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Chapter 1

Introduction

1.1 An overview of fiber-optic communication

1.1.1 Historical background

History of modern lightwave communication began in 1960 with the first demonstrations

of lasers. At this time, the huge bandwidth potentially offered by optical transmission

appeared as a promising solution to keep pace with the rapid development of the telecom-

munication industry. In 1966, Kao and Hockham predicted that the loss of the fibers

available at this time (1000 dB/km) could be reduced to 20 dB/km, making optical fiber

a real alternative to copper cable [1]. The announcement four years later by the Corning

Glass Works company of such a fiber led to an explosion of research and development in this

field. The first commercial fiber-optic transmission systems appeared in the late seventies.

In 1988, the first transatlantic fiber-optic cable was installed, but it is only with the intro-

duction of Erbium-doped optical amplifier (EDFA) and wavelength-division multiplexing

in early nineties that fiber-optic technology stood out as the best solution for long-haul

high-capacity transmission. Since then, demand for more capacity has been driven by the

phenomenal growth of the Internet (Internet traffic is doubling approximately each year [2]).

Today about 500 million km of optical fiber are deployed around the world.
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capacity unregenerated reach spectral efficiency company year
10.9Tb/s 117 km 0.8 b/s/Hz NEC 2001

6Tb/s 6000 km 0.8 b/s/Hz Alcatel 2002
5Tb/s 1280km 0.8 b/s/Hz Lucent 2002

10.2Tb/s 100km 1.28 b/s/Hz Alcatel 2001
320 Gb/s 200km 1.6 b/s/Hz Siemens 2003

Table 1.1: Transmission records: Striving towards high capacity & high spectral efficiency (from
the proceedings of Optical Fiber Communication Conference and European Conference on Optical
Communication).

1.1.2 State of the art in fiber-optic communication

Fiber-optic transmission is by far the technology offering the largest bandwidth for telecom-

munication. A convenient way to share this huge bandwidth between several users is

Wavelength-Division Multiplexing (WDM) [3]. WDM technology enables an easy upgrade

of the system capacity either by increasing the utilized bandwidth (e.g. the number of chan-

nels) or by using the available bandwidth more efficiently (e.g. by increasing the bit-rate

per channel). These two approaches present both advantages and drawbacks so that the

best solution depends on the network’s specific requirements. For that reason, tremendous

efforts have been made in both directions and today several Tb/s can be transmitted over

a single optical fiber (see Table 1.1).

Basic system components and available technologies

The basic building blocks of a fiber-optic transmission system are the transmitter, the trans-

mission line and the receiver. The electrical signal is first converted to an optical signal at

the transmitter and then sent into the transmission line, which consists of optical fibers,

optical amplifiers (compensating for the fiber loss) and eventually of passive or active op-

tical components such as optical filters, add-drop multiplexers, wavelength converters etc.

At the receiver, the optical signal is converted back into electrical form in order to recover

the original message.

The optical signal is generated in the optical transmitter by modulation of an optical

carrier. In fiber-optic communication, the optical carrier is usually generated by a semicon-
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ductor laser (e.g. Distributed Feedback (DFB) or Vertical Cavity Surface Emitting Laser

(VCSEL) [4], [5]). Besides this classical single optical carrier generation, a frequency-comb

(or supercontinuum) [6], [7] can be used as a multiple optical carrier source for WDM trans-

mission. The optical carrier is modulated by a Mach-Zehnder interferometer [3] (enabling

phase and/or amplitude modulation) or by an electro-absorption modulator [8]. For low

bit-rate transmission over short distances, the laser can be directly modulated via its driving

current.

An optical fiber consists of a cylindrical core of silica glass surrounded by a cladding

with lower refractive index to enable light confinement in the fiber. The difference of re-

fractive index is realized by doping the core, the cladding or both. Fiber characteristics

depend on the concentration of doping elements and on the fiber geometry1. For example,

loss and chromatic dispersion of commercially available transmission fibers (E.g. standard

single mode fibers -SSMF-, dispersion-shifted fibers -DSF- or non-zero dispersion shifted

fibers -NZDSF-) vary in the range 0.2...0.25 dB/km and -8...20 ps/(nm-km) in the 1550 nm

region. For comparison, dispersion compensating fibers exhibit about 0.5 dB/km loss and

-80 ps/(nm-km) chromatic dispersion in this region.

Most commonly used optical amplifiers are Erbium-Doped Fiber Amplifiers (EDFAs) [9].

They consist of optical fibers doped with Erbium ions (Er3+), which are operated as an

active laser medium: Erbium ions are excited to a higher energy level by a pump signal.

Amplification (or stimulated emission) occurs when photons from the signal make excited

Erbium ions to relax to the ground level by emission of a photon. Conversely, spontaneous

relaxation of excited ions degrades the transmitted signal.

Recently intensively investigated Raman amplifiers [10], [11] represent a good opportunity

for the realization of distributed amplification. The advantages of Distributed Raman Am-

plification (DRA) with respect to EDFAs are that amplification can be provided at any

frequency by simply changing the pump wavelength and that it provides better OSNR per-

formance and reduced nonlinear impairments [12].

The main component of an optical receiver is a photodetector (usually a PIN or avalanche
1See section 2.2.
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Vendor System WDM channels channel rate unregenerated reach
Marconi Multihaul 3000� 80 10Gb/s 3000 km

80 40Gb/s 3000 km
Siemens SURPASS hiT 7500� 160 10Gb/s 3000 km
Lucent LambdaXtreme� 128 10Gb/s 4000 km

64 40Gb/s 1000 km
Alcatel 1626 Light Manager� 96 10Gb/s 2600 km
Fujitsu FLASHWAVE 7700 � 80 10Gb/s 2000 km
Nortel Optical Long Haul 1600� 640 1.25Gb/s 1500 km

320 2.5Gb/s 1500 km
80 10Gb/s 1500 km

Table 1.2: Some characteristics of commercial long-haul transmission systems available in 2005.

photodiode [4]), that converts the power of the incoming optical signal into current through

photo-electric effect. Not only the amplitude, but also the phase of the signal can be de-

tected with the help of passive optical components like a Mach-Zehnder interferometer [3].

The photodetector is followed by a lowpass filter and by the sampling and decision circuits.

1.1.3 A push forward for more bandwidth?

With the advent of Internet, applications like e-mail, e-commerce and data-transfer among

others have boosted the demand for more bandwidth. So far, the access-network (from

which end-users access the global network) has been dominated by copper and wireless tech-

nologies, creating a bottleneck for future broadband applications. However, solutions like

Fiber-To-The-Home (FTTH) or 10Gb Ethernet are about to provide business and private

users several hundreds of Mb/s, enabling new broadband services like high-speed Internet,

video-conferencing, video-on-demand, teleworking, etc. Today’s commercial transmission

systems already offer capacity of several Tb/s (see Table 1.2) but since the demand for

more bandwidth is expected to continue to grow [13], transmission rates of a few tens of

Tb/s may be required in the core network in the next decades.
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1.2 Motivation for a top-down analysis

The telecom crash of 2000 has increased the need to exploit legacy fiber plant and to reduce

the cost and enhance the flexibility of novel optical transmission systems. These are very

challenging tasks for three reasons: First, a capacity upgrade necessitates additional power

to be launched in the fiber, leading to stronger nonlinear effects, that limit the ultimate

capacity of optical transmission systems [14]. The second difficulty originates from the

multi-dimensional nature of the optimization problem. Indeed, system designers are faced

with a bewildering array of options for modulation format, rate and fiber type, making

the search for an optimum system design through numerical simulations extremely time-

consuming. Finally, the current approach for system design, which is mostly based on

incremental improvement of existing solutions, may become obsolete as novel prospects

like multi-level modulation formats [15], electrical dispersion compensation [16] or receivers

implementing adaptive filtering or maximum likelihood sequence estimation [17] become

available.

In this context, only a top-down analysis may help to target the best solutions and to define

universal design rules. Analytical models offering insights into fiber nonlinearities exist but

are restricted to single-fiber [18] or non-dispersion-managed transmission [19–22] or require

the use of numerical calculations [23] and are therefore not suitable for a high-level analysis.

1.3 Outline

The purpose of the present work is to provide a comprehensive understanding of fiber nonlin-

earities in dispersion-managed WDM transmission systems. The goal is to derive universal

design rules and to determine the ultimate capacity of fiber-optic transmission systems.

The theoretical framework required for this top-down analysis is briefly reviewed in chapter

2. A generic approach for the characterization of fiber nonlinearities in dispersion-managed

transmission systems as well as an analytical model for the assessment of nonlinearly-

induced impairments in WDM systems are presented in chapter 3. Some design guidelines

for the reduction of nonlinear impairments are proposed in chapter 4. Not only the trans-

5



mission link design, but also the impact of information distribution in frequency and of

fiber birefringence are investigated. In chapter 5, the issue of fiber nonlinearities is tackled

from an ”information theory” point of view: The maximal achievable capacity of fiber-optic

transmission systems in presence of linear noise and fiber nonlinearities is derived and spec-

tral efficiencies achievable with current technologies are discussed. Finally, some conclusions

regarding the design of future high-capacity transmission systems are drawn in chapter 6.
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Chapter 2

Wave Propagation in Optical

Fibers

In the following chapter1, the main characteristics of signal propagation in optical fibers are

reviewed. Linear and nonlinear aspects are considered. Finally, the nonlinear Schrödinger

equation describing the propagation of the slowly varying envelope of the electric field in

single-mode optical fibers is derived.

2.1 Theoretical framework

Like all electromagnetic phenomena, propagation of light is governed by Maxwell’s equations

[24]. In a nonmagnetic, dielectric medium like silica, the electric field verifies the following

wave equation [25]:

∇2−→E (t) +
1
c2

∂2−→E (t)
∂t2

+ µ0
∂2−→P (t)

∂t2
= 0 (2.1)

The 3-dimensional vectors
−→
E (t) and

−→
P (t) describe the electric field and the induced electric

polarization. c = 1/
√

ε0µ0 is the velocity of light in vacuum, ε0 and µ0 being the vacuum

permittivity and permeability. The induced electric polarization results from the interaction

of the propagating wave with the medium: Indeed, when a dielectric is subjected to an
1In the following, the Fourier Transform of the time-dependent complex variable X(t) is noted X̃(ω) and

its complex conjugate X∗(t).
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applied electric field, the internal charge distribution is distorted, leading to the generation

of electric dipole moments. The resultant dipole moment per unit volume is the induced

electric polarization
−→
P (t). Since

−→
P (t) depends on

−→
E (t), it can be expanded in a Taylor

series as follows [26]:

−→
P = ε0(χ(1) ∗ −→E + χ(2) ∗ −→E−→E + χ(3) ∗ −→E−→E−→E + · · ·) (2.2)

Where * is the convolution operator. χ(1)(t) is the first-order susceptibility tensor2 and

χ(1)(t)
−→
E (t) represents the principal component of the induced polarization. Because the

SiO2 molecule is symmetric, χ(2)(t) = 0 for silica glasses [25]. As a consequence, most

nonlinear effects originate from the third-order3 susceptibility χ(3)(t). Therefore,
−→
P (t) can

be written as the sum of its linear,
−→
P L(t), and nonlinear,

−→
P NL(t), parts given as

−→
P =

−→
P L +

−→
P NL (2.3)

with

−→
P L = ε0(χ(1) ∗ −→E ) (2.4)

−→
P NL ≈ ε0(χ(3) ∗ −→E−→E−→E ) (2.5)

2.2 Linear characteristics

The wave propagation can be expressed in the frequency domain by taking the Fourier

Transform of Eq. (2.1). For a linear medium (
−→
P NL(t) = 0), one obtains:

∇2
−→̃
E (ω) + ε(ω)

ω2

c2

−→̃
E (ω) = 0 (2.6)

2χ(1) is a 3 × 3 matrix. In a nonmagnetic isotropic medium like silica, χ(1) is reduced to its diagonal
components,χ(x,x,x), which are all equal.

3χ(3) is a cubic matrix with a 3× 3 matrix at each lattice point.
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with the frequency-dependent dielectric constant ε(ω) defined as:

ε(ω) = 1 + χ̃(x,x,x)(ω) (2.7)

The real and imaginary parts of ε(ω) can be related to the fiber refractive index n(ω) and

absorption coefficient α(ω) using the following definition [25]:

ε(ω) =
(

n(ω) + i
α(ω)c

2ω

)2

(2.8)

A solution of the wave equation Eq. (2.6) is easily obtained for a one-dimensional problem4.

For a particular frequency, ω, it comes:

−→̃
E (z, ω) =

−→̃
E (0, ω) exp ((−α/2 + iβ)z) (2.9)

with the phase propagation constant β = nω/c in this case. In the above equation, as well

as in the rest of the analysis, z denotes the direction of propagation of the electrical field.

2.2.1 Fiber modes

More generally, the solutions of Eq. (2.6) have to satisfy the boundary conditions imposed

by the optical fiber (fiber geometry, index profile, etc). The form of these solutions can be

guessed by using the method of separation of variables:

−→̃
E (z, ω) = F (x, y)

−→̃
E (0, ω) exp (iβz) (2.10)

where F (x, y) describes the transversal field distribution and β the propagation constant of

a particular mode . These solutions are referred to as guided5 modes of the fiber. Conditions

to satisfy for these solutions to exist are obtained by substituting Eq. (2.10) in Eq. (2.6). A

comprehensive study of fiber modes can be found in [3]. Important results for our analysis

can be summarized as follows: When the so-called effective index of a particular mode
4I.e. for a single polarization propagating in an isotropic medium.
5Unlike leaky modes and radiation modes [27], guided modes effectively propagate in the fiber.
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(or mode index) defined as n = βc/ω is lower than the refractive index of the cladding

n2, this mode ceases to be guided. Thus, it is possible to design fibers supporting only

the fundamental mode6. The single-mode condition is met when the normalized frequency

V = ω
c a

√
n2

1 − n2
2 < 2.4, a and n1 being the core radius and refractive index. Single-mode

fibers are of particular interest in fiber-optic communications because signal distortion re-

sulting from the different mode velocities is avoided. For a single-mode fiber, each frequency

component of the optical field propagates as:

−→̃
E (z, ω) = −→x F (x, y)Ẽ(0, ω) exp ((−α/2 + iβ)z) (2.11)

where −→x is the polarization unit vector and F (x, y) the field distribution of the fundamental

mode that can be approximated by a Gaussian:

F (x, y) ≈ exp
−(x2 + y2)

ρ2
m

(2.12)

where ρm is the mode field radius. In the following, we restrict our approach to single-mode

fibers.

2.2.2 Optical losses

In today’s standard fibers, the loss is around 0.2 dB/km in the 1.55µm region. The fiber

attenuation coefficient α is defined as:

Pout = Pin exp (−αL) (2.13)

where Pin is the power at the input of the fiber of length L and Pout the output power.

Difference with the definition for α proposed in Eq. (2.8) is that not only material absorption

but also other sources of power attenuation are considered. Material absorption is caused

by electronic (in the ultraviolet region, λ < 0.4µm) and molecular (in the infrared region,

λ > 1.7µm) resonance of pure silica and by the impurities included in the fiber. In today’s
6The mode HE11 always exists.
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Figure 2.1: Spectral loss profile of a single-mode fiber (from [3]).

silica fibers, the vibrational resonance of ions OH− is the main source of absorption due

to impurities. It produces strong absorption peaks at the 2.73, 1.39, 1.24 and 0.95µm

wavelengths as displayed in Fig. 2.1. Another major loss mechanism is Rayleigh scattering

[28]. It arises from the random fluctuations of the refractive index7. The losses related to

these phenomena are wavelength dependent8. Fiber bending [30] and microbending [31]

losses are other kinds of loss mechanisms that have to be considered especially during the

cabling. Power-dependent losses finding their origin in the nonlinear nature of the fiber

(see section 2.3.3) also exist. The loss profile of single-mode silica fibers, together with the

properties of EDFAs, enable an optimal transmission of optical signal in the so-called C-

band (1.53 to 1.57 µm), L-band (1.565 to 1.625 µm). For optical amplification in the S-band

(1.46 to 1.53 µm) other kinds of amplifier (e.g. fluoride fibers, [32]) must be employed.
7These fluctuations are due to small variations of the molecular density on a scale smaller than the optical

wavelength.
8UV absorption ∼ 101/λ, IR absorption ∼ 10−1/λ, Rayleigh scattering ∼ 1/λ4, see [29].
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Figure 2.2: Left: material DM and waveguide DW dispersion. Right: total dispersion (DM +DW )
of various optical fibers (from [3]).

2.2.3 Chromatic dispersion

Similarly to α, the phase propagation constant β is also frequency-dependent and can be

expanded in a Taylor series around the center frequency ω0. Noting βi = ∂iβ
∂ωi , β can be

written as:

β(ω) ≈ β0 + β1∆ω +
1
2
β2∆ω2 +

1
6
β3∆ω3 · ·· (2.14)

with ∆ω = ω − ω0 and β1 = 1/vg, where vg is the group velocity, i.e. the speed of the

energy propagating at frequency ω0. β2 describes the frequency dependence of 1/vg, a

phenomenon called chromatic dispersion or group-velocity dispersion (GVD) giving rise to

pulse broadening for example. β3 is known as the slope of GVD or second order GVD and

should be considered when β2 ≈ 0 or in wide-band transmission systems. It is common

to describe GVD with the dispersion parameter D (typically expressed in ps/(nm − km))

accounting for the dependence of 1/vg on the wavelength rather than on frequency:

D =
d

dλ

1
vg

= −2πc

λ2
β2 (2.15)

D can be written as the sum of two terms called material dispersion DM and waveguide

dispersion DW (see Fig. 2.2). Whereas only n2 appears in DM , DW depends on n1, n2 and

V , i.e. on the fiber geometry. As a consequence, it is possible to modify DW (and thus the
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overall fiber dispersion) by changing the fiber index profile [3]. Dispersion compensating

fibers (DCF), which present a negative value for D, rely on this principle.

2.2.4 Birefringence and polarization-mode dispersion

Polarization mode dispersion (PMD) is another dispersion phenomenon. It arises from

the anisotropy of silica-fibers, which is due to a non-circular waveguide geometry or a

non-symmetrical stress (see Fig. 2.3). This asymmetry induces a difference between the re-

fractive index experienced by the orthogonally polarized HE11 modes9. As a consequence,

single-mode fibers are not really single mode but support two distinct HE11 polarization

modes, which do not travel at the same velocity (see Fig. 2.4). They are referred to as

fast and slow modes (or Principal States of Polarization, PSP). This feature of the fiber is

called birefringence [33], [34]. Birefringence is difficult to characterize for the whole fiber

because stress, bending, vibration and temperature make the refractive index difference as

well as the PSP evolve in time and along the fiber. However, it is possible to derive two

coupled equations describing the local propagation of the orthogonal modes (see section 2.4

and [35]). These equations will be used to investigate the propagation of optical signals in

birefringent, nonlinear (χ(3) 6= 0) fibers.

Although the arrival delay between 10 the slow and fast mode can be a major source of

degradation in high-bit rate transmission systems (40 Gbit/s and higher), PMD and other

polarization-dependent effects like polarization-dependent loss (PDL) will not be consid-

ered in this work. Extensive studies on the impact of polarization effects in optical-fiber

transmission system are available in [36] and [37] .
9These modes are indistinguishable in a ideal fiber and are called degenerate modes, see Eq. (2.11).

10Also called differential group delay (DGD).
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Figure 2.3: Intrinsic (a) and extrinsic (b) mechanisms of fiber birefringence.

Figure 2.4: Pulse splitting due to birefringence.

2.3 Fiber nonlinearities

2.3.1 Origin of nonlinearities

Fiber nonlinearities arise from the nonlinear dependence of the induced polarization
−→
P on

the propagating electrical field
−→
E (see Eq. (2.2)). This dependence is governed by the third-

order susceptibility of silica fibers, χ(3) which has a real, χ
(3)
re , and an imaginary, χ

(3)
im , part.

Similarly to what was done for the first-order susceptibility χ(1) (see Eq. (2.8)), χ
(3)
re can be

related to a refractive index and χ
(3)
im to a loss mechanism. As a consequence, silica fibers

present a signal-dependent refractive index, a phenomenon called Kerr-effect and signal-

dependent loss mechanisms (Raman and Brillouin scattering).

Note: Examples treated in the following sections are limited to linearly co-polarized optical

signals propagating in non-birefringent fibers.
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2.3.2 Kerr-effect

Kerr nonlinearities are characterized by the power-dependent refractive index (for the fun-

damental mode) of the fiber [25]:

n = n0 +
3

8n0
χ(3)

re I = n0 + n2I (2.16)

n2 is the nonlinear-index coefficient11 and I the optical intensity in the fiber. Using

Eq. (2.16) in Eq. (2.8) and Eq. (2.6) and assuming that n2 can be treated as a small pertur-

bation to n0, the modified phase propagation constant accounting for the Kerr-effect [25]

becomes:

β′ = β + γP (2.17)

where β is the propagation constant in the linear case, P (t) = |E(t)|2 the optical power and

γ the fiber nonlinear coefficient defined as:

γ =
n2ω

cAeff
(2.18)

with Aeff the fiber effective area:

Aeff =

(
∫ +∞∫
−∞

|F (x, y)|2dxdy

)2

∫ +∞∫
−∞

|F (x, y)|4dxdy

(2.19)

Depending on whether the intensity fluctuations are caused by the channel itself, by one

or several neighboring channels, one distinguishes between self-phase modulation (SPM),

cross-phase modulation (XPM) or four-wave mixing (FWM).
11n2 ≈ 3× 10−20m2/W for silica fibers.
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Self-phase modulation (SPM)

SPM gives rise to a time-dependent phase modulation of the optical signal leading to spectral

broadening. Neglecting GVD and loss and noting P (t) the pulse power, L the fiber length,

the SPM-induced phase shift approximated as:

∆ϕSPM = −γP (t)L (2.20)

In presence of GVD, SPM leads to amplitude distortions because chromatic dispersion

converts the nonlinear phase shift into amplitude variations. In Soliton transmission systems

[36], [38], this nonlinear chirp is used to balance the effects of chromatic dispersion. A

major drawback of Soliton systems is that they require careful dispersion management,

especially at high-bit-rates. Moreover, they are very complex to realize in a multi-channel

configuration [3], and are thus rarely used for high-capacity transmission systems.

Cross-phase modulation (XPM)

In XPM, the modulation of the fiber refractive index is caused by power variations of adja-

cent channels. Similarly to SPM, XPM-induced phase modulations are partially converted

to intensity distortions of the optical signal by chromatic dispersion. XPM-interaction be-

tween two channels can be characterized by the walk-off parameter, d:

d =
1

vg1
− 1

vg2
= D∆λ (2.21)

with vg1 and vg2 the group velocities of the two interacting channels and ∆λ the channel

spacing. Since XPM occurs only when pulses overlap, it is reduced in general with increased

dispersion or channel spacing (so that channels propagate faster through each-other).
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Four wave mixing (FWM)

FWM describes a process in which three frequency components (fi, fj , fk) interact through

the medium to generate new spectral components at the frequencies [25]:

fijk = fi + fj − fk (2.22)

Since i, j, k are interchangeable, nine12 new spectral components are generated. SPM (i =

j = k) and XPM (i 6= j = k and ik 6= j) are special cases of FWM. For transmission over a

single fiber, the power of the generated spectral component is [39]:

Pijk = η(γLD/2)2PiPjPk (2.23)

where Pi is the input power of the spectral component fi and D is a degeneracy factor which

amounts 1,3 or 6 depending on whether 3, 2 or none of the interacting spectral components

are equal. η is the FWM efficiency, [39]:

η =
α2

α2 + ∆β2

(
1 +

4 exp (−αL) sin (∆βL/2)
(1− exp (−αL))2

)
(2.24)

with ∆β = βijk + βk − βj − βi the phase matching coefficient. Neglecting the second order

GVD (β3 = 0), ∆β is given with respect to the fiber dispersion:

∆β(ω) ≈ −(ωi − ωk)(ωj − ωk)β2(ω0) (2.25)

FWM is a major limitation in DWDM transmission systems [40] leading to amplitude and

phase jitter in the optical signal. A general treatment of FWM including polarization effects

can be found in [41].
12Assuming fi, fj and fk are different.
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2.3.3 Stimulated light scattering

Contrary to the Kerr-effect, the medium plays an active role in Raman (SRS) and Brillouin

(SBS) scattering [3]. These effects can be understood as the scattering of a photon to a

lower energy photon13. The energy difference appears in the form of an optical phonon [3]

in SRS and an acoustic phonon in SBS.

In a WDM transmission system, SRS can couple different channels, leading to the depletion

of the shorter wavelength channel, while the longer wavelength channel is amplified. For

silica fibers, the maximum power transfer occurs for a frequency difference around 12 THz.

This effect is used for optical amplification in Raman-amplifiers [42]. SBS and SRS present

a threshold behaviour14 but in contrast to SRS, the SBS threshold is hardly reached in

common optical transmission systems15. Conversely, SRS is likely to happen in wide-band

WDM transmission systems. However, it has been shown [43–45] that Kerr-effect affects

the performance of common optical transmission systems more than SRS (indeed, the tilt

in spectrum due to Raman pumping has to be compensated but pattern effects affecting the

ones level can be neglected as a consequence of the short walk-off length between interacting

channels). As a consequence, SRS-and SBS-induced limitations are not considered in this

work.

2.4 Generalized nonlinear Schrödinger equation

In Silica-based fibers, the nonlinear-index coefficient n2I is usually much smaller16 than

the linear part of the refractive index n0. Consecutively, n2I can be treated as a small

perturbation to n0. For a single polarization, the solution for Eq. (2.6) (with the modified

dielectric constant, ε = (n0 + n2I + iαc/2ω)2) has the form:

E(t, z) = F (x, y)A(t)e(−iω0t) exp (iβz) (2.26)
13Resulting in a loss for the considered spectral component.
14I.e. do not happen until a certain power level has been reached.
155− 10mW are required within the SBS gain bandwidth (∼ 100MHz) [25].
16Even at high power levels.
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Where A is the slowly varying envelope of the electrical field (i.e. the modulated part of

the signal, which is of interest in optical communication systems) and β the propagation

constant to be determined. Neglecting β3 against β2 and SRS and SBS against Kerr-effect,

we find from Eq. (2.26) and Eq. (2.6) that A(t) verifies the following equation:

∂A

∂z
+ β1

∂A

∂t
+

i

2
β2

∂2A

∂t2
+

α

2
A = iγ|A|2A (2.27)

By making the transformation T = t− z/vg, Eq. (2.27) can be re-written in frame moving

at the group velocity (vg):

∂A

∂z
+

i

2
β2

∂2A

∂T 2
+

α

2
A = iγ|A|2A (2.28)

Eq. (2.28) is known as the Nonlinear Schrödinger Equation (NLSE), which is commonly

used to describe the propagation of a single polarization state in optical fibers. The case of

birefringent fibers is more complicated since the propagation of one mode is affected by the

other through fiber nonlinearities. A derivation of the equations governing evolution of the

two polarization components is derived in [25] for linearly birefringent fibers:

∂Ax

∂z
+

i

2
β2

∂2Ax

∂T 2
+

α

2
Ax = iγ

(
|Ax|2 +

2
3
|Ay|2

)
Ax +

iγ

3
Ax

∗Ay
2 exp (−2i∆βz) (2.29)

where Ax and Ay are the complex amplitudes of the slowly varying electrical fields of

the polarization components and ∆β = βx − βy the wave vector mismatch due to modal

birefringence (see section 2.2.4). The last term can be neglected when the beat-length

(LB = 2π/∆β) is much smaller than the propagation distance, more exactly LB has to

be smaller than the fiber effective length Leff (see next section). The solution for Ay is

obtained from Eq. (2.29) by inverting Ax and Ay. For elliptically birefringent fibers17, this

equation becomes [35]:

∂Ax

∂z
+

i

2
β2

∂2Ax

∂T 2
+

α

2
Ax = iγ(|Ax|2 + B|Ay|2)Ax (2.30)

17PSPs vary along the fiber.

19



where B is a factor depending on the relative disposition of the polarization of incoming

light with the PSP. Propagation in randomly birefringent fibers can be described by setting

B = 8/9 [46], [47].

2.5 Fiber parameters

The following scale lengths can be very helpful to characterize the pulse evolution over a

single optical fiber and to give insight into the dominant system limitations.

Effective fiber length, Leff

The effective length is the length of a loss-less fiber causing the same nonlinear impact as

a lossy fiber of length L and attenuation coefficient α:

Leff =

L∫

0

exp (−αz)dz =
1− exp (−αL)

α
(2.31)

For example 80km of standard single-mode Fiber (SSMF with α = 0.2dB/km [3]) corre-

spond to an effective length of about 20km.

Dispersion length, LD

The dispersion length defines the distance over which a chirp-free Gaussian pulse (A(t) ∼
exp−(T/T0)2) broadens by a factor of

√
2 due to chromatic dispersion [3]:

LD =
T 2

0

|β2| (2.32)

with T0 a measure of the pulse width (typically the half width at 1/e intensity point).
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Nonlinear length, LNL

The nonlinear length defines the distance over which the phase change due to Kerr nonlin-

earities becomes one radian18 [3]:

LNL =
1

γP0
(2.33)

with P0 the pulse peak power.

Insight into pulse propagation regimes

The above defined parameters enable us to distinguish between different propagation regimes:

� L ¿ LNL and L ¿ LD: The fiber length is much shorter than the dispersion and nonlin-

ear length so that neither GVD nor Kerr-effect affect the signal.

� L ¿ LNL and L > LD: Pulse evolution is governed by dispersion. Nonlinearities can be

neglected.

� L > LNL and L ¿ LD: Pulse evolution is governed by nonlinear effects.

� L > LNL and L > LD: Dispersion and nonlinearities act together. Transmission perfor-

mance is limited by dispersion-nonlinearities interplay.

18Fiber loss is neglected.
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Chapter 3

Nonlinearities in Fiber-Optic

Transmission Systems

The aim of this chapter is to provide a comprehensive understanding of fiber nonlineari-

ties and a simple characterization of their impact on the transmitted signal. An analytical

method to characterize fiber nonlinearities in dispersion-managed transmission systems is

presented. Finally, we introduce the concept of the nonlinear diffusion bandwidth, a sim-

ple metric for understanding and predicting nonlinear degradation in single-channel and

Wavelength-Division Multiplexed (WDM) transmission systems.

3.1 Frequency domain analysis

3.1.1 Motivation

The nonlinear Schrödinger equation (NLSE) as given in Eq. (2.28) can not be solved ana-

lytically for the case of an arbitrary signal launched into the fiber (an analytical solution

only exists for Soliton transmission). Therefore, a numerical approach1 is often necessary

to predict the signal evolution along the fiber. Unfortunately, simulations involving a high

number of channels are prohibitively time consuming and do not provide any general guide-
1See appendix A

22



line for the design of high-capacity transmission systems. For that reason, an alternative to

numerical simulation is necessary.

As we will show in the following, linear propagation (i.e. loss and dispersion) is described

by a simple attenuation and phase rotation in the frequency domain. It follows from that,

that the impact of Kerr nonlinearities can be described by a single additional term, a key

simplification in our analysis.

3.1.2 Methodology

The NLSE can be expressed in the frequency domain by taking the Fourier-transform 2 of

its time-domain counterpart (see Eq. (2.28)):

∂Ã(ω, z)
∂z

=
i

2
ω2β2Ã(ω, z)− α

2
Ã(ω, z)

+iγ

∫ ∫
Ã(ω1, z)Ã(ω2, z)Ã∗(ω − ω1 + ω2, z)dω1dω2 (3.1)

In the frequency domain, loss and chromatic dispersion are described by a simple attenuation

and a phase rotation. Setting Ã(ω, z) = Ũ(ω, z)e(
−α+iβ2ω2

2
)z so that Ũ(ω, z) is independent

of distance for linear transmission and is only affected by fiber nonlinearities, Eq. (3.1)

becomes:

∂Ũ(ω, z)
∂z

= iγ

∫ ∫
exp (−αz − iβ2∆Ωz)

×Ũ(ω1, z)Ũ(ω2, z)Ũ∗(ω − ω1 + ω2, z)dω1dω2 (3.2)

with ∆Ω = (ω − ω1)(ω − ω2).

Volterra Series

The NLSE (and its frequency counterpart, Eq. 3.2) are characteristic of nonlinear systems

with memory. In the frequency domain, linear systems with memory are described by

the following relationship between the Fourier-transform of the input signal X̃(ω) and the
2F (ω) =

R∞
−∞ f(d) exp−iωtdt
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Fourier-transform of the output signal Ỹ (ω):

Ỹ (ω) = H(ω)X̃(ω) (3.3)

with H(ω, z) the transfer function of the system. Similarly, a memoryless nonlinear system

can be described by an expansion in Taylor series:

Ỹ (ω) =
∞∑

n=1

anX̃(ω1)X̃(ω2)...X̃(ωn)X̃(ω − ω1...ωn) (3.4)

with an the Taylor series coefficients. Expansion in Volterra Series Transfer Function

(VSTF) [48, 49], combines these two approaches. In the frequency domain a VSTF is

obtained as:

Ỹ (ω) =
∑∞

n=1

∫
· ·

∫
Hn(ω1, ..., ωn−1, ω − ω1 − ...− ωn−1)

×X̃(ω1)...X̃(ωn−1)

×X̃(ω − ω1 − ...− ωn−1)dω1 · · · dωn−1 (3.5)

where Hn(ω1, ..., ωn) is the nth-order frequency domain Volterra kernel. The VSTF related

to Eq. (3.2) is then:

Ũ(ω, z) = H1(ω, z)Ũ(ω)

+
∫ ∫

H3(ω1, ω2, ω − ω1 + ω2, z)Ũ(ω1)Ũ∗(ω2)Ũ(ω − ω1 + ω2)dω1dω2

+
∫ ∫ ∫ ∫

H5(ω1, · · ·, ω4, ω − ω1 + ω2 − ω3 + ω4, z)

×Ũ(ω1)Ũ∗(ω2)Ũ(ω3)Ũ∗(ω4)Ũ(ω − ω1 + ω2 − ω3 + ω4)dω1dω2dω3dω4

+ · ·· (3.6)

where Ũ(ω) stands for Ũ(ω, z = 0). Note that Ũ(ω) is equal to Ã(ω). In Eq. (3.6) all

even order kernels are set to zero due to the absence of even order nonlinearities in silica

fibers (see section 2.1). The above VSTF can be evaluated numerically to predict system
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performance. Results obtained by retaining only the 3 or 5 first order terms were shown to

be at least as good as the ones obtained with the SSF method with regard to the accuracy

of the results and computation time [23], [50].

Perturbation approach

In Eq. (3.6), H1 is the operator for linear propagation and H3 is related to the ”first order

nonlinearities” (generated by the linear evolution, H1Ã, of the signal). Higher order terms

represent nonlinear interferences between H1Ã and already generated nonlinear spectral

components (H3,H5, · · ·). Exact solution of the NLSE is obtained for n → ∞. However,

when nonlinear effects are small compared to the signal, [19], higher order terms can be

neglected so that the Volterra series expansion can be truncated after H3. The derivative

over z of Eq. (3.6) truncated after H3 is:

∂Ũ(ω, z)
∂z

=
∂H1(ω, z)

∂z
Ũ(ω) +

∫ ∫
∂H3(ω1, ω2, ω, z)

∂z
Ũ(ω1)Ũ(ω2)Ũ∗(ω − ω1 + ω2)dω1dω2 (3.7)

so that H1 is then easily obtained by identifying the first order terms of Eq. (3.1) and

Eq. (3.7):
∂H1(ω, z)

∂z
= 0 ⇒ H1(ω, z) = C1(ω) (3.8)

Similarly, one obtains for H3:

∂H3(ω1, ω2, ω, z)
∂z

= iγ exp (− (α + i∆Ωβ2) z) ⇒

H3(ω1, ω2, ω, z) =
∫ z

0
iγ exp

(− (α + i∆Ωβ2) z′
)
dz′ + C2 (3.9)

C2 is set to 0 so that boundary condition for z = 0 is verified. Constant C1(ω) ensures

energy conservation so that:

∫
|U(ω, L)|2dω =

∫ ∣∣∣∣C1(ω)U(ω) +
∫ ∫

H3 · · · dω1dω2

∣∣∣∣
2

dω (3.10)
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For weak nonlinearities, we can assume C1(ω) ≈ 1 (see (3.6)). The signal after propagation

over a single fiber of length L is obtained by integrating Eq. (3.7) over z:

Ũ(ω,L) = Ũ(ω)+
∫ ∫ (∫ L

0
iγ exp (−(α + i∆Ωβ2)z)dz

)

×Ũ(ω1)Ũω2)Ũ∗(ω − ω1 + ω2)dω1dω2

= Ũ(ω)+ δNL(ω, L) (3.11)

This last result notably simplifies the considered problem, since it reduces the description

of the signal propagation in optical fibers to an additional term, δNL(ω, L), representing

the impact of fiber nonlinearities on the transmitted signal.

3.1.3 General analytical expression for the nonlinear perturbation

The above results have been derived for the case of a transmission over a single optical fiber.

The case of real transmission systems is more complex to describe because transmission

lines usually consist of many sections, each comprising a transmission fiber and one or

several optical amplifiers and dispersion compensation modules to compensate (totally or

partially) for loss and chromatic dispersion accumulated in the line. In this configuration,

the definition for H3 proposed in Eq. (3.9) has to be reviewed since neither α nor β2 are

constant over z. For that reason, it is much more convenient to consider the gain and

dispersion profiles, G(z) and D(z), of the transmission line rather than α and β2 for the

case of a signal propagating over a complex transmission line. G(z) and D(z) are defined

as follows (see Fig. 3.1):

∂G(z)
∂z

= −α(z) + g(z) +
∑

i

giδi(z − zi) (3.12)

∂D(z)
∂z

= β2(z) +
∑

j

djδ(z − zj) (3.13)

with g(z) accounting for distributed amplification (e.g. Distributed Raman Amplification).

gi is the gain of the bulked amplifiers and δ(z) the Dirac function so that giδi(z−zi) describes
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Figure 3.1: Example of gain, G(z), and dispersion, D(z), profiles in transmission lines: Amplifica-
tion maps with EDFAs (a) and forward and backward Raman pumping (b). Dispersion maps with
(c) or without (d) bulked dispersion compensation.

the effect of the ith lumped amplifier (at position zi). Identically djδi(z − zj) accounts for

the jth bulk dispersion-compensation module. H3(ω1, ω2, ω, z) can be re-expressed as a

function of G(z) and D(z):

H3(∆Ω, z) =
∫ z

0
iγ exp

(
G(z′)− i∆ΩD(z′)

)
dz′ (3.14)

This result is of particular interest for our study, since it allows us to consider the impact

of the amplification and dispersion map on the fiber nonlinearities.

3.1.4 Validity domain

Nonlinear interferences between amplifier noise and signal (Gordon-Mollenauer effect [51])

are not taken into account by the present approach. Usually, they can be neglected for

non-Soliton systems if the amplifier noise is weak. Raman and Brillouin scattering were

also neglected for the reason that we expect the Kerr-effect to be the major source of non-

linear impairments. Although this perturbation approach may be limited to relatively small

nonlinearities, it should yield reliable results within its validity domain and provide reliable

trends concerning the impact of transmission line design on Kerr-induced impairments.

27



3.2 Nonlinear characterization of the transmission line

A closed-form solution for the nonlinear Schrödinger equation for arbitrary signal and trans-

mission line has been reported in Eq. (3.11). This solution is given as the sum of the solution

for linear transmission and a perturbation term representing nonlinear effects. After loss

and dispersion compensation, the transmitted signal is described by:

Ã(ω, L) = Ã(ω) + δOA(ω, L) + δNL(ω,L) (3.15)

where Ã(ω) is the Fourier-transform of A(t, z = 0), the slowly varying (compared to the

light frequency) envelope of the electrical field. δOA(ω, L) accounts for the noise generated

during optical amplification3 and δNL(ω, L) is a small perturbative term describing the

impact of fiber nonlinearities on the signal:

δNL(ω,L) = i

∫ ∫
η︷ ︸︸ ︷(∫ L

0
γ(z)e(G(z)−i∆ΩD(z))dz

)

× Ã(ω1)Ã(ω2)Ã∗(ω − ω1 + ω2)︸ ︷︷ ︸
S̃

dω1dω2

= i

∫ ∫
η(∆Ω)S̃(ω, ω1, ω2)dω1dω2 (3.16)

G(z) and D(z), defined in Eq. (3.13), represent the gain and dispersion profiles of the trans-

mission line: G(z) accounts on the one hand for fiber loss and on the other hand for lumped

or distributed optical amplification. D(z) is the dispersion accumulated by the signal in the

transmission line and γ(z) takes the values of the fibers’ nonlinear coefficients. The condi-

tion for this closed form to be valid is |δNL(ω, L)| ¿ |A(ω)|, i.e. for weak nonlinearities.

3.2.1 Nonlinear transfer function of the transmission line

In Eq. (3.16) fiber and signal contributions are clearly separated so that the nonlinear char-

acteristics of the transmission line can be determined independently of the propagating
3Amplified Spontaneous Emission (ASE) [9].
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signal. In the following, we refer to η(∆Ω) as the nonlinear transfer function of the trans-

mission line.

Single-fiber transmission

For single-fiber transmission, the dispersion and gain profiles are given as:

G(z) = −αz +
∫ z

0
g(z′)dz′ (3.17)

D(z) = D0 + β2z (3.18)

where α and β2 are the loss and dispersion parameter of the transmission fiber, D0 is

the amount of pre-compensation and g(z) describes the gain of a distributed optical am-

plification. In most common systems, lumped amplifiers like EDFAs are used for optical

amplification and g(z) = 0. In that simple case, the nonlinear transfer function of the

transmission line is easily derived from Eq. (3.16):

η(∆Ω) = −γ

(
1− e(−α−i∆Ωβ2)L

α + i∆Ωβ2

)
e−i∆ΩD0 (3.19)

For e−(αL) << 1, i.e. when the fiber length is much larger than its effective length Leff ,

the nonlinear transfer function can be approximated by:

η(∆Ω) ≈ − γ

α

√
1 +

(
∆Ωβ2

α

)2
e−i(∆ΩD0+ϕ(∆Ω)) (3.20)

with

ϕ(∆Ω) = atan(∆Ωβ2/α) (3.21)

Besides EDFAs, another way to compensate for fiber loss is to distribute the optical amplifi-

cation along the fiber. Recently intensively investigated Raman amplifiers [10,11] represent

a good opportunity for the realization of distributed amplification, which is of particular in-

terest for the reduction of nonlinearities [12,52] (see also the impact of Raman amplification
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Figure 3.2: Gain profiles (-16dB) over 80 km SSMF and normalized nonlinear transfer function
η (according to Eq. (3.16)) for the case of lumped (EDFA) and distributed amplification (forward
and backward Raman pumping). For Raman amplification, gr,b=0.8 /W/m and Po = 100 mW.
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on the magnitude of the nonlinear transfer function in Fig. 3.2). In Raman amplification,

optical channels are amplified by a pump signal at shorter wavelength. This technique makes

use of the Raman scattering process occurring in silica-fiber (see section 2.3.3). When the

pump depletion can be neglected4, g(z) is given as [3]:

g(z) = grfP0e
−αz (3.22)

g(z) = grbP0e
−α(L−z) (3.23)

grf and grb are the gains for forward and backward Raman pumping and P0 the input

power of the pump laser. In that case, there is no simple analytical expression for η(∆Ω),

which has to be assessed numerically (see Fig. 3.2). Because EDFA is considered as the

state-of-the-art technology for optical amplification, this work mainly focuses on systems

with lumped amplification (i.e. g(z) = 0). However, the concepts presented so far and those

to be introduced can be easily extended to the case of distributed amplification.
4I.e. for small signal amplification.
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Multi-span transmission

In real transmission systems, the optical signal is usually amplified every 50-100km and

the dispersion compensation is often performed in line5 to avoid large signal distortion

(especially before amplification). In order to account for these complex amplification and

dispersion schemes, η has to be derived for n consecutive fiber-sections:

η(∆Ω) =
n∑

j=1

∫ Lj

0
γje

(Gj−αjz−i[∆Ω(Dj+β2,jz)])dz =
n∑

j=1

ηj(∆Ω) (3.24)

where Gj and Dj are the signal accumulated gain and dispersion at the input of the jth

fiber-section. It is helpful to describe the transmission line as a concatenation of spans

rather than as a concatenation of fiber-sections. We refer to span as a basic building-block

of a transmission line. It may comprise several fiber-sections and optical amplifiers so that

loss and chromatic dispersion compensation are (totally or partially) performed in the span

(see Fig. 3.3). For N spans, the nonlinear transfer function of the transmission line can be

rewritten as:

η(∆Ω) =
N∑

k=1

ηs,k(∆Ω)e(Gs,k−i∆ΩDs,k) (3.25)

where ηs,k, Ds,k and Gs,k are now related to the spans and not to the fiber-sections. ηs,k is the

nonlinear transfer function of the kth span taken taken individually. For a transmission line

consisting of N identical spans (ηs,k = ηs,l) performing full loss and dispersion compensation

(i.e. Ds,j = Ds,k = D0 and Gs,j = Gs,j = G0 set arbitrarily to G0 = 0), the nonlinear

transfer function is given by:

η(∆Ω) = Nηs(∆Ω)e−i(∆ΩD0) (3.26)

where ηs is the span nonlinear transfer function and D0 the amount of pre-compensation

performed at the transmitter side. When dispersion is not totally compensated within the
5I.e. not at the transmitter or receiver side, but within the transmission line by means of optical fibers

exhibiting appropriate chromatic dispersion.
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Figure 3.3: Schematic of a transmission line: Each span comprises transmission fibers, optical
amplifiers (OA) and dispersion compensating fibers (DCF). Additional DCF can be used for pre-
and post dispersion compensation.

spans, Ds,k = D0 + (k − 1)Dres, where Dres is the amount of residual dispersion per span

in ps2. In that case, the nonlinear transfer function becomes:

η(∆Ω) = ηs(∆Ω)e−i(∆ΩD0)

�
1−e(i∆ΩNDres)

1−e(i∆ΩDres)

�
︷ ︸︸ ︷
N∑

k=1

e−i(∆Ω(k−1)Dres)

= |ηs(∆Ω)|sin (N∆ΩDres/2)
sin (∆ΩDres/2)

e−i(( 1
2
(N−1)Dres+D0)∆Ω+ϕs(∆Ω)) (3.27)

with ϕs defined as in Eq. (3.21). Eq. (3.26) and Eq. (3.27) provide useful information re-

garding the influence of the dispersion map on nonlinear effects: They show (see Fig. 3.4)

that introducing a certain amount of residual dispersion per span modifies the nonlinear

transfer function and consequently the nonlinear perturbation.

3.2.2 A simple metric: the nonlinear diffusion bandwidth

In this section, the concept of the nonlinear diffusion bandwidth is introduced. It is a

simple metric for the characterization of the nonlinear transfer function, that simplifies the

description of fiber nonlinearities and offers useful insight into the impact of the dispersion

map on nonlinear effects.

32



0 10 20 30 40
−30

−20

−10

0

10

∆ F [GHz]

|η
|²

/|η
s(0

)|
² 

[d
B

]

N=1
N=2
N=3

0 10 20 30 40
−30

−20

−10

0

10

∆ F [GHz]

|η
|²

/|η
s(0

)|
² 

[d
B

]

N=1
N=2
N=3

D
res

=0 D
res

= (10 km)x(17 ps/nm−km) 
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span consists of an EDFA followed by 80 km of SSMF and a linear dispersion compensating module(

∆F =
√
|∆Ω|
4π2

)
.

Single-fiber transmission

Setting f3dB = 1
2π

√
α
|β2| and fd =

√
α

4π|β2| , the magnitude of the nonlinear transfer function

for single-fiber transmission (with lumped optical amplification) reported in Eq. (3.20) can

be rewritten as follows:

|η(∆Ω)| = ηo√
1 +

(
∆Ω

4π2f2
3dB

)2
=

ηo√
1 +

(
∆Ω
4πf2

d

)2
(3.28)

with ηo = γ/α. Thus, |η(∆Ω)|2 is reduced by a factor of 2 for |∆Ω| = (ω − ω1)(ω − ω2) =

4π2f2
3dB. Identically, |η(∆Ω)|2 is reduced by about a factor of 10 when |∆Ω| = 4π2f2

d . |η|
is maximized when the phase-matching condition (∆Ω = 0) is verified. This maximum is

equal to ηo. Since fd and f3dB are scalable, they can be used indifferently. In the following,

we opt for fd, which is referred to as nonlinear diffusion6 bandwidth. fd is a powerful

metric, because it fully characterizes the magnitude of the nonlinear transfer function for

single-fiber transmission.
6Fiber Kerr effect can be described by analogy with a diffusion process (see Fig3.9). In fact, the nonlinear

impact of a given spectral component is restricted to a 2-dimensional frequency space (see Fig. 3.5) delimited
by fd (analog to a diffusion length). The nonlinear interactions occurring within this space are responsible
for the main nonlinear perturbations.
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Multi-span transmission

For complex transmission links, η and fd have to be evaluated numerically. However,

a simple analytical expression for η has been derived in Eq. (3.27) for transmission lines

consisting of N identical spans. When chromatic dispersion is fully compensated within a

span (Dres = 0), the nonlinear transfer function is simply characterized by ηo = Nηo,s and

fd = fd,s, where ηo,s and fd,s are related to the nonlinear transfer function of the span (ηs).

When Dres 6= 0, destructive interferences take place at ∆ΩDres = k2π/N so that η can

not be fully characterized by fd and ηo any more. However, it is possible to approximately

describe a multi-span transmission link with an equivalent single-fiber model having the

following equivalent nonlinear transfer function (ηeq) giving rise to the same amount of

nonlinear power WNL as η for the case of an AWGN propagating in the line (see Eq. (3.44)):

|ηeq(∆Ω)| = Nηo,s√
1 +

(
∆Ω

4πf2
d,eq

)2
(3.29)
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Figure 3.6: |η(∆Ω)|2 and |ηeq(∆Ω)|2 for different transmission lines with identical transmission
fiber. Each span consists of an EDFA followed by 80km SSMF and a ideal (linear) dispersion

compensating module. ∆F =
√
|∆Ω|
4π2 . Note that the accumulated dispersion Dres is indicated in

ps/nm and not in ps2.

with fd,eq the equivalent nonlinear diffusion bandwidth of the transmission line, which is

well approximated by the following formula7:

fd,eq ≈ 1√
1

f2
d,s

+ 2π(N − 1)|Dres|
(3.30)

fd,eq depends on the span architecture, fd,s, on the number of spans, N , as well as on

the residual dispersion in the transmission line, Dres. As illustrated in Fig. 3.6, |ηeq| is a

relatively good approximation for |η|.
7See appendix B.
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3.2.3 Equivalent single-span model

Not only the magnitude |η| but also the phase arg(η) of the nonlinear transfer function can

be approximated. In the range ∆Ω ≤ f2
d,eq (i.e. where the nonlinear interactions are the

strongest) the phase of the expression reported in Eq. (3.27) can re-written as follows (see

3.7):

arg(η) ≈ e
−i
��

1
2
(N−1)Dres+D0+

β2
α

�
∆Ω
�

ei(( 1
4π (Sign(β2)/f2

d,eq−4πD0))∆Ω) (3.31)

Eq. (3.31) shows 8 that arg(η) can be characterized by fd,eq and D0. That leads to two key

results:

� Transmission lines having identical nonlinear diffusion bandwidth fd,eq and pre-compensation

D0 have similar nonlinear transfer functions (in phase and amplitude) and thus should lead

to similar nonlinear degradations9.

� The nonlinear transfer function of any multi-span transmission line with nonlinear diffu-

sion bandwidth fd,eq can be approximated by the one of a single span with fd = fd,eq and

having the same pre-compensation D0 as depicted in Fig. 3.8.

To conclude, transmission lines having comparable nonlinear diffusion bandwidth and pre-

compensation also have similar nonlinear transfer functions. Thus, we expect similar non-

linear degradations in these transmission lines. These important issues are addressed in the

following sections.

3.3 Nonlinear impairments

3.3.1 Noise loading analysis

The noise loading analysis [53], [54] is a simple method to characterize the nonlinear nature

of a system. It consists in looking at the systems response to an additive white gaussian
8In the above expression, it is assumed that Dres has the same sign as β2, i.e. that no over compensation

per span is considered.
9Assuming they have identical values for ηo
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noise [55] (AWGN). This approach is particularly interesting in the present case, because

it allows an analytical treatment of fiber nonlinearities. Noting P the power (in Watt),

Bopt the bandwidth (in Hz) and W = P/Bopt the power spectral density of the transmitted

noise (see Fig. 3.9), the power spectral density of the nonlinear perturbation at the central
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Figure 3.9: Power spectral density of the transmitted AWGN and of the generated nonlinear
perturbation.

frequency component (f = 0) is derived from Eq. (3.16) as follows10:

WNL(f = 0) =
〈
2π |δNL(ω = 0)|2

〉

=

〈
2π

∣∣∣∣∣
∫ πBopt

−πBopt

∫ πBopt

−πBopt

η(∆Ω)S(0, ω1, ω2)dω1dω2

∣∣∣∣∣
2〉

= 2π

∫ πBopt

−πBopt

∫ πBopt

−πBopt

|η(∆Ω)S(0, ω1, ω2)|2dω1dω2

≈ 2f2
dW 3η2

o ln

(
1 +

π

4
B2

opt

f2
d

)
(3.32)

The above result is valid for Bopt À fd. When Bopt ≤ fd, it comes:

WNL(f = 0) ≈ 3
4
W 3B2

optη
2
0 (3.33)

In that simple case, the knowledge of fd and ηo is sufficient to characterize completely the

impact of the transmission line on the nonlinear perturbation. The above formulas hold for

other frequency components (f 6= 0) as long as they remain far away from the edges of the

signal spectrum.

This approach provides useful information regarding the nonlinear perturbation, δNL, gen-

erated by Kerr effect. In fact, Eq. (3.32) and Eq. (3.33) can be extended to the case of

multi-span transmission systems by substituting ηo by Nηo,s and fd by fd,eq.

10See appendix C for details.
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3.3.2 Evaluation criteria

OSNR

Signal to Noise Ratio (SNR) is a common criterion to assess the quality of a communication

channel [55]. It is defined as the (average) ratio of the power of the useful signal (i.e. the

one containing information) to the power of noise signals. In optical communications, the

Optical Signal to Noise Ratio (OSNR) is defined with regard to the noise generated in

EDFAs during optical amplification (amplified spontaneous emission or ASE):

OSNR =
Pch

WASE∆B
(3.34)

where Pch is the average channel power, WASE the power spectral densities of ASE and

∆B the noise equivalent bandwidth typically set to 0.1nm (12.5GHz), [56]. Usually, both

polarizations are considered for the OSNR. However -and at the notable exception of section

4.2.2- this study is restricted to a single polarization for signal and noise. Since Eq. (3.34)

does not account for nonlinear impairments, we propose the following definition for the

OSNR:

OSNRnl =
Pch −BchWNL

PASE + BchWNL
(3.35)

with Pch and Bch the channel power and occupied optical bandwidth and BchWNL = PNL

the power of the nonlinear perturbations (see Eq. (3.32)). The minus term in the numerator

ensures energy conservation. The above definition is of great value because it leads to

the theoretical maximum achievable capacity11 of an optical transmission system according

to the well-known Shannon theorem [57]. However, for this theorem to be valid, the noise

term has to be Gaussian [58]. ASE noise already verifies this condition (before tight filtering

and direct detection). If the transmitted signal consists of a large number of uncorrelated

(independent) channels, nonlinear noise can also be considered as Gaussian12 so that the

Shannon theorem is applicable.
11See section 5.3.
12See Appendix D.
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Q factor

The Q factor is a useful criterion for the performance evaluation of optical transmission

systems because it enables rapid assessment of the Bit-Error Rate (BER), [3], [59], [60]. It

is obtained in electrical domain (i.e. after signal detection) as follows:

Q =
|µ1 − µ0|
σ1 + σ0

(3.36)

where µ1, µ0 and σ1, σ0 are the means and standard deviations of marks and zeros respec-

tively. The Q-factor definition presented in Eq. (3.36) has a limited validity and becomes

incorrect [61] if excessive pattern effects are present in a bit stream. Because OSNR is not

always convenient to assess system performance, analytical formulas have been derived for

OOK signals to convert OSNR in Q factor, [62], [63]:

Q ≈ 2OSNR
√

pM√
1 + 4OSNR + 1

(3.37)

where p = 1, 2 depending if one or two polarizations for the noise are considered. M =

TBF with T the bit-period and BF the bandwidth of the optical filter. In Eq. (3.37), the

channel spacing (∆ch) is assumed large enough so that linear cross-talks can be neglected

(BF > ∆ch).

In order to account for the system specific features (modulation format, optical and electrical

filters, etc), an ”OSNR-Q factor conversion table” can be computed for each investigated

system with numerical simulation. By doing this, the analytical expression for the OSNR

reported in Eq. (3.35) can be turned into Q factor. Indeed, in the limit of very tight optical

filtering, coherent WDM crosstalk [64] can be neglected and the nonlinear perturbation can

be considered equivalent to ASE. In this case, we can obtain numerically this correspondence

table by varying the level of ASE noise at the transmitter in a back-to-back configuration

and by evaluating the OSNR and the related Q factor for a given system.
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OSNR penalty

The present analytical approach also enables the assessment of the OSNR penalty. It is

defined as the difference in OSNR (as defined in Eq. (3.34)) required at the photodiode to

achieve a desired BER (e.g. 10−9) after back-to-back (BTB) and nonlinear transmission.

The BER is evaluated as proposed in [65]. The required OSNR for BTB transmission

is evaluated by means of numerical simulations. Once the maximum allowed power ASE

falling on the photodiode has been determined for back-to-back transmission, the analytical

derivation of the OSNR penalty is straight-forward:

OSNRp ≈ WASE,BTB

WASE,BTB −WNL
(3.38)

where WASE,BTB is the maximal allowed power spectral density (PSD) of the ASE to obtain

the desired BER in linear transmission and WNL the PSD of the nonlinear noise. For this

approach to be valid, nonlinear and ASE have to be considered roughly equivalent.

3.3.3 Nonlinear impairments in single-channel transmission

The performance of single-channel transmission systems depends on the pulse evolution in

the fiber and particularly on nonlinear interactions with neighboring pulses. Pulse propaga-

tion inside a single-mode fiber is governed by the nonlinear Schrödinger equation (NLSE)(see

section 2.4):
∂A

∂z
+

i

2
β2

∂2A

∂T 2
+

α

2
A = iγ|A|2A (3.39)

with A(T, z) the slowly varying amplitude of the pulse envelope and α, β2 and γ the fiber

loss, dispersion and nonlinear coefficients. In order to make general statements concerning

the transmission, it is convenient to normalize this equation. Noting P0 (|A0|2) the pulse

peak power and B the channel bit-rate13, we can define the following dimensionless variables:
13Note that other temporal characteristic of the initial pulse (for example the pulse full width half maxi-

mum, T0) could be used.
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ξ = zα, τ = TB and a = A√
P0

eαz/2, so that Eq. (3.39) becomes:

i
∂a

∂ξ
= xl

∂2a

∂τ2
− xnle

−ξ|a|2a (3.40)

with xnl = γP0

α and xl = β2B2

2α or equivalently xl = Sign(β2) B2

8πf2
d
. This normalized form

makes the NLSE easier to deal with and gives better insight into pulse propagation, which

can be simply characterized with the values for xl and xnl. It also highlights the fact that

at constant power and for identical modulation format, transmission systems with the same

same ratio B/fd exhibit identical performance with regard to nonlinearities. Finally, this

normalized form of the NLSE can be intuitively extended to multi-span transmission by

replacing fd by fd,eq in the expression for xl.

Propagation regimes

When xnl ¿ 1, Eq. (3.40) describes the classical case of linear propagation. Conversely,

when xnl is not negligible, different propagation regimes can be distinguished depending on

the value of xl:

� For |xl| ¿ 1, chromatic dispersion does not lead to pulse overlap within the fiber effective

length14 and pulse self phase-modulation is the dominant nonlinear effect. This regime is

generally referred to as solitonic regime.

� The case |xl| À 1 corresponds to the pseudo-linear regime [37, 66] where pulses spread

very rapidly, leading to a reduction of nonlinear impairments.

� Otherwise (i.e for |xl| ∼ 1 ), pulses overlap but the pseudo-linear regime is not reached.

Consequently, nonlinear impairments are maximized (this will be explained later with

Fig. 3.11).

3.3.4 Nonlinear impairments in WDM transmission

Contrary to single-channel transmission, more than one parameter is required to charac-

terize the signal in Wavelength-Division Multiplexed (WDM) transmission (e.g. bit-rate,
14see Eq. (2.31).
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number of channels, channel spacing, etc...) and normalizing the NLSE with one of these

parameters can not lead to universal conclusions regarding the propagation regime. In order

to characterize nonlinear impairments, we start from the analytical expression for the small

nonlinear perturbation derived in the preceding section (Eq. (3.16)):

δNL(ω) = i

∫ ∫
η(∆Ω)S̃(ω, ω1, ω2)dω1dω2 (3.41)

where η is the nonlinear transfer function of the transmission line and S̃ is a function of

the input signal only. Since noise results from the random15 fluctuations of the received

signal, the power spectral density WNL(ω) of the nonlinear noise is given as the variance of

δNL(ω):

WNL(ω) =< |δNL(ω)|2 > −| < δNL(ω) > |2 (3.42)

where < . > denotes the mean operator over all realization (in our case the detected bits in

all possible channel configurations).

Continuum model

In the case of WDM signals, a simple analytical expression for WNL is difficult to derive

because of the complexity of the term S̃ in Eq. (3.41). However, it is sometimes possible

(see appendix D) to model the aggregate WDM signal by a Gaussian noise. Under this

assumption, < δNL >= 0 and the following simplifications can be done:

WNL(ω) =

〈∣∣∣∣
∫ ∫

η(∆Ω)S̃(ω, ω1, ω2)dω1dω2

∣∣∣∣
2
〉

=
∫ ∫

|η(∆Ω)|2|S̃(ω, ω1, ω2)|2dω1dω2 (3.43)

For dense WDM systems (DWDM), the transmitted spectrum can be well approximated

with a continuum (Fig. 3.10), and the above integral can be approximated as follows (see
15Indeed deterministic changes (like intra-pulse nonlinear interaction) can not be treated as noise.
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Eq. (3.32)):

WNL(f = 0) ≈ 2f2
d,eqW

3η2
o ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(3.44)

with Bopt the total optical bandwidth of the aggregate WDM signal and W its average

power spectral density given in W/Hz. fd,eq is the equivalent nonlinear diffusion bandwidth

of the transmission line. ηo = |η(0)| is easily obtained from Eq. (3.24). This result is valid

for Bopt >> fd,eq.

Semi-continuum model

In order to describe WDM systems for which frequency gaps between the channels exist, a

semi-continuum rather than a continuum can be used to approximate the signal spectrum

(see Fig. 3.10). This semi-continuum is characterized by the channel occupied bandwidth

Bch, the number of channels Nch and by the channel spacing ∆ch. This semi-continuum

model leads to the following expression (see appendix C) for the amount of nonlinear power,

PNL, falling in the channels:

PNL ≈ 2f2
d,eq

1
ρχ−1

P 3
ch

∆2
ch

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(3.45)

Pch is the channel power, and ρ = Bch/∆ch, the ratio of occupied bandwidth or spectral use

(not to be confused with the spectral efficiency). χ is a measure of the granularity 16 with

regard to the transmission line nonlinear characteristic, fd,eq:

χ =
1

1 + fd,eq

∆ch−Bch

(3.46)

Impact of the system granularity and more generally of the signal distribution in the fre-

quency domain will be discussed in section 4.2.
16χ decreases with the granularity.
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Validity domain

Although WDM signals cannot be strictly considered as noise, they often present char-

acteristics, so that the nonlinear perturbation is roughly equivalent to that generated by

noise. This is the case when the interacting spectral components have random relative

optical phases. This condition is fulfilled when these spectral components belong to differ-

ent wavelength channels (i.e. for inter-channel effects when optical carriers are generated

by independent lasers) or when the accumulated dispersion is large enough, so that their

optical phases evolve rapidly within the fiber effective length (e.g. intra-channel effects

when |xl| À 1). Conversely, intra-pulse interactions can not be properly described by a

noise approach, because of their deterministic nature. For that reason, impairments due to

intra-pulse interactions (e.g. signal distortion due to SPM and FM-AM conversion) can not

be properly described by this approach.

3.3.5 Numerical verification

Numerical simulations reported in this section were realized with the commercially available

tool VPItransmissionMaker� [67], which implements the split-step Fourier algorithm17.

Single-channel transmission

In this section, the analytical predictions concerning the different propagation regimes for

on-off keying signals and their dependence on the normalized parameter B/fd are verified
17See section A.
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by means of numerical simulations. To that aim, amplitude of an ideal laser source is

modulated with a Mach-Zender Interferometer (MZI) by a Pseudo Random Bit Sequence

(PRBS) [68] of 2048 bits. Pulses are assumed Gaussian (with 33% duty-cyle18). OSNR

penalty for a required BER of 10−9 is used as the evaluation criterion.

System without pre-compensation

OSNR penalty is displayed in Fig. 3.11 against B/fd and B/fd,eq for single and multi-span

transmission respectively. In order to cover a wide range of values for B/fd and B/fd,eq,

10, 40 and 160 Gbit/s systems have been considered. For single-span transmission (80 km

SMF, channel input power = 13dBm), fd has been modified by changing the fiber chromatic

dispersion (from 1 to 22 ps/nm-km), whereas for multi-span transmission (10 spans of 80

km, channel input power = 3dBm), the fiber chromatic dispersion has been set to 2,4 and

10 ps/nm-km and fd,eq has been modified by changing the amount of residual dispersion19

per span (from 0 to 160 ps/nm). As expected system performance depends only on the

dimensionless constant B/fd,eq (rather than on B and fd,eq independently). Similar results

have been observed with the help of numerical simulations in [69] and [70], but with the

normalized constant DB2, which is equivalent to B/fd,eq only for the case of single-span20

transmission.

System with pre-compensation

The analysis made in 3.3.3 shows that pulse propagation is identical in systems with same

B/fd and B2D0 (D0 being the amount of pre-compensation). To verify this prediction, the

transmission of a single RZ channel (33% duty-cycle) over a 80 km fiber with ideal (linear and

lossless) pre-compensation is considered. The ration B/fd is varied through the channel bit-

rate (10,40 and 160Gb/s) and the fiber chromatic dispersion. The accumulated dispersion

(included pre-compensation) is compensated at the receiver. The results displayed in 3.12
18The duty-cycle is the ratio of the pulse full width at half maximum over the bit duration.
19for the dependence of fd on chromatic dispersion and of fd,eq on residual dispersion, see Eq. (3.28) and

Eq. (3.30).
20or equivalently for multi-span transmission without residual dispersion per span.
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Figure 3.11: OSNR penalty versus B/fd and B/fd,eq for single (a) and multi-span (b) transmission.
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Figure 3.12: OSNR penalty versus the ratio B/fd without pre compensation (left) and with pre-
compensation (right). Systems with identical B/fd and B2D0 have similar systems performance.

were obtained for a channel input power of 12dBm. As expected, nonlinear impairments

are identical in systems with same B/fd and B2D0.

WDM transmission

The goal of this section is to validate our analysis of nonlinear impairments in WDM trans-

mission systems. To that aim, the transmission of a 16x10Gb/s NRZ WDM signal (with

25 GHz channel spacing, i.e. at a spectral efficiency of 0.4 bit/s/Hz) is considered. No pre-

compensation is considered since it is expected to have a limited impact on inter-channels

effects. To ensure independence of the WDM channels, optical carriers (lasers) start to emit
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Figure 3.13: OSNR penalty for a WDM signal against fd and fd,eq for single and multi-span
transmission respectively. Analytical and numerical predictions show good agreement.

with random optical phases and are modulated with different and unsynchronized PRBS

sequences of 2048 bits. Optical WDM multiplexer and demultiplexer consist of 2nd order

Gaussian filters with 15GHz 3dB bandwidth.

In order to verify the dependence of the system performance on the nonlinear diffusion

bandwidth, the OSNR penalty (for a required BER of 10−9) of the central channel is dis-

played against fd and fd,eq in Fig. 3.13 for the single (channel input power = 3dBm) and

multi-span (channel input power = -7dBm) transmission described in the previous section.

Transmission lines are identical to the single-channel case: fd (Eq. 3.28) is varied by chang-

ing the local dispersion of the fiber, whereas fd,eq (Eq. 3.30) is modified by changing the

amount of residual dispersion per span. Numerical results and analytical predictions derived

from the results reported in Eq. (3.45) and Eq. (3.38) agree very well.

3.4 Conclusion

An analytical model for the description of fiber nonlinearities has been reported. It has

been shown that nonlinearities in multi-span transmission systems can be characterized

with an equivalent single-span model and that transmission lines with identical nonlinear

diffusion bandwidth lead to similar nonlinear degradation in single channel as well as in

WDM transmission systems. Finally, the value of the nonlinear diffusion bandwidth as

a simple and universal criterion to predict nonlinear impairments in WDM dispersion-
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managed systems has been verified by means of numerical simulations.

49



Chapter 4

Strategies for the Reduction of

Nonlinear Impairment

The goal of this chapter is to derive general guidelines for the reduction of nonlinear im-

pairments in single-channel and WDM transmission systems.

4.1 Transmission link design

The impact of fiber dispersion in single-channel transmission systems has been investigated

in [69]. In this pioneering work, it was shown that the performance of single-span, single-

channel transmission systems is governed by the product DB2, B being the channel bit-rate

and D the fiber dispersion coefficient. Extensive numerical simulations validating this result

have been reported in [70, 71]. Not only fiber chromatic dispersion, but also careful tuning

of dispersion compensation at the transmitter (pre- compensation), between the optical

amplifiers (in-line compensation) and at the receiver (post-compensation) can reduce the

impact of fiber nonlinearities, [72–74].

In the following, an analytical expression for the optimum amount of pre-compensation in

single-fiber and multi-span transmission systems is derived and the transmission line design

is optimized with the help of the concept of the nonlinear diffusion bandwidth.
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4.1.1 Optimum nonlinear diffusion bandwidth

Single-channel transmission

In the preceding chapter, a normalized form of the NLSE1 describing the propagation of

amplitude-modulated single-channel has been derived (Eq. (3.40)):

i
∂a

∂ξ
= xl

∂2a

∂τ2
− xnle

−ξ|a|2a (4.1)

with the dimensionless variables ξ = zα, τ = TB and a = A√
P0

eαz/2. xnl = γP0

α and

xl = Sign(β2) B2

8πf2
d
. As already discussed in section 3.3.3, two propagation regimes can be

distinguished depending on the value of |xl|: When |xl| ¿ 1, chromatic dispersion does

not lead to pulse overlap and pulse self phase-modulation is the dominant nonlinear effect.

In this regime, the pulses (assumed as being identical) experience the same propagation

and give rise to the same nonlinear perturbation δNL, is generally referred to as solitonic

regime. Since δNL is deterministic, the generated nonlinear power cannot be considered as

noise. For |xl| À 1, pulses spread very rapidly within the fiber effective length, leading to

stochastic2 nonlinear perturbations. Under this condition, the deterministic part of δNL

can be neglected and the whole generated nonlinear power can be considered as noise. This

case corresponds to the tedon regime or pseudo-linear regime discussed in [37,66].

In order to predict system performance, we propose the following approach: We assume

that (deterministic) intra-pulse interactions do not lead to any penalty whereas (stochastic)

inter-bit interactions (iXPM, iFWM) are equivalent to the nonlinear perturbation generated

by an additive white Gaussian noise (AWGN) with the same occupied bandwidth and power

as the considered channel. Under these assumptions, the generated noise power Pnoise can

be approximated by the product:

Pnoise ≈ RPNL (4.2)

PNL being the power spectral density of the nonlinear perturbation generated by the ”equiv-

alent” AWGN (see Eq. (3.44)) and R the ratio of nonlinear power effectively generated by
1Nonlinear Schrödinger Equation, see Eq. (2.28).
2Because bit-pattern dependent.
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Figure 4.1: Generated nonlinear power, PNL (normalized with the signal average input power,
P ) and R against B/fd for unchirped Gaussian pulses with (a) 33% and (b) 25% duty-cycle. No
pre-compensation is considered.

inter-bits interactions, which can be roughly approximated as:

R ≈ Neff − 1
Neff

(4.3)

where Neff is the number of bits overlapping in the fiber effective length, Leff . For a random

pattern of Gaussian pulses, Neff can be readily calculated from the formulas reported in [3]:

Neff =
1
2

4ln(2)|Dmax|B
TFWHM

(4.4)

with Dmax the maximum accumulated dispersion in the effective length (depending on fd,eq

and on the amount of pre-compensation), B the channel bit-rate and TFWHM the pulse

full width at half maximum. The factor 1/2 accounts for the occurrence probability of the

marks. Examples for Gaussian pulses (40 Gb/s, with duty-cycle 33% and 25%) are reported

in Fig. 4.1. The system OSNR penalty (for a BER of 10−9) resulting from intra-channel

nonlinear effects can be derived from Eq. (4.2) and Eq. (3.38). Analytical predictions show

relatively good agreement with numerical results (see Fig. 4.2).
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Figure 4.2: Analytically and numerically estimated OSNR penalty against B/fd for RZ transmis-
sion (Gaussian pulses with (a) 33% and (b) 25% duty-cycle). Transmission over a single-span (80
km SSMF, γ=1.3 /W/km, α=0.21 dB/km) is considered. Channel input power is set to 11dBm,
B = 40 and 160 Gb/s and fd is varied by changing the fiber chromatic dispersion.

WDM transmission

In WDM transmission systems, inter-channel as well as intra-channel nonlinear interactions

affect the signal. Using formulas reported in Eq. (3.44) and Eq. (3.33), it is possible to

evaluate the ratio, r, of nonlinear power generated by intra-channel interactions:

r =
Pintra

Pinter + Pintra
≈ PNL(Bch)

PNL(Bopt)− PNL(∆ch) + PNL(Bch)
(4.5)

where PNL is obtained from Eq. (3.45). Bopt, Bch and ∆ch stand for the total bandwidth of

the aggregate WDM signal, the channel occupied bandwidth and the channel spacing. The

following results can be derived from Eq. (4.5):

∂r

∂fd
< 0,

∂r

∂χ
> 0 (4.6)

In other words, the ratio of inter-channel effects increases with the nonlinear diffusion

bandwidth and with the granularity (see Eq. (3.46)). For r ≈ 1 (i.e. when intra-channel

interactions are the main nonlinear effects), the approach presented in the preceding section

can be applied to determine the optimal value for fd. Conversely, for r ¿ 1, inter-channel

interactions (XPM,FWM) are the dominant nonlinear impairments and the power of the
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Figure 4.3: Analytically and numerically estimated OSNR penalty against fd for 16x 10Gb/s
NRZ at (a) 0.8 bit/s/Hz (0 dBm/Channel, 12.5 GHz channel spacing) and (b) 0.4 bit/s/Hz (3
dBm/Channel, 25 GHz channel spacing). Transmission over a single-span (80 km SSMF, γ=1.3
/W/km, α=0.21 dB/km) is considered. fd is varied by changing the fiber chromatic dispersion.

nonlinear noise falling in the WDM channels is given as reported in Eq. (3.45):

PNL ≈ 2f2
d,eqρ

1−χ P 3
tot

B2
opt

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)

In that case, a small value for fd,eq is beneficial (see Fig. 4.3), because it reduces the amount

of generated nonlinear noise.

4.1.2 Optimized pre-and residual dispersion

The knowledge of the optimal nonlinear diffusion bandwidth is not sufficient for the opti-

mization of the transmission link design. Indeed, some important dispersion-management

techniques like pre-compensation (for mitigation of intra-channel nonlinear effects, [75]) or

residual dispersion at the receiver side (for mitigation of SPM-induced impairments, [76])

are not taken into account in the expression for fd,eq.

It is known that intra-channel nonlinear impairments can be reduced with pre-and in-line

dispersion compensation, [75], [74]. Analytical models for the characterization of intra-

channel nonlinear effects have been reported in [77], [78] and [79]. For a bit-stream composed
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of equally spaced pulses, the amplitude of electrical field A(T, z) is given by:

A(T, z) =
∑

mjbj(T, z) (4.7)

bj(T ) being the amplitude of the pulses in the jth bit-slot and mj takes the value 0 or 1

depending on whether a mark or a space is transmitted. Pulse propagation is described by

setting Eq. (4.7) in the NLSE. For the central pulse (j = 0), one obtains:

∂bo(T, z)
∂z

+
i

2
β2

∂2bo(T, z)
∂T 2

+
α

2
bo(T, z) = iγ

∑

l+m−n=0

al,m,nbl(T, z)bm(T, z)b∗n(T, z) (4.8)

with al,m,n = mlmmmn. In the perturbation theory framework3, the solution of Eq. (4.8) can

be approximated as the sum of the solution for linear transmission, Bo, and a perturbation

term, δb0, representing nonlinear effects. After loss and dispersion compensation, the optical

signal at the end of the transmission link (of length L) is given as:

bo(T,L) = bo(T, 0) + δb0(T, L) (4.9)

Following identical steps as in 3.1.2, the nonlinear perturbation at the end of the transmis-

sion line (when loss and chromatic dispersion have been compensated) is found to be:

δb0(T,L) =
∑

l,m

al,m,nδbl,m(T, L) (4.10)

with δbl,m(T,L) the nonlinear perturbation for b0 at the end of the transmission line resulting

from the interaction of the pulses l,m and n = l + m, verifying:

∂δbl,m(T, z)
∂z

= iγ(z)e(G(z))F−1{F{bl(T, z)bm(T, z)b∗l+m(T, z)}e(−iω2D(z)/2)} (4.11)

3I.e. for weak nonlinearities, see section 3.1.2.
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∂z respectively.

F{.} symbolizing the Fourier-transform operator and G(z) and D(z) being the gain and

dispersion profiles4 of the transmission line. For unchirped Gaussian pulses, it is possible5

to derive an analytical expression for Eq. (4.11):

∂δbl,m(T, z)
∂z

= i
A3

oγ(z) exp (G(z))√
(1− iC)(1 + i3C)

exp

(
− 3 + iC

1 + i3C

(
T

To
− 2(l + m)TB

(3 + iC)To

)2
)

exp
(
−(l2 + m2 − (1 + iClm))T 2

B

(1− iC)(3 + iC)T 2
o

)
(4.12)

with Ao and To the peak amplitude and the pulse half-width at 1/e intensity point of the

pulse for z = 0. TB is the bit-slot duration and C(z) is defined as C(z) = D(z)/T 2
o . Writing

Eq. (4.12) at positions z1 and z2 verifying D(z1) = −D(z2), one obtains:

∂δbl,m(T, z1)
∂z

= −e(G(z1)−G(z2))
∂δb∗l,m(T, z2)

∂z
(4.13)

For the G(z1) = G(z2), the amplitude perturbations (i.e. the real part of δbl,m) generated at

z1 and z2 cancel each-other. Because amplitude-modulated signals are mostly sensitive to

amplitude fluctuations, it is possible to reduce intra-channel nonlinear impairments in OOK-

based systems with transmission lines presenting symmetrical optical power and dispersion

distribution as depicted in Fig. 4.4.a. This result was previously demonstrated analytically
4G(z) and D(z) are defined in Eq. (3.13).
5The product and convolution product of Gaussian functions remain Gaussian, simplifying the calculation.
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and verified experimentally for the case of highly dispersed pulses [77]. Conversely, this so-

lution is not optimal for a phase-modulated signal since the phase perturbations (imaginary

part of δbl,m) generated at z1 and z2 are identical and add coherently.

Symmetrical optical power distribution can be achieved with the help of forward and back-

ward Raman pumping. However, in most current systems, optical amplification is realized

with EDFAs leading to an unsymmetrical power distribution (G(z1) 6= G(z2)) and thus to

an incomplete cancelation of nonlinear amplitude perturbations (Fig. 4.4.b.). It is possi-

ble to maximize this partial cancellation by optimizing the amount of pre-compensation.

For single-fiber transmission with EDFA amplification, the gain and dispersion dispersion

profiles are expressed as:

G(z) = −αz

D(z) = Do + β2z

Where Do (in ps2) is the amount of pre-compensation. In that simple case, the cancelation

is maximized for (see appendix E):

Do = −2ln(2)
3

β2

α
≈ −β2Leff

2
= −sign(β2)

8πf2
d

(4.14)

Leff being the effective length of the fiber. Even though derived quite differently, this

result agrees well with the analytical and numerical results reported in [79] and [80]. This

result can be extended to multi-span transmission system consisting of N identical spans.

Noting Do and Dres the amount of pre-compensation and residual dispersion per span, we

show that the optimal pre-compensation verifies:

Do +
(N − 1)

2
Dres = −β2Leff

2
⇒ Do = −sign(β2)

8πf2
d,eq

(4.15)

So that the optimal pre-compensation depends on the amount of residual dispersion re-

quired to achieve the desired value for the nonlinear diffusion bandwidth, fd,eq.

Numerical simulations are performed in order to verify the results reported in Eq. (4.14).
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Figure 4.5: Numerical predictions for the system OSNR penalty [dB] against B/fd and B
√

Do for
a single RZ channel (160 GHZ optical filter & 0.7*40 GHz electrical filter). The dotted line stands
for the optimal pre-compensation according to Eq. (4.14).

The transmission of a single RZ channel at varying bit-rate (10,40 and 160 GB/s) over

80km fiber is considered. The channel input power is set to 11dBm. Both pre-compensation

and nonlinear diffusion bandwidth have been varied. The OSNR penalty (BER=10−9) is

displayed against B/fd and B.
√

Do in Fig.4.5. Optimal pre-compensation according to

Eq. (4.14) is displayed by the dash line. Analytical prediction and numerical results agree

very well.

For amplitude modulated signals at 10Gb/s systems, the optimum does not exactly corre-

spond the one predicted in Eq. 4.15. This is because impairments due to self-pulse modu-

lation (spectral broadening followed by FM-AM conversion) can not be neglected against

impairments due to intra-bits interactions.

The transmission of 4x40Gb/s RZ channels (0.4 duty-cycle, 100GHz channel spacing, 3dBm/channel)

over 4 identical sections is then considered. Each section consists of 80km of SSMF and two

(linear) dispersion-compensation modules for pre and post-compensation. Full dispersion

compensation is performed at receiver when necessary. Optical WDM multiplexer and de-
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Figure 4.6: Numerical predictions for the system OSNR penalty [dB] against Do and Dres for
the two central channels. The dotted line stands for the optimal pre-compensation according to
Eq. (4.15).

multiplexer consist of 2nd order Gaussian filters with 80GHz 3dB bandwidth. The OSNR

penalty (BER=10−9) for the two central channels is displayed in Fig. 4.6 against Dres and

Do. Optimal pre-compensation according to Eq. (4.15) coincides with the one obtained

numerically.

4.2 Information distribution

Not only the transmission link but also the signal can be optimized in order to reduce

nonlinear impairments. Novel modulation formats have been proposed to that end [81].

For example, RZ-DPSK takes advantage of both phase-modulation6 and RZ pulses7 [82].

Further improvements can be achieved using orthogonal polarizations8 of adjacent bits [83],

[84]. In this section, the issue of information encoding is tackled from a more general point

of view. We examine the impact of information distribution in frequency (spectral use

and granularity) and in polarization on nonlinear impairments. Their impact on the fiber

maximum achievable capacity is handled in the next chapter.
63dB gain for the receiver sensitivity with balanced detection.
7A pulse is sent for every bit resulting in the suppression of intra-channel cross-phase modulation due to

the deterministic nature of the signal envelope.
8Reduction of intra-channel cross-phase modulation and four-wave mixing.
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4.2.1 Information distribution in frequency

In the following section, the light is assumed to propagate over a single polarization. Under

that case, the capacity of a WDM-based transmission system can be expressed as follows:

C = SρBtot (4.16)

where Btot is the available bandwidth (e.g. the C-band of the optical fiber), ρ the spectral use

(ratio of occupied bandwidth) and S the local spectral efficiency (i.e. the spectral efficiency

of each WDM channel in bit/s/Hz). Generally, frequency guard bands are usually used

in WDM transmission systems in order to reduce linear cross talk and to limit nonlinear

interactions between the channels. Upgrading the system capacity is possible either by

increasing the channel spectral efficiency, S (what also enables the frequency guard bands to

be maintained) or by making a more efficient use of the available bandwidth (i.e. increasing

ρ). Examples are illustrated in Fig. 4.7. For constant total power, these strategies consist

in either splitting or bunching the power in the available bandwidth. Since our ultimate

goal is to maximize the capacity transmitted in an optical fiber (see next chapter), it is

of primary importance to find out which one of these strategies is the best with regard to

nonlinear impairments. To that aim, we examine the OSNR as defined in Eq. (3.35):

OSNR =
Ptot − PNL

Pase + PNL
(4.17)

with Ptot the power of the aggregate WDM signal and Pase and PNL the amount of ASE and

nonlinear noise after optical filtering falling on the photodiode. For WDM systems consisting

either of a large number of channels at high granularity (∆ch < fd,eq)9 or of highly-dispersive

channels (B À fd,eq)10, it has been shown in appendix D that the entire nonlinear generated

power can be considered as noise. In this case, PNL is given by Eq. (3.45):

PNL ≈
2f2

d,eq

ρχ−1

P 3
ch

∆2
ch

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)

9∆ch is the channel spacing.
10B is the channel baud-rate, i.e. roughly its bandwidth.
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Figure 4.7: Capacity upgrade of (a) current WDM systems can be achieved with (b) higher local
spectral efficiency (S in bit/s/Hz) and/or (c) larger spectral use (ρ).

with ρ the spectral use (ratio of the channel occupied bandwidth, Bch, with the channel

spacing, ∆ch) and Pch the power per WDM channel. fd,eq is the equivalent nonlinear

diffusion bandwidth of the transmission line and χ is a measure of the signal granularity It

was defined in Eq. (3.46) as follows:

χ =
1

1 + fd,eq

∆ch−Bch

=
1

1 + fd,eq

(1−ρ)∆ch

(4.18)

i.e. χ tends towards 0 for high granularity and towards 1 for low granularity. As a con-

sequence, the nonlinear noise depends on the spectral power (or information) distribution.

Examples of possible spectral information distributions are illustrated in Fig. 4.8

Impact of the spectral use and of the granularity

The following results can be derived from Eq. (3.45):

∂PNL

∂ρ
< 0 (4.19)

i.e. that increasing the spectral use leads to a reduction of the nonlinear noise. At constant

spectral use, it can be shown that:
∂PNL

∂χ
≥ 0 (4.20)

so that the amount of nonlinear noise is reduced at higher granularity (low χ). These

results can be intuitively understood by the fact that splitting the power in the available

bandwidth reduces the local power spectral density and thus the strength of nonlinear
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interactions. Moreover, when ρ = 1 (when the signal power is uniformly distributed in the

frequency domain), PNL is independent of the signal granularity. Thus, we expect system

performance to be mainly independent of the granularity, for systems at high spectral

efficiency as reported in [85] and also for systems with a high spectral use. However this

result does not account for the fact that intra-channel nonlinear effects can be partially

compensated with optimal pre-compensation11, what is not the case for inter-channel effects,

which are dominant at high granularity.

Numerical verification

In order to verify above statements, the following numerical simulations are performed:

we consider the transmission of a total capacity of 160 Gb/s and 640 Gb/s at respective

spectral efficiencies of 0.2 bit/s/Hz and 0.8 bit/s/Hz, using 5 Gb/s, 10 Gb/s or 40 Gb/s
11See previous section.
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RZ channels. The transmission line consists of 4 spans, each including 80 km SSMF, an

EDFA and an ideal DCF so that loss and chromatic dispersion are totally compensated in

each span. No pre-compensation is considered. Optical filters (Gaussian 2nd order) are

scaled with the channel bit-rate. Channels are assumed uncorrelated (unsynchronized and

different PRBS sequences of 1024 bits for each channel). Q factor12 of the central channel

is reported against the input power allocated to 10 Gb/s in Fig. 4.9 for each configuration.

At 0.2 bit/s/Hz, the RZ pulses are generated at 20% duty-cycle and are broadened after

passing through a optical filter, whose 3dB bandwidth is varied in order to vary the channel

occupied bandwidth and as a consequence the spectral use. As expected, at low spectral use

high granularity seems to be beneficial in the nonlinear regime. At 100% spectral use, the

system performance is roughly independent of the granularity13. These numerical results

validate the analytical predictions.

4.2.2 Information distribution in polarization

In this section, the influence of information distribution in polarization14 on the nonlinear

impairments is investigated. Starting from the coupled nonlinear Schrödinger equations [35],

we extend the analytical model presented in sections and 3.1.2 and 3.3 to the case of a

birefringent optical fiber. The goal of this study is to determine the influence of polarization

and fiber birefringence on nonlinear effects. Polarization-dependent loss and the frequency-

dependence of polarization mode dispersion are neglected. Moreover first order PMD is

assumed to be perfectly compensated at the receiver so that only nonlinear impairments

remain.

Constant birefringence

We first consider the case of optical fibers with constant birefringence, i.e. with fixed

Principal States of Polarization (PSP), and examine the influence of the relative power

distribution in the two orthogonal propagating modes (see Fig. 4.10). Noting Wx and Wy

12See section 3.3.2.
13Note that no line optimization like pre-compensation is considered.
14see Birefringence and polarization-mode dispersion in section 2.2.4.
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the power spectral densities15 (in Watt/Hz) of signal propagating respectively on the x and

y axis (PSPs) and assuming that the signal spectrum can be approximated by a continuum,

the power spectral density of the nonlinear perturbation generated in one of the PSPs (e.g.

the x-mode) is given in [86] as:

WNL,x = 2f2
d,eqη

2
o ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(W 3

x + c
4
3
W 2

xWy +
4
9
W 2

y Wx) (4.21)

with c being the correlation (c ∈ [0..1]) product between the polarization components. it

is zero when both components are de-correlate 16. The resulting power spectral density of

the nonlinear perturbation is given as WNL = WNL,x +WNL,y, where WNL,y is obtained by

inverting the x and y indices in the above expression. The analytical study - confirmed by

split-step Fourier simulations - shows that nonlinear distortions are reduced up to a factor

of 2/3 when the signal power is equally distributed in the PSPs (see [86]). On the contrary,

the generation of nonlinear components is maximized when the signal propagates over a

single PSP (Fig. 4.10.b).

In order to verify the model predictions, some numerical simulations are performed: Trans-

mission of 15x10Gbit/s NRZ channels at a spectral efficiency of 0.8 bit/s/Hz (12.5GHz

channel spacing) over 80km of SSMF is considered. This high spectral efficiency enables

us to approximate the transmitted spectrum as a continuum, which is the condition for

Eq. (4.21) to hold. Fiber’s PSPs are maintained constant and the relative power distribu-
15Total signal power spectral density: W = Wx + Wy.
16i.e. when the differential group delay within the fiber effective length is more larger than the bit rate.

As a consequence a large PMD reduces nonlinear impairments
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tion on the PSPs is varied by changing the azimuth (Θ) of coupled optical field, so that:

Wx = Wcos2(Θ)

Wy = Wsin2(Θ) (4.22)

An ideal PMD compensator is used at the receiver side so that birefringence affects only the

nonlinear perturbation and not the signal17. The OSNR can be derived from Eq. (4.21) and

is turned into Q-factor as explained in section 3.3.2. Numerical and analytical predictions

for the system performance (Q-factor) depending on the azimuth of the coupled light (i.e.

on the distribution of the optical power on the two PSP) are displayed in Fig. 4.11.a.

Analytical predictions and numerical simulation show excellent agreement.

Randomly varying birefringence

Most fiber types are not designed to maintain polarization and exhibit a randomly varying

birefringence, i.e. the orientation of the PSPs18 is constantly changing along the fiber. As a

consequence, the state of polarization (SOP) and the power distribution on the PSPs of the
17Both modes arrive simultaneously at the receiver
18As well as the first order PMD.
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propagating wave are varying continuously. If the length scale19 on which the PSPs vary is

small compared to the fiber effective length, we can assume that all configurations of power

distribution occur with the same probability (Θ uniformly distributed over [0...π]). Under

this assumption, the amount of nonlinear noise generated in fibers with randomly varying

birefringence is derived from Eq. (4.21):

WNL =
43
54

2f2
d,eqη

2
oW

3 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(4.23)

with W = Wx +Wy and WNL = WNL,x +WNL,y, the axis x and y being chosen arbitrarily.

Note that in presence of random birefringence, the amount of generated nonlinear noise is

almost as large as in the worst case (single polarization), where the 43/54 factor is replaced

by 1 (see numerical results reported in Fig. 4.11). It is interesting to compare this result

with the derivation of the Manakov equations proposed by Marcuse, [47] in the case of fibers

with randomly varying birefringence:

∂ψ

∂z
+

i

2
β2

∂2ψ

∂t2
= i

8
9
γ|ψ|2ψ (4.24)

ψ = f(
−→
A ) verifies |ψ|2 = A2

x + A2
y where

−→
A is a vector standing for the slowly varying

amplitude of the light in both PSPs and f(·) a transformation accounting for the birefringent

nature of the fiber. The factor 8/9 was obtained under the assumption that the polarization

evolves quickly enough (due to PMD and varying birefringence) on the Poincaré sphere so

that all SOPs occur with the same probability. This normalization factor for random varying

birefringence fibers has been verified experimentally in [46], [87]. Using this equation instead

of the NLSE in our analysis, we obtain:

WNL =
(

8
9

)2

2f2
d,eqη

2
oW

3 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(4.25)

Note that difference between 8/9 and
√

43/54 is only 0.4%. We can conclude that the

present approach correctly describes the nonlinear propagation of a signal over fibers pre-
19For classical fibers, this length lays usually between 0.3 and 30 meters.
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senting fix or random birefringence, even if the SOP of the light doesn’t appear in our

analysis.

4.3 Conclusion

In this chapter, guidelines for the design of WDM transmission systems have been proposed

and verified with the help of split step Fourier simulations. These insights are applicable to

a wide range of amplitude-modulated high-capacity transmission systems.

Optimal pre-compensation depending on residual dispersion effects has been derived for

amplitude-modulated signals. In addition, it has been shown that distributing the optical

power as uniformly as possible in the frequency (high spectral use and high granularity)

and polarization domains reduces nonlinear impairments.
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Chapter 5

Capacity of Fiber-Optic

Transmission Systems

This chapter offers a brief overview of Shannon’s information theory. Basic concepts like

source entropy, mutual information and channel capacity are introduced and the funda-

mental limitations of fiber-optic transmission systems are briefly presented. Finally, an

analytical expression for the maximum information capacity of WDM transmission sys-

tems is derived and spectral efficiencies achievable with currently available technologies are

discussed.

5.1 Short introduction to Shannon’s information theory

The explosion of telecommunication techniques1 during the late 19th and the early 20th

century pushed the need for a general theory of communication. Early works, such as those

from Nyquist [88] and Hartley [89], laid the foundation of information theory. In the late

1940’s, several theories and principles were proposed for example by Wiener [90], Tuller [91]

and of course Shannon [57].
1Telegraph (Morse, 1830), Telephone (Bell, 1876), Wireless Telegraph (Marconi, 1887), AM Radio (1900),

Television (1925), Frequency Modulation (Armstrong, 1936), Pulse Code Modulation (Reeves, 1937), Spread
Spectrum (1940)
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5.1.1 A measure of information

In Shannon’s theory, a source of information is modeled as a random process. For the

case of a discrete source, a symbol Xj is emitted every time unit (j = 1, 2, ...) with values

taken form the alphabet {x1, x2, ..., xn}. If the associated probability (P{Xj = xi} = pi)

is independent of all prior symbols Xj−1, Xj−2, ... this source is said to be a discrete and

memoryless source (DMS). Following Nyquist and Hartley, Shannon proposed a logarithmic

measure for the information:

I(xi) = log

(
1
pi

)
(5.1)

This logarithmic definition ensures log (1/(
∑

pi)) = 0 and I(xk; xl) = I(xk) + I(xl) so

that information is additive and equal to 0 when the signal is predictable. Using Eq. (5.1),

the average information in one source symbol is obtained by averaging over the source

probability pi and is denoted by:

H(X) =
n∑

i=1

pilog

(
1
pi

)
(5.2)

H is called the source entropy and can be also referred to as information rate of the source

in bits per symbol.

5.1.2 Channel model

Shannon extended his information analysis of the source to a general communication system

by introducing the concept of channel, accounting for any deterministic or random trans-

formation (noise) corrupting the transmitted signal as depicted in Fig. 5.1. A fundamental

probability model for the concept of channel is the discrete memoryless2 channel (DMC).

Noting X and Y the input and output signals. The channel is characterized by the condi-

tional distribution of X given Y , which is called the channel transition probability distribu-

tion:

pi,j = p (X = xi|Y = yj) (5.3)

2Memoryless means that the ith output depends on the ith input and not on preceding symbols.
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Figure 5.1: General communication system according to Shannon (from [57]).

The uncertainty about the transmitted symbol knowing the output symbol is given by the

conditional entropy :

H(X|Y ) =
∑

i,j

p(xi, yj)log
(

1
p(xi|yj)

)
(5.4)

Since H(X) is the average uncertainty at the input, the uncertainty resolved by seeing the

output Y is obtained as:

I(X, Y ) = H(X)−H(X|Y )

=
∑

i,j

p(xi, yj)log
(

p(xi, yj)
p(xi)p(yj)

)

= H(Y )−H(Y |X) = I(Y, X) (5.5)

and is called the mutual information. If the output is independent of the input, H(X|Y ) =

H(X) and I(X, Y ) = 0, whereas when the transmitted signal is perfectly restored at the

output, (i.e. for a noiseless channel) H(X|Y ) = 0 and I(X, Y ) = H(X).

5.1.3 Channel capacity

It is now possible to define the capacity (in symbols/s/Hz) of the channel as the maximum

of the mutual information over all possible input distributions3:

C = maxp(xi)I(X, Y ) (5.6)

3i.e. over all possible modulation formats and encoding schemes.
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This concept of channel capacity is the cornerstone of Shannon’s fundamental theorem for

a noisy channel [57]:

Fix ε > 0 as desired detection error probability. Let a source have infor-

mation rate R and suppose its output is to be transmitted over a channel

of capacity C. If R < C, then there exists a coding of the source output

such that the transmission of the coded output can take place with a de-

tection error of at most ε. Conversely, if R > C, then there exists an

ε′ > 0 such that the detection error will exceed ε′ independently of the

coding scheme.
It is usually difficult to compute the channel capacity. On the one hand because H(X|Y )

depends on both signal and noise statistics and on the other hand because the space to ex-

plore is huge (all possible input symbol distributions have to be considered). An analytical

solution of this problem has been provided by Pinsker [92] for the case that the joint prob-

ability of input and output is Gaussian. Algorithms to compute the capacity of arbitrary

discrete memoryless channels have been proposed in [93] and [94].

Gaussian channel

Shannon showed that the differential entropy (analog to Eq. (5.2) but for a continuous

variable) of a continuous random variable is maximized (under variance constraint) by the

Gaussian distribution. Taking the difference between the output differential entropy, H(Y ),

and the conditional entropy, H(Y |X), he obtains the famous formula for power-constrained

white Gaussian channels (here expressed in [bit/s]):

C = B log2

(
P + N

N

)
(5.7)

where B is the channel bandwidth, P the transmitted power and N the noise power within

the channel band. According to Shannon, this ultimate transmission rate can be achieved if

the statistical characteristics of the transmitted signal approximate those of a white noise.
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5.2 Fundamental limitations

Fiber chromatic dispersion [95] and polarization mode dispersion [96], [97] can be (more or

less) compensated and thus are not fundamental limitations of optical transmission systems

(even if in practical case, they may cause severe signal degradation). Conversely, transmit-

ter, receiver (see appendix F) and amplifier noise as well as some nonlinear effects can not

be undone.

5.2.1 Amplifier noise

The amplification process (stimulated emission) in an EDFA is accompanied by the ampli-

fied spontaneous emission (ASE) noise. The ASE noise is neither polarized nor coherent

and can be considered as a white noise. The power spectral density of ASE noise in one

polarization is given by [9]:

WASE(f) = nsp(G− 1)hf (5.8)

with f the optical frequency and h the Planck’s constant. nsp is the spontaneous emission

factor which depends on the electron populations in the ground (N1) and excited (N2)

states:

nsp =
N2

N2 −N1
(5.9)

For high amplifier gain, the noise figure of an EDFA is given as:

FEDFA =
SNRin

SNRout
≈ 2nsp (5.10)

where SNR refers to the signal-to-noise ratio. The theoretical minimum for the noise figure

is 3dB. Realistic values for FEDFA lay around 3.5dB for systems with 980 nm pump and

4dB at 1480nm.
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5.2.2 Kerr-induced perturbations

In principle Kerr-effect is a deterministic4 process and should not be considered as noise.

A method called optical-phase conjugation (see [98] and [99]) has even been proposed to

suppress (almost perfectly5) nonlinear impairments. Unfortunately, this method hugely

constrains the transmission line design and requires a mid-link spectral inversion6. As indi-

cated in Chapter 3 (see also [100]), impairments due to intra-channel nonlinear interactions

can be (partially) canceled in RZ-based systems by a proper design of the transmission line,

indicating the deterministic nature of nonlinear perturbations.

However, in WDM transmission systems with independent7 channels, inter-channel inter-

actions are stochastic and can be considered as noise. For a WDM system, the power of

nonlinear noise falling in the channels can be approximated as follows:

Pinter = PNL − Pintra (5.11)

where Pintra and PNL evaluated with the continuum and semi-continuum models respec-

tively (see Eq. (3.44),(3.33),(3.45)). In the following, we first consider only inter-channel

nonlinear effects and ASE as noise sources and derive the maximal capacity of WDM-based

fiber-optic transmission systems. Then, we carefully extend this approach to intra-channel

nonlinear interactions.

5.3 Maximum capacity of fiber-optic transmission

For a linear channel with additive white Gaussian noise, the maximum system capacity

grows logarithmically with the signal to noise ratio, i.e. with the signal input power (see

Eq. (5.7)). Conversely, in nonlinear media like optical fibers, increasing the signal power does

not necessarily improve the system capacity, because increasing the signal power strengthen
4Kerr-effect is fully described by the NLSE. In principle the input signal can be determined by measuring

the output and using inverse-scattering techniques to integrate the NLSE.
5If 3rd order (and all higher odd orders) dispersion can be neglected.
6E.g. realized through FWM in nonlinear optical fibers or semiconductor optical amplifiers.
7No information about the neighboring channels is available.
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nonlinear impairments.

In their pioneering work [14], Stark and Mitra showed that under certain conditions, a

nonlinear channel can be treated as a linear channel with multiplicative noise. Applying

this idea to WDM transmission, they derived an analytical expression for the lower bound

of the Shannon limit for the channel capacity, C. Nonlinear impact of ASE noise was taken

into account by Tang in [20]. Using Pinsker’s formalism8 [92] and an expansion in Volterra

series, he derived an accurate (but complex) expression for C for multi-span transmission

with dispersion-free fibers. In [101], Turitsin et al. proposed an exact derivation of C in

the case of very low dispersion fibers without the need to assume Gaussian statistics for the

nonlinear noise.

In this section, a simple analytical expression for the system maximum capacity9 is derived.

This expression is valid for a wide range of WDM optical transmission systems. Unlike

results reported in previous works, this expression takes the design of the transmission link

into account.

5.3.1 Perturbative approach

Under the assumptions of weak nonlinearities and low ASE level (so that the nonlinear

impact of ASE noise - or Gordon-Mollenauer effect [51] - can be neglected), a closed-

form expression to describe signal nonlinear propagation in arbitrary transmission lines has

been derived in chapter 3. This solution is given as the sum of the solution for linear

transmission and a perturbation term representing nonlinear effects. Noting X̃j and Ỹj the

Fourier-transforms of the amplitude envelope of jth channel at the input and output of the

transmission line, one obtains after loss and dispersion compensation (see Eq. (3.15)):

Ỹj(ω) ≈ C1X̃j(ω) + δNL(ω) + δOA(ω)

Ỹj(ω) ≈ C1X̃j(ω) + δintra(ω) + δinter(ω) + δOA(ω) (5.12)

8I.e. assuming that the joint distribution of input and output signal is Gaussian.
9as defined by Shannon in Eq. (5.6)
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Where C1 is a constant ensuring energy conservation (see section 3.2). δOA accounts for

the noise generated during optical amplification (ASE noise) and δNL is the perturbative

term describing the nonlinear spectral components falling into the channel. As discussed in

4.1.1, it can be distinguished between intra and inter-channel nonlinear contributions. The

deterministic nature of intra-channel effects (here simply referred to as SPM) was discussed

in the preceding section. Conversely, statistics of XPM and FWM become Gaussian with

an increased number of channels10. The fiber maximum available bandwidth does not

exceed 20 THz with classical optical amplification and since the maximum electrical receiver

bandwidth of commercial systems will probably not exceed 200GHz in the near future, a

large number (> 100) of WDM channels is required to approach the fiber maximum capacity.

As a consequence, Gaussian statistics for δinter will be assumed in the following. Under these

assumptions, Eq. (5.12) becomes:

Ỹj ≈ C2F (X̃j) + ηinterG1 + ηASEG2

Ỹj ≈ C2F (X̃j) + n (5.13)

whit F (·) a bijection associated to the transmission line (accounting for the deterministic

nature of SPM) and C2 a constant ensuring energy conservation. ηinter and ηASE are the

strengths of the perturbations due to nonlinear inter-channel effects and ASE. G1,2 are

independent complex random Gaussian variables verifying:

Gj = uj + ivj (5.14)

< Gj > = < uj > +i < vj >= 0

< |Gj |2 > = < |uj |2 > +i < |vj |2 >= 1

with
√−1 = i,. u and v are real random Gaussian variables with zero mean. In the case of

ASE noise, u and v are identically distributed (< |u|2 >=< |v|2 >). This property is not

always verified for the nonlinear noise. Indeed, XPM may affect the phase of the transmitted
10As a consequence of the Central Limit Theorem, see appendix D.
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signal (resulting in timing jitter) more than its amplitude [23]. However, for large FM-AM

conversion due to chromatic dispersion [102–104] or when FWM is the dominant nonlinear

effect, we can assume the nonlinear noise to be equally distributed in phase and amplitude.

Under this assumption and noting u and v the real and imaginary parts of Gj , the probability

density functions associated to the inter-channel nonlinear effects and ASE contributions

(noted respectively g and h) are:

g(u, v) =
1

πηinter
e
−u2+v2

η2
inter (5.15)

h(u, v) =
1

πηASE
e
−u2+v2

η2
ASE (5.16)

Since ASE and nonlinear impairments are independent, the (complex) probability density

function (PDF) of n = δASE + δinter is obtained as:

f(u, v) = g(u, v) ∗ h(u, v) (5.17)

∗ standing for the convolution product. Since g and h are Gaussian, f remains Gaussian

with zero mean and variance σ2
n = η2

ASE + η2
inter = Winter + SASE , with Winter the power

spectral density of spectral components generated by nonlinear inter-channel interactions

and WASE the power spectral density of ASE (in one polarization). As a consequence, the

conditional probability P (F (Xj)|Yj) is obtained as:

P (F (Xj)|Yj) =
1√

2πσn

e
−|F (Xj)−Yj |2

2σn2 (5.18)

The knowledge of the conditional probability P (Xj |Yj) is required to calculate the channel

maximum capacity. Since F is a bijection, we can write [105]:

P (Xj |Yj) = P (Xj , Yj)P (Yj) = |J |P (F (Xj), Yj)P (Yj) (5.19)
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with J the Jacobian of the transformation X → F (X). For energy conservation to be

ensured11, F must conserve the norm, i.e. |J | = 1. As a consequence, P (F (Xj)|Yj) =

P (Xj |Yj), so that from an information theory point of view SPM does not modify sys-

tem maximum achievable capacity. Using Eq. (5.7) and Eq. (5.18), the maximal achievable

channel capacity, C, is obtained as:

C = ρBoptlog2

(
1 +

P − Pinter

WASEρBopt + Pinter

)
(5.20)

where WASE is the spectral power density of ASE in one polarization, P , the power of the

aggregate WDM signal. ρ is the spectral use, defined as the ratio of the optical bandwidth

occupied by the signal and the total utilized bandwidth (gap included). The additional

term in nominator ensures energy conservation of the aggregate WDM signal. According to

Shannon, maximum capacity can be achieved with a modulation format having statistics

similar to those of a white Gaussian noise12.

As an example, we consider the transmission of a total aggregate bandwidth of 5 THz

(C-band) fully filled with channels with 160GHz occupied bandwidth (no gap, ρ = 1)

over N identical spans. Each span consists of 80 km SSMF (γ=1/(W-km), α=0.2 dB/km,

β2 = −20 ps2/km) followed by an ideal (lossless and linear) DCF and an EDFA. Fiber loss

(22 dB per span) is fully compensated within each span (FEDFA = 5dB), whereas chromatic

dispersion can be fully or partially compensated (100% dispersion compensation is realized

at the receiver side when needed.

The system maximum achievable spectral efficiency, S (C = BoptS), is displayed against the

channel input power for one span (N = 1) in Fig. 5.2.a and against the number of spans in

Fig. 5.2.b (optimal channel input power is derived from Eq. (5.20) for each configuration).

Channel maximum capacity increases with residual dispersion per span as a result of the

reduction of the nonlinear diffusion bandwidth, fd,eq.

11in single-channel transmission, when the channel experiences only SPM
12E.g. M-QAM (Quadrature Amplitude Modulation) with M as large as allowed by the OSNR can be a

good candidate.
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Figure 5.2: system maximum spectral efficiency in [bit/s/Hz] against a) channel input power
(single-span transmission) and b) number of spans for different link design.

Impact of intra-channel nonlinear effects on the system maximum capacity

It has been argued that intra-channel nonlinear effects are deterministic effects, that can

be (theoretically) undone with signal processing at the transmitter and/or receiver side.

However, an optimization of the link design (see 4.1.2) is not always possible in legacy fiber

plant and digital signal processing may not be easy to implement at high bit-rates. In that

case, inter-pulse interactions (iXPM, iFWM) appear stochastic and have to be taken into

account in calculation of the nonlinear noise (PNL = Pinter + Pintra), which is given as in

Eq. (3.45)

PNL ≈ 2f2
d,eqρ

1−χ P 3
ch

B2
ch

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)

Similarly to inter-channel effects, it can be shown13 that for highly dispersive systems

(B/fd,eq > 5) intra-channel effects follow Gaussian statistics, so that the expressions for

the system maximal capacity reported in Eq. (5.20) remain valid when replacing Pinter by

PNL.
13See appendix D.
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5.3.2 Achievable capacity with current technologies

In the previous section, the theoretical limit for the system capacity has been derived. This

limit can be achieved with optimal encoding and modulation format14. Such a solution is

not conceivable in practicable systems. Firstly, because too long delays would be required

for signal processing. Secondly because coherent detection, which is necessary to detect

both phase and amplitude, necessitates an optical or electrical phase-locked loop or some

other carrier recovery techniques which are complex to realize and operate.

Thus, from the system-designer point of view, the knowledge of the maximum achievable

system capacity with the available technologies is at least as important as the knowledge

of its Shannon limit. For example regardless of the channel quality, binary modulation for-

mats such as On-Off Keying (OOK) or Differential Phase Shift Keying (DPSK, [3]) cannot

exceed a spectral efficiency of 1 bit/s/Hz (without polarization division multiplexing). Spec-

tral efficiencies between 1 and 2 bit/s/Hz can be achieved with Quaternary (differential)

Phase Shift Keying (QPSK, [106]). Above 2 bit/s/Hz, modulation formats like Quadrature

Amplitude Modulation (M-QAM, [107]) or Phase Shift Keying (M-PSK [108], [109]) with

M ≥ 8 must be employed.

For a particular modulation format (with associated probability density function, Px(x),

see 5.1.1) the system maximum capacity is given as in Eq. (5.6):

Cs = H(Y )−H(Y |X) (5.21)

with:

H(Y ) =
∫

Py(y)log2 (P (y)) dy (5.22)

H(Y |X) =
∫ ∫

Px(x)Py|x(y|x)log2

(
Py|x(y|x)

)
dxdy (5.23)

14Coherent detection and highly-efficient error-correcting codes are necessary.
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with p(y) =
∫

Px(x)Py|x(y|x)dx and the power and probability constraints:

∫
x2Px(x)dx = c < ∞ ∧

∫
Px(x)dx = 1 (5.24)

where c is a constant proportional to the channel average power. Since Px(x) is known,

only the knowledge of the conditional probability Py|x(y|x) is required to determine Cs.

Coherent systems

In coherent systems [3], the phase and amplitude of the signal (or equivalently, its real

and imaginary parts) can be modulated and detected separately. It has been shown in

the previous section that the complex variables X and Y representing the envelope of the

electrical field of the input and output signals verify the following relationship:

Y (t = tk) = cX(t = tk) + δNL(t = tk) + δOA(t = tk) = cX(t = tk) + n(t = tk) (5.25)

where δNL and δOA account for the nonlinear and ASE noise and c is a constant ensuring

energy conservation. n is a zero-mean complex Gaussian random variable with variance

σ2
n = PASE + PNL, so that Py|x(y|x) follows a Gaussian distribution:

Py|x(y|x) =
1

2πσ2
n

exp
(
−|cx− y|2

2σ2
n

)
(5.26)

Using Eq. (5.21), (5.23) and (5.23), it is possible to evaluate (numerically) Cs. As an

example, the system capacity for the system described in Fig. 5.2 (transmission over a single

80km span of an aggregate bandwidth of 31x160 GHz≈ 5THz with a single polarization) is

reported for 4-QAM and 16-QAM in Fig. 5.3 against the channel input power. The input

signal is assumed ideal (i.e. discrete), all states are assumed equally probable.
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Intensity-modulated direct detection

In (ideal) intensity-modulated direct-detection (IMDD) systems, the detected signal is ob-

tained as:

Y = |cX + δNL + δOA|2 = |cX + n|2 (5.27)

where X is the complex amplitude of the input signal and n is the perturbation standing

for ASE and nonlinear noise. The conditional probability Py|x(y|x) is a noncentral χ2

distribution with two degrees of freedom [110]. Noting u = |x| and v =
√

y, the resulting

conditional probability, p(v|u), is shown to follow a Rice distribution [111]:

p(v|u) =
2v

σ2
n

exp
(
−u2 + v2

σ2
n

)
Io

(
2vu

σ2
n

)
(5.28)

where I0(.) is the 0th-order modified Bessel function of the first kind. Cs as defined in

(5.21) is displayed for simple OOK and multi-level (0-1/3-2/3-1) AM modulation format in

Fig. 5.3 (all states are assumed equally probable). The case of constant-intensity modula-

tion formats [112], has not been treated in this work, because it requires the use of phase

modulation (e.g. DPSK) together with Dispersion-Shifted Fibers (DSF) and/or careful

dispersion management15, conditions that are unlikely to be met in commercial transmis-

sion systems. Maximum capacity for various modulation/detection techniques have been

reported in [113] and other examples can be found in [111] and [114].

5.3.3 Discussion

The present approach is valid for weak nonlinearities (typically P ≥ 20 PNL) a condition

met in all transmission systems of practical interest except Soliton-transmission systems

and weak nonlinear phase noise (Gordon-Mollenauer effects). This last assumption is not

always verified in long haul systems where ASE accumulates along the spans and typical

OSNR values lay around 10 dB.

Another assumption that has been made in this study is that nonlinear perturbations can
15Otherwise phase shifts are turned into amplitude variations by the fiber chromatic dispersion.
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Figure 5.3: Maximal achievable spectral efficiency for different modulation formats against chan-
nel input power (Bch = 160GHz,ρ = 1). The Shannon limit reported in figure 5.2 is shown for
comparison.

be considered as Gaussian noise. We have shown (see appendix D) that the statistics of

the nonlinear perturbation become Gaussian with an increasing number of co-propagating

channels. As a consequence, we expect this last condition to be verified in very-high capacity

transmission systems, where large number of WDM channels is assumed.

5.4 Conclusion

In this chapter, the information capacity of WDM systems in the presence of ASE noise

and fiber nonlinearities has been derived as a function of the nonlinear diffusion bandwidth.

Depending on whether intra-channel effects are considered as noise or as deterministic ef-

fects16, this approach leads to a lower or upper bound for the system maximal achievable

capacity. We have shown that this theoretical limit can be approached by coherent sys-
16They can be -theoretically- compensated with the help of (digital or analog) signal processing or opti-

mized transmission link design.
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tems (e.g. M-QAM) associated with efficient coding (e.g Turbo-codes, [115]). However,

coherent detection necessitates the use of an optical or an electrical phase-locked loop, a

feature usually complex to realize. Moreover, the requirements on the laser linewidth be-

come very stringent with an increasing number of levels (e.g. 30MHz for DPSK [113], 3MHz

for DQPSK, [116] and 300 KHz for 8-PSK [117] for a 10Gbaud signal). In consequence,

approaching the Shannon limit of WDM-based optical transmission systems will remain a

major challenge in the near future.
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Chapter 6

Outlook & Conclusion

6.1 Outlook

The results reported in the present work support the idea that -even in presence of fiber

nonlinearities- the capacity of today’s fiber-optic transmission systems can be increased

by at least an order of magnitude. Potentially, tens of Tb/s can be transmitted in the

C-band for metro and even long-haul transmission without important modification of the

existing fiber plant. This capacity upgrade is largely made possible by the emergence of

new technologies like high-performance encoding schemes, multi-level modulation formats

and electrical signal processing among others.

A wide array of options exists for the realization of these high-capacity transmission sys-

tems. For example, high bit-rates (40& 160 Gb/s) are of particular interest, especially with

the arrival of the first 40 Gb/s routers. Besides possible cost savings, high bit-rate channels

enable significant reduction of the number of transmitters and receivers, simplifying the

network management (routing, grooming, restoring, etc.). Another benefit of high bit-rate

transmission lies in the fact that impairments arising from intra-channel nonlinear interac-

tions can be drastically reduced with appropriate transmission line design. Because the ratio

of intra-channel interactions among nonlinear effects increases with the channel bandwidth,

more nonlinear impairments can be potentially suppressed using 40 or 160 Gb/s rather

than 10 Gb/s channels. However, this optimization is modulation format-dependent and
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therefore the benefits of high bit-rates vanish while upgrading a system, for example from

classical RZ to DQPSK1. In addition, system robustness to chromatic dispersion (GVD)

and polarization-mode dispersion (PMD) is known to decrease with an increased channel

bandwidth making an implementation of binary 40Gb/s systems problematic in legacy fiber

plant. This problem can be overcome by using multi-level modulation formats, which offer

the possibility to increase the channel bit-rate while keeping its bandwidth constant.

Increasing the transmitted bandwidth has been shown to be more advantageous with re-

gard to nonlinear impairments than pushing the spectral efficiency in order to increase the

system capacity. However, using a wider bandwidth may require additional amplifiers (for

S and L bands) and other optical components, so that raising spectral efficiency may be

sometimes the more economical solution. On the other hand, the complexity (and thus

cost) of transmitters and receivers for multi-level modulation formats increase exponen-

tially with the achievable spectral efficiency, so that we believe that the design of future

high-capacity transmission systems will depend more on economic considerations than on

technical constrains.

6.2 Conclusion

The main purpose of this work has been to examine the impact of fiber nonlinearities on

the design of optical transmission systems. To that aim, a high-level analysis of WDM

transmission systems has been proposed. After a brief review of the physical aspects of

light propagation in optical fiber, we introduced the concepts of nonlinear transfer function

and nonlinear diffusion bandwidth, both offering useful insights into nonlinear characteris-

tics of a transmission line. Together with the continuum and semi-continuum models, they

enable a rapid assessment of nonlinear impairments in WDM transmission systems. Design

rules (some of them restricted to amplitude-modulated signals) for the reduction of nonlin-

ear impairments have also been proposed. In particular, it has been shown how to reduce

simultaneously intra-and inter-channel nonlinear effects. Additionally, impact of fiber bire-
1In DPSK or DQPSK transmission, phase noise degrades system performance much more than in RZ

transmission leading to different optimal dispersion maps (see section 4.1.2).
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fringence and of information distribution in the frequency domain on fiber nonlinearities

have been investigated. Finally, the information capacity of fiber-optic transmission has

been derived. Motivation for this is the ever increasing demand for more bandwidth, which

could make systems operate closer and closer to this theoretical limit as it is already the case

for wireless transmission systems. Since these systems will have to operate at much lower

OSNR than today, we believe that high-speed electronics will play ever-increasing role in

fiber-optic transmission. Not only for the implementation of efficient encoding and decod-

ing algorithms but also for electrical mitigation of GVD, PMD and nonlinear impairments,

which can provide an economic alternative to all-optical signal processing.
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Appendix A

The split-step Fourier algorithm

The one method that is commonly used to solve the NLSE is the Split-Step Fourier (SSF)

method [118]. Basically, it relies on the principle that linear and nonlinear effects can be

considered separately form each other over short distances [119] so that the propagation

equation can be written:

A(z + ∆z) = exp (∆z(N̂)) exp (∆zD̂)A(z) (A.1)

with A(z) the slowly varying envelope of the electrical field. D̂ = − i
2β2

∂2

∂T 2 − α
2 is the linear

operator accounting for fiber loss and dispersion and N̂ = −iγ|A|2 is the nonlinear operator

accounting for Kerr-effect. exp (∆zD̂) is usually solved in the spectral domain, whereas

exp (∆zN̂) is more favorably solved in the time domain. The Fast Fourier Transform (FFT)

algorithm [120] is used to switch from one representation to another. In single channel

transmission systems the computation time is roughly proportional to N log2 N , where N

is the number of signal samples in time or frequency domain and to the channel peak power.

In WDM systems, the signal envelope (responsible for the nonlinear modulation of the fiber

refractive index) varies much more rapidly and the computation time increases on the order

of at least M3 [23], where M is the number of channels. As a consequence, if the SSF

method remains suitable to predict the performance of a given WDM transmission system,

it is not convenient to explore a large set of different system configurations.
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Appendix B

Analytical derivation of fd,eq

The magnitude of the nonlinear transfer function |η(∆Ω)| for multi-span transmission in

the case of identical spans is given in Eq. (3.27) as:

|η(∆Ω)|2 =
∣∣∣∣ηs(∆Ω)

sin (N∆ΩDres/2)
sin (∆ΩDres/2)

∣∣∣∣
2

so that that |η(∆Ω)|2 is given as the product of two transfer functions. It has been shown

in section 3.2.2 that |ηs(∆Ω)|2 can be approximated as:

|ηs(∆Ω)|2 =
|ηo|2

1 +
(

∆Ω
4πf2

d

)2

with fd the 10dB bandwidth of |ηs|2. Identically, when (∆ΩDres/2 << π), one can write:

∣∣∣∣
sin (N∆ΩDres/2)
sin (∆ΩDres/2)

∣∣∣∣
2

≈ N2

1 +
(

∆Ω
4πf2

a

)2

with f2
a ≈ 1

2πDres(N−1) . finally, |η(∆Ω)| can be written as:

|η(∆Ω)|2 ≈ |Nηo|2(
1 +

(
∆Ω
4πf2

d

)2
)(

1 +
(

∆Ω
4πf2

a

)2
)
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keeping only the largest terms in the denominator, the above equation becomes:

|η(∆Ω)|2 ≈ |Nηo|2

1 +
(

∆Ω
4πf2

d

)2
+

(
∆Ω
4πf2

a

)2 =
|Nηo|2

1 +
(

∆Ω
4πf2

d,eq

)2

with 1/f2
d,eq = 1/f2

d +1/f2
a the 10dB bandwidth of |η(∆Ω)|2. Thus the equivalent nonlinear

bandwidth of a multi-span transmission line (with identical spans) is given as:

fd,eq ≈ 1√
1

f2
d,s

+ 2π(N − 1)|Dres|
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Appendix C

Analytical derivation of WNL

Continuum model

The power spectral density of the nonlinear perturbation at the central frequency component

(f = 0) was derived in chapter 2 as follows:

WNL =
〈
2π |δNL(ω = 0)|2

〉

=

〈
2π

∣∣∣∣∣
∫ πBopt

−πBopt

∫ πBopt

−πBopt

η(∆Ω)Ã(ω1)Ã∗(ω2)Ã(ω − ω1 + ω2)dω1dω2

∣∣∣∣∣
2〉

(C.1)

where < · > is the mean operator. η(∆Ω), with ∆Ω = ω1ω2, is the nonlinear transfer

function of the transmission line and Ã(ω) is the Fourier-transform of the slowly vary-

ing envelope of the electrical field. If we assume all products ηÃÃ∗Ã(ω, ω1, ω2) to have

uncorrelated phase1, one obtains:

WNL = 2π

∫ πBopt

−πBopt

∫ πBopt

−πBopt

∣∣∣η(∆Ω)Ã(ω1)Ã∗(ω2)Ã(ω − ω1 + ω2)
∣∣∣
2
dω1dω2 (C.2)

If in addition the spectrum of the aggregate WDM can be approximated by a continuum

(see Fig. C.1), WNL can be written as:
1As a consequence of GVD and because all lasers start to emit with different optical phases.
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Figure C.1: Continuum (left) and semi-continuum (right) models for WDM signals.

WNL =
1

4π2
W 3

∫ πBopt

−πBopt

∫ πBopt

−πBopt

|η(∆Ω)S(ω1, ω2)|2 dω1dω2 (C.3)

with W = Ptot
Bopt

the power spectral density of the input signal in W/Hz. The integration

domain, S(ω1, ω2), is displayed in Fig. C.2. As shown in chapter 2, η can be expressed

with the help of the nonlinear diffusion bandwidth, fd,eq. When fd,eq ¿ Bopt, it is roughly

equivalent to integrate over S or over a square delimited by {ω1, ω2} ∈ [−πBopt..πBopt]:

WNL ≈ 1
4π2

W 3N2η2
0

∫ πBopt

−πBopt

∫ πBopt

−πBopt

1

1 +
(

ω1ω2

4πf2
d,eq

)2 dω1dω2 (C.4)

with N the number of spans and η0 = γ
α (N identical spans are assumed in this example).

Integrating over ω1 leads to:

WNL ≈ 1
4π2

W 3N2η2
0

∫ πBopt

−πBopt

8πfd,eq arctan
(

Boptω2

4f2
d,eq

)

ω2
dω2 (C.5)

setting X = Boptω2

4f2
d,eq

, the above integral can be approximated as:

WNL ≈ 2W 3N2η2
04

fd,eq

π

∫ πB2
opt

4f2
d,eq

0

arctanX

X
dX

WNL ≈ 2f2
d,eqW

3N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(C.6)
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Figure C.2: the integration domain, S(ω1, ω2) for a continuum. S=1 inside the dimmed area and
0 outside.

Semi-continuum model

The semi-continuum model accounts for the frequency gaps∆G = is the difference between

the channel spacing, ∆ch and the channel occupied bandwidth, Bch between the WDM

channels (see Fig. C.1. ρ = Bch
∆ch

is called the spectral use. The integration domain, S(ω1, ω2),

for such a semi-continuum is displayed in Fig. C.3. At constant total power P (i.e. for a

channel local spectral power density of P
ρBopt

), the nonlinear power falling into the channels

one when ∆G ¿ fd,eq (i.e. for high granularity) is:

PNL =≈ (Bopt ∗ ρ)ρ32f2
d,eq

(
Pch

ρBch

)3

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
(C.7)

Conversely, when ∆G À fd,eq (i.e. for low granularity), one obtains:

PNL ≈ (Bopt ∗ ρ)ρ22f2
d,eq

(
Pch

ρBch

)3

N2η2
0 ln

(
1 +

π

4
B2

opt

f2
d,eq

)
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Figure C.3: the integration domain, S(ω1, ω2) for a semi-continuum (7 channels, η=0.5)

The result reported in Eq. (3.45) and Eq. (3.46) verify these boundary conditions and were

obtained by setting Bch = ρ∆ch.
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Appendix D

Statistical characterization of δA0

System model

We consider an optical signal consisting in 2N+1 co-polarized WDM amplitude-modulated

channels (see Fig.D.1). We assume the channels to have the following characteristics (ver-

ified by most cases of practical interest):

H1: Marks and spaces are equiprobable and the encoded signal is ran-

dom.

H2: Channels are uncorrelated (bit stream are independent) and the

optical carriers (lasers) start to emit with random phases.

H3: Channels are statically equivalent (same bit-rate, modulation format

assumed) and peak-power limited.
The perturbation (see Eq. (3.15)) of the electrical field observed in the middle of the bit-slot

of the central channel, δA0(t = 0), is obtained as follows:

δδA0(t, L) =
1√
2π

∫ πBCH

−πBCH

δNL(ω,L) (D.1)

= X0 +
N∑

j=−N
k 6=0

Xj +
N∑

j=−N

N∑
k=−N

k 6=j

Yj,k (D.2)

where δNL(ω,L) is the nonlinear perturbation as derived in Eq. (3.15). X0, Xj and Yj,k stand

for the SPM, XPM and FWM products. X0 is assumed to be deterministic and will not be
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Figure D.1: Power spectral density of the considered WDM signal. BCH is the channel occupied
bandwidth and ∆CH the channel spacing.

treated as a noise in the following discussion. For a transmission over a single span of length

L verifying e−αL ¿ 1, and in the limit of low dispersive systems (β2(2πBch)2/α << 1) and

large channels spacing (Bch << ∆ch), the terms Xj and Yj,k are derived in [23] as follows:

Xj ' −iγA0F
−1
t=0{

∫
Pj(ω, 0)

1 + ijβ22πω∆CH/α
dω} = XRe

j + iXIm
j (D.3)

Yj,k ' γF−1
t=0{

∫ ∫
Aj(ω′)A∗k(ω

′′)Aj−k(ω − ω′ + ω′′)dω′dω′′}
−i + j(k − j)4π2∆2

CHβ2α
(D.4)

' Y Re
j,k + iY Im

j,k

where i =
√−1 and F−1

t=0· is the inverse Fourier-transform operator (for t=0) and Pj(ω) =

|Aj(ω)|2 with Aj(ω) being the Fourier Transform of Aj(t, 0), the amplitude envelope of the

jth channel at the transmitter side.

Statistical characterization of δA0

δA0 can be describe as a phasor (see Fig.D.2), i.e. as the sum of a real and imaginary random

variable both having zero mean to ensure energy conservation (δA0 = δARe
0 + δAIm

0 ). As

a consequence of H1, the real and imaginary parts of Xj and Yj,k are random variables.

Since Xj and Yj,k are not identically distributed, the classical formulation of the central

limit theorem can not be applied.

We focus now on δAIm
0 . We note σIm and RIm its variance and third order moment. Since
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Figure D.2: θ and a0 stand for the signal phase and amplitude variations caused by the nonlinear
perturbation δA0.

the channels are peak-power limited (H3), the variances (σi) and the third order moments

(ri) of the terms XIm
j and Y Im

j,k are finite and the calculus of the covariance (see section

D.10) indicates that all variables are independent. It results from H2 and Eq. (D.5) that the

PDFs of the Y Im
j,k terms are symmetrical and consequently that their third order moments

are nil.

Central Limit Theorem (Lyapunov formulation) [121]

Let z1...zn be n independent random variables not obligatory identically distributed with

finite mean, µi, variance, σi, and third order moment, ri . Noting Zn =
∑n

i=1 zi, mn =
∑n

i=1 µi, S2
n =

∑n
i=1 σ2

i and R3
n =

∑n
i=1 r3

i and if the condition

lim
n→∞

R3
n

S2
n

= 0 (D.5)

is verified, then
Zn −mn√

S2
n

→ N(0, 1) (D.6)

where N is the normal-centered distribution.
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Application of the central limit theorem

Using Eq. (D.3), Eq. (D.5) and the results obtained in the previous section, we show that

σ2
Im and R3

Im verify the following inequalities:

σ2
Im =

∑
σ2

i >




N∑
k=−N
l=k−j

γ2P 3
m/2

1 + (ljβ24π2∆2
CH/α)2


 → I =

∫ ∫
1

1 + a2x2y2
dxdy(D.7)

R3
Im =

∑
r3
i <




N∑

j=1

2γ3P 3
m

1 + (jβ24π2BCH∆CH/α)2


 → J =

∫
1

1 + b2x2
dx (D.8)

The integrals I and J are the continuous counterparts of the discrete summations. Since

I diverges and J converges, we can conclude from the Cauchy integral test [122], that σ2
Im

diverges and R3
Im converges, and finally that:

lim
N→∞

R3
Im

σ2
Im

= 0 (D.9)

what is the Lyapunov condition. Thus, for a large number of channels, the hypotheses of

the central limit theorem are fulfilled and in that case δAIm
0 follows a Gaussian distribution

with variance σ2
Im. The analysis is identical for δARe

0 . As a consequence, for a WDM system

consisting of a large number of channels, the perturbation induced by nonlinear inter-channel

interaction can be described by two random variables, both following a centered Gaussian

distribution.

Discussion

In the present study, low dispersive channels and large channel spacing are assumed. These

assumptions enable the derivation of simple analytical expressions for the XPM-and FWM-

induced perturbations, necessary for a verification of the Lyapunov theorem. The rate of

convergence is changing with higher bit-rates and/or narrower channel spacing, but the final

result (convergence towards Gaussian statistics) remains the same.
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Figure D.3: PDF of δARe
0 (circles) and Gaussian fitting (plenty line) for 7,15 and 31 channels.

Numerical verification

As an example, we consider the transmission of a WDM signal consisting of 7,15 or 31

2.5Gb/s NRZ channels (Bch=2.5GHz, ∆ch=25GHZ) over 80km NZ-DSF (D=8 ps/nm-km,

α = 0.2 dB/km, γ=1/W-km). For the simulation, independent sequences of 16x1204 bits per

channels were considered and the emitting phase of the optical carriers were set randomly

between 0 and 2π. The probability density function of δARe
0 (for the central channel) as well

as its Gaussian fitting are displayed in Fig.D.3. As expected, the PDF of δARe
0 approaches

the Gaussian distribution with an increased number of channels.

Extension to intra-channel effects

An similar study can be done for intra-channel interactions (iXPM, iFWM). Neglecting the

impact of the (deterministic) self-pulse modulation, one shows that for highly-dispersive

systems (i.e. for a large number of inter-bit interaction), real and imaginary parts of δA0

follow centered Gaussian distributions.
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Formulas

Let U , V be two random variables and a a real number. Noting µ the expectation (or mean)

and σ the variance, it comes:

µ(aU) = aµ(U)

σ2(aU) = a2σ2(U)

µ(UV ) = µ(U)µ(V ) + σ2
UV

σ2
UV = µ ((U − µ(U)) (V − µ(V ))) (D.10)

when U and V are independent, their covariance σ2
UV is nil.
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Appendix E

Optimal pre-compensation

In single-span transmission systems, the accumulated dispersion is given as :

D(z) = D0 + β2z

D0 being the pre-compensation and β2 the fiber dispersion coefficient. As already discussed

in 4.1.2, pre-compensation minimizing inter-bit interactions in amplitude-modulated sys-

tems, is the one maximizing the partial cancelation occurring between the real part of the

nonlinear perturbations generated at z1 and z2 with D(z1) = −D(z2) and z1 < z2 (see

Eq. (4.13)). Noting L0 = −D0/β2 so that D(L0) = 0, the optimal pre-compensation is the

one minimizing the following expression:

C(Do) =
∫ L0

0

(
e−3α(L0−x) − e−3α(L0+x)

)
dx +

∫ L

2L0

e−3αx

In the above expression the fiber length L is assumed as least twice as large as L0. The

factor 3 in e−3α accounts for the fact that the power of the generated nonlinear perturbation

is proportional to P (z)3, P (z) being the channel power. The optimal pre-compensation is

obtained by setting the derivative over Do of the above expression to zero:

Dopt ≈ −2ln(2)
3

β2

α
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Appendix F

Transmitter and receiver noise

Transmitter noise

Most lasers used for fiber-optic communication are semiconductor lasers. The two fun-

damental noise mechanisms occurring during optical carrier generation are electron-hole

recombination [3] and spontaneous emission, which is the dominant effect, leading to vari-

ations in the phase and intensity of the emitted light.

If low-noise lasers and ideal phase/frequency modulators are used, the transmitter noise

can be neglected against receiver or optical amplifier noise in non-coherent transmission

systems. Details to noise in semi-conductor laser can be found in [123] and [124].

Receiver noise

Receiver noise, leading to fluctuations in the detected current, consists mostly of two mech-

anisms occurring during photodetection: thermal noise and shot noise (dark current noise

and quantum noise). In the following, we note I(t) = RPin(t) + i(t) the detected current,

whit Pin the incident optical power, R the photodiode responsivity and i(t) the current

fluctuation due to noise.
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Shot noise

Shot noise is noise caused by current fluctuations due to the discrete nature of charge carri-

ers. Dark current noise and quantum noise are two types of noise that manifest themselves

as shot noise. Dark current noise is independent of the optical signal and results from dark

current that continues to flow in the photodiode when there is no incident light (spontaneous

generation of electron-hole pairs). Quantum noise results from the random generation of

electrons by the incident optical radiation and is thus signal dependent. The strength of

the current fluctuations can be expressed by its variance:

σ2
s =< i2(t) >= 2q(RPin + Id)∆f (F.1)

where Id the dark current of the photodiode , ∆f the effective noise bandwidth of the

receiver (depending on the limited bandwidth of the photodiode and the electrical filter)

and q the elementary electron charge. The shot-noise can be considered as a white noise1

having the following power spectral density:

Ws(f) = q(RPin + Id) (F.2)

Thermal noise

Thermal noise [125] is the noise resulting from the random motion of electrons in a con-

ducting medium2 leading to fluctuations in the current even in absence of applied voltage.

The power spectral density of the thermal noise is given by3:

WT (f) = 4kBT/RL (F.3)

kB is the Boltzmann’s constant, T the conductor temperature and RL the load resistor.

According to Eq. (F.3), the thermal noise is a white noise giving rise to a variance of the
1Shot-noise is a stationary random Poisson process, which can be approximated by a Gaussian statistics

[105].
2I.e. occurs in both photodetector and load resistor.
3for f < 1THz.
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detected current equal to σ2
T = ST (f)∆f .
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K. Fischer, H. Louchet, S. Randel and K. Petermann, A Simple Criterion for the Charac-
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Communications, 2005 (APOC 2005)
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(ECOC 2005)
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