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Abstract

The onset of self-organized motion is studied in a poroelastic two-phase model with free

boundaries for Physarum microplasmodia (MP). In the model, an active gel phase is

assumed to be interpenetrated by a passive fluid phase on small length scales. A feedback

loop between calcium kinetics, mechanical deformations, and induced fluid flow gives rise to

pattern formation and the establishment of an axis of polarity. Altogether, we find that the

calcium kinetics that breaks the conservation of the total calcium concentration in the

model and a nonlinear friction between MP and substrate are both necessary ingredients to

obtain an oscillatory movement with net motion of the MP. By numerical simulations in one

spatial dimension, we find two different types of oscillations with net motion as well as

modes with time-periodic or irregular switching of the axis of polarity. The more frequent

type of net motion is characterized by mechano-chemical waves traveling from the front

towards the rear. The second type is characterized by mechano-chemical waves that

appear alternating from the front and the back. While both types exhibit oscillatory

forward and backward movement with net motion in each cycle, the trajectory and gel flow

pattern of the second type are also similar to recent experimental measurements of peristal-

tic MP motion. We found moving MPs in extended regions of experimentally accessible

parameters, such as length, period and substrate friction strength. Simulations of the

model show that the net speed increases with the length, provided that MPs are longer

than a critical length of� 120 μm. Both predictions are in line with recent experimental

observations.

1 Introduction

Dynamic processes in biological systems such as cells are examples of when spatio-temporal

patterns develop far from thermodynamic equilibrium [1, 2]. One fascinating instance of

such active matter are intracellular molecular motors that consume ATP [3] and can drive

mechano-chemical contraction-expansion patterns [4] and, ultimately, cell locomotion. Fur-

ther biological examples of such phenomena are discussed in [5–7].

The true slime mold Physarum polycephalum is a well known model organism [8] that

exhibits mechano-chemical spatio-temporal patterns. Previous research in Physarum has
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addressed many different topics in biophysics, such as genetic activity [9], habituation [10],

decision making [11] and cell locomotion [12, 13]. Physarum is an unicellular organism,

which builds large networks that exhibit self-organized synchronized contraction patterns [8,

14, 15]. These contractions enable shuttle streaming in the tubular veins of the network and

allow for efficient nutrient transport throughout the organism [16]. Many groups have investi-

gated the network’s dynamics [17–19], however size and complex topology of these networks

make analyzing and modeling them challenging.

Physarum microplasmodia (MP) allow one to study Physarum’s internal dynamics in a

simpler setup. These MPs can be produced by extracting cytoplasm from a vein and placing it

on a substrate. After reorganization, these droplets of cytoplasm show a surprising wealth of

spatio-temporal patterns such as spiral, standing and traveling waves and irregular and anti-

phase oscillations in their height [20]. After several hours, MPs are deforming to a tadpole-like

shape and start exploring their surroundings [21–24].

MP motion is composed of an oscillatory forward and backward motion. Their forward

motion has a larger magnitude than the backward motion. There are experimental observa-

tions of two distinct motility types: peristaltic and amphistaltic [13, 24]. In the more common

peristaltic case forward traveling contraction waves result in forward motion of the whole cell

body. In the amphistaltic type, standing waves cause front and rear to contract in anti-phase.

Different modes of motion driven by periodic deformation waves are not restricted to Phy-

sarum MP, but are also found in rather general mathematical models [25] and in the locomo-

tion of a wide variety of limbless and legged animals [26]. More recently, different modes have

also been found in the Belousov-Zhabotinsky reaction in a light-driven photosensitive gel [27–

30]; Epstein and coworkers have classified the modes using the terms retrograde and direct
wave locomotion [28] and also report on a form of oscillatory migration without net displace-

ment of the average position [29].

Common models for cell locomotion and the cytoskeleton’s dynamics are based on active

fluid and gel models [31–34]. While simple fluids and solids are governed by a single momen-

tum balance equation, poroelastic media belong to the class of two-fluid models and possess

individual momentum balance equations for each of the phases. This approach is useful if the

two constituent phases have largely different rheological properties and penetrate each other

on the relatively small length scales on which cytosol permeates the cytoskeleton [35].

To describe the MP’s motion, we utilize an active poroelastic two-phase description [35,

36]. Active poroelastic models have been used to describe the pattern formation in resting [37]

and moving [38] poroelastic droplets. In simple generic models, a feedback loop between a

chemical regulator, mechanical contractions and induced flows give rise to pattern formation

in a resting droplet [37]. In [38], we have studied this model with free boundary conditions

and linear friction between droplet and substrate. While we were able to observe back and

forth motion of the boundaries, the center of mass (COM) position remained fixed. The drop-

let did not exhibit net motion. Moreover, we derived an argument that COM motion is impos-

sible with a spatially homogeneous substrate friction. Furthermore, numerical simulations

have shown that an additional mechanism establishing an axis of polarity that is stable on long

timescales is necessary for net motion [38].

In this work, we proceed in two steps. First we extend the model described in [38] with a

nonlinear slip-stick friction between droplet and substrate to create a spatially heterogeneous

substrate friction. Second, we consider a specific model derived for Physarum MP that con-

tains a reaction kinetics. Within this enhanced model, we explore the conditions for the onset

of motion of Physarum MP.

Previous work on models for resting Physarum MP by Radszuweit et al. has shown that

inclusion of a nonlinear reaction kinetics for the calcium regulator can result in the emergence
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of uni-directional traveling mechano-chemical waves that establish an axis of polarity inside

the MP [39, 40]. Nonlinear friction is a common assumption in biology [41, 42] and can also

be found in other eucaryotic cells [43, 44]. Here, we utilize a simplified version of the nonlinear

slip-stick friction model introduced by Barnhart et al. to account for oscillatory modulations

of keratocyte movement [44]. The nonlinear friction dynamics and its synchronization with

other properties such as the local strain inside a cell are also important for other types of amoe-

boid motion such as chimneying [45]. Moreover, regulation of the friction strength is signifi-

cant for locomotion in other biological systems such as snails or slugs [46, 47].

Section 2 contains a comprehensive description of the model. In Section 3, we analyze the

linear stability of the model and identify different types of motion. Furthermore, we explore

the effects of parameters that are accessible in the experiment such as the period of the internal

dynamics, the length and the substrate friction strength. Section 3 contains a comparison of

our findings with recent experiments of Physarum MP. Afterwards, we summarize our results

in the discussion and briefly address possible extensions of the model.

2 Model

We follow our earlier work [37–40, 48, 49] and utilize an active poroelastic two-phase model

in one spatial dimension to describe homogeneous and isotropic Physarum microplasmodia

(MP). We assume that MP consist of an active gel phase representing the cytoskeleton that we

model as a viscoelastic solid with a displacement field u and velocity field _u [50]. The gel is

penetrated by a passive cytosolic fluid phase with flow velocity field v. For related models see

[51, 52].

The total stress in the medium is given by σ = ρgσg + ρf σf, where ρg (ρf) denotes the volume

fraction and σg (σf) the stress tensor in gel and fluid phase, respectively. While the time evolu-

tion for the gel fraction is given by r̂g ¼ rgð1 � @xuÞ, only the constant term ρg enters into the

equations due to our small strain approximation with |@xu|� 1. Assuming that no other

phases are present, the volume fractions obey ρg + ρf = 1 [53].

Each phase satisfies a momentum balance equation @x(σg/f − p) + fg/f + fsub = 0, where p
denotes the hydrodynamic pressure. The friction between both phases is given by Darcy’s law

with fg ¼ � ff ¼ rgrfbðv � _uÞ. Following [44], we assume that the friction between gel and

substrate depends nonlinearly on the the local gel speed according to fsub ¼ � gðj _ujÞ _u and no

friction between fluid and substrate.

We model MPs in an one-dimensional time-dependent domain B with boundaries denoted

by @B. Assuming that B is infinitely large in the y-direction, the boundary is straight, and we

omit terms that depend on interface tension or bending. Free boundary conditions in x-direc-

tion enable boundary deformations and thus motion in response to bulk deformations [54–

56]. The total stress has to be continuous across the boundary and with the assumption that

the MP is embedded in an inviscid fluid with constant pressure pout, the first boundary condi-

tion is given by

s � pj
@B ¼ soutj@B ¼ pout ¼ 0: ð1Þ

The model is composed of two phases with individual momentum balances. Hence, we

need a second boundary condition to close the model equations. Neglecting permeation of gel

or fluid through the boundary, the second boundary condition is

_uj@B ¼ vj@B: ð2Þ

Free boundary conditions require solving the momentum balances at the boundary, whose

position must be determined in the course of solving the evolution equations. To circumvent
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this problem, we formulate the model in a co-moving body reference frame. The details of the

transformation from the laboratory to the body reference frame can be found in [37–39]. S1

Fig displays a visual comparison of a quantity plotted in the body reference and the laboratory

frame.

The stress of the passive fluid with viscosity ηf is given by σf = ηf@xv. The gel’s stress can be

decomposed in a passive part, σve, and an active part, σact. The passive part is described as a

viscoelastic Kelvin-Voigt solid with sve ¼ E@xuþ Zg@x _u [50, 57] where E denotes Young’s

modulus and ηg the dynamic viscosity. For a discussion on the effects of different linear and

nonlinear viscoelastic models see [36, 58]. The active stress is assumed to be governed by a

chemical regulator c, which is usually identified as calcium [13, 59, 60], according to

sact ¼ TðcÞ ¼ T0 � x
c

1þ c
: ð3Þ

In this formulation, the homogeneous part of the active stress T0 is inhibited by calcium

concentration c with a coupling strength ξ> 0.

In [38], we identified a heterogeneous substrate friction as a requisite for motion of the

MP’s center of mass (COM). While the exact nature of the Physarum friction dynamics is not

known, recent experiments indicate that MP exhibit nonlinear slip-stick friction with an

underlying substrate resulting in a heterogeneous friction [13]. We assume that there are adhe-

sive bonds between gel and substrate which break once the force acting on them is larger than

a critical value and that this force depends on the local gel speed j _uj [44]. Therefore, if j _uj is
larger than the critical slip speed vslip these bonds will break and the friction coefficient will

decrease locally, yielding

gðj _ujÞ ¼ g0

1; for j _uj < vslip

ð1 � aÞ; for j _uj � vslip

8
<

:
ð4Þ

with 0< α< 1. With α = 0 the friction coefficient is always homogeneous, higher values allow

for heterogeneous friction coefficient values. In the following, we call α the slip-ratio and γ0

the base friction coefficient.

The fluid phase contains dissolved chemical species that can perform regulatory activities.

Following [40], we consider an advection-diffusion-reaction dynamics for two control species

with local instantaneous concentrations: calcium c and a control species a that chemically

interacts with calcium. Calcium determines the gel’s active tension while the control species

represents all biochemical interactions between calcium and other components of the cytosol.

We assume an oscillatory Brusselator-type kinetics for a and c [40].

Both species are dissolved in the fluid and advected with its flow. Furthermore, they diffuse

with coefficient Dc and Da, respectively. We assume that both species cannot cross the bound-

ary, resulting in no-flux boundary conditions.

Linearizing with respect to the gel strains @xu yields advection-diffusion-reaction equations

with the relative velocity of the fluid to the gel v � _u as the advection velocity. In the body ref-

erence frame the equations for c and a read

@tcþ @x½ðv � _uÞc� ¼ Dc@xxcþ cðAþ c2a � Bc � cÞ

@taþ @x½ðv � _uÞa� ¼ Da@xxaþ cð� c2aþ BcÞ:
ð5Þ

Here, ψ = 0.105/s represents the temporal scale of the calcium kinetics which can be used to

fit the experimentally observed time scale of the mechano-chemical waves.
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The homogeneous steady state (HSS) of the model is given by c = A and a = B/A. The HSS

destabilizes through a Hopf-Bifurcation if B> Bcr = 1 + A2 [40]. Here, we fix A = 0.8 and then

vary B above its critical value Bcr. With the inclusion of a calcium kinetics, the total amount of

calcium is not conserved anymore. In addition, the calcium kinetics can introduce an axis of

polarity [39, 40]. The case with calcium conservation was examined in earlier studies for rest-

ing [37] and moving poroelastic droplets [38].

Fig 1 gives an overview of the different elements in the model. Calcium regulates the gel’s

activity. Spatial variations in the calcium concentration yield a heterogeneous active tension

which results in deformation and motion of the gel. Once the gel moves, there is nonlinear

friction between gel and substrate. Furthermore, the gel’s motion induces pressure gradients.

Due to these gradients and friction between the gel and the fluid phase, the fluid starts to flow

and the dissolved chemical species are advected with the fluid, closing the feedback loop

between the different elements in the model.

In summary, the model equations are given by

rfZf@xxvþ rgZg@xx _u

þrgE@xxu � rggðj _ujÞ _u � @xp ¼ � rg@xTðcÞ

Zf@xxv � rgbðv � _uÞ � @xp ¼ 0

@xðrg _u þ rf vÞ ¼ 0

@tcþ @x½ðv � _uÞc� � Dc@xxc ¼ cðAþ c2a � Bc � cÞ

@taþ @x½ðv � _uÞa� � Da@xxa ¼ cð� c2aþ BcÞ:

ð6Þ

Following [39], we introduce the Péclet number Pe = ξ/(Dcβ) as a measure for the ratio of

diffusive to advective time scales to characterize the strength of the active tension [37]. We also

Fig 1. Sketch of the model. Calcium regulates the gel’s active tension and varying calcium concentration levels cause gel deformations. When the gel

moves, there is nonlinear friction between gel and substrate. Moreover, pressure gradients arise and there is friction between both phases. Both cause

the fluid to start flowing and advecting the dissolved chemical species.

https://doi.org/10.1371/journal.pone.0217447.g001
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define the dimension-less ratio of the Péclet number to the critical Péclet number for the onset

of the mechano-chemical instability without a calcium kinetics [40] as F = ξA/(Dcβ(1 + A)2).

For F> 1(F< 1), the HSS is stable (unstable).

3 Results

We solve Eq 6 (numerically in a one-dimensional domain of length L with parameters adopted

from [40] which are listed in S1 Table, unless stated otherwise. Our initial condition is the

weakly perturbed homogeneous steady state (HSS) with

u ¼ _u ¼ v ¼ 0; c ¼ c0 ¼ A; a ¼ a0 ¼ B=A: ð7Þ

The length L remains constant due to the incompressibility of the medium. We use the cen-

ter of mass (COM) position xCOM ¼
R L

0
uðxÞdx as a measurement of the position. Note that we

will compare the COM’s motion to our results from [38] where we utilized the location of the

left boundary as the position and the COM always remained fixed. In addition, we utilize the

temporal distance between subsequent peaks in the calcium concentration c as a measure for

the period P of the internal dynamics.

Depending on the parameter values of active tension (F), nonlinear friction (α, vslip, γ0) and

calcium kinetics (B, ψ), we can observe resting, stationary MPs and MPs performing three

types of oscillatory motion: first, with fixed COM; second, with back and forth moving COM;

third, with back and forth moving COM together with net displacement of the COM (net

motion). In addition, we analyze the effect of parameters that are accessible in the experiment

like the length L and the base friction coefficient γ0.

Nonlinear slip-stick friction allows for COM motion

First, we analyze the effect of the nonlinear substrate friction without calcium kinetics (ψ = 0),

i. e. the calcium dynamics is governed by a pure advection-diffusion dynamics and the total

amount of calcium is conserved. Afterwards, we introduce a nonlinear calcium kinetics to

establish an axis of polarity.

We vary the slip-ratio α and the slip-velocity vslip. For spatially uniform substrate friction

(α = 0), there are gel deformations, and the boundaries change their position, but the COM’s

position remains fixed as described in [38]. Increasing α> 0 gives rise to spatially heteroge-

neous friction allowing for COM motion. For small increases of α, the mode of motion usually

remains the same as with a homogeneous friction, but it is now accompanied by COM motion

of the same type but with a smaller magnitude. In general, the COM motion’s amplitude will

increase when increasing α (S5 Fig). However, large values of αmight result in a change of the

mode of motion, for example, an initially periodic dynamics might become irregular. For val-

ues of vslip > max ðj _ujÞ the friction is always in the sticking regime. Therefore, the friction

coefficient is homogeneous. Likewise, for low values of vslip the moving MP is almost always

in the regime of slipping friction resulting in an effectively homogeneous friction coefficient of

γ = γ0(1 − α). Intermediate values of vslip result in a heterogeneous distribution of the friction

coefficient.

Comparable to our results in [38], the position over time remains fixed or undergoes peri-

odic (irregular) motion of the COM and the boundaries together with a periodic (irregular)

calcium dynamics, as shown in Fig 2. However, we found no cases of net motion. As discussed

in [38], the lack of net motion gives rise to the question of why the time-averaged position van-

ishes for all of these cases. While the calcium distributions produced by pure advection-diffu-

sion dynamics may look asymmetric at certain instances in time, the long time-averaged
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distribution is always symmetric. This indicates that the front-back symmetry is not broken on

timescales of t� P, and that an additional mechanism to establish an axis of polarity is

needed.

Note that the exact nature of Physarum’s friction dynamics can not be inferred from the

available experimental data. A nonlinear dependency of γ on other quantities such as the cal-

cium concentration c, the local contraction amplitude @xu (which is proportional to the height

h [39]), and more complex slip-stick models led to qualitatively equivalent results for the onset

of COM motion.

Nonlinear calcium kinetics creates an axis of polarity

One self-organized way that leads to the emergence of uni-directional traveling mechano-

chemical waves which establishes an axis of polarity that is stable on timescales of t� P is to

introduce a nonlinear calcium kinetics as studied in [39, 40]. Introducing this calcium kinetics

allows for a temporal variation of the total amount of calcium. The amplitude of calcium

waves can vary while traveling waves can annihilate on collision with a boundary. This is in

Fig 2. COM (orange) and boundary (blue) trajectories (top row) and calcium dynamics (bottom row) for regular (left column) and irregular

(right column) motion with nonlinear substrate friction without calcium kinetics (ψ = 0). The nonlinear substrate friction creates a spatially

heterogeneous friction which allows for COM motion (orange line) together with motion of the boundaries (blue). The regular calcium dynamics

(bottom left) results in oscillatory back and forth motion of COM as well as the boundaries (top left). An irregular calcium dynamics (bottom right)

creates irregular motion (top right). There is no net motion for both cases. S1 and S2 Figs display a visual comparison of the calcium concentration

plotted in the body reference and the laboratory frame. Parameters: vslip = 6.0 μm/s α = 0.25, γ0 = 10−5 kg/s, L = 130 μm, Pe = 50 (left) and vslip =

30.0 μm/s, α = 0.3, γ0 = 10−5 kg/s, Pe = 9.5, β = 10−4 kg μm−3 s−1, E = 0.01 kg μm−1 s−2, ηg = 0.01 kg μm−1 s−1, ηf = 2 × 10−8 kg μm−1 s−1 (right).

https://doi.org/10.1371/journal.pone.0217447.g002
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contrast to the behavior with a pure advection-diffusion dynamics where calcium is conserved

and waves always get reflected at the boundaries.

The linear stability of the HSS (Eq 7) against small perturbations is analyzed in detail in [39,

40]. In [40] five regions with qualitatively different dispersion relations are given: i) the HSS is

stable for small F and B. ii) Upon increasing the chemical activity B> Bcr the HSS undergoes a

supercritical Hopf bifurcation. iii) Decreasing B< Bcr and increasing the mechanical activity

F> 1 gives rise to an oscillatory short-wavelength instability as already identified and dis-

cussed in [40]. iv) For B> Bcr and F> 1 both instabilities are present and more complex wave

patterns can emerge. v) A further increase of F results in the real eigenvalues maximum to

become purely real for small k. However, for larger k these eigenvalues still have an imaginary

component 6¼ 0. Note that we analyzed the linear stability of the model with linear friction

(fsub ¼ � g0 _u), as the nonlinear friction terms vanishes in the linear approximation. The forms

of the typical resulting dispersion relations are analogous to the ones displayed in [40].

In numerical simulations, we find modes defining an axis of polarity that is stable on time-

scales of t� P for parameters in region iv. These modes are distinguished by a spatially asym-

metric long time-averaged calcium distribution. This is in contrast to the averaged calcium

distributions produced by the pure advection-diffusion dynamics which are always spatially

symmetric. Such an axis of polarity that remains stable on long timescales will be referred to as

stable polarity in the remainder of this work.

Nonlinear calcium kinetics combined with nonlinear substrate friction

result in net motion

We identified the two ingredients we need to build a model with net motion. For appropriate

values for the parameters of the calcium kinetics and the substrate friction oscillatory back and

forth motion with net motion of the COM is observed. In the following, we characterize two

types of oscillations with net motion occurring in different parameter regions.

In the first type (type 1), calcium waves emerge periodically at the front traveling backwards

with decreasing amplitude together with backward motion of both boundaries. While traveling

backward, the calcium wave causes forward motion of gel and COM. Upon collision with the

rear boundary, the calcium concentration first peaks and the wave is then annihilated. Once

the calcium wave has decayed, the tension in the material relaxes and there is no motion until

the next calcium wave arises. The slip velocity vslip is only exceeded while a wave is propagat-

ing. Therefore, there is only COM motion during wave propagation, and the COM remains at

a constant position otherwise.

The continuous emergence of calcium waves at the front and their annihilation at the back

together with the asymmetric time-averaged calcium distribution indicate the establishment of

a stable polarity. This dynamics results in oscillatory back and forth motion of COM and

boundaries together with net motion.

The period of this motion is P� 95 s. In each period the COM moves forward by� 18 μm

which results in a net speed of 0.2 μm/s. Fig 3 shows gel velocity, calcium dynamics as well as

boundary (blue) and COM (orange) position for the first type of oscillations with net motion.

This type is the most commonly observed case of COM oscillations with net motion, and we

observe it for a wide range of parameters.

For the second type (type 2) of COM oscillations with net motion, calcium waves emerge

alternating from both sides traveling towards the opposite boundary. Upon approaching the

front (rear), the calcium waves coincide with forward (backward) motion of the boundaries.

When the wave hits the boundary, the calcium concentration peaks, sparking the emergence

of a new wave traveling into the opposite direction. Waves emerging from the front have a
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higher amplitude than waves from the back as displayed in S6 Fig. The higher amplitude of

waves traveling from front to rear indicate a stable polarity and results in net motion.

The boundaries as well as the COM oscillate with the same period of P� 14 s, however the

amplitude of the COM motion is smaller than the amplitude of the boundaries motion. The

COM advances the boundaries by a quarter period. In each cycle, the COM moves forward by

�3 μm yielding a net speed of vnet = 0.21 μm/s. Fig 4 shows gel velocity, calcium dynamics and

COM and boundary trajectories for type 2 motion. The gel velocity resembles the pattern

found in [38], but now the calcium kinetics creates a stable polarity. This type only appears for

a few specific parameter combinations.

In addition to the two types of oscillations with net motion described above, we find several

modes with time-periodic or irregular switching polarity (S7 Fig).

Model reproduces experimentally observed types of movement

Comparing our simulations with Physarum experiments reveals several qualitative and quanti-

tative similarities. In experiments, MPs explore their surrounding with an oscillatory forward

and backward motion [21, 24]. Their forward motion is of larger magnitude than their

Fig 3. Gel velocity (top), calcium dynamics (middle) and trajectories (bottom) of boundary (blue) and COM (orange) for type 1 motion.

Backward traveling calcium waves emerge periodically at the front, together with backward motion of the boundaries. Once the calcium wave is

traveling backward, it causes forward gel flow and COM motion. On their arrival at the rear, the calcium concentration peaks, but the wave is

annihilated upon collision with the boundary. The resulting forward gel motion is of a greater amplitude than the backward motion resulting in net

motion with vnet = 0.2 μm/s. S3 Fig displays a visual comparison of the calcium concentration plotted in the body reference and the laboratory frame.

Parameters B = 3.5, γ0 = 7 × 10−6 kg/s, vslip = 2.5 μm/s, α = 0.15, L = 160 μm and F = 12.3.

https://doi.org/10.1371/journal.pone.0217447.g003
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backward motion, resulting in net motion in each cycle. An experimental MP trajectory is

shown in Fig 6b in [24].

Although experimental measurements of the free calcium dynamics are noisy, forward trav-

eling calcium waves can be discerned that annihilate on collision with the front [13]. More-

over, the velocities of two different quantities can be measured: endo- and ectoplasm [13]. The

ectoplasm is gel-like and connected to the MP’s membrane while the endoplasm is fluid-like.

Strength and direction of the ectoplasm’s velocity correlate with measured traction forces

exerted on the substrate. In the model, the gel is viscoelastic and exhibits friction with the sub-

strate. Hence, the velocities of gel and ectoplasm should be compared. For the more common

peristaltic type of MP motion, the ectoplasm’s velocity alternates periodically between forward

and backward direction at a fixed position. While the velocity’s direction at front and back are

equal, the center part is moving into the opposite direction with a weaker amplitude than at

the boundaries. Forward ectoplasm motion has a larger amplitude than backward motion,

resulting in a net speed of vexp� 0.05-0.25 μm/s with an internal period of Pexp� 80 s-130 s

[13, 23]. A space-time plot of the ectoplasm velocity is shown in [13] (Fig 7a).

Both types of simulated movement exhibit oscillatory COM motion with net motion

in each cycle. For type 1 motion (Fig 3) the period of� 95 s and net speed of 0.2 μm/s are

comparable to the experiment. However, the COM is only moving while a calcium wave is

Fig 4. Gel velocity (left), calcium dynamics (middle) and trajectories (bottom) of boundary (blue) and COM (orange) for type 2 motion. Calcium

waves emerge alternating from front and back traveling towards the opposite side. The collision with a boundary sparks a new wave traveling

backwards. Waves emerging at the front have a larger amplitude than waves originating at the rear resulting in net motion. S4 Fig displays a visual

comparison of the calcium concentration plotted in the body reference and the laboratory frame. Parameters: B = 2, γ0 = 10−5 kg/s, vslip = 1.54 μm/s, α =

0.1, L = 125 μm and F = 18.5.

https://doi.org/10.1371/journal.pone.0217447.g004
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propagating and is at rest otherwise which has not been observed in the experiment. Type 2

motion (Fig 4) features continuous forward and backward motion with a net speed of

0.21 μm/s and a period of 14 s. Aside from the substantially shorter temporal period, this type

does more closely resemble the experimental observations.

The calcium dynamics of both types feature traveling waves. Type 1 motion exhibit only

backward traveling waves that annihilate at the rear. However, for type 2 motion waves get

partly reflected and there are forward and backward traveling calcium waves. In the experi-

ment, only forward traveling waves that annihilate at the front can be observed [13].

In addition, we can compare the experimental ectoplasm velocity with the simulated gel

velocity. For type 1 motion, each calcium wave causes huge gel deformations that are accompa-

nied by COM motion. When the calcium wave has abated, the stress in the medium relaxes

and after� 25 s all deformations have decayed. There is no further motion until the next cal-

cium wave emerges. The velocity patterns in this type of motion have not been observed

experimentally.

However, there are several similarities between the velocity patterns in peristaltic MP and

type 2 motion. In experiment as well as simulation the gel’s velocity alternates between for-

ward and backward direction at a given position. Usually, the gel’s velocity possesses the

same direction at front and back, whereas there is opposing motion at the center. The

forward velocity has a larger amplitude, which results in net motion towards the front. How-

ever, there are also differences: In the experiment, the ectoplasm’s velocity at the rear is

higher than at the front which is not the case in our simulations under the chosen parameter

values. As mentioned above, the period of� 14 s is shorter than experimentally measured

periods.

Microplasmodia speed depends on length L, base friction coefficient γ0 and

internal period P
In the parameter plane spanned by base friction strength γ0 and length L the type of motion as

well as net and mean speed changes as displayed in Fig 5. The mean speed is measured by the

averaged speed of the boundaries. For very high values of γ0 (� 3 × 10−5 kg/s) global calcium

oscillations emerge without any gel or COM motion, regardless of the length. For low values of

γ0 (< 10−6 kg/s), there is effectively no friction between gel and substrate. In this case, the

equations do not possess full rank and we omit showing these results.

In the intermediate range the length L strongly affects the emerging dynamics. For γ0 =

10−5 kg/s global calcium oscillations occur when L� 100 μm. Increasing L above 110 μm gives

rise to type 1 motion with a low net speed of 0.03 μm/s (Fig 5, top). With a further increase of

L the net speed rises up to 0.16 μm/s for L = 170 μm. When decreasing the base friction coeffi-

cient to γ0 = 5 × 10−6 kg/s, the net speed increases to 0.21 μm/s where it reaches a maximum. A

further decrease yields lower net speeds. At 2 × 10−6 kg/s a transitions to oscillations of the

COM without net motion is observed.

Additionally, we find a critical length Lcr� 120 μm for the transition between global cal-

cium oscillations and states with motion of the boundaries (Fig 5, bottom). Our linear stability

analysis predicts that there is a critical length for the transition to an oscillatory short-wave-

length instability (green line). This prediction is close to the transition from global calcium

oscillations to COM oscillations without net motion (bottom panel).

The existence of a critical length as well as the increasing net speed for longer MPs are qual-

itatively in line with experimental observations. It was found that there is a critical MP size for

the onset of locomotion which is around 100 μm-200 μm [13, 61]. Furthermore, previous

experiments show that an increase in the longitudinal length increases the net speed [61, 62].
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Note that MPs start to branch when they grow above 300 μm-500 μm [13, 21, 63] and that the

model cannot capture any effects caused by this.

By changing the temporal scale ψ of the calcium kinetics (Eq 5) we can adjust the period P
of the internal dynamics for type 1 motion. In general, higher (lower) values of ψ result in a

shorter (longer) period P. The net speed decreases when increasing the period P (Fig 6). With

a decreasing period the intervals between two calcium waves become shorter. As each wave

results in net motion, the net speed decreases with higher periods until there is a transition to

global calcium oscillations without any motion for periods of more than P� 145 s. In the

experiment, the maximum period observed for moving MP is 128 s, which is qualitatively in

line with the maximum period of� 145 s for moving MP. Consistent with our results above, a

larger slip-ratio α increases the net speed.

To our knowledge, there is no published experimental data where the MP net speed is com-

pared to the period of its internal dynamics. Our modeling results may hence be tested in

future more detailed experimental studies of motion of MP.

4 Discussion

In the present work, we have extended the two-phase model with free-boundaries for poroelas-

tic droplets from [38] in two steps. First, we introduce a nonlinear slip-stick friction between

droplet and substrate. While we were able to observe back and forth motion of the boundaries

Fig 5. Net (top) and mean speed (bottom) for different strengths of base substrate friction γ0 and length L. Larger MPs possess both a higher net

and mean speed. The net speed reaches a maximum for a medium base friction coefficient of γ0 = 6 × 10−6 kg/s while the mean speed increases with

decreasing friction. There is a critical length of Lcr� 120 μm in the model and L needs to be larger than Lcr to transition from global calcium oscillations

to states with motion of the boundaries. This is in qualitative agreement with the linear stability analysis that predicts the transition to an oscillatory

short-wavelength instability (green line, bottom) at 130 μm for γ0 = 6 × 10−6 kg/s. Parameters: B = 3.5, vslip = 2.5 μm/s, α = 0.15 and F = 12.3.

https://doi.org/10.1371/journal.pone.0217447.g005
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in [38], we showed that COM motion is impossible with a spatially homogeneous substrate

friction. The nonlinear stick-slip approach results in a heterogeneous friction coefficient and

allows for COM motion. Second, we consider a nonlinear oscillatory chemical kinetics that

was derived for calcium as the regulator which controls the gel’s active tension in Physarum

microplasmodia (MP) [40]. It is known from previous studies [39, 40] that introducing a non-

linear calcium kinetics can lead to a uni-directional propagation of mechano-chemical waves

that establishes an axis of polarity which is stable. This is in contrast to our previous work

where the pure advection-diffusion dynamics of a passive regulator does not lead to the estab-

lishment of a polarity axis necessary for net motion [38].

With this extended model, we explore the conditions for self-organized motion of Phy-

sarum MP. We identified varying modes of locomotion ranging from global calcium oscilla-

tions without motion to spatio-temporal oscillations with and without net motion. Our study

was restricted to one spatial dimension which can be rationalized by the experimental evidence

that moving MPs have an elongated shape and motion is mostly caused by deformation waves

along the longitudinal axis [62].

With the extended model, we could identify two different types of COM oscillations with

net motion in addition to modes with time-periodic or irregular switching polarity. The more

frequent type is characterized by mechano-chemical waves traveling from the front towards

the rear that are accompanied by COM motion (Fig 3). The second, less frequent type is char-

acterized by mechano-chemical waves that appear alternating from front and back (Fig 4).

While both types exhibit oscillatory forward and backward motion with net motion in each

cycle, in particular the trajectory and gel flow pattern of the second type resemble experimental

measurements of peristaltic MP motion [13]. Interestingly, there are also experimental obser-

vations of two different types of oscillations with net motion in addition to disorganized pat-

terns [13].

Fig 6. A higher period P of the internal dynamics results in lower net speeds for type 1 motion. For a period of more than P> 145 s there is a

transition to global calcium oscillations without any motion. The experimentally observed periods are between 78 s and 127 s, taken from [13].

Parameters: B = 3.5, vslip = 3.0 μm/s and F = 12.3.

https://doi.org/10.1371/journal.pone.0217447.g006
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Further, we varied parameters that are accessible in experiments, such as the period of the

internal dynamics P, the length L, and the base substrate friction coefficient γ0.

In the parameter plane spanned by the base friction coefficient (γ0) and the length (L), the

model predicts that MPs need to be longer than a critical length of� 120 μm to transition

from global calcium oscillations to states with motion of the boundaries (Fig 5). This result

agrees with the linear stability analysis which indicated a transition to an oscillatory short-

wavelength for� 125 μm-130 μm. Furthermore, experimental studies found a minimal length

of 100 μm-200 μm for MPs to start their motion [13, 61]. In addition, the net speed in the sim-

ulations increases with length L which was also observed in experiments [62].

The net speed becomes maximal for intermediate values of γ0 and larger slip-ratios α result

in a larger net speed (Fig 6). While the exact nature of Physarum’s friction dynamics can not

be inferred from the available experimental data, introducing a nonlinear friction dynamics is

crucial for COM motion. Future experiments may provide more quantitative information on

the interactions between substrate and MP which could be used to improve the model.

The net speed in the simulations decreases monotonically with an increasing period (Fig 6).

For parameters leading to a period P> 145 s, we only found global calcium oscillations with-

out any motion. This is qualitatively in line with experimental results, where the maximum

observed period is 128s for moving MP [13].

With the results from this work, we have been able to identify components that are essential

for different types of MP locomotion. It is known from [37] that a feedback loop between a

passive chemical regulator, active mechanical deformations, and induced flow is sufficient for

the formation of spatio-temporal contraction patterns. In [38], we extended the model by

employing free boundary conditions and linear substrate friction which yielded oscillatory and

irregular motion of the MP’s boundaries with a resting COM. In the present work, we intro-

duced nonlinear stick-slip substrate friction that enables COM motion. Moreover, inclusion of

a nonlinear oscillatory calcium kinetics leads to a self-organized stable polarity which eventu-

ally allows for net motion. Fig 7 summarizes the connection between these components and

describes the corresponding types of locomotion.

Fig 7. Overview of the different levels in the model and corresponding types of locomotion.

https://doi.org/10.1371/journal.pone.0217447.g007
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Much larger forms of Physarum like mesoplasmodia and extended networks show a clear

separation of gel and fluid-like phases [8, 12, 63, 64]. Recently, a study by Weber et. al [65]

identified that differences in the activity between two phases can lead to a phase separation.

Future extensions of our model may include this aspect by treating the phase composition as a

spatially dependent local variable that includes transitions between both phases.
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text.
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s, L = 125 μm and F = 15.4.
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a moving MP in lab and body reference frame ii) Dispersion relations for the linear stability

analysis iii) A table with the default parameters.
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Methodology: Dirk Alexander Kulawiak, Jakob Löber, Markus Bär, Harald Engel.
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