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Abstract

In this thesis three different approaches to control the quantum statistics in nanoscopic
devices are investigated. In the first part of the thesis, mechanical oscillations in solid state
devices are manipulated by an external laser to show bistabilities, coherent amplification,
and enhanced damping. The dynamics is controlled by the frequency of the external
laser. This study is performed in a semiclassical approximation, where expectation
values of operators are factorized. These effects are used to show the similarities and
differences between optomechanical systems and phonon cavities. In the regime of coherent
amplification of phonons the theoretical description is extended to a fully quantum
mechanical model. This reveals additional resonances due to collective processes that can
be addressed via the frequency of the external laser.

In the second part, a quantum light source is considered for manipulation of the emission
statistics of a second quantum optical system serving as target. A Jaynes-Cummings
system is used as a source that may be tuned from nonclassical to thermal emission via
the pump strength. The target consists of a cavity with two emitters. The nature of
the imprinted statistics is studied by higher order correlation functions. The resulting
statistics deviates strongly from thermal, coherent or antibunched statistics.

The third part considers coherent self feedback with time-delay, which is motivated
by classical Pyragas control. The finite time delay is used as control parameter. The
matrix product state evolution in the picture of the quantum stochastic Schrödinger
equation is employed as a systematic way of dealing with quantum self-feedback. In
this thesis, the approach is extended to include higher order terms in the time evolution
operator. This is done systematically so that arbitrary order can be included enabling
faster numerical evaluation. This extension of the matrix product state evolution method
allows to investigate efficiently the emission statistics of a single mode cavity containing
two emitters. It is shown that feedback can enhance antibunching in the light field
while also counter-intuitively increasing the number of emitted photons at the same time.
Expressing the time evolution operator as a sum of sparse matrices allows to include time
dependent Hamiltonians in an efficient manner. Considering the pulsed excitation of a
two level emitter, it is demonstrated that emission statistics may be tuned via feedback.
This allows to switch between single photon emission and enhanced two photon emission.
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Zusammenfassung

Diese Arbeit behandelt drei Methoden der Kontrolle von Quantenstatistik von nanoskali-
gen Strukturen. Im ersten Teil der Arbeit werden mechanische Oszillatoren in Festkörpern
durch externe Laser gesteuert um Bistabilitäten, kohärente Verstärkung der Oszillatio-
nen und vergrößerte Dämpfung zu erreichen. Dies wird innerhalb einer semiklassichen
Näherung durchgeführt, wobei Erwartungswerte von Operatoren faktorisiert werden. Diese
Effekte zeigen Analogien zwischen optomechanischen Systemen und halbleiterbasierten
akustischen Kavitäten auf. Im Regime kohärenter Phononenverstärkung wird die theo-
retische Beschreibung auf ein voll quantenmechanisches Modell erweitert. Hier zeigen sich
zusätzliche Prozesse die durch eine Verstimmung des Lasers adressiert werden können.

Im zweiten Teil wird der Einfluss von nichtklassischem Licht, das von einem System
emittiert wird, auf die Emissionsstatistik eines zweiten quantenoptischen Systems unter-
sucht. Ein Jaynes-Cummings-Modell dient als Lichtquelle für nichtklassisches Licht. Das
beschienene Quantensystem besteht aus einer Kavität mit zwei Emittern. Die Lichtquelle
wird anhand von Korrelationsfunktionen höherer Ordnung charakterisiert. Dies zeigt, dass
die resultierende Lichtstatistik stark von thermischer und kohärenter Statistik abweicht
und kein Antibunching aufweist.

Im dritten Teil wird kohärente, zeitverzögerte Rückkopplung, die durch klassische
Pyragas-Kontrolle motiviert ist, im Quantenlimit untersucht. Die endliche Zeitverzögerung
dient als Kontrollparameter. Hier wird die Methode auf Basis von Matrixprodutzuständen
verwendet, die von der stochastischen Schrödingergleichung ausgeht. In dieser Arbeit
wird diese Methode systematisch auf Evolutionsoperatoren in höherer Ordnung erweitert,
was die numerische Simulation beschleunigt. Mit dieser Methode wird die Quantenstatis-
tik in einem System mit Kavitätsmode und zwei Emittern untersucht. Hier können
nichtklassische Signaturen verstärkt werden. Insbesondere wird in unintuitiver Weise das
Antibunching zusammen mit der Lichtintensität erhöht. Wenn der Zeitentwicklungsopera-
tor durch dünn besetzte Matrizen ausgedrückt werden kann, kann auch die Zeitevolution
durch zeitabhängige Hamiltonoperatoren effizient durchgeführt werden. Hier wird ein
gepulst getriebenes Zweiniveausystem simuliert, wobei sich zeigt, dass bei konstruktiver
Interferenz eine höhere Emissionswahrscheinlichkeit für zwei Photonen erreicht werden
kann.
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1. Introduction

1.1. Motivation

The advent of the laser opened new possibilities in all fields of physics being an indispens-
able tool not only for fundamental research but also for technical applications. These
achievements are possible due to the high level of control over the output characteristics
of lasers. Wide ranges of frequencies and intensities are accessible as well as emission of
short pulses [EE10].

In particular semiconductor lasers are of interest as they allow for industrial manufactur-
ing. However, they are also interesting from a fundamental point of view since nonlinear
dynamics govern their behavior in the classical regime so that bifurcations [EGK96] and
chaos [Oht06] are observed. When the laser is subject to feedback new dynamics may be
imprinted onto the system to create, e.g., multistabilites [LK80]. However, time-delayed
feedback was also proposed to stabilize the dynamics of dynamical systems [Pyr92]. This
allows to stabilize chaotic behavior [SH96].

The laser is the embodiment of two important concepts underlying this thesis. First,
lasers light exhibits characteristic properties. From a quantum optical perspective the
photons emitted from lasers are uncorrelated [MW95]. Second, lasers are important
tools for controlling quantum systems optically [SZ08]. However, in this thesis each
of this aspects will be considered with a certain modification. While optical lasers are
very advanced, recently the interest in a mechanical analog of the optical laser has been
growing, which could bring the advantages of the lasers for devices with very low frequency
[Khu10]. In the context of coherent generation of mechanical oscillations optomechanical
systems are of interest, where a mechanical mode is coupled to the light field via the
radiation pressure force [AKM14]. As a previous study that has lead to this thesis it was
shown theoretically that also the dynamics in optomechanical systems can be stabilized
via time-delayed optical feedback [Nau+14].

As for the optical laser, realizing a phonon laser by implementing it as a semicondutor
nanostructure would increase its technological relevance. Thus, next to other realizations
of phonon lasers [Gru+10; Bea+10; Vah+07; Men+10] semiconductor quantum dots were
proposed as active material to induce laser action [Kab+12], which is based on recent
progress in phonon cavities [Lac+04; Roz+09; LKFJ15]. In this thesis analogies between
the optomechanical and the semiconductor approach are investigated [Nau+16]. This
reveals that the semiconductor case approaches the optomechanical system for the case of
many emitters. Furthermore, coherent phonon generation is also possible by multi-phonon
processes. This triggered the fully quantum mechanical study of the quantum dot phonon
laser in the multi-emitter case [Dro+17]. The fully quantum mechanical model shows that
there are even more processes that enable the creation of phonon with coherent statistics.

The quantum mechanical study also shows that there are regimes which do not show
coherent dynamics. The deviation from the coherent dynamics is in particular interesting
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1. Introduction

in optical systems as non-classical states of light in the form of single photons [Shi07]
enable secure exchange of keys for the encryption of communication [Jen+00]. The above
studies for control via feedback are all performed using classical, i.e., coherent light fields.
This leads to the question if also quantum optical emitters may be controlled and stabilized
by their output. For measurement based feedback it has been shown that single photon
state may be stabilized [Zho+12]. Quantum coherent time-delayed feedback, where no
measurement is performed, is an interesting route as a quantum state is not perturbed by
any measurement. However, it is more involved from a theoretical point of view due to
its non-Markovian dynamics. As an intermediate study in this thesis a cascaded setup is
considered, where a quantum optical system is driven by nonclassical light [Azi+17]. Here,
the source also needs to be taken into account fully quantum mechanically. The study
reveals that the dissipative channel perturbs lower order correlations creating complex
photon statistical output.

This is even more involved for self-feedback as now the source is influenced by the target,
as they are one and the same. Starting with theoretical investigations of closed systems
[DZ02], recently the stabilization of Rabi-oscillations [Car+13] and the enhancement of
entanglement were shown [Hei+14]. However, driven systems with feedback as necessary
for realistic emitters and lasers have proven to be challenging. A first method for modeling
driven feedback systems was proposed in Ref. [Gri15], which used the notion of feedback as
multiple cascaded systems. In this thesis, however, the approach proposed in Ref. [PZ16]
will be employed. There, the dynamics of the system subjected to feedback is evaluated
by using a matrix product state (MPS) formulation for a stochastic Schrödinger equation.
In this thesis the approach is extended to higher order evolution operators, which enables
the simulation of more complex systems than before. Thus, a Tavis-Cummings [TC68]
system is subjected to feedback, which reveals that the photon statistics may be controlled
increasing non-classical signatures in the light field. Creating non-classical states of light
with a certain number of photons may be done using cavity quantum electrodynamics
[Mun+14]. However, also a two level system can be manipulated to emit two photons
with a high probability by pulsed excitation [Fis+17]. Feedback is able to increase this
effect generating two photons with a higher probability. This investigation is possible by
extending the MPS evolution method to time-dependent Hamiltonians.

These findings show that feedback may also be used in the regime of non-classical light
to shape the output of sources in a desired fashion being powerful method to control
nanoscale systems optically.

1.2. Structure of this thesis

This thesis is divided into three parts which each address a different method of controlling
the output statistics of quantum systems. As the quantum statistics will be the common
feature of interest for all parts of the thesis a brief introduction will be given in Chapter
2. Afterwards, in Part I, the control of mechanical oscillations in nanoscopic devices by a
light source will be studied. In Chapter 3 optomechanical systems and phonon cavities
will be introduced, which are both the realization of a single mechanical mode that couples
to the light field. These may be controlled by a pump laser to exhibit certain features
such as bistabilities, lasing, and enhanced damping. In Chapter 4 these are studied in
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1.2. Structure of this thesis

both systems regarding the similarities and differences. Then, in Chapter 5 the phonon
cavity is studied fully quantum mechanically in the regime where it exhibits coherent
phonon generation for multiple quantum dots as the acoustic analog of the optical laser.

So far the dynamics of the nanostructures was manipulated by using an exteral coherent
laser input. This is changed in Part II, where a cascaded optical setup is considered.
There the impact of non-classical light on the output statistics of a second optical system
is studied and higher order correlations are taken into account.

The last part of this thesis, Part III, features the control of a system by its own
output, to which an overview is given in Chapter 7. In order to investigate the impact of
time-delayed self-feedback in the quantum limit in Chapter 8 a numerically exact method
to model this used throughout the last chapter is the thesis is presented and extended. It
is used in Chapter 10 together with an approximate method to investigate the impact
on a quantum cavity electrodynamics setup. In Chapter 11 the impact of feedback on a
pulsed two level emitter is studied. Final remarks and an outlook conclude the thesis.
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2. Quantum statistics of light and matter

An important concept for all parts of this thesis is the statistics of quantized fields. It is
used to characterize light fields with respect to their processes of origin. In Part I the
phonon field will be considered where the statistics reveal whether coherent phonons are
generated by the processes that are investigated. In Parts II and III the creation and
stabilization of statistics deviating from this ideal case will be studied. That is on the one
hand thermal statistics and on the other hand non-classical statistics as emitted, e.g., by
a single photon source. In this part a brief introduction into the quantized description
of the statistics is given as it serves as the theoretically connecting concept between the
different parts of the thesis.

The statistics of the field are characterized by the correlation functions. The most
popular experimental setup in this regard is the Hanbury Brown-Twiss setup [BT56] as it
is a rather simple experimental setup and allows to measure the second order correlation
function. The setup is shown in Fig. 2.0.1. The system under investigation emits light,
which is divided by a beam splitter and fed into two detectors. Detector 1 will start a
time that will be stopped when detector 2 registers a photon. In quantized notation this
reads [Fox06]

G(2)(t1, t2) = 〈b†1(t1)b†2(t2)b2(t2)b1(t1)〉, (2.0.1)

where b1 is the field at detector 1 and b2 is the field at detector 2. With this setup
multiphoton events can be measured. In particular no two photon correlation will be
measured if only one photon is emitted as a single photon cannot be divided at the beam
splitter. In experiment only the cumulative second order correlation may be measured,
which corresponds to the integral over t1 and t2 in Eq. (2.0.1), when a system prepared
in a certain state is considered. Only in Part III the full dynamics of the external modes
are taken into account. For most of the thesis a proportionality between the system field
and the external field is assumed [Lou00] so that

G(2)(t1, t2) ∝ 〈c†(t1)c†(t2)c(t2)c(t1)〉, (2.0.2)

where c is the operator of the cavity mode. This dissipates weakly into an external mode
so that for most cases the proportionality is true and gives a qualitative picture of the
statistics of the light field emitted from a system. Using pulsed excitation, however,
scenarios can be constructed, where this proportionality is not true [Fis+17]. This case
will be discussed in more detail in chapter 11, where pulsed excitation with additional
feedback will be considered. Then it is necessary to directly evaluate the correlation
functions from the external bath modes.

In this introduction the focus will be on the case of continuous excitation via an external
laser as this is the prototypical case and will also be relevant for most cases in this thesis.
When initial conditions or a single pulse are assumed only a finite excitation is present
so that over all times is integrated. For the stationary case the two time integrals would
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2. Quantum statistics of light and matter

Figure 2.0.1.: With the Hanbury Brown-Twiss setup the second order correlation function
is measured. The emitter emits the field b(t) which is split at the beam
splitter into the field b1(t) going to detector 1 and b2(t) going to detector 2.
At the beam splitter also the input field d(t) exists, which is assumed to be
a vacuum field throughout this thesis.

diverge as continuous excitation will lead to constant emission of photons. Thus, the
normalized second order correlation function in the steady state is considered [GZ04]

g(2)(t, s) =
〈c†(t)c†(t+ s)c(t+ s)c(t)〉

〈c†(t)c(t)〉2
. (2.0.3)

In the steady state this becomes

g(2)(s) = lim
t→∞

〈c†(t)c†(t+ s)c(t+ s)c(t)〉
〈c†(t)c(t)〉2

. (2.0.4)

The system is taken at a large time t, where no transient dynamics are present anymore
and then the correlation between fields with time difference s are considered. As the
system is stationary only this offset is relevant. Finally, the usual characterization of
the light field can be made. When g(2)(0) < g(2)(s), s > 0 then the light field is called
antibunched. On the other hand, when g(2)(0) > g(2)(s), s > 0 the light field is called
bunched [MW95]. As the correlations will vanish for large s, the normalization ensures
that lims→∞ g

(2)(s) = 1. A value of g(2)(0) = 1 is valid in case of a coherent light field as
a coherent field is always uncorrelated. As the time evolution in s can be involved from a
theoretical point of view, the fact that lims→∞ g

(2)(s) = 1 will be exploited for simplifying
the theoretical considerations. When g(2)(0) < 1 it is clear that the field is antibunched.
Furthermore, the field obeys sub-Poissonian statistics. An example for this is the single
photon state. As discussed before no correlations involving more than a single photon
may be observed so that g(2)(0) = 0. If g(2)(0) > 1 bunching is present. For thermal
light g(2)(0) = 2 is expected [MW95]. These are the categories by which the light field is
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usually characterized. In analogy this characterization will also be used for the phonon
field in Part I of this thesis. However, the second order correlation function does not
fully characterize the light statistics. While it is used as a standard measure also in this
thesis, there are cases in which higher order correlations need to be taken into account.
While the second order correlation function is not influenced by single photon events it
contains not only two photon events but also events involving multiple photons. If two
photon events are of interest as in Chapters 6 and 11 of this thesis at least the third order
correlation has to be taken into account additionally. This is necessary to distinguish two
photon events from three and higher order events.

The stationary higher order correlations in analogy to Eq. (2.0.4) without time difference
read

g
(n)
stat = lim

t→∞

〈c†(t)nc(t)n〉
〈c†(t)c(t)〉n

. (2.0.5)

For some important cases the correlation functions may be given for all orders. For a
coherent state

g
(n)
stat,coh = 1 (2.0.6)

for all n [MW95]. For thermal state this reads [MW95]

g
(n)
stat,therm = n! (2.0.7)

Finally, a Fock state with N photons shows the correlations

g
(n)
stat,Fock =

N !

Nn(N − n)!
. (2.0.8)

These correlations will be used in Part II of this thesis as reference to gain a clearer
picture of the output from systems subject to non-classical light.

This concludes the brief introduction into light statistics. The special cases which were
mentioned here will be discussed in more detail throughout the thesis.
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Part I.

Optical control of mechanical
oscillations
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3. Mechanical oscillators

In this and the following chapters, the focus lies on controlling mechanical oscillations via
an external laser. Two realizations of microscopic mechanical oscillators will be considered:
On the one hand oscillators specifically designed to exploit the radiation pressure force in
order to achieve a coupling to the radiation field [AKM14] and on the other hand phonons,
which are the quantization of lattice oscillations in solid state materials. In particular this
thesis considers the phonon coupled to the conduction band in semiconductor quantum
dots (QDs).

Achieving a coupling between mechanical and optical degrees of freedom may open new
aspects in fields such as optical information processing [CD10; CA11], sensors [Kra+12],
or quantum information processing [AKM14].

The feedback control of the optomechancial system was considered in Ref. [Nau+14].
As the optomechanical interaction becomes only relevant at high pump strengths, a
semiclassical theory may be applied. This study also connects this part of the thesis to
Part. III.

In Chapter 4, the analogy between optomechanics and the electron phonon interaction
will be motivated theoretically focusing on bistable behavior, lasing and enhanced damping
as effects connecting these physical realizations of mechanical oscillators. This investigation
based on a semiclassical evaluation of the underlying Hamiltonian was published in
[Nau+16]. In chapter 5 the focus will be on phonon lasing, i.e. generation of a high
number of phonons via external pumping, in the semiconductor system. This work was
done in collaboration with Leon Droenner [Dro+17] and is accepted for publication in
Phys. Rev. A. It is a fully quantum mechanical study of phonon lasing in the multi-emitter
case and gives further insight into multi-particle effects, such as two phonon lasing or
collective phonon generation.

In this introductory chapter, the two considered physical systems will be introduced.
First, the optomechanical system will be discussed. It consists of a single cavity mode
coupled to a single mechanical mode. Afterwards a semiconductor device, in which a single
phonon mode is in resonance with a surrounding phonon cavity couples to the conduction
band of a quantum dot. These two systems have a single mechanical oscillator mode,
which may be addressed by an external optical laser in order to control the dynamics of
the mechanical oscillator. While the mechanical mode in the optomechanical system is
coupled directly to the light field by the radiation pressure force, in the semiconductor
system the interaction is mediated by the quantum dot. These two systems and their
Hamiltonians will be introduced in the following.

3.1. Optomechanical oscillator

In optomechanics the interaction between the light field and a mechanical oscillator due
to the radiation pressure force is investigated. Here, the optical pincer [Ash70], as well as

11



3. Mechanical oscillators

Figure 3.1.1.: Schematic depiction of the optomechanical system, where the optical cavity
has one movable mirror. The cavity mode is pumped via an optical laser
and thus populated to enable a strong interaction due to the radiation
pressure force. This figure is adapted from Ref. [Nau+16].

laser cooling [HS75], is relevant. Cavity optomechanics, where the interaction is amplified
by high intensity fields inside an optical cavity were considered early for gravitational
wave detectors [Cav80]. Recently, also possible applications for quantum information
science and sensors are proposed [AKM14; KV08; ZBM14].

In Fig. 3.1.1 the basic optomechanical system is shown. An optical cavity, where one of
the mirrors may oscillate, is pumped by an external laser to introduce a high intensity
field into the cavity, which enables a strong interaction with the radiation pressure force.
This is only a schematic depiction as there are several different ways of realizing an
optomechanical coupling. Starting with the Farby-Perot setup depicted in 3.1.1 [Dor+83]
more recent advances use, e.g., microtoroids [Ver+12], nanomembranes [Usa+12], or
silicon based monolithic oscillators [Wu+17]. The impact of the radiation pressure force
inside the cavity may be derived by considering the forces on the mirrors surface via
the Maxwell stress tensor. To derive the Hamiltonian a canonical quantization of the
Hamiltonian creating the equations of motion may be conducted [Law95]. When assuming
only a single relevant optical mode the Hamiltonian reads [AKM14]

HOM = ~ωcavc
†c+ ~ωmb

†b− ~gc†c
(
b+ b†

)
+ ~E1

(
c†e−iωLt + ceiωLt

)
. (3.1.1)

The first term describes the frequency of the cavity mode ωcav while the second term
constitutes the frequency of the mechanically oscillating mirror ωm. These two harmonic
oscillators are coupled with the coupling constant g, where an increased intensity in the
cavity mode pushes the mirror outward. The last term describes the coherent, optical
pump laser pumping the cavity mode in rotating wave approximation. As the cavity mode
and the mechanical oscillator are both harmonic oscillators, they obey the commutation
relations [c, c†] = 1 and [b, b†] = 1.

3.2. Acoustic cavity

Similar to the optomechanical system where a mechanical mode is coupled to the light
field, phonon modes as mechanical oscillations are coupled to electronic transitions. This
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3.2. Acoustic cavity

Figure 3.2.1.: Proposed semiconductor quantum optical approach to exploring acoustic
phonon dynamics. The phonon cavity consists of materials of alternating
acoustic impedance in analogy to an optical distributed Bragg reflectors
(DBR)[Tri+02; LKFJ15] and a number of coherently pumped quantum dots
(QDs). This figure is adapted from Ref. [Nau+16].

may be derived from the solid state Hamiltonian involving all contributions by the nuclei,
the electrons and their electromagnetic coupling. To write the Hamiltonian in second
quantized form, first electrons and nuclei are assumed to move independently in the
Born-Oppenheimer approximation. This leads to the basis for nuclei and electrons. In the
next step the coupling via the coulomb interaction may be introduced again. Thus, the
coupling term may be derived with the corresponding coupling strength resulting from
the coulomb matrix elements in the respective basis. This procedure is given in solid state
textbooks [Mad13].

In recent years acoustic cavities that act in analogy to optical cavities were introduced
[Lac+04; Roz+09; BRV12; Fai+13; LK+11; LK+07; LKFJ15]. A single phonon mode
is selected by creating a cavity using distributed Bragg reflectors as used in the optical
case. A structure of alternating layers with different optical impedances lead to a high
reflectance of the phonons.

This leads to the Hamiltonian is in the form as in Refs. [Kab+12; KCK13; AHK99].
However, now multiple emitters are taken into account. Altogether this reads

HSC = ~
NQD∑
i=1

ωvc,iâ
†
c,iâc,i + ~ωphb

†b

+ ~
NQD∑
i=1

giâ
†
c,iâc,i

(
b† + b

)
+ ~

NQD∑
i=1

Ei

(
â†c,iâv,ie

−iωLt + â†v,iâc,ie
iωLt
)
.

(3.2.1)

The first term describes the transition frequency ωvc,i of the quantum dots, which is written
via the electronic creation and annihilation operators. Since the quantum dots represent
an electronic system, the operators obey the fermionic anti-commutation relations

{âµ,j , â
†
ν,l} = δµ,νδj,l. (3.2.2)

The operator aµ,j is the annihilation operator for an electron in the band µ in the jth
QD. Effectively NQD two level systems are considered, as only conduction and valence
band will be taken into account. In a real sample, the transition energies for the QDs
may be different. However, in this chapter the idealized case of resonant quantum dots
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3. Mechanical oscillators

will be studied. In Chapter 5 the aspect of non-identical QDs will be considered again.
The second term describes the energy of the single phonon mode of frequency ωph, which
is selected by the acoustic cavity. This phonon mode is described by a harmonic oscillator
and thus the operators obey the bosonic commutation relation [b, b†] = 1. The third term
describes the electron phonon coupling with strength g, resulting from the impact of the
deformation of the lattice due to the interaction with the electrons [Mad13; Web+08]. As
a first approximation, in the following, all quantum dot transitions are assumed to couple
with the same strength to the phonon mode. In Chapter 5 the impact of different coupling
strengths will be addressed. The last term gives the optical pumping of the quantum dots
in rotating wave approximation.
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4. Semiconductor analogue of
optomechanics

In this chapter the semicondutor system presented in Sec. 3.2 will be shown to exhibit in
certain regimes a behavior, which is analogous to the optomechanical system presented
in Sec. 3.1. This analogy will be discussed based on the Hamiltonians introduced in the
previous chapter.

While phonons often have undesirable effects such as heating of solid state devices
[Zha+01], addressing certain phonon assisted resonances can allow to exploit phonon
interactions for, e.g., single-photon generation [Eis+11] or self-cooling [Usa+12] of devices.

The possibility of reaching the strong coupling regime with the semicondutor structures
presented in Sec. 3.2 may enable mechanically induced transparency [Mah+12] or syn-
chronization effects between mechanical oscillators [WNB15]. The possibility of strong
coupling and high phonon frequencies permits a selective excitation of certain transitions.
In Fig. 3.1.1 the most basic optomechanical setup was shown: Photons exert a force onto
the mirror upon reflection, which in turn changes the length of the cavity leading to the
optomechanical coupling.

In contrast, Fig. 3.2.1 shows the semiconductor structure implementing the strong
electron phonon interaction. Driving the quantum dot optically with a detuning triggers
the creation of acoustic phonons [MZ07; Kab+11b]. Phonon cavities may be fabricated
as distributed Bragg reflectors (DBR) confining a single acoustic phonon mode [Tri+02;
LKFJ15] in analogy to microlaser structures [ST95]. For optical phonons an effective
phonon mode with the same coupling characteristics may be derived [MZ07]. In Chapter
5 the scenario of phonon lasing will be discussed in more detail, when the full quantum
mechanical model is considered.

Optomechancis as well as semiconductor laser show a variety of nonlinear dynamical
phenomena such as instabilities or bifurcations [Lin+13; Mil+15]. To model quantum
optical effects in lasers, typically the Tavis-Cummings model is employed [TC68; Kop+15],
where a cavity mode is coupled to a number of two level systems, and effects like
superradiance may be observed[Dic54; Ley+15]. From a theoretical point of view a
major difference between the electron-photon coupling in the Tavis-Cummings model with
rotating wave approximation and the electron-phonon coupling will be discussed later on.

In the present chapter, the focus is on the regime of coherent dynamics. The quantum
mechanical treatment in the lasing regime will be presented in Chapter 5.

The optomechanical (OM) and the semiconductor (SC) system, both, are constituted
of similar components. In the optomechanical system there is the cavity mode and the
mechanical oscillator, while in the semiconductor system there is the resonant optical
transition of the semiconductor quantum dot and a distinct phonon frequency. Thus, both
systems have a component of a high (optical) frequency (HF) and a low (mechanical)
frequency (LF).
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4. Semiconductor analogue of optomechanics

For achieving an exploitable coupling due to the radiation pressure force multiple designs
exist, e.g., whispering gallery modes in toroids or microscopic membranes [AKM14].

In the following, the analogy between the optomechanical and the semiconductor system
will be motivated using bistable behavior, lasing and enhanced damping of oscillations.
First, the Hamiltonians for both systems will be introduced and is shown to have a
similar form. Investigating these effects will reveal, that the optomechanical system may
be understood as the limiting case of the semiconductor system for a large number of
quantum dots, and thus as a physical realization of the Holstein-Primakoff approximation
[HP40], which states that many weakly excited fermions may act as a boson.

Furthermore, the case of lasing is of particular interest in context of phonon lasers
[Kab+12; KCK13]. Here, when increasing the number of emitters, higher order phonon
processes may be observed, which will be investigated closer using a description via the
full density matrix. Although, already the semiclassical description shows multiphonon
effects.

4.1. Optomechanical versus electron-phonon coupling

The two compared systems differ fundamentally by the nature of the high frequency
component. In both cases the high frequency component is controlled by the external
optical pump laser. In the optomechanical system, the high frequency component consists
of the cavity and thus a bosonic mode, while the quantum dots constitute a fermonic
system. Both of them couple to a bosonic mode. The focus will lie on the similarities
between the system in spite of these differences, but the mentioned distinguishing features
will also be discussed.

Both Hamiltonians can be brought formally to the same form by rewriting and shifting
the energy scale. This form stresses the formal analogy between the two systems and
introduces a common notation, and reads

H = ~Ωb†b+ ~ωp̂†p̂ + ~gp̂†p̂
(
b+ b†

)
+ i~E

(
p̂†e−iωLt − p̂eiωLt

)
. (4.1.1)

The first term describes the harmonic oscillator of frequency Ω representing the low
frequency (LF) component of the system. In the optomechanical system this is the
mechancial oscillator, while in the semiconductor system it is a phonon mode. The
operators b† and b create and destroy an excitation in the oscillatory mode, respectively.

The second term describes the high frequency (HF) component of frequency ω, which is
the optical cavity in the optomechanical system and the optical transition of the quantum
dot in the semiconductor system. The operators p̂† and p̂ represent the transition operator
of the high frequency component. In the optomechanical setup it is p̂ = c, which means
that the HF component is the bosonic cavity mode. However, in the semiconductor system
p̂ is a vector with NQD elements p̂j = â†v,j âc,j . Since the QD is described as a two level
system (TLS), the energy can be rewritten in this way. Here, NQD is the total number of
quantum dots inside the phonon cavity.

The third term introduces the coupling of the HF to the LO component, where the
number of excitations in the HF component is coupled to the position of the LF mode
q = (b+ b†)/

√
2.
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4.1. Optomechanical versus electron-phonon coupling

The last term describes the external optical pumping of the coherence p̂ with a coherent
laser field. In case of the semiconductor system, E is a vector containing individual pump
strengths Ej of all QDs. The external laser is characterized by the frequency ωL.

In the following all QDs are assumed to be identical. Above, they already have the same
transition energy, so that no inhomogeneous broadening is considered. Furthermore, the
coupling g is identical and the pump strengths Ej are the same. Now, the fundamental
difference between the systems becomes more clear: While the HF component of the
optomechanical system obeys a bosonic commutation relation, the HF part of the semi-
conductor system is fermionic. In the first case an arbitrary number of excitations may
be brought to the system, while in the second case only a limited number of excitations
may be present. This limit can be increased by increasing the number of quantum dots.

4.1.1. Equations of motion

The equation of motion for an arbitrary operator Ô is derived from the Hamiltonian Eq.
(4.1.1) via [Kab+12]

d

dt
〈Ô〉 =

i

~
〈[H, Ô]〉+ γ

∑
j

Tr(ÔL[p̂j ]ρ) + κTr(ÔL[b]ρ)

+
∑
j

γPD

2
Tr(ÔL[p̂j p̂

†
j − p̂

†
j p̂j ]ρ), (4.1.2)

L[X̂]ρ = 2X̂ρX̂† − X̂†X̂ρ− ρX̂†X̂.

Radiative damping and nonradiative dephasing are taken into account in Lindblad form
[Car02]. The incoherent processes occurring in the optomechanical system are the radiative
damping of the cavity mode via the rate γ, which is due to scattering onto other mode
and imperfect mirrors. The mechanically oscillating mirror is damped with the rate κ
because its oscillations are coupled to the substrate. For the semiconductor system the
quantum dot transition is damped by 2γ and the phonon is damped by κ. This is again
due to coupling to neglected modes. The last term corresponds to the dephasing of the
electron coherence, which destroys the polarization of the QD without introducing a decay.
For the case of the longitudinal acoustic (LA) phonon mode, pure dephasing is neglected
as these processes are assumed to be negligible due to the introduction of the phonon
cavity. When considering longitudinal optical (LO) phonons, pure dephasing has to be
considered and is due to the coupling to the energetically lower lying acoustic phonon
modes [KAK02],

From (4.1.2) a system of equations of motion is derived. To break the hierarchy of
equations of motion coherent fields are assumed due to the external coherent pumping.
Then, products of operators are factorized into products of expectations values leading to
a set of nonlinear equations of motion. In Chapter 5, a full quantum mechanical study
will be done for the case of lasing. It is assumed, that all QDs follow the same dynamics,
thus reducing the number of equations. This leads to one common equation for all QDs.
This assumption will not be made when considering the fully quantum mechanical system.

For the optomechanical system, it results in two equations of motion, while there are
three for the semiconductor system. The cavity field can be factorized into a product
〈c†c〉 = 〈c†〉〈c〉, while the product of the fermionic operators 〈σ+,jσ−,j〉 is not factorizable,
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4. Semiconductor analogue of optomechanics

since a single QD can only be excited once. The equation of motion for the HF part is
transformed into a frame rotating with the pump laser frequency ωL. The equations then
read with the shorthand notations P∓ = 〈p̂1〉eiωLt, B = 〈b〉, and (only for the SC system)

U = 〈p̂†1p̂1〉

Ḃ = −(iΩ + κ)B − igNU (4.1.3a)

Ṗ∓ = (i∆− γ − γPD)P∓ − ig(B +B∗)P∓ + E1 (1− U ∓ U) (4.1.3b)

U̇ = E1(P− + P ∗−)− 2γU. (4.1.3c)

In (4.1.3b) the minus accounts for the semiconductor system, while the plus is valid for
the case of the optomechanical system so that in the OM system the U vanished from the
equation. Then, for the OM system, the pump term is independent of the occupation
of the HF component, so that Eq. (4.1.3c) is not part of the set of equations, so that
U = P ∗+P+ and N = 1. For the SC system N = NQD. This system of coupled first
order nonlinear differential equations is solved by a fourth order Runge-Kutta algorithm
[Pre+07].

Formally, the equations for the coherences P and B are analogous for the OM and SC
case: The HF component (P ) oscillates with the detuning ∆ = ωL − ω and is damped by
γ. The HF coherence couples to the LF position (B + B∗), which leads to an effective
frequency shift. Furthermore, it is pumped by an external laser. Here, the main difference
in the equations occurs: In the OM system, the pumping may be arbitrarily strong, while
the pumping in the SC system saturates at some point due to the limited number of
QDs. The last equation accounts for the fact that there may only be a finite amount of
excitations in the SC system.

The above Hamiltonian follows for LA phonons due to the fact, that only one phonon
mode is present in the phonon cavity by design. However, in the LO case, multiple phonon
modes are present. By employing the Einstein approximation of constant dispersion a
collective phonon mode can be introduced [MZ07; Kab+11b]. Then, a Hamiltonian can
be derived that leads to the same equations of motion.

For a clearer notation the number of excitations in the HF component are abbreviated
as nHF = NU in the SC system, where it is the expectation value for the number of excited
QDs, and nHF = P ∗P in the OM system, where it is the expectation value of the photon
number inside the cavity. The number of excitations in the LF component is written as
nLF = B∗B. The OM equations may be employed in the SC case, when the QDs are
excited very weakly as will become apparent in the following. This is consistent with the
Holstein Primakoff approximation [HP40]. However, here the approximate equations for
the SC system are indeed the full equations for the OM system. Thus, the OM system is
the realization of the SC case in the limit of many QDs.

If possible, we choose the parameters according to experimental data, as for the
optomechancial system [Vit+07]. In the semiconductor system, the parameters, which are
not directly accessible are estimated according to a microscopic theory [Web+08; MZ07;
Mac06] and taken close to previous publications [Kab+12; KCK13]. All parameters are
given in Tables 4.2.1 and 4.3.1. The strong coupling regime g > (γ + κ)/2 may be more
easily accessible in a semicondutor setup than in optomechanics.
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4.2. Bistability

4.2. Bistability

Optomechanical Semiconductor (LA) Semiconductor (LO)

LF frequency Ω = 2π × 10 MHz Ω = 556.6 GHz Ω = 55.3 THz
Detuning ∆ = −2.6× Ω ∆ = −Ω/8 ∆ = −Ω

Pump rate E1 = 2π × 10 MHz E1 = 556.6 GHz E1 = 55.3 THz
Losses (HF) γ = 2π × 14 MHz γ = 5 GHz γ = 5 GHz
Losses (LF) κ = 2π × 50 Hz κ = 0.5 GHz κ = 100 GHz
Dephasing γPD = 100 GHz

Coupling strength |g| = 952.7 Hz |g| = 197.5 GHz |g| = 5.1 THz
Number of QDs – 1 10

Table 4.2.1.: Parameter values used for the bistabilities in Sec. 4.2. The optomechanical
parameters are taken from [Vit+07]. The semiconductor parameters for
acoustic phonons are taken according to [Kab+12; KCK13]. For the optical
phonons, references [Web+08; MZ07] are used for coupling constants and
losses, while pure dephasing is taken from [Mac06].

In all of the systems discussed here bistable behavior can be observed. For the optome-
chanical system this has been studied in detail in Ref. [GBS11]. In order to illustrate the
bistability, the equations of motion Eq. (4.1.3) are evaluated in the steady state. Thus,
the derivatives can be set to zero because no change over time will occur. Whether a state
is stable or not may be evaluated by linearizing the system of equations in the vicinity of
the steady state, as done in Ref. [Nau+14] for the optomechanical system in the context
of state control. This method is common for analyzing of nonlinear dynamical systems
[Str00]. To facilitate this procedure, the equations of motion Eq. (4.1.3) may be written
in vector form

ẋ = F(x(t)), (4.2.1)

where x is a vector containing all variables and their complex conjugate. The vector F
contains the corresponding equations of motion. By writing the equation in this form, the
linearized version of the equations may be derived from the Jacobian matrix J = ∂F

∂x :

ẋ = J(x)
∣∣
x=xS

x +O(x2). (4.2.2)

Evaluating the steady state values and the stability by considering the maximal Lyapunov
exponent, the bistability in the phonon number can be considered. The state is stable if
the largest Lyapunov exponent is negative. In the following, excitations of the mechanical
oscillator in the optomechanical system are also called phonons for brevity. The bistabilities
are shown in Fig. 4.2.1(a) for the optomechanical system and in Figs. 4.2.1(b) and 4.2.1(c)
for the semiconductor systems with LA phonons and LO phonons, respectively.

To gain further insight into the occurrence of the bistability, the forces that act on the
LF component may be considered. This force incorporates two competing processes: On
the one hand the restoring force due to the harmonic potential Fh and on the other hand
the force due to the coupling to the HF component Fc. The general forces may be derived
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4. Semiconductor analogue of optomechanics

Figure 4.2.1.: Phonon number nLF of the low frequency component for (a) the OM system,
(b) the SC system with acoustic phonons, and (c) for the SC system with
optical phonons. Due to the different coupling strengths, the bistabilities
occurs at very different pump strengths. The parameters are given in Tab.
4.2.1. (This figure was previously published in Ref. [Nau+16]. © 2016 Optical Society of America, used
with permission.)

from the equations of motion Eq. (4.1.3) by Ftot = (Ḃ − Ḃ∗)/(
√

2i).. In the steady state
there exists an equilibrium of forces, so that Ftot = Fh + Fc = 0. The steady state value
for the dynamical variables is indicated by the index s. The harmonic force reads for the
OM as well as for the SC system

Fh =

(
Ω +

κ2

Ω

)
qs, (4.2.3)

where qs = (Bs +B∗s )/
√

2 is the normalized displacement of the LF component. For the
optomechanical case it may be understood as the force of the mount of the mechanical
mirror which tends to return to the initial position because of the strain in the material.
In the semiconductor the harmonic force is due to the displacement of the cores of the
material system. In both cases the force is approximated as a harmonic force, which is
valid for small displacements. The nonlinear effects occur due to optomechanical and
electron phonon coupling. The radiation pressure force in the OM system is given by

Fc,OM =
g√
2

2E2
1(

∆−
√

2gqs
)2

+ γ2
. (4.2.4)

In the case of the coupling of the phonon mode to the electronic excitation this force
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4.2. Bistability

reads

Fc,SC =
Ng√

2

1

1 + γ
γ+γPD

(∆−
√

2gqs)
2
+(γ+γPD)2

2E2
1

. (4.2.5)

Since, in both cases, the maximum of these forces lies at a value ∆ < 0 for the detuning,
the maximum may only be observed in this regime. This is the case as only in this regime
the steady state equations have three solutions.

In all cases a bistability can be found. The different stability behavior of the OM system
is discussed in Ref. [Nau+14]. For the semicondutor system the phonon number saturates
at some point for large pump strengths, while the phonon number in the OM system is
not limited. This difference occurs, since the nonlinear coupling force Fc depends on the
number of excitations in the HF component. For the OM system it may be increased
arbitrarily, so that always a configuration with three solutions may be found. However,
they may be unstable if the pump is too high (or even outside the linear regime). For the
SC system there are not necessarily three solutions as the maximum coupling force in
this case is Ng√

2
, so that either the coupling strength or the number of QDs has to be large

enough. Simply increasing the pump strength may not be advantageous. This difference
is due to the different statistics of the HF component.

When increasing the number of quantum dots, the maximum number of excitations
becomes large, so that it may be neglected for the regime of weak pumping. This behavior
is shown in Fig. 4.2.2(a), where the semiconductor system approaches the optomechanical
one with the same parameters. The same is true for the OM parameters, while here the
number of QDs needed to reach the same behavior is much higher, since a much higher
pumping strength is needed to observe the bistability. This behavior can be also shown
from an analytical consideration by investigating the equations Fh + Fc = 0 which are

valid in the steady state. When using qs = −
√

2gΩUtot

Ω2+κ2 , which follows from Eq. (4.1.3a), a
cubic equation emerges that has up to three solutions in the bistable regime. For the OM
system it reads [(

∆ +
2g2ΩUtot

Ω2 + κ2

)2

+ (γ + γPD)2

]
Utot = E2

1 ., (4.2.6)

while it is[(
∆ +

2g2ΩUtot

Ω2 + κ2

)2

+ (γ + γPD)2

]
Utot = NE2

1

(
1− γPD

γ

)(
1− 2

Utot

N

)
(4.2.7)

in the SC system. When neglecting pure dephasing and assuming that Utot
N � 1, also

the SC case tends to Utot ≈ P ∗P . This is what is illustrated in Fig. 4.2.2. For both
parameters, the ratio NQD/nLF ≈ 103 gives an estimate for the number of quantum dots
needed for the approximation to be valid.

With this, also the high number of phonons in the OM bistability can be explained.
Here, the coupling strength g is much smaller than in the SC case, so that a much higher
pump is needed in order to observe nonlinear effects. For a SC system with a similar
coupling strength, no bistability could be observed, so that the bosonic statistics of the
cavity mode allow to observe nonlinear effects even for small coupling strengths. When
considering pure dephasing as in the case of LO phonons, this behavior is not valid
anymore.
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4. Semiconductor analogue of optomechanics

Figure 4.2.2.: The behavior of the stationary states of the LF component nLF for (a)
the SC system parameters for LA phonons and (b) the OM parameters
(cf. Tab 4.2.1). When increasing the number of QDs for the SC equations,
the behavior given by the OM equations is approached. (This figure was previously
published in Ref. [Nau+16]. © 2016 Optical Society of America, used with permission.)

In this section the bistability was considered, which is a stationary property. For
increasing numbers of quantum dots the behavior of the semiconductor system approaches
the one the the optomechancial system as the limit in the number of excitations is lifted
to a certain degree. In the next section the dynamical properties of lasing and enhanced
damping will be studied.

4.3. Lasing

In this section mechanical lasing, also called phonon lasing, which is studied in the
optomechanical [MHG06; LKM08; AKM14] and the semiconductor system [Kab+12;
KCK13], will be studied. In this section the above semiclassical model will be considered
in order to get an overview of this effect. In Chapter 5, a full quamtum mechanical model
will be used to get a closer look at certain interesting effects, such as the two phonon laser
process. With the semiclassical model, however, it is possible to study the general behavior
of the systems for a vast parameter range. Some of the parameters used throughout this
and the following section deviate from the ones used in the previous section [cf. Tab.
4.3.1].

The fundamental process underlying the phonon laser is the anti-Stokes process: The
pump laser has to be blue detuned from the optical (high frequency) resonance of the
system. With the definitions used here, the detuning is positive ∆ > 0 and in the order of
a single phonon frequency for the commonly exploited process. When exciting the QD
optically, the excess in energy is transformed due to the electron phonon interaction into
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Optomechanical Semiconductor Semiconductor (LO)

LF frequency Ω = 2π × 10 MHz Ω = 556.6 GHz Ω = 55.3 THz
Pump rate E1 = 60 GHz E1 = 80 GHz E1 = 9.01 THz

[cf. Fig. 4.3.1(a)] [cf. Fig. 4.3.1(b)] [cf. Fig. 4.3.1(c)]
Detuning ∆ ≈ ±Ω ∆ ≈ ±Ω ∆ ≈ ±Ω

Coupling strength E1 = 2π × 10 MHz E1 = 556.6 GHz E1 = 55.3 THz
Losses (HF) γ = 2π × 2 MHz γ = 5 GHz γ = 5 GHz
Losses (LF) κ = 2π × 50 Hz κ = 0.5 GHz κ = 50 GHz

γPD = 100 GHz
Coupling strength |g| = 205 Hz |g| = 197.5 GHz |g| = 5.1 THz
Number of QDs – 1 [cf. Fig. 4.3.1(b)] 10 [cf. Fig. 4.3.1(c)]

Table 4.3.1.: Parameter values for lasing and enhanced damping, as used throughout
Secs. 4.3 and 4.4. For the OM system, this time the parameters according to
Ref. [Gen+08] is used, for showing the features of the investigated processes
more clearly. For the semiconductor systems the parameters are used as
in Tab. 4.2.1 from Refs. [Kab+12; KCK13] and [Web+08; MZ07; Mac06]
with adjusted detunings and pumping strengths. The positive sign in the
detuning is used in case of lasing, while the negative sign is used for enhanced
damping. Furthermore, the number of quantum dots used in the figures,
where it is not explicitly states, is given.

mechanical oscillations [cf. Fig. 4.3.1, Left]. Here, a quantum mechanical picture reveals
a major difference between the OM and the SC system. While the upper and lower levels
in the OM system are two adjacent photon number states in the cavity, for the QD these
are the upper and the lower level of the (fermionic) two level system. This means that the
cavity mode is excited from the state with n phonon to the one with n+ 1 phonons. Thus,
a decay back to the n phonon level is not necessary. The QD, in contrast, only may create
a second phonon after the electronic excitation decayed. For realistic quantum dots, the
level structure is of course more complex than a two level system. However there is not
an infinite number of levels allowing the phonon creating process. Thus, the main limiting
factor for the phonon number [Kab+12] is not present in the OM system. As phonon
lasing is considered in the semiclassical model, the lasing occurs as a parametric instability.
The steady state predicted by the equations becomes instable in the regime of lasing [cf.
Sec. 4.2]. Instead, a periodic orbit governs the systems dynamics in this regime. The
quantum mechanical model will behave differently, as will be shown in Sec. 5. The time
dynamics of the semiclassical model are shown in Fig. 4.3.1, where also the oscillations
are shown in the inset. For the OM system and the SC system with LA phonons, the
amplitude of the oscillations is small in comparison to the number of phonons, for the LO
phonons. However, the decay is very large, so that it is the dominating time scale of the
dynamics, which leads to the large orscillations.

In Figs. 4.3.2 the time averaged phonon number in the steady state is shown as a
function of the detuning and the pump strength. For the SC systems, also the cases with
multiple QDs are shown.

23



4. Semiconductor analogue of optomechanics

Figure 4.3.1.: Left: Schematic depiction of the process enabling phonon lasing. The
system is pumped with a frequency that is roughly the sum of low and high
frequency. Then each time the system is excited an excitation in the low
frequency mode is created. When the high frequency mode is decayed back
to the ground state the process can occur again. Right:The time evolution
of the phonon number for (a) the OM (Parameters: cf. Tab. 4.3.1), (b) the
SC system with LA phonons (Parameters cf. Tab. 4.3.1 and ∆ = 0.973×Ω,
E1 = 80 GHz), and for (c) the SC system with LO phonons (Parameters
cf. Tab. 4.3.1 and ∆ = 0.845 × Ω, E1 = 9.01 THz). (These figures were previously

published in Ref. [Nau+16]. © 2016 Optical Society of America, used with permission.)

In case of the OM system, in the regime of low pump strength, the maximum phonon
number is indeed observed at the detuning corresponding to the single phonon process [cf.
Figs. 4.3.2(a)]. When the pump power increases also higher order phonon processes become
accessible and allows for higher phonon numbers, as then in a single cycle multiple phonons
may be created. Then the maximum phonon number is observed at higher detunings. In
contrast to the SC case, the resonances are broad, so that individual processes may not be
distinguished. Multi phonon processes will be discussed in more detail in Sec. 5. In case of
the SC system with LA phonons, the resonances are more sharp, so that the single phonon
process can be clearly distinguished from the two phonon process, which becomes efficient
for 5 QDs at high pump strengths [cf. Fig. 4.3.2(c)]. For even more QDs [cf. Fig. 4.3.2(d)]
the regimes of the processes mix, as the lasing regime becomes larger, when increasing
the number of QDs. Also the mean number of phonons is increased proportional to the
number of QDs. Furthermore, the number of phonons, that are created is higher when
the second order process is available. Again, this will be investigated in more detail using
a full quantum mechancial model in Sec. 5. For the SC systems one can clearly observe
the shift of the lasing resonance to lower detuning when increasing the pump strength [cf.
Fig. 4.3.2(b)]. This shift can be evaluated approximately by considering the second order
process depicted in Fig. 4.3.1, Left. The derivation for multiple QDs is shown in the App.
A.1, which follows Ref. [Kab+12; KCK13]. The detuning, at which the resonance will be
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4.3. Lasing

Figure 4.3.2.: The time averaged phonon number in the steady state is shown as a function
of the detuning and the pump strength for (a) the OM system (Parameters
cf. Tab. 4.3.1), the SC (LA) system (Parameters cf. Tab. 4.3.1) with (b) 1,
(c) 5, and (d) 18 QDs, and the SC (LO) system (Parameters cf. Tab. 4.3.1)
with (e) 10 and (f) 50 QDs. (This figure was previously published in Ref. [Nau+16]. © 2016

Optical Society of America, used with permission.)

observed is approximately ∆eff = −∆− 2
E2

1
∆ − nHF

g2

Ω . Here, self quenching (second term)
and the polaron shift (third term) alter the unperturbed resonance. For multiple QDs
[cf. Figs. 4.3.2(c),(d)] the polaron shift increases with the excitation of the QDs. As the
QD excitation saturates, the shift is roughly proportional to the number of QDs. This
is shown in Fig. 4.3.3 for the case of 3 QDs. The effective resonance with nHF ≈ 3 is
plotted (blue, dashed). For low pump strengths the maximum of the phonon number is
estimated well. When increasing the pump strength the effective resonance overestimated
the shift. This is attributed to missing higher order terms in the effective Hamiltonian
which become relevant for high E1.

For the OM system also an effective resonance can be obtained, which reads ∆eff =

−∆− g2

Ω nHF. In this case, there is no direct self quenching with the laser power as the
cavity mode is bosonic. However, there is a dispersive shift proportional to the excitation
of the cavity mode, which indirectly also leads to a shift with the pump power. Due to
the broad resonances and because g2/Ω is very small due to the small coupling strength,
the shift is not visible in Fig. 4.3.2(a).

The effective shift is strictly only valid for the single phonon resonance, however the two
phonon resonance seems to obey a similar shift [cf. Fig. 4.3.2(c)], while a quantification is
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4. Semiconductor analogue of optomechanics

Figure 4.3.3.: Comparison between the numerically evaluated phonon number and the
resonance predicted by the effective Hamiltonian Eq. (A.1.4). The blue

dashed line corresponds to the resonance condition ∆2
res + (−Ω + 3g

2

Ω )∆res +
2E2

1 = 0. For low pump strengths the maximum of the phonon number is
estimated well.

difficult due to the third order processes that have to be considered.
For the SC system with LO phonons, the qualitative behavior is similar as for LA

phonons. However, the phonon number is much smaller due to the high phonon losses
and the additional pure dephasing.

4.4. Enhancement of phonon damping

As complementary effect to lasing, the last effect, that will be considered here is the
enhanced damping of the LF component (mechanical mode) caused by the interaction with
the HF component (cavity mode/TLS). This effect is closely related to back-action cooling
of the optomechanical mirror [WR+07; Mar+07; Gen+08; Hab+12]. In the following the
computation is simplified as no noise input will be considered. This is done in order to
keep the semiclassical description, which still allows to consider the change of the damping
rate [cf. [AKM14; Gen+08]].

This will be done by evaluating the largest Lyapunov exponent governing the dynamics
of the coupled system by computing it for the linearized equations as done for the stability
analysis, cf. Sec. 4.2 and Ref. [Nau+14].

The enhancement of the damping rate for all systems is illustrated in Fig. 4.4.1, where
the largest Lyapunov exponent κeff,L is given as a function of the detuning ∆ and the
pump strength E1. In this section different parameters with smaller coupling strengths
are used [cf. Tab. 4.3.1]. With larger pumping strengths as in Sec. 4.2 the OM system
becomes instable for pump rates large enough to observe a significant enhancement of the
damping rate. For the SC system this problem does not occur as the saturation of the
excitation of the quantum dots also leads to a limited enhancement of the damping rate,
which occurs before the system may become unstable.
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4.4. Enhancement of phonon damping

Figure 4.4.1.: Here, the effective damping rate for the OM and the SC with LA and
LO phonons is depicted. (a) In case of the OM system, the damping is
increased strongly up to 1400 times. (b) For this case, the formula (4.4.1)
[cf. Ref. [Gen+08]] agrees well with the numerical evaluation. (c,e,f) By
increasing the numbers of quantum dots in the SC system with LA phonons,
the damping can be enhanced in a broader parameter range, while there
is a maximum enhancement of about six times the inherent rate. (d) The
analytical formula [cf. Eq. (4.4.2)] for the SC system falsely predicts a
higher damping rate than observed numerically as it is only valid in the
range of weak QD excitation. This is also the case for LO phonons (g),
where the analytical formula also fails (h). (This figure was previously published in Ref.

[Nau+16]. © 2016 Optical Society of America, used with permission.)

In Fig. [cf. Fig. 4.4.2] the process relevant for enhanced damping is depicted: Pumping
the HF component to create a HF excitation leads to the absorption of a phonon. As for
the case of lasing, this process is limited by the decay of the HF component and the number
of times the HF component may be excited. Thus, in Fig. 4.4.1(a) a high enhancement
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4. Semiconductor analogue of optomechanics

of the damping may be observed by 1400 times. For the SC system with LA phonons,
depicted in Fig. 4.4.1(c), an enhanced damping by the factor of six may be observed.
The maximal enhancement may not be increased by considering multiple quantum dots,
cf. Fig. 4.4.1(e,f), but the range of paramters, where the damping is enhanced is indeed
becoming larger. In the case of lasing the QDs were excited significantly. However, in the
case of damping, the QDs are only excited very weakly and the phonon number is very
small. This means that in this regime the Holstein-Primakoff approximation holds. Due
to this fact, the relevant process does not become more efficient after a certain point, as
no further phonons may be absorbed.

For the OM system and the SC system with LA phonons, the effective damping rate
of the LF component may be computed as shown in Sec. 4.2 by considering the largest
Lyapunov exponent, as the LF excitations have the longest lifetime. In case of LO phonons,
however, the damping rate of the QD excitation is smaller than the one of the LO phonons,
cf. Tab. 4.3.1. Thus, the largest Lyapunov exponent will be related to the QD system. In
this case, the effective damping rate κeff,N of the LF component is determined by fitting an
exponential enveloping function to the time evolution of the LF component position. This
is shown in Fig. 4.4.1(g) for 10 QDs. The enhancement is very small as the decay rate
itself is already very high. This renders the additional contribution due to the interaction
rather insignificant.

Figure 4.4.2.: Scheme of the mechanism leading to enhanced damping. The high frequency
component is pumped with a frequency that is smaller than the high
frequency. As this difference equals the low frequency each time the HF
component is excited an excitation in the LF component is destroyed. This
can be repeated after a decay of the HF component. (This figure was previously
published in Ref. [Nau+16]. © 2016 Optical Society of America, used with permission.)

In the regime of small coupling strengths and pump rates, an analytical formula for
the effective damping can be derived by assuming the dynamics of a harmonic oscillator
in the vicinity of the steady state [Gen+08]: Ḃeff = − (iΩeff + κeff)B. In addition to the
effective damping rate an effective frequency due to the interaction Ωeff can be evaluated.
This which will be approximated by Ω in the following. In general also in vicinity of the
steady state more complex dynamics may be possible.

The formula is derived as the linear response to some external force acting on the LF
component in Eq. (4.1.3). After linearization, the equations may be Fourier transformed
and a susceptibility may be defined, which is compared to the susceptibility of the harmonic
oscillator. The details of this computation are shown in App. A.2.

In the case of the optomechanical system, the effective damping reads [Gen+08]

κeff,OM (ω̄) = κ− 4g2C∗sCsΩγ∆̃[
γ2 +

(
ω̄ + ∆̃

)2
] [
γ2 +

(
ω̄ − ∆̃

)2
] . (4.4.1)

28



4.5. Conclusion

This is valid if C∗C � 1. For the SC system, the resulting equation reads

κeff,SC (ω̄) = κ− 2Ng2E1Ω

ω̄2 + 4γ2[
<Ps∆̃−=Ps (γ − γPD)

] (
γ2
r − ∆̃2 − ω2

R

)
+ 2

[
2<Ps∆̃γ + =Ps

(
2γγ̃ + ω̄2

)]
γr

√
1 + D

2

√
1− 4E2

1
ω̄2+4γ2[

γ2
r +

(
ωR + ∆̃

)2
] [
γ2
r +

(
ωR − ∆̃

)2
]

+ 2Dγ2
rω

2
R

,

(4.4.2)

where <(c) indicates the real part and =(c) indicates the imaginary part of a complex

number c. The short hand notation ∆̃ = ∆ + Ng2ΩUs
Ω2+κ2 is used in both equations. This

effective detuning includes the dispersive shift for the stationary state.
While the equation in the SC system is more complicated the two equations share a

common structure: For weak excitation, ωR ≈ ω, γr ≈ γ̃, and D ≈ 0. As discussed before,
the main shortcoming of the approximative formula is its reliance on a harmonic oscillator,
which fails at some point for all systems. However, the failure is much more drastic for
the SC system as the coupling strength is much larger. The comparison of the numerically
evaluated effective damping with the analytical formula is shown in Figs. 4.4.1(b,d,h) for
the OM system, the SC system with LA phonons and the SC system with LO phonons.
For the OM system the deviation is small and is only in the range of a few percent even
for high pump strengths. For the SC system with LA phonons, the effect is overestimated
by about an order of magnitude. For the LO phonons it is overestimated by two orders of
magnitude. Due to the large coupling strength for the phonons, the dynamics are not
well approximated by a harmonic oscillator.

4.5. Conclusion

In this chapter of the thesis, the analogies between effects observable in optomechanical and
semiconductor systems were studied. Two simple theories in semiclassical approximation
were derived, where one component with a high frequency and one component with a low
frequency were involved. Essential is the coupling between both parts. In the case of the
optomechanical system, the high frequency component is a cavity while the low frequency
component is the mechanically oscillating mirror. For the semiconductor system, the high
frequency component is the excitonic QD transition and the low frequency component is
either an acoustic phonon mode selected by an acoustic cavity or a collective mode of
optical phonons.

In this simple model some principal features may be observed: While a bistability,
lasing and enhanced damping is in principle present in all systems, the quantum dot can
not be excited arbitrarily high, even when higher excited states are considered. The cavity
mode on the other hand may sustain an arbitrary number of excitations. This difference
leads to limited possibilities for a bistability and limited lasing in case of the semicondutor
system. However, by increasing the number of considered quantum dots, this limitation
may be lifted.

Another difference are the parameter regimes: While the coupling strength of the
optomechanical system is very small in comparison to the cavity damping rate, the coupling
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4. Semiconductor analogue of optomechanics

strength of the semiconductor system is within a strong coupling regime. This enables
to observe nonlinear effects such as the bistability at low pump strengths. Furthermore,
in the case of lasing it allows to observe the resonances of processes involving certain
numbers of phonons. In the OM system these processes are not distinguishable, as the
resonances are smeared out. For the SC system this aspect is considered in more detail in
the next chapter, where a fully quantum mechanical description of phonon lasing in the
few emitter regime is employed to investigate collective processes.
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5. Collective effects in multi-emitter
phonon lasing

After considering analogies between optoemechanical oscillators and semiconductor
phonons, this section will focus on the lasing in the semiconductor system. Phonon
lasing borrows its name from an analogy between sound and light waves. The optical
laser amplifies the light field by stimulated emission. This concept is transferred to sound
waves, which are quantized as phonons. To achieve this, several physical systems are
candidates to build a phonon lasing device e.g. trapped ions [Vah+07; Men+10], coupled
microtoriods [Gru+10], nitrogen-vacancy centers [Kep+13], electromagnetic resonators
[Mah+13], and different semiconductor heterostructures [Cam+01; Bea+10; Kab+12].
In contrast to the previous section, the focus lies in particular on realizing the phonon
amplification via stimulated emission using quantum dots embedded in acoustic cavities.
The controlled fabrication of these cavities with a high quality factors has become more
refined in recent years [Tri+02; LK+07; Roz+09; SRT11; LK+11; Fai+13; LKFJ15].

In Ref. [Nau+16], as presented in the previous section, effects in phonon lasers due to
many emitters are studied using a semiclassical approximation and the assumption of
identically behaving emitters. This simplifies the investigation for high numbers of emitters.
However, it does not allow conclusions regarding the quantum statistics properties of
the phonons. For the following work published in Ref. [Dro+17], these assumptions will
be dropped to consider the correlations involved in the lasing with several emitters, as
it has been done for single emitter phonon lasing [Kab+12]. Furthermore, additional
resonances are observed which stem from processes where not all quantum dots behave in
an identical manner. At the end of the chapter the impact of unequal coupling strengths
and resonance frequencies will be briefly considered.

In the prototypical Tavis-Cummings model [TC68], which describes the interaction
of the light field with multiple emitters, effects such as superradiance may be observed
[Ley+15]. With these collective effects in mind, two phonon resonances and processes
involving multiple QDs are of particular interest.

In this chapter, the new resonances appearing for multiple quantum dots are discussed.
The underlying processes are considered by employing a quantum mechanical perspective.
There may be several processes leading to single and two phonon emission. These are
discussed and illustrated by using a higher electron phonon coupling than in Ref. [Kab+12]
for the numerical study of the phonon laser Hamiltonian. The quantum mechanical
framework allows to evaluate the statistics of the phonons, which is found to be coherent
at all resonances. This permits to create a higher number of coherent phonons at the
same pump strength using multi-phonon processes.
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5. Collective effects in multi-emitter phonon lasing

5.1. Fully quantized solution

In Chapter 4, a semiclassical approximation was used in order to simplify the system of
equations that is needed to be solved. By furthermore assuming that all emitters follow
the same dynamics it was possible to reduce the problem to a system of three nonlinear
first order differential equations. When studying collective processes in the following the
assumption of identical emitters is also made but scrutinized later on. In order to simulate
the fully quantum mechanical system dynamics the full evolution of the density matrix is
considered. Here the focus will be on the few emitter regime of up to three emitters as. As
already described in the last chapter, losses in the emitter occupation and of phonons are
included by the Lindblad terms

∑
i L [pi] ρ and L [b] ρ, respectively. Here, pure dephasing

is neglected as this is beyond the scope of this thesis. However, a future question may be
the stability of the effects discussed here against pure dephasing. However, as discussed
before, the pure dephasing is assumed to be small for acoustic phonons that are considered
in this chapter. Thus the system dynamics is given by the equation for the density matrix
[BP02]

ρ̇ = − i
~

[H, ρ] + γ
∑
i=1

LNQD [pi] ρ+ κL [b] ρ. (5.1.1)

For the numerical evaluation this equation is expanded in the set of basis states spanned
by |i1, ..., iNQD

, iph〉. Here, iph indexes the phonon number states from 0 to Nph, where
Nph is the maximal number of phonons taken into account. This has to be chosen large
enough so that the observables of interest do not change with increasing Nph. The indices
i1, ..., iNQD

state whether the emitters are in the exited (e) or in the ground state (g).

Writing Eq. (5.1.1) in this basis leads to a set of Neq =
(
2NQDNph

)2
coupled first order

linear differential equations. These are again solved by a fourth order Runge-Kutta
algorithm. After shortly introducing the theoretical approach now, a short overview of
some processes allowed by the Hamiltonian Eq. (3.2.1) is given in order to allow the
interpretation of the numerical results.

5.2. Processes leading to the creation of phonons

In this section, the processes that allow to create phonons are discussed in more detail
and from a different perspective than in Sec. 4.3. This will help to explain the numerical
results in the following section. Investigating the Hamiltonian Eq. (3.2.1) allows for a
zeroth order estimation in the coupling strength of the energies involved. The relevant
energies for H0 = ~ωvcσ+σ−+~ωphb

†b in the case of two quantum dots are En1,n2,nph
/~ =

n1ω1 +n2ω2 +nphωph with the corresponding states |n1, n2, nph〉. By pumping the QD via
an external laser with detuning ∆ = ωph, several processes are energetically possible, when
the energy shifts due to the interaction are neglected. In Fig. 5.2.1 the processes of interest
for the case of two QDs are shown. The process that is known from the case of a single
QD takes place by using the laser energy once to excite a single QD and create a phonon,
cf. Fig. 5.2.1(a). The external coherent laser field may excite all phonon number states if
the corresponding processes are efficient. In the setup of interest, the pump laser energy
may be absorbed twice and excite two quantum dots and two phonons simultaneously,
as depicted in Fig. 5.2.1(b). The more QDs are present the more simultaneous phonon
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5.2. Processes leading to the creation of phonons

Figure 5.2.1.: Excitation scenarios leading to phonon generation illustrated for the case
of small interactions, where certain energy levels are degenerate that split
up for high coupling strenth g and driving E1. For ∆ ≈ Ω, two cases are
be investigated. A single phonon process (a), which corresponds to the
single emitter case. One phonon is created using the excess energy when
exciting a single QD. (b) For ∆ ≈ 2ωph, two phonons are created collectively
by exciting both QDs. If the detuning is chosen to be twice the phonon
frequency, similar processes take place creating twice the phonons (c,d).

creation processes may occur, but at maximum as many as QDs are present. There are,
however, also other resonances that may be addressed by an appropriate detuning. In the
following the two phonon process will be of particular interest. When ∆ = 2ωph (again
this is valid if the shifts due to E1 and g are neglected), then two phonons may be created
by exciting one QD to the excited state, cf. Fig. 5.2.1(c). In the same manner as before
also 2NQD phonons can be excited in the case of multiple QDs. Then each QD creates 2
phonons simultaneously, as shown in Fig. 5.2.1(d). There are several other processes to
create a certain number of phonons within one cycle by certain choices for the detuning.
In the following only the focus lied on the cases discussed in this section. The case with
∆ = ωph is the prototypical process and it is investigated in what way this is influenced
by multiple QDs. Furthermore, two phonon generation is considered as a process which
is able to create more phonons than the single phonon process. As discussed in the last
chapter in order to create a high number of phonons, the radiative decay of the QD is
imperative. Without this incoherent process the system would oscillate between the states
addressed by the frequency of the pump laser. By considering a large coupling strength
g, in comparison to Sec. 4.3, the shifts due to the interactions become relatively large
and lead to different energy shifts for different phonon creation processes. For the single
phonon case, the shifts are estimated by an effective theory, as shortly discussed in Sec.
4.3 and presented in more detail in App. A.1. For the two phonon case an analogous
behavior is observed.
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5. Collective effects in multi-emitter phonon lasing

5.3. Many emitter phonon lasing

Figure 5.3.1.: Phonon number in the acoustic phonon mode for one (blue, solid line),
two (red, dashed), and three (yellow, dotted) Emitters. When increasing
the number of emitters new resonances appear, while the peaks observed
for fewer emitters remain. The phonon number of the additional peaks is
higher. while their width is smaller. This may be observed for the resonance
at ∆ ≈ ωph and ∆ ≈ 2ωph. The peaks at the two-phonon resonance are
higher as multiple phonons may be created each cycle , cf. Fig. 4.3.1,
Left. Parameters: ω = 2.281/fs, ωph = 0.011/fs, E1 = 4.56 × 10−4/fs,
g = 2× 10−3/fs, γ = 10−5/fs, and κ = 5× 10−7/fs. (This figure is previously published

in Ref. [Dro+17]. Copyright 2017 American Physical Society, used with permission.)

In Fig. 5.3.1 the phonon number as a function of the optical detuning for a fixed
external pump strength is shown for one, two and three QDs.

Several lines appear near the expected single- and two-phonon-resonances ∆ ≈ ωph and
∆ ≈ 2ωph, for a single QD. At the single- and the two-phonon-resonance, only a single
peak is observed. When increasing the number of quantum dots the number of peaks is
also increased. At the single-phonon-resonance adding a QD leads to the appearance of a
new peak. For the two-phonon-resonance only up to two peaks are observed for the choice
of parameters. All peaks are red-shifted with respect to ∆ = ωph. The additional peaks
appearing for multiple QDs are even more red-shifted. The peaks appearing by adding
more QDs are attributed to collective effects, where all QDs emit a phonon collectively,
and thus are called collective resonances. In the following this will be explained.

By inspecting Fig. 5.3.1 more carefully, it may be observed that the collective resonances
lead to more narrow peaks. Furthermore, the two-phonon-processes exhibit narrower
lines than the single-phonon-processes. However, while the peaks are narrower, they also
become higher. At the two phonon resonance about twice the number of phonons are
observed. Collective processes also have higher phonon numbers than the line that is
present for the single QD case.

To test if the high phonon numbers are in fact due to a coherent phonon lasing process,
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5.3. Many emitter phonon lasing

Figure 5.3.2.: The stationary second order correlation function is shown for one (blue,
solid line), two (red, dashed), and three (yellow, dotted) Emitters. At the
single as well as at the two phonon line the second order correlation function
reaches unity, which indicates coherent statistics as expected for laser action.
(This figure is previously published in Ref. [Dro+17]. Copyright 2017 American Physical Society, used with
permission.)

the statistics of the phonon mode are studied. Thus, the second order correlation function
is computed for the steady state. This is defined as, cf. Chapter 2,

g(2)(τ) = lim
t→∞

〈b†(t)b†(t+ τ)b(t+ τ)b〉
〈b†(t)b(t)〉2

. (5.3.1)

The value for τ = 0 is shown in Fig. 5.3.2 as a function of the detuning for the
same parameters as in Fig. 5.3.1. A value of unity is an indicator of coherent statistics
and a necessary condition for phonon lasing. At all observed peaks indeed a value of
g(2)(0) ≈ 1 is observed also for the two-phonon-resonances. This indicates that also
the two-phonon-process creates coherent phonons. The collective resonances also show
g(2)(0) ≈ 1.

5.3.1. Effective approach

In the following, the properties of the collective processes will be studied in more detail
using the effective Hamiltonian approach presented in App. A.1. After eliminating the
non-energy-conserving terms for ∆ = ωph for the case NQD = 2 and assuming alls coupling
elements, driving strengths and frequencies to be equal for both QDs, Eq. (A.1.4) reads

Heff = ~ωphb
†b− ~

[
∆ + 2

~E2
1

∆
+

~g2

ωph

]
(p̂†1p̂1 + p̂†2p̂2)− ~g2

ωph

[
p̂†1p̂1p̂

†
2p̂2 + p̂†2p̂2p̂

†
1p̂1

]
+
i~gE1

2

(
1

∆
+

1

ωph

)[(
p̂†1 + p̂†2

)
b† −

(
p̂1 + p̂2

)
b
]
. (5.3.2)
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5. Collective effects in multi-emitter phonon lasing

In this Hamiltonian, the second term gives the effective energy of the emitters, the third
term is a phonon induced interaction between different emitters and the last terms is
the electron-phonon interaction. This interaction now has a form similar to the Tavis-
Cummings interaction. However, in this case a phonon is created when an electron is
brought to the excited state. This process is energetically possible due to the external
pumping. The third term will be considered in more detail. This term reduces the
resonance frequency, when both QDs are excited. The impact of this term on the phonon
laser is shown in Fig. 5.3.3. Here, the resonances close to ∆ ≈ ωph are considered for the
effective Hamiltonian Eq. (5.3.2) (dashed lines) as well as for the full Hamiltonian Eq.
(3.2.1) (solid line). The third term in Eq. (5.3.2) corresponds to a QD-QD interaction.
When considering the effective Hamiltonian without the this interaction, only one resonance
is predicted and the intensity of the resonance is overestimated by a factor of two. When
including the QD-QD interaction, both resonances exhibited by the full Hamiltonian
are reproduced with a small deviation in height. The width is overestimated by the
effective Hamiltonian. As the lower resonance is successfully predicted by including the
phonon induced QD-QD interaction, this resonance is attributed to collective effects,
since the QD-QD interaction only contributes to the shift, when both QDs are excited
due to the operator product p̂†2p̂2p̂

†
1p̂1. The effective Hamiltonian allows to estimate the

energy shifts induced by the interactions. There are the shifts due to the electron-phonon
interaction and due to the external pumping laser (i.e. electron-photon interaction). For

the single phonon resonance they may be estimated from Eq. (5.3.2) as − ~g2

ωph
and −2

~E2
1

∆ ,

respectively. The QD-QD interaction adds to the energy shift, if both QDs are in the
excited state, increasing the shift to approximately twice the shift for two QDs in the case
of equal coupling strengths.

This is consistent with the findings in Sec. 4.3, cf. Fig. 4.3.1, where the shift was
estimated to go roughly with the number of QDs. In Sec. 4.3, the QDs were assumed to
exhibit the same dynamics, which corresponds to the collective case. Due to the smaller
electron-phonon coupling strength, the individual resonances can not be the resolved
so that it is not clear which of the so far discussed processes are also included in the
semiclassical model.

5.3.2. Collective Resonances

The discussion in Sec. 5.2 suggests that the collective resonance is enabled by a process
of higher order in the pumping strength. Then, they would only be observed for higher
pumping strengths. Fig. 5.3.4 shows that this is indeed true. For smaller pump strengths
Fig. 5.3.4(a) only the single QD resonance may be observed. When increasing the pump,
the resonance appears, at first not at maximal strength, cf. Fig. 5.3.4(b). With even
more increasing pump it appears at full strength Fig. 5.3.4(c). Once it reaches twice the
height of the single QD resonance, only the width of the collective resonance increases, cf.
Fig. 5.3.4(d). In this case the single emitter resonance becomes higher for the case with
two emitters as it overlaps with the collective resonance. This study shows that the two
emitter case also includes the resonance of the single emitter case at the same strength.
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5.3. Many emitter phonon lasing

Figure 5.3.3.: The effective Hamiltonian Heff Eq. (A.1.4)/(5.3.2) is compared with the
full Hamiltonian Eq. (3.2.1). When the phonon induced QD-QD interaction
(cf. third term in Eq. (5.3.2)) is neglected the position of one peak is
predicted in accordance to the full Hamiltonian. However, the height is
overestimated by the factor of two. When including the QD-QD interaction,
the position and height of both peaks is predicted well, while their width
is overestimated. (This figure is previously published in Ref. [Dro+17]. Copyright 2017 American
Physical Society, used with permission.).

5.3.3. Two phonon resonance

With the above findings in mind, the resonances at ∆ ≈ 2ωph in Fig. 5.3.1 are considered
once more. For the case with two and three QDs also at this resonance two peaks are
present. While the effective Hamiltonian Eq. A.1.4 is not valid for this case, at it was
derived with the assumption of a detuning ∆ ≈ ωph, the size of the shifts seems in the
same order as before. In analogy to the single phonon resonance ∆ ≈ ωph the processes
involved in the two phonon case are the ones depicted in Fig. 5.2.1(c) for the smaller peak
and the ones depicted in Fig. 5.2.1(d) for the more intense peak. The higher the order of
the process, the smaller the width of the peak becomes, but the more phonons may be
created in a single cycle.

As these peaks also correspond to higher order processes so that they also will appear
at high pump strength, but a given peak may also appear more likely for more QDs.
This is also discussed in Sec. 4.3, where the two phonon resonance is observed for higher
pump strengths than the single phonon resonance, but also only for multiple QDs as the
coupling is smaller. For the parameters used in this section, the two phonon resonance
may already be observed for few emitters.

With these arguments there should be also a third peak for the case with three emitters
at the two phonon resonance. This is indeed the case as it may be observed when the
pump strengths is increased even further.
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5. Collective effects in multi-emitter phonon lasing

(a) ωph = 0.03 meV (b) ωph = 0.05 meV

(c) ωph = 0.1 meV (d) ωph = 0.25 meV

Figure 5.3.4.: The behavior of the resonances with increased pump strength is shown for
one (solid, blue line) and two (dashed, red line) is shown. At small pump
strengths (a) both cases coincide, as the pump is not strong enough to
excite both QDs. When the pump is, increased at first (b) a small collective
resonance appears, until it grows to its full height (c). Further increase in
the pump strength only increases the width of the resonances (d). (Figures (a),

(c), and (d) are previously published in Ref. [Dro+17]. Copyright 2017 American Physical Society, used with
permission.)

5.3.4. Nonidentical emitters

So far the emitters were assumed to be identical. In experimental situations, however,
the quantum dots which are manufactured are rarely identical [BGL99; Mic03; Jah12].
Therefore, this section considers deviations in the optical resonances and in the electron
phonon coupling elements for the case of two quantum dots. As two individual quantum
dots are considered, this treatment does not describe inhomogeneous broadening in an
ensemble of quantum dots. The focus lies on two manufactured non-identical quantum
dots. However, the following study gives an estimation about which deviations in transition
energies and electron phonon may be tolerated.

First, a deviation in the transition energies ωvc,i in Eq. (3.2.1) is considered. When
considering different ωvc,i, this results in different ∆i = ωL − ωvc,i with respect to the
driving laser frequency. In the following ωvc,1 will be assumed to be the energetically
higher transition and will serve as reference so that the plots show the detuning from the
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5.3. Many emitter phonon lasing

Figure 5.3.5.: The effect of different transition energies on the collective resonance is
shown. As expected, the collective resonances becomes smaller when the
difference becomes larger. When the transition energies differ by about
10%, the peak is significantly smaller. (This figure is previously published in Ref. [Dro+17].
Copyright 2017 American Physical Society, used with permission.)

energetically higher resonance. In Fig. 5.3.5 two cases are considered. First, a deviation
of 5% in the transition frequency, i.e. ωvc,2 = 0.95ωvc,1 and second a difference of 10%,
i.e. ωvc,2 = 0.9ωvc,1. The figure shows that an increasing difference in the transition
frequencies leads to a reduced height and width of the collective resonance. Thus, the
collective resonance vanishes for large deviations. The single emitter resonances shift so
that they are at different resonances. The individual peaks may still be explained by
the effective Hamiltonian Eq. (5.3.2) when taking into account the different transition
energies. The collective resonance can be estimated by taking into account the mean
transition energy as

∆coll = ωph −
ωvc,1 − ωvc,2

2
− 2g2

ωph
. (5.3.3)

Thus, the collective resonance is between the individual resonances, but should become
very narrow until disappearance.

Now, a deviation in the coupling strengths in Eq. (3.2.1) is considered. Here much
larger differences may be tolerated without disappearance of the collective resonances.
Here, g1 will be used as reference with the value given in the caption of Fig. 5.3.1. In
Fig. 5.3.6 the deviations g2 = 1.6g1, g2 = 2.0g1, and g2 = 4.0g1 are given. For a deviation
of 60% (solid, blue curve) only a small deviation from the case g1 = g2 is observed. An
additional shoulder is observed for the peak as the single emitter resonances split up. For
the deviation of g2 = 2g1, the collective resonance is still at the same height. In this
case the collective and one single phonon resonance are very close. For a high deviation
with g2 = 4g1, the single emitter resonances are clearly separated due to the dispersive
shift. The second single emitter resonance is higher than the first one due to the higher
coupling strength. The collective resonance in this case is clearly smaller in height and
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5. Collective effects in multi-emitter phonon lasing

Figure 5.3.6.: The effect of different coupling strengths on the collective resonances is
shown. In this case, a large relative difference between the coupling strength
may be tolerated. For a coupling strengths four times as high, a significantly
smaller collective peak is observed. (This figure is previously published in Ref. [Dro+17].
Copyright 2017 American Physical Society, used with permission.)

width. Interestingly, it is now located in between the single emitter resonances.

The single emitter resonances can still be described by the effective Hamiltonian Eq.
(3.2.1) when accounting for the different coupling strengths in the dispersive shifts

∆i ≈ ωph −
g2
i

ωph
. (5.3.4)

The collective resonance, however, is not anymore described well by the effective Hamil-
tonian in the case of different coupling strengths. A heuristic formula for the collective
resonance for the two emitter case with different coupling strengths is estimated from Fig.
5.3.6 by the mean of the coupling strengths as

∆coll ≈ ωph −
(g1 + g2)2

2ωph
. (5.3.5)

For equal coupling strengths this agrees with the effective Hamiltonian Eq. (5.3.2).

5.4. Conclusion

In this chapter the collective resonances in a semiconductor acoustic cavity with multiple
emitters are studied. The results agree qualitatively with the observations in Sec. 4.3,
where a semiclassical approximation is used as in both cases the shifts are correctly
modeled by the effective Hamiltonian for weak pump strengths. However, this chapter
focuses on the additional resonances due to the many emitter setup. These may be
demonstrated by using higher electron phonon coupling strengths than in Sec. 4.3. There,
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5.4. Conclusion

individual peaks cannot be resolved. However, due to the approximations made there, it is
an open question whether these would be observed at all. In particular the assumption of
the same dynamics in each individual quantum dot should imply that in fact only collective
processes are modeled. The increase of the peaks with the number of emitters suggests
that indeed the collective resonance is observed there as the height of the individual
resonances in this chapter are not proportional to the number of emitters. The shift of
the collective resonance proportional to the number of quantum dots as estimated by the
effective Hamiltonian in Sec. 4.3 is confirmed by the fully quantum mechanical model.
This also showed that an analogous splitting of the two phonon resonance is observed. The
fully quantum mechanical treatment also allows to consider the statistics of the phonons.
The phonon statistics for the two phonon resonance is also coherent so that this peak can
indeed be attributed to phonon lasing. Employing the quantum mechanical model, also
an estimation for the possible deviations in emitter energies and coupling strengths for
collective processes is estimated. While the emitters may not deviate more than 10% in
their energy, the coupling strength is more robust against deviations. When the coupling
strength for the second emitter is four times the one for the first emitter, the resonance is
still present, even if it is considerably narrower. This is particularly interesting as the
coupling strength is sensitive against the size and the placement of the emitters inside
the acoustic cavity. By establishing the robustness against this deviation, an imperfect
placement does not entail a massive degradation in phonon generation.

Due to the straightforward density matrix formalism, only up to three quantum dots
are considered because many phonon number states are needed for the correct numer-
ical evaluation, for incresing number of emitters. Algorithms exploiting permutation
symmetries may be used to study higher numbers of emitters without inhomogeneous
broadening [Car02; GR16]. Then, also direct diagonalization of the Liouville propagator
is possible, which allows a speedup in the computation of the steady state [GR17]. As in
the following inhomogenous broadening will be taken into account these techniques are
not easily accessible.

This concludes the part about control of mechanical oscillators by coherent laser fields.
In particular in case of coherent phonon generation the external laser is used to induce
coherent statistics into the mechanical oscillator, which corresponds to a steering of the
quantum statistics of the phonons. In the following parts the control of quantum statistics
is still of major interest. However, there the control of the quantum statistics of optical
fields is considered. In the next Part II, the influence of an optical emitter with given
emission photon statistics on the emission statistics of a second quantum optical system
is considered.
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Part II.

Control by cascaded driving
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6. Non-classical pumping via a
dissipative channel

So far the environment to which the physical system is coupled only served as a channel
to include losses from the system. Either in form of radiative decay or in the form of
pure dephasing. The mechanical systems of Part I were manipulated to exhibit coherent
statistics induced by a classical external pump laser. In general the light used to pump
a system is not necessarily coherent. For example, systems may be incoherently driven,
which will also be considered in this part. The main case of interest, however, is when
antibunched light is used to pump a quantum system. Then, the quantum nature of the
incoming light needs to be taken into account. In the following this will be done by using
a cascaded setup [Gar93; Car93], where a source system is used to pump a target system.
Both of the systems are modeled quantum mechanically.

This chapter follows the publication Ref. [Azi+17], where the results were published
recently. Here, the quantum nature of the light emitted from the source is included as well
as the influence of the channel transferring the light from source to target. The coupling
channel is modeled as an electrodynamical environment. However, in contrast to Part I,
where the environment was only responsible for dissipation and decoherence, now also to
some degree coherence is transferred from the source to the target. The setup where a
source quantum system unidirectionally excites a target system is called a cascaded setup.
It simplifies the evaluation since the coupling channel is traced out and no back-action
from the target on the source is considered.

The Jaynes-Cummings model that will be used in this chapter as a source is a prototyp-
ical source of antibunched light. However, there are various other examples for quantum
light sources. In this context semiconductor nanostructures are of particular interest
for possible applications. Next to single photon sources [Shi07; IDM16; Gai09; BRV12]
light states with a certain fixed number of photons may be generated [Hei+17; Mun+14].
Furthermore, there are sources that produce polarization entangled photons [Sch+12] on
demand [Shi07] or time ordered photon pairs [Bou+17]. Further light sources that offer
the possibility to create quantum states of light are nanophotonic structures [Lod+17] and
even biological systems are studied with respect to their emission properties [Sim+12].

There are several applications for quantum light sources. The most prominent being
probably the use of single photon sources for cryptographic protocols [Kim08; Zol+05;
Jen+00]. Quantum light is furthermore useful for probing the properties of targets as
excitation with certain light states may, e.g., enhance the signal quality in spectroscopic
setups [Wal15; KK06a; Kir+11; KK06b] or increased the resolution in double-quantum-
coherence spectroscopy [RM10]. Furthermore, two photon sources are interesting from
a fundamental point of view in quantum mechanics [PKM17] leading to time entangled-
photons and corresponding Bell inequalities [Fra89], which may be used as another
way of implementing quantum cryptographic protocols [Jay+14]. These two photon
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6. Non-classical pumping via a dissipative channel

transitions in turn are efficiently driven by entangled photons [SB15]. Another proposal
is to purify non-classical states by suppressing fluctuations with single photon-pumping
[LCn+15]. An application of high interest for quantum light is in the context of the optical
implementation of quantum information science, where e.g. entangled photon pairs are
proposed for implementing quantum gates by entanglement swapping for realization of
quantum repeaters [Tro14].

Next to sources emitting light with nonclassical properties also well controllable thermal
sources have been developed [BH84; Str+16; AB11; Jah+16] for spectroscopic applications
[Kaz+15; Str+16] and for alternate probing techniques employing photon echoes [BH84].

After discussing different sources and their applications, a short overview of some of the
previous investigations using the cascaded model will be given. The cascaded formalism
was used to show that the response of the target system depends on the nature of the
light statistics of the input for simple sources [KC94; GP94; Par96]. Following these
investigations, recently the impact of the input statistics on correlations up to third order
on a cavtiy mode [CnL16] and a two level system [Cn+16] was investigated. The use of
higher order correlations for advanced characterization of the light field was proposed.
These have become accessible in experiments e.g. via two photon spectroscopy [GT+13;
DSM16].

This is the context for the chapter at hand. An incoherently driven Jaynes-Cummings
model serves as source providing the input for a Tavis-Cummings model with two emitters
as target. The emitters are again modeled by two level systems (TLSs). The Jaynes-
Cummings model is used as a source as it exhibits a wide range of output statistics
from antibunched to thermal statistics. The Tavis-Cummings model exhibits a large
nonlinearity due to multiple emitters. In Chapter 10 of part III the Tavis-Cummings
model will be considered again when feedback is used as a different way of manipulating
the photon statistical output.

Using the quantum Langevin [Gar93] equation or the quantum stochastic Schrödinger
equation [GZ04; Car09] in the cascaded approach the emission is self-consistently mapped
to the input of the target system. This results in a coupling mechanism that mediates
the excitation dissipatively from source to target. The cascaded setup does not destroy
coherences completely. Rather the coherences are transferred to the target system, while
they are necessarily degraded. Thus cascaded driving differs from thermal as well as
from coherent excitation and constitutes an intermediate regime. In the following the
intermixing of these regimes is discussed .

This Chapter is structured as follows. At first, in Sec. 6.1, the cascaded master equation
is introduced. The derivation is sketched in App. B. The derivation may be conducted
either using Langevin operators [GC85; CnL16] or the quantum stochastic Schrödinger
equation [Car93; PZ16].

In Sec.6.1 the derived coupling is applied to the aforementioned example of two identical
quantum emitters inside a cavity. When comparing this to the case of a single emitter,
the observations for the intensity-intensity correlation are similar: The target follows the
source in a classically degraded fashion, which is plausible for nonlinear quantum systems
[ME15; MEK13]. When higher order intensity correlations are considered, which is done
in Sec. 6.2, it becomes clear that the target does not simply follow the source in the trivial
manner suggested by the g(2)-function. The higher order correlations reveal a transitional
regime in the statistical output of the target. In Sec. 6.3 this is compared to thermal and
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6.1. Cascaded coupling of cQED systems

coherent input light. Sec. 6.4 concludes the chapter.

6.1. Cascaded coupling of cQED systems

In this section the master equation used throughout the paper is introduced. A more
detailed derivation can be found in App. B. In Fig. 6.1.1 a schematic depiction of the
setup is shown. The output of an incoherently pumped optical cavity containing an
emitter is used to drive the emitters inside a second cavity.

For the derivation of the coupling master equation the Born-Markov approximation
is used and a thermal bath is assumed [CnL16; GC85; CG84; Gar86]. Then the bath
degrees of freedom may be traced out when system and bath density matrix are assumed
to factorize [BP02; Car02].

Considering general non-thermal bath states complicates the problem and other methods
are needed to deal with the complexity [Ric+09; CC14; Kab+11a] especially when non-
Markovian effects need to be included [Pri+10]. An example of a non-Markovian bath is
presented in part III, where optical self feedback is considered. The formalism presented
there can also be used for bidirectionally coupled systems with a delay [PZ16]. For the
cascaded setup the delay between the systems can be neglected as they are assumed to
only couple unidirectionally.

After the computation shown in App. B, the master equation is obtained as

dρ

dt
=

1

i~
[H0 +Hs +Ht, ρ]

+
∑
i=s,t

γi
2

(
2Ji ρJ

†
i − {J

†
i Ji , ρ}

)
−√γsγt

(
[J†t , Jsρ] + [ρJ†s , Jt ]

)
. (6.1.1)

Here, a, b = ab + ba indicates the anticommutator and Ji is the flip operator of either
source or target. This may be the annihilation operator of a single cavity mode or an
electronic flip operators. The first term in this equation will give the dynamics of the
closed systems. The second term is the loss of the modes coupled to the environment.
The third term represents the coupling of between source and target mediated by the
reservoir. To achieve a nonzero coupling between source and target both of them need to
allow a dissipation of excitation into the mediating reservoir. While this is obvious for the
source as the target cannot be excited if nothing is emitted the need for the target to be
subject to losses is less intuitive.

Using this as the starting point for the following study different targets and sources
may be considered. Now, the Hamiltonians for the systems discussed in the introduction
are defined.

The Hamiltonian for the interactions in the source reads

Hs = ~gs
(
c†sσ
−
s + σ+

s cs

)
. (6.1.2)

The cavity mode is described by the creation and annihilation operators c†s and cs,
respectively. The emitter inside the cavity is described by a two level system with the
flip operators σ+

s = |e〉s〈g|s and σ−s = |g〉s〈e|s. Cavity and emitter are coupled with the
strength gs.

47



6. Non-classical pumping via a dissipative channel

Figure 6.1.1.: Schematic depiction of the studied setup. The source cavity, which contains
a TLS, is pumped incoherently with rate ΓPs . The emission of the source
cavity is fed into the one or two emitters contained in the target cavity with
the rate

√
κsγt that depends on the decay rate of source cavity and target

emitter.

In Eq. (6.1.1) Js := cs is chosen so that the output of the cavity mode is emitted into
the mediating bath. The statistical regime of the cavity output is tuned by incoherent
driving. This can be done by either offresonant optical driving or electrical pumping
[Shi07; Ste+06; Yua+02; Sch+14] and can be described in the form of Lindblad terms
[DVL10; Gar11]

D[
√

ΓPs σ
+
s ]ρ := ΓPs

(
2σ+

s ρσ
−
s − {σ−s σ+

s , ρ}
)
. (6.1.3)

This induces a transition of the emitter from the ground to the excited state. In the
following the short hand notation D[J ]ρ := 2JρJ†−{J†J, ρ}. is used for incoherent terms
in the Lindblad form.

Finally, radiative decay in the source emitters is included by the Lindblad terms

D[
√
γsσ
−
s ]ρ := γs

(
2σ−s ρσ

+
s − {σ+

s σ
−
s , ρ}

)
. (6.1.4)

For operation in the lasing regime this decay would imply an imperfect lasing where not
all photons are emitted into the cavity mode.

After fixing the description of the source system now the target system is fixed. The
single emitter Jaynes-Cummings model is considered briefly as a target, but the focus will
be on the two emitter Tavis-Cummings model, as it exhibits stronger nonlinearities. The
interaction Hamiltonian of the target is

Ht = ~
∑
j=1,2

g
(
c†tσ
−
j,t + σ+

j,tct

)
. (6.1.5)

Similar to the source Hamiltonian, the emitters of the target system are approximated by

two level systems with flip operators σ
−/+
j,t that couple to the cavity mode with strength

g, where the target cavity mode is described by the creation and annihilation operators c†t
and ct, respectively. In this case the emitters couple to the bath, i.e. Ji,t := σ−i,t (i = 1, 2)
in Eq. (6.1.1).

This time the cavity is assumed to have an additional decay, again modeled by a
Lindblad term

D[
√
κtct ]ρ := κt

(
2ctρc

†
t − {c

†
tct , ρ}

)
. (6.1.6)
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For the full description the Hamiltonian of the free evolution is defined as

H0 = ~ω0

∑
i=s,t

c†ici + ~ωeσ+
s σ
−
s + ~ωe

∑
i=1,2

σ+
t,iσ
−
t,i, (6.1.7)

The first term is the oscillation of the source and target cavity modes with the optical
frequency ω0. They are assumed to be resonant. The second term is the oscillation of
the source and target emitters with frequency ωe. All frequencies are assumed to be in
resonance, i.e. ω0 = ωe.

With the above assumptions the master equation reads

dρ

dt
=

1

i~
[H0 +Hs +Ht, ρ]−√κsγt

∑
i=1,2

(
[σ+
t,i, csρ] + [ρc†s, σt,i]

)
(6.1.8)

+D[
√

ΓPs σ
+
s ]ρ+D[

√
γsσ
−
s ]ρ+D[

√
κscs]ρ+D[

√
κtct ]ρ+

∑
i=1,2

D[
√
γtσ
−
t,i]ρ.

The master equation is written in the basis 〈es, ps, et, pt|ρ|e′s, p′s, e′t, p′t〉, where the indices
e represent the emitter states and the indices p are the basis of the cavity mode. The
indices s and t indicate source and target, respectively. For the numerical evaluation the
master equation is again written in a rotating frame, cf. App. B in order to eliminate the
fast oscillations. Thus, a system of first order differential equations needs to be solved.
This is done numerically by a fourth order Runge-Kutta algorithm. The number of levels
for the emitters is fixed as two level systems are assumed. However, the photonic degrees
of freedom introduce an infinite number of levels. For the numerical investigation only a
finite number of levels may be included. Thus, the number of states is increased until
the numerical solution is converged. At maximum nph,s = nph,t = 16 photon states were
needed to reach convergence in the investigated quantities. The density matrix contains
(8nph,snph,t)

2 elements.

The main interest of the following discussion will be the response of the target to the
source statistics. At first the stationary second order correlation function is considered.
As discussed in Chapter 2, it is defined in this case as

g
(2)
i (s) = lim

t→∞

〈
c†i (t)c

†
i (t+ s)ci (t+ s)ci (t)

〉
〈
c†i (t)ci (t)

〉2 , (6.1.9)

and can be measured by a Hanbury Brown-Twiss setup. The index i is either s for the
source or t for the target cavity.

From now on all parameters but the incoherent pumping strength of the source cavity
are fixed. In Tab. 6.1.1 the coupling strengths and damping rates for source and target
are given. As the cavity frequencies and emitter resonances are all assumed to be in
resonance, these parameters define the system.

The output field of the cavities can be characterized by the second order correlation
function Eq. (6.1.9). Changing the pumping strength allows to tune the output statistics
of the source cavity from the antibunched regime, where g(2)(0) < 1, to the thermal
regime, where g(2)(0) > 1.
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parameter value (ps−1)

source coupling strength gs = 0.1
target coupling strength gt = 0.1
source emitter decay γs = 0.02
target emitters decay γt = 0.5
source cavity decay κs = 0.1
target cavity decay κt = 0.005

Table 6.1.1.: Parameters that are fixed throughout the chapter for source and target. As
no detunings are present the optical frequency is eliminated by introduction
of a rotating frame, cf. App. B.

Depending on the physical realization the assumption of a two level system may fail. In
general, e.g., quantum dots are multi-level systems so that higher levels may be excited
making the response of the second order correlation more complex. Considering more
realistic quantum dot models potentially allows to produce other types of light [Jah+16].
However, this is beyond the scope of this study as it focuses on the cascaded interaction.

As quantum effects become most obvious for s = 0 in Eq. (6.1.9) this is the case that
will be considered in the following.

Figure 6.1.2.: The behavior of the second order correlation function Eq. (6.1.9) as a
function of the incoherent pump strength ΓPs for the source cavity (solid,
red) and the target cavity with one (blue, dashed dotted) and two (green,
dashed) TLSs. In the regime of low pump rates the source cavity exhibits
antibunching, while there is a transition to the bunching regime for higher
pump strengths. For the target cavity there is no antibunching regime: The
correlation function follows the source in a classically degraded fashion. The
classical degradation becomes less pronounced with the higher nonlinearity
in the two emitter case. (This figure is adpated from Ref. [Azi+17].

In Fig. 6.1.2 the second order correlation function g(2)(0) for the source, a target with
a single emitter, and a target with two emitters is shown. When increasing the external
incoherent pump strength, the source goes from the antibunching regime to the thermal
regime. In the antibunched regime only a single photon can be created before the decay
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of the system due to the small pumping and the small coupling strength. The transition
to the thermal regime is explained by the dephasing introduced due to the pumping so
that the output statistics approach g(2)(0) = 2 [Gar11; RC94; Rit+10]. Both targets seem
to follow this trend with a classical degradation, i.e. quantum features are not observed in
the target. For the two emitter target, the dip in the correlation is larger. For this reason
the two emitter case will be used to illustrate the investigation. More emitters would lead
to an even higher nonlinearity, however, the numerical evaluation would become even more
involved, which can be avoided to some degree using symmetries, as mentioned before
[GR17]. In Ref. [CnL16] it was proposed to characterize a systems output statistics in a
more thorough manner by using higher order correlation functions. By considering higher
order correlations a transitional behavior is observed which stems from the nature of the
cascaded coupling that includes dissipative and Hamiltonian-like processes at the same
time. Correlations up to the tenth order correlation function are considered, which reveal
a qualitative transition also in the target which never reaches the nonclassical regime in
the g(2)-function.

6.2. Higher order photon correlations

Figure 6.2.1.: Higher order steady state correlation functions g(n)(0), Eq. (6.2.1), for
orders 1 to 10 with the pump strength ΓPs = g. The source is in the

subpoissonian regime, where g
(n)
s (0) < 1 for all n (red, solid), and decreases

monotonically with increasing correlation order. The single emitter target

cavity is in the sub-thermal regime, where g
(n)
t > 1 for all n, and increases

monotonically with increasing order (for 1 ≤ n ≤ 10). However, the two
emitter target cavity is in the sub-thermal regime for n < 9, but from
then on the correlations are in the sub-possionian regime. Thus, there is
no monotonicity for this case. For reference, coherent (gray, dashed) and
thermal (gray, solid) statistics are shown. Furthermore, the statistics of
the two photon Fock state (gray, dashed dotted) is shown exemplary for
a nonclassical state of the light field. (This figure was originally published in Ref. [Azi+17].
Copyright 2017 American Physical Society, used with permission)

In order to characterize the light field more clearly and analyze the transition in the
behavior of the target statistics as induced by the source statistics, higher order correlation
functions are considered. These have become experimentally accessible in recent years
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6. Non-classical pumping via a dissipative channel

Figure 6.2.2.: Behavior of the correlation functions up to tenth order for the source and
the target cavity in vicinity of ΓPs = g. When increasing the incoherent
pump strength the source statistics become less antibunched, however it
stays within the antibunched regime. The target cavity statistics show
a more significant change: Starting out with statistics, where the higher
order correlations (n > 6) are in the subpoissonian regime, increasing the

pump strength leads to increased values for the g(n)-functions. The lower
order correlation functions cross to the sub-thermal regime until all leave
this regime and the lower order correlations approach an upwards curve as
expected for thermal statistics cf. Fig. 6.2.1. (This figure is previously published in Ref.
[Azi+17]. Copyright 2017 American Physical Society, used with permission.)

[Aßm+09]. The stationary nth order correlation function is defined as

g(n)(0) =

〈
c†ni c

n
i

〉
〈
c†ici

〉n . (6.2.1)

Here, i stands for either the source or the target. Using the higher order correlation
functions states that have a similar value for the second order correlation function can be
distinguished if they are not equal. E.g. a Fock state with high photon number is close to
a coherent state in the second order correlation function.

With this states of the light field indistinguishable by only the g(2)(0) may be discrim-
inated. For example a Fock state with a large number of photons produces a similar
g(2)(0)-function as a coherent field, cf. Chap. 2. The three prototypical cases of light
statistics, coherent, thermal, and Fock are used for reference.

In Fig. 6.2.1, the correlation functions up to tenth order are shown for the source and
the target cavity that contains one and two emitters. For comparison coherent and thermal
statistics as well as a two photon Fock state are shown. The pump strength assumed
here coincides with the electron photon coupling strength: ΓPs = g. For the source cavity
the output statistics is in the sub-Poissonian regime and decreases monotonically with

increasing correlation order, i.e. g
(n)
s (0) > g(m)(0) for all n < m < 10. This corresponds to

a non-classical output field. For the output field of the target cavity with a single emitter,
there is a monotonic increase of the value of the correlation function with increasing order,

i.e. g
(n)
s (0) < g(m)(0) for all n < m < 10.

In contrast to this, the cavity output does not behave monotonically for the target with

two emitters as g
(2)
t (0) < g

(3)
t (0) while g

(2)
t (0) > g

(6)
t (0). This shows that the target cavity,

while clearly influenced by the source cavity is not just a mirror image. The influence
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6.3. Comparison of cascaded driving with coherent and incoherent driving

of the degradation is not equal for all orders in g(n)(0). In the following the two emitter
case will be considered in more detail as the single emitter case does not exhibit the
non-monotonicity for the parameters used here.

In order to gain more insight into the behavior of the target statistics in Fig. 6.2.2
the various correlation functions are shown for increasing pump strength. Here, the
focus lies on the regime around ΓPs = g. For all cases the response of the target system
differs strongly from the one of the source. Again the source shows monotonic statistics

with g
(n)
s (0) > g

(m)
s (0) for all n < m ≤ 10. Higher order correlations become very

small. This is expected, as the photon manifold that may be reached is limited due to
the cooperativity [WM08] Cs = g2

s/(ΓRκs). Thus, from some order on no significant
contribution is expected.

For the target system there is a clear maximum in the photon correlations for a certain

order m so that g
(m)
t (0) ≥ g

(n)
t (0) for all n. When increasing the pump strength, the

maximum shifts to higher orders, i.e. m increases. From the maximum onwards, the
correlations decrease. The maximum may shift to very large values, where for the source
cavity the correlation is very small. In particular, the relation between the maximum in
the target and the statistics of the source is not obvious.

As a first step towards quantifying the transitional behavior, the second order central
difference is considered, which we use as an analog of the second order derivative to study
the turning behavior. It is defined as [Olv13]

g(n)′′ =
g(n+1) − 2g(n) + g(n−1)

(n+ 1− n)(n− (n− 1))
. (6.2.2)

This is the second order derivative at n = 2, where the first flip will occur so that the
curve turns upwards. In Fig. 6.2.3 the finite difference for the pumping regime shown in
Fig. 6.2.2 is presented. The source statistics exhibit a transition from an upward to a
downward turning point. The target statistics, however, experiences a transition from a
downward to an upward turning point. The curves cross when the pump strength equals
the coupling strength g = 0.1ps−1. This illustrates the influence of the source on the
target statistics.

In the next section, the cascaded driving is compared with coherent and incoherent
driving to show that the non-monotonic photon statistics is not trivially reproduced by
these.

6.3. Comparison of cascaded driving with coherent and
incoherent driving

In the last section, a non-monotonic behavior in the target statistics was shown and the
transition was characterized. Now the behavior of the target statistics is compared to the
case when the target system is driven either with coherent light or if the target system is
directly driven incoherently. This is achieved by setting κs = 0 so that target and source
do not couple anymore. The target system is now driven by the additional Hamiltonian
term

Hpump = E0

(
c†te
−iωLt + cte

iωLt
)

(6.3.1)
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6. Non-classical pumping via a dissipative channel

Figure 6.2.3.: When considering the second order central difference at the position of
the g(2)(0)-function, a change in the turning behavior is observed: The
source goes from an upwards to a downwards turning point, while the
target goes from an upward to a downward turning. The curves cross at
ΓPs = g = 0.1ps−1. (This figure is previously published in Ref. [Azi+17]. Copyright 2017 American

Physical Society, used with permission.)

in the case of coherent driving, cf. Chap. 3, or by the incoherent pumping Term in
Lindblad form

D[
√

ΓPs σ
+
s ]ρ→ D[

√
ΓPt σ

+
t ]ρ, (6.3.2)

cf. Sec. 6.1. These scenarios are shown in Fig. 6.3.1 for an exemplary driving strength.
All other parameters are kept equal to the cascaded case in order to allow for comparison.
The observed behavior is stable for a wide parameter range, however, in comparison
to the pumping with the source system the photon number may become larger so that
states including higher photon numbers need to be taken into account for the numerical
evaluation. Incoherent driving (Fig. 6.3.1, left) induces close to thermal statistics according
to Eq. (2.0.7). This is expected, as it corresponds to driving by a thermal reservoir.
Coherent driving (Fig. 6.3.1, right) induced coherent statistics, which is also expected.
In both cases no maximum is observed for the parameters investigated here so that the
cascaded driving allows to access part of the Hilbert space which are not accessible by the
naive coherent or incoherent driving. In Ref. [CnL16] this was discussed for Hamiltonian
coupling, which is similar to the case of coherent driving.

By taking a closer look at the coupling terms the behavior can be made intuitive.
Coherent driving excites the emitters by creating coherences, while incoherent driving
creates excitation while destroying existing coherences.

This can be compared to the cascaded driving by considering the master equation Eq.
(6.1.8). By changing

√
γtκs → −

√
γtκs the system dynamics remains unchanged as for

the exchange of Ht/s → −Ht/s. This shows that part of the dynamics are like the ones
introduced through a coupling in the Hamiltonian as they are invariant under the change
of the time direction. This part of the dynamics preserves coherences especially for low
pumping strengths, which is not necessarily expected from a dissipative coupling. However,
to enable the coupling both, source cavity and target emitters, need a finite decay to
the reservoir. This reservoir coupling introduces a loss of excitation and coherence to
the reservoir and is not invariant under time inversion. Thus, the cascaded coupling
exhibits properties of both driving scenarios which results in a statistics that illustrates
the mixture of the properties of the two driving scenarios.
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6.4. Conclusion and outlook

Figure 6.3.1.: Higher order correlation function for the target system with two emitters.
Incoherent (left) and coherent (right) pump of the target emitters is con-
sidered, where no coupling to the source system is assumed. As exemplary
pumping strength ΓPt =

√
γtκs and E0 =

√
γtκs are used. However, the

behavior is stable for a wide range of parameters. For incoherent pumping
monotonously increasing nearly thermal statistics are observed, cf. Eq.
(2.0.7). The coherent pumping induces close to coherent statistics without
maximum. (These figures are previously published in Ref. [Azi+17]. Copyright 2017 American Physical
Society, used with permission.)

For a different perspective on the statistical behavior the probability distribution
corresponding to the non-monotonic correlations in Fig. 6.2.1 is shown in Fig. 6.3.2 in
terms of the Fock states in blue. This distribution is very flat as the first few photon
number states have a similar probability. For comparison the probability distribution for
the coherent state with the same mean photon number is shown (dashed, orange). Here,
the majority of the contribution is given by fewer number states.

6.4. Conclusion and outlook

In this chapter the influence of different output statistics on a target system was in-
vestigated. The output from the source may be in the nonclassical or in the thermal
regime. Higher order stationary correlations showed a non-monotonic behavior that is
not observed for simple incoherent and coherent driving. This non-monotonic behavior
is the result of the mixing of Hamiltonian like coupling and incoherent processes both
inevitably present for the cascaded setup. The cascaded driving does not allow to imprint
the source statistics on the target without any degradation. Only higher order correlations
are preserved while lower order correlations shift to high values in the correlation functions,
which corresponds to an approach of more classical states of light. From this follows that
the lower order correlations such as the g(2)(0) function do not reach the sub-Poissonian
regime for the parameters studied here, while the higher order correlations do. This
behavior leads to the no non-monotonicity of the correlations, which corresponds to a flat
distribution of the photon number states.

A possible experimental realization of the discussed setup could be achieved by coupling
microcavities containing emitters by a waveguide. If the unidirectionality of the coupling
cannot be established by arguing from a thermodynamical perspective unidirectional
photonic structures may be employed [LJS14]. The unidirectionality may also be designed
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6. Non-classical pumping via a dissipative channel

Figure 6.3.2.: Occupation probability of the Fock states for the target system with two
emitter at ΓPs = 0.1ps−1 corresponding to the photon statistics shown in
Fig. 6.2.1 (solid, blue). Due to the cascaded coupling the photon number
distribution is exceptionally flat. This illustrates the photon statistics that
deviate from the prototypical cases. For reference (dashed, orange), the
coherent distribution is shown. (This figure is previously published in Ref. [Azi+17]. Copyright
2017 American Physical Society, used with permission.)

using a combination of coherent and incoherent interactions [MC15; MC17].
The work presented here may be expanded in two directions. Either more realistic

systems may be considered such as realistic quantum dots, which give rise to even more
complex output statistics for the source cavity [Shi07] or allowing different bath states may
give even more freedom for designing the statistics of the target cavity. E.g. squeezed states
could be included in the formalism used here [Dra06]. For more complex cases, however,
the bath degrees of freedom need to be considered. As this is an involved undertaking at
first methods for including the bath degrees of freedom need to be considered.

In the next part of this thesis the effect of feedback on the emission statistics of quantum
systems will be investigated. Then it is necessary to include the degrees of freedom of the
bath explicitly as the non-Markovian nature of the bath needs to be taken into account.
Using feedback the emission statistics may be manipulated to enhance certain properties.
For feedback only single systems are considered, however, the formalism presented in
the following may also be used to extend the cascaded coupling to bidirectional coupling.
This becomes particularly involved when a time delay between the source and the target
is considered, cf. App. B.
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Part III.

Quantum coherent feedback
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7. Controlling quantum systems via
feedback

In the previous chapters two approaches for controlling quantum systems were presented.
The mechanical systems in Part I were controlled by the frequency of an external optical
laser. In this case it was possible to induce coherent phonon generation. If non-classical
light is used to irradiate a system the light statistics become more complex as now
correlations deviate from the laser like coherent statistics as seen in Part II of this thesis.
However, in the case of interest, due to the degrading effect of the cascaded coupling, the
light became more classical as the non-classical properties of the light field could not be
fully transfered from source to target. Thus, a method is needed which does not degrade
the correlations but preserves them.

A possible way to reinforce the quantum nature of light in form of Fock states is to use
feedback on quantum systems [Say+11; Zho+12]. Here, the outcome of a measurement is
used to correct the state of the controlled system. This scheme is widely used in quantum
optics, however originally effects due to a finite feedback time have been neglected [WM06].
This approach is still often used and only recently time delay effects are considered in
measurement based feedback [Ema13; Bra10].

In classical nonlinear systems Pyragas control [Pyr92] is a successful method for con-
trolling dynamical systems [SS08; SKH16]. In Pyragas control the system dynamics is fed
back as input into the system at a later time. It was first intended to stabilize unstable
periodic orbits in dynamical systems by reinforcing the systems dynamics using a delay
time τ = 1/ν, where ν is the frequency of the periodic solution. In the equations of motion
Pyragas control typically has the from

ẋ(t) = F (x(t), t) +K (x(t)− x(t− τ)) , (7.0.1)

where x(t) is some dynamical variable describing the state of the system and F is the
dynamical equation governing the system. The second term is the control term with
strength K. When a solution with period τ is reached, the control term vanished. Using
this also the stabilization of steady states is possible [HS05]. Time-delayed feedback control
is often used for controlling laser dynamics [LK80; Gau+94; Oht06] and more recently for
reducing the jitter in lasers [Ott+12]. Measurement based feedback in nanolasers may
lead to chaos and pulsing [Mun+17].

Another way of controlling quantum systems is by shaping its environment [PCZ96].
These environment lead to non-Markovian effects [Bre+16; SDG99; RHP14]. From a
control perspective, no measurement is necessary and the quantum state of the system
is not perturbed. By placing a quantum system in front of a mirror a special type of
environment is created that acts as a non Markovian bath where only discrete times are
relevant for the current dynamics [DZ02]. The ideal case of a single feedback time from
an environment can be motivated by a heuristic Hamiltonian that can be derived from
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7. Controlling quantum systems via feedback

a setup with a microscopic mirror [FKC0]. This heuristic Hamiltonian is successfully
used to describe experimental setups [Dub+07] and will the the basis of the studies
performed throughout this thesis. In the spirit of the Pyragas control, a finite time delay
is introduced by the heuristic Hamiltonian in the realm of quantum mechanics. In Chap.
8 the feedback Hamiltonian will be introduced and the efficient evaluation of the induced
dynamics will be discussed before in the Chapter 10 a Tavis-Cummings model subject to
feedback will be considered. In Chapter 11 a pulsed two level system subject to feedback
will be considered. In both cases feedback is able to enhance the nonclassical signatures
of the light states.
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8. Modeling quantum optical feedback

In this chapter the problem of quantum feedback will be addressed, in particular the
theoretical models, that may be used to describe it numerically. Parts of this chapter have
been published in Ref. [Nau+17]. In this thesis feedback involving a single delay time will
be addressed. In the quantum mechanical formulation this corresponds to an interaction
with a non-Markovian bath with a single memory time. The standard approach to model
this scenario is to include a Hamiltonian with a continuous number of modes that acts as
reservoir [Wei12]. The full Hamiltonian is

Htot = Hsys +Hfb, (8.0.1)

where Hsys contains the subsystem of interest that feedback acts on and Hfb describes the
degrees of freedom that lead to feedback. For non-Markovian interactions the reservoir
can be traced out, as in Part II, However, in this part of the thesis the delay introduced
by the bath will be considered explicitly. As discussed before, feedback on some system
operator A is modeled by the bath Hamiltonian [DZ02; FKC0]

Hfb =

∫
B
dω~ωb†(ω)b(ω) + ~

∫
B
dω
[
Gfb(ω)b†(ω)A+ h.c.

]
. (8.0.2)

The integrals are over the frequency domain B, which is around the resonance frequency
ω0 of the system. The coupling in case of feedback with equal in- and out-coupling reads

Gfb = g0(ω) sin(ωL/c0) =
g0(ω)

2i

(
eiωL/c0 − e−iωL/c0

)
, (8.0.3)

where ω is the frequency of a mode, L is the distance between the system and the back
reflecting surface, and c0 is the speed of light. For the situation of possibly different in-
and out-coupling-rates, the ansatz [PZ16]

Gfb,asymm = i
(
κR(ω)eiωL/c0 − κL(ω)e−iωL/c0

)
(8.0.4)

is made. In the following, the coupling coefficients κR and κL will be assumed to be
constant over this domain, which is approximatively valid when small bandwidths are
considered. However, in the present case, the overall coupling constant still has a sinusoidal
dependence and the dynamics are not Markovian.

8.1. Overview of different approaches

In this section a short overview of different methods used to model time delayed feedback
in quantum systems is given. For high intensities semiclassical approximations are possible,
however, when the full quantum dynamics is considered. The most direct approach is to
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8. Modeling quantum optical feedback

compute the dynamics using the Schrödinger equation by including all degrees of freedom
explicitly. To achieve a more tractable and general approach solutions using the density
matrix and in the Heisenberg picture were proposed as well as the method considered in
more detail in Chapter 8.2.

8.1.1. Semiclasscial approximation

When considering the Hamiltonian Eq. (8.0.2) in the regime of coherent fields a form
similar to Pyragas control Eq. (7.0.1) is obtained. As the coherent fields naturally appear
in optomechanical systems with high field intensities, Pyragas control in the classical limit
can be used in optomechanics to stabilize unstable solutions. This was considered in Ref.
[Nau+14] and establishes a close connection to Part I of this thesis.

8.1.2. Direct evaluation in the Schrödinger picture

When considering feedback given by the Hamiltonian Eq. (8.0.2) fully quantum mechani-
cally, the most straightforward method to evaluate feedback numerically is by evaluating
the Schrödinger equation directly. For closed systems with a fixed number of excitations
a set of differential equations may be derived once the width of the frequency interval
and sampling rate of the frequency have been chosen. These two parameters are to be
chosen with care for a certain physical system. The number of equations scales with
the number of modes needed to characterize the bath to the power of the number of
excitations: While the regimes of a single excitation [Car+13] or two excitations [Hei+14]
are manageable, multiple excitations become very involved. Furthermore, this approach is
not immediately suitable for open or pumped systems. Thus, in the following sections,
the focus lies on methods which allow for a solution of systems with a variable number of
excitations subject to feedback.

While the straightforward evaluation of the Schrödinger equation is not easily applicable
for general pumped systems, in the very low excitation regime, an approximative approach
may be employed. This will be shown in Chapter 10 together with a benchmark using the
matrix product state evolution approach from Sec. 8.2.

8.1.3. Feedback with the density matrix via Liouville propagator

A first approach to treat feedback in Liouville space to compute the full density matrix
allows to consider pumped systems as well as incoherent effects such as pure dephasing and
additional decay channels [Gri15]. In this approach the dynamics of the system subject
to feedback are viewed as a sequence of n cascaded systems in the time interval between
[(n− 1)τ, nτ). This is connected to the approach in Part II, however the systems in the
cascade represent not real systems but rather the past version of the same system [Gri15].
However, due to the back-action between the systems, the system dynamics is computed
via a trace-like operation from a Liouville space propagator that needs to be evolved first.
As for the nth interval n cascaded identical systems are needed, the propagator in the
nth interval has (dscs)

4n matrix elements. This system of coupled first order differential
equations is solved via a fourth order Runge-Kutta algorithm, as in Part II. A systematic
use of sparse matrices mitigates this scaling, but the number of intervals in τ that can be
computed in practice is limited by this scaling. As this was the first numerical solution
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that was proposed for the pumped two level system subject to feedback, it will be used in
Sec. 8.3 to benchmark the method presented in Sec. 8.2.

8.1.4. Feedback in the Heisenberg picture

Treating feedback in the Heisenberg picture is another approach to evaluate general open
systems subject to feedback. The Heisenberg picture is successful for the approximative
treatment in the many excitation regime, where correlations can be treated perturbatively
[Sch+14]. Recently the single excitation regime was studied [Kab+16]. The Heisenberg
picture may allow to only keep track of the observables of interest reducing the complexity
in comparison to an approach employing the full density matrix equation. There are,
however, complications due to the reservoir induced noise. This problem relates to the
matrix product state evolution method introduced in the next section.

8.2. Open system dynamics using matrix product state
evolution

In this thesis, the focus lies on modeling feedback using matrix product state evolution by
starting from the quantum stochastic Schrödinger equation (QSSE) [PZ16]. With this,
the long time limit in the numerical simulations of Chapters 10 and 11 can be evaluated.
In this section a more thorough overview of the method is given and deviations from the
original scheme in [PZ16] are documented in detail. The approach relies on techniques
developed in the context of spin systems, were the time evolution of a system with a
large Hilbert space can be computed via matrix product states, when the correlations are
relatively small [Vid03; Vid04]. When modeling a quantum optical setup, the external
field is expressed in the time domain instead of the frequency domain used in the methods
based on the direct evaluation of Eq. (8.0.2). This was suggested in Refs. [Sch+05;
Sch+07], where the external field is viewed as a chain of multi-level systems. Since the
model relies entirely on the Schrödinger picture, incoherent processes can not be included
immediately. Decay channels may be added by adding the respective bath mode, cf. Chap.
10, but processes such as pure dephasing can only be included via additional effort, e.g.
in form of a quantum jump approach [DCM92]. Here, the focus lies on the presentation
of the theory not incorporating incoherent processes to emphasize the significance of the
entanglement of the system with the non-Markovian reservoir. To solve the resulting
equations of motion in a tractable manner, a stroboscopic map is performed and the
quantum state of the system is expressed as a matrix product state (MPS). In Sec. 8.2.1,
the derivation of the quantum stochastic Schrödinger equation will be shown exemplary
for the Jaynes-Cummings model subject to self-feedback. Afterwards, in Sec. 8.2.4, the
expression via the MPS for the numerical implementation will be considered.

8.2.1. Feedback in the time domain

Here, the equations for feedback on the cavity mode of a Jaynes-Cummings model, cf.
Chap. 6, are derived exemplary, as a prototypical system. In the numerical simulations
different systems will be considered as well, however the basic approach remains the same.
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8. Modeling quantum optical feedback

Figure 8.2.1.: Schematic depiction of the system under study: A single cavity mode with
operators c, c† containing an emitter is coupled to external reservoir modes
(operators b(ω), b†(ω)) inducing feedback. Possibly either the cavity is
pumped with strength Ωcav or the two level system (TLS) is pumped with
strength Ωe via an external coherent laser.

The Hamiltonian for this system reads

Htot = Hsys,JCM +Hfb (8.2.1)

with

Hsys,JCM = ~ωcavc
†c+ ~ωeσ+σ− + ~g

(
c†σ− + σ+c

)
+

~Ωcav

2

(
ceiωLt + c†e−iωLt

)
+

~Ωe

2

(
σ−e

iωLt + σ+e
−iωLt

)
(8.2.2)

and

Hfb =

∫
dω~ωb†(ω)b(ω)

+ i~
∫
dω

[
b†(ω)c

(√
γR
2π
e−iωτ/2 −

√
γL
2π
eiωτ/2

)
− h.c.

]
. (8.2.3)

The c and c† may destroy or create a photon in the cavity mode with ωcav, respectively.
The two level system with transition energy ωe may be brought to the excited state by
the flip operator σ+ = |e〉〈g| and to the ground state by σ− = |g〉〈e|. Cavity and two level
system are coupled via the electron-photon coupling with strength g. Either the two level
system or the cavity may be pumped by a coherent laser with frequency ωL and strength
Ωe or Ωcav, respectively. For the interaction with the reservoir, the decay rates γL and γR
are introduced. They are related to the coupling strengths κi

κi =

√
2γi
π
. (8.2.4)

The operators fulfill the commutation relations[
c†, c

]
= 1 (8.2.5)

[σ+, σ−] = 2σz (8.2.6)[
b(ω), b†(ω′)

]
= δ(ω − ω′). (8.2.7)

64



8.2. Open system dynamics using matrix product state evolution

Introduction of rotating frame and transformation to the time domain

In the first step, the Hamiltonian is transformed to a rotating frame using the unitary
transformation

Urf = exp
(

+iHBt/~ + iωLc
†ct+ iωLσ+σ−t

)
, (8.2.8)

in order to eliminate the high-frequency oscillations. The new Hamiltonian is derived
from Htot,rf = UrfHtotU

†
rf − i~Urf

∂
∂tU

†
rf and becomes

Htot,rf = Hsys,rf +Hfb,rf (8.2.9)

Hsys,rf = ~∆cavc
†c+ ~∆eσ+σ− + ~g

(
c†σ− + σ+c

)
+

~Ωcav

2

(
c+ c†

)
+

~Ωe

2
(σ− + σ+)

Hfb,rf = i~
∫
dω

[
b†(ω)ei(ω−ωL)tc

(√
γR
2π
e−iωτ/2 −

√
γL
2π
eiωτ/2

)
− h.c.

]
. (8.2.10)

In the next step, the unitary transformation Uτ/2 = exp
(
−i
∫
dωωτ/2b†(ω)b(ω)

)
is used

to shift the the time dependence of the bath operators, which are defined as b(t) =
1√
2π

∫
B dωb(ω)e−i(ω−ωL)t. With this, the interaction Hamiltonian becomes

Hfb,rf = −i~
[(√

γRb(t− τ)e−iφ +
√
γLb(t)

)
c† −

(√
γRb

†(t− τ)eiφ +
√
γLb
†(t)
)
c
]
.

(8.2.11)
Now the Hamiltonian is in the time-domain instead of the frequency domain, and the new
bath-operators already show the feedback explicitly in their time-arguments. Here, the
feedback phase φ = π − ωLτ was introduced, which determines, whether the interference
of the system with the feedback field is constructive or destructive. This formulation is
closely related to the formulation via quantum Langevin equations. Here, the explicit time
dependence is eliminated from the system Hamiltonian. Only the implicit time dependence
of the operators c, c† due to the rotating frame is left, which is just the frequency of the
driving laser. In the following, frequencies are given relative to the driving frequency, so
that this time dependence is not taken into account any further.

From the commutation relation Eq. (8.2.7), the commutation relation for the bath
operators in the time-domain follow as[

b(t), b†(t′)
]

= δ(t− t′). (8.2.12)

When b(t) is interpreted as noise term, this corresponds to the correlation of Gaussian
white noise. This is the case, since the coupling to the bath is mostly Markovian, so that
the noise operators represent Gaussian correlation. The non-Markovianity of the bath is
contained solely in the delay term and not within a correlation describing colored noise.
In the following, however, the full bath dynamics is considered and the bath variables are
not treated stochastically. Then, b(t) may be interpreted as the operator destroying of a
photon at time t. This aspect will be discussed in more detail in the following.

System-bath dynamics in the Schrödinger picture

In order to evaluate the dynamics of the system coupled to the feedback bath, the dynamics
of the compound system is evaluated at discrete times. The time evolution operator is
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then applied to the state at time tk and evolves it to the time tk+1, where tk+1 − tk = ∆t.
To do this the time evolution operator in the iterative equation

|Ψ(tk+1)〉 = U(tk+1, tk)|Ψ(tk)〉, (8.2.13)

has to be determined. Here, |Ψ〉 will be written in the form of a matrix product state,
which will be discussed in Sec. 8.2.4. Before that the time evolution operator will be
derived. In principle time ordering has to be considered, when evaluating the evolution
operator

U(tk+1, tk) = T̂

[
exp

(
− i
~

∫ tk+1

tk

dt′Htot,rf(t
′)

)]
, (8.2.14)

where T̂ is the time ordering operator. In the original scheme, the operator is evaluated
up to first order in ∆t [PZ16]. This is shown explicitly in App. C. For the following
discussion the important definitions and the final result is shown here. When evaluating
Eq. (8.2.14) explicitly in first order of ∆t creation operators for a photon inside this time
interval are defined and by this the time is discretized. The time intervals will also be
called photon bins and the operator for the destruction of a photon in the time interval ∆t
between time tk = k∆t and tk+1 = (k + 1)∆t is ∆B(tk) =

∫ tk+1

tk
dtb(t). The full evolution

operator for the Jaynes-Cummings model with feedback reads

U(tk+1, tk) = 1− i

~
Hsys,rf∆t

−
[ (√

γR∆B(tk−l)e
−iφ +

√
γL∆B(tk)

)
c†

−
(√

γR∆B†(tk−l)e
iφ +
√
γL∆B†(tk)

)
c
]

+
1

2

[
γL∆B†(tk)∆B

†(tk) +
√
γLγRe

iφ∆B†(tk)∆B
†(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B
†(tk) + e2iφγR∆B†(tk−l)∆B

†(tk−l)
]
cc

− 1

2

[
γL∆B†(tk)∆B(tk) +

√
γLγRe

−iφ∆B†(tk)∆B(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B(tk) + γR∆B†(tk−l)∆B(tk−l)
]
cc†

− 1

2

[
γL∆B(tk)∆B

†(tk) +
√
γLγRe

iφ∆B(tk)∆B
†(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B
†(tk) + γR∆B(tk−l)∆B

†(tk−l)
]
c†c

+
1

2

[
γL∆B(tk)∆B(tk) +

√
γLγRe

−iφ∆B(tk)∆B(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B(tk) + e−2iφγR∆B(tk−l)∆B(tk−l)
]
c†c†. (8.2.15)

The first line represents the zeroth order of the exponential and the first order of the
system evolution. As Hsys,rf is not time-dependent, it is proportional to ∆t. The second
line is the first order of the exponential for the bath Hamiltonian. The time dependent
bath operators b(t) are transformed with the above transformation into time discrete
operators. The new operators obey the commutation relations[

∆B(tk),∆B
†(tj)

]
= ∆tδk,j
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8.2. Open system dynamics using matrix product state evolution

as shown in App. C. Due to the normalization the discretized photon operators are
proportional to

√
∆t, so that the first order terms of the exponential expansion of the

bath Hamiltonian are proportional to
√

∆t. Then the second order expansion of the bath
Hamiltonian (cf. lines 3–10 in Eq. (8.2.15)) also needs to be taken into account for the
evolution matrix to be in first order of ∆t. This is further discussed and systematized in
Sec. 8.2.2, where higher order expansions are considered. For the numerical evaluation Eq.
(8.2.15) is expressed as a matrix using the basis states for the Jaynes-Cummings model
|iT, icav〉 and the basis states (cf. App. C)

|ip〉 =

(
∆B†(tp)

)ip√
ip!∆tip

|vac〉 (8.2.16)

for the reservoir, where |vac〉 is the vacuum state. The full basis is then given by
|iT, icav〉

⊗∞
p=−∞ |ip〉. The use of matrix product states and the assumption of an initial

vacuum state will allow to only treat a finite number of the infinitely many bath modes.
In the appendix, cf. Eq. (C.0.5), the explicit matrix form of the time evolution operator
in this basis for the Jaynes-Cummings model in first order is shown.

In the next Sec. 8.2.2, it will be shown how the evolution may be evaluated systematically
in higher order to speed up the numerical computation. Before that some general comments
on the time evolution scheme are in order. Note, that there are no stochastic elements in
the above evolution operator Eq. (8.2.15). As mentioned before, the full bath dynamics
are considered to treat the non-Markovian part of the bath dynamics. Nonetheless, this
formulation is called the QSSE picture, since for a Markovian bath, this formulation leads
directly to the master equation. In that case, the bath would be interpreted as white noise
(which is not done here). Then, the dynamics of a single trajectory could be computed
which would be one realization the ensemble treated in the density matrix picture [GZ04].
However, to emphasize again, in the case at hand, the dynamics of the reservoir modes are
fully taken into account. Nonetheless, some issues of a trajectory approach are relevant.
The evolution matrix derived from Eq. (8.2.15) is not unitary, if a finite ∆t is considered,
as necessary for a numerical evaluation. This leads to a deviation of the norm of the
global state |Ψ〉 from unity. Thus, in the numerical evaluation the error EΨ = 〈Ψ|Ψ〉 − 1
is an important measure for the correctness of the simulation. For the evolution in first
order of ∆t the error in each step will be proportional to ∆t2. The behavior in this case
differs from the behavior of the density matrix, whose evolution is described by a master
equation. The master equation is constructed such that the trace of the density matrix
will be unity for a valid numerical evaluation. In the here employed picture using the
quantum state, the norm of the state will always deviate from unity, so that this measure
is even more important than when using the density matrix.

Furthermore, from Eq. (C.0.5) it becomes clear, that in a single photon bin a single
time step at maximum two photons can be created. Since a single photon may only
interact at maximum twice with the system, not more than four photons may be excited.
Thus, only the photon states icav = 0, ..., 4 have to be considered.

In Fig. 8.2.2, an intuitive interpretation of the time evolution is shown. the system at
a given time tk interacts only with the photons from time tk and tk−l. Since the future
photon bins are in a vacuum state, they do not need to be considered explicitly before the
interaction with the system. Furthermore, the bins, which are in the distant past before
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8. Modeling quantum optical feedback

t− τ do not contribute to the dynamics anymore, so that they can also be neglected. In
the next section, it will be shown how this can be done in practice.

Figure 8.2.2.: The time evolution of the system subject to feedback in an intuitive picture.

8.2.2. Higher order time evolution

In App. C the time evolution operator in first order in ∆t is derived explicitly to show
how the arguments come into play in detail. In this section, Eq. (8.2.14) is considered
from a more general point of view in order to obtain the time evolution operator in higher
order of ∆t. This will allow to speed up the numerical computation.

The time ordering in Eq. (8.2.14) may be dropped, if the Hamiltonians at different
times commute, i.e. [Htot,rf(t), Htot,rf(t

′)] = 0, t 6= t′ [Sch01]. As only the operators in
the bath Hamiltonian are explicitly time-dependent, only the commutation of the bath
operator with itself at different times has to be considered. The argument is similar to
the ones used for the first order expansion in App. C. As the bath Hamiltonian contains
the bath operators b(t) and b†(t′ − τ), they may potentially not commute, if t = t′ − τ
due to the commutation relation Eq. (8.2.12). However, as the evolution operator evolves
the system from tk to tk+1, the integration time is only ∆t. Thus, the case t = t′ − τ will
not occur in the integral of Eq. (8.2.14), when ∆t < τ .

With these arguments, the time ordering in Eq. (8.2.14) can be neglected, so that the
exponent can simply be integrated

U(tk+1, tk) = exp

(
− i
~

∫ tk+1

tk

dt′Htot,rf(t
′)

)
(8.2.17)

= exp

(
− i

~
Hsys,rf∆t+

[ (√
γR∆B(tk−l)e

−iφ +
√
γL∆B(tk)

)
c†

−
(√

γR∆B†(tk−l)e
iφ +
√
γL∆B†(tk)

)
c
])
.

Here, the second part of the exponent giving the interaction is the same as the first order
part of the expansion of the exponential in Sec. C.
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8.2. Open system dynamics using matrix product state evolution

Recall that the first term is proportional to ∆t as given explicitly and that the second
term is in order of ∆t1/2 as only a product of two time bin operators is proportional to
∆t. This is a peculiar situation as in order to obtain a consistent perturbative formulation
with respect to the time step terms from different orders in the exponential function have
to be taken into account (as can already be seen in the first order computation of Sec. C).
However, for higher order evaluation of the exponential function also mixing terms will
occur.

The advantage of the above formulation in terms of the time bin operators is, that now
the Hamiltonian can be expressed as a matrix in the same basis as U in Eq. (C.0.5), so
that the whole evolution operator can be determined in a given order by considering only
matrix multiplications:

U = exp (MS + MB)

=

∞∑
n=0

1

n!
(MS + MB)n. (8.2.18)

Here, MS is the matrix containing the system part of the dynamics with the matrix
elements

(MS)jS ,jk,jτ ;iS ,ik,iτ = − i
~
〈jS , jk, jτ |

∫ tk+1

tk

HSdt|iS , ik, iτ 〉 (8.2.19)

and is in order of ∆t. The interaction with the feedback reservoir MB is in order of ∆t1/2

and the matrix elements are

(Mfb)jS ,jk,jτ ;iS ,ik,iτ = − i
~
〈jS , jk, jτ |

∫ tk+1

tk

Hfbdt|iS , ik, iτ 〉 (8.2.20)

With this, the different orders in ∆t have to be taken into account and the fact that the
matrices do not commute. In second order in ∆t, the evolution matrix reads

U = 1 + MB + MS +
1

2
M2

B +
1

2
(MSMB + MBMS) +

1

2
M2

S +
1

6
M3

B (8.2.21)

+
1

6

(
MSM2

B + MBMSMB + M2
BMS

)
+

1

24
M4

B +O(∆t5/2).

The first four terms coincide with the previous result Eq. (C.0.5) including contributions
of orders ∆t0, ∆t1/2, and ∆t. The next terms add the orders ∆t3/2 and ∆t2. Here,
the interaction and system Hamiltonian mix. Note, that terms in the expansion of the
exponential up to fourth order contribute.

When considering the higher order time evolution operator, the number of photon
states taken into account for the photon bins need to be increased, as not in a single time
step more photon processes may occur. This increases the memory usage and the possible
maximal complexity of the state for a given number of time steps, however, fewer time
step need to be used in order to simulate a given realization. In the problems studied
in this thesis, the gain in reducing the number of SVDs in a single time step due to the
higher order evaluation outweighs the increased complexity of the photon bath by far.
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8.2.3. Pulsed excitation

In order to simulate pulsed excitation efficiently using the MPS evolution, the Hamiltonian
can be divided into a time-independent and a time-dependent part

Htot = Hsys +Hpump(t) +Hfb. (8.2.22)

The time dependent pump Hamiltonian that will be used in this thesis is the semiclassical
pump Hamiltonian in rotating wave approximation with a time-dependent enveloping
amplitude Ω(t)

Hpump(t) =
~
2

Ω(t)
(
peiωLt + p†e−iωLt

)
. (8.2.23)

Here, p may be a bosonic or fermionic creation operator depending on the pumped system.
After transforming the Hamiltonian to the rotating frame with ωL, as done in Sec. 8.2.1
for the Hamiltonian without time dependent envelope, the only time-dependence of the
enveloping function is left. When writing the Hamiltonian in matrix form, the enveloping
time-dependent factor is valid for the whole matrix of the pump Hamiltonian. By writing
the time evolution matrix as the exponential function of the time independent system part
MS , the time dependent part Ω(tk)MP , and the bath part MB, again the relevant terms
in the expansion can be identified. The relevant terms in, e.g., second order of ∆t are

U = exp (MS + Ω(tk)MP + MB) (8.2.24)

≈ 1 + MB + MS +
1

2
M2

B +
1

2
(MSMB + MBMS) +

1

2
M2

S

+
1

6
M3

B +
1

6

(
MSM2

B + MBMSMB + M2
BMS

)
+

1

24
M4

B

+ Ω(tk)

[
MP +

1

2
(MPMB + MBMP ) +

1

6

(
MPM2

B + MBMPMB + M2
BMP

)]
+ Ω(tk)

2M2
P .

The first two lines are just the terms known from the time-independent case. The third
line is the part that is linear in the expansion with the pump amplitude, while the
last line is the part that is quadratic in the amplitude. For the numerical evaluation a
similar approach to the time-independent problem may be used, however, for each order
in Ω(t) a separate matrix is used. Thus, the time evolution matrix can be written as
U = U0 + Ω(t)U1 + Ω(t)2U2. Then the total change of the state vector is given by the
sum of these terms. For numerical efficiency, the time-evolution matrix can be saved as a
sparse matrix. After computing the full evolution matrix U, only the nonzero elements
together with the corresponding indices are saved. This allows a significant speedup of
the application of the evolution matrix on the state as in the problems at hand only few
matrix elements are nonzero, especially if the Hilbert space of interest becomes large as in
the problem of Chapter 10.

When evaluating the time dependent Hamiltonian one sparse matrix for each order
in Ω(t) is used. The time dependent factor only needs to be evaluated once every time
step and not the whole matrix has to be created anew. As each order is represented by a
sparse matrix only few additional computations in comparison to the time-independent
evolution have to be employed in each time step.
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8.2. Open system dynamics using matrix product state evolution

8.2.4. Exploring feedback dynamics using MPS techniques

With the evolution given by Eq. (C.0.5), one could take the initial state

|Ψ(0)〉 =
∑

icav,iT,{ik}

ψ...,icav,iT,i0,i0−1,...,i0−l,...|..., icav, iT, i0, ..., i0−l−1, i0−l, ...〉 (8.2.25)

to compute the time evolution of the system numerically. Here, ψ...,icav,iT,i0,i0−1,...,i0−l,... is
the probability amplitude for the basis state |..., icav, iT, i0, ..., i0−l−1, i0−l, ...〉, where icav

is the number of photons in the cavity, iT indicates whether the two level system in the
excited state, and ip gives the number of photons in bin p. However, there are still an
infinite number of photon modes. Even, if only the system with up to nph photon number
states and the bath with five photon states for each photon bin that lies inside the τ -
interval are taken into account, the relevant part of the state would still have nel = 2nph5l

elements. In case of e.g. τ/dt = 100 and nph = 10, this would be nel ≈ 1.58× 1071, which
corresponds to approximately 3× 1063 GB of memory. This is obviously not practical.
Thus, the concept of matrix product states is introduced to deal with this complication.

Schmidt-decomposition and notational conventions

As the concept underlying matrix product states, first the Schmidt-decomposition is
introduced. It is also called singular value decomposition (SVD). The name Schmidt-
decomposition is used customary in the context of quantum physics, while from the linear
algebra point of view, the name singular value decomposition is used more often. It was
introduced to describe and analyze entangled states [EK95; Sch11]. When a composite
quantum system consists of several subsystems, these subsystems may be entangled. This
leads to the general representation of the state involving superposition states. If |i〉A and
|j〉B (i, j = 0, 1, ...) are orthonormal basis sets of the subsystems with dimensions NA and
NB, the state may be written as

|Φ〉 =
∑
i,j

Ci,j |i〉A ⊗ |j〉B. (8.2.26)

Here, i and j may be multiindices incorporating several physical subsystems, as it will be
the case in the following. When the state is written like this, there is a sum of several
possible states. This may get quite involved if the subsystems are not two simple two
level systems. The most simple state is a product state in the form |Φ〉 = |φA〉 ⊗ |φB〉.
Then, only one of the coefficients C is nonzero. The goal of matrix product states is to
try to keep the complication due to the superposition of states as small as possible, i.e.,
to remember as few nonzero coefficients as necessary. It turns out, that this is possible
by using products of matrices instead of simple products of states. This will lead to the
concept of matrix product states. The coefficients of the state are now considered as the
coefficients of a matrix:

C =


C0,0 C0,1 C0,2 . . .
C1,0 C1,1

C2,0 C2,2
...

. . .

 . (8.2.27)
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With the singular value decomposition, the matrix C can be represented by the product

C = VSW†. (8.2.28)

In the following, the tensor-notation is used relying on the use of indices, as this is clearer
in the case of tensors containing more than two indices. Then, Eq. (8.2.28) becomes

Ci,j =

r∑
α=1

r∑
β=1

Vi,αSα,βW
∗
β,j . (8.2.29)

The matrices on the right hand side have the following properties;

� V is a NA ×min(NA, NB)-matrix with orthonormal columns: V†V = 1, if NA ≤
NB ⇒ VV† = 1

� S is a diagonal min(NA, NB) ×min(NA, NB)-matrix. The singular values on the
diagonal of this matrix are nonnegative values. In the numerical computation, a
decomposition with r nonzero singular values si in the order s1 ≥ s2 ≥ ... ≥ sr > 0
is done

� W is a min(NA, NB) × NB-matrix with orthonormal rows: WW† = 1, if NA ≥
NB ⇒W†W = 1

� by neglecting small singular values, the matrix C is approximated optimally with
respect to the norm

∑
i,j |Ci,j |2

The reduced density matrices are ρA = TrB|Ψ〉〈Ψ| and ρB = TrA|Ψ〉〈Ψ|. To compute
the bipartite Schmidt-decomposition of the state |Ψ〉 =

∑
i,j Ci,j |i, j〉, where i and j are

the (compound) indices of the subsystems, which are to be separated. As stated above,
the coefficients Ci,j are regarded as entries of a rectangular matrix C, so that the reduced
density matrices may be written as ρA = CC† and ρB = C†C. This is relevant, since for
the singular value decomposition of C, the following two relations hold [TB97]

C†C = WS†V†VSW† = WS†SW† (8.2.30a)

CC† = VS†W†WSV† = VS†SV†. (8.2.30b)

As this corresponds to the diagonalization of the reduced density matrices, W is the
contains the eigenvectors of C†C, while V contains the eigenvectors of CC†. The singular
values sα in S are the square roots of the eigenvalues of C†C and CC†. Because the
relations Eqs. (8.2.30) hold, the singular value decomposition can be computed from the
eigenvalues of the reduced density matrices, as done in Refs. [EK95; Vid03].

Using the singular value decomposition, a given matrix or tensor can be approximated
by considering only the largest of the nonzero singular values. Then,

Ci,j =

r∑
α=1

r∑
β=1

Vi,αSα,βW
∗
β,j ≈

d∑
α=1

d∑
β=1

Vi,αSα,βW
∗
β,j = C̃i,j . (8.2.31)
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The matrix C is approximated by C̃, where only the first d < r singular values are taken
into account. The error ε made in using the approximate matrix C̃ is estimated by the
Frobenius norm N (·), which can be evaluated directly from the singular values as

ε =

√
N (C)−N (C̃) =

√√√√ r∑
α

s2
α −

d∑
α

s2
α. (8.2.32)

Thus ε only depends on the neglected singular values, as the norm can be computed
directly from the singular values. In practice, we will give a cutoff error, which should not
be exceeded, however for controlling the memory use, we will also give a maximal number
of singular values which are taken into account. We will discuss the numerical errors in
more detail in Sec. 8.2.5.

By applying a singular value decomposition to the matrix C, the state reads

|Ψ〉 =
∑
i,j

min(NA,NB)∑
α,β=1

ViαSαβW
∗
βj |i〉A|j〉B =

∑
i,j

min(NA,NB)∑
α,β=1

Viαsαδα,βW
∗
βj |i〉A|j〉B

=

min(NA,NB)∑
α=1

(∑
i

Viα|i〉A

)
sα

∑
j

W ∗jα|j〉B

 =

min(NA,NB)∑
α=1

sα|α〉A|α〉B.

The last term is the Schmidt-decomposition of a composite state into sums of product
states.

The close relation of the Schmidt-decomposition to entanglement can be seen by
considering the von Neumann entropy as a measurement for the entanglement between the
two subsystems. By comparison with the relations Eqs. (8.2.30), and using the definition
if the entropy, the entropy may be written as

SA|B = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB) = −
∑
α

s2
α log2 s

2
α. (8.2.33)

Diagrammatic tensor notation

In addition to the notation as matrices and the index notation, the diagrammatic notation
for tensors is now introduced, which will be more instructive for more complex operations
on the matrix product state. Every mathematical object will be represented by a geometric
shape. The above SVD (8.2.29) can be expressed in a diagrammatic form, which is shown
in Fig. 8.2.3. The matrix C has two physical indices, which are represented by vertical
lines. It is decomposed into the matrices V and W with each one physical and one link
index. These matrices are represented by rectangular shapes (possibly with rounded edges).
The diagonal matrix S has two link indices and is represented by a circle. The rounded
edges of the rectangular represent the orthonormality of the matrix: V is left-normalized
(with orthonormal columns) and W is right-normalized (with orthonormal rows). The
unitary matrix V′ is computed as the product V′ = VS by contracting the index α. The
rounded edges correspond effectively to the contraction of the tensor with the physical
index with the neighboring diagonal matrix of singular values.
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Figure 8.2.3.: Diagrammatic form of the SVD of a matrix.

Figure 8.2.4.: Diagrammatic form of the SVD of the tensor Ti,j,k of rank three.

Not only matrices, but also tensors of higher order can be decomposed by regarding
two indices as a compound index of a matrix. This is more easily expressed in the
diagrammatic and in tensor notation. The tensor Ti,j,k may be decomposed as follows

Ti,j,k
SVD
= Vi,α1S

[1]
α1,β1

Wβ1,j,k
SVD
= Vi,α1S

[1]
α1,β1

W
[1]
β1,j,α2

S
[2]
α2,β2

W
[2]
β2,k

. (8.2.34)

In the following, the Einstein summation convention is used, where it is summed over
indices occurring twice. In Fig. 8.2.4 this is shown in form of the corresponding diagram.
Here, an important technical detail is, that the tensor Wβ1,j,k cannot be decomposed
directly. In this form the basis of Wβ1,j,k is not normalized correctly, yet. To do this,

W̃β1,j,k = S
[1]
α1,β1

Wβ1,j,α2 needs to be computed, this tensor decomposed, and W̃
[1]
α1,j,α2

has

to be multiplied with the inverse of S
[1]
α1,β1

, which then gives W
[1]
β1,j,α2

. This necessity leads
to technical issues which are discussed in Sec. 8.2.5.

From the product state to the Matrix product state

In the previous section, the Schmidt-decomposition was introduced, which gives a new set
of eigenvectors for the subsystem to express the state. The advantage of this formulation
is not obvious, yet, but will be illuminated in the following. During the time evolution,
the state of the total system Eq. (8.2.25) will be in a form, such that each subsystem
has its own matrix. The initial state of the whole system is a product state, where
the Jaynes-Cummings part is in an arbitrary state, while the photon bins are in the
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8.2. Open system dynamics using matrix product state evolution

zero-photon state. With the eigenstates of the photon bins defined in Eq. (8.2.16) and the
state of the Jaynes-Cummings system |ψS〉, the initial product state can be written as

|Ψ〉 = ...⊗ |01〉 ⊗ |00〉 ⊗ |ψS〉 ⊗ |0−1〉 ⊗ ...⊗ |0−l〉 ⊗ ... (8.2.35)

In the matrix representation, this becomes

Ψ(0) = ...


1
0
0
0
0


1

⊗


1
0
0
0
0


0

⊗A[S] ⊗


1
0
0
0
0


−1

⊗ ...⊗


1
0
0
0
0


−l

⊗ ...

= . . .A[1] ⊗A[0] ⊗A[S] ⊗A[−1] ⊗ · · · ⊗A[−l] . . . (8.2.36)

The vectors are ordered, such that in the total state vector the system index is between
the index of the photon bin at 0 and −1. This ordering of the vectors is important
in the numerical implementation. The vector representing the state Ψ is a product of
vectors representing the local states. Starting from this initial state, the application of the
evolution operator Eq. (C.0.5) will then introduce correlations (or entanglement) between
the system and the environment. Even though these cannot be described in the form of a
product state, the goal is to deviate as little as possible from this form. In the above form,
for each part of the total system (i.e. the local system and each photon bin) is described
by an individual vector. In the following mainly the tensor notation will be used, as it
facilitates dealing with the indices. The initial state vector can be written as

ψ(0){i} = . . . A
[1]
i1
A

[0]
i0
A

[S]
is
A

[−1]
i−1

. . . A
[−l]
i−l

. . . (8.2.37)

Here, the compound index is → iT, icav is introduces for the system. The notation {i}
indicates the indices i for the system and all photon bins.

The application of the evolution operator in the form of the matrix Eq. (C.0.5)
corresponds to the multiplication of this matrix with the total state vector

ψ(∆t)...,j1,js,j0,j0−1,...,j0−l,... =
∑
{i}

U
...,i0,is,...,i−l,...
...,j0,js,...,j−l...

ψ(0)...,is,i0,i0−1,...,i0−l,... (8.2.38)

In the matrix U the only non-diagonal block exists for the index pairs including the local
system and all of the photon bins inside the τ -interval (in the above case it is −l up to 0).
When thinking of the above total system as a chain of multilevel systems, the interaction
induced by the evolution is a long range interaction. After the application of the evolution
matrix Eq. (C.0.5), the state vector is in the form

Ψ(∆t) = ...A[1] ⊗Θ⊗A[−l−1] ⊗ ..., (8.2.39)

θj0,js,j−1,...,j−l = U
...,i0,is,...,i−l,...
...,j0,js,...,j−l...

A
[0]
i0
A

[S]
is
A

[−1]
i−1

. . . A
[−l]
i−l

and it is summed over all i. The future (photon bins after 0) and the distant past (photon
bins before −l) are not influenced by the time evolution, so this will be the same as before.
The part of the system, which is altered by the time evolution, may be represented by a
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composite state vector Θ, where correlations between the system and the bath are present.
Now a bipartite SVD is performed such that the left hand site matrix will include the
system index and the right hand site matrix will include all indices of the bath. This can
be written in the tensor notation as

θj0,js,j−1,...,j−l = Γ
[S]
js,αs

Λαs,βswβs,(j0,... ). (8.2.40)

The diagonal matrix Λα,β contains the Schmidt coefficients, which may be interpreted
as the amount of entanglement of the system with the relevant part of the bath. If the
above state was a product state, there would be only one nonzero Schmidt coefficient.
There may be maximally as many Schmidt coefficients as the dimension of the system
(if the bath part is larger than the part of the local system, which is normally the case).
This procedure is repeated for each photon bin. Multiple Bipartite decompositions are
performed, dividing the subsystem into the next photon bin and the rest of the bath. In
the end, this reads

θj0,js,j−1,...,j−l = Γ
[S]
js,αs

Λαs,βsΓ
[0]
βs,j0,α0

Λα0,β0 . . .Λα1−l,β1−lΓ
[−l]
β1−l,j−l

. (8.2.41)

In Eq. (8.2.41) the system and each photon bin of the bath have its own tensor Γ. The
correlations with the other parts of the total system are encoded in the coefficients Λ.
After this procedure, the indices are ordered such that the system index is between the
indices for the photon bins at times 1 and 0. Now, the unitary evolution matrix may be
applied again to the state vector and the procedure is repeated. Due to the MPS form of
the state vector, the unitary evolution may only be applied to the relevant part of the
state

ψ(2∆t){j} =
∑
{i}

U
...,i0,is,...,i−l,...
...,j0,js,...,j−l,...

ψ(∆t){i}

=
∑
{i}

. . . δj2,i2U
i0,is,...,i1−l
j1,js,...,j−l

δj1−l,i1−l . . . ψ(∆t){i}

= . . . A
[2]
j2

 ∑
i1,...,i1−l

U
i0,is,...,i1−l
j1,js,...,j−l

Γ
[S]
is,αs

Λαs,βsΓ
[0]
βs,i0,α0

Λα0,β0 . . .Γ
[1−l]
β2−l,i1−l,α1−l

Λα1−l,β1−l


× Γ

[−l]
β1−l,j−l

. . . (8.2.42)

The same procedure as before is applied. The correlations with the distant past (for
photon bins < 1 − l), are encoded in the index β1−l. The vector resulting from the
application of the evolution matrix is again decomposed. This is the basic technique for
performing the time evolution of the system.

8.2.5. Implementation of the evolution algorithm

To implement the time evolution algorithm, at first the basic operations are introduced,
which may be performed on the MPS and the relevant technical issues are discussed.
Afterwards it is shown how these operations may model the time evolution of the state
vector.
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8.2. Open system dynamics using matrix product state evolution

Figure 8.2.5.: State vector at time step k in canonical form.

Figure 8.2.6.: State vector at time step k in the mixed normalized form, where the
orthogonality center is at the system bin.

Operations on the MPS

In the diagrammatic form the state vector constructed from the above formalism is
depicted in Fig. 8.2.5. This form of the MPS is called the canonical form. Note, it suffices
to consider a MPS of finite length, even though there are infinitely many photon bins
present in the system. Due to the choice of the initial state as a product state, only the
part of the state, in which correlations are build up by application of the evolution, has
be to considered as the MPS. In the numerical scheme, a slightly different approach is
employed to save the state. When introducing the tensor notation in Sec. 8.2.4, it became
clear, that before applying a SVD to only a part of the tensor, the normalization has to
be ensured by contraction with the matrix containing the singular values. To go back
to the canonic form the inverse matrix (containing the inverse singular values) has then
to be contracted with the newly decomposed tensor. This poses a problem, when the
singular values become small. Then, their inverse becomes large and numerical errors
in the small singular values become significant. This could be handled by employing
criteria to avoid too small singular values becoming important or by computing also the
small singular values to a very high precision [SW13]. However, by writing the state in a
different form, this problem can be avoided altogether. Before saving the tensors, they are
always contracted with their neighboring singular values. This leads to the representation
in the form

ψ(tk){i} = A
[k]
ik,αk

A
[S]
αk,is,βS

A
[k−1]
βS,ik−1,βk−1

. . . A
[k−l]
βk−l+1,ik−l,βk−l

. . . A
[−l]
β1−l,i−l

. (8.2.43)

Now all the A contain a Γ and a Λ. However, in this representation one site is special.
In the above case this is the system tensor, which is contracted with the right hand site
as well as the left hand side Λ. This unitary tensor is called the orthogonality center
of the state. All operations may be applied to this one. The ones on its left hand side
are left-normalized and the ones on its right hand side are right-normalized. To apply
operations to other sites, the orthogonality center has to be shifted by doing singular
value decompositions. However, as mainly the system observables are of interest not many
additional SVDs are needed, cf. Fig. 8.2.9.

The left normalized tensor may fulfills

A[k]
ik,αkA

[k]∗
ik,α̃k

= δαk,α̃k (8.2.44)
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Figure 8.2.7.: (a) Diagram for the computation of the photon number. (b) By tracing
out the parts of the system that do not need to be taken into account the
simple form is obtained.

while the right normalized obeys

A[−l]
α−l,i−lA

[−l]∗
α̃−l,i−l

= δα−l,α̃−l . (8.2.45)

The most simple operation that can be performed on the MPS is a single site expectation
value. From the above relation it follows, that the computation of e.g. the photon number
may be simplified. The photon number operator may be expressed in matrix form as

OPN
jcav,icav

= icavδjcav,icav . (8.2.46)

In the diagrammatic notation, in Fig. 8.2.7(a) the computation of the expectation value
is shown. Due to the relations Eq. (8.2.44) and Eq. (8.2.45), this can be simplified as
shown in Fig. 8.2.7(b). Instead of the 3(k + l) + 5 contractions, only four contractions
have to be performed. The simplicity of this operation represents the fact, that a simple
operation on the system may not introduce correlations between the system and the bath.

Realization of the evolution algorithm

In the computation of the time evolution, Eq. (8.2.42), there is still a technical issue.
As τ becomes larger the part of the state vector, which is influenced by the evolution,
becomes larger. Thus, large matrices have to be decomposed. Already for reasonably
large values for τ/∆t this becomes unfeasible, so that a different approach will be used.
The time evolution introduces an interaction between the system, the photon bin at time
tk and at time tk−l. If the bins at tk and tk−l were neighbors, the intermediate bins would
not be influenced. When employing the analogy to a spin chain, this would correspond to
a long range interaction. This can be dealt with in the way proposed in Ref. [Sch+10].
The method is based on the fact, that the ordering due to the decomposition into single
site tensors performed in Eq. (8.2.41) is in principle arbitrary and these bins can in fact
be made neighbors by simply changing the order of the indices in the tensor representing
the state. The initial state is in the form of Eq. (8.2.6) but with the orthogonality center
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8.2. Open system dynamics using matrix product state evolution

Figure 8.2.8.: (a) Swap operation performed on two photon bins to reorder the MPS.
(b) Diagrammatic representation of the operations needed to perform the
reduced unitary evolution.

at the bin k − l. A swap gate is applied on the photon bins at k + 1− l and k − l:

A
[k+1−l]
αk+2−l,ik+1−l,αk+1−l

A
[k−l]
αk+1−l,ik−l,βk−l

V swap
jk+1−l,jk−l;ik+1−l,ik−l

(8.2.47)

=T swap
αk+1−l,jk−l,jk+1−l,βk−l

SVD
= A

[k−l]′
αk+1−l,jk−l,α̃k−l

Λ
[k−l]
α̃k−l,β̃k−l

Ã
[k+1−l]
β̃k−l,jk+1−l,βk−l

=Ã
[k−l]
αk+1−l,jk−l,β̃k−l

Ã
[k+1−l]
β̃k−l,jk+1−l,βk−l

This computation is also depicted in detail in Fig. 8.2.8(a). In this figure, the arrows
represent the physical indices, which go into a new tensor, which is used for further
calculations. The vertical lines for the link indices are kept. This operation is performed
again until the photon bin k − l is next to the system bin. Now the evolution matrix
is a matrix only covering three physical indices instead of l + 2, which is more feasible.
In the numerical implementation, the evolution matrix is treated as a sparse matrix.
Depending on the physical situation this can be much more efficient, especially for large
Hilbert spaces, where only very few elements in the unitary evolution are nonzero. This is
especially important in the case where additional losses need to be considered, as then the
Hilbert space grows extraordinarily unfavorably. After the application of the evolution,
the tensor T evo

ik,is,ik−l,βk−l
has to be decomposed. Here, two SVDs are needed, which is

depicted in Fig. 8.2.8(b).

Putting all these elements together, the total time evolution algorithm is represented
diagrammatically in Fig. 8.2.9 for the exemplary case τ/∆t = 3. The expectation values
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8. Modeling quantum optical feedback

of the systems are computed in the step before applying the evolution operator, where
the orthogonality center is at the system bin.

When using this approach, the state grows as the system is time evolved. In order to
avoid a huge state for long run-times, as the part of the state with the photon bins < k− l
are not used anymore and may be discarded. When only system expectation values are
computed, the distant past can just be forgotten, as one would expect from a bath with a
finite memory time.

Error handling in MPSs

In the above algorithm there are two main sources of errors. The first error source is due
to the time evolution operator itself. Since the evolution operator is solved perturbatively
in lowest order of ∆t, an error is introduced for finite ∆t. To account for the system-bath
interaction, the evolution operator becomes non-unitary. This non-unitarity would vanish
in the limit ∆t→ 0. However, this limit has, strictly speaking, only a restricted relevance,
since 1/∆t has to be smaller than the bandwidth B. It leads to a deviation of the norm
of the state from unity. So, an important measure for the error is the deviation of the
state from unity

Estate = 〈Ψ|Ψ〉 − 1. (8.2.48)

The other source of errors is the truncation of the singular values, cf. Eq. (8.2.31). This
error is controlled by two values: ε, the total relative error allowed in the singular values,
and dmax, the maximal number of singular values, that are kept during a decomposition.
The value smin is necessary to avoid problems due to numerical precision. The number of
singular values has to be limited so that it is possible to save the state to memory. Thus,
the method is applicable, if the part of the state that is cut off remains small. Truncating
the singular values ultimately also leads to a deviation of the norm of the state from unity,
since a part of the state is cut off. Thus, Estate is the quantity, that has to be monitored.

8.2.6. Computing correlation functions and the spectrum

In addition to the time evolution of the system, also the steady state spectrum and the
(stationary) correlation functions are of interest. As the environment is not traced out in
the treatment of feedback used here, but considered explicitly, the correlation functions
may be computed directly from the external field. Alternatively, the correlations may be
computed by approximating the output field and internal field as proportional, which is
commonly done when considering master equations [Lou00]. In many cases this will be
justified, depending on the observables of interest. However, in some cases this approach
might fail, as when the external photon number distribution is considered [Fis+17]. This
will be discussed in more detail in Chapter 11.

Spectrum

To compute the spectrum, the Wiener-Khinchin theorem is used, which relates the
spectrum to the first order autocorrelation function [MW95]. The steady state spectrum
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8.2. Open system dynamics using matrix product state evolution

Figure 8.2.9.: Diagrammatic representation of the time evolution algorithm in the MPS
form for the case τ/∆t = 3, cf. Ref. [Nau+17].
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8. Modeling quantum optical feedback

Figure 8.2.10.: Diagram for the computation of the first order correlation function from the
MPS. To compute the spectrum, two times are involved, which corresponds
to a non-local expectation value. The orthogonality center needs to be
at one of the bins involved in the computation. Since two operators are
involved they act on the bins at the edges of the tensor train, as the other
bins may be traced out.

could be computed directly from the output field by evaluating [PZ16]

S(ω) =
2

∆t
<

M−1∑
p=0

〈∆B†(tq)∆B(tq−p)〉eiωp∆t
 , (8.2.49)

whereM has to be chosen large enough for the spectrum to be converged and q = kmax−l−1
(then, the output field at time tk is computed). This requires the evaluation of nonlocal
expectation values (involving different times). The advantage of this approach is that
first the evolution is done and afterwards from the bath bins, the correlations can be
computed. In case of p = 0, the expectation value in Eq. (8.2.49) is just the photon
number at time tq. This may be computed in the same manner as shown in Fig. 8.2.7(b)
for the system. When p 6= 0, a true two-timed expectation value is computed, which
corresponds to a nonlocal expectation value. The diagram for this is shown in Fig. 8.2.10.
The larger p the longer the numerical evaluation takes. The nonlocal expectation value is
evaluated in practice by iterating over all involved photon bins and contract the result of
each bin, where either an operator is applied or the tensors are contracted immediately.
When contracting the final tensor a scalar is left, which is the result of the computation.
It is important to note that the orthogonality center needs to be at a photon bin that
is involved in the contraction as otherwise no meaningful value is computed due to the
non-unitarity of the total tensor that is contracted.

When assuming the proportionality between output field and internal field, the spectrum
may be evaluated from

S(ω) = 2<

N−1∑
p=0

〈c†(tstat)c(tstat + p∆t)〉eiωp∆t
 , (8.2.50)

where c is some system field operator, e.g. the cavity mode. In this case, tstat is the time,
after which the system is stationary and N has to be chosen such that, the spectrum is
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8.2. Open system dynamics using matrix product state evolution

converged. To evaluate this, the expectation value is rewritten using the state vector

〈c†(t)c(t+ τ)〉 =〈Ψ(0)|c†(t)c(t+ τ)|Ψ(0)〉
=〈Ψ(0)|U †(t, 0)c†(0)U(t, 0)U †(t+ τ, 0)c(0)U(t+ τ, 0)|Ψ(0)〉
=〈Ψ(0)|U †(t, 0)c†(0)U †(t+ τ, t)c(0)U(t+ τ, t)U(t, 0)|Ψ(0)〉
=〈Ψ(t)|c†(0)U †(t+ τ, t)c(0)U(t+ τ, t)|Ψ(t)〉.

The spectrum can now be computed in five steps:

1. compute the stationary state vector |Ψ(tstat)〉 (for which the system observables are
stationary)

2. compute the state at time |Ψ(tstat + p∆t)

3. compute the state vector |Ψc(t)〉 = c|Ψ(t)〉 on which the destruction operator is
applied

4. compute the next step of the time evolution of this state |Ψc(tstat + p∆t)〉

5. evaluate 〈Ψc(tstat + p∆t)|c|Ψ(tstat + p∆t)〉.

Second order correlation function

For the unnormalized second order correlations, in general there may be four different
time arguments

G(2) = 〈∆B†(tk)∆B†(tl)∆B(tm)∆B(tn)〉. (8.2.51)

The corresponding diagram is shown in Fig. 8.2.11. Due to the commutation relations of
the time bin operators, [

∆B†(tk),∆B
†(tl)

]
= 0,

the correlation is invariant under swapping the time arguments tk and tl as well as tm
and tn. In most cases only the symmetric correlation with k = n and l = m is of interest,
as it represents the intensity-intensity correlation in the popular Hanbury Brown-Twiss
setup [BT56; Fox06]. The symmetric correlation allows a simplification in the numerical
evaluation, as only ∆B(tm)∆B(tn)|Ψ(∞)〉 needs to be evaluated. This is particularly
simple, as in the case m = n, only one photon bin is involved and the computation is
similar to that of the photon number, while in the case m 6= n operators act only on two
photon bins. For the case with four times this is more involved, as at some intermediate
bin an operator needs to be applied.

The steady state correlation function may also be computed from the proportionality
between internal an external field. This can be done similarly as for the spectrum in
the last step. When having evaluated |Ψc(tstat + p∆t)〉, the normalized time-dependent
second order correlation function may be evaluated from

g(2) =
〈c†(tstat)c

†(tstat + p∆t)c(tstat + p∆t)c(tstat)〉
〈c†(tstat)c(tstat)〉2

=
〈Ψc(tstat + p∆t)|c†c|Ψc(tstat + p∆t〉)

〈c†(tstat)c(tstat)〉2
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Figure 8.2.11.: Diagram for the computation of the second order correlation function
from the MPS. In this case four operators with possibly different times are
involved. For the general case with four different operators an operators
acts at four different photon bins. For the simpler symmetric case, when
k = n and l = m, the photon number operators acts only a the bins at the
borders.

Figure 8.2.12.: Diagram for the computation of the symmetric third order correlation
function from the MPS. In this case only three different times are involved
simplifying the evaluation as the photon number operator is applied to the
three photon bins.

Third order correlation function

The unnormalized third order correlation function reads in general

G(3) = 〈∆B†(tk)∆B†(tl)∆B†(tm)∆B(tp)∆B(tq)∆B(tr)〉. (8.2.52)

In this thesis only the symmetric case of the third order correlation function with k = r,
l = q, and m = p will be considered, which will be used in Chapter 11 to compute
the photon number distribution of the output field. In Fig. 8.2.12 the diagram for the
symmetric third order correlation function is shown. Here, a photon number operator
acts on the photon bin.

8.2.7. Inclusion of additional decay channels

When setups are considered, where different subsystems are coupled, each of them may
be subject to a decay. For example the Jaynes-Cummings model presented previously
contains a cavity mode and a two level system. Before, the cavity mode was subject to
feedback, while the two level system only coupled to the cavity mode and did not have an

84



8.2. Open system dynamics using matrix product state evolution

additional decay channel. Since this might be the case in a physical system the inclusion
of additional decay channels in the QSSE picture is shown. This is used in Chapter 10,
where a cavity mode subject to feedback is coupled to two emitters and both emitters are
subject to an additional radiative decay into other optical modes.

As the evolution algorithm presented so far stays within the Schrödinger picture, the
convenient density matrix techniques to include decays via the Lindblad form (cf. Parts I
and II of this thesis) can not be used straightforwardly. There are three possible ways to
include additional decays. One may employ the quantum jump approach as discussed in
Sec. 8.2, where trajectories would be computed. Another possibility would be to express
the whole theory presented so far in terms of the density matrix. These two approaches
in fact trace the degrees of freedom introduced by the additional decay channels out. The
third ways is to include the additional decay channel explicitly in the computation as it is
done with the decay channel for feedback, but without the non Markovian back-action.
In this thesis the last approach is used, as it is the most straightforward extension of the
theory presented so far.

An additional decay channel for the TLS in the Jaynes-Cummings model is included
by considering an additional set of bath modes in the Hamiltonian Eq. (8.0.1), i.e.
Htot = Hsys +Hfb +Hdc, where

Hdc =

∫
dω~ωb†2(ω)b2(ω) + i~

∫
dω

√
Γ

2π

[
b†2(ω)σ− − h.c.

]
. (8.2.53)

After the introduction of the rotating frames in the same manner as for Eq. (8.2.9), the
time dependent reservoir operators may be defined as b2(t) = 1√

2π

∫
B dωb2(ω)e−i(ω−ωL)t

leading to

Hdc,rf = i~
√

Γ
[
b†2(t)σ− − σ+b2(t)

]
. (8.2.54)

When evaluating the time evolution operator in first order, this leads to the matrix Mdc

with the elements

(Mdc)jS ,jk,j2,k,jτ ,j2,τ ;iS ,ik,i2,k,iτ ,i2,τ

= − i
~
〈jS , jk, j2,k, jτ , j2,τ |

∫ tk+1

tk

Hdc,rfdt|iS , ik, i2,k, iτ , i2,τ 〉.

=
√

Γ〈jS , jk, j2,k, jτ , j2,τ |
[
∆B†2(tk)σ− − σ+∆B2(tk)

]
|iS , ik, i2,k, iτ , i2,τ 〉

=
√

Γ
√

∆t
(√

j2,kδj2,k,i2,k+1δjT,0δiT,1 −
√
i2,kδj2,k+1,i2,kδjT,1δiT,0

)
× δjk,ikδjτ ,iτ δj2,τ ,i2,τ δjcav, icav

Here, the new set of bath operators ∆B2(tk) =
∫ tk+1

tk
dtb2(t) is introduces in the same

manner as before. Note, that an additional set of indices needs to be included for the
additional decay channel. As expected from a simple decay, it only acts on the photon
bin at the current time and does not influence the past of the reservoir. This matrix then
needs also to be considered in the exponential Eq. (8.2.18).

For the time evolution algorithm the photon reservoir is decomposed into photon bins
at discrete times. As the times for the reservoir inducing the decay are the same times,
which are used for the feedback time, the compound index ĩk = ik, i2,k may be introduced.

85



8. Modeling quantum optical feedback

By doing this, both photon baths are treated by considering a common Hilbert space and
when performing the SVD all photon modes at a given time are treated as one entity.
This allows to keep the MPS structure presented before in the same manner, with the
only difference that one photon bin contains multiple photon modes.

When writing the state in MPS form for this case it reads

ψ(tk){i} = A
[k]
ik,i2,k,αk

A
[S]
αk,is,βS

A
[k−1]
βS,ik−1,i2,k−1,βk−1

. . . A
[k−l]
βk−l+1,ik−l,i2,k−l,βk−l

. . . A
[−l]
β−l,i−l,i2,−l

.

(8.2.55)
Here, each tensor contains the indices of two bath bins at the same time.

8.2.8. SVD with LAPACK

In practice, the numerical singular value decomposition as implemented in LAPACK will
be used. When using LAPACK with C it is important to note that LAPACK is written in
Fortran and the ordering of matrices in the memory are different for C and Fortran. The
decomposition of tensors of higher ranks corresponds to the decomposition of rectangular
matrices. Then, the ordering of the indices is important as well as whether the matrix or
its transposed is decomposed.

In the program used for the numerical calculations of this thesis, a singular value
decomposition in two steps is used. Here, two functions from the LAPACK library are
available that are suitable. On the one hand, there is the function zgesvd that uses a
QR algorithm and on the other hand there is the function zgesvd that uses a divide an
conquer method, dividing the matrix into submatrices, computing the SVD of them and
putting the result together.1 As the latter algorithm is generally faster and thus used for
most SVDs. However, in some cases this algorithm fails to converge. Then, the function
zgesvd is used as the fall-back algorithm.

8.3. Benchmark of MPS evolution

In this section the MPS evolution as presented in the previous section is benchmarked
with some solutions given by the methods mentioned in Sec. 8.1. The known results can
be reproduced which gives confidence in the method.

One of the most simple problems, which nonetheless already incorporates the essence
of the problems which feedback poses with respect to the numerical description is the two
level system subject to feedback. For this case the system Hamiltonian

Hsys,TLS = ~ωTLSσ+σ− + ~ΩTLS

(
e−iωLtσ+ + eiωLtσ−

)
, (8.3.1)

where ωTLS is the transition frequency of the two level system, ωL is the frequency of a
possible driving laser, and ΩTLS is the pump strength. The total Hamiltonian is then
given by Eq. (8.0.1) with the feedback part Eq. (8.0.2), whre A = σ−.

First, the case without pump is considered as this is the most simple case and an
analytical solution exists in the regime where the two level system is most probably
decayed when feedback sets in [DZ02]. In Fig. 8.3.1 the comparison between the analytical
solution (solid, blue) and the evolution from the MPS method (dashed, red) is shown.

1http://www.netlib.org/utk/people/JackDongarra/etemplates/node193.html
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Figure 8.3.1.: Decay of two level system with feedback for the case γL/τ = γR/τ = 7.5,
ΩTLS = 0. The frequency ωL is eliminated by introducing a rotating frame,
cf. Sec. 8.2.1. The analytical solution (solid, blue) is taken from Ref.
[DZ02] and fits the numerical solution form the MPS evolution well. The
discretization for the MPS evolution is τ/∆t = 100

Figure 8.3.2.: Pumped two level system subject to feedback. The dashed solutions are
obtained from the MPS evolution for destructive (orange) and constructive
(red) interference. The solid curves are the reference solution by the Liouville
space method discussed in Sec. 8.1.3. The parameters are, cf. Eq. (8.3.1),
ΩTLS = πγL, τγL = τγR = 1. For the MPS evolution τ/∆t = 100 is used.
The detuning of the pump laser from the TLS frequency is ωL − ωTLS = 0.
For constructive interference eiωLτ = 1 and for destructive eiωLτ = −1. For
reference the evolution without feedback is shown in gray.
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Figure 8.3.3.: The photon number is shown for the single excitation regime for the Jaynes-
Cummings model with feedback, i.e. Hamiltonian Eq. (8.0.1) with the
system given by the Hamiltonian Eq. (8.2.2). The numerical evaluation
via the MPS evolution is compared to the analytical solution taken from
[Kab+15]. The solution is reproduced well for several τ -intervals. The
parameters are taken as τ = 2π/g, γL/g = γR/g = 2, ωcav = ωe, Ωcav =
Ωe = 0, and eiωcavτ = 1 with the TLS being initially in the excited state.
The time is discretized with τ/∆t = 50.

The next important case is the driven two level system, which was first studied numeri-
cally in Ref. [Gri15]. Here, the excitation does not decay in a single τ -interval. Thus, in
Fig. 8.3.2 the solution given by the MPS method is compared with the solution from the
algorithm given in Ref. [Gri15]. Here, the cases eiωLτ = 1 and eiωLτ = −1 are considered.
As the former increases the excited state density, this is called the case of constructive
interference, while the latter is called the deconstructive case as it decreases the density.

This section is concluded by considering the Jaynes-Cummings model with feedback
introduced in the previous section. There, Rabi oscillations may be stabilized by tuning
the feedback as given in the caption of Fig. 8.3.3. In the single excitation regime this was
first considered in Ref. [Car+13] and in Ref. [Kab+15] an analytical solution was given.
Here, the numerical solution via the MPS evolution method is found to be in excellent
agreement with the analytical case. As in the following effects with more than two photon
are of particular interest, the MPS evolution is compared to the brute force evaluation of
the Hamiltonian Eq. (8.0.1), when initially two photon are present in the cavity mode.
For the brute force evaluation, the integral in the feedback part of the Hamiltonian is
discretized. This is done in the same way as for the approximate solution in Chapter 10,
where more details are given. Additional information on the brute force evaluation of
the feedback Hamiltonian may be found in Refs. [Sch14; Hei16]. In Fig. 8.3.4, the time
evolution of the photon number using the MPS method is shown to coincide well with the
reference solution.

The single photon case is used to illustrate the speedup of the computation due to the
second order evolution algorithm presented in Sec. 8.2.2. When the cumulative error in
the norm of the MPS, as discussed at the end of Sec. 8.2.5, should stay in a similar order
of magnitude, the evaluation time differs strongly. In Fig. 8.3.5 the error in the MPS
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Figure 8.3.4.: In the case corresponding to Fig. 8.3.3, where initially two photons are in the
cavity mode, the MPS evolution is compared to the brute force evaluation of
Hamiltonian Eq. (8.0.1) as done in Chapter 10 for the approximate solution.
The solution is reproduced well for several τ -intervals. The parameters
are taken as τ = 2π/g, γL/g = γR/g = 2, ωcav = ωe, Ωcav = Ωe = 0, and
eiωcavτ = 1 with the TLS being initially in the excited state. The time is
discretized with τ/∆t = 50. For the brute force evaluation 3600 momentum
values are used with the discretization ∆k/g = 3

40πc0
.

Figure 8.3.5.: The error in the norm of the MPS, cf. Eq. (8.2.48), for the time evolution
shown in Fig. 8.3.3 for the case of first order evolution in ∆t (red, solid)
and second order evolution in ∆t (green, dashed). If the relative error in
the MPS is kept in a similar order of magnitude, the first order evolution
takes about 9 min 30 s, while the second order evolution only takes 2 s on
the same machine.
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norm is shown for the case of evolution operator, where terms up to first order in ∆t are
considered and for the case, where terms up to second order in ∆t are considered. For the
first order case the numerical evaluation takes about 9 minutes and 30 seconds, while the
second order evaluation on the same computer is finished after about 2 seconds. In the
second order case, the discretization τ/∆t = 50 is sufficient to reproduce the analytical
solution very well, cf Fig. 8.3.3, while in the first order case τ/∆t = 2000 is necessary
for a similar error Estate. In both cases the singular values are cut off, when the error
given by Eq. (8.2.32) due to neglecting them is less than 10−10. However at maximum 32
singular values are taken into account for each SVD. This computational speedup allows
to address more complex problems, which will be done in the following.

In this chapter of the thesis the method to solve time-delayed quantum coherent feedback
in the picture of the quantum stochastic Schrödinger equation via matrix product state
evolution was presented. The method first introduced in Ref. [PZ16] was extended to
higher order terms in the time evolution and to systems with time dependent Hamiltonians.
In Chapter 10 this method will be applied to the two emitter Jaynes-Cummings model
already considered in Part II together with an approximate method in the Schrödinger
picture. This will serve to further test both methods and to show enhanced antibunching
when feedback is applied. Furthermore, in Chapter 11, the impact of feedback on the
output field of a two level system is studied. This will reveal that feedback can be used to
switch between increased two photon emission and single photon emission.
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9. Control of photon statistics via
quantum coherent feedback

In Part I mechanical oscillators and in Part II a cavity quantum electrodynamcis (cQED)
setup are subject to an optical input field allowing to control internal degrees of freedom
of the irradiated system. For manipulating the mechanical oscillator a laser field was
used modeled by a classical field, which induces, e.g., laser dynamics in the mechanical
oscillators through the optomechanical or the electron-phonon interaction. The laser
dynamics correspond to coherent statistics. Steering the systems towards lasing is possible
by choosing the correct laser power and frequency, which serve as control parameters in
this case.

In case of the cQED setup, consisting of a cavity with two emitters, the photon statistics
were manipulated by driving this target system with a source system exhibiting a photon
statistics of choice. When the emitted light from the source is transmitted along a
dissipative channel, the source characteristics may only be partially imprinted onto the
target system, as the dissipation is detrimental for light exhibiting quantum features such
as antibunching. However, higher order correlations prove to be more robust against this
decoherence. The main control parameter in this setup is the driving strength of the
source system.

While the modeling of the light source in Part II proofs to be more complex as the full
quantum dynamics are taken into account, no delay effects are considered as a cascaded
setup is assumed [Car93; Gar93]. Thus, the dynamics of the target system do not influence
the source.

In the present chapter time delay effects will be considered explicitly. In particular
systems subjected to self-feedback will be investigated. In order to treat the evaluation
numerically, the methods presented in Chapter 8 will be employed. When feedback is
used to manipulate the dynamics of systems, the main control parameter of interest is
the feedback time τ , which simultaneously affects the feedback phase. In contrast to
the treatment of the cascaded setup, where the system is not affected by its past, in the
feedback case this has to be considered explicitly. In the following, some of the possibly
exploitable effects feedback may have on an optical system are explored with particular
focus on the manipulation of the the photon statistics.

In the next section the cQED setup used as target in Part II is now subject to self-
feedback. Here the focus lies on the question how states with photon statistics deviating
from the coherent case are influenced by employing optical feedback. The results presented
in Chapter 10 were previously published in Ref. [Lu+17] in collaboration with Yiping
Lu. Of particular interest is the case where the system exhibits antibunching as feedback
allows to control the extend of the antibunching to a certain degree. In this part also an
approximative solution in the Schrödinger picture is used. In the regime of few excitations
the approximative solution agrees well with the MPS evolution method.
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In Chapter 11, a pulsed two level system subjected to feedback is considered using the
MPS evolution method. Here, feedback allows to tune the output state of the two level
system between two and single photon emission. In particular the two photon emission is
enhanced in comparison to the case without feedback.
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10. Increasing antibunching

The main problem in exploiting quantum effects for applications is the limited time for
which quantum correlations dominate the system dynamics [Zol+05; WM06]. In order to
overcome this restriction several proposals have been made. In this context, purification
of quantum gates [ECZ97], correction of errors [Sho95], and measurement-based feedback
[WM06] have been proposed. Instantaneous feedback, as discussed earlier, allows to
stabilize single photon Fock states [Zho+12].

Recently, the effect of time-delayed feedback close to the quantum regime is addressed
in optical systems [Alb+11a; Hop+13; Hoi+15; Alb+11b].

After having introduced the MPS evolution method in Chapter 8, it is now applied to a
cavity quantum electrodynamical system. Alongside the numerically exact method, an
approximative numerical scheme in the Schrödinger picture is used to gain further insight
into the system dynamics and the modeling. This scheme is valid in the regime of few
excitations. As the dissipation is taken into account in form of an effective non-Hermitian
Hamiltonian, only weak decay rates may be considered [ZZC16; GZ04]. In the regime of
low pumping rates the approximative model agrees well with the MPS evolution. This
is shown by additional benchmarks in order to test both models in this regime where it
is difficult to use other models. After showing the agreement of the models in certain
regimes, the approximative model is used in the limit of short time delays to control the
output statistics of the light field. Here, antibunching and bunching can be enhanced and
diminished as well as the amount of entanglement between the emitters inside the cavity.
The focus lies on the possibility to have additional control over the system emission rather
than maximizing, e.g., bunching.

In the system studied in this chapter, a connection between the photon statistics and
the entanglement between the two emitters inside the cavity was shown [ZZC16]. This
connection allows to probe to some extend the entanglement between the two emitters
which is not easily addressable in experiments. This may be done by probing the full
density matrix of a system which contains all information [Jam+01; The+02], but which is
only reconstructed with some additional effort [LLZ15; LZ16]. The entanglement observed
in the following, however is very small and cannot be exploited for applications. Here, it
will rather serve to establish whether the connection between entanglement and correlation
still exists when feedback is applied.

In Sec. 10.1, the approximative model will be introduced and in Sec. 10.2 the case
without feedback will be shortly considered. Then, in Sec. 10.3, the regime of validity
of the approximative solution is estimated using the MPS evolution. Afterwards the
approximative solution is employed in the limit of short time delays to illustrate that
feedback serves as additional degree of freedom that can be used for controlling the photon
statistics of the system in Sec. 10.4. In certain cases this is compared with the solution
obtained via the MPS evolution. In Sec. 10.5 the relation between the statistics and
entanglement will be briefly discussed.
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Figure 10.1.1.: A quantum optical many-emitter system with a cavity mode subjected
to feedback is investigated with respect to the emission statistics of the
cavity mode. Two two-level systems are placed in a cavity that is subjected
to feedback, e.g., by coupling to a semi-infinite waveguide. The emitters
decay with rate γ and the cavity is pumped with a weak coherent laser
with strength Ωcav and frequency ωL. Cavity and emitters are coupled via
the electron photon interaction with strength g.

10.1. Model

The system investigated in this chapter is in principle the target system from Part II of
this thesis. It may be realized experimentally, e.g., as a nanophotonic device [Sap+15].
However, in the present case the regime where the coupling is much larger than the losses
is considered. Then, a detuning between a coherent pump laser and the cavity resonance
enables antibunching and bunching.

The model with feedback is sketched in Fig. 10.1.1. The cavity, which is subjected
to feedback, contains two two-level systems. It is furthermore pumped by an external
coherent laser. After introducing a rotating frame, cf. Eq. (8.2.8), the system Hamiltonian
reads [ZZC16]

Hsys,2em = ~∆c†c+ ~
2∑
i=1

δσ+
i σ
−
i + ~

2∑
i=1

gi(σ
+
i c+ c†σ−i ) + ~Ωcav(c† + c). (10.1.1)

As in Part II the emitters are assumed to be identical and in resonance with the cavity
mode, i.e. δ = ∆ and g1 = g2 = g. However, the cavity is now pumped coherently
so that it has a frequency, which may differ from the system resonance. This will be
exploited to drive the system into different regimes. In the Hamiltonian Eq. (10.1.1),
∆ = δ = ω0 − ωL is the detuning of pump laser from the frequency of the cavity mode
and the emitters. The gi are the coupling strengths between cavity and emitters and Ωcav

is the pump strength. The operators c† and c create and annihilate a photon in the cavity
mode, respectively. The ith emitter is brought to the excited state by the flip operator
σ+
i = |ei〉〈gi| and brought to the ground state by σ−i = |gi〉〈ei|. This is all in analogy to

the Jaynes-Cummings model, Eq. (8.2.2). Feedback is also included in the same manner
so that the derivation for the feedback algorithm does not change. As the emitters are
also assumed to be subjected to decay additional loss channels are included as described
in Sec. 8.2.7.

For the approximative model, the feedback and system Hamiltonian remain the same.
However, the feedback part is not rewritten in the time domain, rather the Hamiltonian
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is used in the form obtained after the introduction of the rotating frame. This reads, cf.
Eq. (8.2.10),

Hfb,rf =

∫
dk(G(k, t)c†dk +G∗(k, t)d†kc), (10.1.2)

where G(k, t) = G0 sin(ωkτ/2) exp[i(ωL − ωk)t] is the k-dependent coupling strength of
the cavity mode to the environment. Note, that G0 differs from the g0(ω) in Eq. (8.0.3)
as here the integral is over the momentum k. Furthermore, the Hamiltonian was rewritten
using the momentum of the photons instead of the frequency as done in Refs. [Car+13;
Hei+14]. This can be done by employing the dispersion relation ωk = c0|k|, where c0 is the

speed of light. Thus, the new operators dk, d
†
k are introduced for annihilation or creation

of a photon with momentum k. The investigation is restricted to the one-dimensional
case.

To include the decay of the emitter in the Schrödinger picture an approximative effective
Hamiltonian is used, which is valid as long as γ � gi [ZZC16]. The Hamiltonian for the
emitter decay reads

Hdecay = − i
2
γ

2∑
i=1

σ+
i σ
−
i . (10.1.3)

In order to describe the system approximately in the Schrödinger picture as in Ref.
[ZZC16], it is assumed here that maximally two excitations are present so that the Hilbert
space is finite. When choosing the basis |i1, i2, iphoton, k, k

′〉, where i1 and i2 indicate
whether the first, respectively the second, emitter is in the ground state g or the excited
state e. The index iphoton indicates the number of photons in the cavity and k and k′

indicate that in the kth or k′th mode of the environment a photon is present. With this
basis the ansatz for the state in the reduced Hilbert space reads

|ϕ(t)〉 =

∫
dk

∫
dk′Cgg0kk′ |g, g, 0, {k}, {k′}〉+

∫
dkCeg0k|e, g, 0, {k}〉 (10.1.4)

+

∫
dkCgg0k|g, g, 0, {k}〉+

∫
dkCgg1k|g, g, 1, {k}〉+

∫
dkCge0k|g, e, 0, {k}〉

+ Cge10|g, e, 1, {0}〉+ Ceg10|e, g, 1, {0}〉+ Cgg10|g, g, 1, {0}〉+ Cgg20|g, g, 2, {0}〉
+ Cee00|e, e, 0, {0}〉+ Ceg00|e, g, 0, {0}〉+ Cge00|g, e, 0, {0}〉+ Cgg00|g, g, 0, {0}〉.

Thus, the coefficients Ci1,i2,iphoton,k,k′(t) correspond to the probability amplitudes of the
basis states, where the time dependence was omitted for clarity. The equations of motion
for the probability amplitudes are derived from the Schrödinger equation

i~
∂

∂t
|ϕ(t)〉 = H|ϕ(t)〉. (10.1.5)

The full set of equations of motion is given in App. D.1.

In this part the normalized second order correlation function for the cavity mode is
considered using Eq. (2.0.3)

g(2)(t, s) =
〈c†(t)c†(t+ s)c(t+ s)c(t)〉

〈c†(t)c(t)〉2
. (10.1.6)
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Figure 10.2.1.: Due to the electron-photon interaction the Hamiltonian is diagonal in a
new basis, cf. App. D.2, when losses and pumping are neglected. This
basis reveals the energy splitting that is caused by the interaction. The
single excitation state |1+〉 can be addressed by the detuning ∆ =

√
2g

and the two excitation state |2+〉 is addressed by the detuning ∆ =
√

3/2g.
This is a second order process as twice the energy from the coherent pump
laser is needed for this transition. This figure is adapted from Ref. [Lu+17].

The value of interest is again the steady-state value of the correlation function without

time offset, i.e. g
(2)
stat = limt→∞ g

(2)(t, 0). In the Schrödinger picture this reads

g(2)(t, 0) =
〈ϕ(t)|c†c†cc|ϕ(t)〉
〈ϕ(t)|c†c|ϕ(t)〉2

. (10.1.7)

The explicit version of the correlation function is given in App. D.1.

Furthermore, the entanglement between the two emitters will be of interest. This is
quantified by the concurrence which is defined as [Woo98]

C(ρAB) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}. (10.1.8)

In this equation the matrix ρAB = Trphotonic modes(ρ) is the reduced density matrix of
the emitters. The total density matrix can be obtained from ρ = |ϕ(t)〉〈ϕ(t)|. With
this the matrix MC = ρAB(σy,1 ⊗ σy,2)ρ∗AB(σy,1 ⊗ σy,2) is computed, where σy,i =
i (|ei〉〈gi| − |gi〉〈ei|) is the second Pauli spin matrix. By diagonalizing the matrix MC , the
eigenvalues λi are obtained which are numbered in order of decreasing absolute value.

10.2. Photon statistics of emission without feedback

Before considering the impact of feedback on the photon statistics the behavior without
feedback is briefly addressed as done in Ref. [ZZC16]. In Fig. 10.2.2, the photon number
and the second order correlation function are shown as a function of the detuning. Two
points of interest are present. First, the case ∆ =

√
2g, where the photon number exhibits
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Figure 10.2.2.: (a) When considering the behavior of the photon number with respect
to the detuning two peaks are observed at the resonances ∆ = ±

√
2g.

(b) the stationary second order correlation function shows antibunching
for ∆ = ±

√
2g and bunching for ∆ = ±

√
3/2g. A very high bunching is

observed for ∆ = 0, which will not be considered in the following, as here
the approximations that are made may fail. (c) In the concurrence peaks
are observed for ∆ = ±

√
2g and ∆ = ±

√
3/2g. This may be explained by

considering Fig. 10.2.1, cf. Ref. [ZZC16].

a maximum and the correlation shows a minimum. Here, the system behaves similarly
as a single photon emitter. Second, the case ∆ =

√
3/2g, where the correlation exhibits

a maximum, i.e., strong bunching. These observations can be explained by considering
the energy levels of the system. As ω0 � g the energy splitting due to the interaction
can be treated perturbatively. The splitting due to the external pump laser is neglected
as g � Ωcav. Thus the states with one and two excitations split up as shown in Fig.
10.2.1. The full expressions for the states are given in App. D.2. By tuning the laser to
the resonance ∆ =

√
2g, the state |1+〉 is addressed. This state contains only a single

excitation so that the cavity field is antibunched. For the detuning of ∆ =
√

3/2g,
however, the state |2+〉 is addressed, which contains two excitations. This leads to strong
bunching. Here a two photon process is necessary to excite the state with the energy
2ω0 +

√
6g. Due to the small pump strength the probability for the system to be in the

ground state is still very large. However, the signatures of the states with one and two
excitation are clearly visible in Fig. 10.2.2.

In the following the impact of feedback on these two cases, i.e., the case with antibunching
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and the case with bunching is investigated. This is done in the limit of short time delays
τ ≤ 1

γ .

10.3. Comparison with MPS evolution method

In this section the approximative method is compared with the MPS evolution introduced
in Chapter 8. In order to compare the two approaches the decay rate needs to be related
to the coupling to the feedback environment. From comparison of Eq. (8.2.4) and Eq.

(10.1.2) the relation G0 =
√

2γL
π follows. As the approximative approach is expected to fail

for high pump rates, the regime of validity of the approximative solution is estimated by
comparing the photon number for both cases with increasing pump strength. This is shown
in Fig. 10.3.1 for the case of antibunching with constructive and destructive interference as
there the photon number is larger. A similar picture is obtained when feedback is applied
in the case of bunching. For low pump strengths both solutions coincide for constructive
and destructive interference, cf. Sec. 10.4. In the case of constructive interference the
photon number is overestimated by the approximate solution, while it is underestimated
for the case of destructive interference. With increasing pump the solutions deviate, which
is in agreement with the expectation, as for higher pump strengths higher numbers of
excitations become relevant. In the following, the pump strength Ωcav = 0.035γ will be
considered for the case of feedback, as the deviation is negligible for this value in all cases.

Figure 10.3.1.: Comparison of the MPS evolution and the approximative model for the de-
pendence of the steady-state photon number with increasing pump strength
Ωcav in the cases of (a) constructive and (b) destructive interference. Both
methods agree well for low pump strengths. With increasing pump strength
the approximate model overestimates the photon number in the construc-
tive case, while it is underestimated in the deconstructive case. The
parameters are ∆ = δ =

√
2g, τ = 0.01/γ, G0 =

√
2cγ/π, γL = γR = 0.5γ,

and g = 40γ. For constructive interference ω0 = 350 × 100γπ, while for
destructive interference ω0 = (350 + 1)× 100γπ.

10.4. Control of photon statistics via feedback

After introducing the behavior of the system without feedback, the impact of feedback
in the system is investigated. Most of the discussion will be based on the approximative
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solution, however, for some important cases the result will be compared to the one obtained
from the MPS evolution. As discussed before two situations are studied. First the case,
where antibunching is observed and afterwards the case of bunching. By applying feedback
the signatures of the respective state can be amplified or, to a certain degree, suppressed.

10.4.1. Enhancement of antibunching

Now, the impact of feedback on the system in case of the detuning ∆ =
√

2g is considered,
where the state with a single excitation is addressed. In Fig. 10.4.1, the time evolution of
the photon number (a) and of the second order correlation function (b) are considered
in the regime of short time delays. For this choice of feedback, the photon number is
increased, while at the same time bunching is increased, when comparing this to the case
without feedback. As reference the non-feedback case is shown. There, the parameters
are chosen such that the dynamics in the interval [0, τ) coincide for the cases with and
without feedback. Note, that for the second order correlation function the time evolution
is shown for the first time argument, cf. Eq. (10.1.7). This only illustrates that the steady
state is reached, as the transient dynamics of the correlation function for the first time
argument has, to the knowledge of the author, no straightforwards interpretation.

In Fig. 10.4.1 also the evolution computed via the MPS evolution is shown, which
coincides well for photon number and second order correlation function.

Figure 10.4.1.: The time dynamics of (a) the photon number and (b) the second order
correlation function is shown for the case when the system without feedback
shows antibunching. For comparison the solution obtained from the MPS
evolution method (solid) and the approximate solution (dashed) are shown.
For the parameters chosen here, the photon number is increased when
antibunching is increased at the same time (green/red). For reference
the case without feedback is shown, where the dynamics coincide in the
time interval until τ . The parameters used for this plot are ∆ = δ =

√
2g,

τ = 0.01/γ, G0 =
√

2cγ/π, γL = γR = 0.5γ, g = 40γ, Ωcav = 0.035γ,
and ω0 = 350× 100γπ. For the MPS evolution method the discretization
τ/∆t = 10 is used. In case of the approximate solution 1500 momentum
values are used with the discretization ∆k/g = 1

80πc0
.

To gain further insight into this, the behavior of the steady state values as a function of
the delay time is shown in the case of short delay times. Fig. 10.4.2 shows a periodicity
of ω0τ . This corresponds to the change of the phase with which the field is coupled back
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into the system. This shows, that antibunching is enhanced when feedback is tuned to
constructive interference, i.e. ω0τ = n2π, n = 1, 2, .... For the case of destructive inter-
ference, when ω0τ = n2π + π, n = 0, 1, 2, ..., antibunching is decreased. In Fig. 10.4.2(c)
the entanglement between the two emitters is shown as well. Together with the photon
number also the entanglement reaches a maximum in the case of constructive interference.
As this entanglement is very small due to the low pump rate and the, in comparison to
the pump rate, high losses it cannot be exploited for quantum computing. However, it
serves as an indicator for the non-classical state. For applications of entanglement other
schemes exist to produce higher entanglement [Hor+09; Cla+03]. Antibunched light may
serve for other purposes as discussed in Part II.

Figure 10.4.2.: The behavior of (a) the photon number, (b) the second order correlation
function, and (c) the concurrence as a function of the delay time. The solid
line corresponds to the case with feedback. For reference the case without
feedback is shown as a dashed line. For feedback the values oscillate with
the feedback time. (d) With increasing pump strength, the second order
correlation function in the steady state stays nearly constant. By applying
feedback, this changes drastically so that the photon number increases
while antibunching is also increased. The parameters for these plot are
ω0 = 1.1× 105γ, g = 40γ, ε = 0.035γ, and G0 =

√
2cγ/π. These figures

are adapted from Ref. [Lu+17].

In Fig. 10.4.2(d) the behavior of the stationary second order correlation function for
increasing pump strength in the case without feedback is shown. The value of the second
order correlation increases slightly with increasing pump strength, i.e., with increasing
photon number. With feedback it is possible to increase antibunching while simultaneously
increasing the intensity.

10.4.2. Enhancement of bunching

Having considered the case without feedback in which the light is antibunched, now the
case with bunching, i.e. ∆ =

√
1.5g, is studied. Here, the state with two excitations

2+〉 is addressed by pumping at the resonance of the two photon process depicted in Fig.
10.2.1. In Fig. 10.4.3 the convergence of the second order correlation function to the
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Figure 10.4.3.: The second order correlation function Eq. (10.1.7) converges to a sta-
tionary value that is increased with respect to the case without feedback
(gray) when feedback is applied (green, red). The dynamcis of the ap-
proximate method (dashed) coincides well with the solution from the
MPS evolution. The parameters used for this plot are ∆ = δ =

√
3/2g,

τ = 0.01/γ, G0 =
√

2cγ/π, γL = γR = 0.5γ, g = 40γ, Ωcav = 0.035γ, and
ω0 = 350× 100γπ.

steady state is shown for the case of constructive interference. Then, the field exhibits a
much higher bunching. In this case, the approximation is also in good agreement with
the MPS evolution.

Fig. 10.4.4(b), shows that bunching may be controlled in the same fashion as anti-
bunching. For the case of constructive interference, ω0τ = n2π, now the maximum in the
bunching is observed, when the photon number maximal, cf. Fig. 10.4.4(a). In this case
the entanglement is controlled as well by the feedback time and reaches the maximum for
the case of constructive interference. Thus, bunching, observed, e.g., in systems exhibiting
superradiance [Jah+16], can be strongly increased when feedback is present. The bunching
can be increased while at the same time the photon output is increased.

10.5. Entanglement and photon statistics

As mentioned before, the entanglement between the two emitters inside the cavity is
controlled by the feedback time and in particular the feedback phase. A relationship
between the entanglement and the photon statistics is established in Ref. [ZZC16].
Depending on the transition that is pumped, either the single- or two-excitation state
is addressed, cf. Fig. 10.2.1. For the detuning ∆ =

√
2g the |1+〉-state is pumped. Due

to the strong energy splitting induced by the electron-photon interaction, this transition
gives the main contribution after the ground state. Thus, it is very unlikely that more
than one photon is present, which manifests itself as antibunching. The single photon
state is given in App. D.2. the system state contains the Bell state

ψ+ =
1√
2

(|g, e〉e + |e, g〉e) , (10.5.1)

where the emitters are in an entangled state as indicated by the concurrence. This
established the connection between entanglement and antibunching in the case of ∆ =

√
2g.

Applying feedback to the system enhances this entanglement between the two emitters
and does not only act on the photon field.
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10. Increasing antibunching

Figure 10.4.4.: Impact of short feedback (solid) on the system in the case of bunching
(detuning ∆ =

√
1.5g). We consider (a) the photon number, (b) the second

order correlation function and (c) the concurrence. All values oscillate
due to the alternating constructive and destructive interference of the
cavity field with its former output. As reference, the case without feedback
is shown as dashed line. The parameters are taken as ω0 = 1.1 × 105γ,

g = 40γ, ε = 0.035γ, and G0 =
√

2cγ
π . This figure is adapted from Ref.

[Lu+17].

For the case of bunching, i.e. ∆ =
√

1.5g, this is analogously true for the |2+〉-state, in
which two excitations are present. However, the entanglement present in this state is more
complex, cf. App. D.2. There, entanglement and bunching are increased simultaneously.

10.6. Conclusion

To summarize, this chapter showed an example of how photon statistics may be ma-
nipulated using self-feedback. An approximative model in the Schrödinger picture was
introduced, which coincides well with the numerical solution obtained by the MPS evo-
lution presented in Chapter 8 for low pump rates. Using feedback on the cavity mode
coupled to two emitters, an additional degree of freedom which can be used to control the
cavity photon statistics is introduced. This allows to decrease or increase the non-classical
signatures in the second order correlation function while at the same time increasing
the photon number. This cannot be achieved by simply increasing the input power as
this does not alter the antibunching or bunching signatures significantly. The connection
between the entanglement and the second order correlation function established by other
authors is still valid if self-feedback is applied to the system.

After investigating the impact of feedback on the intracavity field in a stationary setup,
in the following chapter feedback will be considered when acting on a pulsed two level
system. Of particular interest is the photon distribution in the emitted field which may
be controlled using feedback.
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11. Control of photon emission from a
two level emitter

In the last chapter the impact of feedback on the photon statistics of the two emitter
Tavis-Cummings model was considered. There the non-classical light features of the cavity
mode could be controlled by adjusting the feedback time. In this chapter once more the
impact of feedback on the photon statistics of a specific system is investigated. In contrast
to the previous chapter, however, the interest lies on manipulating the emission statistics
of a single two level emitter. In the introduction of Part II several sources of quantum
light were discussed. A two level emitter is an ideal single photon emitter as it can only
emit a single quantum of light when in the excited state. Once a two level emitter is
realize experimentally, e.g. by considering certain energy of an atom [Dar+05] or by a
semiconductor nanostructure [Sch+15], a deterministic preparation of the excited state is
achieved. Often this is realized by pumping the emitter with a π-pulse, which induces
half a period of a Rabi-oscillation in the emitter bringing it from the ground state to the
excited state. When decaying afterwards a single photon is emitted.

In experiment, however, the exciting pulse has a finite length. Then, even though the
lifetime of the emitter is much longer than the pulse width, there is a nonzero probability
that the emitter emits a photon during its excitation by the pulse and is excited again so
it may emit a second photon. Then in total two photons are emitted. In a recent proposal
this effect was used to generate two-photon emission from a single two level emitter using
excitations via a 2π-pulse [Fis+17].

11.1. Modeling the emission of pulsed systems with
feedback

The two level system pumped with a pulse, cf. Fig. 11.1.1, is modeled via the Hamiltonian
Eq. (8.3.1) but instead of a constant driving amplitude it becomes time dependent

Hsys,pulse = ~ωTLSσ+σ− + ~ΩTLS(t)
(
e−iωLtσ+ + eiωLtσ−

)
. (11.1.1)

As before, σ+ and σ− are the flip operators inducing a transition from ground to excited
state and vice versa. In the following a Gaussian shaped pulse will be assumed in the
form

ΩTLS(t) = ΩTLS,0e
− (t−tm)2

2t2w , (11.1.2)

where tm is the time at which the pulse is at its maximum and tw is related to the pulse
width. The pulse area is defined as

Apulse =

∫ ∞
−∞

dtΩTLS(t) = ΩTLS,0tw
√

2π. (11.1.3)
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11. Control of photon emission from a two level emitter

Figure 11.1.1.: A two level system subject to excitation by a Gaussian laser pulse with
envelope ΩTLS(t) is studied. The emitter is placed inside a semi-infinite
waveguide, which induces a feedback with delay time τ .

For a π-pulse this integral has to be π/2 and for a 2π pulse this integral needs to equal π
in the notation used here. This also determines the relation between Ωcav,0 and tw. The
time tm is chosen such that the driving amplitude at the beginning is negligible.

The emitter in the system Hamiltonian Eq. (11.1.1) is assumed to be subject to
feedback. The procedure is in principle the same as for the Jaynes-Cummings-Hamiltonian
in Chapter 8. In Sec. 8.2.3 the MPS evolution method was introduced for time-dependent
Hamiltonians with second order evolution operators. There are two different time-scales
in the pulsed setup. On the one hand the excitation by the pulse, which is fast, and on
the other hand the lifetime of the ensemble of two level emitters, which is long. Thus time
needs to be discretized sufficiently fine to resolve the pulse but also enough time-steps
need to be made in order to reach the state where the emitter is decayed. This is only
solved efficiently by the second order evolution method. With this the time evolution of
the pumped emitter may be performed as discussed before.

However, the observable of interest is the probability for the number of photons that are
emitted. In Chapter 2 the proportionality between the internal and the emitted field used
throughout most of this thesis was discussed. In the case at hand this proportionality
will fail in the following. This may be seen when considering the direct mapping of the
two level states to a single external mode. By just assuming that |g〉 corresponds to no
emitted photons and |e〉 corresponds to a single emitted photon, which is assumed in
some cases, cf. Ref. [Sch+15], the case that two photons are emitted does not occur.

In Ref. [Fis+17] the probabilities were determined from a trajectory approach. As here
the MPS evolution is considered, no trajectories are immediately available. However, the
full bath dynamics are taken into account so that the emission probabilities are evaluated
from the bath modes. As the overall probability is of interest, all bath modes need to be
taken into account. The starting point to evaluate the probabilities are the correlation
functions. Note, that while the first order correlation function, which corresponds to
the intensity, includes all photon events, the second order correlation function includes
only events with at least two photon, and the third order correlation includes only events
with at least three photons etc. Thus, the integral over all correlation events needs to be
computed. The output field from the two level system is b(t),as introduced in Eq. (8.2.11).
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11.1. Modeling the emission of pulsed systems with feedback

The integrated first order correlation function corresponds to the output intensity and
includes all photon events

I1 =

∫ ∞
−∞

dt〈b†(t)b(t)〉 ≈ 1

∆t

M∑
k=−l
〈∆B†(tk)∆B(tk)〉. (11.1.4)

Here, the continuous field is approximated by the field given by the photon bin operators.
For the discretized time the sum corresponds to the integral. As the initial state of the
environment is assumed to be a vacuum state there is no output before t0 − τ . Here, τ is
the feedback time and l = τ/∆t. The maximal value M has to be chosen large enough
that 〈∆B†(tk)∆B(tk)〉 ≈ 0 for k > M . To compute I1 at first the time evolution of the
system is computed the way described in Sec. 8.2.4 until all excitation is decayed to the
environment and afterwards the correlation, computed as described in Sec. 8.2.6, are
summed up. The cumulative second order correlation reads

I2 =

∫ ∞
−∞

∫ ∞
−∞

dt1d2〈b†(t1)b†(t2)b†(t2)b†(t1)〉

≈ 1

∆t2

M∑
k=−l

M∑
j=−l
〈∆B†(tk)∆B†(tj)∆B(tj)∆B(tk)〉. (11.1.5)

For the third order correlation this is

I3 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dt1dt2dt3〈b†(t1)b†(t2)b†(t3)b(t3)b(t2)b(t1)〉

≈ 1

∆t3

M∑
k=−l

M∑
j=−l

M∑
p=−l
〈∆B†(tk)∆B†(tj)∆B†(tp)∆B(tp)∆B(tj)∆B(tk)〉. (11.1.6)

The second order correlation can be measured by a Hanbury Brown-Twiss setup as
discussed in Chapter 2. In the experimental setup, however, the intensity of the second
order correlation is smaller than the one of the first order correlation by a factor of
four. To measure the first order correlation all clicks at a single photon detector are
measured. When assuming an ideal photon detector all events are taken into account.
However, for the second order correlation it becomes clear form Fig. 2.0.1 that the
intensity is divided into two channels. Furthermore, only the two photon events contribute,
in which the photon arrives first at detector 1. In total this gives a factor of four. When
considering a similar experimental setup for the third order correlation [Isk+11], analogous
considerations need to be taken into account. For the theoretical evaluation, however, the
correlations emitted from the two level system are evaluated directly.

In order to assign a probability distribution to the values of the correlation functions,
the cumulative correlations are attributed to the correlations of a single collective mode.
For a single photon mode the correlations are related to the photon probabilities via

〈(c†c)m〉 =
∞∑
n=0

n!

(n−m)!
p(n). (11.1.7)

In the following it will be assumed that the probabilities for single and two photon emission
will be most significant. This is checked by also including the third order correlation,
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11. Control of photon emission from a two level emitter

which will be small in the cases considered here. The photon probability distribution is
then obtained from

p1 = I1 − I2 +
1

2
I3 (11.1.8a)

p2 =
I2 − I3

2
(11.1.8b)

p3 =
1

6
I3. (11.1.8c)

The zero photon probability is obtained from the relation p0 = 1−
∑∞

i=1 pi

11.1.1. Numerical evaluation

As the second and third order correlations include two and three time integrals, respectively,
their evaluation is numerically intensive. In order to keep the numerical evaluation tractable
additional considerations are necessary. First, the symmetry of the correlation functions
under exchange of the time arguments is used. Since

[
∆B(tk),∆B

†(tj)
]

= 0, k 6= j, only
about half of the values need to be computed for the second order correlation. For the
third order correlation the effort is even reduced by roughly a factor of six. For the second
order correlation terms with k 6= j contribute once and terms with k = j contribute twice.
For the third order correlation terms with k, j, and p all different occur six times, terms
with twice the same time occur three times and terms with k = j = p occur once.

The deviation of the norm of the state Eq. (8.2.48) needs to be kept small in order
to keep the errors in the expectation values small. To do this the time step ∆t needs
to be sufficiently small. This is tested by making the time step smaller until the results
are converged. The integrals approximated by the sums in Eqs. (11.1.4), (11.1.4), and
(11.1.4) are also computed by a discretization of the time. However, the discretization
in the integrals may be chosen coarser than the discretization of the time evolution
for convergence of the integral. Then, in each integration a factor ∆ti/∆t needs to be
introduced, where ∆ti is the time discretization in ti.

In the next section this approach will be checked for plausibility in the case without
feedback.

11.2. Behavior in the non-feedback case

Before investigating the impact of feedback on the photon emission the non-feedback case
as studied in Ref. [Fis+17] is discussed and reproduced to give an introduction and to
check the approach presented in the last section. The non-feedback case can be simulated
by the same method as the feedback case when setting γL = 2γ and γR = 0, cf. Eq.
(8.2.11). Then, no coupling back into the emitter after the delay time τ is possible. First,
the case where the two level system is pumped by a π-pulse is considered. Without any
losses the π-pulse performs half a period of a Rabi oscillation so that the emitter is in the
excited state. When a finite decay time is taken into account the shorter the decay time
in comparison to the pulse length, the better the approximation. In Fig. 11.2.1(a) the
time dynamics of the excited state density and the pulse are shown. The probability that
the system is excited comes close to unity and decays afterwards slowly towards zero. The
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11.2. Behavior in the non-feedback case

Figure 11.2.1.: Time evolution of the excited state density 〈σ+σ−〉 and the pump strength
ΩTLS for the case of (a) pumping by a π-pulse and (b) pumping by a 2π-
pulse. For this figure, the parameters γL = 2γ, γR = 0, and ΩTLS/γ = 400
are used. The pulse width tw is chosen according to Eq. (11.1.3) so that a
π- or a 2π-pulse is achieved.

Figure 11.2.2.: Photon probability distributions for the cases of (a) π-pulse and (b) 2π-
pulse shown in Fig. 11.2.1.

time integration is performed over a much longer time than shown in Fig. 11.2.1(a), until
the excited state density is zero. In Fig. 11.2.2(a) the photon probability distribution is
shown. As expected the main contribution is a single photon state, while only a very small
but nonzero two photon probability is observed. The two photon contribution corresponds
to the process discussed in the introduction.

When a 2π-pulse is applied to the system, cf. Fig. 11.2.1(b), the emitter is most likely
in the ground state after the pulse. This is also expected as the 2π-pulse performs a
full Rabi oscillation. Only a small excitation probability remains after the pulse, which
slowly decays. The probability distribution of the emitted photons is shown in Fig.
11.2.2(b). Most likely no photon is emitted at all, which corresponds to a full cycle in the
Rabi oscillation. However, the two photon probability is larger than the single photon
probability. Thus, more often two photons are emitted from this setup than a single
photon.

In the following the photon probabilities when the emitter is subject to feedback will
be considered.
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11. Control of photon emission from a two level emitter

Figure 11.3.1.: Time evolution of the excited state density 〈σ+σ−〉 and the pump strength
ΩTLS for the case of (a) constructive and (b) destructive interference. In
the case of constructive interference the main output consists of single
photon state, while for destructive interference the mainly two photons are
emitted. For this figure, the parameters γL = γR = γ, ΩTLS/γ = 400, and
γτ = 0.05 are used. For constructive feedback φ = 0 and for destructive
φ = 1.

Figure 11.3.2.: Photon probability distributions for the cases of (a)constructive and (b)
deconstructive interference shown in Fig. 11.3.1.

11.3. Enhanced two photon emission with feedback

Now the impact of feedback on the case with the 2π-pulse is investigated as this will
turn out to increase the two photon probability. As in Chapter 10, also the cases of
constructive and destructive interference are of major interest. For constructive interference
φ = ωLτ = 2πn with an integer n and for destructive interference φ = ωLτ = 2πn + π
with an integer n. The value of ωL enters the equations only via the factor eiφ when the
rotating wave approximation is employed. Thus, only the interval φ ∈ [0, 2π) is considered.
The feedback time enters not only through this factor. In Fig. 11.3.1(a) constructive
feedback is applied. Here, the Rabi oscillation is performed in most cases but a finite
excitation probability is left due to constructive interference. Then, there in most cases
no photon is emitted but there is also a significant single photon probability of about
10%. When deconstructive feedback is applied the excited state density decays fully,
cf. Fig. 11.3.1(b). In this case, the probability distribution resembles the one for the
case without feedback, cf. Fig. 11.2.2(b), however the ratio r = p2/p1 is increased from
rnofb ≈ 1.94 to rfb ≈ 3.86. As discussed in Ref. [Fis+17] this ratio can also be increased
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11.4. Conclusion

Figure 11.3.3.: Behavior of the ratio p2/p1 as a function of the feedback phase and
for different feedback times. There is a maximum for this ratio near
γτ = 0.05 as for shorter and longer feedback times this ratio decreases.
The parameters γL = γR = γ and ΩTLS/γ = 400 are not changed.

by choosing a higher value for twγ. In Fig. 11.2.2(b) and Fig. 11.3.2(b) the value is
twγ = 0.0125. Increasing this value for the case without feedback to twγ = 0.025 increases
the two photon probability to r = 2.27. However, the three photon probability for the
case without feedback is 2.1 times as high as in the case with feedback. Thus, feedback
enables a higher two photon probability while increasing the three photon probability not
as strongly.

In Fig. 11.3.3 the enhancement of the two photon probability p2 is shown as a function of
the feedback phase. The achievable maximum depends on the feedback time. Interestingly
the maximum ratio is achieved for a small but nonzero time τ .

11.4. Conclusion

In this chapter the impact of feedback on the probability distribution of emitted photons
was studied. The case without feedback shows a finite two photon probability for a
2π-pulse in certain parameter regimes due to the finite decay time. By applying feedback
the ratio between the two and single photon probability is increased while increasing the
three photon probability only marginally. The maximal ratio between two and single
photon probability is achieved for a short but nonzero delay time.
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12. Conclusion and outlook

In this thesis the optical control of nanoscale systems is considered. The thesis is divided
into three parts according to three different control methods. In the first part, mechanical
modes in optomechanical or semiconductor systems are steered to exhibit certain dynamics
by a coherent optical laser. This is used to investigate the analogous behavior of the
mechanical mode for optomechanical coupling and the coupling of light field and phonon
mode via semiconductor quantum dots. There bistabilities, lasing, and enhancement of
damping are observed using a semiclassical approach. When considering phonon lasing
with semiconductor quantum dots with a fully quantum mechanical theory collective
phonon processes can be distinguished from individual processes. Furthermore, higher
order processes such as two phonon generation are explained using this approach. Future
investigations might include the regime of an intermediate number of emitters using
theoretical schemes that exploit symmetries in the systems. Another interesting direction
for future studies is the investigation of different regimes than the lasing regime with fully
quantum mechanical models to study enhanced damping and bistable behavior from a
quantum mechanical perspective.

Instead of a coherent light source the second part deals with non-classical light, where
the possibilities of manipulating the output statistics of a quantum optical system by
driving with non-classical light are studied. Here, a quantum optical system is driven via
a dissipative channel with antibunched light. Due to the dissipative nature of the coupling
channel the non-classical signatures are destroyed for lower order correlations, while higher
order correlations still show the sub-Poissonian photon correlations. This shows that
driving with non-classical light does not always just imprint the source statistics on the
target but introduces more complex light statistics. The investigation performed here
includes emitters as simple two level systems. Future investigations could study the
behavior of the photon statistics when more realistic models for quantum emitters are
employed, e.g., for semiconductor quantum dots.

In the third part, the control of quantum systems via time-delayed coherent feedback is
considered. At first the method using the time evolution of matrix product states in the
framework of the quantum stochastic Schrödinger equation is presented. This method
was initially proposed elsewhere [PZ16] to deal with the complexities of quantum coherent
feedback. In this thesis the approach is extended to higher order evolution operators to
facilitate the numerical evaluation and is adapted for the simulation of systems with a
time-dependent Hamiltonian using sparse matrices. This method allows to investigate the
impact of feedback on more complex systems.

Afterwards this method is used in comparison with an approximate model in the
Schrödinger picture to simulate the impact of coherent feedback on the steady state
behavior of a cavity quantum electrodynamical setup. By applying feedback signatures of
single- and two-photon processes in the second order correlation function are increased.
Thus, in certain regimes antibunching and bunching of the light field are amplified. As
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the observed photon numbers are very small the investigation of the regime of higher
excitations can be interesting. As the impact of coherent feedback in the few photon
regime is accessible only recently, e.g., three photon processes could be addressed and
studied regarding their signatures and their response to feedback.

A two level emitter excited by a laser pulse exhibits single- or two-photon emission
depending on the pulse area. By placing the emitter inside a waveguide which introduces
a delayed self-feedback the emission properties can be controlled via the delay time. By
using destructive feedback two photon emission may be increased. The increase is maximal
for a short but finite delay time. A possible direction for future studies is to investigate
the possibilities of emitting a certain number of photons with a high probability. Feedback
is a promising tool to achieve this.

In summary, this theses presents multiple optical approaches to steer the emission
statistics of nanosystems.
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A. Details for the part phonons as an
analogue of optomechanics

In this appendix some of the computations regarding the analogy between optomechanics
and the electron phonon coupling are shown in greater detail.

A.1. Effective system

For a better understanding of the processes involed in phonon lasing, an effective Hamil-
tonian for the many emitter case is derived in analogy to the single emitter case is Refs.
[Kab+12; KCK13].

By applying the unitary transformation

HRF = UHU † − i~U∂tU † (A.1.1)

with U = e
i
~ ξt and ξ = ~ωLp̂†p̂ Hamiltonian is transformed into a rotating frame. This

reads
HRF = ~Ωb†b− ~∆p̂†p̂︸ ︷︷ ︸

=H0

+ ~gp̂†p̂
(
b+ b†

)
+ i~E

(
p̂† − p̂

)
︸ ︷︷ ︸

=HI

, (A.1.2)

where, ∆ = ωL − ω. A second unitary transformation eliminates first order processes by
choosing S = αp̂ + βp̂†p̂b+H.c.. By evaluating this in second order, the transformation
reads

Heff = eiSHe−iS ≈ H0 +HI + [iS,H0 +HI] +
1

2
[iS, [iS,H0]]

= H0 +
1

2
[iS,HI]. (A.1.3)

Taking α = −E
∆ and β = i gΩ , the effective Hamiltonian can be evaluated as

Heff = ~Ωb†b− ~∆p̂†p̂ +
~
∆
W − ~g2

Ω
(p̂†p̂)2 +

i~gE
2

(
1

∆
+

1

Ω

)
×
(
p̂†b† − p̂b

)
+ i~

gE

2

(
1

∆
− 1

Ω

)(
p̂†b− p̂b†

)
. (A.1.4)

Here, the freedom of choosing the energy scale is used. The first two terms are just the
noninteracting parts of the LF and HF component, respectively. These are the same as
in the initial Hamiltonian. The third term is a constant energy shift WOM = E2 for the
OM system and will be neglected. For the SC system this is the self-quenching discussed

in Sec. 4.3 and reads WSC = −2
∑NQD

i=1 E2
i p̂
†
i p̂i. The fourth term is the dispersive shift

depending on the number of excitations in the system and the coupling strengths. The
fifth term describes the processes relevant for lasing, while the last term describes the
ones relevant in the excitation scenario used for increased damping.
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A.2. Analytical approximation of the effective damping
rate

In Sec. 4.4 analytical formulas for the effective damping rate are presented. The OM one is
taken from [Gen+08] and the SC formula is derived in analogy to this. From the linearized
equations of motion a susceptibility to some external force F is derived using the Fourier
transform. With this Eq. (4.1.3a) reads Ḃ = −(iΩ+κ)B−iNgU+iF/

√
2. By introducing

the reals variables q = B+B∗√
2

, p = B−B∗√
2i

, X = P+P ∗√
2

, and Y = P−P ∗√
2i

, the deviation from

the steady state qs is defines as δq(t) = q(t) − qs. The Fourier transformation of the
linearized equations leads to a set of algebraic equations, which reads

−iω̄Fq = ΩFp − κFq (A.2.1a)

−iω̄Fp = −ΩFq − κFp − gXFX − gY FY + FF (A.2.1b)

−iω̄FX = ∆̃FY − γFX + gY Fq (A.2.1c)

−iω̄FY = −∆̃FX − γFY − gXFq (A.2.1d)

in case of the OM system and

−iω̄Fq = ΩFp − κFq (A.2.2a)

−iω̄Fp = −ΩFq − κFp −
√

2NgFU + FF (A.2.2b)

−iω̄FX = ∆̃FY − γ̃FX + gY Fq − 2
√

2E1FU (A.2.2c)

−iω̄FY = −∆̃FX − γ̃FY − gXFq (A.2.2d)

−iω̄FU =
√

2E1FX − 2FU (A.2.2e)

in case of the SC system. Here, F stands for the Fourier transform, which is a function of
ω̄. The shorthand notations used here are γ̃ = (γ + γPD), ∆̃ = ∆ +

√
2gqs, gX =

√
2gXs,

and gY =
√

2gYs.

By solving this system of equations, a susceptibility describing the linear response to
some external force can be derived defined by Fq = χ (ω̄)FF . For the OM system the
inverse susceptibility can be evaluated as

χ−1
OM (ω̄) = − ω̄

2 + 2iω̄κ− κ2 + Ω2

Ω
− 2g2P ∗s Ps∆̃

(γ − iω̄)2 + ∆̃2
. (A.2.3)

While it becomes for the SC system

χ−1
SC (ω̄) = − ω̄

2 + 2iω̄κ− κ2 + Ω2

Ω

+
2gE1N

iω̄ − 2γ

gX∆̃ + gY (iω̄ − γ̃)

(−iω (1−R) + γ̃ + 2Rγ) (γ̃ − iω̄) + ∆̃2
. (A.2.4)

The additional shorthand notation R =
4E2

1
ω̄2+4γ2 is introduced. Comparing these equations

with Ref. [Gen+08] some differences may be observed, which are due to the different
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A.2. Analytical approximation of the effective damping rate

introduction of the damping. In the limit Ω � κ, which is considered throughout the
thesis, both cases coincide. The effective damping rates Eq. (4.4.1) and Eq. (4.4.2) may be

derived from the susceptibilities. For convenience the abbreviationsD = 1
2

R2
(

1− 2γ
γ̃

)2

1−
(

1+ 2γ
γ̃

)
R+ 2γ

γ̃
R2

,

γr = γ̃
√

1− 2γ
γ̃ R, and ωR = ω̄

√
1 +R are introduced.
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B. Derivation of cascaded coupling

In this appendix, the master equation for the quantum cascaded setup is derived employing
the Born-Markov approximation and assuming a thermal bath [CnL16; GC85; CG84;
Gar86]. With this, the bath degrees of freedom may be traced out, reducing the complexity
of the computation. As the full density matrix for the systems is considered and no further
expansion is employed the numerical evaluation is still quite expensive.

When a non-thermal reservoir needs to be considered, more complex models are needed
that reduce the complexity of the problem in a different way [Ric+09; CC14; Kab+11a],
especially when the bath needs to be considered explicitly due to non-Markovian effects
[Pri+10]. While the model presented in this Chapter only includes thermal reservoirs in
Part III a non-Markovian reservoir is considered.

At first the generic master equation for a source with Hamiltonian Hs pumping a
target with Hamiltonian Ht via a thermal bath with Hamiltonian Hc will be considered.
This setup is depicted schematically in Fig. 6.1.1 Writing the full Hamiltonian as
H = H0 + Hs + Hc + Ht, where H0 contains the free evolution of the subsystems. For
now only the coupling Hamiltonian Hc is considered and is transformed into a rotating
frame with respect to H0 by

Hc,rf = UrfHtotU
†
c − i~Urf

∂

∂t
U †rf (B.0.1)

with Urf = exp (iH0t/~). This results in

Hc

~
=

∫
dω b(ω)

[
Ks
ωJ
†
s (t) +Kt

ωJ
†(t, τ)

]
+ H.c.. (B.0.2)

Here, Js is some operator in the source Hilbert space, which couples the source to the bath
with coupling strength Ks

ω and Jt is the operator coupling the target to the bath with
strengths Kt

ω. As, in general, the excitation takes some time to travel from source to target,
there is a delay τ between them. Later on this will be neglected. The coupling of source
and target to the reservoir is assumed to be frequency independent in accordance with
the assumption that the frequencies relevant for the dynamics are in a small bandwidth,
where frequency-dependent effects may be neglected [GZ04].

The quantum cascaded coupling is derived from the coupling Hamiltonian Eq. (B.0.2)
by employing the second order Born-Markov approximation. This is valid for low coupling
strengths between the systems and the bath. This is the standard approach to deal with
thermal, Markovian baths, where the bath state is assumed to be independent of the system
dynamics and the system and bath density matrices factorize, ie.e. χtot(t) = ρ(t)ρB(0).
The time dynamics of the system density matrix are then derived from [BP02; Car02]

dρ

dt
|c = − 1

~2

∫ t

0
dsTrB {[Hc(t), [Hc(s), ρ(t)ρB]]} . (B.0.3)
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B. Derivation of cascaded coupling

The bath degrees of freedom are traced out, so that they do not need to be taken into
account explicitly. The most basic model for cascaded coupling is achieved by assuming a
bath in the vacuum state. This can be achieved by assuming a thermal state with zero
temperature. For the bath modes the commutation relation [b(ω), b†(ω′)] = δ(ω − ω′)
Tracing out the bath will lead to the evaluation of bath correlations. Then, only terms
proportional to

〈
b(ω)b†(ω)

〉
will contribute to the coupling between the bath and the

system. When evaluating Eq. (B.0.3), it will yield

dρ

dt
|c = −2π

∑
i=s,t

(Ki
0)2

∫ t

0
dsδ(s− t)

[
J†i (t)Ji (s)ρ(s)− Ji (t)ρ(s)J†i (s) (B.0.4)

− Ji (s)ρ(s)J†i (s) + ρ(s)J†i (s)Ji (t)
]

− 2πKs
0K

t
0

∫ t

0
dsδ(s− (t− τ))

[
J†t (t)Js (s)ρ(s)− Jt (t)ρ(s)J†s (s)

− Js (s)ρ(s)J†t (t) + ρ(s)J†s (s)Jt (t)
]

− 2πKs
0K

t
0

∫ t

0
dsδ(s− (t+ τ))

[
J†s (t)Jt (s)ρ(s)− Js (t)ρ(s)J†t (s)

− Jt (s)ρ(s)J†s (s) + ρ(s)J†t (s)Js (t)
]
.

When using
∫ t

0 dsδ(t − s)h(s) = h(t)/2 and noting that s ≤ t the last term will not
contribute, as the contribution from the δ-distribution lies outside the integration interval.
For brevity, the definition Ki

0 =
√
γi/(2π) is introduced. Here, the decay rates of the

subsystems γi were introduced. From this the master equation follow as

dρ

dt
=

1

i~
[Hs +Ht, ρ] +

∑
i=s,t

γi
2

(
2Ji (t)ρ(t)J†i (t)− {J†i (t)Ji (t), ρ(t)}

)
(B.0.5)

−√γsγt
(
J†t (t)Js (tD)ρ(tD)− Jt (t)ρ(tD)J†s (tD)

)
−√γsγt

(
ρ(tD)J†s (tD)Jt (t)− Js (tD)ρ(tD)J†t (t)

)
.

In this equation the time difference tD = t− τ is still present. As delay effects are beyond
the scope of the theory applied in this part, as it would introduce even more numerical
complexity, the time delay is assumed to be negligible. As noted before, in Part III time
delays are considered for more simple systems. To consider the whole Hamiltonian the
master equation is transformed back from the rotating frame, so that a master equation
for the coupling of a source system Hs to a target system Ht via the intermediate bath
that is traced out is given by

dρ

dt
=

1

i~
[H0 +Hs +Ht, ρ]

+
∑
i=s,t

γi
2

(
2Ji ρJ

†
i − {J

†
i Ji , ρ}

)
−√γsγt

(
[J†t , Jsρ] + [ρJ†s , Jt ]

)
. (B.0.6)

The first term in this equation will give the dynamics of the closed systems. The second
term is the loss of the modes coupled to the environment. The third term represents the
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coupling of between source and target mediated by the reservoir. To achieve a nonzero
coupling between source and target both of them need to allow a dissipation of excitation
into the mediating reservoir. While this is obvious for the source as the target cannot be
excited if nothing is emitted the need for the target to be subject to losses is less intuitive.

Using this as the starting point for the following study different targets and sources
may be considered. In the next section this master equation will be used for the particular
system discussed in the introduction, where the source is a Jaynes-Cummings Hamiltonian,
while the target is a Tavis-Cummings model.
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C. Stroboscopic map and explicit time
evolution in first order

To evaluate the dynamics induced by the Hamiltonian numerically, time is discretized
and the evolution operator between two adjacent time steps tk and tk+1 is computed with
tk+1 − tk = ∆t in order to solve the iterative Eq. (8.2.13)

|Ψ(tk+1)〉 = U(tk+1, tk)|Ψ(tk)〉, (C.0.1)

where |Ψ〉 is expressed as a matrix product state, which was shown in Sec. 8.2.4. In
principle, the time ordering has to be considered, so that

U(tk+1, tk) = T̂

[
exp

(
− i
~

∫ tk+1

tk

dt′Htot,rf(t
′)

)]
(C.0.2)

has to be evaluated. Here, T̂ is the time ordering operator. At first, this is done explicitly
in first order of ∆t to show the technical aspects involved. In the next step, it is shown
how higher order evolution may be implemented. To evaluate the time evolution operator
in an Euler-like manner up to first order in ∆t, the time evolution operator Eq. (C.0.2)
has to be evaluated up to the second order, as will become clear below. This results in

U(tk+1, tk) ≈ 1 +

(
− i
~

)[ =I1,1︷ ︸︸ ︷∫ tk+1

tk

dt′Hsys,rf(t
′) +

=I1,2︷ ︸︸ ︷∫ tk+1

tk

dt′Hfb,rf(t
′)

]
+

1

2

(
− i
~

)2

T̂

[ ∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hsys,rf(t
′′)Hsys,rf(t

′)︸ ︷︷ ︸
=I2,1

+

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hsys,rf(t
′′)Hfb,rf(t

′)︸ ︷︷ ︸
=I2,2

+

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hfb,rf(t
′′)Hsys,rf(t

′)︸ ︷︷ ︸
=I2,3

+

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hfb,rf(t
′′)Hfb,rf(t

′)︸ ︷︷ ︸
=I2,4

]
.

(C.0.3)
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C. Stroboscopic map and explicit time evolution in first order

The integrals from Eq. (C.0.3) are evaluated explicitly (since only one time is involved,
the time ordering is correct):

I1,1 =

∫ tk+1

tk

dt′Hsys,rf = Hsys,rf∆t

I1,2 =

∫ tk+1

tk

dt′Hfb,rf(t
′)

= −i~
∫ tk+1

tk

dt′
[ (√

γRb(t
′ − τ)e−iφ +

√
γLb(t

′)
)
c†

−
(√

γRb
†(t′ − τ)eiφ +

√
γLb
†(t′)

)
c
]

= −i~
[ (√

γR∆B(tk−l)e
−iφ +

√
γL∆B(tk)

)
c†

−
(√

γR∆B†(tk−l)e
iφ +
√
γL∆B†(tk)

)
c
]
.

Here, the time discrete bath operators ∆B(tk) =
∫ tk+1

tk
dtb(t) are introduced. In the

following also the shorthand notation ∆Bk = ∆B(tk) is used. Furthermore, ∆t is chosen
such that l = τ/∆t is an integer value, so that∫ tk+1

tk

dtb(t− τ) =

∫ tk+1−τ

tk−τ
dtb(t) =

∫ tk−l+1

tk−l

dtb(t) = ∆B(tk−l).

The second order terms become:

I2,1 = T̂

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hsys,rfHsys,rf = H2
sys,rf∆t

2.

As one might expect, this term is in second order of ∆t, that is is neglected in the following.
The terms, where system and interaction Hamiltonian mix, become

I2,2 = T̂

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hsys,rfHfb,rf(t
′)

=

∫ tk+1

tk

dt′′Hsys,rf

∫ tk+1

tk

dt′Hint,rf(t
′) = I1,1I1,2

⇒ I2,3 = I1,2I1,1.

These terms will be considered again in the following. First, the term, which is in second
order of the interaction Hamiltonian is evaluated as

I2,4 = T̂

∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′Hfb,rf(t
′′)Hfb,rf(t

′)

= −~2T̂

{∫ tk+1

tk

dt′′
∫ tk+1

tk

dt′
[ (√

γRb(t
′′ − τ)e−iφ +

√
γLb(t

′′)
)
c†

−
(√

γRb
†(t′′ − τ)eiφ +

√
γLb
†(t′′)

)
c
]

×
[(√

γRb(t
′ − τ)e−iφ +

√
γLb(t

′)
)
c† −

(√
γRb

†(t′ − τ)eiφ +
√
γLb
†(t′)

)
c
]}

.
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Here, the bath operators have to be ordered correctly. However, by employing the
commutation relation Eq. (8.2.12), it becomes apparent that the ordering does not matter
after all. For terms involving either only creation- or annihilation operators, they commute
for all times. For terms as

∫
dt′′
∫
dt′b†(t′′)b(t′), only at t′′ = t′, the operators do not

commute, but then, they are simultaneous anyways. The same is true for terms as∫
dt′′
∫
dt′b†(t′′ − τ)b(t′ − τ). Finally, terms such as

∫
dt′′
∫
dt′b†(t′′)b(t′ − τ) do not pose

a problem, since the integration time ∆t is smaller than τ , such that cases as t′′ = t′ − τ
do not occur. With this, the time ordering becomes trivial and the second order term
becomes

1

2

(
− i
~

)2

I2,4 =
1

2

(
− i
~

)2

I1,2I1,2

=
1

2

[ (√
γR∆B(tk−l)e

−iφ +
√
γL∆B(tk)

)
c†

−
(√

γR∆B†(tk−l)e
iφ +
√
γL∆B†(tk)

)
c
]2

=
1

2

[
γL∆B†(tk)∆B

†(tk) +
√
γLγRe

iφ∆B†(tk)∆B
†(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B
†(tk) + e2iφγR∆B†(tk−l)∆B

†(tk−l)
]
cc

− 1

2

[
γL∆B†(tk)∆B(tk) +

√
γLγRe

−iφ∆B†(tk)∆B(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B(tk) + γR∆B†(tk−l)∆B(tk−l)
]
cc†

− 1

2

[
γL∆B(tk)∆B

†(tk) +
√
γLγRe

iφ∆B(tk)∆B
†(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B
†(tk) + γR∆B(tk−l)∆B

†(tk−l)
]
c†c

+
1

2

[
γL∆B(tk)∆B(tk) +

√
γLγRe

−iφ∆B(tk)∆B(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B(tk) + e−2iφγR∆B(tk−l)∆B(tk−l)
]
c†c†.

In order to see which terms have to be kept in order to get a consistent equation in first
order of ∆t the commutation relation of the discretized bath operators are computed as[

∆B(tk),∆B
†(tj)

]
=

∫ tk+1

tk

dt

∫ tj+1

tj

dt′
[
b(t), b†(t′)

]
=

∫ tk+1

tk

dt

∫ tj+1

tj

dt′δ(t− t′)

=

{∫ tk+1

tk
dt = ∆t, k = j

0, k 6= j

= ∆tδk,j .

The photon bins are orthogonal, but not normalized. When constructing the basis set
for the bath, in order to conserve the normalization of the state, the factor

√
∆t is

included (One could also include the normalization factor in the bath operators, however,
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C. Stroboscopic map and explicit time evolution in first order

to maintain the correspondence to Ito calculus, the operators are chosen ∝
√

∆t). These
operators may be interpreted as the number of photons destroyed or created in the time
interval ∆t. The relevant basis set constructed from the vacuum state is

|ip〉 =

(
∆B†(tp)

)ip√
ip!∆tip

|vac〉. (C.0.4)

Here ip is the number of photons in the photon bin p. From this relation, it becomes clear,
that the operators for the discretized photon bath introduce terms of the order

√
∆t. This

means that the terms involving ∆B up to second order have to be taken into account,
while terms ∝ ∆t∆B may be discarded, so that I2,2 and I2,3 are neglected. Thus, the
evolution operator becomes

U(tk+1, tk) = 1− i

~
Hsys,rf∆t

−
[ (√

γR∆B(tk−l)e
−iφ +

√
γL∆B(tk)

)
c†

−
(√

γR∆B†(tk−l)e
iφ +
√
γL∆B†(tk)

)
c
]

+
1

2

[
γL∆B†(tk)∆B

†(tk) +
√
γLγRe

iφ∆B†(tk)∆B
†(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B
†(tk) + e2iφγR∆B†(tk−l)∆B

†(tk−l)
]
cc

− 1

2

[
γL∆B†(tk)∆B(tk) +

√
γLγRe

−iφ∆B†(tk)∆B(tk−l)

+
√
γRγLe

iφ∆B†(tk−l)∆B(tk) + γR∆B†(tk−l)∆B(tk−l)
]
cc†

− 1

2

[
γL∆B(tk)∆B

†(tk) +
√
γLγRe

iφ∆B(tk)∆B
†(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B
†(tk) + γR∆B(tk−l)∆B

†(tk−l)
]
c†c

+
1

2

[
γL∆B(tk)∆B(tk) +

√
γLγRe

−iφ∆B(tk)∆B(tk−l)

+
√
γRγLe

−iφ∆B(tk−l)∆B(tk) + e−2iφγR∆B(tk−l)∆B(tk−l)
]
c†c†.

With this, the time-evolution is described in an Euler-like manner in first order of the
time step ∆t. To evaluate this evolution numerically, the operator U and the state are
expanded in the basis set spanned by |iT, icav〉

⊗∞
p=−∞ |ip〉, cf. Eq. (C.0.4). Here, icav is

the number of photons in the cavity, iT = e, g indicates whether the two level system is in
the excited state, and ip is the number of photons in the pth photon bin. Since U will
be diagonal for all indices except for the ones for the system, the current time bin t and
the time bin at t− τ , only these will be written down explicitly. The shorthand notation
jτ = jk−l, iτ = ik−l for the indices for the bin at the time t− τ is used. The indices jk
and ik represent the time bin at time t, jT and iT are the indices for the two level system
(these may be either g or e) of the Jaynes-Cummings model, and jcav and icav are the
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indices for the photonic mode of the JCM. Then, the evolution matrix becomes

U ik,iT,icav,...,iτ
jk,jT,jcav,...,jτ

= 〈jk, jT, jcav, jτ |U(tk+1, tk)|ik, iT, icav, iτ 〉
= δjk,ikδjT,iTδjcav,icavδjk−1,ik−1

...δjk+1−l,ik+1−lδjτ ,iτ

− i∆t
[
∆TδjT,eδiT,eδjcav,jcav + icav∆cavδjT,iTδjcav,icav

+ ΩTδjT,gδie,eδjcav,icav + Ω∗TδjT,eδie,gδjcav,icav

+ gδjT,gδiT,e
√
jcavδjcav,icav+1 + gδjT,eδiT,g

√
icavδjcav+1,icav

+ δjT,iT

(√
icavΩcavδjcav+1,icav +

√
jcavΩ∗cavδjcav,icav+1

) ]
× δjk,ikδjk−1,ik−1

...δjk+1−l,ik+1−lδjτ ,iτ

+
[√

∆tjcavδjcav,icav+1

(√
γL
√
ikδjk+1,ikδjτ ,iτ +

√
γR
√
iτe
−iφδjk,ikδjτ+1,iτ

)
−
√

∆ticavδjcav+1,icav

(√
γL
√
jkδjk,ik+1δjτ ,iτ +

√
γR
√
jτe

iφδjk,ikδjτ ,iτ+1

)
+

∆t

2

√
jcav + 1

√
jcav + 2δjcav+2,icav

×
(
γL
√
ik + 1

√
ik + 2δjk,ik+2δjτ ,iτ +

√
γLγRe

iφ
√
jk
√
jτδjk,ik+1δjτ ,iτ+1

+
√
γRγLe

iφ
√
jk
√
jτδjk,ik+1δjτ ,iτ+1 + γRe

2iφ
√
iτ + 1

√
iτ + 2δjk,ikδjτ ,iτ+2

)
− (icav + 1) δjcav,icav

(
γLikδjk,ikδjτ ,iτ +

√
γLγRe

−iφ√jτ√ikδjk,ik+1δjτ+1,iτ

+
√
γRγLe

iφ
√
iτ
√
jkδjk,ik+1δjτ+1,iτ + γRiτδjk,ikδjτ ,iτ

)∆t

2

− (icav) δjcav,icav

(
γL (ik + 1) δjk,ikδjτ ,iτ +

√
γLγRe

iφ
√
jτ
√
ikδjk+1,ikδjτ ,iτ+1

+
√
γRγLe

−iφ√iτ
√
jkδjk,ik+1δjτ+1,iτ + γRiτδjk,ikδjτ ,iτ

)∆t

2

+
∆t

2

√
icav + 1

√
icav + 2δjcav,icav+2

×
(
γL
√
ik
√
ik − 1δjk,ik−2δjτ ,iτ +

√
γLγRe

−iφ√jk√jτδjk+1,ikδjτ+1,iτ

+
√
γRγLe

−iφ√ik√iτδjk+1,ikδjτ+1,iτ + γRe
−2iφ
√
iτ
√
iτ − 1δjk,ikδjτ ,iτ−2

)
]
δjT,iTδjk−1,ik−1

...δjk+1−l,ik+1−l . (C.0.5)

This is the excerpt of the total evolution matrix for the system and the photon bins
between now (t) and before the delay time (t− τ). The matrix is diagonal with regard to
most indices. However, when the ordering of the indices in the state is chosen in a certain
way (chronologically), it is important to keep in mind that the matrix is in fact a larger
one. This issue will be discussed again in Sec. 8.2.4 when the necessary details of the
implementation of the evolution algorithm will be shown.
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D. Details on the increased antibunching
with feedback

In this appendix the equations of motion and the states for Sec. 10 are shown.

D.1. Equations of motion and correlation function

The equations of motion for the time evolution of the state Eq. (10.1.4) are given by the
Schrödinger equation

i~
∂

∂t
|ϕ(t)〉 = H|ϕ(t)〉. (D.1.1)

The coefficient |Cgg00| is approximated as unity since weak driving is considered, so that
the equations of motion become

∂tCge00 = −i (δCge00 + g2Cgg10 + εCge10)− γ

2
Cge00 (D.1.2)

∂tCeg00 = −i (δCeg00 + g1Cgg10 + εCeg10)− γ

2
Ceg00

∂tCee00 = −i (2δCee00 + g1Cge10 + g2Ceg10)− γCee00

∂tCgg20 = −i
(

2∆Cgg20 +
√

2g2Cge10 +
√

2g1Ceg10 +
√

2εCgg10

)
+ i

∫
dkG(k, t)

√
2Cgg1k

∂tCge10 = −i
[
[∆Cge10 +

(
δ − iγ

2

)
Cge10 +

√
2g2Cgg20 + g1Cee00 + εCge00

]
+ i

∫
dkG(k, t)Cge0k

∂tCeg10 = −i
[
∆Ceg10 +

(
δ − iγ

2

)
Ceg10 + g2Cee00 +

√
2g1Cgg20 + εCeg00

]
+ i

∫
dkG(k, t)Ceg0k

∂tCge0k = −i
[(
δ − iγ

2

)
Cge0k + g2Cgg1k

]
+ iG∗(k, t)Cge10

∂tCeg0k = −i
[(
δ − iγ

2

)
Ceg0k + g1Cgg1k

]
+ iG∗(k, t)Ceg10

∂tCgg0k = −iεCgg1k + iG∗(k, t)Cgg10

∂tCgg0kk′ = iG∗(k′, t)Cgg1k + iG∗(k, t)Cgg1k′ , ifk 6= k′
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∂tCgg0kk′ = iG∗(k′, t)
√

2Cgg1k, ifk = k′.

∂tCgg1k = −i [∆Cgg1k + g2Cge0k + g1Ceg0k + εCgg0k] + i
[ ∫ k−

−∞
dpG(p, t)Cgg0pk

+

∫ +∞

k+
dpG(p, t)Cggokp + dkG(k, t)Cgg0kk

√
2 +G∗(k, t)Cgg20

√
2
]

∂tCgg10 = i

∫
dkG(k, t)Cgg0k

− i
[
∆Cgg10 + g2Cge00 + g1Ceg00 + ε

(
Cgg00 +

√
2Cgg20

)]
.

The state Eq. (10.1.4) can be used to evaluate the second order correlation function Eq.
(10.1.7) explicitly as

g(2)(t, 0) =
2|Cgg20|2

(|Cgg10|2 + 2|Cgg20|2 + |Cge10|2 + |Ceg10|2 +
∫
dk|Cgg1k|2)2

. (D.1.3)

D.2. States of the system with cavity-emitter coupling

Here, we give the states used in Sec. 10.4 to discuss the qualitative behavior of the
system. By diagonalizing the the Hamiltonian without feedback reservoir in the above
approximation, we get the states [ZZC16]

|10〉 =
1√
2
|0, g, e〉 − 1√

2
|0, e, g〉

|1+〉 =
1√
2
|1, g, g〉+

1

2
|0, g, e〉+

1

2
|0, e, g〉

|1−〉 =
1√
2
|1, g, g〉 − 1

2
|0, g, e〉 − 1

2
|0, e, g〉

|21
0〉 =

1√
3
|2, g, g〉 −

√
6

3
|0, e, e〉

|22
0〉 =

1√
2
|1, g, e〉 − 1√

2
|1, e, g〉

|2+〉 =

√
3

3
|2, g, g〉+

1

2
|1, g, e〉+

1

2
|1, e, g〉+

1

6
|0, e, e〉

|2−〉 =

√
3

3
|2, g, g〉 − 1

2
|1, g, e〉 − 1

2
|1, e, g〉+

1

6
|0, e, e〉.
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