to a lexicographically maximum flow over time problem,
which is then solved using Algorithm 6 (see Section 3.1.3). However, the reductions in the algorithm
of Hoppe and Tardos rely on, in the worst case, 2 · |S+ ∪ S−| many parametric submodular function
minimizations. The running time of a single submodular function minimization is already high
and solving a parametric submodular function minimization problem is even more time consuming.
Thus, it is our main objective to come up with a strongly polynomial time way to solve a given
transshipment over time problem (N , b, T ) that needs considerably fewer (parametric) submodular
function minimizations. In Section 4.2 and Section 4.3 we explain how we achieve this goal. At
first we derive a structural result about transshipments over time solving (N , b, T ) – such flows
over time can be obtained as a convex combination of lex-max flows over time with time horizon T
(see Section 4.2). In Section 4.3 we then describe two algorithms to compute a suitable convex
combination of lex-max flows over time with time horizon T . Both algorithms improve upon the
algorithm of Hoppe and Tardos regarding the worst case running time. In Section 4.3.1 we at first
describe the more straightforward, but less efficient of the two algorithms: An implementation
of Carathéodory’s theorem, which relies on a recent result about line search in base polytopes of
submodular functions [GGJ17].
The key idea of the faster of the two algorithms (see Section 4.3.2) is to not only use the actual result
of the submodular function minimization necessary to check whether T is a feasible time horizon,
but to also exploit intermediate steps of this expensive computation. In particular, it uses the dual
optimality certificate, which is a vector in the submodular function’s base polytope, given as a
convex combination of vertices of this polytope. It turns out that the vertices of the considered base
polytope correspond to lex-max flows over time. Using this correspondence, we can obtain a convex
combination of lex-max flows over time with time horizon T solving a given feasible transshipment
over time problem (N , b, T ).
Our algorithms do not only have a faster running time than the algorithm of Hoppe and Tardos,
the solutions we achieve are also structurally somewhat simpler, as we compute a generalized
temporally repeated flow that keeps sending flow at a constant rate along source-sink pairs as
long as possible. On the negative side, these constant flow rates can be fractional (see Figure 4.1
for a simple example), while the solution found by Hoppe and Tardos’ algorithm is always inte-
gral.
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(b) The – up to symmetry – only integral solution
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Figure 4.1: An example showing that not every quickest transshipment problem allows for a generalized temporally
repeated solution with integral flow rates.
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4.1 An Improved Algorithm to Determine the Minimum Feasible
Time Horizon

Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and b a supply/demand function on the
terminals of N . We consider the quickest transshipment problem (N , b). The only known strongly
polynomial time method to determine the minimal feasible time horizon T ∗ for (N , b) is to apply
submodular function minimization paired with Megiddo’s parametric search framework. The fastest
running time that can be obtained in this way is in

O
(
CT (SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

)
,

where k := |S+ ∪ S−| and CT (SFMLee) is the number of comparisons done in the algorithm of Lee
et al. [LSW15] that depend on the parameter T . We already deduced that the worst case running
time of SFMLee increases by at least a factor of k3 log k when pairing it with parametric search to
determine T ∗ (see Observation 3.9). Hence, it makes sense to try to find a strongly polynomial
time way to determine T ∗ without relying on the parametric search framework. In this section
we describe such an algorithm for the special case of quickest transshipment problems in dynamic
networks with only a single source s or a single sink t.
As a main ingredient for our algorithm we exploit the fact that the submodular functions occurring
in the context of the quickest transshipment problem in networks with a single source or a single sink
fulfill the strong map property. We begin this section by reviewing a central property of submodular
functions related by a strong map and by showing that the submodular functions that are relevant
when considering the quickest transshipment problem are in fact connected by the strong map
property. In the second part of this section we describe our algorithms to determine the minimal
feasible time horizon of a quickest transshipment problem.

4.1.1 The Strong Map Property
Let f1, f2 : 2S→ R be two submodular functions over the same ground set S with f1 ← f2. A key
property of submodular functions related by a strong map is the fact that the minimal minimizer
of f2 is a subset of the minimal minimizer of f1. The same holds for the maximal minimizers.
Note that the submodularity property implies that the minimizers of a submodular function are
closed under union and intersection and hence form a distributive lattice. This implies that each
submodular function has a unique maximal and a unique minimal minimizer.
This fact, which was first observed by Topkis [Top78] in 1978, is summarized in the following lemma.

Lemma 4.1 ([Top78]). Let f1, f2 : 2S → R be two submodular functions over the same ground
set S with f1 ← f2. Denote by Xmin

1 and Xmax
1 the minimal and maximal minimizer of f1,

respectively, while Xmin
2 and Xmax

2 are the minimal and maximal minimizer of f2, respectively. We
have Xmax

1 ⊇ Xmax
2 and Xmin

1 ⊇ Xmin
2 .

Proof. Using the strong map property and submodularity yields,

f1(Xmin
1 ∪Xmin

2 )− f1(Xmin
1 )

strong map
≤ f2(Xmin

1 ∪Xmin
2 )− f2(Xmin

1 )
subm.
≤ f2(Xmin

2 )− f2(Xmin
1 ∩Xmin

2 ),

which immediately implies that Xmin
2 ⊆ Xmin

1 . Similarly, Xmax
2 ⊆ Xmax

1 can be shown.

Next, we consider the submodular functions that are relevant in the context of quickest transshipment
problems: For this purpose let N = (D = (V,A), u, τ, S+, S−) be a dynamic network. Recall, that
for a fixed time horizon θ ≥ 0 the set function oθ : 2S+∪S−→ R is defined by setting oθ(X) to be
the maximal amount of flow that can be sent from the sources in X ∩ S+ to the sinks in S− \X
until time θ in the dynamic network N for every X ⊆ S+ ∪ S−. The function oθ is submodular
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for every time horizon θ ≥ 0, as we showed in Theorem 3.6. For a fixed time horizon θ ≥ 0 we
define oθS : 2S→ R to be the restriction of oθ to S ⊆ S+, that is

oθS(X) := oθ(X) for all X ⊆ S.

Clearly, the function oθS also is submodular for every choice of time horizon θ ≥ 0 and subset S ⊆ S+.
This submodular function is particularly important for us when determining the minimal feasible
time horizon for quickest transshipment problems in networks with only a single sink. It was already
shown by Baumann and Skutella [BS09] that the functions oθ1

S+ and oθ2
S+ are related by the strong

map property for θ1 ≤ θ2. This property is directly inherited by oθ1
S and oθ2

S for all S ⊆ S+.

Lemma 4.2 ([BS09]). Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network. For A ⊆ B ⊆ S ⊆ S+

and θ1 ≤ θ2 we have

oθ1
S (B)− oθ1

S (A) ≤ oθ2
S (B)− oθ2

S (A),

i.e. oθ1
S and oθ2

S are connected by a strong map.

When considering networks with only a single source, a different, somehow symmetric, submodular
function becomes important. For a fixed subset of sinks T ⊆ S− and a fixed time horizon θ ≥ 0 we
define the set function gθT : 2T→ R by

gθT (X) := oθ(S+ ∪X) for all X ⊆ T.

The following observation is straightforward:

Observation 4.3. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network. The set function gθT is
submodular for every time horizon θ ≥ 0 and T ⊆ S−.

The most important result from this section is the fact that for θ1 ≤ θ2 and any T ⊆ S− the submodu-
lar functions gθ1

T and gθ2
T are related by a reversed strong map property:

Lemma 4.4. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network. For X ⊆ Y ⊆ T ⊆ S−

and θ1 ≤ θ2 we have

gθ2
T (Y )− gθ2

T (X) ≤ gθ1
T (Y )− gθ1

T (X).

Proof. Consider an extended network N with a super-source s that is connected to all sources in S+

by arcs with infinite capacity and transit time θ2 − θ1 (see Figure 4.2). Thus, flow originating from
the sources in S+ that reaches the sinks until time θ1 can also be started from the super-source s
and reach the sinks until time θ2. We define the set function oθ : 2{s}∪S+∪T→ R by setting oθ(X)
to be the maximal amount of flow that can be sent from the sources in X ∩ ({s} ∪ S+) to the sinks
in S− \X until time θ ≥ 0 for all X ⊆ {s} ∪ S+ ∪ T . By construction of N , the following equations
are valid for all Z ⊆ T :

oθ2({s} ∪ S+ ∪ Z) = oθ2(S+ ∪ Z), (4.1)

and

oθ1(S+ ∪ Z) = oθ2({s} ∪ Z). (4.2)

By submodularity, we also have

oθ2({s} ∪ S+ ∪X) + oθ2({s} ∪ Y ) ≥ oθ2({s} ∪ S+ ∪ Y ) + oθ2({s} ∪X). (4.3)

4.1 An Improved Algorithm to Determine the Minimum Feasible Time Horizon 71



S+

...
s

τ
=
θ2
− θ

1

u
=
∞

τ = θ2 − θ1

u =∞
τ = θ2 − θ1u =∞τ

=
θ
2 −

θ
1

u
=∞

...

S−

...

Figure 4.2: The extended dynamic network N

Overall,

gθ1
T (X)− gθ1

T (Y ) Def.= oθ1(S+ ∪X)− oθ1(S+ ∪ Y )
(4.2)= oθ2({s} ∪X)− oθ2({s} ∪ Y )
(4.3)
≤ oθ2({s} ∪ S+ ∪X)− oθ2({s} ∪ S+ ∪ Y )

(4.1)= oθ2(S+ ∪X)− oθ2(S+ ∪ Y )
= gθ2

T (X)− gθ2
T (Y ).

In Lemma 4.4 we have shown that for every T ⊆ S− the submodular functions gθT parametrized
by θ are related by a reversed strong map property with growing θ. Thus, the complement functions
of gTθ are again submodular functions that are related by the regular strong map property. For every
θ ≥ 0 we define this complementary set function gθT : 2T→ R by

gθT (X) = oθ(S+ ∪ S− \X) for all X ⊆ T.

Corollary 4.5. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network. The set function gθT is
submodular for every θ ≥ 0 and T ⊆ S−, and for every X ⊆ Y ⊆ T and θ1 ≤ θ2 we have

gθ1
T (Y )− gθ1

T (X) ≤ gθ2
T (Y )− gθ2

T (X).

4.1.2 Computing the Minimum Feasible Time Horizon

We are now ready to describe our new algorithms that determine the minimal feasible time horizon
for a given quickest transshipment problem (N , b) in a network with a single source s or a single
sink t. We start by considering the case of dynamic networks with only a single sink t but a set of
potentially multiple sourcesS+.

Dynamic Networks With a Single Sink. During this paragraph N = (D = (V,A), u, τ, S+, t)
is a dynamic network with a single sink t, supplies/demands b on the terminals, and (N , b) is
the corresponding quickest transshipment problem. To find the minimal feasible time horizon T ∗
for (N , b) we exploit the fact that the submodular functions oθS parametrized by θ form a strong
map sequence with growing θ for any S ⊆ S+ . Recall, that the feasibility criterion of Klinz (see
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Theorem 3.5) implies that T ∗ is the minimal feasible time horizon for (N , b) if and only if it is the
smallest time horizon with the property

oT
∗
(S) ≥ b(S) for all S ⊆ S+.

The following observation is the key element for our algorithm.

Observation 4.6. Let S ⊆ S+, θ ≥ 0, and Smin the minimal minimizer of oθS. Then, for each θ′ > θ,
the minimal minimizer of oθ′Smin also is the minimal minimizer of oθ′S .

Proof. The proof relies on the strong map property: Lemma 4.2 implies that oθS ← oθ
′

S and hence,
Lemma 4.1 yields that the minimal minimizer of oθ′S is a subset of Smin. Thus, instead of determining
the minimal minimizer of oθ′S , we can equivalently also determine the minimal minimizer of oθ′Smin .

The main idea of our algorithm, which is formally given in Algorithm 11, is to successively create a
chain of subsets of S+,

S+ = S0 ) S1 ) S2 ) . . . ) Sk

and times
0 = θ0 < θ1 < θ2 < . . . < θk = T ∗,

such that the set Si, which is computed in iteration i of our algorithm, is the minimal minimizer
of oθiSi−1

− b for all i ∈ {1, . . . , k}.
In order to make sure that in each iteration i the computed set Si is a real subset of Si−1, we first
determine θi to be the minimal value with oθiSi−1

(Si−1) − b(Si−1) = 0. After that we compute a
minimal minimizer Si of oθiSi−1

− b. Because we also have oθiSi−1
(∅)− b(∅) = 0, the set Si−1 cannot

be a minimal minimizer of oθiSi−1
− b and hence Si ( Si−1. Thus, our algorithm terminates after at

most |S+| iterations. We will show that we have θi−1 < θi for all i ∈ {1, . . . , k}. Thus, we can apply
Observation 4.6, which essentially implies with the feasibility criterion of Klinz (see Theorem 3.5)
that Algorithm 11 in fact computes a minimal feasible time horizon T ∗ for (N , b) and a minimal
minimizer Smin of oT∗− b.

Algorithm 11: Algorithm to determine the minimal feasible time horizon T ∗ for a quickest
transshipment problem (N , b) in a dynamic network with a single sink t

Input : A dynamic network N = (D = (V,A), u, τ, S+, t) and a supply/demand function b
Output : The minimal feasible time horizon T ∗ for the quickest transshipment problem (N , b)

1 i ← 0, Si ← S+, θi ← 0
2 while Si 6= ∅ do
3 θi+1 ← Minimal value with oθi+1

Si
(Si)− b(Si) = 0

4 Si+1 ← Minimal minimizer of oθi+1
Si
− b

5 i ← i+ 1
6 end
7 return T ∗ := θi, S∗ := Si

Before we prove the correctness of Algorithm 11, we look at a small example that illustrates how
the algorithm proceeds.

Example 4.7. We consider the quickest transshipment problem (N , b) illustrated in Figure 4.3. The
algorithm starts with i = 0, Si = S+ and θi = 0. In the first iteration the algorithm determines
the minimal value θ1 such that oθ1

S+(S+) − b(S+) = 0. In this example we obtain θ1 = 4, as can
be seen from Figure 4.4a. For the newly determined θ1 the algorithm next computes a minimal
minimizer of oθ1

S+ − b. As oθ1
S+(S+) − b(S+) = oθ1

S+(∅) − b(∅) = 0 and oS
+

θ1
({s1}) − b({s1}) = 0

(see Figure 4.4a), we get that S2 = {s2}, because oS
+

θ1
({s2})− b({s2}) = −1 (see Figure 4.4b). This

finishes the computations for i = 0. In the next iteration, i.e., for i = 1, at first the minimal
time θ2 with oθ2

{s2}(s2) − b(s2) = 0 is determined. According to Figure 4.4b, we get θ2 = 5. The
minimal minimizer of oθ2

{s2} − b is now obviously the empty set ∅. Thus, the algorithm terminates
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is o4(S+) = o4({s1}) = 0.
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Figure 4.4: Illustration of the first iteration of Algorithm 11
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Figure 4.5: A flow over time with time horizon T = 5 solving the quickest transshipment problem from Figure 4.4

and returns T ∗ = 5 as minimal feasible time horizon, which is the correct time horizon as can be
seen in Figure 4.5.

Theorem 4.8 (Correctness of Algorithm 11).
Let (N , b) be a quickest transshipment problem in a network with only a single sink t.
Algorithm 11 determines the minimal feasible time horizon T ∗ for (N , b) and an inclusion-wise
minimal subset S∗ ⊆ S+ with oT∗(S∗) = b(S∗). In the worst case it requires |S+| iterations.

Proof. We start by showing that in each iteration i ≥ 0 the computed set Si+1 is a real subset of Si,
i.e., Si+1 ( Si (by construction Si+1 is contained in Si).
For this purpose, assume that Si+1 = Si. We have Si 6= ∅ as otherwise the algorithm would have
terminated after iteration i. This means that the minimal minimizer of oθi+1

Si
− b is equal to Si, and

the minimal value of oθi+1
Si
− b is zero by the definition of θi+1. However, we also have o

θi+1
Si

(∅) = 0.
Thus, Si+1 is not a minimal minimizer of oθi+1

Si
− b, contradiction. This implies Si+1 ( Si for all i ≥ 0.

Thus, the algorithm terminates after at most |S+| iterations.
As a second step we show that θi+1 > θi for all i ≥ 0. Assume that there exists an i ≥ 0 with θi+1 ≤ θi.
We now use the strong map property, and the fact that oθi+1

Si
(Si) = b(Si), to achieve

oθiSi(Si+1)
strong map
≤ oθiSi(Si) + o

θi+1
Si

(Si+1)− oθi+1
Si

(Si)

= oθiSi(Si) + o
θi+1
Si

(Si+1)− b(Si).

As the function oθSi(S) monotonically grows in θ for every fixed subset S, we have oθi+1
Si

(Si+1) ≤
oθiSi(Si+1). It also holds that oθiSi(Si)− b(Si) < 0 as equality would imply that Si = ∅. Combining
these two facts implies

oθiSi(Si+1) > oθiSi(Si) + o
θi+1
Si

(Si+1)− b(Si),
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contradiction. It remains to be shown that the returned time is in fact the minimal feasible time
horizon of the quickest transshipment problem (N , b). However, this follows from Observation 4.6,
the feasibility criterion of Klinz (Theorem 3.5) and the fact that in each iteration of Algorithm 11
we compute the minimal value θi+1 such that oSiθi+1

(Si)− b(Si) = 0.

The running time of Algorithm 11 now follows easily.

Corollary 4.9. Using Algorithm 11, the minimal feasible time horizon for a quickest transshipment
problem (N , b) in a dynamic network with only a single sink t can be determined using at most |S+|
submodular function minimizations, that is, in an overall worst case running time of

O
(
k4 log k ·MCF(n,m) + k5 logO(1) k

)
with k = |S+|,

or in the same asymptotic running time as the submodular function minimization algorithm of Orlin
using the algorithm of Nagano [Nag07].

Proof. To determine the minimal time horizon θi with oθiS+(Si)−b(Si) = 0 in iteration i of Algorithm
11 we need to solve a quickest flow problem in a network with n vertices. Using the algorithm of Saho
and Shigeno [SS17a] (see Fact 3.2) the value θi can thus be determined in running time O(nm2(log n)2).
The minimal minimizer of oθi+1

Si
− b can be computed by one submodular function minimization for

example with the algorithm of Lee et al. [LSW15]. This implies the first running time stated in the
corollary.
Since all submodular functions minimized in the course of Algorithm 11 are related by the strong
map property (when we extend them to be submodular functions over the same ground set), Fact 2.6
implies that all submodular function minimization done during the course of the algorithm can
be done in the same asymptotic running time as the algorithm of Orlin using the algorithm of
Nagano.

Dynamic Networks With a Single Source. To describe the algorithm for determining the minimal
feasible time horizon of a quickest transshipment problem (N , b) in a dynamic network with a single
source s, the submodular functions gθT for θ ≥ 0 and T ⊆ S−, which we defined in the previous
section, are central. Recall that

gθT (X) = oθ({s} ∪ S− \X) for all X ⊆ T.

By Corollary 4.5 these functions are related by the strong map property for growing values of θ, and
determining the minimal time horizon T ∗ with the property that gT∗S−(X) + b(X) ≥ 0 for all X ⊆ S−
is – by the feasibility criterion of Klinz [Kli] – equivalent to determining the minimal feasible time
horizon for (N , b). Thus, we can proceed completely similar to compute the minimal feasible time
horizon T ∗ as in Algorithm 11, which yields Algorithm 12. The correctness of Algorithm 12 also
follows similarly as the correctness of Algorithm 11 and the running time we achieve is also the same
as the running time of Algorithm 11:

Algorithm 12: Algorithm to determine the minimal feasible time horizon T ∗ for a quickest
transshipment problem (N , b) in a dynamic network with a single source s

Input :A dynamic network N = (D = (V,A), u, τ, S+, t) and a supply/demand function b
Output :The minimal feasible time horizon T ∗ for the quickest transshipment problem (N , b)

1 i ← 0, Ti ← S−, θi ← 0
2 while Ti 6= ∅ do
3 θi+1 ← Minimal value with gθiTi(Ti) + b(Ti) = 0
4 Ti+1 ← Minimal minimizer of gθi+1

Ti
+ b

5 i ← i+ 1
6 end
7 return T ∗ = θi, S∗ = S− \ Ti
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Corollary 4.10. Using Algorithm 12 the minimal feasible time horizon of a quickest transshipment
problem (N , b) in a dynamic network with a single sink t can be determined using at most |S−|
submodular function minimization, that is in an overall worst case running time of

O
(
k4 log k ·MCF(n,m) + k5 logO(1) k)

)
with k = |S−|,

or in the same asymptotic running time of the submodular function minimization algorithm of Orlin
using the algorithm of Nagano [Nag07].

4.1.3 Summary, Conclusions and Open Questions
Summarizing, we obtain algorithms for determining the minimal feasible time horizon in dynamic
networks with only a single source or only a single sink that, instead of needing one parametric
submodular function minimization, only requires k (for k = |S+| or k = |S−|, respectively) non-
parametric submodular function minimizations. That is, by Observation 3.9, we improve the worst
case running time required to determine the minimal feasible time horizon of a quickest transshipment
problem by at least a factor of k2 log k in the two considered special cases. For quickest transshipment
problems in general networks one could consider an algorithm similar to Algorithm 11 or Algorithm 12
and it is an easy observation that also in general networks such an algorithm terminates and returns
the minimal feasible time horizon of a given quickest transshipment problem. It is however an open
problem whether this algorithm terminates in weakly or even strongly polynomial running time.
This is due to the fact that in general dynamic networks the considered parametric submodular
function does not fulfill the strong map property. Overall, it remains an open question to find a
general way to determine the minimal feasible time horizon for quickest transshipment problems
without making use of Megiddo’s parametric search.

4.2 Structure of Quickest Transshipments
We assume throughout this section that N = (D = (V,A), u, τ, S+, S−) is a dynamic network with
a supply/demand function b : S+ ∪ S−→ Z and that T ≥ 0 is a time horizon such that the dynamic
transshipment problem (N , b, T ) is feasible, i.e., there exists a flow over time f in N with time
horizon T fulfilling all supplies and demands.
The main result of this section is the following structural result, which states that a given feasible
transshipment problem (N , b, T ) can be solved by a convex combination of lexicographically maximum
flows over time with time horizon T .

Theorem 4.11 (Structure of Transshipments Over Time).
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network with a supply/demand func-
tion b : S+ ∪ S−→ Z on the terminals of N and T ≥ 0 a time horizon such that (N , b, T )
is a feasible transshipment over time problem.
Then, a flow over time f solving (N , b, T ) can be achieved as a convex combination of lexico-
graphically maximum flows over time with time horizon T .
More precisely, there are d ≤ |S+ ∪ S−| total orders ≺1, ≺2, . . . , ≺d on S+ ∪ S− and coeffi-
cients λ1, λ2, . . . , λd ≥ 0 with

∑d
i=1 λi = 1 such that

f = λ1f1 + λ2f2 + . . .+ λdfd

solves the transshipment over time problem (N , b, T ). Here, f1, f2, . . . , fd are lexicographically
maximum flows over time with time horizon T with respect to ≺1,≺2, . . . ,≺d, respectively.
If T is the minimal feasible time horizon for (N , b), then it even holds that d ≤ |S+ ∪ S−| − 1.

A small example illustrating the statement of Theorem 4.11 can be found in Figure 4.6.

Before we get to the proof of Theorem 4.11, we need to recap some definitions. Recall, that oT (X),
for X ⊆ S+ ∪ S−, is the maximum amount of flow that can be sent from the sources in X ∩
S+ to the sinks in S− \ X until time T , disregarding the supplies and demands, and that oT

4.2 Structure of Quickest Transshipments 77



s11

s11

t −2

τ
=

1

u
=

1

τ
=

1

u
=

1

τ = 1

u = 1

s11

s21

t −2

(a) A dynamic network N with supplies and demands b as indicated
s11

s21

t −2

(b) The lex-max flow over time f1 with respect to the
order s1 ≺1 s2 ≺1 t with time horizon T = 4
sends flow into the indicated path with a rate of
one during [0, 2).

s11

s21

t −2

(c) The lex-max flow over time f2 with respect to the
order s2 ≺1 s1 ≺1 t with time horizon T = 4
sends flow into the indicated path with a rate of
one during [0, 2).

s11

s21

t −2

T = 1 s11

s21

t −2

T = 2

s11

s21

t −2

T = 3 s11

s21

t −2

T = 4

(d) The quickest transshipment problem (N , b) can be solved by 1
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Figure 4.6: An example illustrating the statement of Theorem 4.11

is a submodular function over the ground set S+ ∪ S− whose base polytope B(oT ) is defined
by

B(oT ) := {x ∈ RS
+∪S− | x(X) ≤ oT (X) ∀ X ⊆ S+ ∪ S− and x(S+ ∪ S−) = oT (S+ ∪ S−)}. (4.4)

See Figure 4.7 for an example of a dynamic network together with the corresponding base polytope.
The main idea for proving Theorem 4.11 is to establish a connection between the base polytope B(oT )
and flows over time. The proof essentially consists of two parts. The first step is to deduce
that the supply/demand vector lies in the base polytope B(oT ) if and only if the transshipment
problem (N , b, T ) is feasible.
In the second part, a correspondence between the vertices of B(oT ) and lex-max flows over time
with time horizon T is shown. The two parts are summarized in the following two lemmas, which
are illustrated in Figure 4.8a.

Lemma 4.12. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network, b a supply/demand function
on the terminals and T ≥ 0 a time horizon, then

b ∈ B(oT ) if and ony if (N , b, T ) is a feasible transshipment over time problem.
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Figure 4.7: A dynamic network N with time horizon T = 3 together with its base polytope

Proof. Assume at first that (N , b, T ) is a feasible transshipment over time problem. Thus, the
feasibility criterion of Klinz [Kli] as stated in Theorem 3.5 implies that

b(X)
Thm. 3.5
≤ oT (X) for all X ⊆ S+ ∪ S−.

By assumption, we have

b(S+ ∪ S−) = 0,

and by definition oT (S+ ∪ S−) is the maximum amount of flow that can be sent from S+ towards
an empty set of sinks. Thus, we have

oT (S+ ∪ S−) = 0 = b(S+ ∪ S−),

which implies that b ∈ B(oT ) by the definition of the base polytope in (2.4).
On the other hand, if b ∈ B(oT ), then the definition of B(oT ) in (2.4) immediately implies that we
have b(X) ≤ oT (X) for all X ⊆ S+ ∪ S− and thus (N , b, T ).

With Lemma 4.12 we have shown that for a given time horizon T the set of all feasible supply/demand
vectors is exactly B(oT ), i.e.,

{b ∈ ZS
+∪S− | b is a supply/demand vector on N and (N , b, T ) is feasible} = B(oT ).

In light of this lemma, determining the minimal feasible time horizon T ∗ for a quickest transshipment
problem can be imagined as “blowing up” the polytope B(oT ) with growing T until the supply/demand
vector b lies inside the polytope. With continuously increasing T the polytope B(oT ) also grows
continuously (this follows basically from the continuity of the function θ 7→ oθ(X) for allX ⊆ S+∪S−)
such that the vector b lies in a facet of B(oT∗) if T ∗ is the minimal feasible time horizon for (N , b)
(see Figure 4.8). The next step is to derive a correspondence between the vertices of the base
polytope B(oT ) for a given transshipment problem (N , b, T ) and lex-max flows over time with time
horizon T . For a given flow over time f in a dynamic network N with time horizon T , we define the
characteristic vector xf ∈ RS+∪S− of f as follows

xf (s) := netf (v, T ) = outf (s, T )− inf (s, T ) for all s ∈ S+ ∪ S−.

Thus, for s ∈ S+ ∪ S− the value |xf (s)| is the net amount of flow sent out of terminal s before
time T . So, if s ∈ S−, then xf (s) is the overall amount of flow that has traveled into s until time T .
Clearly, if the characteristic vector xf of a flow over time f with time horizon T is equal to b, then f
solves the transshipment over time problem (N , b, T ).
For example, the characteristic vector of the flow over time depicted in Figure 4.6 is (1, 1,−2).
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(a) The transshipment prob-
lem (N , b, T1) for T1 = 2.7 is
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Lemma 4.12). The vertices
of B(oT1 ) are characteristic
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in N (see Lemma 4.13).
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(b) The transshipment prob-
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sible, as b ∈ B(oT2 ). The fact
that T2 is the minimal feasible
time horizon for (N , b) implies
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(c) The transshipment prob-
lem (N , b, T3) for T3 = 3.2 is
feasible, as b ∈ B(oT3 ). But T3
is not the minimal feasible time
horizon for (N , b) as b lies in the
interior of the base polytope.

Figure 4.8: An illustration of Lemmas 4.12 and 4.13 and the proof of Theorem 4.11 showing B(oTi ), for i = 1, 2, 3, for
a given quickest transshipment problem (N , b) with time horizons T1 = 2.8, T2 = 3, and T3 = 3.2, where N is
the dynamic network depicted in Figure 4.7a and b = (5/3, 6/3, 1/3): a given transshipment problem (N , b, T ) is
feasible if and only if b ∈ B(oT ), and the vertices of the base polytope correspond to lex-max flows over time with
time horizon T in N .

Recall, that the vertices of the base polytope B(oT ) correspond to total orders on S+ ∪ S− and vice
versa, and that the vertex v≺ corresponding to a given total order ≺ on S+ ∪ S− can be computed
in strongly polynomial time using the Greedy Algorithm (see Algorithm 2 and Theorem 2.3).

Lemma 4.13. Let N be a dynamic network, T ≥ 0 a time horizon, and ≺ a total order on S+ ∪ S−.
Denote by v≺ the vertex of B(oT ) corresponding to ≺. Then

v≺ = xf≺ ,

where f≺ is the lexicographically maximum flow over time with time horizon T with respect to ≺. In
particular,

B(oT ) = conv({xf≺ |≺ is a total order on S+ ∪ S−}).

Proof. Theorem 2.3 implies that each vertex of the base polytope B(oT ) corresponds to one or
multiple total orders on ≺. Conversely, each total order ≺ corresponds to a unique vertex v≺

of B(oT ), which can be computed using the Greedy Algorithm of Edmonds as stated in Theorem 2.3.
This implies

B(oT ) = conv({v≺ |≺ is a total order on S+ ∪ S−}).

Moreover, each total order ≺ on S+ ∪ S− induces a lexicographically maximum flow over time with
time horizon T in N , and, on the other, hand each such flow corresponds to one or multiple total
orders on S+∪S−. Let ≺ be a fixed total order on S+∪S− and assume that f≺ is the corresponding
lexicographically maximum flow over time with time horizon T , and that v≺ is the vertex of B(oT )
defined by ≺. Using Lemma 3.11 we get for all u ∈ S+ ∪ S−,

xf≺(u) = netf≺(u, T )
Lem. 3.11= oT ({u′ ∈ S+ ∪ S− | u′ � u})− oT ({u′ ∈ S+ ∪ S− | u′ ≺ u}).
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Using Theorem 2.3, we also get for all u ∈ S+ ∪ S−,

v≺(u) Thm. 2.3= oT ({u′ ∈ S+ ∪ S− | u′ � u})− oT ({u′ ∈ S+ ∪ S− | u′ ≺ u}).

Thus, it holds that xf≺ = v≺ for each fixed order ≺ on S+ ∪ S−. This implies that

B(oT ) = conv{v≺ |≺ is a total order on S+ ∪ S−}
= conv({xf≺ |≺ is a total order on S+ ∪ S−}),

which concludes the proof.

Lemma 4.12 and Lemma 4.13 essentially imply Theorem 4.11. An example can be seen in Figure 4.9.
The last ingredient we need, is a classical theorem from convex geometry – Carathéodory’s Theorem.

Theorem 4.14 (Carathéodory’s Theorem [Car07]).
Let P ⊆ Rd be a finite set such that conv(P ) is a full-dimensional polytope. A point x ∈ Rd
that lies in the convex hull of P , i.e., x ∈ conv(P ), can be written as a convex combination of
at most d+ 1 vertices of the polytope conv(P ).

We are now ready to state the proof of our main result, Theorem 4.11.

Proof of Theorem 4.11. Lemma 4.13 implies that

B(oT )Thm. 4.13= conv({xf≺ |≺ is a total order on S+ ∪ S−}).

Since (N , b, T ) is a feasible transshipment over time problem, Lemma 4.12 implies

b ∈ B(oT ),

i.e., b can be written as a convex combination of vertices of B(oT ). That is, there are total
orders ≺1,≺2, . . . ,≺d on S+ ∪ S− and coefficients λ1, λ2, . . . , λd ≥ 0 with

∑d
i=1 λi = 1 such that

b =
d∑
i=1

λiv
≺i .

Here v≺i is the vertex of B(oT ) corresponding to ≺i, for i = 1, . . . , d. Using Lemma 4.13 yields

b
Lem. 4.13=

d∑
i=1

λixf≺i ,

because of v≺i = xf≺i for i = 1, . . . , d. Clearly, f :=
∑s
i=1 λif≺i is a feasible flow over time

with time horizon T in N and xf = b. Thus, the flow over time f – a convex combination of
lexicographically maximum flows over time with time horizon T – solves the transshipment over
time problem (N , b, T ).
Next, we show that at most |S+ ∪ S−| many lexicographically maximum flows over time are
needed in a convex combination solving (N , b, T ). The ambient space of the base polytope B(oT )
is RS+∪S− , which is |S+ ∪ S−|-dimensional. By definition, B(oT ) lies inside the hyperplane defined
by x(S+ ∪ S−) = 0. Therefore,

dim(B(oT )) ≤ |S+ ∪ S−| − 1.

Carathéodory’s Theorem (see Theorem 4.14) now yields that each point inside B(oT ) is a convex
combination of at most |S+ ∪ S−| many vertices. Hence, a solution to the transshipment prob-
lem (N , b, T ) can be achieved by a convex combination of at most |S+ ∪ S−| many lexicographically
maximum flows over time with time horizon T .
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(a) The base polytope B(oT ) corresponding to the dynamic network shown in Figure 4.7a with time horizon T = 3.
The supply demand vector b = (5/3, 2, 1/2) of the quickest transshipment problem (N , b) show in Figure 4.7a
lies inside a facet of the base polytope and we have b = 1

3v1 + 1
3v2 + 1

3v3 where v1 = (2, 1, 1) is the vertex
corresponding to the order ≺1 with s1 ≺1 s3 ≺1 s2 ≺2 t, v2 = (2, 2, 0) is the vertex corresponding to
the order ≺2 with s1 ≺2 s2 ≺2 s3 ≺2 t, and v3 = (1, 3, 0) is the vertex corresponding to the order ≺3
with s2 ≺3 s1 ≺ s3 ≺3 t.
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(c) A lex-max flow over time with respect to ≺2
sends flow into the indicated paths for one time
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(d) A lex-max flow over time with respect to ≺3 sends flow into the indicated path for one time unit.

Figure 4.9: The convex combination of vertices of B(oT ) that yields a vector b inside the base polytope gives rise
to a convex combination of lex-max flows over time solving the transshipment problem (N , b, T ): the convex
combination 1

3f1 + 1
3f2 + 1

3f3 of the lex-max flows over time fi with time horizon T = 3 with respect to ≺i,
for i = 1, 2, 3, solves the quickest transshipment problem (N , b) shown in Figure 4.7a. As an example, consider
the source s2. In 1

3f1 this source sends 1
3 flow units, in 1

3f2 it sends 2
3 flow units and in 1

3f3 it sends one flow
unit to the sink t. Overall, 2 flow units are sent by s2.

Geometrically, finding the minimum feasible time horizon for (N , b) is the same as finding the
minimum T ∗ such that b ∈ B(oT ). Note that the function oT (X) is continuous in T for each
fixed X ⊆ S+ ∪ S−. Thus, with increasing T , the polytope B(oT ) also “grows” continuously. Hence,
there exists a minimal time T ∗ such that b lies in the boundary of B(oT ), i.e., in a facet of B(oT ).
With the same reasoning as before – a facet of B(oT ) has at most dimension |S+ ∪ S−| − 2 –
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Carathéodory’s Theorem implies that a feasible transshipment solving (N , b, T ∗) can be achieved by
finding a convex combination of at most |S+ ∪ S−| − 1 many lexicographically maximum flows over
time with time horizon T ∗.

4.3 Solving Transshipment Over Time Problems
Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network and assume that (N , b, T ) is a feasible
transshipment over time problem. We have shown in Theorem 4.11 in the previous section that
this problem can be solved by a convex combination of at most |S+ ∪ S−| many lexicographically
maximum flows over time with time horizon T . However, it is still completely unclear how to find
such a convex combination. In this section we present two different algorithms to solve a given
transshipment over time problem that boil down to two methods to determine a suitable convex
combination of lex-max flows over time solving a given feasible transshipment problem.
At first we describe the more straightforward, but a less efficient approach to compute a suitable
convex combination – an implementation of Carathéodory’s Theorem that relies on a recent result
by Goemans et al. [GGJ17] about line search over base polytopes of submodular functions. Although
this approach already yields an algorithm with improved worst case running time compared to the
algorithm of Hoppe and Tardos, the second method we describe in Section 4.3.2 yields an even
greater improvement. Our second algorithm for computing a suitable convex combination of lex-max
flows over time relies on submodular function minimization algorithms using the framework of
Cunningham (see Section 2.3.3). It turns out that a convex combination of lex-max flows over
time solving (N , b, T ) in case of feasibility is basically computed as a byproduct of the submodular
function minimization that is required to check the feasibility of (N , b, T ).
Since both of our algorithms solve given (quickest) transshipment problems by computing a suitable
convex combination of lex-max flows over time, the solutions to (N , b) we achieve are compared to
the flows over time computed by the algorithm of Hoppe and Tardos structurally much simpler:
they are generalized temporally repeated flows. The downside of our approach is that the flow
over time we compute is in general not integral – it is in general not possible to come up with
integral generalized temporally repeated flows solving a given (quickest) transshipment problem (see
Figure 4.1).

4.3.1 An Implementation of Carathéodory’s Theorem
The results from the previous section imply that a feasible transshipment over time problem (N , b, T )
can be solved by a convex combination of lex-max flows over time with time horizon T . The goal
in this section is to describe an efficient way to compute a suitable convex combination of lex-max
flows over time. By Lemma 4.12 and Lemma 4.13 it suffices to find a convex combination of vertices
of B(oT ) that yield the supply/demand vector b ∈ B(oT ). The first algorithm that comes into mind
when having to solve such a problem is an implementation of Carathéodory’s Theorem or, more
precisely, an implementation of a classical proof of this theorem. Carathéodory’s Theorem for this
special case states that b can be obtained as convex combination of at most |S+ ∪ S−| vertices
of B(oT ) and the classical proof of this theorem immediately leads to an algorithm to determine a
suitable convex combination. The main insight of this section will be that for our special case the
algorithmic version of Carathéodory’s Theorem can be implemented in strongly polynomial time.
We start by recalling the statement and the classical proof of Carathéodory’s Theorem that leads to
the desired algorithm. Recall that Carathéodory’s Theorem states the following:
Let P ⊆ Rd be a finite set such that conv(P ) is a full-dimensional polytope. Then a point x ∈ conv(P )
can be written as a convex combination of at most d+ 1 vertices of conv(P ).
A simple proof of this theorem is the following proof by induction on d – an illustration of this proof
can be found in Figure 4.10.

Proof of Carathéodory’s Theorem (Theorem 4.14). We start with d = 1. Let P ⊆ R1, then conv(P )
has two vertices since conv(P ) is full-dimensional by assumption, which immediately implies the
statement of Carathéodory’s Theorem.
Next assume that the statement is true for all d′ with d′ ≤ d for some d > 0. Let P ⊆ Rd+1

be a finite set, x1 ∈ conv(P ), and w1 ∈ P a vertex of conv(X). We can assume that x1 lies in
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the interior of conv(P ) as if x1 lies in a face of conv(P ), we are done by induction. We consider
the ray R that starts at the vertex w1 and goes through the point x1. The ray R intersects the
boundary of conv(P ) at some point x2. Since x1 lies in the interior of conv(P ) by assumption, we
have x1 6= x2. Formally, we consider R(µ) := w1 + µ · (x1 − w1) for all µ ∈ R and determine the
maximum value µ∗ such that R(µ∗) ∈ conv(P ). Clearly, we have µ∗ ≥ 1 because x1 ∈ conv(P ) by
assumption. Define x2 = R(µ∗) and compute λ1 such that x1 = λ1w1 + (1− λ1)x2.
The point x2 lies in a face F of conv(P ) with F 6= conv(P ) and thus, in a polytope which is at
most d-dimensional. By induction we can achieve the point x2 as convex combination of at most d+1
vertices of the face F . Since the required point x1 can be obtained as a convex combination of x2
and w1, x1 can be obtained as a convex combination of at most d + 2 vertices of conv(P ). See
Figure 4.10b for a visualization.

The above proof of Carathéodory’s Theorem inspires Algorithm 13 for determining a point x ∈
conv(P ) as a convex combination of vertices of conv(P ), for a finite subset P ⊆ Rd.

Algorithm 13: Implementation of Carathéodory’s Theorem
Input : Q = conv(v1, v2, . . . , vr) ⊆ Rd, where v1, . . . , vr are the vertices of Q, x ∈ Q
Output :A convex combination of vertices of Q yielding x

1 i ← 1, Fi ← Q, xi ← x, λ0 ← 0
2 while i ≤ d do
3 wi ← arbitrary vertex of Fi
4 µ∗ ← max{µ | wi + µ · (xi − wi)} ∈ Q
5 xi+1 ← wi + µ∗ · (xi − wi)
6 if µ∗ = 1 then
7 λi ← 0
8 else
9 λi ←

(
1−

∑i−1
j=0 λj

)
· (µ∗ − 1)/µ∗

10 end
11 Fi+1 ← real face of Fi with xi+1 ∈ Fi+1
12 i ← i+ 1
13 end
14 λd+1 ← 1− (λ1 + . . .+ λd)
15 wd+1 ← xd+1
16 return w1, . . . , wd+1, λ1, . . . , λd+1

Theorem 4.15.
Let Q = conv(v1, . . . , vr) ⊆ Rd where v1, . . . , vr ⊆ Rd are the vertices of Q and let x ∈ Q.
Assume that Q is a d′ ≤ d dimensional polytope. Algorithm 13 returns a convex combination of
at most d′ + 1 many vertices yielding the point x in Q. Furthermore, the algorithm terminates
after d iterations.

Proof. That Algorithm 13 terminates after at most d iterations is clear from our arguing above.
Denote by w1, . . . , wd+1 the vertices of Q returned by the algorithm and by λ1, . . . , λd+1 the convex
coefficients. Also, by construction the algorithm returns at most d′ + 1 coefficients that are non-zero.
Thus, there are d′ + 1 vertices in {w1, . . . , wd+1} such that a convex combination of them yields x.
It remains to be shown that λ1, . . . , λd+1 are the correct convex coefficients such that the convex
combinations yields x. We start by showing that λ1 + . . . + λi ≤ 1 for all i + {1, . . . , d} which
by the construction of the λi immediately implies that 0 ≤ λi ≤ 1 for all i ∈ {1, . . . , d + 1} and
λ1 + . . .+ λd+1 = 1. We show this by induction on i. For i = 1 we clearly have

0 ≤ µ∗ − 1
µ∗

≤ 1,
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because µ∗ ≥ 1. Assume now, we have λ1 + . . .+ λi ≤ 1 for some 1 ≤ i < d. Then,

λ1 + . . .+ λi + λi+1 = λ1 + . . .+ λi + µ∗ − 1
µ∗

(1− (λ1 + . . .+ λi))

= 1
µ∗

(λ1 + . . .+ λi)︸ ︷︷ ︸
≤1

+µ∗ − 1
µ∗

≤ 1.

To show that x = λ1w1 + . . .+ λd+1wd+1 we show by induction on i that x = λ1w1 + . . .+ λiwi +
(1 − (λ1 + . . . + λi))xi+1 for all i ∈ {1, . . . , d}. We start with i = 1. If in iteration i = 1 we have
µ∗ = 1, then x2 = w1 and λ1 = 0 and we are immediately done. Assume µ∗ > 1. Then,

λ1w1 + (1− λ1)x2 = µ∗ − 1
µ∗

w1 + 1
µ∗
x2

= µ∗ − 1
µ∗

w1 + 1
µ∗

(w1 + µ∗(x− w1)) = x.

Now assume that the statement holds for 1 ≤ i < d. If µ∗ = 1 in iteration i+ 1 of the algorithm, it
is again clear that we have x = λ1w1 + . . .+ λi+1wi+1 + (1− (λ1 + . . .+ λi+1))xi+2. Thus, assume
µ∗ > 1. By assumption, we have

λ1w1 + . . .+ λiwi + (1− (λ1 + . . .+ λi))xi+1 = x. (4.5)

Also, note that

xi+2 = wi+1 + µ∗(xi+1 − wi+1)⇒ xi+1 = 1
µ∗

(xi+2 − wi+1) + wi+1, (4.6)

and

(1− (λ1 + . . .+ λi+1)) = (1− (λ1 + . . .+ λi))− λi+1

= (1− (λ1 + . . .+ λi))− (1− (λ1 + . . .+ λi)) ·
µ∗ − 1
µ∗

= 1
µ∗

(1− (λ1 + . . .+ λi)).

(4.7)

Putting these three equations together yields

x
(4.6)= λ1w1 + . . .+ λiwi +

(
1− (λ1 + . . .+ λi)

)
·
(

1
µ∗

(xi+2 − wi+1) + wi+1

)
= λ1w1 + . . .+ λiwi +

(
µ∗ − 1
µ∗

(
1− (λ1 + . . .+ λi)

))
wi+1 + 1

µ∗

(
1− (λ1 + . . .+ λi)

)
xi+2

(4.7)= λ1w1 + λ2w2 + . . .+ λi+1wi+1 +
(
1− (λ1 + . . .+ λi+1)

)
xi+2.

For arbitrary convex hulls of finite sets it is not clear how to implement Algorithm 13 efficiently.
When a polytope is given as a convex hull of vertices and not as an intersection of half spaces, it is for
example usually not straightforward how to determine a facet which contains a given vertex or how
to compute µ∗. However, we are only interested in implementing this algorithm for base polytopes of
submodular functions and it turns out that in this case the algorithm can be implemented in strongly
polynomial time. Overall, we need to be able to solve the following subproblems efficiently in order
to obtain a fast implementation of Carathéodory’s Theorem for the special case of Q = B(oT ) for
some time horizon T ≥ 0:

1. choosing an arbitrary vertex w of a given face F of B(oT ),

2. doing line search over B(oT ) in an arbitrary direction (needed to determine µ∗),

3. finding a face of B(oT ) containing the vector x obtained by the line search.
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w

b

(a) Iteration i = 1 of Algorithm 13. A vertex w1
of B(o3) is chosen, here w1 = (0, 0, 0). Since b
lies in a facet of B(o3) that does not contain w1,
we get µ∗ = 1 (the ray from w1 going through b
is shown in the figure). This implies x2 = b
and λ1 = 0.

(2, 2, 0)
w2

x

b

(b) Iteration i = 2 of Algorithm 13: The currently
regarded face F2 of B(o3) is the blue colored
face shown in the figure. As vertex w2 in F2 we
choose (2,2,0). The ray from w2 through b cuts
the boarder of F2 at the point x2 = (3/2, 2, 1/2)
for µ∗ = 3/2 which implies λ2 = 1/3.

(1, 3, 0)

w3

(2, 1, 1)

x

x

b

(c) Iteration i = 3 of Algorithm 13: w3 = (1, 3, 0), µ∗ = 2, x3 = (2, 1, 1) and λ3 = 1/3. The last convex coefficient is
thus λ4 = 1/3 and x4 = (2, 1, 1).

Figure 4.10: Illustration of Algorithm 13. The depicted polytope is the base polytope B(o3) of the dynamic network
shown in Figure 4.7a and b = (5/3, 2, 1/3). The overall goal is to find a convex combination of vertices yielding
the vector b.

To be able to solve the first and the third task, we need to understand how the faces of the
base polytope of a submodular function can be characterized. This is explained in the following
paragraph. How line search over the base polytope B(oT ) can be done efficiently, will be explained
subsequently.

The Faces of a Base Polytope. Let g : 2E → R be a submodular function over a ground set E.
Recall that the base polytope B(g) is defined as follows

B(g) := {x ∈ RE | x(X) ≤ f(X) for all X ⊆ E and x(E) = g(E)}.

In the following we shortly summarize how the faces of B(g) look like. These results are due to
Fujishige [Fuj58]. For x ∈ B(g) we define,

D(x) := {X ⊆ E | x(X) = g(X)}. (4.8)

For any D ⊆ 2E we additionally define

F(D) = {x ∈ B(g) | x(X) = g(X) for all X ∈ D}.

Theorem 4.16 ([Fuj58]).
The collection F of all the nonempty faces of B(g) is given by

F = {F(D(x)) | x ∈ B(g)}.

In particular, if we are given a subset X ⊆ E, then the set of all vector x ∈ B(g) that are tight
for this set, i.e., all x ∈ B(g) with x(X) = g(X), defines a face F of B(g). The vertices of such
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a face F are of course vertices of B(g), that is, they correspond to total orders ≺ of E. Thus,
the vertices of F correspond to special orders of E, namely orders in which X is a lower ideal.

Observation 4.17. Each subset X ⊆ E defines a face F of B(g) given by

F = {x ∈ B(g) | x(X) = g(X)}.

The vertices of F correspond to orders ≺ on E with the property that for each x ∈ X we have

x ≺ e for all e ∈ E \X.

Line Search Over the Base Polytope of a Submodular Function. The second problem we need
to solve is doing line search over the base polytope of a submodular function. Let g : 2E → R be a
submodular function over a ground set E. Given an arbitrary a ∈ RE and x0 ∈ B(g) our goal is to
compute max{µ | x0 + µa ∈ B(g)}. Without loss of generality, we can assume that x0 = 0, i.e., we
can assume that we want to determine the maximal µ such that µa ∈ B(g). Thus, we are interested
in the problem

µ∗ = max{µ | min
X⊆E

g(X)− µa(X) ≥ 0}

for a non-negative submodular function g. In [GGJ17] Goemans et al. analyze the discrete Newton’s
method for this problem and show that it terminates after at most |E|2 +O(|E| log2 |E|) iterations.
See Algorithm 14 for the full formulation of the discrete Newton’s algorithm used in [GGJ17].

Algorithm 14: Discrete Newton’s Algorithm for line search over a submodular function’s base
polytope [GGJ17]

Input : A submodular function g : 2E → R≥0, a ∈ RE
Output : µ∗ = max{µ | minX⊆E g(X)− µa(X) ≥ 0}

1 i ← 0, µ1 ← mine∈E : a({e})>0 g({e})/a({e})
2 do
3 i ← i+ 1
4 hi ← minX⊆E g(X)− µia(X)
5 Si ∈ argminX⊆E g(X)− µia(X)
6 µi+1 ← f(Si)/a(Si)
7 while hi 6= 0
8 return µ∗ = µ, S∗ = Si

Lemma 4.18 ([GGJ17]). Algorithm 14 terminates after |E|2 +O(|E| log2 |E|) iterations, each of which
requires one submodular function minimization.

In each iteration i the algorithm has to do one submodular function minimization to determine hi
and Si. This computation can be done using the algorithm of Lee et al. [LSW15]. In the end the
algorithm returns µ∗, that is, the largest parameter for which µa ∈ B(g), and S∗, the set for which
the minimum of g − µ∗ · a it attained. Note that we always have

g(S∗)− µ∗a(S∗) = 0.

Solving a Transshipment Problem. We can now put together the observations from the previous
two paragraphs to come up with an efficient implementation of Algorithm 13. For this purpose
assume that (N , b, T ) is a feasible transshipment problem. Our goal is to determine b as convex
combination of vertices of B(oT ).
Clearly, one main ingredient is to do the required line search during the course of Algorithm 13
with the help of Algorithm 14 (note that we have to translate our submodular function by −wi
before we can apply this algorithm). In each iteration i the line search returns a set Si+1 ⊆ S+ ∪S−
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and µ∗ ≥ 1 such that µ∗ is the maximal value with wi +µ∗(xi−wi) ∈ B(oT ). We use µ∗ to compute
our convex coefficients and Si+1 to define the real face Fi+1 of B(oT ) containing xi+1. We set Fi+1 =
{x ∈ B(oT ) | x(Si+1) = oT (Si+1)} which is a face by Observation 4.17. We need to argue why Fi+1
contains the vector xi+1. During the line search, Algorithm 14 determines Si+1 to be the minimizer
of the submodular function (oT −wi)−µ(xi−wi). That is, we have

oT (Si+1)− wi(Si+1)− µ∗(xi − wi)(Si+1) = 0,

j

Observation 4.19. Using the line search algorithm in Algorithm 14 to obtain an efficient implementation
of Algorithm 13 overall yields an algorithm that requires |S+ ∪ S−|3 +O(|S+ ∪ S−|2 log2 |S+ ∪ S−|)
many submodular function minimization to solve a feasible transshipment problem (N , b, T ).

In Section 4.3.3 we will compare the running time we achieve here with the running time of
the algorithm of Hoppe and Tardos and our other algorithm that we derive in the next sec-
tion.

4.3.2 Exploiting the Framework of Cunningham

Throughout this section, assume that (N , b, T ) is a transshipment problem in a dynamic network N
with time horizon T . Theorem 4.11 implies that – in case of feasibility – there exists a convex
combination of at most |S+ ∪ S−| many lex-max flows over time with time horizon T solving
this problem. In the following we will explain how such a convex combination can be determined
during the submodular function minimization that is required to check whether (N , b, T ) is feasible,
provided that the submodular function minimization is done with an algorithm using the framework
of Cunningham, for example with the algorithm of Orlin [Orl93].
Recall, that by the feasibility criterion of Klinz as stated in Theorem 3.5 the transshipment
problem (N , b, T ) is feasible if and only if

oT (X) ≥ b(X) for all X ⊆ S+ ∪ S−.

Thus, we can check the feasibility by minimizing the submodular function oT− b. If the minimum is
at least zero, the problem is feasible, otherwise it is not.
Since we want to show that, in case of a feasible problem, a suitable convex combination of lex-max
flows over time solving (N , b, T ) is computed as a byproduct of the submodular function minimization
with the algorithm of Orlin, we assume in the following that (N , b, T ) is feasible, i.e., oT (X)−b(X) ≥ 0
for all X ⊆ S+ ∪ S−. Because we also have oT (S+ ∪ S−)− b(S+ ∪ S−) = 0, this implies that in this
case the minimum of the submodular function oT− b is zero, that is,

min{oT (X)− b(X) | X ⊆ S+ ∪ S−} = 0. (4.9)

Recall, that algorithms for submodular function minimization using the framework of Cunningham,
which we introduced in Section 4.3.2, rely on Theorem 2.4. In this case it states,

min{oT (X)− b(X) | X ⊆ S+ ∪ S−} = max{x−(S+ ∪ S−) | x ∈ B(oT − b)}. (4.10)

Putting together these observations yields the following lemma.

Lemma 4.20. If (N , b, T ) is a feasible transshipment over time problem in a dynamic network N , we
have

0 = min{oT (X)− b(X) | X ⊆ S+ ∪ S−} = max{x−(S+ ∪ S−) | x ∈ B(oT − b)}

and

0 = argmax{x−(S+ ∪ S−) | x ∈ B(oT − b)}.
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Proof. Putting together (4.9) and (4.10) already yields,

0 = min{oT (X)− b(X) | X ⊆ S+ ∪ S−} = max{x−(S+ ∪ S−) | x ∈ B(oT − b)}.

Let x∗ = argmax{x−(S+ ∪ S−) | x ∈ B(oT − b)}. The above equation implies,

(x∗)−(S+ ∪ S−) = 0.

That is, the negative components of x∗ sum up to zero. Hence,

x∗(u) ≥ 0 for all u ∈ S+ ∪ S−.

The vector x∗ lies in the base polytope B(oT − b), which lies within the hyperplane defined
by x(S+ ∪ S−) = 0. Thus, the components of x∗ sum up to zero yielding that x∗(u) = 0 for
all u ∈ S+ ∪ S− and hence x∗ = 0.

Thus, when minimizing the submodular function oT− b, for example with the algorithm of Orlin,
also the zero vector is is computed as a convex combination of vertices of B(oT− b).
This fact, together with the following lemma, shows how we can obtain a convex combination of ver-
tices of B(oT ) giving the supply/demand vector b out of the convex combination of vertices of B(oT−b)
giving the zero vector. See Figure 4.11 for an illustration.

(−2/3, 1,−1/3)

(1/3,−1, 2/3)

(1/3, 0,−1/3)
0

(1, 3, 0)

(2, 1, 1)

(2, 2, 0)
b

lex-max

translate by b

Figure 4.11: Minimizing the submodular function o3 − b for the transshipment problem depicted in Figure 4.7a yields
the zero vector a a convex combination of vertices of B(o3 − b) (Lemma 4.20) and translating by b yields a convex
combination of vertices of B(o3) giving the vector b (Lemma 4.21). The vertices of B(o3) are characteristic vectors
of lex-max flows over time with time horizon T = 3 in N (see Lemma 4.13). Thus, minimizing the submodular
function o3 − b essentially yields a convex combination of lex-max flows over time solving (N , b).

Lemma 4.21. Let N be a dynamic network, b a supply/demand function on the terminals of N
and T ≥ 0 a time horizon. The base polytope B(oT ) is a translation of B(oT − b) by the vector b,
that is

B(oT ) = B(oT − b) + b.

For a fixed total order ≺ on S+ ∪ S−, let v≺ be the corresponding vertex of B(oT ) and v≺ the
corresponding vertex of B(oT − b). Then,

v≺ = v≺ + b.

Proof. By Theorem 2.3, we have for each u ∈ S+ ∪ S−

v≺(u) = oT ({u′ ∈ S+ ∪ S− | u′ � u})− oT ({u′ ∈ S+ ∪ S− | u′ ≺ u})

and

v≺ = oT ({u′ ∈ S+ ∪ S− | u′ � u})− oT ({u′ ∈ S+ ∪ S− | u′ ≺ u})− b(u′).

Thus, v≺ = v≺ + b. Since the vertices of both polytopes are completely characterized by the total
orders on S+ ∪ S−, this completes the proof.
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Using Lemma 4.20 and Lemma 4.21 we can finally explain our algorithm to compute a convex
combination of lexicographically maximum flows over time with time horizon T solving a feasible
transshipment over time problem (N , b, T ).
By Lemma 4.20, since (N , b, T ) is a feasible transshipment problem, a submodular function mini-
mization algorithm using the framework of Cunningham to minimize oT − b returns the zero vector
as a convex combination of vertices of B(oT − b). An example for such an algorithm is the algorithm
of Orlin [Orl09] that we in the following denote by SFMOrlin. Thus, SFMOrlin(N , b, T ) returns
the zero vector as a convex combination of vertices of B(oT − b) and these vertices are each given
by the order ≺ on S+ ∪ S− that they correspond to. That is, we get coefficients λ1, . . . , λd ≥ 0
with

∑d
i=1 λi = 1 and total orders ≺1, . . . ,≺d on S+∪S− such that

0 = λ1v
≺1 + λ2v

≺2 + . . .+ λdv
≺d , (4.11)

where v≺i is the vertex of B(oT − b) corresponding to ≺i for i = 1, . . . , i. Since the algorithm of Orlin
always returns a minimal convex combination of vertices, we get by Theorem 4.14 that d ≤ |S+∪S−|.
Translating a vertex v≺ of B(oT − b) by b results in the vertex v≺ of B(oT ) by Lemma 4.21. Thus,
we get

b
(4.11)= λ1(v≺1 + b) + λ2(v≺2 + b) + . . .+ λd(v≺d + b)

Lem. 4.21= λ1v
≺1 + λ2v

≺2 + . . .+ λdv
≺d .

Let f≺1 , f≺2 , . . . , f≺d be the lexicographically maximum flows over time with time horizon T with
respect to ≺1, ≺2, . . . , ≺d, respectively. Lemma 4.13 implies

v≺i = xf≺i for all i ∈ {1, . . . , d},

and thus

b
Lem. 4.13= λ1xf≺1

+ λ2xf≺2
+ . . .+ λdxf≺d .

The characteristic vector of the feasible flow over time f :=
∑d
i=1 λif≺i is b and hence the flow over

time f solves the transshipment problem (N , b, T ).
Summarizing, for a feasible transshipment problem (N , b, T ) the algorithm of Orlin with input oT− b
returns a suitable convex combination of lexicographically maximum flows over time with time
horizon T . More precisely, SFMOrlin(oT − b) returns suitable total orders on S+ ∪ S− and convex
coefficients (see Figure 4.11 for an illustration). The actual lexicographically maximum flows over
time with time horizon T have to be computed afterwards (see Algorithm 6).
All these observations lead to the following formal description of an algorithm solving a given
transshipment problem (N , b, T ). Note here, that the algorithm of Orlin of course also returns the
minimal value vmin of the considered submodular function.

Algorithm 15: Algorithm to solve a given transshipment over time problem (N , b, T )
Input : A dynamic network N = (D = (V,A), u, τ, S+, S+), a supply/demand function b and a

time horizon T ≥ 0
Output :A transshipment over time solving (N , b, T ) in case of feasibility, Infeasible otherwise

1 λ1, . . . , λd,≺1,≺2, . . . ,≺d, vmin ← SFMOrlin(oT − b)
2 if vmin < 0 then
3 return Infeasible
4 else
5 for i = 1, 2, . . . , d do
6 f≺i ← LexMax(N , T,≺i)
7 end
8 return λ1, λ2, . . . , λd, f≺1 , f≺2 , . . . , f≺d
9 end
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Theorem 4.22 (Correctness of Algorithm 15).
Algorithm 15 solves a given transshipment problem (N , b, T ) within the asymptotic running
time of the algorithm of Orlin for submodular function minimization, more precisely, in running
time O((k5+k2)·MCF(n,m)+n6) with k = |S+∪S−|, n = |V |, m = |A|, where O(MCF(n,m))
is the running time required by a minimum-cost flow computation in a network with n vertices
and m arcs.
In particular the transshipment over time returned by Algorithm 15 is a generalized temporally
repeated flow over time.

Proof. With our observations from above it is immediate that Algorithm 15 solves a given transship-
ment problem.
In case of feasibility the transshipment over time f computed by Algorithm 15 is a convex combina-
tion of lexicographically maximum flows over time with time horizon T . These flows are computed
by the algorithm of Hoppe and Tardos (see Algorithm 6). As this algorithm computes a generalized
temporally repeated, the flow returned by Algorithm 15 is also a generalized temporally repeated.
An evaluation of oT (X)−b(X) for some subset X ⊆ S+∪S− can be achieved by one static minimum-
cost flow computation in the static network corresponding to N (see Observation 3.7). Therefore,
for the submodular function oT − b with ground set S+ ∪ S− the running time of SFMOrlin(oT − b)
is O(k5MCF(n,m) + k6). In the last step Algorithm 15 requires at most |S+ ∪ S−| many lexi-
cographically maximum flow over time computations (see Theorem 4.11) and each computations
requires |S+ ∪ S−| many minimum-cost flow computations. Hence, all in all k2 many additional
minimum-cost flow computation are required.

4.3.3 Summary, Conclusions and Open Questions
In this section we compare the running time of our implementation of Algorithm 13 and the running
time of Algorithm 15 with the running time of the algorithm of Hoppe and Tardos for solving the
quickest transshipment problem. It turns out that with both algorithms combined with our results
from Section 4.1 we obtain significant running time improvements over the algorithm of Hoppe and
Tardos, whereas Algorithm 15 is the faster of both algorithms.
The improvements we achieve are summarized in Table 4.1 and Table 4.2

Table 4.1: The running time improvement factors we achieve for quickest transshipment and transshipment over time
problems in a dynamic network N with terminals S+ ∪ S− by our implementation of Algorithm 13

single source or single sink multiple sources and sinks

Transshipment Over Time |S+ ∪ S−| |S+ ∪ S−|

Quickest Transshipment |S+| or |S−| |S+ ∪ S−|

Table 4.2: The running time improvement factors we achieve for quickest transshipment and transshipment over time
problems in a dynamic network N with terminals S+ ∪ S− by Algorithm 15

single source or single sink multiple sources and sinks

Transshipment Over Time |S+ ∪ S−|2 |S+ ∪ S−|2

Quickest Transshipment |S+|2 or |S−|2 |S+ ∪ S−|

The, until now, best and only known algorithm to solve transshipment over time problems is
the algorithm of Hoppe and Tardos, which in the worst case relies on 2|S+ ∪ S−| many para-
metric submodular function minimizations and one lexicographically maximum flow over time
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computation. The fastest known worst case running time that can be achieved for this algo-
rithm is

O
(
2k · CT (SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

)
.

We already argued in Observation 3.9 that pairing SFMLee with parametric search leads to an
increase of the worst case running time of at least k3 log k. Thus, we obtain the following fact:

Fact 4.23. Our implementation of Algorithm 13 improves upon the algorithm of Hoppe and Tardos for
solving a given transshipment problem (N , b, T ) by at least a factor of S+ ∪ S−| · log(|S+ ∪ S−|)|.

Fact 4.24. Algorithm 15 improves upon the algorithm of Hoppe and Tardos for solving a given
transshipment problem (N , b, T ) by at least a factor of |S+ ∪ S−|2 · log(|S+ ∪ S−|).

In order to solve a given quickest transshipment problem (N , b), we at first need to determine the
minimal feasible time horizon T ∗ and afterwards the actual transshipment needs to be computed.
With Algorithm 15 we have two possibilities to solve a quickest transshipment problem in strongly
polynomial time: On the one hand we can pair the algorithm of Orlin with parametric search to
determine T ∗. By our results from above, while determining T ∗, in this case also a suitable convex
combination of lexicographically maximum flows over time solving (N , b, T ∗) is computed.
A faster way is to first determine T ∗ by pairing the algorithm of Lee et al. [LSW15] with parametric
search and by afterwards solving the problem (N , b, T ∗) using Algorithm 15. Compared to the
algorithm of Hoppe and Tardos, we then need a factor of |S+ ∪ S−| less parametric submodular
function minimizations which results in a running time improvement of at least a factor of |S+ ∪S−|.
We achieve the same running time improvement factor for our implementation of Algorithm 13.
However, Algorithm 15 is more efficient because doing one submodular function minimization with
the algorithm of Orlin is faster than doing |S+ ∪ S−|3 many submodular function minimizations
with the algorithm of Lee et al. [LSW15].

Corollary 4.25. A given quickest transshipment problem (N , b) can be solved by first computing T ∗
using SFMLee paired with parametric search and by afterwards solving (N , b, T ∗) with the help of
Algorithm 15. The running time improvement we achieve is at least a factor of |S+ ∪ S−|.
We achieve the same running time improvement factor for our implementation of Algorithm 13.
However, Algorithm 15 is the faster of both of our algorithms.

When considering a quickest transshipment problem (N , b) in a dynamic network with only a single
source or only a single sink, we can use our results from Section 4.1 to achieve an even larger running
time improvement. We know that in these special cases we can determine the minimal feasible time
horizon T ∗ with the help of Algorithm 12 or Algorithm 11, which require overall only |S+∪S−| many
submodular function minimizations. That is, in this case we can, with the help of Algorithm 15,
solve the quickest transshipment problem in the same asymptotic running time as the algorithm
of Orlin for submodular function minimization. Our implementation of Algorithm 13 still requires
in the worst case k3 many, for k = |S+| or k = |S−|, submodular function minimizations using the
algorithm of Lee et al. [LSW15]. Thus, for this algorithm we can in this case only deduce a running
time improvement of at least a factor of |S+| or |S−|.

Corollary 4.26. A quickest transshipment problem (N , b) in a dynamic network with only a single source
or only a single sink can be solved in the same asymptotic running time as the algorithm of Orlin
for submodular function minimization [Orl93]. This results in an overall running time improvement
upon the algorithm of Hoppe and Tardos by at least a factor of |S+ ∪ S−|2 · log(|S+ ∪ S−|)|.

Conclusions and Open Questions. Note that all our new algorithms for solving the quickest
transshipment problem basically achieve (at least part of) the running time improvement compared
to the algorithm of Hoppe and Tardos by trading the computation of an integral solution with the
computation of a fractional quickest transshipment. Of course our algorithms significantly minimize
the (parametrized) submodular function minimizations required to solve a quickest transshipment
problem, but it remains an open questions how find an integral solution to a quickest transshipment
problem with less submodular function minimizations than the algorithm of Hoppe and Tardos. One
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approach could be to at first compute a convex combination of lex-max flows over time solving a given
quickest transshipment problem and then to efficiently construct an integral quickest transshipment
out of this convex combination.
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5Earliest Arrival Transshipments in
Networks with a Single Sink

Earliest Arrival Transshipments are quickest transshipments that feature particu-
larly desirable properties in the context of evacuation planning. An earliest arrival
transshipment – which in general does only exist in dynamic networks with a single
sink – is a quickest transshipment maximizing the amount of flow which has reached
the sink for every point in time simultaneously. The so far only known algorithm
for this problem that does not rely on explicit time expansion is due to Baumann
and Skutella [Bau07]. However, in the worst case their algorithm still requires an
exponential expansion of the original dynamic network. The main result of this
chapter is a novel algorithm for the earliest arrival transshipment problem that
solely works on the given network and, as a consequence, only requires polynomial
space.
Additionally, we present a faster algorithm for computing the earliest arrival pat-
tern. The currently best known algorithm for this task requires number of sources
many parametric submodular function minimizations. We improve upon this by
getting rid of the parametrization in the submodular function minimizations.
A consequence of our results is an FPTAS for approximating earliest arrival
transshipments that does not require any form of time expansion.

Publication Remark: Some of the results from this chapter have been published
in [SS17b].
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When disaster strikes, one goal of an efficient evacuation strategy is of course to rescue all people
from the endangered area as quickly as possible. To meet this need, quickest transshipments can
be used. However, sometimes it might not be apparent when the actual tragedy will happen. For
example, after an earthquake somewhere below the ocean, it might be known that at some point a
tsunami will hit the coast, but not exactly when the wave will reach the shore. Only focusing on
the aim to rescue all people until a fixed minimal time horizon could be fatal in such a situation
because it could happen that the wave hits the coast before all people can be saved. In the worst
case this will lead to an unnecessary high death toll. A more efficient strategy in such a scenario
is to maximize the number of rescued people for each point in time simultaneously. This way it is
ensured that, even if not all people can be rescued, at least the number of saved people is maximized.
This property is captured by earliest arrival transshipments. In this chapter we focus on developing
more efficient algorithms for the earliest arrival transshipment problem in dynamic networks with
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only a single sink as in this case such transshipments do exist in general.
Recall, that the objective of an earliest arrival transshipment problem (N , b)EAT in a dynamic
network N with supplies/demands b is to compute a quickest transshipment f that satisfies all
supplies and demands and has the additional property of being maximal at every point in time
simultaneously. It is not inherently clear that such transshipments do always exist, and it turned
out that for dynamic networks with multiple sinks they don’t. This fact was first observed by
Fleischer in [Fle01] and in [BS09] Baumann and Skutella give a simple counter example that is
depicted in Figure 6.1. For the case of several sources but only a single sink, however, earliest
arrival transshipments do always exist [RT]. This can be derived, for example, from the existence
of lexicographically maximal flows in time-expanded networks, see [Min73; Meg74]. There are
polynomial time algorithms known for solving the earliest arrival transshipment problem in dynamic
networks with only a single sink for the special case that all transit times are zero [HO84; Fle01].
However, for general transit times, one cannot hope for a polynomial time algorithm because it was
recently shown by Disser and Skutella that it is (already in dynamic networks with a single source
and a single sink) NP-hard to solve the earliest arrival flow problem [DS15]. So far, the best known
algorithm for the earliest arrival transshipment problem in dynamic networks with a single sink is
due to Baumann and Skutella [BS09]. Their algorithm has, however, although it does not rely on
explicit time expansion, the huge disadvantage that it nevertheless requires a pseudo-polynomial
expansion of the original network in the worst case. Finding an algorithm that only works on the
original network without needing any form expansion is thus a desirable goal, which we achieve by
our main results from this chapter.
The algorithm of Baumann and Skutella for solving the earliest arrival transshipment problem works
in two phases. In the first phase the earliest arrival pattern corresponding to a given problem is
derived, and in the second phase the breakpoints of the pattern are used to compute the actual
earliest arrival transshipment. Our algorithm also requires these two steps, but we improve both of
them.
Relying on our polynomial space algorithm for the earliest arrival transshipment problem in dynamic
networks with only a single sink we also develop a new FPTAS for the approximation of such flows
over time. Approximating earliest arrival transshipments is in particular interesting as it is unlikely
that a polynomial time algorithm for computing such flow does exist (due to the NP-hardness).
The so far only known FPTAS for the earliest arrival transshipment problem is due to Fleischer and
Skutella [FS07]. Their algorithm relies on a special geometric condensation of the time-expanded
network. In contrast to their algorithm our FPTAS does not require any form of time expansion,
but only works on the underlying original dynamic network.

Computation of the Earliest Arrival Pattern. The first part of our algorithm for solving the
earliest arrival transshipment problem also requires computing (part of) the earliest arrival pattern.
However, compared to the algorithm of Baumann and Skutella, the amount of information regarding
the structure of the pattern that our algorithm requires is somewhat rougher.
In particular, we do not need to compute all the breakpoints of the earliest arrival pattern, which is
the part which prevents the pattern computation needed in the algorithm by Baumann and Skutella
from being of strongly polynomial running time. The information about the structure of the earliest
arrival pattern we need can be computed in strongly polynomial running time. In Section 5.1 we also
provide an improved algorithm for computing this reduced amount of pattern information. The so
far best known algorithm for computing the part of the earliest arrival pattern that we need, needs,
in the worst case, number of sources many parametric submodular function minimizations. The
most efficient way to solve them is using the submodular function minimization algorithm of Lee et
al. [LSW15] coupled with Megiddo’s parametric search. Using the same approach as in our improved
algorithm for determining the minimal feasible time horizon of a quickest transshipment problem
we present a way to compute the pattern information that does not need an oracle for parametric
submodular function minimization, but only needs to solve submodular function minimization
problems that are not parametric. This results in a huge running time improvement compared to
the classical approach. The main feature that our algorithm exploits is again the fact that the
parametric submodular functions that occur in the context of the pattern computation are related
by the strong map property.

Computation of Earliest Arrival Transshipments. The main result of this chapter, presented in
Sections 5.2 and 5.3, is an algorithm for computing earliest arrival transshipments that only requires
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polynomial space. We follow a similar strategy as for our new algorithm for solving the quickest
transshipment problem in the previous chapter. For the quickest transshipment problem we showed
that it can be solved by a convex combination of lex-max flows over time. This result strongly relies
on a correspondence between the vertices of a certain base polytope and lex-max flows over time.
Our algorithm for the earliest arrival transshipment problem is of a similar flavor. However, instead
of considering only one base polytope, we define a more complicated polytope which is the product
of at most number of sources many different base polytopes of suitably defined submodular functions.
The precise definition of this polytope for a given earliest arrival transshipment problem strongly
depends on the specific structure of its earliest arrival pattern. We will show that the vertices of
this polytope correspond to special generalization of lex-max flows over time. This class of flows
over time is defined in Section 5.1, in which we also give a strongly polynomial time algorithm
to compute such flows. Using the correspondence between the vertices of the suitably defined
polytope and of the generalization of lex-max flows over time we can deduce the structural result
that earliest arrival transshipment problems in dynamic networks with only a single sink can
always be solved by a convex combination of these flows (see Section 5.3.1). Furthermore, we will
deduce that a suitable convex combination can essentially be computed while computing the needed
amount of information regarding the earliest arrival pattern (see Section 5.3.2). This approach
yields a PSPACE algorithm for solving earliest arrival transshipment problems that also has the
nice property that, using our results from Section 5.1, only number of sources many submodular
function minimizations are required. The downside of this algorithm is that it does not compute
integral earliest arrival transshipments like the algorithm of Baumann and Skutella. In Section 5.3.3
we present an adaptation of the algorithm of Hoppe and Tardos for the quickest transshipment
problem to compute integral earliest arrival transshipments in polynomial space. In contrast to our
other algorithm, this algorithm requires number of sources many parametric submodular function
minimization and is thus a lot less efficient. In both algorithms the computed output (the earliest
arrival transshipment) requires necessarily a pseudo-polynomial amount of space, but the output is
computed sequentially during the course of the algorithms such they indeed only need polynomial
space.

Approximation of Earliest Arrival Transshipments Relying on one of our polynomial space algo-
rithm for the earliest arrival transshipment problem we develop a strongly polynomial time algorithm
for computing so-called multiple deadline transshipments. Multiple deadline transshipments are a
generalization of earliest arrival transshipments – they are quickest transshipments with the property
that they are maximal at finitely many points in time that were given in the input of the problem.
Using our algorithm for computing multiple deadline transshipments over time, we are able to
develop an FPTAS for earliest arrival transshipment problems that does not need any form of time
expansion.

5.1 Faster Computation of the Earliest Arrival Pattern
The main result of this section is an improved algorithm for computing the earliest arrival pattern
of a given earliest arrival transshipment problem in a dynamic network with a single sink.
During this section let N = (D = (V,A), u, τ, S+, t) be a dynamic network with multiple sources S+

and a single sink t and b : S+ ∪ {t} → Z a supply/demand function on the terminals. Recall,
that by (N , b)EAT we denote the corresponding earliest arrival transshipment problem, which
is the problem of computing a flow over time f in N that is maximal at each point in time
under the constraint that the supplies and demands need to be respected. The earliest arrival
pattern p∗ : [0, T )→ R≥0 corresponding to (N , b)EAT is a function with the property that p(θ) is
the maximum amount of flow that can be sent from the sources in S+ to the sink t in the dynamic
network N until time θ, under the constraint that all supplies and demands are respected. Here T is
the minimal feasible time horizon of (N , b)EAT. Knowing the whole earliest arrival pattern (which is a
piecewise linear function) is an essential ingredient of the algorithm of Baumann and Skutella [BS09].
For our approach to solve earliest arrival transshipment problems in dynamic networks with only a
single sink it will also be necessary to compute some structural information about the earliest arrival
pattern, however, we do not need to compute all the break points of this pattern.
Recall that computing the earliest arrival pattern p∗ corresponding to a given earliest arrival
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transshipment problem (N , b)EAT amounts in computing a partition of S+, S+ = S1 t S2 t . . . t Sr
and times θ1 < θ2 < . . . < θr with the property that in an earliest arrival transshipment the sources
in Si have to run empty until time θi (i.e., their overall amount of flow has arrived at the sink t at
time θi) for all i ∈ {1, 2, . . . , r}, even if they sent as little flow as possible without violating the earliest
arrival property. The second ingredient to obtain the whole structure of the earliest arrival pattern
is to determine all of the break points of the piecewise linear function θ 7→ oθ(S+ \ (S1 ∪ . . .∪Si)) on
the interval [0, θi), for all i ∈ {1, . . . , r} . These breakpoints, which might be exponentially many in
the worst case, are needed in the algorithm of Baumann and Skutella to compute an earliest arrival
transshipment. In particular, it is needed to attach one super-sink to the original dynamic network
for each of the breakpoints, which in the worst case leads to an exponential expansion of the original
network .
For our algorithm only the sets S1, . . . , Sr and the times θ1, . . . , θr are important. Our objective in this
section is to make the computation of these sets and times more efficient. In Algorithm 16 we restate
the algorithm for the pattern computation (see Algorithm 9) but without the explicit computation of
the functions θ 7→ oθ(S+ \ (S1 ∪ . . . ∪ Si)), for all i ∈ {1, 2, . . . , r}.

Algorithm 16: Algorithm for the earliest arrival pattern - Without computing the breakpoints
Input :A dynamic network N = (D = (V,A), u, τ, s, t) and a supply/demand function b on the

terminals , defining an earliest arrival transshipment problem (N , b)EAT
Output :The sets S1, S2, . . . , Sr and times θ1 < θ2 . . . < θr corresponding to the earliest arrival

pattern p∗ of (N , b)EAT
1 i ← 0, Si ← ∅, θi ← 0
2 while S1 ∪ . . . ∪ Si 6= S+ do
3 Compute the maximal value θi+1 ≥ 0 such that

oθi+1

(
S+ \

( i⋃
k=1

Sk

))
− oθi+1

(
S+ \

( i⋃
k=1

Sk ∪ S
))
≤ b(S) for all S ⊆ S+ \

( i⋃
k=1

Si

)

4 Compute an inclusion-wise maximal Si+1 ( S+ \
(⋃i

k=1 Si

)
with

oθi+1

(
S+ \

( i⋃
k=1

Sk

))
− oθi+1

(
S+ \

( i+1⋃
k=1

Sk

))
= b(Si+1)

5 i ← i+ 1
6 end
7 r ← i
8 return S1, S2, . . . , Sr and θ1, θ2, . . . , θr

When we in the following speak about “computing the earliest arrival pattern” corresponding to a
given earliest arrival transshipment problem (N , b)EAT, we mean computing the sets Si and times θi
as presented in Algorithm 16.
Similar to the faster algorithm for computing the minimal feasible time horizon T of a given quickest
transshipment problem, which we presented in Section 4.1, our new algorithm for computing the
earliest arrival pattern strongly relies on the fact that the parametric submodular functions that
occur during the course of the pattern computation fulfill the strong map property. Note that for
a given earliest arrival transshipment problem (N , b)EAT the pattern computation consists of at
most |S+| many parametric submodular function minimizations.

Observation 5.1. For a given earliest arrival transshipment problem (N , b)EAT the pattern computation
as presented in Algorithm 16 consists of one parametric submodular function minimization per
iteration: In each iteration i the maximal value θi+1 with the property

oθi+1

(
S+ \

( i⋃
k=1

Sk

))
− oθi+1

(
S+ \

( i⋃
k=1

Sk ∪ S
))
≤ b(S) for all S ⊆ S+ \

( i⋃
k=1

Si

)
(5.1)
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needs to be determined and an inclusion-wise maximal set Si+1 for which equality holds. We can
solve each of these problems by coupling the algorithm of Lee et al [LSW15] with parametric search.

As our main result in this section we will show how to solve all of these parametric submodular
function minimization problems by at most |S+|2 many submodular function minimizations, which
results in an overall running time improvement.
To achieve this goal we proceed completely similar to what we did in Section 4.1. However, in order
to be able to use similar methods, we need to slightly redefine the submodular functions occurring
during the pattern computation.
Let U be some upper bound for the minimal feasible time horizon T of the quickest transshipment
problem (N , b). An upper bound for T is for example obtained by

SP+ + B+

mina∈A ua

where B+ :=
∑
s∈S+ b(s) and

SP+ := max{d(N , s, t) | s ∈ S+, t ∈ S−}.

A proof of this fact can be found in [Kap14]. Of course, we could also just compute the minimal
feasible time horizon T of (N , b)EAT with the help of Algorithm 11. However, T is also computed
during the pattern computation and thus computing the minimal feasible time horizon beforehand
would be an unnecessary effort. In order to simplify notation, we define for each iteration i of
Algorithm 16

Ci := S+ \
i−1⋃
k=1

Sk.

Further, for eachX ⊆ S+, the set function gθX : 2X→ R is defined by,

S 7→ oU−θ(S)− oU−θ(X \ S) + b(S),

for all 0 ≤ θ ≤ U . The set function gθX is clearly submodular for all X ⊆ R+ and all θ ∈ [0, U). The
following lemma is central throughout this section.

Lemma 5.2. In iteration i of Algorithm 16, instead of computing the maximal value θi+1 ≥ 0 with
the property that

oθi+1(Ci+1 \ S)− oθi+1(Ci+1) + b(S) ≥ 0 for all S ⊆ Ci+1

and determining a maximal set Si+1 with equality, we can equivalently also solve the parametric
submodular function minimization problem (gθCi+1

,0) which returns a time γ+1 and a maximal
minimizing set Xi+1. Then θi+1 = U − γi+1 and Si+1 = Xi+1.

Proof. Let θ ∈ [0, U ] and define γ = U − θ. We have by assumption

min
S⊆Ci+1

{−oθ(Ci+1) + oθ(Ci+1 \ S) + b(S)} = min
S⊆Si+1

{−oU−γ(Ci+1) + oU−γ(Ci+1 \ S) + b(S)}

= min
S⊆Si+1

gγCi+1
(S).

This shows the relation between θi+1 and γi+1. That Si+1 = Xi+1 holds follows immediately.

Thus, in order to compute the earliest arrival pattern, we can also solve the parametric submod-
ular function minimization problem (gθCi+1

,0) in iteration i of Algorithm 16. The most impor-
tant property that we exploit in order to solve this problem in a more efficient manner is that
for η1 ≤ η2 ≤ U the functions gη1

X and gη2
X are related by the strong map property for all X ⊆ S+.
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Lemma 5.3. For all X ⊆ S+ and η1, η2 ∈ [0,∞) with η1 ≤ η2 , we have

gη1
X ← gη2

X .

Proof. Let Y ⊆ Z ⊆ X . Lemma 4.2 implies

gη1
X (Z)− gη1

X (Y ) = oU−η1(X \ Z)− oU−η1(X \ Y ) + b(Z \ Y )
Lem. 4.2
≤ oU−η2(X \ Z)− oU−η2(X \ Y ) + b(Z \ Y )
= gη2

X (Z)− gη2
X (Y ).

Our Algorithm 17 to solve (gθX ,0) is now completely similar to Algorithm 11 in Section 4.1. The
proof that Algorithm 17 works correctly is also completely analogous to the proof of Theorem 4.8.

Algorithm 17: An algorithm that solves the parametric submodular function minimizations needed
to compute the earliest arrival pattern more efficiently

Input : A dynamic network N = (D = (V,A), u, τ, S+, t), a supply/demand function b, X ⊆ S+

Output : The minimal time θ with gθX(S) ≥ 0 for all S ⊆ X
1 i ← 0, Xi ← X, λi ← 0
2 while Xi 6= ∅ do
3 λi+1 ← Minimal value with gλi+1

Xi
(X) = 0

4 Xi+1 ← Maximal minimizer of gλi+1
Xi

5 i ← i+ 1
6 end
7 return θi = U − λi,Xi

Theorem 5.4 (Correctness of Algorithm 17).
For each X ⊆ S+ the Algorithm 17 works correctly, i.e., it correctly solves (gθX ,0). The returned
time θ∗ and the set X∗ fulfill gU−θ

∗

X (S) ≥ 0 for all S ⊆ S+ and X∗ is an inclusion-wise maximal
set with gU−θ

∗

X (X∗) = 0. The algorithm finishes after at most |X| iterations.

Proof. We refer to the proof of Theorem 4.8 in Section 4.1.

It remains to deduce the overall running time of Algorithm 17. In iteration i we at first need to
determine the minimal value λi with

gλiX (Xi−1) = oU−λi(X \Xi−1)− oU−λi(X) + b(Xi−1)
= 0.

Recall, that oθ can be evaluated at each subset X ⊆ S+ by doing one minimum-cost flow computation
in a network in which only the cost of one arc is parametrized by θ (see Fact 2.21). Computing the
minimal value λi with gλiXi(Xi−1) = 0 is thus the same as solving a parametric minimum-cost flow
problem. Burkhard [BDK93] deduced that we can compute λi within a worst case running time
in O(m2 log3 n(m+ n log n)) by the minimum-cost flow algorithm of Orlin coupled with parametric
search. More precisely, coupling Orlin’s minimum-cost flow algorithm with parametric search,
requires a worst case running time of O(Cλ(MCF(n,m)) ·MCF(n, ,m)). The overall worst case
running time of Algorithm 17 thus amounts in the running time of at most |X| submodular function
minimization plus O(|X| · Cλ(MCF(n,m)) ·MCF(n,m)).

Corollary 5.5. For each X ⊆ S+ the worst running time of Algorithm 17 is in

O
(
|X|(SFMLee + Cλ(MCF(n,m)) ·MCF(n,m))

)
.
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When applying this to the pattern computation in Algorithm 16, this result implies that instead
of doing |S+| many parametric submodular function minimizations, in the worst case, we also can
compute the earliest arrival pattern by doing do |S+|2 many submodular function minimizations
plus |S+|2 many minimum-cost flow computations coupled with Megiddo’s search framework. The
overall running time of the old approach is, by Observation 3.9, in

O
(
k ·
(
Cλ(SFMLee) · (k3 log k ·MCF(n,m) + k4 logO(1) k)

))
,

with k = |S+| and Cλ(SFMLee) 6∈ O(k3−ε log kCλ(MCF(n,m))) for all ε > 0. Whereas the running
time of our new approach is

O
(
k2 · (SFMLee + Cλ(MCF(n,m)) ·MCF(n,m)

)
.

This shows that with our new approach we obtain a running time improvement of a factor of
at least k2. Throughout this thesis, our method of choice for determining the earliest arrival
pattern of a given earliest arrival transshipment problem (N , b)EAT will be Algorithm 16 coupled
with Algorithm 17. Note that we do not get rid of parametric search completely. We still couple
it with an instance of a parametric minimum-cost flow problem. Maybe it is possible to solve
the required parametric minimum-cost flow problems efficiently without relying on parametric
search.

5.2 Generalizing Lexicographically Maximum Flows Over Time
Throughout this section we assume that N = (D = (V,A), u, τ, S+, t) is a dynamic network with only
a single sink t, and b a supply/demand function on the terminals of N . In such a setting there always
exists an earliest arrival transshipment solving (N , b)EAT (See Section 3.2.2). During the computation
of the earliest arrival pattern corresponding to (N , b)EAT, a partition S+ = S1 t S2 t . . . t Sr of
S+ and corresponding times θ1 < θ2 < . . . < θr are computed that for all i ∈ {1, . . . , r} have the
property that in an earliest arrival transshipment the sources in Si have to have sent their entire
supply to the sink before time θi even if they send as little flow as possible while still ensuring the
earliest arrival property. This motivates the definition of generalized lexicographically maximum
flows over time: On the one hand the partition S1 t S2 t . . . t Sr = S+ induces a linear order
on the terminals in which the sources in Si are ordered before the sources in Sj if i > j for
i, j ∈ {1, . . . , r}. On the other hand, each set of sinks Si has to respect a different time horizon θi for
all i ∈ {1, 2, . . . , r}. Generalized lex-max flows over time are generalizations of lex-max flows
over time incorporating these properties.

5.2.1 Basic Properties of Generalized Lexicographically Maximum Flows
Over Time

We start with the definition of generalized lexicographically maximum flows over time.

Definition 5.6 (Generalized Lex-Max Flow Over Time).
Let N = (D = (V,A), u, τ, S+, t) be a dynamic network with only a single sink t, S+ =
S1 t S2 t . . . t Sr, and 0 < θ1 < θ2 < . . . < θr rational times. We consider a linear order ≺
on S+ with the following property:

• The order ≺ respects the given partition ≺, i.e., s ≺ s′ for all s ∈ Si and s′ ∈ Sj
with i > j for i, j ∈ {1, . . . , r}

A generalized lexicographically maximum (lex-max) flow over time f with respect
to S1, . . . , Sr, θ1, θ2, . . . , θr, and ≺ is a feasible flow over time that fulfills the following properties:

1. For i = 1, 2, . . . , r, let Ni be the dynamic network obtained by attaching a new super-
source ψi to the sources in Si+1 ∪ Si+2 ∪ . . .∪ Sr by arcs with zero transit time and infinite
capacity. For all i ∈ {1, . . . , r} denote by ≺i the total order on {ψi} ∪ Si ∪ {t} that is the
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restriction of ≺ to Si that fulfills ψi ≺ s ≺ t for all s ∈ Si. We require that the flow sent
by f out of {ψi} ∪ Si into the sink t until time θi is a lex-max flow over time with respect
to ≺i and time horizon θi, for i = 1, 2, . . . , r. Note that we can regard the flow over time f
(which is a flow in N by definition) as a flow over time in Ni by assuming that the flow
sent out of the sources in Si+1 ∪ . . . ∪ Sr is sent out of ψi in Ni. This works, because the
outgoing arcs of ψi all have zero transit time and infinite capacity.

2. For all i = 1, 2, . . . , r, after time θi no flow originating from Si remains in the network
and the sources in Si do not send new flow into the networks.

A generalized lex-max flow over time can thus imagined to be a lex-max flow over time in which the
sources have different time horizons that respect the given order i.e., the lower the time horizon,
the lower is also the priority of the corresponding sources. See Figure 5.1 for an example of a
generalized lex-max flow over time. It is not immediately clear that generalized lex-max flows over
time do exist for every choice of parameters. In the following we give a proof of their existence using
the time-expanded network. Our proof is constructive and leads to an algorithm for computing
generalized lex-max flows over time using time expansion. However, this result is not satisfactory for
us as we want to use generalized lex-max flows over time for our PSPACE algorithm for solving
earliest arrival transshipment problems. For this purpose we need an algorithm for computing
generalized lex-max flows over time that requires only polynomial space. Such an algorithm is
presented in the following section. Before we get to the proof of the existence of generalized lex-max
flows over time, we need to recap some properties of the time-expanded network and make some
slight modification to the construction that we described in Section 2.5.2. Assume that N is a
dynamic network with only a single sink and that we are given a partition of S+ into r disjoints
subsets, S+ = S1 t S2 t . . . t Sr, and times 0 < θ1 < θ2 < . . . < θr = T . Let ≺ be a total order
on S+ that respects the given partition. To simplify the notation we assume that all given times are
integers. For rational times the construction we describe in the following works completely analogous.
We consider the time-expanded network N T corresponding to N . The version of the time-expanded
network we need here slightly differs from the construction we described in Section 2.5.2: Instead
of attaching an overall super-sink t∗ to the time-expanded network, we attach r different super-
sinks t1, t2, . . . , tr, one for each time horizon that is interesting for our generalized lex-max flow
over time. Recall, that t1, t2, . . . , tT are the copies of the sink t in each of the time layers of the
time-expanded network. Overall, we add super-sinks t1, . . . , tr and the following arcs with infinite
capacity to the static network N T ,

(tθ, t1) for θ ∈ {1, 2, . . . , θ1},
(tθ, t2) for θ ∈ {θ1 + 1, θ1 + 2, . . . , θ2},

. . .

(tθ, tr) for θ ∈ {θr−1 + 1, θr−1 + 2, . . . , θr}.

The set of sinks of our redefined time-expanded network N T is {t1, t2, . . . , tr}. We need these
multiple sinks to mirror the time horizons θ1, . . . , θr. Furthermore, we also do not add an overall
super-source s∗ to the time-expanded network. Recall, that in the construction of the time-expanded
network from Section 2.5.2 we added the nodes in S+ to the time-expanded network by attaching
every s ∈ S+ to each of its copies in the layers of the time-expanded network. Afterwards we added
an overall super-source s∗ to the nodes in S+. We skip adding s∗ and consider S+ as the set of
sources of the redefined time-expanded network N T . The time-expanded network corresponding
to the example in Figure 5.1 is shown in Figure 5.2. It turns out that a generalized lex-max flow
over time in N with respect to the given parameters corresponds to a certain static lex-max flow
with respect to a total order ≺T in this time-expanded network. Let Si = {si,1, si,2, . . . , si,ni},
for i ∈ {1, 2, . . . , r}. Assume our original order ≺ on S+ is given by

sr,nr ≺ sr,nr−1 ≺ . . . ≺ sr,1
≺ sr−1,nr−1 ≺ sr−1,nr−1−1 ≺ . . . ≺ sr−1,1

≺ . . .
≺ s1,n1 ≺ s1,n1−1 ≺ . . . ≺ s1,1.

102 Chapter 5 Earliest Arrival Transshipments in Networks with a Single Sink



τ
=

0

u
=

1τ =
1

u =
1

τ
=

3

u
=

1

τ = 1

u = 1

s1

s2

s3

t −2

(a) A dynamic network N with sources s1, s2, s3, S1 = {s1, s2}, S2 = {s3}, θ1 = 3, θ2 = 6, and an order ≺ on S+
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lex-max earliest arrival flow with respect to the given parameters.
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(b) Until time θ1 = 3 the depicted flow over time behaves like an ordinary lex-max flow over time with respect
to ≺. Note that after time θ1 all flow originating from the the sources s1 and s2 has left the network, i.e., s1
and s2 respect the time horizon θ1. The source s3 sends as much flow as possible towards t until time θ2 = 6,
that is the flow out of s3 also is a lex-max flow over time with respect to ≺ restricted to s3 and time hori-
zon θ2. Thus, the flow over time shown in these figures is in fact a generalized lex-max flow over time with
respect to the given parameters.

Figure 5.1: Example of a generalized lex-max flow over time

Note that the order ≺ gives higher priorities to sources with a larger time horizon because the order
≺ is supposed to respect the given partition. We define a total order ≺T on the sources and sinks
of N T , S+ ∪ {t1, . . . , tr}, as follows

sr,nr ≺T sr,nr−1 ≺T . . . ≺T sr,1 ≺T tr
≺T sr−1,nr−1 ≺T sr−1,nr−2 ≺T . . . ≺T sr−1,1 ≺T tr−1

≺T . . .
≺T s1,n1 ≺T s1,n1−1 ≺T . . . ≺T s1,1 ≺T t1.

(5.2)
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Figure 5.2: The time-expanded network corresponding to the generalized lex-max flow over time problem from
Figure 5.1. In this problem the given time horizons are θ1 = 3 and θ2 = 6, hence the super-sink t1 is connected to
the first three layers of the network, while t2 is connected to layers 4, 5 and 6. The super-sources s1, s2 and s3
are not shown in the figure. They would be connected to their respective copies in each of the time layers. The
indicated flow in the network is the static flow corresponding to the generalized lex-max flow over time as shown
in Figure 5.1 (see Lemma 5.7).

We know that the corresponding static lexicographically maximum flow x in N T does exist [Min73;
Meg79]. Denote by f the flow over time in N with time horizon T constructed from x according to
Lemma 2.20. We will show that f is a generalized lex-max flow over time with respect to the given
parameters.

Lemma 5.7 (Correspondence of generalized lex-max flows and static lex-max flows). Assume we are
given a generalized lex-max flow over time problem by a dynamic network N with a single sink t,
a partition of the sources S+ into r disjoint subsets S+ = S1 t S2 t . . . t Sr, rational times 0 <
θ1 < θ2 < . . . < θr = T , and a suitable total order ≺ on S+ that respects the given partition (see
Definition 5.6). Let x be the static lex-max flow with respect to ≺T in N T as defined in (5.2). The
corresponding flow over time f is a generalized lex-max flow over time with respect to the given
parameters. In particular, generalized lex-max flows over time do always exist and can be computed
in the time-expanded network.

Proof. We have to show that the flow over time f fulfills all the properties required of a generalized
lex-max flow over time. In order to simplify the notation during the proof, assume that the
times θ1, . . . , θr are integers. For rational times the proof works completely analogously. At first
note that by construction of the time-expanded network flow arriving at the sink ti in N T translates
to flow arriving during [θi−1, θi) in the flow over time f for all i ∈ {1, . . . , r}. By Lemma 2.19 the
sources in the set Si only send flow towards the sinks ti, ti−1, . . . , t1 in the static lex-max flow x
for all i ∈ {1, . . . , r}. Hence, for all i ∈ {1, . . . , r} in the flow over time f all the flow originating
from the sources in Si arrives at the sink t before time θi and also the sources in Si will not send
any more flow into the network after time θi. This implies that the flow over time f fulfills the
second property from Definition 5.6 – it respects the time horizon θi for each i ∈ {1, . . . , r}. It
remains to be shown that also the first property is fulfilled, i.e., we need to show that at time θi
the flow that has arrived at t originating from Si ∪ {ψ} respects the order ≺i on {ψi} ∪ Si ∪ {t},
for all i ∈ {1, 2, . . . , r}. For this purpose fix some i ∈ {1, 2, . . . , r}. In the static flow x we are thus
interested in the amount of flow sent from Si ∪ {ψi} towards the sinks t1, t2, . . . , ti. By Lemma 2.19
we know that for each j ∈ {1, 2, . . . , ni} the sources in Sr∪Sr−1∪. . .∪Si−1∪{si,nri , si,nri−1, . . . , si,j}
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sent as much flow as possible towards {t1, t2, . . . , ti} in the static flow x, i.e., the amount of flow
that these sources sent is given by,

maxNT (Sr ∪ Sr−1 ∪ . . . ∪ Si−1 ∪ {si,nri , si,nri−1, . . . , si,j}, {t1, t2, . . . , ti}).

By the definition of the function oθ in the dynamic network Ni (as defined in the definition of
generalized lex-max flows over time, Definition 5.6) and by the relation between the flow over time f
in Ni and the static flow x in N T , this implies that in the flow over time f the amount of flow that
has been sent to the sink t by {ψi} ∪ {si,nri , si,nri−1, . . . , si,j} until time θi is given by

oθi({ψi} ∪ {si,nri , si,nri−1, . . . , si,j}) for all j ∈ {1, 2, . . . , ni}.

By the same reasoning f has sent an amount of oθi({ψi}) out of ψi towards t until time θi. Thus,
by Lemma 3.11 the flow that has arrived at Si until time θi in the flow over time f respects the
given order ≺, which finishes the proof.

The lex-max flow over time with respect to ≺T that yields a generalized lex-max flow over time
for the problem shown in Figure 5.1 is indicated in Figure 5.2. From the definition of generalized
lex-max flows over time we immediately can deduce the structure of their characteristic vectors
using Lemma 2.19.

Lemma 5.8. Assume we are given a generalized lex-max flow over time problem by a dynamic
network N with a single sink t, a partition of S+ into r disjoint subsets S+ = S1 t S2 t . . . t Sr,
rational times 0 = θ0 < θ1 < θ2 < . . . θr, and a total order ≺ on S+ that respects the given partition
of S+. For a generalized lex-max flow over time f with respect to these parameters we have for
all i ∈ {0, 1, . . . , r},

xf (s) = netf (s, θi)

= oθi
( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ � s}
)
− oθi

( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ ≺ s}
)
,

for all s ∈ Si.

As already stated before, the algorithm for computing generalized lex-max flows over time that
follows from Lemma 5.7 is not efficient as it uses the time-expanded network. In the following
section we present a strongly polynomial time algorithm for computing generalized lex-max flows
over time.

5.2.2 Computing Generalized Lexicographically Maximum Flows Over Time
in Strongly Polynomial Time

In this section we describe a strongly polynomial time algorithm to compute generalized lex-max
flows over time. A main ingredient for our algorithm will be the lexicographically maximum flow over
time algorithm of Hoppe and Tardos that we described in Section 3.1.2. Before we start describing
our algorithm, we will thus shortly recap the algorithm of Hoppe and Tardos for the special setting
we need (i.e., dynamic networks with only a single sink and an order on the terminals that gives t
the lowest priority).

Hoppe and Tardos’ Algorithm for Lexicographically Maximum Flows over Time. Consider a
dynamic network N with a single sink t and let ≺ be a total order on S+. Moreover, let T ≥ 0 be a
time horizon. Our goal is to compute a lex-max flow over time with time horizon T with respect
to ≺ such that the sink t has the lowest priority.
In this case Hoppe and Tardos’ algorithm essentially consists of two phases. In the first phase a
maximum flow over time from S+ to t is computed. The flow found in this phase does not yet
respect the order ≺ or the time horizon T . Essentially, a temporally repeated flow with infinite time
horizon is computed. In the second phase the flow originating from the sources in S+ is rerouted
such that it respects the order ≺ as well as the time horizon. This is done in |S+| many iterations.
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The sources are considered in order of increasing priority, and each iteration makes sure that the
specific source sends the correct amount of flow by rerouting flow to the other sources. For the
source with the highest priority the previous iterations already made sure that this source sends
the correct amount of flow up to time T . Thus, the last iteration only has the effect that, after
this iteration, the flow out of the source with the highest priority respects the time horizon T .
For our algorithm for the generalized lex-max flow over time problem we need a version of the
algorithm of Hoppe and Tardos that skips this last iteration. A formal formulation of the algorithm
of Hoppe and Tardos for our specific setting without the last iteration can be seen in Algorithm 18.

Algorithm 18: Hoppe and Tardos’ lex-max flow over time algorithm without the last iteration,
LexMaxSI(N ,≺, T )

Input :A dynamic network N = (D = (V,A), u, τ, S−, t), a linear order ≺ on S+

with S+ = {s1, s2, . . . , sk} such that s1 ≺ s2 ≺ . . . ≺ sk, a time horizon T ≥ 0
Output :A generalized temporally repeated flow respecting the given order ≺

1 k ← |S+|
2 V ← V ∪ {s}
3 Ak+1 ← A ∪ {(s, s′) | s′ ∈ S+} ∪ {t, s}
4 Extent u to Ak+1 by defining u(s,s′) :=∞ for all s′ ∈ S+ and u(t,s) =∞
5 Extent τ to Ak+1 by defining τ(s,s′) := 0 for all s′ ∈ S+ and τ(t,s) = −T
6 N k+1 ← ((V,Ak+1), u, τ, s, t)
7 yk+1 ← minimum-cost circulation in N k+1

8 Compute a path decomposition of the static flow yk+1 in N k+1 given by (Pk+1, wi)
9 Y k+1 ← {(Pk+1, wk+1)}

10 for i ∈ {k, k − 1, . . . 2} do
11 Ai ← Ai+1

12 Ai ← Ai \ {(s, si)}
13 N i ← ((V,Ai), u, τ, s, t)
14 xi ← Minimum-cost maximum s-si flow in N i

yi+1 with τ as costs
15 yi ← yi+1 + xi

16 Compute a path decomposition of the static flow yi given by (Pi, wi)
17 Y i+1 ← Y i ∪ (Pi, wi)
18 end
19 return y1, Y 1

Description of our Algorithm. Up to time θ1 a generalized lex-max flow over time is just a normal
lex-max flow over time with respect to the order ≺1 in the network N1 (≺1 and N1 are defined
as in Definition 5.6), with the only difference that the time horizon θ1 is only respected by the
sources in S1. Thus, this is exactly what is computed in the first iteration of our algorithm, which is
described formally in Algorithm 19: a super-source ψ1 is attached to the sources in S+ \ S1 and,
with respect to ≺1, a lex-max flow over time with time horizon θ1 is computed. Here, we have to
be careful. We cannot just apply the algorithm of Hoppe and Tardos for the lex-max flow over
time problem, as this would give us a flow over time with time horizon θ1. What we actually want
is a flow over time such that only the sources in S1 respect the time horizon θ1. This is where
the algorithm of Hoppe and Tardos with skipped last iteration comes into play. According to the
description of this algorithm in the previous paragraph, in our setting this algorithm computes a
flow over time such that all sources respect the time horizon θ1, except for the super-source ψ1. In
fact, the flow out of this source still has infinite time horizon. The algorithm of Hoppe and Tardos
with skipped last iteration is denoted by LexMaxSI. In the first iteration of our algorithm we thus
apply this algorithm to the dynamic network N1 to make sure that the flow out of the sources in S1
respects the given order and the time horizon θ1. In the subsequent iterations the flow out of S1 is
not changed. In the second iteration we have to ensure that the sources connected to ψ1 during the
first iteration send their flow in a lex-max way with respect to ≺2, and that the time horizon θ2
is respected by the sources in S2. This is again achieved with the help of Algorithm 18: The
super-source ψ1 is removed, and a new super-source ψ2 is attached to the sources in S+ \ (S2 ∪ S1).
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Algorithm 19: Algorithm for the generalized lex-max flow over time, genLexMax
Input :A dynamic network N = (D = (V,A), u, τ, S+, t), a partition

of S+, S+ = S1 t S2 t . . . t Sr, times θr > θr−1 > . . . > θ1, a total order ≺ on S+ ∪ {t}
that respects the given partition of S+

Output :A generalized lex-max flow over time with respect to the given parameters
1 {ψ0} ← ∅, z0 ← 0, X0 ← ∅, D0 ← D, V 0 ← V , A0 ← A
2 for i ∈ {1, 2, . . . , r − 1} do
3 V i ← (V i−1 \ {ψi−1}) ∪ {ψi}
4 Ai ← Ai−1 ∪ {(ψi, s) | s ∈ Sr ∪ . . . ∪ Si+1}
5 Extend u to Ai by defining u(ψi,s) =∞ for all s ∈ Sr ∪ . . . ∪ Si+1

6 Extend τ to Ai by defining τ(ψi,s) = 0 for all s ∈ Sr ∪ . . . ∪ Si+1

7 Di ← (V i, Ai), S+
i ← Si ∪ {ψi}

8 N i ← (Di, u, τ, S+
i , t)

9 ≺i ← total order on S+
i ∪ {t} that restricts ≺ to Si with ψi ≺ s ≺ t for all s ∈ Si

10 W i, wi ← LexMaxSI(N i
zi−1 ,≺i, θi)

11 Xi ← Xi−1 ∪W i

12 zi ← zi−1 + wi

13 end
14 W r, w1 ← LexMax(N r

zr−1 ,≺r, θr)
15 Xr ← Xr−1 ∪W r

16 zr ← zr−1 + wr

17 return generalized temporally repeated flow corresponding to X1

The algorithm LexMaxSI is used to compute a lex-max flow over time with time horizon θ2 on the
set of sources S2 ∪ {ψ2} with respect to ≺2 in the residual network obtained from the static flow
in the first iteration. This makes sure that the sources in S+ \ S1 send as much flow as possible
until time θ2 and that the flow out of the sources in S2 ∪ {ψ2} respects the order ≺2. This process
is iterated for i = 1, 2, . . . , r − 1. In the last iteration the aim is to make sure that the sinks in Sr
respect the given order and the time horizon θr. In this last iteration we have to do a lex-max flow
computation with the last iteration. An illustration of the algorithm is given in Figure 5.3. During
the execution of Algorithm 19 the dynamic network N is regarded as a static network in which the
cost function on the arcs is given by the transit times. Algorithm 19 returns a generalized temporally
repeated flow.

Theorem 5.9 (Correctness of Algorithm 19).
Let N be a dynamic network with only a single sink t, S+ = S1 t S2 t . . . t Sr, 0 ≤ θ1 < θ2 <
. . . < θr rational times, and ≺ a total order on the terminals that respects the given partition
of S+. The generalized temporally repeated flow returned by Algorithm 19 with respect to these
parameters is a generalized lex-max flow over time. Furthermore, the algorithm has a worst
case running time in O(|S+| ·MCF(|V |, |A|)), which is a strongly polynomial time running time
if the minimum-cost flow computations are done with a suitable algorithm.

All preliminaries needed to prove Theorem 5.9 are described in the following paragraph.

Correctness of Algorithm 19. The distance between two nodes v1 and v2 in a given dynamic
network N with respect to the transit times τ is denoted by d(v1, v2,N ). In other words, d(v1, v2,N )
is the length of a shortest path between v1 and v2 in N with respect to the transit times. Before we
can prove the correctness of Algorithm 19, we at first need to recall a few properties of Algorithm 18,
all of which can be found in [HT00].

Lemma 5.10 ([HT00], Lemma 4.1). In any iteration i ∈ {k, k − 1, . . . , 2} of Algorithm 18 the static
flow yi is a minimum-cost circulation in the network N i.

Lemma 5.11 ([HT00], Lemma 4.2). For any vertex v ∈ V and any iteration i ∈ {k, k − 1, . . . , 2} of
Algorithm 18 it holds that

d(N i−1
yi−1 , s, v) ≥ d(N i

yi , s, v).
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(b) Assume that S1 = {s1,1, . . . , s1,n1}
with s1,n1 ≺ . . . ≺ s1,1. In the first itera-
tion of Algorithm 19 it is ensured that the flow
out of S1 ∪ {ψ1} respects ≺1 and that the
flow out of S1 respects the time horizon θ1. To
achieve this, a lex-max flow over time with time
horizon θ1 with respect to ≺1 is computed by
LexMaxFlowSI. The skipped last iteration
makes sure that the flow out of ψ1 has infinite
time horizon after the first iteration.
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(c) In the second iteration of Algorithm 19 the
sources in S1 are disregarded and a lex-max
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flow with respect to ≺ and time horizon θ2.
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(d) In the last iteration only the sources in Sr are
affected. A lex-max flow over time with respect
to ≺r and θr is computed, this time with the
lex-max flow over time algorithm with the last
iteration.

Figure 5.3: An illustration of the generalized lex-mac flow over time algorithm Algorithm 19

Besides needing to show that the flow over time computed by Algorithm 19 fulfills the properties of a
generalized lex-max flow over time, it is not even immediately clear that the generalized temporally
repeated flow computed by this algorithm results in a feasible flow over time. Showing this fact is
the first step towards showing the correctness of Algorithm 19.

Lemma 5.12. The generalized temporally repeated flow f computed by Algorithm 19 is a feasible flow
over time.

We need to derive some preliminaries before we are able to show this lemma: In each itera-
tion i ∈ {1, 2, . . . , r} the first step of Algorithm 19 is to do a lex-max flow over time computation
in the network N i

zi−1 with the help of Algorithm 18. The first step of Algorithm 18 is to attach
a super-source s to this network and the additional arc (t, s) with transit time −θi. We denote
by N i

zi−1(s) the network N i
zi−1 with the attached super-source s and the additional arc and by N i(s)

and N i
zi(s) the networks N i and N i

zi with the same super-source and additional arc, respectively.
Lemma 5.10 yields that the static flow wi, needed to compute zi from zi−1 in Line 12 of Algorithm 19,
is a minimum-cost circulation inN i

zi−1(s). Thus, the following lemma holds.

Lemma 5.13. For each i ∈ {1, 2, . . . , r} the flow zi, as computed in Line 12 of Algorithm 19, is a
feasible minimum-cost circulation in the network N i(s).
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Proof. As Lemma 5.10 yields that wi is a minimum-cost circulation in N i
zi−1(s) for all i ∈ {1, 2, . . . , r}

it follows that zi = zi−1 + wi is a minimum-cost circulation in N i(s).

Lemma 5.14. For each node v ∈ V and each iteration i ∈ {1, 2, . . . , r} of Algorithm 19 we have

d(N i
zi(s), s, v) ≥ d(N i−1

zi−1(s), s, v).

Proof. The first step of each iteration i ∈ {1, 2, . . . , r} of Algorithm 19 is to compute a lex-max
flow over time with Algorithm 18 in the network N i

zi−1(s). In order to obtain N i from N i−1, we
basically shrink the set of considered sources such that the set of sources of N i is a subset of the
sources of N i−1. This is done by removing the source ψi−1 and attaching the new source ψi. Thus,
we essentially construct N i(s) from N i+1(s) by removing arcs from s to the sources in Si−1 and by
reducing the transit time of the arc (t, s) from −θi−1 to −θi. Each of these constructions does not
decrease the length of a shortest path from s to any vertex v ∈ V in the respective networks. Thus,
it holds that

d(N i
zi−1(s), s, v) ≥ d(N i−1

zi−1(s), s, v).

Using Lemma 5.11 we can thus conclude,

d(N i
zi(s), s, v)

Lem. 5.11
≥ d(N i

zi−1(s), s, v) ≥ d(N i−1
zi−1(s), s, v).

In each iteration i ∈ {1, . . . , r} of Algorithm 19 the execution of LexMaxSI(N i
zi+1 ,≺i, θi) returnsW i

and the static flow wi such that W i is a generalized path decomposition of W i in N i. We will
write fW i for the corresponding generalized temporally repeated flow in N i.

Lemma 5.15. For any iteration i ∈ {1, 2, . . . , r} of Algorithm 19 the temporally repeated flow fW i as
computed by this algorithm fulfills

fW i((v, w), θ) = 0 for all θ < d(N i−1
zi−1(s), s, v),

for all (v, w) ∈ Ai. That is, flow will not arrive at the arc (v, w) before time d(N i−1
zi−1(s), s, v).

Proof. W i is a path decomposition of the lex-max flow wi computed in iteration i ∈ {1, 2, . . . , r} of
Algorithm 19. Thus, all flow carrying path in W i are paths in N i

zi−1(s) (as the lex-max flow over
time in iteration i is computed in this dynamic network). However, all these paths are also paths
in N i−1

zi−1(s) and thus the length of a path from s to v has length at least d(N i−1
zi−1 , s, v), which shows

the statement of the lemma.

Lemma 5.16. If there is a flow carrying path in W i for some i ∈ {1, 2, . . . , r} that contains an
arc (v, w) ∈ A, then we have

fW i((v, w), d(N i
zi(s), s, v)) > 0,

where fW i is the generalized temporally repeated in N i corresponding toW i. That is, at time d(N i
zi(s), s, v)

the arc (v, w) is covered by flow.

Proof. We prove this by contradiction. Assume there is a flow carrying path P inW i with (v, w) ∈ P
but fW i does not cover this arc at time d(N i

zi(s), s, v). Then,

τ(P[s,v]) > d(N i
zi(s), s, v).

Hence, P[s,v] induces a residual path in N i
zi of length strictly less than −d(N i

zi(s), s, v). That however
implies that N i

zi(s) contains a negative cycle, contradicting Lemma 5.13.

Putting together all the lemmas we derived above, finally enables us to give a proof of Lemma 5.12.
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Proof of Lemma 5.12. For i ∈ {1, 2, . . . , r} we denote by f i the generalized temporally repeated
flow in N defined by Xi as computed in iteration i ∈ {1, 2, . . . , r} of Algorithm 19.
We prove by induction on i that f i obeys all capacity constraints and is non-negative, i.e., is a
feasible flow over time. Flow conservation follows from the fact that f i is a generalized temporally
repeated flow.
The flow over time f1 is essentially just a lex-max flow over time in N , thus, f1 does not violate
any capacity constraints by construction and also by construction f1 is non-negative.
Next, we show that f i+1 is a feasible flow over time under the assumption that f i is feasible
for 1 < i ≤ r. By construction, Xi+1 = Xi ∪W i, where W i is the path decomposition of the static
flow wi computed in iteration i of Algorithm 19. Thus,

f i+1 = f i + fW i .

We will show that for all θ and any arc (v, w) ∈ A the generalized temporally repeated flow f i+1

fulfills 0 ≤ f i+1((v, w), θ) ≤ u(v,w). For this purpose, fix an arc a arc (v, w) ∈ A. We make a case
distinction regarding the considered time θ:

1. θ ≤ d(N i
zi(s), s, v):

By Lemma 5.15 we know that in fW i+1 flow does not reach the arc (v, w) before time d(N i
zi(s), s, v).

Thus, we have

f i+1((v, w), θ) = f i((v, w), θ)

and f i fulfills 0 ≤ f i((v, w), θ) ≤ u(v,w) by assumption.

2. θ ≥ d(N i+1
zi+1(s), s, v):

In this case Lemma 5.16 implies that flow sent by the generalized temporally repeated flow fW i+1

arrives at arc (v, w) at time d(N i+1
zi+1(s), s, v) if there is a flow carrying path in W i+1 that

contains this arc. Hence,

fW i+1((v, w), θ) = wi+1((v, w)).

and thus f i+1((v, w), θ) = zi((v, w)) + wi+1((v, w)) = zi+1((v, w)). Clearly, we have 0 ≤
zi+1((v, w)) ≤ u(v,w), showing feasibility.

3. d(N i
zi(s), s, v) ≤ θ ≤ d(N i+1

zi+1(s), s, v):
Using the same argument as above, we see that f i((v, w), θ) = zi((v, w)). At time θ a subset
of the flow carrying paths in the path decomposition of W i+1 may be covering (v, w). Thus,
we have

f i+1((v, w), θ) ≤ f i((v, w), θ) + u(v,w) − zi((v, w)) = u(v,w),

because u(v,w)−zi((v, w)) is the residual capacity of the arc (v, w) in N i+1
zi . Thus, the capacity

constraint is satisfied by f i+1. We also have

f i+1((v, w), θ) ≥ f i((v, w), θ)− zi((v, w)) ≥ 0,

because zi((v, w)) is the residual capacity of the arc (w, v) in N i+1
zi . This shows the non-

negativity of f i+1.

With this case distinction we have shown that the flow over time f i−1 is a non-negative flow over
time that respects the capacities. By induction it follows that the flow over time obtained from
Algorithm 19 is a feasible flow over time.

The final step towards proving the correctness of Algorithm 19 is the following lemma.

Lemma 5.17. Denote by f the generalized temporally repeated flow defined by Xr returned by Algo-
rithm 19. Then f is a generalized lex-max flow over time with respect to S1, S2, . . . , Sr, θ1, θ2, . . . , θr
and ≺.
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Proof. For i ∈ {1, 2, . . . , r} we denote by f i the generalized temporally repeated flow defined by Xi

in iteration i of Algorithm 19. At first note that, after iteration i of the algorithm, the amount of
flow sent out of the sources in Si is not changed. In order to show the claim, we need to show two
things: At first we need to deduce that in the flow over time f i the amount of flow that the sources
in Sr ∪ . . . ∪ Si send towards the sink until time θi is maximal and that the amount of flow sent
from the sources in Si respects the given order ≺ and the time horizon θi. As after iteration i the
amount of flow sent out of the sources in Si is not changed, showing these facts suffices to show the
statement of the lemma.
We proceed by induction on i. For i = 1, the flow over time f1 defined by X1 essentially is a lex-max
flow over time in the dynamic network N 1 with respect to the order ≺1. However, since the last
iteration of the algorithm of Hoppe and Tardos is skipped in Algorithm 18, only the flow out of the
sources in S1 respects the time horizon θ1. So, we have shown that the flow out of S1 respects the
given order and the time horizon θ1.
Assume that we have shown the statement for 1 ≤ i− 1 < r. By assumption, the flow over time f i−1

is a lex-max flow over time on {ψi−1} ∪ Si−1 with respect to the given order and the flow sent from
the sources in Si−1 towards the sink t respects the time horizon θi. For the static flow zi−1 this has
the implication that in this static flow no flow is sent out of the sources in Sr ∪ . . . ∪ Si−1. Thus,
a path decomposition of zi−1 in N i would not contain any flow carrying path from these sources
towards t. Hence, zi−1 can in particular also be considered to be a static minimum-cost flow that
only sends flow originating from the sources in Sr ∪ . . . ∪ Si. For the lex-max flow computation
in iteration i it is now apparent that the resulting static flow zi can also be considered to be a
minimum-cost circulation in N i(s) that only sends flow out of the sources in Sr ∪ . . . ∪ Si. Thus,
by the correspondence of maximum flows over time and certain static minimum-cost flow that we
derived in Section 2.5 (see also Fact 2.21), this implies that f i sends the maximum possible amount
of flow from the sources in S1 ∪ . . . ∪ Si towards the sink t until time θi. That the sources in Si
respects the time horizon θi and the order ≺ follows from the properties of the lex-max flow over
time algorithm (see Algorithm 18). That we do the lex-max flow over time computation with the
last iteration in iteration r makes sure that all the sources in Sr respect the time horizon θr.

Thus, in order to prove Theorem 5.9, it only remains to check the running time of Algorithm 19.

Proof of Theorem 5.9. Algorithm 19 calls Algorithm 18 as a subroutine r times and in iteration i
Algorithm 18 needs running time O(|Si| ·MCF(|V |, |A|)). Thus, all in all Algorithm 19 has a worst
case running time in O(|S+| ·MCF(|V |, |A|)).

5.3 Computing Earliest Arrival Transshipments in PSPACE
In this section we describe two polynomial space algorithms for solving a given earliest arrival
transshipment problem (N , b)EAT in a dynamic network N with only a single sink t. Both algorithms
rely on the algorithm for generalized lex-max flows over time that we derived in the previous section.
The first algorithm is of a similar flavor as one of our new algorithms for the quickest transshipment
problem, which we introduced in Section 4.3.2. We show that a given earliest arrival transshipment
problem can be solved by a convex combination of generalized lex-max flows over time that respect
the earliest arrival pattern p∗ corresponding to (N , b)EAT. It turns out that a suitable convex
combination can essentially be determined during the computation of p∗. We also show that we can
compute such a convex combination in |S+| times the the worst case running time of the submodular
function minimization algorithm of Orlin [Orl09].
The second algorithm produces, in contrast to our first approach, an integral solution of a given
earliest arrival transshipment problem (N , b)EAT. The trade-off to obtain the integral solution is
that we need to do multiple parametric submodular function minimizations using the parametric
search framework of Megiddo. This results in a much less efficient algorithm. The main idea of this
algorithm is similar to the algorithm of Hoppe and Tardos for the quickest transshipment problem,
in which a quickest transshipment problem is reduced to a lex-max flow over time problem. We
show how to reduce (N , b)EAT to a generalized lex-max flow over time problem by applying the
algorithm of Hoppe and Tardos several times. To obtain the actual earliest arrival transshipment
we can then use a slightly modified variant of Algorithm 19. We start by developing the first
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variant. At first we need to come up with some results regarding the structure of earliest arrival
transshipments.

5.3.1 The Structure of Earliest Arrival Transshipments

In this section we use generalized lex-max flows over time to describe the structure of earliest
arrival transshipments. Assume that (N , b)EAT is an earliest arrival transshipment problem in
a dynamic network N with only a single sink t. We also define Sr t Sr−1 t . . . t S1 = S+

and θr > θr−1 > . . . > θ1 > θ0 = 0 to be the partition of S+ and the times as returned by the
computation of the earliest arrival pattern p∗ in Algorithm 16. Recall, that by Theorem 3.16, we
have for all i ∈ {0, 1, 2, . . . , r − 1} and for each θ ∈ [θi, θi+1) ,

p∗(θ) = oθ
( r⋃
j=i+1

Sj

)
+ b

( i⋃
j=1

Sj

)
. (5.3)

For all i ∈ {1, . . . , r} we get

b(Si) = oθi
( r⋃
j=i

Sj

)
− oθi

( r⋃
j=i+1

Sj

)
. (5.4)

By the constructions in Algorithm 16 it also holds that

oθi
( r⋃
j=i

Sj

)
− oθi

( r⋃
j=i

Sj \ S
)
≤ b(S) for all S ⊆

r⋃
j=i

Sj , (5.5)

for all i ∈ {1, . . . , r}. We start by deriving a first connection between earliest arrival transshipments
solving (N , b)EAT and generalized lex-max flows over time. One straightforward thing to do is to
compute a generalized lex-max flow over time in N with respect to S1, S2, . . . , Sr, θ1, θ2, . . . , θr
and some total order ≺ on S+ that respects the partition of S+ corresponding to the earliest
arrival pattern of (N , b)EAT. In general, such a generalized lex-max flow over time as obtained by
Algorithm 19 does not respect the pattern p∗ corresponding to (N , b)EAT if an arbitrary algorithm
for the minimum-cost flow computations needed in Algorithm 19 is used (see Figure 5.4). The
straightforward idea in order to obtain a generalized lex-max flow over time with pattern p∗, is to
do every minimum-cost flow computation in Algorithm 19 by the successive shortest path algorithm.
We denote the resulting algorithm by GenLexMaxEA. It turns out that a flow over time obtained
this way indeed has pattern p∗. See Figure 5.4c for an illustration.

Lemma 5.18. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network N
with only a single sink t, and let S1 t . . .t Sr = S+ and 0 = θ0 < θ1 < θ2 < . . . < θr be the partition
of S+ and the times as corresponding to the earliest arrival pattern of (N , b)EAT as returned by
Algorithm 16. Further, let ≺ be any total order on S+ that respects the given partition. Denote by f
the temporally repeated flow returned by GenLexMaxEA(Sr, . . . , S1, θr, . . . , θ1,≺). Then, the flow
over time f has pattern p∗, i.e., |f |θ = p∗(θ) for all θ ≥ 0. Here, p∗ is the earliest arrival pattern
corresponding to (N , b)EAT.

Proof. Fix some i ∈ {1, 2 . . . , r}. Since the computed flow f is a generalized lex-max flow over time
with respect to the given times and sets, it holds that no flow originating from the sources in Sj
remains in the networks after time θj for j ∈ {1, . . . , r}. Denote by f ′ the restriction of f to the
sources Si+1 ∪ . . . ∪ Sr. We have

|f |θi =
i∑

k=1
netf (Sk, θk) + |f ′|θi .
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(a) An earliest arrival transshipment problem (N , b)EAT. Each arc with no label has unit transit time and capacity.
The pattern computation yields S1 = {s1}, S2 = {s2}, θ1 = 3, θ2 = 6 and s2 ≺ s1 ≺ t.
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(b) An generalized lex-max flow over time corresponding to the parameters given above. This generalized lex-
max flow over time does not respect the earliest arrival pattern p∗ as no flow has arrived at the sink until
time T = 2.
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(c) When computing the generalized lex-max flow over time with GenEALexMax only how the flow is sent during
the first time steps changes such that the resulting flow now respects the pattern p∗

Figure 5.4: An example of a generalized lex-max flow over time
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Using Lemma 5.8 and (5.4) we can derive for all j ∈ {1, 2, . . . , i},

netf (Sj , θj)
Lem. 5.8= oθj

( r⋃
k=j

Sk

)
− oθj

( r⋃
k=j+1

Sk

)
(5.4)= b(Sj).

Lemma 5.8 also implies that

|f ′|θi
Lem. 5.8= oθi

( r⋃
k=i+1

Sk

)
.

Thus, overall we get using (5.3)

|f |θi = oθi
( r⋃
k=i+1

Sk

)
+ b

( i⋃
k=1

Sk

)
(5.3)= p∗(θi).

In particular, we have shown that |f |θi = p∗(θi) for all i ∈ {0, 1, . . . , r}. Since the successive shortest
path algorithm is used to compute all minimum-cost flows in the algorithm GenLexMaxEA, it
turns out that for all θ ∈ [θi, θi+1) we have

|f ′|θ = oθ
( r⋃
k=i+1

Sk

)
.

Together, with Lemma 5.8 and (5.3) this shows the statement of the lemma.

In the remainder of this section we show the following structural result about earliest arrival
transshipments.

Theorem 5.19 (Structure of Earliest Arrival Transshipments).
Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network N with only a
single sink t, and let S1, S2, . . . , Sr and θ1 < θ2 < . . . < θr be the partition of S+ and the times
as returned by the earliest arrival pattern computation in Algorithm 16.
A flow over time f solving the earliest arrival transshipment problem (N , b)EAT can be achieved
as a convex combination of generalized lex-max flows over time with respect to S1, . . . , Sr
and θ1, . . . , θr with pattern p∗, where p∗ is the earliest arrival pattern of (N , b)EAT.
More precisely, there are d ≤ |S+| − r + 1 total orders ≺1, . . . ,≺d on S+ respecting ≺, and
convex coefficients λ1, . . . , λd ≥ 0 such that

f := λ1f1 + λ2f2 + . . .+ λdfd

is an earliest arrival transshipment solving (N , b)EAT. Here, fi is a generalized lex-max flow
over time with respect to ≺i, S1, . . . , Sr and θ1, . . . , θr with pattern p∗ for all i ∈ {1, . . . , d}.

To show that (N , b)EAT can in fact be solved by a suitable convex combination of generalized lex-max
flows over time, we define the following polyhedron:

PEAT
S+,t := {x ∈ RS

+
|

x(S) ≤ oθ1

( r⋃
j=2

Sj ∪ S1 \ S
)
− oθ1

( r⋃
j=1

Sj

)
for all S ⊆ S1 and x(S1) = −b(S1),

x(S) ≤ oθ2

( r⋃
j=3

Sj ∪ S2 \ S
)
− oθ2

( r⋃
j=2

Sj

)
for all S ⊆ S2 and x(S2) = −b(S2),

. . .

x(S) ≤ oθr (Sr \ S)− oθr (Sr) for all S ⊆ Sr and x(Sr) = −b(Sr)}.

(5.6)
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For i ∈ {1, 2, . . . , r}, we define the set function gi : 2Si→ R by

gi(S) := oθi
( r⋃
j=i+1

Sj ∪ Si \ S
)
− oθi

( r⋃
j=i

Sj

)
. (5.7)

The function gi is submodular for all i ∈ {1, 2, . . . , r} as oθi is submodular (see Theorem 3.6). We
also have

gi(Si)
(5.4)= −b(Si),

for all i ∈ {1, 2, . . . , r}. This implies

PEAT
S+,t =

r×
i=1
B(gi),

and thus PEAT
S+,t is a polytope. In order to prove Theorem 5.19, we will proceed similarly as for the

proof of Theorem 4.11. We show that the vector b lies within PEAT
S+,t and that the vertices of PEAT

S+,t

correspond to generalized lex-max flows over time with respect to S1, S2, . . . , Sr and θ1, θ2, . . . , θr.
These results are summarized in the following two lemmas and also illustrated in Figure 5.5.

Lemma 5.20. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single sink t and PEAT

S+,t the corresponding polytope as defined in (5.6), then we have −b ∈ PEAT
S+,t.

Proof. Since PEAT
S+,t =×k

i=1 B(gi), it is sufficient to show that for each fixed i ∈ {1, . . . , r} it holds
that

−b(S) ≤ oθi
( r⋃
j=i+1

Sj ∪ Si \ S
)
− oθi

( r⋃
j=i

Sj

)
for all S ⊆ Si,

with equality for Si. This fact follows with (5.5),

oθi
( r⋃
j=i+1

Sj ∪ Si \ S
)
− oθi

( r⋃
j=i

Sj

)
(5.5)
≥ −b(S), for all S ⊆ Si

The equality for Si follows with (5.4).

Our next goal is to show that the vertices of PEAT
S+,t in fact correspond to generalized lex-max flows

over time and vice versa. We know that PEAT
S+,t =×r

i=1 B(gi) and also that for each i ∈ {1, . . . , r}
the vertices of B(gi) are completely characterized by total orders on the ground set of gi (see
Theorem 2.3). Let ≺ be a total order on S+ that respects the given partition. We can split ≺
into r total orders ≺1, . . . ,≺r on S1, . . . , Sr, respectively, which induce vertices of the corresponding
base polytopes. Thus, a total order ≺ on S+ that respects the given partition of S+ induces a
vertex of PEAT

S+,t and vice versa. If ≺ is a total order on S+ that respects the given partition, we
define the reversed order ≺ that respects the same partition by reversing the order ≺i on
each of the subsets Si for all i ∈ {1, . . . , r}. The reversed order of ≺i is denoted by ≺i for all
i ∈ {1, . . . , r}. To illustrate this definitions consider again the example shown in Figure 5.5. We have
S+ = {s1, s2, s3} with S1 = {s1, s2} and S2 = {s3}. The order ≺ on S+ defined by s3 ≺ s2 ≺ s1
clearly respects the given partition and in this example, we have that ≺1 is defined on S1 by s2 ≺1 s1
while ≺2 is the only possible order on S2. Thus, ≺1 is defined by s1≺1s2 and ≺ is given by s3≺s1≺s2.

Lemma 5.21. Denote by u≺ the vertex of PEAT
S+,t corresponding to a total order ≺ on S+ that respects

the given partition of S+. Then, we have

−u≺ = xf≺ ,
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(b) Corresponding to to (N , b)EAT, we ob-
tain B(g1) = conv((−2, 0), (0,−2))
and B(g2) = {(−1)}. Thus, PEAT

S+,t
=

conv((−2, 0,−1), (0,−2,−1)). A projec-
tion can be seen in this figure. The vec-
tor −b = (−1,−1,−1) is contained in PEAT

S+,t
as

expected according to Lemma 5.20. In particu-
lar, −b = 1/2·(−2, 0,−1)+1/2·(0,−2,−1). If we
assume that the x-coordinate corresponds to s1,
the y-coordinate to s2 and the z-coordinate
to s3, then the vertex (−2, 0,−1) corresponds
to the order s3 ≺1 s2 ≺1 s1 and the ver-
tex (0,−2,−1) to s3 ≺2 s1 ≺2 s2.

1 2

1

2

xf≺

xf≺

b

(c) In this figure we see the convex hull of the char-
acteristic vectors of the generalized lex-max
flows over time corresponding to ≺1 and ≺2
with respect to the other given parameters.
We see that −xf≺1

is equal to the vertex
of PEAT

S+,t
corresponding to ≺2 and −xf≺2

is
equal to the vertex of PEAT

S+,t
corresponding

to ≺1 (see also Lemma 5.21). In particular, we
have b = 1/2xf≺1

+ 1/2xf≺2
and thus (N , b)EAT

can be solved by a convex combination of gen-
eralized lex-max flows over time which have
pattern p∗ (See Theorem 5.19).

Figure 5.5: An illustration of PEAT
S+,t

, Lemma 5.20, Lemma 5.21 and Theorem 5.19.

where f≺ is a generalized lex-max flow over time with respect to S1, . . . , Sr, θ1, . . . , θr and ≺. In
particular,

−PEAT
S+,t = conv({xf≺ |≺ is a total order on S+ respecting the partition}).

Proof. Let ≺ be a total order on S+ that respects the given partition. Denote by ≺1,≺2, . . . ,≺r the
induced total orders on S1, S2, . . . , Sr, respectively. We know that, for each i ∈ {1, . . . , r}, the total
order ≺i induces a a vertex v≺i of B(gi). Since PEAT

S+,t =×r

i=1 B(gi), the total order ≺ thus induces
a vertex u≺ of PEAT

S+,t by

u≺ = (v≺r , v≺r−1 , . . . , v≺1).

On the other hand, each vertex of PEAT
S+,t induces a total order ≺ on S+ that respects the given

partition. Thus, we obtain

PEAT
S+,t = conv{u≺ |≺ is a total order on S+ respecting the partition}.
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Moreover, each total order ≺ that respects the given partition also induces a generalized lex-max
flow over time with respect to S1, . . . , Sr, θ1, . . . , θr and ≺ and vice versa.
Denote by f≺ the generalized lex-max flow over time with respect to S1, . . . , Sr, θ1, . . . , θr and ≺.
Using Lemma 5.8, we get for s ∈ Si and for all i ∈ {0, 1, . . . , r − 1}

xf≺(s) = netf (s, T )

Lem 5.8= oθi
( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ ≺ s} ∪ {s}
)
− oθi

( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ ≺ s}
)
.

For the vertex u≺ of PEAT
S+,t corresponding to ≺, we get by Theorem 2.3,

u≺(s) = v≺
i

(s)

Thm. 2.3= oθi
( r⋃
j=i+1

Sj ∪ Si \ {s′ ∈ Si | s′ � s}
)
− oθi

( r⋃
j=i+1

Sj ∪ Si \ {s′ ∈ Si | s′ � s}
)

= oθi
( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ ≺ s}
)
− oθi

( r⋃
j=i+1

Sj ∪ {s′ ∈ Si | s′ ≺ s} ∪ {s}
)

= −xf≺(s)

and thus xf≺ = −u≺. Recall, that v≺
i

is the vertex of B(gi) corresponding to the total order ≺i on
Si. This implies

−PEAT
S+,t = conv({xf≺ |≺ is a total order on S+ respecting the partition}),

which concludes the proof.

With the help of these lemmas we can now give the proof of Theorem 5.19.

Proof of Theorem 5.19. Lemma 5.21 implies that

PEAT
S+,t

Lem. 5.21= conv({xf≺ |≺ is a total order on S+ respecting the partition}).

Additionally, Lemma 5.20 yields

−b ∈ PEAT
S+,t, (5.8)

which means that b can be achieved as convex combination of vertices of PEAT
S+,t. That is, there are

total orders ≺1, . . . ,≺d on S+ that all respect the given partition and coefficients λ1, . . . , λd ≥ 0
with

∑d
i=1 λi = 1, such that

−b =
d∑
i=1

λiu
≺i .

Here, u≺i is the vertex of PEAT
S+,t corresponding to ≺i for i = 1, 2, . . . , d. Using Lemma 5.21 this

yields

b
Lem. 5.21=

d∑
i=1

λixf≺i
,

because of u≺i = −xf≺i for i = 1, 2, . . . , d according to Lemma 5.21. Clearly, f :=
∑d
i=1 λif≺i is a

feasible flow over time with pattern p∗ if the generalized lex-max flows over time have pattern p∗.
Thus, a solution of (N , b)EAT can be obtained by a convex combination of generalized lex-max flows
over time with pattern p∗. It remains to be shown that d ≤ |S+| − r + 1. This follows again with
Carathéodory’s theorem as dim(B(gi)) ≤ |Si| − 1.

5.3 Computing Earliest Arrival Transshipments in PSPACE 117



5.3.2 PSPACE Computation of Earliest Arrival Transshipments
We have shown that an earliest arrival transshipment problem (N , b)EAT can be solved by a
convex combination of generalized lex-max flows over time with respect to the sets S1, . . . , Sr and
times θ1, . . . , θr corresponding to the earliest arrival pattern of the given problem as computed by
Algorithm 16. We will now show that during the course of Algorithm 16 also a suitable convex
combination can be determined. For i = 1, 2, . . . , r we define

Ci := S+ \
i−1⋃
j=1

Sj ,

and the function hθi : 2Ci→ R as follows,

hθi (S) := −oθ
(
S+ \

i−1⋃
j=1

Sj

)
+ oθ

(
S+ \

( i−1⋃
j=1

Sj ∪ S
))

+ b(S).

Clearly, the function hθi is submodular for all i ∈ {1, . . . , r} and for all θ ≥ 0. Recall, that Algorithm 16
determines S1, . . . , Sr and the times θ1, . . . , θr by iteratively doing parametric submodular function
minimization of the functions hθi : starting with i = 1, Algorithm 16 finds, for each i = 1, 2, . . . , r, a
maximal θi ≥ 0 such that hθii (S) ≥ 0 for all S ⊆ Ci, and an inclusion-wise maximal subset Si ⊆ Ci
such that hθii (Si) = 0. We now explain how to find a convex combination of generalized lex-max
flows over time solving a given earliest arrival transshipment problem (N , b)EAT while computing its
pattern. Again we will take advantage of the additional information that are computed throughout
the process of submodular function minimization when an algorithm relying on the framework of
Cunningham is used. In this case in each iteration i a vector

x∗i = argmax{x−(Ci) | x ∈ B(hθii )}

is determined as a convex combination of vertices of B(hθii ). More precisely, total orders ≺i,1, . . . ,≺i,di
on Ci and convex coefficients λi,1, . . . , λi,di ≥ 0 with

x∗i = λi,1u
≺i,1
i + . . .+ λi,1u

≺i,di
i ,

are computed, where u≺i,ji is the vertex of B(hθii ) corresponding to ≺i,j for j ∈ {1, . . . , di}. At first,
we note that x∗i restricted to Si is the zero vector.

Lemma 5.22. We have x∗i (s) = 0 for all s ∈ Si and i = 1, . . . , r.

Proof. The set Si is a minimizer of hθii and by construction we have hθii (Si) = 0. The vector x∗i
lies inside the base polytope B(hθii ) and thus, in particular, has to fulfill x∗i (Si) ≤ hθii (Si) = 0. By
Theorem 2.4 we have (x∗i )−(Si) = 0 and thus x∗i (s) = 0 for all s ∈ Si.

The next important observation is that in each of the orders ≺i,j the set Si can assumed to
be a lower ideal for all j ∈ {1, . . . , di}, i.e., s ≺i,j s′ for all s ∈ Si and all s′ ∈ Ci \ Si.

Lemma 5.23. Let i ∈ {1, . . . , r} be fixed. For all j ∈ {1, 2, . . . , di}, the set Si can assumed to be a
lower ideal in each order ≺i,j

Proof. The vertex u≺i,ji lies inside the polytope B(hθii ) and thus in particular fulfills u≺i,ji (Si) ≤
hθii (Si) = 0 for all j ∈ {1, . . . , di}. Since x∗i (Si) = 0, the vertex u≺i,ji of B(hθii ) corresponding to ≺i,j
has to fulfill

u
≺i,j
i (Si) = 0 = hθii (Si),

for each j ∈ {1, 2, . . . , di}. The fact that u≺i,ji is computed by the Greedy Algorithm with respect
to ≺i,j now implies that in each iteration the set Si can be assumed to be a lower ideal of the

118 Chapter 5 Earliest Arrival Transshipments in Networks with a Single Sink



total order ≺i,j . If it is not, we can just redefine the order ≺i,j to fulfill this property, without
changing the resulting corresponding vertex. To see this, assume that Si is not a lower ideal of
≺i,j. For simplicity assume that there is exactly one element s ∈ Ci \ Si that destroys the lower
ideal property. More precisely, let Si = S1

i t S2
i such that s′ ≺i,j s for all s′ ∈ S1

i and s ≺i,j s′ for
all s′ ∈ S2

i . The general case can be proven similarly. We have that u≺i,ji (Si ∪ {s}) = hθii (Si ∪ {s})
and u≺i,ji (Si) = 0 = hθii (Si). Thus,

u
≺i,j
i (s) = hθii (Si ∪ {s})− hθii (Si) = hθii (Si ∪ {s}). (5.9)

This already implies that swapping s behind all elements in S2
i in the order ≺i,j does not change

the corresponding vertex of B(hθii ) at the component corresponding to s. Clearly, this vertex does
also not change at all components corresponding to s′ ∈ S1

i and at all components corresponding to
s′ ∈ Ci \ (Si ∪ {s}). It remains to be shown that this is also the case for all s′ ∈ S2

i . Let s′ ∈ S2
i .

Define S2
i := {t ∈ S2

i : t � s′}. For the original order ≺i,j we have

u
≺i,j
i (S1

i ∪ S
2
i ) = u

≺i,j
i (S1

i ∪ {s} ∪ S
2
i )− u

≺i,j
i (s)

(5.9)= hθii (S1
i ∪ {s} ∪ S

2
i )− hθii (Si ∪ {s}).

In order to show that by swapping s behind all elements in S2
i in the order ≺i,j the vertex of B(hθii )

corresponding to this order does not change at the component corresponding to s′, it thus suffices to
show that

hθii (S1
i ∪ S

2
i ) = hθii (S1

i ∪ {s} ∪ S
2
i )− hθii (Si ∪ {s}) = u

≺i,j
i (S1

i ∪ S
2
i ).

Since u≺i,ji lies in B(hθii ), we have u≺i,ji (S1
i ∪ S

2
i ) ≤ hθii (S1

i ∪ S
2
i ). Using submodularity, we also get

hθii (S1
i ∪ S

2
i ) + hθii (S1

i ∪ S2
i ∪ {s})

subm.
≤ hθii (S1

i ∪ S
2
i ∪ {s}) + hθii (S1

i ∪ S2
i ) = hθii (S1

i ∪ S
2
i ∪ {s}),

and thus u≺i,ji (S1
i ∪ S

2
i ) ≥ hθii (S1

i ∪ S
2
i ).

Recall, that for all i ∈ {1, . . . , r} we defined the set function gi withPEAT
S+,t =×r

i=1 B(gi) by

gi(S) := oθi
( r⋃
j=i+1

Sj ∪ Si \ S
)
− oθi

( r⋃
j=i

Sj

)
for all S ⊆ Si.

Thus, the submodular function gi can clearly be obtained by restricting hθii to Si and by translating
it by −b, i.e.

gi = hθii
∣∣
Si
− b
∣∣
Si
.

By
∣∣
Si

we indicate the restriction of the functions to Si, for all i ∈ {1, . . . , r}. Lemma 5.23 now
implies that the restrictions ≺̂i,1, . . . , ≺̂i,di of the orders ≺i,1, . . . ,≺i,di , respectively, to Si induce
vertices v≺̂i,1i , . . . , v≺̂i,di of B(gi) such that

−b
∣∣
Si

Lem. 5.23= λi,1v
≺̂i,1
i + . . .+ λi,1v

≺̂i,di
i .

This argumentation implies the following lemma:

Lemma 5.24. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single sink t. While determining the earliest arrival pattern with Algorithm 16 consisting
of S1, . . . , Sr and θ1, . . . , θr, we can also determine a convex combination of vertices of B(gi) yield-
ing −b

∣∣
Si

for each i ∈ {1, . . . , r}, provided that an algorithm using the framework of Cunningham is
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used to do the required submodular function minimizations. More precisely, for all i ∈ {1, . . . , r} we
get total orders ≺i,1, . . . ,≺i,di on Ci and convex coefficients λi,1, . . . , λi,di ≥ 0 such that

−b
∣∣
Si

= λi,1v
≺̂i,1
i + . . .+ λi,1v

≺̂i,di
i ,

with di ≤ |Si| for all i ∈ {1, . . . , r}. Here ≺̂i,j is the restriction of ≺i,j to Si for all i ∈ {1, . . . , r}
and all j ∈ {1, . . . , di}.

Proof. The statement of this theorem follows from the argumentation above. That di ≤ |Si| follows
again with Carathéodory’s theorem and from the fact that in submodular function minimization
algorithms relying on the framework of Cunningham it is ensured that a minimal convex combination
is computed (for example in SFMOrlin).

Regarding the example of an earliest arrival transshipment shown in Figure 5.5, we obtain the
vector (−1,−1) as convex combination of vertices of B(g1) from the first iteration of the earliest
arrival pattern computation, which, in this example, is just conv((−2, 0), (0,−2)). More precisely,
we get λ1,1 = 1/2, λ1,2 = (1/2) while the order ≺̂1,1 on S1 is given by s2≺̂1,1s2 and ≺̂1,2 is given
by s1≺̂1,2s2 (see Figure 5.6a). In the second iteration of the earliest arrival pattern computation
we then just obtain the vector (−1) = B(g2), i.e., λ2,1 = 1 while ≺̂2,1 is the only possible order
on S2 = {s3} (see Figure 5.6b). For an illustration, see Figure 5.6. After the computation

−1−2

−1

−2

s2≺̂,s1

s1≺̂,s2

(−1,−1)

(a) The base polytope B(g1) corresponding to the
example shown in Figure 5.5. This figure also
shows −b

∣∣
S1

as convex combination of vertices
of this polytope as computed during the first
iteration of the earliest arrival pattern computa-
tion.

0−1

s3≺̂2,1

(b) The base polytope B(g2) corresponding to the
example shown in Figure 5.5. This figure also
shows −b

∣∣
S2

= (−1) (as a convex combination
of the only vertex of this polytope).

Figure 5.6: An illustration of Lemma 5.24

of the earliest arrival pattern for a specific earliest arrival transshipment problem (N , b)EAT, we
thus obtain in total r convex combinations. We will next describe how we can combine these
convex combinations to obtain a convex combination of vertices of PEAT

S+,t yielding the vertex −b.
Fix i ∈ {1, . . . , r}. By Lemma 5.24 we have convex coefficients λi,1, . . . , λi,di ≥ 0 and total
orders ≺̂i,1, . . . , ≺̂i,di on Si such that the corresponding convex combination of vertices of B(gi) yields
the vector −b

∣∣
Si
, for each i ∈ {1, . . . , r}. For i1 ∈ {1, . . . , d1}, i2 ∈ {1, . . . , d2},. . . , ir ∈ {1, . . . , dr}

we define

λi1,...,ir :=
r∏
j=1

λj,ij .

The vertex of PEAT
S+,t corresponding to the convex coefficient λi1,...,ir is given by

(u≺̂r,irr , . . . , u
≺̂2,i2
2 , u

≺̂1,i1
1 ). (5.10)

120 Chapter 5 Earliest Arrival Transshipments in Networks with a Single Sink



Then,

d1∏
i1=1

d2∏
i2=1
· · ·

dr∏
ir=1

λi1,...,ir · (u
≺̂r,ir
r , . . . , u

≺̂2,i2
2 , u

≺̂1,i1
1 ) = −b,

is a convex combination of vertices yielding the vector −b. However, this convex combination
contains

∏r
i=1 |Si| many vertices. In order to achieve only |S+| − r + 1 many elements, we

can use a reduction procedure that gets a convex combination of vectors and computes a new
convex combination of affinely independent vectors that yields the same vector. The proce-
dure Reduce(v1, . . . , vk, λ1, . . . , λk), where v1, . . . , vk are are chosen from any affine space of dimen-
sion d, returns I ⊆ {1, 2, . . . , k} and convex coefficients λ′i for all i ∈ I such that the vectors (vi)i∈I
are an affinely independent family of vectors and

k∑
i=1

λivi =
∑
i∈I

λ′ivi.

The procedure Reduce relies on Gaussian Elimination and can be implement in running time O(d2 ·k)
(see [Nag07]). In order to construct a suitable convex combination of vertices of PEAT

S+,t in a reasonable
running time, we use this reduction procedure in every iteration of our combination algorithm
described in Algorithm 20. Regarding our example shown in Figure 5.5, the combination of the

Algorithm 20: Algorithm for combining convex combinations, Combine
Input :Sets S1, . . . , Sr and times θ1 < . . . < θr corresponding to the earliest arrival pattern p∗ of

an earliest arrival transshipment problem (N , b)EAT in a dynamic network N with only a
single sink t. Convex coefficients λi,1, . . . , λi,di and total orders ≺i,1, . . . ≺i,di on Si for
all i ∈ {1, . . . , r}

Output : A convex combination of affinely independent vertices of PEAT
S+,t

1 Γ ← (λ1,1, . . . , λ1,d1 )
2 u≺̂1,j ← the vertex of B(g1) corresponding to ≺̂1,j for j ∈ {1, . . . , d1}
3 T ← (u≺̂1,1

1 , . . . , u
≺̂1,d1
d1

)
4 for i ∈ {2, . . . , r} do
5 for j ∈ {1, . . . , |Γ|} do
6 for k ∈ {1, . . . , di} do
7 µj,k ← Γ(j) · λi,k
8 (uj,k) ← (T (j), u≺̂i,ki ), u≺̂i,k is the corresponding vertex of B(gi)
9 end

10 end
11 Γ ← ((µi1,i2 )i1∈{1,...,|Γ|},i2∈{1,...,di})
12 T ← ((ui1,i2 )i1∈{1,...,|Γ|},i2∈{1,...,di})
13 Γ,T ← Reduce(Γ, T )
14 end
15 d ← |Γ|
16 return Γ, T

convex combination shown in Figure 5.6 just yields the final convex combination of vertices of PEAT
S+,t

shown in Figure 5.5b. The solution this convex combination implies for the depicted earliest arrival
transshipment problem is illustrated in Figure 5.7.

Putting together everything we explained in this section and by using the fact that every vertex
of PEAT

S+,t corresponds to a generalized lex-max flow over time in N with respect to S1, . . . , Sr
and θ1, . . . , θr, we obtain Algorithm 21 for solving earliest arrival transshipment problems in dynamic
networks with only a single sink. In the while loop in Algorithm 21 the earliest arrival pattern is
computed. A fast method to do this pattern computation is to use our results from Section 5.1.
When using our results from this section together with the algorithm of Nagano [Nag07], we can do
every parametric submodular function minimization from the while loop in the same asymptotic
running time as required by the algorithm of Orlin.
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Algorithm 21: Algorithm for solving earliest arrival transshipment problems
Input :A dynamic network N = (D = (V,A), u, τ, S+, t) and a supply/demand function b
Output :A earliest arrival transshipment f

1 S′ ← S+

2 i ← 1
3 while S′ 6= ∅ do
4 λi,1, . . . , λi,di , ≺i,1, . . . ,≺i,di , θi, Si ← parametric SFM of hθi on S′
5 ≺̂i,j ← restriction of ≺i,j to Si for all j = 1, . . . , di
6 S′ ← S′ \ Si
7 i ← i+ 1
8 end
9 λ1, . . . , λd, v1, . . . , vd ← Combine((λi,1, . . . , λi,di | i ∈ {1, . . . , r}), (≺̂i,1, . . . , ≺̂i,di | i ∈ {1, . . . , r}))

10 ≺1, . . . ,≺d ← orders on S+ respecting S1 t . . . t Sr cor. to the vertices v1, . . . , vd of PEAT
S+,t

11 ≺1, . . . ,≺d ← reverse orders of ≺1, . . . ,≺d respecting the partition of S+

12 for i ∈ {1, 2, . . . , d} do
13 fi ← genEALexMax(N , S1, . . . , Sr, θ1, . . . , θr,≺i)
14 end
15 return λ1f1 + . . .+ λdfd

τ
=

0

u
=

1τ =
0

u =
1

τ
=

3

u
=

1

τ = 1

u = 1

s1

1

s21

s31

t −3

(a) In the solution for the earliest arrival transship-
ment problem shown in Figure 5.5 as computed
by Algorithm 21, flow is sent from s3 into the
blue path at rate one for one time unit.

τ
=

0

u
=

1τ =
0

u =
1

τ
=

3

u
=

1

τ = 1

u = 1

s1

1

s21

s31

t −3

(b) In the solution for the earliest arrival transship-
ment problem shown in Figure 5.5 as computed
by Algorithm 21, flow is sent from s1 into the
yellow path at rate 1/2 for 2 time units and
from s2 into the magenta path at rate 1/2 also
for 2 time units.

Figure 5.7: A solution for the earliest arrival transshipment problem from Figure 5.5 as computed by Algorithm 21.

Theorem 5.25 (Correctness of Algorithm 21).
Given an earliest arrival transshipment problem (N , b)EAT in a dynamic network N with only
a single sink t Algorithm 21 returns an earliest arrival transshipment solving this problem.
Overall, the algorithm does only require polynomial space and computes a generalized temporally
repeated solution.

Proof. In the while loop of Algorithm 21 the sets and times S1, . . . , Sr, θ1 . . . , θr corresponding to
the earliest arrival pattern are computed by doing parametric submodular function minimization
of hθi . That this yields the correct sets and times was already argued before. Since we assume that
an algorithm using the framework of Cunningham is used to do the required submodular function
minimization, also a suitable convex combination of vertices of B(gi) is computed that yields the
vector −b

∣∣
Si

for all i ∈ {1, . . . , r} by λi,1, . . . , λi,di and ≺̂i,1, . . . , ≺̂i,di (see Theorem 5.24).
The procedure Combine combines all the computed convex combinations to a minimal convex
combination of vertices of PEAT

S+,t yielding the vector −b.
Lemma 5.21 implies that the generalized lex-max flows over time computed during the algorithm
fulfill −xfi = vi and thus λ1f1 + . . .+ λdfd has characteristic vector b, which means that this flow
satisfies all supplies of the sources. By Lemma 5.18 each of the flows fi has pattern p∗ and thus

122 Chapter 5 Earliest Arrival Transshipments in Networks with a Single Sink



the convex combination also has this pattern, implying that it is an earliest arrival transshipment
solving (N , b)EAT.

5.3.3 An Adaptation of the Algorithm of Hoppe and Tardos
In this section we describe a PSPACE way to compute an integral earliest arrival transshipment
solving a given earliest arrival transshipment problem (N , b)EAT in a dynamic network N with only
a single sink t.
Assume that S1, S2, . . . , Sr and θ1, θ2, . . . , θr are the partition of S+ and the times as returned
when computing the earliest arrival pattern p∗ of (N , b)EAT. The main idea of our algorithm for
solving (N , b)EAT is to reduce this problem to a generalized lex-max flow over time problem in a
modified dynamic networkN ′. Our reduction will make use of the algorithm of Hoppe and Tardos that
we described in Section 3.1.3. We start with a verbal description of our algorithm, the formal algorithm
is given in Algorithm 22. An illustration can be found in Figure 5.8.

Description of the Algorithm. We are given (N , b)EAT, S1, S2, . . . , Sr and θ1, θ2, . . . , θr. Our
algorithm works in r iterations. In the first iteration, i.e., for i = 1, consider the dynamic network N 1

obtained from N by attaching a super-source ψ1 to the sources in S+ \ S1 by arcs with zero transit
time and infinite capacity. We define oθ1(X) to be the maximal amount of flow that can be sent
from the sources in X to the sinks not in X for all X ⊂ {ψ1} ∪ S1 ∪ {t} and θ ≥ 0. We also modify
our supply/demand function b to fit the structure of the dynamic network N 1. The supply of ψ1 is
defined to be oθ1

1 (ψ1), i.e., b1(ψ1) = oθ1
1 (ψ1), and we also set b1(s) = b(s) for all s ∈ S1. Looking

at the structure of the earliest arrival pattern of (N , b)EAT we see that the quickest transshipment
problem (N 1, b1) is a tight quickest transshipment problem with minimal feasible time horizon θ1,
i.e., oθ1

1 (S1 ∪ {ψ1}) = b(S1 ∪ {ψ1}). We denote the sources of N 1 by S+
1 , i.e. S+

1 := S1 ∪ {ψ1}.
Next, we apply the algorithm of Hoppe and Tardos to the tight transshipment problem (N 1, b1, θ1).
The algorithm of Hoppe and Tardos in two phases creates a modified network from N 1 by attaching
new super terminals to the terminals of N 1. More precisely, in the first phase a new super-sink t0
is attached to t by an arc with zero transit time and infinite capacity, while a super-source s0 is
attached to each s ∈ S+

1 also by an arc with zero transit time and infinite capacity. Denote this
newly created set of sources by S+

1 . The supplies and demands b1 are shifted to the newly created
terminals. The second phase initializes the chain

C = {∅, {ψ1}, S
+
1 , S

+
1 ∪ {t0}}

consisting of four tight subsets of terminals of N 1 with respect to oθ1
1 and b1.

In each iteration of the second phase of the algorithm of Hoppe and Tardos, which we denote
by HoppeTardos, the algorithm adds additional terminals to the network that are always connected
to one of the original terminals in S1 ∪ {t} by an arc with non-negative capacity and non-negative
transit time. In each iteration also the supply/demand function is updated. The algorithm terminates
with a chain C of nested tight subsets such that |C| = k+ 1 where k is the number of terminals of the
original dynamic network N 1. Since our original problem (N 1, b1) was tight and ψ1 also is a tight
source, in the second phase of the algorithm of Hoppe and Tardos new additional super-sources are
only attached to the nodes in S1. In particular, no additional super-sinks are added to the dynamic
network and the unique sink t0 remains at the end of the total order on the terminals implied by C.
Denote by N 1 the dynamic network resulting from an execution of the algorithm of Hoppe and
Tardos on (N 1, b1, θ1) and denote by S1 the set of sources of this dynamic network, while b1 are the
new supplies and demands.
In the next iteration of our algorithm we proceed working in N 1 but we “ignore” the sources in S1

in the following iterations. In iteration i = 2 we also modify the dynamic network N 1 a bit. We
remove ψ1 and instead attach a super-source ψ2 to the nodes in S+\(S1∪S2). The resulting dynamic
network N 2 has a single sink and sources {ψ2 ∪ S2}. We define a new supply function b2 on this
source set as in the first iteration, and again apply the algorithm of Hoppe and Tardos to the tight
quickest transshipment problem (N 2, b2, θ2) which gives us a new tight chain of subsets and a new
set of sources S2 with supplies and demands b2. In the subsequent iterations we proceed similarly.
After the last iteration for i = r, we thus get a completely modified dynamic network N := N r
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with source sets S1, . . . , Sr and a new supply function b. Additionally, we also get a total order ≺
on the new set of sources S+ = S1 t . . . t Sr that respects the partition given by S1, . . . , Sr. The
order ≺ is implied by all the tight chains of subsets created during the r executions of the algorithm
of Hoppe and Tardos. It is immediate that a flow over time in N implies a flow over time in N of
the same value and the same time horizon. It remains to be shown that the earliest arrival pattern
also does not change.

S+, b

S1

θ1

S2

θ2

...
Sr

θr

(a) Initial situation in Algorithm 22: We are given
a partition of S+ by the earliest arrival pattern
computation and time horizons θ1 < . . . < θr
for the subsets S1, . . . , Sr of S+.

S1

θ1

S2

θ2

...
Sr

θr

ψ

o
θ1
1 ({ψ})

(b) The modified network N1 at the beginning of
the first iteration of Algorithm 22. In partic-
ular, the super-sink ψi gets supply oθ1

1 ({ψi})
such that the resulting quickest transshipment
problem is tight.

S1, b1

S2

...
Sr

s,n

s,

s,

...

ψ

o
θ1
1 ({ψ})

(c) The dynamic network N 1 after the first it-
eration of Algorithm 22. In particular, we
get a new set of sources S1 with new sup-
plies b1 and a tight chain of subsets of the
sources of this network. In particular, this
complete chain induces a total order ≺1 on S1
(here s1,n1 ≺1 . . . ≺1 s1,2 ≺1 s1,1 ) with the
property that in a lex-max flow over time with
time horizon θ1 in N 1 with respect to ≺1 (such
that ψ1 is ordered before all other sources) all
supplies b1 are satisfied.

Figure 5.8: An illustration of the first iteration of our algorithm for computing integral earliest arrival transshipments
in PSPACE (see Algorithm 22)

The integral earliest arrival transshipment that Algorithm 22 computes for the earliest arrival trans-
shipment problem depicted in Figure 5.5, is shown in Figure 5.9.

Theorem 5.26 (Correctness of Algorithm 22).
Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with multiple
sources and only a single sink and let S1, . . . , Sr and θ1, . . . , θr be the partition of S+ and the
times computed when deriving the earliest arrival pattern corresponding to (N , b)EAT.
Let f be the flow over time in N as returned by Algorithm 22 with respect to the parameters
given above. The flow over time f is a flow over time solving the earliest arrival transshipment
problem (N , b)EAT.
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Algorithm 22: Computing integral solutions to an earliest arrival transshipment problem
Input :A dynamic network N = (D = (V,A), u, τ, S+, t) and a supply/demand function b
Output :An integral earliest arrival transshipment f

1 S1, . . . , Sr, θ1, . . . , θr ← sets and times corresponding to the earliest arrival pattern p∗ of (N , b)EAT
2 V0 ← V
3 {ψ0} ← ∅
4 for i = 1, 2, . . . , r do
5 Vi ← (Vi−1 \ {ψi−1}) ∪ {ψi}
6 Remove all arcs from A that were attached to ψi−1
7 Attach ψi to the sources in S+ \ (S1 ∪ . . . ∪ Si) by arcs with zero transit time and infinite

capacity
8 bi(ψi) ← oθii (ψi)
9 bi(s) ← b(s) for all s ∈ Si

10 Ni ← (D = (Vi, A), u, τ, {ψi} ∪ Si, t)
11 Ci,N i ← HoppeTardos((Ni, bi))
12 Si ← sources of N i

13 ≺i ← total order on Si induced by the chain Ci
14 end
15 N ← N r

16 S
+ ← S1 ∪ . . . ∪ Sr

17 ≺ ← total order on S+ induced by ≺1, . . . ,≺r that respects the given partition of S+

18 f ← GenEALexMax(N , S1, . . . , Sr, θ1, . . . , θr,≺)
19 f ← restriction of f to a flow over time in N
20 return f

Proof of Correctness of Algorithm 22 Before we can derive the correctness of the algorithm we need
to deduce a few lemmas. The following lemma is immediate by construction.

Lemma 5.27. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
multiple sources and only a single sink t and let S1, . . . , Sr and θ1, . . . , θr be the partition of S+ and
the times computed when deriving the earliest arrival pattern corresponding to (N , b)EAT.
Denote by N the resulting dynamic network after iteration i = r of Algorithm 22 with sources
S1 ∪ . . . ∪ Sr and let ≺ be the induced total order on the set of terminals.
Then, the quickest transshipment problem (N , b) can be solved by a generalized lex-max flow over
time f with respect to S1, . . . , Sr, θ1, . . . , θr and ≺. The flow over time f in N induced by f solves
the quickest transshipment problem (N , b).

Proof. Follows by construction and Lemma 3.12.

Lemma 5.28. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
multiple sources and only a single sink t and let S1, . . . , Sr and θ1, . . . , θr be the partition of S+ and
the times computed when deriving the earliest arrival pattern corresponding to (N , b)EAT.
Denote by N the resulting dynamic network after iteration i = r of Algorithm 22 with sources
S1 ∪ . . .∪Sr and let ≺ be the induced total order on the set of terminals. The earliest arrival pattern
of (N , b)EAT as computed in Algorithm 16 is given by

p∗(θ) = oθ
( r⋃
j=i+1

Sj

)
+ b

( i⋃
j=1

Sr

)
for all θ ∈ [θi, θi+1), (5.11)

for all i ∈ {0, . . . , r − 1}. In particular the earliest arrival pattern of (N , b)EAT is the same as the
earliest arrival pattern of (N , b)EAT.

Proof. We at first show that the earliest arrival pattern of the modified problem (N , b)EAT is in
fact given by (5.11). We prove that when applying Algorithm 16 to the problem (N , b)EAT, this is
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Figure 5.9: The integral earliest arrival transshipment solving the earliest arrival transshipment problem shown in
Figure 5.5 as computed by Algorithm 22.

exactly the pattern that is computed. This fact is shown by induction on i. Let i = 1. We want to
show that

oθ1(S+)− oθ1(S+ \ S) ≤ b(S) for all S ⊆ S+
.

To prove this, we fix a subset S ⊆ S+ and subdivide it as S = T 1 t T 2 t . . . t T r with Ti ⊆ Si, for
all i ∈ {1, . . . , r}. By construction using the algorithm of Hoppe and Tardos we know that

oθi
( r⋃
j=i

Sj

)
− oθi

( r⋃
j=i+1

Sj ∪ Si \ T i
)
≤ b(T i), for all i ∈ {1, . . . , r}.

Using the strong map property (see Lemma 4.2) this implies

oθ1

( r⋃
j=i

Sj

)
− oθ1

( r⋃
j=i+1

Sj ∪ Si \ T i
)
≤ b(T i).

126 Chapter 5 Earliest Arrival Transshipments in Networks with a Single Sink



Thus, we have
r∑

k=1

(
oθ1

( r⋃
j=k

Sj

)
− oθ1

( r⋃
j=k+1

Sj ∪ Sk \ T k
))
≤ b(S).

In order to show our claim it suffices to prove

oθ1(S+)− oθ1(S+ \ S) ≤
r∑

k=1

(
oθ1

( r⋃
j=k

Sj

)
− oθ1

( r⋃
j=k+1

Sj ∪ Sk \ T k
))

To show this fact, we will prove by induction on l that the following inequality is fulfilled for all
l ∈ {1, . . . , r},

l∑
k=1

(
oθ1

( r⋃
j=k

Sj

)
− oθ1

( r⋃
j=k+1

Sj ∪ Sk \ T k
))
≥ oθ1(S+)− oθ1(S+ \ (T 1 ∪ . . . ∪ T l)).

For l = 1 this statement is trivially true. Assume the statement is true for 1 ≤ l < r. We show that
it also holds for l + 1. We achieve this by using submodularity and the induction hypothesis,

l+1∑
k=1

(
oθ1

( r⋃
j=k

Sj

)
− oθ1

( r⋃
j=k+1

Sj ∪ Sk \ T k
))

I.H.
≥ oθ1(S+)− oθ1(S+ \ (T 1 ∪ . . . ∪ T l)) + oθ1

( r⋃
j=l+1

Sj

)
− oθr

( r⋃
j=l+2

Sj ∪ Sl+1 \ T k+1

)
subm.
≥ oθ1(S+)− oθ1(S+ \ (T 1 ∪ T 2 ∪ . . . T l+1)).

Thus, we have shown that

oθ1(S+)− oθ1(S+ \ S) ≤ b(S) for all S ⊆ S+
.

Also, equality holds for S = S1 because by construction we have oθ(S+) = oθ(S) and oθ(S+ \ S1) =
oθ(S+ \ S1). This is due to the fact that the new sources in the first phase of HoppeTardos are
attached by arcs with zero transit time and infinite capacity. This implies that in the first iteration
of Algorithm 16 the time that is determined is in fact θ1 and the set that is determined also needs
to be S1. We can now prove inductively that in the subsequent iterations also the correct times and
sets are determined. Assume the correct times and sets are determined until iteration i. We show
that also in iteration i+ 1 the correct times and sets are determined. Thus, we now want to prove
that

oθi+1

(
S

+ \
( i⋃
k=1

Sk

))
− oθi+1

(
S

+ \
( i⋃
j=1

Sj ∪ S
))
≤ b(S) for all S ⊆ S+ \

( i⋃
k=1

Si

)
,

with equality for Si+1. However, showing this fact works exactly as the proof of the induction base
case from above. It remains to be shown that the computed patten p∗ is the same as p∗, but this
follows directly from the fact that

oθ(Sr ∪ . . . Si) = oθ(Sr ∪ . . . ∪ Si)

for all θ and i ∈ {1, . . . , r} and b(Si) = b(Si) for all i ∈ {1, . . . , r}, because of the new sources
attached in the first phase of HoppeTardos by arcs with zero transit time and infinite capacity.

Putting the lemmas from above together yields a proof of Theorem 5.26.

Proof of Theorem 5.26. The correctness follows immediately from the lemma above.
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5.3.4 Summary, Conclusions and Open Questions

In this section we presented two new algorithms to solve an earliest arrival transshipment problem
(N , b)EAT in a dynamic network with only a single sink. Both algorithms only work on the original
dynamic network N without requiring any form of expansions of N . With these algorithms we thus
present the first algorithms for solving the earliest arrival transshipment problem in polynomial
space. This is a huge progress compared to the so far best known algorithm for the earliest
arrival transshipment problem by Baumann and Skutella [BS09], which in the worst case requires
an exponential expansion of N . Algorithm 21 solves an earliest arrival transshipment problem
(N , b)EAT by a convex combination of generalized lex-max flows over time and thus the returned
transshipment usually is fractional. Algorithm 22 on the other hand computes and integral solutions.
Compared to Algorithm 22, Algorithm 21 has a faster running time because it needs significantly
less parametrized submodular function minimizations than the other algorithm. One Open Question
is whether it is possible to efficiently compute an integral transshipment out of the transshipment
computed by Algorithm 21.

5.4 Multiple Deadline Transshipments Over Time

In Section 3.2.1 we shortly introduced multiple deadline flows in dynamic networks with a single
source and a single sink (or dynamic networks without any supplies and demands). Recall, that
such flows have the property that they are maximal at multiple time horizons but not necessarily at
all points in time simultaneously. Thus, such flows are a generalization of earliest arrival flows. For
multiple deadline flows an algorithm with strongly polynomial worst case running time for computing
them is known.
In this section, we consider the equivalent of multiple deadline flows in dynamic networks with given
supplies and demands on the terminals. Given a dynamic network N with supplies and demands b
on the terminals a multiple deadline transshipment f is a quickest transshipment solving (N , b)
with the additional property that f is maximal at all points in time t ∈ T , where T = {η1, η2, . . . , ηk}
with ηi ∈ [0, T ) is a list of points in time given via the input. Here T is the minimal feasible time
horizon of (N , b).

Definition 5.29 (Multiple Deadline Transshipments Over Time).
Let (N , b) be a quickest transshipment problem with minimal feasible time horizon T , and T =
{η1, η2, . . . , ηk} a given list of rational points in time from [0, T ). A multiple deadline trans-
shipment over time is a quickest transshipment f solving (N , b) with the additional property
that

|f |ηi = p∗(ηi) for all i ∈ {1, . . . , k}.

Here p∗ is the earliest arrival pattern corresponding to (N , b)EAT.

Similar to earliest arrival transshipments it is easy to see that in dynamic networks with multiple
sinks multiple deadline transshipments over time do not always exist (the network in Figure 6.1 is
an example for T = {3, 4}). However, for problems in dynamic networks with only a single sink such
flows do always exist. This follows immediately from the existence of earliest arrival transshipments
in dynamic networks with only a single sink. Nevertheless, so far no polynomial space algorithm for
computing such flows was known. With our results from this chapter we can now compute multiple
deadline transshipments over time in polynomial space by just using our polynomial space algorithm
Algorithm 21 for the earliest arrival transshipment problem. However, using our results from this
chapter, we can also come up with an algorithm that computes multiple deadline transshipments
over time in strongly polynomial time.
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5.4.1 Computing Multiple Deadline Transshipments in Strongly Polyno-
mial Time.

Let (N , b) be a quickest transshipment problem in a dynamic network with only a single sink and
let T = {η1, η2, . . . , ηk} be rational times in [0, T ) where T is the minimal feasible time horizon
of (N , b). Using Algorithm 16 we can compute the earliest arrival pattern corresponding to (N , b)EAT.
Let S1 t S2 t . . . t Sr = S+ and θ1 < θ2 < . . . < θr = T be the sets and times corresponding to the
earliest arrival pattern p∗ of (N , b)EAT. By Theorem 5.19 we know that we can solve the earliest
arrival transshipment problem (N , b)EAT by a convex combination of generalized lex-max flows over
time with respect to S1, . . . , Sr and θ1, . . . , θr with pattern p∗. Also, a suitable convex combination
can be computed in strongly polynomial running time during the pattern computation. That is, in
strongly polynomial running time we can compute total orders ≺1, . . . ,≺d that respect the given
partition and convex coefficients such that the corresponding convex combination of generalized
lex-max flows over time yields a solution to (N , b)EAT if the generalized lex-max flows over time
are computed with GenEALexMax. It is a simple corollary that a suitable multiple deadline
transshipment over time can be obtained as a convex combination of the same generalized lex-max
flows over time with respect to the given partition, the given times, and ≺1, . . . ,≺d, but now it
suffices for them to satisfy p∗ at the times in T .

Corollary 5.30. Let (N , b) be a quickest transshipment problem with minimal feasible time horizon T ,
and let T = {η1, η2, . . . , ηk} be rational points in time in [0, T ). A multiple deadline transshipment
over time f with respect to the given parameters can be obtained as a convex combination of generalized
lex-max flows over time such that each of them has value p∗(ηi) at time ηi for all i ∈ {1, . . . , k}.
We call generalized lex-max flows over time with this property multiple deadline generalized
lex-max flows over time.

Proof. This follows directly from the fact that each earliest arrival transshipment problem (N , b)EAT
can be solved by a convex combination of generalized lex-max flows over time with pattern p∗ (see
Theorem 5.19).

Thus, our main goal is to show how we can compute such multiple deadline generalized lex-max
flows over time in strongly polynomial time. It turns out that we can essentially use our generalized
lex-max flow over time algorithm (Algorithm 19) for this purpose:
At first we create one list of points in time consisting of the times in T and θ1, . . . , θr, say γ1 < γ2 <
. . . < γl = T (we remove times that appear more than once). Then we define

Ŝi = Si for all i ∈ {1, . . . , l} with γi ∈ (θi−1, θi].

The sets Ŝ1, Ŝ2, . . . , Ŝl are clearly not pairwise disjoint, however if we execute the generalized lex-max
flow over time algorithm with respect to these sets, the times γ1 < γ2 < . . . < γl and any total
order ≺ on S+ respecting the initially given partition of S+, yields a generalized lex-max flow over
time with the required properties.

Lemma 5.31. Let (N , b) be a quickest transshipment problem with minimal feasible time horizon T ,
and {η1, . . . , ηl} rational points in time in [0, T ). The multiple deadline generalized lex-max flows
over time solving this multiple deadline transshipment problem can be computed with the method
described above.

Proof. That the computed flow over time fulfills the required properties follows completely analogue
to the proof of Theorem 5.9.

Thus, putting all these results together yields that we can compute multiple deadline transshipments
over time in strongly polynomial time. Overall, the following theorem follows.
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Theorem 5.32.
Multiple deadline transshipment problems can be solved in strongly polynomial time by the
method described above.

As a small remark, note that we can also use our adaptation of the algorithm of Hoppe and Tardos
to compute multiple deadline transshipment over time in strongly polynomial time. All we have to
do is to do the reduction of an earliest arrival transshipment problem (N , b)EAT to a generalized
lex-max flow over time problem we described in Section 5.3.3. From this reduction we get S1, . . . , Sr
in a modified network N together with a total order ≺ on the sources that respects the partition.
Doing the same construction as above for this generalized lex-max flow over time problem achieves
an integral multiple deadline transshipment over time.

5.4.2 An FPTAS without Requiring Time Expansion
As a simple consequence from our algorithm for computing multiple deadline transshipments over
time, we obtain an FPTAS for the earliest arrival transshipment problem that does not require any
time expansion.

Corollary 5.33. Let (N , b)EAT be an earliest arrival transshipment problem with minimal feasible time
horizon T and ε > 0. Define k = log1+ε T = log(T )/ log(1+ε) and T = {(1+ε)1, . . . , (1+ε)k = T}.
A multiple deadline transshipment over time f with respect to (N , b) and T is an (1 + ε)-time
approximation for (N , b)EAT when computed with our algorithm described above.

Proof. We obtain a flow over time f with the property that

|f |(1+ε)i = p∗((1 + ε)i) for all i ∈ {1, . . . , k}.

Thus for θ ∈ [(1 + ε)i, (1 + ε)i+1), we get

|f |θ ≥ |f |(1+ε)i = p∗((1 + ε)i) ≥ p∗(θ/(1 + ε)),

because the pattern p∗ is monotonically increasing in θ [BS09]. Hence, f is an (1 + ε)-time
approximation. It remains to check the running time of this procedure. Overall, in order to obtain
our approximation, we have to compute at most |S+| − r + 1 generalized lex-max flows over time.
Each of these generalized lex-max flows over time is computed with respect to at most log1+ε T + r
subsets and times, thus we need as many lex-max flow over time computations. Note that we have

log1+ε T = log T
log(1 + ε) ≤

log T · (1 + ε)
ε

.

Thus, the running time of our algorithm is a polynomial in the input size and 1/ε and hence the
algorithm is an FPTAS.

Thus, we obtain an FPTAS for the earliest arrival transshipment problem that does not require any
form of time expansion.
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6Earliest Arrival Transshipments in
Networks with Multiple Sinks

So far, a lot of effort has been put into the development of algorithms for computing
earliest arrival transshipments in dynamic networks with only a single sink because
in such networks earliest arrival transshipments do always exist.
Regarding earliest arrival transshipments in networks with multiple sinks not
much is known aside from the fact that in such networks earliest arrival trans-
shipments do not exist in general. In particular, there is no algorithm known for
computing earliest arrival transshipments in case of existence (even an algorithm
that relies on time expansion is not stated in the literature) and also the complexity
of deciding whether an earliest arrival transshipment solving a given transshipment
problem in a multiple sink network does exist is still unknown. In this chapter we
make huge progress on answering these questions.
At first we derive the earliest arrival pattern corresponding to earliest arrival
transshipment problems in dynamic networks with multiple sinks and a single
source and for the special case of tight transshipment problems in general dynamic
networks. Making use of the structure of the earliest arrival pattern we formulate
the first PSPACE algorithm that decides whether a given earliest arrival transship-
ment problem has a solution and which computes the solution in case of existence.
Again, we achieve this result for earliest arrival transshipment problems in dynamic
networks with a single source, and for tight problems in general dynamic networks.
At the end of this chapter we settle the complexity by showing that in multiple
sink networks it is NP-hard to decide whether an earliest arrival transshipment
solving a given problem does exist.
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So far, we only considered earliest arrival transshipments in networks with a single sink as in
this case earliest arrival transshipment do always exist. This is not the case for earliest arrival
transshipments in networks with multiple sinks. See Figure 6.1 for an example of a small earliest
arrival transshipment problem in a network with two sinks that does not have a solution. The
depicted example was first published in [BS09]. So far, a lot of research has been put into the
development of efficient algorithms for solving earliest arrival transshipment problems in networks
with only a single sink. In contrast, surprisingly little is known about earliest arrival transshipments
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(a) An earliest arrival transshipment problem in a dynamic network with a single source with supply 2 and two
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(b) At time 3 at most one flow unit can have ar-
rived at the sinks. This is achieved by sending
one flow unit into the magenta path at rate one
during the time interval [0, 1).
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(c) At time 4 at most two flow unit can have ar-
rived at the sinks. This is achieved by sending
one flow unit into the yellow path during the
time interval [0, 1) and one flow unit into the
magenta path during [1, 2), both at rate one.

Figure 6.1: An example for an earliest arrival transshipment problem in a dynamic network with two sink that does
not have a solution: clearly, we cannot send flow such that one flow unit has arrived at the sinks at time 1 and
two flow units have arrived at time 2, i.e., we cannot send flow into the yellow and magenta path at rate one
during[0, 1).

in networks with multiple sinks. To change this, is the main objective of this chapter.
Recall, that the objective of an earliest arrival transshipment problem (N , b)EAT in a dynamic
network with supplies/demands b is to compute a flow over time that sends flow from the sources
to the sinks such that it meets all supplies and demands and it fulfills the property that for every
point in time simultaneously as much flow as possible has reached the sinks. That an earliest
arrival transshipment has the maximal possible value at each point in time makes it such a good
candidate for evacuation planning. Due to the research focused on the efficient exact computation
of earliest arrival transshipments in dynamic networks with only a single sink (see [Min73; Wil71;
Bau07; SS17b]) it is possible to come up with good evacuation strategies relying on earliest arrival
transshipments in this special class of networks. But how do we proceed if we encounter a situation
where multiple sinks are inevitable? Of course, earliest arrival transshipments do not exist in general
in this setting but it might as well be the case that they do exist in the special situation at hand.
However, no efficient algorithm exists that checks whether a given earliest arrival transshipment
(N , b)EAT in a dynamic network with multiple sinks has a solution and even the complexity of this
decision problem is – so far – unknown. Apart from that, also no efficient algorithm is known to
solve (N , b)EAT even if it is known that the earliest arrival transshipment problem has a solution.
The only progress that has been made in recent years regarding earliest arrival transshipments
in networks with multiple sinks is due to Schmidt and Skutella [SS14] who characterize dynamic
network with all zero transit times such that earliest arrival transshipment problems have a solution
for all choices of capacities and supplies and demands. However, their results are non-constructive
and do not lead to an efficient algorithm for computing earliest arrival transshipments in case of
existence.
During this section we mainly focus on earliest arrival transshipment problems in dynamic network
with multiple sinks but only a single source. For this setting we derive PSPACE algorithms that
check whether a given earliest arrival transshipment problem has a solution and compute the
solution in case of existence. Again, our algorithms necessarily have an exponential output size
(see [DS15]) but compute it sequentially and thus require only polynomial space. We will also settle
the complexity of the decision problem mentioned above. To achieve these results we use similar
methods as in Chapters 4 and 5. In particular, similar to our algorithm for solving earliest arrival
transshipment problems in networks with a single source, our algorithms developed in this section
again strongly use the structure of the earliest arrival pattern, which we derive in the first part of
this chapter.
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The Earliest Arrival Pattern. Recall, that the earliest arrival pattern p∗ corresponding to a
given earliest arrival transshipment problem (N , b)EAT is a function p∗ : [0, T )→ R≥0 such that, for
all θ ∈ [0, T ), p∗(θ) is the maximal possible value of a flow over time in N with time horizon θ that
does not violate the given supplies and demands. Here T is the minimal feasible time horizon of
(N , b)EAT. For earliest arrival transshipment problems in dynamic networks with only a single sink
Baumann and Skutella [Bau07] derived the structure of the corresponding earliest arrival pattern (see
also Section 3.2.2). Section 6.1.1 focuses on understanding the structure of the earliest arrival pattern
corresponding to earliest arrival transshipment problems in dynamic networks with multiple sinks.
We will derive the structure of the earliest arrival pattern for earliest arrival transshipment problems
in dynamic networks with a single source (but multiple sinks) and give a strongly polynomial time
algorithm for computing the earliest arrival pattern (Section 6.1.2). It turns out that the required
constructions needed to compute the required information about the earliest arrival pattern are
essentially symmetric to the ones done in the algorithm of Baumann and Skutella. Additionally, we
also derive the earliest arrival pattern for tight earliest arrival transshipment problems in dynamic
network with multiple sources and sinks.

Computing Earliest Arrival Transshipments – The Tight Case. In Section 6.2 we concentrate on
tight earliest arrival transshipment problems in dynamic networks with multiple sinks. Recall, that
an earliest arrival transshipment problem (N , b)EAT is tight if we have oT (S+) = b(S+), where T
is the minimal feasible time horizon of the given transshipment over time problem. The dynamic
network shown in Figure 6.1 is also an example for a tight problem.
For the larger part of this section we only consider tight problems in dynamic networks with only a
single source, but in the end we put all our result together to achieve a PSPACE algorithm that
checks whether a tight earliest arrival transshipment problem in a general dynamic network has a
solution and computes it in case of existence. The main ideas behind our algorithm are similar to
the ones used in the previous two chapters: We will show that (N , b)EAT has a solution if and only
if the vector −b lies inside the base polytope B(γT ) of a suitably chosen submodular function, whose
vertices correspond to a family of special flows over time. Our first task, which we concentrate on in
Section 6.2.1 and Section 6.2.2, is thus to define a suitable submodular function and a suitable class
of flows over time (called lex-max earliest arrival flows) and to derive PSPACE algorithms for
evaluating the submodular function and for computing the newly defined flows over time.
In Section 6.2.3 we finally show that (N , b)EAT has a solution if and only if −b ∈ B(γT ), which allows
us to check the existence of an earliest arrival transshipment solving (N , b)EAT by doing submodular
function minimization. The algorithm for evaluating γT , which we develop in Section 6.2.2, thus
yields a PSPACE algorithm to check the existence of an earliest arrival transshipment. In order
to be able to compute an earliest arrival transshipment in case of existence, we again derive a
correspondence between the vertices of B(γT ) and the special class of flows over time that we
defined before. This implies that an earliest arrival transshipment solving (N , b)EAT can be obtained
as a convex combination of lex-max earliest arrival flows. A suitable convex combination can be
computed during the submodular function minimization required to check the existence of an earliest
arrival transshipment – provided an algorithm relying on the framework of Cunningham is used for
the submodular function minimization. The lex-max earliest arrival flows occurring in the convex
combination can be computed in polynomial space with our algorithm from Section 6.2.2.
Most of our results in Section 6.2 are tailored to tight earliest arrival transshipment problems in
dynamic networks with only a single source. At the end of Section 6.2.3 we extend all of these results
to tight earliest arrival transshipments in general dynamic networks. In particular, the earliest arrival
transshipments that our algorithms compute have the nice structural property of being generalized
temporally repeated.

Computing Earliest Arrival Transshipments – The General Case. In Section 6.3 we focus on
solving general (non-tight) earliest arrival transshipment problems. All the results we achieve in this
section are valid only for the special case of dynamic networks with a single source (and multiple
sinks). The methods we use are similar to what we did in Section 5.3.1. Again, our goal is to obtain
earliest arrival transshipments as a convex combination of special flows over time that correspond to
the vertices of a suitable polytope. In Section 6.3.1 we generalize lex-max earliest arrival flows and
define generalized lex-max earliest arrival flows and derive a PSPACE algorithm to compute such
flows over time in case of existence. In Section 6.3.2 we define a polytope PEAT

s,S− that is strongly
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connected with the structure of the earliest arrival pattern of the given earliest arrival transshipment
problem (N , b)EAT. It will turn out to be a necessary condition for the existence of an earliest
arrival transshipment that −b ∈ PEAT

s,S− . However, this condition is not sufficient for the existence of
an earliest arrival transshipment. This is due to the fact that, even if −b ∈ PEAT

s,S− , the generalized
lex-max earliest arrival flows that are shown to correspond to the vertices of PEAT

s,S− might not exist.
Our main result is that (N , b)EAT has a solution if and only if −b ∈ PEAT

s,S− and all generalized
lex-max earliest arrival flows corresponding to the vertices of PEAT

s,S− do exist. We will present a
polynomial space algorithm to check these conditions (again relying on multiple submodular function
minimizations) and to compute a suitable convex combination of generalized lex-max earliest arrival
flows in case of existence. Again, the earliest arrival transshipments computed by our algorithms are
generalized temporally repeated.

Complexity. In this section we derive the complexity of the decision problem that asks whether
a given earliest arrival problem (N , b)EAT has a solution. The main result from this section is the
proof of the fact that this problem is NP-hard (see 6.4).

Approximation. In the final section of this chapter we show that for earliest arrival transshipment
problems in dynamic networks with only a single source a 2-time approximation does always
exist (see Section 6.5). Together with a lower bound of 2 shown in [Gro+12] this gives a tight
result.

6.1 The Earliest Arrival Pattern
During this section we derive the earliest arrival pattern corresponding to an earliest arrival
transshipment problem (N , b)EAT in a dynamic network with multiple sinks but only a a single
source. It turns out that in this special setting the construction of the earliest arrival pattern is
essentially symmetric to the construction of p∗ in networks with multiple sources but only a single
sink due to Baumann and Skutella [BS09].

6.1.1 The Structure of the Earliest Arrival Pattern
At first we will consider dynamic networks N = (D = (V,A), u, τ, S+, S−) with multiple sources
and multiple sinks in order to achieve a slightly more general result. Let b : S+ ∪ S−→ Z be a
supply/demand function on the terminals of N . Recall, that in a dynamic network without supplies
and demands the earliest arrival pattern p∗ is given by oθ(S+) for all θ ≥ 0 and a flow over time
respecting this pattern can be achieved as a generalized temporally repeated flow computed by the
successive shortest path algorithm from S+ to S− (see Observation 3.15 and Algorithm 8). It will
later turn out that for at least some time the earliest arrival pattern for (N , b)EAT is also equal
to oθ(S+). Intuitively, we have p∗(θ) = oθ(S+) until the supplies of a set of sources run empty
or the demands of a set of sinks are full. Afterwards only the remaining non-empty sources can
keep sending flow or the remaining non-empty sinks can keep receiving flow, what they will do with
the highest possible rate until the next sources are empty or sinks are full, and so on. We start
by showing the following lemma which is central for deriving the structure of the earliest arrival
pattern.

Lemma 6.1. Let N = (D = (V,A), u, τ, S+, S−) be a dynamic network, b a supply/demand function
on S+ ∪ S−, and θ, q ≥ 0. We have p∗(θ) ≥ q if and only if

oθ(S ∪ T ) ≥ q − b(S+ \ S) + b(T ) for all S ⊆ S+ and all T ⊆ S−. (6.1)

Proof. For the proof we consider an extended dynamic network N := (D = (V ,A), u, τ , S+
, S
−)

which is defined as follows (see also Figure 6.2): An additional source s and an additional sink t are
added to the original dynamic network, i.e.,

V := V ∪ {s, t} S
+ := S+ ∪ {s} S

− := S− ∪ {t}.

The new source s is connected to every sink in S− by an arc with zero transit time and infinite
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Figure 6.2: The dynamic network N

capacity, while t is connected to every source in S+ by an arc with zero transit time and infinite
capacity. Overall, we get for A, u and τ in our newly defined dynamic network,

A := A ∪ {(s, t) | s ∈ S+} ∪ {(s, t) | t ∈ S−},

with

τ(a) :=
{
τ(a) if a ∈ A,
∞ otherwise,

and

u(a) :=
{
τ(a) if a ∈ A,
0 otherwise,

for all a ∈ A. We also extend the supplies and demands to the new set of terminals and define
b : S+ ∪ S−→ Z by

b(s) := −b(S−)− q = b(S+)− q
b(t) := b(S−) + q = −b(S+) + q

b(v) := b(v) for all v ∈ S+ ∪ S−.
(6.2)

Finally, we define oθ to be the extension of oθ to N : for each X ⊆ S
+ ∪ S− and θ ≥ 0 we define

oθ(X) to be the maximal amount of flow that can be sent from the sources in S+ ∩X to the sinks
in S− \X in the dynamic network N until time θ.
Note that for all S ⊆ S+ and T ⊆ S− the following relation between oθ and oθ holds,

oθ(S ∪ T ) = oθ(S ∪ T ∪ t). (6.3)

At first we prove the following statement:

We have p∗(θ) ≥ q if and only if (N , b, θ) is feasible.
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To show this fact we assume at first that the transshipment over time problem (N , b, θ) is feasible,
i.e., there exists a flow over time f with time horizon θ in N that fulfills all the supplies and demands
given by b. In such a flow over time f the source s (which is only connected to the sinks in S−) has
to send exactly b(S+)− q units of flow to the sinks in S−. The remaining q demands of the sinks
in S− need to be fulfilled by the sources in S+. Thus, in f the sources in S+ send q flow units to
the sinks in S− and b(S+)− q flow units to the sink t. We can now restrict f to a flow over time f
in N by only considering the flow sent between S+ and S− in f . Thus, we have by construction
|f |θ = q, i.e., p∗(θ) ≥ q.
To show the converse direction, assume that p∗(θ) ≥ q. This implies that in the original dynamic
network N there exists a flow over time f with time horizon θ and |f |θ = q that does not violate
any supplies and demands. We can now extend f to a flow over time f in N that solves (N , b, θ) by
sending the b(S+)− q supplies that are unfulfilled in f towards the sink t. The demands that are
unfulfilled in f can be strictly fulfilled by sending b(S+)− q flow units from s towards S−.
By the feasibility criterion of Klinz [Kli] (see Theorem 3.5) we know that the transshipment over
time problem (N , b, θ) is feasible if and only if

oθ(X ∪ Y ) ≥ b(X ∪ Y ) for all X ⊆ S+ and all Y ⊆ S−. (6.4)

In light of the observation that we have just shown, in order to prove the statement of the lemma, it
suffices to show that (6.1) holds if and only if (6.4) holds.
We start by assuming that (6.4) is valid. Let S ⊆ S+ and T ⊆ S−. we have

oθ(S ∪ T ) (6.3)= oθ(S ∪ T ∪ {t})
(6.4)
≥ b(S ∪ T ∪ t)
= b(S) + b(T ) + b(t)

(6.2)= b(S) + b(T )− b(S+) + q

= q − b(S+ \ S) + b(T ).

Thus (6.1) holds for all S ⊆ S+ and all T ⊆ S−.
For the converse direction assume that (6.1) holds. Let X ⊆ S+ ∪ {s} and Y ⊆ S− ∪ {t}. We have
to consider several cases. At first assume that X = ∅, then

0 = oθ(∅ ∪ Y ) = oθ(X ∪ Y ) ≥ b(Y ) for all choices of Y ⊆ S− ∪ {t}.

We will thus assume in the following that X 6= ∅. Next, we consider the case Y = S
−. We have

0 = oθ(X ∪ S− ∪ {t}) = oθ(X ∪ Y ) ≥ b(X) + b(S−).

Thus, we will in the following assume Y ( S
−. If s ∈ X or t 6∈ Y , we have oθ(X ∪ Y ) = ∞ and

thus (6.4) is clearly fulfilled in these cases. The last case we need to consider is thus, s 6∈ X, t ∈ Y ,
X 6= ∅ and Y ( S

− ∪ {t}. In this case we have

oθ(X ∪ Y ) = oθ(X ∪ Y \ {t} ∪ {t})
(6.3)= oθ(X ∪ Y \ {t})
(6.1)
≥ q − b(S+ \X) + b(Y \ {t})
= q − b(S+) + b(Y \ {t}) + b(X)

(6.2)= b(t) + b(Y \ {t}) + b(X)
= b(X) + b(Y ),

which finishes the proof.

The following corollary is a simple consequence of Lemma 6.1.
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Corollary 6.2. Let N be a dynamic network and b a supply/demand function on the terminals of N .
The earliest arrival pattern p∗ for (N , b)EAT is piecewise linear and given by

p∗(θ) = min{oθ(S ∪ T ) + b(S+ \ S)− b(T ) | S ⊆ S+ and T ⊆ S−}.

Proof. Let S ⊆ S+ and T ⊆ S−. By definition oθ(S ∪ T ) is the maximal amount of flow that the
sources in S can send towards the sinks in S− \ T until time θ, while −b(T ) is the maximal amount
of flow that the sinks in T can receive until time θ, and b(S+ \ S) is the maximal amount of flow
that the sources in S+ \S can send until time θ in a flow over time respecting supplies and demands.
This implies

p∗(θ) ≤ min{oθ(S ∪ T )− b(T ) + b(S+ \ S) | S ⊆ S+ and T ⊆ S−}.

It is a consequence of Lemma 6.1 that we also have

p∗(θ)
Lem. 6.1
≥ min{oθ(S ∪ T )− b(T ) + b(S+ \ S) | S ⊆ S+ and T ⊆ S−}.

The next important ingredient to derive the structure of the earliest arrival pattern p∗ is the following
lemma which shows that the parametric submodular function oθ fulfills a property similar to the
strong map property.

Lemma 6.3. Let N be a dynamic network, T ⊆ T ′ ⊆ S−, S′ ⊆ S ⊆ S+ and 0 ≤ θ′ ≤ θ. Then

oθ
′
(S ∪ T )− oθ

′
(S′ ∪ T ′) ≤ oθ(S ∪ T )− oθ(S′ ∪ T ′).

Proof. Let R ⊆ S+ be a fixed subset of sources. We have shown in Lemma 4.4 that we have

oθ
′
(R ∪ T )− oθ

′
(R ∪ T ′)

Lem. 4.4
≤ oθ(R ∪ T )− oθ(R ∪ T ′).

Symmetrically, Baumann and Skutella [BS09] showed that for a fixed U ⊆ S− we have

oθ
′
(S ∪ U)− oθ

′
(S′ ∪ U)

Lem. 4.2
≤ oθ(S ∪ U)− oθ(S′ ∪ U).

Thus, for R = S and U = T ′ we get

oθ
′
(S ∪ T )− oθ

′
(S ∪ T ′) ≤ oθ(S ∪ T )− oθ(S ∪ T ′)

and

oθ
′
(S ∪ T ′)− oθ

′
(S′ ∪ T ′) ≤ oθ(S ∪ T ′)− oθ(S′ ∪ T ′).

Adding up both inequalities yields the statement of the lemma.

Corollary 6.4. Let N be a dynamic network, b a supply/demand function on the terminals of N and
θ1 = max{θ | p∗(θ) = oθ(S+)}. Then

p∗(θ) = oθ(S+) for all 0 ≤ θ ≤ θ1.

Proof. Aiming for a contradiction, assume that p(θ) < oθ(S+) for some 0 ≤ θ < θ1. By Lemma 6.1
there exist S ⊆ S+ and T ⊆ S− with

oθ(S ∪ T )
Lem. 6.1
< oθ(S+) + b(T )− b(S+ \ S). (6.5)

Together with Lemma 6.3 this implies

oθ1(S ∪ T )− oθ1(S+)
Lem. 6.3
≤ oθ(S ∪ T )− oθ(S+)

(6.5)
< b(T )− b(S+ \ S),
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and thus, p∗(θ1) < oθ1(S+) according to Lemma 6.1, contradicting the definition of θ1.

With Corollary 6.4 we have already deduced the earliest arrival pattern for tight earliest arrival
transshipment problems (N , b)EAT, i.e., for problems with oT (S+) = b(S+) where T is the minimal
feasible time horizon for (N , b)EAT.

Corollary 6.5 (Earliest Arrival Pattern for Tight Problems). Let N be a dynamic network and b a
supply/demand function on the terminals of N . If (N , b)EAT is a tight earliest arrival transshipment
problem, i.e., oT (S+) = b(S+) for the minimal feasible time horizon T of (N , b)EAT, then the earliest
arrival pattern p∗ for (N , b)EAT is given by

p∗(θ) = oθ(S+) for all θ ∈ [0, T ).

Proof. The statement of the corollary follows immediately from Corollary 6.4.

Lemma 6.6. Let N be a dynamic network, b a supply/demand function on the terminals of N and
θ1 = max{θ | p∗(θ) = oθ(S+)}. Then there exists a subsets of sinks T1 ⊆ S− and a subset of sources
T1 ⊆ S+ with S1 ∪ T1 6= S+ such that

oθ1(S+) = oθ1(S1 ∪ T1)− b(T1) + b(S+ \ S1).

Proof. Assume that

oθ1(S+) < oθ1(S ∪ T )− b(T ) + b(S+ \ S) for all T ⊆ S− and S ⊆ S+ with S1 ∪ T1 6= S+.

Because the function oθ(B) is continuous in θ for a fixed subset of terminals B, this implies that
there exists an ε > 0 such that

oθ1+ε(S+) ≤ oθ1+ε(S ∪ T )− b(T ) + b(S+ \ S) for all T ⊆ S− and S ⊆ S+.

By Lemma 6.1 this implies p∗(θ1 + ε) ≥ oθ1+ε(S+).

Lemma 6.6 has a nice intuitive interpretation. Until time θ1 the sources in S+ have sent an overall
amount of flow of value oθ1(S+) towards the sinks in S−. The lemma states that if the sources in
S+ \ S1 send as little flow as possible and the sinks in T1 receive as little flow as possible, then the
sources in S+ \ S1 have sent their summed up supplies, while the sinks in T1 have received their
summed up demands. This implies that in an earliest arrival transshipment solving (N , b)EAT the
sources in S+ \ S1 have to run empty, whereas the sinks in T1 have to run full until time θ1.
Assume now that N is a dynamic network with only a single source s ∈ S+, and assume that T1 is
the subset of sinks that has to run full at time θ1 in an earliest arrival transshipment according to
Lemma 6.6. We thus know that after time θ1 only the sinks in S− \ T1 may receive flow. It will turn
out that in order to fulfill the earliest arrival property the sinks in S− \ T1 have to receive flow with
the highest possible rate oθ({s} ∪ T1) until the next set of sinks runs full, and so on.
This implies that in this case the earliest arrival pattern p∗ is composed of several s-t earli-
est arrival patterns in extended networks with an additional super-sink t that is connected to
the subset of sinks that has not yet run full. This result is summarized in the following theo-
rem.
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Theorem 6.7 (The earliest arrival pattern).
Let N be a dynamic network with multiple sinks S− and only a single source s, and b a
supply/demand function on the terminals of N . Further let θ1 = max{θ | p∗(θ) = oθ({s})} and
∅ ( T1 ( S− such that

oθ1({s} ∪ T1) = oθ1({s}) + b(T1). (6.6)

Denote by p∗1 the earliest arrival pattern of the modified dynamic network with sink set S− \ T1.
Then,

p∗(θ) =
{
oθ({s}) if θ < θ1

p∗1(θ)− b(T1) if θ ≥ θ1.

Proof. We already showed in Corollary 6.4 that p∗(θ) = oθ({s}) if θ ≤ θ1. It remains to be shown
that p∗(θ) = p∗1(θ)− b(T1) for all θ ≥ θ1. That ≤ holds is immediate. We use Lemma 6.1 to show ≥.
For an arbitrary T ⊆ S− and θ ≥ θ1 we get

oθ({s} ∪ T )
subm.
≥ oθ({s} ∪ T ∩ T1) + oθ({s} ∪ T1 ∪ T )− oθ({s} ∪ T1)

Lem. 6.3
≥ oθ1({s} ∪ T ∩ T1)− oθ1({s} ∪ T1) + oθ({s} ∪ T1 ∪ T )

(6.6)= oθ1({s} ∪ T ∩ T1) + oθ({s} ∪ T1 ∪ T )− (oθ1({s}) + b(T1))
Cor. 6.2
≥ oθ1({s}) + b(T ∩ T1) + (p∗1(θ) + b(T \ T1))− (oθ1({s}) + b(T1))
= p∗1(θ) + b(T \ T1) + b(T ∩ T1)− b(T1)
= p∗1(θ) + b(T )− b(T1),

which implies p∗(θ) = p∗1(θ)− b(T1) for all θ ≥ θ1 by Lemma 6.1.

6.1.2 Computing the Earliest Arrival Pattern
By Theorem 6.7 we have reduced the computation of the earliest arrival pattern p∗ to the computation
of θ1 and T1 and the pattern p∗1 of the reduced instance on the sink set S− \ T1. It turns out that
θ1 and T1 can be determined in strongly polynomial time using parametric submodular function
minimization.

Lemma 6.8. Let N be a dynamic network with only a single source and b a supply/demand function
on the terminals of N . Then the time θ1 with θ1 = max{θ | p∗(θ) = oθ({s})} and a subset T1 ( S−

with oθ1({s} ∪ T1) = oθ1({s}) + b(T1) can be computed by solving a parametric submodular function
minimization problem.

Proof. We define a parametric submodular function gθ on S− by

gθ(T ) = oθ({s} ∪ T )− b(T )− oθ({s}) for all T ⊆ S−.

The value θ1 is defined to be θ1 = max{θ | p∗(θ) = oθ({s})}. By Lemma 6.4, we have p∗(θ) = oθ({s})
for θ ≤ θ1. Thus, for all θ ≤ θ1 we have by Lemma 6.1

oθ({s} ∪ T ) ≥ oθ({s}) + b(T ) for all T ⊆ S− ⇒ gθ(T ) ≥ 0 for all T ⊆ S−.

The value θ1 is thus the maximal value with gθ(T ) ≥ 0 for all T ⊆ S− and T1 is a minimizer of gθ1 .
This is what is computed in Algorithm 23 while computing the earliest arrival pattern.

Applying Theorem 6.7 recursively leads to Algorithm 23 for the computation of the earliest arrival
pattern of an earliest arrival transshipment problem (N , b)EAT in a dynamic network with only a
single sink.
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Algorithm 23: Computation of the earliest arrival pattern in dynamic networks with a single
source

Input :A dynamic network N = (D = (V,A), u, τ, S+, S−) with a supply/demand function b
Output :Sets T1, T2, . . . , Tr ⊆ S− such that

⊔r

i=1 Ti = S− and times 0 < θ1 < θ2 < . . . < θr
corresponding to the earliest arrival pattern of the given earliest arrival transshipment
problem (N , b)EAT

1 i ← 0, Ti ← ∅, θi ← 0
2 while

⊔
j=1 Tj 6= S− do

3 Compute the maximal value θi+1 ≥ 0 such that

oθi+1

(
{s} ∪

i⋃
j=1

Ti ∪ T
)
≥ oθi+1

(
{s} ∪

i⋃
j=1

Ti

)
+ b(T ) for all T ⊆ S− \

( i⋃
j=1

Ti

)
.

Compute the inclusion-wise maximal set Ti+1 ( S− \
(⋃i

j=1 Ti

)
with

oθi+1

(
{s} ∪

i+1⋃
j=1

Ti

)
= oθi+1

(
{s} ∪

i⋃
j=1

Ti

)
+ b(Ti+1).

i ← i+ 1
4 end
5 return T1, T2, . . . , Tr and θ1, θ2, . . . , θr

Theorem 6.9.
Let N be a dynamic network with a single source s and b a supply/demand function on the
terminals of N . The sets T1 t T2 t . . . t Tr = S− and times 0 < θ1 < θ2 < . . . < θr as returned
by Algorithm 23 characterize the pattern p∗ correctly, that is θr is the minimal feasible time
horizon and for all j ∈ {0, . . . , r − 1} we have,

p∗(θ) = oθ
(
{s} ∪

j⋃
i=1

Ti

)
− b
( j⋃
i=1

Ti

)
for all θ ∈ [θj , θj+1).

Proof. With Theorem 6.7 and Lemma 6.8 the only thing that remains to be shown is to prove that
θi > θi+1 for the returned times for all i ∈ {1, . . . , r − 1}.
We show this by induction. By definition we have θ1 > 0 as the sinks in T1 have non-zero demands
and hence their whole demand cannot be fulfilled at time θ0 := 0. For 1 ≥ i < r we assume by
contradiction that θi+1 ≤ θi. This yields

oθi
(
{s} ∪

i+1⋃
j=1

Tj

)
Lem. 6.3
≤ oθi

(
{s} ∪

i⋃
j=1

Ti

)
+ oθi+1

(
{s} ∪

i+1⋃
j=1

Tj

)
− oθi+1

(
{s} ∪

i⋃
j=1

Ti

)

= oθi
(
{s} ∪

i⋃
j=1

Tj

)
+ b(Ti+1)

= oθi
(
{s} ∪

i−1⋃
j=1

Tj

)
+ b(Ti) + b(Ti+1)

contradicting the maximal choice of Ti ( S− \ (
⋃i−1
j=1 Ti) during the Algorithm 23.

Note that in order to really compute the whole earliest arrival pattern, we would again need to
compute the breakpoints of the functions θ 7→ oθ

(
{s}∪

⋃i
j=1 Ti

)
for all θ ∈ [θi, θi+1) in each iteration

of Algorithm 23. However, we again only need the sets T1, . . . , Tr and times θ1, . . . , θr as returned
by the algorithm. Also note that during the execution of Algorithm 23, r parametric submodular
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function minimizations are required. Using the same approach as in Section 5.1, we can again exploit
the strong map property and get rid of Megiddo’s parametric search framework when computing p∗.
More precisely, we are able to do each of these parametric submodular function minimizations in the
same asymptotic running time as the algorithm of Orlin if we use the algorithm of Nagano [Nag07],
or in |S−| times the running time of the algorithm of Lee et al.

6.1.3 Summary, Conclusions and Open Questions.
In this section we derived the structure of the earliest arrival pattern of an earliest arrival transship-
ment problem in dynamic networks with a single source and for the special case of a tight earliest
arrival transshipment problem in general dynamic networks. Moreover, we presented an efficient
algorithm to compute this pattern. The obvious open question here is to derive the structure of the
earliest arrival pattern for earliest arrival transshipment problems in general dynamic networks and
to give an efficient algorithm to compute this pattern.

6.2 The Tight Case
We have shown in Section 5.3.1 that earliest arrival transshipment problems (N , b)EAT in dynamic
networks with only a single sink can be solved by a convex combination of generalized lex-max flows
over time with a suitable arrival pattern. In particular, an earliest arrival transshipment solving a
tight problem can be obtained as a convex combination of lex-max flows over time (see Theorem 5.19).
In networks with multiple sinks but only a single source an analogue statement is not true anymore.
See Figure 6.3 for an example of an earliest arrival transshipment problem in a dynamic network
with only a single source and two sinks that has a solution which cannot be obtained as a convex
combination of lex-max flows over time. As our structural main result we will show that – in case of
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Figure 6.3: An example of a tight earliest arrival transshipment problem that cannot be solved by a convex combination
of lex-max flows over time since the lex-max flows over time never satisfy the earliest arrival pattern.

existence – earliest arrival transshipments can always be obtained as convex combinations of certain
other flows over time, which we call lex-max earliest arrival flows. Algorithmic-wise, we present
a PSPACE algorithm that checks whether a given tight earliest arrival transshipment problem has a
solution and, in case of existence, computes a solution as a convex combination of lex-max earliest
arrival flows.
More precisely, we will show that a given tight earliest arrival transshipment problem (N , b)EAT
in a dynamic network with only a single source s has a solution if and only if −b ∈ B(γT ), and
we present a polynomial space algorithm to check this condition and to compute a solution of
(N , b)EAT in case of existence. Here γT is a suitably defined submodular function and T the minimal
feasible time horizon of (N , b)EAT. The structural result follows from the fact that the vertices
of B(γT ) correspond to lex-max earliest arrival flows and it will turn out that a suitable convex
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combination can be computed during the submodular function minimization required to check
whether −b ∈ B(γT ). In order to achieve these results, several steps are required of which we give a
short overview below. In particular, we use the fact that we know by Corollary 6.5 that the earliest
arrival pattern of a tight earliest arrival transshipment problem with minimal feasible time horizon
T is given by θ 7→ oθ({s}), for θ ∈ [0, T ). For the main part of this section we only consider tight
earliest arrival transshipment problems in dynamic networks with only a single sink, only in the
final part will we generalize all our results to general networks. In order to achieve our structural
and algorithmic main results, the following steps are required. Note the similarity to the techniques
used in the previous chapters:

1. Define the set function γθ, show that it is submodular (Section 6.2.1) for every θ ≥ 0, and
derive a PSPACE algorithm to evaluate this function (Section 6.2.2).

2. Define a special class of flows over time, called lex-max earliest arrival flows, and derive a
PSPACE algorithm to compute them (Section 6.2.2).

3. Show that a tight problem (N , b)EAT in a dynamic network with only a single source has a
solution if and only if −b ∈ B(γT ) where T is the minimal feasible time horizon for (N , b)EAT.
With our PSPACE algorithm for evaluating γT we can thus check this condition in PSPACE
(Section 6.2.3).

4. Show that the vertices of B(γT ) correspond to lex-max earliest arrival flows and that a suitable
convex combination of lex-max earliest arrival flows can be computed during the submodular
function minimization required to check whether (N , b)EAT has a solution. With our algorithm
for computing lex-max earliest arrival flows we can then compute a flow over time solving
(N , b)EAT in PSPACE (Section 6.2.3).

5. Extend all our results to tight earliest arrival transshipment problems in general networks
(Section 6.3.1).

Until the last part of this section, N = (D,u, τ, s, S−) denotes a dynamic network with multiple
sinks S− but only a single source s. We also assume that we are given a supply/demand function b
on the terminals of N and that (N , b)EAT is a tight earliest arrival transshipment problem. That
is, we have oT ({s}) = b({s}) = −b(S−) where T is the minimal feasible time horizon of (N , b)EAT.
We showed in Corollary 6.4 that in this case the earliest arrival pattern p∗ of (N , b)EAT is given
by

p∗(θ) = oθ({s}) for all θ ∈ [0, T ).

Since the dynamic networks we consider throughout this section are single source networks, we will
in the following assume that b is a vector in ZS−<0 , while the supply of the source s is implicitly given
by −b(S−).
For a given time horizon T we would like to be able to characterize the set of all demand vectors
that lead to a tight earliest arrival transshipment problem in N with time horizon T that has a
solution. Thus, we define the set SEAT(N , T ) as follows:

SEAT(N , T ) := {x ∈ ZS
−

≥0 | (N ,−x)EAT is tight with minimal time horizon T and has a solution}.

In order to check whether our tight earliest arrival transshipment problem (N , b)EAT has a solution,
it thus suffices to check whether −b ∈ SEAT(N , T ). Recall, that the minimal feasible time horizon T
can be computed in strongly polynomial time using the methods described in Section 4.1. It will be
a main result of this section to show that SEAT(N , T ) is the base polytope of a submodular function
that we can evaluate in polynomial space. However, in order to achieve this result, we at first need
to define a suitable submodular function.

6.2.1 Defining a Submodular Function
In this section we concentrate on the first step from our outline presented before: we define a
suitably chosen parametric submodular function γθ for θ ≥ 0 such that we are able to show that
SEAT(N , T ) = B(γT ), and a special class of flows over time, called lex-max earliest arrival flows,
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that are connected to the vertices of B(γT ). We start by defining the submodular function γθ for all
θ ≥ 0.

Definition 6.10.
Given a dynamic network N with only a single source s and a time horizon θ ≥ 0, we define the
set function γθ : 2S−→ R as follows,

X 7→
maximum amount of flow that can arrive at the sinks in X until time θ
in a flow over time with time horizon θ in and oθ

′
({s}) = |f |θ′ for all θ′ ≤ θ.

A flow over time f with time horizon T and pattern θ′ 7→ oθ
′({s}) for all θ′ ∈ [0, T ) that also

fulfills
− netf (X, θ) = γθ(X)

for some θ ≤ T and X ⊆ S− is said to satisfy γθ(X).

On the first glance the function γT seems to be quite similar to oT . However, it can easily be seen
that both functions are not equal. For example, for the dynamic network depicted in Figure 6.3
we obtain o3({s, t2}) = 3 (recall that o3({s, t2}) is the maximal amount of flow that can be sent
into t1 until time 3) while γ3({t1}) = 2. What both of these functions have in common is that they
are completely independent from potentially given demands on the sinks. Also note that in the
definition of γθ the pattern θ′ 7→ oθ

′({s}) of tight earliest arrival transshipment problems pops up.
Our first main result from this section is to show that the function γθ is in fact submodular for each
time horizon θ ≥ 0.

Theorem 6.11 (Submodularity of γθ).
Let N be a dynamic network with only a single source s. The corresponding set function γθ is
submodular for every θ ≥ 0.

The proof of Theorem 6.11 is quite involved and relies on several lemmas, which we present during
the following paragraph.

Preliminaries for the Proof of Theorem 6.11. The proof of Theorem 6.11 strongly relies on a
connection between flows over time in N satisfying γθ(X) for some θ ≥ 0 and some X ⊆ S−, and
certain static lex-max flows in the time-expanded network. Assume for the moment that θ ≥ 0 is
integral. We consider the time-expanded network N θ corresponding to our given dynamic network
N with only a single source s. For our purpose we have to slightly alter the construction of the
time-expanded network that was presented in Section 2.5.2: In each time layer θ′ ∈ {1, . . . , θ} we
attach a super-sink tθ

′

X to nodes tθ′ with t ∈ X by an arc with infinite capacity. Similarly, we
attach a super-sink tθ′S−\X to all nodes tθ′ with t ∈ S− \ X. In the end an overall super-sink tθ′

is connected to tθ′X and tθ′S−\X . We denote the resulting network by N θ. In the following we will
consider {tiX , tiS−\X | for all t ∈ S−, i ∈ {1, . . . , θ}} or {ti | for all t ∈ S−, i ∈ {1, . . . , θ}} as sets of
sinks of the considered time-expanded network. The single source is given by the overall super-source
s∗. This construction (for one time layer) is illustrated in Figure 6.4. Clearly, this construction can
easily be extended to arbitrary rational time horizons. Assume now that θ = p/q for p, q ∈ Z>0 is a
rational time horizon. Recall, that instead of considering time layers for all integral points in time,
we can now define time layers for all θ ∈ I := {1/q, 2/q, . . . , p/q}. The rest of the definition of N θ

carries over one-to-one to this setting.

Lemma 6.12. A flow over time f in a dynamic network N with only a single source s with time
horizon T satisfying γT (X) for some X ⊆ S− and some rational time horizon T ≥ 0 fulfills the
following properties:

1. We have netf (X, θ) = −γθ(X) for all θ ≤ T .
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Figure 6.4: An illustration of the time layer i ∈ {1, . . . , r} of N θ as described above.

2. The flow over time f induces a static lex-max flow in N T with respect to the total order

s∗ ≺ tTS−\X ≺ t
T
X ≺ tT−1

S−\X ≺ t
T−1
X ≺ . . . ≺ t1S−\X ≺ t

1
X

if T is an integral time horizon. For a rational time horizon T = p/q with p, q ∈ Z>0, the order
on the terminals is defined similarly according to the considered time layers corresponding to
I = {1/q, 2/q, . . . , p/q}.

Proof. Assume at first that T is integral and that f is a flow over time in N with time horizon T
that satisfies γT (X) for X ⊆ S−. We start by showing that the second statement of the lemma
holds. Let xf be the static flow in N T induced by f according to Lemma 2.20. As the flow over
time f satisfies γT (X), it has pattern θ 7→ oθ({s}) for θ ∈ [0, T ) by definition. That is, f has the
maximal possible value for each time horizon 0 ≤ θ ≤ T . By Lemma 2.20 (and also by the results of
Minieka [Min73] and Megiddo [Meg79]) we know that the static flow xf is a lex-max flow in N T

with respect to the order ≺′ given by tT ≺′ tT−1 ≺′ . . . ≺′ t1and hence Lemma 2.19 yields,

− netxf ({t1, t2, . . . , ti}) Lem.2.19= maxNT (s∗, {t1, t2, . . . , ti}) for all i ∈ {1, . . . , T}. (6.7)

Satisfying γT (X) also means that f sends as much flow towards the sinks in X until time T as is
possible in a flow over time with pattern θ 7→ oθ({s}), for θ ∈ [0, T ). For the static flow xf this
translates to the fact that xf sends as much flow towards the sinks {t1X , t2X , . . . , tTX} as is possible
in a static lex-max flow in N T with respect to the order ≺′ on {t1, t2, . . . , tT }. Note that for all
i ∈ {1, . . . , t} the static flow xf fulfills

− netxf (tiX) ≤ maxNT (s∗, {t1, t2, . . . , ti−1, tiX})−maxNT (s∗, {t1, t2, . . . , ti−1}), (6.8)

because assuming > in (6.8) implies

− netxf (tiX) + maxNT (s∗, {t1, . . . , ti−1}) (6.7)= − netxf ({t1, t2, . . . , ti−1, tiX})
> maxNT ({s∗}, {t1, t2, . . . , ti−1, tiX}),

which is a contradiction. We also know that a lex-max flow with respect to the order

s∗ ≺ tTS−\X ≺ t
T
X ≺ tT−1

S−\X ≺ t
T−1
X ≺ . . . ≺ t1S−\X ≺ t

1
X

fulfills all inequalities in (6.8) with equality (see Lemma 2.19). That is, a static lex-max flow in N T

with respect to the order ≺′ that simultaneously sends as much flow as possible in such a lex-max
flow to the sinks in {t1X , t2X , . . . , tTX} has to be a lex-max flow with respect to the order ≺. This
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shows the second statement of the lemma for integral T . We proceed to show the first statement.
Aiming for a contradiction, assume that f does not satisfy γθ(X) for some integral θ ∈ {1, 2, . . . , T−1}.
For the static flow xf this implies that the amount of flow sent towards {tiX | i ∈ {1, 2, . . . , θ}} is
not the maximal amount of flow that can be sent towards these sinks in a static lex-max flow with
respect to the order ≺′ in N T . In particular, this implies that at least one of the inequalities in
(6.8) is not fulfilled with equality implying that xf is not a lex-max flow with respect to the order
≺, contradiction. Hence, the flow over time f satisfies γθ(X) for all θ ∈ {1, 2, . . . , T}. To show the
statement for all rational times θ ∈ [0, T ), we use a finer discretization of time. Let θ = p/q with
p, q ∈ Z>0. We now discretize time as follows,

I := {1/q, 2/q, . . . , p/q, . . . , T},

and also assume that our time-expanded network is built with respect to this discretization. The
same argument as above yields that f satisfies γT (X) for all θ ∈ I showing that γθ(X) is satisfied
for all rational times θ.
Next assume that there is an irrational time θ with − netf (X, θ) < γθ(X). Let f be a flow over
time in N with time horizon θ, pattern θ 7→ oθ({s}) and − netf (X, θ) = γθ(X). Such a flow over
time exists according to the definition of the function γθ. By definition of a flow over time f is a
continuous function in θ, which implies that netf (X, θ) is continuous in θ. The same holds for the
flow over time f . We have

− netf (X, θ) < − netf (X, θ).

Because of the continuity, there is an ε > 0 with

− netf (X, θ′) < − netf (X, θ′) ≤ γθ
′
(X) for all θ′ ∈ [θ − ε, θ].

This contradicts the fact that − netf (x, θ) = γθ(X) for each rational θ since the rational numbers
are a dense set in the set of real numbers. We have now shown all our statements for an integral time
horizon T . To show the lemma for rational time horizons T we again just use a suitable discretization
of time and construct the time-expanded network with respect to this discretization. The rest of the
proof works completely similarly.

See Figure 6.5 for an illustration of Lemma 6.12. The following corollary follows directly from the
(proof of the) previous lemma.

Corollary 6.13. Let N be a dynamic network with only a single source s, T ≥ 0 a rational time
horizon and X ⊆ S−. Further, N T denotes the time-expanded network constructed as above. We
have

γT (X) =
T∑
i=1

maxNT (s∗, {t1, . . . , ti−1, tiX})−maxNT (s∗, {t1, . . . , ti−1}),

if T is integral. For a rational T we again need to choose a suitably discretized time-expanded network
to obtain the same result with respect to the chosen discretization.

It turns out that also the other direction of Lemma 6.12 holds: A suitable lex-max flow in the
time-expanded network induces a lex-max earliest arrival flow.

Lemma 6.14. Let N be a dynamic network and T = p/q with p, q ∈ Z>0 a rational time horizon. If
x is a static lex-max flow in N T with respect to the total order

s∗ ≺ tp/qS−\X ≺ t
p/q
X ≺ t(p−1)/q

S−\X ≺ t(p−1)/q
X ≺ . . . ≺ t1/qS−\X ≺ t

1/q
X ,

it induces a flow over time f in N with time horizon T satisfying γθ(X) for each θ ∈ [0, T ).

Proof. For the simplification of notation we only consider integral time horizons in our proof.
Everything works completely similar for rational time horizons. Let f be the flow over time induced
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Figure 6.5: The time-expanded network corresponding to the depicted dynamic network. The visualized flow is the
static lex-max flow according to Lemma 6.12 induced by a flow over time that satisfies γ3({t1}). It can be seen
that this static flow is in fact a lex-max flow with respect to the order given in Lemma 6.12. On the other hand
does the depicted static flow induce a flow over time that satisfies γ3({t1}) (see Lemma 6.14). Note that we did
not visualize the overall super-source of the time-expanded network.

by the static lex-max flow x according to Lemma 2.20. By construction and Corollary 6.13, we
obtain for our flow over time f ,

− netf (X, θ) =
θ∑
i=1

netxf (tiX)

Lem. 2.20=
θ∑
i=1

(maxNT (s∗, {t1, . . . , tθ−1, ti−1
X })−maxNT (s∗, {t1, . . . , ti−1}))

Cor. 6.13= γθ(X) for all θ ∈ {0, 1, . . . , T}.

By definition of f it also holds that |f |θ = oθ({s}) for all θ ∈ {0, 1, . . . , T}. Corollary 6.2 implies
that the function θ 7→ oθ({s}) is piecewise linear and since all transit times are integral, breakpoints
of this function only occur at integral points in time. However, by our construction of f from x
the function θ 7→ |f |θ is also a piecewise linear function with breakpoints only occurring at integral
points in time. Thus, we have |f |θ = oθ({s}) for all θ ≤ T and hence by our arguing above the flow
over time f satisfies γθ(X) for each integral θ ∈ {1, 2, . . . , T}. By the first statement of Lemma 6.12,
γθ(X) is satisfied by f for all θ ∈ [0, T ).

Again, see Figure 6.5 for an illustration of this lemma. The following corollaries are consequences of
Lemmas 6.12 and 6.14.

Corollary 6.15. A flow over time f in N with time horizon T and pattern θ 7→ oθ({s}) for θ ∈ [0, T )
such that

− netf (X, θ′) = oθ
′
({s} ∪ S− \X)

for some rational θ′ < T and X ⊆ S− fulfills

− netf (X, θ′′) = oθ
′′
({s} ∪ S− \X) for all θ′′ ∈ [0, θ′).

Proof. Assume at first that θ′ is integral. Let xf be the static flow in N θ′ induced by the flow over
time f . Lemma 6.12 implies (note that here we have γθ′(X) = oT ({s} ∪ S− \X)) that xf is a static
lex-max flow in N θ′ with respect to the total order

s∗ ≺ tθ
′

S−\X ≺ t
θ′

X ≺ tθ
′−1
S−\X ≺ t

θ′−1
X ≺ . . . ≺ t1S−\X ≺ t

1
X .
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This implies by Lemma 2.19

− netxf (tθ
′

X) Lem. 2.19= max
N θ
′ (s∗, {t1, . . . , tθ

′−1, tθ
′

X})−max
N θ
′ (s∗, {t1, . . . , tθ

′−1})

= max
N θ
′ (s∗, {t1, . . . , tθ

′−1, tθ
′

X})− oθ
′−1({s}).

(6.9)

Let y be a static lex-max flow in N θ′ with respect to the total order ≺′ given by

s∗ ≺′ tθ
′

X ≺′ tθ
′−1
S−\X ≺

′ tθ
′−2
S−\X ≺

′ . . . ≺′ t1S−\X ≺
′ tθ
′−1
X ≺′ tθ

′−2
X ≺′ . . . ≺′ t1X .

We have

− nety(tθ
′

X) Lem. 2.19= max
N θ
′ (s∗, t1, t2, . . . , tθ

′−1, tθ
′

X)− oθ
′−1({s})

(6.9)= − netxf (tθ
′

X).
(6.10)

On the other hand, it also holds that

− nety({t1X , t2X , . . . , tθ
′−1
X }) = oθ

′−1({s} ∪ S− \X), (6.11)

which implies

− nety(tθ
′

X) = − nety(t1X , t2X , . . . , tθ
′

X) + nety(t1X , t2X , . . . , tθ
′−1
X )

(6.11)
≤ oθ

′
({s} ∪ S− \X)− oθ

′−1({s} ∪ S− \X).

Combining this with (6.10) yields

− netxf (tθ
′

X) (6.10)= − nety(tθ
′

X)
(6.11)
≤ oθ

′
({s} ∪ S− \X)− oθ

′−1({s} ∪ S− \X). (6.12)

By assumption, we have that − netxf ({t1X , . . . , tθ
′

X}) = oθ
′({s} ∪ S− \X). This implies

− netxf ({t1X , . . . , tθ
′−1
X }) = − netxf ({t1X , . . . , tθ

′

X}) + netxf (tθ
′

X)
= oθ

′
({s} ∪ S− \X) + netxf (tθ

′

X)
(6.12)
≥ oθ

′−1({s} ∪ S− \X),

i.e., − netf (X, θ′ − 1) = oθ
′−1({s} ∪ S− \X). Proceeding inductively yields that − netf (X, θ′′) =

oθ
′′({s} ∪ S− \X) for each integral θ′′ ≤ θ′. For non-integral but rational θ′ ≥ 0 we can again show

the statement of the corollary by using a suitable finer discretization of time.

Corollary 6.16. For a fixed X ⊆ S− the function θ 7→ γθ(X) is continuous in θ.

We are finally ready to prove Theorem 6.11.

Proof of Theorem 6.11. By Corollary 6.13 we get for an integral time horizon T ≥ 0,

γT (X) =
T∑
i=1

maxNT (s∗, {t1, . . . , ti, tiX})−maxNT (s∗, {t1, . . . , ti}).

Note that maxNT (s∗, {t1, . . . , ti}) is independent of X and thus, in order to show submodularity it
suffices to show that gθ : 2S−→ R with

gθ(X) := maxNT (s∗, {t1, . . . , ti, tiX}) for X ⊆ S−,

is submodular on S− for all θ ∈ {1, . . . , T}. To show this fact, fix some integral θ, and A ⊆ B ⊆ S−

and v ∈ S− \ B. We now again redefine the time-expanded network N θ. In each time layer i we
now attach a super-sink tiv to vi in layer i, a super-sink tiA to the nodes corresponding to the sinks
in A in layer i, a super-sink tiB\A to the nodes corresponding to the sinks in B \A in layer i and a
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super-sink tiS−\(B∪{v}) to the nodes corresponding to the remaining sinks in layer i.
Then, gθ(A ∪ {v})− gθ(A) is exactly the amount of flow that reaches tθv in a lex-max flow in N θ

with respect to the order ≺ given by

s∗ ≺ tθS−\(B∪{v}) ≺ t
θ
B\A ≺ t

θ
v ≺ tθA ≺ . . . tθ−1 ≺ . . . ≺ t1.

Similarly, gθ(B ∪ {v})− gθ(B) is exactly the amount of flow that reaches tθv in a static lex-max flow
in N θ with respect to

s∗ ≺ tθS−\(B∪{v}) ≺ t
θ
v ≺ tθB\A ≺ t

θ
A ≺ . . . tθ−1 ≺ . . . ≺ t1.

Since the sink tθv has a lower priority in the first order, we obtain

gθ(B ∪ {v})− gθ(B) ≤ gθ(A ∪ {v})− gθ(A),

and thus submodularity. It remains to show submodularity for non-integral time horizons T . The
submodularity for arbitrary rational time horizons follows again by using a finer discretization of
time. Let θ′ > 0 an irrational time horizon with

γθ
′
(B ∪ {v})− γθ

′
(B) > γθ

′
(A ∪ {v})− γθ

′
(A)

for some A ⊆ B ⊆ S and v ∈ S− \B. By the continuity of θ 7→ γθ(X) for X ⊆ S− there is an ε > 0
such that

γθ(B ∪ {v})− γθ(B) > γθ(A ∪ {v})− γθ(A) for all θ ∈ (θ′ − ε, θ′ + ε), (6.13)

contradicting the submodularity of γT for all rational time horizons T .

As we now know that γT is a submodular function, it makes sense to consider the base polytope B(γT )
of γT . Recall, that it is our main goal to devise an efficient method to check whether x ∈ SEAT(N , T )
for some x ∈ ZS−≥0 . We can now make a first observation regarding the set SEAT(N , T ), namely that
we have

SEAT(N , T ) ⊆ B(γT ).

To see this, recall that

B(γT ) = {x ∈ RS
−
| x(X) ≤ γT (X) for all X ⊆ S− and x(S−) = γT (S−) = −b(S−)}.

The existence of x ∈ SEAT(N , T ) with x(X) > γT (X) for some X ⊆ S− contradicts the existence of
an earliest arrival transshipment solving (N ,−x)EAT by the definition of γT and the fact that the
pattern of a tight problem (N ,−x)EAT is given by θ 7→ oθ({s}) for θ ∈ [0, T )] (Corollary 6.5). To
show the other inclusion, we again prove that the vertices of B(γT ) correspond to a certain class of
flows over time in N with time horizon T and pattern θ 7→ oθ({s}), which we call lex-max earliest
arrival flows, because they fulfill the earliest arrival pattern corresponding to a tight earliest arrival
transshipment problem (N , b)EAT.

6.2.2 Lexicographically Maximum Earliest Arrival Flows
In this section we focus on the second step of the outline from the beginning of this section. Lex-
max earliest arrival flows are quite similar to lex-max flows over time: they are flows over time
corresponding to a given order on the sinks S− and the goal is to send the flow in such a way that the
flow arriving at the sinks is maximized with respect to the given order. In contrast to lex-max flows
over time, we now add the additional constraint that the flow over time is supposed to have pattern
θ 7→ oθ({s}). This leads to the following definition:
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Definition 6.17 (Lex-max earliest arrival flows).
Let N be a dynamic network with a single source s and multiple sinks S−, let T ≥ 0 be a time
horizon, and ≺ a total order on the set of sinks. We call a flow over time f with time horizon T
a lex-max earliest arrival flow with respect to ≺ if f fulfills the following conditions:

• The flow over time f has pattern θ 7→ oθ({s}) for θ ∈ [0, T ).

• The amount of flow sent into the sinks is maximized in decreasing order ≺ while respecting
the pattern.

See Figure 6.6 for an example of a lex-max earliest arrival flow which also shows the difference
between lex-max flows over time and lex-max earliest arrival flows. Note that in dynamic networks
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(a) A lex-max earliest arrival flow
with respect to t2 ≺ t1 in this
dynamic network (see also
Figure 6.3) sends flow along
the indicated magenta paths
at rate one.
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(b) A lex-max flow over time with respect to t2 ≺ t1 in this dynamic
network (see also Figure 6.3) sends flow into the indicated ma-
genta path during [0, 2), into the yellow path during [0, 1) and
into the blue path during [1, 2) at rate one.

Figure 6.6: An example for the fact that lex-max flows over time and earliest arrival lex-max flows with respect to the
same order are in general not equal.

with a single sink and multiple sources we can give a similar definition of lex-max earliest arrival
flows. However, in this case lex-max earliest arrival flows are always a special case of lex-max flows
over time, which ultimately leads to the fact that tight earliest arrival transshipment problems in
dynamic networks with only a single sink can be solved by a convex combination of lex-max flows
over time that satisfy the earliest arrival pattern. Intuitively, the fact that in dynamic networks
with a single source but multiple sinks a lex-max earliest arrival flow is in general not a lex-max flow
over time is the reason that not each tight earliest arrival transshipment problem in such a network
has a solution. Before we present a polynomial space algorithm to compute arbitrary lex-max
earliest arrival flows, we first deduce some properties of such flows over time. By the definition of γT
(Definition 6.10) and Definition 6.17, a flow over time f with time horizon T , pattern θ 7→ oθ({s})
for θ ∈ [0, T ), and

− netf ({t′ ∈ S− | t � t′}, T ) = γT ({t′ ∈ S− | t � t′})

for all t ∈ S− is a lex-max earliest arrival flow with respect to ≺. We will argue in the following
that a flow over time f with these properties does always exist.

Lemma 6.18. Let N be a dynamic network with only a single source s and sinks S− = {t1, t2, . . . , tk},
T = p/q ≥ 0 a rational time horizon with p ≥ 0 and p > 0, and ≺ a total order on the sinks in S−
such that t1 ≺ t2 ≺ . . . ≺ tk. A static lex-max flow in N T with respect to the total order ≺′ given by

s∗ ≺′ tp/q1 ≺′ . . . ≺′ tp/qk ≺′ t(p−1)/q
1 ≺′ . . . ≺′ t(p−1)/q

k ≺′ . . . ≺′ t1/q1 ≺′ . . . ≺′ t1/qk

induces a flow over time f with time horizon T in N with

− netf ({t′ ∈ S− | t � t′}) = γT ({t′ ∈ S− | t � t′})

for all t ∈ S−. In particular, the flow over time f is a lex-max earliest arrival flow with respect to ≺.
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Proof. Denote by x the static lex-max flow in N T with respect to the total order ≺′. Lemma 6.14
immediately implies that the induced flow over time f has the required properties.

Lemma 6.18 also results in an algorithm for computing lex-max earliest arrival flows. However, this
algorithm relies on computing static lex-max flows in the time-expanded network and is thus not
applicable in praxis as it requires a pseudo-polynomial amount of space in the worst case. The final
result of this section will be a polynomial space algorithm for computing lex-max earliest arrival
flows that does not require any expansion of the original dynamic network. The intuition behind our
algorithm for computing lex-max earliest arrival flows (see Algorithm 24) is pretty straightforward.
When computing a lex-max earliest arrival flow with respect to some given order ≺ and a time
horizon T , the first objective is of course to compute a flow over time f with pattern θ 7→ oθ({s}) for
θ ∈ [0, T ). It was already shown by Wilkinson [Wil71] that the successive shortest path algorithm
can be used to compute such a flow over time (see also Section 3.2). This is why the base of our
algorithm is the successive shortest path algorithm. However, as we want the flow arriving at the
sinks to respect the order ≺, our implementation of the successive shortest path algorithm has the
additional feature that in each iteration the shortest path is chosen with respect to the order ≺.
That is, if in iteration i there is a current shortest path leading towards tk, we choose this path. If
there is no shortest path leading towards tk, it is checked whether there is a shortest path towards
tk−1 and in case of existence this path is chosen, and so on. Here, we assume that S− = {t1, . . . , tk}
with t1 ≺ . . . tk. See Figure 6.7 and Figure 6.8 for examples showing the execution of Algorithm 24.
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(a) A dynamic network N in
which the sinks are ordered
by ≺ as t1 ≺ t2.
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(b) In iteration 1 of Algorithm 24,
there are two shortest paths
from s to {t1, t2}. Since t1 ≺
t2, the shortest path towards
t2 is chosen.
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(c) In iteration 2 of Algorithm 24,
there is only one shortest path
from s to {t1, t2} which leads
towards t1. In this iteration
the difference to usual lex-
max flows can be seen: In a
lex-max flow over time with re-
spect to ≺ flow would be sent
along the (longer) path to-
wards t2. This however, would
violate the earliest arrival
property.

Figure 6.7: An example for the execution of Algorithm 24

It is immediate that the flow over time f returned by Algorithm 24 is a feasible flow over time with
time horizon T and pattern θ 7→ oθ({s}) for all θ ∈ [0, T ). It is, however, not inherently clear that f
is a lex-max earliest arrival flow.

Theorem 6.19 (Correctness of Algorithm 24).
Let N be a dynamic network with only a single source, T ≥ 0 a time horizon, and ≺ a total
order on the set of sinks S−. The flow over time f returned by Algorithm 24 with respect to
these parameters is a lex-max earliest arrival flow with respect to T and ≺.

Proof. By construction f has time horizon T and the required pattern. It remains to prove that the
flow over time f is in fact a lex-max earliest arrival flow. For simplicity assume that T is integral. The
proof for a rational time horizon works completely similar. Again assume that S− = {t1, t2, . . . , tk}
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(b) In the first iteration of Algorithm 24
there is only one shortest path from s
to {t1, t2} which leads towards t1. Thus,
even if t1 is ordered before t2 this path is
chosen in this iteration in order to main-
tain the earliest arrival property. After
this first iteration, the algorithm termi-
nates.

Figure 6.8: An example for the execution of Algorithm 24

Algorithm 24: Algorithm for computing lex-max earliest arrival flows
Input :A dynamic network N = (D = (V,A), u, τ, s, S−), a time horizon T ≥ 0, and a total order

≺ on S−
Output :A lex-max earliest arrival flow f with respect to T and ≺

1 xP ← 0 for all P ∈
↔
P

2 x ← static s-S− flow with generalized path decomposition (xP )
P∈
↔
P

3 while d(Nx, s, S−) < T do
4 l ← d(Nx, s, S−)
5 for i = k, k − 1, . . . , 1 do
6 while d(Nx, s, ti) = l do
7 P ← shortest s-ti path in Nx
8 γ ← min{τ(a) | a ∈ P}
9 augment x along P by γ

10 end
11 end
12 end
13 f ← generalized temporally repeated flow with time horizon T corresponding to (xP )

P∈
↔
P

with t1 ≺ t2 ≺ . . . ≺ tk. Denote by xf the static flow in N T induced by f . Our goal is to show that
xf is a static lex-max flow in N T with respect to the order

s∗ ≺′ tT1 ≺′ tT2 ≺′ . . . tTk ≺′ tT−1
1 ≺′ tT−1

2 ≺′ . . . ≺′ tT−1
k ≺′ . . . ≺′ t11 ≺′ . . . ≺′ t1k.

Essentially, for all l ∈ {1, 2, . . . , T −1} the algorithm iterates over all the sinks and augments the flow
towards these sinks along shortest paths of length l within the given order. For each l ∈ {1, . . . , T−1}
and each i ∈ {k, k − 1, . . . , 1} we construct a slight adaption Nl,i of the dynamic network N , as
follows:

• We add a super-sink t to the network that we attach to each of the terminals in {ti, ti+1, . . . , tk}
by arcs with zero transit time and infinite capacity. The sinks in {t1, . . . , ti−1} are attached to
the sink t by arcs with transit time 1 and infinite capacity.

• We add an arc (t, s) with infinite capacity and transit time −l to the network.

We denote by xl,i the static flow obtained after iteration i for length l. Clearly, the static flow xl,i
can also be regarded as a static flow in Nl,i. Our first observation is that this flow is a minimum-cost
circulation in Nl,i. This is true because we always augment along shortest paths, and the fact that
we might not yet have augmented along paths of length l towards t1, . . . , ti−1 is compensated by
connecting those sinks with t by arcs with transit time 1. Thus, by Fact 2.21 the static flow xl,i
induces a maximum flow over time, fl,i in Nl,i with time horizon l. Regarded as a flow over time in
N fl,i has the property that flow arrives at the sinks t1, . . . , ti−1 only until time l − 1. That is, in
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Figure 6.9: The dynamic network Nl,i

N the flow over time fl,i is a flow over time with maximal value with the property that the sinks
t1, . . . , ti−1 receive flow until time l − 1, while the sinks tk, . . . , ti receive flow until time l. Since in
the course of the algorithm the amount of flow that arrives at each of the sinks ti, . . . , tk until time l
or at each of the sinks t1, . . . , ti−1 until time l − 1 is not changed, we thus obtain

− netxf ({tli, tli−1, . . . , t
l
1, . . . , t

1
k, . . . , t

1
1}) = maxNT (s∗, {tli, tli−1, . . . , t

l
1, . . . , t

1
k, . . . , t

1
1}).

Thus, xf is a static lex-max flow in N T with respect to the order ≺′. According to Lemma 6.18 the
flow over f ′ induced by xf is a lex-max earliest arrival flow. All in all we have for all t ∈ S−,

− netf ({t′ ∈ S− | t′ � t}, T ) =
T∑
θ=1
− netxf ({t′θ | t′ ∈ S− s.t. t′ � t})

= − netf ′({t′ ∈ S− | t′ � t}, T )
= γT ({t′ ∈ S− | t′ � t}).

That is, according to Lemma 6.18, the flow over time f is a lex-max earliest arrival flow with time
horizon T with respect to the order ≺.

Another feature of Algorithm 24 is that it can immediately be used to evaluate the submodular
function γθ at arbitrary sets X ⊆ S− and for all θ ≥ 0.

Corollary 6.20. Using Algorithm 24, the submodular function γθ can be evaluated in PSPACE for all
θ ≥ 0.

Proof. Fix θ ≥ 0 and assume that we want to evaluate the submodular function γθ at X ⊆ S−. We
can just choose any order ≺ on S− with the property that for all t ∈ X and t′ ∈ S− \X we have
t′ ≺ t. Denote by f the generalized lex-max earliest arrival flow with respect to ≺ and time horizon
θ. It has the property that

− netf (X, θ) = γθ(X).

Thus, we can, during the course of Algorithm 24, sequentially compute the amount of flow sent
towards X in order to evaluate γθ at X.

Overall this finishes the first two steps towards our main result from the outline at the beginning of
the section.
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6.2.3 An Existence Criterion for Tight Earliest Arrival Transshipments and
a PSPACE Algorithm

Using all the preliminaries we derived in the previous section, we are finally able to state our main
result: an existence criterion and a structural result regarding tight earliest arrival transshipments
in dynamic networks with only a single source.

Theorem 6.21 (Structure of Earliest Arrival Transshipments).
Let N = (D = (V,A), u, τ, s, S−) be a dynamic network with only a single source s and b
a demand vector on the set of sinks S− of N such that (N , b)EAT is a tight earliest arrival
transshipment problem with minimal feasible time horizon T ≥ 0.
Then, we have SEAT(N , T ) = B(γT ). In particular, an earliest arrival transshipment f solving
(N , b)EAT exists if and only if −b ∈ B(γT ) and in case of existence such an earliest arrival
transshipment can be obtained as a convex combination of d ≤ |S−| many lex-max earliest
arrival flows with time horizon T . That is, there are total orders ≺1, . . . ,≺d on S− and convex
coefficients λ1, . . . , λd ≥ 0 such that

λ1f≺1 + . . .+ λdf≺d

is a flow over time solving (N , b)EAT. Here, f≺i is a lex-max earliest arrival flow with respect
to T and ≺i for all i ∈ {1, . . . , d}.

To prove this theorem, we only need one preliminary lemma in which we derive a connection between
the vertices of B(γT ) and lex-max earliest arrival flows with time horizon T .

Lemma 6.22. Let N be a dynamic network with only a single source s, T ≥ 0 a time horizon and ≺
a total order on S−. If f≺ is a lex-max earliest earliest arrival flow with respect to T and ≺ and v≺
is the vertex of B(γT ) corresponding to ≺, we have

−xf≺(t) = v≺(t) for all t ∈ S−.

In particular,

B(γT ) = conv({−xf≺ |≺ is a total order on S−}).

Proof. Theorem 2.3 implies that each vertex of B(γT ) corresponds to one or multiple total orders ≺
on S−. Conversely, each such total order ≺ corresponds to a unique vertex v≺ of B(γT ), which can
be computed using the Greedy Algorithm 1. This implies

B(oT ) = conv({v≺ |≺ is a total order on S−}).

Moreover, each total order ≺ on S− induces a lex-max earliest arrival flow with time horizon T
and vice versa. Let ≺ be a fixed total order on S− and assume that f≺ is the corresponding
lex-max earliest arrival flow with time horizon T and v≺ is the vertex of B(γT ) defined by ≺. Using
Lemma 6.18, we get for all t ∈ S−

xf≺(t) = netf≺(t, T )
Lem. 6.18= γT (t′ ∈ S− | t ≺ t′)− γT (t′ ∈ S− | t � t′).

Using Theorem 2.3, we also get for all t ∈ S−,

v≺(t) = γT (t′ ∈ S− | t � t′)− γT (t′ ∈ S− | t ≺ t′).

Thus, we have −xf≺ = v≺ for each fixed total order ≺ on S−. Overall, we thus have

B(γT ) = conv({−xf≺ |≺ is a total order on S−}),

which concludes the proof.
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With this lemma we are able to prove Theorem 6.21.

Proof of Theorem 6.21. We already argued that SEAT(N , T ) ⊆ B(γT ). We will now prove the other
inclusion, i.e., we will show that for each x ∈ B(γT ) the earliest arrival transshipment problem
(N ,−x)EAT has a solution.
Choose some x ∈ B(γT ), i.e., we can obtain x as convex combination of vertices of B(γT ). Let ≺1

, . . . ,≺d be total orders on S− and λ1, . . . , λd ≥ 0 convex coefficients such that x = λ1v
≺1 +. . .+λdv≺d ,

where v≺i is the vertex of B(γT ) corresponding to ≺i for all i ∈ {1, . . . , d}. Define

f := λ1f≺1 + λ2f≺2 + . . .+ λdf≺i .

Here f≺i is the lex-max earliest arrival flow with time horizon T corresponding to ≺i for all
i ∈ {1, . . . , d}. Hence, the flow over time f has pattern oθ({s}) and by Lemma 6.22 its characteristic
vector is −x and thus solves the problem (N ,−x)EAT. This also shows that in case of existence an
earliest arrival transshipment solving (N , b)EAT can be obtained by a convex combination of lex-max
earliest arrival flows. That d ≤ |S−| follows with Carathéodory’s theorem.

We can now put all the results we achieved so far together to obtain a polynomial space algorithm
that checks whether a given tight earliest arrival transshipment problem (N , b)EAT in a dynamic
network N with only a single source s and minimal feasible time horizon T ≥ 0 has a solution
and that computes a suitable earliest arrival transshipment in case of existence (see Algorithm 25).
According to Theorem 6.21, in order to check whether (N , b)EAT has a solution, it suffices to check
whether −b ∈ B(γT ). Thus, in order find out whether (N , b)EAT can be solved by an earliest arrival
transshipment it is enough to test whether

γT (X) + b(X) ≥ 0 for all X ⊆ S−,

which can be done by minimizing the submodular function γT +b. If the minimum is at least zero, an
earliest arrival transshipment solving (N , b)EAT exists, otherwise it does not exist. By incorporating
our PSPACE algorithm for evaluating γT into our favorite strongly polynomial time submodular
function minimization algorithm we can thus test in PSPACE whether (N , b)EAT has a solution.

Corollary 6.23. Given a tight earliest arrival transshipment problem (N , b)EAT in a dynamic network
N with only a single source s we can check in polynomial space whether this problem has a solution.

In order to come up with an earliest arrival transshipment solving (N , b)EAT in case of existence,
Theorem 6.21 implies that a solution can be obtained by a convex combination of lex-max earliest
arrival flows. Next, we will argue that a suitable convex combination of lex-max earliest arrival flows
is essentially computed while minimizing the submodular function γT + b, provided an algorithm
using the framework of Cunningham is used for the minimization.
When minimizing the submodular function γT + b with an algorithm using the framework of
Cunningham, then, besides the minimal value of the submodular function, also a convex combination
of vertices of B(γT + b) giving the vector

x∗ = argmax{x−(S−) | x ∈ B(γT )},

is returned (see Section 4.3.2). More precisely, we get d total orders ≺1, . . . ,≺d on S− and convex
coefficients λ1, . . . , λd ≥ 0 such that

x∗ = λ1v
≺1 + . . .+ λdv

≺d .

Here v≺i is the vertex of B(γT ) corresponding to ≺i according to Theorem 2.3 for all i ∈ {1, . . . , d}.
Our first observation is that x∗ is the zero vector if (N , b)EAT has a solution.
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Lemma 6.24. Given a tight earliest arrival transshipment problem (N , b)EAT in a dynamic network
with only a single source s and minimal feasible time horizon T ≥ 0 it holds that if (N , b)EAT has a
solution, then

x∗ = argmax{x−(S−) | x ∈ B(γT )} = 0.

Proof. By assumption (N , b)EAT has a solution, thus Theorem 6.21 implies that −b ∈ B(γT ) and
thus γ(X)+b(X) ≥ 0 for all X ⊆ S−. In particular, we have γT (S−)+b(S−) = oT ({s})+b(S−) = 0.
Thus, zero is the minimal value of the submodular function γT + b. Theorem 2.4 implies that
(x∗)−(S−) = 0, i.e. all components of the vector x∗ are non-negative. In particular, the vector
x∗(S−) is in B(γT + b) and thus fulfills x∗(S−) = γT (S−) + b(S−) = 0, which directly implies
x∗ = 0.

Lemma 6.24 implies that if (N , b)EAT has a solution, when minimizing the submodular function γT +b
with an algorithm using Cunningham’s framework, the zero vector is returned as a convex combination
of vertices of B(γT+b). Similar to Lemma 4.21, we can again see that

B(γT ) = B(γT + b)− b,

and that the vertices v≺ and v≺ of B(γ + b) and B(γT ), respectively, are related as follows,
v≺ = v≺ − b. After the submodular function minimization with the framework of Cunningham, we
get

0 = λ1v
≺1 + λ2v

≺2 + . . .+ λdv
≺d

and thus

−b = λ1(v≺1 − b) + λ2(v≺2 − b) + . . .+ λd(v≺d − b)
= λ1v

≺1 + λ2v
≺2 + . . .+ λdv

≺d .

By Lemma 6.22 the lex-max earliest arrival flows f1, . . . , fd in N with time horizon T with respect
to the total orders ≺1, . . . ,≺d, respectively, have characteristic vectors −v≺1 , . . . ,−v≺d , respectively.
Thus, the flow over time f := λ1f1 + λ2f2 + . . .+ λdfd has characteristic vector b. Since f also has
pattern θ 7→ oθ({s}) for θ ∈ [0, T ) by construction, it is an earliest arrival transshipment solving
(N , b)EAT. Overall, this shows the correctness of Algorithm 25.

Algorithm 25: An algorithm that checks whether a given tight earliest arrival transshipment
problem (N , b)EAT with minimal feasible time horizon T in a dynamic network N with only a
single source s has a solution and computes the solution in case of existence.

Input :A tight earliest arrival transshipment problem (N , b)EAT with minimal feasible time
horizon T ≥ 0 in a dynamic network N = (D,u, τ, {s}, S−).

Output :A generalized temporally repeated flow solving (N , b)EAT in case of existence, Infeasible
otherwise.

1 λ1, . . . , λd, ≺1, . . . ,≺d, vmin ← SFMOrlin(γT + b)
2 if vmin < 0 then
3 return Infeasible
4 else
5 for i = 1, 2, . . . , d do
6 f≺i ← LexMaxEAT(N , T,≺i)
7 end
8 return λ1, λ2, . . . , λd, f≺1 , f≺2 , . . . , f≺d
9 end
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Theorem 6.25 (Correctness of Algorithm 25).
Algorithm 25 computes an earliest arrival transshipment solving a tight earliest arrival transship-
ment (N , b)EAT in a dynamic network N with only a single source and minimal feasible time
horizon T ≥ 0 in case of existence. In particular,the computed earliest arrival transshipment is
a generalized temporally repeated flow and the algorithm requires only polynomial space.

With this theorem we are finished with step 3 and step 4 from our outline given an the begin-
ning of this section. It remains to fix the final step: Generalizing our results to general net-
works.

6.2.4 Tight Problems in General Dynamic Networks.
So far, we only concentrated on tight earliest arrival transshipment problems (N , b)EAT in dynamic
networks with only a single source, and we derived an existence criterion and a PSPACE algorithm
for this special type of dynamic networks. In this paragraph we generalize our previous results to
tight earliest arrival transshipment problems in general networks.
Assume that N is a dynamic network with multiple sources and sinks and b a supply/demand vector
on the terminals S+ ∪ S− such that (N , b)EAT is a tight earliest arrival transshipment problem with
minimal feasible time horizon T . We now construct two auxiliary earliest arrival transshipment
problems. Denote by Ns the dynamic network in which a super-source s is attached to all sources in
S+ by arcs with zero transit time and infinite capacity. This source s is the new single source of the
dynamic network Ns. By bs we denote the restriction of b to the sinks. The dynamic network Nt
is similarly defined to be the dynamic network obtained by attaching a super-sink t to all sinks in
S− by arcs with zero transit time and infinite capacity, while bt is the restriction of b to S+. The
following observation is straightforward:

Observation 6.26. The earliest arrival transshipment problems (Ns, bs)EAT and (Nt, bt)EAT are tight
with minimal feasible time horizon T if (N , b)EAT is a tight earliest arrival transshipment problem
with minimal feasible time horizon T . In particular the earliest arrival pattern for both problems is
given by θ 7→ oθ({s}) for all θ ∈ [0, T ).

The problem (Nt, bt)EAT always has a solution, which for example can be obtained as a convex
combination of lex-max flows over time with pattern θ 7→ oθ({s}) for θ ∈ [0, T ) (See Theorem 5.3.1).
For the problem (Ns, bs)EAT we can check whether a solution exists, and compute a suitable
convex combination of lex-max earliest arrival flows in case of existence in PSPACE using Algo-
rithm 25. It turns out that (N , b)EAT has a solution if and only if (Ns, bs)EAT has a solution.

Theorem 6.27.
A tight earliest arrival transshipment problem (N , b)EAT in a dynamic network with multiple
sources and multiple sinks has a solution if and only if (Ns, bs)EAT has a solution.

Proof. Denote by T ≥ 0 the minimal feasible time horizon of (N , b)EAT. If (N , b)EAT has a solution,
then a flow over time f solving this problem can simply be transformed into a flow over time solving
(Ns, bs)EAT.
Next assume that (Ns, bs)EAT has a solution and denote by fs an earliest arrival transshipment
solving this problem. We know by Corollary 6.5 that the flow over time fs has pattern θ 7→ oθ(S+),
for θ ∈ [0, T ). Similarly, denote by ft a flow over time solving the problem (Nt, bt)EAT which has
the same pattern.
Denote by xfs the static flow inN T corresponding to fs and by xft the static flow inN T corresponding
to ft. Both flows are maximum static flows in N T . That is, by Theorem 2.18 we can construct
a static flow x in N T which has the same departure pattern as xft and the same arrival pattern
as xfs . Denote by f the flow over time corresponding to x. This flow over time clearly fulfills all
supplies and demands and also has pattern θ 7→ oθ({s}) for all θ ∈ [0, T ) and thus is an earliest
arrival transshipment solving the problem (N , b)EAT. Here, we consider all the copies of the sources
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in S+ in the time layers to be the sources of N T , while all the copies of the sinks in S− are the sinks
of N T .

The above proof of Theorem 6.21 also yields an algorithm for solving tight earliest arrival transship-
ment problems in general networks. However, this algorithm works in the time-expanded network
and it thus requires a pseudo-polynomial amount of space in the worst case. In the following we will
derive a polynomial space algorithm to solve (N , b)EAT in general networks. The first step of our
algorithm will consist of checking whether (Ns, bs)EAT has a solution, and of determining suitable
convex coefficients λ1, . . . , λd1 ≥ 0 and total orders ≺1, . . . ,≺d1 on S− in case of existence by using
the submodular function minimization algorithm of Orlin. Note that d1 ≤ |S−| by Carathéodory’s
theorem and the fact that the algorithm of Orlin maintains minimal convex combinations throughout
the algorithm. Denote by f1, . . . , fd1 the lex-max earliest arrival flows with time horizon T corre-
sponding to ≺1, . . . ,≺d1 , respectively.
In the second step, provided (Ns, bs)EAT was solvable, we compute the suitable convex combination
of lex-max flows over time solving (Nt, bt)EAT. Thus, we compute suitable convex coefficients
µ1, . . . , µd2 ≥ 0 and total orders ≺′1, . . . ,≺′d2

on S+. Again, we obtain d2 ≤ |S+| and we denote by
g1, . . . , gf2 the lex-max flows over time with pattern θ 7→ oθ(S+) for θ ∈ [0, T ) and time horizon T
with respect to ≺′1, . . . ,≺′d2

.
In order to solve (N , b)EAT we would like to construct flows over time hi,j with pattern θ 7→ oθ({s})
for θ ∈ [0, T ) and time horizon T for all i ∈ {1, . . . , d2} and and j ∈ {1, 2, . . . , d1} with the additional
property that hi,j has the arrival pattern of fj and the departure pattern of gi on the single sinks
and sources, respectively. The flow over time

h :=
d2∑
i=1

d1∑
j=1

λjµihi,j

solves (N , b)EAT by construction. Thus, the only thing that remains to be done is to compute hi,j
for all possible choices of i and j. We achieve an algorithm for computing such flows by combining
the lex-max flow over time algorithm of Hoppe and Tardos with Algorithm 24. The base of our
algorithm is the lex-max flow over time algorithm of Hoppe and Tardos for the special case of
dynamic networks with only a single sink t and for total orders on the terminals in which the sink
t occurs last in the order. The only difference is that instead of doing a simple minimum-cost
flow computation in line 8 of the algorithm, we instead use Algorithm 25 to compute our initial
minimum-cost flow. This way we make sure that each sink receives the correct amount of flow and
the following lex-max flow over time computation ensures that the sources also send the correct
amount of flow.

Theorem 6.28 (Correctness of Algorithm 26).
Let N be a dynamic network with multiple sources and sinks and T ≥ 0 a time horizon. Further
let ≺ be a total order on S− and ≺′ a total order on S+. The flow over time f returned by
Algorithm 26 with respect to these parameters is a feasible flow over time with time horizon T
and the additional property that f has the departure pattern of a lex-max flow over time with
time horizon T with respect to ≺′ on the sources and the arrival pattern of a lex-max earliest
arrival flow with respect to ≺ on the sinks (in both cases the sources are assumed to have higher
priority than all the sinks). In particular, f has pattern θ 7→ oθ(S+) for θ ∈ [0, T ).

Proof. That f is a feasible flow over time with time horizon T follows from the correctness of the
lex-max flow over time algorithm of Hoppe and Tardos. That f has the correct arrival and departure
patterns on the sinks and sources, respectively, also follows directly from the way the lex-max flow
over time algorithm of Hoppe and Tardos works.

Overall, we thus obtain the following algorithm for general tight earliest arrival transshipment prob-
lems. The correctness follows immediately from our arguing above.
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Algorithm 26: Algorithm for computing combinations of lex-max flows over time on the sources,
and lex-max earliest arrival flows on the sinks

Input :A dynamic network N = (D = (V,A), u, τ, S−, S−), a linear order ≺ on
S− = {t1, . . . , tk1} with t1 ≺ . . . ≺ tk1 , a linear oder ≺′ on S+ = {s1, . . . , sk2} with
s1 ≺′ . . . ≺′ sk2 and a time horizon T ≥ 0

Output :A flow over time f with pattern θ 7→ oθ(S+) and departure pattern of a lex-max flow over
time with time horizon T with respect to ≺′ and arrival pattern of a lex-max earliest
arrival flow with respect to ≺ (the sources are assumed to have higher priority than all the
sinks).

1 k ← d2 + 1
2 V ← V ∪ {s}
3 Ak+1 ← A ∪ {(s, s′) | s′ ∈ S+}
4 Extent u to Ak+1 by defining u(s,s′) :=∞ for all s′ ∈ S+

5 Extent τ to Ak+1 by defining τ(s,s′) = 0 for all s′ ∈ S+

6 Ak+1 ← Ak+1 ∪ {(t, s′)} with u(t,s′) =∞ and τ(t,s′) = −T
7 N k+1 ← (V,Ak+1)
8 y, (P, w) ← Path decomposition of the static y flow computed in Algorithm 25
9 xk+1 ← y

10 Xk+1 ← (P, w)
11 for i ∈ {d2, d2 − 1, . . . , 1} do
12 Ai ← Ai+1

13 Ai ← Ai \ {(s, si)}
14 N i ← (V,Ai)
15 yi ← Minimum cost maximum s-si flow in N i

xi+1 with τ as costs computed with SSPA
16 end
17 xi ← xi+1 + yi

18 Compute a path decomposition of the static flow yi given by (Pi, wi)
19 Xi+1 ← Xi ∪ (Pi, wi)
20 return Generalized temporally repeated flow corresponding to X1

Algorithm 27: An algorithm that checks whether a given tight earliest arrival transshipment
problem (N , b)EAT with minimal feasible time horizon T has a solution and computes the solution
in case of existence.

Input :A tight earliest arrival transshipment problem (N , b)EAT with minimal feasible time
horizon T in a dynamic network N = (D,u, τ, {s}, S−).

Output :A generalized temporally repeated flow solving (N , b)EAT in case of existence, Infeasible.
1 λ1, . . . , λd1 , ≺1, . . . ,≺d1 , vmin ← SFMOrlin(γT + bs)
2 if vmin < 0 then
3 return Infeasible
4 else
5 µ1, . . . , µd2 , ≺′1, . . . ,≺′dd2 , v

′
min ← SFMOrlin(oT − bt)

6 for i = 1, 2, . . . , d1 do
7 for j = 1, 2, . . . , d2 do
8 hi,j ← flow over time computed by Algorithm 26 with respect to ≺i and ≺′j
9 λi,j ← λi · µj

10 end
11 end
12 return λ1,1, . . . , λ1,d2 , . . . , λd1,d2 , h1,1, . . . , h1,d2 , . . . , hd1,d2

13 end

Theorem 6.29 (Correctness of Algorithm 27).
Let (N , b)EAT be a tight transshipment problem in a dynamic network N . Algorithm 27 returns
a transshipment over time solving this problem in case of existence.

Remark about Computing Integral Earliest Arrival Transshipments. During this section we
derived an algorithm to compute a fractional solution of a tight earliest arrival transshipment
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problem in case of existence. However, by adapting the algorithm of Hoppe and Tardos, we can
also compute an integral solution. Recall, that the algorithm of Hoppe and Tardos solves a quickest
transshipment problem by reducing it to a lex-max flow over time problem. Using exactly the
same construction as in the algorithm of Hoppe and Tardos but using the submodular function γT
instead of oT we can reduce a tight earliest arrival transshipment problem to a lex-max earliest
arrival flow problem. This way we obtain a second algorithm for computing an earliest arrival
transshipment in case of existence that trades an integral solution with a lot more parametric
submodular function minimization required to achieve the solution. Since the construction is
exactly similar to the one by Hoppe and Tardos, we do not go into more detail here but refer
to [HT00].

6.3 The General Case
In this section we generalize our results from the previous section and derive a PSPACE algorithm
that checks if a, not necessarily tight, earliest arrival transshipment problem (N , b)EAT in a dynamic
network N with only a single source s has a solution and returns a suitable earliest arrival transship-
ment in case of existence. Our main results in this section are similar to the ones derived previously:
We will again show that if (N , b)EAT has a solution, then −b lies inside a suitably defined polytope
PEAT
s,S− . For the other direction, however, an additional condition needs to be fulfilled. We will give

a PSPACE algorithm that checks these conditions and thus determines whether a given earliest
arrival transshipment problem has a solution. It will again turn out that the vertices of PEAT

s,S−

correspond to certain flows over time, which are a generalization of lex-max earliest arrival flows
called generalized lex-max earliest arrival flows. This correspondence leads to our structural
main result, which states that in case of existence an earliest arrival transshipment solving (N , b)EAT
can be obtained as a convex combination of generalized lex-max earliest arrival flows. We will also
provide a PSPACE algorithm to compute a suitable convex combination in case of existence. To
obtain the results mentioned above, multiple steps are necessary of which we give an outline in the
following:

1. Define a special class of flows over time, called generalized lex-max earliest arrival flows
(Section 6.3.1).

2. Derive a PSPACE algorithm that checks whether a specific generalized lex-max earliest arrival
flow does exist, and computes such a flow in case of existence (Section 6.3.1).

3. Define a polytope PEAT
s,S− as the product of suitably chosen base polytopes corresponding to

the earliest arrival pattern of a given earliest arrival transshipment problem (N , b)EAT in a
dynamic network N with a single source s (Section 6.3.2).

4. Show that the vertices of PEAT
s,S− correspond to generalized lex-max earliest arrival flows and

that (N , b)EAT has a solution if and only if −b ∈ PEAT
s,S− and all generalized lex-max earliest

arrival flows corresponding to the vertices of PEAT
s,S− do exist. Give a PSPACE algorithm to

check these conditions (Section 6.3.2).

5. Show that a suitable convex combination of generalized-lex max earliest arrival flows solving
(N , b)EAT can be computed in polynomial space (Section 6.3.2).

We will start by defining generalized lex-max earliest arrival flows and by describing a PSPACE
algorithm to compute such flows in case of existence.

6.3.1 Generalized Lexicographically Maximum Earliest Arrival Flows
The class of flows over time we define in this section has a lot of similarities to the class of generalized
lex-max flows over time. In particular, these flows also correspond to a partition S− = T1tT2t. . .tTr
of the set of sinks S− of a given dynamic network N = (D = (V,A), u, τ, s, S−) with only a single
source s, rational times 0 < θ1 < θ2 < . . . < θr and a total order ≺ on S− that respects the given
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partition of S−. That is we have t ≺ t′ for all t ∈ Ti and t′ ∈ Tj with i < j. We start by giving
some notation: Define

Wi :=
r⋃
j=i

Ti and Ni := (D = (V,A), u, τ, s,Wi) for all i ∈ {1, . . . , r}.

Moreover, for all i ∈ {1, . . . , r} and θ ∈ [0, θi), the set function

γθi : 2Wi→ R

is defined by setting γθi (X) to be the maximal amount of flow that can reach the sinks in X in a
flow over time in Ni with time horizon θ′ and pattern θ′ 7→ oθ({s} ∪ S− \Wi) for θ′ ∈ [0, θi). By
Theorem 6.11 we know that γθi is a submodular function for all i ∈ {1, . . . , r} and all θ ∈ [0, θi).
A generalized lex-max earliest arrival flow with respect to T1 t T2 t . . . t Tr, the given times
θ1, . . . , θr and the order ≺ can be imagined to be a multiple layer lex-max earliest arrival flow
with the property that the sinks in the set Ti are only allowed to receive flow until time θi for
all i ∈ {1, . . . , r}. More precisely, a generalized lex-max earliest arrival flow f with respect to the
given parameters has the property that the restriction of f to Ni behaves like a lex-max earliest
arrival flow with respect to the restriction of ≺ to Wi with time horizon θi. Additionally the sinks
in Ti do not receive any flow after time θi for all i ∈ {1, . . . , r}. This leads to the following formal
definition.

Definition 6.30.
Let N = (D = (V,A), u, τ, s, S−) be a dynamic network with only a single source s, S− =
T1 t T2 t . . . t Tr, θ0 := 0 < θ1 < θ2 < . . . < θr rational times, and ≺ a total order on S− that
respects the given partition of S−. We say that f is a generalized lex-max earliest arrival
flow with respect to T1, . . . , Tr, 0 < θ1, . . . , θr and ≺ if it fulfills the following properties:

• Denote by ≺i the restriction of ≺ to Wi. The flow over time f restricted to Ni behaves
like a lex-max earliest arrival flow with time horizon θi for all i ∈ {1, 2, . . . , r}.

• After time θi no flow arrives at the sinks in Ti or is sent towards Ti for all i ∈ {1, 2, . . . , r}.

In contrast to lex-max earliest arrival flows and generalized lex-max flows over time, generalized
lex-max earliest arrival flows do not always exist (see Figure 6.10 for an example). It will be one
main result from this section to derive an existence criterion for generalized lex-max earliest arrival
flows. We start by deriving the pattern and characteristic vector of such flows over time, in case of
existence.

τ = 1

u = 1

τ
=

2

u
=

1

τ
=

2

u
=

1

s12

t1 −1

t2 −1

Figure 6.10: Consider the depicted dynamic network with T1 = {t1}, T2 = {t2}, θ1 = 3 and θ2 = 4. The generalized
lex-max earliest flow with respect to these parameters and t1 ≺ t2 does not exist. The argumentation is the same
as in Figure 6.1 where we argued that no earliest arrival transshipment does exist.

Lemma 6.31. Let N be a dynamic network with only a single source s, S− = T1 t T2 t . . . t Tr,
0 < θ1 < θ2 < . . . < θr = T rational times, and ≺ a total order on S− that respects the given
partition of S−. In case of existence, a generalized lex-max earliest arrival flow in N with respect to
these parameters has pattern

|f |θ = oθ({s} ∪ S− \Wi) +
i−1∑
j=1

oθj ({s} ∪ S− \Wj)− oθj ({s} ∪ S− \Wj+1) for all θ ∈ [θi−1, θi).
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The characteristic vector of f is given as follows: For all i ∈ {1, . . . , r} we obtain for any t ∈ Ti

xf (t) = γTi ({t′ ∈Wi | t ≺ t′})− γTi ({t′ ∈Wi | t � t′}).

Proof. Let f be a generalized lex-max earliest arrival flow with respect to S− = T1 t T2 t . . . t Tr,
0 = θ0 < θ1 < θ2 < . . . < θr and ≺. Fix some i ∈ {1, 2, . . . , r}. By definition, the restriction of
f to Ni behaves like a lex-max earliest arrival flow with respect to ≺i and time horizon θi for all
i ∈ {1, . . . , r}. This in particular implies that until time θi the sinks in Wi receive as much flow as
possible, while no flow arrives at the sinks in Ti after time θi. Thus, for all i ∈ {1, . . . , r} we have
for any θ ∈ [θi−1, θi),

− netf (Wi, θ) = oθ({s} ∪ S− \Wi),

while for all j ∈ {1, . . . , i− 1} it follows that,

− netf (Tj , θ) = − netf (Tj , θj) = oθj ({s} ∪ S− \Wj)− oθj ({s} ∪ S− \Wj+1).

Putting this together yields for all i ∈ {1. . . . , r} and all θ ∈ [θi−1, θi)

|f |θ = oθ({s} ∪Wi) +
i−1∑
j=1

oθj ({s} ∪ S− \Wj)− oθj ({s} ∪ S− \Wj+1).

The characteristic vector can easily be deduced from the characteristic vector for lex-max earliest
arrival flows (see Lemma 6.18): Fix some i ∈ {1, . . . , r} and some t ∈ Ti. By the definition of a
generalized lex-max earliest arrival flow we know that the sinks in Ti do only receive flow until time
θi and that f restricted to Ni behaves like a lex-max earliest arrival flow with time horizon θi with
respect to the restriction of ≺ to Wi. Thus,

xf (t) = netf (t, T ) = netf (t, θi)
Lem. 6.18= γθi ({t′ ∈Wi | t ≺ t′})− γθi ({t′ ∈Wi | t � t′}).

It turns out that a generalized lex-max earliest arrival flow that is computed with respect to the
pattern of a given earliest arrival transshipment problem (N , b)EAT in a dynamic network with only a
single source s fulfills the earliest arrival pattern p∗ of (N , b)EAT.

Observation 6.32. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network
with only a single source s. Assume that T1 t . . . t Tr = S− and 0 = θ0 < θ1 < . . . < θr = T
are the sets and times corresponding to the earliest arrival pattern p∗ of (N , b)EAT as computed by
Algorithm 23. Let ≺ be an arbitrary total order on S− that respects the given partition. In case of
existence, a generalized lex-max earliest arrival flow f with respect to these parameters has pattern
p∗.

Proof. Recall that the earliest arrival pattern p∗ is given as follows: For all i ∈ {1, . . . , r} and
θ ∈ [θi−1, θi) we have

p∗(θ) Thm. 6.7= oθ({s} ∪ S− \Wi)− b(S− \Wi),

and for all j ∈ {1, . . . , i− 1} it also holds that

−b(Tj)
Thm. 6.7= oθj ({s} ∪ S− \Wj)− oθj ({s} ∪ S− \Wj+1).

Plugging this into the pattern of f according to Lemma 6.31 yields the statement of this observation.

The above observation explains the name generalized lex-max earliest arrival flow. The overall goal of
this section is to derive a PSPACE algorithm to check whether a specific generalized lex-max earliest
arrival flow does exist and to compute such a flow over time in case of existence. In the next section
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we will then use generalized lex-max earliest arrival flows corresponding to the earliest arrival pattern
of a given earliest arrival transshipment problem to solve earliest arrival transshipment problems. In
order to achieve such results, it turns out to be useful to derive a correspondence between lex-max
earliest arrival flows and special static lex-max flows in the time-expanded network. Let N be a
dynamic network with only a single source s, S− = T1 t T2 t . . . t Tr, θ1 < θ2 < . . . < θr = T and
≺ a total order on S− that respects the given partition. Assume for the moment that θ1, . . . , θr
are integral. The time-expanded network, as described in Section 2.5.2, is denoted by N T . We are
again interested in a variant of the time-expanded network. The only thing that we change this
time is the set of sinks of N T . We are not interested in just considering the overall super-sink t∗,
but we want to consider the copies tθ of sinks t ∈ S− for each θ ∈ {0, 1, . . . , T}. However, we do
not want to consider all of them. The copies we are interested in are connected with the properties
of generalized lex-max earliest arrival flows. By definition, for each i ∈ {1, . . . , r}, the sinks in Ti
are only allowed to receive flow until time θi in a generalized lex-max earliest arrival flow. Thus, in
our variant of the time-expanded network we are only interested in copies tθ of t ∈ Ti up to time
layer θi. For each i ∈ {1, . . . , r} we denote the copies of the sinks in Ti on time layer θ ∈ {1, . . . , θi}
by T θi . The overall set of sinks in the time-expanded network that we are interested is thus given
by

T :=
r⋃
i=1

θi⋃
j=1

T ji .

Denote by N T the time-expanded network N T with set of sinks T and the unique overall super-source
s∗. We aim for deriving a correspondence between generalized lex-max earliest arrival flows and
static lex-max flows in the time-expanded network N T with the set of sinks T . The first step is to
define a total order ≺T on the terminals of N T that corresponds to the given order ≺ on S−. In
the order ≺T the source s∗ will appear first, and sinks on a higher time layer are ordered before
sinks on earlier time layers. Within a specific time layer the copies of sinks are ordered according to
≺. To formalize this, assume that S− = {t1, t2, . . . , tk} with Ti = {t|S−\Wi|+1, . . . , t|S−\Wi+1|} for
all i ∈ {1, . . . , r} and that the indices are chosen to respect ≺, that is t|S−\Wi|+1 ≺ . . . ≺ t|S−\Wi+1|.
The total order ≺T on T is now defined as follows

s∗ ≺T tθr|S−\Wr|+1 ≺T t
θr
|S−\Wr|+2 ≺T . . . ≺T t

θr
k

≺T tθr−1
|S−\Wr|+1 ≺T t

θr−1
|S−\Wr|+2 ≺T . . . ≺T t

θr−1
k

≺T . . . ≺T
≺T tθr−1+1

|S−\Wr|+1 ≺T t
θr−1+1
|S−\Wr|+2 ≺T . . . ≺T t

θr−1+1
k

≺T . . . ≺T
≺T tθ2

|S−\W2|+1 ≺T t
θ2
|S−\W2|+2 ≺T . . . ≺T t

θ2
k

≺T tθ2−1
|S−\W2|+1 ≺T t

θ2−1
|S−\W2|+2 ≺T . . . ≺T t

θ2−1
k

≺T . . . ≺T
≺T tθ1+1

|S−\W2|+1 ≺T . . . ≺T t
θ1+1
k

≺T tθ1
|S−\W1|+1 ≺T t

θ1
|S−\W1|+2 ≺T . . . ≺T t

θ1
k

≺T tθ1−1
|S−\W1|+1 ≺T t

θ1−1
|S−\W1|+2 ≺T . . . ≺T t

θ1−1
k

≺T . . . ≺T
≺T t1|S−\W1|+1 ≺T t

1
|S−\W1|+2 ≺T . . . ≺T t

1
k.

As an example consider the instance of a generalized lex-max earliest arrival transshipment problem
depicted in Figure 6.11. For this example, we obtain T = T 1

1 ∪ T 1
2 ∪ T 2

2 ∪ T 3
2 ∪ T 4

2 with T 1
1 = {t11}

and T i2 = {ti2, ti3} for i = 1, 2, 3, 4. The total order ≺T is given by

s∗ ≺T t42 ≺T t43 ≺T t32 ≺T t33 ≺T t22 ≺T t23 ≺T t11 ≺T t12 ≺T t13.
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Figure 6.11: A dynamic network N with T1 = {t1}, T2 = {t2, t3}, θ1 = 1 and θ2 = 4. Moreover, we have t1 ≺ t2 ≺ t3.

The corresponding time-expanded network, together with the static lex-max flow in N 4 with respect
to ≺T is visualized in Figure 6.12. For fractional values of θ1, . . . , θr works completely similar for a
suitably chosen discretization of time.

Lemma 6.33. Let N = (D = (V,A), u, τ, s, S−) be a dynamic network with only a single source
s. A generalized lex-max earliest arrival flow f with respect to S− = T1 t T2 t . . . t Tr, rational
0 < θ1 < θ2 < . . . < θr = T and a total order ≺ on S− that respects the given partition induces a
static lex-max flow xf with respect to ≺r in N T .
On the other hand, a static lex-max flow x with respect to ≺r in N T induces a generalized lex-max
earliest arrival flow with respect to the given parameters if such a flow exists.

Proof. For simplicity we prove the lemma only for integral θ1, . . . , θr. The proof for rational values
works completely similar. We start by showing that the generalized lex-max earliest arrival flow f

induces a static lex-max flow with respect to ≺r in the time-expanded network N T as above. By
the definition of a generalized lex-max earliest arrival flow, the flow over time f has the property
that for all i ∈ {1, . . . , r} until time θi the flow over time f restricted to Ni behaves like a lex-max
earliest arrival flow in Ni with respect to the restriction of ≺ to Wi denoted by ≺i. That is, we have
for all ∈ {1, . . . , r}

− netf ({t′ ∈Wi | t � t′}) = γθii ({t′ ∈Wi | t � t′}) for all t ∈Wi.

Thus, for each i ∈ {1, . . . , r} we can apply Lemma 6.12 which overall yields that f induces a static
lex-max flow in N θi

i with respect to the order ≺iT given by

s∗ ≺iT t
θi
|S−\Wi|+1 ≺

i
T t

θi
|S−\Wi|+2 ≺

i
T . . . ≺iT t

θi
k

≺iT t
θi−1
|S−\Wi|+1 ≺

i
T t

θi−1
|S−\Wi|+2 ≺

i
T . . . ≺iT t

θi−1
k

≺iT . . . ≺iT
≺iT t1|S−\Wi|+1 ≺

i
T t

1
|S−\Wi|+2 ≺

i
T . . . ≺iT t1k.

Thus, the static flow over time x in N T induced by f fulfills all the properties of static lex-max
flows with respect to the orders ≺iT in N θi for all i ∈ {1, . . . , r}. We can now use this fact to show
that x is in fact a static lex-max flow with respect to the order ≺T . In order to prove that x is such
a lex-max flow, we need to show that for all t ∈ T we have

− netx({t′ ∈ T | t ≺T t′}) = maxNT (s∗, {t′ ∈ T | t ≺T t′}). (6.14)

We show this statement by induction. We start with i = 1. Let θ ∈ {1, . . . , θ1} and tθj ∈ T θp for
some p ∈ {1, . . . r} and j ∈ {|S− \Wp|+ 1, . . . , |S− \Wp+1|}. The set {t′ ∈ T | tθj ≺T t′} consists of
all the terminals on lower time layers than θ and all the terminals from layer θ that are ordered
behind tθj . In particular, all terminals from this set are terminals in N θ1

1 . By assumption, x is a
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static lex-max flow in N θ1
1 with respect to ≺1

T and the terminals in {t′ ∈ T | tθj ≺T t′} form an upper
ideal in this order, which implies that

− netx({t′ ∈ T | tθj ≺T t′}) = maxNT (s∗, {t′ ∈ T | tθj ≺T t′}).

We now proceed by induction and assume that the statement was shown for 1 ≤ i < r. Let
θ ∈ {θi+1, . . . , θi+1} and tθj ∈ T θp for some p ∈ {i+1, . . . r} and j ∈ {|S− \Wp|+1, . . . , |S− \Wp+1|}.
We again investigate how the set {t′ ∈ T | tθj ≺T t′} looks like. It consists of all the terminals on
layers below θ and of the terminals in layer θ that are ordered behind tθj . That is

{t′ ∈ T ′ | tθj ≺T t′} =
r⋃
l=1

min{θl,θi}⋃
m=1

Tml︸ ︷︷ ︸
sinks up to layer θi

∪
r⋃

l=i+1

θ−1⋃
m=θi+1

Tml︸ ︷︷ ︸
sinks from layer θi+1 to θ−1

∪{tθj+1, . . . , t
θ
k}.

By induction, we have

− netx
( r⋃
l=1

min{θl,θi}⋃
m=1

Tml

)
= maxNT

(
s∗,

r⋃
l=1

min{θj ,θi}⋃
m=1

Tml

)
.

Additionally, the sinks in

r⋃
l=i+1

θ−1⋃
m=θi+1

Tml ∪ {tθj , tθj+1, . . . , t
θ
k} (6.15)

are sinks in N θi+1
i+1 and we know that x is a static lex-max flow in this network with respect to the

order ≺i+1
T . In the overall order ≺r more sinks are ordered before the sinks in the set in (6.15) than

in ≺i+1
T . That is in a lex-max flow with respect to ≺i+1

T at least as much flow is sent towards these
sinks as in a lex-max flow with respect to order ≺r. This overall implies

− netx({t′ ∈ T | tθj ≺T t′} ∪ {tθj}) = maxNT (s∗, {t′ ∈ T | tθj ≺T t′} ∪ {tθj}). (6.16)

Overall, this yields that x is a static lex-max flow with respect to the order ≺T .
Assume that a generalized lex-max flow over time f with respect to the given parameters does exist.
We want to show that in this case, a static lex-max flow x in N T with respect to the order ≺T
induces a generalized lex-max earliest arrival flow fx. Denote by xf the induced static flow in N T

which is by the first part of the lemma a static lex-max flow with respect to the order ≺T . However,
as f is a generalized lex-max earliest arrival flow, we know that the restriction of f to Ni can be
regarded as a lex-max earliest arrival flow with time horizon θi with respect to the total order ≺i.
This implies that the restriction of xf to N θi

i is a lex-max flow with respect to the total order ≺iT
defined as above for all i ∈ {1, . . . , r}. This property thus also holds for the static lex-max flow x
which by Lemma 6.14 implies that the flow over time induced by x needs to be a generalized lex-max
earliest arrival flow.

Lemma 6.34. A generalized lex-max earliest arrival flow with respect to S− = T1 t T2 t . . . t Tr,
0 < θ1 < θ2 < . . . < θr = T and a total order ≺ on S− that respects the given partition exists if and
only if the static lex-max flow x in N T with respect to ≺T fulfills

− netx
( θi⋃
j=1
{T ji ∪ T

j
i+1 ∪ . . . ∪ T

j
r }
)

= oθi({s} ∪ S− \Wi) for all i ∈ {1, . . . , r}, (6.17)

if θ1, . . . , θr are integral. The similar statement holds for rational values.

Proof. We do the proof only for integer valued θ1, . . . , θr. The proof for rational values works
completely similar. First, we will show that, if a static lex-max flow x with respect to the order
≺T fulfills the above equation, this implies that x restricted to N θi

i is a static lex-max flow with
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respect to the order ≺iT for all i ∈ {1, . . . , r}. In order to see this, note that the order ≺r has the
property that terminals on lower layers are ordered after nodes on higher layers. In the specific
layers the nodes are ordered according to ≺. This means that the amount of flow that the copies of
the terminals in Wi in layer θ ∈ {1, . . . , θi} can receive is independent of the amount of flow that
that the copies of terminals in Wi received in previous layers. Thus, the fact that we have

− netx
( θi⋃
j=1
{T ji ∪ T

j
i+1 ∪ . . . ∪ T

j
r }
)

= oθi({s} ∪ S− \Wi)

implies that it also needs to hold

− netx
( θ⋃
j=1
{T ji ∪ T

j
i+1 ∪ . . . ∪ T

j
r }
)

= oθ({s} ∪ S− \Wi) for all θ ∈ {1, . . . , θi}.

Since in each layer θ the copies of terminals corresponding to nodes in Wi are ordered by ≺T as by
≺iT , we get that x is a lex-max flow in N θi

i with respect to order ≺iT .

Thus, we can apply Lemma 6.14 overall r times and get that fx restricted to Ni is a lex-max earliest
arrival flow on Ni with time horizon θi with respect to the order ≺i. Also by construction, the sinks
in Ti do not receive any flow after time θi. Thus, fx is a generalized lex-max earliest arrival flow
with respect to the given parameters.
For the converse direction, assume that f is a lex-max earliest arrival flow with respect to the given
parameters. Denote by xf the static flow in N T induced by f . By the properties of a generalized
lex-max earliest arrival flow, the restriction of xf to N θi

i is a static lex-max flow with respect to the
order ≺iT , which implies the statement of the lemma (see Lemma 6.33).

For an illustration of Lemma 6.34 consider again the generalized lex-max earliest arrival flow problem
shown in Figure 6.11. Consider the lex-max flow x in N 4 with respect to the order ≺T on T
with

s∗ ≺T t42 ≺T t43 ≺T t32 ≺T t33 ≺T t22 ≺T t23 ≺T t11 ≺T t12 ≺T t13.

See Figure 6.12 for an illustration of this static flow. The flow x clearly fulfills

− netx(T 1
1 ∪ T 1

2 ) = − netx({t11, t12, t13}) = 1 = o1({s}) = o1({s} ∪ S− \W1),

and thus, equation (6.17) is fulfilled for i = 1. However, for i = 2, we get

− netx(T 1
2 ∪ T 2

2 ∪ T 3
2 ∪ T 4

2 ) = 1 < o4({s} ∪ {t1}) = 2.

Thus, Lemma 6.34 implies that the generalized lex-max earliest arrival flow solving the problem
from Figure 6.11 does not exist. That this is true can be seen immediately from the structure of
the network. With the two lemmas above, we have also derived an algorithm to check whether a
specific generalized lex-max flow over time does exist, and to compute such a flow in case of existence.
However, the algorithm relies on computing static lex-max flows in the time-expanded network. The
correspondence we derived above will be useful for proving the correctness of the PSPACE algorithm
for computing generalized lex-max earliest arrival flows that we describe next (see Algorithm 28).
We start by giving the intuition behind the algorithm. Let N be some dynamic network with only a
single source, S− = T1 t T2 t . . . t Tr, 0 < θ1 < θ2 < . . . < θr and ≺ some total order in S− that
respects the given partition of S−. By definition, a generalized earliest arrival flow with respect
to these parameters behaves like a lex-max earliest arrival flow with time horizon θi in Ni for all
i ∈ {1, . . . , r}. This is why the first iteration of our algorithm is essentially identical to Algorithm 25
for computing lex-max earliest arrival flows. After time θ1 the sinks in T1 are not supposed to receive
any more flow. Thus, in the second iteration of our algorithms the sinks in T1 are disregarded and
only the remaining sinks receive more flow. In order to make sure that the sinks in W2 receive as
much flow as possible, we send flow towards them again as in Algorithm 25. To make sure that also
the paths that were previously occupied by flow towards T1 can be used to send flow towards the
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Figure 6.12: The time-expanded network N 4 corresponding to the generalized lex-max earliest arrival flow problem
depicted in Figure 6.11. The static lex-max flow with respect to ≺T is indicated.

remaining sinks, we add arcs from the sinks in T1 to the source with infinite capacity and transit
time −θ1 at the beginning of the second iteration. In the following iterations we proceed analogously.
The minimum-cost flow computation that we do in the last step of the algorithm is required to make
sure that the time horizons of all sets Ti are respected.

Theorem 6.35 (Correctness of Algorithm 28).
Let N be a dynamic network with only a single source s, S− = T1 t T2 t . . . t Tr and
0 < θ1 < θ2 < . . . < θr = T and ≺ some total order on S− that respects the given partition.
The flow over time f returned by Algorithm 28 with respect to these parameters is a generalized
lex-max earliest arrival flow with respect to the given parameters in case of existence.

Proof. The constructed flow over time f is a feasible flow over time, because we always augment
flow along shortest paths, and because the changes on the considered network Nx we do during the
course of the algorithm do not decrease any distances from the super-source s′ to any node in the
dynamic network.
We need to show that the static flow xf induced by the flow over time f is a static lex-max flow with
respect to the order ≺T . The proof of this fact is similar to the proof of Theorem 6.19. Essentially,
Algorithm 28 iterates for all l ∈ {1, . . . , T − 1} over all sinks that are supposed to receive flow after
time l and augments flow towards these sinks along shortest path of length l within the given order.
Assume that l ∈ {θj−1, . . . , θj − 1}. For each such l and each i ∈ {|S− \Wj |+ 1, . . . , k} we construct
a slight adaption Nl,i of the dynamic network N as follows: We add a super-sink t to the network,
that we attach to the sinks by,

• an arc of transit time l − θp and infinite capacity to each of the sinks in Tp with p < j,

• arcs with transit time 0 and infinite capacity to ti, . . . , tk,

• arcs with transit time 1 and infinite capacity to t|S−\Wj |+1, . . . , ti−1.

Further we add an arc (t, s) with infinite capacity and transit time −l to the network. We denote
by xl,i the static flow obtained after iteration i for the path length l. We can consider the static
flow xl,i also as static flow in Nl,i. The first observation is again that this flow is a minimum-cost
circulation in Nl,i. This is true, because we always augment along shortest path. The fact that we
have not augmented along path of length l towards t|S−\Wj |+1, . . . , ti−1 is compensated by the fact
that we connected those sinks with t by arcs with transit time 1. That the sinks in Tp with p < i
are only considered for path length up to θp is similarly compensated by attaching the sinks in Tp
to t by arcs with transit time l − θp. Thus, by Fact 2.21 a (generalized) temporally repeated flow
corresponding to xl,i induces a maximum flow over time fl,i ins Nl,i with time horizon l. Regarded
as a dynamic flow in N with time horizon l, this flow has the property that flow arrives at the
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Algorithm 28: Computation of generalized lex-max earliest arrival flows
Input :A dynamic network N = (D = (V,A), u, τ, s, S−), S− = T1 t T2 t . . . t Tr,

0 < θ1 < θ2 < . . . < θr and a total order ≺ on S− that respects the given partition. Let
S− = {t1, t2, . . . , tk} with Ti = {t|S−\Wi|+1, . . . , t|S−\Wi+1|} for all i ∈ {1, . . . , r} such
that the indices are chosen to respect ≺, that is t|S−\Wi|+1 ≺ . . . ≺ t|S−\Wi+1|.

Output :A generalized lex-max earliest arrival flow with respect to the given parameters in case of
existence

1 V ← V ∪ {s′}
2 A ← A ∪ {(s, s′)} with u(s′,s) =∞ and τ(s′,s) = 0
3 xP ← 0 for all P ∈

↔
P

4 x ← static s′-S− flow with generalized path decomposition (xP )
P∈
↔
P

5 for j ∈ {1, 2, . . . , r} do
6 while d(Nx, s′, S−) < θj do
7 l ← length of a shortest s′-S− path in Nx
8 for i ∈ {k, k − 1, . . . ,

∑j−1
n=1 |Tn|+ 1} do

9 while d(Nx, s′, ti) = l do
10 P ← shortest s′-ti path in Nx
11 γ ← min{u(a) | a ∈ P}
12 augment x along P by γ
13 end
14 end
15 end
16 A ← A ∪ {(t, s′) | t ∈ Tj} with u(t,s′) =∞ and τ(t,s′) = −θj for all t ∈ Tj
17 Extent the static flow x to the resulting network
18 end
19 A ← A \ {(s, s′)}
20 (yP )

P∈
↔
P ← minimum-cost flow in Nx from s′ to S−

21 return Generalized temporally repeated flow f corresponding to x and y

sinks in Tp for p < j only until time θp while flow arrives at the sinks t|S−\Wj |+1, . . . , ti−1 only until
time l − 1. Moreover, fl,i is a flow over time with maximal value such that these time horizons are
respected. Since during the course of the algorithm the amount of flow that arrives at each of these
sinks until the respective points in time is not changed, we obtain

− netxf ({t′ ∈ T | tli ≺T t′}) = max
N
T (s∗, {t′ ∈ T | tli ≺T t′}).

Thus, xf is a static lex-max flow in N T with respect to ≺T . By Lemma 6.33 the flow over time f ′
induced by xf is a generalized lex-max earliest arrival flow with respect to the given parameters in
case of existence. Since the amount of flow that has arrived at each of the sinks is the same in f ′ as
in f for each point in time, this implies that f is also a generalized lex-max earliest arrival flow.

Using Algorithm 28 we can thus compute a flow over time f with respect to S− = T1 t . . . t Tr,
0 < θ1 < . . . < θr and ≺ some total order on S− that respects the given partition. The flow over
time f is a generalized lex-max earliest arrival transshipment with respect to these parameters if
such a flow exists. In order to check this on the fly during the computation, we just have to check
by Lemma 6.34 whether

− netf
( θi⋃
j=1

Wi

)
= oθi({s} ∪ S− \Wi) for all i ∈ {1, . . . , r},

and this can be done during the course of the algorithm in polynomial space.

Observation 6.36. Using Algorithm 28, we can check in polynomial space whether a generalized
lex-max earliest arrival flow corresponding to some given parameters does exist.

The resulting flow, when we apply Algorithm 28 to the problem depicted in Figure 6.11, can be seen in
Figure 6.13. We conclude this section with the following technical corollary.
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Figure 6.13: The result of Algorithm 24 when applying it to the problem from Figure 6.11. That the pictured flow
over time f is not a generalized lex-max earliest arrival flow can be deduced by the above observation through the
fact that 1 = − netf ({t2, t3}, 4) < o4({s, t1}) = 2.

Corollary 6.37. Let N = (D = (V,A), u, τ, s, S−) be a dynamic network with only a single source s,
S− = T1 t T2 t . . . t Tr and 0 < θ1 < θ2 < . . . < θr = T . If for some ≺ on S− that respects the
given partition, the corresponding generalized lex-max earliest arrival flow does exist, then it exists
for all total orders respecting the given partition.

Proof. Assume f is a generalized lex-max earliest arrival flow with respect to some order ≺ on
S− that respects the given partition. By Lemma 6.34 this implies that the static lex-max flow x
with respect to ≺T fulfills the equations in (6.17). However, that these equations are fulfilled is
independent of the specific choice of a total order respecting the partition.

6.3.2 An Existence Criterion for General Earliest Arrival Transshipments
and a PSPACE Algorithm

Now that we have derived how to compute generalized lex-max earliest arrival flow in case of
existence, we are ready to use them for our algorithm to check whether a given earliest arrival
transshipment problem (N , b)EAT has a solution. For this purpose, we assume in the following
that (N , b)EAT is an earliest arrival transshipment problem in a dynamic network with only a
single source and an earliest arrival pattern characterized by S− = T1 t T2 t . . . t Tr and times
0 < θ1 < θ2 < . . . < θr. To derive our existence criterion for an earliest arrival transshipment solving
(N , b)EAT, we need a few definitions. For all i ∈ {1, 2, . . . , r}, the set function gi : 2Ti→ R is defined
by

gi(T ) := γθii (Wi+1 ∪ T )− γθii (Wi+1) for all T ⊆ Ti.

Thus, we can define a polytope PEAT
s,S− by

PEAT
s,S− :=

r×
i=1
B(gi).

We start by deriving a necessary condition for the existence of an earliest arrival transshipment
solving (N , b)EAT.
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Lemma 6.38. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single source s and earliest arrival pattern characterized by S− = T1 t T2 t . . . t Tr and times
0 < θ1 < θ2 < . . . < θr. If there exists an earliest arrival transshipment solving (N , b)EAT, then we
have

−b ∈ PEAT
s,S− .

To prove Lemma 6.38, we need the following technical lemma.

Lemma 6.39. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single source s and an earliest arrival pattern characterized by S− = T1 t T2 t . . . t Tr and
times 0 < θ1 < θ2 < . . . < θr. If there exist an earliest arrival transshipment f solving (N , b)EAT,
then f restricted to Ni has pattern θ 7→ oθ(S− \Wi) for θ ∈ [0, θi] and we have

− netf (Wi+1, θ) = γθi (Wi+1) = oθ(S− \Wi+1) for all θ ∈ [0, θi]. (6.18)

Proof. Let f be an earliest arrival transshipment solving (N , b)EAT. We prove the statement of the
lemma inductively. We start with i = 1. By Theorem 6.7 we know that for all θ ∈ [0, θ1] we have

|f |θ = oθ({s}) Thm 6.7= γθ1(W1),

which shows the first part of the lemma. Again, we have by Theorem 6.7

− netf (W2, θ1)Thm. 6.7= oθ1({s} ∪ S− \W2).

Since f restricted to N1 has pattern oθ({s}) until time θ1, we can apply Corollary 6.15 and obtain
that

− netf (W2, θ) = γθ1(W2)Cor. 6.15= oθ({s} ∪ S− \W2) for all θ ∈ [0, θ1].

We now proceed by induction and assume that the statements of the lemma holds for some i ≥ 0.
Thus, the restriction of f to Ni has pattern θ 7→ oθ({s} ∪ S− \Wi) for all θ ≤ θi and

− netf (Wi+1, θ) = oθ({s} ∪ S− \Wi+1) for all θ ∈ [0, θ1].

By Theorem 6.7 we know that

− netf (Wi+1, θ)
Thm. 6.7= oθ({s} ∪ S− \Wi+1) for all θ ∈ [θi, θi+1].

Thus, f restricted to Ni+1 has pattern θ 7→ oθ({s} ∪ S− \Wi+1) for all θ ≤ θi+1, showing the first
part of the lemma. Again, we obtain from Theorem 6.7 that

− netf (Wi+2, θi+1)Thm. 6.7= oθi+1({s} ∪ S− \Wi+2).

Thus, we can again apply Corollary 6.15 which yields

− netf (Wi+2, θ)
Cor. 6.15= oθ({s} ∪ S− \Wi+2) for all θ ∈ [0, θi+1].

With the help of Lemma 6.39 we can now proceed to the proof of Lemma 6.38.

Proof of Lemma 6.38. Assume that f is an earliest arrival transshipment solving (N , b)EAT. In
order to show −b ∈ PEAT

s,S− , we need to show that for all i ∈ {1, . . . , r} the restriction of the vector
−b to Ti denoted by −b

∣∣
Ti

is contained in B(gi). That is, our goal is to show that

−b
∣∣
Ti

(X) ≤ γθii (Wi+1 ∪X)− γθii (Wi+1) for all X ⊆ Ti,
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and gi(Ti) = γθii (Wi)− γθii (Wi+1) = −b(Ti). The second fact follows immediately from Lemma 6.39,

gi(Ti) = γθii (Wi)− γθii (Wi+1)
Lem. 6.39= oθi({s} ∪ S− \Wi)− oθi({s} ∪ S− \Wi+1)

= −b(Ti).

It remains to show −b(X) ≤ gi(X) for all X ⊆ Ti. To see this, note that by Lemma 6.39 we have

− netf (Wi+1, θi) = γθii (Wi+1) Lem. 6.39= oθi({s} ∪ S− \Wi+1).

This implies

−b(T ) = − netf (Wi+1 ∪ T, θi) + netf (Wi+1, θi) ≤ γθii (Wi+1 ∪ T )− γθii (Wi+1).

Note, that −b ∈ PEAT
s,S− is not a sufficient criterion for the existence of an earliest arrival transshipment

solving (N , b)EAT (see Figure 6.14 for an example). The reason for this is, that even if −b ∈ PEAT
s,S−

τ = 0

u = 1

τ
=

0
u
=

1

τ = 2

u = 1

τ
=

2u
=

1

s13

t1 −1

t2 −1

t3 −1

Figure 6.14: Consider the depicted earliest arrival transshipment problem. The corresponding polytope PEAT
s,S−

is the
convex hull of (1, 2, 0) and (1, 0, 2) (we assume that the x-coordinate corresponds to t1, the y-coordinate to t2 and
the z-coordinate to t3). Clearly, (1, 1, 1) ∈ PEAT

s,S−
, but also obviously the earliest arrival transshipment problem

does not have a solution. This is due to the fact that the generalized lex-max earliest arrival flows corresponding
to the vertices of this polytope do not exist (see Lemma 6.40 and Figure 6.13).

it might happen that the generalized lex-max earliest arrival flows corresponding to the vertices of
this polytope might not exist. In order to state our main theorem we at first need to derive the
following correspondence between the vertices of PEAT

s,S− and generalized lex-max earliest arrival flows
with respects to the sets Ti and times θi for all i ∈ {1, . . . , r}.
Our goal is to show that the vertices of PEAT

s,S− correspond to generalized lex-max earliest arrival
flows and vice versa. By definition we have PEAT

s,S− =×r

i=1 B(gi) and we know that the vertices of
B(gi) are completely characterized by total orders on the ground set of gi (see Theorem 2.3). We
will now proceed symmetrically to what we did in Section 5.3.1. Let ≺ be a total order on S− that
respects the given partition. That is, we can split ≺ into r total orders ≺1, . . . ,≺r on T1, . . . , Tr,
respectively, which induce vertices of the corresponding base polytopes and hence yield a vertex of
PEAT
s,S− and vice versa.

Lemma 6.40. Denote by u≺ the vertex of PEAT
s,S− corresponding to a total order on S− that respects

a given partition of S−. It holds that

u≺ = −xf≺ ,

where f≺ is a generalized lex-max earliest arrival flow with respect to T1, . . . , Tr, θ1, . . . , θr and ≺.
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Proof. Let ≺ be a total order on S− that respects the given partition and denote by ≺1, . . . ,≺r the
reduced total orders on T1, . . . , Tr, respectively. For each i ∈ {1, . . . , r} the total oder ≺i induces a
vertex v≺i of B(gi). The total order ≺ thus induces a vertex u≺ of PEAT

s,S− by

u≺ = (v≺
r

, . . . , v≺
1
).

Using Lemma 6.31 we get for t ∈ Ti for all i ∈ {1, . . . , r}

xf≺(s) = netf≺(t)
Lem. 6.31= γθii ({t′ ∈ Ti | t ≺ t′})− γθii ({t′ ∈ Ti | t � t′}).

Using the Greedy Algorithm, we get

u≺(t) = v≺
i

(t)
= γθii ({t′ ∈ Ti | t � t′})− γθii ({t′ ∈ Ti | t ≺ t′}),

and thus u≺ = −xf≺ .

Theorem 6.41.
Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with only a
single source s. Further assume that S− = T1 t . . . t Tr and θ1 < . . . < θr are the sets and
times corresponding to the earliest arrival pattern of (N , b)EAT.
The earliest arrival transshipment problem has a solution if and only if −b ∈ PEAT

s,S− and all the
lex-max earliest arrival flows corresponding to the vertices of PEAT

s,S− do exist. In case of existence
an earliest arrival transshipment solving (N , b)EAT can be obtained as a convex combination
of d ≤ |S−| − r + 1 generalized lex-max earliest arrival flows with respect to T1, . . . , Tr and
θ1, . . . , θr. That is, there are total orders ≺1, . . . ,≺d on S− that respect the given partition and
convex coefficients λ1, . . . , λd ≥ 0 such that

λ1f≺1 + . . .+ λdf≺d

solves (N , b)EAT. Here, f≺i is the generalized lex-max earliest arrival flow with respect to
T1, . . . , Tr, θ1, . . . , θr and ≺i for all i ∈ {1, . . . , r}.

For the proof of this theorem, we need an additional lemma.

Lemma 6.42. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single source s. Further assume that S− = T1t. . .tTr and θ1 < . . . < θr are the sets and times
corresponding to the earliest arrival pattern of (N , b)EAT. If an earliest arrival transshipment solving
(N , b)EAT does exist, then all generalized lex-max earliest arrival transshipments corresponding to
the given partition and times do exist.

Proof. Let ≺ be an arbitrary order on S− that respects the given partition and let f be an earliest
arrival transshipment solving (N , b)EAT. Assume that the generalized earliest arrival transshipment
f≺ corresponding to the given parameters does not exist. By Lemma 6.34 there has to be some
i ∈ {1, . . . , r} such that

− netf≺(Wi, θi) < oθi({s} ∪ S− \Wi).

However, whether we have equality in this inequality is independent of the specific choice of an order
respecting the partition according to which the flow was sent. In particular this implies,

− netf (Wi, θi) < oθi({s} ∪ S− \Wi),

contradiction.
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Proof of Theorem 6.41. If the earliest arrival transshipment problem (N , b)EAT has a solution, then
we get −b ∈ PEAT

s,S− by Lemma 6.38, that is we can obtain the vector −b as convex combination of
vertices of PEAT

s,S− . Thus, there are convex coefficients λ1, . . . , λd and total order ≺1, . . . ,≺d on S−
that respect the given partition such that

−b =
d∑
i=1

λiu
≺i .

Here u≺i is the vertex of PEAT
s,S− corresponding to ≺i. By the previous lemma, we know that all the

generalized lex-max earliest arrival flows corresponding to ≺1, . . . ,≺d do exist. Define

f :=
d∑
i=1

λif≺i .

By Observation 6.32 all these flows have pattern p∗, and hence so has f . By Lemma 6.40, we then
get

xf = −
d∑
i=1

λiu
≺i = b.

Thus, f is an earliest arrival transshipment solving (N , b)EAT. On the other hand, if we assume
−b ∈ PEAT

S+,t and all generalized lex-max earliest arrival flows exist, we can by the same argumentation
obtain an earliest arrival transshipment solving (N , b)EAT. That d ≤ |S−| − r+ 1 follows again from
Carathéodory’s theorem.

By doing overall r submodular function minimizations we can check whether −b ∈ PEAT
s,S− . In order

to check whether (N , b)EAT has a solution we also need to be able to check whether the generalized
lex-max earliest arrival flows corresponding to the vertices of PEAT

s,S− do exist. Note, that all of the
generalized lex-max earliest arrival flows corresponding to the vertices of this polytope correspond to
the same partitions and to the same time. They only differ in the choice of the specific total order on
S− respecting the given partition. Thus, Corollary 6.37 implies that all generalized lex-max earliest
arrival flow corresponding to the vertices of PEAT

s,S− do exist if and only if one generalized lex-max
earliest arrival flow with respect to T1, . . . , Tr and θ1, . . . , θr does exist. We can thus choose any
order ≺ on S− that respects the given partition, and check whether the corresponding generalized
lex-max earliest arrival flow does exist.

To compute a suitable convex combination, we can again proceed similar as in Section 5.3.2. Doing
submodular function minimization to check whether −b

∣∣
Ti
∈ B(gi) also returns a convex combination

of vertices of this polytope yielding the vertex −b
∣∣
Ti
. As in Algorithm 21 we can combine the r

convex combination we get this way to a single convex combination of vertices of PEAT
s,S− yielding

the vertex −b. Computing the corresponding convex combination of generalized lex-max earliest
arrival flow results in a solution to the earliest arrival transshipment problem (N , b)EAT. Since the
resulting algorithms are completely analogue to the ones in Section 5.3.2, we do note state them
here. Overall, we just note:

Fact 6.43. Given an earliest arrival transshipment problem (N , b)EAT in a dynamic network with
only a single source, we can check in polynomial space whether this problem has a solution and
compute one in case of existence.

6.3.3 Summary, Conclusions and Open Questions
So far, we presented PSPACE algorithms that check whether a given earliest arrival transshipment
problems (N , b)EAT has a solution and computes this solution in case of existence for the special case
of dynamic networks with a single source, or tight problems in general dynamic networks. These
algorithms are the first efficient algorithms to compute earliest arrival transshipment problems in
dynamic networks with multiple sinks. The straightforward remaining open question is thus to come
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up with an efficient way to check the existence of a solution to a non-tight problem (N , b)EAT in
general dynamic network with multiple sources and multiple sinks and to compute the solution in
case of existence.

6.4 Complexity
The main result of this section is the following hardness result:

Theorem 6.44.
Let (N , b)EAT be an earliest arrival transshipment problem. It is NP-hard to decide whether
there exists an earliest arrival transshipment solving (N , b)EAT.

We achieve this result by reducing from Partition. An instance I of Partition is given by a set
A = {a1, a2, . . . , an} ⊆ Z+ of natural numbers. The decision problem is to determine whether there
exists a subset A1 ⊆ A such that

∑
a∈A1

a =
∑
a∈A\A1

a.
In our hardness proof we use network gadgets due to Disser and Skutella [DS15]. See [DS15] for
an in-depth introduction to these gadgets. We only give a high level description. The gadget
Counter(n) (see Figure 6.15) has a source s and a sink t and the property that the SSPA from s
to t needs 2n iterations such that in iteration j ∈ {1, 2, . . . , 2n − 1} the shortest s-t path has length
j. Assume now that we are given an instance I of Partition by a set A of size n. The gadget GA

s t
τ = 0

u = 2n+1

τ = 0

u = 2n+1
Counter(n)

Figure 6.15: The counter gadget

(See Figure 6.16a) corresponding to I has a source s and a sink t and the main property that the
SSPA from s to t sends flow through the special arc e if and only if I has a solution. Moreover, the
SSPA from s to t needs 2n+1 iterations. The intuition behind GA is that in each pair of iterations
i and i + 1 for odd i of the SSPA basically one possible solution for the given partition problem
is tried out. If during these iterations a solution for I is found, then in iteration i the shortest s-t
path is a path using arc e in forward direction while in iteration i+ 1 the shortest path uses e in
backwards direction. If in iterations i and i+ 1 for odd i no solution to I is found, then the paths
chosen in these two iterations do not use arc e.

s t
τ = 0

u = 2n+1

τ = 0

u = 2n+1
e

(a) The gadget GA

s t
τ = 0

u = 2n+1

τ = 0

u = 2n+1

(b) The gadget GA \ {e}

Figure 6.16: The gadgets GA and GA \ {e}

We will also need the gadget GA without the special arc e, denoted by GA \ {e} (see Figure 6.16b).
In each iteration the paths chosen by the SSPA in GA and GA \{e} are the same, except in iterations
i and i+ 1 in which a solution to the partition problem is found. In this case the paths chosen in
GA in these iterations are strictly shorter than the paths chosen in GA \ {e}. After iterations i and
i+ 1 the two gadgets are in the same state again. Given an instance I = A of Partition, consider
the dynamic network NA depicted in Figure 6.17. Let T be a time-horizon chosen large enough.
Define b(t1) = −oT ({s, t2}) and b(t2) = −(oT ({s})− oT ({s, t2})). Clearly, (NA, b) is feasible with
time horizon T since it can be solved by a lex-max flow over time in NA with respect to t2 ≺ t1.
The following lemma immediately implies Theorem 6.44.
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Figure 6.17: The dynamic network NA with 0 < µ < 1.

Lemma 6.45. The transshipment problem (NA, b) can be solved by an EAT if and only if the given
instance of Partition does not have a solution.

Proof. By construction the quickest transshipment problem (NA, b) is tight for time-horizon T . Thus,
we know that the earliest arrival pattern p∗A is given by p∗A(θ) = oθ({s}). The following statements
are equivalent:

• (NA, b)EAT has a solution.

• It is −b ∈ B(γT ).

• Algorithm 24 with t2 ≺ t1 computes an earliest arrival transshipment solving (NA, b)EAT.

• The given instance of Partition does not have a solution.

Theorem 6.21 implies that (NA, b)EAT can be solved by an earliest arrival transshipment if and only
if −b ∈ B(γT ). This shows the equivalence of the first two points. By definition of γT we have
−b ∈ B(γT ) if and only if γT ({t1}) = oT ({s, t2}). Thus if −b lies in B(γT ), the vector −b is also the
vertex of this polytope corresponding to the total order t2 ≺ t1. The earliest arrival transshipment
corresponding to this vertex can be computed using Algorithm 24. This shows the equivalence of
point two and three.

To see the last equivalence we investigate how Algorithm 24 behaves in NA depending on whether
the given instance of the partition problem has a solution or not. We at first note that in NA
the algorithm Algorithm 24 works in phases of 4 iterations. At the beginning of each phase both
partition gadgets are in the same state. Assume at first that Partition does not have a solution.
Then in each phase flow is send towards t1 using the path along node Q and one path through one
of the other counters. Through the remaining counters flow is sent towards t2. Clearly, the paths
towards t1 are the same that the successive shortest path algorithm only towards t1 chooses. Thus,
the flow computed by Algorithm 24 fulfills the demands b.

On the other hand, if Partition does have a solution, then there is some phase, in which at
the beginning of the phase the path along Q towards t2 using the arc e is shorter than any path
towards t1. In this iteration intuitively a solution for the given partition problem is found. Thus,
Algorithm 24 chooses this path towards t2 at the beginning of the phase. This however directly
implies that f does not satisfy b.

6.5 Approximation of Earliest Arrival Transshipments
We finish this chapter about earliest arrival transshipments in dynamic networks with multiple sinks
with an existence result regarding the approximation of such flows. The only open question regarding
the existence of approximations in this setting is the setting of dynamic networks with multiple

174 Chapter 6 Earliest Arrival Transshipments in Networks with Multiple Sinks



sinks and only a single source regarding time-approximation. Here the best known approximation
algorithm yields a 4-time approximation while the best known lower bound gives a factor of 2 (see
Section 3.2.3). We will show that a 2-time approximation for earliest arrival transshipments in this
setting exists. Thus, we close the gap between 2 and 4 and achieve a tight result.
The main idea behind computing such a 2-time approximation is more a consequence of the results
from Chapter 5 than of this chapter. Recall, that we showed in Chapter 5 that we can solve a given
earliest arrival transshipment problem in a dynamic network with only a single sink by a convex
combination of generalized lex-max flows over time that fulfill the earliest arrival property. In this
section we will define generalized lex-max flows over time for dynamic networks with multiple sinks
and a single source – in such networks these flows do not always exist. Completely similar to our
results in Chapter 5 it follows that an earliest arrival transshipment problem (N , b)EAT in a dynamic
network with only a single source but multiple sinks can be solved by a convex combination of
generalized lex-max flows over time that fulfill the earliest arrival property (in case such flows exist).
To obtain the approximation factor of 2 we will give a 2-time approximation of generalized lex-max
flows over time, i.e., we give an algorithm that computes flows over time with the same characteristic
vector as generalized lex-max flows over time that are only by at most a factor of 2 off to fulfill
the earliest arrival property. We start by defining generalized lex-max flows over time for dynamic
networks with only a single source.

Definition 6.46 (Generalized Lex-Max Flow Over Time).
Let N = (D = (V,A), u, τ, s, S+) be a dynamic network with only a single source s, S− =
T1 t T2 t . . . t Tr, 0 < θ1 < θ2 < . . . < θr and consider a total order ≺ on S− with the following
property:

• The order ≺ respects the given partition ≺, i.e., s′ ≺ s for all s ∈ Ti and s′ ∈ Tj with
i < j.

A generalized lexicographically maximum (lex-max) flow over time f with respect to
T1, . . . , Tr, θ1, θ2, . . . , θr, and ≺ is a feasible flow over time that fulfills the following properties,

1. For i = 1, 2, . . . , r, let Ni be the dynamic network obtained by attaching a new super-sink
ψi to the sinks in Ti+1 ∪ Ti+2 ∪ . . .∪ Tr by arcs with zero transit time and infinite capacity.
Denote by ≺i the total order on {ψi} ∪ Ti ∪ {s} which is the restriction of ≺ to Ti such
that s ≺ t ≺ ψi for all t ∈ Ti.
We require that the flow sent by f into the sinks in {ψi} ∪ Ti until time θi is a lex-max
flow over time with respect to ≺i and time horizon θi, for i = 1, 2, . . . , r. Note that we can
regard the flow over time f (which is a flow in N by definition) as a flow over time in Ni
by assuming that the flow sent into the sinks in Ti+1 ∪ . . . ∪ Tr is sent into ψi in Ni. This
works because the ingoing arcs of ψi all have zero transit time and infinite capacity.

2. For i = 1, 2, . . . , r, after time θi no flow sent towards Ti remains in the network and no
flow is sent towards the sinks in Ti such that it would arrive at later times.

From the definition and Lemma 6.18 is is easy to deduce the characteristic vector of a generalized
lex-max flow over time:

Lemma 6.47. Assume we are given a generalized lex-max flow over time problem by a dynamic
network N with a single source s, a partition of S− into r disjoint subsets S− = T1 t T2 t . . . t Tr,
rational times 0 < θ1 < θ2 < . . . θr and a total order ≺ on S− that respects the given partition of S−.
For a generalized lex-max flow over time f with respect to these parameters we have

xf (t) = netf (t, θi)

= oθi
(
{s} ∪

r⋃
j=i+1

Tj ∪ {t′ ∈ Ti | t ≺ t′} ∪ {t}
)
− oθi

( r⋃
j=i+1

Tj ∪ {t′ ∈ Ti | t ≺ t′}
)
,

for all i ∈ {1, . . . , r} and all t ∈ Ti.
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Proof. For the proof we refer to the proof of Lemma 6.31, which is completely symmetric to the
proof of this lemma.

Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with only a single
source. Let T1, . . . , Tr and 0 < θ1 < . . . < θr be the sets and times corresponding to the earliest
arrival pattern p∗ of (N , b)EAT as computed by Algorithm 23. Again completely similar to the
symmetric result in Chapter 5 we can deduce:

Theorem 6.48.
An earliest arrival transshipment problem (N , b)EAT in a dynamic network N with only a single
source s with pattern p∗ can be solved by a convex combination of generalized lex-max flows
over time with respect to T1, . . . , Tr and θ1 < . . . < θr that have pattern p∗. Here T1, . . . , Tr
and θ1 < . . . < θr are the sets and times corresponding to the earliest arrival pattern p∗ of
(N , b)EAT.

Proof. For the proof we again refer to the proof of the symmetric theorem from Chapter 5 (Theo-
rem 5.19).

Let ≺ be an order on S− that respects the given partition of S−. We will present an algorithm that
computes a flow over time f with characteristic vector xf≺ , where f≺ is the generalized lex-max
flow over time with respect to ≺, the given times and the given partition of S−. Moreover, f has
additionally the property

|f |θ ≥ p∗(θ/2) for all θ ∈ [0, 2T ).

Together with Theorem 6.48 this implies that a 2-time approximation of (N , b)EAT does exist.
Our algorithm will be essentially a greedy algorithm. We proceed as in Algorithm 24 with the
successive shortest path algorithm that chooses the shortest path according to the given order ≺.
However, once a sink runs full (i.e., it receives the amount of flow it would receive in a generalized
lex-max flow over time with respect to the given parameters), we do not send flow into this sink any
more. The algorithm we achieve can be seen in Algorithm 29. It is clear that our algorithm computes
a feasible flow over time as we only augment along shortest paths. The only thing that remains to
be shown is that the flow over time computed by the algorithms fulfills the desired approximation
properties.

Lemma 6.49. Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with
only a single source. Let T1, . . . , Tr and 0 < θ1 < . . . < θr be the sets and times corresponding
to the earliest arrival pattern p∗ of (N , b)EAT and ≺ an order on S− that respects the partition
S− = T1 tT2 t . . .tTr of S−. The flow over time f computed by Algorithm 29 has the property that

|f |θ ≥ p∗(θ/2) for all θ ∈ [0, 2T ).

and xf = xf≺ , where xf≺ is the characteristic vector of the corresponding generalized lex-max flow
over time.

Proof. Denote by f the flow over time returned by Algorithm 29. Assume at time η1 the first sink
t ∈ S− runs full. That implies in particular that until time η1 we have

|f |θ = oθ({s}) for all θ ∈ [0, η1). (6.19)

By the construction of the algorithm, no flow arrives at t after time η1, i.e., all flow towards this
sink is rerouted towards other sinks after time η1. The worst thing that can happen is that the flow
sent towards t blocks all paths towards the other sinks, i.e., the worst case is that until time η1 no
flow has arrived at all the other sinks. Another worst case is that the sink t has the highest priority
of all the sinks, i.e., flow towards this sink is not supposed to block paths from the source towards
any other sink. Assume that S− = {t1, . . . , tk} with t1 ≺ . . . ≺ tk. We now assume that t = t1 and
that the flow that arrives at t1 until time η1 blocks all paths towards all other sinks. After time
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Algorithm 29: Algorithm for computing an approximation of a generalized lex-max flow over time
with earliest arrival pattern

Input :An earliest arrival transshipment problem (N , b)EAT in a dynamic network with only a
single source s, the partition S− = T1 t . . . t Tr and times θ1, . . . , θr corresponding to the
earliest arrival pattern p∗ of this problem, a total order ≺ respecting the partition of S−,
and demands on S− given by the characteristic vector of the generalized lex-max flow over
time with respect to the given parameters. Let S− = {t1, . . . , tk} and t1 ≺ t2 ≺ . . . ≺ tk.

Output :A flow over time f with approximate earliest arrival pattern p∗

1 xP ← 0 for all P ∈
↔
P

2 x ← static s - S− flow with generalized path decomposition (xP )
P∈
↔
P

3 while Not all demands are fulfilled do
4 l ← d(Nx, s, S−)
5 for t ∈ S− do
6 if t runs full before time l then
7 θt ← time at which t runs full
8 Attach an arc (t, s) to N with infinite capacity and transit time −θt
9 end

10 end
11 Extend x to the extended network
12 for i = k, k − 1, . . . , 1 do
13 if ti does not run full before time l then
14 while d(Nx, s, ti) = l do
15 P ← shortest s - ti path in Nx
16 γ ← min{τ(a) | a ∈ P}
17 augment x along P by γ
18 end
19 end
20 end
21 end
22 T ′ ← time horizon at which the last sink runs full
23 f ← generalized temporally repeated flow with time horizon T ′ corresponding to (xP )

P∈
↔
P .

η1 no flow arrives at t1 by construction. Assume that at time η2 the next sink t ∈ S− runs full.
We will show that during time [η1, η2] the flow over time f still fulfills inequality (6.19). We again
assume that the flow towards t blocks all the paths from s towards any other sink in S− \ {t1, t}
and that t = t2. We know that t1 blocked all the paths towards t2 until time η1 and that t2 has
a lower priority than t1. In order to fulfill the earliest arrival property after time η1, a flow over
time g in N thus would need to send flow towards t2 fulfilling its demand and then towards t1. In
such flow over time g the property holds that all the flow towards t1 arrives at the same time or
earlier than all the flow sent towards t2 (because of the properties of a generalized lex-max flow over
time). Assume that at time T1 the demands of t1 and t2 are fulfilled in the flow over time g. Let
us consider two specific paths P1 and P2 towards t1 and t2, respectively. Assume that these paths
block each other and that in the above mentioned flow g at first flow is sent into P2 during [0, γ2]
and during [γ2, γ2 + γ1] flow is sent into P1 such that the overall amount of flow sent into P1 has
arrived at t1 at the same time or earlier than the whole flow sent towards t2. In our flow over time
f at first flow is sent into P1 during [0, γ1] and then during [γ1, γ1 + γ2] into P2. That is, compared
to the earliest arrival transshipment the flow into P2 is late by γ1 < η1 time units. In general one
can say that in the flow over time f the flow sent towards t2 is delayed by at most η1 compared to a
flow over time g that fulfills the earliest arrival property after time η1. The flow over time f has
pattern p∗(θ) until time η1 by construction. That is, until time 2η1 the flow over time f for sure
fulfills inequality (6.19). If η2 ≤ 2η1, we are done. If not, we can argue as follows: Since the flow
towards t2 is delayed by at most η1 in f and the demands of t1 is already fulfilled at time η1, we get
for all x ≥ 0

|f |2η1+x ≥ p∗(η1 + x) ≥ p∗(η1 + x/2).

Thus, inequality (6.19) is fulfilled during [η1, η2]. Note that than we have in particular η2 ≤ 2T1.
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We can now proceed similarly and assume that until time η3 the next sink t is full. Again we assume
that t blocks all the paths towards the other sinks and that t = t3. Consider again a flow over time
g that fulfills the earliest arrival property after time T1. In g, in order to fulfill the earliest arrival
property after time T1, at first flow needs to be sent towards t3, then towards t2 and then towards t1.
Denote by T2 the time horizon when all this flow has arrived. We want to show that during [η2, η3]
inequality (6.19) is satisfied.
Considering paths P1, P2 and P3 towards t1, t2 and tr, respectively, our assumptions imply that g
sends flow into P3 during [0, γ3], during [γ3, γ3 + γ2] into P2 and during [γ3 + γ2, γ3 + γ2 + γ1] into
P1 and again all the flow arrives at the sinks at the same time, or at t1 earliest then at t2 and then
at t3. In our flow over time f , the order the flow is sent is the other way around. At first flow is sent
towards t1 during [0, γ1], then into P2 during [γ1, γ1 + γ2] and into P3 during [γ1 + γ2, γ1 + γ2 + γ3].
That is, the flow towards P3 is overall only delayed by γ1 + γ2 < T1 compared to the flow over time
g. Again note that until time 2T1 the flow over time f for sure fulfills inequality (6.19) because
|f |η2 = p∗(T1) and η2 ≤ 2T1. If η3 ≤ 2T1 we are thus done. If not, we can argue as follows: Since
the flow towards t3 is delayed by at most T1 and the demands of t1 and t2 are already fulfilled at
time η2, we get for all x ≥ 0

|f |2T1+x ≥ p∗(T1 + x) ≥ p∗(T1 + x/2).

Thus, inequality (6.19) is fulfilled during [η1, η2]. Again not that than we have in particular η3 ≥ 2T2.
Proceeding similarly we can inductively show that f fulfills inequality 6.19 during [0, 2T ].

Overall, we have thus shown that:

Theorem 6.50.
Let (N , b)EAT be an earliest arrival transshipment problem in a dynamic network with only a
single source. A 2-time approximation solving this problem does exist.
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