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I. DERIVATION OF THE MASTER STABILITY
FUNCTION FOR ADAPTIVE COMPLEX

NETWORKS

In this section, we derive the master stability function
for system (1)–(2) from the main text. For convenience,
we repeat these equations here:

ẋi = f(xi)− σ
N∑
j=1

aijκijg(xi,xj), (S1)

κ̇ij = −ε (κij + aijh(xi − xj)) , (S2)

where the adjacency matrix has constant row sum r =∑N
j=1 aij .
Let (s(t), κsij) be the synchronous state, i.e., xi = s(t)

and κij = κsij for all i, j = 1 . . . , N . This state solves the
set of differential Eqs. (3)–(4) of the main text.

In order to describe the local stability of the syn-
chronous state, we derive the variational equation for
small perturbations close to this state. For this, we in-
troduce the following vector variables denoting the devi-
ations from the synchronized state: ξ = x− IN ⊗ s, and
χ = κ− κs with

x = (xT1 , · · · ,xTN )T ,

κ = (κ11, · · · , κ1N , κ21, · · · , κNN )T ,

where ⊗ denotes the Kronecker product. Using the fol-
lowing notations

ai = (ai1, . . . , aiN ),

diag(ai) =

ai1 . . .

aiN

 ,

and the N ×N2, N2 ×N , and N2 ×N matrices

B =

a1
. . .

aN

 ,

C = BT −D,

D =

diag(a1)
...

diag(aN )

 ,

respectively, the variational equation reads(
ξ̇
χ̇

)
=

(
S −σB ⊗ g(s, s)

−εC ⊗Dh(0) −εIN2

)(
ξ
χ

)
, (S3)

where

S = IN ⊗Df(s)

+ σh(0) (rIN ⊗D1g(s, s) +A⊗D2g(s, s)) .

We note that matrices B,C, and D satisfy the relations
B · BT = rIN , B ·D = A, and B · C = L, which can be
obtained by straightforward calculation.

Due to the structure of the variational equation (S3),
there exist N2−N eigenvalues λ = −ε. The correspond-
ing time-independent eigenspace can be found from(

S + εINd −σB ⊗ g(s, s)
−εC ⊗Dh(0) 0

)(
ξ
χ

)
= 0.

One can see that (ξ,χ) such that ξ = 0 and Bχ = 0
are the time-independent eigenvectors. Moreover, the
relation Bχ = 0 defines N2 − N linearly independent
eigenvectors spanning the eigenspace corresponding to
the eigenvalues λ = −ε. This follows from the fact that
χ is N2-dimensional and rank(B) = N if the row sum r
of A is non-zero.

With these prerequisites we are now able to simplify
the local stability analysis on adaptive networks and find
a master stability function.
Let (S1)–(S2) possess a synchronous solution (s, κsij).
Further, let (S3) be the variational equations around this
synchronous solution and assume that the Laplacian ma-
trix L is diagonalizable. Then, the synchronous solution
is locally stable if and only if for all eigenvalues µ ∈ C of
the Laplacian matrix, the largest Lyapunov exponent (if
it exists), i.e., the master stability function Λ(µ), of the
following system is negative

dζ

dt
=

(
Df(s) + σrh(0)

(
D1g(s, s)

+ (1− µ

r
)D2g(s, s)

))
ζ − σg(s, s)κ,

(S4)

dκ

dt
= −ε (µDh(0)ζ + κ) . (S5)

Here, ζ ∈ Cd and κ ∈ C.
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In the following we present the derivation of (S4)–
(S5). As it is shown above, there are N2 − N in-
dependent vectors wl (l = 1, . . . , N2 − N) spanning
the kernel of B, i.e. Bwl = 0. Using the Gram-
Schmidt procedure we find an orthonormal basis for
ker(B) = span{v1, . . . ,vN2−N}. With this, we define the
N2 × (N2 − N) matrix Q = (v1, . . . ,vN2−N ). Consider
now the (N2 +Nd)× (N2 +Nd) matrix

R =

(
INd 0 0
0 (1/r)BT Q

)
with left inverse

R−1 =

INd 0
0 B
0 QT

 ,

i.e., R−1R = IN2+Nd. Introduce the new coordinates

given by R

(
ξ
χ̂

)
=

(
ξ
χ

)
for which the variational equa-

tion then reads

d

dt

(
ξ
χ̂

)
= R−1

(
S −σB ⊗ g(s, s)

−εC ⊗Dh(0) −εIN2

)
R

(
ξ
χ̂

)
.

We further obtain

R−1
(

S −σB ⊗ g(s, s)
−εC ⊗Dh(0) −εIN2

)
R

= R−1
(

S −σIN ⊗ g(s, s) 0
−εC ⊗Dh(0) −ε/rBT −εQ

)

=

 S −σIN ⊗ g(s, s) 0
−εL⊗Dh(0) −εIN 0
−εQTC ⊗Dh(0) 0 −εIN2−N

 .

These equations yield that there are Nd + N coupled
differential equations left

d

dt

(
ξ
χM

)
=

(
S −σIN ⊗ g(s, s)

−εL⊗Dh(0) −εIN

)(
ξ
χM

)
(S6)

with χM = χ̂1 that determine the stability for the syn-
chronous state, and N2 −N slave equations

d

dt
χS =

(
−εQTC ⊗Dh(0) 0 −εIN2−N

) ξ
χM
χS



with χS = (χ̂T2 , . . . , χ̂
T
N )T which are driven by the vari-

ables ξ and, hence, can be solved explicitly once the lat-
ter once are known. By assumption, there is a unitary
matrix DL = UHLU where DL is the diagonalization
of the Laplacian matrix L. Transforming the differential
equation (S6) by using the unitary transformation U , we
get

d

dt

(
ζ
κ

)
=

(
IN ⊗Df(s) + σh(0) (rIN ⊗D1g(s, s) + (rIN −DL)⊗D2g(s, s)) −σIN ⊗ g(s, s)

−εDL ⊗Dh(0) −εIN

)(
ζ
κ

)

where

(
U ⊗ Id 0

0 U

)(
ξ
χM

)
=

(
ζ
κ

)
.

Remarkably, the master stability function Λ depends
explicitly on the row sum r. Moreover, the master sta-
bility function seems to depend on σ, r, and µ indepen-
dently. The time scale separation parameter ε is always
kept fixed. However, in any case, one parameter can be
disregarded. To see this, we note that the solution to the
Eq. (S5) is explicitly solvable and the solution reads

κ = κ0e
−ε(t−t0) − εµDh(0)

∫ t

t0

e−ε(t−t
′)ζ(t′) dt′,

where the first term vanishes for t → ∞ and hence can
be neglected (when studying asymptotic stability for t→

∞). We use this and rewrite the asymptotic dynamics
of (S4)–(S5) in its integro-differential form

dζ

dt
= (Df(s) + σrh(0) (D1g(s, s)

+(1− µ

r
)D2g(s, s)

))
ζ

+ εσr
µ

r
g(s, s)Dh(0)

∫ t

t0

e−ε(t−t
′)ζ(t′) dt′. (S7)

Hence, the master stability function can be regarded as a
function of two parameters, i.e., Λ(σ, µ, r) = Λ(σr, µ/r).
Furthermore, in case of diffusive coupling, i.e., g(x,y) =
g(x − y), the master stability function can be regarded
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as a function of only one parameter Λ(σ, µ, r) = Λ(σµ).
This is due to the fact that D1g(s, s) = D1g(0) =
−D2g(0) and hence the dependency on r vanishes in
Eq. (S7).

II. MASTER STABILITY FUNCTION FOR
ADAPTIVE PHASE OSCILLATOR NETWORKS

In this section, we provide a brief analysis of the master
stability function for the adaptive Kuramoto-Sakaguchi
network (9)–(10) of the main text. Using the result of
Section I, the stability of the synchronous state of sys-
tem (9)–(10) of the main text is governed by the two
differential equations

d

dt

(
ζ
κ

)
=

(
µσcos(α) sin(β) −σsin(α)
−εµ cos(β) −ε

)(
ζ
κ

)
,

where µ ∈ C stands for all eigenvalues of the Laplacian
matrix L corresponding to the base network described by
the adjacency matrix A. The characteristic polynomial
in λ of the latter system is of degree two and reads

λ2 + (ε− σµ cos(α) sin(β))λ− εσµ sin(α+ β) = 0.
(S8)

The master stability function is given as Λ(σµ) =
max(Re(λ1),Re(λ2)) where λ1 and λ2 are the two so-
lutions of the quadratic polynomial (S8). Figure 1 of
the main text displays the master stability function for
different parameters.

The boundary of the region in σµ parameter space that
corresponds to stable local dynamics, is given by λ = iγ
with γ ∈ R. Plugging this into Eq. (11) of the main text,
we obtain

σµ = Z(γ) = a(γ) + ib(γ)

with

a(γ) = ε
γ2 (cosα sinβ − sin(α+ β))

γ2 cos2 α sin2 β + ε2 sin2(α+ β)
,

b(γ) =
γ3 cosα sinβ + ε2γ sin(α+ β)

γ2 cos2 α sin2 β + ε2 sin2(α+ β)
.

Due to the symmetry of the master stability function,
a necessary condition to observe a stability island is
that the curve σµ(γ) possesses two crossings with the
real axis, i.e., two real solutions for b(γ) = 0. The
three crossings are given by γ1 = 0 and as real solu-
tions γ2 and γ3 of γ2 cosα sinβ = −ε2 sin(α + β). From
this we deduce the existence condition for stability is-
lands: sin(α + β)/(cosα sinβ) < 0 (ε > 0). Note that
a(γ2) = a(γ3).

III. THE CLUSTER PARAMETER

In this section, we introduce the cluster parameter RC
as a measure for coherence in a system of coupled phase
oscillators. A measure that can be used in order to detect
frequency synchronization between two oscillators relies
on the mean phase velocity (average frequency) of each
phase oscillator

Ωi = lim
T→∞

1

T
(φi(t0 + T )− φi(t0)) . (S9)

The frequency synchronization measure between nodes is
given by

Ωij =

{
1, if Ωi − Ωj = 0,

0, otherwise.
(S10)

Numerically the limit is approximated by a very long
averaging window. In addition, we use a sufficiently small
threshold $ in order to detect frequency synchronization
numerically, i.e., Ωij = 1 if Ωi−Ωj < $. For the analysis
presented here and in the main text, we use $ = 0.001.
Using the measure Ωij , we define the cluster parameter

RC =
1

N2

N∑
i,j=1

Ωij . (S11)

The cluster parameter measures the following. First, for
each frequency cluster, the total number of pairwise syn-
chronized nodes is computed. Second, all pairs of two
nodes from the same cluster are summed up and normal-
ized by the number of all possible pairs of nodes N2. In
case of full synchronization, frequency clustering, or inco-
herence the values of the cluster parameter are RC = 1,
1 < RC < 0, or RC = 0, respectively. A similar measure
can be found in Refs. [1, 2].

IV. DESYNCHRONIZATION TRANSITION
AND THE FORMATION OF PARTIAL

SYNCHRONIZATION PATTERNS IN ADAPTIVE
PHASE OSCILLATOR NETWORKS

In this section, we provide further details on the desyn-
chronization transition in a network of adaptively cou-
pled phase oscillators (9)–(10).

Figure S1 shows the cluster parameter RC for differ-
ent values of the coupling constant σ. In the adiabatic
continuation, we increase σ step-wise after an integration
time of t = 10000. For each simulation, the final state
of the previous simulations is taken as the initial condi-
tion with an additional small perturbation. Note that
RC = 1 refers to full in-phase synchrony of the oscilla-
tors. We observe that, for small σ, the synchronous state
is stable, see Fig. S1(d,g,j). Here, the stability of the syn-
chronous state is directly implied by the master stability
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)
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〉
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d
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i
R

C

(a,d,g,j)

(b,e,h,k)

(c,f,i,l)

σ

Index j
κij

−| sinβ| | sinβ|0

FIG. S1. Dynamics in a globally coupled network of 200 phase
oscillators Eqs. (9)–(10) of the main text for different val-
ues of overall coupling strength σ than in Fig.2 of the main
text. Adiabatic continuation for increasing σ with the step-
size of 0.001, starting with the synchronous state φi = 0,
κij = −aij sinβ. The top panel shows the cluster parame-
ter RC vs σ. For the three values of σ: (a,d,g,j) σ = 0.002,
(b,e,h,k) σ = 0.006, and (c,f,i,l) σ = 0.025, the plots show: in
(a,b,c) the master stability function (color coded as in Fig.
1 of the main text), together with σµi, where µi are the
N Laplacian eigenvalues of A; in (d,e,f) snapshots for φi at
t = 30000; in (g,h,i) the temporal average of the phase veloci-

ties 〈φ̇i〉 over the last 5000 time units; and in (j,k,l) snapshots
for the coupling matrix κij at t = 30000. Other parameters:
α = 0.49π, β = 0.88π, ε = 0.01.

function. We note that all Laplacian eigenvalues µi of a
globally coupled network are given by either µi = 0 or
µi = N . In Figure S1(a), all master function parameters
σµ lie within the stability island.

By increasing the coupling constant, the values σµi
move out of the stability regions and the synchronous
state becomes unstable. For intermediate values of σ
the emergence of multiclusters with hierarchical struc-
ture in the cluster size are observed. In Figure S1(e,h,k)
a multicluster states is shown with three clusters. Note
that for the system (9)–(10) of the main text, in-phase
synchronous and antipodal clusters have the same prop-
erties [3, 4]. In Refs. [3, 4] the role of the hierarchical
structure of the cluster sizes have been discussed. In-
creasing the coupling constant further shows the emer-
gence of incoherence. In Figure S1(f,i,l), we show the co-
existence of a coherent and an incoherent cluster. These
states, also called chimera-like states, have been numeri-
cally analyzed in Refs. [1, 2, 5].

V. NETWORK OF COUPLED
FITZHUGH-NAGUMO NEURONS WITH

SYNAPTIC PLASTICITY

In this section, we describe the model of coupled
FitzHugh-Nagumo neurons with synaptic plasticity and
present the synchronous state used in the main text. The
model is given by

τ u̇i = ui −
u3i
3
− vi − σ

N∑
j=1

aijκijuiIj , (S12)

v̇i = ui + a− bvi, (S13)

İi = α(ui)(1− Ii)− Ii/τsyn, (S14)

κ̇ij = −ε
(
κij + aije

−β1(ui−uj+β2)
2
)
. (S15)

Here ui denotes the membrane potential and vi summa-
rizes the recovery processes for each neuron; Ii describes
the synaptic output for each neuron; the parameters
a = 0.7 and b = 0.2 are fixed to the values correspond-
ing to self-sustained oscillatory dynamics of uncoupled
neurons; and τ = 0.08 and ε = 0.01 are fixed time scale
separation parameters between the fast activation and
slow inhibitory processes in each neuron, and between
the fast oscillatory dynamics and the slow adaptation of
the coupling weights, respectively. The synaptic recovery
function is given by α(u) = 2/(0.08(1 + exp(−u/0.05))).
The synaptic timescale is τsyn = 5/6. All variables
and parameters are summarized in Tab. S1. The form
of the synaptic plasticity is similar to the rules used
in [6, 7]. We introduce β1 and β2 as control parame-
ters. In particular, we have β1 = −h(0)/(2Dh(0)β2) and
β2 = (2Dh(0)1 ln(Dh(0)1))/h(0) where Dh(0)1 denotes
the first component of Dh(0).

The synchronous state of the equations (S12)–(S15) is
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ui membrane potential/activator
vi recovery/inhibitor variable
Ii synaptic output variable
κij variable coupling weights
N number of oscillators
aij entries of adjacency matrix, aij ∈ {0, 1}
σ overall coupling strength

r row sum, i.e., r =
∑N

j=1 aij
a = 0.7, b = 0.2 bifurcation parameters of the FitzHugh-

Nagumo neuron
τ = 0.08 controls time separation between fast

activation and slow inhibition
ε = 0.01 controls time separation between fast

oscillation and slow adaptation
τsyn = 5/6 synaptic decay rate
ushp = 0.05 coupling shape parameter
β1, β2 adaption control parameters

TABLE S1. The table provides the meaning for each variable
and parameter used in (S12)–(S15).

u
v

I

FIG. S2. Limit cycle in Eqs. (S16)–(S18) as solid line and
the projection onto the u-v-plane as dashed line. Parameters:
σ = 0.002, r = 200, h(0) = 0.8 and Dh(0) = (80, 0, 0). All
other parameters as in Tab. S1.

given by a solution of

τ u̇s = us −
u3i
3
− vs + σrusIse

−β1β
2
2 , (S16)

v̇s = us + a− bvs, (S17)

İs = α(us)(1− Is)− Is/τsyn, (S18)

κsij = −aije−β1β
2
2 , (S19)

where (ui, vi, Ii) = s = (us, vs, Is) for all i = 1, . . . , N .
In Fig. S2, we display a limit cycle as a stable numerical
solution of (S16)–(S19) for the set of parameters used in
the main text.

VI. THE MASTER STABILITY FUNCTION
AND DESYNCHRONIZATION TRANSITION IN

ADAPTIVE NETWORKS OF
FITZHUGH-NAGUMO NEURONS

In this section, we consider the model of adaptively
coupled FitzHugh-Nagumo neurons (S12)–(S15). We
give insights into the derivation of the system’s mas-
ter stability function as well as on the desynchronization
transition induced by the adaptivity.

In order to investigate the local stability of the syn-
chronous states that solves Eqs. (S16)–(S19), see Fig. S2,
we linearize Eqs. (S12)–(S15) around these states. Using
the results of Section I, the stability of the synchronous
solution is governed by the set of equations

dζ

dt
=

(
Df(s) + σrh(0)

(
D1g(s, s)

+ (1− µ

r
)D2g(s, s)

))
ζ − σg(s, s)κ,

dκ

dt
= −ε (µDh(0)ζ + κ) .

Here, the derivatives of the functions f , g, and h are

Df(s) =


1
τ

(
1− u2s

)
− 1
τ 0

1 −b 0
τ(α(us))

2(1−Is)
α0ushp exp( us

ushp
)

0 −α(us)− 1
τsyn

 ,

D1g(s, s) =

Is 0 0
0 0 0
0 0 0

 ,

D2g(s, s) =

0 0 us
0 0 0
0 0 0

 ,

Dh(0) =
(
−2β1β2 exp(−β1β2

2) 0 0
)
.

Using this, we are able to determine numerically the
maximum Lyapunov exponents and hence the stability
of the periodic orbit displayed in Fig. S2. In Fig. S3, we
show different shapes of the master stability function de-
pending on the form of the plasticity rule, i.e., depending
on h(0) and Dh(0). We observe that for certain parame-
ters almost complete half spaces in the µ/r-plane refer to
stable or unstable local dynamics, see Fig. S3(a,b). This
is similar to Fig. 1(d,e) of the main text where we dis-
play the master stability function of the phase oscillator
model. Most remarkably, similar to the phase oscillator
model (9)–(10) we find parameters for which stability is-
lands exist, see Fig. S3(d).

As we know from the example of phase oscillators, the
presence of a stability island may induce a desynchroniza-
tion transition for an increasing overall coupling strength
σ. In order to show this transition, we follow the same
approach already presented in Fig. S1. The results of
the adiabatic continuation on a globally coupled network
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Im
(µ
/
r)

Re(µ/r)

Im
(µ
/
r)

Re(µ/r)

(c) (d)

(a) (b)

FIG. S3. The master stability functions for the synchronous
solution of (S12)–(S15) and different plasticity rules are dis-
played (color code as in Fig. 1 of the main text). Regions
belonging to negative Lyapunov exponents are colored blue.
Parameters: the control parameters β1 and β2 are chosen
such that (a) h(0) = 0.8, Dh(0) = (50, 0, 0) (b) h(0) = −0.2,
Dh(0) = (0, 0, 0), (c) h(0) = 0.8, Dh(0) = (10, 0, 0), and (d)
h(0) = 0.4, Dh(0) = (50, 0, 0). The overall coupling constant
is set to σ = 0.005. All other parameters are as in Fig. S2.

are shown in Fig. S4. We note that in contrast to the
case of phase oscillators, here, the shape of the master
stability function depends explicitly on σ. The desyn-
chronization is described in the main text. Additionally
to the figure given in the main text, we provide plots
for the coupling matrices in Fig. S4(j,k,l). The coupling
matrices show very nicely the emergence of partial syn-
chronization structures in the transition from coherence
to incoherence which is induced by the stability island.
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FIG. S5. Adjacency matrix Ac of a connected, directed ran-
dom network of N = 200 nodes with constant row sum r = 50.
The illustration shows the adjacency matrix where black and
white refer to whether a link between two nodes exist or not,
respectively.


