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Abstract – We implement a fully parallel photonic neural network based on the spatially distributed modes of a 

large-area vertical-cavity surface-emitting laser. All photonic connections are realized in hardware and the system 

is capable of autonomous operation. 

I. Introduction 

Over the past decade, artificial Neural Networks (NNs) have revolutionized computing. High-performance 

computing hardware is crucial for modern NN schemes. Photonics promises strong advantages in terms of 

parallelism, yet until now scalable and integrable concepts are scarce and partially rely on exotic substrates. The 

majority of large scale and parallel photonic NN demonstrations are neither standalone nor autonomous [1], usually 

lacking fundamental NN constituents or requiring substantial interaction with a classical electronic computer. In 

this contribution, we implement a fully parallel photonic reservoir computer based on the spatially distributed 

modes of an efficient and fast semiconductor laser [2]. Crucially, all neural network connections are realized in 

hardware, and our laser-based and fully parallel NN comprising ~ 100 neurons produces results without pre- or 

post-processing. 

 

II. Results 

As photonic neuron substrate we use the complex multimode field of an injection locked large-area vertical-

cavity surface-emitting laser (LA-VCSEL) of ~20 µm diameter emitting around 920 nm. Figure 1(a) depicts the 

device we use and its free-running emission profile at a bias current of 1.3 times its lasing threshold. This LA-

VCSEL follows a minimalistic design principle that optimizes operation efficiency and bandwidth [3] and were 

fabricated via standard commercial technology. A detailed description of the device characteristics can be found 

in [2].  

 
Fig. 1. (a) Left: White light image of the LA-VCSEL (~20 µm in diameter); Right: Magnified multimode free lasing emission for a bias current 

of 1.3 the LA-VCSEL threshold. (b) Schematic illustration of the photonic NN’s sections linked to their corresponding physical devices. A 

digital micromirror device (DMDa) encodes input information uin, which is mixed through the complex transfer matrix of a multimode fiber 
(mm-fiber). The LA-VCSEL acts as recurrent reservoir with state x, providing device-inherent internal coupling Wint. DMDb implements 

programmable Boolean readout weights Wout, and a detector records computational result yout. (c) Optical spectra under DC optical injection. 
For clarity, offsets of 30dB and 60dB have been respectively added to the middle and top spectra. (d) Perturbed mode profiles (upper panels) 

under different injection patterns (lower panels) showing the highly nonlinear nature of the LA-VCSEL response. 

Our reservoir computing scheme is illustrated in Fig. 1(b). All the photonic NN connections are implemented 

in hardware: the complex transfer matrix of a multimode (mm) fiber (Win) couples the LA-VCSEL to the injected 

information (uin), which is Boolean encoded on a digital micro-mirror device (DMDa). The VCSEL then 

transforms the injected information non-linearly yielding mode profiles such as in Figure 2. This transformation 
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is comparable to the action of a neural network: similar inputs result in vastly different VCSEL responses, and we 

can use the laser for pattern recognition. Intra-cavity fields and carrier diffusion intrinsic to LA-VCSELs 

recurrently couple the photonic neurons (Wint), and trainable readout weights (Wout) are encoded on the DMDb and 

photo-detected to directly provide the computational result (yout). We operate our recurrent photonic NN in its 

steady state, and its bandwidth is limited by the input DMD’s frame rate to around 100 inferences per second. 

Although optical injection into multimode LA-VCSELs was extensively studied in the past [5], here we report 

injection-lock of such device to a complex optical input field for the first time. Figure 1(b) depicts the device’s 

optical response under DC injection of ring-like optical pattern of different thicknesses generated with DMDa. 

Lower spectrum (in green) corresponds to the free-running laser when biased at 1.28Ith, meanwhile the middle and 

upper spectra respectively correspond to power injection ratios of Pinj/PVCSEL=0.03 and Pinj/PVCSEL=0.4 for identical 

bias condition. These latter spectra have been shifted upwards +30 dB and +60 dB for clarity reasons. Figure 1(d) 

shows the resulting photonic ANN state for the example of injecting the four possible configurations of 2-bit 

symbols. Individual responses significantly differ for each case, which is a prerequisite to differentiate individual 

digits.  

The system learns the best configuration of output mirrors to differentiate between different input patterns. The 

DMDb output mirrors each have two possible positions, implementing Boolean weights. We explore different 

Boolean learning strategies. The first, already described in [4], is a Markovian process where at each epoch a single 

mirror is flipped, the change is kept if it had a positive impact on the performance metric (NMSE error), otherwise 

the change is reversed, and another mirror is flipped. Following this learning strategy, we trained the readout 

weights to perform 2-bit header recognition, 2-bit XOR and 2-bit digital-analog conversion tasks. Figure 2(a) 

depicts exemplary convergence curves on a training set for classifying 2-bit patterns. The error rates achieved by 

our system for the different tasks are down to: 0.9x10-3 for the 2-bit header recognition; 2.9x10-2 for the 2-bit XOR 

task; and 5.4x10-2 for the 2-bit digital-to-analog conversion. 

 
Fig. 1 (a) Convergence on training set for classifying bits < 00 >, < 01 >, < 10 > and < 11 >. Diamond symbols are the corresponding average 

testing NMSE. (b) 2D plot of the error (NMSE, color coded) as a function of the learning epochs and the learning rate.  

 

Our second learning strategy adapts the previous Markovian process by taking inspiration for the widely used 

stochastic Gradient descent algorithm. In our adaption, at each epoch the number of flipped mirrors (nmirrors) 

depends on the error via a constant learning rate 𝛼, which is a hyperparameter that we tuned as: 

nmirrors=ceil(α*NMSE). The mirrors are still chosen randomly, but such improved strategy allows us to take big 

steps in the parameter space when the error is high, and progressively reduce the size of these steps as we start 

converging towards lower errors (note that if 𝛼=0, nmirrors is always 1). Figure 2(b) shows the clear dependence 

between learning rate (α), learning speed and NMSE performance. Thanks to this learning strategy, we successfully 

improve both the speed of convergence during learning as well as the final computational performance. 

In conclusion, we demonstrate a fully analog spatially-extended photonic reservoir computer where each of 

the system’s constituents implemented in hardware in readily available and cost-effective telecommunications 

components. Furthermore, our present system is scalable in size to much larger networks in excess of 1000 neurons 

per layer and to bandwidths in excess of 20 GHz, establishing a clear road map for future high-performance 

photonic hardware for NNs. 
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